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Abstract

Wind - induced waves are the dominant active phenomenon of the coastal area and have a
large influence on the suspension and the transport of sediments in the nearshore area. The
wave breaking with the associated wave - induced currents can bring relatively large quantities
of sand into suspension which is then transported following the current direction. Although
sediment in the nearshore area is moving constantly, transport is a phenomenon based mainly
upon extreme events such as storm surges.

In this study, the effect of a strong meteorological event, known as Meltemi, which took place
from 24th to 30th July 2003 and monitored at Gouves beach (Poulos et al 2012, 2013) has
been simulated and forecasted, using the Delft3D model. The concentration of the suspended
sediment near the bed due to the combined effect of the wave - induced currents and the hy-
drodynamic conditions caused by the storm is computed. In particular, the interaction between
waves and currents obtained by the coupling of two models included in Delft3d, the Delft3d
- FLOW, for the hydrodynamic computations and the sediment transport processes, and the
Delft3d - WAVE, for the computation of the wave field. The two models have been coupled
in an appropriate form through communicative artificial boundaries and well chosen boundary
conditions, hierarchical grids (nested grids) and appropriate modeling of the outer problem.
The results were, also, compared with measurements obtained during the event by Poulos et al.
(2012, 2013).

The results of the modeling fit well enough with the measured data. In particular, the model
slightly overestimates the significant wave height and the current velocity in the nearshore area
and the suspended sediment concentration near the bed at the observation points. However,
generally the results of the simulation are very close to the measurements and the different bars
formed by erosion and sedimentation are represented with enough accuracy.
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Chapter 1

Introduction

Sediment transport is of crucial importance for coastal environments. It generally occurs
under the combined influence of a variety of hydrodynamic processes such as winds, waves and
currents. Wind - induced waves are the dominant active phenomenon of the coastal area and
have a large influence on the suspension and the transport of sediments in the nearshore area.

Sediments can be transported by waves through wave breaking and the associated wave -
induced currents in the long -shore and cross - shore directions. The long - shore transport
in the surf zone is also known as the long - shore drift. The breaking process together with
the near - bed, wave - induced oscillatory water motion can bring relatively large quantities of
sand into suspension (stirring) which is then transported as suspended load by the currents.
Although sediment in the near - shore area is moving constantly, transport is a phenomenon
based mainly upon extreme events such as storm surges.

In the present study, the effect of the meteorological event, known as Meltemi, is simulated
and forecasted using a modeling procedure within the Delft3D model, in relation with the
characteristics of the waves and currents that induces and the sediment transport that may
cause.

The term Meltemi refers to the Etesian winds in the Aegean Sea. The Etesian winds are the
prevailing annually recurring summer winds, blowing over large parts of Greece, the Aegean Sea
and eastern Mediterranean. The Etesian winds blow from a high pressure ridge over the Balkans,
towards a heat trough over the Anatolian Plateau (figure 1.1). They appear at the beginning
of May with low but also fluctuating frequency and with short duration, and they preserve
their character until the end of June. From the beginning of July, the frequency of Etesians
increases reaching its greatest values towards the end of the month, which it then preserves
until about mid-September, and then reduces at the end of October. The typical weather that
is associated with a Meltemi event is dry with clear skies. The strong meteorological conditions
caused during such an event have a large influence upon the sediment transport in northern
Crete.

In the summer of 2003, a study was performed (Poulos et. al., 2012, Poulos et. al., 2013)
at the Gouves coastal area in order to investigate the significance of this event upon the sedi-
ment transport in Northern Crete, utilizing measurements about turbidity, current speed and
direction and other wave characteristics. The data set has been collected by three Autonomous
Benthic Recorders (ABR) placed at three different locations. Also, information about the off-
shore wave conditions, the bathymetry of the area and meteorological data were collected. The
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Figure 1.1: Etesian Winds, www.sailingissues.com

research took place from the 24th to 30th of July, i.e. before, during and after a strong Meltemi
event.

In this study, the Meltemi event and its influence to the sediment transport processes is
numerically reproduced, for the period from the 24th to 30th of July 2003, in the area under
consideration. Furthermore, the results are compared with the measurements obtained by
(Poulos et. al., 2012, Poulos et. al., 2013). The main objectives are to:

• Fine tune the coupling of the particular models included in Delft3D, regarding the ap-
propriate selection of the artificial boundaries and its conditions, the hierarchy of nested
grids and appropriate modeling of the outer wave problem.

• Estimate the hydrodynamic conditions of the event.

• Estimate the accuracy of the numerical modeling in relation with the real data.

For the simulation, the numerical model of the open source code of Delft3D was used. With
Delft3d, the calculation of the wave field in relation with the hydrodynamics and the sediment
transport which depend on the wind field is the product of the coupling of two models, that
of the Delft3d - WAVE model (Wave, User Manual) and that of the Delft3d - FLOW model
(Flow, User Manual).

This study is presented in the subsequent chapters as follows: In chapter 2, a brief description
of the Delft3D model is given. In chapter 3, the case study and the model setup are described. In
chapter 4, the results of the computations are presented and, in chapter 5, they are compared
with the measurements obtained from the study of (Poulos et. al.2012, Poulos et. al.2013).
Finally, in chapter 6, the conclusions are discussed.
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Chapter 2

A brief description of the Delft3D
model

The Delft3D module is developed for a multi-disciplinary approach to nearshore waves and
morphodynamic modeling by Deltares 1, in close cooperation with Delft University of Tech-
nology. Delft3D consists of several models that can interact with each other. The Delft3D
- FLOW simulates the hydrodynamic phenomena, the sediment transport processes and the
bottom changes and the Delft3D - WAVE simulates the wave generation and propagation in
nearshore areas.

In this study, the wave-driven longshore currents and the sediment transport in the surf zone
are modeled by the interaction between Delft3D-FLOW and Delft3D-WAVE . The coupling of
those models allow a two way exchange of information between them, so as the effect of waves
on currents and the effect of flow on waves to be accounted for. More specifically, the wave -
current interaction is implemented by running the wave module every N flow timesteps, where
updated bottom, water level and velocity information are passed to the wave model and wave -
induced forces, wave heights, periods and directions are passed back to the flow module (Lesser
et. al., 2004).

2.1 The Delft3D - FLOW model

2.1.1 Shallow water equations

The Delft3D-FLOW model solves the unsteady shallow-water equations for an incompressible
fluid. They are derived from the Navier - Stokes equations under the Boussinesq and the shallow
water assumptions.

According to the Boussinesq approximation (Rodi, 1993), if density variations are small the
density is assumed constant in all terms except the gravitational term. Under this approxima-
tion, the Navier - Stokes equations are written in the form: .

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν∆u− fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
+ ν∆v − fy (2.1)

1Deltares is an independent institute for applied research in the field of water and subsurface
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν∆w − fz −

ρ

ρ0
g

where u,v,w are the velocity components in x, y and z direction respectively, ρ is the density,
ρ0 is the reference density, p is the pressure, ν the kinematic viscosity and fx,fy, fz denote the
components of the Coriolis forces per unit mass, which are defined by:

(fx, fy, fz)
T = −2~Ω× (u, v, w)T

where ~Ω is the vector of the earth’s rotation.

In the flow velocities and pressure, small variations occur due to turbulence eddies. These
variations are usually too small to be represented in a numerical scheme unless the grid is very
fine. In order to deal with this phenomenon, (Reynolds, 1894) decomposed the time - dependent
variables into two parts:

u = u+ u′, v = v + v′, w = w + w′, p = p+ p′, f = f + f ′ (2.2)

that of the time-averaged part (main flow) denoted by the bar and that of the turbulent fluc-
tuations given by the ’ of the quantity. Then, the entire equation is time averaged.

A time-averaged quantity q for a flow quantity q is defined as :

q =
1

T

∫ t+T

t
qdτ

The period T should be larger than the turbulence time scale, but smaller than long periodic
effects such as the tide.

After averaging 2.1, the Reynolds-averaged Navier-Stokes equations or simply the Reynolds
equations for turbulent flows are obtained. They read:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂u′u′

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z
= − 1

ρ0

∂p

∂x
− fx (2.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+
∂v′u′

∂x
+
∂v′v′

∂y
+
∂v′w′

∂z
= − 1

ρ0

∂p

∂y
− fy (2.4)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+
∂w′u′

∂x
+
∂w′v′

∂y
+
∂w′w′

∂z
= − 1

ρ0

∂p

∂z
− fz −

ρ

ρ0
g (2.5)

The products of the fluctuating velocity components (u′u′,u′v′ etc.) are called Reynolds
stresses and they are responsible for a loss of momentum in the mean flow direction. These
stresses are much larger than the viscous stresses which have, therefore, been neglected.

