
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Securing the Modern Web Through Novel
Black-Box and Context-Agnostic Techniques

by

Konstantinos Drakonakis

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, June 2024

To my beloved family.

Acknowledgments

First of all, I would like to deeply thank my supervisor, Sotiris Ioannidis, for his guidance and,

most importantly, for allowing me to be a member of this great lab and letting me follow my

ideas and evolve through this process.

I would also like to express my sincerest gratitude to Jason Polakis, a great friend and

mentor. Having worked with him all these years has taught me a great deal, but most impor-

tantly to not give up and pursue my goals. Your advice, guidance and support were always

invaluable and appreciated; thank you.

I would also like to thank the members of my defense committee, Panagiota Fatourou,

Xenofontas Dimitropoulos, Polyvios Pratikakis, Konstantinos Magoutis and Giorgos Vassil-

iadis, for their invaluable comments and questions.

Next, a huge thanks to all the friends that supported me in this journey, one way or an-

other. A special thanks to Stefanos Fafalios and Michalis Diamantaris for all the good times

and the trips; see you on the next one. Moreover, Victoria, thank you for everything, but

mostly for being there through thick and thin and believing in me.

Finally, I would like to thank and dedicate this work to my family, whose support and

unconditional love were always something I could count on. You helped me more than you

can imagine. Thank you.

vii

Abstract

The World Wide Web has seen widespread adoption in the past decades, becoming an in-

dispensable tool for our everyday activities. Undoubtedly, its prevalence can be largely at-

tributed to its continuous evolution and the constant emergence of new functionalities and

services. As a result, along with these new, convenient and often complex features, the Web

ecosystem’s complexity increases as well. At the same time, an increasing number of sen-

sitive functionalities is being offered to users and a vast amount of private, sensitive infor-

mation is circulated constantly. Unfortunately, this draws the attention of malicious actors

who aim to gain access to such sensitive information and functionalities for their own ne-

farious purposes and profit, ultimately hurting users’ privacy and safety. To make matters

worse, the intricate nature of the Web provides attackers with a multitude of potential van-

tage points for launching attacks. It is therefore crucial to robustly secure Web applications

and their assets, so as to mitigate such malicious acts and their implications.

Thankfully, the research community has proposed various defense mechanisms and

countermeasures, as well as detection techniques for uncovering security issues and vulner-

abilities. However, the ever-increasing complexity of the Web can often diminish existing

approaches’ effectiveness significantly or render them completely unsuitable. Moreover,

the sheer scale of the Web, the vastly diverse and often closed-source Web applications and

the complex interdependencies that drive them, hinder the efficacy of approaches that re-

quire a priori knowledge or specialized input to achieve their respective goal.

In this dissertation, we demonstrate that these intricacies of the Web and their inherent

challenges, mandate automated, black-box solutions to be properly tackled. By proposing

and extensively evaluating such novel approaches, covering various fronts of Web security

and privacy, we showcase their significant benefits and improvements over prior systems.

Most importantly, our systems adopt a context-agnostic modus operandi, i.e., they do not

require any a priori knowledge or processing in their respective domain of operation.

Specifically, we initially propose a scanner-agnostic middleware framework which aims

to transparently enhance existing black-box vulnerability scanners, by addressing their core

limitations and improving their effectiveness both in terms of code coverage and vulnera-

bility detection. Next, we design a fully automated, website-agnostic, black-box auditing

framework for uncovering authentication and authorization flaws in Web applications and

carry out the first large-scale study on such flaws to date. Finally, we address the problem

of robust and real-time third-party script attribution, a crucial prerequisite for countless

security and privacy countermeasures, by designing a novel, script-agnostic pipeline.

Supervisor: Professor Sotiris Ioannidis

ix

Περίληψη

Ο Παγκόσμιος Ιστός αποτελεί ένα απαραίτητο εργαλείο για ποικίλες καθημερινές μας
δραστηριότητες τις τελευταίες δεκαετίες. Αναμφίβολα, η ευρεία επικράτηση και δημο-
φιλία του μπορεί, σε μεγάλο βαθμό, να αποδοθεί στη συνεχή του εξέλιξη και την αδιάκο-
πη εμφάνιση νέων λειτουργικοτήτων και υπηρεσιών. Σαν αποτέλεσμα, παράλληλα με
αυτές τις νέες, χρήσιμες, αλλά και συχνά περίπλοκες λειτουργικότητες, αυξάνεται και η
πολυπλοκότητα του ίδιου του οικοσυστήματος. Ταυτόχρονα, ένας αυξανόμενος αριθ-
μός από ευαίσθητες λειτουργικότητες προσφέρεται στους χρήστες κι ένας τεράστιος
όγκος από ιδιωτικές, ευαίσθητες πληροφορίες ανταλ´λάσσεται συνεχώς. ∆υστυχώς,
αυτό έλκει την προσοχή κακόβουλων χρηστών, οι οποίοι επιδιώκουν να αποκτήσουν
πρόσβαση σε τέτοιες ευαίσθητες πληροφορίες και λειτουργικότητες για δικούς τους
σκοπούς και κέρδος, πλήττοντας έτσι την ασφάλεια και την ιδιωτικότητα των χρηστών.
Ακόμη, η ίδια η περίπλοκη φύση του Παγκόσμιου Ιστού προσφέρει στους επιτιθέμενους
μια πληθώρα από πιθανά ευάλωτα σημεία που μπορούν να επιχειρήσουν να εκμεταλ-
λευτούν, προκειμένου να εκτελέσουν τις επιθέσεις τους. Συνεπώς, η ϑωράκιση της
ασφάλειας του Παγκόσμιου Ιστού και των εφαρμογών του κρίνεται υψίστης σημασίας,
προκειμένου να περιοριστούν οι κακόβουλες ενέργειες και οι επιπτώσεις τους.

Αισίως, η ερευνητική κοινότητα έχει προτείνει ποικίλους μηχανισμούς άμυνας, α-
ντίμετρα, καθώς και τεχνικές για τον εντοπισμό ευπαθειών και άλλων ζητημάτων
ασφάλειας. Παρά ταύτα, η συνεχώς αυξανόμενη πολυπλοκότητα του Ιστού συχνά
μειώνει σημαντικά την αποτελεσματικότητα των ήδη προταθέντων προσεγγίσεων και
μηχανισμών, καθιστώντας τους ενίοτε εντελώς ακατάλληλους. Ακόμη, η υπερμεγέθης
κλίμακα του οικοσυστήματος, η μεγάλη ποικιλία εφαρμογών, η έλλειψη πρόσβασης
στον πηγαίο τους κώδικα και οι περίπλοκες αλληλεπιδράσεις που τις χαρακτηρίζουν,
δυσχεραίνουν την χρήση τεχνικών οι οποίες απαιτούν την a priori απόκτηση γνώσης και
πληροφοριών ή εξειδικευμένης εισόδου και παραμετροποίησης για να επιτύχουν τον
στόχο τους.

Στην κείμενη ∆ιατριβή, αποδεικνύουμε ότι οι ιδιαιτερότητες αυτές του Παγκόσμιου
Ιστού και οι εγγενείς προκλήσεις που υποκρύπτουν, απαιτούν την χρήση αυτοματο-
ποιημένων, black-box τεχνικών και λύσεων, ώστε να αντιμετωπιστούν αποτελεσματικά.
Προτείνοντας κι αξιολογώντας εκτενώς τέτοιες καινοτόμες προσεγγίσεις, οι οποίες
καλύπτουν διαφορετικές πτυχές της ασφάλειας και ιδιωτικότητας στον Ιστό, ανα-
δεικνύουμε τα σημαντικά οφέλη, καθώς και τις βελτιώσεις που αυτές προσφέρουν σε
σχέση με προηγούμενες μελέτες και συστήματα. Εξίσου σημαντικά, τα συστήματά μας

xi

υιοθετούν μία αγνωστικιστική προσέγγιση ως προς το πεδίο και την μέθοδο λειτουρ-
γίας τους. Με άλλα λόγια, δεν απαιτούν καμία εκ των προτέρων γνώση ή επεξεργασία
στο εκάστοτε πεδίο λειτουργίας τους, ώστε να επιτύχουν τον σκοπό τους.

Ειδικότερα, προτείνουμε ένα ενδιάμεσο λογισμικό (middleware) για υπάρχοντα συ-
στήματα εντοπισμού ευπαθειών, το οποίο, επιλύωντας τους κύριους περιορισμούς των
συστημάτων αυτών, στοχεύει στο να βελτιώσει τις επιδόσεις τους, τόσο σε ό,τι αφορά
τον εντοπισμό ευπαθειών όσο και την κάλυψη κώδικα της εκάστοτε εφαρμογής που
ελέγχεται. Εν συνεχεία, σχεδιάζουμε και υλοποιούμε ένα πλήρως αυτοματοποιημένο
σύστημα για τον εντοπισμό ευπαθειών σε μηχανισμούς αυθεντικοποίησης κι εξου-
σιοδότησης σε εφαρμογές Ιστού. Χρησιμοποιώντας το σύστημά μας εκπονούμε την
πρώτη μελέτη μεγάλης κλίμακας στα εν λόγω ζητήματα ασφάλειας. Τέλος, επιλύου-
με το πρόβλημα του καταλογισμού (attribution), σε πραγματικό χρόνο, προγραμμάτων
τρίτων μερών που εμπεριέχονται σε εφαρμογές Ιστού, το οποίο αποτελεί ένα κρίσιμο
προαπαιτούμενο για ένα μεγάλο πλήθος αντιμέτρων ασφάλειας και ιδιωτικότητας.

Επόπτης: Σωτήρης Ιωαννίδης

Contents

Acknowledgments . vii

Abstract . ix

Περίληψη (Abstract in Greek) . xi

Table of Contents . xiii

List of Figures . xv

List of Tables . xvii

1 Introduction . 1

1.1 Thesis Statement and Contributions . 3

1.2 Organization of Dissertation . 5

1.3 Publications . 6

2 Black-Box Web Application Scanning . 7

2.1 Challenges and Design Requirements . 9

2.2 Design and Implementation . 10

2.2.1 Navigation model . 11

2.2.2 System Components . 13

2.2.3 URL Clustering . 21

2.2.4 API Abstraction for Future Scanners 27

2.3 Experimental Evaluation . 27

2.3.1 Other Vulnerabilities . 32

2.3.2 URL Clustering . 34

2.3.3 State-of-the-Art Comparison . 35

2.4 Limitations and Future Work . 37

3 Black-box Auditing for Web Authentication and Authorization Flaws 41

3.1 Background and Threat Model . 43

3.2 System Design and Implementation . 44

3.2.1 Automated Account Setup . 44

3.2.2 Cookie Auditor . 49

3.2.3 Privacy Leakage Auditor . 52

3.2.4 Browser Automation . 53

3.3 Experimental Evaluation . 56

3.4 Discussion . 65

4 Robust and Real-Time JavaScript Attribution . 67

4.1 Motivation . 69

xiii

4.2 Design and Implementation . 70

4.2.1 Capturing 3P Scripts . 71

4.2.2 AST rewriting . 73

4.2.3 StyxJS Concealment . 76

4.2.4 Maintaining Security Mechanisms . 78

4.2.5 Summary . 81

4.3 Experimental Evaluation . 81

4.3.1 Validation . 82

4.3.2 Performance Evaluation . 84

4.4 Use Cases . 85

4.4.1 SugarCoat . 86

4.4.2 LeakInspector . 90

4.4.3 ScriptProtect . 92

4.5 Discussion & Limitations . 93

5 Related Work . 95

5.1 Black-Box Web Application Scanning . 95

5.2 Web Authentication and Authorization . 96

5.3 Third-party Scripts and Attribution . 99

6 Conclusion . 101

6.1 Summary . 101

6.2 Future Work . 102

Bibliography . 105

Appendices
A . 129

A.1 Static file extensions . 129

A.2 ReScan’s API . 129

A.3 Scanners’ Configuration . 130

B . 131

B.1 JS inclusions . 131

B.2 PageGraph Validation . 131

List of Figures

2.1 Architecture and workflow of the ReScan framework. 11

2.2 Crafted HTTP response. 17

2.3 Total scan time in seconds for each app/ scanner pair with and without ReScan. 30

2.4 Requests’ CDF per application, in terms of total as well as individual compo-

nents’ processing time. 31

3.1 Major phases in our auditing workflow. 44

3.2 Success rate for different workflow phases. 56

3.3 Percentage (left) and absolute number (right) of vulnerable domains per rank-

ing bin. 60

3.4 Time required by each module of our system. 62

4.1 Architecture and workflow of StyxJS. 70

4.2 Example stack snapshot for async/await functions. (a) An eval script (com-

pleted) has previously called foo, which is now suspended due to await. (b)

Later, a script injected withdocument.writeexecutes and calls the asynchronous

function bar. (c) bar is also suspended and the dynamic script exits. (d) foo

resumes execution and exits. (e) bar resumes execution, exits and all com-

pleted frames are removed. 75

4.3 Test page’s JIG. We omit script node details for brevity. 83

4.4 Page loading time delta for 1st and 2nd visit. 84

xv

List of Tables

2.1 Scanners’ features and capabilities. 9

2.2 Number and type of unique vulnerabilities discovered by each scanner with-

out (left) and with ReScan (right) for each app. 29

2.3 Total lines of code (LoC) executed by ReScan (R), the standalone scanner (S),

and common to both of them (R∩ S). 30

2.4 Qualitative differences between ReScan and Black Widow. 35

2.5 Detection and coverage comparison between the best run of ReScan and

Black Widow for each app. 36

3.1 Number of unique domains that do not adequately protect their cookies from

specific attacks. 58

3.2 Number of domains for different values of authentication cookies and com-

binations of authentication cookies. 60

3.3 Most common categories of susceptible domains. 61

3.4 Personal user data that can be obtained by attackers. 62

3.5 Manually validated domains and hijacking capabilities. 64

4.1 Bypass techniques tested against StyxJS. 82

4.2 API calls captured by SugarCoat and StyxJS. 89

4.3 Comparison between ScriptProtect and StyxJS. 92

B.1 JavaScript inclusion methods covered by different systems. Exposing proper-

ties are marked with *. 132

xvii

Chapter 1

Introduction

”I don’t think we’ve even seen the tip of the iceberg. I think the potential of what the Internet is

going to do to society, both good and bad, is unimaginable. [...] It’s an alien life form.” - David

Bowie, 1999

The World Wide Web has been an integral part of our everyday lives for over two decades,

offering a plethora of services and functionalities pertinent to leisure, social, professional

and financial activities, among others. According to recent reports, the number of users

with Internet and Web access has skyrocketed to 5.3 billion, accounting for 65.7% of the

global population [86]. This vast prevalence of the modern Web can be largely attributed to

its ever-evolving nature. Specifically, the Web has gradually transformed from a set of static

pages to a fully interactive ecosystem, with new features, functionalities and services emerg-

ing constantly [2,27,94]. At the same time, the Web’s complexity increased as well; websites

turned into massive applications, with complex interdependencies between them [158,202,

266], and browsers evolved from simple navigators to powerful software components [2,27,

77, 244].

It is also apparent that a vast amount of information is constantly being circulated in

the Web, which can often be extremely sensitive due to the nature of our online activities.

As a consequence, such sensitive information and functionalities are high-value targets for

malicious actors, known as attackers. As a matter of fact, numerous incidents through the

years have demonstrated the prevalence and severity of Web-related attacks, which gained

access to user accounts, credentials and even financial information, affecting millions of

users [9–12, 51]. To make matters worse, due to the Web’s complex architecture and the

different entities involved therein, the attack surface is extremely vast, offering a multitude

of different vantage points for launching attacks. For instance, an attacker could exploit

vulnerabilities in the Web browser itself [187, 206, 236, 279], hijack the Hypertext Trans-

fer Protocol (HTTP) [35] communication between browsers and websites at the network

level [173, 192, 237], or even compromise entire websites or the third-party libraries they

1

2 Chapter 1. Introduction

might include [158, 176, 201, 202, 266]. Thankfully, the security and research communities

have put great effort into fortifying the Web’s overall security posture and users’ privacy.

Specifically, several approaches have been proposed to detect various vulnerabilities

and security issues in Web applications [118, 132, 141, 147, 155, 207, 234, 281], so as to be

patched in a timely manner before they are uncovered and exploited by real attackers. One

of the most prominent and useful categories of such systems, are the so called black-box vul-

nerability scanners [89, 132, 141, 167, 213, 222, 259]. As their name suggests, these systems

treat the application under test as a black box, i.e., without requiring any a priori knowledge

of the application, such as its source code or specialized input from its developers. Besides

requiring minimal input, the major advantage of such systems is their ability to approach

the application from a realistic attacker’s perspective and shed light on possible attack vec-

tors and vulnerabilities a real attacker could exploit. Another advantage of black-box tech-

niques is their inherent resilience against code obfuscation, which has seen wide adoption

in recent years [230, 241]. As such, as the Web continues to evolve rapidly, by incorporat-

ing more complex functionalities, APIs and client-side code, it is of crucial importance that

vulnerability scanners follow along and adapt their capabilities to these changes, so as to

remain effective. However, research studies have extensively demonstrated that existing

black-box vulnerability scanners tend to suffer from several core limitations that hinder

their effectiveness [105,133,135,141,208,260,270], both in terms of vulnerability detection,

as well as code coverage. For instance, while existing scanners offer the option to initially log

into the target application to test post-authentication functionalities, they typically assume

that the established authenticated session remains intact for the remainder of the scan-

ning process. This, however, is not necessarily the case and can lead to incomplete scans

and missed vulnerabilities. Similarly, black-box scanners usually follow a naive approach

when testing functionalities, by individually replaying their corresponding, specific HTTP

requests. In reality, modern applications might require a series of initial, necessary steps to

transition the application in the appropriate state before exercising a specific functionality.

Additionally, one of the most fundamental aspects of Web applications has been their

ability to offer personalized content and services through user accounts. In more detail,

users can register and log into their accounts to access a variety of different functionali-

ties, such as social networking, content sharing, financial transactions and more. Thus,

it becomes clear that the sensitive nature of such information and functionalities renders

user accounts, and the authenticated sessions between users’ browsers and Web applica-

tions, treasure troves for ambitious attackers. Unfortunately, several (semi-)manual stud-

ies have shown that even popular, high-profile websites with millions of users are suscep-

tible to session-hijacking attacks [114, 115, 200, 238], while developers often struggle with

the correct or complete deployment of relevant security mechanisms that could prevent

them [118, 153, 173, 226, 227, 237, 246, 275]. Moreover, due to the significant challenges of

entirely automating the auditing process and adopting a website-agnostic, black-box ap-

1.1. Thesis Statement and Contributions 3

proach, these manual studies were inherently small-scale and only considered several pop-

ular websites, leaving the rest of the Web unexplored. As such, the true extent of such au-

thentication and authorization flaws, along with the privacy implications users might suf-

fer, remain unknown.

Finally, another aspect that can have severe implications on websites’ security and users’

privacy are the complex interdependencies that drive the Web. Specifically, one of the ear-

liest and most prevalent [202] such dependencies, are the so called third-party scripts. In

essence, a first-party website might include JavaScript (JS) files from other, unrelated do-

mains for a multitude of additional functionalities, e.g., advertising [70], Single-Sign On [36,

48] or analytics [83]. Crucially, third-party scripts have certain characteristics that render

their usage rather perilous. First, third-party scripts intentionally loaded by the first-party

website, can implicitly load additional scripts dynamically at their discretion [158,176,266].

In addition, once loaded, third-party scripts operate with the exact same privileges as first-

party code, opening up a plethora of attack vectors. In more detail, research studies have

demonstrated that third-party scripts have been the source for a multitude of security and

privacy issues. For instance, they can introduce client-side vulnerabilities [158, 201], pre-

vent HTTPS deployment [176], carry out cookie-stealing attacks [134] or invasively track

and fingerprint users [139, 159, 257]. Therefore, the ability to robustly attribute third-party

script execution, i.e., disambiguate first- from third-party code, at runtime, is a crucial re-

quirement for building effective protection mechanisms and countermeasures. Unfortu-

nately, no standardized approach exists to achieve third-party script attribution and cur-

rent solutions are either susceptible to bypasses [124, 160], cannot provide real-time secu-

rity and privacy benefits for end users [56, 239] or require significant offline pre-processing

to operate correctly [201, 242], diminishing both their practicality and effectiveness.

1.1 Thesis Statement and Contributions

Due to its ever-increasing complexity, the Web has often - and rightfully - been dubbed the

tangled Web [176, 199, 254]. Despite the continuous and invaluable efforts by the research

community to entrench several of the Web’s security and privacy aspects, the constant ad-

dition of new features, APIs and client-side code, only tangles the ecosystem further, often

hindering existing approaches’ effectiveness. At the same time, new intricate challenges

emerge that require novel and careful design choices to be properly addressed. Most im-

portantly, the sheer scale of the modern Web, the vastly diverse Web applications and their

assets (e.g., scripts) and their often closed-source, proprietary nature render the a priori col-

lection of required information to effectively tackle said challenges a daunting and possibly

infeasible task. As a consequence, severe vulnerabilities and security issues might remain

undiscovered, while defense and privacy preserving mechanisms might fall short in achiev-

ing their respective goals, posing a significant threat to both websites’ security and users’

4 Chapter 1. Introduction

privacy.

In summary, in this dissertation we aim to demonstrate that the inherent complexity of

the Web and the unique challenges it presents, stemming from the sheer scale of the ecosystem,

the constant emergence of new features, the increasing addition of complex client-side code

and the diverse nature of Web applications and their interdependencies, mandate novel, au-

tomated black-box and context-agnostic techniques to i) effectively uncover vulnerabilities

and security issues at scale and ii) develop robust defense mechanisms and countermeasures.

