
Radiation in Ultraplanckian
particle collisionsGi�nnh
 Kwnstant�nou

Advisor: Prof. Θεόδωρος Τομαράς - University of Crete

frontmatter/figures/UoC_template_background.eps
frontmatter/figures/UoC_template_PhD_frontpage.eps


frontmatter/figures/UoC_template_background.eps


UNIVERSITY OF CRETE

DEPARTMENT OF PHYSICS

P H D T H E S I S
Doctor of Philosophy

of

- High energy Physics -

Defended byGIANNHS KWNSTANTINOU
Radiation in ultraplanckian

particle collisions

COMMITTEE

Prof. Θεόδωρος Τομαράς - University of Crete

Assoc. Prof. Αναστάσιος Πέτκου - Aristotle University of Thessaloniki

Prof. Νικόλαος Τσάμης - University of Crete

Lecturer Γεώργιος Κοφινάς - University of the Aegean

Assoc. Prof. Νικόλαος Τούμπας - University of Cyprus

Prof. Ηλίας Κυρίτσης - University of Crete

Assistant Prof. Βασιλική Παυλίδου - University of Crete

Date of the defense:

23/10/2014

frontmatter/figures/UoC_template_background.eps


Per�lhyh
Χρησιμοποιούμε μία διαρατακτική μέθοδο για να μελετήσουμε την κλασσική ακτινοβολία

πέδησης ενός βαθμωτού πεδίου Φ και ενος διανυσματικού πεδίου που παράγεται κατά την

υπερ-σχετικιστική σύγκρουση δύο σωματιδίων με μάζα που αλληλεπιδρούν βαρυτικά. Η

σύγκρουση λαμβάνει χώρα σε d μη-συμπαγείς ή τοροειδείς επιπλέον διαστάσεις. Αναλύον-

ται η φασματική και η γωνιακή κατανομή της βαθμωτής και διανυσματικής ακτινοβολίας,

ενώ δείχνουμε ότι η ολική ενέργεια ενισχύεται ισχυρά κατά ένα παράγοντα Lorentz γ

υψωμένο σε κάποια δύναμη εξαρτώμενη από τον αριθμό των επιπλέον διαστάσεων, d.

Δείχνουμε επίσης ότι το τοπικό πλάτος της ακτινοβολίας συμβάλλει καταστροφικά (στις

δύο πρώτες υπερ-σχετικιστικές τάξεις) με το μη-τοπικό πλάτος στην περιοχή συχνοτήτων

γ/b . ω . γ2/b, σε όλες τις διαστάσεις.

Η ίδια σκέδαση μελετάται για σωματίδια χωρίς μάζα, προωθημένα στην ταχύτητα του

φωτός, σε τέσσερεις επίπεδες διαστάσεις, χρησιμοποιώντας την ίδια ουσιαστικά μέθοδο.

Υπολογίζονται οι διορθώσεις στον τανυστή ενέργειας - ορμής και στη μετρική σε κλειστή

μορφή. Οι διορθώσεις συμπεριλαβάνουν την ανάδραση της μετρικής κατόπιν της σύγκρουσης.

Η συμπερίληψη αυτών των διορθώσεων υπονοεί ότι ο τανυστής ενέργειας - ορμής των συγ-

κρουόμενων σωματιδίων έχει μηδενικό ίχνος πριν και μετά τη σύγκρουση. Τονίζεται η

ανάγκη για την εισαγωγή μίας παραμέτρου σύγκρουσης b, ενώ φαίνεται ότι η διαταρακτική

προσέγγιση δε λειτουργεί όταν b = 0. Επιπλέον συζητάμε την ακτινοβολούμενη ενέργεια

υπό μορφή βαρυτικής ακτινοβολίας πέδησης, ενώ μελετάται ένα παράδειγμα σύγκρουσης

βαρυτικών κυμάτων.

frontmatter/figures/UoC_template_background.eps


Abstract

We employ a perturbative scheme to study classical bremsstrahlung of a massless scalar

field Φ and a massless vector field in gravity mediated ultra-relativistic collisions with

impact parameter b of two massive point particles in the presence of d non-compact

or toroidal extra dimensions. The spectral and angular distribution of the scalar and

vector radiation are analyzed, while the total radiated energy is found to be strongly

enhanced by a d−dependent power of the Lorentz factor γ. The local radiation ampli-

tude from the accelerated particles is shown to interfere destructively (in the first two

leading ultra-relativistic orders) with the non-local amplitude in the frequency regime

γ/b . ω . γ2/b in all dimensions.

The same collision is studied for massless particles boosted to the speed of light in

flat four-dimensions using essentially the same perturbative scheme. The corrections

to the energy momentum tensor and to the metric are computed to second order and

closed form formulas are provided. This includes the back-reaction on the metric after

the collision. Including such corrections suggests that the tracelessness of the initial

stress tensors of the colliding particles is preserved during and after the collision. The

necessity for introducing an impact parameter in the perturbative treatment is high-

lighted and the breaking of the underlying perturbative approach at b = 0 is motivated.

In addition, the energy radiated in the form of gravitational bremsstrahlung radiation

is discussed while an example from gravitational-waves collision is being studied.
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1
Introduction

The General Theory of Relativity was postulated in 1915 by Albert Einstein to explain

gravitation. It generalizes the Special Theory of Relativity and Newton’s Universal

Gravitation law. The Minkowskian metric of Special Relativity becomes a dynamic

object. It is no longer flat but becomes curved by energy and matter. Objects move

along the geodesics in this curved spacetime, instead of flat spacetime, giving us the

illusion that a force is deflecting them from their trajectory.

Since its postulation the theory has accounted for the anomalous precession of

the perihelion of Mercury. The eclipse expedition in 1919 led by Arthur Eddington

confirmed the deflection of light by the Sun. The gravitational redshift of light was

measured in an ingenious experiment by Pound and Rebka in 1959 using the Mössbauer

effect. These are the so called classical tests of the General Theory of Relativity.

Modern tests include the measurement of the Shapiro delay. Radar reflections from

Mercury and Venus before and after they are eclipsed by the Sun agree with General

Relativity. Gravitational lensing has also been one of the modern tests of General

Relativity, especially from distant radio sources being lensed by the Sun.

Another prediction of General Relativity that has been confirmed is the existence

of Gravitational waves. To date these waves have not been measured directly, however

observations of the Hulse-Taylor binary show that the system is losing energy due

to gravitational radiation. The amount of energy lost is in agreement with what is

predicted by General Relativity.

The years after the appearance of the General Theory of Relativity were marked

1



1. Introduction

by attempts to develop a classical unified theory. Such theories would unify classical

gravitation and classical electromagnetism. Two of the most important approaches to

a classical unified theory were Weyl’s gauge theory and Eddington’s affine geometry.

Of particular interest is Kaluza’s extra-dimensional theory.

One of the most intriguing ideas that were postulated in the 20th Century is the

existence of extra space dimensions. The idea of theories with extra spatial dimensions

was first proposed in 1921 by Theodor Kaluza [2] and refined later by Oskar Klein

[3]. The advantage this brought was that it unified the General Theory of Relativity

with Maxwell electromagnetism. Though the unification of these two theories was made

possible as we will see below, the theory, as postulated by Kaluza and Klein, has several

drawbacks and is no longer considered to be of particular interest.

The theory of extra spatial dimensions was revived with the revolution of String

theory. The quantum theory of relativistic strings requires the existence of extra spatial

dimensions in order to be mathematically consistent [4]. The idea was that these

theories would be compactified at the Planck scale, implying that they would not be

detectable by any of the current accelerators. In fact they would only be detected by

accelerators working at, or near, the Planck scale, something that is far from our reach

at the moment.

In 1998, Arkani-Hamed, Dimopoulos and Dvali, proposed the so called ADD model

[9]. The model was built so as to solve the hierarchy problem without using super-

symmetry ot technicolor. The idea, as we will see in detail, required the existence of

large extra dimensions (at the order of a milimeter). The standard model particles are

localized on a 3-brane, while gravity would propagate in all dimensions. The weakness

of gravity would then be explained by the "dilution" of gravity in the extra-dimensional

volume. This theory later received a UV completion by being embdedded in string

theory [10].

Another solution to the hierarchy problem was proposed in [13]. In this model

the geometry of spacetime is warped. A five-dimensional Anti-de Sitter metric is used.

The hierarchy is generated by the gravitational warp factor in the metric. Several other

similar models have emerged.

Finally the Universal Extra Dimensions (UED) model allows for some or all the

Standard Model (SM) gauge fields to propagate in the extra dimensions. We will see

an explicit example of the minimal UED model.

Extra-dimensional models, are not only able to solve the hierarchy problem, but

they can also provide a mechanism for generating the hierarchies of the fermion masses

[5]. They could also provide a mechanism for the unification of the gauge couplings [6],

2



1.1 Extra dimensions

as well as a way to break supersymmetry [7].

The above extra-dimensional models share a common characteristic, the existence

of an increased Planck length, λPl. We will discuss how this length arises in each of

the models in the section that follows. If the Planck scale is of the order of 1TeV, the

regime of quantum gravity will be accessible to the LHC, which will have centre of mass

energy 14TeV. In the next section we also discuss the bounds for each of these models.

1.1 Extra dimensions

1.1.1 Kaluza’s Theory

The idea of the existence of extra dimensions, was first seriously proposed by Kaluza

[2]. His theory naturally unified Einsteinian Gravity with Maxwell’s electromagnetic

theory. Kaluza assumed a five-dimensional universe. The metric is then expressed as:

dŝ2 = ĝMN (xµ, y) dxMdxN , (1.1.1)

where capital indices run from M = 0, ..., 4, Greek indices are four-dimensional and run

from µ = 0, ..., 3 and y is the extra-dimensional space coordinate. The five-dimensional

metric, ĝMN is broken into the following:

ĝMN =

(

gµν gµ4

g4ν g44

)

,

where gµν is the usual, four-dimensional, metric.

Kaluza also assumed the so called cylindrical condition, i.e. that the derivatives

of state quantities with respect to the fourth spatial dimension are zero, or at least

very small, and thus it is not observed. The Christoffel symbols of the five-dimensional

metric are defined as usual,

ΓLMN =
1
2

(gLM,N + gLN,M − gMN,L) .

The next step is to write the g4µ component of the metric as a vector field, Aµ and

the g44 component as scalar field, φ, suggesting what will follow,

g4µ = 2αAµ , g44 = 2φ ,

3



1. Introduction

the Christoffel symbols now take the form

Γµν4 = α (Aµ,ν −Aν,µ) = αFµν

Γ4µν = α (Aµ,ν +Aν,µ)

Γ44ν = φ,ν .

The weak field approximation, ie that the metric ĝMN is the five-dimensional Minkowski

metric perturbed by a small term, is assumed

ĝMN = ηMN + ĥMN , (1.1.2)

where ĥMN ≪ 1. The Riemann curvature tensor is defined as

RR
SMN = ΓR

NS,M − ΓR
MS,N + ΓR

MLΓL
NS − ΓR

NLΓL
MS ,

while the Ricci tensor is defined by

RSN = RR
SRN .

In order to produce the field equations the energy momentum tensor is required. In

the weak field approximation it reads

T̂MN = µ̂0u
M̂uN̂ ,

we have symbolized the rest mass density with µ̂0 and the five-velocity as uM̂ .

We now focus on the field equations, the first, corresponding to four-dimensional

gravity will be

Rµν = κ

(

Tµν − 1
2
gµνT

)

, (1.1.3)

which is identified as the four-dimensional field equation of General Relativity.

On the other hand the following equation corresponds to the electromagnetic field

equation

−α∂µFµν = µ0u4uν , (1.1.4)

where u4 is the component of the five velocity in the extra dimension and uν is the

four-velocity. Equation (1.1.4) is identified with Maxwell’s equation ie

∂µFµν = Jν = ρ0vν ,

and thus receives the following interpretation

ρ0vν =
κ

α
µ0u4uν .

4



1.1 Extra dimensions

The electric charge is interpreted as the fifth component of the stress-energy tensor

of matter. To do this, one sets uµ ≈ vµ (this is true for small velocities) and defines

κ = 2α2, thus getting the following

ρ0

µ0
= 2αu4 ,

which makes this interpretation apparent.

As we have seen, by simply writing down Einstein’s equation’s in five dimensions,

Kaluza recovered regular four-dimensional General Relativity, Maxwell’s electromag-

netism and a constant scalar field. This is the reason that extra dimensions seemed so

attractive, at least in the beginning.

However, along with the simplicity and elegance of this theory, several problems

appeared. (i) Nobody had seen (and has not to date seen) a fifth dimension and the

elegance alone is not sufficient to justify the lack of any experimental data, (ii) The

cylindrical condition could not be justified in any way, (iii) Although the theory has

no problem for macroscopic charged bodies, it does have one for charged elementary

particles; the ratio ρ0/µ0 is not small and thus neither is u4. This puts into question

whether the theory could be valid for elementary particles.

1.1.2 Klein’s Modification

Klein gave a natural explanation for the fact that the fifth dimension is not observed.

He proposed that the fifth dimension is compactified and has a circular topology; its

coordinate, y, satisfies y = y+ 2πRc. This space-time is a product of a four-dimensional

Minkowski space M1,3 and a one-dimensional circle S1 with radius Rc. If the radius of

the circle is sufficiently small, then the extra dimension will not be observable in low

energy experiments. Following Kaluza’s work, Klein then assumed that g44 is constant

and identified the other components as:

ĝ44 = φ , ĝ4µ = κφAµ , ĝµν = gµν + κ
2φAµAν .

This ansatz is then replaced into the five-dimensional metric of (1.1.1), yielding:

ĝMN = φ−1/3

(

gµν + κ
2φAµAν κφAµ

κφAν φ

)

. (1.1.5)

We now notice that the scalar field φ appears only as a scale parameter in the extra

dimension, this is referred to as the dilaton field. The metric, gµν(x) will transform as

a tensor under four-dimensional general coordinate transformations, Aµ(x) as a vector,

while φ will transform as a scalar.

5



1. Introduction

The five-dimensional Einstein-Hilbert action reads

Ŝ =
1

2κ2
5

∫

d5x̂
√

−ĝR̂ (1.1.6)

κ5 is the five-dimensional Newton’s constant.

This action is invariant under five-dimensional general coordinate transformations;

δĝMN = ∂M ξ̂RĝRN + ∂N ξ̂
RĝRM + ξ̂R∂RĝMN .

Before varying the action to get the field equations, one writes the fields as a Fourier

series, since they are periodic in the y coordinate:

gµν(x, y) =
∞∑

n=−∞
gµνn(x)ein·y/Rc

Aµ(x, y) =
∞∑

n=−∞
Aµn(x)ein·y/Rc (1.1.7)

φ(x, y) =
∞∑

n=−∞
φn(x)ein·y/Rc

We can now see that the action of (1.1.6) describes a theory with an infinite tower

of four-dimensional fields. Also, since the action is invariant under five-dimensional

general coordinate transformations and the general coordinate parameter can also be

expanded as a Fourier series,

ξ̂M (x, y) =
n=∞∑

n=−∞
ξ̂M (x)ein·y/Rc ,

the four-dimensional fields will satisfy an infinite number of symmetries.

Variation of the action gives the following equations of motion

(2 − ∂y∂y) gµν(x, y) =
(

2 +
n2

R2
c

)

gµνn (x) = 0

(2 − ∂y∂y)Aµ(x, y) =
(

2 +
n2

R2
c

)

Aµn (x) = 0

(2 − ∂y∂y)φ(x, y) =
(

2 +
n2

R2
c

)

φn (x) = 0

The metric used is a 5×5 symmetric tensor, giving it 15 degrees of freedom. General

covariance imposes an additional 5 gauge fixing conditions, thus reducing the number of

degrees of freedom to 10. Gauge transformations also impose 5 gauge fixing conditions,

reducing the number of degrees of freedom to its final value, 5.
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1.1 Extra dimensions

We now proceed to study the properties of the above fields, starting with the zero

modes, ie the modes with n = 0. We expect these to describe the graviton, photon and

dilaton as in the Kaluza theory. Substituting the expanded fields (1.1.7) and the metric

(1.1.5) in the five-dimensional action (1.1.6) , one obtains the following reduced action

S =
1

2κ2

∫

d4x
√−g

(

R− 1
4
φ−1Fµν0F

µν
0 − 1

2
∂µφ0∂

µφ0

)

, (1.1.8)

where κ
2 = κ

2
5

2πRc
. This action is again invariant under general coordinate transforma-

tions, were now one should use the zero mode of the coordinate parameter, ξµ
0 ,

δgµν0 = ∂µξ
ρ
0gρν0 + ∂νξ

ρ
0gµρ0 + ξρ

0∂ρgµν0

δAµ0 = ∂µξ
ρ
0Aρ0 + ξρ

0∂ρAµ0

δφ0 = ξρ
0∂ρφ0 .

It is also invariant under the local gauge transformation with parameter ξ4
0

δAµ0 = ∂µξ
4
0 ,

while it is also globally scale invariant under the transformation

δAµ0 = λAµ0, δφ0 = − 2√
3
λ .

These fields can be quantized in the normal quantum field theory manner, with

vacuum expectation values,

〈gµν〉 = ηµν , 〈Aµ〉 = 0, 〈φ〉 = φ0 . (1.1.9)

Thus we see that the vacuum respects the symmetry of the four-dimensional Poincare

group ×R. The gravitational field will be massless because of general covariance, the

electromagnetic field is massless because of gauge invariance, while the dilaton field is

massless since it is the Goldstone boson that appears due to the spontaneous breaking

of the global scale invariance. The gauge group R comes from the U(1) invariance that

existed, however the zero modes are not dependent on the fifth dimension.

Before proceeding to the non-zero modes, we note that the four-dimensional mass-

less graviton has two degrees of freedom, as well as the four-dimensional gauge boson,

while the real scalar field has one degree, summing up to five degrees of freedom as

expected.

We now proceed to consider the non zero-modes. We start by noting that that

these modes are no longer globally scale invariant, as this is prohibited by the periodic
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1. Introduction

condition on y. In fact these modes are symmetric to a set of infinite parameter local

transformations corresponding to a global algebra with generators

Pµ
n = einy/Rc∂µ. Mµν

n = einy/Rc (xµ∂ν − xν∂µ) , Qn = ieiny/RcRc∂y .

The full, four-dimensional theory obeys this symmetry, however the vacuum of

equation (1.1.9), is only symmetric under the Poincare group ×U(1). So the gauge pa-

rameters ξµ
n and ξ4

n are spontaneously broken generators and thus, the non-zero modes,

Aµn and φn are Goldstone bosons. The two degrees of freedom of each of the Goldstone

bosons Aµn and the one degree of freedom of each of φn fields will be "eaten" by the

fields gµνn, giving it mass. So the gµνn fields will describe massive spin-2 particles with

5 degrees of freedom [8]. An infinite tower of such particles shall exist with mass, mn,

and charge, qn, given by:

qn =
√

2
κ

Rc
n, mn =

|n|
Rc

(1.1.10)

To conclude, the Kaluza-Klein theory, once reduced to four dimensions, describes

Einstein’s Gravity, Maxwell’s electromagnetism and an infinite tower of massive, spin-

2, charged particles. These will be invisible unless we have enough energy to probe

them, so they will be essentially invisible to us. This theory, despite its drawbacks,

unifies electromagnetism and gravity and explains the quantization of charge. However

as pioneering as this might have been, the model is no longer considered as a viable

option. We will be more interested in generalizations of these models.

We will explore some of the most notable extra-dimensional models that are the

most interesting for us. Namely the so called ADD model, the Randall-Sundrum model

and the Universal Extra Dimensional (UED) model.

1.1.3 ADD model

The ADD model was proposed by Arkani-Hamed, Dimopoulos and Dvali [9] as a way

to solve the hierarchy problem. Later on it was embedded in string theory [10], thus

giving it a UV completion. This model incorporates both gravity and the Standard

Model.

The model assumes a space-time described by M1,3 × T d for d ≥ 2. T d is a d-

dimensional compact manifold with volume Vd ∼ Rd
c . The full, (4 + d)-dimensional

Planck scale is of the same order as the electroweak scale which is the only scale in the

theory. The gravitational field propagates in all dimensions, while the fields of the SM

are localized on the manifold M3,1. This manifold has thickness of m−1
EW in the extra

dimensions.
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1.1 Extra dimensions

The action describing this theory is given by

S4+d = −
M2+d

Pl(4+d)

2(2π)d

∫

d4+dx
√−gR+

∫

d4x
√−gindLSM (1.1.11)

where MPl(4+d) is the 4 + d-dimensional Planck scale, gind is the induced metric on the

3-brane where the standard model particles propagate, while L is the four-dimensional

Standard Model Lagrangian. Once the Kaluza-Klein reduction to four dimensions is

performed one sees that the zero modes become the massless graviton, d massless U(1)

gauge bosons and d(d+ 1)/2 massless scalars. The Kaluza-Klein modes give a tower of

massive spin-2 particles, d− 1 towers of massive spin-1 particles and d(d− 1)/2 massive

spin-0 particles [11]. At low energies, the massive modes will not be excited and thus

the action reduces to

S4 = −
M2+d

Pl(4+d)Vd

2(2π)d

∫

d4+dx
√−gR+

∫

d4x
√−gindLSM . (1.1.12)

From the above action, one can identify the effective, four-dimensional Planck mass

MPl to be

M2
Pl ∼ M2+d

Pl(4+d)R
d
c . (1.1.13)

The same result can be obtained by assuming two test masses m1 and m2, at as

small distance between them compared to the radius of the extra dimensions (r ≪ Rc).

The gravitational potential in (4 + d) dimensions is given by

V (r) ∼ m1m2

Md+2
Pl(4+d)

1
rd+1

.

However if the distance between the masses is much bigger than the radius of the

extra dimensions (r ≫ Rc), the extra dimensions will no longer be visible and one

obtains the usual gravitational potential, with an effective Planck mass:

V (r) ∼ m1m2

Md+2
Pl(4+d)R

d
c

1
r
.

Setting the actual Planck mass, MPl(4+d), to be of the order of the electroweak

scale mEW, and demanding that the effective Planck mass is the observed value MPl ∼
1019Gev, one obtains the value of Rc. The d = 1 scenario is excluded, since then

Rc ∼ 1013cm. This gives deviations from Newton’s law within the solar system that

have not been measured. However the cases where d ≥ 2, cannot be ruled out by the

current experimental data. In fact the d = 2 scenario predicts a radius of milimeter

scale.
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1. Introduction

So this model could potentially account for the hierarchy problem. Gravity is essen-

tially diluted in the extra dimensions, while the SM field only live in the 4 dimensions,

explaining the apparent difference between their scales. However, although one does

explain for the apparent difference between the observed Planck scale and electroweak

scale, a new problem arises. The problem of stabilizing the radius of the extra dimen-

sion. The size of the extra dimension cannot be explained. Experimental bounds on

the radius of the extra dimensions can be seen in [12].

1.1.4 Warped Extra Dimensions models

A similar approach is that of the warped extra dimensions models. We will briefly

describe the Randall-Sundrum model [13]. This model assumes a five-dimensional

space-time, M1,3 × S1/Z2, where the fifth dimension is compactified on a circle, while

one also imposes the symmetry y → −y. Thus one is limited to only a part of the fifth

dimension y ∈ [0, πRc]. A cosmological constant Λ is also assumed in the bulk and on

the two boundaries, Λ0 for y = 0 and ΛπRc
for y = πRc. The action reads

S5 = −
∫

d5x

[

√−g
M3

Pl(5)

2
R+ Λ +

√−g0δ(y)Λ0 +
√

−gπRc
δ(y − πR)ΛπRc

]

, (1.1.14)

where g0 and gπRc
are the induced metrics on the two branes at y = 0 and y = πRc

respectively. The metric reads

ds2 = a(y)2dxµdxνηµν + dy2 , a(y) = e−ky ,

where k =
√

−Λ/6M3
Pl(5) and a(y) is the so called warp factor which defines how the

scales vary on the four-dimensional branes. So we see that the energies will scale with

a factor of e−kπRc on the brane at y = πRc, with respect to the brane at y = 0. The

brane at y = 0 is referred to as the infrared brane, while the brane y = πRc is referred

to as the ultraviolet brane. We also note that Λ0 = −ΛπRc
= −Λ/k.

Once the four-dimensional KK reduction of the five-dimensional fields is performed,

the apparent, four-dimensional Planck mass MPl ia given by

M2
Pl =

∫ πRc

0

dye2kyM3
Pl(5) =

M3
Pl(5)

2k

(
1 − e−2kπRc

)
(1.1.15)

As in the ADD model, one can take MPl ∼ mEW and for proper values of Rc and k

obtain the apparent MPl to be at the observed value. We note here that while there

was no (natural) mechanism to stabilize the radius in the ADD case, mechanisms have

been proposed for the Randall-Sundrum model [15; 16].
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1.1 Extra dimensions

The standard model fields will be localized on the IR-boundary. Another model has

been proposed, where Rc → ∞. This model is named Randall - Sundrum II [14]. The

Planck mass, remains finite in this model. Also models where the Standard Model fields

are all free to propagate in the bulk, with the exception of the Higgs boson [17; 18; 19].

1.1.5 Universal Extra Dimensions models

We finally turn to the Universal Extra Dimensions (UED) models [20; 21; 22; 23]. The

main characteristic of these models is that some, or all, the standard model fields can

propagate through the bulk, along with gravity. We will review the simplest UED

model, namely the Minimal Universal Extra Dimensions (MUED)[20].

The space-time this model lives in is M1,3 × S1/Z2. Both the SM fields and gravity

are free to propagate in all 5 dimensions. The symmetry of identifying two opposite

points on the S1 circle, y = 0 and y = πRc is imposed. This implies that the fields

should be either even, or odd. Even fields will obey Neumann boundary conditions at

the points y = 0 and y = πRc, while odd fields will obey Dirichlet boundary conditions.

The fields are decomposed as

Aµ(x, y) =
1√
πRc

[

Aµ0(x) +
√

2
∞∑

n=1

Aµn(x) cos
(
ny

Rc

)]

A4(x, y) =

√
2
πRc

∞∑

n=1

A4 0(x) sin
(
ny

Rc

)

ψ+
R(x, y) =

1√
2πRc

ψR0 +
1√
πRc

∞∑

n=1

ψRn cos
(
ny

Rc

)

ψ−
R (x, y) =

1√
πRc

∞∑

n=1

ψLn sin
(
ny

Rc

)

.

The zero modes of the even vector fields, will be identified with the gauge bosons of the

Standard Model, while the zero modes of the right-handed fermions will be identified

with the SU(2)W singlet of the SM. The ψRn(x) and ψLn(x) will combine to give a tower

of KK Dirac fermions with mass n
Rc

. The same will happen with the Left handed states,

where the zero mode will be identified with the SU(2)W -doublet. In this manner, the

entire content of the SM is reproduced.

As mentioned above, this is only the minimal model, with one extra dimension.

Phenomenological bounds for this model, as well as other UED models, appear here

[12; 20].

This concludes our discussion of extra-dimensional models. All these models have

had a common characteristic of decreased Planck mass, as low as MPl ∼ TeV. If one
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1. Introduction

of these models is in the correct direction, ultraplanckian energies will be accessible to

the LHC and future colliders, thus giving experimental data on how gravity behaves at

scales above the Planck scale.

1.2 Black Hole production and KK
bremsstrahlung.

Large extra dimensions models that have gravity at the TeV scale are within grasp of

the LHC and are thus being investigated. According to these models, gravity will be the

dominant force at such energies. As will be discussed later, gravity will be classical. We

are thus able to make predictions without computing in quantum gravity. One of the

most interesting predictions of theories with Large extra dimensions is the possibility

of black hole production in colliders [33].

This thesis is devoted to the study of bremsstrahlung radiation emitted during

the collisions of ultrarelativistic particles. The estimation of the bremsstrahlung has

attracted the attention of several papers. In a series of papers, D’Eath and Payne [36],

have proposed the colliding waves model (CWM). In this model the gravitational field

of the colliding particles, before the collision, is represented by two Aichelburg-Sexl

[41] shockwaves. In their setup, the impact parameter is zero. They find a closed

trapped surface and the radiation is estimated as the difference between the initial

energy and the mass of the emerging black hole. This method has been generalized

to extra dimensions and non-zero impact parameters (the maximal impact parameter

studied in these papers is bmax = 3.219GE) [37; 38]. However, this method does not take

into account the back-reaction effects. Also the assumption that the two particles are

described as colliding waves implies that the radiation is negligible, while the difference

between the Black hole mass and the initial energy, identified as gravitational radiation,

is of the order of the initial energy.

The same problem was studied in D = 4 by Amati, Ciafaloni and Veneziano in a

series of papers [27; 28; 29]. They considered the collision of two strings in ultraplanck-

lian energy. They use quantum string theory to study the problem of ultraplanckian

collisions for massless particles.

On the other hand, bremsstrahlung itself represents the natural process to test the

existence of extra dimensions and probe them. Colliding ultrarelativistic particles will

radiate and the number of dimensions can easily be determined by the dependence of

the radiated energy from the Lorentz factor γ≫1 of collision.

The drawbacks mentioned above, make another approach to the computation of
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1.3 Classicality of Gravity in transplanckian collisions

bremsstrahlung desirable. Also, the regime where the impact parameter is larger than

the Schwarzschild radius still remains unexplored. In this thesis, we will be using

a different technique to compute the radiation, applicable to different values of the

impact parameter.

1.3 Classicality of Gravity in transplanckian
collisions

In order to begin our study of the behaviour of ultraplanckian gravity, we should

define the relevant constants. By dimensional analysis, we relate the 4 + d-dimensional

Newton’s constant, G4+d, to the 4 + d-dimensional Planck mass, MPl(4+d), restoring for

this section the dependence on c and ~.

G4+d =
~

d+1

Md+2
Pl(4+d)c

d−1
. (1.3.1)

Similarly we construct the 4 + d-dimensional Placnk length, λPl(4+d),

λPl(4+d) =
(
~G4+d

c3

) 1
d+2

. (1.3.2)

Also the de Broglie wavelength λB associated with the colliding particles is

λB =
~c√
s
. (1.3.3)

It will also be useful to compute the Schwarzschild radius, rS, of the given system

[24] in 4 + d dimensions

rS =
1√
π

[

8Γ
(

d+3
2

)

d+ 2

] 1
d+1 (

G4+d
√
s

c4

) 1
d+1

. (1.3.4)

At this length scale, curvature effects become significant. If we know take the formal

classical limit, ~ → 0, keeping G4+d and
√
s fixed, we obtain MPl(4+d) → 0. This shows

us that at energies much higher than the Planck scale, we obtain the formal classical

limit. We also see that at this limit, the Schwarzschild radius remains finite. The

Planck length, as well as the de Broglie wavelength vanish. So we conclude that in

transplanckian energies, classical mechanics will be applicable in the following regime,

√
s ≫ MPl(4+d) rs ≫ λPl(4+d) ≫ λb . (1.3.5)

In a collision with impact parameter, b, we can see by dimensional analysis that

the scattering angle θ, will be of order θ ∼ G4+d
√
s/bd+1. So we see that the quantum
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1. Introduction

gravitational effects will not be important at high energies, so long as the impact

parameter is large enough.

The fact of the classicality of ultraplanckian gravity has been discussed in several

papers. It was first proposed by ’t Hooft [25] approximated the field of the moving

particle by a shockwave, obtaining a result similar to the Veneziano amplitude. It

has also been shown that if the eikonal approximation is used in either string theory

[27; 28; 29], or four-dimensional gravity [26], ’t Hooft’s result is reproduced. The

classicality of gravity is also discussed in these papers [30; 31; 32].

1.4 Computational scheme

In order to study the collision and thus the bremsstrahlung, we will be employing a

perturbative scheme within classical General Relativity. In chapters 2 and 3 we will be

studying the collision of two massive particles, with masses m and m′, one of which is

charged. Since only one particle is charged, the interaction among the two particles is

purely gravitational, this will be essential in the study of this collision. The computation

scheme used, is based on the following.

To zeroth order, we assume a flat spacetime where the two particles are free. We

will be working in the Lorentz frame where the charged particle is stationary, while

the second particle is performing uniform linear motion towards it with some impact

parameter b. We write down the trajectories of the two particles and assume the absence

of any other fields. We compute the zeroth order energy - momentum tensors, Tµν and

T ′
µν of the two particles respectively.

Proceeding to the first order, we use the zeroth order energy - momentum tensors of

the particles to compute the first order correction to the metric they produce hµν and

h′
µν respectively. Each of the two particles is now moving within the metric produced

by the other. We write down the equations of motion for the two particles and compute

their first order trajectories. We also write down the first order equation for the scalar

or vector field.

Finally, to second order, we compute the second order correction to the scalar or

vector field and their source. This is what contributes to the emitted momentum.

We then proceed to write down the emitted momentum from which we derive the

formula for the radiated energy. While in the case of scalar radiation no polarizations

are required, in the case of vector radiation, the polarization vectors are computed.

This method has been generalized to compute gravitational bremsstrahlung emitted

by two massive particles [1].
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1.5 Results

The last chapter studies the same problem, for massless particles, in 4 dimensions.

The scheme is essentially the same. The metric is expanded around flat Minkowski

spacetime. The first order term in the metric, describes two massless shockwaves mov-

ing towards each other with the speed of light, with some impact parameter b. Finally

the second order describes the interaction of the two pre-collision waves.

We note that this method also takes into account the back-reaction effects.

1.5 Results

The scheme described above has been used to study the collisions of ultraplanckian

particles in three setups.

In chapter 21 we study the collision of two massive point-like particles with some

large impact parameter b ≫ rs. The two particles interact gravitationally, while one of

the two particles is charged under a massless scalar field Φ. The calculation is done

within the ADD scenario. This setup is expected to capture all the essential features

of gravitational bremsstrahlung, ignoring however the complications due to the tensor

nature of the gravitational radiation.

In chapter 32 we proceed to study the collision of two massive point particles, again

with impact parameter b ≫ rs and interacting gravitationally. However now one of the

two particles is charged under electromagnetism. We perform the calculation both in

the ADD scenario, as well as in the UED scenario. The process of vector radiation

emission from a charged particle due to acceleration represents a realistic problem, as

the detectors of electromagnetic radiation are highly advanced. On the other hand, the

problem of radiation reaction has not received a solution. The number of physical cases

where an explicit solution has been given is quiet limited (see references in chapter 3).

So the emission of vector bremsstrahlung due to the collision of a charged particle with

another partner particle is of theoretical interest.

Chapter 43 is devoted to the study of the collision of two massless Aichelburg-

Sexl shockwaves interacting gravitationally in four dimensions. Once more an impact

parameter b is introduced, satisfying EG ≪ b ≪ 1/p ≡ rIR and r ∈ (0, 1/p), where E is

the initial energy in the CM frame, G is Newton’s constant, while rIR is some infra-red

cut-off that will be discussed in detail in 4. It thus gives as an insight in a region of

the impact parameter not discussed in the previous chapters and also differing from

1The work in chapter 2 appeared in [48].
2The work in chapter 3 was published in [49].
3In chapter 4 we will present the work published in [50].
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1. Introduction

approaches in the literature for head-on or nearly head-on collisions. This collision takes

place in flat, four-dimensional Minkowski space. We explicitly compute the second order

correction to the metric in coordinate space.

In chapters 2 and 3, the scalar and vector bremsstrahlung emitted during the trans-

planckian collision of two gravitating massive point particles in arbitrary dimensions

was studied classically in the laboratory frame. The emitted momentum in the leading

order of the Lorentz factor γ was computed in an arbitrary number of extra dimensions

d.

The split of radiation into truly massless and massive modes was computed analyt-

ically and numerically. Our main results are summarised in the following.

The source of the emitted radiation composes of two pieces, the local part, due

to the trajectory of the moving particle and the non-local part due to the non-linear

terms of the vector or scalar field with gravity. We show that these two terms interfere

destructively in the region γ
b . ω . γ2

b , that represents the pure effect of gravitational

interaction. By this we mean that the two leading orders, in the ultra-relativistic

expansion, of the local and non-local parts exactly cancel. The remainder is expressed

as a sum of two terms jz and jz′ , with frequency cut-offs at ω 6 γ2/b and ω 6 γ/b

respectively.

The destructive interference effect naturally specifies three frequency regimes, namely,

1/b, γ/b and γ2/b. The dominant contribution regime to the radiated energy was deter-

mined for the scalar case in the ADD model and was found to depend on the number of

extra dimensions. It was also determined in the vector case for several extra-dimensional

models. The ultra-low frequency regime of the radiation was dominated by the local

part of the current in all dimensions. In the lab frame, most of the radiation was

beamed in a narrow cone with angle 1/γ along the spatial direction of the moving par-

ticle’s motion. In the high frequency regime, the local and non-local currents seem to

be equally important.

In chapter 4 we studied the collision of two massless, point-like particles, boosted to

the speed of light, colliding with an impact parameter b in 4 flat space-time dimensions.

Summarizing our results, a closed form formula for the first corrections of the met-

ric and of the energy-momentum tensor were computed in the presence of an impact

parameter, including the back-reactions.

It was shown that for zero impact parameter, the perturbative approximation breaks

down and there is an instantaneous and point-like violation of the conservation of the

energy momentum tensor, which however, is hidden behind a horizon. The introduction

of an impact parameter regulates the mechanics in the absence of any other transverse
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1.5 Results

scale.

The total energy momentum tensor was shown to be traceless before and after the

collision up to the order computed in the expansion.

The energy emitted during a collision of gravitational waves was computed and

argued that the result is exact to all orders.

In [1] the gravitational bremsstrahlung produced in ultra-planckian collisions by

massive particles was computed. Although the computation there was more technically

complex, our expectation that the analysis presented in chapter 2 would be able to

capture the main features of the full problem was justified. The energy emitted was

found to depend on the same powers of the Lorentz factors, up to a numerical coefficient,

after redefining the couplings.

A comment regarding the massless limit in the four-dimensional case is in order.

This limit can be taken in our treatment in chapters 2 and 3, as well as in [1], by taking

the limit m → 0 and b → ∞ while keeping their product constant. The massless limit of

the radiated energy, as shown in [1], is zero. Using the scheme of chapter 4, the result for

the radiated energy seems to be inconclusive. However we do compute the radiation

produced by gravitational waves and find it to be zero. This is analogue to taking

the massless limit and the impact parameter to infinity. Thus we are in agreement

with chapters 2 and 3, as well as [1]. On the other hand Eardley and Giddings have

estimated the energy radiated to be approximately 55% of the center of mass energy

for the maximal value of their impact parameter which is bmax = 3.219GE.