Furthermore, according to the Boussinesq hypothesis (eddy viscosity concept), Reynolds
stresses, like viscous stresses, depend on the deformation of the mean flow. Thus, the Reynolds
stresses can be modeled as

u′v′ = −νt
(
∂v

∂x
+
∂u

∂y

)
(2.6)

where νt is the eddy viscosity and is determined with a suitable closure problem for the turbu-
lence modelling.
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The shallow water assumption implies that the flow satisfies certain characteristic relations
(Jin, 1993). These relations are the following :

1. The characteristic horizontal length scale is much larger than the characteristic vertical
length scale.

2. The characteristic vertical velocity is small in comparison with the characteristic horizontal
velocity.

Under this assumption, the difference between the horizontal and the vertical length scale
justifies a distinction between a horizontal (νHt ) and a vertical (νVt ) eddy viscosity. Also,
all the terms except the pressure derivative and the gravity term are small, so they can be
neglected. The momentum equation in the vertical direction reduces to the hydrostatic pressure
distribution:

∂p

∂z
= −ρg (2.7)

i.e. by integrating

p(x, y, z, t) = g

∫ ζ

z
ρdz′ + pa (2.8)

where ζ = ζ(x, y, t) is the free surface level against the reference plane z = 0 and pa is the
atmospheric pressure. Substituting this result in the pressure term of equation 2.3 and using
Leibnitz’ integration rule 1, yields

− 1

ρ0

∂p

∂x
= −ρg

ρ0

∂ζ

∂x
− g

ρ0

∫ ζ

z

∂ρ

∂x
dz′ − 1

ρ0

∂pa
∂x

(2.9)

The horizontal pressure gradient is described by differences of the water level ζ through the
barotropic term (gradient of the free surface level) and by the density differences in horizontal
direction through the baroclinic term (second term). The last term describes the contribution
of the atmospheric pressure.

If we consider ρ = ρ0 (constant), then (2.8) reads as p = ρg(ζ − z) + pa and for the pressure
terms of (2.3) and (2.4) we have

1

ρ0

∂p

∂x
= g

∂ζ

∂x
+

1

ρ0

∂pa
∂x

(2.10)

and
1

ρ0

∂p

∂y
= g

∂ζ

∂y
+

1

ρ0

∂pa
∂y

(2.11)

respectively.

1The Leibnitz’ integration rule:

∂

∂x

∫ b(x)

a(x)

φ(x, y)dy =

∫ b(x)

a(x)

∂

∂x
φ(x, y)dy + φ(x, b)

∂b

∂x
− φ(x, a)

∂a

∂x
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Considering the above assumptions, the density and the atmospheric pressure to be constant
and dropping the overbar, equations (2.3) and (2.4) are, respectively, transformed into:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −g ∂ζ

∂x
+ fv+ 2

∂
(
νHt

∂u
∂x

)
∂x

+
∂
(
νHt

(
∂u
∂y + ∂v

∂x

))
∂y

+
∂
(
νVt

∂u
∂z

)
∂z

(2.12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −g ∂ζ

∂y
− fu+

∂
(
νHt

(
∂u
∂y + ∂v

∂x

))
∂x

+ 2
∂
(
νHt

∂v
∂y

)
∂y

+
∂
(
νVt

∂v
∂z

)
∂z

(2.13)

where f is the Coriolis force, defined as

f = 2Ω sinφ

with Ω to represent the angular velocity of the earth and φ the latitude.

The above equations together with the incompressible continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.14)

are the so-called Shallow Water Equations.

In order to obtain the fourth equation that is needed for calculating the four unknowns
(u,v,w,ζ), the continuity equation is integrated along the vertical axis :

w(x, y, ζ, t)− w(z, y, d, t) = −
∫ ζ

−d

∂u

∂x
dz −

∫ ζ

−d

∂v

∂y
dz (2.15)

where d = d(x, y) is the water depth below the reference plane z = 0. For the water level
(z = ζ(x, y, t)) and for the bottom (z = −d(x, y)) respectively,

w =
Dζ

Dt
=
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
(2.16)

w = −u∂d
∂x
− v∂d

∂y
(2.17)

Using the Leibnitz’ rule,

−
∫ ζ

−d

∂u

∂x
dz = − ∂

∂x

∫ ζ

−d
udz + u

∂ζ

∂x
+ u

∂d

∂x

and

−
∫ ζ

−d

∂v

∂y
dz = − ∂

∂y

∫ ζ

−d
vdz + v

∂ζ

∂y
+ v

∂d

∂y

(2.15) yields:
∂ζ

∂t
= − ∂

∂x

∫ ζ

−d
udz − ∂

∂y

∫ ζ

−d
vdz (2.18)

Finally, defining the depth-averaged velocities ū and v̄ by ū = 1
H

∫ ζ
−d udz and v̄ = 1

H

∫ ζ
−d vdz

respectively, where H = H(x, y, t) = ζ + d is the water depth, equation (2.18) is written in the
form:

∂ζ

∂t
+
∂Hū

∂x
+
∂Hv̄

∂y
= 0 (2.19)
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The hydrodynamic equations are solved on a Cartesian, rectangular grid. In 3D simulations,
a boundary fitted (σ - coordinate) approach is used for the vertical grid direction.

The σ coordinate system is a boundary fitted coordinate system that follows the free surface
and the bottom topography. Such a coordinate system allows for non - uniformly distributed
grid lines on the computational domain, especially near the bottom, where a proper forecasting
of the sediment transport requires the grid lines to be dense and therefore to increase the
resolution.

In the following, the complex physical domain for the shallow water equations 2.12, 2.13, 2.14
and 2.19 is transformed to a rectangular computational domain by introducing the σ-coordinates
system

x̃ = x, ỹ = y, σ =
z − ζ
H

, t̃ = t (2.20)

where:

z = the vertical coordinate in physical space

ζ = the free surface elevation above the reference plane (z = 0)

d = the depth below the reference plane

H = the total water depth , given by H = d+ ζ

At the bottom σ = −1 and at the free surface σ = 0. The flow domain of a 3D shallow
water model in the horizontal plane consists of a restricted (limited) area composed of open and
closed (land) boundaries and in the vertical of a number of layers, which is the same at every
location. For each layer, a system of equations is solved.

Figure 2.1: An example of a vertical grid consisting of six equal thickness σ - layers, Delft3D -
Flow, User Manual (2014)

The partial derivatives are expressed in σ - coordinates by the chain rule, introducing addi-
tional terms (Stelling et. al., 1994).

The time derivative in σ-coordinates reads:

∂

∂t
=

∂

∂t̃
+
∂σ

∂t̃

∂

∂σ

7



The spatial derivatives in the horizontal direction are:

∂

∂x
=

∂

∂x̃
+
∂σ

∂x̃

∂

∂σ
,

∂

∂y
=

∂

∂ỹ
+
∂σ

∂ỹ

∂

∂σ

In the vertical direction:
∂

∂z
=

1

H

∂

∂σ

Equation 2.7 in σ- coordinates reads:

∂p̃

∂σ
= −ρgH (2.21)

After integrating along the vertical axis we obtain the hydrostatic pressure :

p̃ = gH

∫ 0

σ
ρ(x, y, σ, t)dσ′ + pa (2.22)

The horizontal velocities u and v remain strictly horizontal after the transformation

ũ = u, ṽ = v

whereas, the vertical velocity becomes

ω̃ := H
Dσ

Dt̃

ω̃ = H

[
∂

∂t

(
z − ζ
H

)
+ u

∂

∂x

(
z − ζ
H

)
+

∂

∂y

(
z − ζ
H

)]
ω̃ = w −

(
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y

)
− σ

(
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y

)
(2.23)

From this, the (comparatively small) vertical velocity w can be expressed in the (x,y,z) coordi-
nates, in terms of the horizontal velocities, water depths, water levels and vertical σ - velocities,
as

w = ω̃ + u

(
σ
∂H

∂x
+
∂ζ

∂x

)
+ v

(
σ
∂H

∂y
+
∂ζ

∂y

)
+

(
σ
∂H

∂t
+
∂ζ

∂t

)

After substituting (2.23) into the continuity equation (2.14), assuming that d is not time-
dependent and noting that H and ζ are not σ-dependent, whereas u and v are, the continuity
equation in transformed coordinates is obtained:

∂ζ

∂t̃
+
∂Hũ

∂x̃
+
∂Hṽ

∂ỹ
+
∂ω

∂σ
= 0 (2.24)

The vertical velocities can be computed by integrating equation 2.24 from the bottom to the
surface (−1 ≤ σ ≤ 0) and using Leibnitz’ integration rule:

∂ζ

∂t̃
+
∂Hū

∂x̃
+
∂Hv̄

∂ỹ
= 0 (2.25)

where ū and v̄ are depth-averaged velocities defined by ū =
∫ 0
−1 ũdσ and v̄ =

∫ 0
−1 ṽdσ. Note

that, this equation is equal to (2.19) in the previous section, because it is integrated along the
vertical axis and therefore invariant under the σ-transformation. Also, the definitions of ū and
v̄ are equivalent to the definitions in the previous section.
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After transformation of (2.12) and (2.13) to σ-coordinates, the momentum equations in x-
and y-direction of the shallow-water equations, omitting the overbar, are given by:

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+
ω

H

∂u

∂σ
= − 1

ρ0

(
∂p

∂x
+
∂σ

∂x

∂p

∂σ

)
+fv+Fx+Mx+

1

H2

∂

∂σ

(
νVt

(
∂u

∂σ

))
(2.26)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+
ω

H

∂v

∂σ
= − 1

ρ0

(
∂p

∂y
+
∂σ

∂y

∂p

∂σ

)
+ fu+Fy +My +

1

H2

∂

∂σ

(
νVt

(
∂v

∂σ

))
(2.27)

∂ζ

∂t
+
∂Hu

∂x
+
∂Hv

∂y
+
∂ω

∂σ
= 0 (2.28)

The terms Mx and My are introduced to represent the contributions due to external sources or
sinks of momentum (external forces by hydraulic structures, discharge or withdrawal of water,
wave stresses, etc.).

