
AMITEST: A FRAMEWORK FOR SEMI-
AUTOMATED TESTING OF AMBIENT

INTELLIGENCE ENVIRONMENTS

Nikolaos Louloudakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Constantine Stephanidis

2

This work has been supported by the Institute of Computer Science (ICS),
Foundation for Research and Technology Hellas (FORTH).

3

University Of Crete
Computer Science Department

AMITEST: A FRAMEWORK FOR SEMI-
AUTOMATED TESTING OF AMBIENT

INTELLIGENCE ENVIRONMENTS

Thesis submitted by
Nikolaos Louloudakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

 Author: ___

 Nikolaos Louloudakis, Department Of Computer Science

Committee approvals:___

Constantine Stephanidis

Professor, Thesis Supervisor

Anthony Savidis

Professor, Committee Member

Margherita Antona

Principal Researcher of ICS-FORTH, Committee Member

Department approval:___

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, April 2017

4

5

I. TABLE OF CONTENTS

Contents

I. Table Of Contents .. 5

II. Table Of Figures ... 7

III. Table Of Codeblocks ... 8

IV. Περιληψη .. 9

V. Abstract ...11

VI. Acknowledgments ..13

1. Introduction ..15

1.1. Problem Statement ..16

1.2. The AmI Paradigm ...17

1.3. Programming in AmI ..19

1.4. The Role Of Testing In Programming ...20

1.5. Modern Software Testing Methods ...21

i. Unit Testing ..21

ii. Integration Testing ..22

iii. End-To-End Testing ..22

1.6. AmI Solertis ..23

i. Overview ..23

ii. Motivating Scenario ..26

iii. System Architecture ..30

iv. The Need For Testing..38

2. The AmITest Framework ...41

2.1. The Concept ...42

2.2. Related Work ...45

2.3. Testing Approach ...50

2.4. System Requirements ..51

3. Framework Architecture ..54

3.1. Test Composition Wizard ...58

i. Overview ..58

6

ii. Basic Information Collection ...59

iii. Test Outline Definition ...60

iv. Artifacts Selection ..61

v. Stub Creation and Selection ...61

vi. Test Composition ...62

vii. Test Overview ..65

viii. Technologies Used ...66

3.2. Files and Databases Manager ..67

3.3. Test Code Generator ...67

i. Swagger Generation ..68

ii. Stubs API Generation ..69

iii. Tests Code Preparation ..69

iv. Artifact Proxies Generation ..69

v. Test Composition ...70

vi. Visual Language to Code composition ...73

3.4. Tern Definitions Autocompletion Generator ..74

3.5. Metadata Information Extractor ..75

3.6. Execution Runtime ..76

i. Stubs and Mocks Manager ..76

ii. Behavioral Scripts Executor ...77

iii. Testing Commands and Assertions Executor ..78

3.7. Test Reporter ...79

3.8. Challenges ...81

4. Evaluation ..83

4.1. Scenario 1..84

4.2. Scenario 2..88

4.3. Scenario 3..93

4.4. System Usability Scale ..94

4.5. Debriefing and User Comments ...95

5. Future Work ..97

6. Conclusions ... 101

7. References ... 102

7

II. TABLE OF FIGURES

Figure 1- Universal Service Repository & Middleware Components 32

Figure 2 - Packaging and Deployment Components .. 33

Figure 3- Execution & Health Monitoring Components .. 34

Figure 4 - Social Features Components ... 34

Figure 5- Various Components - Generic Purpose Category ... 35

Figure 6 - Artificial Intelligence Category ... 36

Figure 7 - Analytics Category .. 37

Figure 8- Authoring Tools Category ... 38

Figure 9 - AmITest Architecture .. 57

Figure 10 - Test Creation Step .. 60

Figure 11 - Create Test Outline Step ... 61

Figure 12 - Artifacts Selection Step ... 62

Figure 13 - A Blockly Code Block ... 63

Figure 14 - Test Writing Step - with prefilled code .. 64

Figure 15 – Test Writing Step - Autocompletion ... 65

Figure 16 - Test Overview Step .. 66

Figure 17 - HandlebarsJS Template for Proxies Generation (partial) 70

Figure 18 - HandlebarsJS Template for Test Generation .. 72

Figure 19 - Tern Definition of a Light Control Proxy ... 75

Figure 20 - Command Prompt from the Execution Runtime Process 79

Figure 21 - Test Report – All Tests Passed ... 79

Figure 22 – Test Report -A Test Failed .. 80

Figure 23 - Among Others, Reporting Allows Filtering Capabilities 81

Figure 24 - Execution Time - Scenario 1 ... 85

Figure 25 - Help Requested - Process/Beyond UI - Scenario 1 85

Figure 26 - UI Help Asked - Scenario 1 .. 86

Figure 27 - UI Errors - Scenario 1 .. 87

Figure 28 - Code: Help Asked - Scenario 1 ... 87

Figure 29 - Code Errors - Scenario 1 .. 88

Figure 30 - Execution Time - Scenario 2 ... 89

Figure 31 - Help asked, regarding process/ Beyond UI - Scenario 2 89

Figure 32 - Process/Beyond UI Errors - Scenario 2 ... 90

Figure 33 - UI - Help asked - Scenario 2 .. 91

Figure 34 - UI Errors - Scenario 2 .. 91

Figure 35 - Code: Help Asked - Scenario 2 ... 92

Figure 36 - Code Errors - Scenario 2 .. 92

Figure 37 - Execution Time - Scenario 3 ... 93

Figure 38 - Beyond UI - Help Asked - Scenario 3 ... 94

Figure 39 - SUS Score/per user .. 94

8

III. TABLE OF CODEBLOCKS

Code Block 1 - Simple Behavioral Definition (pseudo code) .. 42

Code Block 2 - A simple testing script (pseudo code) ... 43

9

IV. ΠΕΡΙΛΗΨΗ

Η Διάχυτη Νοημοσύνη (Ambient Intelligence - AmI) έχει σταδιακά εξελιχθεί από ένα

ερευνητικό αντικείμενο σε μία καθημερινή πραγματικότητα (π.χ. Internet of Things -

αντικείμενα συνδεδεμένα στο internet), δημιουργώντας στους τελικούς χρήστες (είτε

αυτοί είναι επαγγελματίες του IT ή χρήστες με ελάχιστες τεχνολογικές γνώσεις) την

επιτακτική ανάγκη να μπορούν να προσαρμόσουν ή να προγραμματίσουν εκ νέου

την συμπεριφορά Έξυπνων Περιβαλλόντων. Ο προγραμματισμός τέτοιων

κατανεμημένων, ετερογενών και πολύπλοκων συστημάτων αποτελεί από μόνο του

ένα δύσκολο έργο, πόσο μάλλον η διαδικασία επαλήθευσης της ορθότητας της

συμπεριφοράς τους. Το τελευταίο μάλιστα είναι εξίσου δύσκολο αλλά ακόμα πιο

σημαντικό, καθώς η επιβεβαίωση της ορθής απόκρισης ενός έξυπνου

περιβάλλοντος σε συγκεκριμένα ερεθίσματα, αποτελεί έναν από τους πιο κρίσιμους

παράγοντες για την αποδοχή του από τους τελικούς χρήστες.

Για αυτό το σκοπό, προτείνουμε μία υποδομή ελέγχου ορθότητας (testing) της

συμπεριφοράς Έξυπνων Περιβαλλόντων, ονομαζόμενη AmITest. Η συγκεκριμένη

υποδομή επιτρέπει με απλό τρόπο τον έλεγχο ορθότητας της συμπεριφοράς κάθε

έξυπνου αντικειμένου ξεχωριστά, αλλά και του έξυπνου περιβάλλοντος ως σύνολο.

Για να απλοποιήσει την συνολική διαδικασία ελέγχου, το AmITest, που αποτελεί

σημαντικό κομμάτι του AmI Solertis (μίας εξειδικευμένης σουίτας προγραμματισμού

περιβαλλόντων Διάχυτης Νοημοσύνης η οποία αναπτύχθηκε στο Εργαστήριο

Αλληλεπίδρασης Ανθρώπου-Υπολογιστή του ΙΠ-ΙΤΕ), χρησιμοποιεί όλες τις μετα-

πληροφορίες σχετικά με τα έξυπνα αντικείμενα που υπάρχουν στο περιβάλλον,

καθώς και τους κανόνες της συμπεριφοράς τους. Πιο συγκεκριμένα, μέσω ενός

απλού Wizard, ακόμα και οι λιγότερο τεχνολογικά έμπειροι χρήστες μπορούν να

συνθέσουν εύκολα τους ελέγχους που επιθυμούν, ενώ η διαδικασία

ενορχήστρωσης της εκτέλεσης των ελέγχων αναλαμβάνεται αυτόματα και εξ’

ολοκλήρου από το AmITest.

10

Το AmITest βασίζεται στην ευρέως διαδεδομένη γλώσσα προγραμματισμού

JavaScript, σε συνδυασμό με έναν αριθμό υποδομών της, όπως οι Promises για

ασύγχρονο προγραμματισμό και οι Mocha και Chai για την εφαρμογή ελέγχων

(testing), στοχεύοντας την επίτευξη της μέγιστης αποδοτικότητας και της παροχής

ενός αποτελεσματικού μηχανισμού ελέγχου ορθότητας με τον πιο άμεσο δυνατό

τρόπο.

Το AmITest παρέχει τη δυνατότητα πραγματοποίησης των ελέγχων σε ένα

περιβάλλον προσομοίωσης, στο οποίο οι έλεγχοι ορθότητας μπορούν να

εκτελεστούν «απομονωμένα», χωρίς να επηρεάζουν τις πραγματικές συσκευές του

χώρου. Αυτό επιτυγχάνεται με μηχανισμούς εξομοίωσης αντικειμένων (π.χ.,

προσομοίωση του τρόπου αντίδρασης ενός αντικείμενου στα διάφορα ερεθίσματα)

και «τοπική» εκτέλεση κώδικα συμπεριφοράς.

Με το πέρας ενός ή περισσοτέρων ελέγχων, το AmITest μέσα από μια πλούσια

γραφική διεπαφή παρουσίασης αναφορών, μεταφέρει τα αποτελέσματα εκτέλεσης

τους στον χρήστη, ώστε να επαληθεύσει την ορθότητα ή μη της συμπεριφοράς του

περιβάλλοντος. Επιπλέον, αυτή η πληροφορία παρέχεται και ως είσοδος στο

κεντρικό σύστημα του AmI Solertis για περαιτέρω μελέτη με στόχο την εύρεση

προβληματικών συμπεριφορών και τη διασφάλιση της σταθερότητας του

περιβάλλοντος μέσω συστηματικού ελέγχου.

11

V. ABSTRACT

Ambient Intelligence (AmI) has gradually evolved from an emerging research

paradigm to an everyday reality (e.g., Internet of Things) and, therefore, end-users –

ranging from IT-experts to novice users – have a need to program or adapt the

behavior of “Smart” Environments. Programming such highly-distributed,

heterogeneous and complex systems is a challenging task, let alone validating their

behavioral aspects. The latter is a rather difficult but crucial process, since such factors

eventually determine their acceptance and perceived usability.

The AmITest framework facilitates testing and validation of the functionality of each

individual artifact and of the environment’s behavior as a whole in a straightforward

manner. As a core component of the AmI Solertis - a development and orchestration

studio for AmI Environments developed in the HCI Laboratory of ICS-FORTH –

AmITest utilizes the available meta-information regarding the installed artifacts and

behavior definitions, in order to simplify the overall testing process. More specifically,

a wizard-like process enables even less-experienced users to easily compose the

desired tests, while the test execution orchestration is automatically handled by the

proposed framework.

AmITest heavily relies on the widely used JavaScript language and a number of

reliable frameworks, including the Promises for asynchronous programming and

Mocha and Chai for testing, aiming to achieve maximum efficiency, along with the

provision of an effective validation mechanism in the most straightforward manner.

To minimize its footprint and increase its usability, AmITest optionally offers a

sandboxed environment in which testing can be executed without affecting the actual

system and its artifacts. Specifically, it provides artifact impersonation capabilities

(e.g., mock how a smart artifact reacts to stimuli) and local behavioral script execution.

Finally, the internal reporting system of AmITest delivers the test execution outcome

to the tester through a rich Graphical User Interface (GUI) in order to assess the

effectiveness of the behavioral script and validate the desired assertions and

invariants. That information is also fed back to the AmI Solertis system to be further

12

examined for potential erroneous behaviors and to ensure the environment’s stability

via its inherent continuous validation and integration process.

13

VI. ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor, head of the Human-Computer

Interaction Laboratory of the ICS-FORTH and professor at the University of Crete, Dr.

Constantine Stephanidis, for his trust, continuous support, overall supervision and

guidance in the whole period of my Master’s Degree studies.

I would also like to thank Mr. Asterios Leonidis for the amazing collaboration and his

continuous support, valuable advices and assistance for this whole period.

I am also grateful to Dr. Anthony Savidis, professor of the University of Crete and

principal researcher of the ICS-FORTH, and Dr. Margherita Antona, principal

researcher of the ICS-FORTH for their participation in the supervisory committee.

In addition, I would like to thank all of my colleagues for our excellent collaboration

during my Master’s studies.

I would also like to thank all my friends for supporting me through this period.

But most of all, I would like to thank my parents, Andriani and Konstantinos, but also

my brother Stefanos, for their continuous support, love and encouragement, and for

standing by my side through this whole period. Without them, I would not be the

person I am today and they mean so much to me.

Last but not least, I am grateful and thankful to God, for giving me this amazing

opportunity to learn new, amazing things, help others when possible, meet some

amazing people, and become a better person through this whole process.

14

στην οικογένειά μου

15

1. INTRODUCTION

As Information Technology evolves, the traditional interaction paradigm where

humans are just the operators of stationary machines is revolutionized by the

concepts of Ambient Intelligence [1][2] and Pervasive Computing [3]. These concepts

introduce innovative ecosystems in which humans are surrounded by ubiquitous

technological artifacts (e.g., sensors, actuators, smart devices, etc.) and computational

units that enrich their environment in a smart, transparent and unobtrusive way. In

such environments (i.e., AmI Environments), ubiquitous artifacts can reason,

collaborate and interact proactively in order to improve the quality of life of humans,

by satisfying their needs and offering assistance in their daily activities.

The list of the application domains whose users could be benefited by such intelligent

environments is rather endless, ranging from the automation of repetitive tasks (i.e.,

daily routines) in order to offer more free time to their inhabitants for other activities,

to improving the overall quality of life of specific groups of people (e.g., people with

disabilities, elderly, etc.) by assisting them with their daily activities.

A key requirement of an Ambient Intelligence ecosystem is that their behavior and

interaction policies need to be easily programmed by their end-users, who most likely

will not be computer professionals. A very important aspect though is that such

environments are of high architectural and computational complexity. Therefore, not

only programming is a challenging task, but also the proper testing and validation of

the behavior of those environments is of utmost importance. Towards such objective,

this thesis proposes the AmITest Framework, a testing framework for AmI

environments.

AmITest aims eventually at supporting both the users that define the behavior of the

Smart Environment (i.e., Smart Environment programmers), as well as the end-users

of the Smart Environments themselves (e.g., house inhabitants, doctors, teachers,

students etc.) with the least learning curve. The programming expertise of AmITest

users however may vary greatly ranging from motivated users, who want to modify

the intelligent environment they work into, to experienced IT professionals who

determine in detail the behavior of the environment and the contained facilities. In

order to accommodate the full range of IT skills of its users, AmITest aims to ultimately

simplify the testing process, by providing features of guided test composition, along

16

with visual programming and other sophisticated programming capabilities for the

tests definition. The AmITest framework is a novel part of the AmI Solertis Framework

[4][5] that provides testing capabilities using well known testing and assertion

frameworks in order to test the artifacts of the Smart Environment being tested as

subject.

1.1. Problem Statement

Inside an Ambient Intelligence ecosystem, an increasing number of artifacts exist,

work together and collaborate at the same time, with the ultimate aim of assisting the

lives of its inhabitants, meeting their needs and making their lives easier in the most

effective way. However, in order for the ecosystem to meet such objectives effectively,

it must work properly and as expected at all times, without problems, and, even if a

problem arises, it must be detected and resolved in the most optimal way, in the

shortest possible amount of time. In the case that this is not met, the system might fail

its aims in partial or fully, or, even worse, act against its inhabitants explicitly or

implicitly, leading to catastrophic sequences to its inhabitants. Therefore, the Ambient

Intelligence Environment needs to be tested thoroughly in an effective manner. In fact,

the ecosystem must be in a continuous testing state while working, in order to ensure

that it is working properly, and that any flaws detected while operating will be

resolved as effectively and fast as possible and that, if this is not possible, the system is

going to proceed to failsafe actions and inform its inhabitants about the cause and

effects of a potential problem.

One state-of-the-art system for the programming of Ambient Intelligence ecosystems

is AmI Solertis [4][5]. AmI Solertis is a complete studio for the design and

orchestration of ambient intelligence systems that provides a complete set of tools for

that cause, developed in the context of the ICS-FORTH Ambient Intelligence Research

Programme. However, providing programming capabilities for such an ecosystem is

not sufficient; as explained before, the validation of the system behavior is crucial.This

thesis introduces AmITest, a complete and sophisticated, yet easy to use suite for the

testing of the behavior of Ambient Intelligence applications, whose programming

17

behavior is specified in the AmI Solertis system. AmITest is a core module and an

integral part of AmI Solertis, aiming to ensure that the behavioral programming of an

AmI ecosystem is performed correctly and in an efficient way.