This thesis is organized as follows:

• In chapter 2, we study the classical bremsstrahlung of a massless scalar field Φ in

gravity mediated ultra-relativistic collisions with impact parameter b of two mas-

sive point particles in the presence of d non-compactor toroidal extra dimensions.

The spectral and angular distribution of the scalar radiation are analyzed, while

the total emitted Φ−energy is found to be strongly enhanced by a d−dependent

power of the Lorentz factor γ. The direct radiation amplitude from the acceler-

ated particles is shown to interfere destructively (in the first two leading ultra-

relativistic orders) with the one due to the Φ − Φ − graviton interaction in the

frequency regime γ/b . ω . γ2/b in all dimensions.

• In chapter 3 a classical computation of vector bremsstrahlung in ultrarelativistic

gravitational-force collisions of massive point particles is presented in an arbitrary

number d of extra dimensions. The total emitted energy, as well as its angular

and frequency distribution and characteristic values, are discussed in detail. The
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domain of validity of the classical result is discussed.

• Finally, in chapter 4 the collision of two massless, gravitationally interacting,

point-like massless particles, boosted to the speed of light, colliding with an im-

pact parameter b is being investigated. The collision takes place in flat four-

dimensional space-time background. A perturbative scheme is employed and the

corrections to the energy momentum tensor and to the metric are computed and

closed form formulas are provided. This includes the back-reaction on the metric

after the collision. Including such corrections suggests that the tracelessness of

the initial stress tensors of the colliding particles is preserved during and after the

collision. The necessity for introducing an impact parameter in the perturbative

treatment is highlighted and the breaking of the underlying perturbative approach

at b = 0 is motivated. In addition, the energy radiated in the form of gravitational

bremsstrahlung radiation is discussed while an example from gravitational-waves

collision is being studied.

Summarizing, we employ a classical, perturbative scheme to study the collisions of

particles interacting gravitationally at CM energies greater than the Planck scale. We

study this both in four-dimensional theories, as well as in several models with Large

Extra Dimensions, namely the ADD model and the UED model. We particularly study

the scalar and vector bremsstrahlung emitted in such a process. We find that in the

frequency regime γ2/b > ω ≫ γ/b the local and non-local amplitudes are approximately

equal and thus the total current j(ω) is suppressed by a factor of γ2. We express this

as

j(ω) ∼ j(γ/b)
(
γ/b

ω

)2

. (1.5.1)

The total emitted energy in the form of scalar or vector Bremsstrahlung was com-

puted for several numbers of extra dimensions d. For d = 0 we have

E ≈ C0

(
αm′

κ
2
4

)2

b3
γ3 , (1.5.2)

while for d = 1

E = C1

(
αm′

κ
2
5

)2

b6
γ3 ln γ , (1.5.3)

and for d ≥ 2

E ≈ Cd

(
αm′

κ
2
D

)2

b3d+3
γd+2 , (1.5.4)

where α is the scalar or the vector charge f and e respectively. C0, C1 and Cd are

numerical coefficients differing for the scalar and vector radiation. C0 and C1 are

18



1.5 Results

computed numerically in chapters 2 and 3 for the scalar and vector cases respectively,

while an analytical formula is given for Cd for each case. Moreover the spectral and

angular characteristics of the frequency are analysed. These results could be used as a

way to probe the number (and existence) and nature of extra dimensions, as well as to

set bounds to them.

The above were computed for b ≫ rs. In chapter 4 we attempted to enlarge this

range for smaller values of the impact parameter in four dimensions. The main ac-

complishment of this thesis is exactly this, the study of ultraplanckian collisions in a

parameter region not studied before.

Important future prospects include but are not limited to the following:

• Complete and thorough treatment of the massless limit for scalar, vector and

gravitational bremsstrahlung.

• Extending the area of validity to yet smaller impact parameters. In this manner

one would be able to make contact with the current experiments.

• In chapter 4, we have found that the energy momentum tensor is traceless both

before and after the collision up to second order. It is worth investigating whether

this is true to all orders.

We note that while the mostly minus signature (+,−,−,−) metric is used throughout

chapters 2 and 3 mostly plus signature (−,+,+,+) is used in chapter 4.
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2
Scalar Bremsstrahlung in

Gravity-Mediated Ultrarelativistic
Collisions

2.1 Introduction and results

The idea of TeV scale gravity with large extra dimensions (LED) [1; 2; 3; 4] has triggered

a lot of activity in particle physics and gravitation theory. One of the most interesting

predictions is the possibility of black hole production in colliders [5]. According to

Thorne’s hoop conjecture (generalized to higher dimensions [6]), for energies of colliding

particles higher than the D-dimensional Planck mass M∗ (transplanckian regime) such

black holes should be produced classically for impact parameters b . RS, where RS

is the Schwarzschild radius associated with the center-of-mass collision energy. To

establish the creation of a black hole in the collision of ultrarelativistic particles one

has to find closed trapped surfaces in the corresponding space-time. To this aim, an

idea due to Penrose [7] was put into the form of an elaborated model in D = 4 by

D’Eath and Payne [8] and with extra dimensions by Eardley and Giddings [9] and

further refined in [10] (see recent reviews [11] and references therein). In that model

one is after a solution of Einstein’s equations with a special metric ansatz generalizing

the Aichelburg-Sexl metric [12] (see also [13]). The ansatz amounts to replacing the

gravitational field of two ultrarelativistic particles before the collision by colliding shock

waves, while the collision region is described by some linear differential equation for

a metric function, which is amenable to construct exact or approximate solutions.
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The closed trapped surface emerging in such a solution for appropriate initial energies

and impact parameters leads to an estimate of the produced black hole mass and its

difference from the initial energy is interpreted as the amount of gravitational radiation

produced (see e.g. the recent paper [14] and references therein).

The colliding waves model (CWM) of black hole formation is certainly a very nice

and perhaps the simplest possible one, designed to answer an intriguing question about

the nature of transplanckian collisions. It gives the gravitational radiation loss for

head-on and almost head-on collisions and also demonstrates that the black hole is

indeed present in the collision region. However, we would like to discuss some subtle

points concerning the applicability of this model to high energy particle scattering. In

fact, various effects which were not taken into account in the simple version of CWM

such as an extended nature of the colliding particles [15] and their parton structure

[16], have already been discussed. It was shown by Meade and Randall [16] that taking

the finite size into account leads to a substantial decrease of the cross-section predicted

by the CWM. It was also emphasized [16] that an even more critical effect is the

radiative energy loss of the colliding partons before their energy is trapped inside a

black hole horizon. The CWM seems to be able to clarify these issues, but in a closer

look it probably cannot. In fact, the Aichelburg-Sexl solution is the limiting form of

the linearized gravitational field of ultrarelativistic particle moving with a constant

velocity. Therefore, presenting colliding particles as plane waves implicitly assumes

that their radiation is negligibly small, otherwise the particle trajectories should be

modified substantially by radiation friction (for a discussion of radiation reaction in

extra dimensions see [17]). Furthermore, the energy mismatch between the mass of

the black hole and the initial energy of the colliding particles, interpreted in CWM as

radiation loss, is found to be of the order of the initial energy [9], which is by no means

small.

Therefore, alternative methods of computing radiation losses in transplanckian col-

lisions seem to be desirable. One such approach is the one by Amati, Ciafaloni and

Veneziano [18] relevant in four dimensions and based on the combination of string

and quantum field theory techniques. Other recent work on this subject includes [19]

using various analytical classical and semi-classical approaches. In the framework of

purely classical D = 4 general relativity, numerical simulations were also performed of

collision of two scalar field balls interacting gravitationally via exact Einstein equa-

tions [20]. Gravitational radiation was extracted imposing appropriate boundary con-

ditions. Gravitational radiation in collisions of higher-dimensional black holes (with

non-compact extra dimensions) was studied numerically in [21].
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2.1 Introduction and results

For the ultrarelativistic scattering in models with large extra dimensions a crucial

question is whether radiation is enhanced due to the extended phase space associated

with extra dimensions. It was argued by Mironov and Morozov [22] that in the case of

synchrotron radiation the expected enhancement can be damped by beaming of radia-

tion in the forward direction, suppressing the number of excited Kaluza-Klein modes.

In the case of bremsstrahlung the situation is different, namely in [23] it was found,

that the energy loss of ultrarelativistic particles under non-gravitational scattering at

small angle contains an additional factor γd due to the emission of light massive KK

modes. Qualitatively, this can be explained as follows. For non-gravitational scatter-

ing in flat space the impact parameter b, the radiation frequency ω and the angle of

emission ϑ ≪ 1 with respect to the momentum of the fast particle in the rest frame of

the other are related by

ωb(ϑ2 + γ−2) . 1. (2.1.1)

Frequencies near the cut-off frequency ω ∼ γ2/b are emitted in the narrow (D−1) dimen-

sional cone ϑ . γ−1, while intermediate frequencies are emitted into a wider cone. The

main contribution comes from the first region, and in this case the emitted momenta in

directions transverse to the brane are of the order ω/γ. The number of such light modes

is of the order (Rω/γ)d ∼ (Rγ/b)d (R being the size of the compact extra dimensions),

giving an extra factor γd to the radiated power. Analogous enhancement was reported

for gravitational bremsstrahlung in transplanckian collisions [24], compatible with the

numerical study of [21].

Our approach amounts to solving the two-body field-mediated problem iteratively.

In electrodynamics this is a well known method, allowing to calculate spectral-angular

distributions of bremsstrahlung in the classical range of frequencies small with respect

to the particle energy ~ω ≪ E. In general relativity this approach was suggested in [27]

under the name of “fast-motion approximation scheme” and was further developed and

called “post-linear formalism”. It was applied to the gravitational bremsstrahlung most

notably by Kovacs and Thorne [28]. We will use a momentum space version of this

approach, developed in [29], which has the advantage that it allows a fully analytical

treatment of the problem. In [23; 24] we extended this technique to models with extra

dimensions either infinite or compact. In [23] we calculated scalar bremsstrahlung

radiation in the collision of two ultrarelativistic point-like particles interacting via a

scalar field in flat space-time. Here we consider the situation in which the particles

interact gravitationally but emit scalar radiation. This is an intermediate step towards

the full treatment of the gravitational bremsstrahlung presented briefly in [24]. The

latter case has additional complications due to the tensor nature of the radiation field
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and it will be presented in full detail in a future publication. Here, we will assume that

only one of the colliding particles is coupled to the scalar field, so that their interaction

is purely gravitational. On the other hand, we will compute only the scalar radiation

emitted by the system. The main novel feature is this case is that the system becomes

non-linear due to scalar-scalar-graviton vertex. As a result, the effective source of

radiation field in the flat space picture becomes non-local due to contribution of the

field stresses.

In four dimensions, it was shown long ago [30], that the contribution from the

high-frequency regime γ/b . ω . γ2/b is suppressed by a factor γ−4 due to destructive

interference between the local and the non-local amplitudes, the latter being due to

the gravitational interaction of the mediating field. The remaining radiation is beamed

inside the cone with angle 1/γ, it has characteristic frequencies ω ∼ O(γ/b) and emitted

energy of order E ∼ γ3. There is in addition a sub-leading component of emitted

radiation with frequencies ω ∼ O(γ2/b), which is also beamed and has E ∼ γ2.

In the higher dimensional case the situation is more complicated. The destructive

interference is also present, but with growing d the relative contribution of ω ∼ γ2/b

increases faster, than that of ω ∼ γ/b due to competition of the angular integrals.

The powers of γ of the emitted radiation energy in all frequency and angular regimes

in the presence of d extra dimensions are summarized in the Table below.

HHHHHHHϑ

ω
ω ≪ γ/b ω ∼ γ/b ω ∼ γ2/b ω ≫ γ2/b

γ−1
negligible

(phase space)
Ed ∼ γ3 Ed ∼ γd+2 negligible radiation

1
negligible

(phase space)
Ed ∼ γd+1 negligible radiation negligible radiation

In the special cases of d = 1 or 2 extra dimensions there is an extra ln γ in the

expression for the energy emitted in the regime (ω ∼ γ/b, ϑ ∼ 1/γ). The energy is

measured in units of κ
4
Dm

′2f2/b3d+3, with m′ the mass of the target particle, κD the

D−dimensional gravitational coupling, f the scalar coupling of m and b the impact

parameter of the collision and the overall numerical coefficients can be found in the

text.
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2.2 The setup

2.2 The setup

2.2.1 The action

The goal here is to calculate within the ADD scenario classical spin-zero bremsstrahlung

in ultra-relativistic gravity-mediated scattering of two massive point particles m and m′.

The space-time is assumed to be M4 × T d, the product of four-dimensional Minkowski

space and a d-dimensional torus, with coordinates xM = (xµ, yi), M = 0, 1, . . . , D− 1, µ =

0, . . . , 3, i = 1, . . . d.

Particles move in M4 (the brane) and interact via the gravitational field gMN , which

propagates in the whole space-time M4 ×T d. We also assume the existence of a massless

bulk scalar field Φ(xP ), which interacts with m, but not with m′. The action of the

model is symbolically of the form

S ≡ Sg + SΦ + Sm + Sm′ ,

and explicitly, in an obvious correspondence,

S =
∫

dDx
√

|g|
[

− R

κ2
D

+
1
2
gMN∂M Φ ∂N Φ

]

− 1
2

∫ [

e gMN ż
M żN +

(m+fΦ)2

e

]

dτ−

− 1
2

∫ [

e′gMN ż
′M ż′N +

m′2

e′

]

dτ ′ (2.2.1)

with 16πGD ≡ κ
2
D relating κD to Newton’s constant. Here the ein-beins e(τ) and e′(τ ′)

are introduced, which lead to a somewhat unusual form of interaction with Φ, but it

reduces to the standard non-derivative interaction once they are integrated out. The

constant f is the scalar charge of m. To solve the corresponding coupled equations of

motion we shall use perturbation theory with respect to the scalar and gravitational

couplings. To zeroth order, both gravitational and scalar fields are absent and the two

particles move along straight lines as determined by the initial conditions. In first order,

one takes into account the (non-radiative Coulomb-like) gravitational and scalar fields

produced by the particles in their zeroth order trajectories. Next, one computes the first

order correction to their trajectories, due to their first order gravitational interaction

(the scalar mutual interaction vanishes in our set-up). The leading contribution to

the scalar radiation field, of interest here, emitted by the accelerated particle m is

then obtained in the second order of perturbation theory. This approach allows us to

compute consistently the lowest order radiation in the case of ultrarelativistic collision,

when deviations from straight trajectories is small and the iterative solution of the

coupled particle-field equations of motion is convergent. The resulting expression for
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

the radiative energy loss will be therefore correct only in the leading ultrarelativistic

order.

To carry out such a computation it is sufficient to restrict oneself to linearized

gravity. One writes gMN = ηMN + κDhMN and replaces the Hilbert-Einstein action by

its quadratic part

Sg =
∫ [

−1
4
hMN�DhMN +

1
4
h�Dh− 1

2
hMN∂M∂Nh+

1
2
hMN∂M∂Ph

P
N

]

dDx, (2.2.2)

where the Minkowski metric is ηMN = diag(1,−1,−1, ...), �D ≡ ηMN∂M∂N , raising/lowering

the indices is performed with ηMN and h ≡ hM
M . To avoid classical renormalization

(which in principle can be treated along the lines of [17]) we take into account only mu-

tual gravitational interaction. At the linearized level the total gravitational field hMN

is the superposition of the fields hm
MN , h

m′

MN due to the particles m and m′, respectively,

and of the gravitational field generated by the bulk scalar Φ. Assuming that the scalar

interaction is of the same order as the gravitational one, the latter contribution to hMN

is of higher order and will be neglected here. Therefore, to this order of approximation

hMN = hm
MN + hm′

MN . (2.2.3)

For simplicity the superscripts m, m′ will be omitted in what follows. Thus, hm
MN and

hm′

MN will be denoted as hMN and h′
MN , respectively. Ignoring the self-interaction and

the associated radiation reaction problem, we will consider each of the particles m′ and

m as moving in the other’s metric

gMN = ηMN + κDhMN and g′
MN = ηMN + κDh

′
MN , (2.2.4)

respectively. Correspondingly, the action for the particle m, which interacts with both

gravity and Φ, takes the form

Sm = −1
2

∫ [

e(ηMN + κDh
′
MN )żM żN +

(m+ fΦ)2

e

]

dτ. (2.2.5)

Similarly, the action for m′ is

Sm′ = −1
2

∫ [

e′(ηMN + κDhMN )ż′M ż′N +
m′2

e′

]

dτ. (2.2.6)

Finally, the action for the scalar field, which propagates in the gravitational field

h′
MN of the uncharged particle, expanded to linearized order of the gravitational field,

is

SΦ =
1
2

∫

∂MΦ ∂NΦ
[(

1 +
κD

2
h′
)

ηMN − κDh
′
MN

]

dDx . (2.2.7)
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2.2 The setup

In principle, Φ propagates in the full gravitational field hMN +h′
MN of both particles, but

the singular product of hMN and Φ generated by the same point particle m corresponds

again to the self-action problem, which is ignored here. The products of h′
MN due to

m′ and Φ due to m does not lead to singularities and correctly describe the situation.

2.2.2 Equations of motion

Varying the action with respect to z(τ) and z′(τ) one obtains the linearized geodesic

equations of each mass moving in the gravitational field of the other:

d

dτ

(
eg′

MN ż
N
)

=
e

2
g′

LR,M żLżR,
d

dτ

(
e′gMN ż

′N) =
e′

2
gLR,M ż′Lż′R. (2.2.8)

Variation with respect to the einbeins gives

e−2 =
g′

MN ż
M żN

(m+ fΦ)2
e′−2 =

gMN ż
′M ż′N

m′2 (2.2.9)

Substituting this back into the particles’ actions (2.2.5-2.2.6) one is led to their more

familiar form

Sm = −
∫

(m+ fΦ)(g′
MN ż

M żN)1/2dτ, Sm′ = −m′
∫

(gMN ż
′M ż′N )1/2dτ,

from which the scalar field equation is obtained

�DΦ = −κD

2
h′�DΦ + κDh

′
MN Φ,MN + f

∫

(g′
MN ż

M żN)1/2δD(x− z(τ)) dτ, (2.2.10)

Note, once again, that only the gravitational field due to the uncharged particle m′

enters this equation.

Finally, the linearized Einstein equations for the metric deviation due to the two

particles in the De Donder gauge

∂Nh
MN =

1
2
∂Mh

are obtained from (2.2.5, 2.2.6):

�Dh
MN = −κD

(

TMN − ηMN T

D − 2

)

, TMN =
∫

eżM żN δD(x− z(τ))√−g′ dτ, (2.2.11)

where T = TM
M and linearization of the metric factor is understood. Similarly,

�Dh
′MN = −κD

(

T ′MN − ηMN T ′

D − 2

)

, T ′MN =
∫

e′ż′M ż′N δD(x− z′(τ))√−g dτ. (2.2.12)

To ensure that the particles move on the brane, it is enough to choose the initial

conditions yi(0) = 0, ẏi(0) = 0 and similarly for m′. Then, using the equations of motion,

it is easy to check that the entire world-lines will be xµ = zµ(τ), x′µ = z′µ(τ) and the

energy-momentum tensors will only have brane components T µν, T ′µν . However, the

metric deviations hMN and h′MN will have in addition diagonal bulk components due

to the trace terms in (2.2.11) and (2.2.12).
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

2.2.3 Iterative solution

Even in linearized gravity the relativistic two-body problem can not be solved exactly,

so one has to use some approximation scheme. With the particle masses m, m′ taken

of the same order and eventually equal, the model is characterized by three classical

length parameters. Namely, the classical radius of the scalar charge [23]:

rf =
(
f2

m

) 1
d+1

, (2.2.13)

the D-dimensional gravitational radius of the mass m at rest

rg =
(
κ

2
Dm

) 1
d+1 , (2.2.14)

and the Schwarzschild radius of the black hole, associated with the collision energy
√
s

[24]:

rS =
1√
π

[

8Γ
(

d+3
2

)

d+ 2

] 1
d+1 (

GD
√
s

c4

) 1
d+1

. (2.2.15)

In the (initial) rest frame of the mass m′ one has
√
s = 2mm′γ, where γ = 1/

√
1 − v2 is

the Lorentz factor of the collision, v being the relative velocity of the colliding particles.

So

rS ∼ rgγ
ν , ν =

1
2(d+ 1)

. (2.2.16)

It will be assumed that the parameters rg and rf are of the same order, and both much

smaller than the impact parameter b:

rg ∼ rf ≪ b γ−2ν, (2.2.17)

or, in terms of rS [24]:

b ≫ rSγ
ν . (2.2.18)

Under this condition, as will be shown below, the deviation of the metric from unity in

the rest frame of m′ is small, i.e. κDhMN ż
′M ż′N ≪ 1, which is necessary for the validity

of the present perturbative treatment.

2.2.3.1 The formal expansion and zeroth order equations

The next step is to solve these equations iteratively. For the particle-m world-line one

writes

zM = 0zM + 1zM + . . . , 0zM = uMτ + bM , (2.2.19)
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where the order is denoted by a left superscript and to zeroth order the particle moves

in Minkowski space-time with constant velocity uM , and with 0zM (0) = bM another

constant vector. Both vectors uM , bM will be assumed to lie on the brane, i.e. to have

only µ-components and, in addition, to be orthogonal bµuµ=0. It will be shown that

as a consequence of the equations of motion 1zM also lies on the brane. However, it is

convenient to keep D-dimensional notation in all intermediate steps.

For the particle-m′ one writes similarly

z′M = 0z′M + 1z′M + . . . , 0z′M = u′Mτ, (2.2.20)

assuming that at τ = 0 the particle is at the origin. We choose to work in the rest

frame of m′, and specify the coordinate axes on the brane so that u′µ = (1, 0, 0, 0), uµ =

γ(1, 0, 0, v), γ = 1/
√

1 − v2, and bµ = (0, b, 0, 0), where b is the impact parameter. When

needed, one may think of the brane-localized vectors as D-dimensional vectors with

zero bulk components, e.g. uM = (uµ, 0, . . . , 0).

In a similar fashion, the bulk scalar is expanded formally as:

Φ = 0Φ + 1Φ + . . . . (2.2.21)

Substitute in (2.2.10) and set κD = 0 to obtain for the leading contribution to Φ the

equation

�D
0Φ = f

∫

δD(x − uτ − b) dτ. (2.2.22)

The ein-beins are also expanded

e = 0e+ 1e+ . . . , e′ = 0e′ + 1e′ + . . . . (2.2.23)

According to (2.2.9) one obtains in zeroth order

0e = m+ f 0Φ, 0e′ = m′. (2.2.24)

Finally, for the metrics one writes

hMN = 0hMN + 1hMN + . . . , (2.2.25)

and similarly for h′
MN . The leading order contributions to the metrics are then obtained

from Eqs. (2.2.11, 2.2.12) with the zeroth order source on the right hand side, i.e. with

0TMN = m

∫

δD(x− 0z(τ))uMuNdτ, 0T ′MN = m

∫

δD(x− 0z′(τ))u′Mu′Ndτ. (2.2.26)

To calculate the leading order scalar bremsstrahlung it will be sufficient to know

only the zeroth order term 0hMN of hMN . So, in the sequel only 0hMN will appear and

to simplify the notation, its left superscript will be omitted.
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

2.2.3.2 The first order equations

To derive the equations for the first order corrections to the particle world-lines one has

to collect first order terms in the expansions of the embedding functions zM , z′M and

the einbeins e, e′ and choose suitable gauge condition to fix the τ, τ ′ reparametrization

symmetries. From Eqs. (2.2.9) one finds for the first order corrections of the einbeins:

1e = −e0

(
κDh

′
MNu

MuN + 2 1żMuM
)
, 1e′ = −e′

0

(
κDhMNu

′Mu′N + 2 1ż′
Mu′M) .

(2.2.27)

The reparametrization freedom allows us to fix 1e and 1e′ arbitrarily. We first substitute

these expansions into Eq.(2.2.8), collect all the first order terms and then choose the

gauge fixing conditions 1e = 1e′ = 0, that is

κDh
′
MNu

MuN + 2 1żMuM = 0 (2.2.28)

in the equation for m, and

κDhMNu
′Mu′N + 2 1ż′

Mu′M = 0 (2.2.29)

in the equation for m′. The resulting equations for the first corrections to the particle

trajectories read

ΠMN 1z̈N = −κDΠMN

(

h′
NL,R − 1

2
h′

LR,N

)

uLuR, (2.2.30)

Π′MN 1z̈′
N = −κDΠ′MN

(

hNL,R − 1
2
hLR,N

)

u′Lu′R, (2.2.31)

where the projectors onto the space transverse to the world-lines are

ΠMN = ηMN − uMuN , Π′MN = ηMN − u′Mu′N , (2.2.32)

whose presence demonstrates explicitly that only the transverse perturbations of the

world-lines are physical.

2.2.3.3 The second order equation for Φ−radiation

The radiative component of the bulk scalar arises in the next order of iterations and

is given by 1Φ. With appropriate combination of terms on the right hand side, Eqn.

(2.2.10) is written as:

�D
1Φ(x, y) = j(x, y) ≡ ρ(x, y) + σ(x, y), (2.2.33)
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where the first term is localized on the world-line of the radiating particle m

ρ(x, y) = −f
∫

1zµ(τ) ∂µδ
4(x − uτ − b) δd(y)dτ, (2.2.34)

while the second is the non-local current

σ(x, y) = κD ∂M

(

h′MN ∂N
0Φ − 1

2
h′ ∂M 0Φ

)

, (2.2.35)

with both h′MN and 0Φ having support in the bulk. This current arises from non-linear

terms in (2.2.10) due to the interaction of the bulk scalar with gravity. It has to be

emphasized that it is non-zero outside the world-line not only on the brane but also in

the bulk. Note that the decomposition into the local and non-local parts is ambiguous

in the sense that part of the non-local term can be cast into a local form using the field

equations. But the total source j never reduces to a local form as a whole.

2.2.4 The solution for 0Φ, hMN and 1zM in M4 × T d

Our notation and conventions for Kaluza-Klein decomposition and Fourier transforma-

tion as applied to the ADD scenario with the transverse directions being circles with

radii equal to R, are given in section 2.6.1. It is important to stress at this point that in

classical perturbation theory the interaction is described as an exchange of interaction

modes (the classical analogs of virtual gravitons), but contrary to the Born amplitudes,

where the simple pole diagrams diverge at high transverse momenta [3], here the sum

over these modes contains an intrinsic cut-off. Therefore the classical elastic scattering

amplitude is finite and, furthermore, it reproduces the result of the eikonal method, if

the eikonal is computed in the stationary phase approximation [25]. In other words,

classical calculations in ADD correspond to non-perturbative ones in quantum theory

(the eikonal method is equivalent to summation of the ladder diagrams). As will be

explicitly demonstrated in the present chapter, the same is true for bremsstrahlung.

Specifically, it will be shown that the effective number of interaction modes is finite

due to the cut-off and of order (R/b)d. Also, the summation over the emission modes

is cut-off to a finite effective number of order (Rγ/b)d, which leads to a large extra

enhancement factor γd in ultrarelativistic collisions.

Straightforward Fourier transform of (2.2.22) gives

0Φn(p) = −2πfδ(pu)
p2 − p2

T

. (2.2.36)

Similarly, for the hMN and h′
MN , it is enough to Fourier transform the source terms

(2.2.26) and plug into (2.2.11) and (2.2.12). One then obtains

hn
MN (p) =

2πκD mδ(pu)
p2 − p2

T

ei(pb)

(

uMuN − 1
D − 2

ηMN

)

, (2.2.37)
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

where p2 = pµp
µ, pu = pµu

µ and pi
T = ni/R is the quantized momentum vector in the

transverse directions. To get h′n
MN (p), one has to replace m → m′, uM → u′M , b → 0.

Note that these fields do not describe radiation. They simply represent the scalar and

gravitational potentials of the uniformly moving particles. Formally, this follows from

the presence of the delta factors δ(pu) with pu = γ(p0 − pzv), from which it follows

that pµp
µ = p2

z(v2 − 1) < 0, while the mass-shell condition for the emitted wave is

pµp
µ = p2

T > 0.

Substitution of (2.2.37) into (2.2.30) and integration of the resulting equation gives

1zM (τ)=−im
′
κ

2
D

(2π)3V

∑

l

∫

d4p
δ(pu′) e−i(pb)

(p2 − p2
T )(pu)

(

e−i(pu)τ −1
)(

γu′M − 1
d+ 2

uM − γ2
∗

2(pu)
pM

)

,

(2.2.38)

with γ2
∗ ≡ γ2 − (d+ 2)−1 and the D-dimensional vector pM = (pµ, pi

T = li/R). It is easy

to check that the gauge condition (2.2.28) is satisfied. To ensure this exactly one has

to keep the small second term in γ2
∗ , which, however, will be dropped in what follows

in view of our interest in γ ≫ 1. We have chosen the initial value 1zM (0) = 0 in order to

preserve the meaning of bµ as the impact parameter, namely bµ = zµ(0) − z′µ(0). Note

that the initial value of 1żM(0) is non-zero and is computed from the gauge condition

(2.2.28).

From (2.2.38) one can prove that the gravitational interaction does not expel the

particles from the brane. Indeed, only the last pM -term in the last parenthesis has

non-zero components pi
T = li/R orthogonal to the brane. But the remaining expression

is even under the reflection li → −li and the sum vanishes giving 1zi = 0 1.

The corresponding solution for the mass m′ can be obtained by interchanging uM

and u′M , replacing m by m′ and omitting e−i(pb).

2.2.5 Φ−radiation - Basic formulae

Finally, Φ−radiation is described by the wave equation (2.2.33), which in terms of

Kaluza-Klein modes is

(� + k2
T ) 1Φn(x) = jn(x) ≡ ρn(x) + σn(x) , (2.2.39)

where ki
T = ni/R, while ρn(x) and σn(x) are

ρn(x) = −f
∫

1zµ(τ) ∂µδ
4(x− uτ − b)dτ (2.2.40)

1This is on the average true also quantum mechanically. The Φ-quanta emission is symmetric on

the average under reflection from the brane and the brane stays on the average at rest. However, to

guarantee transverse momentum conservation in single Φ emission in the bulk one should introduce

brane position collective coordinates and deal also with the brane back reaction.
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and

σn(x) =
κD

V

∑

l

∂µ

(

h′µν
l (x) ∂ν

0Φn−l(x) − 1
2
h′

l(x) ∂µ 0Φn−l(x)
)

, (2.2.41)

respectively, with 1zµ, 0Φ and h′
µν given in (2.2.38), (2.2.36) and (2.2.37). The rest of

this chapter is devoted to the solution of (2.2.39) and the analysis of the spectral and

angular distribution of the emitted Φ−radiation.

Once the solution of these equations is available, one can compute the energy and

momentum radiated away using the standard formulae of radiation theory. To com-

pute the momentum loss due to scalar bremsstrahlung emitted during the collision one

considers the world tube with topology R1,3 × T d, with boundary ∂Ω = Σ∞ ∪ Σ−∞ ∪ B

consisting of two space-like hypersurfaces Σ±∞ in R1,3 at t = ±∞ and the time-like

hypersurface B at r → ∞ and integrate the difference of the fluxes through Σ±∞ to

obtain

Pµ =
∫

V

ddy

(
∫

Σ∞

−
∫

Σ−∞

)

T νµd3Σν . (2.2.42)

Here one makes use of the brane components of the energy-momentum tensor of the

bulk scalar (it is easy to show that there is no radiation flux into the compact dimensions

[23]). Start with

TMN = ∂M Φ∂NΦ − 1
2
ηMN (∂Φ)2, (2.2.43)

where only 1Φ has to be taken into account, since 0Φ is not related to radiation. The

integral over B is zero due to fall-off conditions, so the difference of the surface integrals

(2.2.42) can be transformed by Gauss’ theorem to the volume integral 1

Pµ =
∫

V

ddy

∫

Ω

∂NT
Nµd4x =

∫

V

ddy

∫

Ω

(∂µΦ) �DΦ d4x. (2.2.44)

Using (2.2.33) and the retarded Green’s function of the D−dimensional D’Alembert

operator to solve the wave equation

GD(x− x′, y − y′) =
1

(2π)4V

∫

d4k e−ik(x−x′)
∑

n

eikT (y−y′)

k2 − k2
T + iǫk0

, (2.2.45)

one obtains

Pµ =
1

16π3V

∑

n

∫
d3k

k0
kµ |jn(k)|2

∣
∣
∣
k0=

√
k2+k2

T

, (2.2.46)

where jn(k) is the Fourier-transform of jn(x) (for precise definition see section 2.6.1)

and will be referred to as the radiation amplitude. With the parametrization k =

1It was taken into account that T d has no boundary
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|k|(sin θ cosϕ, sin θ sinϕ, cos θ) one obtains for the spectral-angular distribution of the

emitted energy E = P 0:

dE

d|k|dΩ2
=

1
16π3V

∑

n

k2|jn(k)|2, dΩ2 = sin θ dθ dϕ. (2.2.47)

Therefore, the leading order radiation loss is determined by the Fourier-transform jn(k)

of the source in the four-dimensional wave equation (2.2.33) for 1Φn on the mass shell

of emitted waves

kµk
µ = k2

T . (2.2.48)

If the impact parameter is small compared to the compactification radius (b ≪ R), the

summation over KK masses can be replaced by integration according to (2.6.9), with

integration measure ddkT = kd−1
T dkT dΩd−1. Since the radiation amplitude jn depends

only on |kT |, integration over the angles is trivial and gives the volume Ωd−1 of the unit

d− 1−dimensional sphere. Therefore,

dE

d|k|dΩ2
=

Ωd−1

2(2π)D−1

∞∫

0

k2kd−1
T |jn(k)|2 dkT . (2.2.49)

with n in jn expressed in terms of kT , and k0 ≡ ω =
√

k2 + k2
T .

When the summation over KK emission modes is replaced by integration, one can

compute the emitted energy using directly higher dimensional Minkowski coordinates.

Take the coordinate system with angles on the (D− 2)−dimensional sphere ΩD−2, with

ϑ the angle between the (D − 1)−dimensional vectors K = (k, ki
T ) and u, φ the polar

angle in the plane perpendicular to u varying from 0 (direction of b) to 2π (see Figure

2.1) and integrate over the angles to obtain [23]

dE

dωdΩd+2
=

ωd+2

2(2π)d+3
|j(k)|2. (2.2.50)

where ω ≡ (ku′) = k0 =
√

k2 + k2
T is the higher-dimensional frequency.

2.3 The radiation amplitude

As we have seen, the radiation amplitude jn(k) is the sum of a local ρn(k) and a non-local

part σn(k). These two parts have different dependence on the frequency and the angle

θ of the emitted wave with respect to the direction of collision. Both have an intrinsic

cut-off at some (angle-dependent) frequency, which in the ultrarelativistic case is high

compared to the inverse impact parameter 1/b. Typically, the two amplitudes cancel

each other in some range of angles and frequencies. To obtain the correct expression

for their sum one has to carefully take into account non-leading contributions.
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Figure 2.1: The angles in lab frame used in the text.

2.3.1 The local amplitude

Fourier-transformation of (2.2.40) gives

ρn(k) = ifei(kb)

∞∫

−∞

ei(ku)τ (k 1z) dτ (2.3.1)

where the scalar products are denoted as (ab) ≡ aµb
µ and for simplicity the parentheses

will also be omitted when it is not ambiguous. Substitution of 1zµ from (2.2.38) and

integration over τ gives 1:

ρn(k) =
κ

2
D m′fei(kb)

4π2V (ku)2

∑

l

[

ku

(

γku′ − ku

d+ 2

)

Il − γ2
∗
2
kµI

µ
l

]

, (2.3.2)

where the integrals Il and Iµ
l are defined by

Il =
∫
δ(pu′) δ(ku − pu) e−i(pb)

p2 − p2
T

d4p, Iµ
l =

∫
δ(pu′) δ(ku− pu) e−i(pb)

p2 − p2
T

pµ d4p, (2.3.3)

The sum over l represents the sum over the interaction modes labeled by the set of

integers li, while the dependence of the amplitude ρn(k) on the vector index n, which

labels the emission modes ni, is hidden inside the k0−component of the wave vector:

k0 =
√

k2 + k2
T . The integrals are given in [23] and lead to Macdonald functions:

Il = −2π
γv
K0(zl), Iµ

l = − 2π
γvb2

(

bzK0(zl)
γu′µ − uµ

γv
+ iK̂1(zl) bµ

)

, (2.3.4)

with

z ≡ (ku)b
γv

, z′ ≡ (ku′)b
γv

, zl ≡ (z2 + p2
T b

2)1/2 , (2.3.5)

1Note that the unity inside the first parenthesis of (2.2.38) corresponds to a constant 1z and does

not contribute to radiation. Formally, its contribution to ρn vanishes by symmetric integration [23].
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and the hatted Macdonald functions defined by K̂ν(x) ≡ xνKν(x) and having for ν 6= 0

a finite non-zero limit as x → 0. Thus, in terms of Macdonald functions the local

amplitude is:

ρn(k)=−κ
2
Dm

′f

4πvV
ei(kb)

∑

l

{[(

2− γ2
∗

v2γ2

)
z′

z
− 2
γ

(
1

d+ 2
− γ2

∗
2v2γ2

)]

K0(zl)−iγ
2
∗
γ2

(kb)
v2γz2

K̂1(zl)
}

.

(2.3.6)

2.3.1.1 The γ → ∞ limit. Mode and frequency cut-offs.

In the ultrarelativistic limit γ → ∞ the leading terms of ρn are

ρn(k) ≃−κ
2
Dm

′f

4πvV
ei(kb)

∑

l

[
z′

z
K0(zl) − i

(kb)
γz2

K̂1(zl) − d+ 1
(d+ 2)γ2

(
z′

z
− γd

d+ 1

)

K0(zl) + ...

]

(2.3.7)

This is a systematic ultra-relativistic expansion in powers of 1/γ, modulo the coefficients

of the various Macdonalds as well as the overall factor in front, which depend on

the velocity v. However, as will become evident below, this form is adequate for the

following discussion and the computation of the emitted energy to leading order.

Two important general remarks are in order here:

(a) The effective number Nint of interaction modes. The exponential fall-off of the

Macdonald functions at large values of the argument zl leads to an effective cut-off Nint

of the number of interaction modes l in the sum. One can estimate the radius pint
T of

the sphere in the space of li, beyond which the modes can be neglected, by setting

(pint
T )2 b2 ∼ 1 , (2.3.8)

from which

Nint ∼
(
R

b

)d

∼ V

bd
. (2.3.9)

For Nint ≫ 1, which is the case of interest here, one may use (2.6.9) to obtain [23]

(Z > 0)

1
V

∑

l

K̂λ

(√

Z2 + p2
T b

2

)

≃ 1
(2π)d/2bd

K̂λ+d/2(Z) (2.3.10)

and end up with

ρn(k) ≃ −λei(kb)

v

[
z′

z
K̂d/2(z)−i (kb)

γz2
K̂d/2+1(z) +

1
(d+ 2)γ

(

d− (d+ 1)z′

γz

)

K̂d/2(z) + ...

