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Design and Implementation of the Send Part of an 

Advanced RDMA Engine 

Abstract 

In High Performance Computing (HPC), low latency communication between remote 

processes is crucial to application performance. InfiniBand and other off-the-shelf networks 

can reduce the latency but require special and costly network interface cards, which are 

loosely coupled with the CPU. In this work, we describe the design and implementation of an 

advanced RDMA engine developed within the ExaNeSt EU project, which has a number of 

advantages over Infinibad: i) We segment RDMA transfers in blocks, and support block-level 

multipathing of RDMA transfers on a per-block basis. ii) We perform selective end-to-end 

retransmissions. iii) We do not need to pin the regions of RDMA transfers in memory, while at 

the same time we support accessing the full virtual address space of processes, using the ARM 

SMMU. Additionally, we provide a number of virtual channels able to work simultaneously 

with many outstanding transfers. Our advanced RMDA engine is designed to support multi-

pathing in order to be able to utilize the rich parallel links found in HPC networks. In this work, 

we describe the hardware implementation of the RDMA engine on the Zynq Ultrascale+. The 

hardware design has been optimized to meet timing requirements of up to 200 MHz while 

consuming little resources, leaving plenty of space to be used by accelerators. We have also 

designed and integrated the interconnect required, as well as the Network Interface (NI) in 

order to utilize the large Global Virtual Address Space (GVAS) provided by our hardware 

prototype. We have implemented our advanced RDMA on multiple interconnected FPGAs and 

have run HPC benchmarks and applications in order to verify and evaluate our design. The 

results show great improvement over 10G Ethernet, as well as over our previous RDMA 

implementations. Finally, our RDMA has been designed to easily accommodate many more 

features, such as congestion management. 
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Σχεδίαση και Κατασκευή του Κομματιού Αποστολής  μίας 

Προηγμένης Μηχανής Άμεσης Προσπέλασης Μνήμης  

Περίληψη 

 
Στις εφαρμογές που απαιτούνε υπολογιστές υψηλών επιδόσεων, η χαμηλή καθυστέρηση 

επικοινωνίας ανάμεσα σε απομακρυσμένους κόμβους είναι καίριας σημασίας για την 

απόδοση των εφαρμογών. Το InfiniBand και άλλες έτοιμες επιλογές δικτύων μπορούν να 

μειώσουν αυτήν την καθυστέρηση αλλά απαιτούνε εξειδικευμένες και ακριβές κάρτες 

δικτύου που στη γενική περίπτωση είναι απομακρυσμένες από τον επεξεργαστή. Σε αυτήν 

την εργασία, θα περιγράψουμε τη σχεδίαση και κατασκευή μίας προηγμένης Μηχανής 

Άμεσης Προσπέλασης Μνήμης (RDMA) την οποία κατασκευάσαμε στο ΙΤΕ μέσα στα πλαίσια 

του ευρωπαϊκού έργου ExaNeSt, η οποία υπερτερεί σε πολλά σημεία σε σχέση με το 

InfiniBand. i) Κόβουμε τις μεγάλες μεταφορές σε πολλές μικρότερες, έτσι ώστε να 

χρησιμοποιούμε ταυτόχρονα πολλές διαδρομές μέσα στο δίκτυο (multi-pathing) σε επίπεδο 

υπό-μεταφορων. ii) Υποστηρίζουμε αναμεταδόσεις, σε επίπεδο υπό-μεταφορών. iii) 

Χρησιμοποιώντας την μονάδα εικονικής μετάφρασης περιφερικών (SMMU) της ARM, δεν 

χρειάζεται να καρφιτσώνουμε περιοχές μνήμης ενώ παράλληλα έχουμε πρόσβαση σε όλη 

την εικονική μνήμη του συστήματος. Επιπρόσθετα παρέχουμε έναν αριθμό από εικονικά 

κανάλια τα οποία είναι σε θέση να δουλεύουν ταυτόχρονα έχοντας χιλιάδες εκκρεμείς 

μεταφορές. Η προηγμένη Μηχανή Άμεσης Προσπέλασης  Μνήμης μας έχει σχεδιαστεί ώστε 

να μπορεί να υποστηρίξει μεταφορές από πολλαπλά μονοπάτια  έτσι ώστε να είναι σε θέση 

να εκμεταλλευτεί τα πλούσια σε παράλληλα μονοπάτια δίκτυα από τα οποία αποτελούνται 

οι μοντέρνοι υπολογιστές υψηλών επιδόσεων. Σε αυτήν την εργασία παρουσιάζουμε την  

κατασκευή αυτής της RDMA στο Zynq Ultrascale+ MPSoC. Το υλικό έχει σχεδιαστεί έτσι ώστε 

να μπορεί να δουλέψει σε ταχύτητες έως και 200MHz, έχοντας καθυστερήσεις τόσο μικρές 

όσο ένα μίκρο-δευτερόλεπτο, ενώ παράλληλα καταναλώνει ελάχιστους πόρους, αφήνοντας 

αρκετό χώρο να χρησιμοποιηθεί από άλλες μορφές επιταχυντών. Επίσης, σχεδιάσαμε και 

ενώσαμε έναν καινούργιο μεταγωγέα πακέτων καθώς και την διεπαφή δικτύου που 

χρειάζεται έτσι ώστε να εκμεταλλευτούμε τη μεγάλη εικονική μνήμη που παρέχεται από το 

πρωτότυπο μας.  Εφαρμόσαμε την RDMA μας σε πολλαπλές συνδεδεμένες μεταξύ τους 

FPGAs και τρέξαμε διάφορα προγράμματα αναφοράς, έτσι ώστε να μπορέσουμε να 

αξιολογήσουμε τις επιδόσεις της κατασκευής μας. Τα αποτελέσματα δείχνουνε τεράστια 

βελτίωση έναντι στο κλασικό 10G Ethernet καθώς και προηγούμενες RDMA μηχανές μας.  
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1 Introduction 
Large HPC systems rely on efficient interconnects to accommodate a constantly increasing 

number of end-nodes, while offering low latency and high bandwidth communication among 

the end nodes, independent of their spatial orientation. At the same time, ongoing efforts 

from research and industry aims at replacing the power hungry, high-end servers of today 

with simpler, RISC-like servers, possibly tightly coupled with accelerators, in order to reduce 

the energy consumption, the system cost and allow flexibly tailoring new system to new 

workload requirements. Along this direction, the ExaNeSt EU-funded project develops and 

prototypes a system composed of ARM-based processors, tightly coupled with FPGAs. 

Traditional end-host network stacks, like Ethernet (TCP/IP) networks, greatly limit the extent 

to which applications can benefit from the high bandwidth and the low-latency of the 

hardware interconnect. In addition, these systems tend to consume precious processor cycles 

to serve the I/O path. For this reason, HPC usually use (custom or InfiniBand-based) RDMA 

(remote direct memory access) interconnects, which offload several layers of the network, 

and, compared to traditional software transports, greatly improves the throughput and the 

latency performance of communications.  In our system, we leverage the FPGA to implement 

a custom low-latency RDMA-capable interconnect that connects computing nodes with each 

other, as well as with memories and fast, non-volatile storage devices. The core of our RDMA 

interconnect is implemented in network interface (hardware) engines that offload the 

software transport by offering reliable communication services, and allowing processes to 

benefit from hardware-class latencies and throughput. 

1.1 RDMA overview 
RDMA (Remote Direct Memory Access) allows one process to directly access the memory of 

a remote process with very high throughput and low latency, by using specialized NIC 

(network interface chip) that minimizes the CPU overhead. Traditionally such networks have 

been used by high performance computing applications, with somewhat custom hardware 

networks that are hard to be programed and were usually application specific. Datacenters on 

the other hand kept using traditional commodity hardware and TCP/IP for their networking. 

Lately however, as fast and reliable such networks come into the market (i.e InfiniBand , RoCE, 

iWarp), many datacenters decide to use RDMA instead of conventional TCP/IP. Meanwhile, 

there is significant ongoing research to build improved RDMA networks that can perform even 

better and provide extra functions, such as congestion management and multi-pathing. 

The inherent inefficiency that RDMA networks try to solve is the fact that, in 

traditional networks, the kernel is invoked in network transfers, increasing the latency and the 

processing overhead, and that data have to be copied on many intermediate buffers before 

finally arriving on the destination, increasing both latency and power consumption. Along 

these lines, we describe in this work the development of a zero-copy, user-level initiated 

RDMA engine used in the ExaNeSt project prototype. In our system, the goal is to achieve the 

ideal RDMA operations depicted in Figure 1-1. For this to work, the data must be addressed 

at the source and the destination using virtual addresses. Therefore, the network must 

provide a mechanism to translate virtual to physical addresses. 
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Different networks approach this problem in different ways. InfiniBand for instance 

tackles this issue by keeping a (network) TLB on the NI, and forcing the applications to pin its 

pages pertaining to transfers. In this way, there is no need to copy data to intermediate (I/O) 

buffers inside the kernel, which avoids copying of the buffers but still adds latency due to the 

kernel involvement for pining. In our protocol, we obviate this step, allowing network memory 

accesses to produce page-faults, which can trigger network retransmissions.  

To this day, RDMA has mainly been used as a single-path transport, which is prone to 

failures and falls short to utilize the rich parallel paths found on HPC/Datacenter systems. 

Attempts to implement multi-pathing RDMA have been performed but with no great result, 

as they usually require excessive amounts of metadata, greatly increasing the cost of the NIC 

(Network Interface Chip). Moreover little-to-no care has been given to handling congestion 

situations that arise in the network. Infiniband does feature a congestion control mechanism, 

which, however is very hard to tune. Coupling congestion management with multi-path 

routing would open new possibilities for routing algorithms and can increase the effective 

bandwidth of RDMA even further.  

In addition, the resiliency features typically implemented by RDMA interconnects are 

focusing on functionality instead of performance, in order to economize silicon area. 

InfiniBand, for instance, provides a very crude end-to-end resiliency scheme, with per-packet 

acknowledgements and full message retry. This results in inefficient use of bandwidth, large 

flow completion times, and is also prone to livelocks [1]. The proposed RDMA protocol and its 

implementation coalesces acknowledgements (one per block) and performs selective 

retransmissions, greatly minimizing the Flow Completion Time (FCT) and the network 

bandwidth overhead. 

For large networks with millions of nodes, one node may wish to perform RDMA 

transfers to potentially all the other nodes, or to a large subset of them, at the same time.  We 

do not want to necessarily serialize these transfers in time. Instead, being able to multiplex 

many of these transfers on the ingress network path(s), on a per-packet basis, can improve 

the network utilization, when some of these transfers are congested. In order to do so, the 

RDMA engine has to provide many channels to its users, which increases the cost of 

bookkeeping and the complexity of the control unit that supervises their parallel transfers.  

                                                       Figure 1-1 Ideal Zero Copy RDMA transfer 
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At the same time, as silicon manufacturing techniques improve, and the number of 

transistors inside a die increases, manufacturers have the ability to add more peripherals 

within the die such as accelerators and smaller, real-time co-processor units (e.g. following 

the big-little architecture). In our work, we leverage one such co-processor available in the 

Zynq Ultrascale+ FPGA to assist in RDMA operations. The co-processor is responsible for block-

based operations, which are infrequent enough, thus not strictly requiring hardware-speed 

pipelines. We build the hardware part of the RDMA engine on the programmable logic 

segment of the FPGA that resides in the same die with the ARM CPUs, inside the programming 

system (PS) for the Zynq Ultrascale+ ARM. This very tightly coupled network interface further 

decreases latency, as we do not need to cross for example the PCI bus, as e.g. in Intel-based 

InfiniBand networks.  

