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Keyword Search over RDF using Document-centric
Information Retrieval Systems

Abstract

There are thousands of datasets published according to the principles of Linked
Data and Semantic Web. Many of those datasets, organized in RDF, are main-
tained either in cross-domain Knowledge Bases (e.g. DBpedia, Wikidata) or do-
main specific repositories (e.g. DrugBank, MarineTLO), and are mainly used
through navigation and structured query languages like SPARQL. However these
techniques are complex, lack flexibility and possibly require a full knowledge of
the underlying ontology. As a result, these datasets are exploited by expert users
only.

On the other hand, keyword search is the most widely used method for search-
ing. Keyword search is user friendly, offers instant content access, and keyword
queries support a wide range of expression while being extremely flexible. Informa-
tion Retrieval systems are designed for performing efficient keyword search in large
data of information, usually organized as full text documents. There are various
highly performant and effective state of the art search engines readily available.
Such a search engine is Elasticsearch, a distributed full text search engine that
provides scalable search over any kind of textual information.

In this thesis we introduce an approach for keyword-search over RDF datasets,
by adapting traditional IR techniques for both indexing and retrieval. Specifically,
we test how a dominant IR engine such as Elasticsearch, can be adapted for in-
dexing RDF data and enable keyword search. We provide a systematic analysis of
different approaches to cope with the challenges of indexing and retrieving struc-
tured information and exploiting the graph capabilities of RDF. The response of
the system comprises ranked RDF triples. We also provide policies for ranking
the different entities that are contained in these triples, in order to support the
requirements of entity search.

We report evaluation results of the different approaches in terms of: (i) the
efficiency of indexing and retrieval and (ii) the quality of retrieval. We test the
effectiveness of our system by evaluating the relevance of the constructed entities
against the DBpedia-Entity test collection, designed for entity search over the
DBpedia KB and compare our results to various state of the art systems. Our
results showcase the effectiveness of the proposed user friendly approach, that
exploits the powerful features of scalable state of the art search engines, and can
be applied in any RDF dataset, with no prior knowledge of the domain. Results
show that Elasticsearch can effectively support keyword search over RDF data,
offering effectiveness comparable to that of systems built from scratch for the task
per se, that use entity-oriented and dataset-specic index structures.





Αναζήτηση μέσω Λέξεων-Κλειδιών επί RDF
Δεδομένων Χρησιμοποιώντας Εγγραφο-κεντρικά

Συστήματα Ανάκτησης Πληροφοριών

Περίληψη

Υπάρχουν χιλιάδες σύνολα δεδομένων που δημοσιεύονται σύμφωνα με τις αρχές

των Συνδεδεμένων Δεδομένων (Linked Data) και του Σημασιολογικού Ιστού (Se-
mantic Web). Πολλά από αυτά, όντας οργανωμένα σε RDF, βρίσκονται είτε σε Βάσεις
Γνώσεων ανοικτού πεδίου (π.χ. DBpedia, Wikidata) είτε σε συλλογές κλειστού πε-
δίου (π.χ. DrugBank, MarineTLO) και η εξερεύνησή τους είναι εφικτή μόνο μέσω
συστημάτων πλοήγησης και δομημένων γλωσσών όπως η SPARQL. Ωστόσο, οι τε-
χνικές αυτές είναι σύνθετες, στερούνται ευελιξίας και συνήθως απαιτούν από κάποιον

γνώση της οντολογίας που περιγράφει τα δεδομένα. Αυτό έχει ως αποτέλεσμα να

καταλήγουν να αξιοποιούνται μόνο από ειδικούς χρήστες.

Η αναζήτηση μέσω λέξεων-κλειδιών (keyword-search) είναι η πιο ευρέως χρησι-
μοποιούμενη μέθοδος αναζήτησης καθώς είναι φιλική προς το χρήστη και προσφέρει

άμεση πρόσβαση στο περιεχόμενο, ενώ παράλληλα διατηρεί μεγάλη εκφραστικότητα.

Τα Συστήματα Ανάκτησης Πληροφοριών (Information Retrieval Systems) είναι σχε-
διασμένα για την αποτελεσματική αναζήτηση μέσω λέξεων-κλειδιών πάνω από μεγάλο

όγκο εγγράφων κειμενικής πληροφορίας. Για το σκοπό αυτό, υπάρχουν διαθέσιμες

διάφορες εξαιρετικά αποτελεσματικές και αποδοτικές μηχανές αναζήτησης. ΄Ενα τέ-

τοιο παράδειγμα είναι η Elasticsearch, μια κατανεμημένη μηχανή αναζήτησης κειμένου,
η οποία παρέχει δυνατότητα κλιμακώσιμης αναζήτησης σε οποιοδήποτε είδος πληρο-

φοριών κειμένου.

Σε αυτήν την εργασία σχεδιάσαμε μία μέθοδο για αναζήτηση μέσω λέξεων-κλειδιών

πανω από RDF δεδομένα, προσαρμόζοντας τις παραδοσιακές τεχνικές ανάκτησης πλη-
ροφορίας (IR) για την ευρετηρίαση και την ανάκτηση. Συγκεκριμένα, δοκιμάζουμε
τρόπους με τους οποίους μια κυρίαρχη στην αγορά μηχανή αναζήτησης, όπως η Elas-
ticsearch, μπορεί να χρησιμοποιηθεί για την ευρετηρίαση RDF δεδομένων και την
παροχή αναζήτησης μέσω λέξεων-κλειδιών σε αυτά. Παρέχουμε μια ανάλυση των δια-

φορετικών προσεγγίσεων που ακολουθήσαμε για να αντιμετωπίσουμε τις προκλήσεις

της ευρετηρίασης και της ανάκτησης δομημένης πληροφορίας και την αξιοποίηση των

δυνατοτήτων που μας δίνει ο RDF γράφος. Η απάντηση του συστήματος αποτελείται
από μια κατάταξη συναφών RDF τριπλετών. Επίσης, παρέχουμε πολιτικές για την
κατάταξη των διαφορετικών οντοτήτων που περιέχονται στις τριπλέτες προκειμένου

να υποστηριχθεί και ο στόχος της αναζήτησης οντοτήτων (entity-search).
Τα αποτελέσματα της αξιολόγησης των διαφορετικών προσεγγίσεων μας αφορούν

(α) την αποδοτικότητα της ευρετηρίασης και της ανάκτησης και (β) την ποιότητα της

ανάκτησης. Δοκιμάζουμε την αποτελεσματικότητα του συστήματός μας αξιολογώντας

τη συνάφεια των οντοτήτων που κατασκευάζουμε πάνω από την συλλογή DBpedia-
Entity, σχεδιασμένη για την αναζήτηση οντοτήτων μέσω της βάσης γνώσης DBpedia
και συγκρίνουμε τα αποτελέσματά μας με διάφορα συναφή συστήματα. Στα αποτελέ-

σματά μας παρουσιάζουμε την αποδοτικότητα της προτεινόμενης προσέγγισης, η οποία



εκμεταλλεύεται τα ισχυρά χαρακτηριστικά των κλιμακώσιμων μηχανών αναζήτησης,

ενώ μπορεί να εφαρμοστεί πάνω από οποιοδήποτε σύνολο δεδομένων RDF χωρίς προη-
γούμενη γνώση του τομέα. Τα αποτελέσματα της αξιολόγησης καταδεικνύουν ότι η

Elasticsearch μπορεί να υποστηρίξει αποτελεσματικά την αναζήτηση μέσω λέξεων-
κλειδιών επί δεδομένων RDF , προσφέροντας αποτελεσματικότητα εφάμιλλη εκείνης
των συστημάτων που έχουν δημιουργηθεί αποκλειστικά για RDF και χρησιμοποιούν
οντο-κεντρικά ευρετήρια.
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Chapter 1

Introduction

The Web of Data currently contains thousands of RDF datasets available on-
line that includes cross-domain Knowledge Bases (KBs) like DBpedia and Wiki-
data, domain specific repositories like DrugBank1 and MarineTLO [38], as well as
Markup data through schema.org2 (see [30] for a recent survey). These datasets
are queried through structured query languages (SPARQL), however this is quite
complex for ordinary users. Ordinary users are acquainted with keyword search
due to the widely used web search engines. Faceted search is another popular
paradigm for interactive query formulation, however even such systems (see [39]
for a survey) need a keyword search engine as a flexible entry point to the infor-
mation space. We conclude that an effective method for keyword search over RDF
is indispensable.

At the same time we observe a widespread use of classical IR systems (like
Elasticsearch and Solr) in different contexts. To this end in this work we investigate
how these, document-centric Information Retrieval Systems (IRSs), can be used
for enabling keyword search over arbitrary RDF datasets. This endeavor raises
various questions, including (a) how to index an RDF dataset, (b) what to rank
and how, (c) how the search results should be presented.

To investigate the above, in this paper we select one popular IR system, namely
Elasticsearch, over which we propose methods for tackling the aforementioned
questions. We report extensive evaluation results of the different options in terms
of quality of retrieval and efficiency of indexing and retrieval. This allows us to
provide an answer to the general question: how good an existing document-centric
IR system is for keyword search over RDF? Can it be configured in a way that
yields a retrieval behavior comparable with those of dedicated keyword search
systems for RDF?

The rest of this thesis is organized as follows. Chapter 2 gives an overview
of the background concepts and describes the related work. Chapter 3 discusses
the problem analysis along with the requirements and challenges that arise. In

1https://www.drugbank.ca
2https://schema.org

1



2 CHAPTER 1. INTRODUCTION

Chapter 4 we describe our approach, that we call ElaS4RDF, and also give an
overview of the considered IR system. After that, in Chapter 5, we review the
results of our experiment evaluation that includes both the quality of retrieval and
system’s efficiency. Finally, Chapter 6 concludes the thesis and identifies issues
that are worth further research.



Chapter 2

Background & Related Work

2.1 RDF, Linked Data and the Semantic Web

RDF is a framework for describing resources on the web, easily readable by com-
puters [3]. It is the most common framework for representing data in knowledge
bases. In RDF we describe entities (or resources) that may be either a person, a
place, an institution, a concept or a relation between other resources. An entity is
associated to a URI (Uniform Resource Identifier) which is a string of characters
according to a particular syntax [4] that uniquely identifies an abstract or physical
resource. The main component of RDF is a triple, which consists of a subject(s),
object(o), predicate(p) and is the smallest representation of a relationship that is
described in p, between s and o. Subjects and predicates are URIs while objects
can either be a URI or a literal value. Anonymous (blank) nodes, or simply b-
nodes, are also supported and can occur as subjects or objects of the triples. The
information contained in any RDF collection, forms a graph where nodes are the
subjects and objects of triples and edges correspond to the predicates. An edge p is
created between two nodes (s and o) only if a triple (s,p,o) exists in the collection.
More formally, let U be the set of all URIs, L the set of all literals and B an infinite
set of blank nodes. A triple is any element of T = (U ∪B)×U × (U ∪L∪B), while
an RDF graph (or dataset) is any finite subset of T . The RDF schema (RDFS) is
an extension of the RDF vocabulary and intents to provide useful semantics to the
triples by introducing a vocabulary for asserting user defined schemas within the
RDF model. It also specifies standard URIs of specific types (classes, properties) to
denote those relationships between URIs. The representation of both schema and
instance information is in the form of RDF triples that can be expressed through
various containers or formats.

In short, Linked Data use the Web to create links between data from different
sources and their structure makes it easy to be accessed through semantic queries
[6]. Those data are usually published on the Web in a machine-readable way and
their links may be either diverse, e.g. connecting databases of different organiza-
tions, or more simple such as heterogeneous systems inside of a single organization.

3



4 CHAPTER 2. BACKGROUND & RELATED WORK

Instead of using hyperlinks between HTML (Hyper Text Markup Language) docu-
ments, Linked Data rely on documents containing data in RDF. More than simply
connecting those documents, they use the RDF statements to link arbitrary things
in the Web. To enable this Linked Data combine two fundamental Web technolo-
gies that are: URIs & HTTP (Hyper Text Transfer Protocol). Entities, which are
identified by URIs and use the ’http://’ schema, can be explored by dereferencing
the URI over the HTTP protocol. This is how the HTTP protocol can be used to
provide a simple yet universal mechanism for retrieving resources that are serial-
ized as a stream of bytes. A set of rules for publishing Linked Data on the Web
was proposed in [35]. The goal was that each newly published set of information
would be become part of a single global dataset. This involves three basic steps
(i) assign URIs to entities that are dereferencing over the HTTP protocol (ii) set
RDF links to other data sources on the Web and (iii) provide metadata about the
published data.

