

Design and Implementation of the Send Part of an

Advanced RDMA Engine

Xirouchakis Pantelis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

 University of Crete

School of Sciences and Engineering Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

 Thesis Advisor: Prof. Manolis G.H. Katevenis

Thesis Co-Advisor Dr. Nikolaos Chrysos

This work has been performed at and was supported by the Foundation for Research and Technology

- Hellas (FORTH), Institute of Computer Science (ICS), Computer Architecture and VLSI Systems

(CARV) Laboratory, within the ExaNeSt project, funded by the European Union’s Horizon 2020

research and innovation program under grant agreement No 671553.

March 2019 (Published in March 2020)

1
Xirouchakis Pantelis ICS-FORTH,UOC

University of Crete

Computer Science Department

Design and Implementation of the Send Part of an Advanced RDMA

Engine

Thesis submitted by
Xirouchakis Pantelis

in partial fulfillment of the
requirements for the Masters’ of

Science degree in Computer Science

THESIS APPROVAL

Author:

Xirouchakis Pantelis

Committee approvals:

Manolis G.H. Katevenis

Professor, Thesis Supervisor

Angelos Bilas

Professor, Committee Member

Polyvios Pratikakis

Assistant Professor, Committee Member

Departmental approval:
Antonios Argyros

Professor, Director of Graduate Studies

Heraklion, March 2019(Published in March 2020)

2
Xirouchakis Pantelis ICS-FORTH,UOC

Design and Implementation of the Send Part of an

Advanced RDMA Engine

Abstract

In High Performance Computing (HPC), low latency communication between remote

processes is crucial to application performance. InfiniBand and other off-the-shelf networks

can reduce the latency but require special and costly network interface cards, which are

loosely coupled with the CPU. In this work, we describe the design and implementation of an

advanced RDMA engine developed within the ExaNeSt EU project, which has a number of

advantages over Infinibad: i) We segment RDMA transfers in blocks, and support block-level

multipathing of RDMA transfers on a per-block basis. ii) We perform selective end-to-end

retransmissions. iii) We do not need to pin the regions of RDMA transfers in memory, while at

the same time we support accessing the full virtual address space of processes, using the ARM

SMMU. Additionally, we provide a number of virtual channels able to work simultaneously

with many outstanding transfers. Our advanced RMDA engine is designed to support multi-

pathing in order to be able to utilize the rich parallel links found in HPC networks. In this work,

we describe the hardware implementation of the RDMA engine on the Zynq Ultrascale+. The

hardware design has been optimized to meet timing requirements of up to 200 MHz while

consuming little resources, leaving plenty of space to be used by accelerators. We have also

designed and integrated the interconnect required, as well as the Network Interface (NI) in

order to utilize the large Global Virtual Address Space (GVAS) provided by our hardware

prototype. We have implemented our advanced RDMA on multiple interconnected FPGAs and

have run HPC benchmarks and applications in order to verify and evaluate our design. The

results show great improvement over 10G Ethernet, as well as over our previous RDMA

implementations. Finally, our RDMA has been designed to easily accommodate many more

features, such as congestion management.

3
Xirouchakis Pantelis ICS-FORTH,UOC

Σχεδίαση και Κατασκευή του Κομματιού Αποστολής μίας

Προηγμένης Μηχανής Άμεσης Προσπέλασης Μνήμης

Περίληψη

Στις εφαρμογές που απαιτούνε υπολογιστές υψηλών επιδόσεων, η χαμηλή καθυστέρηση

επικοινωνίας ανάμεσα σε απομακρυσμένους κόμβους είναι καίριας σημασίας για την

απόδοση των εφαρμογών. Το InfiniBand και άλλες έτοιμες επιλογές δικτύων μπορούν να

μειώσουν αυτήν την καθυστέρηση αλλά απαιτούνε εξειδικευμένες και ακριβές κάρτες

δικτύου που στη γενική περίπτωση είναι απομακρυσμένες από τον επεξεργαστή. Σε αυτήν

την εργασία, θα περιγράψουμε τη σχεδίαση και κατασκευή μίας προηγμένης Μηχανής

Άμεσης Προσπέλασης Μνήμης (RDMA) την οποία κατασκευάσαμε στο ΙΤΕ μέσα στα πλαίσια

του ευρωπαϊκού έργου ExaNeSt, η οποία υπερτερεί σε πολλά σημεία σε σχέση με το

InfiniBand. i) Κόβουμε τις μεγάλες μεταφορές σε πολλές μικρότερες, έτσι ώστε να

χρησιμοποιούμε ταυτόχρονα πολλές διαδρομές μέσα στο δίκτυο (multi-pathing) σε επίπεδο

υπό-μεταφορων. ii) Υποστηρίζουμε αναμεταδόσεις, σε επίπεδο υπό-μεταφορών. iii)

Χρησιμοποιώντας την μονάδα εικονικής μετάφρασης περιφερικών (SMMU) της ARM, δεν

χρειάζεται να καρφιτσώνουμε περιοχές μνήμης ενώ παράλληλα έχουμε πρόσβαση σε όλη

την εικονική μνήμη του συστήματος. Επιπρόσθετα παρέχουμε έναν αριθμό από εικονικά

κανάλια τα οποία είναι σε θέση να δουλεύουν ταυτόχρονα έχοντας χιλιάδες εκκρεμείς

μεταφορές. Η προηγμένη Μηχανή Άμεσης Προσπέλασης Μνήμης μας έχει σχεδιαστεί ώστε

να μπορεί να υποστηρίξει μεταφορές από πολλαπλά μονοπάτια έτσι ώστε να είναι σε θέση

να εκμεταλλευτεί τα πλούσια σε παράλληλα μονοπάτια δίκτυα από τα οποία αποτελούνται

οι μοντέρνοι υπολογιστές υψηλών επιδόσεων. Σε αυτήν την εργασία παρουσιάζουμε την

κατασκευή αυτής της RDMA στο Zynq Ultrascale+ MPSoC. Το υλικό έχει σχεδιαστεί έτσι ώστε

να μπορεί να δουλέψει σε ταχύτητες έως και 200MHz, έχοντας καθυστερήσεις τόσο μικρές

όσο ένα μίκρο-δευτερόλεπτο, ενώ παράλληλα καταναλώνει ελάχιστους πόρους, αφήνοντας

αρκετό χώρο να χρησιμοποιηθεί από άλλες μορφές επιταχυντών. Επίσης, σχεδιάσαμε και

ενώσαμε έναν καινούργιο μεταγωγέα πακέτων καθώς και την διεπαφή δικτύου που

χρειάζεται έτσι ώστε να εκμεταλλευτούμε τη μεγάλη εικονική μνήμη που παρέχεται από το

πρωτότυπο μας. Εφαρμόσαμε την RDMA μας σε πολλαπλές συνδεδεμένες μεταξύ τους

FPGAs και τρέξαμε διάφορα προγράμματα αναφοράς, έτσι ώστε να μπορέσουμε να

αξιολογήσουμε τις επιδόσεις της κατασκευής μας. Τα αποτελέσματα δείχνουνε τεράστια

βελτίωση έναντι στο κλασικό 10G Ethernet καθώς και προηγούμενες RDMA μηχανές μας.

4
Xirouchakis Pantelis ICS-FORTH,UOC

Acknowledgments

I would like to thank my Advisor Dr. Nikos Chrysos for his guidance and support during my
studies and this work. I would also like to thank my Supervisor, Professor Manolis GH
Katevenis for his overall assistance and interesting discussions all these years. Furthermore, I
would like to thank Professor Angelos Bilas and Professor Polyvios Pratikakis for being in the
committee for the evaluation of this work. Special thanks to Nikos Dimou and Fabien Chaix
that helped with the writing of my master thesis.

I need to also express my appreciativeness to Konstantinos Harteros for training and
introducing me to the world of hardware design. Finally, I would also like to thank all the
members of the CARV Laboratory team for their support and collaboration.

Finally, I would like to thank the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS), for the funding of this work, which was done for
the ExaNeSt project, funded by the European Union’s Horizon 2020 research and innovation
program under grant agreement No 671553.

5
Xirouchakis Pantelis ICS-FORTH,UOC

Contents
1 Introduction .. 1

1.1 RDMA overview .. 1

1.2 Contributions ... 3

2 ExaNeSt Platform .. 5

2.1 The ExaNeSt project .. 5

2.2 Zynq Ultrascale+ MPSoC ... 5

2.3 Hardware Prototype ... 7

3 ExaNet Network .. 9

3.1 ExaNet Network Interface .. 11

3.2 The Network Interface switches and QFDB-Level Interconnect 11

3.2.1 Routing inside the QFDB and its impact to firmware development 12

3.2.2 ExaNet NI crossbar .. 14

3.2.3 QFDB interconnect and firmware inside the QFDB FPGAs F2-F4 14

3.2.4 ExaNet data path protocol ... 16

4 Overview of RDMA Engine ... 17

4.1 RDMA Channels and Transactions / Blocks Units .. 19

4.1.1 RDMA Write .. 20

4.1.2 RDMA Read ... 22

5 RDMA Send Unit Description .. 24

5.1 Functionality list: .. 24

5.2 Descriptor Description /Register space .. 25

5.3 RDMA Send Unit Submodules Description ... 27

5.3.1 Pending_List .. 28

5.3.2 Scheduler ... 33

5.3.3 Virtualized Barrel Shifter .. 35

5.3.4 Output Buffer .. 36

5.3.5 Output Stage ... 37

6 RDMA Modules Description ... 41

6.1 RDMA Receiver ... 41

6.2 RT mailbox... 42

6.3 ExAurora .. 43

6.4 ExaNet intra-Switch .. 44

6.5 Network Utilization report ... 46

6
Xirouchakis Pantelis ICS-FORTH,UOC

7 Experimental Evaluation and Results... 47

7.1 Application-level Performance ... 51

8 Conclusion and future work .. 54

Bibliography .. 55

7
Xirouchakis Pantelis ICS-FORTH,UOC

List of Tables
Table 5-1: AXI-4 Write FSM signals.. 29

Table 5-2:AXI-4 Read FSM signals ... 30

Table 6-1:Network Utilization Report ... 46

file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5879767
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5879768

8
Xirouchakis Pantelis ICS-FORTH,UOC

List of Figures
Figure 1-1 Ideal Zero Copy RDMA transfer .. 2

Figure 2-1: Ultrascale+ MPSoC Simplified block diagram ... 6

Figure 2-2: Ultrascale+ MPSoC detailed block diagram, Xilinx UG1085 7

Figure 2-3: Quad FPGA daughter board overview .. 8

Figure 3-1: ExaNet GVAS breakdown. ... 9

Figure 3-2: ExaNet RDMA packet header format .. 10

Figure 3-3: ExaNet NI Switch located in FPGAs F1-F4 of the QFDB and its interface to the

APErouter (Network), which serves inter-QFDB traffic that is routed through a 2D/3D Torus

(on Mezzanine or single-feeder) topology. ... 12

Figure 3-4: The ExaNeSt QFDB-based firmware and network topology inside the QFDB. 15

Figure 3-5: RDMA Network Interface simplified overview ... 16

Figure 4-1: Network Interface advanced overview ... 18

Figure 4-2: Virtual Channel allocation ... 20

Figure 4-3: RDMA Write timing diagram .. 21

Figure 4-4: RDMA Write with error and retransmission timing diagram 22

Figure 4-5: RDMA Read timing diagram .. 23

Figure 4-6: RDMA Read with packetizer acknowledgment lost and recovery 23

Figure 5-1: ExaDMA top-level architecture ... 27

Figure 5-2: Pending List submodule hardware instantiation .. 28

Figure 5-3: AXI-4 write FSM ... 29

Figure 5-4: AXI-4 Read FSM ... 30

Figure 5-5: Descriptor list detailed schematic. Connections between wires have been

omitted for simplicity .. 31

Figure 5-6: Detailed schematic of control packet generation ... 32

Figure 5-7: Scheduler submodule hardware instantiation .. 33

Figure 5-8: RR scheduling FSM .. 34

Figure 5-9: VBS submodule hardware instantiation ... 35

Figure 5-10: VBS submodule hardware instantiation ... 36

Figure 5-11: ExaNetizer submodule hardware instantiation .. 37

Figure 5-12: ExaNetizer Submodule FSM .. 38

Figure 5-13: ExaNetizer submodule detailed schematic. In order for the schematic to be

clear, connections between signals have been omitted and are indicated by same name. .. 39