The terms Fx and Fy represent the horizontal viscosity terms and they are given by:

Fx = νH

(
∂2u

∂x2
+
∂2u

∂y2

)
and Fy = νH

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.29)

where the horizontal eddy viscosity has been assumed to be a constant.
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2.1.2 Boundary Conditions

To get a well-posed mathematical problem with a unique solution, a set of initial and boundary
conditions for water levels and horizontal velocities must be specified. The contour of the model
domain consists of parts along land-water lines (coast lines) which are called closed boundaries
and parts across the flow field which are called open boundaries. Closed boundaries are natural
boundaries. The velocities normal to a closed boundary are set to zero (Flow, User Manual).

2.1.2.1 Vertical Boundary Conditions

Kinematic Boundary Conditions:

In the σ coordinate system, the free surface (σ = 0, or z = ζ) and the bottom (σ = −1, or
z = −d) are σ - coordinate surfaces. The impermeability of the surface and the bottom is taken
into account by prescribing the following kinematic conditions:

ω|σ=−1 = 0 and ω|σ=0 = 0 (2.30)

where ω is the vertical velocity relative to the σ - plane.

Bed Boundary Condition:

At the seabed, the boundary conditions for the momentum equations are:

νV
H

∂u

∂σ

∣∣∣∣
σ=−1

=
τbx
ρ0

(2.31)

νV
H

∂v

∂σ

∣∣∣∣
σ=−1

=
τby
ρ0

(2.32)

where τbx and τby are the components of the bed stress in x and y direction, respectively, that
include the effects of wave - current interaction. Their formulation for the combination of flow
and wave will be discussed later.

The bed shear stress in 3D is related to the current just above the bed:

~τb3D =
gρ0 ~ub|~ub|
C2
3D

(2.33)

where |~ub| is the magnitude of the horizontal velocity in the first layer just above the bed and
C3D is the Chézy coefficient (Flow, User Manual).

Surface Boundary Condition:

At the free surface the boundary conditions for the momentum equations are:

νV
H

∂u

∂σ

∣∣∣∣
σ=0

=
|~τs|
ρ0

cos(θ) (2.34)

νV
H

∂u

∂σ

∣∣∣∣
σ=0

=
|~τs|
ρ0

sin(θ) (2.35)
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where θ is the angle between the wind stress vector and the local direction of the grid line y is
constant. Without wind, the stress at the free surface is zero. The magnitude of the wind shear
- stress is defined as:

|~τs| = ρ0~u∗s| ~u∗s| (2.36)

where u∗s is the friction velocity at the free surface and it can be determined by the following
widely used quadratic expression:

|~τs| = ραCdU10
2 (2.37)

where:

ρα the air density

U10 the wind speed 10 meter above the free surface

Cd the wind drag coefficient, depending on U10

2.1.2.2 Open Boundaries and artificial conditions

Open boundaries are artificial, water-water boundaries. They are situated as far away as
possible from the area of interest and they are introduced to obtain a limited computational
area and so to reduce the computational effort.

In general, the boundary conditions are specified in a limited number of boundary points.
Linear interpolation is used to generate the boundary conditions at the intermediate points along
the boundary. This interpolation can generate physical unrealistic flows in the region close to
the open boundary. The boundary conditions should allow these disturbances to propagate
out of the area. Alternatively, the number of points where the boundary condition is specified
should be extended.

For the needs of this study, we follow (Roelvink et. al., 2004). According to this paper, one
main problem is the specification of suitable boundary conditions at the open boundaries. This
is due to a combination of processes acting on the model domain, resulting in the development
of a certain water level or velocity in the cross - shore direction. For the boundary condi-
tions to match this distribution the solution has to be known beforehand, otherwise boundary
disturbances will develop.

In order to overcome this problem, (Roelvink et. al., 2004)suggest to let the model determine
the correct solution at the boundaries by imposing the alongshore water level gradient (a so-
called Neumann boundary condition) instead of a fixed water level or velocity. In this case, it
is assumed to be zero. Neumann boundaries can only be applied on cross-shore boundaries in
combination with a water level boundary, ζ = Fζ(t), which is needed to make the solution of
the mathematical boundary value problem well - posed.

2.1.2.3 Closed Boundaries

A closed boundary is situated at the transition between land and water. At a closed boundary,
two boundary conditions have to be prescribed. One boundary condition has to do with the
flow normal to the boundary and the other one with the shear-stress along the boundary. The
boundary condition considered for flow normal to the boundary is that there is no flow through
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the boundary. For the shear stress along the boundary a zero tangential shear-stress (free slip)
has been prescribed.
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2.2 Sediment transport

The suspended load transport is the irregular motion of the particles through the water
column induced by drag forces due to turbulence that act on the particles.

In the surf zone of sandy beaches the transport is generally dominated by waves through wave
breaking and the associated wave-induced currents in the longshore and cross-shore directions.
In case that wind is the main force of wave generation, the wind stresses and the wave - induced
forces generate currents in the sea, that can both stir up and transport sediments, and hence the
sediment transport largely follows the current direction (Soulsby, 1997). The breaking process
together with the near-bed, wave-induced oscillatory water motion can bring relatively large
quantities of sediment into suspension (stirring) which is then transported as suspended load
by the currents.

Also, the nature of the sea bed (plane or rippled) has a fundamental role in the transport
of sediments by waves and currents. The configuration of the sea bed controls the near-bed
velocity profile, the shear stresses and the turbulence and, thereby, the mixing and transport of
the sediment particles.

The transport of bed material particles may be in the form of either bed-load or bed-load plus
suspended load, depending on the size of the bed material particles and the flow conditions.
When the value of the bed-shear velocity just exceeds the critical value for initiation of motion,
the particles will be rolling and sliding or both, in continuous contact with the bed. For
increasing values of the bed-shear velocity, the particles will be moving along the bed by more
or less regular jumps, which are called saltations. When the value of the bed-shear velocity
exceeds the fall velocity of the particles, the sediment particles can be lifted to a level at which
the upward turbulent forces will be comparable with or of higher order than the submerged
weight of the particles. As a result, the particles may go in suspension.

In particular, particle movement will occur when the instantaneous fluid force on a particle
is just larger than the instantaneous resisting force related to the submerged particle weight
and the friction coefficient. The degree of exposure of a grain with respect to surrounding
grains (hiding of smaller particles resting or moving between the larger particles) obviously is
an important parameter determining the forces at initiation of motion.

The fluid forces acting on a sediment particle resting on a horizontal bed consist of skin
friction forces and pressure forces. The skin friction force acts on the surface of the particles by
viscous shear. The pressure force consisting of a drag and a lift force is generated by pressure
differences along the surface of the particle. These forces per unit bed surface area can be
reformulated in a time-averaged bed-shear stress.

The initiation of motion is defined to occur when the dimensionless bed-shear stress (θ) is
larger than a threshold value (θcr). This threshold value, which is also referred to as the particle
mobility number is defined, according to (Shields, 1936) as:

θcr =
τb

(ρs − ρw)gD50
(2.38)

where:
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τb = bed-shear stress

ρs = sediment density

ρw = fluid density

D50 = median sediment diameter

A more convenient approach is to express the initiation of the motion as a function of the
dimensionless particle size D∗. The parameter D∗ is defined as:

D∗ = D50

[
(s− 1)g

ν2

]1/3
(2.39)

where s is the relative density of the sediment and water (ρs/ρw) and ν is the kinematic viscosity
(m2/s). A simple expression for initiation of motion is given by (Soulsby, 1997):

θcr,motion =
0.3

1 + 1.2D∗
+ 0.055(1− exp(−0.02D∗)) (2.40)

Also, a simple expression for initiation of suspension (particles moving in suspension) is given
by:

θcr,suspension =
0.3

1 +D∗
+ 0.1(1− exp(−0.05D∗)) (2.41)

Both equations can be used to compute the critical depth - averaged velocity for initiation of
motion and suspension. Thus, according to (Soulsby, 1997) a simple approximation formula is:

Ucr,motion = 0.19D0.1
50 log(12H/6D50) (2.42)

and

Ucr,suspension = 2.8 [H/D50]
0.1 [(s− 1)gD50]

0.5 (2.43)

In Delft3D - FLOW module, also another model is included which accounts for the three-
dimensional transport of the suspended sediment, the Delft3D - SED.

