FORTH

University of Crete
ICS-FORTH

Master Thesis

Evolutionary forces in the genomic neighborhoods of polymorphic transposable elements in plant populations

Author:
Joanna Garefalaki

Committee:
Pavlos Pavlidis
Kiriakos Kotzabasis
Panagiotis Sarris

A thesis submitted in fulfillment of the requirements for the degree of MSc in Molecular Biology-Plant Biotechnology in the

Biology Department, University of Crete, Greece
"The history of the earth is recorded in the layers of its crust; the history of all organisms is inscribed in the chromosomes.
H. Kihara

University of Crete

Department of Biology

ICS-FORTH

MSc in Molecular Biology-Plant Biotechnology

Evolutionary forces in the genomic neighborhoods of polymorphic transposable elements in plant populations

by Joanna Garefalaki

Abstract

Transposable Elements (TEs) have been shown to evolve under the effects of either positive and/or negative selection. Some of them is believed to be beneficial to organisms and they can even be domesticated by their host genome, contributing to genomic diversity and adaptation of natural populations or crops. The polymorphic landscape of TE at the population level of many species as well as their adaptive capacity is still unknown. Our goal is first, to characterize the evolutionary forces in the genomic neighborhoods of polymorphic TEs in natural populations of economically important plants. Second, to detect and characterize Transposable Element Insertion Polymorphisms (TIPs) in a large gene pool, and third, to gain access to genetic diversity at species level. Here, we traced TIPs from the previously published 3000 rice genome project database, using Mobile Element Locator Tool (MELT), a software developed specifically for the detection of (TIPs) from large datasets. Using SweeD, a maximum-likelihood approach to infer selective sweeps and localize recent and strong positive selection, we detected the action of recent and strong Darwinian selection in TE polymorphic genomic regions following the insertion of the TE or its absence.

Acknowledgements

I started this project on my first day of second year of grad school, back in October of 2018. I have learned so much along the way (including learning how to code from scratch) and it has been amazing experience. I take this opportunity to express my gratitude and thank my Supervisor, Professor, Mentor and Friend Dr. Pavlos Pavlidis for accepting me and giving me the opportunity to be a part of his great team. Without his patience and support I would never be able to accomplish this MSc Thesis. I would also like to thank the other two members of my advisory committee: Dr. Kiriakos Kotzabasis and Dr. Panagiotis Sarris. They where both a great teachers and mentors to me. I feel really grateful for having such amazing laboratory members and friends. Special thanks to Maria Malliarou for being supportive to me on my first steps learning Python and of course Antonis Kioukis for teaching me Bioinformatics from day one until today. I would also like to thank Ioannis Koutsoukos for his advice and help during the development of this project. Nothing would be accomplished without my friends Artemis, Nefeli, Agapi, Christos, Olympia, Thimios and Alexis. I would like to thank them for being here for me all the time and supported me by any manner of means. I am also grateful to Alexandros Marantos for believing in me during this year and for all his care and support. This thesis is dedicated firstly to my mother, my father, my brother and to all my family who made my studies possible all these years and support me in any way possible.

Contents

1 Background 1
1.1 Introduction 1
1.2 Transposable elements drive genetic variation 1
1.2.1 Transposable element classification 1
1.2.2 Rice Transposable Elements 2
1.3 Genetic variation 3
1.43000 genome project 3
1.5 Detecting TE insertions 3
1.5.1 Definitions 3
1.6 Detecting Natural Selection 4
1.6.1 Selective Sweeps 4
1.6.2 Composite Likelihood Ratio tests (CLR) 4
1.7 Purpose 5
2 Materials and Methods 6
2.1 Data 6
2.2 Pipelines Software and Tools 7
2.3 Novel TE insertions discovery 8
2.4 Filtering the insertions loci 9
2.5 Distance between TE insertion and gene estimation 10
2.6 Detection of Selective Sweeps 10
2.6.1 SweeD 10
3 Results 13
3.1 Identification of mPing insertions and their locations using MELT 13
3.2 Distance between TE insertion and gene estimation 14
3.3 Extraction of Karma, Tos17 and Fam106 polymorphic loci 15
3.4 Likelihood-based detection of selective sweeps using SweeD 16
4 Discussion 40
Bibliography 50

Background

1.1 Introduction

Transposable elements (TEs) have been characterized for a long time as selfish sequences parasiting eukaryotic genomes which are outnumbered by TEs (Kidwell, 1993). It is known that TEs are potent mutagenic agents able to shape their hosts genomes, as a TE insertion may disrupt functional regions of the genome. They appear to have great diversity in structure and mechanisms of transposition. However, all of them are able to transpose and increase their copy number within eukaryotic chromosomes (Wicker et al., 2007). Last years many studies propose that the properties which lead TEs to be labeled as 'junk DNA' might have drived TEs to develop plasticity to genomes providing diversity and might have played a crucial role in enhancing the evolutionary potential of their hosts (Kidwell and Lisch, 2000). Recent progress in new sequencing technologies together with genomic material from large number of accessions has given the opportunity to quantify genome-wide polymorphisms for annotated and novel TE insertions. Still many aspects of TE dynamics at the population level remain unclear. Fortunately, a broad variety of computational methods and software tools have being developed for comprehensive genomic analyses that discover, annotate new TE families and reveal polymorphic TE to get new insights and explain the impact of fixed and polymorphic TEs in genomes and to disentangle selfish behaviour from coopted functions (Goerner-Potvin and Bourque, 2018).

1.2 Transposable elements drive genetic variation

1.2.1 Transposable element classification

There are two main classes of TEs according to their mechanism of transposition, which may be RNA-mediated or DNA-mediated. Retrotransposons which can be described as either cut and paste (Class I TEs) and DNA transposons, copy and paste (Class II TEs) (Wicker et al., 2007) .

1. Retrotransposons: Class I TEs replicate in two steps. The are transcribed and RNA intermediates are reverse transcribed using reverse transcriptase in the process. The copied DNA is then inserted back into the genome at a new genomic location. Retrotransposons are divided into three main orders: (i) Retrotransposons (LTR retrotransposons), with long terminal repeats (LTRs), which encode reverse transcriptase, similar to retroviruses; (ii) Retroposons (non-LTR retrotransposons), long interspaced nuclear elements (LINEs, LINE-1s, or L1s), which encode reverse transcriptase but
lack LTRs, and (iii) short interspersed nuclear elements(SINEs) (non-LTR retrotransposons) which do not encode reverse transcriptase.Retroviruses can also be considered TEs.
2. DNA transposons: Class II TEs use cut-and-paste transposition mechanism, which involves only transpose enzymes. Some type of transposases may target non-specifically any site of DNA, while others bind to specific target sequences. A staggered cut is made at the target site producing sticky ends. The DNA transposon is cut down and ligates it into the target site. DNA polymerases repair the resulting gaps by filling them in and DNA ligase joins the two ends. This procedure leads to Target Site Duplication (TSD) and the insertion sites of DNA transposons are easy to distinguish by short direct repeats followed by inverted repeats. These sites are important for the TE excision by transposase. It is possible for cut-and-paste TEs to be duplicated if their transposition takes place during the S phase of the cell cycle.

Autonomous or non-autonomous transposition may happen in both Class I and Class II TEs. Autonomous TEs mobile by themselves and non-autonomous TEs require the presence of another TE to move.

1.2.2 Rice Transposable Elements

Over 40% of rice genome is repetitive DNA and the majority of it is related to TEs. The class 1 (LTR) retrotransposons comprise the largest component of rice mobilome (14% of the genomic DNA) but, numerically, the short (<500 bp), non-autonomous class II Miniature Inverted-repeat Transposable Elements (MITEs) form the largest group with over 100,000 elements divided into hundreds of families comprising about 6% of the genome (Jiang et al., 2003).

LTR retrotransposons have contributed in the transposition-driven genome dynamics which shaped the architecture and size of the rice genome and have also been found to play a major role in the process of speciation and diversification of this crop (Zhang and Gao, 2017). Rice genome harbors 300 families of LTR-retrotransposons, belonging to either Gypsy or Copia superfamilies (Chaparro et al., 2007).

MITES have been found to be located very close to plant genes and perhaps providing coding sequences or poly(A) signals, affecting the expressions of the nearby genes, leading to hypotheses that MITEs also play major role to gene regulation and evolution (Lu et al., 2012). In rice genome among the studied TEs, MITEs exist at the highest copy number with hundreds of MITE families discovered in the rice genome, but the full picture of the transpositional landscape in this crop still remains unknown (Oki et al., 2008; Jiang et al., 2004).