Figure 6-1: RDMA Receiver hardware instantiation .. 41

Figure 6-2: RDMA Receiver hardware instantiation .. 42

Figure 6-3: ExAurora hardware instantiation .. 43

Figure 6-4:ExaCrossb hardware instantiation ... 44

Figure 6-5:ExaNet network routing ... 45

Figure 7-1: 1-hop RDMA Write throughput - Size. User level application 47

Figure 7-2 :1 Hop RDMA Read throughput – Size. OSU Bandwidth .. 48

Figure 7-3: Throughput - Hops. Note that the drop is from 8.3 to 7.9 Gb/s 48

Figure 7-4: 1 Hop PLDMA/ZDMA - Size OSU, Bandwidth .. 49

Figure 7-5: PLDMA/ZDMA - #Hops multi-hop throughput. OSU, Bandwidth 49

Figure 7-6: ZDMA vs PLDMA 1 hop read throughput comparison .. 50

Figure 7-7: Hardware latency breakdown ... 50

file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896832
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896833
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896834
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896835
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896836
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896837
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896838
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896838
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896838
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896839
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896840
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896841
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896842
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896843
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896844
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896845
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896846
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896847
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896848
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896849
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896850
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896851
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896851
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896852
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896853
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896854
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896855
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896856
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896857
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896858
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896859
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896859
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896860
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896861
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896862
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896863
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896864
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896865
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896866
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896867
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896868
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896869
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896870
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896871

9
Xirouchakis Pantelis ICS-FORTH,UOC

Figure 7-8: LAMPS application execution time PLDMA vs 10G ... 52

Figure 7-9: ExaNet Network Topology .. 53

Figure 7-10: 10G Ethernet Topology ... 53

file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896872
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896873
file:///C:/Users/pxirouch/Desktop/pantelis_xirouchakis_thesis.docx%23_Toc5896874

1
Xirouchakis Pantelis ICS-FORTH,UOC

1 Introduction
Large HPC systems rely on efficient interconnects to accommodate a constantly increasing

number of end-nodes, while offering low latency and high bandwidth communication among

the end nodes, independent of their spatial orientation. At the same time, ongoing efforts

from research and industry aims at replacing the power hungry, high-end servers of today

with simpler, RISC-like servers, possibly tightly coupled with accelerators, in order to reduce

the energy consumption, the system cost and allow flexibly tailoring new system to new

workload requirements. Along this direction, the ExaNeSt EU-funded project develops and

prototypes a system composed of ARM-based processors, tightly coupled with FPGAs.

Traditional end-host network stacks, like Ethernet (TCP/IP) networks, greatly limit the extent

to which applications can benefit from the high bandwidth and the low-latency of the

hardware interconnect. In addition, these systems tend to consume precious processor cycles

to serve the I/O path. For this reason, HPC usually use (custom or InfiniBand-based) RDMA

(remote direct memory access) interconnects, which offload several layers of the network,

and, compared to traditional software transports, greatly improves the throughput and the

latency performance of communications. In our system, we leverage the FPGA to implement

a custom low-latency RDMA-capable interconnect that connects computing nodes with each

other, as well as with memories and fast, non-volatile storage devices. The core of our RDMA

interconnect is implemented in network interface (hardware) engines that offload the

software transport by offering reliable communication services, and allowing processes to

benefit from hardware-class latencies and throughput.

1.1 RDMA overview
RDMA (Remote Direct Memory Access) allows one process to directly access the memory of

a remote process with very high throughput and low latency, by using specialized NIC

(network interface chip) that minimizes the CPU overhead. Traditionally such networks have

been used by high performance computing applications, with somewhat custom hardware

networks that are hard to be programed and were usually application specific. Datacenters on

the other hand kept using traditional commodity hardware and TCP/IP for their networking.

Lately however, as fast and reliable such networks come into the market (i.e InfiniBand , RoCE,

iWarp), many datacenters decide to use RDMA instead of conventional TCP/IP. Meanwhile,

there is significant ongoing research to build improved RDMA networks that can perform even

better and provide extra functions, such as congestion management and multi-pathing.

The inherent inefficiency that RDMA networks try to solve is the fact that, in

traditional networks, the kernel is invoked in network transfers, increasing the latency and the

processing overhead, and that data have to be copied on many intermediate buffers before

finally arriving on the destination, increasing both latency and power consumption. Along

these lines, we describe in this work the development of a zero-copy, user-level initiated

RDMA engine used in the ExaNeSt project prototype. In our system, the goal is to achieve the

ideal RDMA operations depicted in Figure 1-1. For this to work, the data must be addressed

at the source and the destination using virtual addresses. Therefore, the network must

provide a mechanism to translate virtual to physical addresses.

2
Xirouchakis Pantelis ICS-FORTH,UOC

Different networks approach this problem in different ways. InfiniBand for instance

tackles this issue by keeping a (network) TLB on the NI, and forcing the applications to pin its

pages pertaining to transfers. In this way, there is no need to copy data to intermediate (I/O)

buffers inside the kernel, which avoids copying of the buffers but still adds latency due to the

kernel involvement for pining. In our protocol, we obviate this step, allowing network memory

accesses to produce page-faults, which can trigger network retransmissions.

To this day, RDMA has mainly been used as a single-path transport, which is prone to

failures and falls short to utilize the rich parallel paths found on HPC/Datacenter systems.

Attempts to implement multi-pathing RDMA have been performed but with no great result,

as they usually require excessive amounts of metadata, greatly increasing the cost of the NIC

(Network Interface Chip). Moreover little-to-no care has been given to handling congestion

situations that arise in the network. Infiniband does feature a congestion control mechanism,

which, however is very hard to tune. Coupling congestion management with multi-path

routing would open new possibilities for routing algorithms and can increase the effective

bandwidth of RDMA even further.

In addition, the resiliency features typically implemented by RDMA interconnects are

focusing on functionality instead of performance, in order to economize silicon area.

InfiniBand, for instance, provides a very crude end-to-end resiliency scheme, with per-packet

acknowledgements and full message retry. This results in inefficient use of bandwidth, large

flow completion times, and is also prone to livelocks [1]. The proposed RDMA protocol and its

implementation coalesces acknowledgements (one per block) and performs selective

retransmissions, greatly minimizing the Flow Completion Time (FCT) and the network

bandwidth overhead.

For large networks with millions of nodes, one node may wish to perform RDMA

transfers to potentially all the other nodes, or to a large subset of them, at the same time. We

do not want to necessarily serialize these transfers in time. Instead, being able to multiplex

many of these transfers on the ingress network path(s), on a per-packet basis, can improve

the network utilization, when some of these transfers are congested. In order to do so, the

RDMA engine has to provide many channels to its users, which increases the cost of

bookkeeping and the complexity of the control unit that supervises their parallel transfers.

 Figure 1-1 Ideal Zero Copy RDMA transfer

3
Xirouchakis Pantelis ICS-FORTH,UOC

At the same time, as silicon manufacturing techniques improve, and the number of

transistors inside a die increases, manufacturers have the ability to add more peripherals

within the die such as accelerators and smaller, real-time co-processor units (e.g. following

the big-little architecture). In our work, we leverage one such co-processor available in the

Zynq Ultrascale+ FPGA to assist in RDMA operations. The co-processor is responsible for block-

based operations, which are infrequent enough, thus not strictly requiring hardware-speed

pipelines. We build the hardware part of the RDMA engine on the programmable logic

segment of the FPGA that resides in the same die with the ARM CPUs, inside the programming

system (PS) for the Zynq Ultrascale+ ARM. This very tightly coupled network interface further

decreases latency, as we do not need to cross for example the PCI bus, as e.g. in Intel-based

InfiniBand networks.

The RDMA protocol we have implemented in this thesis is similar in spirit with InfiniBand and
RDMA over Converged Ethernet (RoCE) networks, but it differs in the following ways:

● We segment RDMA transfers in blocks, and support block-level multi-pathing of
RDMA transfers on a per-block basis.

● We perform selective end-to-end re-transmissions, whereas InfiniBand networks
typically perform Go-back-N on the end-to-end path, which may involve retrying full
transfers.

● We do not need to pin the regions of RDMA transfers in memory, while at the same
time accessing the full virtual address space of processes, using ARM’s SMMU.

● We coalesce RDMA responses (1 response per segment), whereas InfiniBand sends
one Response per packet.

● Our RDMA engine can be coupled with accurate congestion control, by spacing of
packets at the network sources (rate limiting transfers), whereas InfiniBand is still in
search for an appropriate congestion control method.

● We provide advanced scheduling techniques on NI (Network Interface) egress path,
which can easily be modified in software.

● We provide hooks to users for controlling transfers order, and influence routing.
● We designed and implemented a novel and efficient mechanism for fast completion

notifications at the receiver described on Appendix A.

1.2 Contributions
This thesis has contributed to the design of a new Remote Direct Memory Access (RDMA)

engine within the ExaNeSt project, suitable for user-level initiated zero-copy transfers in a

system of ARM cores, and tightly coupled Network Interface (implemented in FPGA) nodes

working on a global virtual address space (GVAS). Our RDMA supports advanced quality-of-

service (QoS) and resiliency features, such as multi-pathing, fast notifications, and selective

retransmissions, which we report in this thesis, together with performance evaluation results.

In our ongoing work, we are adding congestion management support.

The design of the new RDMA engine is split into a software-programmable part and a

hardware part. The hardware part is the core of this thesis and is implemented and tested in

the Programable logic of the FPGA. The design has been implemented on Zynq Ultrascale+

Xilinx MPSoC and is now functional, running on the ExaNeSt-project prototype. Our RDMA

design offers low-latency/ high-bandwidth user-level read/write transfers.

4
Xirouchakis Pantelis ICS-FORTH,UOC

The author of this thesis has designed and built the hardware implementation of the

RDMA send unit (ExaDMA). More specifically:

 ExaDMA Send Unit: The hardware core of the RDMA engine which is responsible for

executing the RDMA transfers. This block has a large array of pending transactions and

a round robin scheduler that iterates amongst them. For each transaction, it reads the

data directly from the applications memory, by accessing through the SMMU of the

system. It implements output buffering and has one output buffer per output link of

the FPGA. Among other things, it is tasked with performing all the shifting required

(byte level) in order for the data being send to be aligned at destination. It is designed

to be fully compatible with the software running on the Real-Time processor

(software-hardware co-design) in order to maximize the effectiveness of the RDMA.

 ExaNet Switch: This is a 16x16 buffer-less ExaNet switch, used to connect each

component of the ExaNet network. The routing algorithm uses both the destination

coordinates and the destination address of the packets. For simplicity and flexibility,

the routing can be configured in the Vivado block diagram, without needing to change

source-code, repackage and redistribute.

 ExAurora: This is a block used as an interface that connects the ExaNet Datapath, with

the transceiver’s AXI-STREAM Datapath. It implements input and output cross-clock

domain FIFOS, and is also responsible for the flow control of the Link.

 Intra-node interconnect: The network design and implementation of the QFDB (Quad

FPGA Daughter Board) interconnect, which connects the network interfaces and the

accelerators of four (4) intra-node Ultrascale+ interconnected FPGAs with each other

and the external gateway router.

 Platform Integration and verification: The implementation on the Zynq Ultrascale+

MPSoC of all the ExaNet blocks as well as the verification and debugging. Given the

great amount of different hardware blocks and functionality that the ExaNet network

has, the interaction between various agents proved to be very challenging requiring

many hours of debugging.

5
Xirouchakis Pantelis ICS-FORTH,UOC

2 ExaNeSt Platform

2.1 The ExaNeSt project
ExaNeSt develops, evaluates, and prototypes the physical platform and architectural solution

for a unified Communication and Storage Interconnect and the physical rack and

environmental structures required to deliver European Exascale Systems. The consortium

brings technology, skills, and knowledge across the entire value chain from computing IP to

packaging and system deployment; and from operating systems, storage, and communication

to HPC with big data management, algorithms, applications, and frameworks. Building on a

decade of advanced R&D, ExaNeSt will deliver the solution that can support exascale

deployment in the follow-up industrial commercialization phases. Using direction from the

ETP4HPC roadmap and soon-available high density and efficiency compute, we will model,

simulate, and validate through prototype, a system with:

 High throughput, low latency connectivity, suitable for exascale-level compute, their

storage, and I/O, with congestion mitigation, QoS guarantees, and resilience.

 Support for distributed storage located with the compute elements providing low

latency that non-volatile memories require, while reducing energy, complexity, and

costs.

 Support for task-to-data SW locality models to ensure minimum data communication

energy overheads and property maintenance in databases.