This module solves the three-dimensional advection - diffussion equation for the suspended
sediment:

∂c

∂t
+
∂uc

∂x
+
∂vc

∂y
+
∂(w − ws)c

∂z
+

− ∂

∂x

(
εs,x

∂c

∂x

)
− ∂

∂y

(
εs,y

∂c

∂y

)
− ∂

∂z

(
εs,z

∂c

∂z

)
= 0 (2.44)

where c is the mass concentration of the sediment fraction, [kg/m3], u, v, w are the flow velocity
components [m/s], ws is the sediment settling velocity, [m/s] and εs,x, εs,y, εs,z are the eddy
diffusivities of the sediment fraction [m2/s].

The settling velocity for a non - cohesive sediment is computed following the Van Rijn’s
method (Van Rijn, 1993) by the formula

ws = 1.1
√

(s− 1)gDs, Ds ≥ 1000µm (2.45)

where s is the relative density ρs/ρw and Ds the representative diameter of the sediment.
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2.2.0.1 Initial and Boundary conditions

To solve 2.44 we need to prescribe initial and boundary conditions for the suspended sediment
fraction.

One global or space varying initial concentration can be specified for the sediment fraction.
In many practical applications the non-cohesive sediment concentrations adapt very rapidly to
equilibrium conditions, so in the case of a cold start where the hydrodynamic model also takes
some time to stabilize, a uniform zero concentration for the non-cohesive sediment fractions is
usually adequate.

A boundary condition must be prescribed for the sediment fraction, for each of the model
boundaries.

Water surface boundary: The vertical diffusive flux through the free surface is set to
zero for suspended sediment as, also, for all conservative constituents (except heat, which can
cross this boundary).

−wsc− εs,z
∂c

∂z
= 0, at z = ζ (2.46)

where z = ζ is the location of the free surface.

Bed boundary condition: The exchange of material in suspension and the bed is mod-
eled by calculating the sediment fluxes from the bottom computational layer to the bed, and
vice versa. These fluxes are then applied to the bottom computational layer by means of a
sediment source and/or sink term in each computational cell. The calculated fluxes are also
applied to the bed in order to update the bed level. The boundary condition at the bed is given
by:

−wsc− εs,z
∂c

∂z
= D − E, at z = zb (2.47)

where:

D = sediment deposition rate of sediment fraction

E = sediment erosion rate of sediment fraction

Their formulations will be discussed later.

Open inflow boundaries: To assist with modeling coarse material such as sand, we can
consider that, at all open inflow boundaries, the flow should enter carrying all sand sediment
fractions at their equilibrium concentration profiles. This feature has been implemented as a
Neumann boundary condition, that is, zero concentration gradient at the boundary. By setting
the sediment concentrations at the boundary equal to those just inside the model domain, a
near-perfectly adapted flow will enter the domain and very little accretion or erosion should
be experienced near the model boundaries. This will generally be the desired situation if the
model boundaries are well chosen.

Open outflow boundaries: No boundary condition is prescribed at outflow boundaries;
effectively this means that the dispersive transport of sediment at the outflow boundary is
neglected compared to the advective transport.
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2.2.0.2 Turbulence closure model

For 3D shallow water flow, the horizontal eddy viscosity coefficient νH and eddy diffusivity
coefficients εs,x, εs,y are much larger than the vertical coefficients νV and εs,z, i.e. νH � νV and
εs,x, εs,y � εs,z. The horizontal coefficients are assumed to be a superposition of three parts:

1. A part due to molecular viscosity. The molecular viscosity of the water is a constant value
O(10)−6.

2. A part due to 2D-turbulence, which is associated with the contribution of horizontal
motions and forcings and its values may either be specified by the user as a constant or
space-varying parameter, or can be computed using a sub-grid model for horizontal large
eddy simulation (HLES ; Uittenbogaard (1998),Van Vossen (2000))

3. A part due to 3D-turbulence, which is computed by the turbulence closure model, (Uit-
tenbogaard et. al., 1992).

In this study, the k - ε model is used to simulate the eddy viscosity and the eddy diffussivity
terms in the flow and transport equations.2

The k - ε model is a second order turbulence closure model, in which, both the turbulence
energy k and dissipation rate of turbulent kinetic energy ε are calculated by a transport equation.
The mixing length L is computed from k and ε:

L = cD
k
√
k

ε
(2.48)

in which cD is a calibration constant.

The eddy viscosity at each layer interface is determined by:

ν3D = c′µL
√
k (2.49)

where :

c′µ = a constant determined by calibration, derived for the empirical constant cµ in the k -ε

model ; c′µ = c
1/4
µ , cµ = 0.09

L = the mixing length

k = the turbulent kinetic energy

The output of the turbulence closure model is the eddy viscosity. From this, the vertical sedi-
ment mixing coefficient is computed directly from the vertical fluid mixing coefficient calculated
by the turbulence closure model, using the following expressions:

εs = βeff εf (2.50)

where :

εs = vertical sediment mixing coefficient of sediment fraction
εf = vertical fluid mixing coefficient calculated by the k-ε turbulent closure model
βeff = the effective Van Rijn’s ”beta” factor of sediment fraction

2For details about the other turbulence closure models see (Flow, User Manual).
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As the beta factor should only be applied to the current- related mixing, it is estimated as:

βeff = 1 + (β − 1)
τc

τw + τc

for non - cohesive sediment fractions, where

τc = bed shear stress due to currents
τw = bed shear stress due to waves
β = Van Rijn’s beta factor of the sediment fraction which is calculated from (Van Rijn, 1984b)

β = 1 + 2

(
ws
u∗,c

)2

(2.51)

where u∗,c is the local bed shear stress due to currents (Van Rijn, 1993)

2.2.0.3 3D Wave effects

In relatively shallow areas (coastal seas) wave action becomes important due to several pro-
cesses:

• The vertical mixing processes are enhanced due to turbulence generated near the surface
by whitecapping and wave breaking, and near the bottom due to energy dissipation in the
bottom layer,

• A net mass flux is generated which has some effect on the current profile, especially in the
cross-shore direction,

• In the surf zone long-shore currents and a cross-shore set-up is generated due to variations
in the wave-induced momentum flux (radiation stress). In case of an irregular surf zone,
strong circulations due to bathymetry may be generated (rip currents),

and the most important, related to sediment transport

• The bed shear stress is enhanced; this affects the stirring up of sediments and increases
the bed friction. The boundary layers at the bed associated with the waves and the
current interact with a non-linear way. This has the effect of enhancing both the mean
and oscillatory bed shear-stresses. In addition, the current profile is modified, because the
extra turbulence generated close to the bed by the waves appears to the current as being
equivalent to an enhanced bottom roughness.

Various, often very complex, methods exist to describe the bottom boundary layer un-
der combined current and wave action and the resulting virtual roughness. (Soulsby et. al.,
1993a) developed a parameterisation of these methods allowing a simple implementation
and comparison of various wave-current interaction models: Fredsoe (1984); Myrhaug
and Slaattelid (1990); Grant and Madsen (1979); Huynh-Thanh and Temperville (1991);
Davies et al. (1988); Bijker (1967); Christoffersen and Jonsson (1985); O Connor and Yoo
(1988); Van Rijn et al. (2004). In this study, the method of Grant and Madsen (1979)
has been selected.

For a detail description of the mentioned effects above and their mathematical formulation,
the interested reader is referred to (Flow, User Manual).
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2.3 Numerical aspects

The numerical method of Delft3D-FLOW is based on finite differences. An alternating direc-
tion implicit (ADI) method is used to solve the continuity and horizontal momentum equations
(Stelling and Leendertse, 1992) extended the ADI method of Leendertse with a special approach
for the horizontal advection terms, known as the ”cyclic method”. The transport equation is
formulated in a conservative form (finite - volume approximation) and is solved using the so -
called ”cyclic method of (Stelling et. al., 1991), including the algorithm of (Stelling et. al., 1994))
for the approximation of the horizontal diffusion along z-planes in a σ - coordinate framework.
The reader is referred to (Flow, User Manual) for more details about the numerical methods
applied in the Delft3d model.

The time step condition is based on the Courant Friedrichs Lewy (CFL) number for wave
propagation:

CFLwave = 2∆t
√
gH

√
1

∆x2
+

1

∆y2
< 1 (2.52)

where ∆t is the time step, g is the acceleration of gravity, H is the total water depth and ∆x,∆y
are the smallest grid spaces in x - and y -direction of the physical space.
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Chapter 3

The wave model

3.1 Wave height and period

In the description of wind waves it is common to define the wave height H as the vertical
distance between the highest and the lowest surface elevation (crest to trough) in a wave. The
mean wave height H is defined as

H =
1

N

N∑
i=1

Hi (3.1)

where i is the sequence of the wave in a record. Sometimes, a quadratically weighted averaged
value is used to define the root - mean - square wave height Hrms:

Hrms =

(
1

N

N∑
i=1

H2
i

)1/2

(3.2)

which is relevant for energy-related projects because the wave energy is proportional to the
square of the wave height.