AmITest provides a complete set of tools to the developer of the Smart Environment,

that the developer can use in order to validate the behavior of the system.

In AmI Solertis, the behavior of the Smart Environment is defined via a set of scripts

deployed and executed. Such scripts handle the artifacts of the ecosystem as simple

programming modules. Taking this into consideration, AmITest is able to test the

behavior of those artifacts individually, but also test their behavior defined inside an

AmI Solertis script. This procedure is independent of the deployment state of such a

script, giving the ability of sandboxed execution of the script in order to check the

validity of its behavior.

1.2. The AmI Paradigm

At the very beginning of modern Computer Science, computers were constructed for

the performance of very specific tasks, mainly focusing on the part that computers

know how to do well: fast computations. With computers large as half a football field,

those machines focused on the performance of very specific tasks, forcing their users

to conform to the strict requirements of their usage, such as printing cardboards, etc.

This was used for many alternative usages, from flying to space till managing to beat

the Chess World Champion Gary Kasparov at that time. Yet those tasks remained very

specific and inside limited contexts.

With the invention of Personal Computers, computers started becoming more of

toolsets under a more specific area that would play the role of assistants to the user.

Then internet came to place, and the whole world started connecting via those

“assistants”, that provided access to limitless information. In parallel, mobile devices

started gaining ground – and reducing in size, until we reached a new era: the era of

Smartphones, mobile, handheld devices, primarily working as phones but also

containing a number of useful features out of the box, including the active provision of

access to the internet, attempting to meet the needs of their users.

18

Today, this “smartness” of devices has reached to a new level: devices increased their

number of features, aiming to meet the needs of their users as effectively as possible.

For that cause, the devices increased both their number of operations and their

abilities to infer information from their context of use. Among other features, the

devices started including the automatic usage and access of the internet in order to

improve their features and ultimately attempt to cover the needs of their users

optimally.. This resulted into the era of the Internet of Things[6], meaning is the inter-

networking of physical devices, vehicles (also referred to as "connected devices" and

"smart devices"), buildings, and other items—embedded with electronics, software,

sensors, actuators, and network connectivity that enable these objects to collect and

exchange data.

Nowadays, we have reached into talking about a new era; the era of Ambient

Intelligence: instead of monolithic systems that heavily rely on the direct interaction

of their users, we can talk about systems – in fact, whole environments consisting of

both technological artifacts of diverse technologies and human inhabitants, in which

these artifacts behave asynchronously, yet harmoniously between each other,

sensitive to the presence of people and dependent on their direct, but also indirect

interactions with them. Ultimately, the environment should aim in the optimal

coverage of the needs of its human inhabitants, but also on act proactively regarding

its healthy and effective operation, applying “critical thinking” and “smartness”, in a

sense.

These artifacts eventually compose a unified computing entity, which is pervasive,

ubiquitous and unobtrusive inside the human environment, yet it does not only exist,

but actively acts for the benefit of its human inhabitants.

The term Ambient Intelligence was originally developed in the late 1990s by Eli Zelkha

and his team at Palo Alto Ventures for the time frame 2010-2020 [7].

19

1.3. Programming in AmI

Some of the main characteristics of an AmI environment is that it consists of a set of

diverse technological artifacts, each one having its own traits, and that those artifacts

have to work in harmonious, yet asynchronous collaboration between each other,

being first class citizens of a technological ecosystem, in order to cover the needs of its

human inhabitants. The long-living optimal usage of those artifact systems is highly

desired, considering that their acquisition contains important financial costs and that a

potential malfunction could cause problematic behavior and result to additional time

and financial costs regarding their repair or replacement. .

In order for the system to be programmable, all the above factors must be considered.

An AmI ecosystem is a very complex entity consisting of a number of smaller, yet

complex entities by themselves. All these entities communicate between each other

asynchronously, and although they perform atomic, internal operations, they are

implicitly or explicitly associated between each other.

In order to maximize the efficiency, extensibility and adaptation to the needs of their

users, AmI systems need to be programmable, in fact not only by professional

developers, but also by the users of the system itself, giving them the ability to

program and modify the behavior of the system itself, based on their current needs,

being able to modify it later on, or extend its behavior even further. Considering

though that their users are primarily non-computer professionals, giving them the

ability to program those environments is a task difficult by itself, as those

environments are of high architectural and computational complexity. In addition, it is

of high importance that those environments work as expected, making the testing and

the validation of their behavioral aspects a crucial part of the development process.

In conventional systems, several cases require the provision of programming

capabilities to non-computer professionals. This is performed mainly for reasons of

learning the programming fundamentals via specific paradigms, such as jigsaw puzzles

[8] and diagram connection mechanisms [9][10], each one having their own

advantages and disadvantages [11]. Another area of usage of such provision is for the

purposes of system configuration and tasks automation [12] but also the automation

20

of cause-effect operations. In that case, the user is able to specify specific actions

performed (effect) when an event occurs (cause)[13]. In addition, there are systems

that provide simulation-based behavior, such as the configuration of visual

components inside a 3D model space [14].

In Ambient Intelligence environments, such paradigms can be partially introduced,

along with other important aspects: considering that the actions are applied on an

environment, end-user programming capabilities must be provided along with a

number of information, including the particular sub-systems which exist inside the

AmI environment, some descriptive information of how they work, along with the

provision of related information about them. Paradigms such as jigsaw puzzles can be

used effectively for small “scripts”, considering that the programming of such systems

must be straightforward, avoiding flooding the developer of the system with much

information or requiring much configuration via large code snippets.

1.4. The Role Of Testing In Programming

As modern software size and number of technologies has come to an explosion since

its birth – especially in the last 10 years. While in the first years that programming

appeared, software code was limited to a few hundreds to thousands of Lines of Code

(LOC), it was more manageable in terms of error detection mainly via static testing,

and only the usage of very basic dynamic testing: code inspection and reviews, along

with the usage of simple assertions, despite the lack of a variety of high level

programming languages. Nowadays though, we have reached millions to billions LOC

in large-scale projects, and this code cannot be easily managed for flaws and errors.

It is widely known, that “to err is human”. Humans write code that will in most cases

contain undesired behavior (we call them bugs), that can lead to the problematic or

even catastrophic behavior of a system. While there are situations where minor bugs

are manageable and tolerable, in general they are considered unwanted and need to be

fixed as soon as possible. Furthermore, it is important to assist the developer create

less such. A number of tools and techniques have been developed in order to assist the

21

developer avoid problems while writing code, from the syntax analysis and error

detection that typical compilers provide, to sophisticated auto completion capabilities.

Eventually, the aim is to have a system with no problematic behavior. But in order to

be sure about that, one has to check all the possible states of the system in order to

ensure this is true. In practice, this is not possible. However, we can lead the system to

the most common and important states, and check for the desired behavior. To this

purpose, a system needs to be tested for the correctness of its behavior.

Nowadays, testing consists of a crucial procedure inevery project taken seriously.

Therefore, the need of automatic inspection and analysis of code emerges.

In many cases, this procedure has also become automated; a number of tests are

executed in various development phases. This process is called Continuous Integration

(CI)[15].

1.5. Modern Software Testing Methods

Testing is split in two major categories: static and dynamic testing.

Static testing is about attempting to detect errors inside the code by analyzing it

without executing it. Popular methods are code inspection, walk through and reviews.

Dynamic testing focuses on the analysis of code via its execution. Nowadays,

there are three main categories regarding dynamic testing [16] [17]: Unit Testing,

Integration Testing and End-to-End testing.

i. Unit Testing

Unit Testing focuses of the testing of the smallest code units inside the code. While the

term “smallest unit” is not well-defined, the concept is to perform tests on single lines

or small snippets of code that does not perform time-consuming operation such as

network or file manipulation calls, in order to check its logical validity. Such tests are

considered very fast, and are used extensively while performing Continuous

Integration (CI) procedures, and provide better isolation in terms of the units under

test, applying tests into small programming units, without including external

operations such as disk IO or network operations.. Their results though provide less

22

confidence on the result of the testing process, because to their limited testing scope –

the success of a specific unit test cannot provide much guarantees regarding the valid

total operation of a system.

ii. Integration Testing

Integration or Service Testing aims to check the validity of the system by validating the

behavior of its integral parts – that can be from functions to whole components. Such

components may or may not include more complex operations, such as the usage of

API calls via network, disc I/O operations and more. While Integration Tests check a

larger portion of the system, they are much slower that Unit Tests, due to the

application of time-consuming operations, such as those described above. Therefore,

their usage is not as extended in numbers as Unit Tests in CI cycles.

Integration Tests though provide better confidence on the test results of the systems,

providing a better view of the total behavior of the system, as their testing scope goes

beyond just a few lines of code, and focuses on the components, the “building blocks”

of the system, along with their internal and/or external operations, thus providing less

isolation than Unit Tests.

iii. End-To-End Testing

End-To-End or UI Testing relates to the testing of the system by performing operations

as a user to it, usually at the front-end, and then validating its behavior. This

commonly includes the automation of form filling, button clicking and navigation

operations, aiming to test the behavior of a system as a whole, or, at least, split to its

largest components. While such testing can provide valuable results regarding the

overall behavior of the system, similar to how a user would use it, their application

results to the usage of higher level parts of the system, without providing testing

capabilities at low-level, internal mechanisms, thus providing limited flexibility and

isolation of the parts of the system. In addition, as those tests use large parts of the

system under test, they are much slower than integration tests. They can provide a

total view of whether or not the main parts of the system behave well or not, giving big

confidence of their testing outcomes, considering that if such tests pass, there is a very

high possibility that the system behaves as expected.

23

While these techniques are widely used with success in conventional software

development, they cannot easily transfer to Ambient Intelligence, due to the facts that

an AmI ecosystem consists of a number of artifacts that act asynchronously, but in

collaboration between each other via a Service-Oriented Architecture. Therefore, unit

testing could not apply, as most of the functionality of the artifacts under test uses

external operations such as the network. In addition, the user might interact with the

system via direct, but also unintentional, indirect actions. Therefore, conventional end-

to-end testing would not be sufficient, as many actions from the system do not come as

a result with User Interfaces. On the other hand, Integration testing could be effective,

considering that each artifact inside the ecosystem could be considered as an integral

part of it. Of course, unit testing and end-to-end testing could be applied in specific

cases inside an AmI environment – such as in Continuous Integration but also the

interaction validation of specific artifacts as isolated components inside the ecosystem,

but the main point is that the AmI ecosystem is practically an entity consisting of many

smaller integral parts, that use external operations, thus making integration testing

the most ideal candidate as the basis of testing in Ambient Intelligence.

1.6. AmI Solertis

i. Overview

As mentioned previously, an Ambient Intelligence (AmI) ecosystem, also known and as

Smart Environment (SE) consists of a variety of different sub-systems or artifacts

involving a considerable number of diverse technologies. These artifacts are not

isolated entities though. In fact, they are considered first class citizens of the

ecosystem. In an AmI environment, those “citizens” must have the ability to

communicate between each other, or be aware of events that occur within the

ecosystem, in order to proceed with actions depending on their logic in case they are

affected. To this purpose, a protocol, or a common specification must be defined.

The aim of an AmI environment is to acknowledge the needs of its human inhabitants

and to attempt to meet them in the best way possible. This means that the behavior of

the ecosystem must be a response to the cues given from those inhabitants, in

24

combination with a number of side actions and results of the inference of ecosystem

mechanisms.

In order for the artifacts of the Smart Environment to be able to behave in a way that

will eventually meet the needs of the ecosystem’s human inhabitants, their behavior

must be adaptable, and, therefore programmable. There is a very important aspect

about the programming of an AmI environment though; in traditional systems, their

developers are usually people with expert IT skills, far beyond the skills of the median

end-user of the system. In AmI environments, in order for the ecosystem to be able to

behave the best possible way according to the needs of its end-user, the end-user

should be able to heavily customize its behavior. This leads into the fact that the

inhabitants of the ecosystems could be potential “developers” of the system, but

without necessarily having professional programming knowledge – in fact, their

Information Technology (IT) skills might differ, from totally novice to expert.

Therefore, the ecosystem should provide programming capabilities in a transparent,

yet simplified and thorough way, also considering and covering a wide range on

human inhabitant knowledge levels and skills on IT. Considering also that the sub-

systems of the AmI ecosystem behave as first class citizens of the ecosystem and that

their behavior is affected from the behavior of other systems, their programming

should not be performed individually, but as a part of a greater entity, a unity of those

sub-systems. In practice, this means that the programming capabilities provided to the

developer of the ecosystem should be unified. Considering though that the AmI

ecosystem consists of a number of technologically diverse artifacts of high

computational and architectural complexity leading into a large and complex

ecosystem, the “developer” should follow a “divide and conquer” approach. In

addition, the complexity of those sub-systems should be hidden from the developer for

the sake of programming simplicity, including the complexity of their interactions.

In addition, the behavior of such an ecosystem needs to be validated at times, in order

to ensure that not only the needs of its human inhabitants are met, but that the system

does not behave against the sake of its human inhabitants. For that cause, a testing

mechanism should be defined that will examine and test the behavior of the ecosystem

and its sub-systems, in order to ensure their correct functionality and behavior.

25

All these facts and challenges lead to the need of a unified programming environment

that will allow the programming of an AmI ecosystem as a whole, taking into account

that the AmI ecosystem consists of a number of technologically diverse and complex

sub-systems that communicate asynchronously. The system should hide such

complexity as much as possible from the developer, and deal with the problems that

arise from their asynchronous communication, while providing features for the

straightforward and extensive validation of the ecosystem.. To this purpose, the

Ambient Intelligence Research Programme of ICS-FORTH has developed AmI Solertis [4],

a studio for Ambient Intelligence applications development.

In practice, AmI Solertis is a complete suite of tools that allow the management,

programming, testing and monitoring of all the separate artifacts of an AmI Smart

ecosystem, but also of the ecosystem itself as a whole. This is achieved via the usage of

a number of different components, responsible for the collection, storage and analysis

of metadata and information regarding the artifacts of an AmI Ecosystem, the

generation of metadata regarding those artifacts, but also the provision of an

Integrated Development Environment (IDE) that provides programming capabilities

to developers with varying degrees of expertise and development skills, in order to

enable the programmability of those artifacts. The aim is that the developers will be

able to write simple scripts that will describe the behavior of the system, and then

deploy and execute them, so that the ecosystem will follow the specified behavior. In

addition, validation and monitoring mechanisms are provided, in order to ensure the

proper functionality and the valid usage and business logic according to which those

artifacts are used inside the ecosystem. In fact, the focus of this thesis is on the

validation and monitoring components of AmI Solertis. Those validation and

monitoring components come together into a core module of the AmI Solertis, named

AmITest. AmITest will be the main focus of this thesis, and, therefore, be analyzed and

described in detail onto the next chapters, focusing on the importance of this

validation mechanism inside an AmI Environment.

26

ii. Motivating Scenario

The basic concept behind AmI Solertis is to make the orchestration and management

of an Ambient Intelligence environment an easy and straightforward task. Ideally, one

should be able to define the behavior of a Smart Environment just by using a few lines

of code. For this aim to be achieved, a set of issues need to be taken into account:

 The artifacts existing inside the environment we want to orchestrate

 Their underlying technologies

 Interoperability and communication between artifacts and their environment,

 Guidance and orchestration of the systems

 Behavior of one artifact potentially affecting other artifacts

 Ensuring the correct behavior of such a system at all times

One can easily consider that this is an open list of issues. The key aspect of creating a

Smart Environment orchestrator is to address such issues in a generic manner.

 Artifacts existing inside the environment

The artifacts that exist inside the environment should be identified in an automatic

manner, or the developer of each should provide the required information about each.

 Underlying technologies

Upon Smart Environment orchestration, a mechanism will be used that will not be

dependent on underlying technologies. As mentioned previously, each SE artifact

could potentially consist of a number of different technologies. The Orchestration

System should not care about this underlying technologies, but use a standard

protocol for orchestration, that the artifact should be aware of.

 Interoperability and communication

All Smart Environment artifacts should be able to interoperate and interact between

each other in a unified manner – in fact, they should be able to act on events occurring

inside the Smart Environment at times, without even needing to know who caused

them. Such mechanism can be applied via the usage of middleware technologies, such

27

as FAmINE [18], in combination with data and messages exchange protocols, primarily

via the web,

 Guidance and orchestration

Considering that the environment might comprise a number of systems consisting of

diverse technologies and that this number might increase as new artifacts can be

added to the ecosystem, a standardized way of communication must be defined. In

addition, in order to orchestrate their behavior, one needs to see the whole ecosystem

following the paradigm of an musical orchestra: each of the musicians of the orchestra

is a unique entity consisting of its own traits, musical background, knowledge and

skills that can act individually, but ideally must work in perfect collaboration with the

other entities, each one following his/her own musical score and being guided at the

same time by the conductor who gives the musicians information regarding the music

played real-time. Consider this metaphor applied to an AmI ecosystem, each artifact is

like a musician, having its own traits, properties and “abilities”, regarding what it can

perform and what not. Each artifact though should be able to work in collaboration

with other artifacts by following its own “score” along with the guidance of the

“conductor”.

As already mentioned, one of the main aims of the system is to provide programming

capabilities on the artifacts. In practice, we could say that the “score” regarding each

atomic artifact could be a set of commands that the artifact will follow asynchronously.