 Hyper-density system integration scheme that will develop a modular, commercial,

European-sourced advanced cooling system for exascale in ~200 racks while

maintaining reliability and cost of ownership.

 The platform management scheme for big-data I/O to this resilient, unified distributed

storage compute architecture.

 Demonstrate the applicability of the platform for the complete spectrum of Big Data

applications, e.g. from HPC simulations to Business Intelligence support.

All aspects have be steered and validated with the first-hand experience of HPC applications

and experts, through kernel turning and subsequent data management and application

analysis.

2.2 Zynq Ultrascale+ MPSoC
The ExaNeSt design has been implemented on the Xilinx Zynq Ultrascale+ MPSoC devices.

These chips contain a Processing System (PS) that consists of four A53 ARMv8 cores

operating at 1.333 GHz and two R5 Real time processors operating at 600Mhz.

Additionally the MPSoC contains Programmable Logic (PL) part that has 274K LUTS and

912 RAMB32 (SRAM blocks with 32-bit data interface) available for development. Crucial

to the project is the connectivity that the PS provides to the resources found at the PL. For

this purpose, the PS provides 2 Full AXI-4 Master Cache Coherent interfaces and 2 Slave

interfaces.

6
Xirouchakis Pantelis ICS-FORTH,UOC

Accesses from and to those ports pass through the CCI (Cache Coherent Interconnect)

allowing the PL to do (I/O) coherent accesses to the PS. Additionally, the PS provides an ACE-

Lite port (AXI coherent extensions) from which the PL can access directly the L2 cache of the

A53 core, greatly reducing the required latency. Finally, the PS provides 6 high throughput,

non-coherent AXI-4 Slave ports. A simplified view, as well as the detailed block diagram of the

MPSoC can be seen on the Figure 2-1 and Figure 2-2[2].

The prototype consists of up to 112 nodes (will reach up to 250+) all being able to address

the same GVAS (Global Virtual Address Space). In this direction, the SMMU (I/O mmu) plays a

central role in translating all process-level virtual addresses to physical main memory

locations. It features 8 different context banks, where each context bank can hold a TLB cache

and a pointer to a page table of a particular process.

 Figure 2-1: Ultrascale+ MPSoC Simplified block diagram

7
Xirouchakis Pantelis ICS-FORTH,UOC

2.3 Hardware Prototype
The basic compute node is called Quad-FPGA Daughterboard (QFDB). It contains four (4)

Ultrascale+ MPSoCs connecting each other hardwired with two High Speed Serial Links (HSS)

in an all-to-all mesh topology as shown in Figure 2.3. Each FPGA features two 16MB QSPI and

16GB DRAM so that one (1) QFDB aggregates 64 GB of DRAM as well as 512GB SSD storage.

Moreover, each QFDB provides a connector with ten (10) bidirectional HSS links (10 x 16Gbit/s

= 160Gbit/s = 20GB/s) for high-throughput communication with other devices. Four (4) of

those links are used to connect neighboring QFDBs hosted on the Blade. The remaining six (6)

HSS links are attached to the external link cages (SFP+), mainly for connection with other

blades, e.g., within the same Chassis.

 Figure 2-2: Ultrascale+ MPSoC detailed block diagram, Xilinx UG1085

8
Xirouchakis Pantelis ICS-FORTH,UOC

Four (4) QFDBS are connected to a mezzanine to form one Blade. The mezzanine

provides the QFDBS with 1G Ethernet, and connects the network FPGA of each QFDB in a torus

topology of max dimension 4.

 Figure 2-3: Quad FPGA daughter board overview

9
Xirouchakis Pantelis ICS-FORTH,UOC

3 ExaNet Network
The ExaNet network uses a custom header/payload/footer packet-based protocol, developed

within ExaNeSt for inter-processor (or accelerator) payload traffic, and for network interface

(NI) end-to-end control messages. It supports the basic UNIMEM operations[3] such as owner-

only page caching and shared-memory semantics, while extending UNIMEM with address

translation at the destination, advanced protection for cluster virtualization (HPC applications

co-scheduling), and protocol security and reliability features.

The ExaNet packet format was preferred against AXI, the protocol used by ARM

processors to access the main memory and peripheral devices, because AXI is suitable for on-

chip systems, but does not scale well to system-level HPC interconnects (because of many

parallel channels used that increase the complexity in handshaking therefore utilization).

Inside the FPGAs, the ExaNet packets is carried by a 128-bit datapath (equal to the

maximum PS  PL AXI interface width), and currently runs at 150 MHz. Thus, each ExaNet

on-chip link offers a throughput of 19.2 Gb/s, which can easily saturate the 10 Gb/s High-

Speed Serial (HSS) links of the platform, while offering a significant internal speedup inside

the switches.

Thus, the ExaNet protocol supports 80-bit global virtual addresses, split into a 16-bit

PDID field discussed above, a 22-bit destination coordinates field used to identify a node in

the cluster, and a 42-bit virtual memory address to locate an object inside an FPGA and its

local DRAM Figure 3-1.

The ExaNet packet can contain: 1) header only packets (16Byes), 2) zero-payload

(header-footer) packets (32Bytes), and 3) variable payload (header-N*payload-footer)

packets (48 – 288 Bytes) with a max payload of 256Bytes. ExaNet packets are covered by:

 16-bit error detection code, protecting the fields in the ExaNet packet
headers,

 Figure 3-1: ExaNet GVAS breakdown.

10
Xirouchakis Pantelis ICS-FORTH,UOC

 8-bit footer CRC, protecting critical fields in the ExaNet packet footer

 32-bit payload CRC, protecting the payload of ExaNet packets (Figure 3-2).

Within ExaNeSt, we have defined the following ExaNet packet types. These packets are used

to carry packets with payload (RDMA and shared-memory primitives) as well as NI control

information over the ExaNet fabric. Here is a list of our current packet types:

1. Remote Write Data Packet
o from ExaNet RDMA Send or ExaNet Packetizer to ExaNet RDMA Receive or

ExaNet Mailbox
2. Remote Read Request

o from ExaNet Packetizer to ExaNet RT Mbox
3. DMA Control Packet for Transaction Completion Notification

o from ExaNet RDMA Sender to ExaNet RDMA Receiver
4. DMA Transaction Completion Notification Packet

o from ExaNet RDMA Receive to ExaNet Mailbox or ExaNet RDMA Receive
5. zDMA Remote Read Request Packet

o from ExaNet AXI2EXA to ExaNet EXA2AXI
6. zDMA Remote Write Data Packet

o from ExaNet AXI2EXA to ExaNet EXA2AXI
7. zDMA Remote Read Response Packet

o from ExaNet EXA2AXI to ExaNet AXI2EXA
8. Acknowledgment / negative acknowledgment

o Error codes for packet errors and destination memory or NI responses
9. Release Context Packet (not yet implemented)

o from ExaNet Packetizer or ExaNet RDMA Send to ExaNet Mailboxes or ExaNet
RDMA RX

10. Flow Rate Packet (not yet implemented)
o ExaNet Congestion Control Notification

 Figure 3-2: ExaNet RDMA packet header format

11
Xirouchakis Pantelis ICS-FORTH,UOC

3.1 ExaNet Network Interface
In ExaNeSt project, we have built a Network Interface that contains:

 A low-latency multi-channel Remote Direct Memory Access (RDMA) engine that

leverages both the SMMU for secure memory accesses and the R5 co-processor for

book-keeping and handling of the transactions. In our design, we use the System

Memory Management Unit (SMMU) in order to translate process virtual addresses to

physical memory locations as packets go in and out of memory and avoid copies from

user to kernel space, allowing zero-copy, user-initiated RDMA transfers. The memory

accesses issued from our RDMA engine pass through the ARM’s Cache-Coherent

Interconnect (CCI) thus obviating the need to flush or bypass the caches before

triggering RDMA transfers. The network that we use to transfer data between nodes

is the ExaNet interconnect, which we describe next.

 A fast multi-channel packetizer that allows processes to write small, latency-critical

messages to arbitrary positions in a global address space, by writing a set of registers

in the network interface, which is implemented in the programmable logic. We have

also implemented fast mailboxes that write messages to per-process queues hosted

in the L2 cache and DRAM memory hierarchy of the ARM subsystem. The packetizer

and mailbox primitives are typically used together, allowing user or system processes

running on CPUs or acceleration units to exchange fast messages that go to mailboxes

and memory, allowing partitioned global address space applications (PGAS) to run on

the prototype.

 A low-latency network interface switch, which also connects the FPGAs within the

same QFDB, with each other and also with the QFDB-level gateway, which is

implemented by the APENET router[4] in the network FPGA.

The NI interface additionally contains IPs for Ethernet-based communication and additional

functional blocks.

3.2 The Network Interface switches and QFDB-Level Interconnect
Prior to the quad-FPGA QFDB boards the ExaNeSt interconnect designs and FPGAs firmware

were tested on (single-FPGA) Trenz-Based boards, in 2D Torus topologies. In these designs,

every FPGA of the prototype had the NI from FORTH and the APErouter mentioned earlier.

Going from single-FPGA nodes to four-FPGA ones, we had two options. One was to treat every

FPGA as a single node of the Torus topology, and each QFDB as a dimension of the Torus.

However, for the reasons listed below, we opted to take a different path:

12
Xirouchakis Pantelis ICS-FORTH,UOC

 The QFDB internally has more physical HSS links, and can support topologies with
smaller diameter and higher bisection bandwidth than a ring of (one dimension of a
Torus). The topology that we eventually chose is a single-hop all-to-all topology
connecting each FPGA with every other FPGA inside the QFDB.

 Using an All-to-All topology inside every QFDB coupled with a Torus Topology to
connect QFDBs, results in an interesting hybrid-Torus topology, with no routing
deadlocks, as long as we use single-path routing inside the QFDBs, and the more
complex APErouter resolves deadlocks using different VCs.

 The hybrid Torus topology does not need to have the Torus-routing capabilities (e.g.
an APErouter) in every FPGA of the QFDB, thus saving on complexity and FPGA
resources.

The hybrid-Torus topology essentially treats each QFDB as a single node, with local SSD, lots

of DRAM, computing capacity, and 10 x 16 Gb/s network I/O. This QFDB node needed a new

simplified crossbar for intra-node communication.

3.2.1 Routing inside the QFDB and its impact to firmware development
Routing in NI blocks is common source of bugs and delays. When the first QFDBs became fully-

functional, early in 2018, we needed to port the ExaNeSt interconnects from Trenz-based

prototypes to QFDB-based ones, while in parallel we were developing and testing new ExaNet

packet types in order to improve the resiliency of the ExaNet network (end-to-end

acknowledgments for different network interface IPs) and to support new NI-to-NI control

messages. In this work, we observed two inter-related obstacles:

Figure 3-3: ExaNet NI Switch located in FPGAs F1-F4 of the QFDB and its interface to the
APErouter (Network), which serves inter-QFDB traffic that is routed through a 2D/3D Torus
(on Mezzanine or single-feeder) topology.

13
Xirouchakis Pantelis ICS-FORTH,UOC

 routing packets to the proper NI block had become a frequent cause of “soft-bugs” as
designs needed to support many different ExaNet packet types across many new NI
blocks,

 changing the routing of (new or old) packet types to NI blocks required a new switch
version, which means that engineers had to change their Verilog code.

Uniform address-based routing for all packet types was needed in order to move on. At the

same time, the existing routing of packets and acknowledgment, to NI blocks, being packet-

type based, was rather inflexible. For instance, the packetizer block at that time could only

send packets and receive acknowledgements from mailboxes, although in principle we had

designed the primitive in order to send packets to any memory location. To support this, we

needed a flexible and uniform way to access NI blocks and memory address locations.

To uniformize accesses across memory and NI peripherals, we decided to add the

destination virtual address field in all ExaNet packet types. With the new packet format, all

packets, even acknowledgements or control messages that target mailboxes or any other NI

peripherals, have a virtual destination address field in their header, which starts at the same

bit position with the destination virtual memory address of packets that target a specific

location in DRAM.

In particular, the new simplified NI switch which is present in the ExaNet prototype uses

the following rules to route packets to DRAM and peripheral devices:

 If the 3-bit prefix of the destination virtual memory address equals ‘111’, then the
packet is targeting a peripheral, which can be indexed using the next 7 bits of the
destination address.

 If the 3-bit prefix of destination virtual memory address is not equal ‘111’, then the
packet is targeting the DRAM, which we can address using all address bits (after going
through translation in the SMMU).