These characteristic wave heights H and Hrms they are not very often used because they
deviate from visual estimated wave heights. Instead, another wave height, called the significant
wave height Hs is used. It is defined as the mean of the highest one - third of waves in a wave
record:

Hs = H1/3 =
1

N/3

N/3∑
j=1

Hj (3.3)

where j is the rank number of the sorted wave heights (j=1 the highest wave, j=2 the second -
highest, etc.).

The period T of a wave is defined as the time interval between two crests/troughs or two
downward/upward zero-crossings. If the wave period is defined as the zero-crossings, it is called
To and the mean wave period T is defined as:

T =
1

N

N∑
i=1

Ho,i (3.4)

Mostly, only the significant wave period is used:

Ts = T1/3 =
1

N/3

N/3∑
j=1

To,j (3.5)
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3.2 The Delft3d - WAVE model

The computation of waves and wave-induced effects is the domain of the wave model (Delft3D
- WAVE). Delft3D - WAVE supports currently a third generation wave model, namely the SWAN
model, that explicitly represents all relevant physics for the development of the sea state in two
dimensions (Ris, 1997).

The SWAN model is developed to simulate waves in the near-shore zone. This zone extends
from the coast to several tens of kilometers into the sea. Using available input data (wind,
current, water velocity), SWAN computes random, short - crested wind-generated waves in
coastal regions and inland waters.

3.3 Spectral description of wind waves

Wind generated waves have irregular wave heights and periods, caused by the irregular nature
of wind. Due to this irregular nature, the sea surface The surface elevation of waves in the ocean,
at any location and any time, can be seen as the superposition of a large number of harmonic
waves of different frequencies, each of which has been generated by turbulent wind in different
places and times. They are therefore statistically independent in their origin. According to
linear wave theory, they remain independent during their journey across the ocean.All these
regular wave fields propagate at different speeds so that the appearance of the sea surface
is constantly changing. Under these conditions, the sea surface elevation on a time scale of
one hundred characteristic wave periods is sufficiently well described as a stationary, Gaussian
process. The sea surface elevation in one point as a function of time can be described as

η(t) =
∑
i

ai cos(σit+ φi) (3.6)

with η the sea surface elevation, ai the amplitude of the ith wave component, σi the relative
radian or circular frequency of the ith wave component in the presence of the ambient current
(equals the absolute radian frequency ω when no ambient current is present) and φi the random
phase of the ith wave component. This is called the random-phase model.

In case an ambient current is present, it is assumed that it is uniform with respect to the
vertical co-ordinate and the changes in the mean flow within a wave length are so small that
they affect only negligibly the dispersion relation. The absolute radian frequency ω then equals
the sum of the relative radian frequency σ and the multiplication of the wave number and
ambient current velocity vectors:

ω = σ + ~k · ~uc (3.7)

where ~uc is the current velocity and ~k the wave number. which is the usual Doppler shift. For
linear waves, the relative frequency is given by

σ2 = gk tanh(kd) (3.8)

where, k is the wave number, g is the acceleration of gravity and d is the water depth and
d is the depth. The presence of ambient currents may change the amplitude, frequency and
direction of an incoming wave.
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In the field of ocean wave theory, it is conventional to define a spectrum E(f) as:

E(f) = 2E′(f) for f ≥ 0 and E(f) = 0 for f < 0 (3.9)

where E′(f) is the variance density spectrum (which is the Fourier transform of the auto-
covariance function of the sea surface elevation, (Holthuijsen, 2007) paragraph The description
of water waves through the defined variance density spectrum E(f) is called spectral description
of water waves. It has been proved that the variance of the sea surface elevation is given by

< η2 >= C(0) =

∫ +∞

0
E(f)df (3.10)

where C(τ) is auto-covariance function, <> represents mathematical expectation of random
variable and η(t), η(t + τ) represent two random processes of sea surface elevation, τ represents
the time lag. This indicates that the spectrum distributes the variance over frequencies. E(f)
should therefore be interpreted as a variance density. The dimensions of E(f) are m2/Hz if the
elevation is given in m and the frequencies in Hz. The variance < η2 > is equal to the total
energy Etot of the waves per unit surface area if multiplied with a properly chosen coefficient:

Etot =
1

2
ρwg < η2 > (3.11)

The energy density as a function of frequency and direction is denoted as E(f,θ). This spec-
trum distributes the wave energy over frequencies and directions. As the total energy density
at a frequency f is distributed over the directions θ in E(f,θ), it follows that:

E(f) =

∫ 2π

0
E(f, θ)dθ (3.12)

Based on the energy density spectrum, the integral wave parameters can be obtained. These
parameters can be expressed in terms of the so-called n -th moment of the energy density
spectrum:

mn =

∫ ∞
0

fnE(f)df (3.13)

So, the variance of the sea surface elevation is given by m0 = < η2 >. Also, the significant wave
height:

Hs = 4
√
m0 (3.14)

and some wave periods:

Tm01 =
m0

m1
, Tm02 =

√
m0

m2
, Tm−10 =

m−1
m0

(3.15)

3.4 Derivation of the energy balance equation

The prognostic equation of a spectral model as SWAN is the energy balance equation. Accord-
ing to the Eulerian approach, the energy spectrum is computed at a large number of locations
simultaneously with a local energy balance at each of these locations. To derive the local energy
balance for this approach, a cell of the geographic grid with sizes ∆x and ∆y in the x- and
y- direction respectively, is considered. The energy balance for this cell is the bookkeeping of
the energy of an arbitrary wave component (f, θ) travelling through this cell. In other words,
the energy balance for this cell is the balance of the change of energy in the cell over the time
interval ∆t against the net import and the local generation of energy :
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Change of energy in cell = net import of energy + local generation of energy

Change of energy in cell during the time interval ∆t =

= energy in cell at the end of interval - the energy in cell at the start of the interval

=
(
E(f, θ)∆x∆y + ∂E(f,θ)

∂t ∆x∆y∆t
)
− E(f, θ)∆x∆y

= ∂E(f,θ)
∂t ∆x∆y∆t

Net import of energy during the time interval ∆t

= net import of energy in the x-direction - net import of energy in the y-direction energy

= cg,xE(f, θ)∆y∆t−
(
cg,xE(f, θ) +

∂cg,xE(f,θ)
∂x ∆x

)
∆y∆t

+ cg,yE(f, θ)∆x∆t−
(
cg,yE(f, θ) +

∂cg,yE(f,θ)
∂y ∆y

)
∆x∆t

= −∂cg,xE(f,θ)
∂x ∆x∆y∆t− ∂cg,yE(f,θ)

∂y ∆x∆y∆t

Locally generated energy

= S(f, θ)∆x∆y∆t

with S(f, θ) representing the source term, representing all effects of generation, wave - wave
interactions and dissipation per unit time per unit surface area.

In total, the energy balance for the cell ∆x∆y over the time interval ∆t is :

∂E(f, θ)

∂t
∆x∆y∆t+

∂cg,xE(f, θ)

∂x
∆x∆y∆t+

∂cg,yE(f, θ)

∂y
∆x∆y∆t = S(f, θ)∆x∆y∆t (3.16)

where cg,x = cg cos θ and cg,y = cg sin θ and cg is the propagation speed of wave energy (group
velocity). Dividing all the terms by ∆x∆y∆t and adding again the dependence on time and
horizontal space in the notation, the spectral energy balance equation for each wave component,
each cell, at each moment in time, in deep water arises:

∂E(f, θ;x, y, t)

∂t
+
∂cg,xE(f, θ;x, y, t)

∂x
+
∂cg,yE(f, θ;x, y, t)

∂y
= S(f, θ;x, y, t) (3.17)

In shallow waters, the spectral energy balance is formulated in the same manner as it is for
deep waters. The only differences are that (1) it involves a more complicated formulation for
the propagation of the wave energy, which now needs to account for shoaling, refraction and
diffraction, and (2) the number and complexity of the source terms are greater, since, in addition
to the processes of wave generation by wind, quadruplet wave - wave interactions and white -
capping, also triad wave - wave interactions, bottom friction and depth - induced breaking need
to be represented.