This admission leads us to use a well-defined, and widely used programming paradigm

that will support this kind of programming capabilities. To this end, the ecosystems

defined by AmI Solertis follow the Internet of Things (IOT) paradigm. In fact, each

artifact is considered as a component in the system, that follows the micro-Service

Oriented Architecture paradigm (micro-SOA)[16], in terms that it contains its own

dependencies that are decoupled from the other artifacts, yet it exposes its own

Application Programming Interface (API) to the whole ecosystem. Furthermore, this

API could be used from a programming script in order to define its behavior. In fact

AmI Solertis follows this paradigm: each artifact exposes a Representational State

Transfer API (REST API), a way to exchange information via the usage of a uniform and

predefined set of stateless operations. This API is specified via a standard specification

28

for REST APIs, the OpenAPI Swagger Specification [19]. Using this specification, AmI

Solertis is available to generate a proxy Module of JavaScript Programming Language

[20], based on this API. This module can then be used in JavaScript programming

scripts in order to define the behavior of the system is a thorough and straightforward

way, using JavaScript mechanism to tackle arising problems – for instance, the usage of

Promises[21] and async[22]/await[23] defined in ECMAScript2017 draft (ECMA-

262)[24] for asynchronous programming. Those scripts are managed and finally

executed from a number of AmI Solertis core components that constitute its Execution

Runtime Environment (Solertis ERE). In addition, each artifact is sensitive to events

occurring in the environment. For that cause, the Solertis ERE contains an event

messaging system, based on the Redis PubSub[25] mechanism, responsible for

informing interested artifacts for the occurrence of events inside the AmI ecosystem.

 Reciprocal effects of artifact behavior

In an Ambient Intelligence environment, all artifacts should operate as first class

citizens of the environment; they act based on their atomic behavior, and respond to

events occurring inside it.

There is no guarantee though that those artifacts are prevented from acting against

each other; in fact, the behavior of one artifact could affect the behavior of another.

This could result into negative consequences regarding the performance, proper

functionality and behavior on the artifacts in particular, but also the entire ecosystem.

In theory, this may lead to a practical race condition between two artifacts inside the

ecosystem. But in practice, things are even worse: the behavior of an artifact could

affect negatively multiple artifacts, and not only explicitly, but also implicitly, even

between components that have no connections. Imagine that the behavior of an

artifact A affects the performance of a component B. A third component C, dependent

on the behavior of B but having no correlation with A, underperforms exactly because

of the performance drop of B. This means that in practice, the behavior of A implicitly

affects the behavior of C. Even worse, the word “underperforms” is generic here, and

not well defined. In the end, the ability of connection between components could

become very problematic, even catastrophic for the system itself and its inhabitants:

what would happen if a Smart Environment regarding critical systems started to

29

underperform or malfunction? Of course, this is a situation that must be avoided at all

costs, as we must ensure the proper functionality of the ecosystem.

 Ensuring the correct behavior of the system at all times

This is an open issue and a very important aspect inside Ambient Intelligence

Environments. While such a valid behavior at all times is crucial, especially for life-

critical systems, it becomes a losing battle fight, due to the complexity of an AmI

ecosystem and the high level of dependencies, but also that this complexity grows

exponentially as artifacts are added into the ecosystem.

In addition, one must consider that presence of the artifacts added inside the

ecosystem can differ between stable and ad-hoc, making the task of behavior

correctness validation even harder.

 In practice, the proper behavior of the system at all times cannot be ensured,

considering that the system consists of computationally complex entities that

communicate asynchronously, thus in a complex way, between each other. What can

be done though, is applying sophisticated, extensive, and repetitive testing onto the

ecosystem from its design to its deployment, and attempt to tackle possible arising

flaws as fast as possible. In addition, recovery and self-repairing mechanism could be

useful in such situations. This increases the importance of the existence of a

sophisticated testing component that will be able to validate the behavior of the

system, from its design to execution time. This component should be able to face the

AmI ecosystem artifacts as units, but also as micro-services, applying testing

procedures to the maximum extent possible, providing basic capabilities of testing of

the components of the system via simple constraints, to the mocking of existing

artifacts of the system for testing purposes, or, even further, the usage of system logs

for problematic functionality inference via a sophisticated problem detection engine.

AmI Solertis attempts to tackle this challenge through a core module of its suite,

named AmITest. AmITest is a complete testing environment, regarding the validation

of the behavior of the Smart Environment, by supporting a form of mostly integration

testing of the behavioral and orchestration scripts of the system, in order to allow the

validation of the correctness and the efficiency of the Ambient Intelligence system.

This component will be analyzed in depth in the next chapters.

30

iii. System Architecture

AmI Solertis follows the principles of the micro-service architecture and consists of a

number of smaller components, each one containing its own dependencies, without

interfering with the dependencies of the other components. The purpose of applying

micro-service architecture principles on the system is to provide flexibility and

scalability: as an Ambient Intelligence system can scale up from one physical space to

many, reaching to even larger systems such as smart cities[26], AmI Solertis should be

able to scale up in analogy, in order to meet the needs of those systems.

AmI Solertis is separated into a number of smaller, yet autonomous components that

are able to interoperate between each other, by exposing their own REST APIs

between each other or even third parties, but hiding the large atomic complexity for

the sake of simplicity and robustness. In order for this to be possible against a number

of different components, they communicate via a common API specification.

Considering that the exposure of those APIs is done via REST, we chose the OpenAPI

Swagger Specification (OSS) as a solid, yet flexible way of describing those APIs. The

usage of such specification allows each component to communicate between each

other via REST APIs in a transparent way. In addition, OSS is used for the

communication of Ambient Intelligence artifacts inside the smart ecosystem, so that

they are able to communicate between each other and be programmable, as

mentioned before.

In practice, the AmI Solertis system consists of components that are grouped into

modules based on their functional role, and modules on their turn are grouped into

categories. This module categorization does not isolate the system components but

simplifies its model, making the system robust and scalable.

The AmI Solertis System is split into eight basic categories: Universal Service

Repository and Middleware, Packaging and Deployment, Execution and Health Monitors,

Social Features, Universal Metadata Storage, Artificial Intelligence, Analytics and

Authoring Tools. Each of these categories consists of basic modules, necessary for the

proper functionality of the system, providing a complete solution of features for the

extensive analysis, deployment, programming and monitoring of the artifacts of an

AmI ecosystem, and, therefore, the ecosystem as a whole.

31

As aforementioned, one of the main features of AmI Solertis and the focus of this

thesis, is AmITest [27], a component for the validation of behavior of the AmI

Environment. AmITest is a complete testing suite and an integral part of AmI Solertis,

included in the Authoring Tools Category, consisting of a number of internal back-end

and front-end components that will be described further in the next chapters of this

thesis.

Universal Service Repository and Middleware

Inside an Ambient intelligence system, each artifact has its own traits, properties, and

behavior. AmI Solertis must know all these information in order to be able to use these

artifacts. This module category consists of components mainly responsible for the

information extraction, programmability activation, but also information management

and service discovery. It consists of the following modules:

The API Extractor analyzes existing programming entities regarding the AmI

ecosystem artifacts, extract valuable information, infer meta-information about the

artifact and generate libraries and meta-components that enable programmability of

the component, in a well-specified manner. In fact, the API extractor is responsible for

the generation of a specification, named Swagger specification, a standard used for the

definition of Service API, widely known and used as reliable.

The Proxy Generator uses a set of information collected regarding an artifact in

order to enable easy and thorough programming capabilities on the artifact, hiding a

large part of the complexity of an artifact, providing only the necessary parts to the

developer of the AmI ecosystem.

The Service Back-End consists of a number of components that have the role of the

manager of the AmI Solertis system. Those components are responsible for the proper

metadata storage, the dependency definition, storage and management of each AmI

artifact, but also the management of different artifact versions and their zero-

configuration.

32

The Discovery tools acts as a repository for the services regarding the artifacts, as

also a manager of information regarding the events occurring inside an AmI

ecosystem.

Figure 1- Universal Service Repository & Middleware Components

Packaging and Deployment

This module category consists of a number of components, related to dependencies

and resources packaging but also services deployment and resolving in the AmI

ecosystem.

33

Figure 2 - Packaging and Deployment Components

Execution & Health Monitors

The category modules of this category are responsible for the deployment, execution

and health status checking of behavioral and testing scripts of the ecosystem. It

consists of the following modules:

The Error Checker consists of a number of components that allow the monitoring the

executed behavioral and testing scripts and provide fault tolerance mechanisms

related to the deployment and execution of the scripts.

The Logging consists of components responsible for the recording and the logging of

important system actions, such as the events produced inside the ecosystem real-time.

The Real-Time Checker monitors the health of the ecosystem (scripts and services

deployed, along with actions and events that occurred, etc) and proceeds to related

actions if needed.

34

Figure 3- Execution & Health Monitoring Components

Social Features

This category consists of components related to the social and graph representation

and profiling services of the AmI ecosystem.

Figure 4 - Social Features Components

Various

This category consists of a number of components of generic purpose, such as the

management of the universal documents and blobs regarding the AmI ecosystem.

35

Figure 5- Various Components - Generic Purpose Category

Artificial Intelligence

In order for AmI Solertis to be able to provide the best programming solutions for an

Ambient Intelligence environment, the system has to be able to infer semantics and

information about the AmI environment and to be able to provide recommendations

to its end-user. This means that the system must “reason” and “propose” solutions at

times. It is also very important that the continuity of the AmI environment will be

ensured. This category contains all the components that have to do with the Artificial

Intelligence included in the system. The AI category consists of three main modules:

The Recommender which consists of components that infer semantic information

from the artifacts, the resources, the dependencies and the scripts written inside the

system, in order to give development options and to propose solutions to the system’s

end-user. As we mentioned before, this end-user can have from very little

programming skills to be an IT expert. The system takes this factor into account when

proposing solutions. In addition, the system contains components for the classification

of artifacts and their APIs into categories.

The Handler module which consists of components related with the reasoning of

degradation inside the AmI ecosystem, such as managing the execution flow in case an

artifact fails to function properly.

36

The Smartness module which consists of components using metadata, logs and real-

time data about the ecosystem in order to protect its long living and continuity and to

recognize potential defects happening inside the system real-time.

Figure 6 - Artificial Intelligence Category
Analytics

In order for AmI Solertis to ensure the proper functionality of the system but also be

able to provide programming capabilities to users with a wide range of programming

skills, the system must be in position of gathering data across the whole ecosystem in

detail, analyze them, come to conclusions via inferencing and provide statistical

information to the end user. This module category contains all the necessary modules

in order to perform all the operations specified.

37

Figure 7 - Analytics Category

Authoring Tools

As mentioned above, one of the main aims of the system is to provide programming

capabilities. Therefore, the system must provide a number of authoring tools that will

assist the programming procedure, tools relevant to debugging, project management,

code execution monitoring, integration and, most importantly, testing, provided via

the AmITest framework, which is the main testing tool of AmI Solertis. As AmITest is

the main subject of this thesis, it will be analyzed in the next chapters.

38

Figure 8- Authoring Tools Category

iv. The Need For Testing

Considering that an AmI Environment consists of a number of artifacts based on

diverse technologies and that such devices are required to work optimally to the

extent of their limits, but also to collaborate between each other in an asynchronous

manner, it is of high importance to ensure that those systems will be proven reliable in

their whole lifetime. To this end, the detection of flaws and problems in their usage

must be easily and quickly performed, so that they can be replaced before they

extensively apply their problematic behavior to the whole ecosystem, causing further

problems. Furthermore, considering that the artifacts of the environment actively

collaborate, any problems that could negatively affect that collaboration should be

quickly detected and tackled.

In addition, an AmI environment acts as a “living organism”, practically having its

lifetime as a direct dependence of the lifetime of its components, but also having its

39

own “logic”, defined via a behavioral definition that the programmer of the Smart

Environment has applied. In practice, AmI Solertis acts as an orchestrator of the AmI

Environment, allowing the definition of its logic and ensuring its proper application

inside the ecosystem. This logic, described in AmI Solertis via the usage of scripts

defining the behavior of the environment, should be put under test in order to validate

its correctness.

One must consider though that, applying extensive testing to the logic of the

ecosystem, might lead to the extensive usage of the real technological artifacts existing

into it, resulting to potential negative effects on their optimal functionality, practically

causing damage to them and leading them to the limitation of their lifetime. Those

artifacts though, are devices of a considerable cost; In fact, many devices might be of

high technological cost – such as a Smart TV or a Smart Refrigerator inside a smart

house.

Therefore, those artifacts should be protected from extensive usage – at least in terms

of testing. The testing of the business logic of the ecosystem should be optionally

decoupled from the usage of its technological artifacts.

The need of a validation mechanism becomes crucial. This validation mechanism

should 1) validate the optimal functionality of the technological artifact existing inside

the ecosystem and 2) validate the logic of the ecosystem, applied mainly by the

behavioral scripts of AmI Solertis. In addition, this mechanism should apply testing

and validation procedures on the business logic of the smart ecosystem by giving the

ability of decoupling the testing of the business logic and the usage of the sub-systems

at the same time.

As already mentioned, the programming of a Smart Environment is not an easy task,

and therefore, testing and validation procedures are not easy tasks either. Considering

that the programmers of the smart ecosystem can be actually its eventual developers,

such validation mechanism should be available to users with a diversity of IT skills,

hiding a large portion of complexity of both the behavior of the smart ecosystem but

also the testing procedures applied, orchestrating automatically the whole process,

making it as simple and straightforward as possible.

40

These needs led to the design and development of AmITest[27]. AmITest is a

framework that provides testing capabilities to both the optimal functionality of the

artifacts inside the AmI ecosystem, but also the business logic of the ecosystem

described in AmI Solertis, while allowing the decoupling of such testing with the usage

of the actual technological artifacts, via the provision of artifact simulation

mechanisms (stubbing). In addition, the system aims to provide test composition

capabilities to both IT experts and novice users, hiding a large portion of the

complexity of both the AmI environment and the testing procedure, by guiding the

user for the composition of tests and orchestrating their execution and reporting,

providing eventually the results back to them via a rich Graphical User Interface (GUI),

but also back to AmI Solertis for further evaluation. AmITest is the focus of this work,

and we will discuss the system as a whole in the next chapter.

41

2. THE AMITEST FRAMEWORK

As we mentioned earlier, attempting to orchestrate an ambient intelligence

environment, is not an easy task. The fact that a number of components consisting of a

number of diverse technologies not only exist, but also heavily interoperate and rely

part of their functionality on the proper functionality of each other, makes the control

of the system literally a challenge. In addition, considering that the whole AmI

environment ultimately aims to the coverage and support of the needs of its human

inhabitants, the flaw of one or some of its sub-systems could lead into the partial

malfunction or, if the flaw becomes extensive, even the collapse of the ecosystem, with

annoying, the least, or even catastrophic consequences to its human inhabitants. This

leads to the need of a comprehensive testing system that will be able to check for the

validity of the ecosystem, report for relative flaws to the developers or even the

inhabitants of the system and suggest solutions on the problems and, ultimately,

attempt to fix potential flaws or enable catastrophe prevention actions. In order for

this to be achieved, the behavior of the system must undergo dynamic testing,

practically being executed and then evaluated and validated.

It is obvious though that the high level of dependencies between the system artifacts

makes this a challenging task, especially in terms of the detection of errors and flaws.

In addition, an important fact that needs to be considered is that the developers of the

ecosystem can simply be its inhabitants that might be IT experts, or even know very

little from IT or programming. In order for the testing of the system to be effective, it

must be a continuous, repetitive process, partially automated, but practically guided

from the “developers” of the system which can be its inhabitants with very little IT

knowledge and skills.

This thesis proposes AmITest [27], a complete testing suite that provides a set of

sophisticated tools that aim to test the validity of the behavior of an Ambient

Intelligence environment thoroughly, but also supporting the usage of the system from

both IT novice and expert users.

42

2.1. The Concept

In AmI Solertis, the usage of a number of scripts in combination with the real artifacts

of the ecosystem, practically composes the behavioral definition of the ecosystem

itself. In order to effectively test the system, one must focus on the ecosystem artifacts,

their behavioral definition, and the combination of those. If we wanted to manually

test the behavior of the system, we would set it up (artifacts activation and behavioral

scripts deployment), then perform some actions and evaluate how the system would

respond.

For instance, if we have a smart lamp and a motion detector inside the room, we could

write a behavioral script that would define that if a user enters a room, the light

activates. Its behavioral definition, in pseudo-code, would be something like this:

Code Block 1 - Simple Behavioral Definition (pseudo code)

 Then we would deploy the script, get into the room, and observe if the lamp would

light on.

In the testing framework, we would like to automate this process. We would like to

consider the lamp and motion detector artifacts, deploy the script, yet simulate our

entrance in the room and then check the status of the lamp, i.e., whether or not it was

activated.

First of all, we would associate the test that we are going to compose with one or more

behavioral scripts (such as the script written above), in order to put them under test.

Then, we would select the artifacts that we would use, write the test code and execute

it.