Specifically, in this dissertation we make the following contributions:

• We design and implement ReScan, a novel, scanner-agnostic, black-box middleware

framework that transparently enhances existing (and future) Web application scan-

ners by addressing their core limitations. In more detail, our system intercepts all

HTTP requests initiated by the scanner, executes them in a modern, state-of-the-art

browser to ensure realistic interaction with the Web application and employs a series

of modules to address several identified limitations, e.g., persisting the authentication

state and uncovering client-side events. By extensively evaluating ReScan using both

popular open-source and academic black-box scanners, against a rich set of bench-

mark and modern applications, we find that it aids the underlying scanners in iden-

tifying more vulnerabilities, while increasing the achieved code coverage by 168% on

average. ReScan, as well as our applications’ Docker images, have been open-sourced

to facilitate further research in the field of black-box vulnerability scanning [59, 60].

• We design a novel URL clustering algorithm that prevents black-box scanners from

spending valuable time and resources in redundantly testing similar pages, which

essentially expose the same functionality. Our evaluation demonstrates that our al-

gorithm can reduce the total scanning time by∼6.7 times in a representative, modern

application.

• We develop XDriver, a custom browser automation tool that transparently offers ro-

bustness during prolonged interactions with Web applications. Our tool is tailored for

security-oriented tasks and includes modules for assessing relevant security mecha-

nisms, as well as a rich set of auxiliary functionalities (e.g., built-in crawler, network

level HTTP request interception and tampering). As our system can streamline a wide

range of research projects, our code has been made open-source [31].

• We develop a novel website-agnostic framework for the automated, black-box detec-

tion of authentication and authorization flaws in Web applications. Our framework

incorporates a series of modules and oracles that employ differential analysis for au-

tomatically evaluating the feasibility of cookie hijacking attacks under different threat

models, while taking into consideration and assessing the deployment of relevant se-

curity mechanisms. Moreover, our system explores and detects the exposure of sen-

1.2. Organization of Dissertation 5

sitive information and user data, in case of a successful attack. To facilitate further

research, we share our auditing pipeline with vetted researchers.

• We leverage our framework to conduct the first fully automated, large-scale study

of cookie-based authentication and authorization flaws by auditing ∼25K domains,

several orders of magnitude larger than prior studies with a similar focus. Our com-

prehensive evaluation reveals a plethora of security malpractices and misconfigura-

tions, as 50.3% of the domains are vulnerable to at least one attack. To make matters

worse, relevant security mechanisms that could prevent the attacks are seldom de-

ployed (11.8% of vulnerable domains do so) and are often misconfigured, effectively

nullifying their benefits. We responsibly disclosed our findings to ∼43% of affected

domains and setup a passive notification service for developers to acquire our results

after proving ownership of their domain.

• We develop StyxJS, a system that enables robust and real-time third-party script at-

tribution in a script-agnostic manner, i.e., without requiring any pre-processing or

knowledge of the encountered scripts. Our extensive evaluation shows that our sys-

tem effectively captures a multitude of script inclusion methods, while preventing

common and custom bypass attempts. It also does not incur page breakage and

induces a negligible performance overhead in most cases. Importantly, StyxJS inte-

grates seamlessly with page-deployed security mechanisms (e.g., CSP [24]), and takes

precautions to ensure their security guarantees are never affected by its operation.

• We analyze three existing security and privacy countermeasures and provide multiple

novel bypass techniques for each one, highlighting the practical gap StyxJS aims to fill.

Subsequently, we retrofit their approaches as custom plugins on top of StyxJS, demon-

strating the significant improvements it offers in achieving their respective goal, as

well as its flexibility to accommodate diverse pipelines that may have vastly different

goals. StyxJS, along with its plugins, have been made open-source [92] to streamline

the creation of more robust security and privacy countermeasures.

1.2 Organization of Dissertation

The rest of this dissertation is organized in the following way. Chapter 2 highlights the core

limitations of existing Web black-box vulnerability scanners that hinder their effectiveness

in terms of code coverage and vulnerability detection. We then introduce our novel scanner-

agnostic middleware approach and demonstrate how it can transparently address these

limitations and enhance the overall scanning process, as well as the significant improve-

ments it offers.

Chapter 3 presents our work in detecting cookie-based authentication and authoriza-

6 Chapter 1. Introduction

tion flaws in Web applications, using novel, black-box and website-agnostic techniques.

We also introduce our custom browser automation tool, offering robustness during pro-

longed interactions with Web applications and several auxiliary functionalities. Finally, we

carry out the first fully automated large scale study on cookie-based authentication and

authorization flaws in the wild and report on our alarming findings.

Chapter 4 highlights the necessity (and lack) of robust and real-time script attribution

for developing effective countermeasures and details how our proposed approach can achieve

it in a script-agnostic manner. We also present novel bypass techniques against existing

countermeasures and then retrofit them as custom plugins on top of our system, demon-

strating its ability to effectively solve their limitations and achieve their respective goal.

Chapter 5 presents the related work to the approaches, techniques and systems pro-

posed in this dissertation. Finally, Chapter 6 summarizes our contributions and key results

and proposes possible directions for future work.

1.3 Publications

Parts of the work for this dissertation have been published in international refereed confer-

ences:

• Kostas Drakonakis, Sotiris Ioannidis, Jason Polakis. ReScan: A Middleware Frame-

work for Realistic and Robust Black-box Web Application Scanning. In Proceedings of

the 30th Annual Network and Distributed System Security Symposium (NDSS). Febru-

ary 2023.

• Kostas Drakonakis, Sotiris Ioannidis, Jason Polakis. The Cookie Hunter: Automated

Black-Box Auditing for Web Authentication and Authorization Flaws. In Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security (CCS).

November 2020.

At the time of writing, our work on robust and real-time JavaScript attribution, detailed

in Chapter 4, is currently under submission:

• Kostas Drakonakis, Sotiris Ioannidis, Jason Polakis. Dredging the River Styx: Fortifying

the Web through Robust and Real-Time Script Attribution

Chapter 2

Black-Box Web Application Scanning

Web application scanners play a crucial role for security engineers and developers for un-

covering vulnerabilities in applications and patching them in a timely manner. Black-box

scanners can be extremely useful since they do not require any a priori knowledge of the

target application. However, as the web ecosystem continues to evolve at a breakneck pace,

modern applications incorporate more complex functionalities, features [168], APIs [191],

and client-side code, and therefore need a fully-fledged, modern browser environment for

their functionality to be fully exercised and the applications to be accurately tested.

State-of-the-art academic [132, 197, 213] and community-developed scanners [89, 222,

258, 259], which have seen wide recognition, suffer from core limitations that hinder their

effectiveness and lead to incomplete scanning, lower coverage and missed vulnerabilities.

First, many existing scanners use raw HTTP requests to interact with the application in-

stead of a real browser, thus missing out on dynamically generated DOM content (e.g., new

URLs or forms) and asynchronous requests. Second, many scanners are limited to a spe-

cific method of navigating the application (e.g., extracting static links and HTML forms) or

rely solely on client-side code and events [213]. Applications, however, often make use of

both. Moreover, existing tools typically simply replay requests when crawling or fuzzing the

application, and do not adhere to the intended and correct execution of steps for moving

the application from one state to another. Another major limitation is that while scanners

can be configured to log into the application, they typically assume that the authenticated

session remains intact for the duration of the scan, which quite often is not the case. In ad-

dition, scanners can be prone to false positives and negatives for certain types of vulnerabil-

ities (e.g., XSS) due to their naive approach to verifying successful injections. Finally, since

black-box scanners are not context-aware of applications’ content and functionalities, they

can spend a significant amount of time redundantly testing similar pages.

Recently, Eriksson et al. [141] highlighted some of these problems and the importance

of taking them all into account when implementing a web application scanner. These lim-

itations are further evidenced by the fact that certain scanners attempt to tackle some of

them by offering the ability to be used as a proxy [3, 8, 90] between a user’s browser and the

7

8 Chapter 2. Black-Box Web Application Scanning

application, so as to collect useful information (e.g., event originating requests). However,

this is not a robust or effective strategy, as it requires significant manual effort and therefore

does not scale, and is inherently unable to address all the limitations. Overall, while certain

scanners attempt to address these limitations, they either only partially address them or

only tackle a subset of the limitations.

Nonetheless, despite their limitations, the aforementioned tools offer a plethora of dif-

ferent scanning techniques and capabilities which are undoubtedly of great value. Ideally,

overcoming these limitations would require redesigning these tools or collecting their in-

dividual techniques and re-implementing them from scratch. Unfortunately, this is an un-

likely and impractical scenario, as it would require an exorbitant amount of time and engi-

neering effort. Instead, we propose an alternative strategy for leveraging the capabilities of

existing (and future) scanners while addressing their limitations.

Specifically, we design and implement ReScan, a scanner-agnostic black-box middle-

ware framework that transparently enhances web application scanners and addresses the

aforementioned limitations. In more detail, our framework intercepts scanner requests

and provides a realistic state-of-the-art orchestrated browser environment with a rich set

of additional capabilities (e.g., event triggering, HTTP request tampering). Our system de-

tects new endpoints that reveal further endpoints or trigger asynchronous requests, to con-

struct a navigation model of the target web application, and mirrors the scanner’s requests

through the browser and the model. Additional enhancement modules operate concur-

rently to verify the validity of the authenticated session and re-authenticate if needed, de-

tect inter-state dependencies (i.e., submitted values that appear on and affect other URLs)

and cluster similar pages that would be redundant to audit. In general, ReScan does not

require any information about the scanner’s or app’s internals and does not make any as-

sumptions; it receives HTTP requests and attempts to accurately mirror them based on the

learned model so as to respect the navigation workflow. This is done inside the browser, to

ensure realistic interaction and response rendering.

Our extensive evaluation with state-of-the-art scanners shows that ReScan effectively

facilitates the detection of more vulnerabilities, both for benchmark and modern applica-

tions, while offering a code coverage improvement between 3% and 935% (168% on aver-

age). Moreover, we outline several prominent vulnerability examples that demonstrate the

practicality of our different enhancement techniques and also show that ReScan can handle

more than a single class of vulnerabilities. While our system induces a considerable perfor-

mance overhead, due to the numerous techniques it employs and the unavoidable cost of

leveraging a fully-fledged modern browser, we show that our URL clustering algorithm can

dramatically reduce the total scan time for a representative modern application, resulting

in a 6.7x speedup.

2.1. Challenges and Design Requirements 9

Table 2.1: Scanners’ features and capabilities.

Feature / System w3af wapiti
Enemy

of the State
ZAP

Browser support
Navigation model
Inter-state dependencies
Client-side events
Authentication
FP / FN elimination
URL clustering

: feature supported, : partially supported, : not supported.

2.1 Challenges and Design Requirements

Implementing a scanner-agnostic middleware framework requires solving numerous tech-

nical challenges and overcoming the aforementioned limitations in a way that is transpar-

ent to the scanner, while also providing functionality enhancements without understand-

ing or tampering with scanners’ internals. Essentially, the black-box interaction should be

bidirectional; the scanner knows nothing about ReScan and vice-versa. Here we outline

some of the main challenges that our system tackles.

Inter-state dependencies. Certain types of vulnerabilities, such as stored XSS, are not

necessarily triggered directly on the landing page after the payload is delivered. On the con-

trary, successful exploitation (and detection) might require the scanner to visit a different

URL in the application. For instance, consider editing a vulnerable field on a user’s account

page, which is then triggered when visiting that user’s profile page. ReScan needs to uncover

and keep track of these inter-state dependencies so as to enable detection of said vulnerabil-

ities, and also account for the order in which a scanner fuzzes potential injection points and

visits URLs they might affect.

Authentication. Modern web apps typically include functionality and resources that

are only available post authentication, and also include account and session management

features that terminate active sessions. When performing an authenticated scan, at some

point the session might break, e.g., due to following the logout URL or sending a malformed

request that the web application cannot handle and all session info is invalidated. This di-

rectly affects the coverage and vulnerability detection scanners can achieve, as they might

not be able to detect such state changes on time, or even at all, and proceed to perform an

incomplete scan. ReScan needs to account for this major limitation as well, by ensuring the

session remains valid for the entire duration of the scan and for all tested functionalities.

False positives & negatives. Scanners typically assert successful exploitation of certain

vulnerabilities by checking whether the injected payload appears as-is in the application’s

response. This is not foolproof and is prone to false positives, as the mere existence of the

payload inside the DOM does not necessarily imply successful exploitation. Additionally, a

10 Chapter 2. Black-Box Web Application Scanning

scanner might successfully exploit a vulnerability but not be able to detect it as the payload’s

structure might have been slightly altered or even completely stripped after being executed,

leading to false negatives. Since we cannot tamper with each scanner’s internal detection

mechanisms, we need to devise a mechanism so as to eliminate both false positives and

false negatives, or provide additional information to the user about such possible cases to

facilitate triage.

URL clustering. Web app scanners can typically spend a significant amount of time

testing redundant application endpoints, i.e., pages that are conceptually similar and offer

the exact same functionality. It is apparent that such behavior directly affects their perfor-

mance and overall scanning times. Thus, ideally, we need to prevent scanners from ever

learning the existence of such redundant endpoints, by efficiently and effectively compar-

ing and clustering them under a single, representative URL.

Response enhancement. Even if we successfully overcome the core scanner limita-

tions, we still need to communicate ReScan’s findings back to the scanner, such as request-

triggering or DOM-changing client-side events. Due to our black-box approach, ReScan

cannot directly interact with the scanner and is restricted to the existing communication

channel (i.e., the HTTP connection) for transmitting artifacts.

Limitations of prior work. In Table 2.1 we outline the capabilities of the different scan-

ners that we evaluate our system on (§2.3), so as to paint a clear picture of how each one can

benefit from ReScan’s enhancement techniques. As can be observed, only a single scanner

leverages a modern, full-fledged browser environment; the rest are oblivious to dynamic

content, functionalities and client-side events. Similarly, only one scanner leverages a nav-

igation model to properly traverse the application, and none of them consider dependen-

cies between different endpoints of the app. All of them offer some mechanism to handle

authentication, however, some do so partially, i.e., assume that the authenticated session

remains valid throughout the scan. When it comes to false positives and negatives, none of

them take steps to eliminate them. Similarly, for all scanners we find that they spend signif-

icant time testing redundant URLs or can incorrectly exclude pages from scanning due to

deeming them to be similar to other tested pages. Overall, we find that all scanners do not

take into account at least four aspects that can directly affect their vulnerability detection

efficacy and achieved code coverage. This motivates our novel design approach of offering

a framework that operates as a middleware component for enhancing the capabilities of

any vulnerability scanner.

2.2 Design and Implementation

Figure 2.1 presents an overview of ReScan’s architecture. Our system consists of a series of

modules that operate concurrently and communicate with each other. The entry point to

the system is an intercepting proxy which captures scanner requests and feeds them into

2.2. Design and Implementation 11

Figure 2.1: Architecture and workflow of the ReScan framework.

the system. Next, the intercepted requests are loaded by the orchestrator and passed on

to the browser workers, each of which has its own browser instance and attempts to accu-

rately mirror the request in the application. They are also responsible for detecting new end-

points, e.g., links, forms and event originating requests, which are all wrapped in a single,

enhanced HTTP response and sent back to the scanner. All discovered endpoints are stored

in the application’s navigation model by the graph worker, which is leveraged by the browser

workers to properly retrace and execute all necessary steps when executing a request. Each

worker utilizes the authentication helper module to ensure the session is valid. Meanwhile,

the background worker is responsible for inspecting all data submitted to the application

and uncovering inter-state dependencies (i.e., if a value submitted in a page appears on an-

other one) which is necessary for detecting certain vulnerabilities (e.g., stored XSS). Finally,

the URL clustering module employs a novel algorithm to detect similar pages, and notifies

the orchestrator to filter out such requests and prevent the scanner from spending valuable

time on redundantly testing them. Before describing each component in detail, we first de-

scribe our navigation model (which is inspired by the approach of Eriksson et al. [141]). It

is important to stress that while some of our techniques are inspired by prior work, incor-

porating them into our middleware-style architecture is a demanding process that requires

a methodical design strategy and addressing numerous implementation challenges, as we

outline in the following sections.

2.2.1 Navigation model

Our model is realized as a directed graph, where each node represents the state of the ap-

plication in terms of unique URLs, and edges describe the transitions between states – the

specific actions required to move from one state to another, like client-side events or forms.

Edges. Specifically, the edges are one of five types: GET, FORM, EVENT, IFRAMEor REDIRECT.

12 Chapter 2. Black-Box Web Application Scanning

Thus, when visiting a page we collect all such edges and add them to the model. Each edge

is assigned a unique ID, which consists of the edge type, the destination URL, and the nor-

malized HTTP payload (i.e., the set of parameter names present in the payload). We ignore

the payload values as they are volatile and can be altered, e.g., when the scanner fuzzes a

form. The payload information is required since two forms may point to the same URL, but

perform different operations in the back-end, e.g., a login and a signup form that both POST

data to the /auth.php endpoint. We need a way to distinguish the two different transitions

and the edge type and destination URL alone would not suffice. Additionally, edges are

annotated with any information required to replay them, e.g., for form edges we store the

specific element’s unique CSS selector in the page, while for events we also store the exact

event type. Moreover, each edge is also connected to its parent edge, so we can construct

workflows.

Mapping requests to edges. Since our system’s input are raw HTTP requests, we need

a way to map them to existing edges in the navigation model, so we can properly replay

the correct workflow. An incoming request can initially be assigned only two of the five

edge types, i.e., GET or FORM, depending on the HTTP method and whether it carries a pay-

load. However, in practice, the request might consider a different edge type, e.g., an asyn-

chronous POST request triggered by an event. To handle such cases, and only when we

cannot locate an edge with the initial edge type, we simply change the type and check again.

In more detail, a simple GET request can be mapped to a GET, IFRAME, EVENT or REDIRECT

edge, since it does not include a payload. In contrast, a payload-bearing request can either

be mapped to a FORM or an EVENT edge, since these are the only edge types that can transmit

a payload. Subsequently, to properly execute the request, we recursively construct its work-

flow by following the parent edges until we find a safe GET edge, which based on the HTTP

specification [145] is not considered state-changing and can be safely executed as a starting

point.

Arbitrary requests. The model is constructed based on the edges the system observes

in each page, i.e., links, forms, events, iframes and redirections. However, scanners are not

restricted to sending these exact same requests, which we can map and replay based on

the model. Instead, they can send arbitrary requests to virtually any endpoint of the appli-

cation. For instance, they can extract the URL example.com/user/auth/ from a form action

(which is included in the navigation model) and send a request to a part of that URL (e.g., ex-

ample.com/user/) that has not been observed by the system so far and is not included in the

model. Depending on the request’s type, we tackle this issue in two ways. For simple GET re-

quests, we simply execute the request, asGET requests are not considered state-changing. In

contrast, for arbitrary requests that include a payload (i.e., corresponding to FORM or EVENT

edges) we don’t have any information on the necessary workflow needed to properly replay

them, which might not even exist in the first place. In this case, we employ a best-effort

approach where we generate a form matching the request (same input fields, action and

2.2. Design and Implementation 13

HTTP method) on the fly and submit it. This way we can at least get a properly rendered

response through the browser’s environment.

Model reuse. It is worth noting that the constructed navigation model is not scanner-

specific, but rather a generic, high-level representation of the web application. In practice,

this allows the reuse of existing models either when reconfiguring a scanner or performing

a completely new scan with another tool, effectively limiting the costly parts of ReScan’s

processing to the first run on a new application.

2.2.2 System Components

Intercepting proxy. This component accepts incoming requests from a scanner and con-

stitutes one of the two requirements for our system’s operation: the scanner must be config-

ured to send its requests through this proxy. The other is setting the scanner’s timeout per

HTTP request to a large value, so ReScan has enough time to employ its numerous enhance-

ment techniques. Both capabilities are supported by all scanners we have encountered so

far. Our component is built as an add-on script on top of mitmproxy [123]. When a request

is intercepted a new thread is spawned to handle it and our custom add-on code is exe-

cuted 1 . Initially, the request is appended to all intercepted requests, along with all other

relevant information (HTTP headers, method, payload and URL). The request thread then

waits to receive its response from the system 8 , which will be sent back to the scanner. The

only exception are requests towards static resources that do not have state-changing effects

and are directly proxied to the target application. We achieve this by filtering requests based

on known file extensions, which we list in Appendix A.1.

Orchestrator. This component periodically loads the intercepted requests populated

by the proxy 2 , and enqueues any newly appended requests in a FIFO queue to ensure re-

quests are served by the browser workers 4 in the order they appear. It is also responsible

for initializing and configuring all other components of the system.

Browser workers. The browser workers’ goal is to accurately mirror each request through

a fully-fledged, automated browser by executing the necessary workflow from the naviga-

tion model. We build the workers by leveraging XDriver [134], a robust Selenium-based

browser automation tool with a rich set of security-oriented features pertinent to our goal

(e.g., extracting HTTP redirection flows, spoofing request headers). The number of workers

is a configurable parameter.

Serving requests. Initially, each worker reserves a request, constructs the corresponding

edge ID based on the request information, queries the graph worker (described later on) so

as to fetch the edge’s workflow 5 and proceeds to execute it 6 . Before executing the work-

flow the worker sets its cookie jar according to the request’s Cookie header, so as to acquire

the necessary state for authentication. Executing individual edges is rather straightforward;

the worker simply fetches the page, fills and submits a form, and switches the browser’s fo-

14 Chapter 2. Black-Box Web Application Scanning

cus inside an iframe or triggers an event. We have also extended XDriver so as to capture

events’ asynchronous requests or redirects with the browser’s internal proxy and make all

necessary modifications before sending it to the application. However, in certain cases,

some edges might not be required or cannot even be replayed. For instance, an intermedi-

ary edge corresponding to a login form that we previously used to log into the application

will most likely not be present when executing the workflow of an admin dashboard’s func-

tionality. In such cases, we simply ignore non-existing, intermediary edges and proceed to

the rest of the workflow.

Another special case involves EVENT edges when executing workflows. The main idea

is that a client-side event that reveals further edges when triggered (e.g., other events or a

form), might not be required to be triggered more than once to reveal these elements; on

the contrary, triggering the event again might make these elements disappear or become

inaccessible (e.g., removing a dynamically generated form). To address such cases, when

encountering an EVENT edge, we perform a look-ahead operation on the workflow. In more

detail, we check if the last edge (i.e., the one corresponding to the initial request) is already

present and can be executed, in which case we simply ignore all intermediary edges. If it

does not exist, we check for the second to last edge and repeat the same process, until we

either find an edge to jump to and continue the execution from there, or end up on the event

edge at hand and continue as normal.