In the energy balance equation for coastal waters, shoaling is accounted for by using the depth
- dependent group velocity in the equation. Refraction and diffraction require an additional
propagation term in the equation. The reason is that, as the energy density of an individual
wave component travels through the coastal region, it changes direction. In other words, while
the wave energy propagates through x, y - space is simultaneously propagates through θ space.
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For the derivation of the propagating term in θ space, the directional energy distribution at
each frequency in the spectrum is discreatised into directional bins, each with a width ∆θ. In
the energy balance, the directional turning of the waves is presented as energy moving from one
directional bin to the next as follows:

Net import of energy in θ

= (imported energy through the left - hand side of the bin) - (exported energy through the
right - hand side of the bin) during the interval ∆t

= cθE(f, θ)∆x∆y∆t−
(
cθE(f, θ) + ∂cθE(f,θ)

∂θ ∆θ
)

∆x∆y∆t

= −∂cθE(f,θ)
∂θ ∆θ∆x∆y∆t

Adding the result to the deep - water energy balance 3.16 gives:

∂E(f, θ)

∂t
∆x∆y∆θ∆t+

∂cg,xE(f, θ)

∂t
∆x∆y∆θ∆t+

∂cg,yE(f, θ)

∂t
∆x∆y∆θ∆t+ (3.18)

+
∂cθE(f, θ)

∂θ
∆θ∆x∆y∆t = S(f, θ)∆x∆y∆θ∆t

Dividing by ∆x∆y∆θ∆t, the Eulerian spectral energy balance equation for arbitrary depth,
which applies to all wave frequencies, all directions, all locations (geographic cells) and all
points in time, including the effects of directional turning (in Cartesian co-ordinates and adding
the x, y, t-dependence in the absence of an ambient current), in shallow water:

∂E(f, θ;x, y, t)

∂t
+
∂cg,xE(f, θ;x, y, t)

∂x
+
∂cg,yE(f, θ;x, y, t)

∂y
+
∂cθE(f, θ;x, y, t)

∂θ
= S(f, θ;x, y, t)

(3.19)
where cθ is the refraction- or diffraction-induced turning rate of the individual wave components.

Therefore, in the case that ambient currents are present, the energy density E(f, θ) is written
in terms of the relative frequency E(σ, θ). Also, the energy balance equation needs to account
also for the energy transfer between waves and currents and its effects on the propagation of the
waves, which are refraction, energy bunching and frequency shifting. The latter phenomenon
can be accounted for by adding a propagation term in frequency space.The derivation of this
extra propagation term is essentially the same as the above derivation of the refraction term
(the only difference is that direction needs to be replaced with frequency).

However, the energy transfer between waves and currents requires the addition of terms
that represent the effect of work done by the current against the radiation stresses, which are
associated with the momentum transport. To avoid the derivation of these complex terms,
the action balance equation is considered instead of the energy balance equation. The action
density N is the contribution of waves in a certain direction and with a certain frequency to the
total wave action. The action density is a function of space and time (on a scale large compared
with wave length and period) and of spectral coordinates (wave frequency and direction). In
contrast to wave energy, wave action is conserved in the presence of currents (Whitham, 1974 ;
Svendsen, 2006).
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The wave action, N, is closely related to the wave energy, E, according to the following
equation:

N(σ, θ) =
E(σ, θ)

σ
(3.20)

The action balance equation, with frequency-shifting included, in Cartesian co-ordinates is
given by (Booij et al.1999 & Holthuijsen 2007):

∂N(σ, θ;x, y, t)

∂t
+
∂cxN(σ, θ;x, y, t)

∂x
+
∂cyN(σ, θ;x, y, t)

∂y
+

+
∂cθN(σ, θ;x, y, t)

∂θ
+
∂cσN(σ, θ;x, y, t)

∂σ
=
Stot
σ

(3.21)

Using the proper expressions for the propagation speeds cg and cθ and cσ in the action balance
equation, which are derived from the linear theory ( Holthuijsen, 2007 ; Whitham, 1974; Mei,
1983) the effects of wave propagation (shoaling, refraction and frequency shifting ; diffraction
is neglected here) are accounted for:

D~x

Dt
= (cx, cy) = ~cg + ~u =

1

2

(
1 +

2|~k|d
sinh(2|~k|d)

)
σ~k

|~k|
2 + ~u (3.22)

Dθ

Dt
= cθ = −1

k

(
∂σ

∂d

∂d

∂m
+ ~k · ∂~u

∂m

)
(3.23)

Dσ

Dt
= cσ =

∂σ

∂d

(
∂d

∂t
+ u

∂d

∂s

)
− cgk

∂un
∂n

(3.24)

where,cx, cy are the propagation velocities of wave energy in spatial x -, y -space, cσ and cθ are
the propagation velocities in spectral space σ -, θ -space, d is water depth, un is the component
of the current velocity in the wave direction (normal to the crest) and s is the coordinate in the
current direction, and s m is a co-ordinate perpendicular to s.

The right-hand side of the equation contains source terms, i.e. terms which model the
generation and dissipation of wave energy. In contrast with the propagation terms most of the
source terms are empirical in nature and contain empirical ”constants”. SWAN has default
values for almost all of these constants; these values are mostly based on literature, and have
been obtained by studying laboratory experiments or field observations. Due to the empirical
nature of parts of the model a verification is needed for every new application of the model. The
chapter on usage of numerical models also describes how to calibrate and validate a simulation
model.

Stot = Sin(σ, θw) + Snl4(σ, θw) + Snl3(σ, θw) + Swcap(σ, θw) + Sbr(σ, θw) + Sbot(σ, θw) (3.25)

The total sum of the source and sink terms are divided into the wind source term Sin, non-
linear three- and four-waves interaction terms Snl3 and Snl4 respectively, and dissipation terms.
The dissipation terms include the dissipation due to depth-induced breaking Sbr, dissipation
due to bottom friction Sbot and dissipation due to white capping Swcap. For more details about
the modeled processes and the numerical methods used in SWAN, the reader is refered to
(Holthuijsen, 2007) and (Wave, User manual).
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For a full wave-current interaction, the currents from Delft3D-FLOW are used in Delft3D-
WAVE (current refraction). The procedure is known as the coupling of the two models. The
interaction between waves and currents is implemented by running the wave model every N flow
timesteps. The wave module must run before the flow module. A communication file is created
that contains the results of the wave simulation (rms wave height, peak period, wave direction,
mass fluxes etc). The flow module can read then the wave results and include them in the flow
simulation. The reason that the wave model is called more than once is that the computed wave
model must be updated in order to account for the changed water depths and flow properties.
At each call to the wave module, the latest bed and water elevations and current velocities are
transferred from the flow module.
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Chapter 4

Test case and model setup

In this study, the Delft3d model is used to simulate the Meltemi event and forecast its effects,
as this was experienced in July of 2003 at Gouves beach. Besides deriving information about the
wave climate and the sediment transport under the influence of the Meltemi event, the forecasted
results are compared with the field measurements of (Poulos et. al., 2012, Poulos et. al., 2013).
The eventual quantitative agreement is the outcome of the fine tuning and calibration of the
Delft3D modules, for a collaborative and coupled performance through artificial boundaries and
appropriate boundary conditions, nested grids and a suitable representation of the solution for
the exterior wave problem.

The study site, Gouves beach, is situated at the north coastline of Crete, approximately 28
km to the east of the city of Heraklion. It is an open, sandy beach zone developed in front of a
gently sloping (< 2.5%) Holocene alluvial plain and has a length of 2.5 km, width up to 20 m and
a gently sloping (1% for 0-15 m and 2-3% for 15-50 m of water depth) nearshore bathymetry
(Poulos et. al., 2012, Poulos et. al., 2013). The physiographic characteristics of the beach
are listed in table 4.1. The tidal range is small (< 10 cm) and the tide at Heraklion harbor
is characterised by (Tsimplis,1994) as mixed, mainly diurnal, according to the Form Factor
introduced by (Pugh, 1996). It is exposed to northwesterly, northerly, and, partially easterly
winds and experiences a rather intense wave regime, with the dominant wind - generated waves
approaching from the north and northwest.

Figure 4.1: The area of interest

Numerical simulations were carried out by means of a coupling between the Delft3D - FLOW
model and the Delft3D - WAVE model. The coupling time step was set to 50 min. The two
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Beach Area

Length 2.5km
Width 1 - 12m

Material Sand

Underwater Slope

0 - 15 m 1%
15 - 50 m 3%

Alluvial Plane

Width ≈ 750 m
Slope < 2.5%

Catchment Area

Gournianos Gouvianos
32.95 km 18.35 km

Table 4.1: Physiographic characteristics of the study area

models exchange information through a communication file (fig. 4.2). The wave model runs at
first, then Delft3D - FLOW model reads the results of the wave simulation (significant wave
height, wave period, wave direction, mass fluxes etc.) and includes them in the flow calculations.
Then, the results from the flow simulation (updated bathymetry, water level and flow velocities)
are passed back to the wave model through the communication file.

The wave model runs in a stationary mode whereas the flow equations are solved with a
computational time step of 12s, which fulfills the Courant − Friedrichs Lewy (CFL) criterion
for wave propagation:

CFLwave = 2∆t
√
gH

√
1

∆x2
+

1

∆y2
< 1 (4.1)

where ∆t is the time step, g is the acceleration of gravity, H is the total water depth and ∆x,∆y
are the smallest grid spaces in x - and y -direction of the physical space.