]

,

(2.3.11)
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2.3 The radiation amplitude

where

λ ≡ κ
2
Dm

′f

2(2π)d/2+1bd
. (2.3.12)

(b) Angular and frequency characteristics. The local radiation amplitude above in

the b ≪ R limit is expressed solely in terms of Macdonald functions with argument z.

Later, it will be shown that the non-local amplitude contains also Macdonald functions

but with argument z′. The exponential fall-off of these functions implies the effective

cut-offs z ∼ 1 and z′ ∼ 1 in the corresponding radiation amplitudes. These, in turn,

translate into angular and frequency characteristics of the corresponding radiation.

Specifically, with θ, α and ϑ as shown in Fig. 2.1, define

ψ ≡ 1 − v cos θ cosα = 1 − v cosϑ , (2.3.13)

which satisfies
z

z′ = γψ , (2.3.14)

and in the ultrarelativistic limit varies in the interval 1/2γ2 ≃ 1 − v 6 ψ 6 1 + v ≃ 2.

Consider the neighborhood of z ∼ 1 which gives the dominant contribution of the

local radiation amplitude. One has to distinguish various domains of the emission

angles. For small emission angles θ, α one has

ψ ∼ 1
2

(γ−2 + θ2 + α2) , (2.3.15)

so that (i) inside the small cone θ2 + α2 . 1/γ2 one obtains ψ ∼ 1/γ2, so that the

characteristic frequencies ω ∼ γ2/b. This angle-frequency regime will be called in the

sequel the z-region. (ii) For ψ ∼ 1, i.e. for α, θ ∼ O(1), one obtains z′ ∼ z/γ, which

implies a low frequency regime ω ∼ 1/b, whose contribution to the emitted energy is

negligible in view of the relative smallness of the phase-space factor in (2.2.49).

To summarize, the above analysis of ρn combined with the phase space factors in

(2.2.49), leads to the conclusion that the leading contribution of the radiation due to

the local amplitude is beamed, i.e. directed inside the small cone θ2 + α2 . 1/γ2 and

has high frequencies ω ∼ γ2/b. Radiation with these characteristics will occasionally be

called z-type.

2.3.2 The non-local amplitude

The non-local amplitude obtained from (2.2.41) by Fourier transform is

σn(k) =
κ

2
Dm

′f(ku′)2

(2π)2
ei(kb)Jn(k) , Jn(k) ≡ 1

V

∑

l

Jnl(k) , (2.3.16)
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with

Jnl(k) =
∫

d4p
δ(pu′)δ(ku− pu)e−i(pb)

(p2 − p2
T ) [(k − p)2 − (kT − pT )2]

. (2.3.17)

k0 =
√

k2 + k2
T and k is a 3−dimensional vector lying on the 3−brane, where ki

T = ni/R

and pi
T = li/R with integers {ni}, {li} are d−dimensional discrete vectors corresponding

to the emission and interaction modes, respectively.

Using Feynman parametrization Jnl takes the form:

Jnl =

1∫

0

dx e−i(kb)x

∫

d4p
δ[(pu′) + (ku′)x]δ[(pu) − (1 − x)(ku)] e−i(pb)

[p2 − (kTx− pT )2]2
.

Integrating over p0 and splitting p into the longitudinal p|| and transversal p⊥ parts, in-

tegrate over p||. Then, introducing in p⊥ the spherical coordinates d2p⊥ = |p⊥|dΩ1d|p⊥|
and integrating first over the angles and then over |p⊥|, one obtains

Jnl =
πb2

γv

1∫

0

dx e−i(kb)x K̂−1(ζnl) , (2.3.18)

with

ζ2
nl(x) = z′2x2 + 2γzz′x(1 − x) + z2(1 − x)2 + b2(kTx− pT )2 . (2.3.19)

Again, the summation over l is performed trivially for b ≪ R using (2.3.10) 1. The

result is

Jn(k) = Λd

1∫

0

dx e−i(kb)x K̂d/2−1(ζn); Λd ≡ πb2−d

(2π)d/2γv
. (2.3.20)

with

ζ2
n(x) = z′2x2 + 2γzz′x(1 − x) + z2(1 − x)2 ; ζn(0) = z , ζn(1) = z′ . (2.3.21)

Writing ζ2
n successively in the form

ζ2
n(x) = −ξ2x2 + 2βx+ z2 = a2 − r2 , (2.3.22)

1Using (2.6.9) the summation is converted to integration over ddl. One then shifts the integration

variable p′
T = pT − xkT and applies (2.3.10). In the present case Z is not constant but depends on

x. However, as it can also be checked numerically, (2.3.10) and the subsequent treatment is a good

approximation for any 0 6 x 6 1, because Z(x) & 1 in all relevant frequency regimes.
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2.3 The radiation amplitude

with

ξ2 ≡ 2γzz′ − z2 − z′2 =ω2 b2 sin2 θ cos2 α+ b2k2
T = z′2γ2v2 sin2 ϑ , β ≡ γzz′ − z2 , (2.3.23)

and

a ≡
√

β2

ξ2
+ z2 , r ≡ ξ

(

x− β

ξ2

)

, (2.3.24)

and using formula [36, 2.16.12-4]

K̂ν−1/2

(√

a2 − r2
)

=
21/2

π1/2
a2ν

∞∫

0

cosh(ry)K̂−ν

(

a
√

y2 + 1
)

dy , ν > −1 and a > 0 (2.3.25)

for µ=−1/2, ν=(d− 1)/2 one may rewrite (2.3.20) in the form

Jn(k) = Λd
21/2a2ν

π1/2

∞∫

0

dy K̂−ν

(

a
√

y2 + 1
)

1∫

0

dx e−i(kb)x cosh(ry). (2.3.26)

Perform, next, the integration over x and introduce the additional angle φ, so that

the generic (D − 1)-dimensional unit vector K/|K| (the normalized higher-dimensional

emission vector K) is decomposed as:

K

|K| =
u

|u| cosϑ+
b

|b| sinϑ cosφ+ m sinϑ sin φ, (2.3.27)

where m is a D − 1 dimensional unit vector orthogonal to the collision plane (spanned

by u and b). Then (k · b) = −γz′v sinϑ cosφ = −ξ cosφ and a = ωbψ/ sinϑ. Substituting

this into (2.3.26) we have

Jn(k)=Λd
21/2a2ν

π1/2

1
ξ

∑

j=0,1

(−1)j+1e−ij(kb)×

×
∞∫

0

dy K̂−ν

(

a
√

y2 + 1
) y sinh(ξδjy) − i cosφ cosh(ξδjy)

y2 + cos2φ
≡Jn

0 + Jn
1 , (2.3.28)

where δj = j − β/ξ2, j = 0, 1. 1 The convergence of these integrals is controlled by the

competition of the exponential decay of the Macdonald function and the exponential

growth of the hyperbolic functions. In all cases the first is faster, but when the difference

1Direct integration of (2.3.20) for (θ = 0, kT = 0) gives
1∫

0

K̂d/2−1(
√

2βx+ z2) dx= β−1[K̂d/2(z)−

K̂d/2(z′)]. The constants of integration of the terms j = 0, 1 are chosen so that for θ = 0 they satisfy

Jn
z |(θ=0,kT =0) = Λdβ

−1K̂d/2(z); Jn
z′ |(θ=0,kT =0) = −Λdβ

−1K̂d/2(z′).
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

of the two arguments is small, the main contribution to the integral over y comes from

large values of y.

Since y2 + 1 > 1 and 0 6 sin2φ 6 1, one can equivalently write

Jn
j (k) =(−1)j+1e−ij(kb)Λd

21/2aν

π1/2ξ
×

×
∞∑

k=0

sin2kφ

∞∫

0

dy
Kν

(

a
√

y2 + 1
)

(y2 + 1)ν/2+1+k
[y sinh(ξδjy) − i cosφ cosh(ξδjy)].

The y-integration for each value of k is performed by successive applications of the

identity [34]

Kν(z) = Kν+2(z) − 2(ν + 1)
z

Kν+1(z) (2.3.29)

in combination with

aν

∞∫

0

dy
Kν+2

(

a
√

y2 + 1
)

(y2 + 1)(ν+2)/2

{

y sinh(ξδjy)

cosh(ξδjy)

}

=
1
a2

{

ξδjK̂ν+1/2(zj)

K̂ν+3/2(zj)

}

(2.3.30)

obtained from (2.3.25), with argument zj =
√

a2 − ξ2δ2
j , i.e. z0 = z, z1 = z′.

For example, using (2.3.29) the k = 0 term leads to the integrals

aν

∞∫

0

dy




Kν+2

(

a
√

y2 + 1
)

(y2 + 1)ν/2+1
− 2(ν + 1)

a

Kν+1

(

a
√

y2 + 1
)

(y2 + 1)(ν+3)/2





{

y sinh(ξδjy)

cosh(ξδjy)

}

. (2.3.31)

The first term in the square brackets is given by (2.3.30). The second is computed

using again (2.3.29), which leads to two new integrals, the first of which is

aν−1

∞∫

0

dy
Kν+3

(

a
√

y2 + 1
)

(y2 + 1)(ν+3)/2

{

y sinh(ξδjy)

cosh(ξδjy)

}

=
1
a4

{

ξδjK̂ν+3/2(zj)

K̂ν+5/2(zj)

}

, (2.3.32)

suppressed for a ≫ 1 compared to (2.3.30). Similarly, the second is further suppressed

by two more powers of a. Terms with increasing k are evaluated in the same way and

lead to further suppression by inverse powers of a2.

The end result for Jn
0 (k) keeping terms up to 1/a4 is then

Jn
0 (k)=

Λd

a2ξ2

(

βK̂d/2(z) − i(kb)K̂d/2+1(z) − (d+ 1)β
a2

K̂d/2+1(z)+
β sin2φ

a2
K̂d/2+2(z)

)

+Rz .

(2.3.33)

Notice that Jn
0 (k) is a series of Macdonalds with argument z. Consequently, it is

important mainly in the z-region, where a = ωbψ/ sinϑ ∼ γ ≫ 1, a self-consistency
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2.3 The radiation amplitude

check of our approximations. The coefficients of all terms in (2.3.33) have expansions

in powers of γ−1. In the z-region the first term starts with O(γ−3), the second with

O(γ−4), the third and fourth terms with order O(γ−5), while the remainder Rz = O(γ−6).

Following the same procedure Jn
1 (k) is written as a series of Macdonald functions

with argument z′, namely

Jn
1 (k) ≃ Λd e−i(kb)

(
δ1

a2
K̂d/2(z′) − i

cosφ
a2 ξ

K̂d/2+1(z′)
)

+Rz′ , (2.3.34)

whose main contribution comes from the region with z′ ∼ 1, i.e. ω ∼ γ/b, ϑ ∼ 1, in which

indeed a ∼ γ ≫ 1.

The condition a2 ≫ 1 is not satisfied in the region with θ ∼ 1/γ. However, in that

region both the exact expression and the approximate one have negligible contribution

to the amplitude. Figure 2.2 displays graphically the maximal difference in the real

part of Jn
1 (k) between the two expressions.

Figure 2.2: The real part of the amplitude Jn
1 (solid line) in D = 4 dimensions, calculated

numerically from the exact formula (2.3.28), compared with the approximation given by

(2.3.34) (dashed) for γ = 1000 and for cosφ = 1, which gives the largest deviation between

the two. For γθ & 4 the deviation is negligible. For γθ . 4 the exact expression will be

used numerically. The imaginary part has similar behavior, and furthermore is suppressed

compared to the real part by inverse powers of γ.

Incidentally, notice that there is no strong anisotropy in φ in the z′−region: the

real part of main terms of Jn
1 (2.3.34) is independent on φ, while its imaginary part

depends only by the overall factor cosφ. The same picture was obtained without any

approximations in [23], where scalar mediated collisions were studied.
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

Going back to (2.3.16) one sees that σn(k) is the sum of two sets of Macdonald

functions, one with argument z and the other with argument z′. In analogy with ρn,

the first sum contributes mainly in the z-region. Similarly, the leading contribution of

the second set of Macdonalds comes from the region with z′ = ωb/γv ∼ O(1). In the

ultrarelativistic limit this translates into angular and frequency characteristics of the

emitted radiation. For generic values of the angles, this means ω ∼ γ/b and defines

what we will call the z′−region and, correspondingly, z′−type radiation. It is unbeamed

radiation (ϑ ∼ 1) with characteristic frequency ω ∼ γ/b.

The non-local pieces σn
0 (k) and σn

1 (k). It is convenient to separate the two kinds

of contributions to the non-local amplitude by writing

σn(k) ≡ σn
0 (k) + σn

1 (k) , (2.3.35)

with the first (second) given by (2.3.16) with Jn
0 (Jn

1 ) on the right hand side. Thus,

σn
0 (k)=λ ei(kb) γvz

′2

a2 ξ2

(

βK̂d/2(z)−i(kb)K̂d/2+1(z)− (d+1)β
a2

K̂d/2+1(z)+
β sin2φ

a2
K̂d/2+2(z)

)

,

(2.3.36)

and

σn
1 (k) ≃ λ

γvz′2

a2 ξ2

(

(ξ2 − β) K̂d/2(z′) + i(kb) K̂d/2+1(z′)
)

, (2.3.37)

respectively.

Correspondingly, the total radiation amplitude jn(k) is written as a sum of two

terms, one function of z, and the other function of z′

jn(k) ≡ jn
z (k) + jn

z′(k) , jn
z (k) = ρn(k) + σn

0 (k) , jn
z′(k) = σn

1 (k) (2.3.38)

2.3.3 The part jn
z (k) of the radiation amplitude and destructive

interference

2.3.3.1 jn
z in the frequency range ω ≫ γ/b

Consider first the regime with ϑ ∼ 1. Here z ∼ γ and from (2.3.36) and (2.3.11) one

obtains that jn
z ∼ exp(−γ) due to the Macdonald functions.

Now take the most interesting case of ϑ ∼ 1/γ, in which z ∼ 1. Add ρn(k) and σn
0 (k)

given in (2.3.11) and (2.3.36), respectively, and use the ultra-relativistic expansions to
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2.3 The radiation amplitude

obtain in leading order:

jn
z (k) ≃ λ (d+ 1)ei(kb)

γψ

[
2ψ − γ−2

d+ 2
K̂d/2(z) − cos2 α

ψ2ω2b2

(
(
sin2θ + tan2α

)
K̂d/2+1(z)

− sin2 θ sin2ϕ+ tan2α

d+ 1
K̂d/2+2(z)

)]

. (2.3.39)

All terms inside the square brackets are of O(γ−2). Given that in the z-region 1/γψ =

z′/z ∼ O(γ), the leading contribution to jn
z above is of O(γ−1). Higher order terms have

been ignored. The terms of order O(γ) and O(1), both present in the ultra-relativistic

expansions of σn
0 (k) and ρn(k), have opposite signs and cancel in the sum. This is a

general phenomenon of destructive interference related to the gravitational interaction.

Thus, the two leading powers in the ultra-relativistic expansion of the direct Φ−emission

amplitude from the accelerated charged particle, cancel the ones coming from the indi-

rect emission due to the Φ − Φ − h interaction. As a consequence, the z-type (beamed

and high frequency) part of the radiation is highly suppressed in the ultra-relativistic

limit, compared to the naive expectation. One can check that destructive interfer-

ence is valid also in the case of Φ−radiation in arbitrary D−dimensional Minkowski

space-time, which can be obtained as a limit of the present discussion. It was first

observed for gravitational radiation in D = 4 [30] (using a different approach) and it

was recently generalized to arbitrary dimensions in [24] . For the system at hand, an

alternative proof is presented in section 2.7, using a different approach also suitable to

the frequency range ω ≫ γ/b.

The following comments are in order here: (a) As a check of the above series of

approximations, one may consider the special case of θ = 0, for which (kb) = −ξ = 0. In

this case the exact value of Jn obtained from (2.3.20) coincides with the one obtained

from the approximate expressions (2.3.33) and (2.3.34). (b) Furthermore, equation

(2.3.39) can be shown to coincide with the corresponding quantity in the case of non-

compactified D = 4 + d−dimensional Minkowski space. This generalizes to scattering

and radiation processes in the relativistic case, the non-relativistic argument about the

behavior of Newton’s potential, i.e. that at distances b ≪ R a point particle generates

the D−dimensional potential, while at b ≫ R its potential behaves as four-dimensional

[35].

One may equivalently parametrize jn
z using the angles ϑ and φ and write it in the

form:

jn
z (k) =

λ ei(kb)

γψ

[
d+ 1
d+ 2

(2ψ − γ−2)K̂d/2(z) − sin2ϑ

z2

(

(d+ 1)K̂d/2+1(z) − sin2φ K̂d/2+2(z)
)]

.

(2.3.40)
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

Note that in the computation of the emitted energy below both angles will be taken

continuous; a sensible approximation for Nint ≫ 1 assumed here.

2.3.3.2 jn
z in the frequency range ω . γ/b

For ω ≪ γ/b and ϑ ∼ 1/γ using (2.3.11) for ρn and (2.3.16) and (2.3.20) for σn, one

concludes that |ρn| ≫ |σn| and, therefore,

jn(k)
∣
∣
∣

ω≪γ/b
≃ ρn(k) ≃ −λ

[
1
γψ

K̂d/2(z) + i
sinϑ cosφ
γψ2ωb

K̂d/2+1(z)
]

. (2.3.41)

For ϑ ∼ 1, on the other hand, ρn, σn
0 and σn

1 are all of the same order, but suppressed

compared to the previous case. In addition, the contribution of this regime to the

emitted energy will be shown to be further suppressed by the integration measure.

More interesting is the case with ω ∼ γ/b. If ϑ ∼ 1, then z ∼ γ and using (2.3.11) and

(2.3.36) one concludes that jn
z is exponentially suppressed because of the Macdonald

functions. However, for ϑ ∼ 1/γ, one may use (2.3.11) and (2.3.28) to obtain that ρn ∼ γ

and σn
0 ∼ γ, respectively 1.

2.3.4 The part jn
z′(k) of the amplitude

Equation (2.3.37) can equivalently be written in the form:

jn
z′ ≃ − λ

γψ

[(
1
γ2ψ

− 1
)

K̂d/2 (z′) + i
sin θ cosα cosϕ

γz′ψ
K̂d/2+1 (z′)

]

(2.3.42)

Furthermore, using the angles ϑ and φ it becomes:

jn
z′ ≃ − λ

γψ

[(
1
γ2ψ

− 1
)

K̂d/2 (z′) + i
sinϑ cosφ
γz′ψ

K̂d/2+1 (z′)
]

(2.3.43)

First, for ω ≫ γ/b one has z′ ≫ 1 and, consequently, jn
z′ in (2.3.43) is exponentially

suppressed. Next, for (ω ∼ γ/b, ϑ ∼ 1) jn
z′ in (2.3.43) is dominated by its real part

which is of order O(1/γ). For (ω ≪ γ/b, ϑ ∼ 1) one obtains jn
z′ ∼ σn

0 ∼ 1/γ. As will be

shown below, however, this region contributes negligibly little to the emitted energy.

Similarly, for (ω ≪ γ/b, ϑ ∼ 1/γ) on the basis of (2.3.11) and (2.3.20) one concludes

that the amplitude jn
z′ ∼ σn

0 ≪ ρn ∼ γ2. Finally, based on numerical study and previous

results in D = 4 [30] one obtains that (2.3.43) is valid also in the regime (ω ∼ γ/b,

ϑ ∼ 1/γ) and gives jn
z′ ∼ γ.

1Using the formulae of section 2.6.3 one gets in this kinematical regime a = z′γψ/ sin ϑ ∼ 1 and

also ξ ∼ 1 as well as β ∼ 1. The integrand in (2.3.28) is independent of γ. All γ dependence comes

from the overall coefficients in (2.3.28) and (2.3.16).
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2.3.5 Summary

The behavior of the local and non-local currents in all characteristic frequency and

angular regimes is summarized in the following Table I.

HHHHHHϑ

ω
ω ≪ γ/b ω ∼ γ/b ω ≫ γ/b

γ−1

no destructive interference

jn ∼ ρn ≫ σn
0 ∼ σn

1

no destructive interference

jn
z ∼ ρn ∼ σn

0 ∼ γ

jn
z′ = () ∼ γ

destructive interference

jn
z = () ∼ ρn/γ2 ∼ 1/γ

jn
z′ = () ∼ exp(−γ)

1

no destructive interference

jn ∼ ρn ∼ jn
z ∼ jn

z′

destructive interference

jn
z = ( + ) ∼ exp(−γ)

jn
z′ = () ∼ γ−1

destructive interference

jn
z = ( + ) ∼ exp(−γ)

jn
z′ = () ∼ exp(−γ)

2.4 The emitted energy - Spectral and angular
distribution

The spectral and angular distribution of the emitted energy is obtained from (2.2.49)

or (2.2.50). The integrand is the sum of three pieces proportional to |jn
z (k)|2, |jn

z′(k)|2

and jn
z j

n
z′ + jn

z j
n
z′ (the bar denotes complex conjugation), so the total radiated energy

splits into three parts

dE = dEz + dEz′

+ dEzz′

, (2.4.1)

which will be called z−, z′− and zz′−radiation, respectively. All terms contain a fac-

tor of λ2 from the square of the amplitude, an explicit 1/2(2π)(d+3) from the Fourier

transform in (2.2.50), and a factor b−(d+3) from the corresponding power of ω in the

integrand. This leads to a general expression for the total emitted energy of the form

E ∼ 1
8(2π)2d+5

κ
4
Dm

′2f2

b3d+3
γ# , (2.4.2)

with an overall coefficient expected to be of order one and the power of gamma depend-

ing on the particular type of radiation under discussion and which is easily determined

as follows: As argued above and in [30] and also shown for example in Figure 2.3

(obtained numerically), the Φ−radiation is emitted predominantly in well-defined rela-

tively narrow frequency and angular windows, and with amplitudes shown in Table I.

Thus, it is straightforward to estimate the powers of γ in the various components of its

energy, using (2.2.50)

E ∼
∫

dω

∫

dϑ |j|2 ωd+2 sind+1 ϑ (2.4.3)
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(a) (b)

Figure 2.3: Frequency (a) and angular (b) distribution for d = 0 and γ = 105.

with |j|2 being |jn
z |2 or |jn

z′ |2 or jn
z j

n
z′ + jn

z j
n
z′ , and with the range of integration not con-

tributing extra factors of γ. For example, the contribution of jn
z , which is dominant in

the regime (ω ∼ γ2/b, ϑ ∼ 1/γ) has 1/γ2 from |jn
z |2, (1/γ)d+2 from the angular integration,

and (γ2)d+3 from the integration over ω, with the final estimate being γd+2.

The result of this computation is the content of Table II below 1.

HHHHHHϑ

ω
ω ≪ γ/b ω ∼ γ/b ω ∼ γ2/b ω ≫ γ2/b

γ−1 negligible

(phase space)
Ed ∼ γ3 , from jn

z and jn
z′ Ed ∼ γd+2, from jn

z

negligible

radiation

1
negligible

(phase space)
Ed ∼ γd+1, from jn

z′ negligible radiation
negligible

radiation

We proceed next to the detailed study of the various components of radiation with

the frequency and angular characteristics of the three most important cells of Table II.

2.4.1 The z−type component of radiation with ω ∼ γ2/b

According to Table II, the z-type radiation (due to |jn
z |2) is always beamed inside

ϑ ∼ 1/γ. Furthermore, for d > 2 it is dominant with characteristic frequency ω ∼ γ2/b.

The cases d = 0 and d = 1 will be treated separately in another subsection.

1Note that in D = 4 it is found that all three types of radiation are of equal O(γ3). This seems to

disagree with [30], where it is stated that the leading O(γ3) is due to z′−type alone.
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2.4 The emitted energy - Spectral and angular distribution

(a) (b)

Figure 2.4: Frequency (a) and angular (b) distribution of z-radiation for d = 3 and

γ = 103.

It is convenient to write the current jz (2.3.40) in the form

jn
z = ei(kb)

2∑

s=0

sjz (2.4.4)

0jz =
λ

γ

d+ 1
d+ 2

(

2 − 1
γ2ψ

)

K̂d/2(z) (2.4.5)

1jz = −λ (d+ 1)
sin2ϑ

γψz2
K̂d/2+1(z) (2.4.6)

2jz = λ
sin2ϑ sin2φ

γψz2
K̂d/2+2(z) (2.4.7)

Squaring and substituting into (2.2.50) one obtains

dEz

dωdΩd+2
=

ωd+2

2(2π)d+3

2∑

a,b=0

ajz
bjz . (2.4.8)

To integrate over frequencies it is convenient to change variable from ω to z and define

the quantities

C
(d)
ab =

∫

K̂d/2+a(z)K̂d/2+b(z)zd+2(δ0a+δ0b−1)dz. (2.4.9)

The integration over ϑ is performed using (2.6.11). Finally, the integration of sin2φ and

sin4φ over the remaining angles of Sd+1 is Ωd+1/2 and 3Ωd+1/8, respectively. The angular

and frequency profiles of this component of radiation in dimensions d > 2, for which

it is dominant, were obtained analytically and numerically, respectively, and have the

general form shown for d = 3 in Figure 2.4.
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The end result for the total emitted energy in this component of radiation is

Ez =
λ2Ωd+1

2(2π b)d+3
γd+2

2∑

a,b=0

C
(d)
ab D

(d)
ab (2.4.10)

where

D
(d)
00 =

2d+1(d+ 1)2 Γ2
(

d+2
2

)

Γ(d+ 4)
, D

(d)
01 = −2d+3(d+ 1)2Γ2

(
d+4

2

)

(d+ 2)Γ(d+ 4)
,

D
(d)
02 = − 1

2(d+ 1)
D

(d)
01 , D

(d)
11 =

2d+4(d+ 1)2Γ
(

d+6
2

)
Γ
(

d+4
2

)

Γ(d+ 5)
,

D
(d)
12 = − 1

2(d+ 1)
D

(d)
11 , D

(d)
22 =

3
8(d+ 1)2

D
(d)
11 . (2.4.11)

When integrating over z in (2.4.9) one should remember that the expansion (2.3.40)

is accurate in the high frequency domain, around and beyond z ∼ 1. However, for d > 2

it can be checked both analytically and numerically that the integral from 0 to 1

of the difference of the exact energy density based on (2.3.11) and (2.3.28) and the

approximate one based on (2.4.4) is negligible. Thus, one can conveniently expand the

integration region in (2.4.9) from 0 to ∞ and evaluate C(d)
ab using (2.6.13).

Collecting all contributions one obtains for the energy of high frequency z−type

radiation

Ez = Cd
κ

4
Dm

′2f2

b3d+3
γd+2 (2.4.12)

with C2 = 1.42 × 10−6, C3 = 6.02 × 10−7, C4 = 3.45 × 10−7, C5 = 2.67 × 10−7 and C6 =

2.76 × 10−7.

2.4.2 The z′−type radiation with ϑ ∼ 1

According to Table II, wide angle radiation (ϑ ∼ 1) is mainly z′-type (due to |jn
z′ |2) in

all dimensions and has characteristic frequency ω ∼ γ/b. Also, for d > 3 radiation with

ω ∼ γ/b is predominantly emitted in wide angles.

Squaring (2.3.43), substituting into (2.2.50) and integrating over ω from 0 to ∞ and

all angles except ϑ, one gets the angular distribution

dEz′

dϑ
=

κ
4
Dm

′2f2γd+1

b3d+3

Γ
(

3d+3
2

)
Γ2
(

2d+3
2

)
Γ
(

d+3
2

)

27π3d/2+4Γ
(

d+2
2

)
Γ(2d+ 3)

sind+1ϑ

ψ2
. (2.4.13)

Formula (2.4.13) gives the dominant wide angle radiation in all dimensions d > 3.

Figure 2.5 shows the angular and frequency profile of this component of radiation for

d = 3. To compute the total energy of this type we integrate over ϑ making use of

(2.6.12).
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2.4 The emitted energy - Spectral and angular distribution

(a) (b)

Figure 2.5: Frequency (a) and angular (b) distribution of z′-radiation for d = 3 and

γ = 104. The angular distribution is actually smooth, but rises very steeply at this scale

for ϑ ≃ 0.

For d > 3 the emitted energy is given by

Ez′

= C′
d

κ4
Dm

′2f2

b3d+3
γd+1 , C′

d =
2d−8Γ

(
3d+3

2

)
Γ2
(

2d+3
2

)
Γ
(

d+3
2

)
Γ
(

d−2
2

)

π3d/2+4Γ(2d+ 3)Γ(d)
(2.4.14)

For d = 2 one obtains

Ez′

=
105κ4

6m
′2f2

216(2π)7b9
γ3 ln γ . (2.4.15)

The cases d = 0, 1 have to be considered separately since for them z-, z′- and zz′-types of

radiation are comparable and splitting the amplitude into jz and jz′ is not particularly

useful.

2.4.3 The cases d=0, 1

According to Table II the emitted energy in 4D is concentrated in the region ω ∼
γ/b, θ ∼ γ−1. In this case the exponent ei x ωb sin ϑ cos ϕ in the stress amplitude σ(k) does

not oscillate fast and the emitted energy may be easily computed numerically. The

frequency and ϑ-distributions in this case are shown for γ = 105 in Figure 2.3, while the

distribution over φ (which coincides with ϕ in 4D) is presented by Figure 2.6.

The total emitted energy is

E0 = C0
κ

4
4m

′2f2

b3
γ3 , C0 ≈ 8.3 × 10−5 . (2.4.16)

The frequency distribution is non-zero at ω = 0 (see Figure 2.3), in agreement with the

analytically derived value

dE0

dω

∣
∣
∣
∣
ω=0

=
1

3 × 26 × π4

κ
4
4m

′2f2

b2
γ2,
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

(a) (b)

Figure 2.6: (a) The φ−distribution in 4D for γ = 104 and (b) in 6D for γ = 103.

due mainly to the imaginary part of the ρ−amplitude.

The frequency distribution of the emitted energy E1 in 5D for γ = 104 is shown

in Figure 2.7. It is characterized by a long tail beyond the value ω ∼ γ/b, which as

can also be argued analytically 1 leads to a behavior dE1/dω ∼ 1/ω (Figure 2.7(b)) all

the way to ω ∼ γ2/b, beyond which it falls-off exponentially. The integral of dE1/dω

over the range (γ/b, γ2/b) gives an extra logarithm in the total emitted energy, which is

computed numerically to be

E1 = C1
κ

4
5m

′2f2

b6
γ3 ln γ , C1 ≈ 1.64 × 10−5 . (2.4.17)

2.4.4 The estimate of the zz′−interference part of radiation

The purpose of this subsection is to estimate the contribution of the interference part

(jn
z j

n
z′ + c.c.). It will be shown that it is subleading for d > 2 and of the same order as

z− and z′− contributions for d = 0, 1.

The interference term Ezz′ ∼
∫

(jn
z j

n
z′ + c.c.)ωd+2 dω dΩd+2 contains the product of

Macdonald functions K̂(z)K̂(z′). Thus, its value depends on the overlap of these func-

tions in the domain (z . 1, z′ . 1), or equivalently (ω . γ/b, ϑ . 1/
√
γ). The presence

of the factor ωd+2 implies that most of the contribution to the integral comes from the

large ω regime with ω ∼ γ/b, in which z′ ∼ 1.

For z ≪ 1/γ the integral is suppressed by the volume factor. Thus, the interesting

regime of z is γ−1 . z . 1. In this regime one may estimate the contribution to the
1Notice from Table I that the total amplitude satisfies j(ω ∼ γ/b) ∼ γ2j(ω ∼ γ2/b). This gives for

d = 1 the estimate |j|2ωd+2 ∼ 1/ω.
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2.4 The emitted energy - Spectral and angular distribution

(a) (b) Intermediate region ωb = 20γ− 0.1γ2: exact

distribution (solid black) versus the approximate

dE/dω ∼ 1/ω (dashed red)

Figure 2.7: Frequency distribution for d = 1 and γ = 104: (a) for ω . γ/b, (b) for

γ/b . ω . γ2/b

interference integral using

jz ∼ λei(kb)

2
sin2ϑ

γψz2
K̂d/2+1(z) , jz′ ∼ λ

γψ
K̂d/2(z′) , (2.4.18)

since, it can be checked from (2.3.11), (2.3.36) and (2.3.43), that they are either domi-

nant or of the same order as the remaining terms.

One then obtains for the interference part of the energy loss

dEzz′

dΩd+2 dω
∼ λ2 cos(ωb sin ϑ cosφ)

2(2π)d+3γ2ψ2z2
K̂d/2+1(z)K̂d/2(z′) sin2ϑωd+2 . (2.4.19)

Integration over all angles except ϑ gives

dEzz′

dϑ dω
∼ λ2

2d+2π(d+3)/2Γ((d+ 1)/2)γ2ψ2z2
J0(ω b sin ϑ) K̂d/2+1(z) K̂d/2(z′) ωd+2 sind+3ϑ.

(2.4.20)

The value of the integral over ϑ and ω is controlled by J0. For ϑ ∼ 1/
√
γ, z and z′ are both

of O(1), while the argument of J0 is of O(
√
γ) ≫ 1. Using then the asymptotic expansion

of J0 and approximating the hatted Macdonalds by their values at z ∼ z′ ∼ 1, one can

estimate as in previous cases the power of γ in Ezz′

to be γd/2+3/4. This is negligible,

compared to the other contributions in all dimensions.

One is left with the contribution from ϑ ∼ 1/γ, where ω b sin ϑ ∼ 1 and z ∼ 1/γ.

Substituting J0 ∼ J0(0) = 1 and K̂(z) ≃ K̂(z = 0) one estimates the integral to be of

O(γ3) in all dimensions. This is of the same dominant order as Ez and Ez′

for d = 0

and d = 1 and was included in the total energy evaluated in the previous subsection.
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2. Scalar Bremsstrahlung in Gravity-Mediated Ultrarelativistic Collisions

2.5 Summary of results

Scalar bremsstrahlung radiation during the transplanckian collision of two gravitating

massive point particles in arbitrary dimensions was studied classically in the laboratory

frame. The main goal was to compute the powers of the Lorentz factor γ and how they

depend on the number of extra dimensions d.

We computed both analytically and numerically radiation into truly massless and

massive (for the brane observer) modes. An essential difference with the previously

considered case of scalar bremsstrahlung in flat space from particles interacting via a

scalar field, is that in the latter the scalar field(s) is linear, while here the bulk scalar

interacts non-linearly with gravity. Within the perturbation theory with respect to both

scalar and gravitational coupling constants it was found that the radiation amplitude

consists of a local and a non-local part. Furthermore, it was shown that in a certain

range of angles and frequencies the leading terms of these two mutually cancel, while

the remaining terms can be presented as the sum of two contributions (jz , jz′) which

have frequency cut-offs at ω 6 γ2/b and ω 6 γ/b, respectively. Their contribution to

the total radiated energy Ed depends on the phase-space in an intricate way, so that

the resulting radiation does not have a simple universal expression. Specifically, it was

found that in the absence of extra dimensions one obtains

E0 = C0 m
(rg

b

)2 (rf

b

)

γ3, C0 ≈ 8.3 × 10−5, (2.5.1)

with the “basic” relativistic enhancement factor γ3. For one extra dimension one has

E1 = C1 m
(rg

b

)4 (rf

b

)2

γ3 ln γ, C1 ≈ 1.64 × 10−5 , (2.5.2)

with almost the same (up to the logarithm) enhancement factor. For d > 2 one finds

Ed = Cdm
(rg

b

)2(d+1) (rf

b

)d+1

γd+2 , (2.5.3)

with Cd are computed from (2.4.10), (2.4.9) and (2.4.11) and given above for d = 2, . . . , 6.

So the expected enhancement factor γd+2 is regained, with each new dimension adding

one power of γ to the radiation loss.

Another feature of interest is the spectral-angular distribution of radiation. It was

shown that in the usual gravity theory without extra dimensions the partial cancela-

tion of local and non-local amplitudes in the case of gravitational interaction can be

attributed to the fact that in terms of a curved space picture the world lines of a mas-

sive ultrarelativistic radiating charge and the null geodesic of the emitted radiation stay
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close to each other, so that the formation length of the radiation emitted predominantly

in the forward direction is γ times stronger than in flat space. In perturbation theory on

a flat background this corresponds to cancelation of contributions at high frequencies.

In the presence of extra dimensions the emitted radiation is predominantly massive

from the brane observer point of view, so the trajectories do not stay close together.

The resulting spectral distribution then has substantial remainder at high frequencies

up to γ2/b, as illustrated in Figs 2.4(a), 2.7(b).

2.6 Notation

2.6.1 KK mode decomposition and Fourier transformation - Notation and

conventions

The Fourier decomposition of the bulk fields hMN (xµ, yi), h′
MN (xµ, yi), Φ(xµ, yi) all with

periodic conditions e.g. hMN (x, yk + 2πR) = hMN (x, yk) is of the form

hMN (x, y) =
1
V

+∞∑

n1=−∞
· · ·

+∞∑

nd=−∞
hn

MN (x) exp
(

i
niy

i

R

)

≡ 1
V

∑

n

hn
MN (x)einkyk/R. (2.6.1)

Using the representation of the delta-function

1
V

∑

n

eink(yk−y′k)/R = δd(y − y′),
1
V

∫

V

einkyk

dyd =
d∏

k=1

δnk, 0 , (2.6.2)

where V = (2πR)d is the volume of the torus, one obtains the inverse transformation:

hn
MN (x) =

∫

V

hMN (x, y)e−inkyk/Rddy . (2.6.3)

Four-dimensional fields hn
MN (x) are then expanded as

hn
MN (x) =

1
(2π)4

∫

e−i(px)hn
MN (p) d4p, (2.6.4)

where (px) = px= qµx
µ is four-dimensional scalar product, and the final decomposition

reads

hMN (x, y) =
1

(2π)4

1
V

∑

n

∫

hn
MN (p)e−i(px)+inkyk/Rd4p , (2.6.5)

while the inverse transformation is

hn
MN (p) =

∫

V

ddy

∫

R4

hMN (x, y)ei(px)−inkyk/Rd4x. (2.6.6)
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Occasionally we will also use another notation for the discrete transversal momenta:

pi
T = ni/R, i.e.

hn
MN (p) =

∫

hMN (x, y)ei(px)−ipT ydDx. (2.6.7)

with pT y = pi
T y

i. From the four-dimensional point of view the zero mode h0
MN (x) (n = 0

means all ni = 0) is massless, while the n 6= 0 modes are massive. Indeed, in the absence

of the source term Eq. (2.2.11) reduces to

(� + p2
T )hn

MN (x) = 0, p2
T =

1
R2

d∑

i=1

(ni)2 , (2.6.8)

where � = ∂µ∂
µ is the four-dimensional D’Alembert operator, while the momenta trans-

verse to the brane give rise to the mass term. In the standard scheme [3] one suitably

combines polarization modes to get true massive gravitons with five spin states for

each mass. For our purposes it will be easier to sum over modes using the original

decomposition.