Moreover, when a scanner sends a request containing a CSRF token, it will include a stale

token value, as it was captured in a previous request. During the execution of its workflow

ReScan will acquire a fresh token value, but in order to correctly submit the request, it needs

to replace the stale scanner value with the new one. To achieve this after executing the work-

flow, when we are ready to send the request (i.e., submit the form or trigger the event) we

check each payload parameter against common token and nonce keywords and simply ig-

nore the scanner-provided value. For forms we iteratively inspect the form’s input elements

statically in the DOM, while for event-originating requests we perform the inspection on-

the-wire using XDriver’s internal proxy. Since this is a best-effort approach based on com-

mon naming conventions for CSRF tokens, it is important to note that even if ReScan misses

an actual token (i.e., incorrectly assumes it is a regular parameter) it does not negatively af-

fect the underlying scanner, which would miss it even without our system. Moreover, scan-

ners can typically be configured to ignore specific parameters, such as CSRF tokens; in such

cases, this mechanism would essentially be idle as the scanner would not fuzz the tokens.

Another aspect we need to consider are the HTTP request headers sent by the scanner

in each request. Generally, we want to avoid sending the scanner’s headers and need the

browser to send its own to ensure realistic interaction (e.g., user-agent, accept-encoding

etc.). However, there are a couple of exceptions to this. Firstly, any cookies sent by the scan-

ner must be passed through unchanged, as detailed previously. Another case in which we

need to preserve the scanner’s original request headers is when it tries to inject a payload

2.2. Design and Implementation 15

through them. To do this, we observe the first incoming requests to learn the scanner’s de-

fault header values and, for subsequent requests, pass through any headers that had their

default values changed. While at this point the scanner’s request has been served 6 , we still

need to enrich the response before sending it back to the scanner by leveraging any client-

side events and the browser’s JavaScript execution engine for triggering the events and

recording any meaningful changes to the DOM or any asynchronous requests or redirects.

Event discovery. In order to trigger client-side events, we first need to identify which

HTML elements have registered event listeners by hooking into them; we achieve this by us-

ing jÄk’s JS library [213]. We then iterate over all captured events and attempt to trigger them;

we expanded XDriver to accurately trigger each event. To detect DOM changes we utilize

the MutationObserver API [52] by registering an observer on each document, which returns

all changes caused by the last fired event. This is much more efficient compared to prior ap-

proaches of constantly scanning the DOM for relevant changes [141]. The DOM changes we

consider are new links, forms and iframes, since they can reveal new endpoints of the appli-

cation to the scanner, and at the same time constitute potential injection points. Similarly,

for asynchronous requests, we modified jÄk’s library to capture all the information our sys-

tem needs. We also note that right before triggering each event, we block all asynchronous

requests; after capturing the request information we do not send the actual request to the

application so as to to avoid possible side-effects due to changing the application’s state

(e.g., logging out or deleting a user). Users can disable our event discovery module with a

simple configuration option, when testing web applications that do not make heavy use of

JavaScript.

Another aspect we have to take into account during this phase is that elements with

events can produce additional elements, which can also produce others, make DOM changes

and so on. To capture such nested events we follow a BFS approach and start by triggering all

displayed events when loading the page (i.e., level zero events). After triggering each event

we inspect whether any new events appeared and store this dependency link between them,

thus constructing event dependency chains. In addition, if an event hides any level zero

events (e.g., due to opening an overlapping menu), we immediately trigger it once again in

an effort to make the base event reappear. When we are finished with all of a level’s events,

we proceed to the next level and repeat the process. It is important to note that for nested

events we first check if they actually exist and are displayed in the page in order to trig-

ger them immediately. This is needed since a previous event might have made permanent

changes on the page (e.g., a sidebar with further events that remains open throughout the in-

teraction with the page). If, however, the nested event cannot be triggered immediately,we

proceed to recursively execute its dependency chain. The recursion is necessary since an

intermediary event of the dependency chain might also not exist, thus its own chain should

be executed in order to arrive to the final event. All dependency chains are also depicted in

the navigation model as individual edges.

16 Chapter 2. Black-Box Web Application Scanning

Finally, an exhaustive approach would require performing the event discovery for each

unique edge we execute. In practice, however, we empirically observed that many simi-

lar edges (i.e., same base URL but different query) land on the same or similar pages and

include the same or many common events; as such, triggering all events again would be

redundant. To address this, for each base URL we store each event along with its unique

CSS selector. For ensuing requests to the same base URL with differing parameters we skip

any previously encountered events and trigger only the new ones that may exist, thus sig-

nificantly reducing the event discovery time.

Inter-state dependencies. It is common for certain parts of a web application to interact

with and affect other parts. For instance, data submitted in a registration form can be re-

flected in other pages (e.g., the username being shown in the user’s profile). The extraction

of such inter-state dependency links (ISD) is crucial for discovering certain types of vulnera-

bilities that are not directly visible on the landing page after the payload injection but appear

on other URLs, such as stored XSS. The core idea is to identify if a parameter value for a given

POST request (the ISD source) appears on another page (the ISD sink). Thus, whenever a

browser worker executes a POST request, mapped to either a FORMor EVENT edge, it will feed

the request’s edge ID, as well as all parameters and their values to the Background Worker,

which is responsible for detecting such dependencies.

Assuming we have detected such ISD links, when executing a POST request the browser

worker collects parameters whose values’ entropy exceeds a threshold to capture the actual

scanner payload being tested, which typically includes several different characters and has

a greater length. Then, for every parameter it internally fetches ISD sinks associated with

it and inspects whether the value truly appears in their source. If so, the value and its en-

capsulating HTML elements are stored, to be used in the final HTTP response and “carry”

the necessary context for the scanner to properly evaluate its injection. We do not store

the entire sink’s DOM, as it can significantly increase the response size and corresponding

processing time, especially given that a single POST request might be associated with more

than one sinks.

Response enhancement. At this point, the system needs a way to inform the scanner

of newly discovered endpoints or inter-state dependencies. Since our approach is fully

scanner-agnostic, we treat each scanner as a black-box that produces HTTP requests and

consumes responses. Thus, we need to transcribe each of these newly discovered artifacts

into a final, static HTTP response, in a way that they are “detected” and leveraged by scan-

ners. To that end, we initially append the ISD sinks’ relevant HTML elements and the DOM

changes “as is” to the response (e.g., a dynamically generated form is appended to the docu-

ment’s body). In contrast, simple asynchronous GET requests and redirects are transcribed

as new links, while more composite requests are converted into an equivalent HTML form,

with input fields matching those of the HTTP payload, as well as the HTTP method of the

asynchronous request. During our analysis, we also observed that modern browsers may

2.2. Design and Implementation 17

Figure 2.2: Crafted HTTP response.

alter the structure of the original page source in regards to syntax semantics. For instance,

if the browser encounters stray element attributes, i.e., only an attribute name without a

value (which can be part of a scanner’s payload), it will modify their structure, e.g., by ap-

pending the = sign and quotes. For example, consider the following scenario, where a form

field vulnerable to XSS originally has the form<inputname="username"value="user">. The

scanner payload, trying to escape the value attribute, might look like abc("’xyz, which will

leave the ’xyz portion as a new, stray attribute inside the element and will be converted by

the browser to ’xyz=""with a leading space, thus preventing the scanner from detecting its

otherwise successful injection. In addition, we use BeautifulSoup [71] with the html5lib

standards-compliant parser [21], to parse and modify the final HTTP response (e.g., to ap-

pend sink DOMs for ISD), which might further alter the payload structure by rearranging

the order of such stray attributes. To overcome this challenge, much like the ISD approach,

when submitting values, by appending the pre-rendered source’s HTML elements that in-

clude the value in the final HTTP response, we allow the scanner to detect and evaluate its

injections that may have been altered due to this behavior.

Moreover, the application might have set or unset cookies during the execution of the

workflow either with Set-Cookie response headers or via JavaScript. Since we capture the

response headers for the last executed edge (i.e., the initial scanner request), and several

scanners do not include a JavaScript execution environment, we also need to pass this in-

formation to the scanner as well. To that end, we iterate over the browser’s cookie jar, com-

pose equivalent Set-Cookie headers, and append them in the response so as to inform the

scanner of the current state. The worker then proceeds to craft the final HTTP response in-

18 Chapter 2. Black-Box Web Application Scanning

cluding all relevant information, i.e., the enriched response body, status code and response

headers and sends it back to the proxy’s request thread waiting for it 8 . A detailed depiction

of how the response is crafted can be seen in Figure 2.2. Subsequently, the worker submits

all discovered events, along with all links, forms, iframes and redirects of the page to the

graph worker so they can be included as new edges in the navigation model 7 .

Graph worker. This component is responsible for interacting with the navigation model,

and consists of two separate threads. The first one operates in a read-only manner on the

model: it awaits for browser workers’ requests for specific edges, constructs and returns

the necessary workflow 5 . The second thread, operating in a write-only fashion, receives

newly submitted edges by the workers and adds them to the model 7 .

Background worker. Detecting inter-state dependencies is crucial for detecting certain

types of vulnerabilities. The background worker’s (BG worker) goal is to detect such depen-

dency links in a timely manner. During its lifetime, the BG worker constantly observes the

POST requests executed by the browser workers and identifies ISD sources that might ap-

pear in other parts of the application. While in practice other HTTP verbs might be used for

state-changing requests as well (e.g. PUT), similarly to prior work [141] we only consider

POST as others are not intended to be state-changing at all (e.g., GET [145]). Specifically, it

initially keeps track of all submitted values that have an entropy higher that a given thresh-

old. This is a necessary performance/detection trade-off, so as to eliminate commonly seen

values (e.g., ”1”, ”true”) which would lead to a prohibitive number of candidate ISD sinks be-

ing fetched by the browser workers; we empirically found that a threshold of 1.4 effectively

eliminates such values. It then queries the graph worker and collects all theGET,IFRAMEand

REDIRECT edges found so far, as they constitute potential ISD sinks. It then proceeds to iter-

atively fetch each of these edges and inspect whether any of the submitted, higher-entropy

values appear in its source. If so, it has detected an ISD sink and immediately notifies the

browser workers of the uncovered dependency, so they can fetch it whenever submitting

the ISD source.

Before moving on to the next edge, the BG worker submits all edges it observes to the

graph worker so they can be inspected as well. This is required as certain sinks might appear

only after submitting the corresponding ISD source (e.g., the URL for editing a comment ap-

pears after posting the comment). The BG worker will repeatedly visit all potential sinks as

long as there are POST requests executed by the browser workers that have not been fully

inspected (indicating that not all potential sinks have been explored). While this approach

involves a non-negligible number of additional requests it does not affect the performance,

as the BG worker operates concurrently with the browser workers.

We note that a more straightforward approach would be to detect ISD links by leveraging

the underlying scanner’s requests. For instance, whenever we execute a workflow, we could

inspect the landing page for previously submitted values. This, however, creates a strong

dependency between our system’s effectiveness and the underlying scanner; if the scanner

2.2. Design and Implementation 19

decides to fuzz a form and does not later visit the corresponding ISD sink, either due to not

having discovered it or because it had crawled it earlier, then we would have no chance of

detecting the ISD link on time and the underlying vulnerability would be missed. With our

approach we can effectively tackle such cases and detect inter-state dependencies on time.

Input pre-filling. Another technical challenge is scanners’ default behavior when sub-

mitting a form. In more detail, when scanners start fuzzing a form, they will typically use any

values already filled out by the application itself and will submit their own default values for

empty fields. For instance, wapiti sends “default”, while ZAP uses “ZAP” as their default val-

ues. This behavior, however, can lead to the detection of numerous candidate sinks during

our ISD detection and can significantly affect its performance, as such values may appear

in multiple areas of the application and could stem from multiple ISD sources. To tackle

this issue, right before sending the final HTTP response back to the scanner, we iterate over

all empty input fields in the page and assign a unique value we generate on the fly, with an

entropy high enough so it can be detected in actual ISD sinks. This way, scanners will use

our unique tokens instead of their defaults and we can precisely map ISD sources to sinks.

Authentication helper. A common problem with scanners that execute authenticated

scans is that they will submit the valid, user-provided credentials once but will forget them

in subsequent authentication requests and instead submit their default credentials. This

can occur if the scanner decides to fuzz the login or an account settings form (i.e., change

username or password); this is problematic since these default credentials do not corre-

spond to a valid user, thus permanently losing the authentication state for the remainder of

the scan. Similarly, scanners do not infer when they are logged out (e.g., due to a malicious

HTTP request that the application cannot handle) and continue their (incomplete) scan-

ning irregardless of the authentication state. To overcome these problems, we develop an

authentication helper module, leveraged by the browser workers.

Credential detection. Initially, the module captures the first authentication request (i.e.,

includes a password in its POST data) and detects the valid user credentials based on com-

mon parameters’ naming conventions. This is based on the assumption that the first au-

thentication request will include the user-defined, valid credentials, which holds true for

all scanners we evaluated. ReScan will then detect these fields in subsequent requests and

will overwrite them with the valid credentials, thus ensuring the integrity of the authenti-

cated session.

Oracle. Moreover, again on the first authentication request, the module will perform

a series of steps to dynamically infer an authentication oracle, conceptually similar to the

one proposed in [134]. In more detail, the worker that performed the login will send another

request to the landing page without containing any cookies, to obtain an unauthenticated

response. The module will then check if the detected username (or email) or any logout-

related string appears in the authenticated response but not in the unauthenticated one.

If so, it has deduced a robust authentication oracle. If they appear in both responses, the

20 Chapter 2. Black-Box Web Application Scanning

worker will then fetch the page containing the login form and check whether the form ap-

pears only in the unauthenticated response. Similar to the first step, if this yields a positive

result we have again found the oracle. For each subsequent request, right after the execu-

tion of its workflow, we deploy the oracle in a new browser tab so as to check the validity of

the established session. The new tab is required so as to maintain the main request’s state

(e.g., landing page) and execute the remaining components. During our experimental eval-

uation we observed that the overhead induced by executing the oracle in every request is

negligible yet significantly increases robustness.

Relogin. If after the execution of a request the oracle detects that we have been logged

out of the application, the module must attempt to transparently re-establish an authenti-

cated session. This can happen if another concurrent worker triggered a logout and inval-

idated the session for everyone, or the session broke due to this specific request. However,

at this point we cannot be certain which is the cause. In any case, the module will revisit the

login URL and try to login with the valid credentials and consult the oracle to verify that the

relogin succeeded. If it succeeds, the worker will retry the request at hand to ensure that its

workflow was executed properly. If the session breaks again, indicating that this is indeed

the faulty request, we relogin and skip the remaining components for this request; other-

wise we proceed as normal. Finally, if the relogin fails, we inform all workers to shutdown

since we cannot continue the authenticated scan, indicating that either the credentials are

no longer valid (e.g., the user was deleted or blocked), or that the application is no longer

responsive (e.g., it returns an error message). However, this behavior can be disabled with

a simple configuration option, so as to allow the scan to continue regardless of a successful

relogin. It is important to note that while the oracle is conceptually inspired by [134], the en-

tirety of the authentication helper module and its capabilities is a new contribution, rooted

in the challenges presented by the novel middleware architecture of ReScan.

False positive & negative elimination. Another common scanner limitation is their sus-

ceptibility to false positives (FPs) and negatives (FNs), especially when testing for XSS vul-

nerabilities. This is due to the fact that scanners often verify the success of their injections

based solely on the payload’s existence in the HTTP response, without verifying if the pay-

load was actually executed. Therefore, it is clear that a payload that appears “as is” but was

never executed (e.g., due to it being part of an input element’s value attribute) will lead to

a FP. Similarly, even if the payload is executed, but its structure is altered or completely re-

moved by client-side code, the scanner will not be able to detect the successful injection,

leading to a FN. Due to our black-box approach, we cannot tamper with each scanners’

internals and tackle this; we can, however, eliminate or reduce such cases by providing the

user with additional results as a separate report, which can be intersected with the scanner’s

reported vulnerabilities. To achieve this, we employ the following approach.

First off, for each incoming request, we try to identify if it is an injection attempt by col-

lecting all query parameters forGET requests and payload parameters forPOST requests, and

2.2. Design and Implementation 21

check their values against common keywords used among scanners (e.g., alert,prompt,

javascript:). The intuition is that regardless of the payload structure, most scanners will

attempt to trigger an alert box with their injected code. Then, whenever an alert box opens

throughout the rest of the scan, we extract its text and try to match it against all detected in-

jections in the previous step. If the alert text does appear inside any of the injection values,

we can be certain that the detected XSS is a true positive, since it leads to code execution. If

it does not match any of the injection attempts, it is discarded, as it is a legitimate alert by

the application. It is important to note that the effectiveness of this technique relies on the

underlying vulnerability scanner.

For scanners that do not reuse payloads, i.e., do not alert the same value for different in-

jection points (e.g., Wapiti), then all FPs and FNs can be eliminated as each alert box can be

exactly mapped to one injected value. If the scanner does reuse payloads (e.g., ZAP always

tries to execute alert(1)) then any alert box that occurs will be mapped to all attempted in-

jections so far. Thus, we know there is at least one XSS vulnerability up to that point, but we

cannot be certain which parameter is vulnerable, nor if there are more than one. For such

cases, we simply inform the user that the confidence level for the legitimacy of the reported

vulnerabilities is lower and they should account for possible FPs reported by the scanner.

Moreover, if there are no alerts throughout the scan, indicating that no XSS vulnerabilities

were triggered, then any reported vulnerabilities by the scanner can be safely considered as

FPs.

2.2.3 URL Clustering

All the enhancement techniques we have devised so far aim to improve scanners’ code cov-

erage and vulnerability detection capabilities. However, during our empirical analysis we

identified an orthogonal limitation which affects scanners’ performance. We observed that

scanners are not able to identify similar URLs, which may include the same or related con-

tent but essentially offer the exact same functionality. For instance, if a web application

includes a series of product URLs of the form /products.php?pid=X, the scanner will crawl

and audit each URL separately, which can eventually lead to the detection of other similar

URLs, specific to each product (e.g., /products.php?pid=X&action=edit). Clearly this be-

havior impacts scanners’ performance, as they spend resources and time repeatedly testing

the same functionality.

Additionally, while some scanners offer some sort of control mechanism to limit this

behavior, they are coarse-grained approaches that require careful configuration by the end

user and can also wrongfully skip URLs. For instance, Wapiti offers an option to limit the

crawl’s depth, which can result in skipping important URLs that appear in deeper levels of

the application while similar URLs that are at the same depth will be redundantly crawled.

w3af provides an option to limit the number of URLs with the same path and set of query

22 Chapter 2. Black-Box Web Application Scanning

parameters that will be considered during the scan. While this can decrease the number of

discovered similar URLs, it requires careful examination and proper configuration. More

importantly, some URLs with the same query parameters might need a different threshold

than others; for example setting the threshold to 1 would work for /products.php?pid=X

URLs, as more than a single product page would be redundant, but for URLs of the form

/products.php?pid=X&action=Y, whereactioncan be one ofedit,update,delete, a value

of 1 would cause the scanner to consider only one of these functionalities, thus directly af-

fecting its coverage and, potentially, the detected vulnerabilities.

It is worth mentioning that prior work on web application scanning has proposed page

clustering algorithms [132,213]; however, their approach relied solely on a page’s link struc-

ture or did not consider URLs’ query parameter values. Regarding the link structure, while

such a strategy may have been adequate at the time, modern web applications utilize new

methods for navigation and different functionalities (e.g., stray input or button elements

that do not belong to a form) which are driven by client-side events. Ignoring these can lead

to the incorrect clustering of different pages. On the other hand, ignoring URL parameter

values can lead to subtle but important inconsistencies. For example, consider two product

pages, withpid=1andpid=2and their corresponding sub-URLs for editing each one,/prod-

ucts.php?pid=X&action=edit. When the scanner encounters the product URLs, it deems

them to be similar and clusters them under pid=1. When it visits the editing pages, if it does

not take into account the pid value it used previously, it can end up clustering them under

/products.php?pid=2&action=edit. Thus, if a vulnerability stems from editing a product’s

field and is reflected in that product’s page, the scanner will miss it as it will edit the second

product but inspect the page of the first one.

To overcome these limitations, we design an advanced URL clustering algorithm that

aims to cluster similar URLs in real time when requested by the scanner and prevent it from

ever learning the existence of redundant URLs, without requiring any specific configura-

tion by the user.

Page similarity. The first requirement for our algorithm is to be able to accurately and

efficiently identify whether two URLs and their respective DOMs are in fact similar and

should be clustered together. We consider two URLs to be similar if they share the same

path, regardless of the URL query parameters. If they are not similar they are not clustered

together; if they are, we still have to investigate whether their DOMs are similar to decide if

they should be clustered or not. To achieve this, we build upon the normalized DOM-edit

distance metric (NDD), proposed by Vissers et al. [271], which essentially takes as input two

DOM trees and computes the number of edit operations required to move from one tree to

the other. Initially, we observed that the tree edit distance algorithm they used at the time

(ZSS [277]) was rather slow even for relatively simple DOMs. Since we need to compute

DOM similarity immediately when a page is requested by the scanner, we cannot afford

such a performance penalty. Thus, we decided to replace the tree edit distance algorithm

2.2. Design and Implementation 23

with current state-of-the-art, namely APTED, proposed by Pawlik et al. [210, 211], which

offers a significant speed up. However, in certain cases of more complex DOMs, even this

algorithm had a prohibitive processing time for our use case.

Since designing a more efficient tree edit distance algorithm is out of scope of this work,

the only way to reduce the processing time is to reduce the size of the algorithm’s input, i.e.,

the DOMs’ sizes. While [271] adopted a horizontal pruning approach, discarding all tree

nodes below a level of five, such an approach would not be suitable in our case. This could

lead to subtle but important differences that indicate different functionality between the

two pages (e.g., a form residing in deeper levels of the DOM) not being considered, leading

to pages being incorrectly clustered together.