The RDMA protocol we have implemented in this thesis is similar in spirit with InfiniBand and 
RDMA over Converged Ethernet (RoCE) networks, but it differs in the following ways: 

● We segment RDMA transfers in blocks, and support block-level multi-pathing of 
RDMA transfers on a per-block basis. 

● We perform selective end-to-end re-transmissions, whereas InfiniBand networks 
typically perform Go-back-N on the end-to-end path, which may involve retrying full 
transfers. 

● We do not need to pin the regions of RDMA transfers in memory, while at the same 
time accessing the full virtual address space of processes, using ARM’s SMMU. 

● We coalesce RDMA responses (1 response per segment), whereas InfiniBand sends 
one Response per packet. 

● Our RDMA engine can be coupled with accurate congestion control, by spacing of 
packets at the network sources (rate limiting transfers), whereas InfiniBand is still in 
search for an appropriate congestion control method. 

● We provide advanced scheduling techniques on NI (Network Interface) egress path, 
which can easily be modified in software. 

● We provide hooks to users for controlling transfers order, and influence routing.  
● We designed and implemented a novel and efficient mechanism for fast completion 

notifications at the receiver described on Appendix A. 
 

1.2 Contributions 
This thesis has contributed to the design of a new Remote Direct Memory Access (RDMA) 

engine within the ExaNeSt project, suitable for user-level initiated zero-copy transfers in a 

system of ARM cores, and tightly coupled Network Interface (implemented in FPGA) nodes 

working on a global virtual address space (GVAS). Our RDMA supports advanced quality-of-

service (QoS) and resiliency features, such as multi-pathing, fast notifications, and selective 

retransmissions, which we report in this thesis, together with performance evaluation results. 

In our ongoing work, we are adding congestion management support.  

The design of the new RDMA engine is split into a software-programmable part and a 

hardware part. The hardware part is the core of this thesis and is implemented and tested in 

the Programable logic of the FPGA. The design has been implemented on Zynq Ultrascale+ 

Xilinx MPSoC and is now functional, running on the ExaNeSt-project prototype. Our RDMA 

design offers low-latency/ high-bandwidth user-level read/write transfers. 
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The author of this thesis has designed and built the hardware implementation of the 

RDMA send unit (ExaDMA). More specifically: 

 ExaDMA Send Unit: The hardware core of the RDMA engine which is responsible for 

executing the RDMA transfers. This block has a large array of pending transactions and 

a round robin scheduler that iterates amongst them. For each transaction, it reads the 

data directly from the applications memory, by accessing through the SMMU of the 

system. It implements output buffering and has one output buffer per output link of 

the FPGA. Among other things, it is tasked with performing all the shifting required 

(byte level) in order for the data being send to be aligned at destination. It is designed 

to be fully compatible with the software running on the Real-Time processor 

(software-hardware co-design) in order to maximize the effectiveness of the RDMA. 

 ExaNet Switch: This is a 16x16 buffer-less ExaNet switch, used to connect each 

component of the ExaNet network.  The routing algorithm uses both the destination 

coordinates and the destination address of the packets. For simplicity and flexibility, 

the routing can be configured in the Vivado block diagram, without needing to change 

source-code, repackage and redistribute. 

 ExAurora: This is a block used as an interface that connects the ExaNet Datapath, with 

the transceiver’s AXI-STREAM Datapath. It implements input and output cross-clock 

domain FIFOS, and is also responsible for the flow control of the Link. 

 Intra-node interconnect: The network design and implementation of the QFDB (Quad 

FPGA Daughter Board) interconnect, which connects the network interfaces and the 

accelerators of four (4) intra-node Ultrascale+ interconnected FPGAs with each other 

and the external gateway router. 

 Platform Integration and verification: The implementation on the Zynq Ultrascale+ 

MPSoC of all the ExaNet blocks as well as the verification and debugging. Given the 

great amount of different hardware blocks and functionality that the ExaNet network 

has, the interaction between various agents proved to be very challenging requiring 

many hours of debugging. 
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2 ExaNeSt Platform 
 

2.1 The ExaNeSt project 
ExaNeSt develops, evaluates, and prototypes the physical platform and architectural solution 

for a unified Communication and Storage Interconnect and the physical rack and 

environmental structures required to deliver European Exascale Systems. The consortium 

brings technology, skills, and knowledge across the entire value chain from computing IP to 

packaging and system deployment; and from operating systems, storage, and communication 

to HPC with big data management, algorithms, applications, and frameworks. Building on a 

decade of advanced R&D, ExaNeSt will deliver the solution that can support exascale 

deployment in the follow-up industrial commercialization phases. Using direction from the 

ETP4HPC roadmap and soon-available high density and efficiency compute, we will model, 

simulate, and validate through prototype, a system with: 

 High throughput, low latency connectivity, suitable for exascale-level compute, their 

storage, and I/O, with congestion mitigation, QoS guarantees, and resilience. 

 Support for distributed storage located with the compute elements providing low 

latency that non-volatile memories require, while reducing energy, complexity, and 

costs. 

 Support for task-to-data SW locality models to ensure minimum data communication 

energy overheads and property maintenance in databases. 

 Hyper-density system integration scheme that will develop a modular, commercial, 

European-sourced advanced cooling system for exascale in ~200 racks while 

maintaining reliability and cost of ownership. 

 The platform management scheme for big-data I/O to this resilient, unified distributed 

storage compute architecture. 

 Demonstrate the applicability of the platform for the complete spectrum of Big Data 

applications, e.g. from HPC simulations to Business Intelligence support. 

All aspects have be steered and validated with the first-hand experience of HPC applications 

and experts, through kernel turning and subsequent data management and application 

analysis. 

 

 

 

2.2 Zynq Ultrascale+ MPSoC 
The ExaNeSt design has been implemented on the Xilinx Zynq Ultrascale+ MPSoC devices. 

These chips contain a Processing System (PS) that consists of four A53 ARMv8 cores 

operating at 1.333 GHz and two R5 Real time processors operating at 600Mhz. 

Additionally the MPSoC contains Programmable Logic (PL) part that has 274K LUTS and 

912 RAMB32 (SRAM blocks with 32-bit data interface) available for development. Crucial 

to the project is the connectivity that the PS provides to the resources found at the PL. For 

this purpose, the PS provides 2 Full AXI-4 Master Cache Coherent interfaces and 2 Slave 

interfaces.  
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Accesses from and to those ports pass through the CCI (Cache Coherent Interconnect) 

allowing the PL to do (I/O) coherent accesses to the PS. Additionally, the PS provides an ACE-

Lite port (AXI coherent extensions) from which the PL can access directly the L2 cache of the 

A53 core, greatly reducing the required latency. Finally, the PS provides 6 high throughput, 

non-coherent AXI-4 Slave ports. A simplified view, as well as the detailed block diagram of the 

MPSoC can be seen on the Figure 2-1 and Figure 2-2[2].  

The prototype consists of up to 112 nodes (will reach up to 250+) all being able to address 

the same GVAS (Global Virtual Address Space). In this direction, the SMMU (I/O mmu) plays a 

central role in translating all process-level virtual addresses to physical main memory 

locations. It features 8 different context banks, where each context bank can hold a TLB cache 

and a pointer to a page table of a particular process. 

 

 

 

 

 

 

 

 

 

 

 

                                        Figure 2-1: Ultrascale+ MPSoC Simplified block diagram 
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2.3 Hardware Prototype 
The basic compute node is called Quad-FPGA Daughterboard (QFDB). It contains four (4) 

Ultrascale+ MPSoCs connecting each other hardwired with two High Speed Serial Links (HSS) 

in an all-to-all mesh topology as shown in Figure 2.3. Each FPGA features two 16MB QSPI and 

16GB DRAM so that one (1) QFDB aggregates 64 GB of DRAM as well as 512GB SSD storage. 

Moreover, each QFDB provides a connector with ten (10) bidirectional HSS links (10 x 16Gbit/s 

= 160Gbit/s = 20GB/s) for high-throughput communication with other devices. Four (4) of 

those links are used to connect neighboring QFDBs hosted on the Blade. The remaining six (6) 

HSS links are attached to the external link cages (SFP+), mainly for connection with other 

blades, e.g., within the same Chassis. 

 

                         Figure 2-2: Ultrascale+ MPSoC detailed block diagram, Xilinx UG1085 
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Four (4) QFDBS are connected to a mezzanine to form one Blade. The mezzanine 

provides the QFDBS with 1G Ethernet, and connects the network FPGA of each QFDB in a torus 

topology of max dimension 4.  

 

 

 

 

 

 

 

 

 

 

                                            Figure 2-3: Quad FPGA daughter board overview 
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3 ExaNet Network 
The ExaNet network uses a custom header/payload/footer packet-based protocol, developed 

within ExaNeSt for inter-processor (or accelerator) payload traffic, and for network interface 

(NI) end-to-end control messages. It supports the basic UNIMEM operations[3] such as owner-

only page caching and shared-memory semantics, while extending UNIMEM with address 

translation at the destination, advanced protection for cluster virtualization (HPC applications 

co-scheduling), and protocol security and reliability features. 

The ExaNet packet format was preferred against AXI, the protocol used by ARM 

processors to access the main memory and peripheral devices, because AXI is suitable for on-

chip systems, but does not scale well to system-level HPC interconnects (because of many 

parallel channels used that increase the complexity in handshaking therefore utilization).  

Inside the FPGAs, the ExaNet packets is carried by a 128-bit datapath (equal to the 

maximum PS  PL AXI interface width), and currently runs at 150 MHz. Thus, each ExaNet 

on-chip link offers a throughput of 19.2 Gb/s, which can easily saturate the 10 Gb/s High-

Speed Serial (HSS) links of the platform, while offering a significant internal speedup inside 

the switches.  

Thus, the ExaNet protocol supports 80-bit global virtual addresses, split into a 16-bit 

PDID field discussed above, a 22-bit destination coordinates field used to identify a node in 

the cluster, and a 42-bit virtual memory address to locate an object inside an FPGA and its 

local DRAM    Figure 3-1.  

 

The ExaNet packet can contain: 1) header only packets (16Byes), 2) zero-payload 

(header-footer) packets (32Bytes), and 3) variable payload (header-N*payload-footer) 

packets (48 – 288 Bytes) with a max payload of 256Bytes. ExaNet packets are covered by: 

 

 

 16-bit error detection code, protecting the fields in the ExaNet packet 
headers,  

                          Figure 3-1: ExaNet GVAS breakdown.  
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 8-bit footer CRC, protecting critical fields in the ExaNet packet footer 

 32-bit payload CRC, protecting the payload of ExaNet packets (Figure 3-2). 

