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Chapter 1

From Canal Waves to Quantum
Magnetism

Edinburgh, August 1834.

I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel apparently without
change of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half in height. Its height gradually di-
minished, and after a chase of one or two miles I lost it in the windings of the channel
[1].

The weird effect that ship designer John Scott Russell described in his notes is what
is now known as a soliton-a localized non-linear wave that maintains its shape while
traveling at a constant velocity.1

The corresponding wave equation which admits such solutions is the Korteweg-de
Vries (KdV) equation, a non-linear non-dispersive partial differential equation. Many
years after the discovery of the KdV equation it was realized by R.M. Miura C.S. Gard-
ner and M.D. Kruskal [2] that this equation has infinitely many integrals of motion
which can be given explicitly. This important result was the first connection between
the well known Liouville integrability in Hamiltonian systems and classical non-linear
field theories. Shortly after this discovery, many advances like the Lax Pair developed

1Solitons have played a crucial role to the development of modern physics, from particle physics and
cosmology with the prediction of magnetic monopoles and the skyrme model to mesoscopic phenomena
in magnetic films and superconductors.



10 Chapter 1. From Canal Waves to Quantum Magnetism

Figure 1.1: In vivo experiment demonstrating a soliton wave. It was
conducted at Herriot-Watt university in 1995.

by P. Lax [3] and the solution of the non-linear Schrödinger equation [4] contributed to
the development of what is known as classical inverse scattering as a method to solve
classical integrable field theories. Almost immediately with the development of the
classical inverse scattering the Leningrand school developed the quantum inverse scat-
tering method, practically what is nowadays known as Algebraic Bethe Ansatz (ABA).
ABA elegantly exploits the infinite symmetries of the system in order to derive the
spectrum of the Hamiltonian and serves as an alternative and if applicable, equivalent
method to the one that H. Bethe developed based on symmetry arguments in his ef-
fort to derive the spectrum of the one-dimensional Heisenberg spin chain. However,
although the two methods are meant to do the same job the ABA gained considerable
attention when V. Korepin was able to prove Gaudin’s conjecture [5] about the nor-
malization of the Bethe wavefunctions and N. Kitanine, J.M. Maillet, V. Terras where
able to calculate matrix elements for relatively large spin chains [6] bypassing the exact
diagonalization method in which calculations where restricted for very small number
of spin sites approximately N ' 12. Indeed, this method illuminated the path towards
many advances in the field of integrable systems and their connection with experiments
[7, 8, 9, 10, 11, 12, 13, 14, 15].

Amazingly, the structure of Integrability is inherently connected with progress in the
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field of strongly correlated systems and specifically with the development of the theory
of quantum magnetism. Quantum magnetism was intially developed by E. Ising [16]
and H. Bethe [17] when they used one-dimensional models as toy models in order to
simulate magnetic materials. In particular, the cornerstone of this class of models is the
so-called Heisenberg model discovered by W. Heisenberg (and almost simultaneously by
P.M. Dirac). The Heisenberg model can be described as an effective description of the
Pauli exclusion principle and the electrostatic (Coulomb) interactions. As an example,
one can think of the energy difference between the orthohelium and parahelium which
is a dot product between the two electron spins of the atom. In general, the effective
coulomb interaction for fermions must have the dot product form ~Si · ~Sj. Therefore,
expanding this recipe to a chain of atoms we can obtain the Heisenberg model. Of
particular interest is the one-dimensional S = 1/2 antifferomagnetic Heisenberg model
which can be understood using the superexchange process proposed by P.W. Anderson
[18]. To this end, let us consider a model of weakly overlapping electron wavefunctions
where we have added the Coulomb repulsion between to electrons at the same site

H = −t
∑
σ=±

N∑
i=1

a†iσai+1σ + V
∑

Ni+Ni−, (1.1)

where t is the hopping parameter and V denotes the coulomb repulsion. The above
model is known as Hubbard model. In the strongly correlated case, V/t >> 1 the model
is half-filled, 〈Ni〉 = 1 and the dominant process is effectively a spin-spin interaction.
To be more specific, if the spins on adjacent sites are parallel then due to the Pauli
uncertainty principle nothing happens since double occupancy is forbidden. On the
other hand, when the spins are antiparallel they can occupy the same site for a short
time (since it is energetically unfavorable) and then one of the two spins will hop to
the empty site. Consequently, there are two possibilities: Either nothing is changed or
a spin exchange process has taken place. The later case is the superexchange process
which as P.W. Anderson described leads to the Heisenberg model.

H = J
N∑
j=1

~Si · ~Si+1, J ∼ t2/V. (1.2)

Additionally this was expanded by P.W. Kasteleijn. to include an anisotropy param-
eter ∆ in the quantization axis [19] and this model is known as the XXZ spin chain
model.

Regarding the spectrum of the XXZ spin chain, L.D. Faddeev and L.A. Takhtajan
in their seminal work [20] revealed that the elementary excitations are domain wall-
like particles carrying S = 1/2 spin, called spinons, which are a collective cooperative
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motion of the real particles that constitute the material. In addition, it was found that
spinons are fractional excitations meaning that in generally they cannot appear as sin-
gle particles but only in pairs. It is rather interesting that even though the dynamics
and the thermodynamics of the XXZ model has been extensively studied, there is still
a lot of mystery about the behavior of spinons and their explicit contribution in the
transport and thermodynamic properties of these materials. Hence, the thesis main
objective is to contribute to the fundamental understanding of spinons.

1.1 Overwiew of this Thesis

This thesis is devoted to the study of some fundamental aspects of the dynamics of
the one-dimensional S = 1/2 XXZ model. In particular, we study the scattering
of a spinon from local potentials aiming at a microscopic understanding of scatter-
ing processes by impurities, phonons and barriers, relevant to (far-out of equilibrium)
quantum spin transport. Additionally, we address the theoretical question,how does a
quantum many-body topological excitation scatters from a potential?. This question is
also relevant in other systems with topological excitations of actual experimental and
theoretical interest. Moreover, we study the thermodynamics of the aforementioned
system, where aiming at a physical picture of the (thermo-) dynamics, we look at the
low energy dispersions of the underlying string excitations where we find that they are
simple expressions in terms of dressed momenta which however are temperature depen-
dent. By reformulating the expressions of the specific heat and magnetic susceptibility
we point out that, in contrast to field theoretic approaches, completely different string
excitations correspondingly contribute. On the relaxation functions, a very interesting
recent extension of TBA was proposed for space-time dependent densities under the
name of Generalized Hydrodynamics approach [21, 22](GHD). By this novel method
the spin and thermal Drude weights [23, 24, 25, 26] were recovered as asymptotic
states of a quench from an initial thermal/magnetization step [27]. Here, using the
GHD approach in the linear approximation, we analyze the relaxation of wavevector-
q dependent thermal/magnetization profiles. As a byproduct we obtain the Drude
weights as integrals over frequency of the wavector-q relaxation spectral function, of
course closely related to linear response conductivities. This study provides theoreti-
cal background to present and feature experiments in 1D quantum magnets [28], e.g
”dynamic heat transport” [29] and ”transient grating spectroscopy” experiments [30],
that probe the relaxation of magnetization/thermal density profiles.

The Organization of this thesis is as follows:

• In chapter 2 we introduce the reader to the basic concepts of integrable systems
and more importantly to the method of Bethe Ansatz. In particular, we derive the
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Bethe-equations and present the elementary excitations of the S = 1/2 XXZ spin chain.

• In chapter 3 we present the Algebraic Bethe Ansatz technique for the XXZ spin
chain. As we already mentioned this is an elegant method to derive the spectrum of
the Hamiltonian. Besides that, a novel and efficient method was recently presented
based on ABA which allow us to efficiently calculate the matrix elements for longitudi-
nal, transverse and spin-phonon potentials for relatively large spin chains, in contrast
to previous methods like the exact diagonalization method where the spin chains were
restricted to N ' 12 sites.

• Chapter 4 is concerned with the scattering of spinons by local and extended po-
tentials of the aforementioned form. Specifically, using Bethe ansatz calculations and
a T -matrix approach we calculate the transmission coefficients corresponding to the
probability that a spinon will asymptotically remain to the same state, i.e. the proba-
bility that the spinon will pass the barrier. To this end, we include the whole 2-spinon
continuum as intermediate states for an even spin chain and the one-spinon states for
an odd spin chain.

• Chapter 5 is an introduction to the method of Thermodynamic Bethe Ansatz (TBA)
developed by M. Takahashi, which is used to derive the thermodynamic equations for
integrable systems. Besides that we present a short description to the peculiar and
amazing properties of the transport properties of integrable systems.

• Chapter 6 is concerned with the thermodynamics of the XXZ spin chain. Specifically,
assisted by the novel method of GHD we look at the low/high temperature dynam-
ics aiming at a physical understanding of the string spectrum. Moreover, we analyze
the relaxation of wavevector-q dependent thermal/magnetization profiles where as a
byproduct we obtain the Drude weights as integrals over frequency of the wavector-q
relaxation spectral function.
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Chapter 2

The Basic Elements of Bethe
Ansatz

This chapter is concerned with the demonstration of the basic elements of the Bethe
ansatz method, especially using the coordinate Bethe ansatz, since this was the original
method developed by H. Bethe in 1931 in order to calculate the exact spectrum of the
isotropic Heisenberg spin chain. The coordinate Bethe Ansatz method can be applied
to a certain class of integrable systems, using properties such as the symmetries of the
system and the factorization of the S-matrix. The first section shortly introduces the
reader to the Liouvillian definition of integrability, while we also present some recent
features of quantum integrable system. In the second section, for pedagogical reasons
we present in detail the coordinate Bethe Ansatz treatment for the one dimensional
Bose gas model, where by imposing periodic boundary conditions we arrive at the well
known Bethe equations, whose solutions completely describe the eigenvectors of the
model. The techniques needed and also many of the derived results can be used as a
guidance for the XXZ Heisenberg spin chain. In the next sections, we focus on the XXZ
model and using the same steps introduced in the previous section, we discuss about the
existence of bound states solutions called strings and the fundamental excitations for
the ferromagnetic, paramagnetic and antiferromagnetic regime. In particular, we give
emphasis to the understanding of spinon excitations that are the elementary excitations
in the paramagnetic/antiferromagnetic regime. Finally, we introduce an interesting
quantity called The fractional charge which plays a central role to the understanding
of the scattering mechanism of spinon excitations.

2.1 Classical and Quantum Integrability

2.1.1 Integrability in classical Hamiltonian systems

Let us consider a classical Hamiltonian system of n point particles. If (qi, pi), i =
1, ..., n decribe the canonical pair of position and momentum, the phase space is then
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a 2n-dimensional manifoldM which can be equipped with the Poisson brackets {., .}.
A constant of motion Kj(q, p) is defined as follows:

dKj
dt

= {Kj, H} = 0. (2.1)

Furthermore, a set of n constant of motions {Kj} is said to be in involution if {Ki,Kj} =
0.

To this end, we state the Liouville’s definition of integrability: A dynamical system
(of 2n-dimensional phase space manifold M) is said to be Liouville integrable if there
exist n independent constants of motion in involution.

Furthermore, the term integrable becomes apparent if we use the well known Liou-
ville’s theorem, which states that the solution of the equations of motion of a Liouville
integrable system is obtained by quadrature. Quadrature essentially means that the
problem’s complexity is reduced to algebraic equations and that the solution will have
in integral representation. In fact, a canonical transformation can be constructed in
terms of action-angle variables, i.e., (qi, pi)→ (θi,Ki)

dKi
dt

= 0, ,
dθi
dt

= f(K) (2.2)

Finally, we give a very simple example of a classical integrable system:

H(q, p) =
p2

2m
+ V (q), (2.3)

where the solutions is given by:

t(q) =

∫
dq√

2(E − V (q))
. (2.4)

If we are able to perform the integral on the RHS, then we must simply invert the
relation to obtain the desired result.

Our purpose was to state the integrability condition for a classical integrable system in
order to collate it with those of a quantum integrable system. However, it is important
to mention that integrability also extends to 1+1 classical field theories. In particular,
two major contributions played a significant role for the rapid advance of this field.
The first one was from Clifford S. Gardner, John M. Greene, Martin D. Kruskal and
Robert M. Miura where they used for the first time the method of classical inverse
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scattering [31] to solve the KdV model1 and the second one was from Peter Lax who
was studying non-linear partial differential equations and found that if a PDE can be
reformulated in terms of two operators ∂tL = [L,M ], then the system is integrable [3].
Subsequently, A. Zakharov and V. Shabat combined the two seemingly unrelated meth-
ods to solve the non-linear Schrödinger equation [4]. Therefore, they consolidated the
inverse scattering method which is widely used to solve 1 + 1 integrable field theories.
From the previous analysis, it is clear that a classical field theory is integrable if there
exists a set of infinitely many independent local conserved quantities in involution2

2.1.2 Quantum Integrable systems

Unlike classical integrability, Quantum integrability is far more enigmatic since we
cannot promote Liouville’s theorem in its quantum version. It is evident that the
Heisenberg uncertainty principle prevent us from a valid definition of the phase space
manifold, since position and momentum cannot be defined simultaneously. In addition,
Liouville’s theorem is associated with the notion of solvability(at least in an integral
form), which is not easily applicable in the quantum case. To be more specific, in a
finite-dimensional quantum system the size of the Hilbert space increases exponentially
with the number of its constituents, say N . Therefore, it is not a simple and doable task
to diagonalize the Hamiltonian and to this end complicated but elegant methods have
been created in order to deal with this task. Of course, although the Liouville theorem
could provide us with a simple ”too many symmetries” argument one could also identify
the notion of integrability with the algebraic structure of Yang-Baxter algebra [32, 33],
which could be loosely seen as a statement of non-diffractive scattering. Let us mention
that a very interesting discussion about the definition of quantum integrability can be
found in the work of Caux and Mossel [34].

2.2 An Interesting Application: Thermalization of

Quantum integrable systems

As a first application of quantum integrability we compare the relaxation process of
a closed integrable system with a non-integrable one. To begin with, let us assume
that we have a generic isolated3 quantum system. Due to the fact that the observation
of quantum states themselves is problematic, we instead consider a local observable

1One of the most famous example of an integrable system is the Korteweg-de Vries (KdV) equation
model which describes waves in shallow waters

2The definition of an integrable field theory ultimately excludes non-trivial theories that live in
higher dimensions

3The isolated system denotes the absence of any interaction with the environment
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A. The locality property allows the complementary region in which the operator acts
non-trivially to become an effective ”bath” relaxing the expectation value of A towards
its equilibrium value. Specifically,

lim
t→∞

lim
N→∞

〈ψ|A(t)|ψ〉 = 〈A〉β, (2.5)

where 〈A〉β ≡ tr[ρGA], with ρG = e−βH

Z the Gibbs ensemble and the effective tem-
perature β is determined through the expectation value with respect to the Hamilto-
nian β = 〈ψ|H|ψ〉4. The mechanism of thermalization is described by the Eigenstate
Thermalization Hypothesis (ETH) [35, 36, 37]. According to ETH, the thermalization
process occurs at the level of the discrete eigenstates of a given Hamiltonian due to
the fact that each eigenstate contains implicitly a thermal state. The ETH is in fact
a substitute to the classical picture where the thermal ensemble was a consequence of
the ergodicity of trajectories constrained to move onto a fixed energy surface.

The case for an integrable systems is completely different and this becomes visible from
the existence of an unbounded in the thermodynamic limit set of conserved charges
{Qk} and thus we expect that in the maximization of entropy all these conserved
charges should be taken into account5. To contrast with the non-integrable case, the
Gibbs ensemble is given by maximizing the entropy under the constraint of fixed energy
which is expressed via the Lagrange multiplier β. Therefore the resulting equilibrium
ensemble which is known as Generalized Gibbs Ensemble(GGE) is given by

ρGGE =
1

Z
exp(−

∑
k

βkQk), (2.6)

where βk = 〈ψ|Qk|ψ〉.

Additionally, recent work showed that the local charges alone cannot exhaust the GGE
state [38, 39] and that a new type of charges, called quasilocal charges should be in-
cluded in order to achieve completeness [40, 41].

Finally, recent advances in the field of (ultra)cold atoms have made possible the study
of isolated systems due to their very weak interaction with the environment, mainly in
the form of particle loss through heating and due to the controllability of the system’s

4The well known concept of negative temperatures which is observed experimentally is just the
simple fact where 1

N tr[ρGH] > 1
N trH when N →∞.

5 Global operators do not take part to the equilibration process and therefore we simply define the
corresponding Lagrange multiplier as βk ≡ 0 if Qk is a global operator
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parameters. To this direct a novel experiment, known as the Quantum Newton’s Cra-
dle was performed by T. Kinoshita, T. Wenger and D. Weiss [42], where they confined
87Rb atoms within a trap and were able to manipulate the effective dimensionality of
the system. The experiment suggested that when the system was driven out of equi-
librium the the two and three-dimensional Bose gases relaxed very quickly towards an
equilibrium state while the equilibration process of the one-dimensional bose gas which
is modeled by an integrable system was very different suggesting the absence of the
usual Gibbs thermalization for this case. In addition to the unusual thermalization of
integrable systems, chapter 5 gives an overview of the transport theory for the afore-
mentioned class of systems which shows that the existence of conservation laws give
rise to interesting and novel transport properties.

2.3 One Dimensional Bose Gas

Let us consider a one-dimensional system of N -bosons with repulsive two body contact
interaction. This system was first studied by Lieb and Liniger [43] and is one of the
simplest, albeit interesting, integrable quantum many body system.

The quantum field theory for such a system is described by

H =

∫
dx

[
Ψ†(x)H0Ψ(x) +

1

2

∫
dyΨ†(x)Ψ†(y)V (x, y)Ψ(y)Ψ(x)

]
(2.7)

[Ψ(x),Ψ†(y)] = δ(x− y), [Ψ†(x),Ψ†(y)] = [Ψ(x),Ψ(y)] = 0. (2.8)

Replacing H0 = −∂2
x and V (x, y) = gδ(x− y), where g > 0, we obtain :

H =

∫
dx
[
−Ψ†(x)∂2

xΨ(x) + gΨ†(x)Ψ†(x)Ψ(x)Ψ(x)
]

(2.9)

The equation of motion in the second quantized form is

i∂tΨ = −∂2
xΨ + 2gΨ†ΨΨ (2.10)

Note that, if we treat Ψ(x) as a semi-classical field we recover the non-linear
Schrödinger equation.

Moreover, the number and momentum operators are given by:

N =

∫
dxΨ†(x)Ψ(x), (2.11)
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P = −i
∫
dxΨ†(x)∂xΨ(x). (2.12)

These two quantities are two of the infinitely many integrals of motion. Using (2.8)
we can check that:

[H, P ] = [H,N ] = 0. (2.13)

The above integral of motions allow us to exploit the number conservation and
translation symmetry and seek for common eigenstates of the H,P,N operators in the
Nth subspace of the Fock space:

|Ψ(k1, ..., kN)〉 =
1√
N !

∫
dNφN(x1, ..., xN |λ1, λ2, ..., λN)Ψ†(x1)...Ψ†(xN)|0〉. (2.14)

Moreover, it is useful to reduce the quantum field theory problem into a quantum
mechanical one by rewriting its Hamiltonian as:

HN = −
N∑
i=1

∂2

∂x2
i

+ 2g
∑

1≤i≤j≤N

δ(xi − xj). (2.15)

Since our particles are bosons, we can choose a suitable domain in order to simplify
our calculations in the coordinate space:

D = {~x ∈ RN : x1 ≤ x2 ≤ ... ≤ xN}. (2.16)

Therefore, our problem is to solve the eigenvalues problem:

H0
NφN = E0

NφN , H0
N ≡ −

N∑
i=1

∂2

∂x2
i

, (2.17)

constrained by the following boundary conditions induced by the δ- interaction6(
∂

∂xj+1

− ∂

∂xj
− g
)
φN = 0 , j = 1, 2, ..., N − 1, (2.18)

where xj+1 = xj + ε.

Finally, before we proceed to the solution of the eigenvalues problem we impose periodic

6Since we have chosen this specific domain D, the following boundary conditions are easily obtained
by changing coordinates to a center of mass-like system rj = xj+1 − xj , Xj = (xj+1 + xj)/2 and
integrate over an arbitrarily small region |r| < ε, ε→ 0
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boundary conditions, i.e. constraining our system into a ring of perimeter L:

φN(x1, ...xj + L, ..., xN |λ1, λ2, ..., λN) = φN(x1, ...xj, ..., xN |λ1, λ2, ..., λN). (2.19)

x=0

x=L

Figure 2.1: A cartoon of the Bose particles (blue balls) constrained to
move in a ring of length L.

We proceed with an ansatz for the wavefunction φN in the given domain D of the
form:

φN(x1, ...xN |λ1, ..., λN) =
∑
P∈SN

APe
i
∑
j λPjxj , (2.20)

where P ∈ SN and denotes an N -cycle permutation of the particles momenta, which
is produced by interchanging neighbor particles.

Let us take a step back and for the sake of simplicity counter the N = 2 body problem.
The N = 2 wavefunction becomes:

φ2(x1, x2|k1, k2) = A12e
i(λ1x1+λ2x2) + A21e

i(λ2x1+λ1x2) (2.21)

by substituting to equation (2.18) we deduce a relation between A12 and A21, specif-
ically:

A12

A21

=
i(λ1 − λ2)− g
i(λ1 − λ2) + g

= −eiθ(λ1−λ2), (2.22)

θ(λ) ≡ −2 arctan
λ

g
. (2.23)

Additionally, one can naturally determine the S-matrix between two rapidities

S(λ1, λ2) = S(λ1 − λ2) =
λ1 − λ2 − ig
λ1 − λ2 + ig

(2.24)

The above results are interesting consequences of integrability, i.e. that when two
particles collide they only acquire a phase shift described by the phase shift function
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θ(k). In fact every integrable model is characterized by a specific phase shift function.
Moreover having described the two body problem it is straightforward to repeat this
calculation for the N body problem, since the S matrix is factorisable into two-body
parts7.

Additionally, using eq.(2.17) we find that the energy and momentum of state
eq.(2.21) are given by:

E = λ2
1 + λ2

2 , P = λ1 + λ2. (2.25)

Repeating the above calculations for the N body problem using eq.(2.18) we get that

AP
AQ

=
i(λPj − λPj+1

)− g
i(λQj − λQj+1

) + g
= −eiθ(λ1−λ2), (2.26)

where Q is defined through P by exchanging Pj and Pj+1.

Therefore, we find that the eigenstate φN can be described by:

AP = CN
∏
j<k

(λPj − λPk + ig) (2.27)

The energy and momentum of our eigenstate are given by:

E =
N∑
j=1

λ2
j , P =

N∑
j=1

λj (2.28)

Note that, even though we found the exact eigenstates and eigenvalues of the sys-
tem, they are described through a set of unknown quasi-momenta parameters {λj}.
Therefore, our last step is to calculate these unknown numbers, that fully characterize
the quantum state, via the quantization that is provided from the periodic boundary
conditions. Since we have chosen a specific domain D the periodic boundary conditions
are equivalent of taking the particle in the xj position and move it trough the ring via
two-cycle permutations of SN . This means that the particle will scatter with all the
N − 1 particles in the ring.

Hence, we arrive the following set of algebraic equations called the Bethe equations

eiλjL =
N∏
l 6=j

λj − λl + ig

λj − λl − ig
= (−1)N−1

N∏
l 6=j

eiθ(λj−λl), j = 1, ..., N. (2.29)

7This is a magnificent property of integrable systems, which is not generally true. For example a
general three-body problem can be an intractable problem due to the highly increased complexity
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Using the S-matrix we arrive at the following interesting form:

eiλjL
∏
l 6=j

S(λj, λl) = 1. (2.30)

The above result is a straightforward presentation of the previous statement, that
if we move a particle of rapidity λj through the ring, it will scatter consecutively with
all the other particles in the ring.

The logarithmic form of the Bethe equations is

λj =
2π

L
Ij +

1

L

N∑
i=1

θ(λj − λl), (2.31)

where Ij are analogs of the quantum numbers in the sense that they completely
characterize our quantum state, and take integer values if the number of particles N
is odd and half integer values if N is even. Additionally, since θ(−λ) = −θ(λ) the
momentum of the state is P = 2π

L

∑N
j=1 Ij, which implies that it is quantized and does

not depend on the coupling constant g. Note that, there is a critical question concerned
with the existence and uniqueness of solutions of the Bethe equations: For a specific
set of {Ij} does a unique solution {λj} of the Bethe equations exist?

The answer is provided by a theorem of Yang and Yang [44] which states that:

Theorem 1. The solutions of the Bethe Equations exist and can be uniquely parame-
terized by a set of integer (half-integer) numbers Ij.

Proof. : Let us write an action SBE from which the Bethe equations can be derived

SBE =
1

2
L

N∑
j=1

λ2
j − 2π

N∑
j=1

Ijλj +
1

2

∑
j,k

∫ λj−λk

0

θ(µ)dµ (2.32)

Bethe equations are derived from a variational principle (extremum conditions) of
equation (2.31). In order to prove that the solution exists and that for each Ij is unique,

it is sufficient to prove that the Hessian matrix ∂2S
∂λj∂λk

is positive definite

∂2SBE
∂λj∂λk

= δjk

[
L+

N∑
m=1

2g

g2 + (λj − λm)2

]
− 2g

g2 + (λj − λk)2
(2.33)

Therefore if for any real vector w, the product wT ∂2SBE
∂λj∂λk

w ≥ 0 then we have proved
our statement
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∑
j,k

wjwk
∂2SBE
∂λj∂λk

=
N∑
j=1

Lw2
j +

N∑
j>k=1

2g

g2 + (λj − λm)2
(uj − uk)2 ≥ 0 (2.34)

Note that although we have proved that a solution {λj} exists for the Bethe equation
and in fact describes the exact solution of the system, it cannot be found analytically
and should be calculated via numerical methods

Another interesting question to ask is, to think that we have an increasing mono-
tonic sequence of {Ij}, i.e. I1 < I2 < ... < IN . Is it true that also λ1 < λ2 < ... < λN?.
The answer is given by the following statement which can be found in [45]:

Theorem 2. If Ij > Ik then λj > λk, if Ij = Ik then λj = λk.

The proof of the above theorem can be found in [45]

These two theorems are going to serve as guidance for the properties of the Bethe
roots in more complex models such as the XXZ spin chain model.

Finally, the set of quantum numbers {Ij} that characterize the ground state must
be described. For this purpose, we take a special limit g →∞ (Tonks-Girardeau case)
in which the problem is simplified substantially. In this limit we find that bosons
become effectively fermions8, known as hard core bosons, since from the boundary
conditions we get that φN |xi=xj = 0 which implies that if λi = λj the wavefunction
vanishes. Moreover, θ(λ)→ 0 which means that λj = 2π

L
. Therefore, the ground state

for the Tonks-Girardeau gas is given by a symmetric configuration of quantum numbers
without holes

Ij = −N + 1

2
+ j , j = 1, ..., N, (2.35)

where excited states can be in principle constructed from different choices of {Ij}.