Figure 4.2: Scheme of a morphodynamic simulation
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Figure 4.3: Wind speed (mean values and gusts) and direction at the Heraklion Airport weather
station, for the period 21st July to 5th August 2003

Station Latidude Longitude Distance Depth(m)
from the shoreline (m)

G1 35o20.157′ 25o17.294′ 75 2.60

G2 35o20.196′ 25o17.306′ 122 3.95

G3 35o20.290′ 25o17.290′ 232 5.62

Table 4.2: Geographic locations and deployment depths of the recorders, (Poulos et. al., 2012,
Poulos et. al., 2013).

As long as the Meltemi conditions are stronger at the end of July, a 7 - day simulation was
performed, from 24th until 30th of that month. According to data collected from Heraklion
airport weather station the study area experienced wind speeds in July 2003, the maximum
values of which are characterized as strong Etesian conditions (Carapiperis, 1968). The wind
speeds and directions are given as a timeseries in the model. The bathymetry used for the flow
and wave computations is based on the sample data that derived during the study of (Poulos
et. al., 2012, Poulos et. al., 2013). The bathymetry files were constructed after interpolation of
these data into the computational grids.

Additionally, three observation points were used to monitor the time-dependent behaviour of
the computed quantities as a function of time at specific locations. The observation points were
located at cell center, i.e. at water level points on the flow grid. Their position is identical to
the location in which three Autonomous Benthic Recorders were located at increasing distances
from the shoreline (75m, 122m, and 232m respectively), in order to measure suspended sediment
concentrations, current speed and direction and wave characteristics during the study of (Poulos
et. al., 2012, Poulos et. al., 2013). In table 4.2 , the specific geographic locations of the recorders
are shown.

Artificial boundaries and exterior wave problem

For the calculations we constructed three computational domains that are presented in figure
4.4.
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The flow grid was built based on the available bathymetry, with a size of 1465 m and 1500
m in the cross-shore and long-shore direction, respectively. The resolution of the flow grid is
∆x = ∆y = 12.5m and the depth of closure is approximately 18m.

For the flow computations, the vertical space was discretized in 12 σ - layers with a thickness
of 2.0%, 3.2%, 5.0%, 7.9%, 12.4%, 19.6%, 19.6%, 12.4%, 7.9%, 5.0%, 3.2%, 1.8%, of the total
water depth, starting from the surface towards the bottom.

Figure 4.4: Scheme of the hierarchical
(nested) grids

Figure 4.5: Bathymetry used for the flow
computations

The computational flow domain is limited by 4 boundaries: One closed boundary (South) and
three open boundaries (North, West and East). The closed boundary represents the coastline.
The other three, the open boundaries, are artificial water -water boundaries. They are intro-
duced to obtain a limited computational area and so to reduce the computational effort. They
are situated as far as possible from the area of interest in order to avoid any disturbances to
propagate into it. At the north, a uniform water level boundary is imposed as a timeseries, with
a sinusoidal profile with range of ≈ 10cm (Tsimplis, 1994). The lateral open boundaries are
gradient - type (Neumann) boundaries equal to zero, allowing the wind - induced setup to freely
develop at the lateral boundaries and thus, a better solution to be obtained (Roelvink et. al.,
2004). Furthermore, for the transport boundary conditions we have set Neumann boundary
conditions at the open inflow boundaries. This choice means that at all open inflow boundaries,
the flow should enter carrying all sediment at its equilibrium concentration profiles. Thus, by
setting the sediment concentrations at the boundary equal to those just inside the model domain,
we can avoid erosion or accretion phenomena near the boundaries. Additionally, no boundary
condition is prescribed at the outflow boundaries, meaning that the dispersive transport of
sediment at the outflow boundary is neglected compared to the advective transport.

For the dependent variables, uniform initial conditions are chosen. Particularly, a zero value
was set for the water level and a value of 0.015 kg/m3 for the sediment concentration.
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For the calculation of the wave field we constructed two increasingly resolved nested wave
grids. The coarser grid has a resolution of 50m in both directions and covers an area of 5000m
and 3000m in the cross-shore and long-shore direction, respectively. The reason that we con-
structed these two hierarchical grids is to achieve a smooth transition from the offshore wave
conditions to that close to the shoreline.

We prescribe only the incident wave conditions at the boundaries of the coarser grid while the
nested grid obtains its boundary conditions from the coarser grid. On the coarse grid we defined
three open boundaries (North, East, West) with the same boundary conditions prescribed. For
the derivation of these conditions we used the deepwater hindcasts from (Poulos et. al., 2012,
Poulos et. al., 2013) for the significant wave height (Hs) and the peak period (Tp) in the three
principal directions of generation N, NW and W, that cover the range of wind speeds (U)
experienced during the study period.

They are summarized in table 4.3. For their calculation the deepwater wave forecasting
equations were used (Jonswap model, Hasselmann et. al.1973), which are presented in table 4.4.

U(m/s) Hs(m) Tp(s)
N NW W N NW W

1 0.013 0.013 0.013 0.589 0.589 0.589
2 0.069 0.069 0.069 1.382 1.382 1.382
3 0.187 0.187 0.187 2.276 2.276 2.276
4 0.379 0.379 0.327 3.242 3.242 2.940
5 0.656 0.656 0.430 4.266 4.266 3.222
6 1.027 1.027 0.538 5.339 5.339 3.472
7 1.484 1.501 0.651 6.409 6.454 3.698
8 1.749 2.084 0.767 6.770 7.606 3.906
9 2.022 2.785 0.886 7.105 8.791 4.099
10 2.302 3.358 1.009 7.418 9.541 4.280
11 2.588 3.775 1.134 7.714 9.921 4.451
12 2.881 4.202 1.263 7.994 10.28 4.613
13 3.179 4.637 1.393 8.261 10.62 4.767
14 3.482 5.079 1.526 8.516 10.95 4.914

Table 4.3: Deepwater hindcasts used for the offshore wave conditions

Note that the coarser grid is extended to about 100m depth contour, assuming a linear
increasing depth after 1465m cross - shore, in order to cover the approximate depth of the 90m
in which the hindcasted waves start shoaling (Komar, 1998).
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Deepwater Wave Forecasting Equations

Hs(m), Tp(s), U(m/s), F(m), t(s)
g=9.8 m/s2

Fetch Limited (F, U)

Hs = 5.112× 10−4UF 1/2

Tp = 6.238× 10−2 (UF )1/3

t = 3.215× 101
(
F 2

U

)1/3
Fully Developed

Hs = 2.482× 10−2U2

Tp = 8.3× 10−1U
t = 7.296× 103U

Table 4.4: Deepwater wave forecasting equations

The finer wave grid has a resolution of 25m in both directions. It is larger than the flow
grid in order to reduce or, even better, avoid possible boundary disturbances of the wave model
reaching the flow domain.

The superimposed effect of currents and waves was taken into account by means of the
interaction model of (Grant et. al., 1979). Turbulence effects were computed by means of the
k−ε model. Horizontal background eddy viscosity and diffusivity were set equal to 1 m2/s. For
the sediment transport and morphodynamic computation, the default transport formula of (Van
Rijn, 1993) is selected. Sediment was assumed to be sandy with a D10, D50 and D90 respectively
equal to 150µm, 200µm and 300µm, and a sediment density equal to 2650 kg/m3. The dry
bed density was set equal to 1600kg/m3. The acceleration due to gravity is g = 9.807m/s2, the
water density is 1025.97kg/m3 and the air density assumed 1 kg/m3.
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Chapter 5

Results and Discussion

5.1 Significant wave height

The following figures show the contours of the magnitude along with the direction of the
significant wave height (Hs), on selected times of the simulation.

The simulation outputs related to the significant wave height (Hs) and direction show that
on 26th of July; 12:00, i.e. before the peak of the event, the coastal area of Gouves presents wave
heights approximately 0.5m in WNW direction while the wind speed is 5.5 m/s (WNW)(figure
5.1).

As the waves reach the shore, refraction due to shoaling is present and the wave crests tent
to be parallel to the shoreline.

One can observe that the significant wave height increases as the wind velocities increases
(figures 5.2, 5.3, 5.4). Before the peak of the storm, the significant wave height has values in
the range of 1m -1.7m while the wind velocity reaches the value of 9.18 m/s. Particularly, on
the 27th of July (11:20) the Hs reaches 2 - 2.5 m offshore while nearshore the wave height is
1.7m (figure 5.5).

At the peak of the storm, the significant wave height can reach the 4m in some areas offshore,
whereas, in the area of interest its values are in the range of 1.5m to 2.5m (U=11.1 m/s, NW)
(figures 5.6, 5.7, 5.8).

This profile (figures 5.9, 5.10) is repeated on the 28th of July (10:40) when the second peak
of the wind speed occurs (U=11 m/s, NW) (figures 5.11).