 
Within ExaNeSt, we have defined the following ExaNet packet types. These packets are used 

to carry packets with payload (RDMA and shared-memory primitives) as well as NI control 

information over the ExaNet fabric. Here is a list of our current packet types:  

1. Remote Write Data Packet  
o from ExaNet RDMA Send or ExaNet Packetizer to ExaNet RDMA Receive or 

ExaNet Mailbox 
2. Remote Read Request  

o from ExaNet Packetizer to ExaNet RT Mbox 
3. DMA Control Packet for Transaction Completion Notification  

o from ExaNet RDMA Sender to ExaNet RDMA Receiver 
4. DMA Transaction Completion Notification Packet  

o from ExaNet RDMA Receive to ExaNet Mailbox or ExaNet RDMA Receive 
5. zDMA Remote Read Request Packet  

o from ExaNet AXI2EXA to ExaNet EXA2AXI 
6. zDMA Remote Write Data Packet  

o from ExaNet AXI2EXA to ExaNet EXA2AXI 
7. zDMA Remote Read Response Packet  

o from ExaNet EXA2AXI to ExaNet AXI2EXA 
8. Acknowledgment / negative acknowledgment  

o Error codes for packet errors and destination memory or NI responses 
9. Release Context Packet (not yet implemented) 

o from ExaNet Packetizer or ExaNet RDMA Send to ExaNet Mailboxes or ExaNet 
RDMA RX 

10. Flow Rate Packet (not yet implemented) 
o ExaNet Congestion Control Notification  

 

                                                  Figure 3-2: ExaNet RDMA packet header format 
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3.1 ExaNet Network Interface 
In ExaNeSt project, we have built a Network Interface that contains: 

 A low-latency multi-channel Remote Direct Memory Access (RDMA) engine that 

leverages both the SMMU for secure memory accesses and the R5 co-processor for 

book-keeping and handling of the transactions. In our design, we use the System 

Memory Management Unit (SMMU) in order to translate process virtual addresses to 

physical memory locations as packets go in and out of memory and avoid copies from 

user to kernel space, allowing zero-copy, user-initiated RDMA transfers. The memory 

accesses issued from our RDMA engine pass through the ARM’s Cache-Coherent 

Interconnect (CCI) thus obviating the need to flush or bypass the caches before 

triggering RDMA transfers.  The network that we use to transfer data between nodes 

is the ExaNet interconnect, which we describe next. 

 A fast multi-channel packetizer that allows processes to write small, latency-critical 

messages to arbitrary positions in a global address space, by writing a set of registers 

in the network interface, which is implemented in the programmable logic. We have 

also implemented fast mailboxes that write messages to per-process queues hosted 

in the L2 cache and DRAM memory hierarchy of the ARM subsystem. The packetizer 

and mailbox primitives are typically used together, allowing user or system processes 

running on CPUs or acceleration units to exchange fast messages that go to mailboxes 

and memory, allowing partitioned global address space applications (PGAS) to run on 

the prototype.  

 A low-latency network interface switch, which also connects the FPGAs within the 

same QFDB, with each other and also with the QFDB-level gateway, which is 

implemented by the APENET router[4] in the network FPGA.  

 

The NI interface additionally contains IPs for Ethernet-based communication and additional 

functional blocks.  

 

3.2 The Network Interface switches and QFDB-Level Interconnect 
Prior to the quad-FPGA QFDB boards the ExaNeSt interconnect designs and FPGAs firmware 

were tested on (single-FPGA) Trenz-Based boards, in 2D Torus topologies.  In these designs, 

every FPGA of the prototype had the NI from FORTH and the APErouter mentioned earlier. 

Going from single-FPGA nodes to four-FPGA ones, we had two options. One was to treat every 

FPGA as a single node of the Torus topology, and each QFDB as a dimension of the Torus. 

However, for the reasons listed below, we opted to take a different path: 

 

 

 

 

 



 
 

12 
Xirouchakis Pantelis  ICS-FORTH,UOC 

 The QFDB internally has more physical HSS links, and can support topologies with 
smaller diameter and higher bisection bandwidth than a ring of (one dimension of a 
Torus). The topology that we eventually chose is a single-hop all-to-all topology 
connecting each FPGA with every other FPGA inside the QFDB. 

 Using an All-to-All topology inside every QFDB coupled with a Torus Topology to 
connect QFDBs, results in an interesting hybrid-Torus topology, with no routing 
deadlocks, as long as we use single-path routing inside the QFDBs, and the more 
complex APErouter resolves deadlocks using different VCs. 

 The hybrid Torus topology does not need to have the Torus-routing capabilities (e.g. 
an APErouter) in every FPGA of the QFDB, thus saving on complexity and FPGA 
resources. 

The hybrid-Torus topology essentially treats each QFDB as a single node, with local SSD, lots 

of DRAM, computing capacity, and 10 x 16 Gb/s network I/O. This QFDB node needed a new 

simplified crossbar for intra-node communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1 Routing inside the QFDB and its impact to firmware development 
Routing in NI blocks is common source of bugs and delays. When the first QFDBs became fully-

functional, early in 2018, we needed to port the ExaNeSt interconnects from Trenz-based 

prototypes to QFDB-based ones, while in parallel we were developing and testing new ExaNet 

packet types in order to improve the resiliency of the ExaNet network (end-to-end 

acknowledgments for different network interface IPs) and to support new NI-to-NI control 

messages. In this work, we observed two inter-related obstacles:   

 

Figure 3-3: ExaNet NI Switch located in FPGAs F1-F4 of the QFDB and its interface to the 
APErouter (Network), which serves inter-QFDB traffic that is routed through a 2D/3D Torus 
(on Mezzanine or single-feeder) topology. 
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 routing packets to the proper NI block had become a frequent cause of “soft-bugs” as 
designs needed to support many different ExaNet packet types across many new NI 
blocks, 

 changing the routing of (new or old) packet types to NI blocks required a new switch 
version, which means that engineers had to change their Verilog code.  

 

Uniform address-based routing for all packet types was needed in order to move on. At the 

same time, the existing routing of packets and acknowledgment, to NI blocks, being packet-

type based, was rather inflexible. For instance, the packetizer block at that time could only 

send packets and receive acknowledgements from mailboxes, although in principle we had 

designed the primitive in order to send packets to any memory location. To support this, we 

needed a flexible and uniform way to access NI blocks and memory address locations. 

To uniformize accesses across memory and NI peripherals, we decided to add the 

destination virtual address field in all ExaNet packet types. With the new packet format, all 

packets, even acknowledgements or control messages that target mailboxes or any other NI 

peripherals, have a virtual destination address field in their header, which starts at the same 

bit position with the destination virtual memory address of packets that target a specific 

location in DRAM.  

In particular, the new simplified NI switch which is present in the ExaNet prototype uses 

the following rules to route packets to DRAM and peripheral devices:   

 If the 3-bit prefix of the destination virtual memory address equals ‘111’, then the 
packet is targeting a peripheral, which can be indexed using the next 7 bits of the 
destination address.  

 If the 3-bit prefix of destination virtual memory address is not equal ‘111’, then the 
packet is targeting the DRAM, which we can address using all address bits (after going 
through translation in the SMMU). 

In this way, we consume about 1/8 of the ExaNeSt global memory address space, which is a 

reasonable trade-off.  In practice, we don’t even consume that much, because not all 42 bits 

in the destination virtual address field of ExaNet are translated by the SMMU but only 39 bits 

To further homogenize designs, and to simplify platform developments, we needed 

to have the same design for as many FPGAs in the QFDB as possible in order to reduce the 

number of firmware designs that we have to implement and test each time that we add a new 

feature or correct a bug on the platform firmware. In practice, the QFDB Network FPGA, F1, 

needs a different design, because it also contains the APErouter, and the Ethernet NIC. 

However, we could still consolidate the designs of FPGA F2, F3, and F4.  

At this point, we considered to add software-defined routing that we can modify at 

runtime on a per FPGA basis and to improve the turn-around latency of creating a new (set 

of) FPGA firmware that corrects a bug or adds new routing rules.  However, with the following 

two features, which we added into the NI switches inside the QFDB, software-define routing 

was not yet needed  

 Uniform routing across QFDB FPGAs routing: we added dead ports in the NI crossbar, in 
order to have the same rules for all FPGA when we route packets inside the FPGA. In 
practice, the dead port on each FPGA is connected to a loop-back port, so that, for 
instance, the second inter-FPGA crossbar port is connected to QFDB FPGA F2, regardless 
on which QFDB FPGA uses this port.  



 
 

14 
Xirouchakis Pantelis  ICS-FORTH,UOC 

 Selectable routing ranges at design-integration time: we added the capability to select 
the routing to NI ports at FPGA firmware compile time -- which destination virtual address 
range will map to which NI block -- using the graphical settings of the Vivado design, thus 
without having to modify the Verilog code.  

To simplify the routing, and avoid the need for deadlock avoidance mechanisms, we currently 

use single path routing inside the QFDB, leaving multipath capabilities using the two links 

available per FPGA pair inside the QFDB for next versions of the ExaNeSt prototype or for 

follow-up projects. 

3.2.2 ExaNet NI crossbar 
To route packets inside the QFDB, we have implemented a NI crossbar switch augmented with 

simple but effective routing rules to route packets among the QFDB FPGAs and the NI blocks, 

following the principles described in the previous section. This ExaNet NI-crossbar switch 

supports a configurable number of uniform ExaNet interfaces, and can be connected to a 

number of ExaNet agents, such as NI endpoint hardware blocks, and to custom transceivers 

for inter-FPGA traffic.  

ExaNeSt-AURORA transceivers: We currently use AURORA IP from Xilinx to implement 

reliable communication inside the QFDB. In particular, using the AURORA transceivers from 

Xilinx, we have implemented basic, but resilient ON-OFF flow control to prevent buffer 

overflows when sending packets across links.  

The ExaNet NI-crossbar is bufferless crossbar, with no input or output buffers (and 

queueing). Given that in the ExaNet NI, all the hardware sender and receiver blocks have some 

form of input or output buffers, respectively, and that the transceivers also have buffers of 

their own, in order to a) save FPGA BRAMs, b) reduce the in-fabric backlog, c) minimize the 

number of packet copies (saving energy), and d) decrease the in-network queuing delay, we 

decided not to put additional buffers inside the NI switch/crossbar. 

The main features of the ExaNet NI switch are listed below: 

 It offers a cut-through latency of two cycles, thanks to its simple and uniform routing 
rules. 

 It inserts two idle cycles between consecutive packets on the link, thus offering nearly 
full link efficiency. Given that the datapath will run slightly faster than the links, the 
switch is able to saturate links nearly for all packet sizes.   

 It supports all ExaNet packet sizes (header-only, header-footer, and header-payload-
footer). 

 We can configure its routing to NI-attached ports at compile time using the Vivado 
GUI. 

In principle, the new NI switch allows us to flexibly connect many peripheral devices, and to 

define how packets are routed to them, based on the destination memory address field of the 

packets. In order to reduce the crossbar area, we can merge multiple low-throughput 

interfaces (e.g. ACKs generated by different NI IPs) on a single ExaNet switch port using special 

ExaNet multiplexors and demultiplexor 

3.2.3 QFDB interconnect and firmware inside the QFDB FPGAs F2-F4 
Inside the QFDB, we have designed and implemented a custom distributed QFDB-internal 

ExaNet interconnect, to connect the NI IPs with the ExaNet network, and the FPGAs with each 

other and the gateway to the Torus QFDB-level network inside the F1. The firmware that we 

currently use in FPGAs F2-F4 is depicted in figure 3.3. It consists of eight (8) NI blocks, which 
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are connected to our ExaNet NI switch, and from there, to low-latency transceivers that realize 

the all-to-all topology within the QFDB. 