This particular testing would be very effective to be applied inside the actual

var motionDetector = getDetector();

var lamp = getLamp();

 motionDetector.whenUserDetected -> lamp.setOn();

43

ecosystem, and could easily be achieved if three conditions are met: 1) the behavioral

script is deployed in the AmI environment, 2) we have an action simulation

mechanism (which in our case, simulates that the user entered the room), and 2) we

are able to query the status of the artifacts (in our case, the lamp). We could then just

write and execute such code, which, in a pseudo-code, would be like:

 //gets the actual lamp

 var lamp = getLamp();

//sets it to appropriate state

//before testing

 Lamp.setOff();

 //gets the actual motion detector

 var motionDetector = getMotionDetector();

 //simulates action behavior

 motionDetector.simulateSomeoneWasMoved();

 wait(2000); //wait some time

 assert(lamp.IsOn());

Code Block 2 - A simple testing script (pseudo code)

Considering that the testing described above requires the execution of the code and is

based on assertions, it is categorized on dynamic testing. While such testing behavior

would be efficient in order to ensure that the artifacts of the system and the behavioral

script work, there are cases where such test should not be applied in the actual

environment. One simple cause is that, in practice we want to test the behavioral script

before we deploy it into the ecosystem, in order to detect potential logical

programming mistakes and fix them before its deployment, as a potential defect it

could result into negative, or even catastrophic consequences for the ecosystem and

its human inhabitants. In addition, we must consider that the AmI ecosystem consists

of a number of artifacts, of which the acquisition is of a considerable financial cost,

thus making their long-living optimal behavior highly desired.

44

To this purpose, in order for a particular behavior – or a number of behavioral script

to be tested, a “sandboxed AmI environment” must be created, consisting of a number

of scripts, artifacts (or some “impersonators” that will play their role), and a number of

actions that will lead to some effects. The outcomes of those effects will then be

validated. For that cause, the testing system must provide component impersonation

(stubbing) capabilities, allowing both the testing of actual artifacts, but also give the

ability to the tester to define and use such stubbing components, that will play the role

of the actual artifacts in the testing procedure.

In simple terms, the stub in AmITest is a script that aims to behave in a way that will

impersonate the behavior of a real artifact, in a very specific way. The aim of the usage

of stubs is to be able to isolate particular artifacts of the system by stubbing others in

order to test them, in an integration testing process [16]. In addition, stubs give us the

ability to validate the behavior of the script in a “sandboxed” environment, i.e., without

letting it affect the real AmI ecosystem, allowing to either test it before deploying it, or

even isolating it from the real ecosystem for the sake of the validity check.

Of course, we still want to be able to test the behavior and the artifacts of the actual

ecosystem along with the sandboxed one, providing validation capabilities in both

cases.

AmITest uses a common assertion mechanism in both cases along with simple artifact

management, allowing the definition of stubs and their direct usage without affecting

the actual ecosystem, but also their enabling and disabling with just a “click”. In fact,

whether the testing system uses an artifact as a stub or as a real artifact, physical or

programming, does not affect neither the behavioral script nor the testing validation

process, allowing its definition via simple configuration and hiding the complexity

from the tester.

Of course, another important aspect is the validation assertions definition.

Whether or not an artifact is stubbed or a behavioral script under test is already

deployed on the system or not, a number of validation assertions must be applied;

these assertions will give a number of outcomes, which will provide important

indications about the status of the artifacts and the implicit actions of the behavioral

scripts inside the ecosystem itself.

45

AmITest provides a simple and effective assertion mechanism. Considering that it is a

core part of AmI Solertis, its testing scripts are based on JavaScript code modules and

popular JavaScript testing and assertion frameworks. In addition, AmITest provides a

powerful reporting mechanism, in order to provide the outcomes of those validation

assertion process to both its users (the tests) and AmI Solertis itself, for further

analysis for automatic detection of problematic behaviors and Continuous Integration

(CI) purposes.

2.2. Related Work

Considering that Ambient Intelligence is a paradigm with only a few years of active

research and development, there is not plenty of research work done on the field of

testing in literature. In fact, the majority of existing approaches mainly focus on the

validation of design of Smart Environment. To the best of our knowledge, we did not

find any work to involve end-users and system inhabitants, mainly focusing on the

design process.

Regarding theoretical work, Heng Lu[28] proposes the application of testing inside

pervasive environments based on the context of their computing entities, and to

redesign the test cases including the context.

Ichirο Satoh [29] started first, back at 2003, working the AmI Concept on Mobile, Ad-

hoc, “pervasive” Devices. Since there were no smartphones back at that time, Satoh

attempted to approach the AmI paradigm via the usage of ad-hoc devices available at

that time, such as PDAs. Those devices were extremely limited in terms of resources

such as memory, but also available sensors and features provided. Satoh attempted to

test the behavior of such ad-hoc devices by emulating their physical mobility via

agents installed in various workstations inside a Smart Environment, testing network-

dependency, mobility and multicasting –based management. Satoh mainly focused on

the correct transition of those devices from place to place inside the environment. We

must consider though that today’s available technologies of such process are

46

standardized via zero-based configuration and the use of standards such as Bluetooth

reduce the necessity of such testing inside a Smart Environment.

UBIWISE[30] also back in 2003 is a system that simulates the existence of artifacts and

their behavior inside a Smart Environment, by representing them in a Quake III Arena

Graphics Engine 3D model, focusing on the simulation of scenarios regarding the

extension of a system or the testing of its robustness without affecting the actual

system.

DiaSim[31] is a simulator for pervasive applications, focusing on the simulation of a

pervasive environment via a configurable editor aiming on the execution of simulation

scenarios.

Similarly, UbiREAL[14] is a system that aims to provide simulation capabilities for a

smart ecosystem, allowing the definition of the visualization of smart objects inside a

3D model which represents the AmI environment, along with their behavioral code,

mainly focusing on the design process of a Smart Environment, featuring prototyping

and realistic behavior simulation mechanisms.. Those objects can either be

simulations of actual objects, or, via Universal Plug and Play (UPNP) [32], map to

actual devices.

O ‘Neil et al propose InSitu [33], a system focused mainly on situational testing,

practically isolating states inside the simulation of a smart ecosystem and applying

reasoning and generic rule checking in order to detect specific states inside the

system, relying on a specific query language while allowing 3D virtual representation

of the AmI environment. While such an approach allows the effective identification of

flaws inside a virtual ecosystem via pattern matching on specific situations occurring

inside the virtual system, it does not allow the testing on a real environment, focusing

mainly on the design process via iterative prototyping circles, without giving

capabilities of testing the real AmI environment. In addition, the system does not focus

on the detection of flaws regarding the usage of the artifacts inside the environment.

In general, testing is not an easy task, and often requires a number of assumptions in

order to be successful. DP-TraIN [34] is a Ambient Intelligence drug traceability

infrastructure, , which supports end-user service provisioning in order to enable the

pharmacy staff to create and execute their own services for facilitating drug

47

management and dispensing. The system was tested in the pharmacy department of

Gregorio Marañón Hospital in Madrid, and, although it addressed a number of tasks of

its users in general, assisting to reduction of time required for their completion, the

system failed to provide an effective testing mechanism of the procedures, due to the

lack of the existence of a sandboxed environment for the testing of services with

example data before its deployment. AmITest attempts to approach the testing

procedure by using existing metadata for the system itself, avoiding assumptions but

analyzing and using actual system data in order to provide, among others, the

capability of a sandboxed environment for the execution of tests regarding the

behavior of the AmI ecosystem.

Regarding the design process, DAI Virtual Lab[35] is an environment for testing the

usage of Ambient Intelligence applications by providing a visual 3D representation of

the actual AmI environment via a 3D model, allowing the users of the system to apply

tests on the environment without interacting with the actual environment. Such

testing capabilities are considered very interesting in terms of giving the ability to the

end-user to test the environment he/she uses, yet it does not provide a complete

mechanism for testing the behavior defined inside the ecosystem and the correct

behavior of the artifacts of the ecosystem, mostly focusing on the visual representation

of the space and not on the extensive testing of any behavioral definitions inside the

smart system. In addition, the system does not provide any testing mechanism

regarding the actual environment, but only interactions with its virtual representation.

AmI environments often follow the paradigm of Service-Oriented Architecture (SOA).

In terms of services definition, there are some tools, such as TASSA [36] that allow the

testing of the definition of services defined in Service Models, such as BPEL. These

testing tools provide testing capabilities of very limited scope, focusing on the design

and the performance of specific services individually, but not allowing the extensive

testing of an environment as a whole.. In addition, in order to test such services, expert

IT users are required to conduct a complex testing process.

An Ambient Intelligence system consists of users that should be able to program their

environment with the purpose of covering their needs, and that those users can be IT

experts, but also novice users. In order for this to be achieved, other methods than

48

plain coding needs to be explored in order to enable programmability for novice user.

In this context, it is worth mentioning some research and industry work done

regarding the programming capabilities given for end-users. Considering that those

novice users have little or no programming experience, other paradigms than coding

should be followed mainly focused on composition interfaces, such as the Visual

Programming paradigm [37].

Dahl et al [11] have applied some evaluation on the best practices regarding Visual

Programming via composition interfaces. They examined the usability of three types of

visual programming interfaces: filtered lists, wiring diagrams and jigsaw puzzles.

From their results it emerges that filtered lists are a highly efficient way of specifying

compositions, giving more confidence to the users, while wiring diagrams are not

intuitive for the specification of a control flow, but were more useful for the

representation of data exchange between entities. Finally, jigsaw puzzles are a more

fun and intuitive way of building compositions, yet increasingly becoming more

difficult to handle in terms of information extraction, as their size increases.

Inside an AmI environment, its human inhabitants – mainly non-computer

professionals will mainly be asked to program and test its behavior in order to cover

their needs, thus mechanisms that facilitate programming by such users with little or

no experience are supplied, including visual tools that can be easily learnt and used in

order to design programs and validation tests. This paradigm is effectively used in

order to provide programming capabilities to systems that target non-professional

users in various systems with diverse objectives. AmI Solertis enables the definition of

the behavior of Smart Environments via visual programming even by novice users

(e.g., house inhabitants or teachers). Scratch [38] is a visual programming

environment primarily targeted to users of ages between 8 and 16 years, with limited

to no programming experience, which aims to teach them programming while working

on meaningful projects such as animated stories and games via a visual programming

editor. Virtuoso [39] is a visual tool for creating educational games aiming primarily

at non-professional users, based on Valve’s game engine. TouchDevelop [40] is a

system for developing applications directly from a mobile device through the cloud

using a custom visual editor that adapts its functionality based on the knowledge and

49

programming skills of its user. App Inventor [41] is a platform from MIT which

provides a web-based visual programming tool for designing mobile applications

online, using Blockly[42], a block-based editor developed by Google. Microsoft’s Visual

Programming Language (VPL) [9] uses wiring diagrams in order to provide

programming capabilities to end-users. Automator [43] is a visual scheduling tool

providing capabilities of repetitive automation tasks in the Mac OSX platform. Zapier

[12] is an online service for the automation of tasks between web apps. IFTTT [13] is

another widely known online service that provides cause-effect definition capabilities

for specific events and application services via a simple interface.

All the aforementioned systems facilitate programming of various kinds to users with

very little or no programming experience via employing the visual programming

paradigm. However, they do not provide testing capabilities. AmITest targets AmI

environments where common testing techniques (i.e., Unit Testing) may not suffice as

most of them lack the necessary testing and validation mechanisms to allow the

verification of the behavior of the programs by their end-users.

AmITest aims to address those pitfalls as it not only supports testing of the behavior

of a Smart Environment, but also offers both visual and script editing facilities to

accommodate users with different levels of expertise. The aim is for any user will be

able to program her own test cases and test the behavior of the Smart Environment

easily. This could be achieved via either providing tools that would either assist the

script composition process from IT expert users such as an editor with code

highlighting and autocompletion capabilities, or the usage of existing visual

programming tools such as Jigsaw puzzles and wiring diagrams, but also the provision

of 3D interfaces for the orchestration of the environment without the usage of code

from the novice end-users. Using these features, an expert programmer would be

actively assisted in order to write a script that defines a behavior inside the ecosystem.

In addition, a novice user, such as a teacher inside a learning environment would be

able to specify parts of the behavior of its Smart Environment without the need of

writing actual code, as the behavior of the ecosystem could be defined using visual

programming. Text-based scripting support for end-user programmers is inspired by

many well-established incarnations in the domain of electronic games development,

with languages such as Lua [44] and JavaScript [20] having played an important role in

50

the widespread adoption of extensible game engines (such as Unity [45]), and even

further, to the introduction of games that players can freely customize (e.g., the game

“Second Life” offered the Linden Scripting Language [46] through which players were

able to create in-game elements).

2.3. Testing Approach

AmITest is a framework that considers, but also differentiates from all the testing

approaches described in the technologies and systems mentioned above, regarding its

testing approach.

AmITest focuses on the creation of tests that aim to validate the proper behavior of the

artifacts as integral parts of the system, similar to the logic of integration testing

mentioned above, aiming to test the appropriate functionality of each artifact and its

behavior as a unit inside the actual ecosystem by applying tests on them. AmITest also

allows the execution of behavioral definitions of the AmI environment either inside the

actual environment, or, optionally, outside it, within a “sandboxed” AmI environment

which simulates the actual environment in a simple, yet straightforward way, via the

impersonation of the actual artifacts of the ecosystem, but also the deployment and

execution of the behavioral definitions of the actual system, allowing its tester to

validate an AmI behavioral definition in isolation from the actual environment. In

addition, AmITest provides a mechanism for the simulation of events inside the Smart

Environment, as a part of the artifacts simulation mechanism. In terms of complexity

of its use, AmITest simplifies the test composition procedure via a step-by-step

wizard, while at the same time, it provides novice and expert end-user programming

capabilities via a jigsaw-based puzzle editor (Blockly) and an online JavaScript editor

(CodeMirror[47]) with auto completion, code highlighting and hinting capabilities.

Finally, AmITest automates the test execution process, orchestrating the proper

sandboxed environment initializations and the tests execution, but also the reporting

process.

AmITest is a complete suite, provided as a module of the AmI Solertis system. AmITest

is based on similar testing frameworks for untyped languages, and in particular on

51

testing and assertion frameworks for the JavaScript programming language, such as

Mocha[48], ShouldJS[49] and Chai [50], but also Jasmine [51]. However the list is not

exhaustive, as AmITest is extensible to more testing and assertion frameworks.

2.4. System Requirements
In order for AmITest to be able to effectively apply testing procedures in a complex

environment such as an AmI ecosystem, it must be able to hide large portions of

complexity from the tester, while automatically being able to orchestrate the whole

testing process.

Considering that Smart Environments are complex systems with a considerable

number of collaborating artifacts composing them, it is necessary to validate the

behavior of each artifact individually, but also the Smart Environment behavior as a

whole.

In terms of usage, the aim is to use a number of standardized, lightweight technologies

in order to make the system less costly. In general, this procedure is on the time scale

of minutes, and can be easily automated, performing setup operations by itself (such

as the initial communication with AmI Solertis components), on initialization.

In terms of use, the aim of AmITest is to be used in the most simple, yet effective

possible way. Considering that web applications are an emerging trend today and that

internet connections have increased in speed and bandwidth, while reducing in

financial cost of use, it would be very helpful if the tester could use such an application

in order to apply his/her tests. This also gives the possibility to the tester to execute

these tests from anywhere, without further requirements or resources than having a

device with an internet browser. Even further, if the GUI of the application is mobile

friendly, this could be applied with ease from mobile and tablet devices.

AmiTest provides an important set of features, mainly focusing on the provision of

artifact impersonation and assertion mechanisms, regarding the AmI environment, in

a clean, concise and straightforward way to the user. More specifically, AmITest

provides the following features:

52

 Test composition using an online, responsive application, one needs only a

browser in order to use the system. In fact, the plan is fro AmITest to be optimized for

usage via mobile devices.

 Usage of a dynamic, well-known, powerful scripting language (JavaScript),

which supports state-of-the-art mechanisms for asynchronous programming just by a

few lines of code, such as Promises, and async/await operations.

 Integration Testing via Assertions on Asynchronous code, based but not limited

to the use of a widely-used testing framework in JavaScript called Mocha, in

combination with assertion frameworks, such as ShouldJS and Chai, providing APIs for

unit and integration testing following a syntax logic similar to natural language, which,

in combination with the asynchronous programming mechanisms in JavaScript, allow

the composition of tests with just a few lines of code (or blocks, in case of Visual

Programming).

 Powerful stubbing mechanism on the artifacts of the AmI ecosystem, based on the

Service Oriented Architecture. More specifically, AmITest provides the ability of the

creation of stubs that will be set up, initialized and used as services, containing their

own context, while having lifetime equal to the duration of the test execution process.

 Simulation of events inside the actual or the sandboxed ecosystem via the

extension of the APIs of stubbed devices that allow the registration of events within

the ecosystem.

 Rich and responsive Graphical User Interface reporting environment, easily

accessible from both desktop and mobile devices.

 Provision of guidance mechanism in the test composition process, aiming to

reduce the possibility of errors.

53

 Responsive Design Graphical User Interface, providing abilities of test

composition, execution and reporting via both desktop and mobile devices.

 Extensive test code editing capabilities via a very powerful JavaScript code

editor, featuring effective and dynamically extensible auto completion and syntax

highlighting.

 Hiding of a large portion of testing orchestration complexity, providing the

tester with only the necessary information, while taking care of all the details and

execution steps needed in order to prepare the test execution runtime properly,

execute the tests and generate the related reports. This includes the generation of code

 Basic Provision of End-User Testing via Visual Programming, using a simple

and straightforward test composition step-by-step wizard which manages the artifacts

in lists, in combination with the Blockly editor for tests composition using jigsaw

puzzles.

54

3. FRAMEWORK ARCHITECTURE

Being an integral part of the AmI Solertis studio, the AmITest framework follows the

same architectural paradigm the whole studio follows: micro-service architecture. In

fact, AmITest consists of a number of standalone and extensible back-end and front-

end components that altogether collaborate in order to provide a sophisticated testing

mechanism with extensive capabilities regarding the testing of Smart Environments..