Semantic Web can be seen as an extension of the current Web, where all infor-
mation contains a well-defined meaning, the semantics, enabling the development
of mechanisms for the exchange and linking of the described data. Even though
this idea has been expressed in various ways [5, 29] the common goal is to construct
a Web of data that can be processed directly or indirectly by machines.

2.2 Information Retrieval & Semantic Search

Information Retrieval (IR) can be defined as the act of finding material (e.g. doc-
uments) with an unstructured nature (such as free text) that is relevant to an
information need (e.g. expressed in a keyword query) from within large collec-
tions. There is a wide scope that includes many kinds of data and information
needs that can be categorized as IR problems and a variety of applications related
to search. Since the early days of the field, the primary focus of IR has been on
documents containing text. Those documents have usually a structure such as the
title and author of a book or the abstract, keywords of a scientific publication.
However, most information inside a document is in the form of text hence rela-
tively unstructured. Perhaps the most common IR task is when a user performs
a web-search by issuing a keyword query searching the World Wide Web. The
answer is typically a ranked list of links to web pages. The scale on which a web
search engine operates is in that of billions of documents, stored and organized in
a network of million computers. In [12] further categorizations of search in IR are
stated such as Vertical where search is performed over a restricted domain topic
Enterprise that concerns searching inside a corporate intranet and Desktop search
where the information source are files stored on a personal computer.

Inside the IR field there are also cases that support browsing or filtering the doc-
uments. Clustering is a task in which a grouping of the documents is performed,
based on their contents. Given a set of information needs (e.g. in the form of
topics) classification is the task of deciding which class does a set of documents
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belongs to. Summarization systems can reduce documents to few paragraphs or
phrases that describe the overall content. A such example is the text snippet that
is presented next to a Web search result. Information extraction is a technique
that enables IR systems to identify named entities (such as persons or places) and
combine this information for creating structures that describe relationships be-
tween the entities, e.g. a list of all the songs recorded by the The Beatles. Systems
that perform Question-Answering tasks usually integrate and extend multiple IR
technologies (search, summarization, information extraction) for providing a spe-
cific answer to a question, e.g. see [18] for a recent survey. Works that address the
historic progress of the Information Retrieval and its many applications include
[40, 12] while a more recent look at the current state can be found in [9].

Semantic Search is a general term that embraces methods for retrieving relevant
content from a search engine, by taking into account the semantics and the context
of the user query and/or of the indexed content [13]. The approaches are divided
into two basic categories, according to the target of retrieval: a) those that try to
improve the relevance of classical search engine over documents by incorporating
semantic information, and b) those that retrieve semi-structured data (e.g. entities
or RDF triples) from a knowledge base, which is also the retrieval target of this
work. Structured query languages are the method of choice when the data is
inherently structured in Knowledge Bases. Complex information needs can be
formulated without ambiguity. Specifically for this task, a complex query language,
not suited for ordinary users, has been designed. SPARQL1 is the standard query
language for knowledge bases that are organized in RDF triples. It is based on
the standard query language for databases, SQL. SPARQL contains capabilities
for querying required and optional graph patterns along with their conjunctions
and disjunctions. A complete survey on different Semantic Search paradigms can
be found in [2].

2.3 Keyword-based Searching of RDF data

The concept of content search over linked data dates back to the first days of Se-
mantic Web and Open Linked Data. Early works focus includes semantic search
engines, often with the support of a web interface for simplicity to the end-user.
Despite the early nature, those works apply a fundamental distinction between
the potential implementations. As [25] states those approaches may include: (i)
form-based systems that allow users to specify queries through sophisticated web
forms, (ii) RDF-based querying languages that expect as input structured queries
(e.g. SPARQL), (iii) semantic-based search that employs classical IR techniques
for answering keyword queries, (iv) question-answering tools which exploit seman-
tic mark-up for answering queries on natural language.
For the third category, our interest, further distinctions can be applied result-
ing in the following two categories: i) translating keyword queries to structured

1https://www.w3.org/TR/rdf-sparql-query
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(SPARQL) queries, ii) building or extending an IR system that supports keyword
search over RDF data.

2.3.1 Translating Keyword Queries to Structured Queries

Multiple works propose methods where the keyword input is translated to a formal
structured language query, which is usually SPARQL. The main goal is to hide
the complexity and peculiarities of formal querying from the user and providing a
ranking of the final results, while at the same time retaining the preciseness of a
structured query search.

One of the first works in that field is [25], where each keyword is matched
to a semantic entity before translating it to the final formal query. A semantic
entity index is build containing classes, properties and instances extracted from
back-end data repositories while the search engine matches keywords to entities
based on labels and literals indexed in Lucene. A similar approach is described
in [36] where the the keyword query is translated into a Description Logic con-
junctive query that exploits knowledge available in the knowledge base. Indices
are again created using Lucene, extracting all the URIs and labels of entities and
during searching, query terms are mapped to knowledge base entities. Then, using
property member axioms, they explore connections and retrieve data values from
neighboring individual entities up to a given range.

In [37] the user is presented with an extra step of choosing the appropriate query
from a generated list of queries constructed based on the keywords. A list of top-k
queries is computed by interpreting keywords as elements of structured queries
and producing expressive formal queries. Using this approach, algorithms for
subgraph exploration and summarization are described for computing and ranking
the final top-k subgraphs. The work presented in [20] overviews ranked retrieval
approaches of RDF data with keyword-augmented structured queries and provides
an informativeness ranking method based on statistical language models for the
structured, but schema-less setting of RDF triples and extended SPARQL queries.

Finally, the approach described in [28], distils the inter-entity relationship sum-
mary along with the complete schema information from the RDF data graph for
composing SPARQL queries. They develop a new search prioritization scheme
that combines the degree of a vertex with the distance from the original keyword
element for controlling the expansion of the summary graph. In this way they
are able to find the top-k subgraphs that are relevant to the conjunction of the
entering keywords in a scalable way. A highly relevant effort, described in in
[26], constructs inter-entity relationship summary from inter-entity relationships
of RDF data graph, exploits the shortest property path and distance indexes,
along with an r-neighborhoods index, and uses dynamic programming algorithm
for translating keyword queries into SPARQL queries.
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2.3.2 Keyword search over existing or specially created IRSs

Several approaches investigate the adaptation of classical IR methods and ranking
techniques for processing the keyword queries over the RDF graph. These systems
rely on constructing the structures (e.g. inverted index) either from scratch or
by employing IR engines, and adapting the notion of a virtual document over the
structured data, while the retrieval unit is usually a sub-graph.

Falcon [10, 11] was designed as a search engine that explored the Semantic
Web by searching linked objects and exploiting the nature of structured data.
In Falcon, each document corresponds to the textual description of an object.
This description is obtained by the use of ”RDF sentences”, that consist of a
maximum subset of b-connected RDF triples. Using Lucene, a combination of
inverted indices serve both the mapping of keyword terms and classes into objects
(documents). The ranking of the documents against a query is based on the cosine
similarity scoring of the term-based similarity to the query and a boosting factor
that corresponds to document’s popularity.

In [33], the authors identify five basic categories of queries for adhoc object
retrieval in the web of data according to data from real web logs: entity queries (i.e.
find a specific entity), type queries (i.e. find entities of a particular type), attribute
queries (i.e. find values of a particular attribute of an entity), relation queries (i.e.
how two entities are related), and other keyword queries (i.e. queries that do
not fit in the previous categories). The reported experimental results show that
almost 40% of the queries are entity queries. The quality of the results of a simple
TD-IDF baseline metric over literals are considered adequate. Additionally, in the
the entity search track of SemSearch10 workshop2, a number of related systems
[16, 17, 27] were presented and evaluated. Most of those systems are based on
variations of the TD-IDF approach, adapted for RDF data. The evaluation was
conducted over the Billion Triple Challenge 2009 dataset [23]. L3S [17] uses Lucene
for indexing tokens extracted from the URLs of resources.

One of the most referenced works in the field is [19], where the authors propose
a retrieval model that returns a list of RDF sub-graphs using statistical language
models ranking the results. The notion of a virtual document is that each docu-
ment corresponds to an RDF triple and fields include sets of extracted keywords
from the s,p,o parts along with the frequency of each term. An inverted index
retrieves for each keyword a list of closely matching triples that are subsequently
given as input to a backtracking sub-graph retrieval algorithm. This algorithm cal-
culates a query likelihood estimation, that measures the probability of generating
the query from each candidate subgraph.

A hybrid approach between free text and structured queries is presented in [15].
It uses inverted lists that are populated with terms that appear either as a predicate
or an object in a triple. The document representation contains information about
terms and the triples that these terms appear in, including term position and in
which triple part each term was found. Keyword queries that match against those

2http://km.aifb.kit.edu/ws/semsearch10



8 CHAPTER 2. BACKGROUND & RELATED WORK

terms return all entities from triples for different expressions e.g. return entities
with triples containing john or doe in the object part for the query john doe. The
above functionality is offered as an Solr3 extension.

A distributed approach that is based on the Map-Reduce paradigm is illus-
trated in [14]. For the support of RDF data the system uses a path-based store as
index, distributed across the cluster, while matching paths to query compose the
final answer. The offered top-K answer has a monotonic behavior, that guarantees
that in each step the system generates the optimum answer. A semantic similarity
method for measuring scores for objects with the same predicate is described in
[1]. The authors also investigate efficiency and scalability issues such as indexing
massive datasets and the search depth when retrieving a subgraph. Similarity is
calculated from two different aspects, first exploiting the structural relations of the
data, such as distance, and then employing WordNet for taking into consideration
the semantic strength between elements.

Another work in which the system returns subgraphs based on a keyword
query is presented in [31]. Here, authors argue that since query keywords can
not always be mapped to a graph element directly, external knowledge (in the
form of patterns) can be used to explore relations between the keywords and the
dataset components. First, an inverted index is built, where documents represent
a graph element type, such as a literal or a resource. Extraction of the relevant
fragments is done through a mapping function based on the textual information of
the documents and through the use of patterns that measure the semantic distance
between graph components. The final answer is a subgraph where each keyword
of the query is mapped to a relevant fragment. The proposed method requires the
detailed knowledge of the described domain while a TF-based function ranks the
returned subgraphs.

Keyword-based search queries with spatial and temporal semantics on RDF
data, which the authors call kSP queries, are studied in [41]. The objective of
an kSP query is to find RDF subgraphs which contain the query keywords and
are rooted at spatial entities close to the query location. Temporal semantics
are added by considering the temporal differences between the keyword-matched
vertices and the query timestamp and by using a temporal range to filter keyword-
matched vertices.

The state of the art approaces in the literature, mainly employ the probabilistic
model BM25 and various extensions of it for ranking the RDF data. Such an
extension is the BM25F which takes into account the various fields of modeled
document, and computes the normalized term-frequency using the length of a field
instead of a document (see for e.g. [7] and [32]). Specifically, in [7], along with
an adaptation of the BM25F ranking function for RDF data, the authors propose
a set of index structures for entity search. Each document represents a resource
organized either in a horizontal or in a vertical index. In the former, a single field
contains all different properties, along with other fields for storing the extracted

3https://lucene.apache.org/solr
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tokens (e.g. literals), while in the latter each property corresponds to a different
field containing its values. Important properties, such as description, abstract, etc.,
are weighted more. Implementation is based on MG4J [8], by exploiting various
options of this open-source IR engine such as the alignment operator that offers
queries with term-position matching capabilities.

As already mentioned most works returned a ranking of subgraphs, while in our
work we focus on ranking triples. The concept of triple ranking has also emerged
in other works such as [21] or [34]. However those approaches are not directly
targeting the task of keyword search over an RDF dataset. In [21] authors have
presented the ’TripleRank’ algorithm for authority ranking in the Semantic Web,
much like how PageRank is for the World Wide Web. To achieve this, RDF graphs,
along with their semantics, are represented based on 3 dimensional tensors. The
algorithm manages to identify authoritative sources and groups of semantically
coherent predicates and resources. Along with a set of browsing search strategies
’TripleRank’ is targeted for use upon the Semantic Web. More recently, in [34]
authors proposed a learning to rank framework with relation-independent features
that aims at developing ranking models that measure triple significance. For a
given relation type as input (e.g. profession) the computed score of each triple
measures how well does the triple capture the relevance of the statement that it
express, compared to other triples from the same relation.