To test the hypothesis that TEs represent a source of evolution, it is important to directly observe TE families that are still active and attain high copy numbers. In O. sativa genome most MITEs are fixed except from the currently active mPing family. The fact that the non-autonomous mPing elements avoid inserting into exons, but prefers promoter regions and that has evolved to target neutral regions creating new alleles and novel regulatory networks, makes it a great example to further explore the transpositional landscape of this element in a population scale (Naito et al., 2014; Naito et al., 2009; Jiang et al., 2003; Lu et al., 2017). Also, non-autonomous Copia-like LTR retrotransposons Tos17 have been described as active in cultivated rice and with the Gypsy-like fam106
are also found to be inserted very close to genes (Sabot, 2014; Carpentier et al., 2019). Karma, a LINE non-LTR retrotransposon was also identified as transpositionally active in rice and is affected by Tos17's mobilization (Huang et al., 2009).

1.3 Genetic variation

The term variant can be used to describe an alteration between two genomes. There are three categories of genetic variants:

1. Single Nucleotide Variants SNVs (or Single Nucleotide PolymorphismsSNPs) define a substitution of a single nucleotide in a specific region, and may be a transition or a transversion leading to synonymous or nonsynonymous, missense or nonsense variants.
2. Indels are small insertions or deletions of hundreds of base-pairs.
3. Structural Variants are larger alterations in the DNA sequence like Chromosomal rearrangements (Deletions, Insertions, Inversions, Duplications and Reciprocal translocations) and Copy Number Variations.

As TEs can create many types of rearrangements, the mutagenic activity of mobile DNA is a double-edged sword. On one hand if the alteration happens in important genomic sequences, they will have negative effects on the fitness of the host. On the other hand TE-mediated mutations can be beneficial to the host under certain conditions (Volff, 2006).

1.43000 genome project

To locate TEs in a large gene pool requires genomic data for a comprehensive sample of accessions and a good-quality reference genome sequence from which TEs have been well characterized. These resources are available for a few crop species. One of the most suitable model species for this kind of study is Rice (Oryza sativa). 3000 genome project (3KGP) is a collection of resequenced 3,024 rice accessions from 89 countries with good average sequencing depth $(14 \times)$, high average genome coverages and mapping rates of 94.0% and 92.5%, respectively (Li, Wang, and Zeigler, 2014; Alexandrov et al., 2015). Approximately 18.9 million single nucleotide polymorphisms (SNPs) were detected in rice after the alignment to the reference genome of the Oryza japonica Nipponbare variety. These data give great opportunity for large-scale bioinformatics analysis of polymorphic TE insertions in order to understand the genomic diversity within O.sativa at a higher level of detail (Access, 2014).

1.5 Detecting TE insertions

1.5.1 Definitions

Reference genome refers to the genome on which the sequence mapping was performed. It is the digital DNA sequence database, assembled as the representative example of a species' genome.

Mapping refers to the process of aligning short reads to a reference sequence, whether the reference is a complete genome, transcriptome, or de novo assembly.

Concordant pairs are properly aligned reads.
Discordant pairs are improperly aligned reads, important to identify genome alteration events.

Both concordant and discordant pairs refer to paired-end reads. Their distinction is related to whether they fulfil certain criteria. Typically, the R1 mate should be in the forward direction, whereas the R2 mate in reverse. Also, the distance between them should be within a certain range (in Illumina paired-end reads, this distance is about $500 \mathrm{bp}, \pm 1 S D)$.

Genetic variation in the presence or absence of TEs is an important source of variability between individuals of the same species. In order to accurately map the locations of TE presence/absence variants with respect to a reference genome in Whole Genome Sequencing (WGS) data as the 3KGP, the urge for scaled bioinformatics tools to meet the demands of these data-intensive projects is more important than ever. Various approaches for detection of TE polymorphisms between one individual and the reference genome have been implemented, but few ensure fast and accurate analysis to succesfully unrevealing the transpositional landscape in a population level. Short-read TE detection is currently the most suitable way to detect TE insertions in existing data from population-scale WGS projects (Goerner-Potvin and Bourque, 2018).

1.6 Detecting Natural Selection

1.6.1 Selective Sweeps

When natural selection benefits a new allele, positive selection is operating favoring the individuals that carry it. The favored allele increases in frequency and if it will manage to overcome the effect of random genetic drift, it will eventually fixate in the population. As the beneficial allele increases, neutral genetic variants that happen to be present in the proximal genetic background of the beneficial allele, will also become more prevalent. This phenomenon is called genetic hitchhiking (John Maynard Smith, 1974). Because of genetic hitchhiking, the neighboring linked diversity diminishes, creating so-called selective sweeps. Positive selection can then be detected in genomes by searching for distinct footprints introduced by selective sweeps, such as (i) regions of reduced variation, (ii) a specific shift of the site frequency spectrum, and (iii) particular Linkage Disequilibrium (LD) patterns in the region (Pavlidis et al., 2013; Pavlidis and Alachiotis, 2017).

1.6.2 Composite Likelihood Ratio tests (CLR)

An efficient approach to analyze Next Generation Sequencing (NGS) data from whole genomes at different geographic locations and environmental conditions, are Composite Likelihood approaches. Composite Likelihood calculates likelihoods in a subset of the genetic data, and then combines them as if each subset of the data were independent (Nielsen, 2005). This method supports the separation of a large dataset into smaller pieces, for each of which the likelihood function can be calculated. Calculation of a likelihood score for the possible existence of selection in regions of sampled genotypes, under a neutral model, provides likelihood scores under the null hypothesis. Thus, obtaining values of
the (likelihood) statistic under the null hypothesis of no selection it can be used to perform hypothesis testing and calculate threshold values.

1.7 Purpose

In 2016, Wildschutte et al. developed a pipeline to discover polymorphic HERVK retrovirus insertions in human populations using data from the 1000 Human Genome Project (1KGP) (Wildschutte et al., 2016). In 2018, during a study at the CBML (EvoLab group) in FORTH-ICS under the supervision of P.Pavlidis, Wildschutte's results were used to investigate the selection forces in the nearby genomic regions of HERV-K insertion sites of haplotypes from homozygous human individuals either for the presence or the absence of the retrovirus. The application of selective sweep detection algorithms in 26 insertions (that were fulfilling certain quality criteria) suggested positive selection in 8 insertions. Also, five reported sites under positive selection are related to individuals for which their homologous genomic regions do not contain a retrovirus. In addition, subsequent expression analysis of nearby genes revealed differential expression leading to hypothesis that viral insertions affected actually the genomic areas around them. Such results motivated us to examine the evolutionary forces in genomic neighborhoods of polymorphic TE insertions in other species. We applied the Mobile Element Locator Tool (MELT), a population-scale mobile element for discovery of new TE insertions on samples from 3000 Rice Genome Project (3GKP), already used for TE detection in 1KGP (Gardner Eugene J. et al., 2017). We also used data published from the Panaud team in 2019 using TRACKPOSON tool which identified 32 families of retrotransposons and more than 50,000 TE insertion polymorphisms in the 3000 rice genomes (Carpentier et al., 2019). Insertion sites used in application of selective sweep detection algorithms to provide evidence for recent and strong positive selection around these regions (Pavlidis et al., 2013).

Materials and Methods

2.1 Data

The previously published 3000 rice genome raw sequencing data provide Genotype, Phenotype and Variety information data for rice (Oryza sativa L.) called against Nipponbare reference Os-Nipponbare-Reference-IRGSP-1.0, which are available from GigaScience Database (https://doi.org/10.5524/200001). In order to make our analysis to run fast, we collected from this gene pool a random sample of 100 individuals. From these 100 samples, 86 BAM files were available and used for de novo discovery of TE insertion sites. In addition, all meta-information for the 86 random samples was extracted from available tables from the International Rice Genebank Collection at the International Rice Research Institute and from the China National Crop Genebank and the Chinese Academy of Agricultural Sciences (CAAS) working collections. We also recreated the SNPs and allele information matrix of 20 million SNPs $\times 3000$ rice lines from the International Rice Informatics Consortium http://snp-seek.irri.org/_download.zul) using PLINK (BEDtoVCF) to examine selective sweeps near the insertion loci.

On January 2019, a full matrix of presence/absence of TE insertions in the 3000 rice genomes for 32 families of retrotransposons was created by Panaud's team and became available at http://gamay.univ-perp.fr/~Panaudlab/TRA CKPOSON_Results.tar.gz (Carpentier et al., 2019). We extracted all insertion sites for 3 TE families for the same 86 accessions we used for our initial TE insertion discovery. Furthermore, from the information tables, we tracked all 44 accession names and information sequenced from the region of Nepal and extracted all insertion sites from the presence/absence matrix for the same 3 TE families for the 44 Nepal accessions.

Table 2.1: Geographical distribution of the 130 sampled rice accessions from 77 countries used for selective sweep analysis.

2.2 Pipelines Software and Tools

We developed an open source pipeline available at https://github.com/Joann agare to perform TE insertion discovery on a population-level and also detect recent and strong positive selection in the TE insertion sites. All scripts and pipelines used for this analysis are documented in the aforementioned GitHub repository. Briefly, the repository contains the two main software were employed for the MSc thesis (Mobile Element Locator Tool-MELT and SweeD), a collection of tools and in-house written scripts. Several code scripts were properly modified for the specific analysis from the github repository of another thesis of the group https://github.com/kutsukos/SweeDKutsukosWorkflow.