In fact, this is also the ground state in the finite g case, since by an analytical continu-
ation argument for the wavefunction, we expect that it should be also true in the finite
case. Furthermore it is interesting that in the case of a repulsive one-dimensional Bose

8 This weird situation should not estrange us since we have seen that one-dimensional interacting
bosons cannot acquire the same quasi-momenta. In fact It is known that systems in 1+1 dimensions
do not obey the usual spin-statistics theory, i.e the fundamental group is different, which is another
remarkable property of one-dimensional interacting systems
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gas, g > 0 all solutions of the Bethe equations, {λ} are real, while the attractive case
g < 0, as the Heisenberg model, contains also complex solutions, called strings [46, 47],
which denote bound states of real excitations. Finally, it is very interesting that if we
were to generalize the bosonic fields Ψ(x), Ψ†(x), to anyonic fields [48] parameterized
by a parameter q, i.e. Ψq(x), Ψ†q(x), the Bethe-Ansatz mechanism would perfectly work
and the Bethe equations would become [49]:

eiλjL = eiπq(N−1)

N∏
l 6=j

λj − λl + ig′

λj − λl − ig′
, g′ =

g

cos(πq/2)
. (2.36)

The above result can be perceived as a nice demonstration of the flexibility and
strength of the Bethe Ansatz formalism.

2.4 The Anisotropic Heisenberg Spin Chain

The discussion of the Lieb-Liniger was a useful prelude and a guidance, since we will
use the same methodology for a more sophisticated and widely used one-dimensional
model, namely the anisotropic Heisenberg spin chain.

The basic ingredients of the model are the spin matrices satisfying the su(2) Lie algebra
[Sαj , S

β
k ] = iδjkε

αβγSγk

The Hamiltonian of the system with N sites, given the boundary conditions SN+j = Sj
is

H = J
N∑
n=1

[SxnS
x
n+1 + SynS

y
n+1 + ∆(SznS

z
n+1 −

1

4
)]− h

∑
j=1

Szj , (2.37)

where San = ~
2
σan, with σan the Pauli matrices, J is the interaction strength between

neighbor spins and ∆ is an anisotropy parameter in the z SU(2)-space direction. The
∆ = 1 case is simply called Heisenberg spin chain. Finally note that the term −J∆N

4

is physically insignificant and is only added in this section in order to simplify our
calculations

By introducing the spin flip operators S±n ≡ Sxn ± iSyn we can rewrite the Hamilto-
nian

H = J
N∑
n=1

[
1

2
(S+

n S
−
n+1 + S−n S

+
n−1) + ∆SznS

z
n+1

]
− h

∑
j=1

Szj , (2.38)
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where the S±j operators satisfy the following commutation relations

[S+
j , S

−
k ] = 2δjkS

z
j , [Szj , S

−
k ] = ±δjkS±j . (2.39)

The Hilbert space is spanned by the basis vectors |σ1, ...σN〉 and is of dimension
dimH = 2N . Additionally, J > 0 favors ferromagnetic alignment, while J < 0 an
antiferromagnetic alignment.

In the case where ∆ = 1, the Heisenberg chain posses full SU(2) rotational invari-
ance since [H,Sαtot] = 0, Sαtot =

∑N
j=1 S

α
tot, while for ∆ 6= 1 the symmetry breaks down

to rotational symmetry around the z axis, i.e. U(1) symmetry. For general h the z-axis
symmetry allow us to partition the Hilbert space H into subspaces of

fixed magnetization M , determined from the number of reversed spins, M ≡
N
2
− 〈Sztot〉.

Moreover, by imposing periodic boundary conditions the Hamiltonian is also invariant
under translations T =

∏N−1
j=1 Pj,j+1, where Pij is a permutation of spins on site i and

j. Indeed, on can prove that [H, T ] = 0 and therefore each eigenstate will be a super-
position of plane waves.

In addition, we can also find symmetries related to ∆ and h namely

UH(∆, h)U−1 = H(−∆, h) , U =

M/2∏
j=1

2Sz2j

V H(∆, h)V −1 = H(∆,−h) , V =

M/2∏
j=1

2Sx2j (2.40)

In conclusion, the full symmetry group is G = Z/NZ×SU(2) for the isotropic case
and G = Z/NZ× U(1)z for the anisotropic case.

A comment on the experimental realizations of spin chains

Finally, let us mention that the S = 1/2 XXZ spin chain accurately describes vari-
ous magnetic materials with strong one dimensional crystallographic direction like the
KCuF3, the Sr2CuO3 or CaCu2O3, SrCuO2, and SrCuO2 the CuSO4·5D2O [50, 51, 52,
28]. These types of materials are mainly being studied for their transport properties.
For instance, heat transport properties provide information about the various kind
of excitations that take part, i.e. phonons electrons and others and their scattering
properties.
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Figure 2.2: CuSO4·5D2O is an example of a material which is de-
scribed by a one-dimensional s = 1/2 spin chain. In an elemntary unit
cell there are two Cu2+ sites providing a localized s = 1/2 spin while
the interchain interactions are found to be so small that the low dimen-

sionality effectively applies. Figure taken from [52]

2.4.1 The Bethe Ansatz Solution

We start our analysis with a reference state |0〉 ≡ ⊗Nj=1| ↑〉, having energy E0 =
JN/4− hM and magnetization M = N/2.

If we define states that show us the location of the reversed spins in the chain, namely

|n1, ..., nM〉 ≡
M∏
l=1

S−jl |0〉 , 1 ≤ nk ≤ N, (2.41)

then a general eigenstate at Sztot = N/2−M sector can be written as follows:

|ψ〉 =
∑

1≤n1≤n2...≤nM≤N

φM(n1, n2, ..., nM)|n1, n2, ..., nM〉, (2.42)

The eigenvalue equation H|Ψ〉 = E|Ψ〉 gives

J

2

∑
j

(1− δnj+1,nj+1
)
{
φM(n1, ..., nj + 1, nj+1, ..., nM) (2.43)

+ φM(n1, ..., nj, nj+1 − 1, ..., nM)
}

[
E0 − E − (J∆− 2h)M + J∆

∑
j

δnj+1,nj+1

]
φM(n1, ..., nM) = 0
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Next, let us make an ansatz for the wavefunction φM(n1, ..., nM) similar with the
case of the Lieb Liniger model

φM(n1, n2, ..., nM) =
M !∑
P∈SM

APe
i
∑M
j=1 λPjnj (2.44)

The energy for the M particle state can be found form the nj + 1 < nj+1 case to be

E = E0 +
M∑
j=1

[J(cos kj −∆) + h], (2.45)

while the momentum of the state is P =
∑M

j=1 kj.

Moreover, if we consider the case nj + 1 = nj+1 we obtain

AP(eikPj + e−ikPj − 2)eikPj+1 + APj+1
(eikPj+1 + e−ikPj − 2)eikPj = 0, (2.46)

Similarly with the Lieb-Liniger model these N !(N −1)/2 equations can be satisfied
if

AP = C(−1)[P]
∏
l<j

(ei(kPl+kPj ) + 1− 2∆eikPl ) (2.47)

where C is a normalization constant and (−1)[P] was inserted to reflect the fermionic
structure of the system

Therefore, we find that the scattering phase is defined as:

eθ(ki,kj) = −e
i(ki+kj) + 1− 2∆eiki

ei(ki+kj) + 1− 2∆eikj
(2.48)

and the corresponding S-matrix is given by:

S(ki, kj) = S(ki − kj) = −e
i(ki+kj) + 1− 2∆eikj

ei(ki+kj) + 1− 2∆eiki
(2.49)

The periodic boundary conditions are:

φM(n1, n2, ..., nM) = φM(n2, ..., nM , n1 +N), (2.50)

where they can be thought as rotating the nj down through the whole chain, thus

acquiring a total phase
∑M

l=1 θ(kj, kl).
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Hence for a term AP the corresponding term will be AQ where Q = (P2, ...,PM ,P1).
Therefore we obtain the following Bethe equations:

eikP1N = (−1)M−1AP
AQ

, (2.51)

which by using eq.(2.49) and the fact that the above equation holds for every permu-
tation P reduces to the following form:

eikjN = (−1)M−1
∏
l 6=j

ei(kj+kl) + 1− 2∆eikj

ei(kj+kl) + 1− 2∆eikl
(2.52)

or in the equivalent form

eikjN
∏
l 6=j

S(kj, kl) = 1 (2.53)

Although we have derived the Bethe equations for the XXZ spin chain, its current
form is very difficult to handle and produce analytical or numerical solutions for the
quasi-momenta {kj}. In the following section we will cast another form for the Bethe
equations using the Orbach Parametrization [43], which will be proved a useful tool
not only for the numerical solution of the Bethe equations but also for calculating form
factors and correlation functions which will appear in the next chapter.

2.4.2 Orbach Parametrization

In the previous section we derived the Bethe equations for the XXZ spin chain. The
above form of the equations are not manageable and cannot be used for numerical cal-
culations. Therefore, following the work of Orbach, we trade the set of quasi-momenta
with another set of quantities, namely the rapidities {λj}. The set of rapidities have
two main advantages, the first one is that they simplify the Bethe equations and the
second one that they simplify the scattering phases. Unfortunately, the parametriza-
tion is not undivided, ∀∆ ∈ R, and thus, we have to consider different cases for different
regions of ∆.

The main idea of this re-parametrization is to write ∆ as a function of some parameter
ζ and then write eikj as follows:

eikj =
ϕ(λj + iζ/2)

ϕ(λj − iζ/2)
, j = 1, ...,M (2.54)
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Taking the logarithm of eq.(2.54) :

kj = −i ln

(
ϕ(λj + iζ/2)

ϕ(λj − iζ/2)

)
, j = 1, ...,M (2.55)

θ1(λj) ≡ i ln
(ϕ(λj + iζ/2)

ϕ(λj − iζ/2)

)
+ π (2.56)

θ2(λj − λk) ≡ i ln
(ϕ(λj − λk + iζ)

ϕ(λj − λk − iζ)

)
(2.57)

Hence, we can bring the Bethe equations (2.51) in the following form:(
ϕ(λj + iζ/2)

ϕ(λj − iζ/2)

)N
=
∏
k 6=j

ϕ(λj − λk + iζ)

ϕ(λj − λk − iζ)
(2.58)

By taking the logarithm of eq.(2.58) we get:

θ1(λj) =
2π

N
Ij +

1

N

M∑
k=1

θ2(λj − λk). (2.59)

The momenta and total energy are given by:

P =
M∑
j=1

p(λj) = πM − 2π

N

M∑
j=1

Ij, (2.60)

E = J
M∑
j=1

ε(λj)− h(
N

2
−M), (2.61)

where p(λj) = kj, ε(λj) = |ϕ(iζ)
ζ
|J dp(λj)

dλj
and P ≡ P mod 2π.

Gapless case |∆| < 1

In the gapless case we parametrize ∆ = cos γ and ϕ(λ + iγ) = sinh(λ + iγ). The
resulting scattering phases θm are

θm(λ) = 2
tan−1(tanhλ)

tanmγ/2
, m = 1, 2 (2.62)
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Notice that in the gapless case =(λ) ∈ [−π
2
, π

2
].

Gapped case |∆| > 1

The gapped case can result from the gapless cases by performing the transformation
γ → iφ and λ→ iλ.

The Orbach parametrization is ∆ = coshφ and ϕ(λ + iφ) = sin(λ + iφ). The re-
sulting θn are

θm(λ) = 2tan−1
[ tanλ

tanhnφ/2

]
+ 2πbλ

π
+

1

2
c (2.63)

The introduction of the floor function bxc = {n ∈ Z|n ≤ x} is necessary, since
by making the transformation from the gapless case to gapped case we chose <(λ) ∈
[−π

2
, π

2
], which compel us to stay on the principal branch of the logarithm. Moreover,

the generalization of θn to arbitrary n is useful for future reference.

Isotropic case ∆ = 1

The isotropic limit is easily obtained from the ∆ > 1 by taking the limit ζ → 0
and λ→ λ

φ
is finite. In this case ϕ(λ+ iφ) = λ+ i, while the resulting θn are

θn(λ) = 2 tan−1 λ

n
(2.64)

2.5 Existence of complex solutions

The existence of complex solutions, called strings is discussed. Furthermore, we give
a short presentation of the string hypothesis as well as the well known Gaudin-Bethe-
Takahashi equations.

2.5.1 String solutions as bound states

For simplicity we analyze the Bethe equations for the XXX spin chain, and the other
cases follow similarly. The simplest case, M = 2, we obtain the following the Bethe
equations:
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(
λ1 + i/2

λ1 − i/2

)N
=
λ1 − λ2 + i

λ1 − λ2 − i
(2.65)(

λ2 + i/2

λ2 − i/2

)N
=
λ2 − λ1 + i

λ2 − λ1 − i
(2.66)

It is interesting to notice that when N → ∞ and =(λ1,2) 6= 0, the left hand side
of eqs.(2.62,2.63) is either zero or diverging, therefore also the right hand side of the
equations should behave in the same way. This lead to consider solutions of the form
λ1 − λ2 = ±i or equivalently

λ1,2 = λ± i

2
(2.67)

If we calculate the energy of this state using eqs.(2.58,2.59) for J < 0 (ferromagnetic
case) we get that εs(p) = J

2
(cos p− 1), while the corresponding 1-magnon state energy

is εm(p) = J(cos p− 1). Hence

εs(p) < εm(p− p′) + εm(p′) , p, p′ ∈ [0, 2π). (2.68)

The above equation clearly states that the string solution eq.(2.67) is a 2-magnon
bound state, one could also see that the wavefunction amplitudes vanishes exponen-
tially as the distance between the flipped spins grows larger, as expected for a bound
state solution.

The above analysis demonstrates the existence of complex solutions for the XXX spin
chain.

2.5.2 String hypothesis

A repetition of the argumentation used in the previous section and using the fact that
every solution is self conjugate {λj} = {λ̄j} [53] one can hypothesize a generalization
for string solutions of length n 9:

λn,jα = λnα +
i

2
(n+ 1− 2j) , j = 1, ..., n (2.69)

9The third chapter will provide an elegant and thorough argument for the form of string solutions.
Moreover we will find out that they play a crucial role in the thermodynamics of integrable systems
that admit string solutions
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The conjecture that strings are arranged in such patterns is called string hypothesis.
Note that it is remarkable that such solutions where already known to H. Bethe [17].

Due to the fact that in the ∆ ≥ 1 case =(λ) ∈ (−∞,∞) we can also treat the ∆ > 1
case in the same way :

λn,jα = λnα +
iζ

2
(n+ 1− 2j) , j = 1, ..., n (2.70)

On the other hand the ∆ < 1 case is much more complex due to the restriction of
the rapidities in the imaginary axis. In this case we have to manage the set {λn,jα } to
fulfill this condition, therefore the string hypothesis takes the form:

λn,jα = λnα +
iζ

2
(n+ 1− 2j) + i

π

4
(1− vj) , j = 1, ..., n, (2.71)

where vj = ±1 and denotes the string parity.
Finally note the for finite spin chains we have a deviated form the above string

hypothesis. Furthermore note that although the string hypothesis has been used to
predict physical quantities there are cases where the hypothesis fails [54, 55, 56].

2.5.3 Bethe-Gaudin-Takahashi equations

Using the string hypothesis the Bethe equations take the form:(
ϕ(λn,jα + iζ/2)

ϕ(λn,jα − iζ/2)

)N
=

∏
(m,β)6=(n,α)

m∏
k=1

ϕ(λn,jα − λ
m,k
β + iζ)

ϕ(λn,jα − λm,kβ − iζ)

∏
l 6=j

ϕ(λn,jα − λn,lα + iζ)

ϕ(λn,jα − λn,lα − iζ)

(2.72)
Multiplying the equations of the n rapidities λn,jα forming a string, we can remove

the last product. Therefore the Bethe equations become(
ϕ(λnα + inζ/2)

ϕ(λnα − inζ/2)

)N
=

∏
(m,β) 6=(n,α)

n∏
j=1

m∏
k=1

ϕ(λn,jα − λ
m,k
β + iζ)

ϕ(λn,jα − λm,kβ − iζ)
(2.73)

Hence, calculating the n, k-products we get(
ϕn(λnα)

ϕ−n(λnα)

)N
=

∏
(m,β)6=(n,α)

Φnm(λnα − λnβ), (2.74)
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where ϕn ≡ ϕ(λ+ inζ/2) and

Φnm =


ϕn+m

ϕ−(n+m)

ϕ|n−m|
ϕ−(|n−m|)

[(
ϕ|n−m|+1

ϕ−(|n−m|+2)

)2( ϕ|n−m|+4

ϕ−(|n−m|+4)

)2

...
(

ϕm+n−2

ϕ−(m+n−2)

)2]
, n 6= m,

ϕ2n

ϕ−2n

[(
ϕ2

ϕ−2

)
...
(

ϕ2n−2

ϕ−(2n−2)

)2]
, n = m

(2.75)
Finally, by taking the logarithm of eq.(2.74) we obtain the Bethe-Takahashi equa-

tions

θn(λnα) =
2π

N
Inα +

1

N

∑
(m,β)6=(n,α)

Θnm(λnα − λmβ ), (2.76)

θn(λ) = 2 arctan
( tanλ

tanh nφ
2

)
+ 2πbλ

π
+

1

2
c (2.77)

Φnm =

{
θ|n−m|(λ) + 2θ|n−m|+2(λ) + ...+ 2θn+m−2(λ) + θn+m(λ) , n 6= m,

2θ2(λ) + 2θ4(λ) + ...+ 2θ2n−2(λ) + θ2n(λ) , n = m
(2.78)

Note that we have assumed that ∆ ≥ 1, where the string length n can be arbitrary.
In the case ∆ < 1 we it will be proven in the next chapter that only a finite number of
string lengths n are available. Nevertheless the present procedure is very useful since
the derivation of the Bethe-Takahashi equations for the ∆ < 1 case is similar.

2.6 Elementary excitations of the XXZ anisotropic

spin chain

In this section, the ground states configuration and the elementary excitations of the
XXZ anisotropic spin chain are introduced. After the description of the ground state
configuration, we calculate the ground state energy in the thermodynamic limit. Con-
sequently, we construct the elementary excitations above the ground state.

2.6.1 The Ground State Configuration

In order to be able to describe excited states of the XXZ Heisenberg spin chain we
should first describe the ground state of the XXZ spin chain model.

Gapless case |∆| ≤ 1

For simplicity let us initiate our discussion with the XXX model on the grounds
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that it will simplify our reasoning. In the ferromagnetic case, J < 0, since align-
ment of neighbor spins is favorable the ground state is the completely polarized state
|FM〉 =

∏N
j=1⊗| ↑〉. The ground state can be perceived as a magnon-vacuum state

and all excited states can be built by flipping spins, i.e. adding magnons to the system.
We have already seen that excitations over this state |G〉 are magnons and bound states
of magnons.

In the opposite case, namely the antiferromagnetic regime and the one that we will
be interested throughout this thesis since this is the most relevant regime for physical
applications, we intuitively expect that due to the antifferomagnetic couplings that
tend to anti-align neighbor spins, the ground state of an even numbered spin chain will
belong in the Sz = 0 magnetization sector while an odd numbered spin chain in the
Sz = ±1/2 magnetization sector. In fact for finite spin chains it was proven by C.N.
Yang and C.P. Yang that ∀∆ > 0 and for each magnetization sector M the lowest
energy state is given by the following set of quantum numbers [57]:

Ij = −M + 1

2
+ j , j = 1, ...,M, (2.79)

where we assumed an even numbered spin chain. As expected the ground state
configuration is given for M = N/2.

In an odd numbered spin the lowest state is doubly degenerate and it can be obtained
by choosing either:

Ij = −M
2

+ j , j = 1, ...,M (2.80)

or

Ij = −M
2

+ j + 1 , j = 1, ...,M (2.81)

This time the ground state is give by M = N
2
− 1

Gapped case ∆ > 1

In this case the ground state is still given by eq.(2.79) for the even chain or by eq.(2.80)
for the odd chain, but there exists another state that is slightly degenerate with all the
quantum numbers Ij shifted by one to the right. The energy difference of the quasi-
degenerate ground state and the true ground state reduces faster than exponentially
with the number of spins N . Additionally in the Ising limit ∆→∞ the two states are
exactly degenerate, | ↑↓↑↓ ...〉 ± | ↓↑↓↑ ...〉.
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2.6.2 Ground State Energy in the Thermodynamic Limit

The Bethe equations are a coupled system of M algebraic equations, making intractable
the analytical calculation of the ground state energy or the excitation energies and
momenta. To this end, rather than working with a finite lattice spin chain we work in
the thermodynamic limit, N → ∞, while keeping M

N
fixed. Additionally, in this case

instead of working with a finite discrete set {λj} we work with a continuous distribution
of rapidities ρ(λ) by taking the limit

ρ(λ) = lim
N→∞

1

N

M∑
k=1

δ(λ− λk). (2.82)

Moreover, we replace the summation with a Riemann integral along with the distribu-
tion ρ(λ)

1

N

M∑
k=1

→
∫ Λ

−Λ

ρ(µ)dµ, (2.83)

where Λ is the Fermi spectral parameter and depends on the magnetic field h.

Therefore in the thermodynamic limit the equation eq.(2.55) becomes

θ1(λ)−
∫ Λ

−Λ

dµθ(λ− µ)ρ(µ) = 2πz(λ|{λj}), (2.84)

where z(λ|{λj}) ≡ limN→∞
Ij
N

is called the counting function for the specific set of
Bethe roots {λ}. For simplicity we denote it z(λ).

By taking the derivative with respect to λ

α1(λ)−
∫ Λ

−Λ

dµα2(λ− µ)ρ(µ) =
dz(λ)

dλ
, (2.85)

where αm ≡ 1
2π

dθm(λ)
dλ

. Furthermore one can define the density of holes, i.e. the absence
of quantum numbers numbers by the following relation:

ρ(z(λ) + ρh(z(λ)) = 1⇒ dz(λ)

dλ
= ρ(λ) + ρh(λ). (2.86)
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Using eq.(2.58) and eq.(2.59) we find the total energy and momentum in the ther-
modynamic limit:

E = −NJπφ(iζ)

∫ Λ

−Λ

dλα1(λ)ρ(λ) (2.87)

P = 2π

∫ ∞
−∞

dλN

z(λ) +
1

N

∑
1≤k≤card{Ihk }

ϑ(z(λ)− Ihk
N

)

 , (2.88)

where ϑ denotes the step function.

At zero magnetic field h = 0 Λ = ∞ , we can fourier transform equation eq.(2.84)
to obtain:

α1(ω) = α2(ω)ρ(ω) + ρ(ω) + ρh(ω) (2.89)

For the ground state the density of holes is ρh = 0. Therefore the ground state
density is simply given by:

ρGS(ω) =
α1(ω)

1 + α2(ω)
(2.90)

The above relation makes clear the strategy that we have to follow: We find the
Fourier transform for the αm and then we perform the inverse Fourier transform to find
the ground state density. Below, we explicitly perform the calculation for the ground
state energy.

Ground state energy for the isotropic case

αm(ω) =
1

2π

∫ ∞
−∞

dλeiωλ
m

λ2 + (m/2)2
= e−|ω|m/2 (2.91)

Therefore the ground state density is

ρGS(ω) =
1

2 cosh(ω/2)
(2.92)

Performing the inverse Fourier transform we get

ρGS(λ) =
1

coshπλ
(2.93)

And thus the ground state energy is

E =
NJ

4
−NJ ln 2, (2.94)
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while the total momentum is P ≡ πM mod 2π. This result was originally derived by
E. Hulthen in 1938 [58]

Ground state energy for the ∆ < 1 case

A similar calculation for the |∆| < 1 shows that the ground state energy is

E = E0 − JN sin γ

∫ ∞
0

sinh[(π − γ)ω]

sinh(πω) cosh(γω)
dω, (2.95)

where we have used the fact that

αn(x) =
1

2π

γ sinnγ

cosh γx− cosnγ
. (2.96)

Ground state energy for the ∆ > 1 case

The ∆ > 1 case is more subtle since the ground state rapidities are confined in the
[−π/2, π/2] interval. Therefore, the corresponding Fourier transforms are

ρk =

∫ π/2

−π/2
dλe−2ikλρ(λ) , ρ(λ) =

1

π

∫ π/2

−π/2
dλe2ikλρk (2.97)

Similarly with the previous cases ρGS(λ) is given by eq.(2.89)

ρGS(k) =
1

2 cosh(2kφ)
(2.98)

Taking the inverse Fourier Transform

ρGS(λ) =
1

π

∞∑
k=−∞

eikφxρGS(k) (2.99)

ρGS(λ) =
1

π

∞∑
k=−∞

cos(2kλ)
e−|k|φ]

1 + e−2|k|φ =
1

π
=
K

π2
dn(

2Kλ

π
, u) (2.100)

Finally, the ground state energy is

E =
J∆

4
− JN sinh(φ)

∞∑
k=−∞

1

e2kφ + 1
. (2.101)

Note that dn(x, u) is the Jacobian elliptic function[59]
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2.6.3 Elementary Excitations: Spinons

The elementary excitations of an antiferromagnetic system and a ferromagnetic one
differ substantially. In the latter, we have seen that the elementary excitations are
translationally invariant spin flips called magnons, collective excitations of the system
that carry a fixed amount of energy and momentum, and are S = 1 particles. Initially,
in 1962, J. des Cloizeaux and J.J. Pearson using a Bethe Ansatz approach calculated
the lowest energy spectrum of an even antiferromagnetic Heisenberg chain [60], where
they found that the elementary excitation was an S = 1 particle. Although Cloizeaux
and Pearson calculated correctly the energy dispersion, they could not, at that time,
understand that in reality what they had found was a pair of elementary excitations,
each carrying S = 1/2, and not a single one. This was revealed by the novel work
of L. Fadeev and L.A. Takhtajan [20], where they correctly described the spectrum of
an antiferromagnetic spin chain-1/2 system. Furthermore, the acknowledgment that a
spin flip, namely a process of changing the spin of the system by unit, creates a pair of
two S = 1/2 particles, has an amazing consequence which is introduced by the concept
of fractionalization10. Underneath, we explicitly construct these excitations, which are
called spinons, and further discuss their physical properties.

Spinons in the |∆| ≤ 1 case

Let us proceed to construct the elementary excitations over the ground state, where
for simplicity we assume an even numbered spin chain. This is described by ν0 = N

2

and νM = 0,M ≥ 1/2. The simplest excited states are characterized by two holes in
the ground state configuration. Assuming that the non-occupying quantum numbers
are Ih1 and Ih2 the configuration is

z(λ) = zGS +
1

N
ϑ(z − Ih1

N
) +

1

N
ϑ(z − Ih2

N
) (2.102)

Therefore, the density configuration satisfies the following Fourier transformed
equation

ρexc(ω) =
1

1 + α2(ω)

(
α1 +

eiωλ
h
1

N
+
eiωλ

h
2

N

)
(2.103)

Hence,

ρexc(λ) = ρGS(λ)− 1

N
ρsp(λ− λh1)− 1

N
ρsp(λ− λh2) (2.104)

10Interestingly, fractionalization is also depicted in the Hubbard model where the physical excita-
tions carrying spin S = 1/2 and charge e can be rewritten in terms of uncharged spins and spinless
charges
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Therefore, the energy difference over the ground state, ∆E is given by:

∆E = ε(λh1) + ε(λh2), (2.105)

where

ε(λh) =Jπ
sin γ

γ

∫ ∞
−∞

dλα1(λ)ρsp(λ− λh) =
Jπ sin γ

γ

∫ ∞
−∞

dλρGS(ω)e−iωλ
h

=

Jπ sin γ

2γ

1

cosh(πλ
h

2
)

(2.106)

Similarly the momentum difference is given by:

∆P = Q(λh1) +Q(λh2), (2.107)

where

Q(λh) = 2π

∫ ∞
λh1

dλρ(λ) =
π

2
− arctan(sinh

πλ

2
) (2.108)

Therefore the spinon dispersion is

ε(Q) =
Jπ sin γ

2γ
| sinQ|, Q ∈ [0, π] (2.109)

Let us mention that in the odd case, instead of a pair of spinons we obtain a single
spinon state with the same dispersion relation as eq.(2.109). In fact, there is no vacuum
state (in the sense that there are no spinons), since all physical states contain an odd
number of spinons (m-spinon states, m = 2k+ 1). Therefore, the physical spectrum of
the spin chain completely depends on the parity of the chain.