The firmware used in FPGA F1 additionally hosts the Ethernet NIC from and the unmanaged 

10G Ethernet switch. In addition, F1 hosts the router used to connect to other QFDBs, namely 

APErouter, using a Torus topology. 

Routing among FPGAs inside the QFDB and to/from the APErouter: Packets are routed by NI 

switches based on the offset field of the destination coordinates, or to the network FPGA if 

the X,Y,Z destination coordinates indicate a different QFDB target. Inside the network FPGA, 

there is another instance of this switch as well as the APErouter board-switch, which are 

connected through 4 local ports available – see also Figure 3.3. The routing is done such that 

one such local port of the board board-level switch is reserved for every FPGA in the QFDB.  

 

 

 

 (a) Firmware for QFDB FPGAs, F2, F3 and F4, i.e. all FPGAs 
except the network FPGA, F1.  

(b) All-to-all topology 
among QFDB FPGAs. 
Inside F1, the NI switch is 
connected to APErouter 
and from there to the 
outside world. 

 Figure 3-4: The ExaNeSt QFDB-based firmware and network topology inside 
the QFDB. 
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A simplified view of the network blocks can be seen on Figure 3-5 

 

 

The hardware blocks used for RDMA operations in the NI, also shown in Figure 3-5, are a 

packetizer, a mailbox, a switch transceiver and the RDMA engine send (TX) and receive (RX) 

modules. Each of the above hardware modules plays a crucial role in the ExaNet network. A 

more detailed description can be found in Chapter 6. 

3.2.4 ExaNet data path protocol 
The ExaNet data path consists of the following signals: 

 Exa_Data [127:0] 

 Exa_Header_Valid and Exa_Header_Ready 

 Exa_Payload_Valid and Exa_Payload_Ready 

 Exa_Footer_Valid and Exa_Footer_Ready 

The “Valid” signals are driven by the transmitter/master of the packet and the ready signals 

are driven by the receiver/slave of the packet. The master can assert the Valid signal, anytime 

the appropriate correct data are driven on the Exa_Data bus, but is not allowed to change the 

value of that data until the appropriate Ready signal has been asserted by the slave.  

 

 

 

 

 

 

                                        Figure 3-5: RDMA Network Interface simplified overview 
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4 Overview of RDMA Engine 
The RDMA engine, is split into a programmable part that currently runs using custom code on 
the dedicated network interface co-processor running on the ARM Real-Time (Cortex-R5) 
core, and a hardware part that runs on the programmable logic (PL) of the Xilinx Ultrascale+ 
MPSoC. The RDMA supports advanced quality-of-service (QoS) and resiliency features that 
will be described below. 
 

 

 

We have implemented the RDMA engine using three main modules, as shown in Figure 4-1. 

● The first module is responsible for transfer segmentation and scheduling, as well as 
for the retransmissions of transfer blocks (segments). These are relatively complex 
functions but they run on the timescale of many packets (64 packets for 16KB), thus 
relatively infrequently compared to the processor and the NI clock (and the packet 
time on a link). This fact allows us to build these functions on the NI co-processor, 
which we run on the Real-Time (Cortex-R5) of the Xilinx FPGA that resides inside the 
processing system of the FPGA. Our software implementation decreased the turn-
around implementation time of this module, while increasing flexibility, in terms of 
policies that can be implemented, along the spirit of Software-Defined Networking 
(SDN). 

● The second module, running on special hardware inside the PL, is responsible for 
executing the transfer segments at the source. It schedules, spaces and transmits 
packets, reading data from memory through the SMMU, aligning the packets’ payload 
to destination addresses, and sending packets to the interconnect using the custom 
ExaNet packet format. It can also detect page-faults and stop transmission of such 
packets. This module is the main focus of this thesis.  

● The third hardware module is responsible for bookkeeping the transfer segments at 
the receiver, monitoring their execution, generating and coalescing the 
negative/positive acknowledgments, as well as generating our fast completion 
notifications. It consists of a 16-way set associative cache, that holds the context of 
each active transaction.  Each context has a 64bit bitmap for the packets that have 
arrived, along with other information required by the NI.  
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Figure 4-1: Network Interface advanced overview 
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The smaller entity in the ExaNet network is a packet, which consists of a header a footer 
and a payload part. The Maximum Transfer Unit (MTU) for this packet is chosen to be 256 
bytes since this size has shown to be more efficient at doing network congestion work. Apart 
from this, smaller MTU also helps keeping the network buffers small, saving utilization space 
and therefore cost.  As mentioned earlier, the receiver of the RDMA holds a bitmap for each 
active transaction, that shows how many packets have arrived. In combination with the MTU 
being 256 bytes, this limits the total transfer size of a transaction. We chose 64bits for the 
context, which results in maximum transaction size of up to 16KB. This means that no 
transaction should cross 16KB boundaries at destination address, a functionality which is 
handled by the R5 co-processor. The RDMA receiver has to be able to receive the packets of 
a transaction delivered out-of-order since the network is built to support multipathing. This 
means that a bitmap should be utilized to mark down the packets that have arrived. If we 
chose the maximum transaction size to be 32Kb then the bitmap would have to be 128Bits 
and so on, meaning that we would have to sacrifice a great amount of resources (RAMB32) in 
order to achieve smaller and smaller gains. In addition, our RDMA protocol supports 
retransmissions at transaction level but not at packet level. This means that larger transactions 
sizes, apart from inherently having more chances to require a retransmission (crc errors etc) 
they would also require a lot of information to be retransmitted. Taking all those factors in 
consideration 16KB seems like a goldilocks choice.  
 

4.1 RDMA Channels and Transactions / Blocks Units 
As mentioned earlier, in order to avoid system calls and the latency associated with them our 

system uses user-level initiation of RDMA transfers. We achieve this by leveraging the SMMU 

which can hold up to 16 different translation contexts at any time, i.e 16 Protection domains 

id’s (PDID). A different protection ID is assigned to each application running on the system, or 

to each process within an MPI application (if the application choses so)   

The R5 scratchpad memory is split into 16 4K pages, each one capable of holding up 

to 64 RDMA transfer descriptors, and each page is dynamically allocated to a specific PDID by 

the driver. From those 64 channels, 32 are allocated for write operations and 32 for read 

operations. This means that each application can have up to 32 outstanding Read RDMA and 

32 Write RDMA transfers at any time.  

Furthermore, the ExaNet RDMA transmit unit (ExaDMA) has 1024 available 

transaction IDs (transaction descriptor), where each transaction ID can hold the descriptor 

required for one RDMA transaction.  Those transaction IDs can be used by the software 

running on the R5 co-processor at any manner it chooses, allowing for great flexibility when it 

comes to researching scheduling algorithms etc.  

The RDMA will end with a completion notification (usually used for read RDMA) and 

a response, which shall be an ack or nack, or just with a response. If everything went well, the 

response will be a positive acknowledgment. 
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If, however the RDMA encounters any error, then the response will be negative. Conditions 

that can generate such a response are: 

 Page fault at destination 

 No context found at destination 

 Packet received with a CRC error 

 AXI Decode error on destination 

In all of these cases, our RDMA supports retransmission. Furthermore, if a response does not 

arrive at all (either because the response was lost or because a number of packets were lost 

all together) then the RDMA transaction will receive a timeout and will be re-initiated. Our 

network deals with duplicates by tagging each packet of a transaction with the appropriate 

“retransmission number” which indicates how many times this transaction has been re-

transmitted.  

 

 

 

4.1.1 RDMA Write 
When a user level application requires an RDMA Write operation it informs the R5 by writing 

on its scratchpad. The write contains all the required information for the transfer, including 

source/destination virtual address and bytes to send. The R5 continuously polls the 

scratchpad for new transfers and when a new one is written it will enqueue that transfer on 

a list of active transfers. Among other things the R5 will segment the transfer into a number 

of 16KB transactions. After that, in order to initiate a transaction for execution the R5 

configures the descriptors of the ExaDMA, with the appropriate information for the 

transaction by writing on the PL 4x 64bit words. When the last word is written, the ExaDMA 

Figure 4-2: Virtual Channel allocation 
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module begins reading the data from the memory hierarchy and sending packets on the 

network. 

On the Receiver side, a context table is kept that keeps track of how many packets 

have been received (see chapter 7.1 for a more detailed analysis). When all the packets have 

been received, the receiver will send a response ack/nack on the initiating R5’s mailbox. When 

R5 receives this response from the mailbox, it will consider the transaction as done and 

continue with initiating the next one until all the transactions of the transfer have been done. 

The R5 can choose to have any amount of transactions active per transfer at the same time in 

order to avoid latency resulting on the round-trip time of the response and can also use 

advanced double buffering techniques provided by the hardware of the ExaDMA.   

 

 

 

 

Figure 4-3:  RDMA Write timing diagram 
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 The application can also configure the transfer to receive a completion notification 

message, a procedure which is described on Appendix A. 

 

4.1.2 RDMA Read 

Similarly, an RDMA Read operation is similar in spirit with an RDMA Write. But in order to 

achieve an RDMA Read the packetizer of the system is utilized. When the application issues 

an RMDA Read operation to the user level library, the library configures and sends a control 

message from the system’s packetizer. This message is destined to the R5 Mailbox of the node 

from which the application wants to read the data. This message carries all the appropriate 

information like source/destination and bytes to transfer, and also is tagged by the hardware 

with the same PDID as the application.  

When the R5 dequeues this message, it registers it as a new outstanding transfer, taking up 

one channel of the 32 “Read channels”. From there on the transaction is the same as a RDMA 

Write but with opposite direction. 

 

 

                              Figure 4-4:  RDMA Write with error and retransmission timing diagram 
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This scenario has the added reliability that the packet sent by the packetizer to the remote 

destination’s mailbox can be lost or corrupted. In that case, the remote destination will not 

enqueue any read requests. Additionally, if the acknowledgment sent from the mailbox to 

that packetizer is lost, the initiator will not know if the read request is done. The latter is solved 

by polling the completion notification address and the first requires that the packetizer re-

transmits the packet.  

 

 

 

 

 

 

 

 

 

 

 

 

The initiating node will be informed that the data have arrived, by polling the completion 

notification address. This address can be a system mailbox (different from the one that the R5 

uses), or an address directly on DRAM. 

                                     Figure 4-5: RDMA Read timing diagram 

Figure 4-6: RDMA Read with packetizer acknowledgment lost and 
recovery 
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5 RDMA Send Unit Description 
 

In this chapter, we describe the functionality and top-level architecture of the ExaNet RDMA 

sender unit, which we call ExaDMA.  

The ExaDMA engine is used to initiate and handle RDMA transactions over the ExaNet 

network. It is designed to work in connection with the Real Time Processor of the ZYNQ 

Ultrascale+ MPSoC. Therefore, some of the functions needed for a complete RDMA transfer, 

are done by the R5 as described in section 4.1.  

The ExaDMA provides 1024 transaction descriptors which can be outstanding 

concurrently. A round robin scheduler is implemented that iterates through all the active 

transactions, and initiates one packet from each active one. The maximum packet size of the 

ExaNet network is 256 Bytes, and so most of the packets in a large RDMA transfer will be of 

that size.  ExaDMA supports transaction sizes that range from 1 Byte up to 16KB, completely 

unaligned both at source and at destination address.  