Tools and Software	Purpose
Picard GATK	FASTA file reformating using GenomeAnalysisToolkit
Samtools	FASTA file processing for .fai index creation
Bowtie2	Reformating of reference .fai file to .bt2 index creation
BEDOPS	Conversion of General Feature Format (GFF) to BED-formatted data.
MELT	TE insertion discovery
SweeD	Detection of Selective Sweeps
Bedtools2	Detection of the distance between TE and genes
PLINK	Conversion of BED files to VCF

Table 2.2: Table of Software used

2.3 Novel TE insertions discovery

To perform the discovery and annotation of non-reference TE insertion sites we developed a TE insertion detection pipeline using (MELT). Mobile Element Locator Tool (MELT), was developed as part of the 1000 Genomes Project and has already been tested for TE insertion discovery on such a large scale. For example, in a 2017 study MELT outperformed existing TE insertion discovery tools in terms of speed, scalability, specificity, and sensitivity, revealing extensive TE insertion diversificatiion across distinct human populations (Gardner Eugene J. et al., 2017). MELT collects all discordant pairs from a WGS alignment, aligning them to provided TE insertion reference sequences. Next it 'walks' across the reference genome classifying putative TE insertions based on total read support at each putative site. It then merges the initial TE insertion calls across the available datasets, and analyzes in detail the breakpoints for each putative TE insertion. All sites are genotyped and filtered based on true positive calls.

We run the MELT algorithm for the discovery of transposon MITE/mPing in 86 individual samples of O.sativa. To generate TE insertion call sets, we first downloaded the 86 BAM files from GigaScience Database (https://doi.or $\mathrm{g} / 10.5524 / 200001$), the MITE/mPing reference sequence from https://www. ncbi.nlm.nih.gov/genbank/and the O.sativa japonica Nipponbare reference sequence from http://rice.plantbiology.msu.edu.

We edited MITE/mPing sequence NormalizeFasta within the Picard Tools package (http://broadinstitute.github.io/picard/) to further use it the preprocess of reference sequences in MELT which performed using MELTBuildTransposonZIP module.

The error rate for mPing was set to 3 , that is the number of allowed mismatches by MELT per 100 bases of the TE insertion reference during alignment. m Ping is a transposon which does excise precision and has low mutation rates (Kazuhiro et al., 2003; Nakazaki et al., 2003; Lin et al., 2006). mPing discovery was performed using MELT-Split runtime (Figure 2.1) with default parameters in all cases, except for the coverage sequencing depth which was set to $14 \times$. Only PASS sites were included in final VCF files used for further analysis. TE insertions that could not be genotyped (. / .) were also filtered out.

Figure 2.1: MELT performs TE insertion discovery using Illumina WGS paired end reads. (A) MELT uses two types of evidence to ascertain the location of MEIs: discordant read pairs (DRPs) and split reads (SRs). MELT first uses DRPs that map to both the reference genome (top panel) and an ME sequence (bottom) on both the left (red arrows) and right (green arrows) side of the insertion site to determine the approximate location of an TE insertion. MELT then uses SRs (blue arrows) that align to both the reference genome (top) and the TE (bottom panel) to determine the precise location of the insertion site and the target site duplication (TSD; Orange). (B) MELT performs non-reference and reference TE insertion discovery through multiple processing pipelines. Analysis of population scale data (red box) can be performed using either the built-in SGE scheduler (MELT-SGE), or adapted to other parallel computing environments (using MELT-Split). MELT also can rapidly analyze a single genome (green box) using MELT-Single, or genotype reference TE insertions (blue box) using the MELT-DEL pipeline.

2.4 Filtering the insertions loci

In order to filter and keep only the polymorphic TE insertions that are present (in homozygous state) in at least 10 individuals and absent (in homozygous state) in at least 10 individuals of each sample used, we applied an in-house python script that provides a filtered output VCF file appropriate for further use and selective sweep detection. The script is available from https://gith ub.com/kutsukos/VCFilterbySampleQuan.

2.5 Distance between TE insertion and gene estimation

Distance estimation between TE insertion and the reference gene locations was performed with bedtools (v. 2.25) between the Nipponbare gtf annotation file (IRGSP-1.0-predicted-transcript-exon-2019-06-26.gtf) and the output of MELT (filtered and not filtered dataset).

2.6 Detection of Selective Sweeps

We investigated the adaptive role of polymorphic TE insertions. Our hypothesis is that some TE insertions may be beneficial, producing the characteristic footprints of positive selection in the proximal genomic locations (for example, the shift of the Site Frequency Spectrum).

2.6.1 SweeD

We used a high performance software, called SweeD, to detect loci on which positive selection has recently operated. The Sweep Detector (SweeD) is a tool based on likelihood calculation and detects sweeps in whole genomes by analyzing Site Frequency Spectra of Single Nucleotide Variant frequencies in a given sample (Pavlidis et al., 2013). SweeD is a High Performance Computation (HPC) software able to analyze thousands of whole genome datasets in relatively small computer clusters or off-the-shelf laptops within a few hours. Our purpose was to detect candidate TE insertions for positive selection by exploring the selective sweeps footprints in the haplotypes that carried the TE insertions. We applied the SweeD algorithm in a window of 500,000 base pairs around the TE insertion site. Within that locus, we chose to test for that kind of events every 5,000 base pairs (gridpoints).

Significance threshold was defined to set above which likelihood score the variation was considered as under positive selection. For each dataset we ran SweeD in multiple null positions of the whole chromosomes that were distant from the TE insertion tested in the same range of window and gridpoints. From each dataset we sampled the maximum value. Those values consisted the points of the null distribution. The threshold was set at the 99.5% max of the distribution, above of which we denoted a loci as positive for selection.

Figure 2.2: a. The pipeline used for the investigation of selective sweeps events only in the haplotypes that carried the polymorphic TE insertion using SweeD tool. b. Schematic representation the polymorphisms along a chromosome of a population, including the selected allele, before and after selection, in which neighboring linked alleles on the chromosome 'hitchhike' along with it to high frequency, creating a 'selective sweep' (https://www.nature.com/scitable/ topicpage/evolutionary-adaptation-in-the-human-lineage-12397)
(Larribe F., 2011)

Transposab Element	Polymorphic loci for the TE (population of 86 samples)	Polymorphic loci for the TE (population of 44 samples)
	chirs20068	
$\overline{\text { mping }}$	thr137542351	
$\stackrel{\text { mping }}{ }$	chr2 28273934	
\ldots mping	कha 3 32604350	
\ldots meng		
$\underline{\text { ming }}$	कh5 2.78897960	
$\frac{\text { meing }}{}$	ch5 3221901	
\ldots meng	Chr6 6420878	
$\frac{\text { ming }}{}$	chr122071089	
kema	trin 2775500	Chri.105s500
koma	thrs.13195500	chrinas
kema	thr5 266assoon	crin 116
toma	ctrriosssoo	crri1217895000
kema	thri.10s500	
kama	chro 2555900	
kema	chravisiscoo	
kama	chre. 195500	
koma	trra 21435500	
kama	trr11163500	
${ }^{\text {kama }}$	ctri127085000	
$\xrightarrow{\text { tosal7 }}$	thr12.28655000	chr2 26915000
$\stackrel{1}{\text { tosil }}$	thr128655000	¢hr23035500
$\stackrel{T}{\text { tosil }}$	Chr17.75000	chis 35365000
$\stackrel{1}{\text { tosil }}$	Ch17.785000	mr7.18855000
7	Cm17 7 P5000	crav 8555000
${ }_{\text {tosil }}$	Chr1915500	
$\stackrel{T}{\text { tosil }}$	(tr1925000	
$\underline{\text { tosil }}$	th22 26915000	
$\stackrel{T}{\text { tosil }}$	criz30355000	
$\stackrel{1}{\text { tosil }}$	Chr39353500	
$\underline{\text { tosil }}$	thro. 188155000	
\checkmark	thri. 20045000	
$\stackrel{1}{\text { tosil }}$	कh726655000	
$\xrightarrow{\text { Losil } 7}$	chas 8855000	
$\xrightarrow{\text { Losas } 7}$	chroi.1545500	
$\stackrel{1}{\text { tosil }}$	cmr01.1965000	
$\xrightarrow{\text { tosil }}$	cri120075000	
$\stackrel{1}{\text { losil }}$	chr1120055000	
Tamide	ctr1.105500	crr120745000
	crri20745000	crri20785000