Additionally, let us comment on the dimension of the two-spinon states subspace,
assuming a finite chain of even length N . Two-spinon states do not span the whole
Hilbert space H, having dimension dimH = 2N , but only a small but physically sig-
nificant part of it. Specifically, in accordance with L. Fadeev and L.A. Takhtajan [20],
taking the limit λ → ∞ in eq.(2.59), we find that the maximum allowed value of the
quantum number Imax = N

2
and therefore, the number of vacancies is 2Imax+1 = N

2
+1,

while the quantum numbers for a specific are N
2
− 1. Hence,

dimH|∆|≤1
2sp =

(
N/2 + 1

N/2− 1

)
=
N

8
(N + 2). (2.110)

Let us make a comment for the construction of two-spinon states in the case of a finite
chain of even length N . Since we work in the magnetization sector M = N

2
−1 and the
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number of vacancies is N
2

+ 1, the construction of the two-spinon states in the finite
is straightforward; The two holes in the distribution of possible Bethe quantum num-
bers are interpreted as spinons excited from the new physical vacuum. Therefore, by
moving the two holes inside the possible number of vacancies and solving numerically
the Bethe-equations eq.(2.59) we obtain all two-spinon solutions. It is interesting that
all two-spinon solutions correspond to real sets of rapidities λj. Finally, let us mention
that in general one can construct a m-spinon state by choosing an appropriate set of
quantum numbers Ij and solving numerically eq.(2.59) for real rapidities or eq.(2.76)
for complex rapidities (string solutions).

Spinons in the ∆ > 1 case

A similar calculation for the ∆ > 1 case gives:

∆E = εs(λ
h
1) + εs(λ

h
2), (2.111)

where

ε = J sinh(η)π

∫ π/2

−π/2
dλα1(λ)ρsp

= Jπ sinh(η)ρGS(λh) =

J

π
sinh(η)K(u)dn(K2λh/π|u). (2.112)

∆P = Q(λh1) +Q(λh2), (2.113)

where

Q(λh) = 2π

∫ π/2

λh1

ρGS(λ)dλ =
π

2
− arcsin dn(2λh

K

π
, u). (2.114)

Therefore,

ε(Q) =
JK(u) sinh(η)

π

√
1− u2 cos2Q, Q ∈ [0, π]. (2.115)

In contrast with previous spinon states, gapped spinons have a more complex struc-
ture due to the fact that they can built by two almost degenerate ground states instead
of one. This time the total number of two-spinon states are [61]:

dimH∆>1
2sp = 2

(
N/2 + 1

N/2− 1

)
− N

2
=
N2

4
, (2.116)
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Figure 2.3: The Two spinon spectrum for a spin chain of length N=300
and ∆ =1(top left),2(top right),4(bottom left),8(bottom right). For the
∆ > 1 there exists also another two spinon continuum excited from the

quasi-ground state

where the N
2

are states that can be excited from both ground states.

The gapped case has also another importance distinction; Spinons are localized objects
exhibiting solitonic behavior, i.e. propagating domain walls in the local antiferromag-
netic ordering of the spins, while in the Ising limit ∆→∞ they become exact classical
domain walls [62].

2.6.4 A short note on spinon’s remarkable nature

So far, we have derived the dispersion relation of the spinon excitation and described
its basic properties. However, spinons have remarkable and exotic properties which
are due to both the strongly correlated nature of the system and the low dimension-
ality. In particular, in the even case they cannot be created by a finite sequence of
raising/lowering operators S±n since this would cause a total change of ∆S = 1, while
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Figure 2.4: The spinon dispersion versus Q/π for various ∆ ≥ 1. Note
that as ∆→∞, εQ → 2 sin2Q

spinons11 possess spin S = 1/2. Therefore, it is immediate that spinons cannot be
created by a sequence local operators, and thus are another important example of
fractional excitations. As we have already mention, the above are in principle a man-
ifestation of one-dimensional systems, while in two-dimensional systems we have the
well known charge fractionalization that occurs in the fractional hall effect. Moreover,
the aforementioned property has another amazing consequence, the fact that they do
not obey the usual spin statistics theorem. In particular, they are neither bosons or
fermions, they are semions and they obey the fractional exclusion principle as discov-
ered by F.D. Haldane [63]. The groundbreaking element of this generalization was the
introduction of a parameter, let us call it g, which corresponds to the statistical inter-
action among the particle species. Specifically,let us assume a Hilbert space of finite
and extensive dimension dimH = d < ∞12 which is spanned by the single particle

11Note that in the literature the term spinon is widely used for a class of low dimensional excitations
which are spin-1/2 particles while physical processes can only change the total spin of the system by
an integer unit

12This is a plausible assumption for a condensed matter system due to the fact that the elementary
excitations are constrained to live within the material region and cannot exist in the vacuum space
where the the spectrum is unbounded
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wavefunctions {ψν(r)}dν=1. If we take N identical particles and fix the coordinates of
the N − 1 then the ith particle wavefunction φν(r; r; {rj, j 6= i}), it generates a single
particle Hilbert space of dimension dN . In principle, dN should change if a particle
is added and consequently this makes necessary the introduction of a parameter g
with the task to determine the change due to statistical constrains. Therefore, assum-
ing that ∆N particles are added then the change of the dimension is quantified as
∆dN = −g∆N . For instance, if all the particles are Bosons then g = 0, while if all
particles are fermions then g = 1 and dN = d−(N−1). On the contrary, F.D. Haldane
proved that a spinon is neither a fermion or boson but something completely different
which he called it semion. In particular, using a simple reasoning he concluded that the
statistical interaction is given by gσ,σ′ = 1

2
(note that spin up and spin down spinons are

considered as different states) and that dσ = 1
2
(N+1)− 1

2

∑
σ′(Nσ′−δσ,σ′). Finally, the

total number of eigenstates, or equivalently the full size of the Hilbert space composed
by (N+, N−) spinons, is simply given by W ({Ns}) =

∏
σ

(
dσ+Nσ−1

Nσ

)
, while if we perform

the summation over all spinon states we obtain,
∑

Ns
W ({Ns}) = 2N , verifying the

above arguments.

2.7 Experimental probing of spinons

So far, it is of huge theoretical interest the ability to describe a complex quantum many
body system in terms of spinons because it help us to encapsulate the many body dy-
namics within a quasiparticle and thus reduce the degrees of freedom. Hence, many
physical quantities having an experimental relevance can be in principle calculated us-
ing the spinon basis. However, in order for this to be truly useful even as a theoretical
concept we should be able to design an experiment telling us whether calculations in
terms of spinons correspond to an actual physical and comprehensible picture. Fortu-
nately, inelastic neutron scattering experiments proves to be a very good experimental
method to excite a magnetic system where the charge neutrality of the scattered beam
ensures that electric interactions do not occur allowing us to explore solely the mag-
netic dynamics. Specifically, neutrons can interact with a magnetic material via direct
collisions with the nuclei or with spin dipole interactions. Inelastic neutron scatter-
ing is an efficient method because by measuring the scattering cross section we can
obtain the dynamical structure factor as a function of k, ~ω. In particular, for a one
dimensional spin system the cross section13 is given by [64]

d2σmag
dωdΩ

= N
kf
ki

(rm)2|gab
2
F (k)|2

∑
a,b

(
δab −

qaqb
q2

)
Sab(k, ω), (2.117)

13The calculation of the cross section is carried out using the Born approximation. Magnetic
scattering has a weak coupled interaction and thus the Born approximation is very accurate
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Figure 2.5: A cartoon of the inelastic neutron scattering experiment.
The incident neutron beam ”hits” the material and a detector measures
the scattered beam energy and momentum, where Ef < Ei since some

of the energy converts to spinon excitations.

where N is the number of spin sites, ki, kf are the corresponding initial and final
momentum of the neutron, rm is the magnetic scattering length, gab is the magnetic
g-factor, F (k) is the Fourier transform of the magnetic electron density, k = qf − qi,
~ω = Ef − Ei and Sab(k, ω) is a quantity called dynamical structure factor which is
defined as

Sab(k, ω) =
1

N

N∑
n,m=1

e−ik(n−m)

∫ ∞
−∞

dt

2π~
eiωt〈San(t)Sbm(0)〉, a, b = x, y, z. (2.118)

The next step is to express eq.(2.119) in terms of a multispinon basis in the form of
Bethe states and rewrite the operators in the Schödinger picture.

Sab(k, ω) =
1

N

N∑
n,m=1

e−ik(n−m)

∫ ∞
−∞

dt

2π~
eiωt−βEλ

Z
〈λ|San(t)|µ〉〈µ|Sbm(0)|µ〉. (2.119)
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The complexity of the problem reduces significantly if we use the fact that for a
Hamiltonian which commutes with the total z component of Sztot, Sab(k, ω) = 0, when
b 6= a [65, 66]. Therefore, by performing the Fourier transform we obtain that

Saā(k, ω) =
2π

Z
∑
λ,µ

|〈λ|Sak |µ〉|2e−βEλδ(ω − Eµ + Eλ), (2.120)

where for convinience we re-evaluated the DSF in terms of a = ±, z

Finally, at the limit of very low temperatures β →∞ the above expressions reduces to

Saā(k, ω) = 2π
∑
µ

|〈GS|Sak |µ〉|2δ(ω − Eµ + EGS), (2.121)

where the system is not thermally excited and thus the sum over all |λ〉 states is simply
replaced by the ground state |GS〉. By restricting the state |µ〉 to belong to the sets of
m-spinon states we can understand quantitatively the spinon dynamics by measuring
the effect they have in the scattering cross section of the neutron.

Figure 2.6: (a) Inelastic neutron scattering experiment data for
KCuF3 compared to (b) Bethe Ansatz calculations. Figure taken from

[8]

In recent years, there are numerous experiments using inelastic neutron scattering
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to study extract the quantum magnetic correlations by evaluating the dynamical struc-
ture factor(DSF). This was motivated by the fact that many materials which exhibit
interesting dynamics can be simulated by one dimensional systems [67, 68, 69]. For
instance, the magnetic material KCuF3 can be modeled as a quasi one-dimensional
s = 1/2 isotropic Heisenberg antiferromagnet and one can calculate the magnetic cor-
relations [65, 70]. To this end, a great deal of theoretical effort has concentrated in
order to quantify the contribution of each of the m-spinon sectors in the presence or
absence of magnetic fields [9, 71, 72, 73, 74]. while a comparison between Bethe Ansatz
calculations and experimental data confirmed the validity of the spinon physical pic-
ture [8]. In particular, it is found that for the isotropic Heisenberg model the 2-spinon
continuum exhaust the 71% [75] of the first frequency moment and with the addition
of the 4-spinon sector this result rises to 98%[72] sum-rule which was supplemented
with specially designed experiments with that were able to experimentally quantify
the contribution of higher than 4-spinon and thus verify the existence of higher order
spinon states [52].

2.8 Fractional Charge

We conclude this chapter with an important quantity called fractional/dressed charge.
The term fractional charge comes from the fractionalization of the charge14 that ap-
pears in the massive Thirring model [76, 45]. Moreover, the dressed charge appears as
the simplest integral equation from a set of dressing equations

The dressed charge is defined as the simplest integral equation

Z(λ)− 1

2π

∫ Λ

−Λ

K(λ, µ)Z(µ)dµ = 1 (2.122)

An important relation of the dressed charge that unveils its physical significance is
the following:

Z(λ) =
1

2

∂ε

∂h
(2.123)

and therefore by relating Z(λ) with the magnetization σ we find that:

σ = 1− 1

π

∫ Λ

−Λ

Z(µ)
dp(λ)

dλ
dλ, (2.124)

14In the excited states, some of the particles are repulsed beyond the ultraviolet cutoff Λ, leading
to a fractional response, ∆N to the number of the particles
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which lead us to the conclustion that the Z(λ) serves as the intrinsic magnetic
moment of the elementary excitations.

The most important property of the fractional charge is the relation with the criti-
cal XXZ spin chain model, where it is defined as the critical exponent of the ground
state’s correlation function dominant oscillatory part, as predicted by CFT and Bethe
Ansatz calculations [77, 78]. Finally, we should mention that in chapter 5 we will
discuss its relation with the scattering matrix elements and the dominant scattering
mechanism of spinon excitations by potentials.

θ = 2Z2 , Z ≡ Z(Λ) (2.125)

Moreover, one can prove [45] that in the case h = 0 or equivalently Λ = ∞,
Z(0) = π

π−2γ

lim
Λ→∞

Z =

√
π

π − 2γ
. (2.126)
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Chapter 3

Algebraic Treatment of Quantum
Integrable Systems

3.1 The invisible hand of Quantum Integrable Sys-

tems: Yang-Baxter Algebra

In 1776, Adam Smith, in his book ”the wealth of the nations”, came out with an
analysis of market trends of production and consumption, where he concluded that
the markets have a tendency of equilibration without any intervention, only by means
of self interest and competition. He called this unseen force that moves the economy
”the invsible hand”. Metaphorically speaking one could say that there exists an alge-
braic structure that plays the role of the invisible hand behind all integrable systems,
the well known Yang-Baxter algebra, introduced by C.N. Yang [32] and R. Baxter [33].
In fact, every integrable system must obey the Yang-Baxter equation and on the oppo-
site direction every solution of the Yang-Baxter equation corresponds to an integrable
system. To be more specific, we consider a quantum system and a matrix R(λ1, λ2),
where λ1, λ2 ∈ C acting on a space V1 ⊗V2. Introducing a space V1 ⊗V2 ⊗V3 and the
matrices R12(λ1, λ2),R13(λ1, λ3),R23(λ2, λ3) the Yang-Baxter equation is

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2), (3.1)

or equivalently in a more compact notation:

(R(λ1, λ2)⊗ I)(I⊗R(λ1, λ3))(R(λ2, λ3)⊗ I) =

(R(λ2, λ3)⊗ I)(I ⊗R(λ1, λ3))(R(λ1, λ2)⊗ I). (3.2)

Each particular solution of eq.(3.1) generates a family of closely related integrable
models.
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=
Y.B.E

λ1 λ2 λ3λ1 λ2 λ3

Figure 3.1: An illustration of the Yang-Baxter equation.

To give a specific example, a simple solution of the Yang-Baxter equation is

R(λ, µ) = f(λ, µ)
[
(λ− µ)I + cP

]
, (3.3)

where P ∈ C2 ⊗ C2 is the permutation matrix, c ∈ C is a constant and f(λ1, λ2) :
C2 ⊗ C2 → C is an arbitrary function.

The next step is to consider a physical Hilbert space H and enlarge it by introducing
an auxiliary space Va. This will allow us to obtain an exact solution for the enlarged
system and afterwards we will trace out the unwanted degrees of freedom. To this di-
rection, to relate with integrable spin chains we assume a lattice system partitioned in
N sites H =

⊗N
j=1Hj and introduce an operator called the Lax operator Lja : Hj⊗Va,

which satisfies an equivalent of the Yang-Baxter relation

R(λ, µ)Lj1(λ)Lj2(µ) = Lj2(µ)Lj1(λ)R(λ, µ). (3.4)

The above relation can be extended to the whole Hilbert space by introducing the
monodromy matrix Ta(λ) =

∏N
j=1 Lja(λ) : H ⊗ Va → H ⊗ Va. Monodromy matrices

give us another representation of the Yang-Baxter equation

R(λ, µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ, µ), (3.5)
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and in fact can be thought as functions of the generators of the Yang-Baxter Algebra.

However, the monodromy matrix carries the unwanted auxiliary space, and thus a
more appropriate quantity is the transfer matrix τ(λ) ≡ traTa(λ) : H → H. The
transfer matrix by definition obeys the commutation relation

[τ(λ), τ(µ)] = 0, ∀λ, µ ∈ C (3.6)

Besides the obvious mathematical interest of eq.(3.6) and the fact that allow it us
to simultaneously construct the spectrum of the system, it ensures that an infinite
set of independent and in involution conservation charges can be constructed via the
following expansion around a convenient point, λ0 of the spectral parameter λ1

ln τ(λ) =
∞∑
n=0

Qn(λ− λ0)n, Qn =
1

n!

dn

dλn
ln τ(λ)|λ=λ0 , λ0 ∈ C. (3.7)

S-matrix interpretation of the Yang-Baxter equation

Yang-Baxter equation can have a simple interpretation in terms of scattering matrices.
To this end, let us take a detour and turn to a 1+1 integrable relativistic field theory.
Massive particles of mass ma, energy εa and momentum pa in 1+1 dimensions can be
parametrized as εa = ma cosh θa and pa = ma sinh θa. The two particle elastic S-matrix
is given by

|θ1, θ2〉inαβ = Sγδαβ(θ1 − θ2)|θ1, θ2〉outγδ , (3.8)

where the momentum difference is due to the fact that we demand S to be a Lorentz
invariant.

integrability is directly related to the existence of an infinite set of independent con-
served charges {Qn} that are in involution. Using this condition A. Zamolodchikov
and A. Zamolodchikov proved [79, 80] that for an integrable relativistic field theory: 1)
there is no particle production, 2) the initial and final set of momenta are the same and
3) the S-matrix is factorisable. Notice that the first two conditions is the definition of
elastic scattering.

Now, let us consider without loss of generality a three-body scattering2 of particles
with rapidities θ1, θ2, θ3. We are going to use the same idea for deriving the Bethe

1The point of expansion λ0 is arbitrary and although different choices will end up with different
sets of {Qn}, all these are connected via linear transformations

2The three body scattering can be considered without any loss of generality, since any N -body
scattering is a straightforward extension of the three-body scattering
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equations by changing the order of the particles and demanding the possible routes
to be equivalent. As an example, let us try the following permutation (123) → (321),
which can be done via two two routes A and B:

A : (123)→ (132)→ (312)→ (321)

B : (123)→ (213)→ (231)→ (321) (3.9)

Since every permutation is associated with the act of the corresponding two-body
S-matrix we obtain the Yang-Baxter equation

S12(θ1 − θ2)S13(θ1 − θ3)S23(θ2 − θ3) = S23(θ2 − θ3)S13(θ1 − θ3)S12(θ1 − θ2). (3.10)

Equivalently, in explicit notation∑
γ1,γ2,γ3

Sα1α2
γ1γ2

(θ12)Sγ1α3

β1γ3
(θ13)Sα1α2

γ1γ2
(θ23) =

∑
γ1,γ2,γ3

Sα2α3
γ2γ3

(θ12)Sα1γ3
γ1β3

(θ13)Sγ1γ2β1β2
(θ23), (3.11)

where θij ≡ θi − θj.

At this point an interesting interpretation of the Yang-Baxter equation in term of
scattering matrices arises. It expresses the condition that the three-particle scattering
is determined by the two-particle scattering and is independent of which particles in-
teract first. In this connection the Yang-Baxter equation is also called the factorization
equation. A graphical representation is given in Fig.(3.2).

Figure 3.2: An illustration of three equivalent sacattering processes.
Note the equivalence with the Yang-Baxter graphical representation.
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3.2 The Algebraic Bethe Ansatz for the XXZ spin

chain

The spin-1/2 model live in a Hilbert space

H=

N⊗
k=1

Hk, Hk
∼= C2, dimH = 2N (3.12)

The monodromy matrix can be written as a 2× 2 matrix

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ),

)
(3.13)

where A(λ), B(λ), C(λ), D(λ) are non-local operators acting on the Hilbert space H
The corresponding R matrix is

R(λ, µ) =


1 0 0 0
0 b(λ− µ) c(λ− µ) 0
0 c(λ− µ) b(λ− µ) 0
0 0 0 1

 (3.14)

where

b(λ− µ) =
ϕ(λ− µ)

ϕ(λ− µ+ iη)
, c(λ− µ) =

ϕ(iη)

ϕ(λ− µ+ iη)
. (3.15)

Using the R-matrix it is possible to construct the quantum Lax-operator L of the
model at site j as

Lja(λ− ξj) = Rja(λ− ξj) (3.16)

The rapidities ξj ∈ C are arbitrary complex parameters called inhomogeneities. Their
usefulness comes from the fact that they technically allow us to distinguish different
sites of the spin chain. Moreover, they have a physical interpretation as being some
kind of mathematically induced impurities with the property of preserving the inte-
grable structure of the model.

In terms of spin operators

Lja(λ) =
1

sin γ

(
sinh γ(λ+ iSzj ) sin γS−j

sin γS+
j sinh γ(λ− iSzj ),

)
(3.17)

where Szj = 1
2
σzj , S

± = σ±
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An interesting interpretation of the Lax operator Lja and the monodromy matrix Ta
is given by [46], rewriting the operators as

Lja(λ) =
1 + σzj τ

z
a

2
+ t(λ)

1− σzj τ za
2

+ r(λ)(σ+
j τ
−
a + s−j τ

+
a ), (3.18)

Ta(λ) =
1

2
τ(λ)Ia +

1

2
[A(λ)−B(λ)]τ za +B(λ)τ+

a + C(λ)τ−a , (3.19)

where τ±a and τ za are the Pauli matrices in the auxiliary space Va. The r(λ) ≡
b(λ), t(λ) ≡ c(λ) are analogs of the reflection coefficient and transmission coefficients
respectively in spin exchange process between the local spin in the physical space Hj

and the spin in the auxiliary space Va. Therefore, the Lax-operator is a scattering
matrix which describes the interaction of the physical and auxiliary spins, while the
monodromy matrix describes the interaction of the auxiliary spin with the whole spin
chain, with C(λ) the global-spin raising operator in the physical space and B(λ) the
corresponding global-spin lowering operator.

If we substitute eq.(3.19) into the RTT Yang-Baxter equation eq.(3.5) we obtain the
following commutation relations for the non-local operators A,B,C,D:

[A(λ), A(µ)] = [B(λ), B(µ)] = [C(λ), C(µ)] = [D(λ), D(µ)] = 0, (3.20)

[A(λ), D(µ)] = g(λ− µ)
{
C(λ)B(µ)− C(µ)B(λ)

}
, (3.21)

[D(λ), A(µ)] = g(λ− µ)
{
B(λ)C(µ)−B(µ)C(λ)

}
, (3.22)

[B(λ), C(µ)] = g(λ− µ)
{
D(λ)A(µ)−D(µ)A(λ)

}
, (3.23)

[C(λ), B(µ)] = g(λ− µ)
{
A(λ)D(µ)− A(µ)D(λ)

}
, (3.24)

A(λ)B(µ) = f(µ− λ)B(µ)A(λ) + g(λ− µ)B(λ)A(µ), (3.25)

B(λ)A(µ) = f(µ− λ)A(µ)B(λ) + g(λ− µ)A(λ)B(µ), (3.26)

A(λ)C(µ) = f(λ− µ)C(µ)A(λ) + g(µ− λ)C(λ)A(µ), (3.27)

C(λ)A(µ) = f(λ− µ)A(µ)C(λ) + g(µ− λ)A(λ)C(µ), (3.28)

D(λ)B(µ) = f(λ− µ)B(µ)D(λ) + g(µ− λ)B(λ)D(µ), (3.29)

B(λ)D(µ) = f(λ− µ)D(µ)B(λ) + g(µ− λ)D(λ)B(µ), (3.30)

D(λ)C(µ) = f(µ− λ)C(µ)D(λ) + g(λ− µ)C(λ)D(µ), (3.31)

C(λ)D(µ) = f(µ− λ)D(µ)C(λ) + g(λ− µ)D(λ)C(µ). (3.32)

Furthermore, it is immediate from eq.(3.7) that the Hamiltonian is directly related
to the transfer matrix τ . Specifically evaluating the derivative of the ln τ at λ = iη/2
we obtain

H = sin(iη)
1

2

d

dλ
ln τ(λ)λ=iη/2, (3.33)
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which leads to the conclusion that an arbitrary Bethe-eigenstate, |λ1, ..., λM〉, is an
eigenvector of the transfer matrix τ(λ) = A(λ) +D(λ).

In otder to be functional, the algebraic Bethe Ansatz technique needs one last in-
gredient. It requires the assumption that there exists a pseudo-vacuum state |Ω〉 (not
necessarily the true vacuum vector of the system) which serves as a reference in order
to construct all Bethe states. For the XXZ model such a reference state exists3 and as
expected is the one where all the spin are up :

|Ω〉 =
N⊗
j=1

| ↑j〉. (3.34)

Since,

Lja(λ− ξj)| ↑j〉 =

(
| ↑j〉 c(λ− ξj)| ↓j〉

0 b(λ− ξj)| ↑j〉,

)
(3.35)

we obtain that

Ta =

(
1 ∗
0
∏N

j=1 b(λ− ξj)

)
|Ω〉 (3.36)

Therefore,

A(λ)|Ω〉 = a(λ)|Ω〉 , 〈Ω|B(λ) = 0 (3.37)

C(λ)|Ω〉 = 0 , D(λ)|Ω〉 = d(λ)|Ω〉, (3.38)

(3.39)

where

a(λ) = 1 (3.40)

d(λ) =
N∏
j=1

b(λ− ξj). (3.41)

Since the global-spin raising operator is B(λ) every Bethe vector can be represented
as

|ΨM〉 ≡
M∏
j=1

B(λj)|Ω〉 (3.42)

3It is important to be mentioned that not all integrable models have reference state. For example
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A(µ)
M∏
j=1

B(λj) = Λ({λj}, µ)
[ B∏
j=1

(λj)
]
A(µ) +B(µ)

M∑
k=1

Λk({λj}, µ)
[ M∏
j 6=k

B(λj)
]
A(λk)

(3.43)

D(µ)
M∏
j=1

B(λj) = W ({λj}, µ)
[ M∏
j=1

D(λj)
]
A(µ)+B(µ)

M∑
k=1

Wk({λj}, µ)
[ M∏
j 6=k

D(λj)
]
A(λk)

(3.44)

Λ({λj}, µ) =
M∏
j=1

1

b(λj − µ)
, Λk({λj}, µ) = −c(λk − µ)

b(λk − µ)

M∏
j 6=k

1

b(λj − λk)
(3.45)

W ({λj}, µ) =
M∏
j=1

1

b(λj − µ)
, Λk({λj}, µ) = −c(λk − µ)

b(λk − µ)

M∏
j 6=k

1

b(λj − λk)
(3.46)

Hence,

τ(µ)|ΨM〉 =
[
a(µ)Λ({λj}, µ) + d(µ)W ({λj}, µ)

]
|ΨM〉+

B(µ)
M∑
k=1

{
a(λk)Λk({λj}, µ) + d(λk)Wk({λj}, µ)

}[ M∏
j 6=k

D(λj)
]
|Ω〉 (3.47)

So far we have assumed an arbitrary set of complex numbers {λj}, which does not
diagonalize the transfer matrix τ(µ). If we constrain this set such that :

a(λk)Λk({λj}, µ) + d(λk)Wk({λj}, µ) = 0, (3.48)

the transfer matrix is diagonalized and the rapidities satisfy the following equation

a(λk)

d(λk)

∏
j 6=k

b(λk − λj)
b(λj − λk)

= 1 (3.49)

or equivalently (
ϕ(λk + iζ/2)

ϕ(λk − iζ/2)

)N
=
∏
j 6=k

ϕ(λk − λj + iζ)

ϕ(λk − λj − iζ)
, (3.50)
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giving us the Bethe equations which were derived using the coordinate Bethe-Ansatz
in Chapter II.