When the level spacing is small (e.g. when R ≫ b), one can pass from summation

over n to integration over pT using

1
V

∑

n

=
1

(2π)d

∫

ddpT . (2.6.9)

Here it is implicitly assumed that both the sum and the integral converge. As pointed

out in the text, and in contrast to quantum Born amplitudes, this is guaranteed in the

framework of the classical perturbation approach presented here [25].

It is worth noting, that upon integration over modes in the case of small level

spacing, one obtains the results expected in the uncompactified theory in D = 4 +

d−dimensional Minkowski space.

In a similar fashion, expansion of h′
MN (x, y) leads to the set of four-dimensional

modes h′n
MN (x), and an expansion of the bulk scalar Φ(x, y) to the set Φn(x). These four-

dimensional fields are further Fourier transformed to h′n
MN (p) and Φn(p), respectively.

2.6.2 Integration over angles and frequencies

In the main text the following integrals over the radiation angle θ were encountered

V n
m =

π∫

0

sinn θ

ψm
dθ, ψ = 1 − v cos θ (2.6.10)

with integers m,n.
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2.7 Destructive interference for γ/b . ω . γ2/b

For 2m > n+ 1 one finds to leading order [23]

V n
m =

2m−1

Γ(m)
Γ
(
n+ 1

2

)

Γ
(

m− n+ 1
2

)

γ2m−n−1. (2.6.11)

For n > 2m− 1 one obtains

V n
m =

2n−mΓ
(

n+1
2

)
Γ
(

n+1
2 −m

)

Γ(n−m+ 1)
. (2.6.12)

In the case 2m = n + 1 the leading contribution to the integral is proportional to ln γ.

For example, one case needed in the text was V 3
2 ≃ 4 ln γ.

Calculation of the integrals over the frequency or over the impact parameter in-

volving two Macdonald functions of the same argument is performed using the formula

[36]:

∞∫

0

Kµ(cz)Kν(cz)zα−1dz =
2α−3Γ

(
α+µ+ν

2

)
Γ
(

α+µ−ν
2

)
Γ
(

α−µ+ν
2

)
Γ
(

α−µ−ν
2

)

cαΓ(α)
. (2.6.13)

2.6.3 Useful kinematical formulae

The angles in the formulae below are defined in Figure 2.1.

uµ ≡ γ(1, 0, 0, v) , u′ ≡ (1, 0, 0, 0) , ψ ≡ 1 − v cos θ cosα = 1 − v cosϑ ,

z′ =
(ku′)b
γv

=
ωb

γv
, z=

(ku)b
γv

=
ωb

v
ψ = z′γψ , 2γzz′ − z2 − z′2 = ω2b2sin2 ϑ ,

ξ2 ≡ 2γzz′ − z2 − z′2 = ω2b2 sin2 θ cos2 α+ b2k2
T = (γvz′ sin ϑ)2

− (kb) = ξ cosφ = γz′v sinϑ cosφ = γz′v cosα sin θ cosϕ = ωb sin θ cosϕ

β ≡ γzz′ − z2 =
ω2b2 cosϑ(1 − v cosϑ)

v
= γ2z′2ψ(1 − ψ) (2.6.14)

2.7 Destructive interference for γ/b . ω . γ2/b

An alternative proof of the destructive interference effect of the radiation amplitude

in the z−region but with ϑ < 1/γ in higher dimensional Minkowski space will be pre-

sented here. In the main text we followed an approximation allowing to cover the full

angular range. Here destructive interference in the restricted angular range will be

demonstrated rigorously.

Start with (2.3.20), change variable x to ζ given by

ζ dζ = f(x) dx , f(x) = (z2 + z′2 − 2γzz′)x+ γzz′ − z2 , (2.7.1)
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and integrate by parts twice using

ζK̂ν(ζ) = −K̂ ′
ν+1(ζ) . (2.7.2)

The first integration gives:

1∫

0

dx e−ix(kb)K̂d/2−1 [ζ(x)] = −e−ix(kb)

f(x)
K̂d/2 [ζ(x)]

∣
∣
∣

x=1

x=0
+

1∫

0

dx K̂d/2(ζ) ∂x

(
e−ix(kb)

f(x)

)

.

A second integration by parts leads to

σ(k) = λd
γ v z′2

bd

[

ei(kb)

γzz′ − z2

(

K̂d/2(z) − i q0

K̂d/2+1(z)

γzz′ − z2

)

−

− 1

z′2 − γzz′

(

K̂d/2(z′) − i q1

K̂d/2+1(z′)

z′2 − γzz′

)

+R

]

, (2.7.3)

where

q0 = (kb) − i
z2 + z′2 − 2γzz′

γzz′ − z2
, q1 = (kb) − i

z2 + z′2 − 2γzz′

z′2 − γzz′ , (2.7.4)

and

R =

1∫

0

dx K̂d/2+1(ζ(x))

[(
e−ix(kb)

f(x)

)′
1

f(x)

]′

. (2.7.5)

Continuing integration by parts further, one obtains an expansion in terms of q0β
−1

and q1(β− ξ2)−1. As we discussed before, in the z−region of interest here ψ ∼ 1/γ2, z ∼
1, z′ ∼ γ, so that ξ2 ∼ β ∼ γ2 ∼ (β − ξ2), q0 ∼ q1 ∼ γ and therefore the expansion

parameters are: q0β
−1 ∼ γ−1 ≪ 1, q1(β − ξ2)−1 ∼ γ−1 ≪ 1. With this accuracy one can

set q0 = q1 = (kb), β = γzz′ and write:

σ(k) ≃ λb

bd

[

ei(kb)

(
z′

z
K̂d/2(z) − i

(kb)
γz2

K̂d/2+1(z)
)

+
(

z′

z−z′/γ
K̂d/2(z′) +i

(kb)
γz2

K̂d/2+1(z′)
)]

.

(2.7.6)

The first parenthesis in σ cancels for v = 1 the leading terms of ρ (2.3.11), and the

total amplitude j(k) = ρ(k) + σ(k) contains only the second parenthesis in (2.7.6) plus

the subleading terms mentioned above. Thus, the series obtained by integration by

parts, converges inside z−cone ϑ < arcsinγ−1 and establishes the effect of destructive

interference.
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3
Vector Bremsstrahlung by

Ultrarelativistic Collisions in Higher
Dimensions

3.1 Introduction

The first experiments of the Large Hadron Collider (LHC) at CERN have shown that

creation of Black holes is much less than predicted by theorists. When the discov-

ery of new physics at LHC associated with supersymmetry at low energies fails, the

models of TeV-scale gravity become of particular interest. The LHC can be used to

test models with Large Extra Dimensions (LEDs) and set bounds on their parameters

[1; 2]. Initially proposed as an alternative to supersymmetry in solving the hierarchy

problem, such models are motivated by string theory and open new interesting direc-

tions in cosmology. Inspired by earlier ideas of the Universe as a topological defect in

higher-dimensional space-time and the TeV-scale supersymmetry breaking in heterotic

string theory associated with compactification [3], they appeared in several proposals.

A conceptually and technically simple one is the Arkani-Hamed, Dimopoulos and

Dvali (ADD) scenario [4], with the Standard Model particles living in the four-dimensional

space-time and gravity propagating in the D-dimensional bulk with the d = D − 4 flat

dimensions compactified on a torus. Gravity is strong with a corresponding Planck

mass M∗
Pl at the (presumably) TeV scale.

Other LED scenaria include the warped compactification Randall-Sundrum (RS)

models [5], which are based on an identification of the physical four-dimensional space-
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

time with a 3-brane embedded into a five-dimensional bulk endowed with the cosmo-

logical constant, in which case the fifth dimension may be infinite. The model known

as "Universal Extra Dimensions" [6] (UED) allows all fields to propagate through the

bulk.

The common feature of all these models is the existence of a large (in Planck

units) length LPl, which may appear either via a compactification radius, or via inverse

powers of curvature of the infinite bulk. If the quantum gravity scale happens to

be of order of TeV, the LHC, expected to reach center of mass energies one order of

magnitude higher, will be able to study information about gravity at ultraplanckian

energies [7]. The gravitational radius associated with the center of mass collision energy

increases with energy, and in the transplanckian regime becomes larger than the Planck

length, indicating that gravity behaves classically at least for some region of momentum

transfers [8]. Thus the transplanckian gravity is believed to be adequately described

by the classical Einstein equations [9]. This, presumably, allows one to make reliable

theoretical predictions of gravitational effects without entering into the complications

related to quantum gravity.

Black Hole production is arguably the most exciting inelastic process in the context

of the TeV-gravity. Apart from the creation of black holes, another inelastic gravita-

tional process is radiation. Bremsstrahlung itself represents the natural process to test

the existence of extra dimensions and probe them. Colliding ultrarelativistic particles

will radiate and the number of dimensions can easily be determined by the dependence

of the radiated energy from the Lorentz factor γ≫1 of collision.

Bremsstrahlung is characterized by the only one length parameter of experiment –

the impact parameter b. To keep gravity classical, it is expected to be much greater

than the Schwarzschild radius rS , associated with the energy E ≃ √
s, where s stands

for the Mandelstam s-variable:

b ≫ γ1/(d+1)rS ∼
(
κ

2
Dγ

√
s
)1/(d+1)

. (3.1.1)

However, the calculation of classical ultraplanckian gravitational bremsstrahlung in

the context of the ADD model [15] predicts strong enhancement of radiation losses as

compared to theories without extra dimensions already for large values of the impact

parameter. These extreme losses possibly originate from the large number of light

Kaluza-Klein (KK) modes [10; 11]. Our estimate shows that transplanckian collisions

should be heavily damped by radiation, and classical radiation reaction has to be taken

into account in the study of gravitational collapse and BH production in colliders.

On the other hand, the theory of electromagnetic radiation (both classical and

quantum) has been developed to much greater extent than gravitational radiation. The
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3.1 Introduction

same applies to the corresponding detectors of the emitted waves. Thus it is natural to

include vector bremsstrahlung among the realistic inelastic problems, where the force

causing the acceleration may be either gravitational or non-gravitational.

Nevertheless the problem of radiation reaction is far from solved, even in electro-

dynamics. Inspired by the pioneering work of Dirac [19], it was developed by Rohrlich

and Teitelboim in flat space-time [20; 21], adapted by de Witt and Brehme for curved

background [22] and generalized to curved background in higher dimensions in [24].

Some attempts to include radiation reaction in QED have been made during the last

thirty years [25; 27; 28]. However, the number of physical cases where these attempts

have succeeded in producing a closed form result, is quite modest [23].

Thus electromagnetic bremsstrahlung in an external gravitational field (generated

by the partner particle) represents a process of particular theoretical interest in the

context of another application of tail appearance coming from the non-local part of the

Green’s function in curved background.

It actualizes the purposes of this chapter. Furthermore, the synchrotron radiation

shows that within some region of parameters, the electromagnetic field can be also

treated classically, accurately matching the result of quantum electrodynamics.

Thereby, in addition, to make the scheme self-consistent, one has to demand also

the classicality of the particles’ trajectory and classicality of the electrodynamics.

Perturbation theory over the gravitational constant κD will be of usage in the

computation presented here. Given as a zeroth-order solution, Minkowski space-time

will be used as an effective background for the wave propagation. The significance of

such a choice is highlighted by the following facts: (i) it ensures the asymptotically flat

space-time, (ii) one considers tensors and their variations as tensors in flat space with

simple raise/lowering indices and (iii) it allows the freedom to use Fourier-transforms.

Thus one considers the Minkowski space-time as the background, while the di-

rect nature of modes (Kaluza-Klein modes for toroidal extra dimensions or curvature-

mediated modes in cosmological models with no compactification, like RS2) should be

taken into account as a correction due to the curvature. Depending on the choice of

model, the vector field can either propagate through the bulk, or not, even though the

charges are confined on the 3-brane. Thus we generically consider Minkowski space-

time as the background with arbitrary dimensionality D > 4, while all interesting cases

can be obtained as limiting cases of the generic calculation.

This work continues a series of papers [12; 13; 14; 15]: pure gravitational trans-

planckian bremsstrahlung is considered in [15], the classical scalar bremsstrahlung in

[13], while [14] is devoted to the scalar emission in the gravity-mediated bremsstrahlung.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

Mathematically, in the ADD model the Minkowski limit appears as the reduction of

summation over KK-modes into the integration, as long as the restriction on the large

size of extra dimensions holds. Therefore, one has to assume

b ≪ R (3.1.2)

to have large number of KK-quanta, for each model to be applied to.

Most of the previous works on classical bremsstrahlung were concerned with gravi-

tational radiation: for reviews see [15] and references therein, and [17] among the most

recent.

Among the previous works in four dimensions on the electromagnetic radiation

caused by gravitational force, one emphasizes the papers by Peters [18], by Matzner

and Nutku [29] and the work by Gal’tsov, Grats and Matyukhin [30]. In [18] the

post-linear formalism is used in the coordinate space for Schwarzschild background,

considering bremsstrahlung near the vicinity of black hole.

Some qualitative arguments and estimates are given in [32]. In [29] the equivalent-

photons method was adapted for gravitons. This approach was criticized in [30], who

found that this method is of limited range when the frequency range is decreased γ

times, and thereby inappropriate.

In [30] the iteration scheme accompanied by the perturbation theory is used – as well

as in the present work, while mathematical techniques are different: contour integration

in [30] versus expansion of Macdonald functions here. The similar features are: (i) the

damping of radiation amplitude at high frequencies ω ∼ γ2/b (at Lab frame), (ii) the

significant frequency ω ∼ γ/b, coming from the partial cancelation of local and non-local

currents, and (iii) the final power of Lorentz factor:

Erad ∼ (Gem′)2

b3
γ3 .

The difference is related with the erroneous neglect of the local current (which turns

out to be significant) at the dominant frequency ω ∼ γ/b in [30], whereas it has the

same magnitude as the non-local part which is retained. Because of this, the total

coefficient is determined with an error, as well as the small- and medium-frequency

behavior. Thus our answer in four dimensions corrects the overall coefficient obtained

in [30], and generalizes it to the higher dimensions. Furthermore, we show that in

higher dimensions the higher-frequency regime

ω ∼ γ2/b

dominates over the domain ω ∼ γ/b, due to the volume factors in the momentum space.
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3.2 The model

Taking into account some similar features appearing in these works [14; 15], we

minimize the derivations and refer to the previously derived ones, when it is possible.

Meanwhile we would like to emphasize the features not observed in previous works:

conservation of source (validity of the gauge condition), influence of self-action, the

bremsstrahlung of two charges, the length of the emitted wave formation (coherence

length), etc.

In order to distinguish vector radiation by gravitational scattering from pure elec-

tromagnetic bremsstrahlung (which is expected to represent much larger effect due to

the values of couplings in 4D), we charge only one particle in the most of the chapter,

while a subsection in the Discussion section is devoted to the radiation effects coming

from the scattering of two charges.

The chapter is organized as follows: the model, approximation method and formulae

necessary for subsequent computation of the emitted energy, including the polarization

vectors, are described in the Section 3.2. The local and non-local amplitudes, their

combination and the amplitude damping at high frequencies (the destructive interfer-

ence effect) are derived in Section 3.3. Section 3.4 is devoted to the computation of

total emitted energy. Some additional aspects (zero-frequency limits) are discussed.

Particular attention is paid to the emission in the ADD model. Possible cut-offs, the

comparison of electromagnetic bremsstrahlung by gravitational and non-gravitational

forces, the conclusions and prospects are presented in the Discussion section. Finally,

some necessary formulae for computation and the simple proof of the destructive in-

terference phenomenon in the vector case, dealing with just the integration-by-parts

technique, are given in the last three sections.

3.2 The model

We compute here a classical spin-one bremsstrahlung in ultra-relativistic gravity-mediated

scattering of two massive point particles m and m′. The space-time is assumed to be

M1,D−1 with coordinates xM , M = 0, 1, . . . , D − 1, with the mostly minus signature

(+,−, . . . ,−). The units we use are c = ~ = 1.

Particles are localized on the observable 3-brane and interact via the gravitational

field gMN , which propagates in the whole space-time M1,D−1. We also assume the

existence of a massless bulk vector field AM , which interacts with m, but not with m′.

Thus only m has an electromagnetic charge e.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

3.2.1 Setup and Equations of motion

The action of the model is symbolically of the form

S ≡ Sg + SA + Sm′ + Sm + SmA ,

and explicitly, in an obvious correspondence, in the reparametrization-invariant form

S = −
∫

dDx
√

|g|
[
R

κ2
D

+
1
4
gMNgRSFMRFNS

]

−
∫

m′
√

gMN ż′M ż′N dτ ′

−
∫ [

m
√

gMN żM żN − eAM żM
]

dτ (3.2.1)

with1
κ

2
D ≡ 16πGD where GD stands for the D-dimensional Newton’s constant. FMN

is the field strength defined as usual: FMN = ∇MAN − ∇NAM . Our convention for

the Riemann tensor is RB
NRS ≡ ΓB

NS,R − ΓB
NR,S + ΓA

NSΓB
AR − ΓA

NRΓB
AS, with ΓA

NR =

(1/2) gAB(gBR,N + gNB,R − gNR,B). Finally, the Ricci tensor and curvature scalar are

defined as RMN ≡ δB
A RA

MBN and R ≡ gMN RMN , respectively.

In the sequel we deal with the affine parameter of the both particles’ worldline,

so gMN ż
M żN = gMN ż

′M ż′N = 1. Thus we consider only that class of the worldline

reparametrizations, which maintains the natural (affine) parametrization of the trajec-

tory.

Variation of (3.2.1) with respect to zM and z′M gives the particles’ equations of

motion in the covariant form

mDżM = e FMN żN , D′ż′M = 0 , (3.2.2)

where the covariant derivative is defined as

DπM ≡ ∂πM

∂τ
+ ΓM

RS π
RżS . (3.2.3)

Variation over AM leads to

∇NF
MN = −JM , JM (x) = e

∫

żM (τ)
δD
(
x− z(τ)

)

√

|g|
dτ . (3.2.4)

Finally, varying the action with respect to the metric gMN , one obtains the Einstein

equations

RMN − 1
2
gMN R =

κ
2
D

2
TMN , (3.2.5)

1We do not deal with massless particles. Thus the Polyakov form of the mechanical action is not

required.
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3.2 The model

where TMN is a total matter of the system-at-hand.

In order to resolve the equations of motion we use perturbation theory with respect

to the gravitational coupling and the electromagnetic coupling.

As was argued in the Introduction, one expands the metric as a perturbation on

the Minkowski background:

gMN = ηMN + κDhMN

and then finds the solution of equations of motion in each order iteratively. Respectively,

all tensors are to be considered as tensors in flat space-time, as well as raising/lowering

of their indices.

3.2.2 Approximation method

We intend to use an approximation technique that relies on the fact that the deviation

from the Minkowski metric is small i.e. κDhMN ≪ 1. In particular, we have to evaluate

κDhMN at the location of the charge, i.e. considering m′ as the source of an external

gravitational field. In what follows:

b ≫ rg , r′
g

d+1 =
8Γ
(

d+3
2

)

π(d+1)/2(d+ 2)
GDm

′ . (3.2.6)

The possible restrictions due to the charge do not affect the perturbative approximation

we use and their discussion is postponed to the Discussion section.

As mentioned above we will be solving the equations of motion iteratively. Therefore

all fields and kinematical quantities are to be expanded as follows:

φ = 0φ+ 1φ+ 2φ+ . . . , (3.2.7)

where φ can be hMN , TMN , AM , zM and z′M as well as their derivatives. Thus the left

superscript is used to denote the order of iteration.

Next, to perform the iterations, it is more useful to work with a flat-derivative

interpretation of the EoM (3.2.4):

1
√

|g|

(√

|g| gMLgNRFLR

)

,N
= −JM , FMN = ∂MAN − ∂NAM (3.2.8)

and to rewrite it, introducing ”new” current1 J̃M :

∂N

(√

|g| gMLgNRFLR

)

= −J̃M , J̃M (x) = e

∫

żM (τ) δD
(
x− z(τ)

)
dτ . (3.2.9)

1It represents the vector density with respect to the total metric, but each term of expansion of it

will represent the vector in flat background.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

Finally, one has to explicitly manifest the matter sources of the generic equations to

vary them in the sequel: the mechanical energy-momentum tensor of two particles and

the stress-tensor of the bulk vector field are given by corresponding action variation

over the total metric gMN and read (in the gauge gMN ż
M żN = 1)

TMN
m = m

∫
żM żNδD

(
x− z(τ)

)

√−g dτ TMN
m′ = m′

∫
ż′M ż′NδD

(
x− z′(τ ′)

)

√−g dτ ′,

(3.2.10)

and

TMN
em = FMLFL

N +
1
4
gMNFLPF

LP , (3.2.11)

respectively1.

Zeroth order. To zeroth order one expects the flat space with no fields in it:

0hMN = 0 , 0AM = 0 .

In what follows, to this order both particles move freely:

0z̈M = 0z̈ ′ M = 0

with constant velocities 0żM ≡ uM and 0ż′ M ≡ u′M .

Furthermore we will be working in the Lorentz frame where the uncharged particle

m′ is at rest (at zeroth order): in addition, we set the origin of coordinate system to

coincide with its zeroth-order location.

u′M = (1, 0, . . . 0) , 0z′M = u′M τ ′ . (3.2.12)

The charged particle m is ultra-relativistic and moves along the 3-brane with high-speed

v . 1 and large Lorentz factor γ ≡ (1 − v2)−1/2 ≫ 1. We choose the spatial direction

of zeroth-order motion as the z−axis, while the vector of closest proximity bM between

the two particles is chosen to coincide with the x−axis. Finally we choose the time of

scattering to be zero. In what follows

uM = γ(1, 0, 0, v, 0 . . . 0) , 0zM = 0uM τ + bM , bM = (0, b, 0, . . . , 0) .

(3.2.13)

Thus γ = u · u′ represents the Lorentz factor of collision, b > 0 represents the impact

parameter of this scattering, while both uM and bM lie on the brane and are mutually

orthogonal.
1Raising/lowering of indices here is performed using the total metric, gMN . Parallel displacement

bi-vectors ḡM
A(x, z) are assumed in (3.2.4,3.2.10) and omitted, due to the coincidence limit δD(x− z).
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Finally, vectorial and tensorial sources coming from equations (3.2.9) and (3.2.10)

are given by

0J̃M (x) = e uM

∫

δD
(
x− 0z(τ)

)
dτ (3.2.14)

and

0TMN = muMuN

∫

δD
(
x− 0z(τ)

)
dτ , 0T ′MN = mu′Mu′N

∫

δD
(
x− 0z′(τ)

)
dτ ,

(3.2.15)

respectively, while 0TMN
em = 0 .

First order. The zeroth-order sources produce corresponding first-order fields.

Namely, from the Einstein equations (3.2.5) one expects to get the equation for 1hMN .

Consecutively computing the first-order variations1

g
(1)
MN = hMN Γ(1)R

MN = (hR
M ;N + hR

N ;M − hMN
;R)/2

g(1)MN = −hMN R
(1)
MN =

1
2

(

hR
N ;MR + hR

M ;NR − 2hMN − h;MN

)

(3.2.16)

ξM ≡ Γ(1)M
NR ηNR R(1) = −2h+ hMN

;MN −R
(1)
MNh

MN

2 ≡ ηMN∂M∂N G
(1)
MN =

1
2

(

−2hMN +
2h

2
ηMN − ξ ;L

L ηMN + ξM ;N + ξN ;M

)

,

one introduces

ψMN = hMN − 1
2
ηMN h, h ≡ hP

P (3.2.17)

and sets the flat de Donder gauge

∂Nψ
MN = 0 , ∂Nh

MN =
1
2
h ,M , (3.2.18)

which leads to

R
(1)
MN = −1

2
2hMN , R(1) = −1

2
2h , G

(1)
MN = −1

2
2ψMN . (3.2.19)

We note that the gauge fixation (3.2.18) implies

∂N
kψMN = 0 , kψMN ≡ khMN −

khLP η
LP

2
ηMN . (3.2.20)

Eventually, substituting hMN = 1hMN + 2hMN + . . . and taking into account the gauge

(3.2.20), one obtains the first-order variations corresponding to our iteration scheme:

1RMN = −1
2
2

1hMN , 1R = −1
2
2

1h , 1GMN = −1
2
2

1ψMN . (3.2.21)

1Notice, here hMN represents the entire tower of its iterations. In these notations with right

superscript we follow Weinberg [36].
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

In what follows the first-order Einstein equation (3.2.5) reads

2
1ψMN = −κD

0TMN , 2
1hMN = −κD

(

0TMN − ηMN
0T

D − 2

)

, (3.2.22)

where 0T ≡ ηLR
0TLR .

Substituting the zeroth-order matter part (3.2.15) one obtains 1hMN as a sum

1hMN = 1hMN
m + 1hMN

m′ (3.2.23)

due to linearity of the first order, where each term represents a solution of (3.2.22) with

source by the corresponding particle separately.

Furthermore, the first order of (3.2.9) reads

∂N
1FMN = − 0J̃M (3.2.24)

with source given by (3.2.14).

Impose the flat Lorentz gauge for all orders1

∂M
kAM = 0 , kFMN ≡ kAN,M − kAM,N (3.2.25)

to derive

2
1AM = 0J̃M (3.2.26)

as also a d’Alembert equation.

Now consider the first-order equations of motion for two particles: making use of

(3.2.2), one derives the electromagnetic part of a force, acting on the charge as

m 1z̈M
em = e 1FMN uN . (3.2.27)

Whereas 1FMN is produced by the same particle m, and one has to consider 1FMN

as external field and omit the self-action of fields in this order2.

In what follows, to first order, both particles move along the geodesics created by

the gravitational field produced by the partner particle, that we denote schematically

gMN = ηMN + κD
1hMN

m′ + O(κ2
D) , g′

MN = ηMN + κD
1hMN

m + O(κ2
D) . (3.2.28)

1Take into account, it differs from the originally covariant ∇MAM = 0.
2The account of self-action in coordinate representation leads to the renormalization of mass, radi-

ation and radiation reaction phenomena [19; 20; 21; 24] but these effects are proportional to z̈M and its

derivatives, and do not appear in the first order of PT, because of 0z̈ = 0 found above. The appearance

of self-action terms in higher orders will be discussed below.

74
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Thus only the gravitational part of force survives1 and the total first-order EoMs for

the acceleration (3.2.2) represent a motion in the external linearized gravitational field

and read

1z̈M = −κD

(

1hML,R
m′ − 1

2
1hLR,M

m′

)

uLuR ,

1 z̈ ′ M = −κD

(

1hML,R
m − 1

2
1hLR,M

m

)

u′
Lu

′
R . (3.2.29)

For a more complete derivation of this gravitational part see [15]. It justifies our model

as ”radiation under gravity-mediated collisions”.

Second order equation for A−radiation. The solution of linear equation

(3.2.26) is the field generated by an uniformly moving charge and represents the boosted

Coulomb field. Hence it does not contribute to radiation. In four dimensions it explic-

itly follows from the Larmor formula for the electromagnetic radiation by an accelerated

charge. In arbitrary dimension it implicitly follows from the Equivalence principle. We

will discuss this more thoroughly later.

The second order of our scheme leads to the radiation. For the vector emission in the

bremsstrahlung process it is enough to consider only the correction to electromagnetic

field 2AM and its source.

Taking the next order of (3.2.9) together with the Lorentz gauge fixing, one obtains

2
2AM = jM (x) , jM (x) ≡ ρM (x) + σM (x) , (3.2.30)

where

ρM (x) ≡ 1J̃M (x) = e

∫ (
1żM − uM 1zN∂N

)

δD
(
x− 0z

)
dτ (3.2.31)

and

σM (x) = −κD ∂N

(

1hM
L

1FLN + 1hN
L

1FML − 1
2

1h 1FMN

)

, (3.2.32)

respectively.

We will refer to the first term as the local term since it is fixed on the trajectory

of particle m, while the second term will be referred to as the non-local current2, as
1We remind that this phenomenon is a direct consequence of the fact that only one particle is

charged in the model-at-hand.
2Note that there is some ambiguity with regard to the definition of the local and the non-local

part: indeed, if both sides of (3.2.8) are not multiplied by the factor
√

|g| and if vary it instead (3.2.9),

the variation of this factor will remain in the RHS and will be identified as local. Nevertheless, for

the source of 2nd-order field one needs the sum of ρM and σN and, of course when such a factor

disappears from one term, it resurrects in another hand side variation – hence the sum is insensitive to

such algebraical transformations.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

it comes from the left-hand side of (3.2.9) and represents the non-linear terms of the

vector field with gravity.

A note to be added: in fact, we use the perturbation theory only over the gravita-

tional coupling κD. This is achieved by the fact that only the gravitational force acts

on the particles up to the first order. Because of this fact, both terms in (3.2.31) are

proportional to żM and zM , respectively, and thus contain κD as a pre-factor.

3.2.3 The radiation formula

Here we highlight the basic steps to derive the momentum radiated in the form of an

electromagnetic field. A flat space world tube W with a boundary of two space-like

hypersurfaces, Σ±∞ defined at t → ±∞, as well as a time-like cylindrical surface C

located at infinite distance is considered. Spatially, both particles are located within

the volume or order bD−1, due to the small scattering angle, while with respect to time

the process is restricted by the characteristic time of collision, where both fields in the

source (3.2.32) are of equal significance. Thus one considers the source of emission to

be restricted by the characteristic space-time volume V. Integrating the flux through

the two hypersurfaces with the time-positive normals, we write the emitted momentum

PM , using the flat-space background concept:

PM =
∫

Σ+∞

TMN dS+
N −

∫

Σ−∞

TMN dS+
N =

∫

∂W

TMN dSN =
∫

W

∂NTMN dDx = −
∫

W

FMNJN dDx ,

(3.2.33)

where TMN and JM are flat analogues of (3.2.11) and (3.2.4), respectively. Here one

uses the Gauß’s theorem and the Maxwell equations and implies the cancelation of the

surface integral over C due to the fact that it corresponds to the retarded moment

t → −∞ of emission, where the motion was free.

Performing a Fourier-transformation1, substituting FMN by its retarded solution

via the Green’s function and making use of current transversality (k · j = 0) with the

fact that jM (x) is a real-valued function, we obtain

PM =
i

(2π)D

∫

dDk kM Gret(k) j∗(k) · j(k) , (3.2.34)

where Gret(k) = −P
(
1/k2

)
+ iπ sgn(k0) δ(k2). The real part −P

(
1/k2

)
does not contribute

to the integral due to imparity over time integration. Finally, transforming the integral
1Our convention on the Fourier-transforms is

ϕ(x) =
1

(2π)D

∫

ϕ(k) e−ikxdDk , ϕ(k) =

∫

ϕ(x) eikxdDx .
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3.2 The model

into positive values of k0 and integrating over |k| with δ(k2), one finally obtains

PM = − 1
2(2π)D−1

∫
kM

|k| j
∗
N (k)jL(k) ηNL dD−1k , (3.2.35)

where k is an absolute value of (D − 1)-dimensional spatial part of kM . Taking into

account the transversality and the on-shell condition k2 = 0 of the emitted wave, one

can replace the Minkowski metric in ηMN by

∆MN ≡
(

gΠM
L

) (

k′ΠLN
)

= ηMN +
kMkN − 2(kg) k(MgN)

(kg)2
, (3.2.36)

with any time-like unit vector g, where gΠ = 1 − g ⊗ g and k′ Π = 1 + k′ ⊗ k′/(kg)2 are

projectors onto subspaces transverse to g and k′ ≡ gΠk = k − (kg)g, respectively. Since

k′ · g = 0, the projectors gΠ and k′Π commute. Their product ∆MN is then a symmet-

ric projector onto the subspace Mk,g, perpendicular to k and g. By construction, the

projector ∆ is idempotent (∆2 = ∆), thus it acts on Mk,g as the unit operator. In what

follows, we will conveniently choose gM = u′
M and calculate the flux in the Lorentz

frame (referred to as the Lab frame further) with u′
M = (1, 0, . . . , 0).

We arbitrarily choose the orthonormal basis {εM
i } on Mk,g and set the resolution of

identity

∆MN = −
∑

i

εM
i εN

i , εM
i εjM = −δij , i = 1, 2..., D − 2 .

Finally, setting M = 0 for the energy, the radiation formula reads

Erad =
1

2 (2π)D−1

∑

i

∞∫

0

ωD−2 dω

∫

SD−2

dΩ |J · εi|2 (3.2.37)

as sum over polarizations, where ω ≡ k0 while dΩ stands for the measure on unit sphere

SD−2 in R
D−1.

Polarization vectors. Polarization vectors are mutually orthogonal and satisfy

εi · k = εi · u′ = 0. It is convenient to choose the first D − 4 vectors εα to be orthogonal

to the collision space ({scattering plane} × {time}), defined by the linear shell of uM ,

u′M and bM . Thereby they satisfy the relations εα · k = εα · u′ = εα · u = εα · b = 0,

where α = 3, . . . , D − 2. Choosing the D-dimensional unit antisymmetric tensor to be

ǫ0xyz3,...(D−2) = 1, we define the remaining two polarization vectors as

εM
1 = N−1

[

(ku)u′M − (ku′)uM +
(

u · u′ − k · u
k · u′

)

kM

]

(3.2.38)
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

and

εM
2 = N−1ǫMM1M2...MD−1 uM1

u′
M2
kM3

ε3M4
. . . ε(D−2)MD−1

, (3.2.39)

respectively, where N is a normalization constant given by

N2 = −
[

(ku′)u− (ku)u′
]2

. (3.2.40)

By construction, it is easy to verify that ε1 · u′ = ε2 · u = ε2 · u′ = 0 and ε1 · k = ε2 · k =

ε1 · ε2 = 0.

Introducing the angles according to Fig. 2.1 (for additional info see section 3.6), the

normalization factor reads N = γv sinϑ(ku′) and the following products do not vanish:

(e1b), (e1u) and (e2b), respectively. The values of these contractions are given by

ε1 · b = −b cosϑ cosφ , ε1 · u = γv sinϑ , ε2 · b = −b sinφ . (3.2.41)

For the derivation, see [15]. Thus the ”bulk” polarizations do not contribute into

radiation; thereby in addition, one can introduce chiral polarization vectors in a usual

way as

εM
± =

εM
1 ± iεM

2√
2

. (3.2.42)

To summarize this Section: the formula for emitted radiation (3.2.37) and the

appropriate polarization states of massless D-dimensional photon are derived, and for

the problem-at-hand only two polarizations given in the covariant form (3.2.38, 3.2.39),

contribute into the total emitted energy, as it is proper in four dimensions.

The source of the emitted field is to be computed within the iteration scheme based

on the perturbation theory over gravitational constant κD.

Notice, JM in (3.2.37) represents the total source of the total AM as a solution in

flat space-time, and thus in our iteration scheme it is given by the series

JM (k) = 0JM (k) + jM (k) + . . . . (3.2.43)

Here the 0JM given by (3.2.14) is a source of boosted Coulomb field, and its square

does not contribute to the radiation. It will be shown below that the contribution of

product 0J∗ · j + 0J · j∗ also vanishes, and
∑ |j · εi|2 becomes the first surviving order

which contributes to the total emitted energy.

Thereby jM (k) (3.2.30) as well as its constituents becomes of particular significance

and we concentrate on its evaluation. Looking at σM (k) (3.2.32), it is enough to restrict

ourselves on the first-order perturbation of the gravitational field 1hMN = 1hMN
m + 1hMN

m′ .

Thus in order to simplify notations, we keep hMN as a simplified notation of 1hMN
m and

denote, respectively, h′MN ≡ 1hMN
m′ .
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3.3 The radiation amplitudes

The first-order fields, discussed above, in the momentum space are given by

hMN (q) =
2πκDm

q2
eiqb δ(qu)

(

uMuN − 1
d+ 2

ηMN

)

,

h′
MN (q) =

2πκDm
′

q2
δ(qu′)

(

u′
Mu′

N − 1
d+ 2

ηMN

)

,

1AM (q) = −2π e
q2

eiqb δ(qu)uM ,

1FMN (q) = i
2π e
q2

eiqb δ(qu)
[

qMuN − qNuM
]

. (3.3.1)

Respectively, the Fourier-transform of 0J̃(x) = 0J(x) reads

0JM (q) = 2π e eiqb δ(qu)uM . (3.3.2)

Now we proceed to compute the two parts of the radiation amplitude.

3.3.1 Local amplitude

The Fourier transform of (3.2.31) reads

ρM (k) = e ei(kb)

∫ [
1żM + i(k 1z)uM

]

ei(ku)τ dτ . (3.3.3)

The first order correction to the trajectory is computed in 2 and we quote that result

here.

1zM (τ) = − im′
κ

2
D

(2π)D−1

∫

dDq
δ(qu′)
q2(qu)

e−iqb
(

e−i(qu)τ − 1
)[

γu′M − 1
d+ 2

uM − γ2
∗

2(qu)
qM

]

,

(3.3.4)

where γ2
∗ ≡ γ2 − (d+ 2)−1. We drop all the terms containing u′M since they are trans-

verse to the polarization vectors and thus will not contribute to the radiation. After

integrating with respect to τ we obtain

ρM(k) = −em′
κ

2
D ei(kb)

(2π)D−2

[

γ I

(

u′M − ku′

ku
uM

)

− γ2
∗

2(ku)
IM +

γ2
∗ k · I

2(ku)2
uM

]

, (3.3.5)

where the integrals I and IM are defined by

I =
∫
δ(pu′) δ(ku− pu) e−i(pb)

p2
dDp , IM =

∫
δ(pu′) δ(ku − pu) e−i(pb)

p2
pM dDp .

(3.3.6)
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These integrals have been computed in [13] in terms of Macdonald functions (modified

Bessel functions of 3rd kind):

I = − (2π)d/2+1

γv bd
K̂d/2(z) , IM =

(2π)d/2+1

γv bd+1

[

z K̂d/2(z)
uM −γu′M

γv
− iK̂d/2+1(z)

bM

b

]

,

(3.3.7)

with

z ≡ (ku)b
γv

, z′ ≡ (ku′)b
γv

, (3.3.8)

where we use the more economic, non-conventional notation K̂ν(x) ≡ xνKν(x), in or-

der to simplify the explanation of estimates making use of slowly altering at [0,O(1)]

function.