${ }_{\text {famu6 }}$	trr12075s00	crin 3115500
${ }_{\text {famio6 }}$	ctri2 207 ssoon	crin 31/45coo
${ }^{\text {famu06 }}$	chrı31135soon	ctri31315soon
${ }^{\text {fami36 }}$	chri3145s00	ctri383595
${ }_{\text {famiob }}$	chri31155000	crriz335s500
${ }_{\text {famue }}$	etri 1835500	cmiz313 ${ }^{\text {como }}$
fam106	crriz 3835500	ctr2313s500
Jam	etr 2 24s500	ctr23095scoo
Tam206	tri2 25ssao	crar 795000
Jamue	tri23135500	
Tomi26	ch231395500	ctr7.265500
Tamue6	ctr23005s500	crr76275000
Jamue	chi3 3 Sa3500	crovele
${ }_{\text {Jami06 }}$	chis.795000	crmi127075000
Tam206	ctric.2865soon	crin1 27 Poscooo
TamIDE	ctrez2865500	crri12710s500
Tamue6	ctris.3075soon	
Jamue	chri 26.55000	
${ }_{\text {famue }}$	enriv27500	
${ }_{\text {famue }}$	chr1127075000	
${ }_{\text {famio6 }}$	crr11270s5000	
${ }_{\text {famiob }}$	ctr127105000	
	chr1212355000	

Table 2.3: List of polymorphic loci used for the detection of positive selection

Results

3.1 Identification of mPing insertions and their locations using MELT

We provide a novel detection of mPing transposable element from MITE family in a population level as a representative for its putative adaptive role in the euchromatinic regions of O.sativa. MELT detected mPing insertions by searching the discordant read pairs (DRPs) and split reads (SRs) in Illumina WGS data that are enriched at sites containing new, non- reference TE insertions. MELT algorithm is designed to analyze BAM files, the most common format output of Illumina WGS data sets.
In the output VCF file of MELT, in INFO column when an insertion is characterized as homozygous for the individual it is shown as $1 / 1$, and when it is shown as $0 / 0$ it means that the sample is homozygous for the empty site. heterozygous ($0 / 1$) and no call (./.) sites are also documented in the output dataset. The total TE insertion number detected in our sample of 86 sequenced data from 76 countries was 140. Polymorphic insertion loci number that have more than 10 samples having the insertion in both haploids $(1 / 1)$ and more than 10 samples with the insertion in none of the haploids $(0 / 0)$ are found to be only 10 in number. It is important to mention that we worked only with the insertions that were based on the number of samples that have or not the insertion in both haploids, because the VCF file, was not phased, so in the case of $(0 / 1)$, it was impossible to distinguish which haploid have an insertion or not. The following graph 3.1 demonstrates the non filtered and filtered output of MELT shown near the reference genome of O.sativa japonica.

Figure 3.1: Mappability of mPing representation. The black tips show the mappability of the mPing insertions on the 12 chromosomes of rice genome. For each chromosome, the red tips correspond to the centromere. In blue background the tips show the total number of different mPing insertions on each chromosome that MELT software identified. In pink background the black tips show the polymorphic insertions after the filtering.

3.2 Distance between TE insertion and gene estimation

MELT algorithm requires transposon reference sequence and evaluates the exact position of the TE on the genome. On the contrary, the matrices used from Professor's Panaud work provided a window of 10.000 bp in which the TEs are located. For that reason we calculated the distance only between $m P$ -
ing element insertions and the closest gene to them. The distances between the closest genes and all mPing insertions (polymorphinc and non-polymorphic) can be found at tables 1 and 2. Four insertion sites (chr02.29104580, chr03.9645477, chr04.34808917 and chr10.11206151) were located inside other genes. The NCBI/Genebank genetic sequence annotation is described at the table 3.1. Insertion sites chr03.3872638 and chr01.37542851 were also located very close to genes. As far as polymorphic insertion sites for mPing element, chr01.37542851, chr06.4420878, chr02.28273934 and chr12.22071089 were the closest to other genes with distances 500bp, 1998bp, 7080bp and 6063 respectively (table 1). We also checked weather our novel insertion sites are close to genes known to have undergone selection during rice domestication: CLDGR 16(sh4) in chr4.3451967-34765623 and CLDGR 21 in chr7.2778802-3148679, but none of them was found inside or nearby to them (Civán et al., 2015).

Chromosome	Position of TE (mPing)	Closest gene name	Distance from gene (pp)	NCB//Genebank genetic sequence annotation
crroe	29104580	gene id "Os02g0705201"; transcript id "OS0210705201-00";	0	Consenved hypothetical protein
crros	964547	Os0312281700-00";	0	Ab intio predited gene.
cros	34888997		0	Hypothetical proten.
crato	11206151		0	Consenved typothetical protein
crros	3872638	gene.id "Oso30172300": transcipt id	63	Conseeved thpothetical protein
crou	37542851	gene id "OSO190866950; transcript id Os0110866950-00":	500	RabcAPTEC domain containing proteon.
crros	4420878	gene_id "OSOGg0187600"; transcript_id "O50610187600-00";	1998	Consered hypothetical protein.
chr12	22071089	gene_id "Osi200546400"; transciptid OS 1210546400-00":	6063	Similar to AlY protein.
crroe	28273934	gene id "Os02g0689133"; transcript id	7080	Thioredoxin domain domain containing proten.
crros	14934734		10679	Protein of unknown function DUF573 domain containing protein.
cros	35048161	gene id "Os0400686150": transciptid . 5 S0406086150-00";	17636	Ab intio predited gene.
crrol	35200680	gene ja "Os0190823300"; transcipt id O501 $10823800-00$::	20626	RabGAP/TBC doman containing protein.
cros	27897960	gene_id "Os05g0561100": transcript_id - $\mathrm{Os} 0510561100-00^{\prime}$:	22958	Hypotreical conserved gene.
crro4	32604530	gene id "Os040064 1500"; transcript id	38540	Ab intio predicted gene.
cros	3221901	gene id "Os050154432" transcipt id "Os05101 54432200 ":	40980	Hypothetical conserved gene.

Table 3.1: Sorted distance from the closest genes found from mPing element.

3.3 Extraction of Karma, Tos17 and Fam106 polymorphic loci

Insertion sites for 86 individuals were extracted from the full matrix of presence/absence of TE insertions found in the 3000 rice genomes for 32 families of retrotransposons (Carpentier et al., 2019). Karma, Tos17 and Fam106 TE families were extracted for further analysis using an inhouse written script. Furthermore, insertions sites for the same 3 TE families were extracted for more 44 individuals originated from Nepal. Statistics about distribution of insertions for the 4 mobile elements (mPing, Karma, Tos17 and Fam106) per chromosome are represented at table 3.2. Chromosomes 1, 2, 7 and 11 show the highest frequencies of TE insertions.

	All Insertions	
chr1	52	28,6
chr2	26	14,3
chr3	10	5,5
chr4	4	2,2
chr5	8	4,4
chr6	10	5,5
chr7	26	14,3
chr8	4	2,2
chr9	8	4,4
chr10	6	3,3
chr11	24	13,2
chr12	4	2,2
Total	182	100,0

Table 3.2: Frequencies of total polymorphic Transposable Element insertions per chromosome. Chromosomes 1, 2, 7 and 11 show the highest frequencies.

3.4 Likelihood-based detection of selective sweeps using SweeD

We ran SweeD for 182 haplotypes, which we analyzed separately for each TE variant and population (Table 2.3). We searched for selective footprints in 20 haplotypes for mPing, 30 haplotypes for karma, 46 haplotypes tos 17 and 86 haplotypes for fam106. From the 182 haplotypes we scanned for signs of strong positive selection, 94 of them (51.6%) were found to show positive selection around the insertion site either with presence or absence of the TE. 42 haplotypes (23.1%) show positive selection only on when haplotypes carried the insertion. 24 haplotypes (13.2%) showed positive selection only on haploids homozygous for the absence of the TE. In addition, 28 haplotypes (15.4%) showed selective footprints both for absence and presence of the TE. 66 of 94 haplotypes with positive selection in total, concern samples which the TEs are present. We hypothesized that those under selective events would be present in higher frequencies. There is a significant difference among the frequencies in loci which $1 / 1$ haploids have selective footprint and none of the respective $0 / 0$ haploids show positive selection, among the group of loci which $0 / 0$ haploids show positive selection and the respective $1 / 1$ haploids are negative. Similar significant percentage was found inside some TE families specifically. For example from 20 haplotypes, (meaning 10 insertion sites) checked for positive selection for mPing element, 7 of 10 sites found to show positive selection only when the TE was
present $(1 / 1) 3.3$. Nevertheless, there was also a significant number of haploids 88/182 (48,4\%), which did not show any positive selection in either category.