2.4 The Placement of our Work in the Landscape

We focus on exploiting the functionalities of successful document-centric IR sys-
tem for providing keyword search over RDF. We support the virtual document
approach for dealing with the complexity of graph data using IR ranking tech-
niques while maintaining the scalability that a document-centric system offers. In
comparison to similar works, in our work (a) we focus on the retrieval of triples,
which is the most flexible and informative retrieval unit (see Sec. 4.1), (b) we
study methods for entities ranking on top of triples, since entities are the most
studied retrieval unit in the bibliography and available datasets for evaluation do
exist, and (c) we thoroughly study and evaluate different indexing and querying
approaches, over the widely used Elasticsearch IR system and the commonly used
entity search collection DBpedia-Entity as used in [24]. Our results show that we
can configure common IR systems to offer comparable performance to adhoc key-
word search systems for entity ranking, and take advantage of their out-of-the-box
scalability features.
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Chapter 3

Problem Analysis and
Requirements

3.1 Problem Modeling

We first define the notions of RDF triple and RDF dataset. Consider an infinite
set of URI reference U , an infinite set of blank nodes B (anonymous resources),
and an infinite set of literals L. A triple 〈s, p, o〉 = (U ∪ B) × U × (U ∪ L ∪ B) is
called an RDF triple, where s is the subject, p the predicate, and o the object of
the triple. An RDF dataset (or RDF graph) is a finite set of RDF triples. These
triples usually describe information for a set of entities E (subject or object URIs),
like persons, locations, organisations, etc.

Fig. 3.1 depicts an example of a small RDF graph describing information about
three albums of The Beatles band. The dataset contains 16 triples and involves
4 entity URIs (blue nodes), 2 class URIs (red nodes), and 8 literals (gray nodes).
Among the 8 literals, 7 are strings (free text) and 1 is a number representing the
year 1960. The corresponding set of RDF triples is shown in Fig. 3.2. For a given
set of RDF triples T , our objective is to offer a keyword-based search service over
T , where a user can submit a free-text query q and get back the most relevant
data from T .

3.2 Challenges

A series of challenges arise upon applying keyword search over structured data
since the traditional notions of document and index are not applicable. In order
to proceed, one has to to define those challenges.

11
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Figure 3.1: An example of a small RDF graph.

3.2.1 Deciding on the retrieval unit

Contrary to the classical IR task where the retrieval unit is (usually) an un-
structured or semi-structured textual document, an RDF dataset contains highly-
structured data in the form of RDF triples, where each triple consists of three
elements: subject, predicate and object. There are three main options to consider
regarding the retrieval unit :

• An entity (URI of subject or object): an RDF dataset usually describes
information for a set of resources (like persons or locations). In those datasets
a resource can be found either in the subject and/or the object part of the
triple. This retrieval unit satisfies information needs related to the retrieval
of one or more entities (entity search), i.e., queries like ”The Beatles albums”,
”Greek philosophers” etc.

• A triple (subject-predicate-object): provides more information to the user,
than single URIs, and especially satisfies information needs related to at-
tribute search where we want to find a characteristic or property of an entity,
i.e., queries like ”Beatles formation year”, ”birth date of George Harrison”,
”capital of Greece”, ”picture of Barack Obama”. Presenting the full triple
also provides an easy mean to verify the correctness of a returned result,
e.g. (dbr:Greece, dbo:capital, dbr:Athens) vs the returning unit of an
entity-based approach (dbr:Athens).

• A subgraph (of size l triples): describes more complex information than
a single triple. Consider, for example, the query ”Beatles studios” and
the RDF dataset of Fig. 3.1. Answer consists of two literals (”EMI Stu-
dios ..”, ”Abbey Road..”) connected to the Beatles’ albums (dbr:Revolver,
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[frame=lines,numbers=left,numbersep=1pt]

<http://dbpedia.org/resource/The\_Beatles> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Band> .

<http://dbpedia.org/resource/The\_Beatles> <http://xmlns.com/foaf/0.1/name>

"The Beatles"@en .

<http://dbpedia.org/resource/The\_Beatles> <http://dbpedia.org/ontology/activeYearsStartYear>

"1960"^^<http://www.w3.org/2001/XMLSchema#gYear> .

<http://dbpedia.org/resource/Rubber\_Soul> <http://dbpedia.org/property/studio>

"EMI Studios, London"^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#langString> .

<http://dbpedia.org/resource/Rubber\_Soul> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Album> .

<http://dbpedia.org/resource/Rubber\_Soul> <http://dbpedia.org/ontology/artist>

<http://dbpedia.org/resource/The\_Beatles> .

<http://dbpedia.org/resource/Rubber\_Soul> <http://xmlns.com/foaf/0.1/name>

"Rubber Soul"@en .

<http://dbpedia.org/resource/Revolver\_(Beatle\_album)> <http://dbpedia.org/property/studio>

"EMI Studios, London"\^\^<http://www.w3.org/1999/02/22-rdf-syntax-ns#langString> .

<http://dbpedia.org/resource/Revolver\_(Beatles\_album)> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Album> .

<http://dbpedia.org/resource/Revolver\_(Beatles\_album)> <http://dbpedia.org/ontology/artist>

<http://dbpedia.org/resource/The\_Beatles> .

<http://dbpedia.org/resource/Revolver\_(Beatles\_album)> <http://xmlns.com/foaf/0.1/name>

"Revolver"@en .

<http://dbpedia.org/resource/Let\_It\_Be> <http://dbpedia.org/property/studio>

"Abbey Road and Apple studios, and Twickenham Film Studios, London"\^\^<http://www.w3.org

/1999/02/22-rdf-syntax-ns#langString> .

<http://dbpedia.org/resource/Let\_It\_Be> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Album> .

<http://dbpedia.org/resource/Let\_It\_Be> <http://dbpedia.org/ontology/artist>

<http://dbpedia.org/resource/The\_Beatles> .

<http://dbpedia.org/resource/Let\_It\_Be> <http://xmlns.com/foaf/0.1/name>

"Let It Be"@en .

<http://dbpedia.org/resource/Let\_It\_Be> <http://dbpedia.org/ontology/abstract>

"Let It Be is the twelfth and final studio album by English rock band the Beatles. It

was released on 8 May 1970, almost a month after the group’s break-up.?@en

Figure 3.2: The RDF triples of the RDF graph in Fig. 3.1.

dbr:Rubber Soul) through the property dbp:studio. The two albums are
connected to the Beatles entity dbr:The Beatles through the property dbo:artist.
Thus, a correct candidate answer consists of more than one triple, more
specifically a path(or subgraph) of 2 triples: <dbr:The Beatles, dbo:artist,

dbr:Rubber Soul> <dbr:Rubber Soul, dbp:studio, "EMI Studios, London".

3.2.2 Selecting which data to index

After deciding on the retrieval unit, one must choose which data to extract, i.e.,
what information parts are useful and thus a user should be able to query and
retrieve. An RDF dataset contains elements of different types, namely: i) resource
identifiers (URIs of subjects, predicates and objects), ii) free text (string literals),
iii) numbers and boolean values (numerical and boolean literals), iv) dates (date
literals), as well as v) elements with no external name (i.e. blank nodes) which
are used mainly for connecting other named or unnamed elements. With respect
to (i), in many cases the last part of a URI reveals the name of the corresponding
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entity or resource, and thus it might be useful to index (after some pre-processing,
e.g. replacing underscores with space). Other hidden information inside a URI
that might still be important to some users, are the domain name of the URI
(it usually reveals the knowledge base it belongs to, e.g., DBpedia) as well as
the middle part of the URI which can reveal the type of the resource (e.g., class,
property, ontology, etc.). For instance, a more experienced user with expertise
on Semantic Web technologies might want to retrieve schema-related data, like
classes and properties of the underlying ontology. Moreover, some properties of
RDF are used mainly for providing human readable and useful information, such
as rdfs:label and rdfs: comment and thus may be considered for appropriate for
indexing than other.

Deciding on which data to extract depends also on the chosen retrieval unit
(problem 1 ). In the first case entity, all outgoing properties that provide character-
istics and more information about the entity can be added. If the retrieval unit is
a triple, one can just index all of triple’s parts (subject, predicate, object), and/or
choose to add additional information, for example some of subject’s (or object’s)
common literal properties((e.g. rdfs:label) Finally, if we consider a subgraph as
our retrieval unit, then the indexed data depend on whether the subgraph has a
constant size (independently of the query) or its size is determined dynamically
during the retrieval process. For the former, one option is to index all possible
subgraphs of size l, however this might highly increase the size of the index. Thus,
a more flexible approach is to index single triples and select the l triples that form
a subgraph during the retrieval process.

3.2.3 Weighting indexed fields

Deciding on the importance of each indexed field may be another thing to consider.
By assigning weights, important fields can be exploited during the retrieval and
be beneficial to the final ranking process. One can argue that the name-space part
of a URI is of less importance than it’s keyword fields. Similarly, if retrieval unit
is an entity, one may decide to assign a higher weight to URI’s containing certain
properties (e.g. label, comment, etc.), or that literals are more important than
URIs. By allowing the adjustment of weights of the various fields at query time,
we can fine-tune the IRS’s query module evaluator at run-time and provide better
results for easily identifiable query types (e.g. Q&A queries).

3.2.4 Results structuring

The final challenge is to decide on how to structure the results page and show the
results. There various approaches that can be followed. One option is to follow
a classical IR approach and show a top-K ranked list of individual results (i.e.,
a ranked list of entities, triples or subgraphs), along with any related metadata
information (e.g. relevance score), through a faceted search UI. Another option is
to show a top-K graph (i.e., a small subset of the RDF dataset) which depicts how
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the individual results are connected to each other (i.e., a top-K graph of entities,
triples, or subgraphs).

Problems that are not directly related to the nature of the RDF data, like the
ranking algorithm to use or how to index the data, are considered parameters of
the considered IR system.

3.3 Requirements

In this work we consider three functional requirements that limit the scope of our
approach but also widen its applicability:

• Unrestricted RDF data. We consider any set of valid RDF triples as a valid
RDF dataset, without any prior knowledge of the ontology/schema used to
describe the underlying data. Thus, input dataset may or may not contain
triples describing the data schema. In addition, it is possible for a dataset
to contain non-readable URIs.

• Unrestricted keyword-based/free-text queries. We consider as input a free-
text query that can describe any type of information need (like retrieving an
entity or list of entities, finding an attribute of an entity, etc.). Moreover,
we do not consider query operators (like AND/OR), wildcards, the ability to
search in specific indexed fields, phrasal queries, or any other input specified
at query-time. The only input provided by the user is a free-text query.

• Exploitation of an existing IR system. We do not aim at building a new IR
system from scratch, but instead we want to make use of an existing, widely-
used IR system of general purpose, exploit its capabilities and functionalities,
and tune it for the case of RDF data. Its default settings and parameters
should be used when possible, i.e., any configuration should be made only if
this is required by the nature of the RDF data, but without considering any
information about the topic or domain of the dataset.

Apart from the above-mentioned functional requirements, we also consider the
following non-functional :

• Quality: system should provide relevant and meaningful results for the ma-
jority of the submitted queries.

• Efficiency: system’s response time on submitted queries should be low (e.g.,
less than 5 seconds).

• Scalability: system should scale well as the size of the data increases without
sacrificing however any of the above 2 requirements.
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Chapter 4

Approach

4.1 Overview

We first provide an overview of our approach and implementation. We essentially
describe how we cope with challenges 1-4 discussed in section 3.2.

With respect to challenge 1 (deciding on the retrieval unit), we opt for high
flexibility and thus consider triple as the retrieval unit. A triple is more informative
than an entity, provides a means to verify the correctness of a piece of information
(it is more close to question answering), and offers more flexibility on how to
structure and present the final results to the users (for coping with challenge 4 ).
For example, one can group a set of retrieved triples by their subject (entity) and
display them as a single result, or show only the subjects if the information need
is known to be entity search, or show graphs of connected entities. Moreover in
RDF, a triple can be viewed as the simplest representation of a fact. This property
is one of the major reasons we chose triple as our virtual document.

Regarding challenge 2 (selecting the data to index ), we experiment and evaluate
different approaches on what data to consider for each triple-document. Our first
(baseline) approach, only considers data from the triple itself (i.e., text extracted
from the subject, object and predicate). This simple approach, may appear prob-
lematic in a dataset where URI’s are IDs, thus not descriptive of the underlying
resource. Consequently, we also extend the baseline approach by exploiting in-
formation in the neighborhood of the triple’s elements. For example, we consider
important outgoing properties (such as rdfs:label, rdfs:comment , etc.). We evalu-
ate how the different extension options affect both the index size and the quality of
the results. We evaluate how the different extension options affect both the index
size and quality of the results.

With respect to challenge 3 (weighting the indexed fields), we decide not to ap-
ply any predefined weights upon the indexed fields but instead, adjust the weights
of the various fields at query evaluation time. In this way, we can fine-tune the
IRS’s query module evaluator at run-time and provide better results for specific
query types (e.g. Q&A queries).