In this way, we consume about 1/8 of the ExaNeSt global memory address space, which is a

reasonable trade-off. In practice, we don’t even consume that much, because not all 42 bits

in the destination virtual address field of ExaNet are translated by the SMMU but only 39 bits

To further homogenize designs, and to simplify platform developments, we needed

to have the same design for as many FPGAs in the QFDB as possible in order to reduce the

number of firmware designs that we have to implement and test each time that we add a new

feature or correct a bug on the platform firmware. In practice, the QFDB Network FPGA, F1,

needs a different design, because it also contains the APErouter, and the Ethernet NIC.

However, we could still consolidate the designs of FPGA F2, F3, and F4.

At this point, we considered to add software-defined routing that we can modify at

runtime on a per FPGA basis and to improve the turn-around latency of creating a new (set

of) FPGA firmware that corrects a bug or adds new routing rules. However, with the following

two features, which we added into the NI switches inside the QFDB, software-define routing

was not yet needed

 Uniform routing across QFDB FPGAs routing: we added dead ports in the NI crossbar, in
order to have the same rules for all FPGA when we route packets inside the FPGA. In
practice, the dead port on each FPGA is connected to a loop-back port, so that, for
instance, the second inter-FPGA crossbar port is connected to QFDB FPGA F2, regardless
on which QFDB FPGA uses this port.

14
Xirouchakis Pantelis ICS-FORTH,UOC

 Selectable routing ranges at design-integration time: we added the capability to select
the routing to NI ports at FPGA firmware compile time -- which destination virtual address
range will map to which NI block -- using the graphical settings of the Vivado design, thus
without having to modify the Verilog code.

To simplify the routing, and avoid the need for deadlock avoidance mechanisms, we currently

use single path routing inside the QFDB, leaving multipath capabilities using the two links

available per FPGA pair inside the QFDB for next versions of the ExaNeSt prototype or for

follow-up projects.

3.2.2 ExaNet NI crossbar
To route packets inside the QFDB, we have implemented a NI crossbar switch augmented with

simple but effective routing rules to route packets among the QFDB FPGAs and the NI blocks,

following the principles described in the previous section. This ExaNet NI-crossbar switch

supports a configurable number of uniform ExaNet interfaces, and can be connected to a

number of ExaNet agents, such as NI endpoint hardware blocks, and to custom transceivers

for inter-FPGA traffic.

ExaNeSt-AURORA transceivers: We currently use AURORA IP from Xilinx to implement

reliable communication inside the QFDB. In particular, using the AURORA transceivers from

Xilinx, we have implemented basic, but resilient ON-OFF flow control to prevent buffer

overflows when sending packets across links.

The ExaNet NI-crossbar is bufferless crossbar, with no input or output buffers (and

queueing). Given that in the ExaNet NI, all the hardware sender and receiver blocks have some

form of input or output buffers, respectively, and that the transceivers also have buffers of

their own, in order to a) save FPGA BRAMs, b) reduce the in-fabric backlog, c) minimize the

number of packet copies (saving energy), and d) decrease the in-network queuing delay, we

decided not to put additional buffers inside the NI switch/crossbar.

The main features of the ExaNet NI switch are listed below:

 It offers a cut-through latency of two cycles, thanks to its simple and uniform routing
rules.

 It inserts two idle cycles between consecutive packets on the link, thus offering nearly
full link efficiency. Given that the datapath will run slightly faster than the links, the
switch is able to saturate links nearly for all packet sizes.

 It supports all ExaNet packet sizes (header-only, header-footer, and header-payload-
footer).

 We can configure its routing to NI-attached ports at compile time using the Vivado
GUI.

In principle, the new NI switch allows us to flexibly connect many peripheral devices, and to

define how packets are routed to them, based on the destination memory address field of the

packets. In order to reduce the crossbar area, we can merge multiple low-throughput

interfaces (e.g. ACKs generated by different NI IPs) on a single ExaNet switch port using special

ExaNet multiplexors and demultiplexor

3.2.3 QFDB interconnect and firmware inside the QFDB FPGAs F2-F4
Inside the QFDB, we have designed and implemented a custom distributed QFDB-internal

ExaNet interconnect, to connect the NI IPs with the ExaNet network, and the FPGAs with each

other and the gateway to the Torus QFDB-level network inside the F1. The firmware that we

currently use in FPGAs F2-F4 is depicted in figure 3.3. It consists of eight (8) NI blocks, which

15
Xirouchakis Pantelis ICS-FORTH,UOC

are connected to our ExaNet NI switch, and from there, to low-latency transceivers that realize

the all-to-all topology within the QFDB.

The firmware used in FPGA F1 additionally hosts the Ethernet NIC from and the unmanaged

10G Ethernet switch. In addition, F1 hosts the router used to connect to other QFDBs, namely

APErouter, using a Torus topology.

Routing among FPGAs inside the QFDB and to/from the APErouter: Packets are routed by NI

switches based on the offset field of the destination coordinates, or to the network FPGA if

the X,Y,Z destination coordinates indicate a different QFDB target. Inside the network FPGA,

there is another instance of this switch as well as the APErouter board-switch, which are

connected through 4 local ports available – see also Figure 3.3. The routing is done such that

one such local port of the board board-level switch is reserved for every FPGA in the QFDB.

 (a) Firmware for QFDB FPGAs, F2, F3 and F4, i.e. all FPGAs
except the network FPGA, F1.

(b) All-to-all topology
among QFDB FPGAs.
Inside F1, the NI switch is
connected to APErouter
and from there to the
outside world.

 Figure 3-4: The ExaNeSt QFDB-based firmware and network topology inside
the QFDB.

16
Xirouchakis Pantelis ICS-FORTH,UOC

A simplified view of the network blocks can be seen on Figure 3-5

The hardware blocks used for RDMA operations in the NI, also shown in Figure 3-5, are a

packetizer, a mailbox, a switch transceiver and the RDMA engine send (TX) and receive (RX)

modules. Each of the above hardware modules plays a crucial role in the ExaNet network. A

more detailed description can be found in Chapter 6.

3.2.4 ExaNet data path protocol
The ExaNet data path consists of the following signals:

 Exa_Data [127:0]

 Exa_Header_Valid and Exa_Header_Ready

 Exa_Payload_Valid and Exa_Payload_Ready

 Exa_Footer_Valid and Exa_Footer_Ready

The “Valid” signals are driven by the transmitter/master of the packet and the ready signals

are driven by the receiver/slave of the packet. The master can assert the Valid signal, anytime

the appropriate correct data are driven on the Exa_Data bus, but is not allowed to change the

value of that data until the appropriate Ready signal has been asserted by the slave.

 Figure 3-5: RDMA Network Interface simplified overview

17
Xirouchakis Pantelis ICS-FORTH,UOC

4 Overview of RDMA Engine
The RDMA engine, is split into a programmable part that currently runs using custom code on
the dedicated network interface co-processor running on the ARM Real-Time (Cortex-R5)
core, and a hardware part that runs on the programmable logic (PL) of the Xilinx Ultrascale+
MPSoC. The RDMA supports advanced quality-of-service (QoS) and resiliency features that
will be described below.

We have implemented the RDMA engine using three main modules, as shown in Figure 4-1.

● The first module is responsible for transfer segmentation and scheduling, as well as
for the retransmissions of transfer blocks (segments). These are relatively complex
functions but they run on the timescale of many packets (64 packets for 16KB), thus
relatively infrequently compared to the processor and the NI clock (and the packet
time on a link). This fact allows us to build these functions on the NI co-processor,
which we run on the Real-Time (Cortex-R5) of the Xilinx FPGA that resides inside the
processing system of the FPGA. Our software implementation decreased the turn-
around implementation time of this module, while increasing flexibility, in terms of
policies that can be implemented, along the spirit of Software-Defined Networking
(SDN).

● The second module, running on special hardware inside the PL, is responsible for
executing the transfer segments at the source. It schedules, spaces and transmits
packets, reading data from memory through the SMMU, aligning the packets’ payload
to destination addresses, and sending packets to the interconnect using the custom
ExaNet packet format. It can also detect page-faults and stop transmission of such
packets. This module is the main focus of this thesis.

● The third hardware module is responsible for bookkeeping the transfer segments at
the receiver, monitoring their execution, generating and coalescing the
negative/positive acknowledgments, as well as generating our fast completion
notifications. It consists of a 16-way set associative cache, that holds the context of
each active transaction. Each context has a 64bit bitmap for the packets that have
arrived, along with other information required by the NI.

18
Xirouchakis Pantelis ICS-FORTH,UOC

Figure 4-1: Network Interface advanced overview

19
Xirouchakis Pantelis ICS-FORTH,UOC

The smaller entity in the ExaNet network is a packet, which consists of a header a footer
and a payload part. The Maximum Transfer Unit (MTU) for this packet is chosen to be 256
bytes since this size has shown to be more efficient at doing network congestion work. Apart
from this, smaller MTU also helps keeping the network buffers small, saving utilization space
and therefore cost. As mentioned earlier, the receiver of the RDMA holds a bitmap for each
active transaction, that shows how many packets have arrived. In combination with the MTU
being 256 bytes, this limits the total transfer size of a transaction. We chose 64bits for the
context, which results in maximum transaction size of up to 16KB. This means that no
transaction should cross 16KB boundaries at destination address, a functionality which is
handled by the R5 co-processor. The RDMA receiver has to be able to receive the packets of
a transaction delivered out-of-order since the network is built to support multipathing. This
means that a bitmap should be utilized to mark down the packets that have arrived. If we
chose the maximum transaction size to be 32Kb then the bitmap would have to be 128Bits
and so on, meaning that we would have to sacrifice a great amount of resources (RAMB32) in
order to achieve smaller and smaller gains. In addition, our RDMA protocol supports
retransmissions at transaction level but not at packet level. This means that larger transactions
sizes, apart from inherently having more chances to require a retransmission (crc errors etc)
they would also require a lot of information to be retransmitted. Taking all those factors in
consideration 16KB seems like a goldilocks choice.

4.1 RDMA Channels and Transactions / Blocks Units
As mentioned earlier, in order to avoid system calls and the latency associated with them our

system uses user-level initiation of RDMA transfers. We achieve this by leveraging the SMMU

which can hold up to 16 different translation contexts at any time, i.e 16 Protection domains

id’s (PDID). A different protection ID is assigned to each application running on the system, or

to each process within an MPI application (if the application choses so)

The R5 scratchpad memory is split into 16 4K pages, each one capable of holding up

to 64 RDMA transfer descriptors, and each page is dynamically allocated to a specific PDID by

the driver. From those 64 channels, 32 are allocated for write operations and 32 for read

operations. This means that each application can have up to 32 outstanding Read RDMA and

32 Write RDMA transfers at any time.

Furthermore, the ExaNet RDMA transmit unit (ExaDMA) has 1024 available

transaction IDs (transaction descriptor), where each transaction ID can hold the descriptor

required for one RDMA transaction. Those transaction IDs can be used by the software

running on the R5 co-processor at any manner it chooses, allowing for great flexibility when it

comes to researching scheduling algorithms etc.

The RDMA will end with a completion notification (usually used for read RDMA) and

a response, which shall be an ack or nack, or just with a response. If everything went well, the

response will be a positive acknowledgment.

20
Xirouchakis Pantelis ICS-FORTH,UOC

If, however the RDMA encounters any error, then the response will be negative. Conditions

that can generate such a response are:

 Page fault at destination

 No context found at destination

 Packet received with a CRC error

 AXI Decode error on destination

In all of these cases, our RDMA supports retransmission. Furthermore, if a response does not

arrive at all (either because the response was lost or because a number of packets were lost

all together) then the RDMA transaction will receive a timeout and will be re-initiated. Our

network deals with duplicates by tagging each packet of a transaction with the appropriate

“retransmission number” which indicates how many times this transaction has been re-

transmitted.

4.1.1 RDMA Write
When a user level application requires an RDMA Write operation it informs the R5 by writing

on its scratchpad. The write contains all the required information for the transfer, including

source/destination virtual address and bytes to send. The R5 continuously polls the

scratchpad for new transfers and when a new one is written it will enqueue that transfer on

a list of active transfers. Among other things the R5 will segment the transfer into a number

of 16KB transactions. After that, in order to initiate a transaction for execution the R5

configures the descriptors of the ExaDMA, with the appropriate information for the

transaction by writing on the PL 4x 64bit words. When the last word is written, the ExaDMA

Figure 4-2: Virtual Channel allocation

21
Xirouchakis Pantelis ICS-FORTH,UOC

module begins reading the data from the memory hierarchy and sending packets on the

network.