After the peak of the storm, the Hs is reduced until 29th of July, (5.11 - 5.15) when it starts
to slightly increase again reaching the value of 0.9m in the area of interest (U 9m/s, W) (figures
5.16 - 5.18).
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Figure 5.1: Before the peak of the storm

Figure 5.2: Before the peak of the storm
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Figure 5.3: Before the peak of the storm

Figure 5.4: Before the peak of the storm
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Figure 5.5: Before the peak of the storm

Figure 5.6: During the peak of the storm
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Figure 5.7: During the peak of the storm

Figure 5.8: During the peak of the storm

36



Figure 5.9: During the peak of the storm

Figure 5.10: During the peak of the storm
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Figure 5.11: During the peak of the storm

Figure 5.12: After the peak of the storm
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Figure 5.13: After the peak of the storm

Figure 5.14: After the peak of the storm
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Figure 5.15: After the peak of the storm

Figure 5.16: After the peak of the storm
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Figure 5.17: After the peak of the storm

Figure 5.18: After the peak of the storm
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5.2 Currents

As we already mentioned, currents in the sea play a fundamental role in the sediment transport
phenomenon, as they can stir up and transport sediments. Hence, the sediment transport largely
follows the current direction.

The following figures illustrate the current directions at selected times during the study
period together with the associated current velocities. One can observe that the current velocity
increases and decreases relative to the development of the Meltemi event. Generally, the current
direction is from West to East, parallel to the shoreline.

The simulation outputs related to the current magnitude and direction show that before the
peak of the event, the coastal area of Gouves presents currents with a magnitude of 0.1 m/s
(figure 5.19).

As the Meltemi event develops, the current velocity reaches the value of 0.2 m/s offshore
and 0.4 m/s nearshore (figures 5.20, 5.21, 5.22). On the 27th of July (11:20), just before the
wind velocity to reach 11 m/s, one can observe that currents begin to feel the bottom and reach
0.5 m/s mainly nearshore (figure 5.23).

During the peak of the storm, currents can exceed the value of 0.9 m/s in some areas (figures
5.24, 5.25, 5.26, 5.27, 5.28, 5.29).

After the peak of the storm, the current velocity returns to the averaged value of 0.2 m/s
in the entire area for the rest of the event (figures 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36).

Furthermore, rip currents are appeared across the shoreline because of the breaking process
of waves that push water towards the land.

Figure 5.19: Before the peak of the storm
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Figure 5.20: Before the peak of the storm

Figure 5.21: Before the peak of the storm
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Figure 5.22: Before the peak of the storm

Figure 5.23: Before the peak of the storm
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Figure 5.24: During the peak of the storm

Figure 5.25: During the peak of the storm
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Figure 5.26: During the peak of the storm

Figure 5.27: During the peak of the storm
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Figure 5.28: During the peak of the storm

Figure 5.29: During the peak of the storm
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Figure 5.30: After the peak of the storm

Figure 5.31: After the peak of the storm
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Figure 5.32: After the peak of the storm

Figure 5.33: After the peak of the storm
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Figure 5.34: After the peak of the storm

Figure 5.35: After the peak of the storm
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Figure 5.36: After the peak of the storm
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5.3 Suspended sediment concentration

The following figures represent the contours of the suspended sediment concentration near
the bed (the 12th layer corresponds to 1.8% of the depth) at selected times, during the peak of
the event.

It is observed that several bars are formed, in some of which the concentration of the sus-
pended sediment can reach the value of 1.4 kg/m3 on the 27th of July (18:00) (U=9.18 m/s,
NW) and 1.8 kg/m3 on the 27th of July (21:20) (U = 11.1 m/s NW). On 28th of July the
maximum value of the suspended sediment concentration is 1.5 kg/m3. (figures 5.37, 5.38, 5.39,
5.40).

Figure 5.37: SSC 1 Figure 5.38: SSC 2

Figure 5.39: SSC 3 Figure 5.40: SSC 4

The following plots show the suspended sediment concentration (SSC) at the observation
points G1, G2, G3 respectively, at different depths (corresponding to layers 12,10,9,8,7,1 re-
spectively). During the peak of the Meltemi event and near the bottom, the SSC reaches the
values of, approximately, 0.9 kg/m3 at G1, 1.25 kg/m3 at G2 and 1.62 kg/m3 at G3 (figure
5.41,5.42,5.43). One can observe, that the SSC exceeds the value of 0.01 kg/m3 mainly during
the peak of the event, with an exception at G1 on 27th of July (09:52) that has a small peak
up to 0.014 kg/m3.
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Figure 5.41: SSC at G1

Figure 5.42: SSC at G2
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Figure 5.43: SSC at G3
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From the contours of the cumulative erosion / sedimentation it is observed that before
the peak of the storm, on 27th of July (11:20), when the wind velocity is around 8 m/s, the
phenonenon takes place mainly in area near the shoreline with very small values. As the event
reaches its peak on the 28th of July (10:40), when the wind velocity is 11 m/s the phenomenon
is very intense. One can observe the various bars that are formed in several areas respresenting
erosion or sedimentation. A similar pattern is repeated on the 29th of July (03:20) when the
wind velocity is ≈ 7 m/s. (figure 5.44)

Figure 5.44: Cumulative Erosion / Sedimentation
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5.4 Erosion - Sedimentation

At the observation points G1, G2, G3 an increase of sediment is observed. Particularly,
at G1 we measured sedimentation ≈ 0.075m, at G2 sedimentation of ≈ 0.038m and at G3
sedimentation ≈ 0.05m.

We should comment the fact that G2 presents smaller value of sedimentation than G3. This
phenomenon is related with the breaker zone and its movement.
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Chapter 6

Comparisons with Measurements

6.1 Significant wave height

The predicted with Delft3d model significant wave height (Hs) at the observation point G3
reaches a maximum value of 2.673m, on 27th of July (22:52, U ≈ 10m/s) whereas measurements
give the maximum value of 1.556m, on 27th of July (16:00, U ≈ 9.2m/s). We observe a difference
of 1.117m between these maximum values and a delay of approximately 7 hours for the model
to reach the maximum.
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difference

At the observation point G2, a maximum value of 1.891m is recorded by the model, on 27th
of July (23:52, U ≈ 9m/s) whereas the measured maximum value is 1.653m, on 27th of July
(13:52, U ≈ 9.3m/s). Here, the difference between the two maximum values is 0.238m with a
delay of 10 hours.
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Delft3d − measurements

At the observation point G1, the calculated maximum value of Hs is 1.506m, on the 27th
of July (22:52, U ≈ 10m/s) whereas the measured maximum value is 1.378m, on 27th of July
(16:00, U ≈ 9.2m/s. Here, the difference between the two values is 0.128m and the time delay
is approximately 8.5 hours.
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Examining the differences between the calculated and the measured Hs, we can conclude
that the model underestimates the significant wave height when the wind speed is lower than
≈ 5.5m/s and overestimates it for greater values of the wind speed. Also, one can observe a
second maximum appearing in the simulation, that is not in the measurements. A possible
explanation would be that, the transition from the maximum to the low - energy state in the
simulation is faster in the reality. Also, distant breaker zones may still operating due to the
continual incoming waves.

6.2 Currents

A general conclusion is that the model overestimates the mean current velocity in the area of
interest. According to the measurements, the current velocity at the peak of the storm never
exceeded the value of 0.2 m/s for G1 , 0.11 m/s for G2 and 0.17 m/s for G3. The threshold
current velocity value is computed for the three stations and is equal to ≈ 0.36m/s for G1, ≈
0.38 m/s for G2 and ≈ 0.4 m/s for G3. However, the model estimates the current velocity in
the area of interest in the range of 0.2 to 0.5 m/s, exceeding the threshold value in some areas.

6.3 Suspended sediment concentration

Since the model overestimates the significant wave height and the current velocity, a differ-
ence between the values of the suspended sediment concentration (SSC) as well is expected.
Particularly, at G1 the measured SSC is ≈ 0.05kg/m3, at G2 is ≈ 0.06kg/m3 and at G3 is
≈ 0.37kg/m3. The Delft3D model computes a sediment concentration≈ 0.3kg/m3 for G1,
≈ 0.3 − 0.45kg/m3 for the G2 and ≈ 0.56 − 0.62kg/m3. An explanation for this difference
between the predicted and the measured sediment concentration is that in the physical domain
there is coarser material than that we applied in the model.

Finally, the SSC exceeds the value of 0.01 kg/m3 mainly during the peak of the event. The
corresponding bed shear stress to the reference value of SSC = 0.01 kg/m3 is τb = 0.15N/m2

which coincides with the results from the measurements (Alexandrakis per. com.).

6.4 Bottom changes

The general view of the bottom changes from the contours of the cumulative erosion/sedimentation
is very satisfying. The choice of the initial and boundary conditions led to accurate enough fore-
casting results regarding to the morphological conditions of the study area. Actually, the model
predicts the several bars that are formed in several areas of the domain (figure 6.1).

6.5 Conclusion

The results of the simulation give very satisfactory characteristics concerning the overall view
of the study area. However, it fails to accurately predict data on a grid cell level. Some
improvements that can be made are to

• optimize the input parameters of the model,

• provide a more detailed bathymetry and sedimentology,

• change the resolution of the computational grids.
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• testing also other models for the wave - current interaction

• apply the model to other test cases, with different data.

Figure 6.1: Bars formed in the study cite
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