Apart from the above, the ExaDMA module has been designed to be able to work with 

the congestion management of the ExaNet network as well as the reliable communication 

additions, meaning that the scheduler can be replaced by a priority-heap scheduler instead of 

the existing round-robin mechanism.  

 

5.1 Functionality list:  
● ExaDMA is designed to work with R5 co-processor, which segments transfers as 

described in sections 4.1.1, 4.1.2. 

● ExaDMA can be used to send RDMA block transactions from 1 byte to 16KB, 

potentially unaligned both at source and at destination. When used together with our 

RDMA receiver, the transfers should not cross 16KB memory boundaries. This is 

currently managed by the R5. 

● ExaDMA can also act as a simple packetizer: By writing a small number of words to 

the ExaDMA controller, an agent, such as a hardware block the R5 or a software 

running on a nearby processor, can send a prioritized message, “control packet”, to a 

destination. We use this feature to implement in-band, end-to-end protocols 

between the RDMA endpoints. 

● ExaDMA supports up to 8 Protection Domain IDs (PDID). When the Scheduler issues 

a read transaction to the memory subsystem, it sets the AXI ID to the PDID of the 

transaction. The AXI-4 protocol states that when different AXI-IDs are used by a 

master, the slave can respond completely out of order, and in read requests the data 

can be interleaved. For this reason, the internal barrel shifter is virtualized, and has 8 

channels. 

● ExaDMA has a Double Buffering - Chaining functionality. This allows the user agent 

e.g. the R5, to configure a set of transactions descriptors, in such a way so that they 

are all sent one by one in a predetermined order, without any further intervention. 

The first packet of the Nth transaction is scheduled to depart right after the last packet 

of the N-1 transaction is send. This can be used as an offloading mechanism of the R5 

in order to avoid having to schedule transactions, and potentially increasing the 
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initiation latency for a new transfer, or can be used in order to define other sub-

transfer entities like “congestion managed flows” that may be bigger than 16KB.  

 

● ExaDMA has an arbitrary number of Output buffers, for instance one per outgoing 

transceiver. We need output buffering, in order to avoid bubbles in our network (also 

required to implement congestion management [5]). When the scheduler issues an AXI 

read transaction, the PS takes up to 40 clock cycles to respond. For this reason, each 

buffer has a number of slots (256 bytes payload + 32 bytes Header/Footer), such that 

in case of no network congestion, the scheduler can issue read requests without 

having to halt because of all the output slots being full. 

● ExaDMA drives in the footer of each packet the flags “first”, “last”, “notify”. Flags 

are used for in-band communication with the receiver, and are used to indicate 

whether this is the first/last packet of a transaction (in case of out of order delivery 

because of multi-pathing) and if the transaction will have a completion of notification 

issued. 

● In order to reduce the critical path of the receiver, the transmitter is also tasked 

with making sure that no packet crosses 4k Boundaries on the destination address. 

For this reason, one packet (the first) can be less than 256 Bytes, in order to assure 

256Byte boundary alignment at the destination. In this way, the receiver logic is 

simplified by not needing to do checks for 4K boundaries on the AXI-Write.  The 

scheduler also makes sure not to cross 4K boundaries in the AXI-Read transactions. 

● Finally, the ExaDMA can detect if a virtual address has prompted a page fault in the 

AXI-Read interface and if so, it stops the packet from being sent since the data would 

be non-valid. Additionally, a mechanism is implemented which completely halts the 

transaction and waits for the R5 to re-issue when the page fault has been dealt with. 

 

5.2 Descriptor Description /Register space 
In order for a transaction to be initiated, the R5 needs to write 4 64bit transaction descriptors. 

These descriptors fully describe the transaction, and cannot be modified after the transaction 

is started. A transaction is considered started when the 4th word is written. Following is a 

description of these transaction descriptors: 

63:0 

Source Virtual Address: starting source  address of the transaction 

 

63:0 

Destination Virtual Address: starting destination address of the transaction 

 

63 (1b) 59 (1b) 58 (1b) 57 (1b) 56:42 (15b) (41:32) 31 (1b) 30:16 
(15b) 

15:0 
(16b) 

DB Send 
notify 

Acked Done Bytes send Dependency 
id 

chained Transfer 
length 

Prot 
domain 

 

63:19 18:5 (13b) 4:0 (5b) 

Unused Sequence # Path 
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 Source Virtual Address (R/W): The virtual Address from which the ExaDMA will read 

the data. This address should be in the local node (since the data are read locally via 

the AXI-4 protocol) and is byte aligned. 

 Destination Virtual Address (R/W): The virtual address of the destination. The 22 MS 

bits of this address should be the coordinate of the destination node, and the 42 LS 

the virtual address on the destination nodes memory hierarchy. 

 Protection Domain (R/W): The protection domain used by both the source and the 

destination SMMU in order to translate the addresses. 

 Transfer Length (R/W): The length in bytes of the transaction. Should be from 1 to 

16384 Bytes. 

 Double Buffered (R/W): This bit indicates if this transaction should not be started, 

before some other transaction is finished being send. The register space provides the 

user with the ability to initialize a chain of transactions, and enforce the order in which 

they will be served. 

 Dependable (R/W): Bit that indicates if this transaction is before another transaction, 

in a chain of dependable transactions 

 Dependency ID (R/W): The transaction ID of the transaction that is waiting for this 

one to end before starting. 

 Bytes Send (R/): The number of bytes that the engine has sent so far. 

 Done (R/): Bit indicating if all the packets of this transaction have been sent. 

 Acked (R/): reserved for later use. 

 Send Notify (R/W): Bit used by the in-band messages of the RDMA to inform the 

receiver that this transaction will be followed by a control packet. 

 Path (R/W): indicates from which output of the ExaDMA the packets of this 

transaction should be send. 

 Sequence # (R/W): used for the retransmission protocol, this field indicates how many 

times this transaction has been retransmitted. 

 

Control Packet Initialization: Control packets are sent as in-band messages in order to achieve 

the completion notification at destination. In order for the receiver to send a completion 

notification, the ExaDMA has to send to it a control packet first, containing the payload of the 

notification, as well as some other control information. In order for such a packet to be sent, 

the address space of the ExaDMA is increased by 1024 x 128 x n bits, where n is the number 

of outputs. In order to initiate a control packet, the R5 should do 3 consecutive writes, at the 

same address, within this range. Both the transaction ID regarding the control packet, and the 

output from which the packet will be send are selected by the address.  For instance, if we 

have n = 3 outputs, then the address space will be extended by three (3) extra segments. The 

output is selected by the segment from which the write address resides, and the transaction 

id is selected by the 128bit word within that segment. The 3 writes made by the software 

should contain the payload of the notification message. All other information required is 

found from the internal pending list of the ExaDMA, drastically reducing the number of writes 

required for such an initialization. This means that the transaction Descriptor regarding a 

transaction ID should always be initialized before any control packets are issued. These 

packets completely bypass the output buffers and are send to the network as soon as they 

are initiated. This creates the possibility of the software wanting to send a new control packet, 

while the previous one has not been sent again because of backpressure from a congested 
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network. In this case, the backpressure will be also exerted to the AXI interface, back 

pressuring the AXI-Writes and potentially the R5 software. 

 

In case of small RDMA transfers in which the completion notification is a significant portion 

the total completion time, the R5 can reduce the latency by issuing the transaction descriptor 

first, and then the control packet. That way, the RDMA send unit does not stay idle while 

waiting for the AXI-Read bus to respond but instead sends the control packet. 

 

 

5.3  RDMA Send Unit Submodules Description 
In this chapter, we describe in detail each of the sub-modules contained in the ExaDMA. Figure 

5-1 depicts the top-level architecture of the ExaDMA module, with all the submodules shown. 

 

The ExaDMA transmitter block consists of the following sub-blocks:  

 Pending List 

 Packet Scheduler 

 Virtualized Barrel Shifter 

 Output Buffers 

 Exanetizers 

In order for a transaction to be issued, the R5 has to configure the Pending_List module via 

the AXI-Slave Bus. The Pending list is essentially a table keeping the outstanding block 

transactions, indexed by their transaction ID, selected by the R5. The Scheduler reads 

transaction descriptors from the Pending List and issues AXI-Read transactions at the AXI-

Master interface. The AXI-read responses pass through the virtualized barrel shifter which 

takes care of the required re-alignments and pass the data to the output buffers. When an 

output buffer is filled, the ExaNetizer block creates an ExaNet packet.  

 

Figure 5-1: ExaDMA top-level architecture 
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5.3.1 Pending_List 
 

 

 

 

 

 

 

 

 

 

The Pending_List submodule is responsible for keeping the array with all the 1024 transaction 

descriptors. It is configurable via an AXI interface. 

5.3.1.1 Descriptor List 
In order to initiate a RDMA, AXI-4 transactions are generated from the PS to the DMA AXI-

Slave interface. Those transactions are handled by the Pending_List module and can be either 

32, 64 or 128bit writes. All the ExaDMA register space is both writable and readable but only 

via AXI single read/writes, since adding the FSM for AXI bursts would increase the complexity 

for something that is not really used for such situations. This module consists of a large BRAM 

array, 1024 x 32x4 x 2 in size (262144 bits total). These BRAMs are divided into 1024 

transaction descriptors (also referred to as transaction ID’s). Each transaction requires 2 x 128 

bit writes for its descriptor (256 bits in total). Because the PS can generate smaller than 128bit 

words, each 128bit word is saved on 4x32bit wide BRAM and the write enable signal of each 

BRAM is driven by the appropriate Strobe signal of the bus. 

This memory is implemented as a true dual-port BRAM, because multiple masters can 

read/write to it at the same time: 1) the PS when writing/reading a descriptor, 2) the scheduler 

when reading/modifying a descriptor, 3) and finally the Pending_List module itself, when a 

new packet is being created. For this reason, great care has been taken, in order to avoid race 

conditions that could lead to corruption of data. 

 

 

 

 

 

 

 

Figure 5-2: Pending List submodule hardware instantiation 
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A descriptor consists of 4x64 bit words. When the software writes the 3d word, the 

transactions is triggered. For this reason ,if retransmissions or multipath are used, the 

software should write the forth word beforehand, otherwise it can skip writing it altogether. 

The transaction is triggered by enqueueing a pointer to that descriptor in the scheduling FIFO. 

At that point, the transaction is considered as active.  If, however, the descriptor indicates that 

Table 5-1: AXI-4 Write FSM signals 

Figure 5-3: AXI-4 write FSM 
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this transaction should wait for another one to end before being sent (DB), then the pointer 

is not enqueued at all. 

 

In order to handle AXI transactions, this module uses 2 separate FSMs as required by 

the protocol in order to avoid deadlocks. In the handshake step of a transaction (AWVALID/ 

ARVALID), the address is latched (as well as the axi_AWID or axi_ARID) and is given to the 

BRAMs via port A. Since both AXI channels use the same port, priority is given to writes, via a 

MUX.  

 For read transactions, the address is given to the BRAM, and assuming that no AXI 

write is pending, one clock cycle later, the correct data are latched to the AXI_RDATA field. 