On the Receiver side, a context table is kept that keeps track of how many packets

have been received (see chapter 7.1 for a more detailed analysis). When all the packets have

been received, the receiver will send a response ack/nack on the initiating R5’s mailbox. When

R5 receives this response from the mailbox, it will consider the transaction as done and

continue with initiating the next one until all the transactions of the transfer have been done.

The R5 can choose to have any amount of transactions active per transfer at the same time in

order to avoid latency resulting on the round-trip time of the response and can also use

advanced double buffering techniques provided by the hardware of the ExaDMA.

Figure 4-3: RDMA Write timing diagram

22
Xirouchakis Pantelis ICS-FORTH,UOC

 The application can also configure the transfer to receive a completion notification

message, a procedure which is described on Appendix A.

4.1.2 RDMA Read

Similarly, an RDMA Read operation is similar in spirit with an RDMA Write. But in order to

achieve an RDMA Read the packetizer of the system is utilized. When the application issues

an RMDA Read operation to the user level library, the library configures and sends a control

message from the system’s packetizer. This message is destined to the R5 Mailbox of the node

from which the application wants to read the data. This message carries all the appropriate

information like source/destination and bytes to transfer, and also is tagged by the hardware

with the same PDID as the application.

When the R5 dequeues this message, it registers it as a new outstanding transfer, taking up

one channel of the 32 “Read channels”. From there on the transaction is the same as a RDMA

Write but with opposite direction.

 Figure 4-4: RDMA Write with error and retransmission timing diagram

23
Xirouchakis Pantelis ICS-FORTH,UOC

This scenario has the added reliability that the packet sent by the packetizer to the remote

destination’s mailbox can be lost or corrupted. In that case, the remote destination will not

enqueue any read requests. Additionally, if the acknowledgment sent from the mailbox to

that packetizer is lost, the initiator will not know if the read request is done. The latter is solved

by polling the completion notification address and the first requires that the packetizer re-

transmits the packet.

The initiating node will be informed that the data have arrived, by polling the completion

notification address. This address can be a system mailbox (different from the one that the R5

uses), or an address directly on DRAM.

 Figure 4-5: RDMA Read timing diagram

Figure 4-6: RDMA Read with packetizer acknowledgment lost and
recovery

24
Xirouchakis Pantelis ICS-FORTH,UOC

5 RDMA Send Unit Description

In this chapter, we describe the functionality and top-level architecture of the ExaNet RDMA

sender unit, which we call ExaDMA.

The ExaDMA engine is used to initiate and handle RDMA transactions over the ExaNet

network. It is designed to work in connection with the Real Time Processor of the ZYNQ

Ultrascale+ MPSoC. Therefore, some of the functions needed for a complete RDMA transfer,

are done by the R5 as described in section 4.1.

The ExaDMA provides 1024 transaction descriptors which can be outstanding

concurrently. A round robin scheduler is implemented that iterates through all the active

transactions, and initiates one packet from each active one. The maximum packet size of the

ExaNet network is 256 Bytes, and so most of the packets in a large RDMA transfer will be of

that size. ExaDMA supports transaction sizes that range from 1 Byte up to 16KB, completely

unaligned both at source and at destination address.

Apart from the above, the ExaDMA module has been designed to be able to work with

the congestion management of the ExaNet network as well as the reliable communication

additions, meaning that the scheduler can be replaced by a priority-heap scheduler instead of

the existing round-robin mechanism.

5.1 Functionality list:
● ExaDMA is designed to work with R5 co-processor, which segments transfers as

described in sections 4.1.1, 4.1.2.

● ExaDMA can be used to send RDMA block transactions from 1 byte to 16KB,

potentially unaligned both at source and at destination. When used together with our

RDMA receiver, the transfers should not cross 16KB memory boundaries. This is

currently managed by the R5.

● ExaDMA can also act as a simple packetizer: By writing a small number of words to

the ExaDMA controller, an agent, such as a hardware block the R5 or a software

running on a nearby processor, can send a prioritized message, “control packet”, to a

destination. We use this feature to implement in-band, end-to-end protocols

between the RDMA endpoints.

● ExaDMA supports up to 8 Protection Domain IDs (PDID). When the Scheduler issues

a read transaction to the memory subsystem, it sets the AXI ID to the PDID of the

transaction. The AXI-4 protocol states that when different AXI-IDs are used by a

master, the slave can respond completely out of order, and in read requests the data

can be interleaved. For this reason, the internal barrel shifter is virtualized, and has 8

channels.

● ExaDMA has a Double Buffering - Chaining functionality. This allows the user agent

e.g. the R5, to configure a set of transactions descriptors, in such a way so that they

are all sent one by one in a predetermined order, without any further intervention.

The first packet of the Nth transaction is scheduled to depart right after the last packet

of the N-1 transaction is send. This can be used as an offloading mechanism of the R5

in order to avoid having to schedule transactions, and potentially increasing the

25
Xirouchakis Pantelis ICS-FORTH,UOC

initiation latency for a new transfer, or can be used in order to define other sub-

transfer entities like “congestion managed flows” that may be bigger than 16KB.

● ExaDMA has an arbitrary number of Output buffers, for instance one per outgoing

transceiver. We need output buffering, in order to avoid bubbles in our network (also

required to implement congestion management [5]). When the scheduler issues an AXI

read transaction, the PS takes up to 40 clock cycles to respond. For this reason, each

buffer has a number of slots (256 bytes payload + 32 bytes Header/Footer), such that

in case of no network congestion, the scheduler can issue read requests without

having to halt because of all the output slots being full.

● ExaDMA drives in the footer of each packet the flags “first”, “last”, “notify”. Flags

are used for in-band communication with the receiver, and are used to indicate

whether this is the first/last packet of a transaction (in case of out of order delivery

because of multi-pathing) and if the transaction will have a completion of notification

issued.

● In order to reduce the critical path of the receiver, the transmitter is also tasked

with making sure that no packet crosses 4k Boundaries on the destination address.

For this reason, one packet (the first) can be less than 256 Bytes, in order to assure

256Byte boundary alignment at the destination. In this way, the receiver logic is

simplified by not needing to do checks for 4K boundaries on the AXI-Write. The

scheduler also makes sure not to cross 4K boundaries in the AXI-Read transactions.

● Finally, the ExaDMA can detect if a virtual address has prompted a page fault in the

AXI-Read interface and if so, it stops the packet from being sent since the data would

be non-valid. Additionally, a mechanism is implemented which completely halts the

transaction and waits for the R5 to re-issue when the page fault has been dealt with.

5.2 Descriptor Description /Register space
In order for a transaction to be initiated, the R5 needs to write 4 64bit transaction descriptors.

These descriptors fully describe the transaction, and cannot be modified after the transaction

is started. A transaction is considered started when the 4th word is written. Following is a

description of these transaction descriptors:

63:0

Source Virtual Address: starting source address of the transaction

63:0

Destination Virtual Address: starting destination address of the transaction

63 (1b) 59 (1b) 58 (1b) 57 (1b) 56:42 (15b) (41:32) 31 (1b) 30:16
(15b)

15:0
(16b)

DB Send
notify

Acked Done Bytes send Dependency
id

chained Transfer
length

Prot
domain

63:19 18:5 (13b) 4:0 (5b)

Unused Sequence # Path

26
Xirouchakis Pantelis ICS-FORTH,UOC

 Source Virtual Address (R/W): The virtual Address from which the ExaDMA will read

the data. This address should be in the local node (since the data are read locally via

the AXI-4 protocol) and is byte aligned.

 Destination Virtual Address (R/W): The virtual address of the destination. The 22 MS

bits of this address should be the coordinate of the destination node, and the 42 LS

the virtual address on the destination nodes memory hierarchy.

 Protection Domain (R/W): The protection domain used by both the source and the

destination SMMU in order to translate the addresses.

 Transfer Length (R/W): The length in bytes of the transaction. Should be from 1 to

16384 Bytes.

 Double Buffered (R/W): This bit indicates if this transaction should not be started,

before some other transaction is finished being send. The register space provides the

user with the ability to initialize a chain of transactions, and enforce the order in which

they will be served.

 Dependable (R/W): Bit that indicates if this transaction is before another transaction,

in a chain of dependable transactions

 Dependency ID (R/W): The transaction ID of the transaction that is waiting for this

one to end before starting.

 Bytes Send (R/): The number of bytes that the engine has sent so far.

 Done (R/): Bit indicating if all the packets of this transaction have been sent.

 Acked (R/): reserved for later use.

 Send Notify (R/W): Bit used by the in-band messages of the RDMA to inform the

receiver that this transaction will be followed by a control packet.

 Path (R/W): indicates from which output of the ExaDMA the packets of this

transaction should be send.

 Sequence # (R/W): used for the retransmission protocol, this field indicates how many

times this transaction has been retransmitted.

Control Packet Initialization: Control packets are sent as in-band messages in order to achieve

the completion notification at destination. In order for the receiver to send a completion

notification, the ExaDMA has to send to it a control packet first, containing the payload of the

notification, as well as some other control information. In order for such a packet to be sent,

the address space of the ExaDMA is increased by 1024 x 128 x n bits, where n is the number

of outputs. In order to initiate a control packet, the R5 should do 3 consecutive writes, at the

same address, within this range. Both the transaction ID regarding the control packet, and the

output from which the packet will be send are selected by the address. For instance, if we

have n = 3 outputs, then the address space will be extended by three (3) extra segments. The

output is selected by the segment from which the write address resides, and the transaction

id is selected by the 128bit word within that segment. The 3 writes made by the software

should contain the payload of the notification message. All other information required is

found from the internal pending list of the ExaDMA, drastically reducing the number of writes

required for such an initialization. This means that the transaction Descriptor regarding a

transaction ID should always be initialized before any control packets are issued. These

packets completely bypass the output buffers and are send to the network as soon as they

are initiated. This creates the possibility of the software wanting to send a new control packet,

while the previous one has not been sent again because of backpressure from a congested

27
Xirouchakis Pantelis ICS-FORTH,UOC

network. In this case, the backpressure will be also exerted to the AXI interface, back

pressuring the AXI-Writes and potentially the R5 software.

In case of small RDMA transfers in which the completion notification is a significant portion

the total completion time, the R5 can reduce the latency by issuing the transaction descriptor

first, and then the control packet. That way, the RDMA send unit does not stay idle while

waiting for the AXI-Read bus to respond but instead sends the control packet.

5.3 RDMA Send Unit Submodules Description
In this chapter, we describe in detail each of the sub-modules contained in the ExaDMA. Figure

5-1 depicts the top-level architecture of the ExaDMA module, with all the submodules shown.

The ExaDMA transmitter block consists of the following sub-blocks:

 Pending List

 Packet Scheduler

 Virtualized Barrel Shifter

 Output Buffers

 Exanetizers

In order for a transaction to be issued, the R5 has to configure the Pending_List module via

the AXI-Slave Bus. The Pending list is essentially a table keeping the outstanding block

transactions, indexed by their transaction ID, selected by the R5. The Scheduler reads

transaction descriptors from the Pending List and issues AXI-Read transactions at the AXI-

Master interface. The AXI-read responses pass through the virtualized barrel shifter which

takes care of the required re-alignments and pass the data to the output buffers. When an

output buffer is filled, the ExaNetizer block creates an ExaNet packet.

Figure 5-1: ExaDMA top-level architecture

28
Xirouchakis Pantelis ICS-FORTH,UOC

5.3.1 Pending_List

The Pending_List submodule is responsible for keeping the array with all the 1024 transaction

descriptors. It is configurable via an AXI interface.

5.3.1.1 Descriptor List
In order to initiate a RDMA, AXI-4 transactions are generated from the PS to the DMA AXI-

Slave interface. Those transactions are handled by the Pending_List module and can be either

32, 64 or 128bit writes. All the ExaDMA register space is both writable and readable but only

via AXI single read/writes, since adding the FSM for AXI bursts would increase the complexity

for something that is not really used for such situations. This module consists of a large BRAM

array, 1024 x 32x4 x 2 in size (262144 bits total). These BRAMs are divided into 1024

transaction descriptors (also referred to as transaction ID’s). Each transaction requires 2 x 128

bit writes for its descriptor (256 bits in total). Because the PS can generate smaller than 128bit

words, each 128bit word is saved on 4x32bit wide BRAM and the write enable signal of each

BRAM is driven by the appropriate Strobe signal of the bus.