TE	Selection	Frequency	Percent
Fam106	Only 0/0	3	7,0
	Both 0/0, 1/1	9	20,9
	Only 1/1	3	7,0
	None	28	65,1
	Total	43	100,0
karma	Only 0/0	2	13,3
	Both 0/0, 1/1	1	6,7
	Only 1/1	5	33,3
	None	7	46,7
	Total	15	100,0
mPing	Both 0/0, 1/1	2	20,0
	Only 1/1	7	70,0
	None	1	10,0
	Total	10	100,0
Tos17	Only 0/0	7	30,4
	Both 0/0, 1/1	2	8,7
	Only 1/1	6	26,1
	None	8	34,8
	Total	23	100,0

Table 3.3: Frequencies of positive selection per Transposable Element. fam106 show high frequency of no selection on scanned sites, karma shows almost double frequencies for positive selection for haplotypes that carry the insertion (1/1) and do not show selection in respective $0 / 0$, than the opposite scenario, There is a significant high frequency (70%) for mPing TE when the haplotypes are selected only for the presence $(1 / 1)$ of the TE.

Selective sweep analysis was done separately in two different groups of samples. The first group included 86 samples originated from 76 countries randomly selected from the 3KGP database and included analysis on 128 haplotypes. The second group included 44 samples originated from the region of Nepal from which 54 haplotypes were analysed. The purpose of this separation was in order to obtain data from an isolated region with extreme conditions, in this case the altitude, because in Nepal the cultivation of O.sativa is of the highest elevation of the world. This analysis will give the ability to compare these data with another isolated population with different conditions in the future. Still, we did a comparison between the two populations to test if the mean CLR scores of every haplotype can predict the separation in one of the four categories for positive selection found (only in presence of the TE, only in the absence, both in presence/absence or none). The population from Nepal showed 34.5% predictability and the sample from the variety of countries showed 1.6% predictability. There was also significant correlation ($\mathrm{p}<0.05$) between mean CLR scores and the above separation of four categories in the population from Nepal. In the figures $3.2,3.3,3.4,3.5,3.63 .7,3.8$ are represented in the y axis the likelihood scores (CLR) of the 4 TE analysed by SweeD for 500 kb windows with 5 kb step. The samples are separated by haplotypes with absence/presence of the TE variant and polymorphic positions are shown concatenated in x axis separated by chromosome. Black and grey dots correspond to all scores calculated and colored dots correspond to CLR scores found significant for strong positive selection.

Figure 3.2: Selective sweep analysis for mPing family for all positions found polymorphic for the absence (a) and presence (b) of the insertion. Manhattan plot represents in y axis the Likelihood scores for each polymorphic position shown at the x axis of the TE insertion evaluated by SweeD (see Methods). TE insertion-Likelihood association CLR $>$ thresholds in color are significative.

Figure 3.3: Selective sweep analysis for all polymorphic positions for karma family insertions for samples homozygous for the absence (a) and presence (b) of the TE for the population of 86 samples. TE insertion-Likelihood association CLR $>$ threshold in color are significative.

Figure 3.4: Selective sweep analysis for all polymorphic positions for karma family insertions for samples homozygous for the absence (c) and presence (d) of the TE for the population of 44 samples from Nepal. TE insertion-Likelihood association CLR >threshold in color are significative.

Figure 3.5: Scan of all polymorphic positions for tos17 family for individuals homozygous for the absence (a) and presence (b) of the insertion for the population of 86 samples (top) and the 44 samples from Nepal (bottom). TE insertion-Likelihood association CLR $>$ thresholds in color are significative.

Figure 3.6: Scan of all polymorphic positions for tos17 family for individuals homozygous for the absence (c) and presence (d) of the insertion for the population of 44 samples from Nepal. TE insertion-Likelihood association CLR $>$ thresholds in color are significative.

Figure 3.7: Selective sweep analysis for all polymorphic positions of fam106 family for individuals homozygous for the absence (a) and presence (b) of the TE for the population of 86 samples. TE insertion-Likelihood association CLR $>$ threshold in color are significative.

Figure 3.8: Selective sweep analysis for all polymorphic positions of fam106 family for individuals homozygous for the absence (c) and presence (d) of the TE for the population of 44 samples from Nepal (bottom). TE insertion-Likelihood association CLR >threshold in color are significative.

Figures below 3.9, 3.10,3.11,3.12, 3.13, 3.14, 3.15, 3.16,3.17,3.18,3.19,3.20,3.21 represent the Likelihood scores in y axis for each TE at each polymorphic insertion loci separately shown in x axis for haplotypes with absence/presence respectively. Figures are grouped in 4 categories: for positive selection found in only $0 / 0$ samples, only $1 / 1$ samples, both samples or none of the haplotypes of each insertion loci.

Figure 3.9: Scan of 12 polymorphic positions found significant for individuals homozygous for the absence ($0 / 0$) of each TE variant. The respective scores for 12 samples (not shown in figure) that were homozygous for the presence ($1 / 1$) of the same TE variant did not found to be significant.

Figure 3.10: Scan of 21 polymorphic positions found significant for individuals homozygous for the presence ($1 / 1$) of each TE variant. The respective scores for 21 samples (not shown in figure) that were homozygous for the absence (0/0) of the same TE variant did not found to be significant.

Figure 3.11: Scan of 21 polymorphic positions found significant for individuals homozygous for the presence $(1 / 1)$ of each TE variant. The respective scores for 21 samples (not shown in figure) that were homozygous for the absence (0/0) of the same TE variant did not found to be significant.

Figure 3.12: Scan of 21 polymorphic positions found significant for individuals homozygous for the presence $(1 / 1)$ of each TE variant. The respective scores for 21 samples (not shown in figure) that were homozygous for the absence (0/0) of the same TE variant did not found to be significant.

Figure 3.13: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence ($1 / 1$) of m Ping TE.

Figure 3.14: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Karma TE.

Figure 3.15: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Tos17 TE.

Figure 3.16: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Figure 3.17: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Figure 3.18: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Figure 3.19: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Figure 3.20: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Figure 3.21: Selective sweep analysis of haplotypes significant for both absence (0/0)/presence (1/1) of Fam106 TE.

Selection	Chr	Frequency	Percent	Selection	Chr	Frequency	Percent
Only 0/0	chr1	10	41,7	Only 1/1	chr1	5	11,9
	chr10	2	8,3		chr10	4	9,5
	chr11	4	16,7		chr11	4	9,5
	chr12	2	8,3		chr2	5	11,9
	chr2	2	8,3		chr3	3	7,1
	chr6	2	8,3		chr4	5	11,9
	chr7	2	8,3		chr5	4	9,5
	Total	24	100,0		chr6	2	4,8
Both 0/0,$1 / 1$	chr1	10	35,7		chr7	4	9,5
	chr12	2	7,1		chr8	4	9,5
	chr2	3	10,7		chr9	2	4,8
	chr5	2	7,1		Total	42	100,0
	chr7	8	28,6	None	chr1	29	33,3
	chr9	3	10,7		chr11	16	18,4
	Total	28	100,0		chr2	15	17,2
					chr3	6	6,9
				chr5	2	2,3	
				chr6	6	6,9	
				chr7	11	12,6	
				chr9	2	2,3	
				Total	87	100,0	

Table 3.4: Frequencies of significant scores of haplotypes for absence ($0 / 0$), presence $(1 / 1)$, both absence $(0 / 0) /$ presence $(1 / 1)$ and neither of TE variant per chromosome.

Figure 3.22: Distribution of significant scores calculated for haplotypes for absence ($0 / 0$), presence ($1 / 1$), both absence ($0 / 0$) and presence ($1 / 1$) and neither of TE variant per chromosome. Positive selection is unequally distributed on different chromosomes except for haplotypes with positive selection only for the presence ($1 / 1$) of TE variant (top-right).

Discussion

Here we present the methodology we followed to explain the putative adaptive role of TEs in rice genome by investigating the genomic patterns (SNP patterns) of their neighborhoods in the genome in rice. For this, we applied specialized computational tools recently developed for discovery and annotation of novel TE insertions in a rice population, in combination with data published from another similar, current analysis published this year (Carpentier et al., 2019) to obtain as much information as possible of the polymorphic picture of active TEs in O.sativa. In order to gain a more comprehensive understanding of the role of TEs in adaptation we localized the action of positive selection by detecting selective sweeps. Thus, we test the following hypothesis: if a TE insertion might be beneficial, even if it has not reached fixation yet, it could show hitchhiking effect due to natural selection at least in the subset of sequences carrying it.

Our first observation is that rice genome is flourished of mPing mobile element, but the polymorphic insertions represent a small fraction of this (only 7.14%). mPing element was also detected inside/or very close to, genes, a finding that may be explained by the very small size of this TE (only 433bp). Structurally, MITEs have very small size (<600 base pairs) and might cause lower genomic disruption compared to other mobile elements (Jiang et al., 2003). The frequency of mPing found inside genic regions is small and did not pass our filter for further selective sweep analysis. This findings agree with earlier studies claiming that mPing elements avoid inserting into exons (Naito et al., 2014; Naito et al., 2009; Jiang et al., 2003; Lu et al., 2017). Regarding the insertion location biases, we document a chromosomal insertion preference in chromosomes 1, 2, 7 and 11. We hypothesise that these chromosomal insertion biases may have more to do with the chromosomal environment surrounding that area, than whole chromosomes. It is known that transposons often have specific targeting mechanisms that exploit 'safe havens' in the genome, such as noncoding or transcriptionally repressed regions (Martin and Garfinkel, 2003).