3.3 Quantum Inverse scattering Method

In the previous sections we have used the non-local operators A,B,C,D in order to
find the eigenvalues and eigenfunctions of the XXZ spin chain model. The next step
would be to obtain expressions for local operators, which will allow us to have math-
ematical control over certain areas of our system. Although this may seems as an
impossible task, since the auxiliary and the physical degrees of freedom are somewhat
tangled( as matter of fact it is a very hard problem in general situations), we will
derive elegant expressions for the XXZ spin chain model which relate local operators
such as σzj , σ

−
j , σ

+
j σ
−
j+1 with the non-local operators A,B,C,D. The general method

for writing local degrees of freedom in terms of non-local degrees of freedom is called
the quantum inverse scattering method developed by the Leningrad school [81, 82, 83].
The peculiar name ”quantum inverse scattering” was given in order to relate with its
classical analog called inverse scattering method a general method for solving classical
1+1 dimensional integrable systems as first described in a primitive form by C.S. Gard-
ner, J. M. Greene, M D. Kruskal, and R M. Miura [31] and further developed by P.
Lax [3]. The main idea of the inverse scattering method is to obtain the solution of an
integrable non-linear partial differential equation, say u(x, t) by associating it with a
linear ordinary differential equation, where the solution u(x, t) appears as a scattering
potential of a Schrödinger-like equation [4, 84, 85, 86, 87, 88] . Therefore, by obtaining
the asymptotic scattering-like data we can recover the scattering potential, which the
desired solution of our initial problem.

To start with we consider an inhomogeneous XXZ spin chain, with inhomogeneities
ξj. Our main goal is to associate an arbitrary local operator Fn acting non-trivially in
the space Hm in terms of a global operator Fa acting in the auxiliary space Va. This
can be done using the following identity proven in [89]

Fn =
( n−1∏
k=1

τ(ξk)
)

tra[FaTa(ξn)]
( n∏
k=1

τ−1(ξk)
)

(3.51)

To consider local operators of the usual XXZ spin chain with set ξj = ξ. Therefore

Ta(ξk) = Ta(ξ) = P1aW (3.52)
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W =
N−2∏
j=0

P1N−k = P123...N = T (3.53)

This solution was first given by N Kitanine,V Teras and JM Maillet [6] with the
help of a complex algebraic structure, the F -basis.

Note that P1,a can be written as

Pa1 =
1 + ~σ1 · ~τa

2
(3.54)

Ta(ξ) =
1 + ~σ1 · ~τa

2
W , (3.55)

where Ta is given by eq.(3.19)
Therefore, the local operators I, σz1, σ±1 are given by

I = [A(ξ) +D(ξ)]W−1 (3.56)

σz1 = [A(ξ)−D(ξ)]W−1 (3.57)

σ+
1 = C(ξ)W−1 (3.58)

σ−1 = B(ξ)W−1 (3.59)

Using the above relations we find that the local operators acting non-trivially in
the subspace Hn are given by:

σzn = τ(ξ)n−1
(
A(ξ)−D(ξ)

)
τ(ξ)N−n (3.60)

σ−n = τ(ξ)n−1B(ξ) τ(ξ)N−n (3.61)

σ+
n = τ(ξ)n−1C(ξ) τ(ξ)N−n (3.62)

(3.63)

The general inhomogeneous case is:

σzn =
n−1∏
k=1

τ(ξk)
(
A(ξn)−D(ξn)

) N∏
k=n+1

τ(ξk) (3.64)

σ−n =
n−1∏
k=1

τ(ξk) B(ξn)
N∏

k=n+1

τ(ξk) (3.65)

σ+
n =

n−1∏
k=1

τ(ξk) C(ξn)
N∏

k=n+1

τ(ξk), (3.66)



3.4. Inner products and matrix elements 59

where we have used the fact that the propagator through the whole chain gives the
identity

∏N
k=1 τ(ξk) = I.

3.4 Inner products and matrix elements

The present section is devoted to the study of scalar/inner products and matrix ele-
ments. Firstly, we begin with the presentation of the scalar products and the norm of
a Bethe state and thereafter we proceed to a sketch of proof regarding the derivation
of the Matrix elements for a longitudinal, transverse and a spin-phonon potential.

3.4.1 Scalar product of an eigenstate with an arbitrary state

Let {λk}Mk=1 be a solution of the Bethe equations and {µj}Mj=1 be an arbitrary set of
parameters. Then the scalar product between these two states can be represented via
the following formula [45]

SM({µj}, {λj}) =
detH({µj}, {λj})∏

j>k ϕ(µk − µj)
∏

j<k ϕ(λk − λj)
, (3.67)

where

Hαβ =
ϕ(iη)

ϕ(λa − λb)

(
r(µb)

∏
l 6=α

ϕ(λl − µb + iη)−
∏
l 6=α

ϕ(λl − µb − iη)

)
. (3.68)

Gaudin’s Formula for the Norm of eigenstates

Taking the limit µj → λj one can prove the Gaudin formula for the square of the norm
of the Bethe wavefunction.

NM = 〈0|
M∏
j=1

C(µj)
M∏
k=1

C(λk)|0〉
∣∣∣∣
{λCj },{λBk }

. (3.69)

Taking the limit µj → λj + ε we can Taylor expand r(µ)

r(µ) = r(λ)

(
1 + ε

∂

∂µ
ln r(µ)

)
µ→λ

(3.70)

Inserting this relation to the scalar product SN we get

NM = ϕ(η)M
∏
j 6=k

ϕ(λj − λk + η)

ϕ(λj − λk)
det Φ({λj}), (3.71)
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where Φ is the Gaudin matrix and is defined as

Φab ≡ −
∂

∂λb
ln

(
r(λα)

M∏
k 6=α

b(λk, λα)

b(λα, λk)

)
. (3.72)

Finally using the fact that from the Bethe equations follows that
∏M

i=1 d(λi) = 1
we find the norm in the following form:

NM = ϕ(η)M
∏
j 6=k

ϕ(λj − λk + η)

ϕ(λj − λk)
det Φ({λj}). (3.73)

3.4.2 Matrix Elements

The present section is a short presentation regarding the calculation of form factors
and subsequently the matrix elements. In particular, we derive expressions for the form
factors of the local spin operators for the XXZ spin chains. The novel work of N. Kita-
nine, J.M Mailet and V. Terras [6] opened a new era for the calculation of correlations
functions and matrix elements due to the fact that it sharply decreased the complexity
needed in order to calculate matrix elements. In particular, before the appearance of
the algebraic calculation of matrix elements, one would need either to diagonalize the
Hamiltonian with complexity O(2N) or by evaluating the summation in the wavefunc-
tion over the M ! magnon permutations, having complexity of at least O((M !)2). In
contrast, the algebraic treatment of the matrix elements reduces the complexity for
each matrix element to approximately O(M2), thus, making it technically feasible to
calculate matrix elements for relatively large spin chains with N ∼ 1000 spin sites.
Let us mention that the Kitanine, Mailet and Terras formulas allowed for an accurate
theoretical study of low temperature neutron scattering experiments due to the fact
that they allowed the calculation of ground state transitions elements for large spin
chains. For the interested reader we cite a small sample of relevant research that has
been conducted in this area [9, 61, 90, 91, 74, 92, 93].

Transverse form factor

Firstly, we begin by introducing the form factors

F−n ({λk}, {µj}) ≡ 〈0|
M+1∏
j=1

C(µj)σ
−
n

M∏
k=1

B(λk)|0〉, (3.74)

F+
n ({µj}, {λk}) ≡ 〈0|

M∏
j=1

C(λk)σ
+
n

M+1∏
k=1

B(µj)|0〉, (3.75)
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where both sets {µj}, {λj} are solutions of the Bethe equations.

The corresponding matrix elements is then simply expressed as

〈{µ}|σ±n |{λ}〉 =
F±n ({λk}, {µj})√
N ({λj}) · N ({µj})

. (3.76)

To calculate the first form factor we recall that the σ−n operator is expressed as

σ−n =
n−1∏
j=1

τ(ξj)B(ξn)
N∏

j=n+1

τ(ξj) (3.77)

and the fact that

τ(ξj)
M∏
k=1

B(λk)|0〉 =

(
a(ξj)

M∏
i=1

b−1(λi, ξj) + d(ξj)
M∏
i=1

b−1(ξj, λi)

) M∏
k=1

B(λk)|0〉. (3.78)

Moreover, note that d(ξj) = 0 and that for {λj} satisfying the Bethe equations it

holds that
∏M

k=1

∏N
j=1 b

−1(λk, ξj) = 1.

The act of σ−n operator results in a scalar product between a Bethe eigenstate char-
acterized by the set 〈µj}Mj=1 and a non-eigenstate characterized by the set {λj}Mj=1

accompanied by the inhomogeneity {ξj}. Hence,

F−n ({λk}, {µj}) =

(
M+1∏
j=1

n−1∏
k=1

b−1(λj, ξk)

)
×

(
M+1∏
j=1

N∏
k=n+1

b−1(λj, ξk)

)

× 〈0|
M+1∏
j=1

C(µj)B(ξn)
M∏
k=1

B(λk)|0〉 (3.79)

Or equivalently using eq.(3.67)

F−n ({λk}, {µj}) = φ−1
m ({λk})φm−1({µj})SM+1({µj}, {ξm, λ1, ..., λn}), (3.80)

where

φn({λk}) ≡
M∏
k=1

n∏
j=1

b−1(λk, ξj) (3.81)
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Note that, in the homogeneous limit ξj = 0, j = 1, ..., N . The coefficients φn({λk})
are expressed in terms of the total momentum P

φn({λk}) = e−iPn (3.82)

P =
i

N

n∑
k=1

ln r(λk). (3.83)

Finally, the form factor F−n ({λk}, {µj}) is expressed as follows

F−n ({µj}, {λk}) =
φn−1({µj})
φn−1({λk})

∏M+1
k=1 ϕ(µk − ξj + iη)∏M
k=1 ϕ(λk − ξj + iη)

detH−({µj}, {λk})∏
l>m ϕ(µl − µm)

∏M
l<m ϕ(λl − λm)

,

(3.84)

H−αb =
ϕ(iη)

ϕ(µα − λb)

(
α(λb)

M+1∏
j 6=α

ϕ(µj − λb + iη)− d(λb)
M+1∏
j 6=α

ϕ(µj − λb − iη)

)
, b < M + 1

H−αM+1 =
ϕ(iη)

ϕ(µα − ξj + iη)ϕ(µα − ξj)
. (3.85)

We should mention that the H− matrix is derived from H by using the fact that
λM+1 = ξj

Longitudinal form factor

We continue with the calculation of the longitudinal matrix element. The correspond-
ing form factor is defined as

F z
n({µj}, {λk}) = 〈0|

M∏
j=1

C(µj)σ
z
n

M∏
k=1

B(λk)|0〉, (3.86)

while similar to the previous case the matrix elements are expressed as

〈{λ}|σzn|{λ}〉 =
F z
n({µj}, {λk})√
N ({λ})N ({µ})

. (3.87)

To begin with, we use that σzn is expressed in terms of the non-local operators as
follows

σzn =
n−1∏
k=1

τ(ξk)
(
A(ξn)−D(ξn)

) N∏
k=n+1

τ(ξk) (3.88)
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Using that
∏N

k=1 τ(ξk) = I we obtain the following form for σzn

σzn = 2
n−1∏
α=1

τ(ξα)A(ξn)
N∏

α=n+1

τ(ξα)− I. (3.89)

Therefore, the form factor will have the form

F z
n({µj}, {λk}) = 2φ−1

n ({λk})φn−1({µj})P1(ξn, {µj}, {λk})− SM({µj}, {λk}) (3.90)

To calculate the form of the function P1, we shall make use of the action of the A
operator on an arbitrary state

A(ξn)
M∏
k=1

B(λk)|0〉 =
M∏
k=1

b−1(λk, ξm)
n∏
k=1

B(λk)|0〉

−
N∑
α=1

φ(iη)

φ(λα − ξn)

∏
k 6=α

b−1(λk − λa)B(ξn)
M∏
k 6=α

B(λk)|0〉 (3.91)

Taking the assumption that {λj} 6= {µk}, i.e. that the two Bethe states are orthogonal
we are left with

F z
n({µj}, {λk}) = −2φ−1

n ({λk})φn−1({µj})
N∑
α=1

φ(iη)

φ(λα − ξn)

(
M∏
k 6=α

φ(λk − λα + iη)

φ(λk − λα)

)

× 〈0|
M∏
j=1

C(µj)B(ξn)
M∏
k 6=α

B(λk)|0〉 (3.92)

each scalar product can be written according to (??) as

〈0|
M∏
j=1

C(µj)B(ξn)
M∏
k 6=α

B(λk)|0〉 =
detH({µj}, {λk})∏

j>k φ(µj − µk)
∏

j<k φ(λj − λk)
, λa = ξn

(3.93)
Extracting the n-th product factor from φn({µj}}), i.e.

φn({λk}}) = φn−1({λk}})
M∏
k=1

ϕ(λk − ξn + iη)

ϕ(λk − ξn)
, (3.94)
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multiplying the α-th column with the factor −2
∏M

k=1 ϕ(λk − λα + iη) and dividing

the α-th column by the factor
∏M

k=1 ϕ(µk − ξn + iη)
We get the following result

F z
n({µj}, {λk}) =

φn−1({µj})
φn−1({λk})

M∏
j=1

ϕ(µj − ξn + iη)

ϕ(λj − ξn + iη)

detHα∏
j>k ϕ(µk − µj)

∏
α<β ϕ(λβ − λα)

,

(3.95)
where

Hα
ln =

ϕ(iη)

ϕ(µl − λn)

(
α(λn)

n∏
j 6=l

ϕ(µj − λn + iη)− d(λn)
n∏

j 6=m

ϕ(µj − λn − iη)

)
,

Hα
lα = −2Plα, (3.96)

where

Pln =
ϕ(iη)

ϕ(µl − ξn)ϕ(µl − ξn + iη)

n∏
k=1

ϕ(λk − λn + iη). (3.97)

One can immediately see that the P matrix is a matrix of rank r(P ) = 1. Note that
the final formula is as of scalar products. In fact, it can be simplified using the fact
that if A is an arbitrary n×n matrix and B a rank one n×n matrix, the determinant
of the sum A+ B is

det(A+ B) = detA+
n∑
k=1

detA(k), (3.98)

where

A(k)
ab = Aab, b 6= k (3.99)

A(k)
ak = Bak (3.100)

Finally using that det(P ) = 0, we obtain the following formula

F z
n({µj}, {λk}) =

φn−1({µj})
φn−1({λk})

M∏
j=1

ϕ(µj − ξn + iη)

ϕ(λj − ξn + iη)

detM [H({µj}, {λk})− 2P ({µj}, {λk})]∏
j>k ϕ(µk − µj)

∏
α<β ϕ(λβ − λα)

,

(3.101)
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Form factor of spins at adjacent sites

Finally, we wish to compute the 〈{λ}〉|σ−n σ+
n+1|{µ}〉matrix element. The corresponding

form factor is

F−+
n ({µj}, {λk}) ≡ 〈0|

M∏
j=1

C(µj)σ
−
n σ

+
n+1

M∏
k=1

B(λk)|0〉 (3.102)

Similarly with the previous cases we use that the propagator over the whole chain
equals to the identity matrix, which gives that

F−+
n ({µj}, {λk}) = φn−1({µj})φ−1

n+1({λk})〈0|
M∏
j=1

C(µj)B(ξn)C(ξn+1)
M∏
k=1

B(λk)|0〉

(3.103)
Recall that the action of the operator C(ξm+1) on a Bethe eigenvector is

C(ξm+1)
n∏
k=1

B(λk)|0〉 =
n∑
l=1

Ml

n∏
j 6=l

B(λl)|0〉+
n∑

l>m

Ml,mB(ξm+1)
∏
k 6=l,m

B(λk)|0〉, (3.104)

where

Ml =
ϕ(η)

ϕ(λl − ξm+1)d(λl)

n∏
k 6=l

(
b−1(λk, ξm+1)b−1(λα, λk)

)
(3.105)

and

Mlb =− ϕ2(η)

ϕ(λl − ξm+1)ϕ(λb − ξm+1)
d(λl)b

−1(λl, λb)

×
n∏

k 6=l,b

(
b−1(λk, λb)b

−1(λl, λk)
)

(3.106)

Therefore we obtain

F−+
n ({µj}, {λk}) = φn−1({µj})φ−1

n+1({λk})

×

(
M∑
l=1

MlSn({µj}, {ξn, λ1, ..., λ̂l, ..., λM})

+
∑
l 6=b

MlbSM({µj}, {ξn, ξn+1, λ1, ..., λ̂l, λ̂b, ..., λM})

)
(3.107)
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Chapter 4

Scattering of Spinon excitations by
Potentials

In this chapter using a semi-analytical Bethe ansatz method and a T-matrix approach
we study the scattering of a spinon, the elementary quantum many-body topological
excitation in the 1D Heisenberg model, by local and phonon potentials. In particular,
we compare the scattering of a spinon to that of a free spinless fermion in the XY
model to highlight the effect of strong correlations. For the one spinon scattering in
an odd-site chain, we find a regular behavior of the scattering coefficients. In contrast,
in an even-site chain there is a transfer of transmission probability between the two
spinon branches that grows exponentially with system size. We link the exponent of the
exponential behavior to the dressed charge that characterizes the critical properties of
the 1D Heisenberg model, an interplay of topological and critical properties. The aim
of this study is a microscopic understanding of spinon scattering by impurities, barriers
or phonons, modeled as prototype potentials, an input in the analysis of quantum spin
transport experiments. More abstractly, we approach and point out the fundamental
question of ”how does a quantum many-body topological excitation scatters from a po-
tential?”. The first section is a very brief introduction to the basic tools of scattering
theory. The next section are devoted to the spinon scattering.

4.1 Introduction: Motivation for this work

The novel mode of thermal transport by magnetic excitations in quasi-one dimensional
quantum magnets has been over the last few years the focus of extensive experimental
[94] and theoretical studies [26, 95, 25, 96, 97, 98]. It was promoted by the fortuitous
coincidence of synthesis of excellent quality compounds very well described by proto-
type integrable spin chain models and the proposal of unconventional -ballistic- spin
and thermal transport in these systems [95]. Of course the purely ballistic thermal
transport predicted by theory is not observed in thermal conduction experiments as
the, albeit very high, thermal conductivity is limited by the scattering of the magnetic



68 Chapter 4. Scattering of Spinon excitations by Potentials

excitations from impurities and phonons [94].

In parallel, in the field of spintronics (spin caloritronics) there is renewed interest
in the transport of magnetization, with the (inverse) spin Hall and spin Seebeck effect
employed for the generation and detection of spin currents [99, 100]. So far mostly
metallic, semiconducting and magnetically ordered (ferro, antiferro, ferri) magnetic
materials have been studied. Only very recently the spin Seebeck effect was studied in
the quasi-one dimensional quantum magnet Sr2CuO3 accurately described by a spin-
1/2 Heisenberg chain [51].

Regarding quasi-one dimensional quantum magnets, a lot is known on their bulk
thermodynamic [101] and magnetothermal transport properties [102, 103, 104]. The
prototype model for these systems is the well studied 1D Heisenberg model that is
analytically solvable by the Bethe ansatz (BA) method. The elementary excitations in
this strongly correlated system are topological in nature- the spinons [20] - and most of
thermodynamic and transport experiments are discussed in terms of these low energy
excitations [94, 96, 105].

In this work, we study the scattering of a spinon from local potentials aiming at a
microscopic understanding of scattering processes by impurities, phonons and barriers,
relevant to (far-out of equilibrium) quantum spin transport. At the moment, we do not
address any particular experiment, we only present background work on the theoretical
question, how does a quantum many-body topological excitation scatters from a poten-
tial ?[106]. This question is also relevant in other systems with topological excitations
of actual experimental and theoretical interest.

To this end, we first use a recently developed semi-analytical Bethe ansatz method
[6, 7] to evaluate scattering matrix elements by prototype potentials and then to evalu-
ate scattering coefficients by a T-matrix method. We should emphasize that although
it is an elementary exercise to evaluate the quantum mechanical scattering coefficients
(reflection, transmission) of a free particle from a potential barrier, little is known on
the scattering of a quantum many-body quasi-particle excitation even more so for a
topological one. The Bethe ansatz solvable models offer exactly such a framework for
the study of this fundamental problem.

Defining the Basic Quantities

The model which is considered is the XXZ gapless/easy-plane anisotropic Heisenberg
Hamiltonian for a chain of N sites with periodic boundary conditions SaN+1 = Sa1 and
in the presence of a local potential V of strength g, given by:
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Figure 4.1: Schematic figure of the spin chain and the type of poten-
tials in consideration.

H = J
N∑
n=1

[
SxnS

x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1 − hSzn

]
+ gV,

where h is the magnetic field, ∆ = cos γ. Moreover, note that throught this chapter
we take J = 1.

Additionally, let us mention that we study chains with odd as well as even number
N of spins. In odd chains, for each total Sz = ±1/2, as described in chapter 2, the
ground state is doubly degenerate containing one spinon with dispersion given by the
one-branch εQ = vs| sinQ|, 0 < Q < π. For even N the lowest excitations involve at
least two spinons, the dispersion of each spinon given by εQ = vs| sinQ| i.e. states of
the Cloizeaux-Pearson spinon spectrum [?, ?]. We will study states belonging to the
lowest energy branch of the M = N/2− 1 magnetization sector and obtained from the
Sz = 1 states by keeping the one spinon momentum fixed at zero and considering the
dispersion of the second. In the spinon dispersion, vs = π

2
sin γ
γ

and Q is defined as the
spinon momentum above the ground state. The matrix elements between two Bethe
states describe a scattering process. Moreover we define the spinon group velocity as
uQ = dεQ/dQ.
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4.2 Description of scattering matrix elements

In this section we evaluate the scattering matrix elements |M|2 = |〈Q′|V |Q〉|2 of a
spinon from a state of momentum Q to a state of momentum Q′ on finite size lattices
using the Kitanine-Maillet-Terras formulas described in chapter 3. In particular, we
consider three different types of potential interactions, namely, a longitudinal poten-
tial, a transverse potential and a spin-phonon lattice distortion known as ”weak link”.
Note that, throughout this process we only depict the matrix between the lowest lying
excitations due to the fact that they are of most importance for the scattering proce-
dure. Nevertheless, the computation of scattering coefficients includes matrix elements
between arbitrary two-spinon states in the even case, while in the odd case we are re-
stricted to one-spinon states. In addition, we describe two classes of matrix elements,
namely Q → π + Q and Q → π − Q transitions, since they have the most important
impact in the system and for this reason we call them Dominant matrix elements.

 0.2

 0.4
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 0.8

 1

 1.2

 1.4

−π −π/2  0 π/2 π

εQ

Q

Figure 4.2: Schematic description of the Q→ π +Q transition (blue)
and Q→ π −Q same branch velocity flipping transition (red).

4.2.1 Longitudinal potential

To start with the one site longitudinal potential is modeled by the interaction term

V = gSzn (4.1)



4.2. Description of scattering matrix elements 71

The corresponding matrix element is given by

|Mz
q(Q)|2 = | < Q+ q|Szq |Q > |2, (4.2)

where Szn = 1√
N

∑
q e
−iqnSzq .

In the simple ∆ = 0 case ( XY model ) by a Jordan-Wigner transformation the spec-
trum corresponds to that of free spinless fermions, |M z

q |2 = 1/N and the potential
moves only one fermion to a different state [107].

In sharp contrast, in the isotropic Heisenberg model (∆ = 1), due to strong anti-
ferromagnetic fluctuations, the scattering matrix elements are drastically enhanced as
shown in Fig.4.3. |Mz

q(Q = 0)|2 scales in overall as 1/
√
N and as indicated in the inset

of Fig.4.3 in the region not close to q = 0, π the matrix element behaves approximately
as
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Figure 4.3: Scaled
√
N |Mz

q(Q = 0)|2 as a function of q/π for
N = 120, 240, 360, 480, ∆ = 1. In the inset the asymptotic scaling
of |Mz

q(Q = 0)|2 with a solid line indicating the asymptote (π − q)2/3.

|Mz
q(Q = 0)|2 ∼ 1√

N

1

(π − q)2/3
. (4.3)
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Note that this behavior does not describe the q = π, which should not be diverging
and scales differently with N , as will be discussed below.

The most interesting part in Fig.4.3 and relation (4.3) is that the matrix elements
scale in a non-trivial fashion with N . In the XY model and for a Szn potential all ma-
trix elements scale as 1/N which is the usual case in lattice scattering. On the contrary
for all ∆ 6= 0 the matrix elements have a non trivial relation with respect to the spinon
momentum and a particular scaling with respect to the number of spin sites, which is
crucial to the spinon scattering.

Furthermore, for the sake of convenience we introduce the concept dominant matrix
elements, corresponding to two specific types 1 of on-shell transitions. The afore-
mentioned transitions dominate the scattering process and as we will see further down,
they are sufficient to give us an analytical approximation for the scattering coefficients.
Specifically, the first one is the q = π transition

|〈Q+ π|Szπ|Q〉|2 '
f z(Q)

N2Z2−1
, (4.4)

while the second is the same branch flipping velocity transition

|〈π −Q|Szπ−2Q|Q〉|2 '
hz(Q)

N
, (4.5)

where Z is the dressed charge introduced in chapter 2. The identification has been
done numerically, which is depicted in fig.4.4 using the analysis in [108], since for small

magnetic fields the dressed charge is Z '
√

π
2(π−γ)

. In particular, Z2 = 1 for ∆ = 0 and

Z2 = 1/2 for ∆ = 1. This particular scaling of the matrix elements is also valid in the
h = 0 case, since by an analytical continuation the critical exponent 2Z2 remains the
same. Furthermore, f z(Q) is an almost constant function, while hz(Q) as illustrated in
fig.4.5 is a rapidly decreasing one to a constant value . These types of matrix elements
have been extensively studied in [109, 110] and the correspondence between the dressed
charge and the scaling of the matrix elements has been proven analytically.

4.2.2 Transverse potential

Next, we consider a transverse magnetic potential, modeled by a potential of the form:

V = gSxn. (4.6)

1and all equivalent transitions between the two spinon branches in the even case
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Figure 4.4: |〈Q + π|Szπ|Q〉|2 versus N for ∆ = 1, 0.8, 0.6, 0.4, for Q =
2π/10. The solid lines correspond to the fitted curve of the form |〈Q+

π|Szπ|Q〉|2 ' 1/N2Z2−1 while the dots are the numerical data
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Figure 4.5: Scaled N |〈π − Q|Szπ−2Q|Q〉|2 versus Q for ∆ = 1 and
various N . The matrix elements are symmetric with respect to Q = π/2.

The inset shows N |〈π −Q|Szπ−2Q|Q〉|2 versus Q for ∆ = 1, 0.6, 0.4.

The main difference of this potential to the two previous ones is that it acts non-trivially
only between states with ∆Sz = ±1.
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Figure 4.6: Scaled |Mx
q (Q = 0)|2

√
N vs q for the isotropic model ∆ =

1 and various N . The solid line in the inset shows that the asymptote
scales as (π − q)2/3.