This memory is implemented as a true dual-port BRAM, because multiple masters can

read/write to it at the same time: 1) the PS when writing/reading a descriptor, 2) the scheduler

when reading/modifying a descriptor, 3) and finally the Pending_List module itself, when a

new packet is being created. For this reason, great care has been taken, in order to avoid race

conditions that could lead to corruption of data.

Figure 5-2: Pending List submodule hardware instantiation

29
Xirouchakis Pantelis ICS-FORTH,UOC

A descriptor consists of 4x64 bit words. When the software writes the 3d word, the

transactions is triggered. For this reason ,if retransmissions or multipath are used, the

software should write the forth word beforehand, otherwise it can skip writing it altogether.

The transaction is triggered by enqueueing a pointer to that descriptor in the scheduling FIFO.

At that point, the transaction is considered as active. If, however, the descriptor indicates that

Table 5-1: AXI-4 Write FSM signals

Figure 5-3: AXI-4 write FSM

30
Xirouchakis Pantelis ICS-FORTH,UOC

this transaction should wait for another one to end before being sent (DB), then the pointer

is not enqueued at all.

In order to handle AXI transactions, this module uses 2 separate FSMs as required by

the protocol in order to avoid deadlocks. In the handshake step of a transaction (AWVALID/

ARVALID), the address is latched (as well as the axi_AWID or axi_ARID) and is given to the

BRAMs via port A. Since both AXI channels use the same port, priority is given to writes, via a

MUX.

 For read transactions, the address is given to the BRAM, and assuming that no AXI

write is pending, one clock cycle later, the correct data are latched to the AXI_RDATA field.

Each 128bit word is saved in a bank of four 32bit BRAM, and the bank is chosen via

the LS bit of the descriptor address. The software can write to the pending list via 32/64 or

128 bit writes, so in order to drive the correct Write_Enable signal to each BRAM, the

AXI_strobe signal along with the bank_select signal (generated by the address LS) is used. We

also have to check if the address range does not belong to a control packet initialization, and

that the scheduler is ready to enqueue the new transaction descriptor (via the i_enque_r

signal). In case the scheduler cannot enqueue a new transaction, then backpressure will be

exerted to the AXI interconnect, by not asserting the WReady signal.

Figure 5-4: AXI-4 Read FSM

Table 5-2:AXI-4 Read FSM signals

31
Xirouchakis Pantelis ICS-FORTH,UOC

The signal o_enque is used to inform the scheduler module that the data of the o_TID

bus should be enqueued in the scheduling fifo. o_TID is simply a pointer to the address of the

newly configured, active descriptor. So, to drive o_eqnue we use the signal we_Bram_11

(which indicates that a write has been made to the MS 32 bits of the third 64bit word) along

with inverted MS bit of the Wdata channel. This has to do with the ability to issue chained

transactions: if this transaction descriptor is part of chain, we don’t want it enqueued yet in

the scheduler. The third word is chosen instead of the fourth one, because, from the R5’s

perspective, each after 3 x 64 bit write, there will be a large latency (due to store buffer) before

the fourth word arrives; effectively, the R5 can save latency by not writing anything on the

fourth word if this is not necessary. Apart from the above, other signals like addr_b dout/din_b

are used by the scheduler in order to read and modify existing transaction descriptors

Figure 5-5: Descriptor list detailed schematic. Connections between wires have been omitted
for simplicity

32
Xirouchakis Pantelis ICS-FORTH,UOC

5.3.1.2 Packetizer messages
Apart from the descriptor list, this module (Pending_List) also includes 4 x 128bit wide

register, per output port of the DMA, used for sending packetized messages. Those registers

hold the information of the message to be send as is (i.e header, two words of payload and a

footer). In order to minimize the amount of writes necessary for a message to be sent, the

following scheme is used:

The packetizer function of the ExaDMA has a large address space, 32KB per output port. The

software only needs to do 3x 64bit writes, all at the same address, and the rest of the

information will be read by the descriptor BRAM, using the TID as pointer. The software selects

the TID by selecting the address of the writes within this address space as in:

“packetizer_configuration_base + TID + output_port x 1024”. Those three writes should

contain the payload of the message. The module can then read the header and footer

information from the Descriptor BRAM. This can be done because the messages sent by this

packetizer are control messages related to already active RDMA transactions that exist in the

descriptor list. Hence, this functionality cannot be used to send general purpose messages.

The above logic is used to generate control packets and is replicated once for each

output. It is built around an FSM that has 3 stages, and iterates through them each time the

R5 software does a write, in the address range of the control packet configuration. On each

stage, the appropriate WE signal is driven so that the correct register latches the payload.

When the third payload is latched, the header and the footer of the control packet are also

latched by reading all the appropriate information from the BRAM. At the third write, the

signal packetizer_slot_ready is also asserted indicating to the output module that a control

packet is ready for sending. After sending that packet, the output module will assert the signal

packetizer_slot_consume. If in the meantime the software tries to write another word on the

Figure 5-6: Detailed schematic of control packet generation

33
Xirouchakis Pantelis ICS-FORTH,UOC

registers, then the module will not assert the AXI_WReady signal, back-pressuring the R5, in

order to avoid corruption of the data being sent.

When the third write is done, the scheduler is notified and will send the packet as

soon as the network is available, bypassing the output buffers. Note that because there is no

buffer for these control packets, if the network is congested and the software tries to send a

second message before the first one is sent, then this module will backpressure the AXI

Interface, and potentially the software.

5.3.2 Scheduler

The core of the scheduler is a FIFO that is used for round-robin scheduling. This module also

drives the Read-Address channel of the AXI-Master interface of the ExaDMA, and also gives

the configuration commands to the Virtual Barrel Shifter.

The FSM of the scheduler uses the fifo_empty signal, from the round robin scheduling

FIFO, to determine if there are transactions that need to be served. If so, the pointer of the

descriptor is dequeued from the FIFO, and is used to read the descriptor data from the

Pending_List module. The descriptor is read from a 256-bit wide bus, and takes one clock cycle

to arrive. In the next cycle, the scheduler determines the “path” of the transactions (which

output port of the DMA it will be send from) and looks on the appropriate output buffer for

any free slot. If no slots are found, then the scheduler writes-back the descriptor and re-

enqueues the pointer, starting the scheduling round all-over, in order to avoid head-of-line

(HOL) blocking.

If a free-slot is found, then the scheduler allocates this slot to the transaction, and marks the

slots as used. It then proceeds to calculate the information needed for the packet

transmission. In order to avoid 4k Boundary checks on the receiving side, the packets should

not cross 4k boundaries on the destination address. Since each packet is up to 256 bytes, the

 Figure 5-7: Scheduler submodule hardware instantiation

34
Xirouchakis Pantelis ICS-FORTH,UOC

scheduler can purposely issue the first packet with less than 256 bytes, in order to be aligned

on 256 boundaries of the destination address. That way, there are no 4k Boundary crosses on

the receiving side, thus simplifying its operations, as discussed in more detail in section 7.1

The AXI-Reads also should not cross 4K boundaries. In order to not send two small

packets just for this reason, the scheduler can sometimes issue two AXI-Reads per scheduling

cycle instead of one. In normal operation, the scheduler will typically issue reads with the size

of 256 bytes, or whatever size is left (for the start or the end of blocks). Byte alignment is also

done on the sending side, using the virtualized barrel shifter, as discussed later in this chapter.

Hence, the final AXI read Address and Size takes into account that the barrel shifter might

need one extra word depending on the source-destination address alignment. After the above

information is calculated, the scheduler enqueues the appropriate alignment command on

one of the 8 command FIFOS of the VBS, depending on the PIDID of the descriptor. The PDID

is also used as the AXI-ID, and the AXI Address Read request is issued.

 Figure 5-8: RR scheduling FSM

35
Xirouchakis Pantelis ICS-FORTH,UOC

In parallel, the scheduler calculates the information needed by the EXA header/footer

and writes it on the output buffer indicated by the slot acquired at the start of the scheduling

cycle.

If this was the last packet, then the scheduler marks the “Done” field of the descriptor

indicating that the transaction is fully send, and writes-back without re-enqueueing the

pointer to the scheduling FIFO. Otherwise it also re-enqueues the pointer.

5.3.3 Virtualized Barrel Shifter

In order to achieve byte level unaligned transfers both at source and destination, a virtualized

barrel shifter is used. The ExaDMA module is connected to the AXI-HCP0 port of the PS, which

is a fully IO-coherent port of the PS. In addition, accesses to this port pass through the systems

SMMU. The SMMU Driver has 8 contexts allocated for the incoming AXI transactions on this

port, which can be mapped to 8 protection domain IDs [6]. The AXI-Read ordering model

demands that same ID transactions will be responded in the order they were issued. However,

for different ID the protocol allows for both out-of-order and Interleaving of the Read data.

This factor can greatly increase the response time of some AXI-Read Requests since

some requests can be found on the DRAM and some others on the caches of the APU. Having

support for Out-Of-Order responses allows it to be able to receive data found in the cache,

with much smaller latency than if they had to wait for other data, found in DRAM and

requested earlier in time. Additionally, the PS interconnection system works at 600MHz but

the PL fabric can only get up to 250Mhz. By having support for interleaving delivery of read

data, we allow the PS to take advantage of its internal speed up, and further decrease the

latency required for the read responses to complete.

The context of the SMMU is selected using the AXI-ID. This means that the barrel shifter

should expect to receive a different request datum each clock cycle, and do the appropriate

shifting on it. For all the above reasons the barrel shifter is virtualized, and has eight small

control FIFOS (one per channel, or per PDID) and registers that hold the commands and state

of each read request. Each clock cycle that the AXI-Rvalid signal is asserted, the Barrel shifter

selects the correct FSM that needs to be used using the AXI-Rid signal. The barrel shifter is

also pipelined in order to be able to reach higher clock speeds.

 Figure 5-9: VBS submodule hardware instantiation

36
Xirouchakis Pantelis ICS-FORTH,UOC

5.3.4 Output Buffer

The DMA can be configured to have any amount of Output Buffers, typically one per path of

the multi-path network. The scheduler allocates a free slot, and also sets up a register that

indicates how many bytes this slot will receive (any amount from 1 to 256). The number of

slots required in order to achieve maximum Read throughput can be calculated by calculating

the amount of clock cycles required by the DRAM to respond to a Read request, and taking

into account how often the scheduler can issue a read request at full operation. In our design,

this is calculated to be eight slots where each slot is 256 bytes. Those slots are directly

accessed and written by the barrel shifter, after the shifting is done.

Apart from the payload slots, the buffer also has slots allocated for the Header and

footer of the packet, implemented on registers and written by the scheduler at the time of

the allocation.

When a word is written on a slot, a counter is decremented, and when it overflows it

signals to the output stage that a slot is ready for sending, giving the address of the slot along.

Since the slots can be filled at any order regardless of the order of issuing (because of

out of order response when using different read IDs), a mechanism is implemented that

ensures that in the case of many slots simultaneously filling, it will enforce the order of issuing

when deciding which slot to send first.

Finally, this block is tasked with detecting page faults. The AXI-4 states that if something

goes wrong on AXI-Read burst transaction, then the AXI-Master interface that received it

should still be able to receive it all. AXI-4 Faults are distinguished by the RRESP signal, which

in case of a page fault will have the value 3 or 2. In that case, the barrel shifter will still receive

the whole burst, and write in on the output buffer. After the slot is fully written, the

output_buffer module will not assert the slot ready signal to the ExaNetizer block. Instead, it

will clear the “used” flag, and raise an “interrupt” to the scheduler module indicating that a

Figure 5-10: VBS submodule hardware instantiation

37
Xirouchakis Pantelis ICS-FORTH,UOC

packet has received page fault, along with the TID of that packet. The scheduler will then go

on with effectively killing the transaction, and setting the “error” bit to 1. Meanwhile the page

fault handling mechanism of the system will inform the R5 of the problem when the page fault

is dealt with, in order for a retransmission to be issued. That way we avoid sending

unnecessary garbage information in the network, reducing unnecessary bandwidth

consumption and congestion.

5.3.5 Output Stage

The ExaNetizer module is responsible for creating the ExaNet packet and sending it to the

network. ExaDMA uses one ExaNetizer per output buffer and so is able to send to multiple

destinations at the same time. A packet will be sent when an output buffer slot is completely

filled or when a control packet message has been written by the software. If both are true,

then the control packet messages have priority over the normal payload packets.

When a control packet message is written by the software, a register is latched that does not

allow the software to configure a second message until the first one is send. This is done by

not asserting the Wready signal on the AXI transactions, and therefore backpressures the R5.