17
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Figure 4.1: Overview of the proposed system’s architecture

Finally, for Challenge 4 (results structuring), we opt for a ranked-list of results
since this is the way that traditionally IRS present the results to the user. On top
of the ranked-list of triples, we propose three different methods for mapping the
retrieved ranked list of triples into a ranked list of entities, based on the appearance
of resources either in the subject or object. The first one, ranks the groups based
on the ranking order of the triple, that the entity appears, i.e. the first group
contains triples whose subject/object is the subject/object of the first retrieved
triple and so on. The second method ranks the entities based on the number
of triples that each entity appears in size (i.e. the first entity contains the entity
that appears in the largest number of triples). The third method ranks the entities
based on a weighted gain factor of the ranking order of the resources, similar to the
discounted cumulative gain used in nDCG. The evaluation of different visualization
methods (i.e. ranked list of resources, top-K graphs, etc.) and the corresponding
user experience goes beyond the scope of this paper. An overview of system’s
architecture is depicted in Fig. 4.1.

Below, after an initial discussion of the considered IRS and its offered functional-
ity and parameters, we detail the different approaches we experimented with for
dealing with the challenges 2-4. Recall that for Challenge 1 we use a triple as our
retrieval unit.
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Figure 4.2: Comparison between Elasticsearch and a traditional relational DB, as
depicted in [22].

4.2 Considered IR system: Elasticsearch

Elasticsearch 1 is a highly scalable open-source full text search engine that allows
to store and search big volumes of data. It is built on top of Apache’s Lucene2

and uses, along with the distributed inverted indexes architecture, all of Lucene’s
powerful capabilities. All data in Elasticsearch are stored in indices containing
different types of documents that Elasticsearch can store, update and search.

4.2.1 Basic Concepts

Document & Field
In most IR systems, including Elasticsearch document is the unit of search and
index. Each document is a JSON object and is stored in an index, with a unique
id. It contains a set of fields each being a key-value pair of any datatype including
a primitive (string, numeric, boolean) or a more complex structure (JSON objects).
Fields can be seen as document’s named attributes. Differently than in a common
IR system, a document has a type associated with it however since Elasticsearch is
schema-free, documents with the same type can have different sets of fields. In our
implementation we experiment with different types of documents (sets of fields)
with the aim to find out which type of a document suits best to a triple.

Index
An index consists of one or multiple documents, and can be seen like a classic
database. It has a mapping which defines multiple types and can operate as a
data organization mechanism, allowing users to partition data in various ways. A
rough comparison with a classic relational database can be seen in Fig. 4.2. An
important remark is that a single Elasticsearch index does not correspond to a
single Lucene index. In a working cluster, we can define multiple elastic indexes,
but in all of our cases an index corresponds to a particular approach.

Shard
A shard is a Lucene index and usually multiple shards may form an Elasticsearch
index. The number of shards that each index has must be defined before the index

1https://www.elastic.co
2https://lucene.apache.org
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is created. It is a fixed value, and when a new documents is inserted to an index,
Elasticsearch defines which shard will be responsible for storing and indexing that
document. This is done for balancing the load between available shards and affects
the overall performance, since all shards can be used simultaneously. This so called
’automatic sharding’ behavior is one of the key parts of the distributed nature of
Elasticsearch. As Elasticsearch operates in a network (or cloud) and environment
failures are expected, it maintains a rescuing mechanism in case a shard goes offline
or fails. This mechanism allows making copies of index’s shards, called replicas.

Node
A node is a single server that is part of a cluster, stores data and participates in
the cluster’s indexing and search operations. A cluster usually has multiple nodes
where all of the data are spread across. In the same manner as in ’automatic
sharding’, automatic distribution of shards among the nodes in cluster maintains
the distributed nature of Elasticsearch.

Cluster
A cluster is a collection of one or more nodes(servers) that holds the entire data
and provides federated indexing and search capabilities across all nodes. Even
though Elasticsearch can work as a standalone server, it is designed to run on many
cooperating servers, each one of them being a single node. Again, Elasticsearch
server handles all nodes in the cluster and makes sure that are loaded equally.

To summarize, each Elasticsearch index can be split into multiple shards. Each
shard may also be replicated with the use of replicas. A node contains multiple
shards (and replicas) and if the number of nodes is greater than one, Elasticsearch
balances the load equally. A single cluster may contain one or more nodes, that
run in parallel and serve multiple requests. As a simple example of a configuration,
imagine we have an index that consists of 3 shards(and 3 replicas) but our cluster
has only 1 node. In this case, all shards will be on the same node, but as soon
as another node is added, Elasticsearch will automatically balance all shards and
replicas equally. No matter how many shards are in a node, or the number of
nodes, an index is always seen to a client as a single entity. Figure 4.3 depicts this
simple example.

4.2.2 Mapping

Mapping is the process of defining how a document, and all the fields it contains,
are stored and indexed. Each index has a mapping type which determines how
the document will be indexed. Even though it is not necessary for the mapping
of each index to be static, it is a common practice to finalize its structure before
indexing. In such cases it is equivalent to a schema definition in common SQL
databases.
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Figure 4.3: Overview of a cluster’s components in Elasticsearch

Elasticsearch indexes documents, using either a dynamic (implicit) or a static
predefined (explicit) mapping. In the first case, Elasticsearch applies an automatic
detection and addition of new fields, without prior knowledge of the type or the
analysis of a previously unseen field. This is particular useful in applications where
the exact structure of a document is unknown, or in cases where different types
of fields are discovered along the indexing process. Moreover in our case, an ex-
plicit mapping may define index-wide settings like: (i) which fields contain full
text (ii) which fields contain URIs (iii) which custom analyzer (including stem-
mer, tokenizer) should be applied on which field. It can also allow the disabling
of indexing for some fields in a document, an action that results in reducing the
amount of the disk space needed while increasing the speed of new document in-
sertion. This is useful in RDF datasets that contain non-readable information (e.g,
resource identifiers), since these fields are not indexed but stored and thus can be
retrieved. Additionally, during the mapping phase a number of different parame-
ters can be set, including settings that correspond to the cluster configuration of
the Elasticsearch instance such as the number of shards and replicas.

In our case, different mappings are created depending on the approach we
follow. For example, a snippet of our baseline model’s mapping is in Fig. 4.4
where values inside properties are the explicitly defined fields of our baseline index.
For each of the document fields, we also specify a type, a custom analyzer and an
additional copy to field. Our type corresponds to text while our custom analyzer
(m analyzer) specifies which tokenizer, stemmer and stopword-list will be used.
Lastly, the copy to parameter copies the values of multiple fields into a group field
(sub pre obj ). This allows to query all 3 different fields as a single.

4.2.3 Query DSL & APIs

Elasticsearch has a powerful query DSL (Domain Specific Language) which sup-
ports advanced search features while it enables all of Lucene’s query syntax to be
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”mappings ” : {
” doc ” : {

” p r o p e r t i e s ” : {
” subject keywords ” : {

” type ” : ” t ext ” ,
” ana lyze r ” : ” m analyzer ” ,
” copy to ” : ” sub pre ob j ”

} ,
” pred icate keywords ” : {

” type ” : ” t ext ” ,
” ana lyze r ” : ” m analyzer ” ,
” copy to ” : ” sub pre ob j ”

} ,
” ob ject keywords ” : {
” type ” : ” t ext ” ,

” ana lyze r ” : ” m analyzer ” ,
” copy to ” : ” sub pre ob j ”

} ,
. . .

}
}

}

Figure 4.4: A simplified version of the baseline index mapping
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easy accessible by using a JSON syntax. Two main type of query clauses exist: (i)
filter-context which answers whether a query matches a document much like in a
boolean-way and (ii) query-context which answers how well does a document match
a query by providing a relevance score. Since our interest lies on full text searches
and the relevance of each result in the search is important, we will mostly be using
clauses of type (ii). Query-context clauses be further categorized in (i) leaf-query
type that look for a specific value in a particular field and in (ii) compound-query
type that wrap other leaf (or compound queries) and are used for building strong
combinations of multiple queries, e.g. in a logical fashion.

Term query
Even though we are mostly using full-text queries, a very useful for our case filter-
context query type is called, term-query. As stated by its name, it returns docu-
ments that contain an exact term in a provided field. This is commonly used when
we are dealing with structured data, e,g, searching for a precise number (date),
but in our case it can be used for an exact matching of a resource name. By using
a term-query we can retrieve all triples (documents) that contain a certain entity
appearing either as a subject or as an object or retrieve all triples with a specified
property (e.g. rdfs:label).

Full text queries
Full text queries enables us to search on any analyzed text field by using the
same analyzer that was applied to the field during indexing, a task that is auto-
matically handled by Elasticsearch. Members of this family include (i) match-
query, (ii) multi-match-query, (iii) match-phrase query and (iv) query-string query.
The first two types are the standard practice for searching free-text upon specific
fields and since they lie on the core of our implementation we discuss them in
detail. Queries of type (iii) are designed for searching an exact phrase across
a field by taking into consideration the order in which the query-terms appear.
A such case in our implementation, where loose-matching is not desirable, is
property matching. For example, when searching for rdfs:label properties of the
”The Beatles” resource, we probably are not interested in loose-match results such
as <dbr:The Beatles><dbo:recordLabel ><dbr:Apple Records>. In Elasticsearch

we can achieve this by employing a match-phrase type query. Transforming a
phrase match into a proximity search is also possible, by defining a more relaxed
search window through the use of the slop parameter. Lastly, full text queries of
type (iv) further exploit Lucene’s powerful query parsing capabilities. A query-
string type retrieves documents using a syntax that expects boolean operators and
wildcards. Depending on the underlying data one can construct really complex
search patterns, using boolean operators, wildcards, regular expression along with
a number of tuning parameters. Even though we are not using explicitly this type,
we regard it as potential useful function for searching over URIs.
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Full text queries: match & multi-match
A match-query is executed over a single specified field, which internally is trans-
lated into one or multiple Lucene’s term queries, that look for each query-term
in the field. These are then executed and match query combines their individual
scores into the final score of the document. The way these scores are combined
for producing the final score can be affected by a number of parameters. A such
parameter is operator, that if is set to ’and’ will require all query terms to match.

Multi-match is an extension type of match-query for searching upon multiple fields.
Along with all the options that it inherits, further builds on defining 3 additional
types depending on the way a multi-match query is executed internally. More
specifically it includes:

• best-fields: returns documents that match any of the specified fields but it
uses the score from the best field for ranking the results. This is useful when
a multi-keyword query is best found on the same field.

• most-fields: best suited when multiple fields in our index describe the same
entity. In this case, we expect same query keywords to be found in more than
one field. The score is calculated by adding all individual clauses together
and then divided by the number of those match clauses.

• cross-fields: is suited when we expect our query keywords to be scattered
across multiple fields. This query type attempts to do a search across disjoint
fields that we might consider parts of a whole. This is done at query-time
by treating different fields as they were one big field by looking for each
query-keyword in any field.

Full text queries: field-centric & term-centric approach
Both type (i) best-fields and type (ii) most-fields follow a field-centric approach.
This essentially means, that they evaluate all query keywords on each field before
combining scores from each field. Type (i) assigns as document score the score of
the best-matched field while type (ii) calculates final score by adding all field scores
together and dividing them by their number. A field-centric approach appears to
be problematic in cases where we expect our query terms to be scattered across
multiple fields, e.g. in our case where each triple part (s,p,o) corresponds to a
specific document field.

A term-centric approach addresses this issue by searching a query term-by-term on
each individual field. This is implemented in type (iii) where cross-fields searches
for each term in any field. The result is that it returns the best overall document.
However, Elasticsearch index statistics are organized per field and cross-fields
operates during query-time. Subsequently when fields are combined, the (global-
across all fields) document-frequency of each term is unknown. An approximate
solution is to consider as term’s global DF, the maximum field DF of the term.
In that manner, type cross-fields modifies each term’s document frequency, before
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evaluating a document score. This most often results in non-accurate calculations
that may affect the overall performance.

Scoring & tie-breaker
Figure 4.5 shows a comparison between the aforementioned approaches for the
query ”Beatles albums” across the fields: sub, pre, obj.