Our population survey of the frequency of selective sweeps in 182 haplotypes from 130 individuals showed sweep signatures in the flanking regions of all four of the putatively adaptive TEs analyzed. Almost half of the total haplotypes scanned showed significant likelihood scores for positive selection and 23% of them where homozygous for the TE presence, a number almost double from the haplotypes found significant for the absence of them. Our results indicate that individuals with TE insertions in their genome show significant stronger positive selection around that area than the respective ones not carrying the TE, but those loci were not inside other genes. However, the number of identified adaptive TEs is still too small to draw any general conclusions about the TEinduced adaptive process and is definitely not conclusive of adaptive evolution role of TEs. Although identification of a selective sweep provides considerable evidence for positive selection, they are not entirely conclusive of adaptive evolution for several reasons. First, there is still some uncertainty about the
exact demographic model for O.sativa. There are still some contradictions on the domesticated scenarios of Asian rice which leaded to the picture we have today (Izawa, 2008; Civáň and Brown, 2018; Stein et al., 2018). Analyzing patterns of polymorphism without taking into account the demographic history of the populations can lead to spurious inference of positive selection. Here, we used control regions, i.e., regions where no TE insertion has taken place to generate a distribution of CLR scores representing the null hypothesis. Second, it is possible that a mutation located near the scanned region is associated with the sweep and not the TE itself. Third, the value of detecting genetic variation is small, if it is not accompanied by the study of its possible effects on associated biological pathways. Investigation of the epigenetic landscape that reacts with the specific TEs would give important information on the evolutionary arms race that happens between mobile elements and their hosts. Selection forces could also shape the piRNA, tasiRNA or natsiRNA clusters on the genome that get activated when they try to silence these elements. In conclusion, the selective pattern found around the insertions that we analyzed is consistent with our hypothesis. However, further selective sweep analysis needs to be done to get more clear picture of the evolutionary forces that act nearby TEs. For that, we aim to run similar analyses in larger sample for the same or other putative adaptive TEs and also repeat the analysis on another isolated population to compare it with our results obtained from Nepal.

Appendix

Origin of data used

DNA unique ID	Country of origin	Variety
B002	China	Temperate japonica
B024	Thailand	Indica
B040	Uganda	Indica
B049	Nepal	Aus
B084	China	Intermediate type
B126	China	Indica
B142	China	Intermediate type
B146	China	Indica
B162	China	Temperate japonica
B202	China	Indica
B268	China	Indica
CX100	Nepal	Indica
CX113	nan	Tropical japonica
CX128	Nepal	Indica
CX207	China	Indica
CX225	Philippines	Indica
CX230	China	Indica
CX303	China	Indica
CX313	China	Indica
CX76	Sri Lanka	Indica
CX90	Nepal	Indica
IRIS 313-8268	Nepal	Intermediate type
IRIS 313-9053	India	Intermediate type
IRIS 313-8744	Indonesia	Indica
IRIS 313-8956	Indonesia	Indica
IRIS 313-8957	India	Indica
IRIS 313-8985	Thailand	Indica
IRIS 313-8996	Vietnam	Indica
IRIS 313-9112	Thailand	Indica
IRIS 313-9281	Thailand	Indica
IRIS 313-9924	South Korea	Indica
IRIS 313-10007	Nepal	Indica
IRIS 313-10016	Iran	Basmati/sadri
IRIS 313-10374	Philippines	Indica
IRIS 313-9342	Vietnam	Indica
IRIS 313-8293	Senegal	Indica
IRIS 313-9188	Indonesia	Indica
IRIS 313-9406	Thailand	Indica
IRIS 313-9995	South Korea	Temperate japonica
IRIS 313-10073	Japan	Japonica
IRIS 313-10075	Japan	Indica
IRIS 313-10077	Japan	Japonica
IRIS 313-8694	Brazil	Tropical japonica
IRIS 313-8205	Italy	Temperate japonica

IRIS 313-8076	Australia	Temperate japonica
IRIS 313-8123	Portugal	Temperate japonica
IRIS 313-8143	Bulgaria	Indica
IRIS 313-8155	Russia	Tropical japonica
IRIS 313-7664	Colombia	Tropical japonica
IRIS 313-8011	Vietnam	Tropical japonica
IRIS 313-7933	Nepal	Tropical japonica
IRIS 313-11433	India	Tropical japonica
IRIS 313-11478	India	Temperate japonica
IRIS 313-8147	India	Indica
IRIS 313-11428	Brazil	Temperate japonica
IRIS 313-11524	Ivory Coast	Indica
IRIS 313-11525	Guinea-Bissau	Tropical japonica
IRIS 313-11516	Philippines	Indica
IRIS 313-11561	Nepal	Indica
IRIS 313-11563	Nepal	Basmati/sadri
IRIS 313-11564	Nepal	Indica
IRIS 313-11565	Nepal	Indica
IRIS 313-11566	Nepal	Basmati/sadri
IRIS 313-11567	Nepal	Indica
IRIS 313-11568	Nepal	Indica
IRIS 313-11585	China	Temperate japonica
IRIS 313-11624	Nepal	Indica
IRIS 313-11625	Nepal	Basmati/sadri
IRIS 313-11626	Nepal	Basmati/sadri
IRIS 313-11627	Nepal	Intermediate type
IRIS 313-11628	Nepal	Aus/boro
IRIS 313-11629	Nepal	Basmati/sadri
IRIS 313-11630	Nepal	Basmati/sadri
IRIS 313-11632	Nepal	Indica
IRIS 313-11671	Nepal	Temperate japonica
IRIS 313-11672	Nepal	Tropical japonica
IRIS 313-11691	Bhutan	Indica
IRIS 313-11704	Thailand	Indica
IRIS 313-11706	Thailand	Temperate japonica
IRIS 313-11868	China	Indica
IRIS 313-11939	Burkina Fasso	Indica
IRIS 313-11943	Nepal	Indica
IRIS 313-11944	Nepal	Indica
IRIS 313-11956	Nepal	Intermediate type
IRIS 313-11959	Philippines	Indica
IRIS 313-11999	Cambodia	Indica
IRIS 313-12083	Madagascar	Indica
IRIS 313-12093	Nepal	Indica
IRIS 313-12076	Laos	Tropical japonica

IRIS 313-12139	Nepal	Aus/boro
IRIS 313-12180	Nepal	Indica
IRIS 313-12182	Nepal	Indica
IRIS 313-12183	Nepal	Aus/boro
IRIS 313-12190	Laos	Indica
IRIS 313-12207	Laos	Indica
IRIS 313-12261	Laos	Indica
IRIS 313-12352	Laos	Tropical japonica
IRIS 313-10429	Taiwan	Temperate japonica
IRIS 313-10518	Myanmar	Indica
IRIS 313-10623	Nepal	Aus/boro
IRIS 313-10702	Malaysia	Indica
IRIS 313-10706	Malaysia	Indica
IRIS 313-10727	Senegal	Indica
IRIS 313-10731	Nepal	Indica
IRIS 313-10732	Nepal	Basmati/sadri
IRIS 313-10733	Nepal	Indica
IRIS 313-10734	Nepal	Aus/boro
IRIS 313-10735	Nepal	Aus/boro
IRIS 313-10736	Nepal	Aus/boro
IRIS 313-10737	Nepal	Aus/boro
IRIS 313-10768	Indonesia	Indica
IRIS 313-10859	India	Indica
IRIS 313-10874	India	Tropical japonica
IRIS 313-10918	Philippines	Japonica
IRIS 313-10924	Nepal	Indica
IRIS 313-10925	Nepal	Aus/boro
IRIS 313-10926	Nepal	Basmati/sadri
IRIS 313-10927	Nepal	Aus/boro
IRIS 313-10946	Indonesia	Tropical japonica
IRIS 313-10985	Bangladesh	Indica
IRIS 313-11004	Indonesia	Tropical japonica
IRIS 313-10990	Philippines	Indica
IRIS 313-11077	Laos	Tropical japonica
IRIS 313-11122	Philippines	Indica
IRIS 313-11086	Laos	Indica
IRIS 313-11088	Cambodia	Indica
IRIS 313-11210	Ingladesh	Aus/boro
IRIS 313-11232	Aus/boro	
IRIS 313-11330	Indica	
IRIS 313-11376	Tropical japonica	

The table above includes the accession names of the 130 samples used in this analysis, the country that was originated and the variety

Commands and Pipelines

Picard GATK

For FASTA file reformating we used the JAVA-written tool below to in order all lines of sequence to be of the same length.