Similarly to the Szn potential, as shown in Fig.4.6, the asymptote behaves as,

|Mx
q (Q = 0)|2 ∼ 1√

N

1

(π − q)2/3
(4.7)

and the dominant matrix elements scale as,

|〈Q+ π|Sxπ |Q〉|2 '
fx(Q)

N
1

2Z2−1
. (4.8)

Note for values of ∆ close to one, fx(Q) can be considered constant (inset Fig. 4.9),
while for values of ∆ close to zero it is a monotonically decreasing function.
This time, the XY model matrix elements behave non-trivially as they scale as

√
N

and in fact they imply a strongest scattering compared to the 0 < ∆ ≤ 1 case.

4.2.3 Spin-phonon potential

Next we consider the scattering of a spinon by a lattice distortion of wave-vector q,

hq =
1√
N

N∑
n=1

eiqnJ(SxnS
x
n+1 + SynS

y
n+1) (4.9)
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from which we can deduce the scattering from a ”weak link” V = g(S−n S
+
n+1 +S+

n S
−
n+1).

Similarly to the previous case, the scaled scattering matrix element for ∆ = 1 and the
asymptotic form

|Mph
q (Q = 0)|2 ∼ N−2/3 1

(π − q)1/2
, (4.10)

for Q = 0 are shown in Fig.4.8.
Finally we discuss a spin-phonon interaction. Similarly with the longitudinal mag-

netic potential, the dominant matrix elements are characterized by a π-transfer |〈Q+
π|Vπ|Q〉|2 and by a velocity-flipping |〈π − Q|Vπ−2Q|Q〉|2 in the same branch of the
one-spinon spectrum.

Similarly, we obtain that the π-transfer and the same branch velocity flipping matrix
elements behave as,

|〈Q+ π|Vπ|Q〉|2 '
fph(Q)

Nα

|〈π −Q|Vπ−2Q|Q〉|2 '
hph(Q)

N
, (4.11)

with α ' 0.4 for Q = 2π/10 and small corrections with respect to Q. Note that
similarly to the longitudinal potential, hph(Q) is a rapidly decreasing function for ∆ > 0
while for ∆ = 0 is constant and equal to one. Moreover, fph(Q) and hph(Q) are
symmetric with respect to π/2.
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4.2.4 Extended potentials

To close our discussion on the matrix elements, we consider an extended potential
profile Vext =

∑N
n=1 gnVn, where Vn represents one of the potentials we studied above

and gn is the potential profile

|〈Q+ q|Vext|Q〉|2 =
1

N
|
N∑
n=1

gne
−iqn|2|Vq|2. (4.12)

For example, for a segment of m-sites with a potential Vm =
∑N/2+m−1

n=N/2 Szn the matrix
element is given by,

| < Q+ q|Vm|Q > |2 =
1

N

sin2 qm
2

sin2 q
2

|Mz
q(Q)|2. (4.13)

This form of equation can be interpreted as a ”diffraction”-like pattern modified by
the scattering of the spinon. For the XY model it simply becomes,
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| < Q+ q|Vm|Q > |2 =
1

N2

sin2 qm
2

sin2 q
2

. (4.14)

4.3 Intermedio: A short introduction to scattering

theory

First, we make a short presentation of rigorous scattering theory, in particular intro-
ducing the concepts of the Lippmann-Schwinger equation and the Green’s function, the
S matrix and the T -matrix approach, which are key ingredients for the development
of a scattering theory for spinon excitations. Note that in some cases, we may use as
a model Hamiltonian the usual non-relativistic free-particle one, in order to have more
familiar expressions

The Lippmann-Schwinger equation

Let us consider a time-independent scattering problem.

H = H0 + V, (4.15)
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where H0 is the free from external interactions Hamiltonian and V denotes an external
scatterer. We assume that we can solve the eigenvalue problem imposed by H0,

H0|φ〉 = E0|ψ0〉, (4.16)

and our task is to look for solutions for the following scattering problem

(H0 + V )|ψ〉 = E|ψ〉, (4.17)

constrained to reduce to the original solution when V → 0, i.e. |ψ〉 → |ψ0〉 and
E → E0. The formal solution of this problem is:

|ψ〉 = |ψ0〉+
1

E −H0 + iε
V |ψ〉, (4.18)

where ε → 0+ and is introduced in order to avoid the singularity caused due the con-
tinuous spectrum of H0. Eq.(4.18) is called Lippmann-Schwinger equation.

The Green’s function, T -matrix and S-matrix

The next step is to define the Green’s function

G0(E) ≡ lim
ε→0+

1

E −H0 + iε
(4.19)

The Lippmann-Schwinger equation takes the following form

|ψ〉 = |ψ0〉+G0V |ψ〉, (4.20)

which gives the following formal solution

|ψ〉 = (1−G0V )−1|ψ0〉. (4.21)

Expressing the operator (1−G0V )−1 as a series expansion, we obtain

|ψ〉 =
∞∑
k=0

(G0V )k|ψ0〉. (4.22)

The above expansion is a powerful tool, known as the Born series.

Next, we define the T-matrix, a ”black box” that contains all the relevant information
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about the scattering process

T = V (1−G0V )−1 = V

∞∑
k=0

(G0V )k, (4.23)

The usefulness of the above quantity becomes evident if we define the scattered
part of the quantum state as |ψs〉 = |ψ〉 − |ψ0〉, then

|ψs〉 = G0T |ψ0〉. (4.24)

Another important physical quantity is the so-called S-matrix already mentioned
in chapter 2. The concept of S-matrix relates ingoing asymptotic states |ψ〉in with
outgoing asymptotic states |ψ〉out. In fact, if we assume that interactions have effect
only in a small region of spacetime, then the S matrix is defined as

|ψ〉out = S|ψ〉in, (4.25)

or more specifically

S = T exp
[
− i
∫ ∞
−∞

V (t)dt
]

(4.26)

In the case where V is a time independent potential, S reduces to

S = e−iV (tout−tin), (4.27)

where tout →∞ and tin → −∞.

It is very interesting that there exists an immediate connection between the S- matrix
and the T -matrix, namely

Sαβ = δαβ − 2πδ(Eβ − Eα)Tαα, (4.28)

which as expected the T matrix is a measure of the scattered part of the wavefunction,
while the S matrix accounts for the whole wavefunction.

Transmission Probabilities
Using the aforementioned formalism, the ”diagonal” transmission probability (proba-
bility to find the particle in the same state) of a particle in the state |Q〉 with energy
εQ and group velocity uQ = dεQ/dQ can be found simply by integration of the diagonal
part (4.28) around a region of Q

TQ,Q =
(
1 +

N

uQ
=〈Q|T |Q〉

)2
+
(N
uQ
<〈Q|T |Q〉

)2
. (4.29)
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Moreover, in the case of an even spin chain, since it is impossible to physically distin-
guish between two spinon excitations that have the same energy and group velocity
but live in different branches of the Cloiseaux-Pearson spectrum, we should also find
the ”non-diagonal” transmission probability which is calculated by integration of the
SQ,Q+π part of the S-matrix

TQ,Q+π = (
N

uQ
=〈Q+ π|T |Q〉)2 + (

N

uQ
<〈Q+ π|T |Q〉)2. (4.30)

The above relation evidently describes the probability of a spinon to be π-transfered
on the other branch. Let us mention that in the odd site case, at least in the lower
branch approximation this is not needed.

Finally, the total transmission probability is defined as Ttot = TQ,Q + TQ,Q+π

4.4 Calculation of the spinon Scattering coefficients

We will analyze the transmission/reflection scattering coefficients of a spinon from a
potential within the T-matrix approach by writing all quantities in the basis of Bethe
ansatz eigenstates |{λ}〉,

T = V
1

1−G0V

G0(E) = lim
ε→0

∑
{λ}

|{λ}〉〈{λ}|
E − E{λ} + iε

V =
∑
{µ},{λ}

〈{λ}|V |{µ}〉|{λ}〉〈{µ}|. (4.31)

E{λ} is the energy corresponding to the Bethe state |{λ}〉. Based on the discussion
in the previous section for the particular scaling of the matrix elements with N , we
write a typical matrix element in the form 〈{λ}|V |{µ}〉 = gf{λ},{µ}/N

α with g being
the potential strength and α = α({λ}, {µ}) > 0 a scaling factor. The potential ma-
trix V belongs in a Hilbert space of dimension dimH = 2N which makes the problem
intractable from a computational point of view. Therefore, in order to be able to calcu-
late the scattering coefficients for relatively long spin chains, we restrict our numerical
calculations to including only the two-spinon continuum i.e. a subspace of dimension
dimH2sp = N

8
(N + 2). The calculation of the T-matrix is straightforward, we compute

the matrix 1−G0V and subsequently invert it and left multiply it by V . Note that for
the evaluation of the Green’s function G0 we use the identity limε→0

1
x+iε

= P 1
x
−iπδ(x),

where P stands for the Cauchy principal value part.
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4.4.1 ”Free” spinon

It is instructive to consider the scattering of a free particle on a lattice with a spinon
dispersion relation εQ = vs| sinQ| by a one-site δ-like potential of strength g. In this
case all the matrix elements are the same, < Q′|V |Q >= g/N and the transmission
coefficient TQ,Q is a function of g/uQ (Appendix), uQ = dεQ/dQ.
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Figure 4.10: TQ,Q vs εQ for a delta-like potential of strength g for a
”free” spinon and a particle in a tight-binding model

In Fig.4.10 we show that the ”free” spinon transmission probability and that of a
particle in a tight-binding model with dispersion relation εQ = vs(1 − cosQ) behave
very differently. The ”free” spinon transmission probability is generally a decreasing
function of the energy, a property of the specific bounded spectrum. Moreover, we
observe that in the linear part of the energy dispersion we have high transmission
probability which is related to the fact that in a purely linear dispersion relation, i.e.
a massless one dimensional Dirac equation only a phase is induced in the wavefunction
and there is no reflection probability [111]. Additionally, from the specific form of
the spinon dispersion relation we observe that when εQ decreases, uQ increases, which
implies that TQ,Q is an increasing function of the spinon velocity. Thus a more sensible
quantity for the description of the transmission coefficient is the spinon velocity and
not the spinon energy as in usual scattering problems.
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4.4.2 One-site longitudinal potential

We first consider the scattering of a spinon in an odd-site chain from a one-site potential
V = gSzn. In the fermionic language of the t − V model [112] this would indeed
correspond to the scattering of a spinless fermion from a one-site potential. In our
calculation of the transmission coefficient TQ,Q as a function of spinon energy, Fig.4.11,
we include only the lower one spinon branch as intermediate states. For ∆ = 0 we
recover the free-spinon result of Fig.4.10, while for finite ∆ we find a strong suppression
of the transmission probability at low energies. Because of the finite size of the chain
we cannot study the zero energy limit, however we expect the transmission to vanish
at this limit as implied by comparing the N = 121 and N = 301 data at low energies.
We should also note that the results are practically independent of system size, at
least in this lowest branch approximation. Similar results are shown in Fig.4.12 for the
isotropic model at different potential strengths g where, as expected, the transmission
is suppressed with increasing potential strength. Furthermore, as in the free spinon
case, note the vanishing of the transmission at high energies, related to the zero spinon
velocity at the top of the energy dispersion. Furthermore, by taking a closer to look
to the transmission probability at low energy we note that 0 < ∆ ≤ 1 spinons appear
to behave as quadratic massive particles instead of ”linear” ones in the ∆ = 0 case.
The quadratic behavior of spinon could be produced by the emergence of an induced
effective mass due to the breaking of criticality by the antiferromagnetic correlations.
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Figure 4.11: TQ,Q vs εQ for various ∆, g = 0.15 for an odd spin chain,
N = 121. The black dashed line indicates the N = 301 data. The solid

lines are guides to the eye.
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Figure 4.13: TQ,Q (red N = 100, blue N = 280) and TQ,Q+π (green
N = 100, purple N = 280) vs εQ for g = 0.15 and ∆ = 1. The sum
Ttot = TQ,Q+TQ,Q+π for N = 280 is indicated by a solid black line. The
solid lines represent the analytical results while the dots the numerical

data.
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As shown in Fig.4.6, in an even chain there are two low energy spinon branches.
In Fig.4.13 we find that there is a complementarity in transmission, as when TQ,Q
decreases, TQ,Q+π increases. The sum of the two closely resembles the transmission
of the one spinon in a odd chain. Furthermore, there is a strong size dependence of
TQ,Q which can probably best be described as exponentially decreasing with N . This
is argued in Appendix A and shown in Fig.4.15 where for comparison a power law
dependence is also plotted (not shown, there is a corresponding exponential increase
of TQ,Q+π). The exponential dependence increases with ∆ as shown in Fig. 4.14
and with g, Fig.4.15. However, the sum TQ,Q + TQ,Q+π of transmission probabilities
shows a weak size dependence and of course in the ∆ = 0 case coincides with the
one spinon in an odd chain with no size dependence. In other words, we conjecture
that in the thermodynamic limit an incoming spinon from the one branch is fully
transmitted/reflected in the other branch. In this calculation we have again included as
intermediate states only the two lower spinon branches. As discussed below, including
all the two-spinon states, only quantitatively changes this behavior. Another aspect of
this transfer of transmission probability from the TQ,Q to the TQ,Q+π branch is shown
in Fig.4.16 where we see that TQ,Q+π increases with potential strength.
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Figure 4.14: log TQ,Q vs N for V = gSzn, g = 0.2 for constant energy
εQ/vs = sin(2π/10) and ∆ = 0.4, 0.6, 0.8, 1.0 The solid lines represent
the analytical approximation (appendix), while the dots represent the

numerical data. The horizontal represents the ∆ = 0 case.

Based on the integrable structure of the Heisenberg model we can understand these
results from first principles appendix. Re-summing to all orders the most important
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on-shell matrix elements, |Q〉 → |Q+ π〉, |π−Q〉 described in the previous section, we
obtain a fairly good description of the transmission probabilities (even quantitative in
the weak coupling limit). It is easily proved that these transitions result in a mono-
tonically decreasing (increasing) transmission probability TQ,Q(TQ,π+Q) with spin chain
length N . We expect this behavior to be generic in one dimensional spin chains, simply
here, the integrability of the model allows us to explicitly evaluate the corresponding
exponents.

By a numerical fit in Figs.4.14,4.15 we find that a useful quantity for the description
of the scattering process is geff = gN1−Z2

and that for εQ not close to zero the
transmission coefficient behaves as

TQ,Q ' e−a(geff/uQ)2 (4.32)

which holds for geff/uQ << 1. Thus for the isotropic Heisenberg model (γ = 0, ∆ = 1)
which is the most experimentally relevant TQ,Q ' e−a(g/uQ)2N . Although this approach
does not offer an analytical solution of the scattering problem, using the framework
of integrability we derived a connection between the transmission coefficients and
θzz = 2Z2, the critical exponent of the ground state’s correlation function 〈0|sz1szn+1|0〉
dominant oscillatory part. Predicted by CFT and Bethe Ansatz calculations [?, ?], it
offers a qualitative description of the scattering process.
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Figure 4.17: TQ,Q (red g = 0.1, blue g = 0.2) and TQ,Q+π (green
g = 0.1, purple g = 0.2) vs εQ for N = 100 and ∆ = 1. The solid
lines are produced by including only the lower branch while the dots
represent the numerical data obtained by including the whole two-spinon

continuum.

Note that this approximation gives reasonable results even though we have per-
formed a rough elimination of most of the intermediate matrix elements. On the other
hand from the specific form of the transmission probability of the ”free” spinon model
we observe that the dominant behavior is given by the on-shell matrix elements and
the rest of the matrix V serves as a correction, which justifies the reasoning for the
above approximation. Of course, as we see in Fig.4.15, it is a weak coupling approx-
imation, albeit a very good one, that becomes increasingly unreliable in the strong g
coupling limit. Even more, in the strong coupling g/uQ >> 1 limit (e.g. Q → ±π/2)
the numerical T-matrix approach we are using often does not converge at all.

Finally, to improve on the lower branch approximation we include all the two-
spinon states which forces us however to study rather small size spin chains as the
space of intermediate states increases as N2. At this point it is important to mention
that although there are not significant quantitative and qualitative differences in the
scattering profile, As shown in Fig.4.17 there is a stabilizing effect which is shown in
Fig. 4.18. To be more specific, the single particle image, i.e. the inclusion of only the
lowest branch states do not provide a physical scattering picture regarding the number
of spins N , since it appears that the finite size effects do not disappear as the system
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grows. On the contrary, the two spinon continuum serves as an intermediate states
cloud which stabilizes the spinon scattering and provides a regular particle scattering
in the thermodynamic limit N → ∞. The above claim is supported by the fact
that Tcal(Q) is dependent only from the spinon energy εQ in the thermodynamic limit
as depicted in Fig.4.18. Finally, Comparing the even and odd site case, we found
an interesting topological effect. In the odd chains, in our one-spinon study where
the spectrum is two-fold degenerate, we find a rather regular behavior of scattering
coefficients. In the even chains, due to the topological two-spinon constraint, we have
a four-fold degenerate spectrum that, together with the singular π−transition, implies
a transfer of transmission probability between the two spinon branches. Thus, in the
spinon scattering, we have an interplay of the topological character and the singular
matrix elements of a critical system.

4.4.3 Spin-phonon potential

The spin-phonon interaction is described by a one-link potential of the form

V = g(S−n S
+
n+1 + S+

n S
−
n+1). (4.33)
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In Fig.4.20 the numerical calculation for an even-site chain shows that TQ,Q → 0 as
N increases. Similarly to the previous case, we obtain an approximate analytical result
by using the dominant matrix elements that were described in the previous section.
In particular, the monotonicity of the scaling factors implies that the transmission
and reflection coefficients will be scale invariant for ∆ = 0 while on the contrary, for
0 < ∆ ≤ 1 TQ,Q → 0 as N increases. Moreover, the relation of the scattering coefficients
to the spinon energy εQ is very similar to that of a longitudinal magnetic potential as
was depicted in Fig.4.13.

4.4.4 Transverse potential

We now turn to a transverse magnetic potential, V = gSxn. The main difference of this
potential to the two previous ones we studied is that it acts non trivially only between
states with ∆Sz = ±1. We will restrict ourselves to transitions between the Sz = 1
and Sz = 2 magnetization sectors.
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Fig.4.21 shows that similarly to the previous cases, for an even-site chain TQ,Q → 0
as N increases. Again the dependence is probably best be described as exponential,
as argued in [?] and by comparison with a power law one. However, this time we find
that this holds also for ∆ = 0 and in fact the scattering increases as ∆ decreases,
which is the opposite to what happened in the previous cases. Again we can obtain a
qualitative explanation of this behavior by using the fact [109, 110] that the dominant
matrix element approximately scales as θ−+ = 1

2Z2 ' π−γ
π

which is the dominant critical
exponent of the ground state correlation 〈0|σ−1 σ+

n+1|0〉. By re-summation [?] and the
monotonicity of the critical exponents with respect to ∆ one can argue that TQ,Q → 0
for 0 < ∆ ≤ 1. Nevertheless, a full scale analysis of the matrix elements should be
done in order to give a definite answer. Similarly to the previous cases, by defining

geff ≡ gN1− 1
4Z2 implying geff = g

√
N for ∆ = 1 (isotropic model) and geff = gN3/4

for ∆ = 0 (XY model), we conclude that

TQ,Q ' e−f
x(Q)(geff/uQ)2 (4.34)

in the region geff/(4u
2
Q/f

x(Q)) << 1, a behavior which agrees well with the numerical
data.
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4.4.5 Extended potential

Finally, we consider the spinon scattering from an extended potential

Vext =
m∑
n=1

gnVn. (4.35)

By the numerical procedure presented earlier, we can calculate the transmission prob-
ability for an arbitrary potential profile {gn} in the two-spinon continuum approxima-
tion. We start with the scattering of a spinon in an odd chain by a two-site longitudinal
potential, a case analogous to Fig.4.11 for a on-site potential. In Fig.4.22 we see a
remarkable difference at low energies where there is complete transmission. This situ-
ation is consistent with the well known ”cutting” and ”healing” [113, 114, 115] effect
in one dimensional correlated systems and spin chains, where one weak-link is cutting
a chain at low energies while two weak-links are healed. This effect leads to a finite
conductance with a power law dependence on the temperature due to thermal effects.

Here, we can understand the results of extended potentials by considering the
”diffraction” relation (4.13). For an m = 2 longitudinal potential in an odd chain,
at low energies Q → 0, the q = π − 2Q scattering matrix element vanishes leading to
total transmission. Following the same argument, we also find that for an even chain
with an m = 2 longitudinal potential the transfer of transmission probability from
TQ,Q to TQ,Q+π found in Fig.4.11 is now totally suppressed as the q = π matrix element
vanishes. Following the same line of re-summation of dominant matrix elements and by
taking into account the corresponding ”diffraction” factor allows us to understand the
transmission by extended potentials. Furthermore, it is important to mention that in
this case the inclusion of the whole two spinon continuum induces negligible corrections
and therefore the single particle picture is sufficient.

4.5 Extension to the massive case ∆ > 1

This section extends our study to the gapped case, ∆ > 1, for a longitudinal potential
[116]. The main drive for this work is to understand the peculiar behavior of the spinon
scattering. Specifically, there are three effects which characterize the spinon nature for
the ∆ ≤ 1 XXZ spin chain model. The criticality of the system ∆ ≤ 1, the strongly
correlated characteristics of the model and the topological nature of the quasiparticle
induced by the boundary conditions. To this end, the extension of the previous analysis
to the gapped model might help us distinguish which effect is responsible. In addition,
spinons in the gapped case are localized objects which tend to become antiferromag-
netic domain walls as ∆ → ∞. Consequently, the scattering process becomes more
apparent and approaches the usual localized particle picture while retaining the many
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Figure 4.22: TQ,Q vs spinon energy εQ for a potential V = g(Szn +
Szn+1), N = 201.

body effects.

Similarly with the previous sections we start with a brief presentation of the matrix
elements and subsequently an analysis of the scattering coefficients based on the same
techniques used throughout this chapter.

Matrix Elements

The most important distinction from the gapless case is shown in Fig.4.24, where
the |〈Q + π|Szπ|Q〉|2 matrix elements for the longitudinal potential is depicted. As
we clearly notice the matrix elements are linearly dependent, |〈Q + π|Szπ|Q〉|2 '
f(∆, Q)N+g(∆, Q), where the coefficients f, g are increasing functions which converge
to a constant value with respect to ∆ as we approach the Ising limit. Additionally,
|〈Q + π|Szn|Q〉|2 ' f(∆, Q) + g(∆, Q)/N . The above results evidently will result to
a strong π transfer of the spinon from the one branch to the other. Additionally, in
(Fig2) we present the Q = 0 matrix element and in a similar fashion with the previous
graph we find that the q → π scattering matrix elements increases as ∆ increases up to
the point where it effectively reaches the Ising limit ∆ =∞. Additionally, we find that
the same branch velocity flipping matrix elements have a similar form as in the gapless
case, thus expecting that for an odd chain and within the 1-spinon approximation we
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Figure 4.23: |〈Q + π|Szπ|Q〉|2 versus N for ∆ = 1, 1.5, 2, 3, 4, 5 for
Q = 2π/10.

will not have apparent differences with the ∆ ≤ 1 case apart from the strong scattering
close to the Q = 0 point.

Scattering coefficients in the gapped case

Let us start our discussion of the gapped scattering coefficients by presenting the ”free”
spinon case, which will illustrate the transmission versus velocity relation. Specifically,
Fig.6.4 shows that in the gapped case due to the fact that the dispersion relation is
slowly becoming analogous to Q2, the velocity becomes zero at Q close to zero. Note
that although the results in Fig.6.4 are for the odd case, the results coincide with the
total transmission Ttot = TQ,Q + TQ,Q+π of the corresponding even case.

The presentation of the dominant matrix elements for the gapped case ∆ > 1 and
the arguments used throughout this chapter reveal that for the longitudinal potential
and for an even spin chain TQ,Q ∼ exp(−g2N2f z(Q)/u2

s), while all the other features
remain qualitatively the same. Additionally, an interesting observation is that up to
the two spinon continuum Ttot does not strongly depends on ∆, namely that within
numerical error it appears constant, while it depends on N in a similar way as in the
critical case, i.e. it decreases exponentially as long as finite-size corrections play a
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black dots represent the numerical results while the blue line is a guide
to the eye. The purple line representes the asymptotic value for ∆ =∞

using extrapolation of the available numerical data

significant role, with exponent analogous to N2. Moreover, similarly with the ∆ < 1
case the inclusion of the two spinon continuum makes the spinon behavior to be similar
to that of a regular particle, since it is evident from the inset of the Fig.4.26 that the
transmission coefficient increases as the energy increases. Again this behavior is due
to the intermediate spinon states acting as an effective cloud which regularizes the
scattering process.

extended potentials in the gapped case

Finally it is interesting that although the spinon velocity for ∆ > 1 becomes zero at
εQ ' 0 as ∆ increases again we have a healing effect in the case of V = g(Szn + Szn+1)
for every non zero energy εQ.
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spinon in the gapped case. The lines are for various ∆ and N = 601.

4.6 Conclusions

Using the Bethe ansatz method and the T-matrix approach, we have studied the scat-
tering of a spinon from prototype potentials. Three main features emerged from this
study; first, we are considering a quantum many-body problem, so in principle out-
going states with creation of spinons or ”electron-hole” pairs is possible although we
expect from the scattering matrix elements that these processes have lower probability.
We have limited our study to outgoing states with the same number of spinons as the
incoming state. Second, we can qualitatively account for the transmission probabilities
by re-summing the dominant scattering elements. Their dependence on the size of the
spin chain is given by the critical exponents characterizing the anisotropic Heisenberg
model. Thus, we linked the scattering to the critical properties of this integrable model
and we evaluated them by the Bethe ansatz method. It is an open, technically very
difficult, question whether including all intermediate states O(2N) would qualitatively
change the present picture. Third, we have found an intriguing topological effect as,
in an even chain there is complete transfer of the incoming spinon transmission proba-
bility from the one branch of the dispersion to the other branch. At the moment, in a
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Figure 4.26: The total transmission coefficient Ttot(Q) vs εQ/g for
V = gSzn and N = 100. The inset shows that the total transmission

actually is quite similar to that of an ordinary particle

macroscopic open chain the role of this odd-even effect is ambiguous. Further study is
necessary to clarify it, presumably including further outgoing states, e.g. three-spinon
states in odd chains. Note that, several experimental and theoretical studies [117] have
addressed the physical effect of even vs. odd chain length in the thermodynamic prop-
erties of finite size chains.

Along the line of dominant matrix elements, we analyzed a basic difference in the
scattering coefficients of longitudinal and weak link potentials to those of a transverse
potential. We also discussed extended potentials where, a drastic dependence of scat-
tering coefficients on the potential extent, we attributed it to a geometric ”diffraction”
factor and dominant scattering matrix elements. These results are consistent with pre-
vious studies on ”cutting-healing” in 1D correlated systems [113, 114, 115, 118]. In
addition, we have discovered that the interemediate states although they do not play
a significant role in the functional form of the transmission probability with respect to
the spinon energy, they are significant in the scattering procedure since only with their
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Figure 4.27: The transmission coefficient TQ,Q vs εQ for V = g(Szn +
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Similarly with the |∆| < 1 the healing property is apparent.

inclusion the spinon behaves regularly both in the finite N limit and the thermody-
namic limit. Finally, we have seen a similar behavior in the ∆ > 1 region proving that
the peculiar behavior of the spinon is not due to the criticality of the system but due to
a combination of its topological nature and the strongly correlation of the underlying
system.