Thus, we devise our own fine-grained pruning methodology. When constructing the

corresponding trees from the pages’ DOMs we recursively discard leaf nodes that do not of-

fer any sort of functionality (e.g., line breaks, paragraph, span, div or font formatting tags),

while maintaining nodes that denote functionality (e.g., scripts, forms, iframes, buttons

and inputs). If a node has all of its children removed, becomes a leaf node and is a non-

functional tag, it is discarded as well. With this approach, we significantly reduce the tree

size and thus the processing time required for the NDD computation, while maintaining

the important parts of the tree structure that we should consider when deciding whether

two pages should be clustered.

Moreover, this approach also helps us avoid not clustering similar pages together due to

insignificant differences. For instance, consider two article pages that should be clustered

together as they offer the exact same functionality and one of them includes a list of com-

ments, while the other does not have any yet; this would lead to not clustering these pages

together due to these (irrelevant) nodes. It is important to stress at this point, that two pages

that do not include any functionality denoting nodes (e.g., two static pages) would be over-

simplified and incorrectly clustered together; however, we employ our NDD variant only

for pages that also share a similar URL, thus avoiding clustering together irrelevant pages.

We refer to our NDD variant as mNDD. If the mNDD between two DOMs is lower than a

predefined threshold, which we identified experimentally, they are considered similar.

Algorithm. We use an example application that includes a set of similar and different

pages under the same base URL to illustrate our URL clustering algorithm. Assume an appli-

cation that lists two different products pages, with URLs of the form /products.php?pid=X

and piddenoting each product’s unique ID (either 1or 2). For the remainder of this section,

all example query strings will refer to the products.php page, which we omit for brevity.

These pages include links to product-specific pages (?pid=X&action=Y) that offer different

functionalities. The action parameter can be edit,review or add, and leads to a page that

has a form for editing, reviewing, or adding the product to the cart, respectively.

At a high level, the core idea of the URL clustering algorithm is to prevent scanners from

learning the existence of redundant URLs that point to similar pages and offer the same

24 Chapter 2. Black-Box Web Application Scanning

functionality. In this example, the scanner should either learn (i.e., receive a regular re-

sponse) for pid=1 or pid=2 but not both. Moreover, the algorithm must ensure that the

scanner will learn all other functionalities and sub-URLs for the same product ID only. For

instance, if the scanner initially learns ?pid=1, then it should also learn all actions for that

product ID only. This is required since executing such a functionality will most likely have

an effect only on that product’s page. Thus, the algorithm needs to keep track of the dif-

ferent URL parameters and their values for which the scanner got a response. Finally, it is

crucial that the algorithm also accounts for the arbitrary order the scanner might request

such URLs; e.g., it is not restrained to requesting the ?pid=XURLs first and then moving on

to their specific sub-URLs. Having defined the algorithm’s goals and an example scenario,

we next detail the specifics of our URL clustering algorithm.

Firstly, the algorithm considers only GET requests that include query parameters. We do

not include other types of requests (e.g.,POST) as they do not carry information that is useful

for the clustering process and would only lead to longer running times. The first time the

scanner requests one of these URLs it will get a regular response and we store all parameters

and their values that it learned. For subsequent requests towards the same base URL with

differing query parameters (either with a different set of parameters or different values or

both) the algorithm will perform the following steps:

1. Collect all parameters that we have seen before but have a different value than the one(s)

the scanner has learned. We represent these parameters with set {X}, and another empty

set with {X′}.
2. If there are any new parameters that the scanner has not requested before, leave them

“as is” and store their values.

3. Swap the unknown values for the {X\X′}parameters (the difference of the two sets) with

those previously learned by the scanner (initially all values are unknown).

4. Internally fetch the swapped and original URLs (if not already fetched) and compute the

mNDD between them.

5. For similar pages generate a clustering rule (described below) and stop.

6. If the pages are not similar: (i) reset {X′}, (ii) pick a parameter to preserve its original

value, (iii) add it to {X′}, and (iv) go to (3). If no more single parameters remain to pre-

serve their value, iterate through all combinations of two parameters, then combinations

of three, and so on.

7. If there are no more parameters to swap, stop, as this is indeed a new page and should be

served normally. Store the original URL’s parameter values for subsequent comparison

and clustering decisions.

Assuming the scanner initially requested and learned ?pid=1, we next provide a series

of cases based on our example scenario to demonstrate our algorithm’s correctness and to

also describe the generated clustering rules and how they are applied. If?pid=2 is requested

next, since the pid parameter has already been seen before but with a different value (step

2.2. Design and Implementation 25

1), it will be swapped with the known value 1. Then both URLs will be fetched internally,

their mNDD score will be computed and they will be found similar, and the clustering rule

shown in Listing 2.1 will be generated (steps 1-5).

{ "pid" : "*",

"redirect" : "?pid=1"}

Listing 2.1: Example of a simple clustering rule.

Essentially, this rule indicates that any incoming request that only has the pid parameter,

regardless of its value, should be redirected to ?pid=1, thus effectively preventing the scan-

ner from ever getting a response for the other product. This is achieved by sending a crafted

HTTP response back to the scanner, with a 301 status code and the Location header set to

the appropriate URL. The only exception is when the scanner requests ?pid=1, which will

be served as normal so as to obtain a fresh response for that product’s page.

If the scanner requests ?pid=2&action=editnext, we have a newly seen parameter (i.e.,

action) which is not tampered with throughout the process (step 2). The known pid pa-

rameter will be swapped and processed like before and the scanner will internally fetch the

original URL and also?pid=1&action=edit, compare them using mNDD and infer that they

are again similar, setting the rule shown in Listing 2.2.

{ "pid" : "*",

"action" : "edit",

"redirect" : "?pid=1&action=edit" }

Listing 2.2: Example of a subsequent clustering rule.

It is important to note, that the scanner might not have requested or even seen the

swapped URL before; this, however, does not affect the algorithm’s operation, as it can

proactively infer its existence by considering the previously seen parameters and their val-

ues. It is also necessary, in order to ensure that the scanner will learn the editing functional-

ity for the same product it learned before.

If the scanner then requests?pid=1&action=review, thepidparameter already includes

a known value and is therefore left as-is. The action parameter, while known, has a differ-

ent unknown value compared to before. Thus, it will be swapped with the value edit, the

two URLs will be compared and the algorithm will infer that they are in fact different pages,

since their mNDD score is higher than the threshold. This leads to not setting any new rules

and the originally requested URL should be served normally (step 7) while storing the newly

seen value for the actionparameter.

Finally, in a more complex case, if ?pid=2&action=add is requested, both parameters

are known but yet contain values that the scanner has not learned. As a result, all pa-

rameters will be initially swapped and the URL ?pid=1&action=edit will be fetched and

compared. Since it leads to a truly different page, no rules will be generated and one of

26 Chapter 2. Black-Box Web Application Scanning

the parameters will be picked randomly (e.g., pid) to preserve its original value (step 6).

The swapped URL that occurs is ?pid=2&action=edit, which also leads to a different page.

Next, the last remaining parameter will maintain its value while swapping the other one

(?pid=1&action=add). This indeed lands on a similar page as the original URL and a rule

similar to Listing 2.2 will be generated, for the add functionality. Even if these requests oc-

curred in a completely different order, since scanners can prioritize them differently (e.g.,

based on when the URLs were discovered in the application during the crawl), the algorithm

would end up inferring the exact same clustering rules, with a slightly different order and

steps, depending on the known parameters and their values at the time of processing.

At this point, it is worth noting that a large number of URL parameters could potentially

lead to a state explosion or a prohibitive processing time, due to the numerous parameter

combinations that would have to be tested. In practice, however, this is a highly unlikely

scenario due to several reasons. First, since the algorithm initially ignores newly seen pa-

rameters and parameters with known values, it would not have to test and compare all com-

binations. In addition, for that to happen all combinations would need to lead to different

pages, as the algorithm stops if it finds a pair of similar pages. Finally, we have not come

across any such case during our experimental evaluation. In §2.3.2 we experimentally mea-

sure the performance gain our algorithm offers, and also evaluate its correctness in terms

of achieved code coverage and discovered vulnerabilities.

Implementation details. Our URL clustering functionality can be enabled with a sim-

ple command line parameter; no further configuration is needed. Initially, the Orchestrator

inspects the scanner requests and locates each GET that includes a query. It then checks if

any of the generated rules applies to the URL; if so, it immediately crafts an HTTP redirect

(9 in Figure 2.1) and sends it to the request’s proxy thread, which eventually sends it back

to the scanner. If no rules apply to the URL (initially because none have been generated)

it marks the request as pending and passes it to the clustering module.It then moves on to

subsequent requests that need to be served, so as not to remain idle while pending requests

are processed, and periodically checks if a new rule has been generated and applies to the

pending URL or whether the request should be passed on to the browser workers.

The clustering module is comprised of a configurable number of threads that handle

pending requests concurrently. When a request arrives, a thread reserves it and runs the

algorithm to decide whether to serve it normally or infer clustering rules. These threads

do not maintain their own browser instances, as it would be too expensive, but need a way

to fetch the original and swapped URLs that occur during their operation. To that end, we

leverage the BG Worker, which apart from ISD-detection also serves these requests by the

mNDD threads. It also caches the responses in case the same URL is requested later on. The

BG worker constantly checks requests, as they are issued from the scanner and need to be

served as soon as possible.

2.3. Experimental Evaluation 27

2.2.4 API Abstraction for Future Scanners

As aforementioned, while ReScan can be transparently leveraged by any scanner as a black-

box middleware, future scanners could greatly benefit from the ability to access ReScan’s

internal knowledge and alter its behavior based on their runtime needs. As such, in order

to unleash ReScan’s full potential and enable such a symbiotic interaction, we design and

implement an abstraction layer in the form of an API. A scanner opting to use the API can

request access to ReScan’s ’internal data, such as the entire app navigation model, detected

ISDs, discovered XSS and more. Moreover, it can alter ReScan’s behavior, by enabling or

disabling any module at runtime, e.g., disabling ISD detection and sink collection when

testing for vulnerabilities that do not have ISD effects. We detail the various API endpoints

in Appendix A.2.

2.3 Experimental Evaluation

Experimental setup. For our system’s evaluation, we use state-of-the-art vulnerability scan-

ners that have seen wide adoption, allowing us to perform a direct comparison. Specifically,

we evaluate ReScan on w3af [222], wapiti [259], Enemy of the State [132] and ZAP [89], which

have been extensively evaluated by prior work [132,133,138,141,213]. We refrain from eval-

uating simple crawlers, e.g., wget [204], CRAWLJAX [197], even though they could benefit

from ReScan, since our main goal is to enhance vulnerability scanners and measure both

their coverage and detection capabilities. w3af and wapiti serve as a benchmark for more

traditional vulnerability scanners as they mainly use raw HTTP requests and feature from

minimal to no-Javascript execution engines, while ZAP has more advanced capabilities that

are better suited for modern scanning requirements. Enemy of the state is a popular state-

of-the-art academic scanner, which also introduced the concept of modelling application

states. To be able to evaluate Enemy, we had to make some slight modifications so as to

proxy all of its traffic through ReScan; its core functionality was left as-is. Finally, it is worth

mentioning that we also attempted to setup jÄk [213] for our evaluation, but were unable to

do so, due to the use of certain outdated packages that prevented it from executing properly.

We contacted the authors to aid us in the setup process, but did not receive a response.

To obtain better code and functionality coverage in the tested applications, we run au-

thenticated scans by configuring each scanner to log into them. For ReScan’s configuration,

we enabled four headless Chrome browser workers and all enhancement techniques de-

scribed in §2.2 (i.e., ISD detection, event triggering, as well as the authentication helper and

URL clustering modules). For the event discovery process we consider the events by [141],

(i.e., (on)input, onchange and compositionstart) and also extend them to include another

set of prominent events that can trigger requests and cause DOM changes, namely (on)click

and (on)submit.

28 Chapter 2. Black-Box Web Application Scanning

When running the standalone scanners without ReScan, we enabled the audit plugins

both for reflected and stored XSS. However, when evaluating ReScan we disabled the stored

XSS plugins, as we rely on our ISD module as a substitute. Similarly, we enabled the AJAX

spider plugin for ZAP when running without our system, but disabled it with ReScan, due to

our event discovery module. These configuration changes however, do not work in favor of

ReScan; on the contrary, by disabling modules we can only limit our coverage and detected

vulnerabilities. Despite that risk, and in favor of reducing redundant operations as well as

proving our approaches’ practicality, we opt to rely on our own techniques. We also set the

HTTP timeout for all scanners to 999 seconds. Finally, to avoid long lasting scans that may

occur for more complex applications and complete our evaluation in a reasonable time-

frame, we set each scanner’s maximum scan time to one day. It is important to stress that

apart from the aforementioned configuration options, all scanners and applications were

configured in the exact same way when running with and without ReScan. We provide more

details on the specific configuration options in Appendix A.3.

In Table 2.2 we list the web applications and the specific versions we used during our

evaluation. We opted to use the same set of applications as [141], since it includes both

legacy and intentionally vulnerable apps as well as modern, widely used applications. In

addition, using the same applications allows for direct comparison. We created an individ-

ual Docker container for each application, allowing us to reset it back to a clean state after

each scan; all containers have been released to facilitate further research in the field [59]. We

also enabled XDebug [221] in each application for capturing precise coverage information

in terms of unique lines of code (LoC) executed during each scan. Finally, we note that for

each application we excluded any URLs that might affect the application’s correct deploy-

ment (e.g., user deletion functionalities, version upgrading), as done in prior work as well

(e.g., [137]) In more detail, we initially identified common URLs manually. Then, during our

test runs our authentication helper module allowed us to identify more URLs (i.e., when

being logged out and not able to re-login). Inspecting the traces showed that some func-

tionality broke the app or the user was disabled/blocked. While such endpoints might also

suffer from vulnerabilities, they pose a risk to correctly auditing other (and usually more)

functionalities. In practice a separate scan should be performed for those endpoints. This

is inherent to black-box scanning and is not a limitation of ReScan; it is rather a matter of

correct scanner configuration.

Experiments were done on a commodity desktop with an 8-core Intel Core i7-4790 CPU

3.60GHz and 12 GB of RAM.

Discovered vulnerabilities. Table 2.2 details the results of our evaluation; we manually

verified every discovered vulnerability and report on the true positives. To deduplicate scan-

ners’ results and provide a fair comparison, we cluster vulnerabilities following the same ap-

proach as prior work [141]. Regarding false positives, we found that wapiti reports only one,

while ZAP is the scanner most prone to FPs as it reports 16 FPs across all apps by itself and

2.3. Experimental Evaluation 29

Table 2.2: Number and type of unique vulnerabilities discovered by each scanner
without (left) and with ReScan (right) for each app.

Scanner w3af wapiti Enemy ZAP
Vulnerability R-XSS S-XSS R-XSS S-XSS R-XSS S-XSS R-XSS S-XSS

SCARF (2007) -/- 4/8 -/- 3/7 -/- -/4 -/- 3/6
WackoPicko (-) 1/2 -/1 2/3 1/1 2/2 1/1 2/2 1/1
Wordpress (5.1) -/- -/1 -/1 -/1* -/- -/- -/1 -/1*
osCommerce (2.3.4.1) -/2 -/2 3/3 5/16 -/- -/- -/- 2/2
Vanilla (2.0.17) -/- -/1 -/- -/1 -/- -/- -/- -/1
PhpBB (2.0.23) -/- -/- -/- -/2† -/- -/- -/- -/4†
Prestashop (1.7.5.1) -/1* -/- -/1* -/- -/- -/- -/1* -/-
Joomla (3.9.6) -/- -/- -/- -/- -/- -/- -/- -/-
Drupal (8.6.15) -/- -/- -/- -/- -/- -/- -/- -/-
HotCRP (2.102) -/1 -/- -/1 -/- -/- -/- -/- -/-

Total 1/6 4/13 5/9 9/28 2/2 1/5 2/4 6/15

* The scanner was able to identify the vulnerability only with ReScan, but not during the maximum scan time.
† One of the vulnerabilities was found in a URL that broke the app and was eventually excluded.

20 with ReScan. This increase is expected, as the scanner audits a larger area of the applica-

tion when enhanced by our system. Nonetheless, ReScan is able to identify these injections

as potential FPs due to ZAP reusing the same payload. Regarding true positives, in most

cases ReScan effectively enhances the underlying scanner and facilitates the detection of

more vulnerabilities, both for reflected and stored XSS. We also observe that the detection

capabilities improve both for benchmark, and more recent applications. When considering

the aggregated results per scanner for all applications, we find that w3af reports five more

reflected XSS with ReScan and nine additional stored XSS. Moreover, wapiti located four

more reflected and another 19 stored injections, while ZAP has an improvement of two and

nine additional flaws respectively. Enemy of the State exhibited the least improvement but

still located four additional stored XSS; this highlights that while ReScan is naturally depen-

dent on the underlying scanner’s capabilities, it can still effectively facilitate vulnerability

detection. Overall, the standalone scanners reported six unique reflected and 13 stored XSS

among all applications, while with ReScan they reported 10 reflected and 34 stored XSS re-

spectively. Even in the few cases where no additional flaws were detected, the presence of

ReScan does not negatively affect scanning as the same vulnerabilities were detected both

with and without our system. Detecting the same flaws does not necessarily mean that the

standalone scanner has detected all endpoints of the application or that it has sufficiently

tested it; it might simply mean that while ReScan covers a larger area of the application, no

other vulnerabilities exist for it to detect. To uncover more insights, we need to examine the

code coverage that was achieved in each case.

Code coverage. Table 2.3 shows the precise coverage achieved by our system, as unique

LoC executed on the server-side during the scan, and compares it to the coverage of each

individual scanner. ReScan achieves better coverage in all cases and offers an improve-

30 Chapter 2. Black-Box Web Application Scanning

Table 2.3: Total lines of code (LoC) executed by ReScan (R), the standalone scanner
(S), and common to both of them (R∩ S).

App / Scanner w3af wapiti Enemy ZAP
R R∩ S S R R∩ S S R R∩ S S R R∩ S S

SCARF 662 533 548 659 596 611 623 261 288 613 578 599
WackoPicko 1,009 888 907 911 692 710 873 433 452 819 684 784
Wordpress 51,612 30,779 30,805 53,974 30,862 31,134 43,731 28,908 29,266 54,329 33,514 34,484
osCommerce 7,056 2,066 2,074 7,179 6,947 7,140 5,194 2,067 2,067 7,270 6,247 6,925
Vanilla 12,247 8,073 8,137 12,138 7,936 8,717 12,404 2,477 2,479 12,951 8,774 9,568
PhpBB 9,803 2,321 2,330 9,942 3,069 3,091 8,225 6,780 7,018 10,487 4,816 5,259
Prestashop 93,361 14,544 14,709 96,712 14,916 14,926 28,209 19,062 19,062 103,955 10,043 10,409
Joomla 43,094 14,822 14,895 54,048 16,505 17,476 20,113 15,527 15,876 54,711 15,448 16,149
Drupal 80,195 26,251 28,655 80,620 23,290 25,105 70,998 59,998 68,236 74,428 28,272 30,291
HotCRP 19,109 8,772 8,777 17,737 10,517 11,415 17,063 14,871 14,918 15,647 5,463 5,509

10
0

10
1

10
2

10
3

10
4

10
5

SCARF
WackoPicko

Wordpress

osCommerce

Vanilla
PhpBB

Prestashop

Joomla
Drupal

HotCRP

T
o

ta
l
s
c
a

n
 t

im
e

 (
s
e

c
o

n
d

s
 -

 l
o

g
)

Applications

w3af
wapiti

ZAP
Enemy

Standalone scanner
ReScan

Black widow

Figure 2.3: Total scan time in seconds for each app/scanner pair with and without ReScan.

ment of at least 3% and at most 935%, with an average of 168%. To validate the quality of

the increased coverage, we manually sampled and inspected LoC executed only by ReScan

and found that in many cases ReScan-enabled runs reached and tested critical functional-

ity that the standalone scanners did not. Indicatively, ZAP could not reach the categories’

editing functionality in osCommerce, while none of the scanners could post and read draft

discussions in the Vanilla app; both cases led to missing XSS flaws. We also observe that

vanilla scanners reach some LoC which are not executed by ReScan. After inspecting these

cases, we found that they belong to unauthenticated parts of the application, indicating that

the scanner was logged out and continued as such. ReScan’s authentication helper module

ensured that the scanner remained authenticated throughout the scan, as intended.

Performance analysis. In Figure 2.3 we present the total time required to scan each ap-

plication both with and without ReScan. The overhead induced by our system is consider-

able; however this is expected due to the numerous enhancement techniques we apply for

each and every intercepted request and the fact that a full-fledged browsing environment is

leveraged. In addition, the maximum scan time of one day was reached by all scanners for

2.3. Experimental Evaluation 31

0.0

0.2

0.4

0.6

0.8

1.0

 1 10 100

R
e
q
u
e
s
ts

 (
C

D
F

)

Time (sec)

SCARF

Retrieve workflow
Craft HTTP response

Execute workflow
Submit graph edges

Event discovery
Oracle

Collect ISD sinks
Total

 1 10
Time (sec)

WackoPicko

 1 10 100
Time (sec)

Wordpress

 1 10 100
Time (sec)

osCommerce

 1 10 100
Time (sec)

Vanilla

0.0

0.2

0.4

0.6

0.8

1.0

 1 10 100

R
e
q
u
e
s
ts

 (
C

D
F

)

Time (sec)

PhpBB

 1 10 100
Time (sec)

Prestashop

 1 10 100
Time (sec)

Joomla

 1 10 100
Time (sec)

Drupal

 1 10 100
Time (sec)

HotCRP

Figure 2.4: Requests’ CDF per application, in terms of total as well as individual
components’ processing time.

one of the applications (HotCRP) while in total, 15 of the 40 ReScan-enabled runs reached

this limit. In Figure 2.4, we show the total processing time required for each request handled

by ReScan per application and per individual component. We note that each CDF has been

calculated using the aggregated requests from all scanners for that application. This is due

to the fact that the time required to handle each request is irrelevant to the scanner that

initiated it, but heavily depends on the application’s characteristics (e.g. usage and num-

ber of Javascript events, number of detected ISD sinks). Additionally, the totals that were

used to calculate the different components’ CDF differ, as not all of them are executed on

each request. For instance, retrieving and executing a workflow is applicable to all requests.