Substituting (3.3.7) into (3.3.5) one obtains

ρM(k) =
λ ei(kb)

v

[(

1 − γ2
∗

2γ2v2

)(

u′M − z′

z
uM

)

K̂d/2(z)+

+
iγ2

∗
2γ2vz

(
(kb)
γvz

uM − bM

b

)

K̂d/2+1(z)
]

, (3.3.9)

with

λ ≡ em′
κ

2
D

(2π)d/2+1 bd
. (3.3.10)

Here we have restored the dependence on u′M in order to make obvious the conser-

vation of the current (Subsection 3.3.5).

The local current ρM (k) contains Macdonald functions Kν(z) and, combined with

the volume factor ωd+2 sind+1ϑ, gives dominant contribution in the region ω ∼ γ2/b,

ϑ ∼ γ−1 (i.e. z ∼ 1), as was argued in [13] and will be discussed later in Subsection

3.5.1. In this region for the usage below we expand ρM (k) in powers of γ:

ρM(k) =
λ ei(kb)

2

[

−z′

z
K̂d/2(z)uM − i

(
z′ sinϑ cosφ

z
uM +

bM

b

)
K̂d/2+1(z)

z
+

+
d+ 1
d+ 2

z′

γ2z
K̂d/2(z)uM + O(γ−2)

]

, (3.3.11)

where the first term in the parenthesis is of order O(γ), the square-bracket-term has

order O(1), while the last term is of order O(γ−1) and the rest represents all subleading

terms.
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3.3.2 Non-local (stress) amplitude

The Fourier transform of (3.2.32) is given by

σM(k) =
κ

2
D em

′ ei(kb)

(2π)2

[

(ku′)
(

(ku′)uM − (ku)u′M
)

J +
(

γ (ku′) − (ku)
d+ 2

)

JM+

+
(
uM

d+ 2
− γu′M

)

k · J +
(

(ku)u′M − (ku′)uM
)

u′ · J
]

, (3.3.12)

where1

J(k) ≡
∫
δ(pu′) δ(ku − pu) e−i(pb)

p2 (k − p)2
dDp , JM (k) ≡

∫
δ(pu′) δ(ku− pu) e−i(pb)

p2 (k − p)2
pM dDp ,

(3.3.13)

which have been computed in [15] as integrals over Feynman parameter x. We keep

(3.3.12) for the proof of gauge conservation and further suppress terms proportional to

u′M , as they do not contribute to the radiation. From this definition (3.3.13) it follows

that u′ · J = 0, thus σM (k) reads:

σM(k) =
λ ei(kb)

2γv

1∫

0

dx e−i(kb) x

{

i

[
(kb)
d+ 2

uM +
(

γ2vz′ − γzv

d+ 2

)
bM

b

]

K̂d/2(ζ)+

+
[
β − xξ2

d+ 2
−
(

γz′ − z

d+ 2

)(

(1 − x) z + γz′x
)

+ γ2v2z′2
]

K̂d/2−1(ζ)uM

}

, (3.3.14)

with

ξ2 ≡ 2γzz′ − z2 − z′2 , β ≡ γzz′ − z2 , ζ2(x) ≡ z′2x2 + 2γzz′x (1 − x) + z2 (1 − x)2
.

The non-local amplitude has now been written in terms of three scalar integrals of the

following type:

J(σ,τ) ≡
1∫

0

xσ e−i(kb)x K̂d/2+τ(ζ) dx , (σ, τ) = (0,−1), (0, 0) and (1,−1) . (3.3.15)

These integrals have been studied in details in [15]: introducing parameter ̺ ∼ ωbϑ,

(3.3.15) is expanded as series over 1/̺. Thus in the high-frequency region (or z−region,

for brevity) ω ∼ γ2/b, ϑ ∼ γ−1 the dominant contribution comes from small x =

0 . . .O(γ−2) and all integrals (3.3.15) are to be expanded in terms of Macdonald func-

tions with argument ζ(0) = z, with expansion parameter 1/γ. In the large-angle region

1We denote these double-propagator Fourier integrals as J and JM , the same letter as vectorial

source introduced in the Section 3.2, in order to keep notation and contact with [15], so we hope, this

will not bring a reader to some misleading.
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(or z′−region) ω ∼ γ/b, ϑ ∼ 1 the dominant contribution comes from the values of x near

1: x = 1 − O(γ−2) . . . 1 and all such integrals are to be expanded in terms of Macdonald

functions with argument ζ(1) = z′.

In the transition region (ω ∼ γ/b, ϑ ∼ γ−1) the exponential in (3.3.14) does not

oscillate rapidly and the whole domain x = [0, 1] contributes equally. The series with

Macdonald functions Kν(z) and Kν′(z′) is also valid (see section 3.8) but converges very

slow since no small factor is available: ̺ ∼ 1. Finally, in the ultimate region (ω ∼ γ2/b,

ϑ ∼ 1) the whole integral is exponentially suppressed by O(eγ).

Next we consider more thoroughly the high-frequency behavior of local and non-

local amplitudes.

3.3.3 Destructive interference

We now proceed to demonstrate the cancelation of the two leading orders of σM and ρM

in powers of γ in the z−region, which leads to the strong damp of the amplitude by O(γ2)

and the emitted energy by four orders of γ. We will refer to this effect as destructive

interference. The same effect for gravity was described in [14; 15] by means of the same

representation via Macdonald functions. In another representation it appeared in [30]

dealing with only four dimensions.

We follow [15] and sketch the procedure for showing this: in the z−region (z ∼
1, z′ ∼ γ) the integral J(1,−1) is suppressed by two orders of γ with respect to the J(0,−1)

and J(0,0) as it was implicitly mentioned in the previous Subsection and proved in [15,

eqn.(3.28)]. We now keep only the terms that will give us the first three orders of

(3.3.14):

σM(k) ≈ λ ei(kb)z′γ

2

1∫

0

dx e−i(kb) x

[

z′K̂d/2−1(ζ)uM +
i

b
K̂d/2 (ζ) bM−

−
(
d+ 1
d+ 2

z

γ
+
z′

γ2
+ z′x

)

K̂d/2−1(ζ)uM

]

. (3.3.16)

Finally we substitute the approximation [15, eqn.(B.10)], appropriately simplified here

neglecting the exponentially suppressed Macdonalds Kν′(z′) (a ≡ z/sinϑ):

1∫

0

dx e−i(kb) xK̂ν−1(ζ) ≈ β

a2ξ2

[

K̂ν(z) − i
kb

β
K̂ν+1(z) − 2ν+ 1

a2
K̂ν+1(z) +

sin2φ

a2
K̂ν+2(z)

]

≈

≈ K̂ν(z)
γzz′ − i

(kb) K̂ν+1(z)
(γzz)2

+
1 − γ2ψ

γ3z′z
K̂ν(z) − sin2ϑ

γz3z′

[

(2ν+ 1)K̂ν+1(z) − sin2φ K̂ν+2(z)
]

.

(3.3.17)
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3.3 The radiation amplitudes

For J(1,−1)-type integral [15, eqn.(3.28)] we retain only the leading terms:

1∫

0

dxx e−i(kb) xK̂ν−1(ζ) ≈ − 1

(γz′)2 K̂ν(z) − (2ν + 1)

(γzz′)2 K̂ν+1(z) +
1

(γzz′)2 K̂ν+2(z) .

Thus upon substitution of the latter two into (3.3.16) and retaining the first three

orders, one obtains:

σM ≈ λ ei(kb)

2γ

[

γz′

z
K̂d/2 (z)uM + i

(

γ
bM

b
− (kb)

z
uM

)
K̂d/2+1(z)

z
− d+ 1
d+ 2

K̂d/2(z)uM−

−(d+ 1)
(

1 − sin2ϑ

ψ

)
K̂d/2+1(z)

z2
uM +

((
sin2ϑ sin2φ

ψ
− 1
)

uM +
(kb)
z′

bM

b

)
K̂d/2+2(z)

z2

]

.

The first two orders of this expression exactly cancel with the first two orders of

(3.3.11), leaving us with

jM ≈ λ ei(kb)

2γ

[

d+ 1
d+ 2

(
1
γ2ψ

− 1
)

K̂d/2(z)uM − (d+ 1)
(

1 − sin2ϑ

ψ

)
K̂d/2+1(z)

z2
uM +

+
((

sin2ϑ sin2φ

ψ
− 1
)

uM +
(kb)
z′

bM

b

)
K̂d/2+2(z)

z2

]

. (3.3.18)

We note that even though the current will finally be projected on the two polarization

vectors, this will not change our conclusion, as the contractions (3.2.41) add no powers

of γ at the region of interest.

3.3.4 The total radiation amplitude

In order to compute the total radiation energy, we will need to study the following

three regions. The z-type radiation emitted for angles ϑ ∼ 1/γ and ω ∼ γ2/b, the region

with frequency ω ∼ γ/b again for small angles and finally the radiation at angles ϑ ∼ 1

at medium-frequencies.

High frequency regime. The radiation amplitude in z−regime after the destruc-

tive interference was derived in the previous Subsection. Projecting (3.3.18) on (3.2.42),

the chiral amplitudes j± ≡ j · ε± read:

j±(k) ≈ λ ei(kb) sin ϑ

2
√

2

[
d+ 1
d+ 2

1 − γ2ψ

γ2ψ
K̂d/2(z) − d+ 1

z2

(
sin2ϑ

ψ
− 1
)

K̂d/2+1(z)+

+
sin2φ

z2

(
sin2ϑ

ψ
− 1
)

K̂d/2+2(z) ± i
sin 2φ
2 z2

K̂d/2+2(z)
]

. (3.3.19)

All terms in the parenthesis (3.3.19) are of order O(1) (in λ = 1 units) within z−regime,

hence the whole amplitude goes like O(γ−1) due to the common pre-factor sin ϑ.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

Large angle regime. In this region of the parameters (z′−regime) z is of order

O(γ), so the Macdonald functions that have z as their argument are exponentially

suppressed. Thus we ignore the local part of the current and consider only the non-

local part. To repeat, in this regime the main contribution of the integrals with respect

to x comes from the area near x = 1, and the integrals J0,τ − J1,τ , which are of the

form 1 − x, are suppressed by a factor of O(γ−2) with respect to both J0,τ and J1,τ .

We rewrite (3.3.14) in a way where we are expanding both with respect to γ but also

with respect to 1 − x. Taking also into account that uM is perpendicular to the second

projection, while it gives us an order of γ when projected on the first polarization, while

bM gives no additional powers of γ when projected on either polarization, we write the

two leading orders:

jM(k) ≈ λ ei(kb)

2γ

1∫

0

dx e−i(kb) x

{[(

γ2z′2 − d+ 1
d+ 2

γzz′
)

(1 − x) +
z′2

d+ 2

]

K̂d/2−1(ζ)uM +

+ i

[
(kb)
d+ 2

uM +
(

γ2z′ − γz

d+ 2

)
bM

b

]

K̂d/2 (ζ)
}

. (3.3.20)

Since no destructive interference is expected, we retain only the leading terms of inte-

grals, and set x = 1 inside the integrand of (3.3.20). These integrals have been computed

in [15] and give, to the leading order,

1∫

0

ei(kb)x K̂τ (ζ) dx ≈ e−i(kb)

z′2γ2ψ
K̂τ+1(z′) . (3.3.21)

Eventually, the entire first line in (3.3.20) turns out to be subleading with respect to

the second one, and, upon substitution (3.3.21) jM reads:

jM(k) ≈ λ i

2γψ

[
(kb)

γ2z′2(d+ 2)
uM +

(
1
z′ − z

γz′(d+ 2)

)
bM

b

]

K̂d/2+1(z′) . (3.3.22)

Finally projecting on ε± (3.2.42) the two significant radiation amplitudes in z′−region

are given by

j±(k) ≈ λ i

2
√

2γψ

[

− sin2ϑ cosφ
z′(d+ 2)

+
(

ψ

d+ 2
− 1
z′

)

cosϑ cosφ±

±i
(

ψ

d+ 2
− 1
z′

)

sinφ
]

K̂d/2+1(z′) . (3.3.23)

In what follows, the amplitudes are of order O(γ−1).

Transition regime. In this region, the projection of the current on the polarization

vectors will once more not add any powers of γ. We have z ∼ 1/γ and z′ ∼ 1. Looking

at expressions (3.3.9) and (3.3.14) we see that they are of the same order O(γ) in any

dimension in units λ = 1.
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3.3 The radiation amplitudes

3.3.5 Conservation of current and validity of gauge fixation

In the above analysis, the following gauges were fixed:

• the affine parametrization of the trajectories along the worldlines of the scattered

particles:

gMN ż
M żN = gMN ż ′ M

ż ′ N = 1 ; (3.3.24)

• the de Donder gauge on the gravitational field:

∂M
kψMN = 0, k = 1, 2, . . . ; (3.3.25)

• the Lorentz gauge on the vector field:

∂M
kAM = 0, k = 1, 2, . . . . (3.3.26)

To verify self-consistency of our scheme (at least to the lowest orders of interest), we

show it explicitly.

To zeroth order, (3.3.24) degenerates into u2 = 1 and u′2 = 1 which is trivially

satisfied.

In the first order, variation of (3.3.24) reads

κDh
′
MN ( 0z)uMuN + 2 ( 1ż · u) = 0 , κDhMN ( 0z′)u′Mu′N + 2 ( 1 ż ′ · u′) = 0 ,

(3.3.27)

respectively. From (3.3.1) the value of h′
MN (x) at the location of m−particle x = 0z(τ)

reads

hMN ( 0z) =
κDm

′

(2π)D−1

∫

dDq
δ(qu′)
q2

(

u′
Mu′

N − 1
d+ 2

ηMN

)

e−iqz0 . (3.3.28)

Contracting it with uM uN and substituting 0zM (τ) = uM τ + bM one obtains

hMN ( 0z)uM uN =
κDm

′

(2π)D−1

∫

dDq
δ(qu′)
q2

(

γ2 − 1
d+ 2

)

e−iq ·(uτ+b). (3.3.29)

Differentiating (3.3.4) and contracting with uM one obtains

(
1ż(τ) · u

)
= − m′

κ
2
D γ2

∗
2(2π)D−1

∫

dDq
δ(qu′)
q2

e−iqb e−i(qu)τ . (3.3.30)

Multiplying it by 2 and combining with (3.3.29) one gets the cancelation and thereby

verifies (3.3.27) to the first order. The gauge on the trajectory of m′−particle is checked

similarly.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

Next, proceeding to the de Donder gauge on 1ψMN : one rewrites (3.3.1):

1ψMN (q) =
2πκDm

q2
eiqb δ(qu)uMuN .

The divergence in Fourier space reads

qN
1ψMN (q) =

2π κDm

q2
eiqb (qu) δ(qu)uM = 0 ,

by virtue of distributional identity x δ(x) = 0.

The divergence of 1AM (the first order of (3.3.26)) vanishes due to the same reason:

qM
1AM (q) = −2π e

q2
eiqb δ(qu) (qu) = 0 . (3.3.31)

Let also verify the gauge on 2AM : in the momentum space

2AM (k) = −
2jM (k)
k2

,

where jM (k) is the full Fourier-transform taken off-shell k2 = 0 and with no terms

neglected due to polarizations. Thus Lorentz gauge of 2AM is equivalent to k · j = 0.

The constituents of jM (k) are given by (3.3.5,3.3.9) and (3.3.12). Projecting both

on kM one concludes k · ρ(k) = 0 and k · σ(k) = 0. Thus both

∂M ρM (x) = 0 , ∂M σM (x) = 0

conserve separately, as well as their sum.

Finally, one has to point out, that the conservation of 2AM on flat background

represents the same effect as conservation of JM (3.2.4) (continuity equation) in the

curved background:

∇MJM (x) = 0 . (3.3.32)

Explicitly the latter reads

∇MJM = ∂MJM + ΓN
N,M JM . (3.3.33)

The zeroth-order variation coincides with the conservation of 0JM = 0J̃M discussed

above. The first-order variation of (3.3.33) is given by

1
[
∇MJM

]
= ∂M

1JM + 1ΓN
N,M

0JM . (3.3.34)

These terms read

∂M
1JM = e ∂M

∫ (
1żM − uM 1zN∂N − κD

2
huM

)

δD
(
x− 0z

)
dτ

1ΓN
N,M

0JM =
eκD

2
h,M

∫

uM δD
(
x− 0z

)
dτ , (3.3.35)
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3.4 The emitted energy

thus their sum equals

e

∫
(

1żM − uM 1zN∂N

)
∂M δD

(
x− 0z

)
dτ = e

∫

d
(

1zM ∂M δD
(
x− 0z

))

= 0 (3.3.36)

as a total derivative. The latter represents the proof in coordinate-space of the property

∂M
1J̃M (x) = ∂M ρM (x) = 0, discussed above.

Thus the iteration scheme we use is compatible with the gauge we fix, and gives

the apparent way to compute radiation amplitude and, eventually, the flux of emitted

momentum.

3.4 The emitted energy

In order to compute the emitted energy, we take the zeroth component of the emitted

momentum (3.2.37):

E =
1

2 (2π)d+3

∑

i

∞∫

0

ωd+2dω

∫

dΩ |j i(k)|2, (3.4.1)

First we summarize the radiation amplitudes derived in the previous Section and

overview the corresponding contributions to the total flux. In Table 3.1 we present

the energy emitted in the several relevant regimes of frequency and angle, where the

estimates of contribution to the total emitted energy are deduced from (3.4.1) with the

estimate of j i(k) and the characteristic value of ϑ and ω following immediately from

the corresponding Table’s entry.

Now we illustrate qualitatively the effects described above and based on the deriva-

tion in previous Section.

On Fig.3.1 we plot a characteristic picture of the behavior of local and non-local

amplitudes and their sum (the radiation amplitude) for the case d = 0 at characteristic

value of ϑ and some common value of φ.

The qualitative features deserving attention are the following:

• At ω → 0 Im ρ(k) goes like 1/ω and dominates in total j, in Fig. 3.1 it corresponds

to the asymptote with tangent −1 on green (dot-dashed) curve. This property is

valid for all d > 0 and will be of usage further, when the zero-frequency limit is

to be computed;
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

@
@
@@ϑ

ω
ω . 1/b ω ∼ γ/b ω ∼ γ2/b ω ≫ γ2/b

γ−1

j ∼ Im ρ

Erad ∼ γ2

(subleading by

phase space)

j ∼ O(γ), from ρ and σ

x ∈ [0, 1],

medium regime

no destructive interference

Erad ∼ γ3

j ∼ O(γ−1), from ρ+ σ(z)

x ∈ [0,O(γ−2)]

z − regime

destructive interference

Erad ∼ γd+2

negligible

radiation –

exponential

fall-off

1

j ∼ ρ

Erad ∼ γ0

(subleading by

phase space)

j ∼ O(γ−1), from σ(z′)

x ∈ [1 − O(γ−2), 1]

z′ − regime

Erad ∼ γd+1

negligible radiation –

exponential fall-off

negligible

radiation –

exponential

fall-off

Table 3.1: The behavior of radiation amplitudes and contribution to the emitted energy of

each of the several characteristic regions of angle and frequency. The values are normalized

as λ = b = 1.

• At x → −∞ (ω → 0) |Reσ| ≪ |Re ρ| hence Re j ≈ Re ρ. At this limit ω → 0 |Reσ|
goes like ω0 (black, dotted line in Fig. 3.1) for d = 0, like ω1 for d = 1 and like ω2

for d > 2, as it follows directly from (3.3.14) and behavior of hatted Macdonald

functions.

• At x > 2 each curve has rapid fall-off at y = −∞, corresponding to the strong

exponential decay of an amplitude at ω & γ2/b;

• At x > 1 Reσ ≈ −Re ρ, so their sum (difference of absolute values in the plot)

Re j (cyan, solid) is much smaller. At x ≈ 2 the difference of Re j and Re ρ is

∆y ≈ 2, so j is damped by γ2 with respect to Re ρ. This illustrates the destructive

interference at γ2/b > ω ≫ γ/b, that can be rewritten as

j(ω) ∼ j(ω0)
ω2

0

ω2
, ω0 ∼ γ

b
;

• At x ≈ 2 the values of logarithms of Re ρ > Im ρ > Re j differ by ∆y ≈ 1, that

confirms the expansion in power of γ made in (3.3.11);

• In the region x = (1, 2) logγ |Re j| represents straight-line piece with tangent −2,

what corresponds to the destructive interference region ω = (γ/b, γ2/b). Thus the

radiation amplitude itself goes like ω−2 at this region. Being averaged over angles

(with some average angle ϑ̄ = O(γ−1)), the same is valid for the frequency distribu-

tion. For higher dimensions the corresponding behavior of the latter dE/dω ≡ F
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3.4 The emitted energy

Figure 3.1: Radiation amplitudes of first polarization for d = 0 and γ = 103 in logarithmic

scales x = logγ ωb and y = logγ |amplitude|, evaluated at ϑ = 1/γ, φ = π/4. The plots are

given for −Re ρ(k) (red, dashed), Im ρ(k) (green, dot-dashed), Reσ (black, dotted) and Re j

(cyan, solid). The common phase factor ei(kb) is neglected. At x ≈ 1 the curve logγ |Re j|
in logarithmic scale has discontinuity y = −∞ related with the fact that corresponding

original amplitude Re j changes its sign.

is

F (ω) ∼ (ωϑ̄)d+2j2(ω) ∼ j2(ω0)ω4
0

γd+2
ωd−2 ∼ γ4−d ωd−2, (3.4.2)

in this region (γ/b < ω < γ2/b);

• |Im ρ| is subleading with respect to |Reσ| but larger than |Re j| (at x > 1) on this

plot. It is damped by |Im σ| not presented here, so their sum |Im j| becomes much

smaller than |Re j|.

Thus in fact, we have two radiation amplitudes instead of a single one in 2, with

obvious identification f → e, f ′ → e′. In other words our primary problem now is to

derive the final overall coefficient.

3.4.1 Total radiated energy

As can be seen from Table 3.1, the dominant radiation comes from different regimes

depending on the number of extra dimensions, d. Indeed, as it follows from (3.4.2),

E ∼
∼ γ2/b∫

∼ γ/b

dE

dω
dω ∼ 1

γd−4

γω0∫

ω0

ωd−2 dω , (3.4.3)
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

so the dominant contribution comes from the upper limit ω ∼ γ2/b for d > 2, from the

lower limit ω0 ∼ γ/b for d = 0 and from the whole domain for d = 1, respectively.

According to this argument, we need to consider separately the cases where the

number of extra dimensions are d = 0, d = 1 and d > 2. We start with studying the

d > 2 case.

d> 2. In this case, as can be seen in the table, the radiation with frequency in the

area of ω ∼ γ2/b dominates. In the case of interest here, R ≫ b, we can replace the

summation by integration and use the uncompactified formula for the emitted energy.

The next step is to substitute the expression we have already found for (3.2.42),

which will give the dominant contribution in this case. We notice that when squaring

the two amplitudes we will have products of the Macdonald functions. In order to

perform the integration over ω, we will change variable to z and the radiated energy

will take the following form:

dE

dΩ
=

λ2 sind+3 ϑ

8 (2π)d+3
bd+3ψd+3

2∑

a,b=0

C
(d)
ab D

(d)
ab (ϑ, φ) , (3.4.4)

with1 C
(d)
ab ≡

∫
K̂d/2+a(z)K̂d/2+b(z) zd+2(δ0a+δ0b−1) dz. We are now left with the integration

over ω. The expressions for j±(k) (3.3.19) are accurate for high frequencies, however

it has been shown 2 that for d > 2 it is possible to expand the integration domain

z = (∼ 1/γ,∞) up to z = (0,∞), with the relative error O(γ−1). Computing C
(d)
ab with

help of [37]

∞∫

0

Kµ(z)Kν(z) zα−1dz =
2α−3Γ

(
α+µ+ν

2

)
Γ
(

α+µ−ν
2

)
Γ
(

α−µ+ν
2

)
Γ
(

α−µ−ν
2

)

Γ (α)
, (3.4.5)

(α > µ+ ν) and summing up the contributions of two chiral polarizations, the angular

part reads

D
(d)
00 =

(
d+ 1
d+ 2

)2( 1
γ4ψ2

− 2
γ2ψ

+ 1
)

, D
(d)
11 = (d+ 1)2

(
sin2ϑ

ψ
− 1
)2

,

D
(d)
22 = sin4φ

(
sin2ϑ

ψ
− 1
)2

+
sin22φ

4
, D

(d)
01 = − (d+ 1)2

d+ 2

(
sin2ϑ

ψ
− 1
)

1 − γ2ψ

γ2ψ
,

D
(d)
02 =

d+ 1
d+ 2

(
sin2ϑ

ψ
− 1
)

1 − γ2ψ

γ2ψ
sin2φ , D

(d)
12 = − (d+ 1)

(
sin2ϑ

ψ
− 1
)2

sin2φ .

(3.4.6)

1We omit overall pre-factors v ≃ 1 where it is unambiguous.
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By virtue of summation, we can integrate each D
(d)
ab (ϑ, φ) separately. The integration

over the φ is trivial using the following relations
∫

Sd+1

dΩd+1 = Ωd+1 ,

∫

Sd+1

sin2φ dΩd+1 =
1
2

Ωd+1 ,

∫

Sd+1

sin4φ dΩd+1 =
3
8

Ωd+1 .

(3.4.7)

with the volume of unit sphere of dimensionality n− 1 (in Euclidean R
n) given by

Ωn−1 =
2 πn/2

Γ(n/2)
. (3.4.8)

Making use of
π∫

0

sinn ϑ

ψm
dϑ =

2m−1Γ
(

n+1
2

)
Γ
(
m− n+1

2

)

Γ (m)
γ2m−n−1 , (3.4.9)

(valid for 2m > n + 1, for derivation see section 2.6.2), we integrate over ϑ to end up

with the expression

E =
e2m′2

κ
4
Dγ

d+2

22d+8π(3d+7)/2Γ
(

d+5
2

)

2∑

a,b=0

C
(d)
ab D

(d)
ab , (3.4.10)

where now

D
(d)
00 =

(
d+ 1
d+ 2

)2

, D
(d)
11 = (d+ 1)2

, D
(d)
22 =

d+ 6
8

,

D
(d)
01 =

(d+ 1)2

d+ 2
, D

(d)
02 = −d+ 1

d+ 2
, D

(d)
12 = −d+ 1

2
.

and summing up in (3.4.10), we arrive at the following expression:

E ≈ Cd

(
em′

κ
2
D

)2

b3d+3
γd+2 . (3.4.11)

We give here the values of Cd for several values of the number of extra dimensions:

C2 = 4.39×10−6, C3 = 1.12×10−6, C4 = 5.63×10−7, C5 = 4.35×10−7 and C6 = 4.62×10−7,

respectively.

d = 1. We now focus our attention to the cases d = 0, 1. Here we also can use

the high-frequency approximation as for d > 2, but it does not represent the main

contribution now. On the other hand, in the transition region ω ∼ ω0 the phase of an

exponential in the integrand is of order O(1), thereby the integrand does not strongly

oscillate and can be easily computed numerically. So we revert to numerical methods.

The radiated energy will mostly come from the small angle regime, i.e. θ . 1/γ. As

mentioned, in 5D the frequency distribution of the emitted energy falls as 1/ω in the
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

regime between O(γ/b) and O(γ2/b). Thus the dependence on γ following from (3.4.3),

is determined by

E ∼ γ3

γω0∫

ω0

dω

ω
∼ γ3 ln γ .

We have computed this result numerically1 to deduce:

E = C1

(
em′

κ
2
5

)2

b6
γ3 ln γ , C1 = 1.34 · 10−4 . (3.4.12)

d = 0. As can be seen from the tables, the radiation mainly comes from the transi-

tion regime (θ . 1/γ and ω ∼ γ/b). As it follows from (3.4.2), at higher frequencies the

frequency-distribution curve decays as 1/ω2, and according to (3.4.3), the estimate of

emitted energy reads:

E ∼ γ4

γω0∫

ω0

dω

ω2
∼ γ4

ω0
∼ γ3 ,

in agreement with the Table 3.1.

Hence we once more use numerical methods to compute the energy:

E ≈ C0

(
em′

κ
2
4

)2

b3
γ3 , C0 = 1.36 · 10−4 . (3.4.13)

The frequency distribution in four dimensions is given in Fig. 3.3(b).

Spectral-angular characteristics. The frequency distribution curves in logarith-

mic x−scale are presented in Fig. 3.2: in linear scale of dE/dω (a) and, to illustrate the

rate of growth/fall, in logarithmic y−scale (b). Curves at the destructive-interference

region x ∈ (1, 2) on the subfigure (b) represent straight lines with integer tangents d− 2,

confirming the general idea (3.4.2), while at low frequencies (x < 0) any curve has an

asymptote with integer tangent d, to confirm an idea of (3.4.21).

The angular distribution dE/dϑ curves are presented on Fig. 3.3(a).

3.4.2 The ADD bremsstrahlung

Among the higher-dimensional scenarios the models with direct Kaluza-Klein modes,

where the bulk represents compactification on a torus T d, are of particular history and

significance. Here the transformation between D−dimensional couplings and their four-

dimensional colleagues can be established directly, via the dimensional reduction of an

action.
1Numerical computation is performed for following values of γ: 103, 5 · 103, 104, 5 · 104, 105. The

relative error in 90%-level of confidence probability is 5%.
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3.4 The emitted energy

(a) (b)

Figure 3.2: Frequency distribution of emitted energy in linear (a), normalized by a

factor δ = Γ4
(

d+1
2

)
, and logarithmic (b) y-scale as function of logγ(ωb) for γ = 103. The

dimensions are: d = 0 (green, solid), d = 1 (red, dashed), d = 3 (b) and d = 5 (a) (both –

black, dot-dashed).

The D−dimensional propagator is split on the corresponding tower of KK modes:

1
qMqM

→ 1
V

∑

l∈Zd

1
qµqµ − l2/R2

µ = 0 . . . 3 ,

where R stands for the compactification radius and V = (2πR)d is a volume of extra

dimensions.

Thus, concerning our computation, the momentum integrals I, IM , J and JM intro-

duced above, arise as a sum over integer-valued momentum inside the argument of the

Macdonald functions. The summand represents (3.3.7) with d = 0 and the argument of

the Macdonald functions zl =
(
z2 + l2b2/R2

)1/2, both divided by a normalizing factor

V . Thus upon the transfer from summation to integration according to the Euler –

Maclaurin rule

1
V

∑

l∈Zd

K̂λ

(√

z2 + l2b2/R2
)

→ 1
V

∫

K̂λ

(√

z2 + l2 b2/R2
)

dd l =
1

(2π)d/2bd
K̂λ+d/2(z)

(3.4.14)

(for derivation see [13]) in the final result one restores the expression (3.3.7) with

”actual” d.

Apart from the features common to higher-dimensional models, the ADD scenario

has some particular properties:

• the SM fields and massive particles live on the 3-brane, while gravity is essentially

higher-dimensional;
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

(a) Angular distribution dE/dϑ of the emitted

energy (γ = 103) for d = 0 (green, solid), d = 1

(red, dashed) and d = 5 (black, dot-dashed),

normalized by the total emitted energy E.

(b) Frequency distribution plots for ADD-

bremsstrahlung for d = 0 (green, solid), d = 2

(red, dashed) and d = 5 (black, dot-dashed)

(γ = 103), normalized by the ZFL factor ∆ =

Γ2(d/2 + 1)/(3 · 25πd+4).

Figure 3.3: Angular and frequency distributions.

• ADD is initially proposed as linearized theory of gravity.

Thus in order to evaluate electromagnetic bremsstrahlung by gravity-mediated col-

lisions we can not apply some special cases among those derived before: indeed, D = 4

does not allow for gravity to propagate in the bulk, while D > 4 does allow for the

vector field to live in the bulk.

Meanwhile, the linearized action for gravitational part

Sg =
∫ [

−1
4
hMN

2hMN +
1
4
h2h− 1

2
hMN h,MN +

1
2
hMN hP

N,MP

]

dDx , (3.4.15)

and corresponding spin-zero (spin-one) field lead to the essentially same picture af-

ter KK-summation, as initially D-dimensional gravity with D−dimensionally massless

photon (graviton), as it was shown in [14; 15].

In what follows we have to take a D−dimensional source jM and substitute it

into the radiation formula (3.2.37) for d = 0, where we vanish the bulk components

M = 4 . . .D − 1. Thus the photon wave vector is parametrized by kM = (kµ, 0, . . . , 0),

with

kµ = ω (1, sin θ cosϕ, sin θ sinϕ, cos θ) . (3.4.16)

Thereby, two KK propagators, corresponding to the interaction in a source, sit inside

the D−dimensional amplitudes j and j∗, while a third propagator from the Green’s

function in (3.2.34) appears with normalization factor. Meanwhile, the model allows

for the emitted photon to propagate only along the brane, that implies only zeroth
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3.4 The emitted energy

emitted mode. Thus the sum degenerates into a single term while the normalizing

factor survives. Eventually, the formula for the emitted energy via the electromagnetic

field in ADD reads

EADD = − 1
16π3V

∞∫

0

ω2 dω

∫

S2

dΩ j∗
µ(k) jµ(k) =

1
16π3V

∑

i=1,2

∞∫

0

ω2 dω

∫

S2

dΩ
∣
∣jµ(k) εµ

i

∣
∣
2
.

(3.4.17)

In other words, we take the four-dimensional formula for radiation (normalized by V )

and put a D−dimensional source projected on the four-dimensional sector:

jµ(kν) = jM (k) δM
µ

∣
∣
ki=0

.

Thus we use the four-dimensional coordinate system (Fig. 2.1, b) (with angles θ, ϕ)

for parametrization of the emitted photon and keep D−dimensional angles ϑ, φ (Fig. 2.1,

c) for the parametrization of interaction graviton.

The on-shell condition now reads kµk
µ = 0; taking into account, that basis vec-

tors uM , u′M and bM do not contain bulk components, it is enough to take higher-

dimensional amplitudes ρ(k) and σ(k) and two polarization vectors (3.2.38) and (3.2.39)

εµ
1 =

1
γvz′ sin θ

[

z u′µ − z′uµ +
(

γ − z

z′

) b kµ

γv

]

, εµ
2 =

b

γ2v2z′ sin θ
ǫµνλρ uνu

′
λkρ ,

(3.4.18)

where in addition, contractions (3.2.41) hold under appropriate substitutions ϑ → θ, φ →
ϕ.

To iterate, one takes ρ(k) by (3.3.9) plus σ(k) in the integral representation (3.3.14),

square and integrate with measure ω2. Thus all notes on the destructive interference

are still valid. Eventually, multiplying by ω2 leads to the same behavior as in four

dimensions, due to the hatted Macdonald function K̂ν(x) goes like O(1) at the range

x = 0 . . .O(1) for any non-negative index ν. So the four-dimensional behavior of the

frequency distribution is reproduced, with some numerical corrections. Respectively,

we repeat the strategy of computation in 4D presented above.

Thus the characteristic frequency and angle are given by

ωADD ∼ ω0 =
γ

b
, θ ∼ ϑ̄ =

1
γ
, (3.4.19)

i.e. one has beaming in forward direction with respect to the charged particle’s motion.

The total emitted energy reads

EADD = C̄d
(em′

κ
2
D)2

b2d+3V
γ3 , (3.4.20)
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

with coefficient C̄d to be defined numerically. The results of numerical computation

(overall coefficients C̄d) are listed here: C̄1 = 4.90 · 10−5, C̄2 = 2.54 · 10−5, C̄3 = 1.77 · 10−5,

C̄4 = 1.52 · 10−5, C̄5 = 1.55 · 10−5, C̄6 = 1.85 · 10−5, while the frequency distribution plots

are shown in Fig. 3.3(b).

ZFL of the frequency distribution. Given that the stress part (3.3.14) of the

radiation amplitude is finite (for d = 0) and vanishes for d > 0 at the limit ω → +0,

the zero-frequency limit of dEADD/dω is determined by the imaginary part of the local

amplitude (3.3.11): indeed

jµ(k) = −i λ ei(kb)

2

(
z′ sin θ cosϕ

z
uµ +

bµ

b

)
K̂d/2+1(z)

z
∼ 1
ω
, (3.4.21)

while the other terms are regular or diverge logarithmically (for d = 0) at ω → 0. Such

a behavior in ω is reminiscent of the infrared divergence of the corresponding Feynman

diagrams. However, upon multiplication by ω2 from the measure of integration, it

contributes a finite amount to the radiation loss.

Taking the finite limit of hatted Macdonald K̂n(z) = 2n−1Γ(n) (for n > 0) and

omitting the phase factors

jµ(k) ≃ λΓ(d/2 + 1)
21−d/2ωbψ

(
sin θ cosϕ

γψ
uµ +

bµ

b

)

, (3.4.22)

with ψ ≡ 1 − v cos θ now.

Squaring it and substituting into the first formula (3.4.17), one has

dEADD

dω

∣
∣
∣
∣
ω=0

=
(em′

κ
2
D)2 Γ2(d/2 + 1)

28πd+5b2d+2V

∫

dθ dϕ
sin θ
ψ2

(

1 − sin2θ cos2ϕ

γ2ψ2

)

, (3.4.23)

Consecutively integrating over ϕ with help of (3.4.7), and over θ via (3.6.9), the ZFL

in ADD bremsstrahlung reads

dEADD

dω

∣
∣
∣
∣
ω=0

=
Γ2(d/2 + 1)
3 · 25πd+4

(em′
κ

2
D)2

b2d+2V
γ2 . (3.4.24)

Notice, that this formula is still valid in four dimensions.

Going back and taking into account that destructive interference suppresses not only

the radiation amplitude at frequencies ω > O(γ/b) – but also the flux, one concludes

that frequency

ωADD ∼ ω0 =
γ

b

gives the effective cut-off for all cases of ADD, as well as to four-dimensional bremsst-

rahlung. Thereby the realistic estimate is

EADD ∼ dEADD

dω

∣
∣
∣
∣
ω=0

× ωADD =
Γ2(d/2 + 1)
3 · 25πd+4

(em′
κ

2
D)2

b2d+3V
γ3 . (3.4.25)
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3.4 The emitted energy

Such an approach is used by Smarr [31] to estimate four-dimensional gravitational

bremsstrahlung.

Therefore, the vector bremsstrahlung in ADD case repeats the four-dimensional

picture, up to numeric coefficient.