In practice, AmITest aims to test the behavior of the system, by following the

behavioral specification model that AmI Solertis follows: each artifact is eventually

represented into the system as a JavaScript module, generated via the usage of its

Swagger Specification automatically, upon artifact registration in AmI Solertis Studio.

This module is used in order to put the specific artifact under test. This is done by

using its API proxy module to modify its state in real time, or create a stubbing service

that will play its role in the test process, especially for the testing of other real

components, or in order to test the behavioral validity and efficiency of a behavioral

script. Such stub services are NodeJS/ExpressJS services, practically impersonating the

API of the real artifact. Considering that AmI Solertis defines the behavior of Smart

Environments via the usage of behavioral scripts, AmITest can test the behavior of the

system by validating the behavior of those scripts. And this the testing basis of testing

in AmITest; the testing suite collects all the information it needs in order to test those

scripts extensively and by testing them, it tests the behavior of the Smart Environment

in practice. Of course, this is the basis for the testing of the behavior of the system, but

it is probably not enough by itself in order to test the system extensively and

effectively. AmITest needs mechanisms for recording and replaying situations inside

the AmI Environment, but also mechanisms for continuous integration and behavioral

flaws analysis and inference, along with user monitoring capabilities and problem

recovery mechanisms. Considering that AmITest is a research work in progress, the

system attempts to examine the effectiveness of the combination of unit and

integration testing in AmI environments in its current state, by using mechanisms such

as assertions and components mocking. Also, the system attempts to explore the

55

efficiency of flaw discovery and behavioral validity check via the recording and

replaying of states of the system. More mechanisms are considered to be added to the

system as a future work. Considering that the system is designed with the aim of being

extensible, we expect even better results of its usage in the close future.

AmITest functionality is based on several major components: The main components of

the system are the Test Composition Wizard, the Test Code Generator, the Execution

Runtime, the Metadata Information Extractor, the Files and Databases Manager and the

Test Reporter. Each of those components might consist of other smaller sub-

components, especially in cases of handling a number of tasks, such as the Execution

Runtime. In addition, AmITest uses data generated from other components, such as

the API extractor and the Proxy Generators of the Universal Service Repository and

Middleware category. Those components consist of smaller components that manage a

number of important operations inside the testing system. This components aim to

achieve the following aims: First of all they attempt to provide a complete Integrated

Development Environment (IDE), in which the user of the testing system will be able

to prepare tests with ease, following a standard, straightforward, step-by-step

procedure. In addition, the environment works has been designed taking into account

that those users might have different IT skill levels, from very novice to expert, and

aims to be effectively usable by them, to the best extent given their skills. Additionally,

the components mentioned above attempt to simplify the process of testing, by hiding

complex operations from the developer and performing them in a standardized and

automatic way, without the necessity his/her intervention. Those operations might be

crucial but can be extremely complex even for an IT expert, such as the dynamic code

generation of components needed inside the system or setting up a mocking

environment for the sandboxed execution of a behavioral script, or managing the

storage and loading of testing script metadata, resources and dependencies. Finally,

the system attempts to give a fully detailed view of the behavioral health status of the

system, and, to propose solutions if any defects are detected. In future versions, we

plan extend this functionality by exploring more options on the system’s self repairing,

management and deployment. In fact, AmI Solertis itself, and, as a logical consequence,

AmITest, can become artifacts of an Ambient Intelligence ecosystem, having automatic

56

control over their own behavior, if programmed that way. In the next sections, we will

analyze the components described above, which constitute the heart of AmITest.

Considering that AmI Solertis follows the micro-Service Oriented Architecture

paradigm and that AmITest is one of its core components, following the same

paradigm for it was a logical design decision. As shown above, each of the components

of the system is logically separated from each other, handling their own dependencies,

while interoperating at the same time. In addition, sub-components are grouped into

greater entities based on their functional role.

In general, the system follows a “divide and conquer” approach: each large component

is split into smaller components, each one performing a small, very specific, yet crucial

task, while being autonomous in terms of resources and dependencies. That way, the

system becomes more robust and scalable, as each of its components can be easily

modified internally without affecting the whole system. In addition, more components

can be added with ease, adding extended functionality and additional testing

capabilities to the system.

The User Interface design of the system was based on the basic, state-of-the-art

usability principles. We attempted to use the most appropriate fonts, regarding to the

usage of the system as a web application. We also followed a minimalistic design, along

with the grid presentation of components wherever possible. In addition, the color

combinations used aim to not distract or exhaust the user while using the system. In

addition, we applied design for error mechanisms inside the system, providing

interfaces that contain constrains wherever possible. In addition, we attempted to

make those interfaces self-explaining, in order not to confuse, but actively assist the

user. In order to test the usability of AmITest and improve the UI design, an expert

users’ evaluation was conducted. During this process a number of UI problems were

identified for improvement of the system, which were taken under consideration.

AmITest is, in practice, a core component of the AmI Solertis. It consists of a number of

components for testing, being a complete testing toolkit, but also interoperates with

other core modules of AmI Solertis for its optimal functionality.

The next sections describe the main components of the AmITest and its collaboration

57

with other components of AmI Solertis during its workflow process. . We will analyze

those components in detail in the next sections.

The testing procedure is split into three main processes: test composition, execution,

and reporting process. The first phase is mainly guided and performed by components

related to test composition, such as the Test Composition Wizard. Coming to the

execution process, a sandboxed environment needs to be set up, deployed with certain

lifetime and produce information-rich results. This environment needs to be

orchestrated with precision. After the execution of tests, the reporting process takes

place, providing the test execution results to the tester via a rich Graphical User

Interface (GUI), but also providing the results to AmI Solertis for further analysis.

The architecture of AmITest is shown in the figure below, and is described in detail in

the next sections.

Figure 9 - AmITest Architecture

58

3.1. Test Composition Wizard

i. Overview
We mentioned earlier that in order to test a real AmI ecosystem, a sandboxed AmI

environment needs to be specified. But in order for this to be achieved, this

environments needs a considerable amount of information, information that

practically need to become specified in detail from a tester during a preparation phase,

and then subsequently be executed. This will result in the instantiation of a sandboxed

environment that contains a number of simulated or actual user actions, a number of

cause and effect operations related with the user actions, and a number of validity

checks. Eventually, the system will provide reports for the users and the orchestration

system regarding the validity checks in the reporting phase.

The Test Composition Wizard is the main component for the AmI environment tests

composition. It consists of a number of front-end components, in order to provide test

composition, programming and management capabilities. Its main aim is to guide the

potential “tester” of the system in order to compose a test in the most efficient way

possible. This is performed via a step-by-step Graphical User Interface (GUI) wizard,

which consists of a number of steps that the tester must complete in order to compose

the test. In that way, the aim is that the test composition procedure is highly

simplified, that a large portion of the test composition complexity is hidden, reducing

the amount of information that the tester needs to learn – especially if he/she is an IT

“novice”, knowing very little from programming and testing. In addition, this

approach prevents the developer from making a large number of errors in the test

composition. Imagine the scenario that a tester wants to write a typical test script

from scratch. He/she has to learn at least the basics of the programming language

basics in which the test will be written (in our case, JavaScript) and, in addition, spend

some time getting familiarized with the appropriate testing and assertion frameworks.

Even if he/she manages to grasp all those information or, even if he/she knows them

already to can use them effectively for test programming and composition, he/she will

have to grasp the whole image of the ecosystem and a large portion of the internals of

its artifacts, but also study at least on the basics of how AmI Solertis works and then

attempt to write a test. But even if we make the assumption he/she has grasped this

59

huge amount of information, he/she can simply do a mistake, in syntactical or logical

level.

The aim of AmITest is to hide both the AmI environment and the AmI Solertis

orchestration studio internals and their complexity, and provide a solid,

straightforward way for the composition of tests. AmITest though does not prevent

experienced users from using the internals of the ecosystem and the APIs of AmI

Solertis – instead, a large portion of its modules and components provide an API for

external usage, in order to make the system fully configurable and extensible for

experienced developers who want to perform complex procedures. But for the average

developer, the aim is to hide all unnecessary complexity, provide the basic tools for

testing composition and assist him/her, by setting this composition to be a step-by-

step procedure. In addition, AmITest provides mechanisms for minimizing the

possibility of errors, such as a puzzle-like test composition component for end-users

with very little or no programming knowledge, and a sophisticated editor component

for more experienced users that supports syntax highlighting and hinting, but also

extended, dynamic autocompletion capabilities, in order to simplify the process even

for experienced developers. AmITest also follows basic design-for-error principles,

guiding the user and not allowing him to skip the completion of important information

into the test composition process.

As a summary we could say that the wizard ultimately plays the role of the collector of

all the appropriate information, in order to specify the sandboxed testing

environment, as stated above, yet in a user-friendly way, hiding all the necessary

complexity from its end users.

ii. Basic Information Collection

As a first step, the user is guided on a screen that contains an overview of the existing

testing scripts. The user is able to modify a script, or create a new one. In case of

creating a new one, the user is prompted into the test editing page. Via that page, the

user is set to a step-by-step procedure. At first, the developer is requested to complete

60

the basic test script information, such as the test script name, its description, but also

the behavioral scripts that will be under test.

Figure 10 - Test Creation Step

iii. Test Outline Definition
In a second step, the user is requested to specify the outline of the test; in that way, the

user can group the tests of the script in different categories that will allow the better

management of the tests including their partial activation and deactivation regarding

the execution process.

61

Figure 11 - Create Test Outline Step

iv. Artifacts Selection
In the next step, the user is prompted to select the artifacts of the system that will be

used in the test, from a list containing all the artifacts of the AmI ecosystem. It is worth

noting that the system itself will attempt to extract information from the selected

behavioral scripts via the Metadata Information Extractor component after specified in

the first step, and, the wizard will provide suggestions to the user about what

components he/she can be use in the test, adding them to the list for usage. The user is

able to freely add or remove components in that list. In addition, the user is able to

specify which components will be considered as stubs in the testing process, by just

selecting them as stubs.

v. Stub Creation and Selection
After the components specification, the user is prompted into the step of stubs

selection. During this step, the user is prompted into a mini-wizard, on which he is

62

able to specify a stub for each one of the artifacts that he/she selected to be stubs on

the previous step. The user is able to select from existing stub versions of a specific

artifact, or create new of his/her own. To this purpose, AmITest uses a service outline

for each artifact, extracted via the Metadata Information Extractor component from the

Swagger Specification defined for each artifact in AmI Solertis (the component will be

presented below in detail). Using that outline, a (primarily advanced) user can create a

new stub service, using an online editor, based on a component called JavaScript

Coding Editor based on the CodeMirror library, which provides advanced editing

capabilities such as code highlighting, code hints and advanced autocompletion.

The mini-wizard guides the user in order to specify a stub service for each and every

artifact specified previously as a stub.

Figure 12 - Artifacts Selection Step

vi. Test Composition

In the next step, the user is prompted to create the tests. This screen can be considered

as the “heart” of the wizard. In order for the user to properly construct the tests,

following the test structure previously defined, the user is guided by another mini

wizard, to each of the test groups specified previously in the test outline. For each one

of those steps, the user practically is guided to write the test cases, that have the form

63

of “cause and effect”: In general, the user is called to specify a number of actions that

will cause some effects inside the “sandboxed environment”, and then assert and

validate those effects via a number of rule definitions. This procedure can practically

be performed in two steps: block construction and coding.

In the block construction option, the mini-wizard provides a block construction editor,

via a component called Tests Visual Composer. This composer is based on a modified

version of Google’s Blockly framework, in order to provide block composition

capabilities. That way, a user with little or no programming experience is able to

specify actions for the sake of tests, such as the entrance of a user inside a room, or the

enabling of a lamp, and then compose simple “check if <component.method> is

<status>” blocks. These blocks will eventually be used in order to generate the tests

code. In the first version of AmITest, the generated code is based on the Mocha testing

framework and the Chai assertion library, while the artifacts are communicated via

their proxies defined inside AmI Solertis. It is worth noting though that the system

architecture allows the usage of other testing and assertion frameworks and libraries

too, as the system is easily configurable, and the code generation procedure is based

on a templating mechanism via the Test Code Generator component.

Figure 13 - A Blockly Code Block

The coding option is based on the JavaScript Coding Editor component mentioned

above, in order to provide code composition and editing capabilities to users of the

system with more advanced programming and testing skills. The user is provided with

a basic test outline pre-filled based on the information that has been specified in

previous steps, such as the components of the system, which are imported to the script

as JavaScript modules, as shown in the figure 14 below.

64

Figure 14 - Test Writing Step - with prefilled code

In addition, Mocha and Chai frameworks but also the artifacts APIs are fully supported

into the autocompletion system of the editor, assisting the developer in the testing

composition procedure as much as possible. In addition, the developer is provided

with a simple API for straightforward asynchronous operations such as time waiting

and assertions grouping, called the Executor API.

Via the coding option, the tester is able to apply calls to the actual or stubbed system

artifacts and apply assertions. In addition, the tester is encouraged to use the

async/await JavaScript features, in order to reduce the lines of testing code applied –

although the Promise API - a library that provides an implementation for proxies in

which a value, not necessarily known when the promise is created allowing the

association of handlers with an asynchronous action's eventual success value or

failure reason, is also supported by the editor, regarding auto completion and code

hints.

65

Figure 15 – Test Writing Step - Autocompletion

vii. Test Overview

In this final step, an overview screen is presented to the user, where the user can

quickly overview the basic information and structure of the test specified, and apply

final modifications to the test, such as the enabling or disabling of test groups for the

final execution. As a final step, the user is able to either save the created test to a test

scripts repository, or save it but also execute it, leading to the setup of the normal or

sandboxed environment, execution of the tests specified as active, and provision of the

reports to the end user.

66

Figure 16 - Test Overview Step

viii. Technologies Used

The Test Composition Wizard is built in AngularJS [52], a very powerful JavaScript –

based front-end framework, that genuinely supports Model-View-Controller

Architecture [53] for better code composition, containing powerful mechanisms such

as two-way data binding between models and views, a very powerful expression

mechanism for HTML injection and many other features, setting in a game changer to

modern Web Development. The logic behind the wizard is that it practically is a Single

Page Application (SPA) that composes an object that contains all the information

collected in the specific steps of the test composition process. This object is

constructed and enhanced step-by-step, and is then provided to other components

that can use it, such as the Files and Database Manager that manages its permanent

storage and access when requested or the Test Code Generator for the testing scripts

generation in their final module form, using Mocha and Chai.

67

3.2. Files and Databases Manager

Taking into account that AmI Solertis uses a considerable amount of data, such as AmI

ecosystem artifacts metadata, etc., but also generates data such as testing scripts

information along with the necessary metadata and dependencies, the system needs to

store and access those data on demand. To this end, a component named Files and

Databases Manager (FDM) is responsible for the storage capabilities inside the system.

In practice, FDM acts as a bridge between a Non-Relation Database Management

System, the MongoDB, but also the file system of the server installed, providing a

complete API for Create-Read-Write-Delete (CRUD) operation between the databases

related on the testing system, but also the filesystem of the server. FDM provides an

API so that other components can use it for CRUD operations. In fact, other

components rely on the data storage and access capabilities of FDM, such as the Test

Composition Wizard (TCW) which uses it in to retrieve artifacts metadata and provide

them to the user in the test composition process, but also to store data and

information collected from the user, provide editing capabilities, etc. Another

component worth mentioning for its extensive usage of FDM is the Test Generator

Component (TGC), which requests data on demand from the FDM, in order to generate

the appropriate tests and provide them to the Execution Runtime. In addition,

Execution Runtime sub-components use the FDM in order to access necessary data,

such as the Stubs and Mocks Manager, which accesses the Stub scripts in order to

initiate services. Finally, the Reporter use FDM in order to store reporting data for

later usage.

3.3. Test Code Generator

AmITest is a framework that attempts to save time, hide complexity from the

developer, but also assist him in the testing procedure. Therefore, a number of

processes need to become automated, visual programming becomes not only usable

but crucial for novice testers, and advanced development editing capabilities need to

be supported for more experienced users. All these requirements have a common

68

base: they all heavily rely on the procedure of code generation. In order to automate

procedures, automatically generated code could do the job in many cases, such as test

snippets that check the availability of an artifact. Such a procedure can become very

time consuming for a tester, while it requires a certain level of experience. In addition,

complex procedures such as the generation of large API Specification files can also

become automated, hiding a large portion of complexity from the testers. In addition,

code generation can assist in the provision of code editing capabilities such as

autocompletion. To achieve all the above, AmITest contains a core, sophisticated

component, named Test Code Generator (TCG). TCG performs a number of tasks,

including but not limited to those described above. We will describe its main roles

below. TCG consists of a number of sub-components, available for each specific task in

the testing environment.

i. Swagger Generation
As we mentioned in the AmI Solertis concept, each artifact can use a number of diverse

technologies, yet it follows a standard service API Specification, called Swagger

Specification. Swagger definition is considered strict, and can become a time

consuming, repetitive and exhausting task for a developer to use it in order to describe

an API, especially at larger ones. AmI Solertis aims to automate the Swagger

production process. While this is not possible in all cases, it becomes very helpful for a

number of them. To this purpose, AmI Solertis supports the analysis and automatic

Swagger Definition generation of some artifact types, such as those based on other

Middleware technologies, like FAmINE [18] but also other behavioral scripts, exposed

as potential artifact services. In the cases that an artifact developer needs to write the

Swagger Definition by hand, AmI Solertis provides a sophisticated Swagger Suggestion

Editor that supports suggestion and auto completion capabilities, aiming to simplify

the process.