The field-centric approach consists of 3 separate term queries corresponding to
each of our fields: sub, pre, obj. The score of each term query is calculated by
summing the score of all distinct clauses. In our example, the score of term query
q1 would be sq1 = ssub:Beatles + ssub:Albums.
The default behavior of Elasticsearch on field-centric approach is best-fields.
Document’s score is the score of the highest-scoring field as evaluated by each dis-
tinct term query: sdoc = max(sq1, sq2, sq3).
In the term-centric approach, we have two (blended) term queries correspond-
ing to each query keyword: Beatles, albums. By default when using cross-fields
type, each blended query will use the best score returned by any field, e.g. sq1 =
max(ssub:Beatles, spre:Beatles , sobj:Beatles) and consequently document’s score would
be calculated as sdoc = sq1 + sq2.
A very useful tuning option that allows each blended score to be influenced by
all fields, instead of the highest-scoring alone, is the tie-breaker parameter that
accepts values between 0 (default) and 1. This parameter, as stated by its name,
tries to break ties that have been formed by documents in which their best fields
against a term return the same score. With tie-breaker enabled, and assuming
that ssub:Beatles is the highest-scoring field in q1, the score of q1 is calculated as:
sq1 = ssub:Beatles+tie breaker∗(spre:Beatles+sobj:Beatles). In the same manner, the
score of q2 is calculated. Next, all distinct blended query term scores are added
together for the document score (sdoc = sq1 + sq2).

field-centric

Q = ” bea t l e s albums”
f i e l d s = [ ” sub ” ,” pre ” ,” obj ” ]

q1 : ( sub : b e a t l e s sub : albums ) |
q2 : ( pre : b e a t l e s pre : albums ) |
q3 : ( obj : b e a t l e s obj : albums )

term-centric

Q = ” bea t l e s albums”
f i e l d s = [ ” sub ” , ” pre ” , ” obj ” ]

q1 : ( sub : b e a t l e s pre : b e a t l e s obj : b e a t l e s ) |
q2 : ( sub : albums pre : albums obj : albums )

Figure 4.5: Comparison of field-centric vs term-centric approach using Lucene’s
syntax of term queries.

A term-centric approach across multiple fields can be expensive (when number of
terms is large) and also introduce inaccuracy. Another choice would be to create a
static ”super-field”, containing the concatenated fields (s,p,o) at index time. This
is easily done in Elasticsearch by defining a copy to parameter via mapping and
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then execute our queries over this field using the more simple match query. This
approach is also term-centric and contains accurate statistics since all calculations
are stored at index time. However if we only create a single ’super-field’ we can no
longer provide custom weights for distinguishing the important parts (e.g. object
over predicate) and in cases where we are dealing with large datasets it may not
be viable of maintaining both concepts.

Summarizing, a multi match of cross-field offers flexibility in blending fields, lowers
the storage requirements (by not having to store a ”super-field”) and also comes
with some valuable tuning options such as field-boosting and the tie-breaker param-
eter.Of course, by calculating and altering at query-time the DF of each term-field
it becomes expensive and introduces inaccuracy but it is usually a trade-off between
the slight inaccuracy at scoring and the storage-overhead of using a ”super-field”.
In our evaluation tests, we experiment with both approaches.

APIs
Another strength of Elasticsearch lies on is it’s extensive list of APIs which allow
to manage and query the indexed data. They are exposed using JSON over HTTP,
fully asynchronous using REST that enables different platform clients to attach.
A comprehensive list of APIs that distinguished them includes: index, document,
search etc. Client support includes implementantions in a broad spectrum of
programming languages such as: Java, Python, Ruby, Go etc.

4.3 Indexing

Our indexing approaches rely on the main idea in which each triple is represented
by a single Elasticsearch document, thus constructing a triple-doc as our virtual
document. The vital part in these approaches is the index structure and more
specifically which fields, representing a distinct triple component, each document
will contain.

4.3.1 Constructing a baseline index

Our first index (which we call baseline-index ) only considers components from
the triple itself. The included components are both the extracted text and the
namespaces of each triple meaning that each document has 3 keyword-based fields,
containing the analyzed keywords of the extracted text of each triple part (s,p,o),
and 3 uri-based fields containing the corresponding namespaces. Additionally one
”super-field”, using the copy to parameter, concatenates all 3 keyword-based fields
into one. These 7 fields form a document inside our baseline index and are all
typed as text fields. We include them in our mapping configuration along with a
definition of two analyzers. For the set of keyword-based fields we include a special
tokenizer for extracting keywords at the end of a URI (tokenize ’/’, ’#’ etc) while
for the uri-based fields we use an Elasticsearch custom tokenizer called letter.
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This tokenizer breaks text into terms whenever it encounters a character which is
not a letter and therefore does a good job when applied upon the namespace of a
URI. Stemming and stop-word removal is again configurable, e.g. Elasticsearch
provides a list of available languages while it can also be custom defined (e.g. re-
moving ’http’ from namespace fields). All of these settings are highly configurable
and can be changed based on the needs of our dataset. A such example is when
namespaces do not contain useful information and thus we are not interested in
performing a keyword-search on uri-based fields. In that case, we may only store
this information without indexing, by using the enable parameter on those fields.
Those fields can be still retrieved but will not be part of the inverted index. This
has benefits both in storage and in indexing time.

4.3.2 Extending the baseline index

In our second index approach (which we call extended-index ) we experiment with
adding more information for each document-triple. Here, we rely on baseline-index
for extract new information by exploring useful properties that will be added
to each triple-document. We essentially use baseline index as a triple-store for
performing custom keyword or filter query operations for creating the extended
index. Although there are many options for enriching a document, we summarize
the following:

(i) domain-dependent properties: domain or schema specific properties such as
rdfs:label, rdfs:comment, dbpedia:birthPlace etc.

(ii) domain-independent properties: close relevant properties based on a keyword-
query.

(iii) outgoing properties: include all properties of either subject, object or both.

Option (i) is ideal when the underlying ontology is known since these properties
can be configured statically. In cases where we are not aware of the exact schema
of the described data, option (ii), we may extract useful properties by performing a
keyword search to find relevant properties to a specific query. For example search-
ing for label in a dataset similar to the one in Fig.3.1, we may retrieve the follow-
ing useful property: <dbr:The Beatles><dbo:recordLabel ><dbr:Apple Records>.
Those properties are then concatenated in a single field, much like the ’super-field’
used in baseline. Another option that bridges the gap between (i) and (ii), is to
perform an analysis on the data and extract the most used properties. Those prop-
erties can afterwards be used as the fields for the enriched triple-document. Lastly
in option (iii), an extreme approach would be including all outgoing properties of
each triple element. This means, that we enrich each document-triple by adding
a field of all subject’s (or/and object’s) outgoing properties. This is applicable in
small collections, where the number of triples and corresponding properties is not
very large. Again, all outgoing properties are stored as single fields, distinguishing
them between those of subject’s and object’s.
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Table 4.1 shows an example of the two indexing approaches (baseline-index,
extended-index) for the triple (dbr:The Beatles, dbo:artist, dbr:Happiness-

Is a Warm Gun), where the extended index contains the value of the rdfs:comment
property of each resource.

Table 4.1: Comparison between baseline-index and extended-baseline indexing the
document: (dbr:The Beatles, dbo:artist, dbr:Happiness Is a Warm Gun)

baseline index extended index

sub keys: ”beatles”
pre keys: ”artist of”
obj keys: ”happiness warm gun”
sub nspace: ”dbpedia resource”
pre nspace: ”dbpedia ontology”
obj nspace: ”dbpedia resource”

sub keys: ”beatles”
pre keys: ”artist of”
obj keys: ”happiness warm gun”
sub nspace: ”dbpedia resource”
pre nspace: ”dbpedia ontology”
obj nspace: ”dbpedia resource”
rdfs comment sub: ”beatles
greatest rock band ..”
rdfs comment obj: ”happiness warm
gun song beatles featured ..”

4.4 Retrieval

In this section we describe all the different query methods that we experimented
with for retrieving and ranking the indexed documents.

4.4.1 Querying and ranking triples

Exploring different query types
Since our indexes contain different sets of fields we can use multiple types of
Elasticsearch queries. Regardless of the underlying index structure, we always
want to perform a full-text search on analyzed text fields. For this reason we study
the following query-approaches:

(i) single match: upon a single field, corresponding to each triple-element but
also includes the ’super-field’ (spo).

(ii) multi-match: upon multiple fields, using the type of cross-fields. e.g. search
over subject and object fields (s), (p).

(iii) boolean: constructing complex queries by combining clauses of (i) and (ii).

Examples of the above are presented in Fig. 4.6. The first two approaches
explore single match and multi-match queries upon fields (spo) and (s),(p),(o)
respectively, while the third one combines distinct fields (s),(p),(o) in a boolean
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Query 1: single match

”match ” : {
” query ” : ” Beat l e s s tud io ” ,
” f i e l d ” : ” s u b p r e o b j k e y s ” ,

}

Query 2: multi match

” multi match ” : {
” query ” : ” Beat l e s s tud io ” ,
” f i e l d s ” : [ ” sub keys ” ,
” pre keys ” , ” ob j keys ” ] ,
” type ” : ” c r o s s f i e l d s ” ,

}

Query 3: boolean combined

MUST
” multi match ” : {

” query ” : ” Beat l e s s tud io ” ,
” f i e l d s ” : [ ” sub keys ” ,

” ob j keys ” ] ,
” type ” : ” c r o s s f i e l d s ” ,

} ,
SHOULD

”match ” : {
” query ” : ” Beat l e s s tud io ” ,
” f i e l d ” : ” pre keys ” ,

}

Figure 4.6: Elasticsearch query syntax

logical fashion. A number of additional parameters for further tuning the results
may yield better results.
Query 1 from Fig. 4.6 consists of a simple match query on a single field that
includes all extracted keywords of subject, predicate and object. Each keyword-
query corresponds to a Lucene’s term query that is executed internally. The scores
of these term queries are added for the final document score. Query 2 executes
the same keyword-query on three distinct fields in the type of cross-fields. Since,
cross-fields follow a term-centric approach, the overall score of the combined term
queries is calculated as was described in 4.2.3. Query 3 behaves in a boolean
fashion by combining two different query clauses. It first returns only documents
based on the multi match query (on subject and object fields – sub keys, obj keys)
that is included inside the MUST clause. It then boosts those documents that also
contain a match on their predicate field, by including a match query (on pre keys)
inside of a SHOULD clause. The final score will be a combination between those
two clauses, in a more-is-better approach by adding query scores of each clause
together.

Weighting fields
Another factor for improving relevance at query-time is applying weights on the
various fields. In each of the above query approaches we may additionally boost
particular fields, increasing their impact upon relevance score. Boosting fields only
makes sense upon multi-field queries, specifying the importance of a field over
another. For example in Query 2 from Fig. 4.6 we may define object keywords to
be twice as important than the other two (i.e. subject, predicate) by modifying the
fields value to the following: [“sub keys”, “pre keys”, “obj keysˆ2”]. Documents
matching a query on obj keys field will benefit. For deciding those fields along with
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the boosting factor, we perform evaluation tests on each triple element discussed
in section 5.

Exploring different similarity modules
In Elasticsearch a similarity model defines how matching documents are scored
and it can be configured before indexing via the mapping. Default model is Okapi
BM25, a tf/idf based similarity ideal for short fields. Contrary to the classic tf/idf
however, BM25 has an upper limit in boosting terms with a high tf, meaning that
it follows a nonlinear term frequency saturation. Parameter k1 can control how
quickly this saturation will happen based on the increase in term frequency. Its
default value is 1.2 and higher values result in slower saturation. In our case, since
the text in our fields is generally short k1 will probably perform better towards
lower values. The other tuning option of BM25 is the field-length normaliza-
tion, that can be controlled with parameter b that defaults in 0.75. Shorter-fields
gain more weight than longer fields by increasing b, in our case this can be used to
boost a short descriptive resource over a long literal inside an object field. Another
available similarity module is DFR, a probabilistic model based on measuring the
divergence from randomness. Parameters include a basic model definition, e.g. the
tf-idf of randomness, and a two-level normalization. DFI implements the diver-
gence from independence model, a non-parametric term weighting method based
on information theory that expects as input the measure of independence(e.g. stan-
darized or χ2). Language models include the LM-Dirichlet similarity, a bayesian
smoothing that accepts the µ parameter and the LM-Jelinek Mercer similarity
which can be parameterized with λ.
In Elasticsearch configuring similarity modules is the last step when improv-
ing relevance. Even though RDF data differ from typical IR corpus and may not
follow the same distributions, the performance of a similarity module is also heav-
ily dependent on the dataset. For this reason we only will test different modules
in the end, upon the best query-index combination that has resulted from our
experiments.