3.4.3 The UED bremsstrahlung and average number of Kaluza-Klein

modes

Through the entire text we implied that (3.1.2) is satisfied and one has large number

of KK-modes, that allows to pass from KK-summation to the continuous integration

and that eventually leads to the enhancement of γ−factor power.

Meanwhile, for the UED models, where the vector field can propagate through the

bulk, the contemporary constraints [6] on the size of the extra dimensions, coming from

the experimental data (including the recent ATLAS and CMS experiments), give the

following bound:

1/RUED ∼ 300 − 3000 GeV , RUED ∼ 10−16 cm . (3.4.26)

In this case the inequality b < R (3.1.2), combined with b ≫ rcl, to have a charge

point-like, does not hold. Does it imply that the whole derivation presented above,

fails?

Consider the situation more thoroughly: we first restore the original KK-summations,

before switching to integration. The analogue of (3.2.37) reads:

E =
1

16π3V

∑

i

∑

n∈Zd

∞∫

0

̟2 d̟

∫

S2

dΩ |ji(k)|2
∣
∣
∣
k0=

√
̟2+n2b2/R2

̟2 =
3∑

a=1

(ka)2,

(3.4.27)

with ̟ = |k| being a continuous frequency in four-dimensional sector.

The local current is given by (3.3.5), after the corresponding change of the integrals

I and IM in (3.3.6), given in 2, to:

I = − 2π
γvV

∑

l∈Zd

K0(zl) , IM = − 2π
γv b2V

∑

l∈Zd

(

bzK0(zl)
γu′M − uM

γv
+ iK̂1(zl) bM

)

,

(3.4.28)

respectively, with z2
l ≡ z2 + l2b2/R2. A similar summation arises in the stress integrals.

When b ≫ R, one passes in (3.4.28) to integration according to (3.4.14), and the

expressions (3.3.7) are restored. The stress amplitude is split into the KK-sum in a

similar way.
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Such a summation appears inside the amplitude jM (k) and corresponds to the KK-

compactification of the interaction graviton. So the effective number of KK-modes of

interaction is determined by the exponential decay of Macdonald function (l2b2/R2 . 1)

and reads

Nint ≡ lmax = [L/b] + 1 , (3.4.29)

independent of the value 0 6 z . 1.

In the ADD-case the bound on the compactification radius is RADD ∼ 10−2 cm (for

d = 2), and (3.1.2) is well satisfied, thus one has a large number of the interaction

KK-modes.

In the case of UED, one has RUED < lC and one has to revisit the computation. The

above condition implies that the interaction has only zeroth KK-mode.

Thus the sum in (3.4.28) degenerates into

I = − 2π
γvV

K0(z) , IM = − 2π
γv b2V

(

bzK0(z)
γu′M − uM

γv
+ iK̂1(z) bM

)

, (3.4.30)

plus exponentially-suppressed terms, and the radiation amplitude represents the ex-

pressions derived in Section 3.3 for d = 0, but normalized by the factor V .

Therefore, the emission modes are determined by the exponential decay of Macdon-

alds K0(z) and K1(z). In the original KK-treatment the argument z becomes dependent

upon the number of emission KK-quantum as

z ≡ (ku)b
γv

≃
√

̟2b2 + n2b2/R2 −̟bv cos θ (3.4.31)

In the total absence of emission KK-modes, the characteristic frequency is given by its

d = 0−value ̟ ∼ ω0 (3.4.19), thus the typical value of ̟b is at least ̟b & γ. Assume

that

b < Rγ , (3.4.32)

that is reasonable for R given by (3.4.26) and γ ∼ 1014. Then the first massive KK-mode

is available, and some number n < Nemit of first KK-modes satisfy nb/R < γ. In this

case one expands the radical in (3.4.31) to obtain

z ≈ ̟b+
n2b

2̟R2
−̟bv cos θ = ̟bψ +

n2b

2̟R2
(3.4.33)

Thus the effective number of emission KK-modes

Nemit ≡ nmax(̟) =

√

2̟R2

b
, (3.4.34)
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becomes dependent on the frequency. In the most favorable case the maximal frequency

is determined from the first term of the RHS of (3.4.33), which should be less than unity

independently [13]: ̟ ∼ ψ−1/b ∼ γ2/b. Thus

Nemit ∼ γR

b
> 1 , (3.4.35)

according to the necessary condition (3.4.32).

In addition, now assume the stronger condition1:

γR

b
≫ 1 , (3.4.36)

Then Nemit ≫ 1, so the modes are quasi-continuous, and we combine quasi-continuous

momenta with continuous ̟ into single ω, shift angles (θ, ϕ) → (ϑ, φ) and we return

to the case (3.4.1), where we integrate the square of radiation amplitude with volume

measure

Vd =
1

2(2π)d+3
ωd+2 sind+1ϑ dω dϑ dΩd+1 . (3.4.37)

Given that the hatted Macdonald function K̂ν(z) alters slowly with the change of

index ν > 0, the integration should be performed along the same lines as in Subsec-

tion 3.4.1. Namely, for d > 2 the high-frequency regime dominates, and for the radiation

amplitudes one has instead (3.3.19) and (3.3.10), the following one:

j±(k) ≈ λ0 ei(kb) sin ϑ

2
√

2

[
d+ 1
d+ 2

1 − γ2ψ

γ2ψ
K0(z) − 1

z2

(
sin2ϑ

ψ
− 1
)

K̂1(z)+

+
sin2φ

z2

(
sin2ϑ

ψ
− 1
)

K̂2(z) ± i
sin 2φ
2 z2

K̂2(z)
]

, (3.4.38)

with2 λ0 ≡ em′
κ

2
D/2πV .

Again, we split the integrals on frequency and angular parts, as in (3.4.4):

dEUED

dΩ
=

λ2
0 sind+3ϑ

8 (2π)d+3 bd+3ψd+3

2∑

a,b=0

C̃
(d)
ab D̃

(d)
ab (ϑ, φ) , (3.4.39)

where C̃
(d)
ab ≡

∫
K̂a(z)K̂b(z) zd+2(δ0a+δ0b−1) dz . As before, these integrals are to be com-

puted with help of (3.4.5).

Comparing (3.4.38) with (3.3.19), one concludes that the angular coefficient func-

tions D̃
(d)
ab have the corresponding changes with respect to those ones D

(d)
ab given in

1We will return to the validity of this condition in the Subsection 3.5.3.
2The numeric coefficient before K̂1(z) is related with the index of Macdonald function in the series

(3.3.17) and corresponds to the same expression as in (3.3.19), with d = 0 is fixed. The numeric

coefficient before K0(z) is coming from the D-dimensional h′
MN and keeps d−dependence inside itself.
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(3.4.6):

D̃
(d)
01 =

D
(d)
01

d+ 1
, D̃

(d)
11 =

D
(d)
11

(d+ 1)2
, D̃

(d)
12 =

D
(d)
12

d+ 1
.

The same relations exist for the integrated over all angles constants. Combining

them all and substituting to (3.4.39), one obtains the energy loss

EUED ≈ C̃d

(
em′

κ
2
D

)2

V 2bd+3
γd+2 . (3.4.40)

The values of C̃d for small values of the number of extra dimensions are listed as:

C̃2 = 7.8 × 10−6, C̃3 = 1.5 × 10−6, C̃4 = 4.5 × 10−7, C̃5 = 1.7 × 10−7.

d = 1. Repeating the same arguments, we compute the total radiation numerically:

E = C̃1

(
em′

κ
2
5

)2

V 2b4
γ3 ln γ , C̃1 = 2.74 · 10−5 . (3.4.41)

The spectral characteristics in UED bremsstrahlung are the same as in higher-dim-

ensional case (Subsection 3.4.1), while the angular characteristics are similar to all cases

considered above.

A summary. In Table 3.2 we summarize the ultimate cases of an ultrarelativistic

bremsstrahlung from the viewpoint of average numbers of the Kaluza-Klein modes

excited in the bremsstrahlung process.

3.5 Discussion

According to the computation presented above, we overview possible effects and give

the estimates on them.

3.5.1 Scattering of two charges

When both particles are charged by the vector field AM then the direct electromag-

netic interaction is expected to be the dominant force. Then the acceleration (and,

being integrated, the trajectory deflection) represents (to first order of PT) the sum

of two contributions of electromagnetic and gravitational nature, respectively. In turn,

these addenda to trajectory may lead to radiation via vector and tensor fields. We do

not consider gravitational waves in this work, and thus focus here to the pure vector

bremsstrahlung.

A similar approach (i.e. bremsstrahlung without accounting for gravity) was con-

sidered in [13] for the scalar bremsstrahlung, so it is not necessary to reproduce that
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HHHHHHHNemit

Nint
Nint . 1 Nint ≫ 1

Nemit . 1

space-time model =

characteristic frequency =

radiation amplitude =

phase volume =

KK modes =

emitted energy =

M1,3

ω ∼ ω0

j = j0

V = V0

Nint = Nemit = 1

γ3

ADD

ω ∼ ω0

j = jd

V = V0/V

Nemit = 1

γ3/V

Nemit ≫ 1

space-time model =

characteristic frequency =

radiation amplitude =

phase volume =

KK modes =

emitted energy =

UED

ω ∼ γω0

j = j0/V

V = Vd

Nint = 1

γd+2/V 2

M1,d+3

ω ∼ γω0

j = jd

V = Vd

Nemit = γNint

γd+2

Table 3.2: The qualitative relation between the cases of gravity-mediated vector brem-

sstrahlung from viewpoint of number of KK-modes. The values are normalized as

λ = b = e = 1. N = 1 implies that only the zeroth KK-mode is actual. The measure of

the phase volume integration is defined by (4.37).
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computation in details. Instead of the detailed computation, we highlight the main

steps and overview the results.

Making use of perturbation theory over e and considering (3.2.2) on the flat back-

ground with FMN (3.3.1) generated by charge e′, the acceleration on trajectory reads:

1z̈M
em(τ) = i

e′e

(2π)d+3m

∫

dDq
δ(qu′)
q2

e−iqbe−i(qu)τ
[

γ qM − (qu)u′M
]

. (3.5.1)

The scattering angle, computed along the same lines as in [12], is given by

αem ∼ e e′

mγ bd+1
∼
[√

rclr′
cl

b

√
m′

√
m

]d+1
1
γ
<

(m′/m)
d+1

2

γ
. (3.5.2)

Performing the perturbation-theory scheme (with the obvious restriction b > rcl), one

obtains the following second-order source valid in all frequency regimes:

jM (k) ∼ i ei(kb) e2 e′

mγbd

(
sinϑ cosφ

γψ
uM +

bM

b

)
K̂d/2+1(z)

z
. (3.5.3)

It is produced by the fast particle, while the corresponding terms due to the target and

the interference give subleading in γ contribution.

As was mentioned above, such an argument of the Macdonald function leads to the

dominance of z−region in the entire spectrum. Thus in the Lab frame the characteristic

spectral-angular values are:

ωem ∼ γ2

b
, ϑem ∼ 1

γ
, (3.5.4)

On the other hand we see that such a behavior at low frequencies leads to the finite

ZFL of frequency distribution, which for the case of non-compactified extra dimensions

reads
(

1
ωd

dE

dω

)

ω=0

∼ (e2 e′)2

b2d+2
γ−d . (3.5.5)

Here no process which drastically changes the amplitude (like destructive interference)

occurs in the whole frequency domain ω ∈ [0, ωem], and one applies ZFL-approximation

with maximal frequency given by (3.5.4):

Eem ∼
(

1
ωd

dE

dω

)

ω=0

× ωd+1
em ∼ e4 e′2

m2b3(d+1)
γd+2 . (3.5.6)

Roughly speaking, the total emitted energy carried by the vector field is twice that of

the scalar situation due to the two polarization states, after making the identifications
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f → e, f ′ → e′, respectively. Therefore most of emitted waves are beamed into the cone

with characteristic angle 1/γ.

The efficiency is given by

ǫem ∼
(

γ
r3

cl

b3

)1+d

. (3.5.7)

Taking into account that when interacting gravitationally, the charge emits Erad ∼
γ3 in four dimensions, while only Eem ∼ γ2 in Coulomb-field collision, it seems intriguing

to derive that value of γ, for which the two contributions become comparable.

Correction to gravity-mediated vector bremsstrahlung. The acceleration of

both particles in the first order of PT represents the sum of gravitational and Lorentz-

force parts. The electromagnetic part causes e2 e′−contribution to the vector current

and leads to the pure electromagnetic bremsstrahlung reviewed above in this Subsec-

tion.

The appearance of a second charge e′ (with mass m′) adds some terms to the

radiation amplitudes: namely, local (3.3.11) and non-local (3.3.12) parts will acquire

addenda ρ′(k) and σ′(k), based on the integrals (3.3.6) and (3.3.13) where primed and

unprimed quantities are mutually interchanged. These terms also can be derived in

the same way in the Lorentz frame associated with e−charge (comoving frame), and

then Lorentz-transformed into the Lab frame. With e and e′ to be of the same order,

in the comoving frame the emission is dominant due to these new terms, and governed

by Macdonald function Kν(z′). Hence in this frame the emission is beamed inside the

cone ϑ′ . 1/γ with respect to u′. Being transformed to the Lab frame, these terms

remain to be Kν(z′) since z′ is a Lorentz-scalar (3.3.8). Thus these addenda are not

important in higher frequencies and represent subleading, by an order of γ terms (with

respect to the terms we keep) due to the Lorentz transformation, with a corresponding

interchange of primed and unprimed couplings in (3.4.11).

The conservation of these terms is easily verified using the same strategy as for the

basic terms. The self-action terms appearing here, are discussed in section,3.7.

3.5.2 Coherence length

In this subsection we consider qualitatively the effects arising in the bremsstrahlung

process, and the spectrum of emitted waves, from the viewpoint of coherence length,

coming from consideration of the particle’s equation of motion in the presence of ex-

ternal field.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

While accelerating, the particle emits radiation. Its spectral characteristics are

translated from the corresponding temporal ones, related with the duration of acceler-

ated motion, and with the value of acceleration and type of external force.

Apart from the formulae for the total energy loss on radiation in the coordinate and

momentum representations given in subsection 3.2.3, the intensity of electromagnetic

emission can be characterized by the square of the incomplete Fourier-transform of

AM (x) considered as an integral over the particle’s classical trajectory zM (τ):

AM (ω, r) ∼ e

ρ

∫

uM (τ) ei(ωt−kz) dτ , ρ ≡ |r − z| .

Being squared, the combination |AM (ω, r)|2 contains a double integral over τ1τ2 with

eik ·∆z in the integrand.

Expanding ∆zM = uM + z̈Mτ +
...
z Mτ2/2 + . . ., where τ ≡ τ2 − τ1, the difference in the

phases of the two waves emitted by a charge in the same direction n at close moments

τ1 and τ2 of proper time, is determined by

∆ϕ = k · ∆z = ω
[

t− n ∆z(t)
]

, t ≡ τ2 − τ1 .

In addition, in ultrarelativistic motion the transverse component of the force acts much

more effectively than the longitudinal one. Because of this, one can transit from D−di-

mensional expansions to their spatial sector, and the latter equation can be rewritten

as

∆ϕ = ωt

(

1 − nv − t

2
nv̇ +

t2

6
v̇2 + . . .

)

Thus to the leading order ∆ϕ ≈ ωt(1−nv) = ωt(1−v cosϑ) = ωtψ . When ∆ϕ becomes

of order O(1), the waves with antiphase are present in the spectrum, so they annihilate

and decoherence happens.

Thus the maximal duration of coherence is given by

tcoh ∼ 1
ωψ

, τcoh ∼ tcoh

γ
∼ 1
ωγψ

. (3.5.8)

Let us consider the wave formed within the coherence length (during the coherence

time) and emitted in the angle ϑ with respect to u. The characteristic duration of this

signal in the Lab frame is determined by the difference of distances covered by two

waves, emitted at the start and finish of the coherence interval and received far from

the particle’s location. Computing it, one obtains tLab = (1−v cosϑ) tcoh = ψtcoh. Going

back to all cases of bremsstrahlung, most of the emitted radiation is beamed inside the

cone ϑ . ϑ̄ = 1/γ, that is confirmed by the curves in Fig. 3.3(a).
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Given that at coherence interval the deflection angle should be α < γ−1, the Lab-

frame duration is estimated as

tLab ≃ ϑ2 + γ−2

2
tcoh . (3.5.9)

Finally, using (3.5.8) one has:

ωcom ∼ 1
tcoh

, ω ∼ 1
tcohψ

∼ 1
tLab

∼ γ2ωcom . (3.5.10)

The frequency in the Lab frame is, thereby, γ2 larger than the frequency in the comoving

frame, according to the Doppler effect.

Therefore we analyze the average time of accelerated motion.

Classical electrodynamics. Expanding (3.5.1) near τ = 0 one deduces that the

acceleration is determined by the transverse component 1z̈ x
em with characteristic value

1z̈ x
em(0) ∼ ee′

m

γ

bd+2
. (3.5.11)

The duration of the accelerated motion is characterized by that interval, for which the

trajectory is deflected on an angle, comparable to the total deflection angle αem given

by (3.5.2):

τem ∼ b

γ
, tem ∼ b . (3.5.12)

For details, see [42]. Next, consider the radiative part of the Lorentz-Dirac force in

higher dimensions: it is determined by averaging over angles of the corresponding part

of energy-momentum tensor, the latter reads T emit
em ∼ e2/rd+2, where r stands for the

retarded Lorentz-invariant distance parameter (for construction see [38]).

For instance, in four dimensions it represents well-known (relativistic) Larmor for-

mula for the emission intensity (in the units we use)

dErad

dt
= − 1

6π
e2z̈ 2

em , Ėrad = − 1
6π

e2z̈ 2
emż

0 .

In even higher dimensions the analogue of the Larmor formula can be computed in a

closed form and reads schematically (in the gauge ż2 = 1)

Ėrad ∼ e2γ




B(2,2;2...2)
︸ ︷︷ ︸

d+2

(z̈ 2
em)d/2+1 + . . .+B(D/2,D/2)

(

z(D/2)
em · z(D/2)

em

)




 . (3.5.13)

with some positively defined form in the parenthesis. Here B(αk...) is a constant with

list of orders of derivatives, constituting the corresponding scalar products, while dots
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

represent all intermediate scalar terms with the same dimensionality of mass ([m] =

cm−1).

Taking into account that for higher derivatives

dD/2

dτD/2
1zM

em ∼ 1zx
em

(D/2) ∼ 1z̈x
em

γd/2

bd/2
,

that follows from (3.5.1), and substituting (3.5.11), one obtains the estimate

1zx
em

(D/2) ∼ ee′

m

γd/2+1

b3d/2+2
. (3.5.14)

Given that all terms in the parenthesis have the same total dimensionality cm−(d+2),

and that each derivative adds γ/b, one concludes that all terms have the same order of

γ−factor. In what follows, the leading term is determined by the perturbation theory,

and given by the term with minimal number of scalar products, namely, the last term

in (3.5.13)1. From the dimensional analysis it is easy to see that all other terms contain

more than two first-order kinematical quantities.

Thus the total emitted energy during the whole bremsstrahlung process is given by

Eem ∼ e2
[

1zx
em

(D/2)
]2

tem ∼ e4e′2

m2

γd+2

b3d+3
, (3.5.15)

in agreement with (3.5.6). Thus the estimate of vector bremsstrahlung as induced

emission of a charge in the external Coulomb field is valid within the same perturbation

theory.

Finally, (3.5.12) represents the coherence length of emitted waves in the comoving

Lorentz frame – the characteristic length of the trajectory, where the signal is formed.

Applying (3.5.12) to (3.5.10), one obtains

ωem ∼ 1
temψ

∼ γ2

b
, (3.5.16)

in agreement with (3.5.4).

Classical electrodynamics in external curved background. The deflection

angle in a static gravitational potential in D dimensions is given by [12]

αgr ∼
r′
g

d+1

bd+1
≪ 1 , (3.5.17)

1According to the affine parametrization, (i) one can exclude velocity from such scalar products

and (ii) terms with scalar products of the form, for instance
(
z(D/2+1), z(D/2−1)

)
, are equivalent to the

retained
(
z(D/2), z(D/2)

)
by virtue of relation

(
z(D/2+1), z(D/2−1)

)
=

d

dτ

(
z(D/2), z(D/2−1)

)
−
(
z(D/2), z(D/2)

)
,

where the full derivative does not contribute to the radiation and can be dropped. The same concerns

the other scalar products
(
z(D/2+k), z(D/2−k)

)
.
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and, according to the Equivalence principle, does not depend upon the energy of the

scattered particle.

Double-differentiating (3.3.4) one obtains the estimate of the transverse component

of an acceleration caused by the gravitational force:

1z̈x
gr(0) ∼

r′
g

d+1
γ2

bd+2
, (3.5.18)

while the characteristic time of acceleration is governed, essentially, by the same factors

as before and reads

τgr ∼ b

γ
, tgr ∼ b . (3.5.19)

Nevertheless, the dominant contribution into z̈ 2(τ) is given by domains τ ∼ b/γ and

τ ∼ −b/γ where | 1z̈0
gr| reaches its maximum1, despite the fact that at τ = 0 it vanishes:

1z̈0
gr(±τgr) ∼

r′
g

d+1

bd+2
γ2 , 1ż0

gr(±τgr) ∼
r′

g
d+1

bd+1
γ ∗2. (3.5.20)

If the space-time had been flat, the direct application of estimate (3.5.15) would lead

to the result

Eem/curve ∼ e2
[

1zx
gr

(D/2)
]2

tgr ∼ e2G2m′2 γd+4

b3d+3
. (3.5.21)

However, not only is this result overestimated – it totally vanishes due to the following

reasoning.

The analogue of Larmor formula in four dimensions in a fixed curved space-time

is given by the finite part of formula by de Witt and Brehme [22], corrected by Hobbs

[26]3:

f 0
em(τ) =

e2

4π



Π0ν

(
2
3
D2żν +

1
3
Rνλ ż

λ

)

+ żν(τ)

τ∫

−∞

(

v0
λ′;ν − vνλ′

;0
)

żλ′

(τ ′) dτ ′



 ,

Πµν ≡ g µν − żµżν

ż2
, (3.5.22)

Here vνα represents the non-local part of the vectorial Green’s function in a curved

background in terms of bi-tensor quantities, evaluated at points zµ(τ) and zµ′

(τ ′).

1In four dimensions see (3.5.33) for the components of velocity and its derivatives.
2In what follows the validity of perturbation theory to this order: sup 1ż0

gr ≪ u0 if b ≫ r′
g holds.

3Here and below the lower-case Greek indices emphasize the fact, that contraction of indices is

performed in the curved background.
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In flat background one has gµν → ηMNδ
M
µ δN

ν , Dżµ → z̈Mδ µ
M , D2żµ → ...

z Mδ µ
M etc., and

(3.5.22) passes into the Lorentz-Dirac equation, there the radiative part is constituted

from the radiation part ∼ z̈2 żM and radiation-reaction (”Schott”) part ∼ ...
z M .

The ”Larmor” part here is given by

1
6π

e2 Π0ν D2żν =
1

6π
e2
[

DżνDż
ν ż0 +D2ż0

]

. (3.5.23)

But the charge is moving across the geodesics, hence the covariant acceleration Dż µ and

its covariant derivatives vanish. The local term with Ricci-tensor of the exact metric

also vanishes outside the source. Thus in the total-metric description all radiation

effects come from the tail term in (3.5.22). The same structure of tail term appears in

any dimensionality.

First we check that DżM is still zero in the first order: indeed, as it follows from

(3.2.3), the flat derivative 1z̈M is given by double derivative of (3.3.4), while the Christof-

fel part is given by (3.2.16) and (3.3.1). Roughly speaking, their sum is (3.3.27,b)

contracted with u′N and thus vanishes. The next orders do not affect on the order

(r′
g/b)

2 we need. The same concerns the covariant derivatives of covariant acceleration

in higher dimensions.

Next, proceed to the last, tail, term in (3.5.22): it comes from the modification

of the self Coulomb field of a particle, by the weak curved background. Instead of

derivation of tail integral according to the total metric, we consider the perturbation

theory and give a direct correspondence to reconcile with what we do. In fact, we have

been computing the lower orders of constituents of equation (3.5.22).

Now one has to estimate the tail function in (3.5.22) as tensor in Minkowski space-

time, for the weak Newton field. The basic step in four dimensions was made in [23],

and applied to the non-relativistic motion. The first order of this expression:

1Ėtail(τ) =
e2

4π
uνuλ′

τ∫

−∞

[
1vνλ′,0

(
0z(τ), 0z(τ ′)

)
− 1v0λ′,ν

(
0z(τ), 0z(τ ′)

)]

dτ ′ (3.5.24)

represents the full derivative over τ and, being integrated further from τ = −∞ to

τ = +∞, vanishes. A more detailed derivation is to be given in [43]. The second-order
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(m′2) is given by six terms

4π
e2

2Ėtail(τ) = uν

τ∫

−∞

(
1vνλ′,0 − 1v0λ′,ν

)
1żλ′

(τ ′) dτ ′ + 1żν(τ)uλ′

τ∫

−∞

(
1vνλ′,0 − 1v0λ′,ν

)

dτ ′+

+ uνuλ′ 1zσ(τ)

τ∫

−∞

(
1vνλ′,0σ − 1v0λ′,νσ

)

dτ ′ + uνuλ′

τ∫

−∞

(
1vνλ′,0σ′ − 1v0λ′,νσ′

)
1z′σ′

(τ ′) dτ ′+

+ uνuλ′

τ∫

−∞

(
2vνλ′,0 − 2v0λ′,ν

)

dτ ′ − uνuλ′

τ∫

−∞

(
1Γ0

σν
1vσ

λ′ + 1Γσ
ν 0

1vσλ′

)

dτ ′ (3.5.25)

where the integrals are to be evaluated on the unperturbed trajectory. The first line

represents the variation of żν żλ′

, the second one is a first term of Taylor expansion of
1vµν ′,λ while the third line is constituted from second-order vµν ′,λ and Γ−terms from

covariant differentiation of vµν ′ , respectively.

Among these terms after the substitution of exact expressions, we can rearrange

terms according to leading power of γ and ability to be integrated over τ ′. Namely,

some terms of 2v correspond to the second-order expansion of Ricci tensor in whole

space (i.e. with a source and thereby non-vanishing) plus another quadratic on 1h

combination, to be integrated over volume with the flat-space Green’s functions DG.

Denote such a combination as R̃: R̃ = O(h2).

Below we show (3.5.31) that by virtue of symmetry, the differentiations ∂µ and ∂µ′

(µ = t, z), with x, x′ taken on the unperturbed trajectory, add uµ(τ − τ ′)/|τ − τ ′|2. Using

the deWitt – deWitt coordinates [23, eqn. A.1] and integrating by parts over volume

and over τ ′, these terms in the force read schematically

R̃να;βγδ...
︸︷︷︸

d

u0uνuαuβuγ . . .
︸ ︷︷ ︸

d+3

.

Looking at the second-order-expansion of Ricci-tensor (see e.g. [15, eqn. A.4]),

one notices that these terms correspond to the quadratic on 1h part and not to the

2
2h−part.

In other words, if one takes the first-order post-linear metric as exact and computes

Ricci-tensor according to it, then Ricci-tensor of this fictitious metric well survives and

schematically reads

Rλλ

[
ηµν + κD

1hµν

]
= O

(
r′

g
2/r4

)
.

Going back to (3.5.22) one concludes that such a term corresponds to the Ricci-

term if consider such incomplete metric, with a significant note that it comes purely
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

from tail and does not come from the true Ricci-tensor, since the latter vanishes in all

orders.

The analogue of (3.5.22) in six dimensions is given in [24]. One can show directly,

that radiative part in even dimensionality coincides with its flat-space analogue, with

obvious generalization of derivatives from common to the covariant. Thereby on the

geodesic motion this part vanishes by the same reason.

The curved local part (constituted from the single Ricci-term in four dimensions)

comes from the derivative of the Heaviside of Synge function, accompanying the vµν ′ ,

and from the coinciding-point limit of the covariant expansions of bi-tensor quantities

[34]. Given that the dimensionality of e2 is [e2] = cmd, the curved local in D dimensions

(D = even) is constituted from combinations of Ricci- and Riemann tensors with Dkżν

of total dimensionality cm−(d+2). Among these terms, taking into account 0z̈ µ = 0, the

maximal in γ order has a term of the following type:

Π0νRνα;βγδ...
︸︷︷︸

d

żαżβ żγ . . . ∼ Rνα;βγδ... ż
0żν żαżβ żγ . . .
︸ ︷︷ ︸

d+3

,

with positive coefficient of proportionality in even d, coming from the construction of

curved Green’s functions.

Given that for Newton field in first non-vanishing order Rλλ ∼ (r′
g)2d+2/r2d+4 (for

b ≫ r′
g) and that ż0 and żz give γ−factor each, the local curvature term is of order

Ėcurv(τ) ≡ −f 0
curv(τ) ∼ −e2Rνα;βγδ...

︸︷︷︸

d

u0uνuαuβuγ . . .
︸ ︷︷ ︸

d+3

(3.5.26)

Since the metric is static and spherically-symmetric, only the radial derivatives of Ricci-

tensor appear. Finally among R00 and Rrr the latter is dominant:

Rrr ∼ −
r′

g
2(d+1)

r2(d+2)
+ O

(

r′
g

3(d+1)
/r3d+5

)

, r =
√

b2 + γ2v2τ2 .

Substituting it into (3.5.26) and taking care of the sign, one has:

Ėcurv(τ) ∼ −e2Rrr;rrrr...
︸ ︷︷ ︸

d

u0 uzuzuzuz . . .
︸ ︷︷ ︸

d+2

∼
r′

g
2(d+1)

r3d+4
γd+3 > 0 . (3.5.27)

The characteristic spatial distance, where the curvature alters significantly across

the particle’s trajectory, is of order O(b), thus the mean time and mean proper time are

given by (3.5.19), in what follows that r ∼ b and the relative contribution reads

Ecurv(τ) ∼ Ėcurv(τ) τgr ∼ e2m′2G2
D

b3d+3
γd+2 . (3.5.28)
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The characteristic times (3.5.19) find a reflection in the characteristic frequencies for

this partial process. These frequencies are given by ω ∼ γ2/b as a full analogy with

(3.5.16).

Looking at the Table 3.1, one concludes that this sub-process corresponds to the

high-frequency entry, with the proper estimate of partial contribution into the total

emitted energy. To repeat, the local curvature terms coming from tail, structurally

correspond to Ricci-tensor term constructed from incomplete metric, considered as

exact.

A tail. Now consider the terms which can not be converted to the local ones. Direct

application of the PT gives 1vµν ′ as some combination of the second-order derivatives

of generic integral

I(x, x′) =
∫

δ(d/2)
(
(x′ − x′′)2

)
δ(d/2)

(
(x− x′′)2

) dDx′′

r′′d+1
, x′′ = (t′′, r′′) , (3.5.29)

which can be interpreted as a matrix element of Newtonian potential from initial state

| in〉 = DG|x〉 to the final |out〉 = DG|x′〉, with DG is a Green’s function in flat D−dimen-

sional space-time.

In particular, the consistent account of the non-relativistic limit leads to the Smith

–Will force in higher dimensions1. The discussion of all terms in (3.5.25) and all

derivatives of (3.5.29) goes beyond our primary goal here. We will highlight here the

four-dimensional estimate, with generalization to be done in forthcoming publication:

the integral I(x, x′) in (3.5.29) is computed in [23] and reads

I(x, x′) =
1

|r − r′|

[

θ(r + r′ − t+ t′) ln
r + r′ + |r − r′|
r + r′ − |r − r′| +

+ θ(t− t′ − r − r′) ln
t− t′ + |r − r′|
t− t′ − |r − r′|

]

. (3.5.30)

The third-order derivatives over t and z have maximal value only if one keeps

θ(t−t′−r−r′) and differentiates the logarithm, otherwise for τ, t′ ≫ b/γv δ(k)(t−t′−r−r′)

contains γ inside an argument and γ goes to denominator.

Thereby

vµν ′,λ(x, x′) ∼ r′
g θ(t− t′ − r − r′)

(x − x′)µ(x− x′)ν ′ (uλ/γ)

[(x− x′)2]3
. (3.5.31)

1In fact, Smith and Will [33] have shown that the four-dimensional result by deWitt and deWitt

for newtonian (weak) field [23] is still exact in the total Schwarzschild metric even for the case of strong

field.
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For x and x′ are taken on the unperturbed trajectory, (x− x′)µ = uµ (τ − τ ′) contains γ

(for µ = 0, z), while (x− x′)2 = (τ − τ ′)2 – does not, thus the typical term reads

vµν ′,λ(x, x′) ∼ r′
g

θ(t− t′ − r − r′)
γ

uµuν ′uλ

(τ − τ ′)4
∼ γ2 θ(t− t′ − r − r′)

(τ − τ ′)4
. (3.5.32)

The solution for 1z0 coming from (3.3.4) is given by

1ż0(τ) =
m′

κ
2
4

8 π2

γ
√

b2 + (γvτ)2
, 1żz(τ) = − d+ 4

2(d+ 1)
1ż0(τ) (3.5.33)

According to θ(t− t′ − r − r′), t− t′ = γ(τ − τ ′) ≡ γξ is larger than r + r′ > 2b . Thus

ξ > 2b/γ. Substituting r =
√

b2 + γ2v2τ2 and r′ =
√

b2 + γ2v2(τ − ξ)2, such an argument

of Heaviside function has a solution only if τξ > b2. Taking into account the double

τξ-integration and that integration ranges of both ξ and τ are equally important, one

expects the domination from the range

|τ | ∼ ξ ∼ b . (3.5.34)

Therefore the typical term of the total energy associated with a tail, reads

2Etail ∼ e2 (r′
g)2γ4

∞∫

−∞

dτ

∞∫

b2/τ

dξ

ξ4

1
√

b2 + (γvτ)2
(3.5.35)

Substituting the estimate (3.5.34), one obtains finally

2Etail ∼ e2 (r′
g)2γ4 τξ

ξ4

1
√

b2 + (γvτ)2

∣
∣
∣
∣
τ∼ξ∼b

∼
e2 (r′

g)2

b3
γ3 , (3.5.36)

in agreement with (3.4.13)1 .

Thus, despite the rapid decrease of 1żM at τ > b/γ, the main contribution comes

from τ ∼ b due to the fact that 1v alters slowly.

According to (3.5.34), the characteristic duration in the comoving and in the Lab

frames, due to the Doppler effect, are given by

τtail = b = γτem ttail = γ τtail = γ b tLab,tail ∼ tem

γ2
∼ b

γ
, (3.5.37)

1From the consideration made above we can say nothing about a sign of this expression. The main

goal of this subsection is to qualitatively explain the spectral characteristic of this process arising to

the tail. However, giving the direct correspondence to the positively-defined expression in the text, we

hope that a consistent accounting of all terms in (3.5.25) will lead to the conclusion concerning the

sign.
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respectively, while applying the same deduction as in (3.5.10) one obtains the charac-

teristic frequencies of this tail effect:

ωcom,tail ∼ 1
ttail

∼ 1
γ b

, ωtail ∼ 1
tLab,tail

∼ γ

b
= ω0 , (3.5.38)

in agreement with (3.4.19), taken for d = 0.

Thus we arrive at the conclusion, that, at least in four dimensions, the transition

region in the Table 3.1 corresponds to the tail effects of non-linearity in deWitt–Brehme

sense. The generalization into higher dimensions represents the goal of forthcoming

work.

Comparing with the bremsstrahlung by non-gravitational force, we conclude that

in gravity the Lorentz transformation of frequency is determined not only by simple

ultrarelativistic consideration of Doppler effect, but also by curved geometry and non-

linear effects.

Thus we arrive at the following scheme:

tail in curved space → local curvature-term in fictitious first-order metric (ωcurv ∼ γ2/b)

+ non-local tail terms for v treated perturbatively (ωtail ∼ γ/b) .

Thereby, to conclude: the contribution coming from a tail in the curved-space

concept reappears as local curvature terms. This phenomenon is directly related with

PT over Minkowski background, and with ultrarelativistic character of a motion. In

our scheme it represents the same effect as the effective delocalization of the second-

order-field source in the flat space.

The analogy of such a resurrection was proposed by [23] for the opposite ultimate

case of non-relativistic motion along a bounded orbit, where originally-tail contribu-

tion (with respect to the total metric) reappeared as non-conservative non-relativistic

Larmor energy.

3.5.3 Restrictions and possible cut-offs

Here we assume that mγ ≫ m′ and the emitted energy is determined by those values

obtained in the Section 3.4. Thereby the total initial energy is essentially the energy of

the fast particle: E0 ≈ mγ . Our goal here is to set bounds on the minimal value of an

impact parameter b and to confirm the validity of the classical approach applied above.

The condition on the weakness of gravitational field, b ≫ r′
g, has been discussed

in (3.2.6). The condition b ≪ R (3.1.2) is related with the treatment of space-time as
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

higher-dimensional. Additionally, in the ADD model, it is directly related to the pass

from KK-mode-summation to the quasi-continuous integration. Finally, the condition

on the classicality of the emitted vector field obviously reads

b > rcl = (e2/m)d+1. (3.5.39)

Next consider the conditions which do not follow from the classical theory but are

necessary for the classical result to fit the quantum one.

The simple quantum-mechanical restrictions

ωmax ≪ Erad , Erad < E0 ≈ mγ (3.5.40)

reflect the fact that the particle can not lose energy more than it had initially (being

free at infinity). The ultimate situations of hard bremsstrahlung, when the charge

emits almost all its energy, are admissible in QED [16]. Next, for the treatment of the

emitted photons as classical, we need a large number of their quanta, which implies

the weak particle-recoil. For the radiation problem at hand, the weak particle-recoil

condition due to the emission of photons with frequency ω is satisfied if the momenta

of the emitted photons are much smaller than the momentum transfer of the elastic

collision. For the hard-photon emission with ω < E the latter condition is satisfied if

the emission angle ϑ is less than the deflection angle αgr, while for ω ≪ E this condition

can be relaxed.

Substituting the characteristic emission angle ϑ ∼ ϑ̄ = 1/γ into (3.5.17) one obtains

b > r′
gγ

1

d+1 . ∗1 (3.5.41)

This condition differs from the one, (3.1.1), given in the Introduction for gravitational

bremsstrahlung. It is stronger than the weak-field condition (3.2.6) but weaker than

(3.1.1).

Indeed, according to the iteration scheme, the ultrarelativistic charge emits the

energy after its trajectory is gravitationally perturbed, so we do not need to accounting

for the back-reaction of the gravitational field due to the fast charge, on the uncharged,

target, particle.