However, triggering events is only relevant to pages that include them and have not been ex-

plored before, and collecting ISD sinks is only relevant to edges for which we have detected

them. Most notably, event discovery can be quite expensive for applications that heavily

rely on Javascript and client-side events, i.e., on average it takes one to three seconds for

nine of the apps, while Prestashop required 19 seconds. Similarly, fetching ISD sinks on av-

erage took less than two seconds for five applications, while in the worst cases (Wordpress,

Prestashop) it took 11 and 16 seconds respectively. Other system components, such as fetch-

ing and executing the workflow, constructing the navigation model and crafting the final

HTTP response introduce negligible overhead in most cases, i.e., less than a second. Inter-

estingly, while executing the crucially-important authentication oracle after every request

might seem costly, our analysis showed that it only takes up to two seconds for 99% of re-

quests. Overall, each request can be completed on average within three seconds for four ap-

plications and five seconds for another two, while Prestashop generally has slower response

32 Chapter 2. Black-Box Web Application Scanning

times and can take up to 21 seconds. In summary, while the performance overhead is non-

negligible when compared to the standalone scanners, the significant improvements both

in code coverage and vulnerability detection render this a viable and acceptable trade-off.

Prominent use cases. Next we outline interesting use cases that highlight the benefits

of using our framework.

Vanilla FP. When wapiti scanned the Vanilla forums with ReScan it incorrectly reported

an XSS vulnerability due to the payload appearing inside a textarea element (i.e., was not

executed). However, while ReScan detected the injection attempt, due to our FP elimina-

tion mechanism it correctly did not report a vulnerability.

Wordpress FN. One vulnerability is a reflected XSS stemming from the submission of

a vulnerable field in an AJAX request. The AJAX response is then reflected in the same

page, the payload is executed and is then dynamically removed from the DOM; thus nei-

ther wapiti, nor ZAP are able to detect their otherwise successful injection. Since ReScan is

agnostic to the presence and structure of the attempted payloads, instead relying on code

execution, it is able to detect and report this missed vulnerability. This clearly highlights the

need for dynamic vulnerability verification. Moreover, we note that this AJAX call requires

a valid CSRF token, demonstrating the importance of our correct workflow execution.

Vanilla ISD detection. The Vanilla forums’ vulnerability is a stored XSS that occurs when

saving a new discussion as a draft, and is triggered when viewing the author’s drafts. How-

ever, the sink of the injection (/drafts) is not visible anywhere on the application before

saving the first draft and is only added to the home page afterwards. Therefore, the scanner

would need to re-visit the home page and actively search for new URLs and visit them, in

order for ReScan to discover the ISD link, all while before the scanner started fuzzing the

source. This highlights the practicality of the background worker, which operates indepen-

dently of the active scan and attempts to find such links before the scanner starts fuzzing

the corresponding ISD source.

2.3.1 Other Vulnerabilities

While our evaluation focused on XSS, as they are the most prevalent bug among our ap-

plications and also allow for a direct comparison with recent work [141], ReScan aims to

support any vulnerability type that scanners might test for. To that end, we conducted an-

other set of experiments, where we picked known vulnerabilities from our applications and

re-configured the scanners to use the corresponding auditing plugins, to assess whether

our system can effectively facilitate their detection.

File upload. osCommerce suffers from an unrestricted file upload vulnerability [97],

in the image-upload functionality for a new product category in the administration panel.

Specifically, while the .htaccess file in the upload directory attempts to prevent access for

a number of executable files, it does not prevent all of them. To uncover this vulnerability,

2.3. Experimental Evaluation 33

we configured w3af (with ReScan present) to use its file upload plugin and pointed it to

the vulnerable upload form, which led to the successful upload of an executable file and

was detected by the scanner. w3af without ReScan, however, can never reach the upload

form as it cannot authenticate in the application, which also justifies its rather low coverage

in Table 2.3. While the root cause for w3af missing the vulnerability is not specific to the

mechanics behind the vulnerability itself, this highlights the fact that having the necessary

payload to trigger a vulnerability is only one aspect crucial to a scanner’s success.

Login brute-forcing. For brute-forcing weak account credentials we opted to use Presta-

shop, due to its irregular login form functionality. In more detail, while logins are carried out

through a regular HTML form with itsactionattribute set to the login page’s URL, upon sub-

mission the form sends a request to a different endpoint; as such the scanner has no way of

discovering it and successfully logging in. ReScan, correctly submits the form and follows

all redirections, and manages to log into the application. To that end, we enabled w3af’s

form auth brute-force plugin and pointed it to the administrator’s login page. As expected,

w3af by itself was unable to detect the correct credentials, while with ReScan it detected and

reported the vulnerability.

Blind SQL injection. Since the applications in our dataset did not include any non-

trivial SQL injection vulnerabilities (SQLi), we opted to install a vulnerable Wordpress plu-

gin, namely GB Gallery Slideshow v1.5 [4]. One of the HTML forms generated by the plugin

has a registered onsubmit event, which overrides the form’s default functionality by sending

an AJAX request with a completely different payload. One of the AJAX parameters is vulner-

able to a blind SQLi [72], where successful exploitation is not directly visible on the landing

page but is inferred based on the time required to get a response. We configured Wapiti to

leverage its blindsql module and pointed it to the page containing the vulnerable form. As

expected, wapiti without ReScan was able to fuzz the form’s default structure but could not

uncover the actual AJAX request that is sent when correctly submitting the form. In contrast,

ReScan identified the AJAX request through its event discovery process and transcribed it to

a static HTML form in the HTTP response so Wapiti could identify it too. Later, the scanner

fuzzed the correct request, which was replayed by ReScan through the navigation model,

leading to the detection of the vulnerability.

Overall, while certain ReScan components are tailored towards specific types of vulner-

abilities, such as the ISD detection and FP/FN elimination for (stored) XSS, the remaining

components effectively facilitate the detection of other types of vulnerabilities as they are

not tied to the vulnerability itself. For instance, realistic rendering and interaction through

a SotA browser, event discovery, correct workflow execution and maintaining the authen-

ticated state are of crucial importance for two main reasons. First, all these aid scanners

in discovering further application endpoints and functionalities to audit. Second, they are

necessary for properly executing certain functionalities, which is a necessary prerequisite

for the scanner to be able to correctly test its payloads and deploy its fuzzing strategy regard-

34 Chapter 2. Black-Box Web Application Scanning

less of the vulnerability type being tested. As such, our system can effectively be applied to

a large class of different vulnerabilities; by open-sourcing our code, we hope to facilitate

other researchers in the field of black-box web application testing.

2.3.2 URL Clustering

It is critical to ensure that our URL clustering algorithm does not result in scanners missing

relevant parts of the application.

mNDD threshold. To identify the optimal threshold for our mNDD metric, we per-

formed the following experiment. For each of the applications, we manually compiled three

sets of pages. The first set included pages with completely different URLs and functionali-

ties which should not be clustered together, while the second set included pages with sim-

ilar URLs and functionalities that should be clustered. Finally, the third set incorporated

pages that had similar URLs, but should not be clustered due to different functionalities.

We then proceeded to compute the mNDD score for each pair of pages within each set,

where a higher value denotes different pages and a lower value indicates some similarity.

For the pages that should not be clustered (1st and 3rd set), the minimum mNDD value was

0.014, setting an upper bound for the threshold. For the pages that should be grouped to-

gether, the maximum mNDD value was 0.009, indicating a lower bound for the threshold.

As there is no overlap between the range of values for different and similar pages, we opt to

use the lower of the two as our page similarity threshold (i.e., 0.009) to ensure that we avoid

false positives where different pages that happen to have an mNDD slightly less than 0.014

are clustered. During this process we encountered a single false positive, in osCommerce,

where two different pages were incorrectly clustered. This was due to the fact that the two

pages were identical in structure even though they had different functionalities (adding an

item and editing an existing item respectively). However, it is important to note, that this

false positive is not limited to our mNDD approach, as the tree edit distance value is 0 for

the regular NDD as well. We also note that while this threshold might not work for all appli-

cations, it is well-suited for most cases as our empirical analysis was conducted on a dataset

that incorporates a diverse set of applications.

Correctness. To assess the correctness of our algorithm, we relied on the clustering

rules that were set for each application during our main evaluation runs. Specifically, we in-

spected the different parameters that were clustered and proceeded to visit the correspond-

ing pages both with the values that the scanner requested but were redirected, as well as

the final redirection value too. We then observed whether the pages were in fact similar to

each other or if they were incorrectly clustered together. Among all applications, this pro-

cess yielded two cases of false positives. As expected, the first case was the aforementioned

issue with osCommerce described during our similarity threshold experiment. The second

case was for PhpBB, but only for w3af’s scan. After analyzing the cause for this false positive,

2.3. Experimental Evaluation 35

Table 2.4: Qualitative differences between ReScan and Black Widow.
Feature / System Black widow ReScan

Browser support
Navigation model
Inter-state dependencies
Event triggering

- Handle XHR payloads
Authentication helper

- Detect/configure credentials
- Dynamic state oracle
- Re-login
- Retry failed edges

URL clustering
Concurrent workers

we deduced that it was not caused by our algorithm or the mNDD metric, but instead, was

caused due to w3af’s inability to maintain an authenticated session in PhpBB, even with

ReScan. In more detail, PhpBB uses a randomly generated sid URL parameter in all admin-

istrator URLs and also sets the same value in a cookie. After logging in, w3af sent another

request without cookies, ReScan’s authentication helper re-established the session and the

scanner ended up with two different values for sid and the cookie, effectively creating a

mismatch between them and leading to unauthenticated responses. As a result, while it ini-

tially discovered the existence of post-login URLs, it could not properly request them and

it kept getting an invalid session message in all responses, leading to the clustering of dif-

ferent pages. This, however, was not the case for the other two scanners, which got proper,

authenticated responses for these pages and did not cluster them incorrectly.

Performance gain. To measure performance gain we further analyze wapiti’s run on

osCommerce as a representative case, since the application includes several similar pages

that should be clustered and wapiti also takes the longest among all scanners to complete

its operation. We then proceeded to re-run the scan without the URL clustering module

and without a maximum scan time. The scan with URL clustering enabled took 62,690 sec-

onds (17.4 hours) while the other scan took 418,622 seconds (116.3 hours), resulting in a

∼6.7x speedup.

2.3.3 State-of-the-Art Comparison

Our system adopts a novel approach that allows it to leverage any underlying scanner. None-

theless, we opt to compare it to Black Widow (BW) [141], a state-of-the-art scanner, that

highlighted the need to combine features from multiple other systems and offers certain

comparable features. This comparison highlights that even though BW was designed to in-

corporate multiple ideas from prior approaches, it was still built as a standalone tool, and

thus is susceptible to the inherent limitations of a monolithic approach. In contrast, ReScan

36 Chapter 2. Black-Box Web Application Scanning

Table 2.5: Detection and coverage comparison between the best run of ReScan and
Black Widow for each app.

Detection Coverage
System ReScan Black Widow ReScan Black Widow
App R-XSS S-XSS R-XSS S-XSS LoC

SCARF - 8 - 4 662 593
WackoPicko 3 1 2 2 1,009 1,003
Wordpress 1 1 - 1 54,329 62,281
osCommerce 3 16 - 11 7,270 12,193
Vanilla - 1 - 1 12,951 10,108
PhpBB - 4 - - 10,487 8,072
Prestashop 1 - - - 103,955 23,166
Joomla - - - - 54,711 50,240
Drupal - - - - 80,620 39,247
HotCRP 1 - - - 19,109 23,241

is designed to provide researchers with flexibility, allowing them to leverage the capabilities

of any existing system of their choice, due to its middleware architecture.

Setup. To compare against BW, we downloaded and ran it on all applications. One minor

change we made to its source code was to support user-defined credentials, as their system

uses hardcoded values for all input fields, including usernames or emails and passwords.

Moreover, we had to fix a few minor runtime exceptions that halted the tool’s operation, and

write a custom parser that de-duplicates the scanner’s results. We stress that these changes

were strictly limited to necessary modifications for the tool to execute properly and did not

interfere with its overall approach or methodology. While their study ran each scanner for

a maximum of eight hours in the evaluation, we opted to let BW run for up to one day.

Qualitative differences. As can be seen in Table 2.4, both systems use a fully-fledged

browser, create a navigation model based on which they execute workflows and also un-

cover ISD links. While ISD detection is conceptually similar, ReScan does not have any con-

trol over when to crawl or fuzz each endpoint, highlighting the necessity of our BG worker

approach. In more detail, BW always prioritizes form submissions over other edges and

re-fetches all GET edges right before initiating the scanning phase; this results in it first

fuzzying an ISD source and then visiting the corresponding sink, allowing for the timely

detection of ISD links. In contrast, ReScan cannot make this assumption as it depends on

the internals of each individual scanner; thus, we need to be more generalizable when han-

dling ISD detection and need to account for arbitrary fuzzing and crawling orderings due

to the underlying scanner design. Additionally, both systems can discover events and cap-

ture asynchronous requests and DOM changes. However, BW lacks the ability to set such

requests’ payloads dynamically, while ReScan leverages an internal proxy to do so after the

request has left the browser. Regarding authentication, while BW can submit a login form

(with hardcoded credentials), it cannot infer whether the login was successful or not. More-

over, while it can re-login to the application if needed, it only does so when presented with

2.4. Limitations and Future Work 37

a login form. Applications’ behavior varies and accessing an authenticated resource or ex-

ercising an authenticated functionality when logged out does not always result in a login

page; thus their system will miss authenticated parts of target applications. On the other

hand, ReScan automatically deduces a robust authentication oracle and consults it after the

execution of every request and retries any operation that might have failed due to a broken

session. Regarding similar pages, BW clusters pages and imposes a hard limit on how many

similar pages they will test (if they share the same path but with possibly different URL query

parameters) without considering the actual pages’ content and functionality. This can in-

correctly cluster pages that should be audited separately. Another main difference is that

ReScan operates in a concurrent fashion, while BW is sequential, directly affecting its per-

formance as seen in Figure 2.3. Finally, BW is a standalone tool that tests only for reflected

and stored XSS, leaving a plethora of other flaws undetected. In contrast, our system op-

erates as a generic enhancement middleware framework that can accurately replicate and

potentially enhance virtually any test performed by scanners.

Quantitative differences. BW reported two unique reflected and 19 stored XSS among

all applications, compared to ten and 34 detected by ReScan, as shown in Tables 2.2 and 2.5.

Excluding Drupal and Joomla, for which no vulnerabilities were detected by any scanner, in

all but two of the remaining cases there is at least one ReScan-enabled scan that outper-

forms BW. In WackoPicko, BW manages to detect a stored XSS through a comment which

needs to be previewed first and then posted. However, the vulnerable field is not present

in the final submission form, only in the intermediary preview form. Due to this irregular

structure and since scanners attack each form separately, despite ReScan correctly model-

ing and executing the workflow for the final submission form, scanners cannot detect the

flaw as they try to fuzz that form’s fields only. Regarding coverage, ReScan outperforms

BW in seven out of ten applications, and overall offers an average improvement of 46% in

reached LoC. For the three remaining cases where BW achieved better coverage, it was ei-

ther due to the max scan time being reached by all scanners, and since BW prioritizes form

submissions over other edges, it likely managed to execute more functionalities, BW visited

URLs that were excluded from the other scanners, as stated in § 2.3, or it visited unauthenti-

cated parts of the application due to a broken session. Nonetheless, ReScan still managed to

detect more vulnerabilities in these cases as well. Performance-wise, as can be seen in Fig-

ure 2.3, BW reached the max scan time of one day in eight of the applications, highlighting

the shortcomings of their sequential execution.

2.4 Limitations and Future Work

Categorization issues. In certain cases scanners might report a stored XSS as reflected:

When ReScan appends an ISD sink in the HTTP response, the scanner will detect the vul-

nerability as a reflected XSS, as both the injection and its reflection occurred in the same

38 Chapter 2. Black-Box Web Application Scanning

request-response pair from the scanner’s perspective. However, there is also a significant

advantage to our technique, i.e., inspecting ISD sinks right after the injection in contrast

to scanners’ default behavior. Scanners will either visit discovered URLs at the end of the

scan, looking for previous stored injections, or will try to re-inject their payloads and then

inspect the URLs. These approaches, however, are not robust since a change in the appli-

cation’s state or content might render the detection impossible at this point. This could be

due to a successful payload being overwritten by one that does not trigger the vulnerabil-

ity, or the reflection page or injection point not being available anymore; directly checking

ISD sinks solves this issue. Moreover, this miscategorization may also occur during scan-

ners’ regular operation, if a stored injection is reflected directly in the HTTP response. In

this case, the scanner will initially classify the flaw as a reflected XSS, but later on, when

checking for stored XSS it might be missed as one, due to the aforementioned reasons.

During our evaluation, we reported the discovered vulnerabilities based on their actual

nature, despite being misclassified by the scanner. The rationale behind this decision is

three-fold. First, this issue is inherent to scanners’ behavior and further exacerbated by

ReScan’s techniques. More importantly, the vulnerable parameter has been detected, and

the effort needed to patch it is the same regardless of the reported XSS type. Finally, ReS-

can’s results provide all necessary information about each vulnerability, i.e., identifying the

vulnerable parameter, the URL in which it is located, and where the injection is triggered.

Session sharing. As stated in §2.2, workers share the authenticated session based solely

on the website’s cookies.While this is sufficient for our experimental setup and application

set, in practice, applications might utilize other APIs and functionalities for their state and

session management (e.g., local/session storage, service workers etc). We plan to augment

our session sharing among workers to support such alternative approaches as part of our

future work.

False positives & negatives. ReScan aims to eliminate FPs and FNs specifically for XSS

flaws. Implementing this capability for other types of vulnerabilities requires inferring what

vulnerability is being tested in each request and how successful exploitations would be ver-

ified. We consider the development of such modules for different classes of flaws as part of

our future work.

Overhead. Leveraging a fully-fledged browser to appropriately execute every request,

and employing our numerous enhancement techniques, imposes a considerable overhead

in the overall scanning time. However, due to the significant improvement in code cover-

age and vulnerability detection, as well as due to ReScan outperforming the current state

of the art in most cases [141], we believe this to be an acceptable trade-off which renders

the deployment of our system feasible. Nonetheless, we consider the exploration of addi-

tional optimization techniques an interesting future direction. For instance, ReScan could

identify requests that do not require our enhancement techniques (e.g., edges with no ISD

effects or that do not require precise workflow execution) and directly proxy them to the

2.4. Limitations and Future Work 39

web application.

Ethical considerations. We note that all vulnerabilities detected during our evaluation

have already been disclosed to the corresponding vendors by prior studies or researchers.

40

Chapter 3

Black-box Auditing for Web Authentica-
tion and Authorization Flaws

Web services have become treasure troves of sensitive data, rendering user accounts high-

value targets for attackers. Recently, authentication flaws in popular web applications (or

“apps”) exposed sensitive data and allowed access to critical functionality of millions of ac-

counts [9, 10]. Reports have even implicated nation-state adversaries in attacks that ulti-

mately aimed to steal user credentials [11, 12]. As such, authentication and authorization

flaws in web apps are of great importance [272, 284] as they pose a significant threat. How-

ever, detecting such flaws is challenging.

As new technologies and features continue to emerge, web apps are becoming increas-

ingly complicated. This complexity is exacerbated by their rapid evolution and the addi-

tion of new functionality and modules [127, 132]. This can result in the introduction of se-

mantic bugs whose composite nature [250] renders detection a challenging task [132, 214].

Moreover, the massive codebase that comprises modern web apps is often developed by

separate teams, which can have a negative impact [219] and result in fragmented audit-

ing procedures that do not fully capture the side effects that arise from the interoperability

of different components. Web apps can also include legacy code, which is often a signifi-

cant source of new vulnerabilities [122], further complicating internal auditing procedures.

To make matters worse, applicable security mechanisms are often deployed in an incom-

plete or incorrect manner [118, 153, 173, 237, 275]. As a result, external auditing initiatives

from researchers can significantly contribute to the overall hygiene of the web ecosystem

by discovering vulnerabilities. However, the sheer scale of this issue and the prevalence of

obfuscation [230, 241] mandate an automated, black-box dynamic analysis.

In this work we adopt such an approach and focus on flaws that lead to the exposure of

authentication cookies that allow adversaries to access sensitive data or account function-

ality. While recent studies have demonstrated that such flaws exist even in the most popular

websites [115, 147, 238], these studies relied on significant manual effort and were, thus, in-

herently small-scale covering a very limited number of domains. With surveys reporting

41

42 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

that Internet users in the US now have ∼150 password-protected accounts [6], and tens

of thousands of websites streamlining account creation through Single Sign-On [147], it is

apparent that manual efforts are not sufficient. To that end, we develop a completely auto-

mated black-box auditing framework that detects authentication and authorization flaws

in web apps and identifies what sensitive/personal user information can be harvested by

attackers. Our system is designed to handle every step of the process, including account cre-

ation and user-level interactions. Specifically, our framework analyzes the characteristics

and infers the access privileges granted to cookies, while also evaluating the deployment of

security mechanisms that can prevent cookie-hijacking attacks.

The main design goal of our framework is to automatically audit web apps in a black-

box manner, without any prior knowledge of the underlying app’s structure or code. The

framework is driven by XDriver, our custom browser-automation tool built on top of Sele-

nium, designed for robustness and fault-tolerance during prolonged interactions with web

apps. As XDriver is geared towards security-related tasks, we have implemented modules

for evaluating security mechanisms that are pertinent to our study (e.g., HSTS). The black-

box auditing process is handled by a series of components dedicated to specific phases of

our workflow, including components that employ differential analysis and a series of ora-

cles for inferring the account’s “state” reached by requests depending on the cookies sub-

mitted and the level of account access granted to those cookies. This requires identifying

which cookies are used for authentication and exploring the conditions for different attack

vectors under which they can be hijacked. Finally, our framework includes a novel module

that analyzes web apps and detects personal user data (e.g., name, email, phone number)

that is accessible using hijacked cookies. This is achieved through an in-depth investiga-

tion that analyzes the app’s client-side source, storage, and URL parameters to detect the

exposure of sensitive data.