All reference FASTA sequences for MELT tool applied with the command below :

```
$ java - jar /path/to/picard.jar NormalizeFasta
I=input__reference_TE_Sequence.fa
O=normalized_TE_sequence.fasta
```


Samtools

Indexing for reference FASTA sequences for MELT tool applied using Samtools with the command below :

```
$ samtools faidx reference_sequence.fa
```


Data download

A python script was written and used for the creation of the full links directing to the BAM files to be downloaded from an initial MANIFEST file. The script is documented in the following GitHub repository (https://github.com/Joa nnagare). The BAM files were downliaded using the output of the above script in the command below:

```
wget - no-check-certificate -t 100 -i file
```


TransposonZip file

MELT requirement for transposon.zip file to direct transposable element discovery created using MELT-BuildTransposonZIP runtime with the following command:
\$ java -Xmx1G -jar MELT.jar BuildTransposonZIP
TransposonSequence.fa| Transposon.bed
NAME [mPingElement] ERROR [3]

Preprocessing BAM Files for MELT

In order to to speed up MELT's runtime BAM files where preprocessed using the command below:
\$ java -Xmx2G -jar MELT.jar Preprocess -bamfile sorted.bam -h IRGSP-1.0_g

Running MELT-SPLIT

The pipeline for the Transposable Element discovery follows 4 general steps (IndivAnalysis - TE insertion discovery in individual samples, GroupAnalysis - Merge discovery information across all genomes in project, Genotype Genotyping all samples using merged TE insertion discovery information and MakeVCF - Performing final filtering and merging of individual samples into final VCF). The usage we followed in this study is described below:
\$ java -Xmx6G - jar MELT.jar IndivAnalysis
-w mPingElement -c 14
-h IRGSP-1.0_genome.fasta
-t mPingElement_MELT. zip
\$ java -Xmx6G - jar MELT.jar GroupAnalysis

- w /path/meltsplit -discoverydir /path/mPingElement
-h IRGSP-1.0_genome.fasta
-t mPingElement_MELT.zip -n bedfile
\$ java -Xmx2G - jar MELT.jar Genotype
- w / path/meltsplit -p /path/meltsplit
-h IRGSP-1.0_genome.fasta
-t mPingElement_MELT. zip
\$ java -Xmx2G -jar MELT.jar MakeVCF
-genotypingdir /path/meltsplit -w /path/meltsplit
-h IRGSP-1.0_genome.fasta
-t mPingElement_MELT. zip
-p /path/meltsplit -o ./

Running SweeD

For the SweeD analysis, on control chromosomal positions the following commands were used:

Creation of osf files, for whole chromosomes:
\$ sweed/SweeD-P
-name chr.position.at.ctrl.chr.position.run
-input ctrl.chr. postition.sf
-gridFile ctrl.chr. position -grid 1312 -threads 2
SweeD runs for control chromosomal positions:
\$ sweed/SweeD-P -name ctrl.chr. position.sfrun
-threads 2 -osf ctrl.chr. position.sf
-input 3kSNP_chr.vcf -sampleList chr. position.00/11.out
For specific genetic regions: GridFiles, which contain information about chromosome and position, were created by GridFileCreator.py script.
\$ sweed/SweeD-P -threads 6 -name chr.position.run -input $3 k S N P _c h r . v c f-g r i d F i l e ~ p o i n t s . c h r . s t a r t . e n d . o u t ~$ -grid 1312420 -sampleList name.chr.position. $00 / 11$.out
bedtools closest -a teins.bed -b idsorted -d i mpinfclosestalltogenes.txt

Distance between TE insertion and closest gene estimation

+01	3754285137543284 chr01	3754202937542352 gene_id	0'; transcript_id	"';	500
chr06	44208784421311 chr06	44233084423523 gene_id	"Os06g0187600"; transcript_id	"0s06t0187600-00";	1998
chr12	2207108922071522 chr12	2206427822065027 gene_id	"Os12g0546400"; transcript_id	"Os12t0546400-00";	6063
chr02	2827393428274367 chr02	2826654728266855 gene_id	"Os02g0689133"; transcript_id	"0s02t0689133-00";	7080
chr09	1493473414935167 chr09	1494584514946597 gene_id	"Os09g0417000"; transcript_id	"0s09t0417000-00";	10679
chr04	3504816135048594 chr04	3506622935066636 gene_id	"Os04g0686150"; transcript_id	'Os04t0686150-00";	17636
chr01	3520068035201113 chr01	3517964235180055 gene_id	"Os01g0823800"; transcript_id	"0s01t0823800-00";	20626
chr05	2789796027898393 chr05	2792135027922411 gene_id	"Os05g0561100"; transcript_id	"Os05t0561100-00";	22958
chr04	3260453032604963 chr04	3264350232643554 gene_id	"Os04g0641500"; transcript_id	"0s04t0641500-00";	38540
chr05	32219013222334 chr05	31802843180922 gene_id	"Os05g0154432"; transcript_id	'0s05t0154432-00';	40980

Table 1: Sorted distance from the closest genes found from the filtered polymorphic mPing element insertions.

96454779645910 chr03	
	3
388	
2194234421942777 chro4	
21754775 c	
2795603627956469279456000chros	
27945567	27946000 chr 11
3809204138092474 chro1	
38092041	38992474 chr01
34077518	340779
3407751834077951 chro344208784421311chrob	
1724798917248422 chro4	
7110256	$7110689 \mathrm{chr11}$
228998422889517 chro4	
2142892621429359 chr12	
1833201918676753 chro2	
2202735222027785 chro5	
235386212353905479638487964281chro6	
3489749234897925 chro1	
92527899293222 chro3	
3142632231426755 chro41279835312798786 chro9	
1279835312798786 chr 09	
22071089222071522 chr12	
46372474637680 ch	
1174087	1174520
174087 11744520 chr03	
2122138221221815 chro 072827393428274367 chro2	
$2028486320285296 \mathrm{chr11}$801353801786chri1	
2667527726675710 chro5	
1061987310620306 chr01 3144125331441686 chr04	
8253870825430349722784972711chr06	
${ }_{145852922}^{241452} 2414585725$ chro1	
$14585292214585725 \mathrm{chro9}$	
2816044128160874 chr05	
1393718713937620 chr 0348764354876868 chr11	
${ }_{26135962}^{486136395}$ chro6	
3860668638607119 chr01 1524268915243122 chr09	
1524268915243122 chr09	
1380141313801846 chr10	
1698136516981798 chr082388555423885987 chr03	
23885554238859897 chro3	
2373451523734948 chro6	
2600581126006244 chro3	
844898845	
3502596	3503029
3502596 3503029 chro2	
${ }_{8}^{8155072} 81255505$ chro2	
1193963011940063 chro1	
174889611749339 chro1	
3504816135048594 chro4	
8233	3258666
40341924034625 chro8	
27766212777054 chro1	
16947558169497941 chrre4	
1049261810493351 chro2	
724998035128275724951287388chrog	
1864285418643287 chro7	
17748308	17748741 chr11
3520068035201113 chro1	
27897960 27898993 chro5	
65013846501817	
${ }^{0197988868020141}$	
42224174222850 chro1	
${ }_{2232165}^{2741880427419237} \mathbf{2 2 3 5 9 8}$ chro3 ${ }^{\text {chr } 12}$	
1222336012223793 chr 03	
1222336012223793 chro3	
230177523822208 chro3	
8881839	8882272 chr02
$2041972020420153 \mathrm{chr05}$	
1999474312995176 chro1	
10904743 10909176 chr01	
34135026 34135459 chro4	
41131264113559 chr01 2069591620696349 chr08 2069591620696349 chr08 7739011773944 chro8 1206838612068819 chr03 3077639330776826 chr04	

4298421943259 g		
${ }_{21755178}^{11755432}$ gene_id "ososeg		
2794683427947159 gene_id "0s1190688		
25060417250686 gene_id "0		
32067114000 gene id "0s		
20725 14602774 gene_1d "0s		
1918294		
2353410423534598 gene_id "0s		
3490230334902431 gene_id "Os01908		
314		
2206427822065027 gene-id "0ss		
194396944644286 gene_id "0s		
118		
26654728266855 gene_id "0s0		
	20277402 ge	
793190793744 gene id "Os11901		
3143243431432952 gene_id "Os04g06		
496		
20218162022094 gene-id "0s06g0137		
2469798124697992 gene_id "id "S11966330		
3728842337296952 gene-id "os0190861200";		
${ }_{2518105} 3519196$ gene_id "0		
$11956068119597978{ }^{\text {eneld }}$		
${ }^{1195686881956978 ~ g e n e-i d ~ " O s 0190331650 ", ~}$		
3506622935066636 gene_id "os0490686150		
405303846453376 gene-id "0s089016923		
27577592758049 gene-id "0so19011692544616928752 gene_id 0 os 04993		
1874556418746055 gene-id "os 190904937700";		
${ }^{7229093} 7229311{ }^{\text {a }}$ gene-id "Os		
3517964235189055 gene-id "0s0		
35027923744 gene-id ""		
	6525202 gene_id	
59956445996216 gene_id "0s 08902		
41983484198833 gene_id "0s01901801		
	2572	
1219956512199136 gene_id "0s0		
127968128122791396 gene-id "os0390331200		
510885		
3933672039		
1093162410932347 gene-id "0s5190298200"		
413884141700 gene_id "0solga17945		
727624 2072828984 gene-id "0s		
7048317705184 gene_id "0s03g0246000" 210310812103413 gene_id "0s03g0329400" 081126130811758 gene_id "0s04g0608700"		

tra
tra
tra
tr
tr
tr
tr
tr
tr
tr
tr
ir
ir
tr
tr
tr
tr
t

it_i
"Os02t0705201
"0s03t0281700
"0sut
01-00"; 0

Table 2: Sorted distance from the closest genes found from all mPing element insertions.