4.4.2 Grouping and final ranking

At this point we have performed a keyword query upon our documents and have
retrieved a ranked list of triples (1st-level results). Our goal is now to return a
final ranked list of entities (2nd-level results), by grouping those triples based on
the same subject and object, if the latter is also a resource. As an example if
our system returns as 1st-level results the following triples: t1 <s1,p1,o1>, t2
<s2,p2,o2>, t3 <s1,p3,o3> and t4 <s2,p4,o4> we end up with the following set
of 2 entities: e1 <t1,t3>, e2 <t2,t4>. Our last step now is to rank and produce
the final entity-list that will be the final answer of our system. For the ranking
those entities we have developed 3 different ranking alternatives:

1. r1 where the ranking order follows the order of the subjects of the retrieved
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triples, meaning that the first entity corresponds to the triples whose subject
is the subject of the first retrieved triple.

2. r2 where ranking order depends on group size, meaning that the first entity
is the one with the largest number of triples.

3. r3 where ranking order is based on a weighted factor of the ranking order of
the triples.

We expect r3 to work better, since the gain that each entity accumulates works
in a logarithmic reduction manner, as in the widely used Discounted Cumulative
Gain metric. Each entity collects the discounted gain of each triple based on the
ranking position that it appeared on the 1st-level results ranking. The final score
of an entity-result e for a keyword-query q is given by the formula:

score(e) = sumtn
ti

2(n scorei) − 1

log2(i+ 1)
(4.1)

where t is the list of triples that form the entity e based on the ranking position
of the list (1st-level results) that was returned by Elasticsearch and n scorei is
the normalized score of triple i in that list for query q. Since Elasticsearch

deliberately scores documents with any number > 0, we normalize each result in
list t based on the max and min Elasticsearch score.
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Chapter 5

Evaluation

In Section 5.1 we describe the setup and the dataset used for performing evalua-
tion tests. In 5.2.1 we report results related to the retrieval effectiveness. More
specifically, we test the retrieval methods discussed in 4.4 applied on the differ-
ent indexing approaches discussed in 4.3. In 5.2.2 we report results related to
efficiency, including index time and size for each of our approaches.

5.1 Evaluation Setup

5.1.1 Datasets

For our experiments we have used ’DBpedia-Entity’ test collection [24], based on
DBpedia’s dump of 2015-10. The collection contains a set of heterogenous entity-
based queries along with relevance judgment that was obtained using crowdsourc-
ing. There exist 4 different query categories (described in Table 5.1) and in total,
over 49K query-entity pairs are labeled using a three-point scale (0: irrelevant,
1: relevant, and 2: highly relevant). We followed the instructions for selecting
the required files and generating the comparative runs. After removing duplicates
we end up with a collection of approximately 400 million triples. In addition to
this full-collection, we also generated a subset of 15 million triples that forms our
mini-collection by (a) extracting all judged entity-based triples (≈ 6m) and (b)
randomly adding extra 9m triples.

33
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Table 5.1: ’DBpedia Entity Challenge’ collection’s different query-categories as
depicted on https://github.com/iai-group/DBpedia-Entity

category description example queries

SemSearch Named entity queries
”brooklyn bridge”,
”08 toyota tundra”

113

INEX-LD IR-style keyword queries ”jazz music genres” 99

QALD2 Natural language questions
”Who is the mayor of
Berlin?”

115

ListSearch
Queries that seek
particular list of entities

”Professional sports
teams in Philadelphia”

140

As mentioned in 4.3, an analysis on the dataset can be performed for finding the
most used properties. This will be useful for deciding which properties should an
extended index include. Using Elasticsearch powerful ’Terms-Aggregation’ we
can sort each distinct property based on the number of triples that it has been
found. Table 5.2 shows the top-10 most used properties for our collection. Prop-
erties such as dbo:wikiPageWikiLink, that have multiple occurrences per unique
resource, can result in non-efficient structures and also introduce noise in our
documents. Other properties such as foaf:name, dbo:name give us mostly informa-
tion we have already acquired by handling subject’s keywords while we consider
rdfs:type not descriptive enough to be included in each document. A very useful
property, is rdfs:comment or rdfs:abstract that uniquely describes each resource
inside the collection. Since comment appears as a further summary of the abstract
property, we choose it as an extended field.

Table 5.2: Top-10 used properties inside the ’DBpedia-dump’ dataset.

rank property counts

1 dbo:wikiPageWikiLink 167,064,876

2 rdf:type 32,695,025

3 dbo:wikiPageWikiLinkText 23,209,738

4 dcterms:subject 21,625,633

5 rdfs:label 11,983,732

6 dbo:wikiPageRedirects 7,135,896

7 foaf:name 5,514,517

8 dbo:abstract 4,641,890

9 rdfs:comment 4,641,890

10 dbo:name 4,200,676
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5.1.2 Environment

We deploy Elasticsearch 6.4 as a single node with max heap size set at 32GB, with 6
physical cores running on Debian 9.6. Additionally, using Python’s multiprocessing
pool we initiate 12 indexing instances with a bulk-size of 3500 documents each.
Those number are assigned empirically defining a configuration that suits our
hardware and collection setup. The number of shards is also assigned empirically
and it alters between baseline and extended index. For the baseline index we
select 2 shards while depending on the extended approach we alter between 3
and 4. Source code and detailed description for the setup can be found in our
repositories 1 2.

5.2 Evaluation Results

5.2.1 Effectiveness (Quality of Retrieval)

As regards the effectiveness, in this section we measure the quality of search results.
Following the same evaluation method as in [24] we report NDCG results both at
@10 and @100. First we experiment on index models over mini-collection, then
test if our best model upon the full-collection and finally compare those results
against the ones using ’DBpedia-Entity v2’ in [24]. Our plan is to use the triple
as our initial building block in order to gain an insight on how to extend further
a document. For this reason, our initial experiments (Exp.1-3) are first executed
over the baseline index, while Exp. 4, 5 & 6 deal with the extended indexes. In
Exp. 7 we try different Elasticsearch similarity module configurations on the
best models from Exp.1-6, and finally on Exp. 8 we apply our best model on the
full-collection.

5.2.1.1 Exp. 1-3 : baseline index

A better understanding of each model’s behaviour, before expanding to more com-
plex structures, can be obtained by distinguishing the following field-methods:

1. (s) - consists of one field that corresponds to subject’s keywords.

2. (p) - same as (1) but for predicate’s keywords.

3. (o) - same as (1) but for object’s keywords.

4. (spo) - contains the concatenation of subject’s, predicate’s and object’s key-
words as one field.

5. (s)(p)(o) - same as (4) but organized as three distinct fields.
1https://github.com/SemanticAccessAndRetrieval/Elas4RDF-index
2https://github.com/SemanticAccessAndRetrieval/Elas4RDF-search
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Exp. 1: examining field separation
Table 5.3 contains results from our first experiment based on field separation. It
allows us to review how important each triple element is. More specifically, we
investigate the importance of each triple-element (subject vs object) and the use of
a ’super-field’ (spo) vs distinct fields (s,p,o). Single field queries (1.1-1.4) are ex-
ecuted through the match query while multi-fields (1.5),(1.6) use the multi match
of type cross-fields query.

A first remark is the important role that object field holds, since method (1.3)
performs way better than the other two parts (1.1 & 1.2). The role of an object in
a triple is to describe a resource that is defined in the subject, and in our dataset re-
sources are often marked by descriptive literal values. As a result, Elasticsearch
ranks those triples high before our grouping-method boost the resources that are
contained in the triple’s subjects.
As expected, better results are obtained when all fields are involved. The use of
a ’super-field’ (spo) in method (1.4) seems to perform slightly better in average,
mostly for the query types of SemSearch & INEX LD, than the distinct fields in
method (1.5). However, the other two types are favored from a structure that dis-
tinguishes fields, as results from method (1.5) show. In particular, the information
need of ListSearch queries is satisfied almost entirely by the object part as results
of method (1.3) show.
In method (1.6) we extend method (1.5) of distinct fields, by inserting the tie-
breaker parameter. This parameter, as discussed in Sec. 4.2, attempts to dissolve
scoring ties of documents by taking into consideration all individual field scores
for each query term. Queries of type SemSearch are mostly favored since the gap
between methods (1.4) & (1.5) is now smaller.

Table 5.3: Comparing baseline field separation methods over mini-collection, re-
porting ndcg@100 (@10).

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

(1.1) (s)
0.48

(0.46)
0.28

(0.26)
0.30

(0.20)
0.30

(0.30)
0.340

(0.270)

(1.2) (p)
0.02

(0.00)
0.04

(0.01)
0.06

(0.03)
0.07

(0.03)
0.04

(0.01)

(1.3) (o)
0.63

(0.50)
0.43

(0.30)
0.42

(0.26)
0.47
(0.26)

0.485
(0.330)

(1.4) (spo)
0.70

(0.61)
0.45

(0.33)
0.43

(0.30)
0.44

(0.26)
0.505

(0.372)

(1.5) (s),(p),(o)
0.65

(0.55)
0.44

(0.32)
0.45

(0.31)
0.46

(0.28)
0.500

(0.358)
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(1.6)
(s),(p),(o)

tie breaker = 0.1
0.68

(0.58)
0.44

(0.33)
0.45

(0.31)
0.45

(0.27)
0.505

(0.372)

Exp. 2: examining field weighting
Multiple-field queries allow specifying custom weights. This allows us to boost
specific fields in order to distinguish the most important and further improve our
methods. Following Exp.1 observations, we consider the object part twice as im-
portant than the other two parts by assigning a weight of 2 on field (o) in method
(2.3). Those results are depicted in Table 5.4.

Our object weighting method (2.3) improves the performance of distinct fields
(s),(p),(o) from (1.5). It also closes the gap between the ’super-field’ method (1.4)
since it performs equally or better in all query types except SemSearch. With the
use of the tie-breaker parameter we are able to improve this, obtaining our best
results so far (on average) in method (2.4).

Table 5.4: Comparing baseline field weighting methods over mini-collection, re-
porting ndcg@100 (@10).

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

(1.4 ) (spo)
0.70

(0.61)
0.45

(0.33)
0.43

(0.30)
0.44

(0.26)
0.505

(0.372)

(1.5 ) (s),(p),(o)
0.65

(0.54)
0.44

(0.32)
0.45

(0.30)
0.46

(0.27)
0.500

(0.358)

(2.1) (s)2,(p),(o)2
0.64

(0.54)
0.44

(0.32)
0.44

(0.29)
0.46

(0.26)
0.495

(0.355)

(2.2) (s)2,(p),(o)
0.54

(0.50)
0.36

(0.31)
0.36

(0.28)
0.36

(0.23)
0.405

(0.330)

(2.3) (s),(p),(o)2
0.67

(0.55)
0.45

(0.31)
0.44

(0.28)
0.48

(0.28)
0.510

(0.357)

(2.4)
(s),(p),(o)2

tie breaker = 0.1
0.69

(0.58)
0.46
(0.32)

0.44
(0.28)

0.48
(0.27)

0.517
(0.360)

Exp. 3: combining methods with boolean logic
Here we rely on the previous experiments remarks, by investigating whether we
obtain better results if we combine the best methods of Exp. 1-2 using a boolean
logic. These methods can be expressed in Elasticsearch through the use of the
boolean query with the clauses MUST/SHOULD, as was shown in Fig. 4.6 (Query
3).
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Table 5.5: Comparing combinations of the methods from Exp. 1-2 us-
ing Elasticsearch boolean clauses. Results over mini-collection, reporting
ndcg@100(@10)

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

(3.1)

SHOULD
(o)

SHOULD
(spo)

0.71
(0.61)

0.46
(0.33)

0.44
(0.30)

0.45
(0.26)

0.515
(0.375)

(3.2)

SHOULD
(o)

SHOULD
(s),(p),(o)

0.68
(0.56)

0.45
(0.31)

0.45
(0.31)

0.47
(0.28)

0.512
(0.365)

(3.3)

SHOULD
(spo)

SHOULD
(s),(p),(o)

0.70
(0.60)

0.45
(0.33)

0.44
(0.30)

0.45
(0.27)

0.510
(0.375)

(3.4)

SHOULD
(spo)

SHOULD
(s),(p),(o)2

0.71
(0.61)

0.46
(0.33)

0.45
(0.31)

0.46
(0.27)

0.520
(0.362)

Method (3.1) combines (1.4) & (1.5) from Exp. 1 and manages to perform better
than each one separately. We manage to acquire an improvement in the overall
performance when we combine the best methods of Exp.1-2: (1.4) & (2.3) in
method (3.2).

Table 5.6: Comparing the best methods from baseline index. Results over mini-
collection, reporting ndcg@100 (@10).