The task of the main Swagger Specification is mainly a part of the Solertis API

Extractor components.

The AmITest TCG aims at the enhancement of the generated Swagger specification

with more test-related information, in direct collaboration with the API Extractor.

69

ii. Stubs API Generation
A Swagger definition can provide a number of useful information about the testing

system. One of them is the precise description of the API outline of each artifact.

Using that outline as a prototype, the AmITest can automatically generate the outline

of the Stub definitions, actively assisting the advanced testers in their composition by

hand. In addition, as this comes in combination with powerful code editing

capabilities, advanced users can be assisted effectively in order to write the proper

stubs for each testing process. Similarly to the generation of proxies, TCG uses

Handlebars for automatic generation of code.

iii. Tests Code Preparation
Considering that the user follows a step-by-step test composition process, the

information provided in one step can be used in later steps for the assistance of the

tester. TCG uses the information regarding which artifacts will be used for the test

process based on the selection of the user on the Artifacts Definition step of the Tests

Composition Wizard, in order to generate preparation code or visual blocks for the

developer, in order to assist the test composition process.

iv. Artifact Proxies Generation
In order to provide both programming and testing capabilities in AmI Solertis and

AmITest via JavaScript, the actual, physical (or stubbed) artifacts of the system must

be mapped in code, like programming entities. In order for this to be achieved, each

object is mapped to JavaScript via a JavaScript proxy module, which acts exactly as a

proxy adapter between the JavaScript code which uses the module and the service

calls to the API of the artifact. These proxies are generated automatically by TCG, via

templates.

In fact, TCG uses the HandlebarsJS JavaScript library [54] in order to generate code

based on a template. After this operation, the modules are provided to both AmI

Solertis and AmITest for further usage. Below, you can see the code of the Handlebars

template used for the generation of proxies.

70

Figure 17 - HandlebarsJS Template for Proxies Generation (partial)

v. Test Composition
Another very important task of the TCG, is the test composition. As we mentioned in

the previous section, Test Composition Wizard (TCW) is practically, a User Interface

component that aims to collect all the appropriate information from a user’s

perspective in order to compose a test. Furthermore, the test composition process has

to be performed and eventually result in a test that will be executed by the Execution

Runtime of AmITest. In practice, this means that one has to do the job of getting all the

information collected from the Test Composition Wizard, combine them with some

meta information regarding the artifacts of the system or the system itself, and

generate the tests in a form that will be able to be executed by the Execution Runtime

component. This task is performed by a component named Test Composer(TC). In

practice, the TC uses all the data regarding a test script collected from the Test

Composition Wizard, including the information regarding the test itself, the artifacts

71

used inside the test, the referred behavioral scripts, its structure, and of course, its test

cases. The TCG also uses data regarding each artifact, such as the JavaScript module

paths used in the script, the module names of the artifacts used, etc. Eventually, the

Code Generator generates a test script in pure JavaScript code, ready for execution

from the Execution Runtime of AmITest. This JavaScript module script uses a well-

known framework for unit and integration testing named Mocha. Mocha is a very

powerful framework for unit and integration testing, providing great categorization

between the tests, and supporting a variety of assertion libraries, such as Chai and

ShouldJS. In addition, Mocha supports testing for asynchronous programming. This is a

key factor to the selection of this framework, as asynchronous programming is the

basis of the orchestration of an Ambient Intelligence ecosystem, as all its artifacts

work asynchronously inside it, executing actions atomically, but also observing for

events inside the ecosystem that might affect them. Of course, their behavior is based

on the APIs they expose, based on a micro-Service Oriented Architecture (micro-SOA)

[16], and is orchestrated via the AmI Solertis behavioral scripts. Taking this into

account, one can easily infer that the nature of the behavioral scripts, and their

referred artifacts is asynchronous. The TCG uses all the information mentioned above

to construct test scripts that are able to validate the behavior of asynchronous code

and events, written inside one or more behavioral scripts. In addition, it adds a

number of automatically generated scripts that check the availability of non-stubbing

artifacts, in order to ensure the proper tests execution. Those tests are composed and

provided to the system as simple JavaScript scripts (modules), using Mocha and Chai

frameworks.

TCG follows here the same policy of the generation of proxies and stub service outlines

of artifacts, namely, it uses HandlebarsJS templates in order to generate the code

desired.

72

Figure 18 - HandlebarsJS Template for Test Generation

At this point, a serious consideration must be made: in order for the test to be

performed in an effective way, the Ecosystem State Modification Commands (ESMCs)

and the Test Assertion Commands (TACs) must be performed in a sequential way,

despite their asynchronous nature. While this is an oxymoron, such sequence must be

observed, in order to attempt to avoid race condition between artifacts, but also the

execution of assertion code without waiting for an artifact under test to reach to its

desired state, due to facts related to parallel programming – such as network delays,

etc. For instance, a test could attempt to activate a lamp and then validate that its

status has been altered to active, using an assertion. Considering that the lamp

provides a REST API accessible via network, the call that activates the lamp is

asynchronous, and therefore there is a possibility that when the assertion is executed,

the lamp status has not been altered on time. Therefore, a mechanism must be applied,

in order to ensure that the asynchronous nature of such calls is taken into account.

Currently, there are two ways to achieve this in the JavaScript language: via the

Promises JavaScript API, or the async/await keyword feature. A Promise [21] is a

proxy for a value not necessarily known when the promise is created. It allows the

73

association of handlers with an asynchronous action's eventual success value or

failure reason. This lets asynchronous methods return values like synchronous

methods. Instead of immediately returning the final value, the asynchronous method

returns a Promise object in order to supply the value at some point in the future.

The async [22] function declaration defines an asynchronous function, which returns

an object that represents the code executed within such asynchronous function (a

Promise object). This is commonly used in combination with the await operator [23],

which is used in order to wait for a Promise object returned by an async function.

The first way is much more stable, tested and supported, yet it leads to complex

Promise chaining, leading to non-flexible, less readable code and generating much

more lines of code. The second way is much more robust, generating less lines of code,

but is still in experimental usage in JavaScript, aiming to become a standard (Stage 4

on release at the time of writing).

Ideally, the execution of ESMCs should always come after the execution of TACs, so

that race conditions are avoided in the best way possible.

Of course, such a statement is much more complex to be proved than simply

mentioned. Considering that the system states can be abstractly presented in a state

graph, an ESMC can lead to the generation of many, diverse, phenomenally unrelated

events in an asynchronous manner, then this could lead to race conditions inside the

system and produce many states, including state cycles regarding the state of its

artifacts. Considering though that the TACs followed by ESMCs aim to validate specific

artifact states inside the system, the system is interested to ensure that those states in

particular have come to a stable unchanging state, regardless of the whole ecosystem.

We also assume that cyclic states generated asynchronously as a result of an event can

indicate problematic behavior. We will further discuss this particular issue in the

challenges section later on.

vi. Visual Language to Code composition
Another worth noting task of the TGC, is the analysis of data collected from the Visual

Editor Component of the TCW. The Visual Editor practically provides a block

construction user interface for the test composition. This block composition UI hides

the asynchronous code connection complexity – the blocks are connected as normal,

74

serial instructions. The Test Code Generator analyzes the blocks constructed in a

sequential way and generates the asynchronous code. As mentioned above, this is

performed by using the async/await JavaScript feature, mentioned above.

3.4. Tern Definitions Autocompletion
Generator

We mentioned the case of test composition via a Visual Programming tool, and the

crucial role that the TCG plays in the proper test code composition. We must consider

though that Visual Programming mainly addresses novice users, and that we expect

more experienced users to attempt to write their tests via coding. In that case, the

tester is able to use the Code Editor in the TCW, and it is his/her responsibility to

perform a number of complex operations, such as adding the sequential code behavior

described above, using async/await or the Promises API, both supported by AmITest.

Considering that this is not an easy task, AmITest provides a number of code editing

capabilities, via its WYSIWYG editor component, used across the AmITest framework,

supporting important editing capabilities. One of those capabilities, is advanced code

auto completion, and is provided by using a powerful auto completion engine, named

Tern [55]. Tern uses a number of definitions, based on JavaScript Notation (JSON) [56]

format and an expression language in order to provide the mentioned auto completion

capabilities. Those definitions are automatically generated by TCG when a component

is registered to AmI Solertis.

The TCG is based on templating in order to generate the appropriate script code. To

this purpose, the HandlebarsJS framework is used, a framework that allows powerful

templating capabilities via special expressions, similar to those used in AngularJS [52].

In contrast with many code generation tools, the TCG attempts to generate as human

readable code as possible, considering that the tests it generates should be suitable for

editing. Considering that AmITest should give as much control to the tester as possible,

we plan to add editing capabilities to the finally generated tests, so that an advanced

tester should be able to apply advanced modifications to the script before its

execution.

75

Figure 19 - Tern Definition of a Light Control Proxy

3.5. Metadata Information Extractor

An Ambient Intelligence environment consists of a number of artifacts that contain a

large variety of properties. In order for AmITest to be able to put them under test, a

considerable amount of artifact-related data must be collected and used. In addition,

tests contain information regarding them, useful for the testing process. All these

information needs to be extracted from the appropriate resources in order to be used

in the testing procedure. AmITest contains a mechanism for artifacts metadata

extraction, a powerful component, called Metadata Information Extractor (MIC). This

component works in collaboration with other components of AmI Solertis, such as the

API extractor. MIC extracts all the metadata provided by an artifact, such as those

provided through their Swagger API specification, their API JSDoc [57] definitions etc.

After an extensive analysis is done on artifact specifications, metadata are fed into

other systems, such as the Tests Code Generator, aiming to provide better code

generation results.

76

3.6. Execution Runtime

After a test is composed and all the appropriate code regarding the stubbing of its

artifacts and the tests is generated, the test must be executed. While it seems simple,

such a procedure is not straightforward. In fact, a “brain” entity needs to consider all

the information collected via user interaction and the AmI ecosystem artifacts

metadata, use this knowledge in order to prepare and initialize services required for

testing, ensure the proper communication of AmI artifacts under test with the testing

environment itself, deploy the behavioral scripts under test inside a sandbox, and then

execute properly all the test preparation behaviors and the testing assertions, in order

to produce system validation results, that will be fed to the components which manage

and work on the proper reporting components, informing the user, the ecosystem, and

the whole orchestration system. This is part of the reporting process, executed almost

in parallel with the execution process. The “brain”, is actually a component named

Execution Runtime (ER), which in practice sets up the sandboxed environment by

preparing, performing and managing the tasks described above.

All the tasks of the ER are performed by a number of sub-components, each one

assigned a specific task. Those components are described in detail below.

i. Stubs and Mocks Manager

One of the most crucial tasks the ER performs is the preparation and execution of

Stubs and Mocks. As we mentioned earlier, while testing, there are cases that the

behavior of some artifacts of the AmI ecosystem need to become mocked in a very

specific way. The Stubs and Mocks Manager (SMM) is a component responsible for

managing a number of stub services that will impersonate the desired artifacts within

the ecosystem. The SMM is responsible for the proper setup of each stub service,

configuring settings such as its starting process information, its endpoint information

configuration (service port and more), etc. As a follow up, the SMM is responsible for

the proper initialization of the services, handling their lifetime and ensuring their

proper functioning throughout the whole testing process, but also handling erroneous

situations, propagating the proper error messages to the reporting interfaces.

77

The current prototype of AmITest mainly supports Stubs, aiming at the impersonation

of the API of existing artifacts. In future version, testing capabilities on the

impersonators itself will be added, such as capabilities for the number of calls of an

API function, etc., consisting of components called Mocks. This component will be

responsible for their management and execution, as their behavior is very close to

mocks.

ii. Behavioral Scripts Executor

In order for the behavior of a script to become evaluated via dynamic analysis, it must

become executed. Considering though that a faulty and problematic script could cause

inconsistencies and problematic behaviors inside the ecosystem, it may be necessary

for the script to be tested in an isolated, sandboxed environment, and that its behavior

should not affect the behavior of the real system, unless this is performed

purposefully. The Behavioral Scripts Executor (BSS) is a component responsible for

deploying, executing and monitoring the testing scripts in outside the actual

ecosystem, in a sandboxed environment. The BSS is also responsible for its proper

execution and automatic monitoring. In practice, a behavioral script is deployed and

executed in after the initialization of the stub services. This leads to the restriction of

the behavior of the script, allowing its behavioral validation without affecting real

artifacts of the ecosystem, unless desired; if the tester does not specify a component as

a mock, then the behavior of the script will affect the real artifact. This allows the

tester to apply validity checks to specific real artifacts of the ecosystem, in order to

ensure their proper behaviors. The tester can also test the system’s behavior under a

specific situation, where an artifact is not activated in the system, yet it is deployed. In

this case, the tester can create a mock version of the deployed artifact and check how

the system performs.

78

iii. Testing Commands and Assertions Executor

After the SMM and BSS have prepared and initialized the stubs and the behavioral

scripts under test, the actual validation procedure needs to take place. The execution

of Ecosystem State Modification Commands (ESMCs) aim to lead to implicit or explicit

modifications of the state of some or all the artifacts of the ecosystem, and, therefore,

modify the ecosystem itself. For instance, a command that simulates a user who has

entered a room of an AmI House is an ESMC, as it will potentially lead to a series of

events inside the ecosystem, and therefore, modify its state. After the execution of

ESMCs follows the execution of Test Assertion Commands (TACs) that validate that

some artifacts inside the ecosystem have come to a specific state, practically validating

that the command executed leads the ecosystem to a valid state, depending on the

behavior defined in the behavioral scripts under test. Notice here that the term

“artifact” can indicate either a real ecosystem artifact, or its stub, that simulates its

behavior. Such distinction is dependent on the user options definitions in the test, as

specified in the Test Composition Wizard. In practice, a component named Testing

Commands and Assertions Executor (TCAE) receives a test script, composed by the

Test Code Generator (TCG) component, using data from the Test Composition Wizard

(TCW) and the Test Metadata Extractor (TME) components, which will be analyzed in

detail below. The TCAE then initializes a NodeJS process and executes the composed

test, which contains both ESMCs but also the related TACs. In addition, the TCAE

notifies the components related with the reporting process for any potential outcomes

of the tests, based on the execution of ESMCs and TACs, information which they use in

order to provide reporting features to the system testers, the ecosystem users, but also

the Solertis Orchestration System itself for further analysis.

A summary of the whole work of the Execution runtime can be seen in the command

prompt shown in the figure 20 below.

79

Figure 20 - Command Prompt from the Execution Runtime Process

3.7. Test Reporter

The ultimate aim of testing is to find potential or already existing flaws on the

behavior of the system, and take the appropriate actions before an error leads into

catastrophic results.

Figure 21 - Test Report – All Tests Passed

80

Figure 22 – Test Report -A Test Failed

The purpose of testing is eventually to come to results that will lead to error

prevention or error repairing and recovery actions. Those actions could come from

users, such as the developers of the system, but also ecosystem inhabitants. Another

important purpose is the analysis of the tests results by AmI Solertis. Orchestrating

does not only mean to be able to specify strict instructions, but also fix erroneous

situations and repair them effectively. The system itself could use test reports in order

to proceed to error prevention or repairing actions.

The Test Reporter (TC) is a component responsible for the management and

orchestration of the reporting process.

In its most simple task, the reporter provides a set of reporting results through a

Graphical User Interface to the testers that execute the test. Those results can contain

crucial information about the status of the system, and potential problematic

behaviors that one or more behavioral scripts could cause upon their actual

deployment inside the real ecosystem.

At a more sophisticated level, RC could provide a number of data to the AmI Solertis

ecosystem, in order to assist into the inference of summations of the health status of

the ecosystem. This task can be performed in combination with log data and machine

learning methods and is considered as a very useful mechanism, planned for future

work. The reporter also works in collaboration with the Files and Databases

Component in order to store all reporting data for use by analysis components and

testers.

The test reporter uses the Mocha reporting messages defined in the Test Composition

Wizard, in order to provide the testers with useful information about the test outcome.

The Test Reporter works in parallel with the Execution Runtime, providing real-time

reporting, and allowing the immediate interaction with the tester.

81

Figure 23 - Among Others, Reporting Allows Filtering Capabilities

3.8. Challenges

One of the most challenging issues in order to perform testing operations is the

complexity of the system; there is a considerable number of distributed,

interoperating components, applying operations asynchronously between their

operations most of the time, but also acting asynchronously between each other.

Considering artifacts as isolated units and testing them that way would be incorrect, as

there is a high level of dependency between the artifacts.

What we attempted though was focusing mainly on isolating and performing

assertions on the values of the artifacts, thus practically checking all the individual

components operate as expected. For instance, considering that our test case is inside

a Smart Learning Environment, we should consider that if a student gets distracted

during a lecture, then the teacher should be offered the opportunity to motivate her to

participate. In order to validate that these operations function as intended, one could

observe the situation of the class, something that it is not possible in a simulation

scenario. On the other hand, this observation could be done via value checking of all

the affected artifacts. Therefore a complete test would assert that: 1) the status of the

teacher’s workstation would change from “classroom overview”, to “inattention

detected” and eventually to “mini-game launched” and 2) the AmIDesk of the

distracted student would disable interaction with every application but the mini-game

initiated by the teacher.

In order to achieve the application of assertions in systems collaborating

asynchronously, while attempting to reduce the complexity of the code required for

validation, state-of-the-art, even newly added mechanisms of JavaScript language had

82

to be considered and used, such as the async/await mechanism, introduced as a

standard on the ECMAScript2017 Draft (ECMA-262).