Bibliography

Access, Open (2014). "The 3, 000 rice genomes project". In: pp. 1-6.
Alexandrov, Nickolai et al. (2015). "SNP-Seek database of SNPs derived from 3000 rice genomes". In: Nucleic Acids Research 43.D1, pp. D1023-D1027. ISSN: 13624962. DOI: 10.1093/nar/gku1039.
Carpentier, Marie Christine et al. (2019). "Retrotranspositional landscape of Asian rice revealed by 3000 genomes". In: Nature Communications 10.1. ISSN: 20411723. DOI: $10.1038 / \mathrm{s} 41467-018-07974-5$. URL: http://dx. doi.org/10.1038/s41467-018-07974-5.
Chaparro, Cristian et al. (2007). "RetrOryza: A database of the rice LTRretrotransposons". In: Nucleic Acids Research 35.SUPPL. 1, pp. 66-70. ISSN: 03051048. DOI: 10.1093/nar/gkl780.

Civán, Peter et al. (2015). "Three geographically separate domestications of Asian rice". In: Nature Plants 1.November, pp. 1-5. ISSN: 2055026X. DoI: 10.1038/nplants.2015.164.

Civáň, Peter and Terence A. Brown (2018). "Misconceptions regarding the role of introgression in the origin of oryza sativa subsp. Indica". In: Frontiers in Plant Science 871.November, pp. 1-4. ISSN: 1664462X. Doi: 10.3389/fpls. 2018.01750.

Gardner Eugene J. et al. (2017). "The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology". In: Genome Research 27.11, pp. 1916-1929. ISSN: 1088-9051. DOI: $10.1101 / \mathrm{gr} .218032$. 116.

Goerner-Potvin, Patricia and Guillaume Bourque (2018). "Computational tools to unmask transposable elements". In: Nature Reviews Genetics 19.11, pp. 688 704. ISSN: 14710064. DOI: 10 . 1038/s41576-018-0050-x. URL: http : //dx.doi.org/10.1038/s41576-018-0050-x.
Huang, Jian et al. (2009). "Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice". In: Genomics 93.3, pp. 274-281. ISSN: 08887543. DOI: $10.1016 / \mathrm{j}$. ygeno. 2008.11.007. URL: http://dx.doi.org/10.1016/j.ygeno.2008.11.007.
Izawa, Takeshi (2008). "The Process of rice domestication: A new model based on recent data". In: Rice 1.2, pp. 127-134. ISSN: 19398425. DOI: 10.1007/ s12284-008-9014-7.
Jiang, Ning et al. (2003). "An active DNA transposon family in rice". In: Nature 421.6919, pp. 163-167. ISSN: 00280836. DOI: 10.1038/nature01214.

Jiang, Ning et al. (2004). "Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs)". In: Current Opinion in Plant Biology 7.2, pp. 115-119. ISSN: 13695266. DOI: 10.1016/ j.pbi.2004.01.004.

John Maynard Smith, John Haigh (1974). "Hitch-Hiking Effect of a Favourable Gene". In: Population Genetics 1974, pp. 109-114. DOI: 10.1007/978-1-4613-3924-3_7.

Kazuhiro, Kikuchi et al. (2003). "The plant MITE mPing is mobilized in anther culture". In: Nature 421.6919 , p. 167.
Kidwell, M. (1993). "Lateral Transfer in Natural Populations of Eukaryotes". In: Annual Review of Genetics 27.1, pp. 235-256. ISSN: 00664197. DOI: 10. 1146/annurev.genet.27.1.235.
Kidwell, Margaret G and Damon R Lisch (2000). "MG Kidwell et al 2000 Review.pdf". In: 15.3, pp. 95-99.
Larribe F., Fearnhead P. (2011). "On composite likelihoods in statistical genetics". In: Statistica Sinica 21.1, pp. 43-69. ISSN: 1017-0405.
Li, Jia Yang, Jun Wang, and Robert S. Zeigler (2014). "The 3,000 rice genomes project: New opportunities and challenges for future rice research". In: GigaScience 3.1, pp. 1-3. ISSN: 2047217X. DOI: 10.1186/2047-217X-3-8.
Lin, Xiuyun et al. (2006). "In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization". In: Journal of Experimental Botany 57.10, pp. 2313-2323. issn: 00220957. DOI: 10 . 1093/jxb/erj203.
Lu, Chen et al. (2012). "Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in oryza sativa". In: Molecular Biology and Evolution 29.3, pp. 1005-1017. ISSN: 07374038. DOI: 10.1093/ molbev/msr282.
Lu , Lu et al. (2017). "Tracking the genome-wide outcomes of a transposable element burst over decades of amplification". In: Proceedings of the National Academy of Sciences 114.49, E10550-E10559. ISSN: 0027-8424. DOI: 10. 1073/pnas. 1716459114.
Martin, Sandra L. and David J. Garfinkel (2003). "Survival strategies for transposons and genomes". In: Genome Biology 4.4. ISSN: 14656906. DOI: 10. 1186/gb-2003-4-4-313.
Naito, Ken et al. (2009). "Unexpected consequences of a sudden and massive transposon amplification on rice gene expression". In: Nature 461.7267, pp. 1130-1134. ISSN: 00280836. DOI: 10.1038/nature08479. URL: http: //dx.doi.org/10.1038/nature08479.
Naito, Ken et al. (2014). "mPing: The bursting transposon". In: Breeding Science 64.2, pp. 109-114. ISSN: 1344-7610. DOI: 10.1270/jsbbs.64.109.
Nakazaki, Tetsuya et al. (2003). "Mobilization of a transposon in the rice genome". In: Nature 421.6919, pp. 170-172. ISSN: 00280836. DOI: 10.1038/ nature01219.
Nielsen, Rasmus (2005). "Molecular Signatures of Natural Selection". In: Annual Review of Genetics 39.1, pp. 197-218. ISSN: 0066-4197. DOI: 10.1146/ annurev.genet.39.073003.112420.
Oki, Nobuhiko et al. (2008). "A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica". In: Genes \mathcal{G} Genetic Systems 83.4, pp. 321-329. ISSN: 1341-7568. DOI: 10. 1266/ggs.83.321.
Pavlidis, Pavlos and Nikolaos Alachiotis (2017). "A survey of methods and tools to detect recent and strong positive selection". In: Journal of Biological Research-Thessaloniki 24.1, pp. 1-17. ISSN: 2241-5793. DOI: 10.1186/ s40709-017-0064-0.
Pavlidis, Pavlos et al. (2013). "SweeD: Likelihood-based detection of selective sweeps in thousands of genomes". In: Molecular Biology and Evolution 30.9, pp. 2224-2234. ISSN: 07374038. DOI: $10.1093 / \mathrm{molbev} / \mathrm{mst} 112$.

Sabot, Francois (2014). "Tos17 rice element: Incomplete but effective". In: Mobile DNA 5.1, pp. 2-5. ISSN: 17598753. DOI: 10.1186/1759-8753-5-10.
Stein, Joshua C. et al. (2018). "Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza". In: Nature Genetics 50.2, pp. 285-296. ISSN: 15461718. DOI: 10.1038/s41588-018-0040-0. URL: http://dx.doi.org/10.1038/ s41588-018-0040-0.
Volff, Jean Nicolas (2006). "Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes". In: BioEssays 28.9, pp. 913-922. ISSN: 02659247. DOI: 10.1002/bies. 20452.

Wicker, Thomas et al. (2007). "A unified classification system for eukaryotic transposable elements". In: Nature Reviews 8, pp. 973-982. ISSN: 14710056. DOI: doi:10.1038/nrg2165. URL: https://www.nature.com/articles/ nrg2165.pdf.
Wildschutte, Julia Halo et al. (2016). "Discovery of unfixed endogenous retrovirus insertions in diverse human populations". In: Proceedings of the National Academy of Sciences 113.16, E2326-E2334. ISSN: 0027-8424. DOI: 10. 1073/pnas. 1602336113.
Zhang, Qun-Jie and Li-Zhi Gao (2017). " Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species ". In: G3ఆ\#58; Genes-Genomes-Genetics 7.6, pp. 1875-1885. DOI: 10.1534/g3.116.037572.