Considering experiment, we studied the problem of a spinon excited above the ground
state and scattering from a potential. Although we have not addressed any particular
experiment, our study would provide key elements in the interpretation of far-out of
equilibrium experiments as well as thermal transport ones. For instance zero tempera-
ture tunneling studied by a ”Landauer” type approach or spinon transport probed e.g.
by terahertz 2D coherent spectroscopy [119] experiments.
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Appendix: Analytical approximation for the

scattering coefficients

As yet, we have calculated numerically the transmission and reflection coefficients. Nev-
ertheless, as we have already mentioned, there is an analytical approximation which is
sufficient to qualitatively describe the spinon scattering coefficients TQ,Q, TQ,Q+π and
the corresponding factors for reflection. However, we should mention that the approx-
imation gives an invalid result for the total transmission coefficient TQ,Q + TQ,Q+π.

To get started, In the case of the anisotropic Heisenberg the Green’s function for
the single spinon is

G0(Q) = lim
ε→0

∑
{λ}

|{λ}〉〈{λ}|
εQ − E{λ} + iε

, εQ =
π

2

sin γ

γ
| sinQ|. (4.36)

Analytical calculation for the ”free” spinon

Let us analytically evaluate the transmission probability for a ”free” spinon (including
only one-spinon excitations) toy model in an odd site spin chain with a potential matrix

V =
g

Nα

∑
Q,Q′

|Q〉〈Q′|, (4.37)

where α > 0 and |Q〉, |Q′〉 are one-spinon states. Note that α = 1 corresponds to the
case of a δ-like potential which we presented in the main text. Using eqs.(4.23-4.30)
we evaluate the T matrix and the transmission amplitude T , a function of geff/uQ,
geff ≡ gN1−α

T (Q,Q′) =
g

Nα

1

1− (I1 + iI2)
,

I1 =
geff
2π

P

∫
dq

εQ − εq
= − geff

2π|uQ|
log(

1 + | cosQ|
1− | cosQ|

), I2 = −geff
|uQ|

,

TQ,Q = t21 + (1 + t2)2, (4.38)

t1 =
(geff
uQ

) (1− I1)

(1− I1)2 + (I2)2
, t2 =

(geff
uQ

) I2

(1− I1)2 + (I2)2
.

This result holds for I2
1 + I2

2 < 1. An interesting observation is that if we include
only the on-shell matrix elements, i.e. only the I2 part, then we get the correct qual-
itative behavior in the dependence on N and the spinon energy εQ, with the rest of
the matrix elements given by I1 acting as corrections to the amplitude. Moreover, by



100 Chapter 4. Scattering of Spinon excitations by Potentials

repeating the same calculation for an even site spin chain, we can technically under-
stand our results of the spinon transfer between the two branches, since for α < 1 the
transmission probability TQ,Q → 0 as N increases while in the case α > 1 the trans-
mission probability TQ,Q → 1 as N increases and TQ,Q is scale invariant when α = 1.

Analytical approximation for the spinon

In addition to the previous case, using only the dominant matrix elements we can
obtain a qualitative expression for the transmission amplitudes of the potentials that
we have previously discussed. Even though this picture is not consistent with the in-
herent many body character of spinons which is provided by the two-spinon continuum
states it is enough to illustrate the quantitative significance of the dominant matrix
elements in predicting the spinon’s scattering behaviour with respect to the energy
for finite size spin chains. In order to do so, we use the symmetry with respect to
Q = ±π/2, which holds for the longitudinal and the spin-phonon interaction, while
for the transverse potential we notice that although this condition is not fulfilled, the
same procedure gives essentially the correct result.

Let us we first apply the above for an even site spin chain. The diagonal element
of the T -matrix is given by

T (Q,Q) = i
uQ
N

∞∑
n=1

(−1)n
(

1

2uQ

)2n

(Fn + Gn), (4.39)

F ≡ N(|〈Q+ π|Vπ|Q〉|+ |〈π −Q|Vπ−2Q|Q〉|)2

G ≡ N(|〈Q+ π|Vπ|Q〉| − |〈π −Q|Vπ−2Q|Q〉|)2,

where we have used that only the even terms contribute to the Born series and that

2n∑
m=even

(
2n

m

)
|〈Q+ π|Vπ|Q〉|2n−m|〈π −Q|Vπ−2Q|Q〉|m =

1

2Nn
(Fn + Gn). (4.40)

Summing up the series to obtain the diagonal T-matrix element,

T (Q,Q) = −iuQ
N

[
F

4u2
Q + F

+
G

4u2
Q + G

]
(4.41)
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and the transmission amplitude,

TQ,Q =
(

16u4Q−FG
16u4Q+FG+4u2Q(F+G)

)2

. (4.42)

Additionally we calculate the probability that the spinon is transmitted through
the second branch. Using a similar procedure we obtain the T (Q,Q + π) T-matrix
element

T (Q,Q+ π) = 2u2
Q

[
|〈Q+π|Vπ |Q〉|+|〈π−Q|Vπ−2Q|Q〉|

4u2Q+F (4.43)

+
|〈Q+π|Vπ |Q〉|−|〈π−Q|Vπ−2Q|Q〉|

4u2Q+G

]
,

and TQ,Q+π = ( N
uQ

)2T (Q,Q+ π)2.

In the case of an odd site spin chain we have a much simpler situation, since the
π-transfer matrix element and the second branch are non-existent.

Finall, note that when εQ is not close to zero, the quantity N〈π − Q|Szπ−2Q|Q〉 =
f z(Q) can be considered negligible. Therefore by taking the logarithm of the transmis-
sion coefficient and using the identity log(1 − x) = x − x2/2 + O(x3), we obtain that
for (geff/uQ)2/4f z(Q) << 1,

log TQ,Q ' −f z(Q)(
geff
uQ

)2 ⇒ TQ,Q ' e
−fz(Q)(

geff
uQ

)2

, geff ≡ gN1−Z2

. (4.44)
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Chapter 5

Elements of Thermodynamics and
Transport Theory

This chapter serves as a brief introduction to the thermodynamics of integrable sys-
tems. In particular, for pedagocial reasons, we start with the Lieb-Liniger model and
thereafter we continue with the XXZ spin chain, while the same method can be in
principle extended for various models. In the first section by using the Yang-Yang
method, the thermodynamics of the Lieb-Liniger model is described. In the following
sections, using Takahashi’s and Suzuki’s method to extend the Yang-Yang method, we
describe the thermodynamics of the XXZ spin chain. Furthermore, we present a brief
description of transport theory and a new theory called generalized hydrodynamics
(GHD) which is a valuable tool in our understanding of out of equilibrium physics in
integrable and non-integrable systems.

5.1 Thermodynamics of the One Dimensional Bose

Gas

The construction of a thermodynamic theory for the Lieb Liniger model eq.(2.15)
means that we will be able to calculate various macroscopic quantities, an equivalent
statement to the knowledge of the partition function. To this end, using the canonical
ensemble we calculate the partition function Z and the free energy F of the model.
The relation between the partition function and the free energy is given by:

Z = tr(e−H/T ) = e−F/T , (5.1)

where T is the temperature and H is the Hamiltonian of the model. The thermody-
namic limit N →∞, L→∞, N/L = D, is assumed.

Consequently, we use a theory developed by C.N. Yang and C.P. Yang [44] that allow
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us to derive a non-linear integral equation which gives the free energy at a given tem-
perature.

Additionally, as we have already described, in the thermodynamic limit the Bethe roots
{λj} are described by distribution densities ρ(λ), ρh(λ), ρv(λ), where ∆Np = Lρ(λ)dλ
is the number of λ’s in dλ, ∆Nh = Lρh(λ)dλ is the number of holes in dλ and
∆Nv = ρv(λ) = ρ(λ) + ρh(λ) is the number of available vacancies in the corresponding
interval.

The definition for the densities of particles, holes and vacancies is given by:

ρ(λj) = lim
N,L→∞

1

L(λj+1 − λj)
, (5.2)

ρh(λj) = lim
N,L→∞

1

L(λhj+1 − λhj )
, (5.3)

ρv(λj) = lim
N,L→∞

1

L(λvj+1 − λvj )
. (5.4)

Let us define
Lh(λ) ≡ pL−

∑
µ

θ(λ− µ), (5.5)

where h(λj) = 2π
L
Ij and h(λvj ) = 2π

L
n. The above equations clarify the interpretation of

the various constituents {λj, λhj , λvj}. The vacancies correspond to the total available
states, each quantum number n can be mapped to a λvn, and thus the set {λvj} charac-
terizes the set of available solutions for each state. Afterwards, each particle solution
{λj} corresponds to a subset of the total available solutions and finally the images of
the omitted quantum numbers are defined as holes solutions {λhj }.

In the thermodynamic limit h(λ) is given by the following non-linear integral equa-
tion

h(λ) = λ−
∫ ∞
−∞

θ(λ− µ)ρ(µ)dµ. (5.6)

Taking the derivative of equation eq.(5.5) we obtain:

dh(λ)

dλ
= 2π(ρ+ ρh) ≡ 2πρv(λ) (5.7)
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Differentiation of eq.(5.6) with respect to λ gives:

2πh(λ) = 2π(ρ+ ρh) = 1 +

∫ ∞
−∞
K(λ− µ)ρ(µ)dµ. (5.8)

The entropy of the ”state” is not zero since the existence of the omitted quantum
numbers allows many wavefunctions of approximately the same energy to be described
by the same ρ and ρh. The number of ways of distributing ∆Np into ∆Nv vacancies is

N =

(
∆Nv
∆Np

)
=

[L(ρ+ ρh)dλ]!

[Lρdλ]![Lρhdλ]!
(5.9)

The logarithm of N gives the entropy for a dλ interval. Therefore, the total entropy
per unit length S is:

S =

∫ ∞
−∞

[(ρ+ ρh) ln(ρ+ ρh)− Lρ ln ρ− ρh ln ρh] dλ (5.10)

Let us write the partition function in the canonical ensemble

Z =
1

N !

∑
n1,n2,n3,...nN

e−E/T =
∑

n1<n2<n3<...<nN

e−E/T , (5.11)

where E =
∑N

j=1 λ
2
j , with λj being the solution of the Bethe equation.

Introducing new variables nj+1,j = Ij+1 − Ij we can rewrite

Z =
∞∑

n21=1

∞∑
n32=1

...
∞∑

nNN−1

e−E/T (5.12)

The next step is to estimate the integration measure for the partition function
eq.(5.12) when the thermodynamic limit is taken

nj+1,j =Ij+1 − Ij =
L

2π

[
h(λj+1)− h(λj)

]
=
L

2π

∫ λj+
1

Lρ(λj)

λj

ρv(µ)dµ ' ρv(λ)

ρ(λ)
, (5.13)

where following eq.(5.2) we have used that λj+1 = λj + 1
Lρ(λj)

, when N,L → ∞ and

the assumption that ρv is approximately constant in the interval [λj, λj + 1
Lρ(λj)

]

Therefore, in the thermodynamic limit the functional representation of the partition
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function is given by:

Z = constant

∫
D
(
ρv(λ)

ρ(λ)

)
δ

(
L

∫
ρ(λ)dλ−DL

)
eS−

E
T , (5.14)

where

S − E

T
= −L

T

∫
dλ
{
λ2f(λ)− T [f(λ) ln f(λ)− ρ(λ) ln ρ(λ)− ρh ln ρh(λ)]

}
(5.15)

The fixed number of particles in the canonical ensemble lead to the appearance of
a δ function with the introduction of a chemical potential A

δ(x) =
1

2πi

∫ ∞
−∞

eiAxdA (5.16)

Hence the partition function becomes

Z = constant

∫
dA

∫
D
(
ρv(λ)

ρ(λ)

)
exp

[
S − E

T
+ A

L

T

(∫
ρ(λ)dλ−DL

)]
. (5.17)

In the equilibrium phase the exponent of the partition function should be maxi-
mized1

ε(λ) = −A+ λ2 − T

2π

∫ ∞
−∞
K(λ− µ) ln(1 + e−ε(µ)/T )dµ (5.18)∫ ∞

−∞
ρ(µ)dµ = D (5.19)

The first equation is known as the Yang-Yang equation, were we defined

ρh
ρ

= eε/T ,
ρ

ρ+ ρh
=

1

1 + eε/T
. (5.20)

1Using a more formal approach we have recovered the well known fact that in the thermodynamic
equilibrium the free energy per unit length F = E−TS should be minimized under the condition that
density D is constant. Therefore, the quantity F −AD should be minimized, where the parameter A
is the corresponding Lagrange multiplier
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5.2 Thermodynamics of the XXZ critical Heisen-

berg chain

Takahashi and Suzuki (TS), along the lines of C.N. Yang and C.P. Yang, obtained
the thermodynamic Bethe-ansatz equations for the XXZ spin chain model [120, 121]
predicting correctly the thermodynamic properties of a one-dimensional spin chain sys-
tem. Following the work of Fowler and Zotos for the massive Thirring model [122] and
Hida for the XXZ spin chain [123], where using the normalizability of the wave function
they found a rigorous and thorough explanation of the string type solutions that was
previously conjectured by TS [121], we obtain restricting conditions for the string type
excitations. Consequently, using continued fractions we present the Takakashi-Suzuki
theory an elegant formulation for the ∆ < 1 spin chain thermodynamics.

Let us start with the Bethe wavefunction:

φM(n1, n2, ..., nM) =
( M∏
j=1

zj

)y1 M !∑
P∈SM

AP

M∏
j=2

( M∏
l=j

zj

)yj
, (5.21)

where y1 = n1, yj = nj+1 − nj and zj = eikj . Moreover, without loss of generality
we assume that =kn ≤ =kn−1 ≤ ... ≤ =k1.

The infinite system, φM , should satisfy the following conditions:∣∣∣ lim
n1,...,nr→−∞

φM(n1, ..., nM)
∣∣∣ <∞ (5.22)∣∣∣ lim

nM−r+1,...,nM→∞
φM(n1, ..., nM)

∣∣∣ <∞. (5.23)

From the above conditions we obtain

AI 6= 0, AP6=I = 0 , |
n∏
j=1

zi| = 1,

|
M∏

l=j+1

zl| ≤ 1 , j = 1, ...,M − 1 (5.24)

where we have used the assumption =kn ≤ =kn−1 ≤ ... ≤ =k1.

λn,jα = λnα +
iζ

2
(n+ 1− 2j) + i

p0

2
(1− v) , j = 1, ..., n, (5.25)

where v = ±1 and denotes the string parity, while p0 = π
γ
. These are the type of strings
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that satisfy the normalizability conditions eqs.(5.22,5.23)

Moreover applying the third normalizability condition to eq.(5.25) we get that:

∣∣ n∏
l=j+1

zl
∣∣ =

sinh γ
2
(λnα + i(n− 2j) + iπ

2
(1− v))

sinh γ
2
(λnα +−in+ iπ

2
(1− v))

| ⇒

0 <

√
cosh γλnα − cos γ(n− 2j + p0

2
(1− v))

cosh γλnα − cos γ(n+ p0
2

(1− v))
< 1 (5.26)

Hence, we obtain two conditions for the two string parities v = ±1, specifically
cos γn < cos γ(n−2j) for positive string parity and cos γn > cos γ(n−2j) for negative
string parity with j = 1, ..., n−1. Additionall,y from the positivity condition we obtain
the following condition

cos
(π

2
(1− v) + (n− 2j)γ

)
− cos

(π
2

(1− v) + nγ
)

=

= 2v sin(γ(n− j)) sin(γj) > 0, j = 1, 2, ..., n− 1 (5.27)

Moreover, the length n of a string should satisfy:

2
n−1∑
j=1

[
jγ

π
] = (n− 1)[(n− 1)

γ

π
], (5.28)

v sin[(n− 1)γ] ≥ 0 (5.29)

We should mention that Takahashi and Suzuki used a different argumentation in
order to arrive the above equations. They argued that if we assume the extreme case,
where all magnons are bound in states of string length n, then there is no room to
put in more n-particle bound states. For instance, the addition of another bound state
is equivalent with the removing of one bound state and reversal of all spins, which in
principle has a quite different wave function.

Takahashi and Suzuki showed that in the case where γ/π ∈ (0, 1) is an arbitrary
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rational number, we can express it by a continued fraction with length l

γ

π
=

1

ν1 +
1

ν2 +
1

. . .
+

1

νl

, (5.30)

where ν1, ν2, ..., νl−1 ≥ 1, νl ≥ 2
Furthermore, the following relations are very useful:

y−1 = 0, y1, , yl = ν1, yi = yi−2 + νiyi−1,

m0 = 0 , mi =
i∑

k=1

νk, Ns =
l∑

k=1

νk. (5.31)

The parity vj and string length n are determined by:

nj = yi−1 + (j −mi)yi, vj = (−1)[(nj−1)/p0] , mi < j < mi+1,

nml = yl−1, vml = (−1)l (5.32)

In the ∆ < 1 the logarithmic for of the Bethe-Takahashi equations truncate to a
finite set:

Nθj(λ
j
α) = 2πIjα +

Ns∑
k=1

Mk∑
β=1

Θjk(λ
j
α − λkβ) , α = 1, 2, ...,Mj (5.33)

where

θj(x) = f(x;nj, vj) , Θjk(x) = f(x; |nj − nk|, vjvk) + f(x;nj + nk, vjvk)+

2

min(nj ,nk)−1∑
i=1

f(x; |nj − nk|+ 2i, vjvk), (5.34)

f(x;n, v) = 2v tan−1
[

cot(
nγ

2
)v tanh(

γx

2
)
]
, (5.35)

and

Tjk(x) ≡ 1

2π

dΘjk(x)

dx
, αj(x) ≡ 1

2π

dθj(x)

dx
. (5.36)
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where

aj(x) ≡ 1

2π

dθj(λ)

dλ
, Tjk ≡

1

2π

dΘjk(λ)

dλ
, (5.37)

Furthermore, note that the functions aj(x) and also the Fourier transformed func-
tions aj(ω) are given by:

aj(λ) =
1

2π

γ sin γqj
cosh γλ+ cos γqj

, aj(ω) =
sinh qjω

sinh p0ω
. (5.38)

Additionally,

T̃jk(ω) = T̃kj(ω) = 2σj
cosh(pi+1ω)

sinh(pi+1ω)

sinh((p0 − |qj|)ω)

sinh(p0ω)
(5.39)

qj ≡ (−1)i[pi − (j −mi)pi+1], mi ≤ j < mi+1, (5.40)

where
p0 =

π

γ
, p1 = 1, νi = [

pi−1

pi
], pi = pi−2 − pi−1νi−1 (5.41)

Furthermore, in the thermodynamic limit

aj(x) = σj(ρj(λ) + ρhj (λ)) +

ml∑
k=1

Tjk ∗ ρk(λ), , (5.42)

where σj ≡ sign(qj)

Minimizing the free energy F = E − TS with respect to ρj we get:

ln ηj(λ) =
gj(λ)

T
+

ml∑
k=1

σkTjk ∗ ln(1 + η−1
k ), j = 1, ...,ml (5.43)

Equivalently, if ln ηj ≡ βεj

εj(λ) = gj(λ) + T

ml∑
k=1

σkTjk ∗ ln(1 + e−βεk), j = 1, ...,ml (5.44)

The free energy is given as follows:

F =
(J∆

4
+ h
)
− T

ml∑
j=1

σj

∫ ∞
−∞

aj(λ) ln(1 + e−βεj)dλ. (5.45)
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In addition, an interesting observation is that the free energy can be expressed using
only the ε1 and ε2 excitations

F =− J∆

4
− σ1

2π sin γ

γ

∫ ∞
−∞

a1(λ)s1(x)dλ−

T

∫ ∞
−∞

ln(1 + eβε1)dλ+ δ2ml ln(1 + e−βε2). (5.46)

Therefore in the case where ml 6= 2 the free energy can be written only using the
ε1 excitation

Finally, one can re-write eq.(5.44) for h = 0 in the form of a recurrence relation

ln(1 + eβε0) = −2πβJ sin θ

θ
δ(x),

βεj = (1− δmi−1,j)si ◦ ln(1 + eβεj−1) + si ◦ ln(1 + eβεj+1) , j = 1, ...,mi − 2, j 6= ml − 2

βεmi−1 = si ◦ ln(1 + eβεml−2) + di ◦ ln(1 + eβεml−1) + si+1 ◦ ln(1 + eβεml ) , i < l

βεml−2 = (1− 2δml−1,ml−2)sl ◦ ln(1 + eβεml−3) + sl ◦ ln(1 + 2eβεml−1 + e2βεml−1),

βεml−1 = sl ◦ ln(1 + eβεml−2),

βεml = −βεml−1, (5.47)

where we have used identities given by [121].

5.3 Elements of transport theory for integrable sys-

tems

Transport theory is a very intriguing topic with applications in a broad spectrum of
scientific fields characterized by its non-equilibrium nature. In this section, we are par-
ticularly interested in the transport properties of the XXZ model. In general, probing
energy/heat transport through a temperature gradient along the material while spin
transport through a magnetic field gradient. However novel experimental techniques
have revealed.... .

Results within the linear response theory

Considering the XXZ model one can easily calculate the spin and thermal operators
using the Heisenberg relation ∂tA = i[H,A].
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The spin current J s =
∑

n j
s
n is

∂tS
z
n = i[H,Szn] = (jsn − jsn−1), (5.48)

where jsn is the local spin current and is found to be given by

jsn =
iJ

2

(
S+
n S
−
n+1 − S−n S+

n+1

)
. (5.49)

in a similar way the thermal current operator is derived

∂th
z
n,n+1 = i[H, hzn,n+1] = (jthn − jthn−1) (5.50)

It is useful to decompose the hamiltonian as H = H0 − h
∑

n S
z
n implying that the

thermal current will assume the following form:

J th = J E − hJ s. (5.51)

The above relation has a very interesting physical consequence, namely that we can
generate thermal currents through a combination of temperature and magnetic field
gradient manipulations.

The energy current jEn is expressed as

jEn = J2
∑
n

Sn · (S′n−1 × S′n+1), S′n = (Sxn, S
y
n,∆S

z
n). (5.52)

We have already mentioned that spin and thermal currents are generated through
a combination of temperature and magnetic field gradient manipulations. Within the
linear response theory2 the above statement is mathematically expressed as(

J s

J th

)
=

(
Cth,th Cth,s
Cs,th Cs,s

)(
−∇T
∇h

)
(5.53)

where the diagonal coefficient Cth,th/Cs,s corresponds to the thermal/spin thermal con-
ductivity and shall be denoted as kth and σs respectively. Additionally, the coefficients

2 In the context of quantum statistics, the theory states that adding a small perturbation coupled
linearly to any observable, e.g. f(t)O(t) results to a response to the thermal expectation value of

any other observable A, in the form of 〈δA(t)〉 = −i
∫ t

0
f(t′)〈[A(t),O(t′)]〉dt′, known as Kubo formula.

Note that the non-linear regime to great extent is still unexplored
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Ci,j are given by

Ci,j = lim
ε→0+

βr

L

∫ ∞
0

dte−i(ω−iεt)
∫ ∞

0

dτ〈J iJ j(t+ iτ)〉 (5.54)

where r = 0 for j = th and r = 1 for j = s.

Furthermore, the real part of the coefficients Cij, C
′
i,j can be decomposed into a sharp

peak at ω = 0 and regular part:

C ′i,j = 2πDi,jδ(ω) + Creg
i,j (ω), (5.55)

where the factors Di,j are called Drude weights and C’ are evaluated for momentum
q = 0. In particular, we focus on the diagonal elements, which are denoted as Ds and
Dth, where the corresponding spin and thermal conductivity relation are

σ′(ω) = 2πDsδ(ω) + σreg(ω). (5.56)

k′(ω) = 2πDthδ(ω) + kreg(ω). (5.57)

In the thermodynamic limit the spin Drude weight is found to be

Ds = lim
t→∞

lim
N→∞

β

2N
〈J s(t)J s(0)〉, (5.58)

while the thermal Drude weight is

Dth = lim
N→∞

β2

2N
〈(J E)2〉, (5.59)

where we have used that [J E, H] = 0.

Conservations laws and Mazur’s (in)equality

A non-zero Drude spin weight Ds as suggested by Kohn [124] signals diverging dc
conductivity. Therefore, regarding the scattering processes into the material we ex-
pect that that the spin transport is going to be ballistic. In fact, for clean systems,
i.e. without impurities ballistic transport is expected at zero temperature since all
interactions are frozen. In contrast, a finite Drude weight at non zero temperature
is a very interesting and peculiar phenomenon, since scattering processes3 which are
temperature dependent and appear at non-zero temperatures, are expected to broaden

3scattering processes can be due to intrinsic spin-spin interactions or due to magnetic impurities,
spin-phonon distortions etc.
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Figure 5.1: An illustration of the dc conductivity of an integrable
model (top) and a generic non-integrable model (bottom). It is clear
that for the non-integrable model the Drude weight vanishes for T > 0
resulting in normal transport in contrast to the integrable model where

the Drude weight persists even for T > 0.
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the delta peak, having width analogous to the inverse of the scattering time 1
τ
, leading

to a coexistence between ballistic and diffusive transport. Interestingly, in principle
the only way this kind of situation is through a set of constraints that prohibit current
relaxation, expressed in the form of conservation laws. The connection of integrable
systems with ballistic transport and its contrast with non-integrable, generic systems
was made by Zotos, Naef and Prelovsek [95].

Another important result regarding the connection of conservation laws and ballistic
transport came from Mazur’s work [125]. Specifically, Mazur proposed the following
inequality for any hermitian operator A ∈ H

lim
T→∞

1

T

∫ T

0

〈A(t)A〉dt ≥
∑
n∈N

〈AQn〉2

〈Q2
n〉

, (5.60)

providing a lower bound for the time averaged correlation function, where 〈〉 denotes
the thermodynamic average and we assume that the all conserved charges are orthog-
onal to each other, 〈QnQm〉 = δnm〈Q2

n〉. This above inequality has an immediate
consequence that whenever a charge protecting the operator A exists we get a non-zero
value of the above correlation function.

At this point, it is important to mention that if the used set of conserved charges
exhaust the Hilbert space, we obtain a strict equality, i.e. a Mazur equality. Of course,
in general this cannot be done only with the presence of local charges, i.e. operators
that act non-trivially to a portion of the physical space, but as shown by Prosen [126]
the inclusion of some new charges called quasilocal charges4 are needed.

In particular, for the XXZ model the energy current is analogous to Q3 ∼ J E, and
thus we expect an infinite energy conductivity at any temperature, leading to pure
ballistic motion. In contrast, spin current exhibits peculiar characteristics due to the
fact that it cannot be expressed as a combination of conservation laws.

Drude weights and Bethe Ansatz calculations

The Bethe Ansatz technique can be useful for calculating the thermal and spin Drude
weights. In this section we refer to some well known results which using the thermo-
dynamic Bethe ansatz theory.

Firstly, we provide the thermal Drude weight Dth for anisotropies of the form ∆ =

4quasilocal charges are indeed a new type of conserved quantities, since their density function is
not same as in the local case
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cos(π
ν
). Thermal Drude weight was first calculated by A. Klumper and K. Sakai [25]

using the quantum transfer matrix (QTM) formalism, while a pure TBA calculation
was carried out by X. Zotos [26]. Let us mention that although the QTM method han-
dles easier all possible values of 0 ≤ ∆ < 1, i.e π

γ
/∈ Q+, the method developed by X.

Zotos is a more straightforward approach with more appealing physical interpretation.
In short, the trick is to a set of fictitious fields {ξj} into the total energy of a Bethe
Ansatz state (..) and then use the method developed in the aforementioned work.