In addition, we have implemented a sophisticated tests runtime orchestration

mechanism through which we ensure that value checking (i.e., Expectations) is

performed only after the necessary handling actions have completed (i.e., Promises).

Another challenging aspect of the development of such a testing system, was the

provision of a simple, yet effective mocking mechanism of components,

in order to provide effective impersonation of the artifacts of the AmI environment

under test. While the consideration of the usage of JavaScript modules in combination

with mocking libraries such as SinonJS [58] seemed to be an effective way for

stubbing, the usage of stubs as services proved to be extremely robust, giving the

ability to the tester to practically create a real impersonator of the system with its own

service lifetime, runtime properties and full API provision. Of course, such a choice had

its tradeoffs, as the mocking procedure increased the execution time of the testing,

since practically stubs are provided as service REST APIs and are accessed via

network. In addition, such a stubbing mechanism requires the creation of stubs from

developers with basic experience in Service Oriented Architecture and REST APIs

development. Considering though that the cost of fast internet connections is

affordable, the usage of such stubs is limited to specific testing cases, and eventually

that stubbing services can be written from experienced developers but used by novice

users without problems, to this solution was preferred.

Of course, as our system scales up, even more challenges arise. Inside an Ambient

Intelligence environment, human inhabitants get monitored continuously. This leads

into discussions of privacy issues, a well-known problem in the field of Ambient

Intelligence. While the focus of this work is mainly on the benefits of the testing

procedure, it is worth mentioning that our plans include the compliance of our system

to all the standards applied in Ambient Intelligence, related to security and privacy.

While our system does not focus on the data, we plan to use technologies such as SSL

[59] and OAuth 2.0[60] authentication in the usage of our APIs, in order to protect the

main AmI Environment from malicious attacks, regarding the areas related to our

testing system.

83

4. EVALUATION

For the purpose of this work, we conducted a user evaluation experiment in order to

evaluate the usability of our system, but also collect information regarding the general

opinion of the users regarding the system and its use in its actual environment. For

this first evaluation, we focused on the use of the system by expert IT users, in

particular concerning the part of the system that allows the test composition by IT

experts, before moving on to an evaluation with novice users.

To this purpose, we conducted an experiment with 5 users, a number suggested for

user evaluation by Nielsen [61]. The experiment included 4 men and 1 woman (a

factor considered irrelevant in our experiment), users of ages 25-40 years old. All the

participants were developers, having worked in projects regarding Ambient

Intelligence, and therefore familiar with the related concept and principles.

We performed the experiment in two phases. In the first phase, we trained the

developers in the usage of the system, first by showing them how to write a simple test

case for a script that enabled the lights of a room, when the first user entered it. The

users were instructed to write a test case that simulated the behavior of the entrance

of a user inside the room, and then applying assertions on the status of the lamp. After

this example, the users were requested to use the system in order to get familiarized

with it, by writing similar scenarios – regarding the deactivation of lights when the last

user of a room exits and the activation of the coffee machine when the alarm triggers,

assuming the user sleeps inside the room. In order to assist the developers, a single

page cheat sheet was given to them. Before this training phase, it was requested from

them to answer some preliminary questions, regarding their expertise, but also their

approach to validating the behavior of a smart room they had hypothetically

programmed. Users were encouraged to make comments even on the training phase.

Regarding this question, it is worth mentioning that two of the users mentioned the

physical interaction with the actual ecosystem, followed by the reasoning of the

correctness via the observation of the state of the actual system.

In addition, all users proposed the creation of a system that would support the feeding

of the ecosystem with fake data or the simulation of events inside the ecosystem, and

then applying assertions on the eventual state of the system.

84

The second phase of the evaluation experiment was performed the next day after the

training phase for all users, in order to allow them enough time to further grasp the

information learned. In this phase, the users were requested to perform two scenarios,

one of easy difficulty regarding the testing of the automatic enabling and disabling of

air-conditioning regarding the temperature of the environment, and one of

intermediate difficulty, regarding the activation when the user wakes up in the

morning, along with the validation of the behavior of devices when the user moves

from his/her bedroom to the living room. Finally, the experiment included one

debriefing scenario for the detection of faulty behavior inside the ecosystem – the case

was a (simulated) problematic lamp. The users were encouraged to express their

opinions openly, but also to express their way of thinking during the performance of

tests (following the think-aloud protocol [62]). Any quantitative data – such as

impressions, comments and suggestions during the scenario execution phase were

documented, along with a number of qualitative data. More specifically, for each

scenario we measured the task completion time required by each user in order to

complete it, along with the number of help requests and errors they made in order to

complete a task, in three basic categories: Test Procedure/Beyond User Interface, User

Interface, and Code Composition. In general, all users managed to complete all

scenarios and receive the appropriate results.

 We present the diagrams of each case below. The orange color represents the average

value, while the green one represents the median, in all diagrams.

4.1. Scenario 1
As we mentioned earlier, scenario 1 was the introductory, warm-up scenario of the

evaluation. We observed that users had received well the training of the previous day.

The results of its analysis are presented below:

85

Figure 24 - Execution Time - Scenario 1

As figure 23 shows, all users managed to complete the first, easy scenario air condition

functionality without large deviations, except user 4, which managed to complete it in

10 minutes. Considering that such a scenario was written in such an amount of time,

the results are promising regarding the usage of the tool, considering that the users

were using it for the first time apart from the training session, such a time span should

be considered small and expected to reduce with the extensive usage of the system.

Figure 25 - Help Requested - Process/Beyond UI - Scenario 1

0

2

4

6

8

10

12

14

16

18

20

User 1 User 2 User 3 User 4 User 5

Ti
m

e
 (

m
in

s)

Execution Time
AVERAGE

MEDIAN

0

0,5

1

1,5

2

2,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

Beyond UI: Help asked
AVERAGE

MEDIAN

86

Figure 24 shows that the participants did not request much help regarding this

scenario. Based on these results, we can conclude that users understood easily the

overall testing procedure and proceeded without big problems and that although

everyone asked for help, the amount of assistance remained low. Considering though

that all users asked for help at least once, this indicated that our system needs minor

improvements regarding the process of test composition. It is worth mentioning

though that there are no errors regarding the process, which leads us to assuming that

the participants grasped successfully the whole process.

Regarding the UI, the amount of help requested and errors made remains low for all

participants (zero to one), which means that the User Interface did not cause any

problems to the users for a simple scenario. The same applies regarding to the help

requested considering the code composition procedure. What is interesting about

code composition is the diagram of errors in code.

Figure 26 - UI Help Asked - Scenario 1

0

0,2

0,4

0,6

0,8

1

1,2

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

UI: Help asked
AVERAGE

MEDIAN

87

Figure 27 - UI Errors - Scenario 1

Regarding the UI, we can see in figures 25 and 26 that both errors and requests for

help are limited for this simple scenario, mainly related to the wrong selection of

components because their presentation was not indicating their role clearly, a concern

that users also expressed.

Figure 28 - Code: Help Asked - Scenario 1

0

0,2

0,4

0,6

0,8

1

1,2

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

Er
ro

rs

UI: Errors
AVERAGE

MEDIAN

0

0,5

1

1,5

2

2,5

3

3,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

Code: Help asked
AVERAGE

MEDIAN

88

Figure 29 - Code Errors - Scenario 1

Considering figures 27 and 28, we observe that, while only one user requested help,

almost all users made some programming errors, despite the simplicity of the scenario

and the provided tools. This indicates that the coding process needs refinements.

4.2. Scenario 2

After scenario 1, the participants were prompted to proceed to scenario 2, which was

more complicated than the first one. This scenario included the usage of an increased

number of artifacts, but also a more articulated scenario which included the activation

of a number of devices upon alarm activation, but also the proper detection of the user

while moving from his/her bedroom to the living room, followed by the proper

activation of the music service in the room he/she has entered. For this scenario we

also counted the qualitative measures used in scenario 1.

0

0,5

1

1,5

2

2,5

3

3,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

Er
ro

rs

Code: Errors
AVERAGE

MEDIAN

89

Figure 30 - Execution Time - Scenario 2

What we can observe in Figure 29, is that time almost doubled on the increase of the

complexity of the scenario. Users also have different results on this diagram, for

instance user 3 managed to execute the scenario in exactly half the time user 1 did.

This could be a result of insufficient training of the participants regarding the testing

environment. In addition, it indicates that the system should become simpler to use.

The first assumption becomes even more supported by the fact that most users asked

questions regarding the process, as shown in Figure 15.

Figure 31 - Help asked, regarding process/ Beyond UI - Scenario 2

Figure 30 shows that all the users asked for help repeatedly regarding the whole

process, thus suggesting that the whole procedure needs improvements and that the

user needed more assistance and clarifications as the requirements for more complex

0

5

10

15

20

25

30

35

40

45

User 1 User 2 User 3 User 4 User 5

Ti
m

e
 (

m
in

s)

Execution Time
AVERAGE

MEDIAN

0

1

2

3

4

5

6

7

8

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

Beyond UI: Help asked

90

testing composition increased. We can see though that their number increased

linearly, as time also did, which means that the relation between requirements of test

composition, errors and time spent for its writing is linear and not exponential. In

addition, users did not make any errors regarding the process/beyond UI part. This is

an indication that the testing system should provide by itself more clarifications

regarding its use, clarifications that were provided to the participants during the

evaluation process as assistance. Such clarifications include but are not limited to the

mental model that the API of the artifacts provides, but also a more clear suggestion

mechanism regarding the auto-completion feature, especially for object properties

suggestion.

Figure 32 - Process/Beyond UI Errors - Scenario 2

In Figure 31, we can observe that only two out of five users made errors regarding the

process of scenario execution. These errors are linked to the mental model regarding

the representation and the clarification of the roles of artifacts within the ecosystem,

leading them to wrong selections and usage – for instance, one user was confused

regarding whether or not he should use a motion detection artifact regarding motion

between rooms, or the motion sensor of the house overall. The system needs to clarify

the roles of its artifacts so that they are displayed to the user without leaving any

margin for confusions and error.

0

0,5

1

1,5

2

2,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

Er
ro

rs

Beyond UI: Errors

91

Figure 33 - UI - Help asked - Scenario 2

Regarding errors in this scenario, as shown in Figure 32, only one user was confused

with a particular error. The error was related to the numbering options provided by

the wizard of the application and their activation and deactivation.

Figure 34 - UI Errors - Scenario 2

Regarding errors in the usage of the UI, as shown in Figure 33, we can observe that

two out of five users made a small number of errors, a fact that suggests consideration

for improvements of the UI. Those errors were related to the selection of mock

components and navigation issues, and users also expressed their concerns about

those issues that were considered for the improvement of the system

0

0,2

0,4

0,6

0,8

1

1,2

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

UI: Help asked
AVERAGE

MEDIAN

0

0,5

1

1,5

2

2,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

Er
ro

rs

UI: Errors
AVERAGE

MEDIAN

92

.

Figure 35 - Code: Help Asked - Scenario 2

Figure 36 - Code Errors - Scenario 2

Considering that all the users who participated in the evaluation were developers,

their requests for help and the errors they would make regarding the composition of

code is interesting in terms of observation, as shown in Figures 34 and 35. In general,

the amount of help requests and errors related to code was small and mainly had to do

with the mental model of the APIs provided to the developers. Regarding help, one

common suggestion was the usage of await, which some users omitted occasionally.

One common case was the misuse of some of the defined event functions (such as

onMotionDetected(callback)) with its event simulation function (such as

triggerOnMotionDetected()), about which the participants asked clarifications

0

0,5

1

1,5

2

2,5

3

3,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

Code: Help Asked
AVERAGE

MEDIAN

0

0,5

1

1,5

2

2,5

3

3,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

Er
ro

rs

Code: Errors
AVERAGE

MEDIAN

93

in order to use them effectively. Such requests indicated the need for improvements of

the system, along with the provision of a more effective API presentation mechanism.

4.3. Scenario 3

After scenario 2, the participants were prompted to execute an already prepare

scenario that resulted into the indication of a faulty case into the system, in order to

validate whether or not they will be able to identify this error (a problematic lamp that

was delaying on its activation). In the end, all users identified the problem

successfully.

Figure 37 - Execution Time - Scenario 3

Considering that this was a simple case, the execution time was limited to an average

of about 5 minutes, as shown in Figure 36, with the users being able to identify the

flaw without trouble, in general.

Regarding the process, the users did not make errors as the result they were looking

for was straightforward. Two of them asked for some clarifications about what they

were searching for, not indicating though any problems on the procedure or the

system, as shown in Figure 37.

0

2

4

6

8

10

12

User 1 User 2 User 3 User 4 User 5

Ti
m

e
 (

m
in

s)

Execution Time
AVERAGE

MEDIAN

94

Figure 38 - Beyond UI - Help Asked - Scenario 3

4.4. System Usability Scale

In order to assure that we gain more concise results, we conducted a System Usability

Scale [63] test to all five users. Each user was requested to fill the official form of SUS

after the execution of the testing scenarios.

Considering that SUS has a usability threshold of 67%, our system gained a score of

83,5%, which indicates that our system was marked as highly usable. It is also worth

noting that all users marked the system above 67%.

Figure 39 - SUS Score/per user

0

0,5

1

1,5

2

2,5

User 1 User 2 User 3 User 4 User 5

N
o

 o
f

H
e

lp
s

Beyond UI: Help asked
AVERAGE

MEDIAN

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

SU
S

R
an

k

Users

SUS Score / per user SUS Threshold

95

Making a more specific analysis on SUS, most of the users said they would use the

system frequently, that the system was not complex but in general easy to use without

the assistance of an IT professional, and that the system functions were well

integrated. In addition, they expressed the opinion that the system does not require

extensive learning before being used. The results can be observed in Figure 38 below.

4.5. Debriefing and User Comments

After the execution of tests and the SUS questionnaire, the participants were asked

some debriefing questions, regarding their opinion on the tool, what they liked the

most about the system and what not, and whether they had suggestions about the

enhancement of the system. These comments were considered in combination with

the comments collected through the whole scenarios execution process via think-

aloud.

In general, most of the users found the system a good solution for the testing of AmI

environments. Some of them characterized it as “very good”, “interesting”, “usable”

and “very useful with a little practice”, similar to their initial mental model of testing

such an environment. In fact, the system very close to what they mentioned in the pre-

test phase about how they would test an AmI Environment. Many of the participants

stated that they liked a number of features of the system, such as the auto completion

capabilities – a feature used extensively by all the participants, as well as the stubbing

capabilities of components. They also appreciated that they don’t have to deal with the

complexity of the system. Most of the participants mentioned they would use the

system extensively.

Regarding indications and suggestions, the participants proposed a more thorough

presentation of the artifacts inside the system, but also a more clear presentation of

the API of the artifacts used in the coding part and a more IDE-like User Interface,

along with a well-written documentation. In addition, they indicated a number of flaws

regarding the UI, such as the indication of component and behavioral script selections

which was not found clear by some users, and the navigation system of the wizard.

In addition, the participants suggested improvements regarding the code composition

process, such as the usage of await in a way that it cannot easily be omitted by

mistake and a better component pre-filling mechanism in the code. Some users also

recognized a pattern in the test composition process (artifacts selection, triggering of

96

actions, assertions) and proposed the automatic detection of similar tests for reuse

purposes.

Regarding what the participants disliked the most, they indicated that they would like

to have a more complete auto completion mechanism, but also a more verbose

reporting system. One user indicated that a core missing feature of the system is a

debugging mechanism on the tests execution, along with the ability of putting multiple

behavioral scripts under test in parallel. In addition, the participants suggested a

better test outline mechanism, as this was proven confusing to some of them. Another

important suggestion that users made is that they did not know the waiting time they

should set in order to test a triggering behavior, which is an important consideration

for the system.

In general, the system was well-received and was appraised for its usability and ease

to use, hiding large complexity from the developer, achieving its aims with great

success.

97

5. FUTURE WORK

Considering that AmI Environments are scalable and complex systems, their validation

process should also not be limited but be extensive and adaptable. In its current state,

AmITest currently mainly focuses on the integration testing and provision of basic

component simulation capabilities. Our aim is to extend it to a large, sophisticated

testing suite, which will provide extended testing capabilities in terms of simulation,

integration testing, but also end-to-end testing, and the automatic detection of

problematic behaviors inside the ecosystem, along with the provision of error

correction recommendation mechanisms, that will contribute to the stability and the

long-living of the AmI ecosystem, along with valuable statistical data regarding its

behavior. Our aim is to eventually create a full Testing suite that also plays the role of a

test automation assistant to the tester at the same time, actively acting for the benefit

of the optimal operation of the AmI Ecosystem.

 Security Measures: Considering that AmITest applies validation checks to an

Ambient Intelligence environment, an environment that collects data from human

inhabitants, often raising ethical concerns about privacy and security as a concept,

our goal is to preserve any data that the user offers to the system with his/her

will, thus not allowing their access to malicious users. To this end, we plan to

comply with any security standards applying to the context of specific Ambient

Intelligence environments. In addition, we plan to use state-of-the-art security

technologies in order to preserve the usage and access of the data of the Ambient

Intelligence environment, such as the usage of SSL, OAuth 2.0 and token

authentication to our APIs etc.