 

Each 128bit word is saved in a bank of four 32bit BRAM, and the bank is chosen via 

the LS bit of the descriptor address.  The software can write to the pending list via 32/64 or 

128 bit writes, so in order to drive the correct Write_Enable signal to each BRAM, the 

AXI_strobe signal along with the bank_select signal (generated by the address LS) is used. We 

also have to check if the address range does not belong to a control packet initialization, and 

that the scheduler is ready to enqueue the new transaction descriptor (via the i_enque_r 

signal). In case the scheduler cannot enqueue a new transaction, then backpressure will be 

exerted to the AXI interconnect, by not asserting the WReady signal. 

Figure 5-4: AXI-4 Read FSM 

Table 5-2:AXI-4 Read FSM signals 
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The signal o_enque is used to inform the scheduler module that the data of the o_TID 

bus should be enqueued in the scheduling fifo. o_TID is simply a pointer to the address of the 

newly configured, active descriptor. So, to drive o_eqnue we use the signal we_Bram_11 

(which indicates that a write has been made to the MS 32 bits of the third 64bit word) along 

with inverted MS bit of the Wdata channel. This has to do with the ability to issue chained 

transactions: if this transaction descriptor is part of chain, we don’t want it enqueued yet in 

the scheduler. The third word is chosen instead of the fourth one, because, from the R5’s 

perspective, each after 3 x 64 bit write, there will be a large latency (due to store buffer) before 

the fourth word arrives; effectively, the R5 can save latency by not writing anything on the 

fourth word if this is not necessary. Apart from the above, other signals like addr_b dout/din_b 

are used by the scheduler in order to read and modify existing transaction descriptors 

Figure 5-5: Descriptor list detailed schematic. Connections between wires have been omitted 
for simplicity 
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5.3.1.2 Packetizer messages 
Apart from the descriptor list, this module (Pending_List) also includes 4 x 128bit wide 

register, per output port of the DMA, used for sending packetized messages. Those registers 

hold the information of the message to be send as is (i.e header, two words of payload and a 

footer).  In order to minimize the amount of writes necessary for a message to be sent, the 

following scheme is used: 

The packetizer function of the ExaDMA has a large address space, 32KB per output port. The 

software only needs to do 3x 64bit writes, all at the same address, and the rest of the 

information will be read by the descriptor BRAM, using the TID as pointer. The software selects 

the TID by selecting the address of the writes within this address space as in: 

“packetizer_configuration_base + TID + output_port x 1024”.  Those three writes should 

contain the payload of the message. The module can then read the header and footer 

information from the Descriptor BRAM. This can be done because the messages sent by this 

packetizer are control messages related to already active RDMA transactions that exist in the 

descriptor list. Hence, this functionality cannot be used to send general purpose messages.  

The above logic is used to generate control packets and is replicated once for each 

output. It is built around an FSM that has 3 stages, and iterates through them each time the 

R5 software does a write, in the address range of the control packet configuration. On each 

stage, the appropriate WE signal is driven so that the correct register latches the payload. 

When the third payload is latched, the header and the footer of the control packet are also 

latched by reading all the appropriate information from the BRAM. At the third write, the 

signal packetizer_slot_ready is also asserted indicating to the output module that a control 

packet is ready for sending. After sending that packet, the output module will assert the signal 

packetizer_slot_consume. If in the meantime the software tries to write another word on the 

Figure 5-6: Detailed schematic of control packet generation 
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registers, then the module will not assert the AXI_WReady signal, back-pressuring the R5, in 

order to avoid corruption of the data being sent.  

When the third write is done, the scheduler is notified and will send the packet as 

soon as the network is available, bypassing the output buffers. Note that because there is no 

buffer for these control packets, if the network is congested and the software tries to send a 

second message before the first one is sent, then this module will backpressure the AXI 

Interface, and potentially the software. 

 

5.3.2 Scheduler 
                      

 

 

 

 

 

 

 

 

 

 

 

The core of the scheduler is a FIFO that is used for round-robin scheduling. This module also 

drives the Read-Address channel of the AXI-Master interface of the ExaDMA, and also gives 

the configuration commands to the Virtual Barrel Shifter.  

The FSM of the scheduler uses the fifo_empty signal, from the round robin scheduling 

FIFO, to determine if there are transactions that need to be served. If so, the pointer of the 

descriptor is dequeued from the FIFO, and is used to read the descriptor data from the 

Pending_List module. The descriptor is read from a 256-bit wide bus, and takes one clock cycle 

to arrive. In the next cycle, the scheduler determines the “path” of the transactions (which 

output port of the DMA it will be send from) and looks on the appropriate output buffer for 

any free slot. If no slots are found, then the scheduler writes-back the descriptor and re- 

enqueues the pointer, starting the scheduling round all-over, in order to avoid head-of-line 

(HOL) blocking. 

 

If a free-slot is found, then the scheduler allocates this slot to the transaction, and marks the 

slots as used. It then proceeds to calculate the information needed for the packet 

transmission.  In order to avoid 4k Boundary checks on the receiving side, the packets should 

not cross 4k boundaries on the destination address. Since each packet is up to 256 bytes, the 

    Figure 5-7: Scheduler submodule hardware instantiation 
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scheduler can purposely issue the first packet with less than 256 bytes, in order to be aligned 

on 256 boundaries of the destination address. That way, there are no 4k Boundary crosses on 

the receiving side, thus simplifying its operations, as discussed in more detail in section 7.1 

 

The AXI-Reads also should not cross 4K boundaries. In order to not send two small 

packets just for this reason, the scheduler can sometimes issue two AXI-Reads per scheduling 

cycle instead of one. In normal operation, the scheduler will typically issue reads with the size 

of 256 bytes, or whatever size is left (for the start or the end of blocks). Byte alignment is also 

done on the sending side, using the virtualized barrel shifter, as discussed later in this chapter.  

Hence, the final AXI read Address and Size takes into account that the barrel shifter might 

need one extra word depending on the source-destination address alignment. After the above 

information is calculated, the scheduler enqueues the appropriate alignment command on 

one of the 8 command FIFOS of the VBS, depending on the PIDID of the descriptor. The PDID 

is also used as the AXI-ID, and the AXI Address Read request is issued.  

        Figure 5-8: RR scheduling FSM 
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In parallel, the scheduler calculates the information needed by the EXA header/footer 

and writes it on the output buffer indicated by the slot acquired at the start of the scheduling 

cycle.  

If this was the last packet, then the scheduler marks the “Done” field of the descriptor 

indicating that the transaction is fully send, and writes-back without re-enqueueing the 

pointer to the scheduling FIFO. Otherwise it also re-enqueues the pointer. 

 

5.3.3 Virtualized Barrel Shifter 
 

                 

 

 

 

           

 

In order to achieve byte level unaligned transfers both at source and destination, a virtualized 

barrel shifter is used. The ExaDMA module is connected to the AXI-HCP0 port of the PS, which 

is a fully IO-coherent port of the PS. In addition, accesses to this port pass through the systems 

SMMU. The SMMU Driver has 8 contexts allocated for the incoming AXI transactions on this 

port, which can be mapped to 8 protection domain IDs [6]. The AXI-Read ordering model 

demands that same ID transactions will be responded in the order they were issued. However, 

for different ID the protocol allows for both out-of-order and Interleaving of the Read data.  

This factor can greatly increase the response time of some AXI-Read Requests since 

some requests can be found on the DRAM and some others on the caches of the APU. Having 

support for Out-Of-Order responses allows it to be able to receive data found in the cache, 

with much smaller latency than if they had to wait for other data, found in DRAM and 

requested earlier in time. Additionally, the PS interconnection system works at 600MHz but 

the PL fabric can only get up to 250Mhz. By having support for interleaving delivery of read 

data, we allow the PS to take advantage of its internal speed up, and further decrease the 

latency required for the read responses to complete.  

The context of the SMMU is selected using the AXI-ID. This means that the barrel shifter 

should expect to receive a different request datum each clock cycle, and do the appropriate 

shifting on it. For all the above reasons the barrel shifter is virtualized, and has eight small 

control FIFOS (one per channel, or per PDID) and registers that hold the commands and state 

of each read request. Each clock cycle that the AXI-Rvalid signal is asserted, the Barrel shifter 

selects the correct FSM that needs to be used using the AXI-Rid signal. The barrel shifter is 

also pipelined in order to be able to reach higher clock speeds. 

 

  Figure 5-9: VBS submodule hardware instantiation 
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5.3.4 Output Buffer 
 

        

 

 

 

 

 

 

 

 

 

 

 

The DMA can be configured to have any amount of Output Buffers, typically one per path of 

the multi-path network.  The scheduler allocates a free slot, and also sets up a register that 

indicates how many bytes this slot will receive (any amount from 1 to 256).  The number of 

slots required in order to achieve maximum Read throughput can be calculated by calculating 

the amount of clock cycles required by the DRAM to respond to a Read request, and taking 

into account how often the scheduler can issue a read request at full operation. In our design, 

this is calculated to be eight slots where each slot is 256 bytes. Those slots are directly 

accessed and written by the barrel shifter, after the shifting is done. 

Apart from the payload slots, the buffer also has slots allocated for the Header and 

footer of the packet, implemented on registers and written by the scheduler at the time of 

the allocation. 

When a word is written on a slot, a counter is decremented, and when it overflows it 

signals to the output stage that a slot is ready for sending, giving the address of the slot along. 

Since the slots can be filled at any order regardless of the order of issuing (because of 

out of order response when using different read IDs), a mechanism is implemented that 

ensures that in the case of many slots simultaneously filling, it will enforce the order of issuing 

when deciding which slot to send first. 

Finally, this block is tasked with detecting page faults. The AXI-4 states that if something 

goes wrong on AXI-Read burst transaction, then the AXI-Master interface that received it 

should still be able to receive it all. AXI-4 Faults are distinguished by the RRESP signal, which 

in case of a page fault will have the value 3 or 2. In that case, the barrel shifter will still receive 

the whole burst, and write in on the output buffer. After the slot is fully written, the 

output_buffer module will not assert the slot ready signal to the ExaNetizer block. Instead, it 

will clear the “used” flag, and raise an “interrupt” to the scheduler module indicating that a 

Figure 5-10: VBS submodule hardware instantiation 
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packet has received page fault, along with the TID of that packet. The scheduler will then go 

on with effectively killing the transaction, and setting the “error” bit to 1.  Meanwhile the page 

fault handling mechanism of the system will inform the R5 of the problem when the page fault 

is dealt with, in order for a retransmission to be issued. That way we avoid sending 

unnecessary garbage information in the network, reducing unnecessary bandwidth 

consumption and congestion.  

5.3.5 Output Stage 
 

                      

 

 

 

 

 

 

 

 

The ExaNetizer module is responsible for creating the ExaNet packet and sending it to the 

network. ExaDMA uses one ExaNetizer per output buffer and so is able to send to multiple 

destinations at the same time. A packet will be sent when an output buffer slot is completely 

filled or when a control packet message has been written by the software. If both are true, 

then the control packet messages have priority over the normal payload packets.  

When a control packet message is written by the software, a register is latched that does not 

allow the software to configure a second message until the first one is send. This is done by 

not asserting the Wready signal on the AXI transactions, and therefore backpressures the R5. 

This means that the software can write control packet messages without first checking if the 

prior ones have been sent, which typically is bad because it adds latency.  