E/N =
∑
j

∫ ∞
−∞

dλ(ε
(0)
j − hnj + ξjj

(0)
j )ρj, j

(0)
j = (

−A
2π

)∂xε
(0)
j . (5.61)

consequently, minimizing the free energy, the extended Bethe ansatz equations for
the effective dispersions are obtained,

εj(λ) = gj(λ)− hνj + ξjj
(0)
j + T

ml∑
k=1

σkTjk ∗ ln(1 + e−βεk), j = 1, ...,ml (5.62)

Hence, taking the fictitious field to be homogeneous, ξ=ξ, and the magnetic field h = 0
we immediately notice that the partition function becomes

Z = tre−βH+ξJE . (5.63)

It is immediate that the thermal Drude weight is given by the 2nd derivative with
respect to ξ

Dth =
β

2N
〈(J E)2〉 = −β

2

∂2f

∂ξ2
|ξ=0 (5.64)

Performing the calculations we obtain

Dth =
β2

2

∑
j

∫ ∞
−∞

dλ(ρj + ρhj )Oj(1−Oj)(j
ε
j)

2, jεj = (
−A
2π

)∂xεj (5.65)

Finally, notice that at low temperature the Drude weight scales linearly with tem-
perature, i.e.

Dth =
πv

6
T, v = Jπ

sin γ

2γ
. (5.66)
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To evaluate the spin Drude weight Ds we follow the work of X. Zotos [23] and add
a fictitious magnetic flux φ to the hamiltonian

H = J
N∑
i=1

(
1

2
eiφσ+

i σ
−
i+1 + h.c.) +

∆

4
σzi σ

z
i+1 −

h

2
σzi , (5.67)

afterwards, we use the Kohn’s formula

Ds =
1

2NZ

∑
e−βEn

∂2En
∂φ2
|φ=0. (5.68)

In order to calculate the above equation we must introduce the finite size corrections
to the energy eigenvalues due to the magnetic flux.

λjN = λj∞ +
g1j

N
(5.69)

where λjN(λj∞) are the rapidities for a system of size N(N →∞). To O(1/N),

λjQj =
nj
2π
−
∑
k

Tjk ∗ (< nk > Qk), Qj =
∂g1j(ρj + ρhj )

∂φ
, (5.70)

and we obtain the spin Drude weight,

Ds =
β

2

∑
j

∫ +∞

−∞
dx(ρj + ρhj ) < nj > (1− < nj >)(jsj

2),

jsj = (
1

ρj + ρhj

∂εj
∂x

)Qj, < nj >=
1

1 + eβεj
. (5.71)

This expression is in formal analogy to the analogous expression for independent
fermions. Solving eq.(6.22) we find that, in the high temperature limit β → 0, the
bound Dql

s based on quasi-local conservation laws [127]

Dql
s =

sin2(πl
m

)

sin2( π
m

)
(1− l

2π
sin(

2π

m
)), θ = l/m, l = (1 + ν1ν2), m = ν2 (5.72)

Generalized hydrodynamics theory

Generalized hydrodynamics (GHD) has been recently proposed by B. Bertini, M. Col-
lura, J. De Nardis, and M. Fagotti and independently by O. A. Castro-Alvaredo, B.
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Figure 5.2: .

A schematic figure depicting how GHD emerges. Taken from [128]
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Doyon, and T. Yoshimura [22, 21] as an alternative way to study non-equilibrium phe-
nomena in various systems such as spin chains, gases or field theories. Specifically, the
theory of GHD relies upon the division of the system into ”fluid cells” (at mesoscopic
scale), where each cell although very small to be observed it is thermodynamically
large enough to reach a state of maximum entropy. In general, a gas obeying Galilean
transformations can be characterized by three numbers: temperature, chemical po-
tential and a Galilean boost. On the contrary, an integrable system needs an infinite
number of quantities for the state to be characterized, and thus the Gibbs ensemble
should be replaced with the GGE. In addition, using the assumption of local entropy
maximization one can, to good approximation, calculate the expectation value of an
operator O(x, t) [128]

〈O(x, t)〉 ' 〈O(0, 0)〉β̄(x,t), (5.73)

where we have used the homogeneity and stationarity of the maximal entropy state
〈...〉β̄(x,t) and β̄ denotes the set of Lagrange multipliers which depend on (x, t). Conse-
quently, as described in [128] one can use the asymptotic scattering states in order to
represent these maximal entropy states and then expand the functional form of every
physical quantity to become space-time dependent, for instance the quasiparticle and
hole densities and will become

ρ(λ)→ ρ(λ, x, t), ρh(λ)→ ρh(λ, x, t). (5.74)

In addition, assuming that the conserved charges and currents are differentiable we can
write down an Euler-Hydrodynamics continuity equation for these quantities

∂tQn + ∂xJn = 0, (5.75)

where Qn ≡ 〈Qn(0, 0)〉β̄(x,t) and Jn ≡ 〈Jn(0, 0)〉β̄(x,t).

The next step is to define the dressing operation f(λ) → fdr(λ). For a single par-
ticle species the dressing satisfies the following integral equation

fdr(λ) = f(λ) +

∫
R

dµ

2π
K(λ− µ)n(µ)fdr(µ), (5.76)

while in the case of Ns excitation species a straightforward generalization gives

fdr
j (λ) = fj(λ) +

Ns∑
k=1

∫
R

dµ

2π
Tjk(λ− µ)nk(µ)fdr

k (µ). (5.77)
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On this basis, the conserved charge and the current density are defined as

Qn =

∫
dλ

2π
n(λ)hdr

n (λ) (5.78)

Jn =

∫
dλ

2π
(E ′)(λ)n(λ)hdr

n (λ), (5.79)

where, hdr
n (λ) is the dressed quantity of the hn(λ) which is the function which generates

the symmetry.
We can rewrite them in the more convenient form

Qn =

∫
dλ

2π
ρ(λ)n(λ)hn(λ) (5.80)

Jn =

∫
dλ

2π
veff(λ)n(λ)ρ(λ)hn(λ) (5.81)

where, the effective velocity veff(λ) = (E′)dr(λ)
(p′)dr(λ)

and has a similar interpretation with
the one of a group velocity.

Finally, using eq.(5.75) and making our quantities space-time dependent eq.(5.74) we
obtain a set of equations called Bethe-Boltzmann equations

∂tρ(x, t, λ) + ∂x
(
ueff(x, t, λ)ρ(x, t, λ)

)
= 0. (5.82)

The above equations can re-written into a more useful form after going into a
diagonal basis

∂tn(x, t, λ) + veff(x, t, λ)∂xn(x, t, λ) = 0. (5.83)

It is evident, that this non-linear differential equation describes quasiparticles prop-
agating with effective velocity which is functional of the local density, due to the mi-
croscopic interactions among the elementary constituents.

Generally, GHD serves as a very interesting extension of TBA to include out-of equi-
librium effects. For instance, evaluating currents in non-equilibrium steady states
(NeqSS), i.e. states that do not depend on time but are still far from equilibrium.
The methodology for the study of such quantities is the partitioning of the physical
system into two halves being thermalized into different equilibrium states5 (for example
they are held into different temperatures) which are held separately with no interac-
tion between them. At t = 0 the two halves are connected and the system evolves in

5This problem is known in the literature as the Riemann problem
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accordance with the Hamiltonian of the system. Afterwards, in the absence of diffusion
the initial imbalance develops a transport current of physical quantities which can be
studied at the long time limit. To this end, many quantities of interest for spin and
thermal transport have been calculated such as the Drude weight [24, 27, 129]. Finally,
let us mention that GHD equations were successfully applied to many physical systems
such as classical mechanical systems [130, 131, 132] and field theories [133, 21], spin
chains [22, 129, 134, 135, 136] cold atom systems [137, 138]. Note that this is only
a tiny fracture of the vast amount of literature that has appeared over the last few
years.
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Chapter 6

Dressed Excitations,
Thermodynamics and Relaxation

In this chapter, we discuss the low and high temperature contribution of Thermody-
namic Bethe Ansatz (TBA) dressed excitations and the energy/magnetization relax-
ation within the Generalized Hydrodynamics approach in the linear response regime.
In particular, we show how the temperature dependent dispersions of the excitations
reproduce well known behavior of the specific heat, magnetic susceptibility, spin and
energy Drude weights. In this context, we derive a further formulation of the Drude
weights from the finite wavevector relaxation. Furthermore, we contrast the TBA de-
scription of thermodynamics and dynamics in terms of a multitude of string excitations
to that in terms of a single quasi-particle in low energy effective theories.

6.1 Introduction

The framework for studying the thermodynamic properties of the one dimensional
spin-1/2 Heisenberg model, in the easy-plane antiferromagnetic regime, was first set in
a seminal paper by Takahashi and Suzuki (TS) [121] along the line of the Thermody-
namic Bethe ansatz (TBA) proposed by Yang and Yang [44].

The characteristic of the TS formulation was the introduction of an intricate structure
of allowed ”string excitations” depending on the value of the anisotropy parameter.
This structure was originally attributed to the physical requirement of normalizability
of the corresponding Bethe ansatz wavefunctions [122, 123] and more recently given
a group theoretic interpretation [139]. The specific heat and magnetic susceptibility
where mostly obtained by a numerical evaluation of the TBA nonlinear integral equa-
tions.

In this work [140], aiming at a physical picture of the (thermo-) dynamics, we look
at the low energy dispersions of the underlying string excitations where we find that
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they are simple expressions in terms of dressed momenta which however are temper-
ature dependent. By reformulating the expressions of the specific heat and magnetic
susceptibility we point out that, in contrast to field theoretic approaches, completely
different string excitations correspondingly contribute.

On the relaxation functions, a very interesting recent extension of TBA was proposed
for space-time dependent densities under the name of Generalized Hydrodynamics ap-
proach [22, 21] (GHD). By this novel method the spin and thermal Drude weights
[23, 24, 25, 26] were recovered as asymptotic states of a quench from an initial ther-
mal/magnetization step [27]. Here, using the GHD approach in the linear approxi-
mation, we analyze the relaxation of wavevector-q dependent thermal/magnetization
profiles. As a byproduct we obtain the Drude weights as integrals over frequency of
the wavector-q relaxation spectral function, of course closely related to linear response
conductivities.

This study provides theoretical background to present and feature experiments in 1D
quantum magnets [28], e.g ”dynamic heat transport” [29] and ”transient grating spec-
troscopy” experiments [30], that probe the relaxation of magnetization/thermal density
profiles.

6.2 TBA formulation and dressed quantities

The XXZ anisotropic Heisenberg Hamiltonian for a chain of N sites with periodic
boundary conditions is given by,

H =
N∑
i=1

J(Sxi S
x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1)− hSzi , (6.1)

where Sai are spin-1/2 operators and SaN+1 = Sa1 . The region 0 ≤ ∆ ≤ 1 is commonly
parametrized by ∆ = cos θ and J is taken as the unit of energy. In the following we
will closely follow the formulation and notation by TS [121] (see Appendix A).

In the thermodynamic limit, for the simplest case of θ = π/ν, the solutions of the
Bethe ansatz equations are grouped into a set of strings of order lj = j and parity
ζj = +1, j = 1, ..., ν − 1 and one lν = +1, ζν = −1. More generally the anisotropy
parameter θ is expressed as a continued fraction expansion (TS) θ = π

ν1+1/(ν2+1/ν3+...)
.

The densities of excitations ρj(λ) and holes ρhj (λ) (λ is the rapidity of the excitations)



6.2. TBA formulation and dressed quantities 125

are given by,

aj = σj(ρj + ρhj ) +
∑
k

Tjk ◦ ρk

aj(λ) =
θ

2π

vj sin(njθ)

cosh(θλ)− vj cos(njθ)
(6.2)

with a ◦ b(λ) =
∫ +∞
−∞ a(λ − µ)b(µ)dλ and Tjk the phase shifts given by TS (Appendix

A). The sum over k is constrained over the allowed strings, depending on the value
of the anisotropy ∆ and σj = ζj. Minimizing the free energy, the standard Bethe
ansatz equations for the temperature dependent effective dispersions εj at temperature
T (inverse temperature β = 1/kBT ), are obtained,

εj = ε
(0)
j + hlj + T

∑
k

σkTjk ◦ ln(1 + e−βεk)

ε
(0)
j = −Aaj, A = 2π

J sin θ

θ
, βεj = ln ρhj /ρj. (6.3)

As the bare momentum of a particle (flipped spin from the ferromagnetic state) is
given by,

p
(0)
1 = +i ln

sinh θ
2
(λ+ i)

sinh θ
2
(λ− i)

, (6.4)

and

a1 =
1

2π

∂p
(0)
1

∂λ
, (6.5)

we define ”bare” p
(0)
j and ”dressed” pj momenta [21],

∂pj
∂λ

= 2πσj(ρj+ρ
h
j ) = 2πσjrj,

∂p
(0)
j

∂λ
= 2πaj,

rj = ρj + ρhj (6.6)

and rewrite eq.(6.2) as,

∂pj
∂λ

=
dp

(0)
j

dλ
−
∑
k

σkTjk ◦ nk
∂pk
∂µ

, (6.7)

with nk = ρk/(ρk + ρhk).
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Similarly, as the bare particle energies are ε
(0)
j = −Aaj we define dressed energies

Ej = −Aσj(ρj + ρhj ) so that eq.(6.2) becomes,

Ej = ε
(0)
j −

∑
k

σkTjk ◦ nkEk. (6.8)

Notice that the eigenvalues of conserved quantities are obtained by [45]:

qm =
(
− J sin θ

θ

)m∂mp(0)

∂λm
, (6.9)

where q0 = p
(0)
1 is the momentum, q1 = ε

(0)
1 the energy, q2 = jε

(0)

1 the energy current
eigenvalues.

With these definitions the mean value of the total energy is written as,

E =
∑
j

∫
dλρj(λ)ε

(0)
j (λ) =

∑
j

σj

∫
dpj
2π

njε
(0)
j (6.10)

or, by using eqs.(6.2,6.8) and a procedure named ”dressing” [21],

E =
∑
j

∫
dλρj(λ)ε

(0)
j (λ) =

∑
j

σj

∫
dp

(0)
j

2π
njEj. (6.11)

As the energy current is also a conserved quantity, we can further define the mean
value of energy current as,

JE =
∑
j

∫
dλρjj

ε(0)

j =
∑
j

σj

∫
dpj
2π

njj
ε(0)

j ,

jε
(0)

j =
(−A

2π

)∂ε(0)
j

∂λ
(6.12)

or as in eq.(6.11),

JE =
∑
j

σj

∫
dp

(0)
j

2π
njj

ε
j , jεj =

(−A
2π

)∂εj
∂µ

. (6.13)
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By taking the derivative of eq.(6.3) with respect to the rapidity λ, we obtain an equation
for the energy currents with the same structure as eqs.(6.2,6.8).

jεj = jε
(0)

j −
∑
k

λkTjk ◦ nkjεk. (6.14)

At this point, it is instructive to introduce an effective velocity of the excitations
by [22, 21, 141],

vj =
1

2πσj(ρj + ρhj )

∂εj
∂µ

=
∂εj
∂pj

(6.15)

and rewrite eq.(6.13) in the physical form,

JE =
∑
j

σj

∫
dp

(0)
j

2π
nj(vjEj). (6.16)

6.3 Thermodynamics in the low and high temper-

ature limit

Having presented the basic formalism, we proceed to the low(high) temperature anal-
ysis of the dressed excitations and their contribution to thermodynamic quantities of
the system in study, in particular the specific heat and magnetic susceptibility. Let us
mention, that in this section all calculations are for zero magnetic field (h = 0).

Let us begin with the free energy density f(T ) [121, 26]

f = −T
∑
j

σj

∫
dλaj ln(1 + e−βεj)

= −T
∑
j

σj

∫
dp

(0)
j

2π
ln(1 + e−βεj). (6.17)

Consequently, we obtain the mean energy density ε(T ),

ε(T ) =
∂

∂β
(f/T ) =

∑
j

σj

∫
dp

(0)
j

2π
njEj, (6.18)
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and by evaluating the equilibrium responses,
∂rj
∂β

∣∣∣
β,h
,
∂nj
∂β

∣∣∣
β,h

(Appendix D), the specific

heat c(T ),

c =
∂ε

∂T
= β2

∑
j

∫
dpj
2π

nj(1− nj)E2
j . (6.19)

Similarly, we obtain the mean magnetization density m(T ),

m =
∂f

∂h
=
∑
j

σj

∫
dλajnjQj

=
∑
j

σj

∫
dp

(0)
j

2π
njQj, Qj =

∂εj
∂h

, (6.20)

and the magnetic susceptibility χ(T ),

χ =
∂m

∂h
|h→0 = β

∑
j

∫
dpj
2π

nj(1− nj)Q2
j . (6.21)

The ”charges”, Qj = ∂εj/∂h also satisfy,

Qj = Q
(0)
j −

∑
k

σkTjk ◦ nkQk, Q
(0)
j = lj. (6.22)

At low (zero) temperatures (Appendix B) the dispersion relations εj are relatively
simple functions of the dressed momenta pj, which are of the order of temperature T .
At T = 0,

ε1 = −v sin p1, 0 ≤ p1 < π

εj = 0, j > 1, (6.23)

where v = J(π/2) sin θ/θ is the spinon velocity. ε1 is the dispersion of 1-string excita-
tions (holes in the ”magnon” Fermi sea) and is the same as the dispersion of spinons,
the elementary excitations of the model, [20] but with only one branch.
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Figure 6.1: numerical evaluation of excitation energy ε1 vs dressed
momentum p1 for T = 0.01. The inset show the deviation from the
spinon dispersion relation at the region p1 → 0 where the effective field

theory will be generated from

At T → 0 and θ/π = ν, the string excitation thermal energy dispersions εj form a
non-overlapping sequence,

ε1 ' Tg(p1)− v sin p1, 0 ≤ p1 ≤ π

εj ' T ln(j2 − 1) + v|pj|, j = 2, ..., ν − 2,

|pj| ≤ pmaxj , pmaxj =
T

v
ln
((j + 1)2 − 1

j2 − 1

)
,

εν−1 ' T ln(ν − 2) + v|pν−1|,

|pν−1| < pmaxν−1 , pmaxν−1 =
T

v
ln
(ν − 1

ν − 2

)
,

εν = −εν−1, pmaxν = pmaxν−1 . (6.24)

Note that ln 2 ≤ g(p1) ≤ ln 3, with g(0) = g(π) = ln 3 and g(π/2) ' ln 2 (Appendix
B). Additionally the εj do not overlap as εj(±pmaxj ) = εj+1(0) (the momenta are shifted
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Figure 6.2: excitations energies εj vs dressed momenta pj for T = 0.01
and ν = 5

by ±pmaxj so that the pj are symmetric about zero). At T → +∞ (Appendix C),

εj ' T ln((j + 1)2 − 1), j = 1, ..., ν − 2

|pj| ≤ pmaxj , pmaxj = π
j + 1

(j + 1)2 − 1

εν−1 ' T ln(ν − 1), pmaxν−1 =
π

2

1

ν − 1
(6.25)

and thus the top of the dispersions, εj(p
max
j )/T , are temperature independent as they

coincide with the T → 0 ones. The momentum space is increasing with T at low
temperatures, reaching a constant value at high temperatures. It is also interesting to
observe that a quasi-particle dispersion of the form, f(p) = T ln g−εp can be interpreted
as a dispersion of holes, with degeneracy g,

nh = 1− n =
g

g + eβεp
. (6.26)
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Figure 6.3: Dressed excitations energies Ej vs dressed momenta pj for
T = 0.01 and ν = 5

Concerning the excitation energies Ej, at T = 0, E1 = ε1 and Ej = 0, j > 1. At low
T , we find numerically that they do not have an accurate simple form, E1 ∼ −v| sin p1|
and Ej, j > 1 are of O(T ),

Ej ∼ −T | sin(
πpj
pmaxj

)|, j = ν − 1, ν, |pj| ≤ pmaxj , (6.27)

where pmaxj are the same as for the εj.

At this point it is interesting to compare the commonly used ”spinon” description
of the specific heat as obtained from a Luttinger liquid or bosonization theory to the
TBA description. In the spinon description, the elementary excitations with dispersion
ε = v| sin p|,−π < p ≤ π contribute at low energies to the specific heat by a 4-fold lin-
ear dispersion ε ∼ vp, cspinon ' π

3
1
βv

. On the other hand the TBA 1-string excitations

with dispersion ε1(p1) ' T ln 3 − v sin p1 eq.(6.24) and 2-fold linear spectrum at low
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energies, give

c
(1)
TBA ' β22

∫ +∞

0

dp1

2π

(vp1)2

4 cosh2 β(T ln 3−vp1)
2

' 1.234
1

βv
(6.28)

instead of π/3 ' 1.047. In this calculation we used the T = 0 dispersion E1 which over-

estimates c
(1)
TBA as at low temperatures |E1| < v sin p1. A complete accurate numerical

evaluation of eq.(6.19) reproduces the factor π/3 and indicates that the contribution of
higher order strings is minimal. As Ej, j > 1 is O(T ) we find from eqs.(6.19,6.24) that

c
(j)
TBA ∼ 1

βv
1
j3

. Note that this attribution of the low-T specific heat to a single branch

of 1-string excitations is not in agreement with the discussion in [142].

To evaluate the magnetic susceptibility, we first note that in the case of zero mag-
netic field (h = 0) the charges Qj are temperature independent [27, 103, 103] and
the evaluation of (6.22) is particularly simple giving Qj = 0, j = 1, ..., ν − 2 and
Qν−1 = −Qν = +ν/2 (Appendix E). Using the relation (6.21) for the magnetic suscep-
tibility and eq.(6.24) we obtain for T → 0,

χ =
1

πv
K, K =

1

2

1

1− 1/ν
, (6.29)

where K is the Luttinger liquid parameter. In the high temperature limit, β → 0, from
eq.(6.25), χ = β

4
. The fact that the lν = +1 excitations with parity ζν = −1 account

for the magnetic susceptibility is not surprising, as they physically correspond to a
uniform change of the Sz component of the magnetization by +1 [143] and detected
e.g. in ESR experiments [144]. Overall, it is important to mention that calculation of
these two thermodynamic quantities pose an interesting question: ”What is the rela-
tion between the TBA string excitations and the single linear dispersion quasi-particle
emerging from the low energy effective theories?”. Indeed, we notice that these ap-
parently different descriptions describe accurately the thermodynamics of the system,
thus expecting a relation between the two descriptions. Nevertheless, although as ex-
pected the numerical calculations give the correct results, the interpretation of Ej and
their relation to the aforementioned quasiparticle is not well understood. The above
difficulty could be ascribed to the complex behavior of Ej.

Closing this section, we note that for θ/π = ν1 + 1/ν2 (see Appendix B, C), rela-
tions similar to eqs.(6.24,6.25) give the same low/high temperature asymptotic specific
heat and magnetic susceptibility.
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6.4 Energy - magnetization relaxation

In the GHD approach, the occupations nj depend on space and time following the
continuity equation [21, 22],

∂nj(x, t)

∂t
+ vj(x, t)

∂nj(x, t)

∂x
= 0, (6.30)

This is conjectured to be valid in the long wavelength - time limit (hereafter, the
dependence of quantities in space-time will be explicitly denoted by (x, t), otherwise
they will refer to an equilibrium state at a temperature kBT = 1/β and magnetic field
h). Notice that this relation follows by making local the conservation of energy for
every excitation mode [21],

∂E(x, t)

∂t
+

∂JE
∂x

= 0∑
j

σj

∫
dp

(0)
j

2π

∂

∂t
njEj +

∑
j

σj

∫
dp

(0)
j

2π

∂

∂x
nj(vjEj) = 0

∂

∂t
ρj +

∂

∂x
(vjρj) = 0, (6.31)

the original form of the GHD equation.

Most of the studies have considered a quench scenario, namely two regions at dif-
ferent temperatures/magnetic fields initially separated by a wall. Here, with view to
future experiments on quantum magnets [30], we want to study the energy/ magne-
tization relaxation, starting from an initial condition where a small sinusoidal field of
wavevector-q, δβ(x) = δβqe

iqx or δh(x) = δhqe
iqx is applied to the system, resulting in a

response with the same wavevector-q (the discussion here is closely related to one in the
context of the Lieb-Liniger Bose gas [145]). In the following, we will explicitly denote
quantities depending on space-time, otherwise equilibrium ones are implied. We will
first consider a temperature perturbation δβqe

iqx around the equilibrium state at in-
verse temperature β and magnetic field h, nj(x, t) = nj +δnj(x, t) = nj +δnj(t)δβqe

iqx.
Substituting in eq.(6.30) we obtain,

δnj(x, t) =
∂nj
∂β

∣∣∣
β,h
δβqe

iq(x−vjt) (6.32)
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The space-time dependence of the energy eq.(6.10) becomes,

E(x, t) =
∑
j

∫
dλrj(x, t)nj(x, t)ε

(0)
j

=
∑
j

∫
dλ(rj + δrj(x, t))(nj + δnj(x, t))ε

(0)
j

E(x, t) = E + δE(x, t) (6.33)

and after linearization (see Appendix D),

δE(x, t) '
∑
j

∫
dλ(δrj(x, t)nj + rjδnj(x, t))ε

(0)
j ,

δE(x, t)

δβq
'

∑
j

∫
dλ(

∂rj
∂β

∣∣∣
β,h
nj + rj

∂nj
∂β

∣∣∣
β,h

)ε
(0)
j eiq(x−vjt),

δE(x, t)

δβq
' −

∑
j

σj

∫
dpj
2π

nj(1− nj)E2
j e
iq(x−vjt). (6.34)

Taking a Fourier transform, we obtain,

1

2π

∫
dteiωt

δE(x, t)

δβq
'

−
∑
j

σj

∫
dpj
2π

nj(1− nj) E2
j δ(ω − qvj)eiqx

= −SEE(q, ω)eiqx. (6.35)

SEE(q, ω) =
∑
j

σj

∫
dpj
2π

nj(1− nj)E2
j δ(ω − qvj) (6.36)

is the energy structure factor in the q → 0 limit within GHD. In this limit, SEE(q, ω)
is related to the specific heat c(T ), c = β2

∫
dωSEE(q, ω).

In a similar analysis for the energy current JE we find that,

δJE(x, t)

δβq
' −

∑
j

σj

∫
dpj
2π

nj(1− nj)Ejjεjeiq(x−vjt). (6.37)

At this point it is interesting to observe that the derivative with respect to time of
δJE(x, t)/δβq satisfies a continuity equation in q-space,
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∂

∂t

δJE(x, t)

δβq
' iq

∑
j

σj

∫
dpj
2π

nj(1− nj)Ejjεjvjeiq(x−vjt)

' iq
∑
j

σj

∫
dpj
2π

nj(1− nj)(jεj)2eiq(x−vjt)

∂

∂t

δJE(x, t)

δβq
− iq

∑
j

σj

∫
dpj
2π

nj(1− nj)(jεj)2eiq(x−vjt) = 0

(6.38)

with ”current” related to the thermal Drude weight Dth [26],

Dth =
β2

2

∑
j

σj

∫
dpj
2π

nj(1− nj)(jεj)2

=
β2

2

∑
j

σj

∫
dpj
2π

nj(1− nj)(vjEj)2. (6.39)

As in the case of the energy, we obtain the energy current structure factor,

SJEJE(q, ω) =
∑
j

σj

∫
dpj
2π

nj(1− nj)(jεj)2δ(ω − qvj), (6.40)

which reduces to a δ-function as q → 0 with weight Dth. In the low temperature
limit vj → v and the thermal Drude weight Dth = v2

2
c. Additionally, taking the time

derivative to eq.(6.38) we obtain:

∂2

∂t2
δE(x, t)

δβq

∣∣∣
x,t=0

' −q2Dth. (6.41)

The above relation is interpreted as ballistic energy transport, where the thermal Drude
weight Dth can be seen as the inverse of the effective mass, mth ∼ 1

Dth
.