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

(2.4)
(s),(p),(o)2

tie breaker = 0.1
0.69

(0.58)
0.46
(0.32)

0.44
(0.28)

0.48
(0.27)

0.517
(0.360)

(3.4)

SHOULD
(spo)

SHOULD
(s),(p),(o)2

0.71
(0.61)

0.46
(0.33)

0.45
(0.31)

0.46
(0.27)

0.520
(0.362)

Our best results from the baseline index included in methods (2.4) & (3.4)
and are depicted together in Fig. 5.6. We have managed to reduce our methods
down to an approach that contains a distinct fields method with a weighted object
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and another that includes this along with a ’super-field’ of all triple parts. The
latter seems as a very good workaround since it performs equally good across all
query types, while the former is an approximate solution that performs slightly
worse. However, since the difference between those approaches is tiny and because
maintaining the same information both as a ’super-field’ (spo) and as distinct fields
(s),(p),(o) requires extra storage and indexing time, we decide to omit from our
extending index the use of a ’super-field’. Results have shown that a single method
with the distinct fields (s),(p),(o) contains enough expressiveness and we believe
that with proper tuning, on field-weighting and on the tie-breaker parameter for
each different category type, method (2.4) can perform close or even better than
(3.4).

5.2.1.2 Exp. 4-6 : extended index

In Exp.1-3 we’ve studied the role of distinct fields, assigning custom weights on
certain fields (e.g. the object) and how this affects the performance of each query
category type. We now want to introduce additional information for each triple-
document by extending the baseline as discussed in Sec. 4.3.2. For this reason,
we will use three different approaches for extending a triple-document discussed
in Exp. 4-6.

Exp. 4: extending the baseline model - Case 1
In this experiment, we insert rdfs:comment as additional information. Since this is
an extension approach, all methods containing distinct fields (s),(p),(o) that were
referenced in Exp. (1-3) are also included here. Along with those baseline field
methods we have also the following:

1. (comment sub) - consists of one field that includes subject’s rdfs:comment
value.

2. (comment obj) - consists of one field that includes object’s rdfs:comment
value.

3. (comment sub obj) - consists of one field that includes the concatenated
values of 1&2.

Our results with the extended index are shown in Table 5.7. Single field queries
(4.1, 4.2) are again executed through the match query in Elasticsearch while
the multi-fields (4.3-4.6) correspond to multi match of type cross-fields.

Table 5.7: Comparing extended index methods, with rdfs:comment as additional
information. Results over mini-collection, reporting ndcg@100(@10)
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#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

Additional information (rdfs:comment)

(4.1) (comment sub)
0.46

(0.44)
0.32

(0.29)
0.27

(0.22)
0.31

(0.27)
0.340

(0.305)

(4.2) (comment obj)
0.57

(0.46)
0.43

(0.32)
0.37

(0.24)
0.44

(0.28)
0.453

(0.325)

(4.3) (comment sub obj)
0.55

(0.49)
0.41

(0.34)
0.35

(0.28)
0.40

(0.32)
0.427

(0.358)

(4.4)
(comment sub)
(comment obj)

0.50
(0.46)

0.42
(0.33)

0.37
(0.28)

0.43
(0.31)

0.430
(0.345)

Combined fields

(4.5)
(s),(p),(o),

(comment sub)
0.56

(0.51)
0.40

(0.35)
0.39

(0.29)
0.41

(0.31)
0.440

(0.365)

(4.6)
(s),(p),(o),

(comment obj)
0.68

(0.57)
0.49

(0.36)
0.45

(0.32)
0.50

(0.33)
0.530

(0.395)

(4.7)
(s),(p),(o),

(comment sub obj)
0.59

(0.52)
0.43

(0.36)
0.39

(0.30)
0.43

(0.34)
0.460

(0.380)

(4.8)
(s),(p),(o),

(comment sub)
(comment obj)

0.57
(0.51)

0.44
(0.36)

0.42
(0.31)

0.45
(0.33)

0.470
(0.378)

Weighted fields

(4.9)
(s),(p),(o2),

(comment sub)
0.68

(0.56)
0.52

(0.36)
0.50

(0.34)
0.53

(0.33)
0.557

(0.398)

(4.10)
(s),(p),(o2),

(comment obj)
0.68

(0.55)
0.48

(0.33)
0.46

(0.30)
0.49

(0.29)
0.527

(0.367)

(4.11)
(s),(p),(o2)

(comment sub)
(comment obj)

0.68
(0.56)

0.53
(0.37)

0.50
(0.34)

0.54
(0.34)

0.562
(0.403)

(4.12)

(s),(p),(o2)
(comment sub)
(comment obj)
tie breaker = 0.1

0.70
(0.57)

0.54
(0.37)

0.50
(0.34)

0.54
(0.35)

0.572
(0.410)

Object-related fields are still the most important as we acquire better results on
(4.2) vs (4.1). Even though those two methods have a similar behavior as (1.1)
& (1.3) from Exp.1, when combined with the use of a multi-field (4.4) we do
not acquire any improvement. Using a ’super-field’ for both subject’s and object’s
comment values in (4.3) does not also improve results, since it performs worse than
(4.2). Similarly in (4.7) combined with the distinct fields (s),(p),(o) it performs
worse than other methods. Our best results come when we combine all three triple
fields with object’s comment field(4.6). This can be seen as a further boost of the
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object field, which we already know that it performs better. However, this changes
in ’Weighted Fields’ where we introduce a custom weight for the object field. In
method (4.10) subject’s comment seems to be more valuable that object’s (4.11).
This mean that subject’s comment inserts new information by introducing new
relative entities that weren’t present from the object’s comment.

Exp. 5: extending the baseline model - Case 2
In Exp. 4 we added rdfs:comment as additional information for creating an ex-
tended index. A such property uniquely describes each resource meaning that it
results in a single extra value for each new field in the extended index. For the
next experiments (Exp. 5 & 6), we create an extended index with properties that
may have multiple occurrences per unique resource and thus insert more than one
value for each new field.

A such property is rdfs:label that provides a human-readable label of a resource’s
name. Following our typical approach, we distinguish the field-methods below:

• (label sub) - consists of one field that includes subject’s rdfs:label values

• (label obj) - consists of one field that includes object’s rdfs:label values

Table 5.8: Comparing extended index methods, with rdfs:label as additional
information. Results over mini-collection, reporting ndcg@100(@10)

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

Additional information (rdfs:label)

(5.1) (label sub)
0.50

(0.46)
0.28

(0.25)
0.29

(0.21)
0.30

(0.18)
0.343

(0.275)

(5.2) (label obj)
0.56

(0.45)
0.37

(0.26)
0.36

(0.22)
0.40

(0.23)
0.422

(0.290)

(5.3)
(label sub)
(label obj)

0.55
(0.50)

0.37
(0.30)

0.36
(0.25)

0.38
(0.24)

0.415
(0.323)

Combined Fields

(5.4)
(s),(p),(o),
(label sub)

0.64
(0.54)

0.44
(0.32)

0.45
(0.30)

0.45
(0.26)

0.495
(0.355)

(5.5)
(s),(p),(o),
(label obj)

0.65
(0.55)

0.44
(0.32)

0.45
(0.30)

0.46
(0.27)

0.500
(0.360)

(5.6)
(s),(p),(o),
(label sub)
(label obj)

0.64
(0.54)

0.44
(0.32)

0.45
(0.30)

0.45
(0.26)

0.495
(0.355)

Weighted Fields
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(5.7)
(s),(p),(o2),
(label sub)

0.67
(0.56)

0.45
(0.31)

0.44
(0.28)

0.48
(0.28)

0.510
(0.358)

(5.8)
(s),(p),(o2),
(label obj)

0.67
(0.56)

0.45
(0.31)

0.44
(0.28)

0.48
(0.28)

0.510
(0.358)

(5.9)
(s),(p),(o2),
(label sub)
(label obj)

0.67
(0.56)

0.45
(0.31)

0.44
(0.28)

0.48
(0.28)

0.510
(0.358)

Labels properties seem to work best for the object part, however when compared
to distinct field methods of Exp. 1 (1.1) & (1.3) we observe that we do not acquire
any improvement from their use. Subject’s label (5.1) performs close to (1.1) while
object’s label (5.2) performs worst than its corresponding object field (1.3). This
is expected since most of the information that label properties insert is already
acquired from the extracted keywords of the URIs. In cases where an object is a
literal, or an object in the collection does not contain an rdfs:label, the new field
becomes useless. This can also be confirmed by comparing the methods in (5.4)
& (5,6) with Exp. 1 (1.5) baseline method. In this extension model we do not
acquire any improvement from the insertion of the rdfs:label values.

Exp. 6: extending the baseline model - Case 3
For our final case in building an extended index, we deal with including all outgoing
properties as additional information in each triple. We regard this as an extreme
case, that helps us though investigate how important the neighborhood of each
triple element is. We distinguish the following field methods:

• (outgoing-sub) - contains all subject’s outgoing properties values)

• (outgoing-obj ) - contains all object’s outgoing properties values)

Table 5.9: Comparing extended index methods, with all outgoing properties as
additional information. Results over mini-collection, reporting ndcg@100(@10)

#
field

method
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

Additional information (outgoing-properties)

(6.1) (outgoing sub)
0.49

(0.47)
0.33

(0.31)
0.32

(0.30)
0.37

(0.32)
0.378

(0.350)

(6.2) (outgoing obj)
0.62

(0.49)
0.50

(0.38)
0.46

(0.31)
0.54
(0.36)

0.530
(0.385)

(6.3)
(outgoing sub)
(outgoing obj)

0.50
(0.47)

0.36
(0.33)

0.33
(0.30)

0.38
(0.33)

0.393
(0.357)

Combined fields
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(6.4)
(s),(p),(o),

(outgoing sub)
0.49

(0.48)
0.33

(0.32)
0.33

(0.30)
0.37

(0.32)
0.380

(0.355)

(6.5)
(s),(p),(o),

(outgoing obj)
0.64

(0.53)
0.51

(0.36)
0.47

(0.32)
0.54

(0.37)
0.540

(0.400)

(6.6)
(s),(p),(o),

(outgoing sub)
(outgoing obj)

0.50
(0.47)

0.36
(0.33)

0.34
(0.30)

0.38
(0.33)

0.395
(0.357)

Weighted Fields

(6.7)
(s),(p),(o2),

(outgoing sub)
0.60

(0.52)
0.44

(0.34)
0.42

(0.32)
0.47

(0.33)
0.482

(0.378)

(6.8)
(s),(p),(o2),

(outgoing obj)
0.66

(0.52)
0.49

(0.34)
0.49

(0.32)
0.52

(0.34)
0.540

(0.380)

(6.9)
(s),(p),(o2)

(outgoing sub)
(outgoing obj)

0.61
(0.52)

0.45
(0.34)

0.43
(0.32)

0.49
(0.33)

0.495
(0.378)

Boolean: Weighted + Combined

(6.10)

SHOULD
(s),(p),(o2)

SHOULD
(outgoing sub)

0.72
(0.60)

0.55
(0.37)

0.51
(0.33)

0.54
(0.34)

0.580
(0.402)

(6.11)

SHOULD
(s),(p),(o2)

SHOULD
(outgoing obj)

0.65
(0.53)

0.47
(0.32)

0.45
(0.29)

0.49
(0.30)

0.515
(0.360)

(6.12)

SHOULD
(s),(p),(o2)

SHOULD
(outgoing sub)
(outgoing obj)

0.72
(0.60)

0.55
(0.37)

0.50
(0.33)

0.54
(0.34)

0.578
(0.407)

In Table 5.9 method (6.2) of object’s outgoing properties outperforms subject’s
in (6.1). When we combine this information with triple’s elements in method
(6.5) we acquire a slight improvement. However, in ’Weighted Fields’ when it is
combined with the weighted object in a multi match query in method (6.8), we
fail to improve our results. This is like due to the nature of query’s term-centric
approach when the combined fields have large differences in length. Combining all
fields in a single query drops performance and introduces noise.
Based on the above hypothesis, in ’Boolean combined’, we combine the same field
methods as in ’Weighted Fields’ but we evaluate them using a boolean clause with
a SHOULD operator that results in two distinct queries. Indeed, this helps us in
extracting new information that is contained in the outgoing fields without distort-
ing the (s),(p),(o) fields. This improvement is depicted in methods (6.10) & (6.12).
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Those two methods give us the highest performance of all extended methods in
all of our experiments. At a close second come the methods (4.9) & (4.11) from
the rdfs:comment extended index. Those methods have a slight difference in per-
formance (around 2%) and given the extreme storage requirements of extended
(outgoing) we opt for extended - (comment) as our final model of extended meth-
ods.