Moreover, the experience from analogous computations of the total energy of syn-

chrotron radiation shows that this condition can be relaxed and replaced, instead, by

the weaker ω ≪ E0 without restriction on the angles of the emitted photon. When

1The latter quantity coincides with the energy-associated Schwarzschild radius r′
S of m′ in the

comoving (with m) Lorentz frame and approximately equals rS (of m) in the Lab frame for comparable

m ∼ m′.
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3.5 Discussion

the emitted energy E is of order E0, this condition also guarantees a large number of

emitted quanta, and justifies further the description of radiation with a classical field.

Estimating the efficiency of the emitted energy in four dimensions according to

(3.4.13), one gets

ǫ0 ≡ Erad

E0
∼ e2m′2G2

4

mb3
γ2 ∼ rcl

b

(
γr′

g

b

)2

< 1 , (3.5.42)

by virtue of restrictions (3.5.39,3.5.41).

For the ADD bremsstrahlung (3.4.20), with the same characteristic frequency ω ∼
γ/b, the efficiency reads

ǫADD ∼ e2m′2G2
D

mV b2d+3
γ2 ∼

(rcl

b

)d+1
(
b

R

)d
(

γ
1

d+1 r′
g

b

)2(d+1)

< 1 , (3.5.43)

if one also takes into account (3.1.2).

In higher dimensions with characteristic frequency ω ∼ γ2/b the direct application1

of the above estimates gives ǫd ≪ γd−1. Thereby this might lead to the efficiency

catastrophe for d > 1.

The possible resolutions of this paradox may be related with:

• A small pre-factor, of order of Cd ∼ 10−5, in (3.4.11);

• Frequency ω ∼ γ2/b is incompatible with the requirement m < M∗. Thereby one

needs a cut-off on the frequency;

• The possible Vainshtein limit of the process in a space with compactified radii;

• Combination of (3.5.39) with (3.5.41) gives

b > max
{

(e2/m)d+1, r′
gγ

1

d+1

}

.

Let us consider the latter possibility in practice.

For instance, for the scattering of protons on neutrons with γ = 1014, available at

the LHC, the classical radius of a proton and γ r′
g for neutron are given (d = 0) by

rcl = 1.53 · 10−16 cm, γ r′
g = 2.48 · 10−38 cm, (3.5.44)

respectively, while in higher dimensions the ratio rcl/r
′
g γ

1/(d+1) is even larger. Thus the

restriction on b is determined, essentially, by rcl. Moreover, the latter is less than the

actual size of a proton lp and its Compton wavelength lC of it:

lp = 0.84 · 10−13 cm, lC = 2.10 · 10−14 cm.

1We neglect here the ln γ in (3.4.12).
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The scattering of nuclei present similar features.

On the other hand, the radiated energy efficiency coming from (3.4.11) can be

presented as

ǫd ∼ e2m′2G2
D

mb3d+3
γd+1 ∼

(rcl

b

)d+1
(√

γ r′
g

b

)2(d+1)

, (3.5.45)

and, by virtue of b > rcl > γ r′
g >

√
γ r′

g, easily becomes smaller than unity. This

practically resolves the efficiency paradox. The same argument makes the dominance

of gravitational radiation over the electromagnetic, almost impossible, an issue raised

above according to the naive comparison of the power of γ.

For the scattering of electrons one takes the Compton length. Thereby there is no

the efficiency catastrophe in the problem-at-hand, but one sets the following bound on

the value of the impact parameter:

lC < b . (3.5.46)

In UED, from (3.4.40) one obtains:

ǫUED ∼
(
em′

κ
2
D

)2

mV 2bd+3
γd+1 ∼

(
b

R

)2d (rcl

b

)d+1
(√

γ r′
g

b

)2(d+1)

. (3.5.47)

Taking into account b > lC > RUED (3.4.26), one rewrites (3.5.47) as

ǫUED <

(
b

R

)2(d+1) (rcl

b

)d+1
(√

γ r′
g

b

)2(d+1)

∼
(rcl

b

)d+1
(√

γ r′
g

R

)2(d+1)

≪ 1 , (3.5.48)

if directly compare
√
γ r′

g ≪ γ r′
g ≪ RUED by values (3.4.26) and (3.5.44).

Now return to the large-modes condition (3.4.36): substituting RUED by (3.4.26)

and comparing with (3.5.46) one concludes that for γ = 1014 the condition

γR ∼ 10−2 cm ≫ b > 10−14 cm ∼ λC , (3.5.49)

is well satisfied and a large number of the emission modes are excited, that gives the

enhancement of the bremsstrahlung radiation.

Going back to the spectrum we see that if b > 1/m holds, then

ωmax = E0 = mγ >
γ

b
= ω0 .

Thus the maximal value of the frequency lies inside the domain (γ/b, γ2/b), so the part

of destructive interference region, the main point of our computation, can be detected

in practice in all kinds of the extra dimensions and corresponding gravity models.

Despite the radiation efficiency being tiny, one can expect that absolute amounts

of the emitted radiation, due to the relatively large rcl with respect to rg, can be

determined (for instance, for heavy nuclei) and can give information on the (possible)

size and number of extra dimensions.
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3.5.4 Results and conclusions

A detailed study of classical electromagnetic (vector) radiation emitted in ultra-relativistic

collisions of massive point-like particles was presented. The space-time was assumed to

have an arbitrary number of toroidal or non-compact extra dimensions and the post-

linear approximation scheme of General Relativity was employed for the computation.

The angular and frequency distributions of radiation, as well as the total emitted energy

were studied in detail up to leading ultra-relativistic order.

Three characteristic frequency regimes (1/b, γ/b and γ2/b) of the emitted radiation

were identified and the characteristics of the dominant contribution was determined in

various dimensions, depending on the gravity model.

In particular, in any number of dimensions the soft component of radiation is

mainly due to the scattered particles, with negligible contribution coming from the

cubic graviton-graviton-photon interaction term1. In all cases of bremsstrahlung most

of the emitted waves are beamed (in the Lab frame) inside a narrow cone with angle

1/γ and along the spatial direction of fast-particle’s motion.

Among the notable features we would like to mention, are the following:

• The radiation amplitude is damped by the factor (ω0/ω)2 at the frequency region

γ/b . ω . γ2/b:

j(ω) ∼ j(ω0)
ω2

0

ω2
, ω0 ∼ γ

b
;

Thus at ω ∼ γ2/b the amplitude j(ω) is suppressed by γ2 with respect to j (O(γ/b)),

that represents the destructive interference (DI) effect;

• The frequency distribution goes like

dErad

dω
∼ γ4−d ωd−2

inside this frequency regime. Hence for d = 0 and in the ADD-case most of the

radiation has characteristic frequency ω ∼ ω0, for d > 1 the dominant frequency

is ω ∼ γω0 while in the transition case d = 1 the entire domain γ/b . ω . γ2/b

contributes equally to add a logarithm of γ into the total emitted energy;

• ZFL gives qualitatively adequate result for the ADD bremsstrahlung (where DI

happens beyond ωADD ∼ γ/b) and for pure electromagnetic bremsstrahlung (where

no DI occurs and the amplitude has the same behavior up to ωem ∼ γ2/b) in the

small-angle region;
1In four dimensions this is a well-known fact, verified easily also in the context of Feynman diagram

infrared graviton summation.
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

• No efficiency catastrophe for reasonable values of the Lorentz factor and charges;

• The applicability of perturbation theory is essentially determined by the Compton

length of a charge:

b ≫ lC ;

• The coherence length argument gives an adequate explanation of the frequency-

angular characteristics of the radiation amplitude but does not predict which

frequencies will dominate in spectrum.

However, in contrast to the four-dimensional case, in any number of extra dimen-

sions d > 0 the frequency spectrum of the emitted radiation vanishes as ω → 0 and the

total emitted energy in soft gravitons is negligible.

Also, contrary to what happens with soft radiation emission, the cubic graviton-

graviton-photon interaction and the scattered particles themselves are equally impor-

tant as sources of radiation with high frequency. In fact it was shown that in any di-

mension they lead to partial cancelation (destructive interference) of the total beamed

radiation amplitude in the high frequency domain, as a result of which the emitted

energy in the γ2/b− frequency regime is reduced by two powers of the Lorentz factor γ

in the Lab frame.

The relevance of the classical analysis to the full quantum radiation problem was

also discussed. The classicality conditions, necessary for the classical treatment to be

a good approximation to the full quantum problem were derived and the radiation

efficiency ǫ, i.e. the fraction of the initial energy which is emitted in gravitational

radiation, was computed for values of the parameters within the region of validity of

our classical computation.

Thus one concludes that the gravitational scattering of charges and corresponding

bremsstrahlung, at least classically, is a more reliable scheme to detect extra dimensions

already in contemporary colliders, though, of course the quantum-field treatment of this

process (at least for the vector field) is necessary and represents the direct prospect of

further study.

Finally, the spectral characteristics are qualitatively discussed in the context of

coordinate-space equation of a charge in dimensions of the even space-time dimen-

sionality (Lorentz–Dirac and deWitt–Brehme–Hobbs types of equations). The pure

vector bremsstrahlung is qualitatively described by the radiative part of the higher-

dimensional Lorentz–Dirac equation in flat space. For the vector bremsstrahlung un-

der the gravity-mediated collision it was found that the observable competition of fre-
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quencies originates from the different terms of the deWitt–Brehme–Hobbs equation,

describing the motion of a charge in the fixed external curved background.

Thus one concludes that as qualitative argument, the concept of coherence length is

valid and directly corresponds to the similar behavior of amplitudes at ultrarelativistic

characteristic frequency regimes ω ∼ γ/b and ω ∼ γ2/b. Nevertheless, as a quantitative

argument, coherence length is much less useful when the total physical process is split

into some sub-processes. Coherence length consideration does not predict which fre-

quency will dominate in the spectrum, since it does not take into consideration inside

itself the possible competition between the spectral-angular characteristics of a source

and volume factor in the integration measure when the flux is computed.

However, the implementation of this interpretation and the proper treatment of this

classical computation have to be confirmed by the corresponding quantum approach.

Meanwhile, even low- and medium-frequency parts of the spectral distribution, which

are definitely in agreement with the quantum case, contain some distinctive features

for the possible presence of extra dimensions to be detected.

3.6 Useful kinematical formulae

3.6.1 Notations

The angles in the formulae below are defined in Fig. 2.1.

uµ ≡ γ(1, 0, 0, v) , u′ ≡ (1, 0, 0, 0) , ψ ≡ 1 − v cosϑ ,

z′ ≡ (ku′)b
γv

=
ωb

γv
, z ≡ (ku)b

γv
=
ωb

v
ψ = z′γψ ,

ξ2 ≡ 2γzz′ − z2 − z′2 = (γvz′ sin ϑ)2 , β ≡ γzz′ − z2 = γ2z′2ψ(1 − ψ) ,

(kb) = −γz′v sinϑ cosφ = −ωb sin θ cosϕ , a ≡ z/sinϑ .

3.6.2 Beaming angular integrals

In the main text the following angular integrals over ϑ were needed for integer m and n

V n
m ≡

π∫

0

sinnϑ

(1 − v cosϑ)m dϑ . (3.6.1)

Consider small-angle contribution, corresponding to the beaming of emitted quanta.

For γ ≫ 1 and ϑ . γ−1 the numerator and denominator go like

sinnϑ ≃ γ−n , (1 − v cosϑ)m ≃ γ−2m , (3.6.2)
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3. Vector Bremsstrahlung by Ultrarelativistic Collisions

respectively, thus if 2m > n + 1 one expects the dominance of small-angle region over

the other integration domain.

Expanding

sinϑ = ϑ+ O(ϑ2) , 1 − v cosϑ =
ϑ2 + γ−2

2
+ O(ϑ4) , (3.6.3)

the integral (3.6.1) reads

V n
m = 2m

∼1/γ∫

0

ϑn

(ϑ2 + γ−2)m dϑ . (3.6.4)

Rescaling ϑ → ϑ/γ leads to

V n
m = 2mγ2m−n−1

∼1∫

0

ϑn

(ϑ2 + 1)m dϑ . (3.6.5)

This integral (without pre-factor) is of order O(1). Due to the integrand in (3.6.5) falls

rapidly at ϑ ≫ 1 one expands the upper-limit to infinity. Indeed, for any a ≫ 1 the

contribution
∞∫

a

ϑn

(ϑ2 + 1)m dϑ ≃
∞∫

a

ϑn−2m dϑ ∼ a−(2m−n−1) ≪ 1 . (3.6.6)

Thus both the initial integral (3.6.1) and modified one (3.6.5) have subleading contri-

bution from large values of an integration argument due to the rapid fall of integrands.

Thus

V n
m = 2mγ2m−n−1

∞∫

0

ϑn

(ϑ2 + 1)m dϑ . (3.6.7)

Introducing new integration variable y according to 1+ϑ2 = 1/y, the (3.6.7) is presented

as

V n
m = 2m−1γ2m−n−1

1∫

0

(1 − y)
n−1

2 y
2m−n−3

2 dϑ , (3.6.8)

that is exactly the Euler’s Beta-function B
(

n+1
2 , 2m−n−1

2

)
. Rewriting it via Gamma-

functions, we finally arrive at

V n
m =

2m−1 Γ
(

n+1
2

)
Γ
(

2m−n−1
2

)

Γ(m)
γ2m−n−1 . (3.6.9)

In [13], with another derivation of the above integral via Legendre functions, it was

shown that first correction to the (3.6.9) is of relative order O(γ−2).

In the case 2m = n+ 1 an expansion of the integral is logarithmic.
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3.7 Self-action account

We have already discussed the reason we do not consider the self-action as far as

radiation is concerned. It is however useful to show that including the self-action leads

to a conserved current.

When one includes the self-action, the equations of motion change are of the same

form but we should substitute h and h′ with h+ h′. This produces some extra terms in

the local and non-local currents. We write here the extra terms in the local current:

ρM
self(k) = −emκ

2
D ei(kb)

(2π)2

∫
δ(qu) δ(ku− qu)

q 2

[
d+ 1

2 (d+ 2)
(kq)uM

(qu)
− d+ 1

2 (d+ 2)
qM

(qu)

]

dDq

(3.7.1)

Making use of delta function and contracting with kM , one obtains zero in what imme-

diately follows that the above expression is a conserved quantity.

Similarly for the non-local part,

σM
self(k) =

eκ2
Dm

(2π)2

∫ [
ku

d+ 2
qM − ku

d+ 2
uM +

d+ 1
2 (d+ 2)

(
kq uM − ku qM

)
]

×

× δ(qu) δ(ku − qu) e−i(q·b)

q2(k − q)2
dDq (3.7.2)

Integration of both (3.7.1) and (3.7.2) over q0 gives

ρM
self(k) ∼ δ(ku)

∫
1

(q z)2/γ2 + q2
⊥

[
d+ 1

2 (d+ 2)
(kq)uM

(qu)
− d+ 1

2 (d+ 2)
qM

(qu)

]

dqz dD−2q⊥ . (3.7.3)

Thus the account of self-terms leads to the terms proportional to δ(ku). These terms

are analogous to the Fourier-transforms of Coulomb field which does not contribute to

the radiation.

The conservation of additional terms concerned with the appearance of second

charge and the self-action terms is analogous to the proof presented in the Subsec-

tion 3.3.5.

3.8 An alternative proof of destructive
interference

We provide another proof for destructive interference in the z−region, with ϑ < 1/γ.

This differs from the method followed in the main part of a chapter, which covered

the full angular range. In angular region discussed here, we show the destructive

interference effect rigorously, by the integration-by-parts technique.
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We begin with (3.3.14). First of all we will perform a variable change from x to ζ,

where

dx =
ζ(x)
f(x)

dζ , f(x) =
(

z2 + z′2 − 2γzz′
)

x+ γzz′ − z2 . (3.8.1)

We will also be using the identity

ζK̂ν(ζ) = −K̂ ′
ν+1(ζ) . (3.8.2)

Integrating the expression (3.3.14) by parts we obtain the following:

σM (k) =
λ

2γv

{(

K̂d/2(z)

γzz′ − z2
ei(kb) − K̂d/2(z′)

z′2 − γzz′ +

1∫

0

K̂d/2(ζ)
(

ei(kb)(1−x)

f(x)

)′
dx

)

uM×

×
[

β

d+ 2
− γz′ +

z2

d+ 2
+ γ2v2z′2

]

+ i

[
(kb)
d+ 2

uM +
(

γ2vz′ − γzv

d+ 2

)
bM

b

]

×

×
(

K̂d/2+1(z)
γzz′ − z2

ei(kb) − K̂d/2+1(z′)

z′2 − γzz′ +

1∫

0

K̂d/2+1(ζ)
(

ei(kb)(1−x)

f(x)

)′
dx

)

+

+
[
ξ2

d+ 2
+
(

γz′− z

d+ 2

)

(γz′ − z)
](

K̂d/2(z′)

z′2 − γzz′ +

1∫

0

K̂d/2(ζ)
(
x ei(kb)(1−x)

f(x)

)′
dx

)

uM

}

.

Further integration by parts gives

σM (k)=
λ

2γv

{(

K̂d/2(z)
γzz′ − z2

− K̂d/2(z′)

z′2 − γzz′ − i q0

K̂d/2+1(z)

(γzz′ − z2)2 + i q1

K̂d/2+1(z′)
(
z′2 − γzz′

)2 +R0

)

uM ×

×
[
β + z2

d+ 2
− γz z′ + γ2v2z′2

]

+ i

[
(kb)
d+ 2

uM +
(

γ2vz′ − γzv

d+ 2

)
bM

b

]

×

×
(

K̂d/2+1(z)

γzz′−z2
− K̂d/2+1(z′)

z′2−γzz′ + i q0

K̂d/2+2(z)

β2
− i q1

K̂d/2+2(z′)
(
z′2−γzz′)2 +R0

)

+
[
ξ2

d+ 2
+

+
(

γz′− z

d+ 2

)

(γz′ −z)
](

K̂d/2(z′)

z′2 −γzz′ − K̂d/2+1(z)

(γzz′−z2)2 + (iq1 + 1)
K̂d/2+1(z′)
(
z′2 −γzz′

)2 +R1

)

uM

}

.

with notations K̂τ (z) ≡ ei(kb) K̂τ (z) and

q0 = (kb) − i
z2 + z′2 − 2γzz′

γzz′ − z2
, q1 = (kb) − i

z2 + z′2 − 2γzz′

z′2 − γzz′

and residues

Rσ ≡
1∫

0

dx K̂d/2+1(ζ(x))

[(

xσ e−ix(kb)

f(x)

)′
1

f(x)

]′

.
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Thus the boldface hatted Macdonald functions emphasize the fact that after each it-

eration of integration by parts, Macdonalds of z come with phase ei(kb) from boundary

x = 0, while those ones with argument z′ come with phase 1 from boundary x = 1.

If keep on integrating by parts, we will obtain an expansion. In the region that

we are interested in, i.e. the z−region, we have z ∼ 1, z′ ∼ γ, so that ξ2 ∼ β ∼ γ2 ∼
(β − ξ2), q0 ∼ q1 ∼ γ. From this we see that the expansion parameters are: q0β

−1 ∼
γ−1 ≪ 1, q1(β− ξ2)−1 ∼ γ−1 ≪ 1. With this accuracy one can set q0 = q1 = (kb), β = γzz′

the leading part is then:

σM(k) =
λ

2γ

[

γ
z′

z
K̂d/2(z)uM − i

(
(kb)
z

− γ
bM

b

)
K̂d/2+1(z)

z

]

, (3.8.3)

which exactly cancels with the leading part of (3.3.9), leaving only the subleading terms.

The series converges thus establishing further the effect of destructive interference.
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4
Bremsstrahlung and black hole

production from collisions of
ultra-boosted particles at non-zero

impact parameter

4.1 Introduction

Gravitational ultra-relativistic collisions of two black holes, boosted to ultrarelativistic

[1] speeds in flat backgrounds have been discussed in several contexts, [2; 3; 4; 5; 6; 7;

8; 9; 10; 11; 12; 13]. In fact, recently with the application of AdS/CFT in heavy ions,

the interest in a numerical or an analytical approach to this problem has been growing

rapidly [14; 15; 16; 17; 18; 19; 20] but in AdS backgrounds however.

The novel features of the present work are

• The usage of a different pertrurbative scheme1 than the one employed in earlier

works in the literature [2; 3; 4; 5; 13; 21; 22; 23; 24; 25].

• The inclusion of a non-zero impact parameter b.

• The computation of the corrections to the energy-momentum tensor due to the

back-reaction effects in the presence of b. In particular, the present approach

allows us to follow the collided particles either in the case where they will get

trapped inside a horizon or if a horizon is not formed at all.
1The expansion parameter will be defined below.
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4.1 Introduction

• The first corrections of the metric including the back-reaction contribution of the

above point.

Summarizing our results we have:

1. Derived a closed form formula for the first corrections of the metric and of the

energy-momentum tensor1 in the presence of an impact parameter, including the

back-reactions.

2. Showed that the metric dependence on space and time is according to the ordering

between the proper-time τ and the transverse distance r =
√

(x1)2 + (x2)2 from

the center of the shocks. In particular, according to fig. 4.6, in the b = 0 limit

there appears a τ ↔ r symmetry. A similar result has been observed in shock-

wave collisions in AdS backgrounds applied to heavy ions [26]. Remarkably, the

same observation has been made in [27] using completely different methods and

in particular a hydro-approach. The analogies between the problem studied in

this work and heavy ions/Quark Gluon Plasma is further discussed in conclusion

ii of sec. 4.9.

3. Showed that for zero impact parameter, the perturbative approximation breaks

down and there is an instantaneous and point-like violation of the conservation

of the energy momentum tensor, which however, is hidden behind a horizon.

4. Have highlighted the importance of introducing an impact parameter which reg-

ulates the produced radiation in the absence of any other transverse scale.

5. Found that the total energy momentum tensor before the collision is traceless

and remains traceless after the collision up to the order we have computed in

our expansion. This could suggest that it is traceless to all orders and that

tracelessness is conserved; a conjecture that is worth investigating further.

6. Calculated the energy emitted during a collision of gravitational waves and argued

that the result is exact to all orders.

7. Finally, we have examined the problem of shock-wave collision, in the spirit of the

trapped surface analysis, produced by extended sources [28]. The results show

that for dilute enough concentration of energy a black hole is not formed. This

result seems as a manifestation of the Hoop Conjecture proposed by K. Thorn.

1The corrections of the stress-tensor are quite general as they apply for any longitudinal profile of

the colliding particles.
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4. Bremsstrahlung and BH production from ultra-boosted collisions

This chapter is organized as follows.

In section 4.2.1 we set-up the problem, specify the conventions and write the form

of the metric that describes the superposition of the shockwaves before and after the

collision.

In the next section 4.3, we compute the corrections to the energy-momentum tensor.

These corrections are caused by the interaction of the shockwaves and are only present

for positive times. We also discuss the region of applicability of our approach and

we make connections with the time scales that a black-hole needs to be formed and

equilibrate.

In section 4.4, we show the tracelessness and conservation of the stress tensor,

modulo an instantaneous-point-like violation of conservation for zero impact parameter

which, is hidden behind a horizon.

Sections 4.5 and 4.6 specify the gauge choice and state the field equations, up to

second order taking into account the back-reactions found in section 4.4.

Section 4.7 deals with the solution of the field equations obtaining the second-order

corrections to the metric.

A dimensional analysis argument is presented in section 4.8 and yields the depen-

dence of the total energy radiated in the form of gravitational waves from, the energy

that is available and, the only other meaningful dimension-full parameter, the impact

parameter. In fact, it is shown that for massless particles carrying positive definite

energy, the perturbative scheme that computes radiation fails. The origin of this result

is identified and the total radiation for zero energy shock-waves is calculated.

We conclude, section 4.9, with a summary and some comments of our main results.

Section 4.10 contains a brief derivation/discussion of trapped surfaces formation

from colliding extended matter distributions.

In section 4.11 we give the explicit forms of the polarization tensors.

4.2 Setting up the problem

4.2.1 Single Shockwave Solution

We choose light cone coordinates for the longitudinal direction as these are the most

natural for the problem at hand. They are defined by

xµ = (x+, x−, x1, x2) x± =
x0 ± x3

√
2

(4.2.1)
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4.2 Setting up the problem

where x0 is the time axis and x1, x2, x3 cover R
3. We use the mostly plus convention for

the metric and we raise and lower indices with the flat metric ηµν .

In order to set up the problem, we begin by writing the metric of a black hole which

is boosted to the speed of light along the x3 direction. This metric, the Aichelburg-Sexl

solution [1], has the form

ds2 = gµνdx
µdxν = −2dx+ dx− + t1(x+, x1, x2)dx+ 2 + dx2

⊥ (4.2.2)

where

t1 = −4
√

2EGδ(x+) log(pr) , ~r = (x1, x2) , r =
√

(x1)2 + (x2)2. (4.2.3)

The transverse part of the metric is flat, dx2
⊥ = (dx1)2 + (dx2)2, while δ(x+) is the Dirac

delta function, E is the energy of the shockwave, G is the four-dimensional Newton’s

constant and p serves as an IR cutoff as explained in [1] and in section 4.3.3 below.

The ansatz (4.2.2) reduces the generally non-linear field equations to a single linear

equation. To see this we write Einstein’s equations with out a cosmological constant

in the form

Rµν = κ2

(

Tµν − 1
2
gµν T

)

T = T µ
µ = Tµν g

µν , κ2 = 8πG , (4.2.4)

where Rµν is the Ricci tensor and Tµν is the Energy momentum tensor.

Substituting the ansatz (4.2.2) in Einstein’s equations yields

Rµν = δµ+δν+

(

4
√

2πEGδ(x+)δ(2)(~r)
)

. (4.2.5)

The presence of Kroenecker’s delta, δν+, shows that the only non zero component

of the Ricci tensor is R++. The T++ component on the right hand side of previous

equation corresponds to a massless point-like particle moving along x+ = 0 and so with

the speed of light and, it is normalized such that the particle has energy E (see also

(4.2.8)). Then t1 of (4.2.2) is specified by solving the linear differential equation,

R++ = −1
2

∇2
⊥t1(x+, x1, x2) = κ2T++ = 4

√
2πEGδ(x+)δ(2)(~r) (4.2.6)

where ∇2
⊥ is the Laplace operator in two dimensions. Making use of

∇2
⊥ log(kr) = 2πδ(2)(~r) (4.2.7)

one verifies that t1 is given by equation (4.2.3).
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4. Bremsstrahlung and BH production from ultra-boosted collisions

EGlog(pr)

xµ

Figure 4.1: A pictorial description of the shockwave solution, that is an exact solution

to Einstein’s equation. The bulk source, represented by the straight line, emits a graviton,

represented by the curly line, with a coupling constant EG log(pr). The filed is measured

at the point xµ.

In the next section we collide two such shockwaves with an impact parameter, b.

We thus shift the origin along the x1 axis and the stress-energy tensor is given by

T (1)
µν =

√
2

2
δµ+δν+

(
Eδ(x+)δ(x1 − b)δ(x2)

)
. (4.2.8)

The energy momentum tensor here describes a massless shockwave traveling at the

speed of light along the x− direction. One can check that this energy momentum tensor

is covariantly conserved. We note that this quantity, as mentioned, has been normalized

so as to satisfy
∫
T++d

3x = E.

Figure 4.1 represents diagrammatically the configuration. It shows the gravitational

field produced by a single graviton emission from the energy-momentum tensor of (4.2.8)

with an effective coupling EG log(pr). The gravitational field is measured at the space-

time point xµ. The sketch provides a suggestive diagrammatic expression for the metric

of equation (4.2.2).

4.2.2 Superimposing two Shockwaves

We assume that the background is a flat space-time with two shockwaves, t1 and t2

propagating in it.

In the language of the order counting, the background metric is described by terms

of zeroth (flat piece of the metric) and of first order (the non interacting shocks) in the

sources t1 and t2. The perturbations around this background, are considered second

order in the sources and hence they involve products of t1t2. The next orders in this

expansion, which we will not compute, have the form t21t2 and t1t
2
2 etc.

Our calculation is an expansion under the energy E 1. We use the superscripts (n)

on the quantities A(n) to denote the n’th order of quantity A in the given expansion.

1Essentially the relevant dimensionless expansion parameter is EG
b

as section 4.8 suggests.
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4.2 Setting up the problem

Figure 4.2: Presentation of the two shockwaves moving along the x± axis. Below the

origin, time is negative and refers to pre-collision times. After the collision, the two shock-

waves interact and produce a gravitational field in the forward light cone, described by the

metric g(2)
µν .

It is evident that essentially this corresponds to the number of times the source ti

(i = 1, 2) is inserted as a (right hand side) source for the propagator corresponding to

the d’Alembert operator (see for example equation (4.6.2)).

In what follows we collide two such shockwaves moving at the speed of light towards

each other with an impact parameter, b. After the collision we will compute their

trajectories taking into account the back-reaction of the metric. The problem is treated

classically. We must add to the energy momentum tensor of (4.2.8) a second part,

describing the second shockwave,

T
(1)
−− =

√
2E
2

δ(x−) δ(x1 + b)δ(x2). (4.2.9)

This collision is captured by fig. 4.2, where the two shockwaves are shown before the

collision. Following [29; 30], the metric that describes the process should look like

ds2 = −2 dx+ dx− + dx2
⊥ + t

(1)
1 (x+, x1 − b, x2) dx+ 2 + t

(1)
2 (x−, x1 + b, x2) dx− 2

+ θ(x+)θ(x−)g(2)
µν (xκ, z)dxµdxν + . . . ,

t
(1)
1,2(x±,x1 ∓ b, x2) = −4

√
2EG log

(

k
√

(x1 ∓ b)2 + (x2)2
)

δ(x±). (4.2.10)
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EGlog(pr1)

EGlog(pr2)

xµ

Figure 4.3: Schematic representation of the E2 corrections to the metric. Along with the

diagrams of figure 4.5, the present diagram consists of the first non-trivial correction to

the metric (4.2.10). The interaction of the metrics produced by each of the shockwaves is

shown at the point of intersection of the graviton propagators while the gravitational field

is measured at the space-time point xµ.

A few explanations are in order: (a) The first two terms of this metric describe a flat

Minkowski spacetime. The next two terms describe the two point particles that are

moving on a collision course at the speed of light along the x3 coordinate, with an

impact parameter of 2b, as shown in figure 4.4. These terms are of first order in E,

since they describe the two shockwaves and not their interactions so far. Each of them

is schematically described as a vertex diagram, shown in figure 4.1. One can check that

the metric, in this ansatz, satisfies the de Donder gauge up to first order in our counting.

(b) The next term, g(2)
µν , is of second order in E (as we will see, it appears as a product

of t1t2) and describes the interactions of the two pre-collision metrics. Essentially this

term represents the superposition of the two vertices (as in figure 4.3) and only exists

for times after the collision, a fact that is highlighted by the Heaviside theta function

in (4.2.10). This is a consequence of retardation. For times before the collision where

these corrections are zero, the remaining metric of the two shocks is an exact solution

of the Einstein equations. (c) Our main result is the computation of the term that is

quadratic in E, namely g
(2)
µν which is presented schematically in fig. 4.3 and 4.5. (d)

One might worry that in these coordinates the geodesics are discontinuous. As we will

see in what follows, our approach applies for any profile of the shocks along x± and

not only for δ(x±) profiles. Hence, we implicitly assume that we deal with regularized

smooth functions1.

1In any case, the physics should not depend on the coordinate system.
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x2

x3

x1
t > 0

t < 0

t = 0

t = 0

t < 0

t > 0

Shock t2

Shock t1

Figure 4.4: The two shockwaves, represented as black dots, move on the trajectories

shown by the dashed lines. Before the collision, they move along straight lines while

after the collision, occurring at at t=0, their trajectories are modified and follow what is

pictorially shown as a curved path. This results to a change in the Tµν .

+

xµ

xµ

T++

T−−

T++

T−−

Figure 4.5: The diagrams representing the backreactions. The emission of gravitons,

curly lines, due to the self corrections to Tµν are shown. Each shockwave moves in the

gravitational field produced by the other. The gravitational field is measured at the point

xµ.

4.3 Back-Reactions

4.3.1 Corrections to Tµν and Geodesics

The energy momentum tensor of equation (4.2.8), T
(1)
++, is conserved in the metric

described by equations (4.2.2) and (4.2.3). In fact, it is also conserved to all orders in

E, even though in practice only terms linear in E will appear in the equations. This

has an intuitive explanation in the context of figure 4.1. Gravity is linear in view of

the metric (4.2.2) and the following equation

∇µTµν = 0 (4.3.1)

is true to all orders.

It is also true that the combined energy momentum tensors T (1)
++ and T

(1)
−− are con-

served in the gravitational field of (4.2.10), when considering up to linear terms in E.
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4. Bremsstrahlung and BH production from ultra-boosted collisions

This is an exact result for negative times. Once quadratic terms are considered, i.e. at

positive times, the metric needs to be corrected, because the trajectory of the particles

responsible for the shockwaves is altered due to their mutual interaction. In figure 4.4

we show the trajectories of the two colliding shockwaves, while in figure 4.5 we show the

self-corrections of the two energy momentum tensors. This occurs because for positive

times each shockwave is moving in the gravitational field produced by the other. As a

cross check the total energy-momentum tensor needs to be conserved up to the given

order in E of the expansion.

4.3.2 Calculating the Corrections for Tµν

The two shockwaves are massless and are thus light-like. Papapetrou, [31], has rigor-

ously proven that for particles moving on null geodesics, the energy momentum tensor

conservation is guaranteed. The energy momentum tensor is a sum of point-like stress-

tensors (particles) and is given by

T µν =
πEG

κ2

2∑

(I=1)

ẋµ
(I)ẋ

ν
(I)

1√−g δ
(3)
(
~x(I) − ~x(I)(s(I))

)
. (4.3.2)

The particle I (I = 1, 2) entering (4.3.2) moves along the trajectory ~x(I)(s(I)), where the

trajectory has been parametrized by the variable s(I). The quantity
√−g refers to the

determinant of the total metric. The dots denote differentiation with respect to the

variable s(I). The detailed calculation of the back-reaction was presented in detail in

[26]. Here we will only outline the method and quote the result.

This is a two step process. In step (i) one should find the corrections to the geodesics

of the one particle in the gravitational field of the other. In practice, the perturbative

solution to the equations

ẍµ
I + Γµ

J;νρẋ
ν
I ẋ

ρ
I = 0 I, J = 1, 2 I 6= J (4.3.3)

is required. These are interpreted as the motion of particle I in the gravitational field

of the particle J (due to Γµ
J;νρ where Γ are the Christoffel symbols) and vice versa; this

is precisely the meaning of the subscripts I and J . Step (ii) makes use of the result

of step (i) by substituting the corrections of the initial trajectories xµ from (4.3.3)

inside (4.3.2). Expanding all the functions to the order that is consistent with the

perturbation yields the result.

Second order corrections to the total Tµν
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We present here the quadratic (in E) corrections to the total energy momentum

tensor:

(T+−)(2) = −(T+−)(2) =
1
4

1
κ2

(
t2∇2

⊥t1 + t1∇2
⊥t2
)
, (4.3.4a)

(T++)(2) =
1
4

1
κ2

∫

dx−
(

t2∇2
⊥t1,x+ + ∇2

⊥t1,x1

∫

dx−t2,x1 + ∇2
⊥t1,x2

∫

dx−t2,x2

)

, (4.3.4b)

(T−−)(2) =
1
4

1
κ2

∫

dx+
(

t1∇2
⊥t2,x− + ∇2

⊥t2,x2

∫

dx+t1,x2 + ∇2
⊥t2,x1

∫

dx+t1,x1

)

, (4.3.4c)

(T+1)(2) =
1
4

1
κ2

∇2
⊥t1

∫

dx−t2,x1 , (T−1)(2) =
1
4

1
κ2

∇2
⊥t2

∫

dx+t1,x1 , (4.3.4d)

(T+2)(2) =
1
4

1
κ2

∇2
⊥t1

∫

dx−t2,x2 , (T−2)(2) =
1
4

1
κ2

∇2
⊥t2

∫

dx+t1,x2 , (4.3.4e)

(T11)(2) = (T22)(2) = (T12)(2) = 0. (4.3.4f)

It will prove to be useful to rewrite the first order energy momentum tensors of

(4.2.8) and (4.2.9) using (4.2.7) yielding

T
(1)
++ =

1
2κ2

∇2
⊥t1, T

(1)
−− =

1
2κ2

∇2
⊥t2. (4.3.5)

The expressions that will be most useful for the following analysis will be the compact

expressions of equations (4.3.4). Nevertheless we also wish to show, for completeness,

the energy momentum tensor explicitly in terms of the coordinates. Defining

~r1 = ~r − ~b1 ~r2 = ~r − ~b2. (4.3.6)

and substituting (4.2.7) in (4.3.4) we obtain

(T+−)(2) =
16πE2G2

κ2
log(2p|b|)δ(x+)δ(x−) ×

(

δ(2)(~r1) + δ(2)(~r2))
)

(4.3.7a)

(T++)(2) =
16πE2G2

κ2
θ(x−)

[

log(2p|b|)δ′(x+)δ(2)(~r1) +
x−

x1 + b
δ(x+)δ′(x1 − b)δ(x2)

+
x−x2

4b2 + (x2)2
δ(x+)δ(x1 − b)δ′(x2)

]

(4.3.7b)

(T+1)(2) =
8πE2G2

κ2|b| θ(x−)δ(x+)δ(2)(~r1) (4.3.7c)

(T+2)(2) = 0. (4.3.7d)

The asymmetry between T
(2)
+1 and T

(2)
+2 is due to the fact that the impact parameter

~b has only an x1 component by assumption. The other components of the energy

momentum tensor are completely symmetric and are trivially obtained by exchanging

simultaneously + ↔ − and b ↔ −b respectively.
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The important feature of (4.3.4) is that all the corrections for Tµν involve either

a product of three delta and one theta functions or a product of four delta functions.

This implies that equation (4.3.7) provides localized corrections that either apply only

in the forward light cone or corrections that apply only at one point and only at one

instant. Essentially this expresses the fact that the geodesics are discontinuous and

as a result Tµν experiences sudden changes as is to be expected. Using regularized

functions would smooth out the underlying sudden “kicks" and it would introduce a

finite interaction time.