Using our framework we conduct the first fully automated, comprehensive, large-scale

analysis of cookie hijacking in the wild. First, we crawl 1.5 million domains, and identify

over 200 thousand domains that support account creation. Subsequently, our framework

manages to fully audit almost 25 thousand (∼12%) of the domains, requiring 8.5 minutes per

domain on average. Our experiments reveal that 50.3% of those domains expose their cook-

ies under different scenarios and, thus, suffer from authentication or authorization flaws.

To make matters worse, we find that security mechanisms that could prevent these attacks

are not widely adopted (only 11.8% of vulnerable domains do so) or are often deployed in

an erroneous manner. In more detail, we find that 10,921 domains expose authentication

cookies over unencrypted connections, which can be hijacked by passive eavesdroppers

and used to access users’ accounts. Moreover, 5,099 domains do not protect their authen-

tication cookies from JavaScript-based access while simultaneously including embedded,

non-isolated, third party scripts that run in the first party’s origin. With these scripts being

fetched from 2,463 unique third party domains, users currently face a considerable risk of

3.1. Background and Threat Model 43

malicious, compromised, or honest-but-curious third parties reading their authentication

cookies.

Due to the severity of the flaws detected by our system, it is crucial that our findings

are made available to developers so they can patch their systems. While we have notified

several vulnerable domains, finding an appropriate contact point for such a vast number of

domains is infeasible; thus, we have set up a notification service that allows developers to

access the auditing results.

3.1 Background and Threat Model

Our framework focuses on detecting authentication and authorization flaws that stem from

the incorrect handling or protection of cookies. While cookie hijacking is not a new attack

vector, it can still affect even the most popular websites (e.g., Google, Facebook) and expose

users to significant threats [238] including complete account takeover [147]. We consider

the following types of attackers.

Passive network attacker. This attacker, referred to as an eavesdropper, has the abil-

ity to intercept and inspect unencrypted HTTP traffic (but does not attempt to modify it).

We assume this attacker cannot intercept HTTPS traffic, and do not explore more elabo-

rate, active attacks (e.g., SSL-stripping [192], cookie-overwriting [279]). This means that

any cookies that are not protected with the secure flag can be intercepted by this attacker

when appended to an HTTP request. This can, e.g., occur naturally while a user browses

a website (since many websites serve certain resources over HTTP). An important detail

that amplifies the practicality of this attack is that even when a domain supports HTTPS,

browsers will by default attempt to access the domain over HTTP before being redirected

by the web server to HTTPS [238]. While this can be prevented with mechanisms like HSTS,

they are still not widely adopted and are often deployed incorrectly [173, 237].

Web attacker. This attacker can execute some JavaScript code within the origin of the

web app, e.g., through a cross-site scripting (XSS) attack [149]. Another attack vector is

introduced if the web app includes a script from a third party domain without “isolating”

it in an iframe, effectively allowing it to execute in the first party’s origin [202]; malicious

scripts (e.g., malvertising [185]) or compromised script providers can then read first party

cookies [101]. We define as third-party any scripts that are loaded from a different do-

main [226, 253, 254], where the term domain will be used to refer to the eTLD+1 domain

throughout the chapter. Consequently, cookies that are not protected with the httpOnly

flag will be readable by client-side code and can be obtained by the attacker. We refer to

these two attack vectors as JS cookie stealing.

It is important to stress that our framework does not search for XSS bugs or malicious

third party scripts; our system focuses on automatically inferring the feasibility of stealing

authentication cookies through JavaScript due to insufficient protection, and exploring the

44 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

example.com

URL
Discovery

Yes

No
Found
forms?

Signup Login
Yes

Success?

NoFound
SSO?

Success?

SSO Success?

Abort

Cookie
Auditor

No
Vulnerable?End

Auth-
Cookies

Privacy
Auditor

No No

Yes

Yes

YesNoYes

Figure 3.1: Major phases in our auditing workflow.

subsequent privacy implications for users. As such, the numbers reported on JavaScript-

based cookie stealing are an upper bound that is contingent on the presence of XSS vul-

nerabilities or malicious third party scripts. Nonetheless, XSS vulnerabilities remain one

of the most common attacks against web applications [5] and a plethora of detection sys-

tems have been proposed (e.g., [103, 253, 256]). Similarly, recent work has highlighted the

prevalence of (suspicious) third party scripts [158, 176].

3.2 System Design and Implementation

Here we present our framework and the methodology of the core components of our black-

box auditing process. Figure 3.1 depicts a high-level view of the workflow for clarity, and to

facilitate presentation. In the following subsections we highlight each component in our

pipeline and provide design and implementation details.

3.2.1 Automated Account Setup

The first phase in our workflow is to automatically create accounts.

URL Discovery. This module follows a straightforward process of crawling domains

and terminating when both a login and a signup form have been located. As a first step it

explores the URLs included in the public dataset by Ghasemisharif et al. [147]. If it does not

locate both types of forms, next it will crawl the target web application. The crawl starts

at the landing page and goes to a depth of 2 – we opt for a more shallow crawl to reduce

the crawl’s duration and enable our large-scale study. Our framework collects all links in-

cluded in each page that point to the same domain, and subsequently visits and inspects

them. This step prioritizes links that contain an account-related keyword (e.g., signin, reg-

3.2. System Design and Implementation 45

ister etc.) and follows a breadth-first search (BFS) approach. If both types of forms are yet to

be found, the final step is to collect the first 30 links from the homepage and inspect them,

excluding previously-visited URLs. This is based on the intuition that such pages are typi-

cally easily accessible to users and not hidden behind multiple menus, and are usually at

the top of the page.

For each visited page, we extract any forms that resemble a login or signup process, and

a series of heuristics are employed for detecting such forms within a page’s code. Specifi-

cally, for each form we first count the number of text, email, password, checkbox and radio

type input fields. We also check which of those are visible following the custom heuristics

proposed by SSOScan [281]. If there are no password fields we skip the form since it proba-

bly is not a login or signup form (e.g., contact forms are common). If it contains more than

one password field we label it as a signup form since such forms usually require the user to

retype the password for verification. If there is a single password field and a single text field

we label it as a login form, as this is the typical structure of such forms. If there are more than

one text fields or checkbox/radio fields (accounting for the ”remember me” option in login

forms) the form is labeled as a signup form. If the form has a more irregular structure and

has not been identified with these heuristics, our system resorts to using two sets of regular

expressions (one for login and one for signup) for analyzing the HTML code and detecting

elements that allow us to label the form accordingly.

Automated sign up. Automating the account creation process in an application-agnostic

way is a challenging task. This is due to the fact that websites have different requirements

and constraints regarding the type and format of information for the fields needed for com-

pleting the registration. These vary and pertain to the number and type of fields (e.g., email,

password, username etc.), as well as to the different restrictions in what is considered a valid

input. For instance, a website might consider “+1 012 345 6789” a valid US number while

another might require a different format.

The Signup module iterates over the discovered signup pages and attempts to fill each

candidate form appropriately. We use a manually-curated set of regular expressions that

try to detect what type of information each input element is expecting (e.g., email, postal

address, date). We first carefully assign labels to each of the input elements by checking the

for attribute of label elements, since we expect them to be the most descriptive. If there is

no match, we move on to the element’s HTML code (i.e., its attributes), which can reveal

useful information about its type (e.g., an element of type emailor with a descriptive id like

last name). If our module has yet to identify what type of information is expected, we con-

sider the text content preceding the element. While this is the most common convention

for labeling elements, developers are not constrained and can structure their forms differ-

ently. We, thus, follow a conservative strategy and consider these assigned labels as possible

labels, since we cannot be certain of the form structure – in some cases the input element’s

accompanying text might be after the element. This is also why we prioritize any previously

46 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

identified labels, and consider the “possible” labels as a last resort.

If there is still no match, we use Google Translate to translate any labels assigned to the

element in English and repeat the aforementioned process. This is needed since our analy-

sis is not limited to English websites and foreign content is common. We refrain from using

Google Translate initially, since the previous steps might reveal the type of field, allowing

us to avoid the unnecessary API calls. Finally, we resort to either a random string for text

inputs or a random selection for select and radio elements. To generate valid inputs after

having detected the element’s type, we use Python’sFakerpackage. We also infer the input’s

expected size by inspecting its size and maxlength attributes and adjust our value accord-

ingly. After filling out the inputs we submit the form. At this point we need to infer whether

the signup attempt was successful or not. We employ the following oracle that deems the

signup process successful if any step yields a positive result:

• Visit the homepage and check if any of the submitted identifiers appear. The intuition is

that if signup failed, websites would not store the provided information. We refrain from

making the same check at the landing page after the form submission, since a website

might display identifiers in an error message.

• Visit the form’s URL and check if it is still displayed. The intuition is that after a successful

signup the website will not keep displaying the form. However, we have observed cases

where the signup was successful, but the signup form was still displayed.

• Check if we received any emails from the domain. The intuition is that a failed signup

attempt would not trigger an email delivery.

• Attempt to login to the website with our automated Login module (described further

down). A successful login attempt indicates that the signup was successful.

If the signup is deemed successful we store the filled values and end the signup process.

Otherwise, we try to identify any required fields in the form (i.e., by checking for the HTML

required attribute or an asterisk or the required keyword in the element’s labels) and attempt

to resubmit the form using only those, to reduce the probability of error. If that fails once

again, we move on to the next form, until a successful registration is detected or all forms

have been processed. After registration we also handle any emails sent by the domain, typi-

cally pertaining to account verification, to ensure that our newly created account is valid. As

we cannot be certain of those emails’ structure or of any action that might be required, we

extract and visit all URLs included in the email and try to detect commonly used keywords

and phrases pertaining to successful verification. Through empirical analysis we observed

that several websites might require the user to additionally click on a button in that page to

finish the process. Therefore, if we do not detect any of the above keywords, we resort to

clicking all displayed clickable elements in the page.

Automated login. For us to complete the login process, we visit the discovered login

URLs (i.e., the ones that contain a login form) and submit each candidate form with our test

account credentials. Concluding whether the login attempt has been successful is straight-

3.2. System Design and Implementation 47

forward in most cases; the login oracle re-fetches the page with the login form and checks

whether the submitted form remains in the page. If not, the login attempt is considered

successful. During our empirical analysis we observed that several poorly designed web-

sites kept displaying the form even after a successful login; to account for such cases, if the

form persists, our login oracle additionally checks if any of our test account’s identifiers (e.g.,

email, username etc.) are now present in the homepage’s source code. Similarly, it uses a

set of heuristics for detecting whether any logout buttons are displayed in the homepage. If

either process yields a result the login is deemed successful.

SSO Fallback. If our system is not able to successfully complete the traditional account

creation process, it alternatively identifies whether the app supports Single Sign-On with

one of the most popular Identity Providers (IdPs) – we currently support Facebook and

Google. If SSO elements are discovered it attempts to automatically complete the SSO pro-

cess using test accounts that have been registered in the IdPs. First we need to identify if

the site actually supports SSO; we have created a set of regular expressions that identify

potential HTML elements in a page that can be used for performing SSO. The detection of

such elements is performed during the execution of the URLDiscovery module. The mod-

ule terminates if both login and signup forms have been located, regardless of the discovery

of potential SSO elements. This is due to the fact that the available SSO options usually ac-

company the account related forms (if a traditional login scheme is supported). Thus, when

locating a login or signup form we also detect if the site also supports SSO.

For each URL, we iterate over the candidate SSO elements and click them. We priori-

tize elements that are displayed, based on the intuition that sites are usually upfront about

the available login options. For displayed elements we use Selenium’s clickmethod, effec-

tively replicating a user’s action. For hidden elements we refrain from trying to make those

elements appear, which would involve clicking over other elements and potentially lead-

ing to unintended behavior and considerably increasing the process’ duration. Instead, we

try to trigger their onClickmethod via JavaScript. While this is generally effective, in some

cases the candidate element is an outer wrapper element (e.g., a <div> element which con-

tains an <a> element), and clicking it via JavaScript will not trigger SSO. Thus, for each non-

displayed candidate element we also consider its children elements. While this leads to ad-

ditional elements that need to be tested, we can quickly click on elements and decide if one

is an actual SSO element; the overhead induced by this approach is negligible in practice.

The straightforward approach for inferring whether we clicked the correct element is

to wait for the appearance of a predefined element, as a button that authorizes the app to

access user data on the IdP should appear. However, this is inefficient and expensive as we

would need to wait a sufficiently long time after clicking on every element to ensure that

the necessary steps (and background server-communication) of the SSO protocol actually

completed. We opt for a more elaborate approach that relies on the fact that an HTTP re-

quest is issued towards the IdP’s SSO endpoint when the correct element is clicked. We

48 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

setup a modified proxy in passive mode which notifies our framework if such an outgoing

request is observed. This allows us to quickly iterate over all candidate elements. The first

time our system logs into a website we authorize the app in the IdP by following a few easily-

automated steps.

It is worth noting that inferring whether the SSO process was successful is not necessar-

ily equivalent to determining if our system is logged in the web app. For instance, a website

might require a few extra steps to be taken (typically pertaining to account setup) after the

user clicks on the SSO button and authorizes the app in the IdP; in this case our system

will be in an intermediary state where the user is not yet fully logged in. We employ two

separate oracles to decide if SSO completed and if we are logged in. The SSO oracle first

checks if the SSO element we clicked on is still displayed. If not, the SSO was (most likely)

successful. However, as some websites keep displaying the elements even after a successful

SSO, the SSO oracle utilizes the SSO login oracle for further verifying the successful com-

pletion of the SSO process. This oracle searches for displayed account identifiers, logout

buttons, and our IdP test account’s profile photo which is often fetched from the IdP. If any

of those checks is positive, the SSO login is deemed successful. This oracle focuses only on

displayed elements, because we found cases where a website that was authorized in the IdP

loaded identifiers provided by the IdP and displayed them in the page’s source (e.g., in an

inline JavaScript object) without having logged the user in.

Some websites require a few extra steps pertaining to account setup to be taken in or-

der to complete the SSO. We detect and automate this process as well, using a modified

Signup module that has a few minor changes in its workflow and oracle, which address SSO-

specific variations in the process. Typically, websites display two options for completing

the account setup after a successful SSO, the first being to link the new SSO identity with

an existing account and the second about creating a new account. We detect any clickable

elements that indicate the latter using regular expressions and iteratively click them. We

then collect all forms displayed in the page, as we do not have any knowledge of their struc-

ture (i.e., it is common that such an account setup form might not even include a password

field). Finally, we iterate over the discovered forms, fill and submit them, and consult our

modified Signup oracle for each submission. As such, the oracle has been modified so the

check for identifiers is done only on displayed elements, for the same reason with the SSO

login oracle. In addition, if all other checks fail, we check if any password type fields were

submitted in the signup form. If that is the case, we proceed by performing a generic login

attempt using the discovered login forms.

False Positive/Ambiguous Login Elimination. After creating an account, we perform a

final step to eliminate cases where our oracles yield a false positive (i.e., consider a login at-

tempt to be successful despite not actually being logged in) or are not able to disambiguate

between being logged in or not for a specific website. We send an HTTP request without ap-

pending any cookies and consult our login oracle once again; if it claims we are still logged

3.2. System Design and Implementation 49

in we mark the website as a false positive and abort the process. This happens when a web-

site does not follow any of the development “conventions” that our oracles anticipate, or

other mechanisms interfere with the session’s state (e.g., a website displays an identifier

that was stored in localStorage even when no cookies are submitted). It is worth noting

that while it is straightforward to clear such storage mechanisms, we refrain from doing so

since this can have unexpected effects on a website’s intended functionality and impact the

operation of subsequent modules.

Captchas. Protecting account creation through captchas is common practice and, there-

fore, creating a captcha solver can considerably improve our system’s coverage. Initially, we

implemented a solver based on recent attacks against Google’s audio reCaptcha [107, 247].

Unfortunately, reCaptcha’s advanced risk analysis system currently detects the use of Web-

Driver, which results in Google not serving captchas to our framework. Since building

a stealthier captcha solver is out of the scope of our work, and funding human captcha-

solving services to create accounts presents an ethical dilemma, we opted to not handle

such cases. However, due to the popularity of domains that employ captchas, in our eval-

uation we include a set of popular domains for which we completed the account creation

process manually. We stress, however, that the∼25K domains that comprise the bulk of our

evaluation did not require any manual intervention.

3.2.2 Cookie Auditor

To investigate whether users are exposed to session hijacking attacks due to flawed or vul-

nerable authentication practices, the next phase of our framework’s workflow relies on mod-

ules that analyze the cookies set by a specific web app and identify potential hijacking op-

portunities based on their attributes. As we require a method for deducing with minimal

overhead which cookies provide some form of authentication, we design and implement

a simple, yet effective, algorithm that we present in Algorithm 1. The core idea is to in-

spect whether the discovered cookies are protected with the appropriate security-related

attributes and subsequently infer which of those cookies are used for authentication.

Cookie attributes. Our CookieAuditor algorithm begins by identifying which cookies

set by the website are protected with the secure and httpOnly attributes and groups them

accordingly (line 2). If a cookie has both attributes enabled, it will be included in both sets.

It then iterates over these cookie sets (6) and infers whether the website is vulnerable to a

specific attack from our threat model based on the corresponding attribute. Before actu-

ally evaluating a cookie set, it first checks if the set is empty. This indicates that the site is

vulnerable to the attack, e.g., if none of the cookies has the secure flag set, an eavesdrop-

per could successfully perform a cookie hijacking attack (7-8), as described in prior manual

studies [238]. On the other hand, if the attribute is present in one or more cookies, the algo-

rithm will either infer the result from the previously tested set or evaluate this cookie set.

50 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Algorithm 1 CookieAuditor algorithm
1: Function AUDIT
2: critical cookies←{

’secure’ ← [′cookieA′,′cookieB′,...],
’httpOnly’← [′cookieD′,′cookieF′,...]

3: }
4: vulnerable←{ ’secure’←NULL, ’httpOnly’←NULL, }
5: tested← []
6: for attr, cookies in critical cookies do
7: if cookies.is empty() then
8: vulnerable[attr]←True
9: else

10: for tested attr in tested do
11: tested set←critical cookies[tested attr]
12: if cookies == tested set then
13: vulnerable[attr]←vulnerable[tested attr]
14: else if vulnerable[tested attr] AND cookies.is subset(tested set) then
15: vulnerable[attr]←True
16: end if
17: end for
18: if vulnerable[attr] == NULL then
19: vulnerable[attr]=EVAL(cookies)
20: end if
21: end if
22: tested.append(attr)
23: end for
24: return vulnerable
25: Function EVAL (cookie set)
26: BROWSER.remove cookies(cookie set)
27: BROWSER.ref resh()
28: return login oracle()

Evaluating a set means that we exclude it from the browser’s cookie jar (i.e., those cook-

ies will not be sent in the subsequent request), issue a new HTTP request to the website,

and consult the login oracle to determine if we are still logged in (26-28). As can be easily

deduced, being logged in while excluding all cookies with a specific attribute means that

the website is indeed vulnerable to the specific attack. However, if the exact same cookie

set has been tested before we can directly conclude whether the website is vulnerable or

not (12-13). Finally, in cases where the cookie set is a subset of a previously tested set where

our test account remained logged in, we can again safely conclude that the website is vul-

nerable for this attack as well (14-15). For instance, if we excluded the set [A, B, C] and we

were still logged in (i.e., vulnerable) then testing the set [A, C] would also result in a logged

in state, since we would now send even more cookies than before. This is why we prioritize

larger cookie sets (we omitted this part of our algorithm for brevity). Finally, after evaluating

a cookie set, we send another request containing all the cookies, to make sure our session

is still valid. (only if we were logged out after the test). If the session has been invalidated

by the server, we login again and update our cookie values with those of the new session.

This allows us to efficiently identify if a website is susceptible to cookie hijacking and, if so,

via what means. In the worst case scenario, our approach would need 6 requests, i.e., 3 re-

quests per security-related cookie attribute. It is important to note that this technique has

3.2. System Design and Implementation 51

the drawback of not revealing which of the cookies are actually authentication cookies.

Authentication Cookies. To further analyze the root causes of authentication flaws, our

framework needs to be able to identify the subset of authentication cookies among all the

cookies that are set. Mundada et al. [200] proposed an algorithm, however, their approach

overlooks certain cases and can lead to incorrect results. We build upon the core algorithm

they proposed and modify it to correctly handle additional cases. Their proposed algorithm

starts by considering only the cookies set at login time (login cookies) and generating a par-

tially ordered set (POSET) of every possible combination. Since the search space is expo-

nential, and in many cases infeasible to test all combinations, the algorithm establishes a

series of rules based on the outcome of certain tests to reduce the testing time. The core

algorithm works as follows:

• Alternate by testing one round from the bottom of the POSET (i.e., disabling cookies from

a full cookie set) followed by a round from the top of the POSET (i.e., enabling cookies

from an empty cookie set). According to their description, rounds are followed in an in-

cremental manner and all cookie sets for a given round are tested consecutively (e.g., all

cookie sets where only 1 cookie is disabled, then all cookie sets where 1 is enabled etc.).

This is also the root cause that leads to incorrect results in certain cases, as we detail next.

• If a disabled cookie set causes the test to fail (i.e., the user is logged out), then all subse-

quent cookie sets that do not contain this set can be skipped.

• If an enabled cookie set is found to cause the test to succeed (i.e., the user remains logged

in), then all subsequent cookie sets that contain this set can be skipped.

• If a cookie that was not set at login time is detected to be part of an authentication combi-

nation, a similar nested process is executed for the non-login cookies and the login cookie

array is expanded to include these cookies.