This means that the software can write control packet messages without first checking if the

prior ones have been sent, which typically is bad because it adds latency.

Figure 5-11: ExaNetizer submodule hardware instantiation

38
Xirouchakis Pantelis ICS-FORTH,UOC

The inputs used to determine when a payload packet is ready for transmission are

comp_winner_exists and comp_winner_val, which indicate if a buffer slot is filled, and which

slot it is. The FSM of this submodule can be seen Figure 5-12. First, the FSM waits until a slot

is filled in the output buffers or a control message is ready, giving priority to the control

messages. If the first is true, the FSM latches the comp_winner signal because this signal can

change at any moment while the barrel shifter writes data to the output buffers and uses this

signal as address to the header/footer and payload buffers, while proceeding to send the

header of the packet. If this is a control header, then it sends the header directly from the

cntrl_data bus. After the header_ready signal is asserted, the FSM jumps to the next state.

Figure 5-12: ExaNetizer Submodule FSM

39
Xirouchakis Pantelis ICS-FORTH,UOC

 The second stage of the FSM is the control payload or standard payload. In this stage,

the FSM sends payload words, advancing the buffer address, until the words send are equal

to the size of the packet (which has been latched on the send_header state. In case that the

payload_ready signal is not asserted the FSM jumps to an intermediate state, payload_wait

and latches the payload until the payload_ready signal is asserted, because the buffer address

has been changed, and new data will arrive on the Buff_dt bus.

If the FSM was at send_cntrl_pld state, then, after sending two words, it will jump to state

send_cntrl_ftr. If the state was send_pld and the last word of the payload is sent, the FSM

asserts the output signal o_prio_decrement that signals the output buffer that all existing slots

should decrement their priority, and also sets the used slot as freed so that the scheduler can

re-issue a packet on it, then jumps to send_ftr state. If the network is congested it might not

assert the footer_ready signal for a long time. This is a problem because the slot currently

being used has been marked as freed in the previous transmission cycle, and the scheduler

can write a new footer/header on it. For this reason, the data for the footer are registered

Figure 5-13: ExaNetizer submodule detailed schematic. In order for the schematic to be clear,
connections between signals have been omitted and are indicated by same name.

40
Xirouchakis Pantelis ICS-FORTH,UOC

after the first clock cycle that the footer_Valid signal is asserted when the footer_ready signal

is zero.

Finally, after the footer has been sent, the FSM will jump either to state idle, send_hdr

or send_cntrl_hdr, depending on the starting state and what signals are asserted as shown in

Figure 5-12.

41
Xirouchakis Pantelis ICS-FORTH,UOC

6 RDMA Modules Description
6.1 RDMA Receiver

The RDMA Receiver module is responsible for receiving ExaNet packets, allocating them into

contexts and keeping track of the transaction progress. It has been developed at FORTH by a

colleague in parallel with the ExaDMA, and I overview its inner workings for completeness.

 As shown in Figure 6-1 the RDAMA receiver has 3 interfaces. An AXI-4, an ExaNet_Rx

used to receive ExaNet packets, and an ExaNet_Tx used to transmit responses.

The core of the RDMA Receiver is a large BRAM array, called “context table” which is

used to do the bookkeeping about all the active transactions. It consists of 256 contexts each

one holding an 64bit bitmap to mark down all the packets that have arrived, as well as fields

to hold the transaction ID, source node coordinate and other fields used for the completion

notification mechanism. This context is implemented as a 16-way associative cache, in order

to be able to serve active transactions faster.

 The RDMA Receiver also acts as an ExaNet to AXI-4 converter. When a packet arrives,

it is immediately written to the DRAM (cut through operation), after passing the virtual

address to the SMMU of the system. When the footer of the packet arrives, which contains

the transaction ID and the source node ID (both used for hashing inside the context table) the

receiver begins the mark down of the packet into the appropriate context slot. This packet

can either belong to an active transaction, in which case we will have a hit, or to a new

transaction, in which case we will have to allocate a new slot to it. If no slots are available then

the receiver will send a properly marked negative response to the source. The Receiver uses

the address of the packet to determine the correct bit of the bitmap to markdown, i.e. the

position of the packet in the bitmap, and knows what bits should be completed by looking at

the footers of the packets for the “first” and “last” flags. When all awaited bits are completed,

the receiver will send a positive ExaNet response back to the source.

 If the SMMU responds negatively (BRESP != 0) , or if the packet has a CRC error, then

the receiver will send a negative response with the appropriate error code back to the source.

Packets carry a “sequence number” field, which indicates the number of times this transaction

has been retransmitted. The Receiver keeps in its bitmap this sequence number and if at any

time it sees a sequence number packet lower than the one currently active, it ignores it

Figure 6-1: RDMA Receiver hardware instantiation

42
Xirouchakis Pantelis ICS-FORTH,UOC

(doesn’t write down the bitmap field). However, if it sees a sequence number larger than the

saved one, then it completely flushes the bitmap in order to be sure that all the packets of the

retransmission have arrived. Finally, all the responses generated by the receiver carry the

same sequence number as the transaction they are meant for, which helps the source identify

if they are the correct responses, or are from “older” packets that have been retransmitted.

 With all the above features, the receiver allows our RDMA network to be able to

handle completely out of order delivery of packets, enabling multipathing, and also allows for

end-to-end resiliency features such as retransmissions.

 Finally, the AXI interface is solely for debug purposes. The software can read all the

contexts, using a program that decodes the data returned by the context BRAM, and get a

complete view of the current situation in the context table, i.e. what slots are active, how

many packets have arrived etc. This has greatly helped in debugging, since before

implementing this, we had no way of knowing what had gone wrong.

6.2 RT mailbox

This block is the mailbox used by the R5 processor in order to receive transaction responses

and Read-Requests. It consists of two FIFOS, one for read requests and one for ExaNet

transaction responses. ExaNet packets arriving from the network are written on those FIFOs

via an ExaNet interface, and the R5 can read those FIFOs via a local AXI protocol. Those FIFOs

are dequeued accordingly based on how many reads the software needs to do from the AXI

interface in order to read all the required information. Since the R5 can only read using 32bit

words, this means that a word is dequeued from the response FIFO for each AXI-Read on it,

and one from the response FIFO every four. The requirement for two different FIFOs arises

from the fact that the R5 software has an internal queue for Read-Requests that can get full ,

making the R5 unable to receive more Read-Requests. If both read requests and responses

were in the same FIFO, and this FIFO is dequeued when the software reads from it, and since

the R5 does not know whether what it will read is a response or a read request, a situation

could occur that the R5 cannot read from this FIFO even for responses, because the Read-

Request queue is full, leading to protocol deadlocks. For this reason, the R5 software can

choose from which FIFO to read, by changing the offset address of the read request.

An optimization to the above is that when the R5 reads from the response FIFO, apart

from all the payload related to the response, a special bit is returned that indicates whether

or not the read-request FIFO is empty or not. That way the R5 can skip reading it altogether,

reducing the loop time required since the PL reads are very time consuming.

Figure 6-2: RDMA Receiver hardware instantiation

43
Xirouchakis Pantelis ICS-FORTH,UOC

Finally, in order to serve a remote Read-Request, the R5 has to know the protection

domain of the application requesting the read. This information is on the ExaNet header of

the packet, which is created on hardware (from the requesting nodes packetizer), based on

configuration made by the kernel on the packetizer channel used to carry the read request.

When this packet arrives to the R5 mailbox, some of the payload is the original payload chosen

by the user, while protected payload, like the protection domain, is constructed by the

mailbox itself, based on the packet’s header. In this way we don’t have to worry about

malicious users trying to read from protection domains other than their own.

6.3 ExAurora

The ExAurora IP is the transceiver of our system. It is a wrapper that instantiates the IP

provided by Xilinx, Aurora 64B/66B which in turn uses a SERDES (serializer de- serializer)

capable of achieving transmission speed on High Speed Serial (HSS) links up to 16Gb/s, with

the ability to bond lanes and achieve even higher speeds. In our system, Aurora is configured

to work with 10Gb/s links, although the PCB can get up to 16Gbit. Aurora provides two AXI-

Stream interfaces (one for incoming and one for outcoming traffic) which use the TVALID,

TREADY, TLAST, TDATA [63:0] signals of the bus (TREADY signal is omitted on the receiving

side). It also provides a second AXI-Stream interface which can be used for flow-control using

NFC (Native flow control). When the NFC-Tvalid signal is asserted, the Aurora stops sending

data and instead sends the NFC-TData. This is an 8-bit bus which holds information regarding

flow control. The 7 LS bits can be used to send pause commands and indicate how many cycles

we want the pause to last and the MS bit is used to send XON/XOFF commands.

ExAurora IP utilizes two cross-clock FIFOS; one for Rx and one for Tx, which are low

latency (only 3CCs from first enqueue until not empty signal is asserted). The Rx FIFO is 128bit

wide and 256 words deep. It uses programmable full and programmable empty functionality

to implement the XON/XOFF watermarks and the required high/low watermarks are

calculated to be 72 words, based on our link rate and datapath. An FSM monitors the

programmable full signal and when it is asserted, it uses the NFC-TVALID to send the

appropriate XON/XOFF commands.

The Tx FIFO is also 128 bits wide and 256 words deep. This FIFO has the programmable

Full signals configured in such a way that the FIFO drives the eXa_Header_Valid signal only if

the FIFO can fit a full packet length (18 words). This helps with congestion management and

routing algorithms, and also has greatly helped with debugging.

Figure 6-3: ExAurora hardware instantiation

44
Xirouchakis Pantelis ICS-FORTH,UOC

Since only one FIFO is used per transmission side, the FIFOS are also accompanied by

the appropriate logic that decodes the header in order to know how many words are payload

and which are header/footer.

Last but not least, since each FPGA has many transceivers scattered across many banks

of the FPGA, ExAurora comes with the appropriate logic to configure many auroras to work

using the same GTH clock.

6.4 ExaNet intra-Switch

Routing in our network is done in total by two switches. The one is the Inter-QFDB router that

manages the connections going out of the QFDB through the F1 (Network FPGA) and uses only

the destination coordinates to route. It has in total 4 local ports and 8 remote ports and is

provided as a black box by a partner of the project.

The other switch is used for intra-QFDB and NI address-based routing (ExaCrossb

shown in Figure 6-4). It is a 16x16 port ExaNet buffer-less crossbar. The switch is buffer-less

because all the IPs involved in the RDMA network either have output buffers (ExaDMA /

packetizer) or have input buffers (ExAurora), so this helps with lowering the utilization and

minimizing the amount of FIFO latency.

Out of those 16 ports, four (4) are used for routing into the intra-QFDB transceivers

and another 4 are used for inter-QFDB traffic, connecting directly to the 4 local ports of the

network router as shown in Figure 6-5. ExaCrossb has as input the source coordinate and uses

a 2-level routing algorithm.

Figure 6-4:ExaCrossb hardware instantiation

45
Xirouchakis Pantelis ICS-FORTH,UOC

The first level checks if the destination coordinates and the source coordinates do not

match. IF the fields X,Y,Z of the coordinates (which QFDB in the network) do not much, then

it routes the packet to the F1(Network FPGA). If, however the packet is already in the F1 FPGA

then it routes the packet to one of the local ports of the Network router. Which of the 4 ports

is chosen depends on what input port the packet comes from. If it comes from one of the local

ports, then it routes it on port_0, if it comes from the input port that connects to the F2 FPGA

it routes it on port_1 and so on. This allows for maximum bandwidth while simultaneously

avoiding head-of line-blocking, in case that multiple intra-FPGAs need to communicate with

remote QFDBs.

If only the “offset” coordinate (which FPGA within a QFDB) does not match, then it

routes the packet to the appropriate transceiver that connects to that FPGA. Since the FPGAs

within the QFDB are connected in an all-to-all topology, there is no need to check for

deadlocks.

If the source and destination coordinates match, then this means that this is the

destination node of the packet. In this case, the packet is routed based on its address to the

appropriate ExaNet peripheral (mailbox packetizer etc.) or to DRAM (ExaNet RDMA Receiver)

Figure 6-5:ExaNet network routing

46
Xirouchakis Pantelis ICS-FORTH,UOC

6.5 Network Utilization report
Following are the results of the implementation of our RDMA network interface on the Xilinx

Ultrascale+ FPGA.

Table 6-1:Network Utilization Report

As shown on table 7.1, the whole RDMA network requires very little resources

allowing for extra space to be used for other forms of accelerators.