 Actual Ecosystem Events Recording and Replay: One of the first planned

extensions concerns the events simulation used for validation purposes. Currently,

the system supports the simulation of single events inside the system. While such

mechanism proves to be powerful in terms of testing and validation, it can become

unrealistic at times in comparison with the actual behavior of a human inhabitant

inside the ecosystem. Therefore, we consider the extension of AmITest with an

event recording mechanism, providing the ability to the tester to perform actions

98

inside the actual ecosystem, record those actions in the form of events happening

inside the ecosystem in relevance with time. After the recording of actions, the

tester will be given the ability to modify, if desired, via provided basic editing

capabilities, and eventually replay the original or modified sequence of events.

Using such mechanism, the tester will be able to test the validity of a behavioral

script along with the optimal behavior of artifacts inside the ecosystem, while

simulating an actual user behavior inside the system. This is based on the simple

behavioral pattern of checking a device in normal live by use, to check if it behaves

well. Via this event mechanism, this can be easily achieved. In fact, our system

contains all the tools for the creation of such mechanism with ease.

 Continuous Integration (CI): As we mentioned earlier, AmITest is an integral,

core part of the AmI Solertis Development and Orchestration studio. In such

context, the application of testing can be proved very effective if it becomes

integrated in the various phases of the actual AmI ecosystem behavioral

development, such as artifacts registration and deployment, along with behavioral

code composition and deployment in AmI Solertis. We plan to extend our system

in order to provide Continuous Integration capabilities to Solertis. Technically, this

will be achieved in combination with a very popular and frequently used

Continuous Integration tool, named Jenkins [64]. Jenkins is a tool that aims to

provide powerful unit and integration testing capabilities at various phases of the

development of software. Such CI tools prove to be very powerful for the

application of the automatic unit, integration and end-to-end testing. Considering

that our system is based on the concepts of unit and mainly integration testing and

that the development process consists of a number of phases, we consider that

such an addition will be highly beneficial for the validation of the behavior of AmI

environments, developed and orchestrated via AmI Solertis.

 Extended Visual Programming Capabilities: Currently the visual programming

capabilities provided by AmITest are based on the Google Blockly platform, mainly

providing test composition capabilities via jigsaw puzzles. Considering that Visual

Programming (VP) is an area of separate ongoing research, we aim to constantly

provide better mechanisms for Visual Programming. Our future work plans

include the extension of the Blockly platform, in order to provide jigsaw

99

composition assistance capabilities, similar to auto completion and blocks

suggestion, via the usage of popup windows.

 3D Modeling Simulation Capabilities: In the related work section, we observed

that systems such as InSitu, UBIWISE and UbiREAL focus on the simulation of

Smart Environments via the usage of 3D models, using various Graphic Engines

such as Quake III Arena Graphics Engine and the Half Life 2 engine. We plan to

further explore this area and integrate state-of-the-art technologies related to VP

inside our system. Those plans include the consideration of tools that virtually

represent the AmI environment, via 2D or 3D models, in order to simplify the

interaction for novice end users.

 Log Inferencing & Analysis: The ultimate aim of AmITest is to provide validation

mechanisms to the testers of the AmI ecosystem, but also actively contribute to

the prevention of errors and the suggestion of fixes in cases of flaws or

deficiencies inside the ecosystem. Toward this end, we plan the implementation of

a mechanism that will use information collected via the logging mechanisms of

AmI Solertis, and apply sophisticated pattern recognition algorithms in order to

infer possible deficiencies inside the ecosystem, produce reports and suggest

solutions to the users of the system, or the system itself, assisting to the operation

of its potential environment automatic repairing mechanisms. This includes the

analysis of reports already generated by AmITest via unit and integration testing

analysis, such as the reports generated during the execution of the scripts

composed in the Test Composition Wizard. AmITest produces such results in a

well specified, well-structured format (JSON), well understandable and widely

used for logging and configuration.

 More Verbose Reporting System: The evaluation experiment showed that there

is a need for a more verbose reporting system. We plan to enhance our existing

reporting system with the provision of more information regarding the tests

execution.

 Extended Debugging Capabilities: Another very important result of the

evaluation experiment is that there is a need for a more sophisticated debugging

mechanism regarding the test execution, such as step-by-step execution. We plan

to integrate such a mechanism into our system.

100

Through adding such features to the system, AmITest will become much more than just a

testing tool. The aim is to eventually create a full testing suite that also plays the role of a

test automation assistant to the tester at the same time, actively acting for the benefit of

the optimal operation of the AmI ecosystem, and eventually the benefit of its human

inhabitants.

101

6. CONCLUSIONS

This work has described AmITest, a testing framework for Ambient Intelligence

Environments targeted to check the validity of operations programmed by end users

in a Smart Environment, which is a core, integral component of AmI Solertis, a system

for the orchestration and development of Ambient Intelligence systems.

The framework provides mechanisms for simple, straightforward, yet powerful and

effective testing of the functionality of technological artifacts inside a Smart

Environment. In addition, the framework provides an optional sandboxing execution

environment, in order to apply testing assertions without affecting the actual AmI

ecosystem, thus providing mechanism for its effective and extensive testing regardless

of whether or not a behavioral definition (script) has been deployed and executed

inside the Smart Environment. Finally the system generates and provides reporting

information to the tester and AmI Solertis, the whole AmI environment orchestration

system.

AmITest ultimately targets at both programming and non-programming professional

users, and supports testing via scripting and Visual Programming. Even though well-

established user-friendly visualization techniques have been currently applied (e.g.,

Wizards, Blockly etc.), following the iterative approach of the User-Centered Design

(UCD) process[65][66], both users and experienced developers of AmI servicers will

be actively involved in the design process of the visual tools, through preliminary

evaluation sessions and participatory design sessions, to maximize their usability for

both groups. Regarding the beta version of our system, we have conducted a user

evaluation with focus on users with IT expertise, and we presented the results. Upon

the release of version 1.0 of AmITest, we plan to conduct an extensive in-vivo full-scale

evaluation experiment both with HCI experts and users in order to examine and

improve the usability of the AmITest editing facilities.

102

7. REFERENCES

[1] Augusto, Juan, and Paul Mccullagh. "Ambient Intelligence: Concepts and
applications." Computer Science and Information Systems 4.1 (2007): 1-27. Web.

[2] J. Krumm, Ubiquitous Computing Fundamentals. Boca Ragon: Chapman &
Hall/CRC Press, 2010.

[3] F. Adelstein, Fundamentals of Mobile and Pervasive Computing. New York:
McGraw-Hill, 2005.

[4] Leonidis, Asterios, Margherita Antona, and Constantine Stephanidis. "Enabling
programmability of smart learning environments by teachers." International
Conference on Distributed, Ambient, and Pervasive Interactions. Springer
International Publishing, 2015.

[5] Leonidis, Asterios. AmI Solertis: an Online Platform that Facilitates the
Definition of “Smart” Behaviours in AmI Environments. PhD Dissertation,
University of Crete, forthcoming.

[6] "Internet of Things Global Standards Initiative." ITU. N.p., n.d. Web. 03 Apr.
2017.

[7] Aarts, E. H. L., and Jose Luis. Encarnaça o. True visions the emergence of ambient
intelligence. Berlin: Springer, 2008. Print.

[8] Danado, Jose, and Fabio Paternò. "Puzzle: A Visual-Based Environment for End
User Development in Touch-Based Mobile Phones." Human-Centered Software
Engineering Lecture Notes in Computer Science (2012): 199-216. Web.

[9] "VPL Introduction - msdn.microsoft.com." N.p., n.d. Web.
[10] Chen, Yinong, and Gennaro De Luca. "VIPLE: Visual IoT/Robotics Programming

Language Environment for Computer Science Education." 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (2016): n. pag. Web.

[11] Dahl, Yngve, and Reidar-Martin Svendsen. "End-User Composition Interfaces
for Smart Environments: A Preliminary Study of Usability Factors." Lecture
Notes in Computer Science Design, User Experience, and Usability. Theory,
Methods, Tools and Practice (2011): 118-27. Web.

[12] Zapier. "Connect Your Apps and Automate Workflows." The best apps. Better
together. - Zapier. N.p., n.d. Web.

[13] "IFTTT." Learn how IFTTT works - IFTTT. N.p., n.d. Web.
[14] Nishikawa, Hiroshi, Shinya Yamamoto, Morihiko Tamai, Kouji Nishigaki,

Tomoya Kitani, Naoki Shibata, Keiichi Yasumoto, and Minoru Ito. "UbiREAL:
Realistic Smartspace Simulator for Systematic Testing." Lecture Notes in
Computer Science UbiComp 2006: Ubiquitous Computing (2006): 459-76. Web.

[15] Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous integration
improving software quality and reducing risk. Upper Saddle River, NJ: Addison-
Wesley, 2013. Print.

[16] Newman, Sam. Building Microservices. N.p.: O’Reilly, 2015. Print.
[17] Crispin, Lisa, and Janet Gregory. Agile testing a practical guide for testers and

agile teams. Upper Saddle River: Addison-Wesley, 2014. Print.
[18] I. Georgalis, Y. Tanaka, N. Spyratos, and C. Stephanidis, Programming Smart

Object Federations for Simulating and Implementing Ambient Intelligence
Scenarios. In C. Benavente-Peces and J. Filipethe (Eds.), Proceedings of the

103

3rd International Conference on Pervasive and Embedded Computing and
Communication Systems (PECCS 2013), Barcelona, Spain, 19-21 February 2013,
pp. 5-15. Portugal: SCITEPress.

[19] Swagger Specification. N.p., n.d. Web. <http://swagger.io/specification/>.
[20] JavaScript Programming Language. N.p., n.d. Web.

<https://developer.mozilla.org/en-US/docs/Web/JavaScript>.
[21] JavaScript Promise. N.p., n.d. Web.

<https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_O
bjects/Promise>.

[22] JavaScript async function . N.p., n.d. Web. <https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/async_function>.

[23] JavaScript await. N.p., n.d. Web. <https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/await>.

[24] ECMAScript Language Specification. N.p., n.d. Web. <https://www.ecma-
international.org/publications/standards/Ecma-262.htm>.

[25] Redis PubSub. N.p., n.d. Web. <https://redis.io/topics/pubsub>.
[26] Tragos, Elias, Alexandros Fragkiadakis, Vangelis Angelakis, and Henrich C.

Pöhls. "Designing Secure IoT Architectures for Smart City Applications."
Designing, Developing, and Facilitating Smart Cities (2016): 63-87. Web.

[27] Louloudakis, N., Leonidis, A., & Stephanidis, C. (2016). AmITest: A Testing
Framework for Ambient Intelligence Learning Applications. In the Proceedings
of the Eighth International Conference on Mobile, Hybrid, and On-line Learning
(eLmL 2016), Venice, Italy, 24-28 April.

[28] Lu, Heng. "A Context-Oriented Framework for Software Testing in Pervasive
Environment." Proc. of 29th International Conference on Software Engineering.
N.p.: IEEE, n.d. N. pag. Print.

[29] Satoh, I. "Software testing for mobile and ubiquitous computing." The Sixth
International Symposium on Autonomous Decentralized Systems, 2003. ISADS
2003. (n.d.): n. pag. Web.

[30] J.J. Barton, V. Vijayaraghavan, UBIWISE, a simulator for ubiquitus computing
systems design, Tech Rep. HPL-2003-93, Mobile and Media Systems
Laboratory, Hewlett Packard Laboratories Palo Alto (2003)

[31] Jouve, Wilfried, Julien Bruneau, and Charles Consel. "DiaSim: A parameterized
simulator for pervasive computing applications." 2009 IEEE International
Conference on Pervasive Computing and Communications (2009): n. pag. Web.

[32] UPNP Specification. N.p., n.d. Web.
<https://openconnectivity.org/resources/specifications/upnp/specifications>.

[33] O’Neill, Eleanor, Owen Conlan, and David Lewis. "Situation-based testing for
pervasive computing environments." Pervasive and Mobile Computing 9.1
(2013): 76-97. Web.

[34] Martín, Diego, Ramón Alcarria, Álvaro Sánchez-Picot, and Tomás Robles. "An

Ambient Intelligence Framework for End-User Service Provisioning in a Hospital

Pharmacy: a Case Study." Journal of Medical Systems 39.10 (2015): n. pag. Web.

[35] Ferrandez-Pastor, Francisco Javier, Juan Manuel Garcia-Chamizo, Mario Nieto-

Hidalgo, and Francisco Florez-Revuelta. " DAI Virtual Lab: a Virtual Laboratory for

Testing Ambient IntelligenceDigital Services." (n.d.): n. pag. Web.

[36] Petrova-Antonova, Dessislava, Sylvia Ilieva, and Denitsa Manova. "TASSA: A
Testing as a Service Framework for Web Service Compositions." Proceedings of

104

the International Workshop on domAin specific Model-based AppRoaches to
vErificaTion and validaTiOn (2016): n. pag. Web.

[37] Whitley, K. N., and Alan F. Blackwell. "Visual programming: : The Outlook from
Academia and Industry." Papers presented at the seventh workshop on Empirical
studies of programmers - ESP '97 (1997): n. pag. Web.

[38] M. Resnick et al, "Scratch: Programming for All." Communications of the ACM
Commun. ACM 52, no. 11 (2009), pp. 60-67.

[39] O. Gray and M. Young, 2007. “Video Games: A New Interface for Non-
Professional Game Developers”. In ACM International Conference on Computer-
Human Interaction (CHI 2007), USA: San Jose.

[40] N. Tillmann, M. Moskal, J. De Halleux, and M. Fahndrich, "TouchDevelop:
Programming Cloud-connected Mobile Devices via Touchscreen." Proceedings
of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software - ONWARD '11, 2011, pp. 49-60.

[41] D. Wolber, "App Inventor and Real-world Motivation." Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education - SIGCSE '11, 2011,
pp. 601-606.

[42] "Blockly | Google Developers." Google Developers. Accessed January 25, 2016.
https://developers.google.com/blockly/.

[43] B. Waldie, Automator for Mac OS X 10.6 Snow Leopard. Berkeley, CA: Peachpit
Press, 2010.

[44] R. Ierusalimschy, Programming in Lua. Rio De Janeiro: Lua.org, 2006.

[45] W. Goldstone, Unity 3.x Game Development Essentials: Game Development
with C♯ and Javascript. Birmingham, UK: Packt Publishing, 2011.

[46] R. J. Cox, and P. S. Crowther, "A Review of Linden Scripting Language and Its
Role in Second Life." Lecture Notes in Computer Science Computer-Mediated
Social Networking, 2009, pp. 35-47.

[47] "CodeMirror." CodeMirror. N.p., n.d. Web. 03 Apr. 2017.
<http://codemirror.com/>.

[48] "MochaJS” MochaJS. N.p., n.d. Web. <https://mochajs.org/>.
[49] “ShouldJS” ShouldJS. N.p., n.d. Web. < https://shouldjs.github.io/>
[50] “Chai” Chai. N.p., n.d. Web. <http://chaijs.com/>.
[51] "Jasmine Documentation." Jasmine. N.p., n.d. Web. 03 Apr. 2017.

<http://jasmine.github.io/>.
[52] "AngularJS - Superheroic JavaScript MVW Framework." AngularJS - Superheroic

JavaScript MVW Framework. N.p., n.d. Web. 03 Apr. 2017.
[53] Grove, Ralph F., and Eray Ozkan. "The MVC-Web Design Pattern." Proceedings of

the 7th International Conference on Web Information Systems and Technologies
(2011): n. pag. Web.

[54] " Handlebars.js” Handlebars.js:. N.p., n.d. Web. 03 Apr. 2017.
<http://handlebarsjs.com/>.

[55] "Tern." Tern. N.p., n.d. Web. 03 Apr. 2017. <http://ternjs.net/>.
[56] "Introducing JSON." JSON. N.p., n.d. Web. 03 Apr. 2017.

<http://www.json.org/>.
[57] "JSDoc." JSDoc. N.p., n.d. Web. 03 Apr. 2017.
[58] "Standalone test spies, stubs and mocks for JavaScript. Works with any unit

testing framework." Sinon.JS. N.p., n.d. Web. 03 Apr. 2017.
<http://sinonjs.org/>.

105

[59] Zhao, Li, R. Iyer, S. Makineni, and L. Bhuyan. "Anatomy and Performance of SSL
Processing." IEEE International Symposium on Performance Analysis of Systems
and Software, 2005. ISPASS 2005. (2005): n. pag. Web.

[60] Jones, M., and D. Hardt. "The OAuth 2.0 Authorization Framework: Bearer
Token Usage." (2012): n. pag. Web.

[61] Nielsen, Jacob. "Success Rate: The Simplest Usability Metric." Success Rate: The
Simplest Usability Metric. N.p., n.d. Web. 03 Apr. 2017.
<https://www.nngroup.com/articles/success-rate-the-simplest-usability-
metric/>.

[62] Olmsted-Hawala, Erica L., Elizabeth D. Murphy, Sam Hawala, and Kathleen T.
Ashenfelter. "Think-aloud protocols: Analyzing three different think-aloud
protocols with counts of verbalized frustrations in a usability study of an
information-rich Web site." 2010 IEEE International Professional Comunication
Conference (2010): n. pag. Web.

[63] Brooke, John. "SUS - A quick and dirty usability scale." (n.d.): n. pag. Web.\
[64] "Jenkins Automation Server." Jenkins. N.p., n.d. Web. 03 Apr. 2017.

<https://jenkins.io/>.

[65] Norman, Donald A. The design of everyday things. New York: Doubleday, 1990.
Print.

[66] Lowdermilk, Travis. User-centered design. Place of publication not identified:

Shroff Publishers & Distr, 2013. Print.