While this approach is generally effective, we have identified scenarios where it yields in-

correct results. To illustrate such a case, consider the following example: if a website has two

authentication cookie combinations, e.g., [A,B] and [C,D], the algorithm will first set a rule

when disabling two cookies. Specifically, when disabling [A,C] none of the authentication

cookie combinations we are looking for will be complete, and the user will be logged out of

the web app. This results in establishing the rule “any cookie set that does not include [A,C]

should be skipped“. Later on, when disabling the set [B,D] (which satisfies the first rule), the

user will again be logged out, leading to a similar rule for this set as well. At this point the

ruleset dictates that any set that does not include [A,C] or [B,D] will be skipped. However,

in the very next round (i.e., when enabling two cookies), when checking whether the actual

authentication cookie combinations should be tested, the algorithm will skip them as they

do not satisfy the above ruleset. As a result, the actual authentication cookie combinations

will not be inferred.

Thus, we cannot blindly follow such rules when enabling cookie sets. This, however, in-

troduces the risk of a major performance penalty. Consider a second example of a website

52 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

that has two authentication combinations, e.g., [A] and [B]. The first rules the algorithm will

set will be when enabling a single cookie. Specifically, when only enabling [A] the user will

be logged in and a rule will be set, dictating that “any cookie set that includes [A] should be

skipped“. Likewise, when enabling [B] a similar rule will be set. In the next round (i.e., when

disabling two cookies) the only set that will be tested will be the one not containing [A] and

[B], as it is the only one that respects the current ruleset, and the user will be logged out. This

results in the rule “any cookie set that does not include [A] or [B] should be skipped“ being set.

Next, when enabling two cookies, and having established that we cannot follow the last rule

when enabling cookies, the algorithm will then test all sets of length two that do not con-

tain any of the two authentication cookies. The following rounds of the algorithm behave

similarly (i.e., disabling/enabling three cookies and so on). However, we can tell that the

algorithm has already detected the authentication cookie combinations and should not try

any more tests.

To avoid this performance issue, we modify the algorithm to respect such rules when

enabling cookies, but in a slightly different manner: cookie sets that result in the user being

logged out when disabled are flattened into a vector (e.g., the ruleset [[A,C], [B,D]] from the

first example becomes [A, B, C, D]) and we safely skip the cookie sets that do not include any
of these cookies. In our first example this results in the authentication cookie combinations

being detected. In the second example it results in not testing any sets that are redundant

after detecting the correct combinations.

We also note that while we label them as authentication cookies, since they lead to the

exposure of user identifiers, this might be the result of flaws in the web app’s authorization

policies, and not due to them actually being designed as (or intended for) authentication.

Nonetheless, our goal is not to infer the developers’ intention but to identify which cookies

lead to (full or partial) authentication.

3.2.3 Privacy Leakage Auditor

Apart from automatically detecting flaws that expose authentication cookies, our goal is to

also identify what personal or sensitive user data attackers can obtain. We develop Priva-

cyAuditor for locating leaked user information following a differential analysis methodol-

ogy. Our framework first effectively replicates a session hijacking attack; it creates a fresh

browser instance and includes all stolen cookies, i.e., the ones that are not protected with

the corresponding cookie attributes. If our system has labelled a specific web app as suscep-

tible to both eavesdropping and JS cookie stealing attacks we only simulate the eavesdrop-

ping attack to demonstrate the privacy threat posed by attackers that are less sophisticated.

Our system also deploys a logged-out browser alongside the authenticated browser and

then proceeds with collecting links of interest. The module focuses on URLs that match ac-

count related keywords (e.g. profile, settings) and also collects the top 30 links that appear

3.2. System Design and Implementation 53

in the main browser but not in the logged-out one (or less if not that many exist). Typically,

we expect those links to point to restricted areas of the website where user information,

possibly sensitive, will be stored.

We check each page for user information that was supplied during the signup process.

If SSO was used, our system also checks for information that the web app might have pulled

from the IdP (we have populated our Facebook and Google profiles with additional informa-

tion). We inspect the rendered page source once JavaScript-generated content has finished

loading. Since user data can be leaked in ways that are not directly visible to the attacker,

our system also inspects other potential leakage points, including cookies, local and session

storage, and the page’s URL (we do not look at outgoing connections since we are not inter-

ested in what information is shared with third parties, and leaked identifiers will already

be present in one of the locations we search). To account for cases where user informa-

tion may be “obfuscated”, we also check for encoded values of all the identifiers using com-

mon encoding (base64, base32, hex, URL encodings) and hashing techniques (MD5, SHA1,

SHA256, SHA512). While we are able to capture obfuscated values of all user-specific infor-

mation, in our experimental evaluation we only discuss obfuscated passwords and emails;

this is due to their sensitive nature and because hashed emails can constitute PII and in

certain cases are easily reversible [7, 130, 193].

3.2.4 Browser Automation

At the heart of any web app auditing framework lies the browser and, thus, it is imperative

that our framework is orchestrated by a robust browser automation component. In prac-

tice, while Selenium is a powerful tool, it is better suited for testing scenarios when the web

app’s structure and behavior are known in advance. However, when conducting a complex,

large-scale analysis there is no a priori knowledge of either. There are also numerous sce-

narios where unexpected behavior, structure changes, or software crashes impact browser

automation functionality. For instance, at any moment during the execution of a module

there might be an unexpected popup (e.g., an alert). This can block all other functionality,

such as fetching and interacting with elements in the page. Moreover, current error raising

and handling support can lead to ambiguous states; e.g., when Selenium’s Chromedriver

crashes (which is a common issue) a TimeoutExceptionmight be raised, which is also what

happens when a website actually times out. Thus, we need a way to handle such obstacles

efficiently whenever they occur without aborting and restarting the whole process. Finally,

while other well-designed options exist, e.g., Selenium-based OpenWPM [139], we find that

they focus on the browser setup, management and synchronization parts of automation,

with little focus on dynamic interaction (e.g., element clicking, form submission) which is a

critical aspect of our study. In addition, while Puppeteer [22] does offer interaction function-

ality, it suffers from the same robustness issues as Selenium, which our system tackles (e.g.,

54 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

element staleness, crash recovery, robust error handling). Moreover, Puppeteer is specifi-

cally designed for Chrome/Chromium, while we aim to make our automation component

compatible with different browsers.

To address these limitations we develop XDriver, a custom browser automation tool de-

signed for security-oriented tasks that offers improved fault-tolerance during prolonged

black-box interactions with web apps. XDriver is built on top of Selenium and the official

Chrome and Firefox WebDrivers [18, 20], and has been made open source [31]. We extend

Selenium’s high level WebDriver class to enhance our system’s robustness by addressing the

aforementioned challenges in a way that is transparent to the caller scripts. In the following

paragraphs, we present the most prominent exceptions and how our system handles them,

as well as a number of useful auxiliary mechanisms we implement. Our extensions amount

to approximately 1,500 lines of code.

Invocation. XDriver extends Selenium’s WebDriver class and declares a custom invoke

method which accepts a parent class method as an argument (e.g., WebDriver.find ele-

ment) and an arbitrary number of named and unnamed arguments. Invoke then calls the

passed method in a try-except block, catches any raised exception and either calls the

appropriate exception handler or returns a default value. XDriver then overrides all of Web-

Driver’s methods to call their parent class counterparts via invoke.

Element staleness. As our auditing requires prolonged, multi-phase interaction with

web apps, page elements frequently become “stale”, which creates complications and can

lead to crashes. XDriver is designed to handle such cases transparently and robustly. All in-

teractions start by fetching a page element, e.g., based on theidattribute, and proceed with

processing that element. If in the meantime this element is deleted or, more commonly,

an asynchronous page load or redirection occurs, a StaleElementReferenceException is

raised when interacting with the element, indicating that it is no longer attached to the

DOM. However, while from a user’s perspective the element might still be present in the

page, from Selenium’s point of view it is a new element under a new object reference, with

no relation to the previously returned element. To handle this, when a find element by

method is invoked, the returned element’s object reference is stored as the key in a hash

table, with a tuple containing the invoked method and its arguments as the value. Then,

whenever such an exception occurs, the given element’s reference is retrieved from that

hash table and XDriver attempts to re-fetch it by invoking the stored method. If the ele-

ment is found, the old element’s object is updated transparently with the newly returned

element, and the initial requested operation that raised the exception is retried. Otherwise,

the exception is raised since the element truly does not appear in the page.

Handling crashes and timeouts. When Chromedriver or some other component (e.g.,

intermediate proxy) crashes and a TimeoutException is raised, our XDriver module detects

the crash, transparently restores the browser instance and state and eventually fulfills any

module’s request that was interrupted by the crash. Specifically, it launches a new browser

3.2. System Design and Implementation 55

instance, reloads the current browser profile to maintain state and updates its own object

reference with that of the new one, so as to transparently update all references of the driver

held by the framework modules. It also obtains the last known URL and retries the inter-

rupted operation. The StaleElementReferenceException handler is extremely useful in

this case, since all retrieved web element objects will have become stale due to the browser

reboot.

Unexpected Alerts. If an alert popup appears and an UnexpectedAlertPresentExcep-

tion is raised during the invoked method, the execution context is switched temporarily to

the alert box, which is then dismissed, and the method is retried. To prevent other alerts

from appearing in the current page’s context, the window.alertmethod is overridden.

Retry mode. We have developed a retry mode, which is used by XDriver whenever it

needs to perform an action it can retry in case of failure; this is done without having to return

control back to the caller, e.g., when a page’s links or login forms are requested. Specifically,

if an exception is raised while performing the operation, XDriver will retry the operation for

a certain amount of times before raising the exception or returning a default value.

Built-in crawler. Our custom browser automation tool includes a built-in crawler for

streamlining crawl-based tasks, a functionality that is especially vital in security-related

studies. In our framework’s context it is useful for our URLDiscovery and PrivacyAuditor

modules for crawling and processing websites. Modules that want to initiate a crawl only

need to call the crawl initmethod with the desired configuration options and then itera-

tively call thecrawl nextmethod, where all logic of the crawl is transparently implemented.

The following configuration options are currently supported by our system: (i) Crawl depth,

(ii) DFS or BFS mode, (iii) optional support for a set of regular expressions that dictate which

URLs and even subdomains to follow or not follow (e.g., focus only on login related URLs or

crawl a specific subdomain), and (iv) an optional break function that is applied after every

fetched URL to determine whether the crawl should stop (e.g., if a specific type of form is

found).

Return values. Additionally, to simplify the checks that the caller modules have to

make for determining whether a requested operation was successful, we refrain from rais-

ing Selenium-level exceptions and, instead, return default boolean values. Only in cases

where our handling mechanisms cannot resolve an issue we consider the exception to be

fatal and raise it. For instance, when a module attempts to interact with an element that

is not currently interactable (e.g., clicking an invisible element) a False value is returned

instead of raising the default ElementNotVisibleException.

Overall, all of the above enhancements allow for more fault-tolerant interaction with

web apps, reduce code complexity, and allow our main framework modules to focus on

their specific tasks.

Security mechanisms. Another important feature is the detection and evaluation of se-

curity mechanisms pertinent to our study. HTTP Strict Transport Security (HSTS) instructs

56 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Figure 3.2: Success rate for different workflow phases.

a user’s browser to connect to the HSTS-enabled domain only over HTTPS for a specified

amount of time, even if an explicit HTTP URL is followed or typed in the address bar by the

user. While this seems fairly straightforward to deploy, domains often do so incorrectly or

partially [173,237,238]. To evaluate deployment and detect misconfigurations, our module

first checks whether the domain is in the Chromium preload list [23] and, if not, uses a pas-

sive proxy to capture the target website’s redirection flow from its HTTP endpoint to HTTPS.

For each redirection, it stores the HSTS policy (if one is sent) and assesses whether the

(sub)domain is indeed protected. Our module detects all the misconfigurations and errors

presented in [173]. We note that while we implement mechanisms that are relevant to this

work, XDriver’s modular design streamlines the addition of other security mechanisms.

3.3 Experimental Evaluation

We experimentally evaluate our black-box auditing framework and present our findings

from the largest study on cookie-based authentication and authorization flaws in the wild.

Datasets. We use two different versions of the Alexa Top 1 million list. The first dataset

was fetched on 09/14/2017; this dataset was useful for guiding the design and implementa-

tion of our framework. However, since recent work has revealed that domain ranking lists

exhibit significant fluctuation even within short periods of time [231], we also obtained a

second up-to-date version on 05/07/2019, when it was time to conduct the final evaluation.

All the experiments presented here were conducted between May-October 2019 on a com-

bined dataset that included a total of 1,585,964 unique domains.

Workflow statistics. One of our main goals is the ability to conduct automated black-

box auditing of modern web apps without knowledge of their structure, access to the source

code, or input from developers. The complexity and often ad-hoc nature of web devel-

3.3. Experimental Evaluation 57

opment render this a challenging task, and various obstacles can prevent the successful

completion of a given module. Figure 3.2 provides statistics on the number of domains for

which each phase of our workflow was successful. In general, our auditing modules are

highly effective, successfully completing their analysis for 93-98% of the domains they han-

dle. The failures in these modules are attributed to websites timing out (or being generally

unresponsive) after several auditing tests and network failures. Also, when re-evaluating

these domains other factors can affect the execution of our modules, such as our test ac-

count being deactivated, expired domains etc. As expected, automated account creation

presents the most considerable obstacle; namely, out of the 168,594 domains for which we

identified a signup option, we successfully registered and logged into 13.7% of them, while

in 2,066 cases our system managed to login via SSO, out of which 346 were a fallback after

a failed signup attempt. It is worth noting that for domains where we detected a signup op-

tion but were not able to create an account, 19,491 (∼13.8%) embedded Google’s reCaptcha.

Yet our framework is still able to create accounts on 25,242 domains, accounting for almost

12% of the domains for which we have identified a signup option – for comparison, prior

related studies analyzed 25 [238] and 149 [200] domains. In studies with a different focus,

Zhou and Evans used SSO to audit 1,621 domains for SSO implementation flaws, while De-

Blasio et al. [129] explored the risk of password reuse by creating accounts in over 2,300

domains. In other words, our study is several orders of magnitude larger than prior studies

with a similar focus, and at least one order of magnitude larger than studies that employed

some form of automated account creation. It is worth noting that the automated account

creation process is the biggest challenge for our framework due to two reasons. First, the

registration process may include predicates that significantly complicate the automated in-

put generation due to input format constraints. For instance, the registration may include a

mandatory field (e.g., postal address) that requires a valid value for a specific location/coun-

try. Iteratively testing different input formats can prohibitively increase the duration of the

auditing process at the scale of our analysis. Second, registration might require access to a

specific resource (e.g., phone number or credit card) that is not feasible to obtain for a study

of our scale.

False negatives. To obtain more insights about our framework’s effectiveness we perform

an indicative experiment where we investigate the false negative rates (FN) of the different

modules in our system. Specifically, we randomly sample 20 websites per module, where

the module’s execution did not complete successfully, and manually inspect whether these

failures were actual true negatives or not. For our URL discovery module, we identified

only four FNs, i.e. in four cases there was a login option that our system failed to detect.

Our generic account setup component yielded 3 FNs, i.e. we successfully signed up and/or

logged in the website, but were not able to infer the state. Similarly, the SSO module had 5

FNs. The Cookie Auditor yielded zero FN, meaning that there was not a single case where

our system identified a website as secure against an attack, while it really was vulnerable.

58 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Table 3.1: Number of unique domains that do not adequately protect their cookies
from specific attacks.

Attack # of Domains (%)

Eavesdropping 12,014 (48.43%)
No HSTS 10,495 (87.36%)
HSTS Preloaded 64 (0.53%)
Full HSTS 188 (1.56%)
Faulty HSTS

- Protected 736 (6.13%)
- Vulnerable 426 (3.55%)

Final Vulnerable 10,921 (90.9%)

JS cookie stealing 5,680 (22.9%)

Total 12,484 (50.33%)

Finally, the Privacy Auditor had 4 FNs, i.e. there was account information that we provided

during the signup process that was not detected as being leaked. We did not measure the

Authentication Cookies FN rates, as manually identifying all authentication cookies and

combinations is prohibitively time consuming or even infeasible in many cases.

URL discovery effectiveness. As mentioned, our URL discovery module initially explores

the URLs provided by [147] before falling back to our own crawling approach. As such, it is

of interest to quantify how useful this dataset was and, more importantly, how effective our

system was in cases where it had to employ our own approach. For all the websites where we

identified a signup option, 23.1% were fully discovered using the dataset from [147], while

for the remaining 76.9% we had to fall back to crawling the websites (43.1% were included

in both datasets, while 33.8% were not included in [147]).

Failed registrations. In an attempt to better understand the reasons behind failed reg-

istrations, we manually inspected 50 randomly selected websites. In 22 cases, there was

some form of an anti-bot challenge that our system was not able to solve and, thus, could

not proceed with registration. In 23 websites one of the fields was rejected due to inappro-

priate formatting, e.g. mobile phones, addresses, passwords etc. Finally, the remaining 5

websites failed due to unexpected or complex form behavior, e.g. after filling in a specific

field, a custom drop down list appeared that also needed to be detected and filled out.

Cookies. Audited domains set an average of 14.02 cookies, while susceptible domains

set 1.21 authentication cookies and have 1.1 authentication combinations on average. In

Table 3.1, we show the number of domains that expose their authentication cookies, i.e., do

not protect them with the corresponding cookie attributes.

Eavesdropping. We find that 12,014 unique domains do not protect their authentica-

tion cookies with the secure flag, even though 1,815 of those set the flag for at least one

of their cookies. However, web apps might make use of HTTP-Strict-Transport-Security

(HSTS), which can prevent the leakage of those, otherwise exposed cookies. Merely check-

3.3. Experimental Evaluation 59

ing for the presence of HSTS headers in the web app’s responses is not sufficient, since prior

studies have found that developers often deploy HSTS incorrectly [173, 237] or do not ad-

equately protect their entire domain [238]. As such, our framework includes a module for

evaluating the correctness and coverage of HSTS deployment for domains that are vulnera-

ble to eavesdropping (the other attacks are not affected by HSTS).

We find that the situation has not improved much compared to prior studies, as the vast

majority of domains do not deploy HSTS. While flawed HSTS deployment remains com-

mon, we find that 63.3% of the domains that have a faulty deployment do manage to prevent

our cookie hijacking attacks. This is because the set of (sub)domains the auth cookies are

sent to are protected by HSTS. For instance, if example.com deploys HSTS properly on the

www subdomain, but leaves the base domain unprotected, and at least one auth cookie has

its domain attribute set to www.example.com, then there is no way for an eavesdropper to

retrieve this cookie. The most common misconfiguration is not enabling HSTS on the base

domain (696 domains), out of which 143 attempted to set HSTS over HTTP. The remaining

domains, while properly setting HSTS on their main domain, did not use the includeSub-

domains directive, thus potentially leaving certain subdomains exposed. We also find that

out of the remaining domains only 99 employ CSP’s upgrade-insecure-requestsdirective.

While this reduces the attack surface, these domains remain vulnerable since this mecha-

nism does not upgrade top-level navigational requests from third-party sites or the initial

request (e.g., when a user opens a new tab and visits a site). Overall, 10,921 domains are

vulnerable and expose cookies to eavesdroppers even when accounting for the presence of

relevant security mechanisms. We further correlate these domains with the Single Sign On

data released by [147] and found that four of these domains are also SSO identity providers

(Amazon, Bitly, DeviantArt, GoodReads) and have at least 1,346 unique relying parties, out

of which 138 have been audited by our system; 87 were found secure and 51 vulnerable to

at least one of our attacks.

JS cookie stealing. We find that users face a considerable threat due to their authenti-

cation cookies being accessible via (malicious) JavaScript, as a total of 5,680 domains do

not protect them with the httpOnly flag. Our framework’s analysis of those domains reveals

that 5,099 include at least one embedded 3rd party script (i.e., not isolated in an iframe)

that runs in the 1st party’s origin and has “permission” to read the user’s 1st party cook-

ies. These are fetched from 2,463 unique 3rd party domains. To make matters worse, only

239 of those use the Subresource Integrity (SRI) feature [93] to prevent the manipulation of

fetched scripts, and only one domain protects all loaded scripts. Similarly to [117], we find

that all SRI-protected scripts are libraries (e.g., jquery). It is important to emphasize that

this attack explores the potential threat from compromised or rogue 3rd parties, and that

our numbers do not reflect active attacks currently underway in the wild. While our study’s

focus is not on detecting malicious scripts actually stealing users’ cookies, we consider this

an interesting future direction.

60 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Table 3.2: Number of domains for different values of authentication cookies and
combinations of authentication cookies.

1 2 3 4 5 6 7

Auth combos 10,878 1,110 39 10 3 - -
Auth cookies 9,912 1,700 364 54 7 2 1

 0

 20

 40

 60

 80

 100

1-
10

0K

10
0K

-2
00

K

20
0K

-3
00

K

30
0K

-4
00

K

40
0K

-5
00

K

50
0K

-6
00

K

60
0K

-7
00

K

70
0K

-8
00

K

80
0K

-9
00

K

90
0K

-1
M

V
u
ln

e
ra

b
le

 (
%

)

Domain Rank

Eavesdropping
JS cookie stealing

 0

 200

 400

 600

 800

 1000

 1200

 1400

1-
10

0K

10
0K

-2
00

K

20
0K

-3
00

K

30
0K

-4
00

K

40
0K

-5
00

K

50
0K

-6
00

K

60
0K

-7
00

K

70
0K

-8
00

K

80
0K

-9
00

K

90
0K

-1
M

V
u
ln

e
ra

b
le

Domain Rank

Figure 3.3: Percentage (left) and absolute number (right) of vulnerable domains per
ranking bin.

We emphasize that the 5,680 domains are not necessarily vulnerable to session hijack-

ing through XSS, since other prevention mechanisms might be in place. For instance, Web

Application Firewalls (WAFs) [131, 175] or Content Security Policies (CSP) [275] could be

deployed to mitigate XSS attacks which could also prevent cookie stealing. Nonetheless, re-

cent work has shown that even such defense mechanisms can be bypassed [182]. As such,

our findings constitute an upper bound for web apps that are vulnerable to cookie-stealing

via XSS. Nonetheless, while adoption of httpOnly is not as limited as in the past [280], it

remains an important issue.