The “buffers” of the system are located in the ExAurora blocks, which account for all

their 15 BRAM, and at the output buffers of the ExaDMA (RDMA Tx). Some of the BRAM used

on the RDMA Tx as well as all the buffers used at RDMA Rx are for state-keeping with the Rx

side having to keep all the active contexts (256), and the Tx side having to keep all the active

transaction descriptors (1024).

 LUTS RAMB32

RDMA Tx 4447 (1.6%) 10.5 (1.1%)
RDMA Rx 12494 (4.5%) 9 (1%)
RT mailbox 274 (0.1%) 2 (0.2%)
ExaCrossb 8199 (3%) 0
ExAurora(3x) 2253 (1%) 15 (1.6%)
Total 27667 (10.2%) 36.5 (3.9)

47
Xirouchakis Pantelis ICS-FORTH,UOC

7 Experimental Evaluation and Results
In this Chapter, we present the average flow completion time and the average throughput of

our new advanced user level initiated read/write RDMA for various transfer sizes and network

hops.

The design on which we tested was implemented with an ExaNet datapath running at

150Mhz, meaning that intra-FPGA the maximum throughput can get up to 19Gbps. However,

the transceivers connecting the FPGAS run at 10Gbps .As shown on Figure 7-1, the max

throughput achieved on one hop (intra-qfdb) transfers is 8.23Gbps. As already mentioned, the

maximum packet size is 256 bytes, or 18 datapath cycles (16 payload + 2 header/footer). This

results in each packet having up to ~11% header/footer overhead. Hence if the theoretical

maximum of the transceiver is 10Gbps then the max that an RDMA transaction can achieve is

~8.9Gbps. If we take into account routing latencies within the FPGA that can account for extra

3 clock cycles, then we can see that our RDMA engine achieves the maximum theoretical

throughput of the system. The benchmarks used where the MPI OSU microbenchmarks suite,

with a custom MPI library implementation which does not yet support the eager protocol, and

uses only the RDMA Read.

 Figure 7-1: 1-hop RDMA Write throughput - Size. User level application

48
Xirouchakis Pantelis ICS-FORTH,UOC

On Figure 7-2, we can see the situation for RDMA Read operations. The test used was the MPI

application OSU microbenchmarks, latency. As expected, the performance is generally the

same regarding throughput.

 We showed results for one hop, intra-qfdb transactions. When the hop is inter-qfdb,

then the maximum theoretical throughput further reduces, since the routing latency of the

Inter-qfdb switch is significantly higher. The topology used for the ExaNet network can be seen

on Figure 7-9.

 Figure 7-2 :1 Hop RDMA Read throughput – Size. OSU Bandwidth

 Figure 7-3: Throughput - Hops. Note that the drop is from 8.3 to 7.9 Gb/s

49
Xirouchakis Pantelis ICS-FORTH,UOC

One of the most important features that our advanced RDMA engine provides is the

scalability as the prototype becomes larger. This can be clearly seen on Figure 7-3 where

we can see that the throughput remains constant as the number of hops increases.

 At this point, we will provide some comparison with the RDMA engine used in the

project so far, mainly for application development and prototyping. This engine (referred to

as zDMA for sort) had a lot of limitations, the main being its low performance, due to the small

packet size (64bytes) and the small number of outstanding transactions (6).

 Figure 7-5: PLDMA/ZDMA - #Hops multi-hop throughput. OSU, Bandwidth

Figure 7-4: 1 Hop PLDMA/ZDMA - Size OSU, Bandwidth

50
Xirouchakis Pantelis ICS-FORTH,UOC

We also run various tests to compare with our tcp/ip over 10G . Our 10G network is a custom

hardware implementation build around the ethernet 10G MAC ip , provided by Xilinx. The

maximum throuput this implementation can achieve is ~3Gbit as shown below. Again we used

the OSU microbenchmarks for evaluation.

As we can see from Figure 7-6 our implementation provides 4.16 μs one-way communication

latency whereas the 10G implementation has 17.3μs. Further breakdown of this latency,

shown in Figure 7-7 shows that only 0.7μs of this latency accounts to hardware latency, and

from that, almost 0.5μs accounts to transceiver latency and not functions related to our

RDMA. The Rest of the latency can be accounted on operations done by the R5 co-processor.

As the size of the transfer increases, our implementation is almost two order of magnitudes

better, and that is due to the much higher throughput that our RDMA provides.

On Figure 7-8 we can see a bandwidth comparison between the TCP/IP over 10G and our

advanced RDMA engine. We can see that the 10G implementation tops near 2.5Gbit and then

has a minor drop in bandwidth. This is because the implementation does not have any tcp/ip

Figure 7-6: ZDMA vs PLDMA 1 hop read throughput comparison

Figure 7-6: Flow Completion Time 10G vs PLDMA. OSU, Latency

Figure 7-7: Hardware latency breakdown

Latency @16 Bytes:
4.16μs VS 17.375 μs

51
Xirouchakis Pantelis ICS-FORTH,UOC

hardware offloading, and many functions of the stack have to be done by the processor which

is not so fast and results in packets being dropped.

7.1 Application-level Performance
In order to further evaluate our advanced RDMA engine we also run LAMMPS application.

LAMMPS is a classical molecular dynamics (MD) code that models ensembles of particles in a

liquid, solid, or gaseous state. It can model atomic, polymeric, biological, solid-state (metals,

ceramics, oxides), granular, coarse-grained, or macroscopic systems using a variety of

interatomic potentials (force fields) and boundary conditions. It can model 2d or 3d systems

with only a few particles up to millions or billions. The application consists of many control

messages, as well as large transfer sizes. The MPI implementation used uses the RDMA Read

protocol.

Each FPGA contains four CPUS so the max CPU count of our measurements is 128. For

every doubling of the execution nodes, we also double the problem size of the application so

if the application where to scale perfectly we would expect to see no difference in the

execution times (weak scaling). As show in Figure 7-8 already at eight nodes our advanced

RDMA engine does better in comparison with 10G ethernet. That difference grows even larger

as the nodes increase. The measurements indicate that our RDMA engine is at 8/16/32 nodes

x1.6, x3.1 and x7.6 times better than conventional 10G Ethernet.

Figure 7-8: TCP/IP over 10G vs PLDMA throughput. OSU ,Bandwidth

52
Xirouchakis Pantelis ICS-FORTH,UOC

What is important to note is that the application seems to be scaling very well as the

nodes increase and the execution time seems to more or less stay the same.

Our better performance when compared to 10G Ethernet is due to many reasons.

Even for small nodes:

 Better throughput, Our RDMA engine can reach the full bandwidth allowed

by the transceivers, while 10G ethernet can only get up to ~3Gbit.

 Lower latency, since our implementation is user-level zero copy, we do not

have all the latency inherit from kernel involvement, and multiple data copies.

Furthermore, as the nodes increase the performance of ethernet greatly decreases while our

RDMA engines remains the same. This is because TCP/IP over 10G requires allot of CPU

involvement, while our RDMA engine completely offloads the CPUs. As the traffic coming from

multiple nodes increases, so does the work that the CPU has to do for the TCP/IP stack. When

traffic increases enough, the CPU is not able to respond fast enough, resulting in packet drops

and retransmissions which further, congest the 10G network.

Another issue that we have to take into account when comparing with tcp/ip over 10G

Ethernet is the “unfairness” in regards of network aggregate throughput.

As shown in Figure 7-9 and explained in detail in Chapter 6.4, each QFDB has 4 links

of 10Gbit each, connected on a 2D torus. Furthermore, inside each QFDB the FPGAs are

connected all-to-all and the Crossbar that routes the traffic inside the F1 FPGA can use 4 paths,

on for each connected FPGA, to connect to the main network router. This means that each

QFDB can potentially generate up to 40Gbit of traffic.

Figure 7-8: LAMPS application execution time PLDMA vs 10G

53
Xirouchakis Pantelis ICS-FORTH,UOC

10G Ethernet is also connected in all-to-all within the QFDB and uses a small Ethernet

switch within the network (F1) FPGA to connect to the 10G MAC block. Even though each

FPGA can generate ~3Gbit of traffic outgoing from the MAC to the network can still reach

10Gbit due to oversubscribing from the FPGAs within the QFDB if all FPGAs have traffic for the

network.

As shown in Figure 7-10 each QFDB directly connects to a 10G network switch and

each switch can have up to 12 QFDBs connected to it. This means that using the ExaNet

network, one application can have up to 40Gbit traffic going to the neighbors, while with our

10G Ethernet implementation, only 10Gbit. If we wanted to have a fairer comparison, we

should modify the intra-qfdb crossbar to only use one path within the FPGA instead of four.

That way the aggregate throughput going out of the FPGA would still be 10Gbit in the ExaNet

network, regardless of how much traffic is generated within the QFDB .By Doing this we would

be able to compare the actual topologies and the network interfaces in a more accurate way.

Figure 7-9: ExaNet Network Topology

Figure 7-10: 10G Ethernet Topology

54
Xirouchakis Pantelis ICS-FORTH,UOC

8 Conclusion and future work
Modern computing clusters consist of many heterogeneous computing units that work

collectively in order to fulfill tasks that require high performance. Low latency communication

between the remote processes that run on these servers is a critical factor for achieving high

performance. In this work, we described the hardware implementation of an advanced RDMA

engine send path, as well as the complete RDMA network that is used in the ExaNeSt

prototype. Our advanced RDMA engine provides high throughput coupled with advanced

Resiliency features.

Our Performance evaluation demonstrates great improvements in throughput and in

overall application execution time when compared with traditional TCP/IP over 10G and

previous RDMA implementations within ExaNeSt. Furthermore, our implementation allows

for page-fault handling, multipathing and congestion management features.

One weakness of our RDMA engine when compared with our previous

implementation (zDMA) is the increase of latency in small transfer sizes. This increase is

expected when considering the great number of added features that were non-existent in

zDMA. Many of those features are served by the R5 co-processor, which itself suffers from

limited performance. One immediate update in our system would be to offload some of the

work done by the R5 co-processor to the ExaDMA (RDMA send unit). Some of those features

would be the receiving of acknowledgments and handling of Nacks / retransmissions.

One feature of our RDMA which we did not exploit in this work is multi-pathing. All

the hardware blocks of the RDMA are multi-pathing capable, and the only thing missing is the

support from the network, which we currently are working at.

Finally, work has been done to change the round robin scheduler of the RDMA send

unit, with a priority heap that takes information from our congestion management

infrastructure and serves each transaction according to the congestion of its destination.

55
Xirouchakis Pantelis ICS-FORTH,UOC

Bibliography

[1]. Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and

Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In Proceedings of

the 2016 ACM SIGCOMM Conference (SIGCOMM '16). ACM, New York, NY, USA, 202-

215. DOI: https://doi.org/10.1145/2934872.2934908

[2]. Xilinx. Zynq Ultrascale+ Technical Reference Manual, UG1085 January 17,2019

[3]. Durand Y, Carpenter PM, Adami S, Bilas A, Dutoit D, Farcy A, Gaydadjiev G, Goodacre

J, Katevenis M, Marazakis M, Matus E. Euroserver: Energy efficient node for european

micro-servers. In2014 17th Euromicro Conference on Digital System Design 2014 Aug

27 (pp. 206-213). IEEE.

[4]. Ammendola R, Guagnelli M, Mazza G, Palombi F, Petronzio R, Rossetti D, Salamon A,

Vicini P. APENet: a high speed, low latency 3D interconnect network. Incluster 2004

Sep 20 (p. 481).

[5]. Dimitris Giannopoulos, Nikos Chrysos, Evangelos Mageiropoulos, Giannis Vardas,

Leandros Tzanakis, and Manolis Katevenis. 2018. Accurate congestion control for

RDMA transfers. In Proceedings of the Twelfth IEEE/ACM International Symposium on

Networks-on-Chip (NOCS '18). IEEE Press, Piscataway, NJ, USA, Article 3, 8 pages.As

[6]. Pantelis Xirouchakis, Panagiotis Peristerakis, Michalis Gianoudis, Antonis Psistakis,

Giorgos Kalokerinos, Nikos Chrysos, Vassilis Papaefstathiou, and Manolis G.H.

Katevenis. Low Latency RDMA for High-Performance Computing on ARM Platforms.

Fiuggi, Italy: HiPEAC ACACES 2017

https://doi.org/10.1145/2934872.2934908
http://www.exanest.eu/pub/accaces_2017_pxirouch_poster.pdf
http://acaces.hipeac.net/2017/