Figure 5-11: ExaNetizer submodule hardware instantiation 
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The inputs used to determine when a payload packet is ready for transmission are 

comp_winner_exists and comp_winner_val, which indicate if a buffer slot is filled, and which 

slot it is. The FSM of this submodule can be seen Figure 5-12. First, the FSM waits until a slot 

is filled in the output buffers or a control message is ready, giving priority to the control 

messages. If the first is true, the FSM latches the comp_winner signal because this signal can 

change at any moment while the barrel shifter writes data to the output buffers and uses this 

signal as address to the header/footer and payload buffers, while proceeding to send the 

header of the packet. If this is a control header, then it sends the header directly from the 

cntrl_data bus.  After the header_ready signal is asserted, the FSM jumps to the next state. 

 

 

Figure 5-12: ExaNetizer Submodule FSM 
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 The second stage of the FSM is the control payload or standard payload. In this stage, 

the FSM sends payload words, advancing the buffer address, until the words send are equal 

to the size of the packet (which has been latched on the send_header state. In case that the 

payload_ready signal is not asserted the FSM jumps to an intermediate state, payload_wait 

and latches the payload until the payload_ready signal is asserted, because the buffer address 

has been changed, and new data will arrive on the Buff_dt bus. 

If the FSM was at send_cntrl_pld state, then, after sending two words, it will jump to state 

send_cntrl_ftr. If the state was send_pld and the last word of the payload is sent, the FSM 

asserts the output signal o_prio_decrement that signals the output buffer that all existing slots 

should decrement their priority, and also sets the used slot as freed so that the scheduler can 

re-issue a packet on it, then jumps to send_ftr state. If the network is congested it might not 

assert the footer_ready signal for a long time. This is a problem because the slot currently 

being used has been marked as freed in the previous transmission cycle, and the scheduler 

can write a new footer/header on it. For this reason, the data for the footer are registered 

Figure 5-13: ExaNetizer submodule detailed schematic. In order for the schematic to be clear, 
connections between signals have been omitted and are indicated by same name. 
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after the first clock cycle that the footer_Valid signal is asserted when the footer_ready signal 

is zero. 

Finally, after the footer has been sent, the FSM will jump either to state idle, send_hdr 

or send_cntrl_hdr, depending on the starting state and what signals are asserted as shown in 

Figure 5-12. 
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6 RDMA Modules Description 
6.1 RDMA Receiver 
 

 

 

 

 

 

 

 

 

The RDMA Receiver module is responsible for receiving ExaNet packets, allocating them into 

contexts and keeping track of the transaction progress. It has been developed at FORTH by a 

colleague in parallel with the ExaDMA, and I overview its inner workings for completeness.  

 As shown in Figure 6-1 the RDAMA receiver has 3 interfaces. An AXI-4, an ExaNet_Rx 

used to receive ExaNet packets, and an ExaNet_Tx used to transmit responses.  

The core of the RDMA Receiver is a large BRAM array, called “context table” which is 

used to do the bookkeeping about all the active transactions. It consists of 256 contexts each 

one holding an 64bit bitmap to mark down all the packets that have arrived, as well as fields 

to hold the transaction ID, source node coordinate and other fields used for the completion 

notification mechanism. This context is implemented as a 16-way associative cache, in order 

to be able to serve active transactions faster.  

 The RDMA Receiver also acts as an ExaNet to AXI-4 converter. When a packet arrives, 

it is immediately written to the DRAM (cut through operation), after passing the virtual 

address to the SMMU of the system. When the footer of the packet arrives, which contains 

the transaction ID and the source node ID (both used for hashing inside the context table) the 

receiver begins the mark down of the packet into the appropriate context slot. This packet 

can either belong to an active transaction, in which case we will have a hit, or to a new 

transaction, in which case we will have to allocate a new slot to it. If no slots are available then 

the receiver will send a properly marked negative response to the source.  The Receiver uses 

the address of the packet to determine the correct bit of the bitmap to markdown, i.e. the 

position of the packet in the bitmap, and knows what bits should be completed by looking at 

the footers of the packets for the “first” and “last” flags.  When all awaited bits are completed, 

the receiver will send a positive ExaNet response back to the source. 

 If the SMMU responds negatively (BRESP != 0) , or if the packet has a CRC error, then 

the receiver will send a negative response with the appropriate error code back to the source. 

Packets carry a “sequence number” field, which indicates the number of times this transaction 

has been retransmitted. The Receiver keeps in its bitmap this sequence number and if at any 

time it sees a sequence number packet lower than the one currently active, it ignores it 

Figure 6-1: RDMA Receiver hardware instantiation 



 
 

42 
Xirouchakis Pantelis  ICS-FORTH,UOC 

(doesn’t write down the bitmap field). However, if it sees a sequence number larger than the 

saved one, then it completely flushes the bitmap in order to be sure that all the packets of the 

retransmission have arrived. Finally, all the responses generated by the receiver carry the 

same sequence number as the transaction they are meant for, which helps the source identify 

if they are the correct responses, or are from “older” packets that have been retransmitted. 

 With all the above features, the receiver allows our RDMA network to be able to 

handle completely out of order delivery of packets, enabling multipathing, and also allows for 

end-to-end resiliency features such as retransmissions. 

 Finally, the AXI interface is solely for debug purposes. The software can read all the 

contexts, using a program that decodes the data returned by the context BRAM, and get a 

complete view of the current situation in the context table, i.e. what slots are active, how 

many packets have arrived etc. This has greatly helped in debugging, since before 

implementing this, we had no way of knowing what had gone wrong. 

 

6.2 RT mailbox 
 

                        

 

 

 

 

 

This block is the mailbox used by the R5 processor in order to receive transaction responses 

and Read-Requests. It consists of two FIFOS, one for read requests and one for ExaNet 

transaction responses. ExaNet packets arriving from the network are written on those FIFOs 

via an ExaNet interface, and the R5 can read those FIFOs via a local AXI protocol.  Those FIFOs 

are dequeued accordingly based on how many reads the software needs to do from the AXI 

interface in order to read all the required information. Since the R5 can only read using 32bit 

words, this means that a word is dequeued from the response FIFO for each AXI-Read on it, 

and one from the response FIFO every four. The requirement for two different FIFOs arises 

from the fact that the R5 software has an internal queue for Read-Requests that can get full , 

making the R5 unable to receive more Read-Requests. If both read requests and responses 

were in the same FIFO, and this FIFO is dequeued when the software reads from it, and since 

the R5 does not know whether what it will read is a response or a read request, a situation 

could occur that the R5 cannot read from this FIFO even for responses, because the Read-

Request queue is full, leading to protocol deadlocks. For this reason, the R5 software can 

choose from which FIFO to read, by changing the offset address of the read request. 

An optimization to the above is that when the R5 reads from the response FIFO, apart 

from all the payload related to the response, a special bit is returned that indicates whether 

or not the read-request FIFO is empty or not. That way the R5 can skip reading it altogether, 

reducing the loop time required since the PL reads are very time consuming. 

Figure 6-2: RDMA Receiver hardware instantiation 
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Finally, in order to serve a remote Read-Request, the R5 has to know the protection 

domain of the application requesting the read. This information is on the ExaNet header of 

the packet, which is created on hardware (from the requesting nodes packetizer), based on 

configuration made by the kernel on the packetizer channel used to carry the read request. 

When this packet arrives to the R5 mailbox, some of the payload is the original payload chosen 

by the user, while protected payload, like the protection domain, is constructed by the 

mailbox itself, based on the packet’s header. In this way we don’t have to worry about 

malicious users trying to read from protection domains other than their own.  

6.3 ExAurora 
 

 

 

 

 

 

 

 

 

The ExAurora IP is the transceiver of our system. It is a wrapper that instantiates the IP 

provided by Xilinx, Aurora 64B/66B which in turn uses a SERDES (serializer de- serializer) 

capable of achieving transmission speed on High Speed Serial (HSS) links up to 16Gb/s, with 

the ability to bond lanes and achieve even higher speeds. In our system, Aurora is configured 

to work with 10Gb/s links, although the PCB can get up to 16Gbit. Aurora provides two AXI-

Stream interfaces (one for incoming and one for outcoming traffic) which use the TVALID, 

TREADY, TLAST, TDATA [63:0] signals of the bus (TREADY signal is omitted on the receiving 

side).  It also provides a second AXI-Stream interface which can be used for flow-control using 

NFC (Native flow control).  When the NFC-Tvalid signal is asserted, the Aurora stops sending 

data and instead sends the NFC-TData. This is an 8-bit bus which holds information regarding 

flow control. The 7 LS bits can be used to send pause commands and indicate how many cycles 

we want the pause to last and the MS bit is used to send XON/XOFF commands.  

ExAurora IP utilizes two cross-clock FIFOS; one for Rx and one for Tx, which are low 

latency (only 3CCs from first enqueue until not empty signal is asserted). The Rx FIFO is 128bit 

wide and 256 words deep. It uses programmable full and programmable empty functionality 

to implement the XON/XOFF watermarks and the required high/low watermarks are 

calculated to be 72 words, based on our link rate and datapath. An FSM monitors the 

programmable full signal and when it is asserted, it uses the NFC-TVALID to send the 

appropriate XON/XOFF commands. 

The Tx FIFO is also 128 bits wide and 256 words deep. This FIFO has the programmable 

Full signals configured in such a way that the FIFO drives the eXa_Header_Valid signal only if 

the FIFO can fit a full packet length (18 words). This helps with congestion management and 

routing algorithms, and also has greatly helped with debugging.  

Figure 6-3: ExAurora hardware instantiation 
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Since only one FIFO is used per transmission side, the FIFOS are also accompanied by 

the appropriate logic that decodes the header in order to know how many words are payload 

and which are header/footer. 

Last but not least, since each FPGA has many transceivers scattered across many banks 

of the FPGA, ExAurora comes with the appropriate logic to configure many auroras to work 

using the same GTH clock. 

 

6.4 ExaNet intra-Switch 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Routing in our network is done in total by two switches. The one is the Inter-QFDB router that 

manages the connections going out of the QFDB through the F1 (Network FPGA) and uses only 

the destination coordinates to route. It has in total 4 local ports and 8 remote ports and is 

provided as a black box by a partner of the project.  

The other switch is used for intra-QFDB and NI address-based routing (ExaCrossb 

shown in Figure 6-4). It is a 16x16 port ExaNet buffer-less crossbar. The switch is buffer-less 

because all the IPs involved in the RDMA network either have output buffers (ExaDMA / 

packetizer) or have input buffers (ExAurora), so this helps with lowering the utilization and 

minimizing the amount of FIFO latency.  

Out of those 16 ports, four (4) are used for routing into the intra-QFDB transceivers 

and another 4 are used for inter-QFDB traffic, connecting directly to the 4 local ports of the 

network router as shown in Figure 6-5. ExaCrossb has as input the source coordinate and uses 

a 2-level routing algorithm.  

Figure 6-4:ExaCrossb hardware instantiation 
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The first level checks if the destination coordinates and the source coordinates do not 

match. IF the fields X,Y,Z of the coordinates (which QFDB in the network) do not much, then 

it routes the packet to the F1(Network FPGA). If, however the packet is already in the F1 FPGA 

then it routes the packet to one of the local ports of the Network router. Which of the 4 ports 

is chosen depends on what input port the packet comes from. If it comes from one of the local 

ports, then it routes it on port_0, if it comes from the input port that connects to the F2 FPGA 

it routes it on port_1 and so on. This allows for maximum bandwidth while simultaneously 

avoiding head-of line-blocking, in case that multiple intra-FPGAs need to communicate with 

remote QFDBs. 