Similarly to the energy, the mean value of the magnetization Q is given by,

Q =
∑
j

∫
dλρj(λ)Q

(0)
j =

∑
j

σj

∫
dpj
2π

njQ
(0)
j (6.42)

and applying a space-time dependent magnetic field δh(x) = δhqe
iqx we obtain a re-

laxation,
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δQ(x, t)

δhq
' −β

∑
j

∫
dλrjnj(1− nj)Q2

je
iq(x−vjt) (6.43)

' −β
∑
j

σj

∫
dpj
2π

nj(1− nj)Q2
je
iq(x−vjt).

Finally, taking a Fourier transform, we obtain,

1

2π

∫
dteiωt

δQ(x, t)

δhq
'

−β
∑
j

σj

∫
dpj
2π

nj(1− nj) Q2
jδ(ω − qvj)eiqx

= −βS(q, ω)eiqx, (6.44)
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with βS(q, ω)eiqx the magnetization relaxation function [146] obtaining S(q, ω) the
q → 0 spin structure factor within GHD.

S(q, ω) =
∑
j

σj

∫
dpj
2π

nj(1− nj)Q2
jδ(ω − qvj). (6.45)

Again, in this limit, S(q, ω) is related to the magnetic susceptibility χ, χ(T ) =
β
∫
dωS(q, ω).

The spin current however is not a conserved quantity in the XXZ Heisenberg model,
it has been conjectured though within GHD and recently rigorously proven [24] that
its mean value is given by,

JS =
∑
j

∫
dλρj(vjQ

(0)
j ) =

∑
j

σj

∫
dpj
2π

nj(vjQ
(0)
j ). (6.46)

A similar analysis as for the energy current leads to,

∂

∂t

δJS(x, t)

δhq
−

iq
∑
j

σj

∫
dpj
2π

nj(1− nj)(vjQj)
2eiq(x−vjt) = 0, (6.47)

with ”current” related to the spin Drude weight Ds [23],

Ds =
β

2

∑
j

σj

∫
dpj
2π

nj(1− nj)(vjQj)
2. (6.48)

Moreover, the corresponding spin current structure factor is

SJSJS(q, ω) =
∑
j

σj

∫
dpj
2π

nj(1− nj)(vjQj)
2δ(ω − qvj). (6.49)

In the zero temperature limit, using eq.(6.24), Ds is easily evaluated giving the
known T = 0 result [147],

Ds = χ
v2

2
=

1

2π
vK. (6.50)

The high temperature limit is particularly interesting, since eq.(6.48) implies a ”frac-
tal” behavior [126, 127, 148, 27, 24] as a function of the anisotropy ∆. In this limit
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(Appendix C), for ∆ = cos π/(ν1 + 1/ν2) = cos(πm/l), l = 1 + ν1ν2,m = ν2,

εν1+ν2−1 = −εν1+ν2 = T ln
l − ν1

ν1

Qν1+ν2−1 = −Qν1+ν2 =
l

2

pmaxν1+ν2−1 = pmaxν1+ν2
=
π

2

1

(l − ν1)ν1

vν1+ν2−1 = −vν1+ν2 = α sin(λpν1+ν2−1)

α =
sin πm/l

sinπ/l
, λ =

2ν1(l − ν1)

l
, (6.51)

Ds =
β

2
(
l

2
)2 · (1− ν1

l
)(
ν1

l
) ·
( ν1+ν2∑
j=ν1+ν2−1

σj

∫ +pmaxj

−pmaxj

dpj
2π

vj
2
)

Ds = χ
v̄2

2
=
β

2

sin2(πm
l

)

sin2(π
l
)

(1−
sin 2π

l
2π
l

),

χ = β/4, v̄2 =

∫ +1

−1

dtα2 sin2(
πt

l
), (6.52)

which traces the singular ”fractal” behavior of Ds to the velocities of the ν1 + ν2 −
1, ν1 + ν2 excitations in contrast to the regular behavior of χ.

Analogously with eq.(6.41), a similar relation to can be derived

∂2

∂t2
δQ(x, t)

δhq

∣∣∣
x,t=0

' −q2Ds (6.53)

In conclusion, in low energy effective theories one quasi-particle with linear dis-
persion and effective velocity [73, 149] accounts for both the specific heat, magnetic
susceptibility and dynamic structure factors. In contrast, in the ν TBA string exci-
tations, the 1-strings mostly contribute to the specific heat, while the ν − 1, ν to the
magnetic susceptibility and corresponding dynamic structure factors. As all string ex-
citations have the same characteristic velocity at low energies, effective field theories
seem as a re-summation of the string contributions, but further work is necessary to
reconcile the two pictures.
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6.5 Appendix

6.5.1 Appendix A: Dynamics in the T → 0 limit

First consider the T = 0 case. We can easily see that

E1 = ε1, Ej>1 = 0 (6.54)

n1 =
1

1 + eβε1
= 1, (6.55)

where we have used that ε1 < 0.

Therefore, using eqs.(6.6,6.7) and the Fourier transform we obtain :

∂p1

∂λ
=
∂p

(0)
1

∂λ
− T11 ◦

∂p1

∂λ
(ω)⇒ ∂p1

∂λ
(ω) =

∂p
(0)
1

∂λ
(ω)− T11(ω) · ∂p1

∂λ
(ω). (6.56)

Additionally we have that:

∂p
(0)
1

∂λ
(ω) = 2πa1(ω), 1 + T11(ω) = 2 cosh(ω) · a1(ω) (6.57)

∂p1

∂λ
(ω) =

π

cosh(ω)
⇒ ∂p1

∂λ
=

π/2

cosh(πλ/2)
(6.58)

p1(λ) = tan−1(sinh
πλ

2
), −π/2 ≤ p1(λ) ≤ +π/2 (6.59)

Hence,

E1 = (−J sin θ

θ
)
∂p1

∂λ
= −v · sin p1, v = J

π

2
· sin θ

θ
, 0 ≤ p1 ≤ π (6.60)

v1 =
∂ε1/∂λ

∂p1/∂λ
= −v · cos p1, 0 ≤ p1 ≤ π. (6.61)

Therefore, we obtain that at zero temperature, ε1 = E1 is a spinon excitation as
presented in eq.(6.23).

Let us continue with the T → 0 limit. In this case in order to have a consistent
set of equations we need to include terms of O(T ) order. In fact the spinon excitation
acquires a part which comes from the scattering with higher string species. Therefore
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the ε1 excitation can be written as

ε1(λ) = − v

cosh(πλ
2

)
+ g(λ)T. (6.62)

The exact calculation of g(λ) is difficult, but we can instead calculate the asymp-
totic and λ = 0 values of g(λ)

If we assume that all physical quantities of interest reach a fixed value at the limit,
λ→ ±∞ then the convolution A ◦B(λ)|λ→±∞, where A(λ) vanishes rapidly at infinity
can be written as:

A ◦B(λ)|λ→±∞ = B±∞

∫ ∞
−∞

A(µ)dµ, (6.63)

where B±∞ ≡ limλ→±∞B(µ).

Therefore, we can transform a set of non-linear integral equations such as eqs.(6.3,5.47)
into a set of algebraic equations.

As a simple example let us consider the simplest non-trivial case, ν = 3

Using eqs.(6.3,5.47) and the fact that
∫∞
−∞ Tij(µ)dµ = 1

π
Θij(∞) we obtain:

g∞ = −1
3
g∞ + 1

3
ln(1 + eg∞) + 2

3
ln 2 + 2

3
ln(1 + cosh βε2), (6.64)

βε2 = 1
2

ln(1 + eg∞). (6.65)

Substituting g∞ = lnα, α 6= 1 we obtain the following equation:

w3 − 6w2 + 9w − 4 = 0, (6.66)

where we have defined that w ≡ α + 1.

Hence, the approved solution is w = 4. Additionally, due to symmetry we get the
following result :

lim
λ→±∞

g(λ) = ln 3. (6.67)

Also, we find that :
lim

λ→±∞
ε2 = T ln 2. (6.68)

The above results can also be derived in closed form, for the more general case
π/θ = ν1 + 1/ν2, ν2 > 1. To this end, we take the asymptotic limit to eq.(5.47), and
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using eq.(6.63) we reduce the system into a difference equation for βεj. Actually the
difference equation, and of course the solution, is the same as the one we obtain to
O(T ) order by taking the high temperature limit T →∞. The physical explanation for
this coincidence is that in the high temperature limit, the system excites large values of
the rapidity λ, i.e. λ→∞, and thus to dominant order the two limits are equivalent.
Therefore, the asymptotic solutions for the εj excitations are given by [121]

lim
λ→±∞

εj = T ln
(

(j + 1)2 − 1
)

, j = 1, ..., ν − 2

lim
λ→±∞

εν−1 = T ln(ν − 1) , εν = −εν−1 (6.69)

in the case ν1 = ν − 1, ν2 = 1 and

lim
λ→±∞

εj = T ln
(

(j + 1)2 − 1
)

, j = 1, ..., ν1 − 1

lim
λ→±∞

εj = T ln
(

(
1 + (j − ν1)ν1 + ν1

ν1

)2 − 1
)

, j = ν1, ..., ν1 + ν2 − 2

lim
λ→±∞

εν1+ν2−1 = T ln(
ν1ν2 − ν1 + 1

ν1

) , εν1+ν2 = −εν1+ν2−1 (6.70)

when ν2 > 1.

Let us follow the same procedure in order to calculate the g(0) value which is also
important for the low temperature dynamics of the excitations. This time however,
our result will clearly no longer be exact, but due to the fact that at T → 0 the quan-
tities ln(1 + eβεj) are slowly varying around λ = 0 and the rapidly vanishing form of
the functions si, di we expect this to be a valid approximation

Similarly, with the previous case let us consider the simplest case, ν = 3.

Since ε1(0) = −v + g(0)T , eq.(5.47) gives that βε2 ' 0, when T → 0. Additionally,
eq.(6.3) gives

4

3
g(0) =

2

3
ln 2 +

2

3
ln(1 + cosh(βε2)) (6.71)

which yields the solution g(0) = ln 2. Similarly we can find a closed form that holds
for all π/θ = ν > 3. Nevertheless, note that with increasing ν the numerical value
will slightly differ from our analytical approximation. Using the same procedure that
we used in the asymptotic case in order to arrive at a difference equation and the fact
that this time ε1(0) = −v + g(0)T and eβε1(0) ' 0, at T → 0, we obtain that the λ = 0
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values of the εj excitations are the following:

ε1(0) ' −v + T ln 2

εj(0) = T ln
(
j2 − 1

)
, j = 2, ..., ν − 2

εν−1(0) = T ln(ν − 2) , εν = −εν−1, (6.72)

Note that, a similar but more complicated relation can be constructed for the frac-
tal case (ν2 > 1).

Next let us consider the εj excitations as functions of pj. To this end, we start from
the definition of the excitation velocities:

∂εj
∂pj

(λ) = vj(λ) (6.73)

In order to continue we assume that vj, j = 2, ..., ν converge very quickly to their
asymptotic values. This is plausible since s1(λ) vanishes rapidly, i.e. for |λ| > δ, s1(λ)
can be considered negligible, with δ > 0. The above is also justified by numerical
calculations. In addition using eqs.(6.7,6.14) we find that |vj| = v, j = 2, ..., ν, for
|λ| > δj, where the numerical values of δj are close to δ. Moreover from equations

(6.3,6.7,6.14) we notice that
∂εj
∂λ

is an antisymmetric function, while
∂pj
∂λ

and εj are
symmetric functions. Therefore for rapidities |λ| > δj we obtain that:

|∂εj
∂λ
| = v

∂pj
∂λ

. (6.74)

Since εj is a symmetric function we obtain that:

εj = v|pj − pj(0)|+ ∆j , j ≥ 2, (6.75)

At this point, it is important to mention that eq.(6.75) is not true for a small inter-
val around pj(0), due to the fact that eq.(6.74) does not hold. This is expected since
εj are everywhere differentiable. Nevertheless, it is supported by the numerics that
pj(|λ| < δj) is approximately constant, and thus this interval is indeed a narrow one
around pj(0).

Substituting eqs.(6.69,6.72) into eq.(6.75) it yields:
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εj ' T ln(j2 − 1) + v|pj|, j = 2, ..., ν − 2,

|pj| ≤ pmaxj , pmaxj =
T

v
ln
((j + 1)2 − 1

j2 − 1

)
,

εν−1 = T ln(ν − 2) + v|pν−1|,

|pν−1| ≤ pmaxν−1 , pmaxν−1 '
T

v
ln
(ν − 1

ν − 2

)
,

εν = −εν−1, (6.76)

where pj is shifted such that εj are symmetric about zero and pmaxj = 1
2

limλ→∞ |pj(λ)| =
|pj(0)|.

6.5.2 Appendix B: Dynamics in the β → 0 limit

First, we consider the non-fractal case, ν2 = 1. To begin with, in Appendix B we
discussed that the dominant term of the high temperature behavior of εj coincides
with the asymptotic limit, λ → ∞, given by eq.(6.69). The first correction to this
behavior can be found by following the method applied in Appendix C by Takahashi
and Suzuki [121]. Hence, using eq.(5.47) the first order correction, O(1), for zero
magnetic field h = 0 is given by:

ε
(1)
j (λ) = − A

2(j + 1)
(1 + e−βεj)[(j + 2)αj(λ)− jαj+2(λ)] j = 1, ..., ν − 2

ε
(1)
ν−1(λ) = −A

2
(1 + e−βεν−1)αν−1(λ), ε(1)

ν = −ε(1)
ν−1. (6.77)

Consequently, the dominant contribution of
∂εj
∂λ

is given by:

∂εj
∂λ

=
∂ε

(1)
j

∂λ
, (6.78)

A careful examination of eq.(6.7) and eq.(6.14) shows that the set of integral equa-

tions corresponding to
∂εj
∂λ

and
∂pj
∂λ

are essentially the same with the substitution of the
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driving term, −A∂αj
∂λ

to 2παj. Hence, the dominant term of
∂pj
∂λ

will be given by:

∂pj
∂λ

=
π

(j + 1)
(1 + e−βεj)[(j + 2)αj − jαj+2] j = 1, ..., ν − 2

∂pν−1

∂λ
= π(1 + e−βεν−1)αν−1,

∂pν
∂λ

= −∂pν−1

∂λ
(6.79)

Therefore, the momentum pj is given by:

pj(λ) =
1

2(j + 1)
(1 + e−βεj)

[
(j + 2)

(
f(λ; lj, ζj) + f∞j

)
− j
(
f(λ;λj+2, ζj+2) + f∞j+2)

)]
, j = 1, ..., ν − 2

pν−1(λ) =
1

2
(1 + e−βεν−1)

[
f(λ; lj, ζj) + f∞ν−1

]
, pν = −pν−1 (6.80)

where f(λ; lj, ζj) is given by eq.(5.35) and f∞j = limλ→∞ f(λ; lj, ζj).

pmaxj = |pj(0)| is given by

pmaxj = π
j + 1

(j + 1)2 − 1
, j = 1, ..., ν − 2

pmaxν−1 =
π

2

1

ν − 1
, pmaxν = pmaxν−1 (6.81)

The ν − 1 excitation velocity is given by:

vν−1 = − A

2π

∂αν−1

∂λ

1

αν−1

. (6.82)

Let us rewrite θλ in terms of the momentum pν−1

θλ = 2 atanh
(

tan(
ν − 1π

2ν
) · tan(

ν − 1

ν
pν−1)

)
, (6.83)

where we have shifted the momenta pν−1 by pmaxν−1 .

If pν−1 ' 0 we obtain that

θλ ' 2
ν − 1

ν
tan(

ν − 1π

2ν
)pν−1. (6.84)

Therefore in this limit

vν−1 '
sin θ

1 + cos θ
θλ = tan

π

2ν
· θλ (6.85)
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Substituting eq.(6.84) into eq.(6.85) we obtain

vν−1 ' 2
ν − 1

ν
pν−1. (6.86)

On the other hand, asymptotically |vν−1| = sin θ. Therefore, a suitable function
that satisfies both regions is

vν−1 = sin(2
ν − 1

ν
pν−1) (6.87)

By directly plotting vj(λ) as a function of pν−1(λ) we find that vν−1 is indeed de-
scribed by the above form.

Next we move to the ν2 > 1 case. Initially, let us mention that the dominant term of
the excitation energies εj is given by eq.(6.70). In this case we prove that the excitation
velocity vν1+ν2−1 appears to have a fractal behavior consistent with the findings for the
spin Drude weight Ds at high temperatures. A simple generalization of the previous
case shows that

∂εj
∂λ

and momentum
∂pj
∂λ

are given by:

∂εj
∂λ

= − A

2(nj + 1)
(1 + e−βεj)

[
(nj + 2)

∂αj
∂λ
− nj

∂αj+2

∂λ

]
, j = 1, ..., ν1 − 1

∂εj
∂λ

= − A

2ν1(nj + ν1)
(1 + e−βεj)

[
(nj + 2ν1)

∂αj
∂λ
− nj

∂αj+2

∂λ

]
, j = ν1, ..., ν1 + ν2 − 2

∂εν1+ν2−1

∂λ
= − A

2ν1

(1 + e−βεν1+ν2−1)
∂αj
∂λ

,
∂εν1+ν2

∂λ
= −∂εν1+ν2−1

∂λ
(6.88)

∂pj
∂λ

=
π

(nj + 1)
(1 + e−βεj)

[
(nj + 2)αj − njαj+2

]
, j = 1, ..., ν1 − 1

∂pj
∂λ

=
π

ν1(nj + ν1)
(1 + e−βεj)

[
(nj + 2ν1)αj − njαj+2

]
, j = ν1, ..., ν1 + ν2 − 2

∂pν1+ν2−1

∂λ
=

π

ν1

(1 + e−βεν1+ν2−1)αν1+ν2−1,
∂pν1+ν2

∂λ
= −∂pν1+ν2−1

∂λ
, (6.89)

where nj are given by eq.(5.32)

Furthermore a careful calculation shows that pmaxν1+ν2−1 is

pmaxν1+ν2−1 =
1

2ν1

(1 + e−βεν1+ν2−1)|f∞ν1+ν2−1| =
π

2

1

(1 + ν1ν2 − ν1)ν1

. (6.90)
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Note that we have used the fact that ζν1+ν2−1 = (−1)ν2 .

Performing a linear approximation the velocity and momentum can be written as:

vν1+ν2−1 =
sin θ

1 + cos θ
ν2

θλ (6.91)

pν1+ν2−1 '
1

λ
ζν1+ν2−1 cot

(1 + (ν2 − 1)ν1

2
θ
)ζν1+ν2−1

θλ, (6.92)

where we have substituted eq.(6.70) into eq.(6.82) and λ = 2ν1
(1+ν1ν2−ν1)

1+ν1ν2
.

Therefore using eq.(6.92) and eq.(6.91) we conclude that:

vν1+ν2−1 = ζν1+ν2−1
sin θ

1 + cos θ
ν2

tan
(1 + (ν2 − 1)ν1

2
θ
)ζν1+ν2−1

λpν1+ν2−1 (6.93)

One can easily prove that:

ζν1+ν2−1
sin θ

1 + cos θ
m

tan
( l − ν1

2
θ
)ζν1+ν2−1

= −sinmπ/l

sin π/l
, (6.94)

where m = ν2 and l = 1 + ν1ν2.

vν1+ν2−1 ' −
sinmπ/l

sin π/l
λpν1+ν2−1, (6.95)

which proves the fractal behavior of the velocity. Moreover, asymptotically |vν1+ν2−1| =
sinmπ/l. Plotting vν1+ν2−1 as a function of pν1+ν2−1 reveals that it can be described as

vν1+ν+2−1 = −sinmπ/l

sinπ/l
sinλpν1+ν2−1 (6.96)

6.5.3 Appendix C: Proof of relation (34)

To arrive at eq.(6.34), it is convenient to use a matrix notation for the integral over
rapidity λ, sum over string index j and employ standard manipulations [21, 131],
using the convention that [a] is a vector column, tr[A] =

∑
j

∫
dλAj(λ) and [T ][A] =∑

k(Tjk ◦ Ak)

δE(x, t)

δβq
= tr

{
[ε(0)eiq(x−vt)][

∂r

∂β
n] + [ε(0)eiq(x−vt)][

∂n

∂β
r]
}
, (6.97)
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solve eq.(6.2) for [n ∂r
∂β

],

[r] = [λa]− [λT ][nr]

[n
∂r

∂β
] = −[λnT ]([n

∂r

∂β
] + [r

∂n

∂β
])

[n
∂r

∂β
] = −[I + λnT ]−1[λnT ][r

∂n

∂β
] (6.98)

solve eq.(6.8),

[E] = [I + λnT ]−1[ε(0)] (6.99)

and from eq.(6.3) and eq.(6.8) we find that ∂(βεj)/∂β = Ej.

6.5.4 Appendix D: Charges Qj

We can readily show this in the simple case θ = π/ν by using the recursion relations
of TS for the phase shifts Tjk, and rewriting eq.(6.22) as (Q0 = n0 = 0),

Qj = s1 ∗Qj−1(1− nj−1) + s1 ∗Qj+1(1− nj+1)

+ δν−2,js1 ∗Qνnν , 1 ≤ j ≤ ν − 2

Qν−1 =
ν

2
+ s1 ∗Qν−2(1− nν−2)

Qν−1 −Qν = ν. (6.100)

For h = 0, nν−1 + nν = 1 from eq.(6.3), so we can eliminate the Qj, nj, j = ν − 1, ν
from eq.(6.100) obtaining a homogeneous system of equations for Qj, nj, j = 1, ν − 2
with solution Qj = 0, j = 1, ..., ν−2. An algebraic approach of this result was given in
[27, 24]. When the magnetic field is nonzero (h 6= 0) the Qj’s are in general functions
of the rapidity λ.

For completeness, we also study the case π/θ = ν1 + 1/ν2 (ν2 > 1)
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Using that σj is positive in the region 1 ≤ j ≤ ν1 − 1, j = ν1 + ν2, the recursion
relations eq.(6.22) take the form,

Qj = s1 ∗Qj−1(1− nj−1) + s1 ∗Qj+1(1− nj+1), 1 ≤ j ≤ ν1 − 2

Qν1−1 = s1 ∗Qν1−2(1− nν1−2) + d1 ∗Qν1−1(1− nν1−1)

− s2 ∗Qν1(1− nν1)
Qj = s2 ∗Qj−1(1− nj−1) + s2 ∗Qj+1(1− nj+1)

+ δν1+ν2−2,js2 ∗Qν1+ν2nν1+ν2 , ν1 ≤ j ≤ ν1 + ν2 − 2

Qν1+ν2−1 = −1 + ν1ν2

2
+ s2 ∗Qν1+ν2−2(1− nν1+ν2−2), j = ν1 + ν2 − 1

Qν1+ν2 −Qν1+ν2−1 = 1 + ν1ν2. (6.101)

Similarly as before, in the zero field case (h = 0) the solution of eq.(6.101) is Qj = 0
for 1 ≤ j ≤ ν1 + ν2 − 2
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Chapter 7

Epilogue

We briefly summarize the most important results of this thesis.

(I) On the spinon scattering by potentials

(a) Scattering matrix elements: We studied the scattering matrix elements from
three prototype potentials, a longitudinal, a transverse and a spin-phonon interaction.
We found that even for a single-site potential the matrix elements do not behave as
those of a regular particle and are non-trivial functions of the system size N as well
as the spinon’s momentum. We attribute this behavior to the strongly antiferromag-
netic nature of the spinon. In addition, we found that there are two dominant matrix
elements that play crucial role to the scattering procedure. Both of the them are on-
shell matrix elements with the one flipping the spinon velocity and the other being a
π-transition.

(b) Transmission coefficient for the scattering by a single-site potential: By
summing the Born Series we calculated the transmission coefficient for the scattering
of a single spinon by the aforementioned potentials. It is interesting that for an even
chain the spinon is fourfold degenerate and therefore we have to introduce two different
types of transmission probability the diagonal one T (Q,Q) and the non-diagonal one
T (Q + π,Q), where the total transmission is the sum of the above probabilities. In
particular, when the barrier strength the diagonal decreases while the non-diagonal in-
creases. This peculiar effect remind us the Klein paradox where the barrier itself creates
particles. However, this is due to the fact that in an even spin chain the lowest branch
includes two spinons with the one having zero energy. Moreover, we should mention
that although the dominant matrix elements describe accurately the two transmission
probabilities including only the lowest branch matrix elements is not sufficient to pro-
duce a physically acceptable scattering process since Ttot(Q) → 1 as N → ∞. This is
solved by including the whole two spinon spectrum which makes Ttot → (Q) a function
of the spinon energy εQ leading us to the conclusion that these O(N2) matrix elements
serve as a spinon ”cloud” regulating scattering to a non-trivial result. Furthermore,
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interestingly we find that for ∆ = 0 and a longitudinal potential low energy spinons
behave as a one-dimensional massless Dirac particle, while for 0 < ∆ ≤ 1 the longitu-
dinal potential breaks criticality and spinon behaves as a quadratic particle, implying
there is an induced mass. In addition, the gapped case provides new information since
criticality is absent and the spinon becomes a localized object. We found that the
previous results holds, leading to the conclusion that the dominant effect is the strong
antiferromagnetic correlation of our system combined with the many body nature of
spinons.

(c) Transmission coefficient for the scattering by an extended potential: We
found a ”healing” effect, i.e. Ttot → 1 when εQ → 0 when the relation

∑
n(−1)ngn|Vππ+Q|2 =

0 holds. In any other case, a ”cutting” effect is present at low energies and in fact the
transmission coefficient follows a very similar curve to the single site potential case. It
is interesting that we can easily manipulate the low energy Transmission probability
by simply changing the magnetic field.

(II) On the Dressed excitations, thermodynamics and relaxation

(a) Dressed excitations and spinon thermodynamics: We introduced new en-
ergy and momentum dressing relations for the XXZ model along the lines of the GHD
formulation. Using these relations we studied the low and high temperature thermody-
namics. In particular, we found that in the low temperature limit the most important
excitation is the spinon excitation, however even if T → 0 scattering with the rest of
the string excitations is also important and it cannot be decoupled from the rest of
the excitations making the construction of a spinon thermodynamics theory a difficult
task. In addition, we calculated the low temperature specific heat and magnetic sus-
ceptibility using the analytical results for the string excitations. All the above indicate
that further work is needed for a reconciliation of the effective field theory picture and
the string excitations (TBA) picture.

(b) Dynamics and relaxation: we studied the energy/magnetization relaxation
of XXZ critical spin chain, starting from an initial condition where a small temper-
ature/magnetic field of wavevector-q, is applied to the system, resulting in a same
wavevector-q response. With the use of linear-response approximation we were able
to derive the Drude weight. Specifically, a temperature perturbation of the form
δβ(x)δ = βqexp(iqx) results in the derivation of the thermal Drude weight and a
magnetic field perturbation of the form δh(x)δ = hqexp(iqx) in the corresponding spin
Drude weight. Finally, using the dynamics of the excitation analysis we revealed that
the underlying cause for the fractal behavior of the spin Drude weight is the fractality
of the string excitation velocities.
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