5.2.1.3 Exp. 7 : similarity modules

In this experiment, we investigate how different tweaks inside the similarity
modules of Elasticsearch affect the performance of a) baseline and b) extended
indexes performance. We consider only best methods of each index as were ex-
plored in previous experiments. This means that we use a multi-match of type
cross-fields (tie breaker = 0.1.) on:

• Baseline with field method: (s),(p),(o2)

• Extended with field method: (s),(p),(o2),(comment sub), (comment obj)

First we gather an overview of each module’s performance for our two indexes,
using Elasticsearch default options. Note however that module’s parameters
are heavily dependent on the dataset, index structure and the queries, meaning
that optimal values do not exist. Comparisons for the baseline and the extended
indexes are in Tables 5.10 & 5.11 respectively.

Table 5.10: Comparative results for baseline index best method, between dif-
ferent Elasticsearch modules with default configurations. Results over mini-
collection, reporting ndcg@100 (@10).

Baseline

# module config
Sem

Search
ES

INEX
LD

QALD
2

List
Search

avg

(7.1.1) BM25
k1 = 1.2
b = 0.75

0.68
(0.56)

0.46
(0.33)

0.44
(0.28)

0.49
(0.29)

0.517
(0.365)

(7.1.2) DFR
model: g
after e: l
norm: z

0.72
(0.61)

0.52
(0.35)

0.44
(0.27)

0.50
(0.28)

0.545
(0.378)

(7.1.3)
LM

Dirichlet
µ = 2000

0.62
(0.47)

0.39
(0.25)

0.36
(0.20)

0.43
(0.23)

0.450
(0.287)

(7.1.4)
LM

Jel.-Mer.
λ = 0.1

0.70
(0.59)

0.52
(0.36)

0.44
(0.28)

0.51
(0.29)

0.542
(0.380)
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Table 5.11: Comparative results for extended index best method, between dif-
ferent Elasticsearch modules with default configurations. Results over mini-
collection, reporting ndcg@100 (@10).

Extended

# module config
Sem

Search
ES

INEX
LD

QALD
2

List
Search

avg

(7.2.1) BM25
k1 = 1.2
b = 0.75

0.70
(0.57)

0.54
(0.37)

0.50
(0.34)

0.54
(0.35)

0.572
(0.410)

(7.2.2) DFR
model: g
after e: l
norm: z

0.72
(0.61)

0.55
(0.38)

0.50
(0.33)

0.53
(0.33)

0.575
(0.412)

(7.2.3)
LM

Dirichlet
µ = 2000

0.42
(0.38)

0.31
(0.26)

0.29
(0.23)

0.31
(0.23)

0.333
(0.275)

(7.2.4)
LM

Jel.-Mer.
λ = 0.1

0.71
(0.59)

0.55
(0.39)

0.50
(0.34)

0.55
(0.35)

0.578
(0.417)

In methods (7.1.1), (7.2.1) we report results using the Okapi-BM25 module. Since
this is Elasticsearch default similarity module, the reported numbers are the
same numbers that were extracted in the previous experiments. Next we use DFR,
a probabilistic model based on measuring the divergence from randomness. To the
best of our knowledge, this module has not been used in Entity-Retrieval tasks
and thus no default configuration exists. For this reason, we tested a number of
different combinations and in methods (7.1.2, 7.2.2) we report the best. Finally, we
use two available Language Models: LM-Dirichlet & LM-Jelinek-Mercer. We were
unable to achieve high NDCG values using the former while the latter achieves its
best results with λ value set to default (0.1).
We notice that for the extended model, three of the similarity modules (BM25,
DFR, and LM Jelinek-Mercer) have a very similar performance, with LM Jelinek-
Mercer slightly outperforming the other two in all query categories apart from
SemSearch ES, the simplest category, for which DFR provides the best results.
However, DFR is a complicated module that requires a lot of training time inter-
nally and in Tables 5.10 & 5.11 we report the best configuration we encountered.
For these reasons, in Exp. 8 we apply our best models using LM Jelinek-Mercer
(best) and BM25 (default).

5.2.1.4 Exp. 8 : applying best models on full-collection

We now examine the performance of our approach, which we call ElaS4RDF,
on the full collection and compare it to a set of previous approaches that focus on
entity search in DBpedia. Specifically, we consider the best performing methods
for baseline and extended approaches as used in Exp. 7 with both BM25 and LM



46 CHAPTER 5. EVALUATION

Jelinek-Mercer similarity models.
Since the proposed Elas4RDF methods do not require training, we compare them
with the unsupervised methods of [24] (BM25, PRMS, MLM-all, LM, SDM). Note
also that all the methods in [24] have been particularly designed for entity search in
DBpedia and, as described in the dataset github repository3, a set of more than 25
DBpedia-specific properties was collected for representing an entity and creating
the index. Additionally, they do not deal with efficiency issues meaning that it is
possible that some of these models are impractical. On the contrary, we provide
general methods that consider an existing IRS (using triple as the retrieval unit),
that do not require special dataset-specific information for building the indexes,
apart from the use of a very common property, like rdfs:comment and also, as
shown in Sec. 5.2.2, can be considered efficient.

Table 5.12: nDCG@100 (nDCG@10) results on full collection.

Method
SemSearch

ES
INEX

LD
QALD2

List
Search

AVG

Elas4RDFBL

BM25
0.67

(0.57)
0.45

(0.34)
0.32

(0.23)
0.37

(0.27)
0.455

(0.352)

Elas4RDFEXT

BM25
0.68

(0.59)
0.48

(0.38)
0.41

(0.29)
0.43

(0.30)
0.500

(0.390)

Elas4RDFBL

LM Jelinek-Mercer
0.67

(0.56)
0.44

(0.32)
0.37

(0.25)
0.37

(0.25)
0.463

(0.345)

Elas4RDFEXT

LM Jelinek-Mercer
0.68

(0.59)
0.46

(0.36)
0.41

(0.29)
0.41

(0.29)
0.490

(0.382)

DBpedia-Entity-v2
BM25

0.41
(0.24)

0.36
(0.27)

0.33
(0.27)

0.33
(0.21)

0.358
(0.255)

DBpedia-Entity-v2
PRMS

0.61
(0.53)

0.43
(0.36)

0.40
(0.32)

0.44
(0.37)

0.469
(0.391)

DBpedia-Entity-v2
MLM-all

0.62
(0.55)

0.45
(0.38)

0.42
(0.32)

0.46
(0.37)

0.485
(0.402)

DBpedia-Entity-v2
LM

0.65
(0.56)

0.47
(0.40)

0.43
(0.34)

0.47
(0.39)

0.504
(0.418)

DBpedia-Entity-v2
SDM

0.67
(0.55)

0.49
(0.40)

0.43
(0.34)

0.49
(0.40)

0.514
(0.419)

Table 5.12 shows the results. We see that, on average, our ElaS4RDF method
achieves the highest performance when using the extended index and the BM25
model. Compared to the DBpedia-Entity-v2 methods, we notice that the per-
formance of our approach is very close to the top-performing SDM method (the
difference is 0.014 for nDCG@100 and 0.029 for nDCG@10). This is a rather
promising result, given that the DBpedia-Entity-v2 methods are tailored to the

3https://iai-group.github.io/DBpedia-Entity/index_details.html
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DBpedia dataset. The SDM method is slightly better than our method on average
because of its very high performance on the ListSearch query type.

On tuning Okapi-BM25
As we already mentioned in Sec. 4.4, BM25 contains a set of parameters that
consist of (1) tf saturation: k1 > 0 and (2) field normalization: 0 6 b 6 1. It has
been noted in [24] that the default settings may be unfitting for Entity Retrieval
tasks. Similarly, based on our experimental results we’ve observed that in our case
the default values of parameters b & k1 are not the optimal. However those values
change based on the query category type. Our focus in this work has been an
out-of-the-box approach for Elasticsearch meaning that we want to introduce
a model that uses as much as possible the default configuration. For this reason,
and because BM25 seems like a good overall workaround across the different query
types, we do not apply any specific tuning.

5.2.2 Efficiency

In this section we report the storage requirements and the query execution time
of our best models for baseline and extended indexes considering the full DBpedia
collection (57GB uncompressed).

The number of virtual documents in both cases is 395,569,688. The size of
the baseline index is around 36 GB and that of the extended (with rdfs:comment)
around 145 GB. We see that, as expected, the extended index requires more than
2 times the size of the baseline index while the index time in both cases may be
considered relatively small for such a large collection, 2 and 12 hours respectively.

The average query execution time is around 0.5 sec for the baseline method and
1.4 sec for the extended and depends on the query type. We see that extending
the index improves performance, however it affects both the space requirements
and the query execution time. Results are depicted in Tables 5.13, 5.14.

Table 5.13: Indexing statistics for the final baseline and extended models.

model # docs size (gb) time(mins)

Elas4RDFBL 395,569,688 36.3 128.4

Elas4RDFEXT 395,569,688 145.1 751

Table 5.14: Average query execution time (ms) across different models.

model
SemSearch

ES
INEX

LD
QALD

2
List

Search
avg

Elas4RDFBL 227 505 725 478 483.7

Elas4RDFEXT 684 1479 1992 1502 1414.2
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5.3 Executive Summary

We have studied two different approaches concerning the indexing of our data.
The baseline method is very space-efficient since it does not require any additional
information about a triple (but it also requires readable URIs), while the extended-
comment method enrich the keywords describing the subject and object URIs with
their rdfs:comment property (i.e. it does not require readable URIs). The key
results from the aforementioned results are: i) all triple components contribute
on achieving high performance; ii) object keywords seem to be more important
than subject keywords (performance difference between them is 15% ), thus giving
higher weight to the object fields can improve performance (e.g. a weight of 2);
iii) extending the index with additional (descriptive) information about the triple
URIs improves performance (up to 6%); however, including all available infor-
mation about the URIs (e.g. all outgoing properties) may improve performance
but is not a viable solution in terms of efficiency; iv) system’s average response
time remains efficient between baseline and extended-comment models, 0.5 & 1.4
seconds respectively. v) the default similarity model of Elasticsearch (BM25)
achieves high performance - and may achieve further after a basic tuning; vi) effi-
ciency is also preserved in the storage requirements since baseline index only needs
37gb & extended 145gb for a 57gb text collection vii) the use of Elasticsearch
for keyword-based search on RDF data can provide high performance, very close
to that of task-and dataset-specific systems that were built from scratch. More-
over, our extended model performs really close to the best untrained model that
is however designed for running over the DBpedia dataset (the difference is 0.019
for nDCG@100 and 0.029 for nDCG@10). Our agnostic model, adjusts to a previ-
ous unseen dataset simply by including the rdfs:comment property in each triple
document.



Chapter 6

Conclusion & Future Work

The objective of this work was to investigate the use of a classic document-
centric IR system, for enabling keyword search over arbitrary RDF datasets. For
this study, we decided to use one of the most widely used IR systems, namely
Elasticsearch. To this end, we specified the requirements and identified the main
rising questions and issues, related to the selection of the retrieval unit and the
data to index. We selected triple as our retrieval unit due to its expressiveness and
informativeness, and developed a mapping of a ranked list of triples to a ranked
list of entities. Then we experimented with a large number of implementation
approaches, including different indexing structures, query types, field-weighting
methods and similarity models offered by Elasticsearch. We essentially investi-
gated how (a) the different indexing approaches (baseline and extended indexes),
(b) the different field methods (field separation & weighting) (c) the different query
types (d) the different configurations of Elasticsearch similarity modules affect
(i) the quality of the results (ii) the efficiency of query execution time and (iii) the
index size.

We evaluated the performance of the approaches against the DBpedia-Entity
v2 test collection. The results show that Elasticsearch can effectively support
keyword search over RDF data, performing similarly to systems built from scratch
for the task per se, that use entity-oriented and dataset-specific index structures.
The difference from the best unsupervised model, specifically designed over the
DBpedia collection, is 0.014 for nDCG@100 and 0.029 for nDCG@10. Addition-
ally, we have shown that after a basic tuning of the BM25 parameters, depending
on the query type, those numbers can be further improved. Efficiency in storage
requirements is also preserved since our 57 gigabytes collection is indexed and
stored using 36 and 145 gigabytes for the baseline and extended model respec-
tively, while the average query execution time is 0.4 and 1.5 seconds. Scalability
can be also supported by Elasticsearch capabilities meaning that indexes can
grow horizontally in a cluster environment. Our approach is flexible and schema-
agnostic, in the sense that it can be applied over any RDF dataset that is organized
in the form of triples.

49
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An interesting direction for future work is the automatic detection of the query
category and the application of a different configuration parameters for each case.
Additionally, our model can be applied over a larger dataset in a cluster, for
further exploiting the scalable nature of Elasticsearch. We also plan to apply
our approach in other RDF collections of different nature, like in domain specific
RDF repositories.
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