If only the “offset” coordinate (which FPGA within a QFDB) does not match, then it 

routes the packet to the appropriate transceiver that connects to that FPGA.  Since the FPGAs 

within the QFDB are connected in an all-to-all topology, there is no need to check for 

deadlocks. 

If the source and destination coordinates match, then this means that this is the 

destination node of the packet. In this case, the packet is routed based on its address to the 

appropriate ExaNet peripheral (mailbox packetizer etc.) or to DRAM (ExaNet RDMA Receiver)  

 

 

Figure 6-5:ExaNet network routing 
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6.5 Network Utilization report 
Following are the results of the implementation of our RDMA network interface on the Xilinx 

Ultrascale+ FPGA. 

 

  

 

 

 

Table 6-1:Network Utilization Report 

 

As shown on table 7.1, the whole RDMA network requires very little resources 

allowing for extra space to be used for other forms of accelerators.  

The “buffers” of the system are located in the ExAurora blocks, which account for all 

their 15 BRAM, and at the output buffers of the ExaDMA (RDMA Tx). Some of the BRAM used 

on the RDMA Tx as well as all the buffers used at RDMA Rx are for state-keeping with the Rx 

side having to keep all the active contexts (256), and the Tx side having to keep all the active 

transaction descriptors (1024). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 LUTS RAMB32 

RDMA Tx 4447   (1.6%) 10.5    (1.1%) 
RDMA Rx 12494 (4.5%) 9         (1%) 
RT mailbox 274      (0.1%) 2         (0.2%) 
ExaCrossb 8199    (3%) 0 
ExAurora(3x) 2253    (1%) 15        (1.6%) 
Total 27667  (10.2%) 36.5    (3.9) 
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7 Experimental Evaluation and Results 
In this Chapter, we present the average flow completion time and the average throughput of 

our new advanced user level initiated read/write RDMA for various transfer sizes and network 

hops. 

 

The design on which we tested was implemented with an ExaNet datapath running at 

150Mhz, meaning that intra-FPGA the maximum throughput can get up to 19Gbps. However, 

the transceivers connecting the FPGAS run at 10Gbps .As shown on Figure 7-1, the max 

throughput achieved on one hop (intra-qfdb) transfers is 8.23Gbps. As already mentioned, the 

maximum packet size is 256 bytes, or 18 datapath cycles (16 payload + 2 header/footer). This 

results in each packet having up to ~11% header/footer overhead. Hence if the theoretical 

maximum of the transceiver is 10Gbps then the max that an RDMA transaction can achieve is 

~8.9Gbps. If we take into account routing latencies within the FPGA that can account for extra 

3 clock cycles, then we can see that our RDMA engine achieves the maximum theoretical 

throughput of the system.   The benchmarks used where the MPI OSU microbenchmarks suite, 

with a custom MPI library implementation which does not yet support the eager protocol, and 

uses only the RDMA Read. 

 

 

 

 

               Figure 7-1: 1-hop RDMA Write throughput - Size.    User level application 
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On Figure 7-2, we can see the situation for RDMA Read operations. The test used was the MPI 

application OSU microbenchmarks, latency. As expected, the performance is generally the 

same regarding throughput. 

 We showed results for one hop, intra-qfdb transactions. When the hop is inter-qfdb, 

then the maximum theoretical throughput further reduces, since the routing latency of the 

Inter-qfdb switch is significantly higher. The topology used for the ExaNet network can be seen 

on Figure 7-9. 

             Figure 7-2 :1 Hop RDMA Read throughput – Size. OSU Bandwidth 

              Figure 7-3: Throughput - Hops. Note that the drop is from 8.3 to 7.9 Gb/s 
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One of the most important features that our advanced RDMA engine provides is the 

scalability as the prototype becomes larger. This can be clearly seen on     Figure 7-3 where 

we can see that the throughput remains constant as the number of hops increases.   

 At this point, we will provide some comparison with the RDMA engine used in the 

project so far, mainly for application development and prototyping. This engine (referred to 

as zDMA for sort) had a lot of limitations, the main being its low performance, due to the small 

packet size (64bytes) and the small number of outstanding transactions (6). 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

      Figure 7-5: PLDMA/ZDMA - #Hops multi-hop throughput. OSU, Bandwidth 

Figure 7-4: 1 Hop PLDMA/ZDMA - Size OSU, Bandwidth 
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We also run various tests to compare with our tcp/ip over 10G . Our 10G network is a custom 

hardware implementation build around the ethernet 10G MAC ip , provided by Xilinx. The 

maximum throuput this implementation can achieve is ~3Gbit as shown below. Again we used 

the OSU microbenchmarks for evaluation. 

As we can see from Figure 7-6 our implementation provides 4.16 μs one-way communication 

latency whereas the 10G implementation has 17.3μs. Further breakdown of this latency, 

shown in Figure 7-7 shows that only 0.7μs of this latency accounts to hardware latency, and 

from that, almost 0.5μs accounts to transceiver latency and not functions related to our 

RDMA. The Rest of the latency can be accounted on operations done by the R5 co-processor.  

As the size of the transfer increases, our implementation is almost two order of magnitudes 

better, and that is due to the much higher throughput that our RDMA provides.  

 

On Figure 7-8 we can see a bandwidth comparison between the TCP/IP over 10G and our 

advanced RDMA engine. We can see that the 10G implementation tops near 2.5Gbit and then 

has a minor drop in bandwidth.  This is because the implementation does not have any tcp/ip 

Figure 7-6: ZDMA vs PLDMA 1 hop read throughput comparison 

Figure 7-6: Flow Completion Time 10G vs PLDMA. OSU, Latency 

Figure 7-7: Hardware latency breakdown 

Latency @16  Bytes:  
4.16μs VS 17.375 μs 
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hardware offloading, and many functions of the stack have to be done by the processor which 

is not so fast and results in packets being dropped. 

 

 

7.1 Application-level Performance 
In order to further evaluate our advanced RDMA engine we also run LAMMPS application. 

LAMMPS is a classical molecular dynamics (MD) code that models ensembles of particles in a 

liquid, solid, or gaseous state. It can model atomic, polymeric, biological, solid-state (metals, 

ceramics, oxides), granular, coarse-grained, or macroscopic systems using a variety of 

interatomic potentials (force fields) and boundary conditions. It can model 2d or 3d systems 

with only a few particles up to millions or billions. The application consists of many control 

messages, as well as large transfer sizes. The MPI implementation used uses the RDMA Read 

protocol. 

Each FPGA contains four CPUS so the max CPU count of our measurements is 128. For 

every doubling of the execution nodes, we also double the problem size of the application so 

if the application where to scale perfectly we would expect to see no difference in the 

execution times (weak scaling). As show in Figure 7-8 already at eight nodes our advanced 

RDMA engine does better in comparison with 10G ethernet. That difference grows even larger 

as the nodes increase. The measurements indicate that our RDMA engine is at 8/16/32 nodes 

x1.6, x3.1 and x7.6 times better than conventional 10G Ethernet.  

 

Figure 7-8: TCP/IP over 10G vs PLDMA throughput. OSU ,Bandwidth 
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What is important to note is that the application seems to be scaling very well as the 

nodes increase and the execution time seems to more or less stay the same.  

Our better performance when compared to 10G Ethernet is due to many reasons. 

Even for small nodes:  

 Better throughput, Our RDMA engine can reach the full bandwidth allowed 

by the transceivers, while 10G ethernet can only get up to ~3Gbit. 

 Lower latency, since our implementation is user-level zero copy, we do not 

have all the latency inherit from kernel involvement, and multiple data copies. 

Furthermore, as the nodes increase the performance of ethernet greatly decreases while our 

RDMA engines remains the same. This is because TCP/IP over 10G requires allot of CPU 

involvement, while our RDMA engine completely offloads the CPUs. As the traffic coming from 

multiple nodes increases, so does the work that the CPU has to do for the TCP/IP stack. When 

traffic increases enough, the CPU is not able to respond fast enough, resulting in packet drops 

and retransmissions which further, congest the 10G network. 

Another issue that we have to take into account when comparing with tcp/ip over 10G 

Ethernet is the “unfairness” in regards of network aggregate throughput. 

As shown in Figure 7-9 and explained in detail in Chapter 6.4, each QFDB has 4 links 

of 10Gbit each, connected on a 2D torus. Furthermore, inside each QFDB the FPGAs are 

connected all-to-all and the Crossbar that routes the traffic inside the F1 FPGA can use 4 paths, 

on for each connected FPGA, to connect to the main network router. This means that each 

QFDB can potentially generate up to 40Gbit of traffic.  

Figure 7-8: LAMPS application execution time PLDMA vs 10G 
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10G Ethernet is also connected in all-to-all within the QFDB and uses a small Ethernet 

switch within the network (F1) FPGA to connect to the 10G MAC block. Even though each 

FPGA can generate ~3Gbit of traffic outgoing from the MAC to the network can still reach 

10Gbit due to oversubscribing from the FPGAs within the QFDB if all FPGAs have traffic for the 

network. 

 

 

As shown in Figure 7-10 each QFDB directly connects to a 10G network switch and 

each switch can have up to 12 QFDBs connected to it. This means that using the ExaNet 

network, one application can have up to 40Gbit traffic going to the neighbors, while with our 

10G Ethernet implementation, only 10Gbit. If we wanted to have a fairer comparison, we 

should modify the intra-qfdb crossbar to only use one path within the FPGA instead of four. 

That way the aggregate throughput going out of the FPGA would still be 10Gbit in the ExaNet 

network, regardless of how much traffic is generated within the QFDB .By Doing this we would 

be able to compare the actual topologies and the network interfaces in a more accurate way. 

Figure 7-9: ExaNet Network Topology 

Figure 7-10: 10G Ethernet Topology 
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8 Conclusion and future work 
Modern computing clusters consist of many heterogeneous computing units that work 

collectively in order to fulfill tasks that require high performance. Low latency communication 

between the remote processes that run on these servers is a critical factor for achieving high 

performance. In this work, we described the hardware implementation of an advanced RDMA 

engine send path, as well as the complete RDMA network that is used in the ExaNeSt 

prototype. Our advanced RDMA engine provides high throughput coupled with advanced 

Resiliency features.  

Our Performance evaluation demonstrates great improvements in throughput and in 

overall application execution time when compared with traditional TCP/IP over 10G and 

previous RDMA implementations within ExaNeSt. Furthermore, our implementation allows 

for page-fault handling, multipathing and congestion management features.  

One weakness of our RDMA engine when compared with our previous 

implementation (zDMA) is the increase of latency in small transfer sizes. This increase is 

expected when considering the great number of added features that were non-existent in 

zDMA. Many of those features are served by the R5 co-processor, which itself suffers from 

limited performance.  One immediate update in our system would be to offload some of the 

work done by the R5 co-processor to the ExaDMA (RDMA send unit). Some of those features 

would be the receiving of acknowledgments and handling of Nacks / retransmissions. 

One feature of our RDMA which we did not exploit in this work is multi-pathing. All 

the hardware blocks of the RDMA are multi-pathing capable, and the only thing missing is the 

support from the network, which we currently are working at.  

Finally, work has been done to change the round robin scheduler of the RDMA send 

unit, with a priority heap that takes information from our congestion management 

infrastructure and serves each transaction according to the congestion of its destination.  
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