4.3.3 Region of validity and the physical meaning of the IR cut-off

I. b → ∞: One would expect that in this limit the particles would not interact. However,

the single shock metric behaves as log(pr) (see (4.2.2) and (4.2.3)) where p is an IR cut-

off resulting from the Aichelburg- Sexl ultrarelativistic boost1. Such a logarithmically

large field at large distances away from the source creating it implies that a second

source located very far from the first one, will feel that large field and vice versa2. This

is clearly problematic. Therefore, combining this and the fact that p is an IR cut-off, we

argue that the metric (4.2.2) and as a consequence the metric (4.2.10) makes sense for

distances less than ∼ 1/p. Thus, trusting the solution up to transverse distances of the

order of 1/p we deduce that large b implies pb ∼ 1 in which case T (2)
µν → 0 as should. On

the other hand, the current set-up may be treated perturbatively when the inequality

EG/b ≪ 1 is valid (see section 4.8). This inequality can apply simultaneously with the

inequality b ≪ 1/p. Hence, our set-up is justified when

EG ≪ b ≪ 1/p ≡ rIR and r ∈ (0, 1/p). (4.3.8)

We will see this necessity of placing an IR cut-off in more detail in section 4.8. It will

become evident that in higher dimensions such a cut-off is not required and that this

is an artifact of 4-dimensions.

Equation (4.3.7) suggests that there is another kinematical restriction for the appli-

cability of our perturbative treatment. In particular the T (2)
±± components grow for large

x±. Obviously, we should expect that the corrections to Tµν could not grow infinite

1Where in one of the intermediate steps of this large boost one has to integrate 1/
√
r2 + x3

3 along

the boost, that is along x3, from −∞ to +∞. This obviously diverges logarithmically and an IR cut-off

is placed at large x3 = 1/p.
2Such an ambiguity arises as a result of the superposition of the two colliding metrics. One can

check that the Riemann tensor of the single shock tends to zero as r → 0. However, once the two

metrics of the two shocks are superimposed, in the forward light-cone, this is no longer the case.

138



4.4 Conservation, Tracelessness and Field Equations

with time. Hence, restricting the expansion to lower orders is consistent if we restrict

the kinematical region where we trust our result, that is from x± = −∞ up to x± ∼ EG.

Therefore, our expansion is an early times expansion close to the collision point

x3 = 0. It is expected that higher graviton exchanges, than those appearing in fig. 4.3

and 4.5, will unitarize the corrections to Tµν as x± → ∞. In fact, the same restrictions on

x± apply according to earlier works in the literature about gravitational-wave collisions

in AdS5 backgrounds [29; 30]. There, the set-up is similar to the one of this work. In

fact, through resummations of multiple graviton exchanges in [29] , it is found that

the shocks eventually will decay at large x± at times scales set by the energy of the

shocks. Furthermore, it is found that the same time scale where the shocks stop sets

also the thermalization time [32]1 . By the same analogy, one would expect that a

similar result would apply here. That at times of the order of EG the remaining shocks

that continue to move on the light-cone will be completely wiped out while a black

hole will be formed2. Certainly, the final word on the metric evolution belongs to the

numerical relativity community.

II. b → 0: It seems that T (2)
µν diverges. As we will see, this is one of the many man-

ifestations of the same fact: the problematic behaviour of the perturbative treatment

in this limit.

4.4 Conservation, Tracelessness and Field
Equations

We have so far computed the energy momentum tensor up to second order in E. Cal-

culating the divergence of Tµν up to second order in E, one finds

(

(∇µ)(0) + (∇µ)(1)
)(

(Tµν)(1) + (Tµν)(2)
)

= δ±ν∇2
⊥t1∇2

⊥t2 +O(E3)

∼ δ±νδ
(2)(r)δ(2)(b)δ(x+)δ(x−) +O(E3). (4.4.1)

The operator ∇ denotes the covariant derivative. In arriving to the second line of

(4.4.1) it is not necessary to substitute the precise profiles of t1 and t2. Hence, this

suggests that (4.3.4) has a rather general applicability. On the other hand, in arriving

to the third line of (4.4.1), which shows conservation for non-zero impact parameter b,

we had to use equation (4.2.7). We thus conclude that equation (4.3.4) is consistent

1Where thermalization time is estimated as ∼ E1/3 for these AdS5 backgrounds.
2In this part of the discussion we assume assume b ≪ EG in which case the problem can only be

studied numerically unless some resummations techniques, along the lines of [29], can be engineered.
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with conservation and hence correct, for any longitudinal profile1 provided that their

transverse profile is localized and separated. To this end, one could argue that for zero

impact parameter there exists an instantaneous violation of the conservation of Tµν and

hence of the Bianchi identities at the point x1 = x2 = x+ = x− = 0. However, on one

hand, according to section 4.8, our perturbative treatment breaks down when b = 0 and

on the other hand, as we know from [11], a black hole will be formed and the violation

will be hidden behind the horizon.

One could imagine smoothening out the transverse distribution of the stress tensor

of the initial point-like particles. For instance, one could use Gaussians instead of

delta functions. Then at a first glance, the right hand side of equation (4.4.1) seems

to be a product of Gaussians implying an instantaneous but non-localized violation of

conservation. This would raise doubts about the validity of our calculation2. However,

our present derivation for the corrections due to back reactions of T (2)
µν given by equation

(4.3.4), is based on equation (4.3.2) which explicitly assumes point-like sources. In

other words (4.3.4) is not applicable for extended sources and the derivation in such

a case needs to be modified. Therefore, it is not a surprise that equation (4.3.4) for

extended sources would invalidate conservation everywhere in space-time. Certainly,

considering extended sources is an interesting generalization which we postpone for

a future investigation. To this end, in section 4.10 we show, using a trapped surface

criterion, that when the transverse distribution is dilute enough, a black-hole can not be

formed [28]. This implies that under some circumstances, a horizon will not be formed

and hence the non-local violation of conservation will not be hidden. Evidently, this

is another indication that equation (4.3.4), despite its invariant-looking form, needs to

be modified for extended sources along the transverse directions.

Calculating the trace of the stress-tensor to second order yields

T = gµνTµν = (gµν)(1)(Tµν)(1) + (gµν)(0)(Tµν)(2) = O
(
E3
)

(4.4.2)

up to quadratic order in E. This simplifies Einstein’s equations as follows

Rµν = κ2Tµν +O(E3) κ2 = 8πG. (4.4.3)

Equation (4.4.2) shows that the stress-tensor due to the "cross-talk" between the stress-

tensor corresponding to the shock t1 and the stress-tensor corresponding to the shock

t2, is precisely cancelled by the corrections due to the back-reaction contribution. As

a result, we started with an energy momentum tensor that was traceless for negative

1Of Tµν of the initial particles as a function of x+ and x−; not just for the δ(x±) profiles.
2We thank S. Gubser and G. Horowitz for related discussions.
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times and found that, up to second order, it is also traceless for positive times. This

suggests that the energy momentum tensor could be traceless to all orders and all times,

implying a conservation of tracelessness conjecture. This is worth investigating further.

4.5 Field Equations

4.5.1 Field Equations to O(E2)

We now proceed to explicitly construct the field equations of (4.4.3) up to second order.

The zeroth order terms satisfy the Einstein equations trivially since R
(0)
µν = T

(0)
µν = 0.

The first order terms R(1)
µν from equation (4.2.10) satisfy the field equations with a right

hand side given by T (1)
µν , equations (4.2.8) and (4.2.9). Hence, we only require the second

order terms to satisfy

R(2)
µν = κ2T (2)

µν (4.5.1)

where the second order energy momentum tensor, T (2)
µν , is given by (4.3.4) and it cor-

responds to the diagram of figure 4.5. We split the second order Ricci tensor in two

parts. First, a known part that is due to the two shockwaves and is a product of the

two vertices (see figure 4.1) of t1 and t2. We will use the notation −Sµν for this part and

it corresponds to the diagram of figure 4.3. The second part comes from the quadratic

terms in E of the metric, g(2)
µν and we will use the notation (R(2)

µν )g. We now proceed to

expand (4.5.1) up to quadratic order in E thus obtaining

(R(2)
µν )g − S(2)

µν = κ2T (2)
µν . (4.5.2)

A more suggestive way of writing this expression is

(R(2)
µν )g = κ2T (2)

µν + S(2)
µν , (4.5.3)

where S
(2)
µν is considered to be an effective energy momentum tensor, contributing to

the total one. All terms in the right hand side of this equation are known. To simplify

the notation we will be suppressing the superscripts denoting the order of the terms.

We will restore them wherever it is necessary.

4.6 Choosing the Gauge and Field Equations

In this section we specify the gauge choice and present the field equations including the

back-reacted contribution found in section 4.3.2. Working in the harmonic (de Donder)
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gauge

gµν ,
µ −1

2
gµ

µ,ν = 0 (4.6.1)

the Einstein’s equations (4.5.3) in component form read

(++) 2g++ = −1
2

∫

dx−
(

t2∇2
⊥t1,x+ + ∇2

⊥t1,x1

∫

dx−t2,x1 + ∇2
⊥t1,x2

∫

dx−t2,x2

)

,

(4.6.2a)

(+−) 2g+− = −1
2

(
t2∇2

⊥t1 + t2∇2
⊥t1
)

− t1,x1t2,x1 − t1,x2t2,x2 +
1
2
t1,x+t2,x− , (4.6.2b)

(+1) 2g+1 = −1
2

∇2
⊥t1

∫

dx−t2,x1 +
1
2
t1,x+t2,x1 , (4.6.2c)

(11) 2g11 = t1,x1t2,x1 + t1,x1x1t2 + t1t2,x1x1 = 0, (4.6.2d)

(12) 2g12 =
1
2
t2,x2t1,x1 +

1
2
t1,x2t2,x1 + t2t1,x1x2 + t1t2,x1x2 = 0. (4.6.2e)

The integration limits have been suppressed, as will be done in the rest of this chapter.

For instance
∫
t2,x1dx+ implies

∫ x+

−∞ ∂1t2(x′+, x1, x2)dx′+ etc. The operator 2 denotes the

d’Alembert operator in flat space-time, i.e.

2 ≡ ηµν∂µ∂ν = −2∂x+∂x− + ∇2
⊥. (4.6.3)

In order to obtain equation (4.6.2), equation (4.3.4) was employed. We now have a set

of differential equations, equations (4.6.2), which, we will proceed to solve in the next

section utilizing the appropriate boundary conditions.

4.7 Solving the Field Equations and Causality

4.7.1 Green’s Function and Boundary Conditions

We look for causal solutions of (4.6.2). The d’Alembert operator has a known retarded

Green’s function in light-cone coordinates

G(xµ − x′µ) = − 1
4π

θ(x+ − x′+)θ(x− − x′−)
1√
2

((x+ − x′+) + (x− − x′−))

×δ
(√

2(x+ − x′+)(x− − x′−) − |~r − ~r′|
)

, (4.7.1)

where ~r = (x1, x2) as defined in (4.2.3), θ is the Heaviside theta function. The Green’s

function satisfies

2G(xµ − x′µ) = δ(x+ − x′+)δ(x− − x′−)δ(2)(~r − ~r′). (4.7.2)
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4.7.2 Integrations

As usual, we integrate the product of the right hand side of (4.6.2), which plays the role

of the source with (4.7.1) over all space-time. It will be useful to define the following

vectors

~b1 = (b11, b12) ~b2 = (b21, b22). (4.7.3)

In the right hand side of (4.6.2) terms of the form ∂xi
a

(t1t2) and ∂2
xi

axj
c

(t1t2) appear.

The subscript (a) refers to the source (taking the value 1 or 2) and the superscripts refer

to the transverse coordinate (i) with respect to which the source is being differentiated

(also taking values 1 and 2). It is simpler to exchange the differentiations over the

spatial coordinates x1,2 with derivatives over the vectors b1,2, ∂xi
a

→ −∂bai
. At the end

of the calculation the limits

~b1 → (b, 0) ~b2 → (−b, 0) (4.7.4)

must be taken.

Equations (4.6.2a)-(4.6.2e) involve the product t1t2 differentiated with respect to the

transverse coordinates. We have already exchanged these differentiations with deriva-

tives with respect to b’s. As a result, one can verify that the transverse convolution of

the sources with the Green’s function, involves the following integral

J(r1, r2, τ) =
1

2πτ

∫ ∞

0

∫ 2π

0

r′dr′dφ′δ(τ − r′) log(p|~r′ + ~r1|) log(p|~r′ + ~r2|)

=
∫
d2qd2l

(2π)2

ei~q ~r1ei~l ~r2

q2l2
J0

(

τ |~l + ~q|
)

(4.7.5)

where we have introduced a new parameter, the proper time τ , defined as τ =
√

2x+x−.

The second equality comes from expanding the logarithms in Fourier space and perform-

ing the spatial integrations. Both of the momentum integrations have been performed

in [26] and the result reads

J(r1, r2, τ) = θ(r1 − τ)θ(r2 − τ)J1(r1, r2, τ) + θ(τ − r2)θ(r1 − τ)J2(r1, r2, τ)

+ θ(τ − r1)θ(r2 − τ)J3(r1, r2, τ) + θ(τ − r1)θ(τ − r1)J4(r1, r2, τ) (4.7.6)

where the J’s are defined with the help of table 4.1 and the expression

J(τ, r1, r2) ≡ ln(ξ>k) ln(η>k) +
1
4

[

Li2

(

eiα ξ<η<

ξ>η>

)

+ Li2

(

e−iα ξ<η<

ξ>η>

)]

, (4.7.7a)

ξ>(<) = max(min)(r1, τ) η>(<) = max(min)(r2, τ), (4.7.7b)

~r1. ~r2 = r1r2 cosα. (4.7.7c)
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Table 4.1: We defined ~r1,2 = ~r −~b1,2

cases ξ> η> ξ>η> ξ<η< Ji region (see figure 4.6)

1 r1 r2 r1r2 τ2 J1 I

2 r1 τ τr1 τr2 J2 II′

3 τ r2 τr2 τr1 J3 II

4 τ τ τ2 r1r2 J4 III

We denote the angle between ~r1 and ~r2 with α while Li2 is the dilogarithm function.

Notice that J is real as expected.

The value of J appears to depend on the ordering of r1, r2 and τ . There are

six independent ways of ordering the three variables. One may observe that when

r1, r2 > τ or/and r1, r2 < τ applies yields the same value for J regardless of the ordering

of r1 and r2. This reduces the total number of independent orderings to four which

are summarized in table 4.1 1. In particular, in the b = 0 limit there exist only two

orderings τ > r and τ < r suggesting a τ ↔ r symmetry2.

The integrations over x± are trivial since they involve Dirac delta functions. We

now present all the components of the metric, and refer the reader to [26] for the details

of the calculation.

The Formula for g(2)
µν

Using the compact notation lim~b1,2→(±b,0) ≡ lim~b2→(−b,0) lim~b1→(b,0) we finally have

g
(2)
++ = lim

~b1,2→(±b,0)

{

32√
2
E2G2θ(x+)θ(x−)

{

log
(

k|~b2 −~b1|
)

∂x+

(
r1

r2
1 + 2(x±)2

θ(τ − r1)
)

+
1

2x+

[

b11 − b21

|~b2 −~b1|2
θ(τ − r1)∂x1

(

r1
τ2 − r2

1

r2
1 + 2(x+)2

)

+
(
1 ↔ 2

)

]}}

, (4.7.8a)

g
(2)
+− = lim

~b1,2→(±b,0)

{

16E2G2θ(x+)θ(x−)sech η

{

1
2τ

log
(

k|~b2 −~b1|
)

δ(τ − r1)

+
[

∂2
b11b21

− 1
4

(
1
τ2

sech2 η +
1
8
τ∂τ

(
1
τ
∂τ

))]

J(r1, r2, τ) +
(

1 ↔ 2
)
}}

, (4.7.8b)

g
(2)
+1 = lim

~b1,2→(±b,0)

{

32√
2
E2G2θ(x+)θ(x−)

{

b11 − b21

|~b2 −~b1|2
r1

r2
1 + 2(x±)2

θ(τ − r1)

1
J2 for example is J(ξ>η> = τr1, ξ<η< = τr2) where J(ξ>η>, ξ<η<) is given in equation (4.7.7).

2In this case where b = 0 all order terms are required for calculating some quantities such as the

radiation (see section 4.8). However, the argument for the τ ↔ r symmetry still applies.
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τ τ

I. τ < r1 < r2

II. r1 < τ < r2

III.III.

II ′. r2 < τ < r1

I. τ < r2 < r1

−b b

x2

x1

Figure 4.6: The metric after the collision on the transverse plane. The centres of the

shocks are located at x1 = b and x1 = −b. The two circles (dashed lines) have radius τ .

At any given proper time τ , the metric evolves differently in the three regions I, II and

III (there is an obvious Z2 symmetry under x1 ↔ −x1 for the other three regions). The

evolution is determined according to equations (4.7.6), (4.7.7) and (4.7.8). Each region,

determines whether the shocks have or have not enough proper time in order to propagate

from the centers to the given region. For instance, region II defines the set of points

where the shock with center at b has arrived but the shock with center at -b has not yet.

Essentially, the evolution of the metric, according to this picture, is a manifestation of

causality. In the b = 0 limit there is a τ ↔ r symmetry.

+
1
2

(∂b21
)
[

1
1 + e±2η

∂τ − 1

4
√

2τ
sech2

η

]

J(r1, r2, τ)

}}

, (4.7.8c)

g
(2)
11 = lim

~b1,2→(±b,0)

{

− 16E2G2θ(x+)θ(x−)sech η
{

∂2
b11b21

+ ∂2
b11b11

+ ∂2
b21b21

}

J(r1, r2, τ)

}

,

(4.7.8d)

g
(2)
12 = lim

~b1,2→(±b,0)

{

− 8E2G2θ(x+)θ(x−)sech η
{

∂2
b22b11

+ ∂2
b12b21

+ 2∂2
b11b12

+ 2∂2
b21b22

}

J(r1, r2, τ)

}

.

(4.7.8e)

where

τ =
√

2x+x−, η =
1
2

log
(
x+

x−

)

and x± =
1√
2
τe±η. (4.7.9)

It is remarked that the variables τ and η appearing in (4.7.8) should be thought as

equal to their right hand side (see (4.7.9)) and not as a change of variables.

The reason for introducing the vector ~b1,2 should now be obvious. Apart from the

145

5/figures/cases4d.eps


4. Bremsstrahlung and BH production from ultra-boosted collisions

simplification of the calculation, one can obtain the remaining components g(2)
µ2 from

g
(2)
µ1 by interchanging 1 ↔ 2, before taking the limits of equation (4.7.4).

It is also simple to obtain the (−µ) components from the (+µ) components by

exchanging + ↔ − and ~b1 ↔ ~b2. We have now computed entirely the metric up to

quadratic order in E including back-reactions. This is the main result of our calculation.

In figure 4.6, we see a pictorial representation of the metric, described at the different

regions, depending on the different values of the integral J (see (4.7.6)).

4.8 Bremsstrahlung Radiation

In section 4.3 we have computed the corrections to the stress-energy tensor of the two

massless particles. This provides us the necessary information in order to compute the

bremsstrahlung radiation. As in [12], one needs the polarization tensors and (the right

hand side of) equations (4.6.2) in momentum space. Denoting with k the 4-momentum,

the spectral-angular distribution then reads

dErad

dωdΩ
=
Gω2

2π2

∑

pol

∣
∣
∣J (2)

µν ǫ
µν(k)

∣
∣
∣

2

, J (2)
µν ≡ T (2)

µν (k) + S(2)
µν (k) , (4.8.1)

where ω ≡ k++k−

√
2

is the frequency and ǫµν (k) are the graviton polarization tensors.

The polarization tensors are derived in section 4.11.

4.8.1 Estimating the radiated energy from dimensional analysis

In order to guess the dependence of the radiated energy from the impact parameter

and the energy, we can use simple dimensional analysis.

The energy momentum tensor, Jµν , has dimensions of [E]4, where [E] denotes units

of energy. Then the following is true

J (2)
µν (x) ∼ [E]4 ∼ E2G

1

[L]4
. (4.8.2)

where [L] implies dimensions of length, while E is the energy of the shock. In the second

proportionality we have used that J (2)
µν is of second order in E and first order in G, as

explicitly shown in (4.3.7). The Fourier transformation of this quantity is

J (2)
µν (k; b) ∼ E2Gfµν (k; b) , (4.8.3)

where fµν (k; b) is a set of dimensionless functions of k and the impact parameter, b,

which is the only remaining length scale.
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As a result of (4.8.1) the radiated energy behaves like

E
(2)
rad ∼ G

∫

dωdΩ
∣
∣
∣ωJµν(k; b)ǫµν(k)

∣
∣
∣

2

|~k|=ω
(4.8.4)

where the emitted radiation is taken on shell and thus must satisfy |~k| = ω. Taking into

account that the polarization tensors are dimensionless and performing the integrations,

the emitted energy is completely determined by dimensional analysis. In particular, in

the absence of any IR cut-offs we must formally have

E
(2)
rad ∼ G

∫

dωdΩE4G2|ωf (k; b) |2|~k|=ω
∼ E4G3

b3
. (4.8.5)

Therefore,
E

(2)
rad

E
∼ E3G3

b3
. (4.8.6)

The question is whether the coefficient missing in (4.8.6) is finite. In particular, we

would like to address the question where any possible divergences come from and

whether there is a way to regulate them. We argue that the underlying coefficient

is not well-defined in the absence of appropriate cut-offs and we will attempt to give

an explanation.

The first step is to show that any rotationally symmetric physical shock-wave1,

grows as log(pr) at large r =
√

(x1)2 + (x2)2 where p is some transverse scale. Indeed,

the radial part φ(r) of t1 and of t2 satisfy ∇2
⊥φ(r) ∼ ρ(pr) where p is the transverse scale

that fixes the width of ρ. Then, the slope of φ is φ′ ∼ 1/r
∫ r

0
rρdr → 1/r as r → ∞ because

ρ is integrable by assumption. Since φ′ ∼ 1/r at large r it implies that φ ∼ log(pr).

The second step is to consider the quantity J
(2)
+− from the right hand side of (4.6.2b)

and in particular the term ∼ t1,x+t2,x− . According to the previous statement the trans-

verse part of this term grows as t1,x+t2,x− ∼ log2(pr) as r → ∞. This term corresponds

precisely to the components of the Riemann tensor, components, R±±∓±, that diverge

as r → ∞ (see discussion in section 4.3.3) when the two metrics are superimposed. The

rest of the terms in J
(2)
+− decay as r → ∞.

The third step is to compute the Fourier transformation of J (2)
+− in order to apply

(4.8.1). Evidently, such a Fourier transformation is not well defined because it suffers

from an IR divergence at large r.

We thus conclude that using the perturbative expansion GE/b for such a geomet-

rical configuration where the sources move with the speed of light in d=4 space-time

dimensions is problematic when one attempts to compute the radiation of the any

1Which we define as the shock created by any positive, integrable rotational symmetric distribution

ρ(pr) which generalizes the point-like δ(2)(r) distribution of the point-particle.
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4. Bremsstrahlung and BH production from ultra-boosted collisions

two gravitationally interacting sources. Since this statement applies for any physical

transverse distribution, our conclusion is rather universal.

Relaxing one of the conditions could make the computation of the radiation feasible.

For instance such a problematic behaviour for the Fourier transformation would not

appear in higher dimensions1 because the shocks at large distances fall of as 1/rd−4.

Likewise, there are no issues appearing for particles moving with finite speed as the

one’s considered in [12; 34; 35; 36].

Another possibility to regulate the problem would be to put a sharp IR cut-off at

some rIR = 1/p along the lines of section 4.3.3 and of equation (4.3.8). According to [37],

the combined IR divergences arising from the quantum mechanical radiative corrections

and from the classical Bremsstrahlung radiation are cancelled when a resummation

procedure is performed. However, such a cancellation applies only for the collinear

extremely soft photons and gravitons. It is thus unclear whether such a cancellation

applies for our case.

Another related series of works to ours is found in [12; 34; 35; 36] where the au-

thors study the radiation of massive particles that collide with an impact parameter.

Their set-up allows them to take the massless limit provided the impact parameter is

simultaneously taken to infinity. In this case, they find that the total radiated energy is

zero. As we will see, this result is consistent with the example studied in section 4.8.2.

It is pointed that the analysis of [12; 34; 35; 36] in the massless limit and finite impact

parameter is rather inconclusive.

Our conclusions, methods and applicability region could be compared with the ones

derived in [21; 23; 24; 25] where the authors consider a different avenue in organizing

their perturbation scheme. They assume a strong and a weak shock and they expand

along the light cone where the strong shock is located.

4.8.2 Example of radiation from gravitational waves

In this example, we consider the collision of gravitational waves which, by definition,

correspond to a zero Tµν . For simplicity we consider homogeneous waves in the trans-

verse direction2. It thus makes sense to compute the Erad/Vx1x2 where Vx1x2 is the

1An attractive scenario would be a shock wave collision in the presence of extra dimensions along

the lines of [33].
2One could argue that such shocks are a pure gauge. Indeed, when there is a single shock moving

(say) along x+, the transformation x+ → x+ + 1/2
∫
t1(x−)dx− removes the t1(x−)(dx−)2 component

of the metric. However, when two shocks are superimposed such a transformation would not work in

the forward light cone because there are mixing terms.
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transverse volume. We expect that the total radiation will be zero as we collide zero

energy shocks.

The only non trivial component of (4.6.2) is the (4.6.2b) component where only

the last term in the right hand side remains. The second order solution is g+− =

−1/4t1(x+)t2(x−) while J
(2)
+− = 1/2t1,x+t2,x− . The Fourier transformation of J (2)

+−(xµ) is

J
(2)
+−(k) ∼ δ(2)(k⊥) where the proportionality constant depends on the details of the

profile of t1(x+) and t2(x−).

The last step is to use (4.8.1) by contracting J (2)
+−(k) with ǫ+−

(i) = − k2
⊥

2
√

2(k2
⊥

+1/2(k+−k−)2)

for i = I, II (see section 4.11) which, when the graviton is on shell, yields ǫ+−
(i) =

− k2
⊥√

2(k++k−)2
. Combining all the previous information and using (4.8.1) we finally obtain

Erad/Vx1x2 ∼ Erad/δ
(2)(0) ∼

∫

dk⊥k⊥
k4

⊥δ
(2)(k⊥)

(k+ + k−)4
= 0 (4.8.7)

where we used that the transverse volume is proportional to δ(2)(0). Thus, we find

that the total energy per transverse area radiated from gravitational waves is zero as

expected.

In fact, it is not hard to argue that this is an all order result and hence an exact

statement. The reason is that, since Jµν in (4.8.1) has no transverse dependence, its

Fourier transformation will be ∼ δ(2)(k⊥). Contracting then Jµν(k) with any of the

polarization tensors of (B5) and (B6) would yield zero because all the components are

proportional to either k1 or to k2.

In order to make contact with [12; 34; 35; 36], one must consider the massless limit

and in addition take the impact parameter to infinity. In this case, as already mentioned

in last section, works [12; 34; 35; 36] yield a zero radiative energy. Likewise, if we start

from the shocks (4.2.10) and take the b → ∞ limit simultaneously with p → 0 such that

bp =fixed it implies that we collide the massless particles very far from each other while

the IR cut-off is taken to zero1.The resulting shocks when these two limits are taken

correspond precisely into two transversally homogeneous gravitational waves with zero

T++ and T−−. According to (4.8.7), these two waves radiate zero energy; exactly as in

[12; 34; 35; 36].

4.9 Conclusions

We have studied the causal, purely gravitational, collision of two massless shockwaves,

having a non-zero impact parameter taking into account back reactions following a

1The same occurs in [12; 34; 35; 36] where there is not an IR cut-off.
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perturbative treatment. Our main conclusions as summarized as follows.

1. Our main computational result is the derivation of the second order corrections

to the metric in the presence of an impact parameter b, taking into account the

back-reaction. This has been presented in equation (4.7.8) and pictorially in fig.

4.6. Fig. 4.6 describes intuitively the manner which the metric evolves in time

and how this evolution is in harmony with causality as it would be expected. In

the b = 0 limit, equations (4.7.6), (4.7.7) and fig. 4.6 suggest a τ ↔ r symmetry.

A similar symmetry has been observed in heavy ions in [26] and in [27] using

different approaches.

2. In fact, it seems that the evolution of space-time soon after the collision is quali-

tatively similar as the situation with the expanding plasma in heavy ions in the

following sense. During the first stages of the collision the plasma is thin in the

longitudinal direction and due to the larger pressure, it has the tendency to ex-

pand and isotropize [38; 39]. Likewise, in the present set-up which, according to

sec. 4.3.3 is an early times approximation, the metric is localized in the vicinity

of x+ ∼ x− ∼ 0 due to the θ functions in equation (4.7.6). Another way to see the

localization of the metric along the collision direction is from a trapped surface

analysis perspective where the trapped surface at t = 0+ is 2-dimensional [11; 28].

On the other hand, we expect that for sufficiently large energy, the final product

will be a (spherically symmetric) Schwarzschild black hole showing that the pro-

duced metric will eventually isotropize, just like the produced medium in heavy

ions.

3. For zero impact parameter, the perturbative treatment and consequently our ap-

proximation breaks down, since our expansion parameter, EG
b , diverges. When

the impact parameter b is zero, the energy momentum tensor is no longer con-

served and thus the Bianchi identities are also violated. We believe that this

is a sign of non-perturbative effects that start to become dominant and that a

perturbative treatment is no longer justified in this regime. It is pointed out that

such a violation is point-like in space and instantaneous in time and is hidden

behind a horizon that forms after the collision (see [11]).

4. We have shown that the trace of the energy momentum tensor is zero, not only

up to first order (negative times), but also for up to second order (after the

collision). This indicates that the energy momentum tensor could be traceless up

to all orders, suggesting a sort of conservation of tracelessness: one starts with
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a traceless energy momentum tenor at some initial time and this tracelessness

continues to apply all the way during the time evolution. It is an interesting

speculation which, certainly should be given further attention.

5. Our approach is perturbative and the region where it is valid is discussed in section

4.3.3. The discussion in that section extends beyond the analytical predictability

of our perturbative approach. In particular, we guess that the equilibration time

for a black hole to be formed at high energies must be given by teq ∼ EG which

is the only available scale either in the b = 0 or in the b ≪ EG limit. This might

seem counter-intuitive in the sense that in high energies one would expect things

to be developed faster: for instance in [40], increasing the boost factor results in

decreasing teq
1. We argue that the set-up we have is different in the sense that the

boost factor in our case is always infinite. We argue that by increasing the energy

more, the process becomes more violent and it takes more time to equilibrate.

Definitely, the numerical relativity approach which, unfortunately has limitations

in taking large values of the boost-factor, is the most reliable avenue to explore

such a question.

6. The estimation of the the gravitationally radiated energy with respect to the

energy, E, and the impact parameter, b is discussed. As noted, positive energy

transverse distributions create shocks with a universal behaviour: at large dis-

tances from the center of these sources, the shocks grow logarithmically instead

of decaying. This implies that such shocks interact strongly for an infinite por-

tion of space and this, in the present approach, would produce infinite radiation.

We propose ways to regulate this issue and we show that this is a fact of fast

moving, everywhere positive definite, transverse distributions in d=4 space-time

dimensions. By relaxing one of these conditions, for example considering zero en-

ergy gravitational waves, we are able to compute the radiation. In this example

we find that the total radiation produced is zero. We argued that such a result

applies to all orders as it would be expected by conservation considerations.

7. We showed in section 4.10 that for dilute enough transverse distributions of the

energy, a black hole can not be formed during head-on collisions. Equivalently, a

black hole is formed when transversally-extended distributions are collided head-

on only if the collision energy is sufficiently large compared to the width of the

1We thank F. Pretorious for a private communication on this issue and for discussing [40]. The

set up used in [40] involves the gravitational collision coupled to a perfect fluid rather to point-like

particles.
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distributions. In other words, dense enough distributions are required in order to

form a black hole and our analysis makes quantifies this statement

4.10 Trapped Surfaces from Extended Sources

In this section, we study the behaviour of shockwave collisions arising from extended

sources on the transverse plane. This investigation has been carried out in great detail

in [28] (see also [7]) where the author has generalized the investigation to any extended

sources satisfying reasonably physical and quite mild constrains and for both, flat and

AdS backgrounds1.

Here, using a simple model, we show that when extended sources on the transverse

plane are collided at zero impact parameter, two trapped surfaces (a small and a large

one) are obtained for sufficiently large energy2.

In order to see this, we replace the delta function localized matter distribution with

an extended one and in particular we consider a transversally symmetric distribution ρ.

Hence, we assume a T++ ∼ Eρ(kx⊥)δ(x+) where x2
⊥ = (x1)2 + (x2)2 and where k fixes the

width of ρ which can be energy (E) depended or energy independent. The stress-tensor

can be normalized such that when T++ is integrated to yield E. The corresponding

transverse part, denoted by φ, of the shock satisfies ∇2
⊥φ = ρ. This yields

φ ∼ EG

∫ r

0

dr

(∫ r′

0
dr′′r′′ρ(r′′)

r′

)

. (4.10.1)

The trapped surface consists of two pieces, S+ and S−. These are parametrized with

the help of two functions, ψ+ and ψ−3 which satisfy the following differential equation

∇2
⊥(ψ± − φ±) = 0. (4.10.2)

It is pointed out that ∇2
⊥φ± provides a source term for ∇2

⊥ψ±. The missing ingredient

is the boundary conditions. Dropping the indices ± from ψ± from now on assuming

a zero impact parameter and identical shocks we have ψ+ = ψ− = ψ. The boundary

conditions then read

ψ
∣
∣
∣
C

= 0
∑

i=1,2

[∇xiψ∇xiψ]
∣
∣
∣
C

= 8 (4.10.3)

1For AdS backgrounds on trapped surfaces there have been many interesting works including [32;

41; 42; 43]
2We thank G. Veneziano for a relevant discussion.
3For details we refer the reader to the appendices of [33; 44].
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Figure 4.7: The function
(

(e−y2 − 1)/y
)2

as a function of y ≡ kx⊥.

for some curve C which defines the boundary of the trapped surface and where both,

S+ = S and S− = S end.

The function ψ satisfying the left boundary condition in (4.10.3) is given by ψ(x⊥) =

φ(x⊥) −φ(xc
⊥) which vanishes on the trapped surface defined by x⊥ = xc

⊥. Imposing the

right condition, allows one to specify xc
⊥ in terms of the parameters of the problem,

namely EG and k. Thus from (ψ′(x⊥))2 ∼ 1 one obtains

(ψ′(xc
⊥))2 = (φ′(xc

⊥))2 ∼ 1 =>

∫ yc

0 dryρ(y)

yc
∼ 1
EkG

, y ≡ kx⊥. (4.10.4)

The last equation provides the condition of a trapped surface from colliding extended

sources: for a given energy E and a transverse width k, a trapped surface exists if there

is a yc such that (4.10.4) has a solution. Taking for concreteness a Gaussian distribution

ρ = k2e−x2
⊥

k2

equation (4.10.4) yields

(

e−k2x2
⊥ − 1

kx⊥

)2

∼
(

1
EkG

)2 ∣
∣
∣
x⊥=xc

⊥

. (4.10.5)

A few remarks are in order.

• The function
(

(e−y2 − 1)/y
)2

for positive y becomes zero at y = 0 and y = ∞ and

is strictly positive with a maximum at y ≈ 1.12 (see figure 4.7).

• The previous statement implies that for a given sufficiently large energy E there

is a small trapped horizon and a large trapped horizon. In addition, according

to figure 4.7, there is a critical value of the quantity EkG such that the small

and the large apparent horizons merge. Finally, for smaller values of the quantity

EkG, the trapped surface can not exist (see top dashed line in the figure). This

implies that for small energies or for large widths (small k’s; very dilute matter)

the trapped surface can not be formed. This is an expected result.
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• The full classification of all the distributions ρ and the kind of surfaces that they

create has been performed in [28]. Here we briefly mention the basic features

for completeness. There are three classes of trapped surfaces: (a) The ones

created for energy no matter how small it is (k is assumed fixed). (b) Trapped

surfaces with a single trapped horizon which are created only for sufficiently large

energies. (c) Trapped surfaces with two trapped horizons which are created only

for sufficiently large energies (see for example fig. 4.7). In all the cases, the

shocks grow logarithmically at infinity while in the high energy limit EkG ≫ 1,

the entropy grows as Strap ∼ E2G. Such a growth applies for any distribution ρ

and hence the result is universal.

4.11 Polarization tensors

We now proceed to derive the polarization tensors. There are two such tensors, ǫµν
(1)

and ǫµν
(2). It is necessary to define two space-like unit vectors, eM

1 and eM
2 , that are both

perpendicular among themselves and to the wave vector of the radiated gravitational

radiation, kµ, before one can derive the polarization tensors. These vectors satisfy the

following relations

eµ
αeβµ = δαβ , eµ

αkµ = 0 . (B1)

The two vectors explicitly written in light-cone coordinates read

eµ
1 =

(

− k⊥√
2|~k|

,
k⊥√
2|~k|

,
k1 (k+ − k−)√

2k⊥|~k|
,
k2 (k+ − k−)√

2k⊥|~k|

)

, eµ
2 =

(

0, 0,− k2

k⊥
,
k1

k⊥

)

, (B2)

where we have defined ~k ≡
(

k1, k2,
k+−k−√

2

)

.

We can now proceed to construct the two polarization tensors. They should, by con-

struction, be orthogonal to each other and traceless, i.e. satisfy the following relations

ηµνǫ
µν
a = 0 , ǫµν

a ǫbµν = δab (B3)

One can easily see that the two polarization tensors can be written in terms of the

polarization vectors as,

ǫµν
(I) =

eµ
1e

ν
1 + eµ

2e
ν
2√

2
, ǫµν

(II) =
eµ

1e
ν
1 − eµ

2 e
ν
2√

2
. (B4)
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Writing the explicit form of the two tensors, we have

ǫµν
(I) =

1

2
√

2|~k|2











k2
⊥ −k2

⊥ k1 (k− − k+) k2 (k− − k+)

−k2
⊥ k2

⊥ k1 (k+ − k−) k2 (k+ − k−)

k1 (k− − k+) k1 (k+ − k−) 2k2
2 + (k+ − k−)2 −2k1k2

k2 (k− − k+) k2 (k+ − k−) −2k1k2 2k2
1 + (k+ − k−)2











, (B5)

ǫµν
(II) =

1

2
√

2|~k|2











k2
⊥ −k2

⊥ k1 (k− − k+) k2 (k− − k+)

−k2
⊥ k2

⊥ k1 (k + −k−) k2 (k+ − k−)

k1 (k− − k+) k1 (k + −k−) − 2k2
2|~k|2+k2

1(k+−k−)2

k2
⊥

2k1k2(k2
⊥

+(k+−k−)2)
k2

⊥

k2 (k− − k+) k2 (k+ − k−)
2k1k2(k2

⊥
+(k+−k−)2)
k2

⊥

− 2k2
1|~k|2+k2

2(k+−k−)2

k2
⊥











.

(B6)
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