Auth combos. Table 3.2 breaks down the AuthCookies results and reports the number

of domains with the corresponding number of authentication cookies and combinations.

An interesting observation is that 435 of the domains that have more than one combination

contain at least one secure combination among them, yet remain susceptible to attacks due

to other combination(s) being exposed. This highlights how the ever-increasing complexity

in web apps leads to authorization flaws. We also find that 76 domains contain cookie com-

binations that are correctly detected by our approach for which the algorithm from [200]

returns incorrect results.

Popularity. We break down the vulnerable domains based on their Alexa rank in Fig-

3.3. Experimental Evaluation 61

Table 3.3: Most common categories of susceptible domains.

Category #domains Category #domains

Online Shopping 3,725 Soft/Hardware 252
Business 1,117 Sports 234
Marketing/Merch. 1,100 Job Search 229
Internet Services 642 Pornography 194
Entertainment 586 News 187
Education/Reference 558 Real Estate 178
Blogs/Wiki 393 Public Info 153
Fashion/Beauty 322 Health 148

ure 3.3. In general, our framework detects more vulnerable domains in the highest ranking

bin. This can be partially attributed to popular websites being more likely to support ac-

count creation (we find twice as many such domains in the most popular bin compared to

the least popular one), while the process succeeds for roughly 11−13% of domains across

all bins.

Domain categorization. Table 3.3 reports the top domain categories (classified using

McAfee’s URL Ticketing System [88]) that are vulnerable to at least one attack. We find that

online shopping is the most prevalent category of susceptible domains, highlighting the

privacy threat of cookie hijacking. These services include a plethora of personal data (e.g.,

address), while. recommendations and prior purchases can reveal sensitive user traits (e.g.,

sexual orientation, religion). We also find 148 and 194 domains that provide health-related

functionality and adult content respectively, which potentially enable access to extremely

sensitive user data.

Privacy leakage. In Table 3.4, we break down the personal or sensitive information

that an attacker can acquire upon successfully hijacking a user’s cookies, as detected by

our PrivacyAuditor module. We also report the total number of domains leaking such in-

formation, grouped per sensitive field (e.g., email) and also based on the source of leakage

(e.g., page source). While a domain might appear in different columns of the same sensitive

field, or different rows of the same source of leakage, it is only counted once in the corre-

sponding totals. In general, we find that the page’s source is the most common avenue of

exposure, but passwords are typically exposed through cookies. Furthermore, 59 out of the

68 hashed passwords detected by our system are MD5 hashes, which do not offer much

protection against offline brute-forcing attacks. In practice, the attacker could potentially

recover the password and obtain full control over the victim’s account in those services;

password reuse [15, 212] can result in attackers accessing accounts in other services as well.

Apart from common identifiers like emails and usernames, many domains expose highly

sensitive data like home addresses and phone numbers. Overall, an abundance of data

is exposed that can be used for doxxing [245], and a plethora of scams including targeted

phishing [157] and identity theft [106].

62 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Table 3.4: Personal user data that can be obtained by attackers.

Data So
u

rc
e

C
oo

ki
es

St
or

ag
e

U
R

L

Total (%)

Email 6,894 776 174 51 7,130 (61)
Email hash 885 68 10 0 930 (7.98)
Fullname 4,287 198 170 44 4,330 (37)
Firstname 648 58 8 10 686 (5.9)
Lastname 618 86 19 13 665 (5.7)
Username 1,856 339 48 175 1,956 (16.7)
Password 2 20 0 0 22 (0.19)
Pswd hash 12 57 0 0 68 (0.6)
Phone 1,594 8 7 2 1,598 (13.7)
Address 656 0 0 1 656 (5.6)
VAT 17 0 0 0 17 (0.15)
Workplace 540 3 3 1 543 (4.6)

Total (%) 9,122 (78) 1,236 (10.6) 314 (2.7) 290 (2.5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

D
o

m
a

in
s
 (

C
D

F
)

Time (sec)

URL Discovery
Signup

Login
SSO

Cookie Auditor
Auth Cookies

Privacy Auditor
Total Attack

Full Analysis

Figure 3.4: Time required by each module of our system.

System performance. In Figure 3.4 we show the total time in seconds required by each

module in our framework. Since some modules might fail for certain domains, the different

CDFs have been calculated using their corresponding totals. The total time required for au-

diting websites for attacks (i.e., all modules up to CookieAuditor) is denoted as Total Attack.

The total time required for the analysis including the execution of AuthCookies and Priva-

cyAuditor is denoted as Full Analysis. We find that our framework’s performance is suitable

for large-scale studies as half of the domains can be completely audited within 5 minutes

and 90% in less than 17 minutes. While certain domains in the long tail of the distribution

require considerably more time, this is typically due to latency issues with their specific

servers. While Webdriver crashes can affect performance, our XDriver optimizations mini-

3.3. Experimental Evaluation 63

mize their impact by transparently recovering the browser’s state.

Popular domains. While our main goal is to automatically explore the feasibility of

cookie hijacking at scale, popular domains are of particular interest because they are used

by hundreds of millions of users and, thus, can have a greater impact if vulnerable. Consider-

ing that our framework’s entire workflow is fully automated and that app-agnostic account

setup is extremely challenging, we opt to manually assist with the account setup for a sub-

set of the most popular domains. Specifically, we consider the top 1K domains, where we

identified 698 account-based websites. Out of those, 95 were already fully handled by our

framework. For the rest, we manage to manually create accounts in 206 domains, which

we provided to our framework to complete the automated auditing process. The remain-

ing domains either protected their login forms with reCAPTCHAs, detected the presence

of our webdriver, or requested information during signup that we were unable to provide

(e.g., phone numbers for SMS verification, valid SSN etc.). Moreover, for 45 websites our

Login Oracle could not disambiguate between being logged in and logged out; when send-

ing a HTTP request without any cookies our account would still appear to be logged in. In

total, we audited 301 popular websites (the additional 206 domains were not included in

our previously reported numbers, thus, pushing our total analysis to over 25K domains).

We find that 149 are vulnerable to eavesdropping, 46 of which were fully handled by our

framework. Only 10 domains deploy HSTS effectively, while another 30 (20.13%) use HSTS

but remain susceptible due to faulty deployment. For JS cookie stealing, 115 domains were

found susceptible and 104 include at least one embedded 3rd party script (from 266 do-

mains) – only five make use of SRI. Overall, 57.81% of the domains do not provide adequate

defenses, which is alarming considering their massive user base.

Hijacking validation. To manually validate our results and ensure that an attacker can

actually access victims’ accounts, we conduct an exploratory experiment on domains that

were fully handled by our framework. We randomly select ten and hand-pick another ten

domains out of Alexa’s Top-1K, and randomly select another ten from the remaining do-

mains, and simulate cookie hijacking attacks. We setup a browser instance where we log

in the website and capture all cookies that are exposed depending on the threat model.

Next, we launch a new browser with different characteristics (user agent etc.) on a different

machine, in a different network subnet, where we include the stolen cookies and visit the

website. We manually interact with the website to detect the extent of access the attacker

obtains. We do not set a time limit; instead we opt for an exhaustive approach where we try

to identify all user-specific functionality that should be tested. We detail our findings in Ta-

ble 3.5. For the Top-1K random subset, we get full account access for seven domains (i.e., all

tested operations succeeded), and partial access for three domains. For the other random

subset we get full access in nine out of ten domains. Indicatively we can view and modify

account settings, preferences, shopping lists, orders and subscriptions and post comments.

In five of all the domains we could also change the user’s password without knowledge of

64 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

Table 3.5: Manually validated domains and hijacking capabilities.
Domain Read Write Settings Exposed information & functionality

Top-1K (hand-picked)

amazon.com 7
View/edit cart, ad preferences, vouchers/coupons, shopping list, email subscriptions, deals
& notifications, browsing history and recommendations

aliexpress.com 7
View/edit favorite stores, wish list, cart, profile photo, full name, follow sellers. View
messages, order history, coupons

ebay.com 7
View/edit cart, watchlist, saved searches/sellers, messages, address, profile photo. View
recently viewed items, active bids/offers, purchase history, own items for sale

alibaba.com 7
View/edit cart, full name, phone number, gender, address, job information, favorites, profile
photo. View messages, orders, transactions, contacts, recommendations

reddit.com 7
View/edit posts, comments, saved, display name, about section, profile photo, inbox, email
notifications, block users

bing.com 7 View/edit search history, interests. View first name, profile photo
bestbuy.com 7 View/edit cart, saved items. View shopping history, orders

banggood.com 7
View/edit cart, wishlist, address, full name, gender, phone number, messages, reviews,
comments, download full activity record. View orders, coupons, gifcards, search history

wish.com 7
View/edit cart, wishlist, full name, birthdate, email, notification settings. View orders,
recently viewed items

cloudflare.com 7 None. The attack only succeeds when performed from the same PC

Top-1K (randomly selected)
indeed.com 7 View/edit saved job offers, job applications, scheduled interviews, visited jobs
hotels.com 7 View/edit favorties, searches

vidio.com X
View/edit phone number, comments, followed channels, password. View transaction
history, watch history

nature.com 7 View/edit full name, professional information, subscriptions. View email

sciencedirect.com 7
View/edit full name, email, job information, phone number, address. View recommenda-
tions, history

1fichier.com N/A View/edit files, folders, full name, address, phone number.

bitly.com 7
View/edit bitlinks, link statistics, email address, delete account. View API key, session history
(and disconnect all sessions)

cdiscount.com 7
View/edit subscriptions, wish/favorites list, address, phone number. View email, birth-date,
orders, messages, vouchers, credit card info

elsevier.com 7
View/edit cart, full name, email, address, phone number, partial payment information, add
new credit card

espncricinfo.com 7 View/edit full name, email, phone number, gender, address, delete account

Any-rank (randomly selected)
sendatext.co N/A View/edit SMS texts (sent and replies), calls, address book
metzlerviolins.com X View/edit address, cart, wish list, password. View orders
swotanalysis.com 7 View/edit teams and members, billing history, projects
kokpit.aero X View/edit full name, email, phone number, password, comments
brauchekondome.com 7 View/edit full name, address. View email, birth date, orders
soccergarage.com 7 View/edit username, email, company name, address, cart, wish list, delete profile
packlane.com N/A View orders, saved designs
doggiesolutions.co.uk 7 View/edit full name, email, address, cart, delete profile. View order history
jellyfields.com X View/edit email, username, website, favorites, password
helmetstickers.com X View/edit full name, address, cart, password, delete profile. View order history

Access: full , partial , none

the current password. For the manually selected popular domains, we get full access in five

domains and partial access in four.

This highlights a significant advantage of cookie-based account hijacking over credential-

based (e.g., phishing): additional fraud-detection checks employed during login [109] (e.g.,

IP geo-location [217], comparison of browser fingerprints [164]) are ommitted because the

cookies are part of a session that has already been verified as legitimate (i.e, when the

victim logged in). While certain attackers can pass geo-location checks (e.g., using an IP

address near the user’s location [205]), deceiving browser-based security checks is signifi-

cantly more challenging. While spoofing the victim’s fingerprints has been theorized [102]

it has not been demonstrated in practice. Surprisingly, throughout all our experiments we

identified only one domain (Cloudflare) where we could not access the victim’s account

from the attacker’s machine, indicating additional machine-specific checks that we have

not come across in any other domain.

3.4. Discussion 65

3.4 Discussion

Automated account creation. Our experimental evaluation revealed that automatically

creating accounts is a significant challenge. While our current implementation allowed us

to audit orders-of-magnitude more domains than prior manual studies [115, 238], we plan

to explore the adoption of more sophisticated heuristics that automatically infer the pred-

icates of account generation in a specific web app and create corresponding inputs. Auto-

matically detecting and parsing error messages returned by the app can be used as feed-

back for inferring which form fields’ format is violated. This, however, is a challenging task

as, again, web developers are not constrained to a specific format or structure for return-

ing such messages. Furthermore, each form input variation requires a form submission,

which can lead to a significant impact to the overall performance and also trigger anti-bot

mechanisms. Certain mandatory resources can also prevent our system from completing

the process, e.g., an app may require a valid phone number in a specific country. While at-

tackers can leverage “shady” phone providers [262], this remains an important obstacle for

researchers.

Privacy leakage inference. Our system evaluates the leakage of personal or sensitive

user information by detecting specific identifiers. In practice, information can be implic-

itly leaked, e.g., personalized results in search engines or e-commerce systems can reveal

sensitive data (typically exposed through site-specific functionality). As part of our future

work, we plan to explore the use of user-action templates that are based on the website’s

category (e.g., search engine, e-commerce), intended to elicit personalized results. Addi-

tionally, it is possible that some user information might already be publicly available on

the same or a different website and, thus, the detected identifiers do not constitute actual

leakage. While leakage can be highly contextual (e.g., a user’s email address being publicly

available in general versus a local eavesdropper being able to match that person to their

email address) we consider this an interesting challenge and plan to explore the feasibility

of detection schemes that disambiguate between public and private information.

Countermeasures, disclosure, ethics. Our framework discovered flaws that are expos-

ing millions of users to significant threat. We emphasize that no user accounts were affected

during our experiments – we only used test accounts. It is also crucial that developers are

informed of our findings and address them. While the adoption of cookie security flags is

more straightforward, correctly deploying HTTPS and HSTS will likely be more challeng-

ing for developers [118, 172–174]. For disclosure we leveraged the insight provided by prior

work [184,226,255] and sent direct notifications to the affected domains for which we could

find a valid contact email address. Specifically, we initially collectedsecurity.txtfiles [17],

that typically include such contact points. This method proved to be the most ineffective, as

such files are not widely adopted, i.e., only 23 domains had them. We then used an off-the-

shelf email harvester tool for search engines [13]. Next, we crawled the websites starting

66 Chapter 3. Black-box Auditing for Web Authentication and Authorization Flaws

from their home page and visiting all contact related URLs, as well as the top 10 first level

links. We also collected each domain’s WHOIS record and searched for registered abuse

addresses. We filtered all collected email addresses to ensure that they belong to the sus-

ceptible domain, so as to avoid sending our security-sensitive findings to unrelated par-

ties. Overall, this process yielded 5,373 email addresses which we used for notification. For

the remaining domains we sent our notification to standard aliases (security,abuse,web-

master,info) [226, 255]. We also manually searched for contact points for all domains we

explicitly name in our work (apart from 2 that did not have a contact email or form). For

the notification process we used an institutional email address to increase credibility and

provided additional details and remediation advice to all websites that responded. All the

responses we received acknowledged our findings, except one case where the developer

persistently misunderstood the technical aspects of cookie hijacking. While we followed

a best-effort approach to directly notify affected domains, it is infeasible to do so for all of

them. Thus, we have also setup a notification service [19] where developers can obtain our

reports after proving ownership of a given domain.

HSTS issue. During our experiments we uncovered an unexpected behavior in Chrome

with HSTS preloading; we observed that it did not work as expected in slightly older Chrome

versions and the initial request to a preloaded domain was, in fact, over HTTP. After com-

munication with the Chromium team they informed us that their policy dictates that any

Chrome version more than 70 days old does not enforce HSTS preloading because such hard-

coded information is considered stale. This has significant implications for users that do

not update their software on time, which is common behavior [194, 267, 274]. To the best of

our knowledge this issue with HSTS has not been mentioned in prior studies.

Code sharing. Our browser automation tool has been made open source [31] as it can

facilitate various research projects, especially those focused on Web security. However, pub-

licly releasing our automated account creation modules poses a significant risk, as they are

directly applicable to a plethora of real world attacks and could be misused for malicious

purposes; the capabilities of our system far surpass the capabilities of such tools typically

found in underground markets [209]. To that end, and to further contribute to the commu-

nity, we have opted to make these modules available to vetted researchers upon request.

Chapter 4

Robust and Real-Time JavaScript Attri-
bution

The web is driven by complex relationships and interdependencies of different parties. One

of the earliest and most prominent scenarios for such dependencies are third-party (3P)

scripts, where a first-party (1P) site includes JavaScript (JS) files from other domains. These

scripts offer a multitude of additional functionalities, ranging from analytics [83] and adver-

tisements [70], to Single Sign-On [36, 48] and fingerprinting [82]. 3P script inclusions have

been prevalent for over a decade [202], and recent studies have found that inclusions have

become much more prevalent and complicated, as 3P scripts can implicitly load additional

scripts [158, 176, 266].

While 3P scripts facilitate development and offer rich functionalities, they come at a sig-

nificant cost: once loaded, they operate with the same privileges as the 1P and can access

the same information and functionality, making them seemingly indistinguishable at run-

time. This is exacerbated by JS’ dynamic nature, allowing scripts to execute further scripts

at will [120, 160]. As such, buggy, compromised, or malicious 3P scripts can severely affect

websites’ security and privacy posture. For instance, they can introduce client-side vulnera-

bilities [158, 201], prevent HTTPS deployment [176], carry out cookie-stealing attacks [134]

or invasively track and fingerprint users [119, 139, 159, 229, 257]. Therefore, robust 3P script

attribution capabilities are crucial for building effective security countermeasures and con-

ducting accurate web security measurements which often rely on analyzing 3P scripts’ be-

havior. Unfortunately, no well-defined, standardized method for achieving this exists, and

prior approaches do not fully achieve the desired results.

In more detail, existing countermeasures and 3P analyses relying on JS instrumenta-

tion [161, 201, 235, 266] often rely solely on naive stack walking for attribution, which is

susceptible to bypasses when handling dynamically injected scripts [124, 160]. Another

common pitfall is overlooking several dynamic JS-inclusion methods. Systems built with in-

browser instrumentation are generally more robust when it comes to attribution, due to the

browser engine’s rich, low-level information (e.g., PageGraph [239], ScriptChecker [190]).

67

68 Chapter 4. Robust and Real-Time JavaScript Attribution

Unfortunately, such systems suffer from certain fundamental limitations. First, low-level

modifications are inherently tied to a single browser version, hindering wide and fast adop-

tion, while also requiring users to build their browser from source to utilize them. Moreover,

wide deployment would require adoption by browsers and website developers [190, 273,

278, 282], which rarely occurs in practice [162], further diminishing their practicality. They

can also require expensive, offline pre-processing [242]. As such, while extremely useful

for certain measurements and studies, such systems cannot support real-time privacy and

security enhancements for end users. Crucially, we also experimentally demonstrate that

bypasses are feasible against such systems as well.

Motivated by the core problem of achieving robust and real-time 3P script attribution,

we develop StyxJS. Our system, realized as a browser extension, operates at the JS layer with-

out requiring any modifications to the browser. StyxJS’ workflow includes stack inspection,

on-the-fly script rewriting and JS API overriding, and is able to capture all 3P scripts in a

page, including dynamically loaded ones. It achieves this in real-time and without any a pri-

ori knowledge of the encountered scripts. In addition, carefully designed tamper-proofing

mechanisms ensure that our system is robust against evasion. At the same time, our de-

sign was guided by extreme precaution for respecting security mechanisms deployed by

web apps. Moreover, due to its plugin-based design, StyxJS provides a convenient way for

retrofitting existing approaches and countermeasures, as well as creating new ones.

We experimentally evaluate StyxJS and find that it does not disrupt the user experience,

while incurring negligible performance overhead in terms of page load time in the vast ma-

jority of evaluated websites. Finally, we retrofit three existing systems as custom StyxJS

plugins, one from the browser- and two from the JS-instrumentation family, which suffer

from at least one of the aforementioned limitations (SugarCoat [242], LeakInspector [233],

and ScriptProtect [201]). We experimentally demonstrate that the StyxJS-adaptation signif-

icantly outperforms the original system in its respective goal, while addressing all of their

inherent limitations.

Overall, the concept of an origin is, arguably, the cornerstone of any notion of security

on the web. While the ability to embed scripts from other origins is vital for the operation

of the modern web ecosystem, it has also blurred the boundaries between origins. Conse-

quently, the ability to effectively disambiguate between first- and third-party scripts, which

is a fundamental prerequisite for countless security and privacy frameworks and counter-

measures, has become exceedingly challenging. As such, we believe that StyxJS can pro-

vide the critical underpinning they require and have, thus, released it as an open source

project [92].

4.1. Motivation 69

4.1 Motivation

One of the core challenges of conducting a study or developing a countermeasure that re-

volves around JS execution, is correctly and robustly disambiguating 3P from 1P code. Sys-

tems leveraging JS instrumentation [161, 201, 263] must rely on naive stack walking to dis-

ambiguate 3P code, i.e., using the Error.stack object [47]. This approach is known to be

susceptible to evasion [124, 160], as 3P scripts can dynamically inject new code, mask their

identity, and evade attribution. For instance, as shown in Listing 4.1, a 3P script makes a call

to setTimeout with a string argument, and the newly evaluated code outputs the current

stack trace. As can be seen, the original 3P script is not included in the stack trace, thus

preventing attribution and allowing the 3P script to conceal its malicious activities. Prior

browser-instrumented systems [120, 160, 190, 230, 242] have rich, low-level information on

seemingly every aspect of a page’s life cycle (e.g., DOM interactions) that can result in effec-

tive 3P code attribution. Unfortunately, such systems are tied to a single, modified browser,

and possibly a single version, having no immediate impact on end users. Also, in §4.4.1

we demonstrate that low-level instrumentation is not self-sufficient for robust attribution,

as faulty design choices can still lead to evasion and complete defense bypasses. Moreover,

certain systems of both categories need a non-negligible amount of “offline” pre-processing

to operate correctly [201, 242]. For instance, SugarCoat [242] requires a researcher to first

sufficiently browse a website to generate replacements for intrusive 3P scripts, which, by de-

sign, can only cover executed code paths. To make matters worse, this pre-processing must

be run for each new script, before its replacement is adopted by existing content blocking

tools. Thus, it becomes clear that such systems’ real-world adoption and benefits for end

users are significantly limited.

1 /* https://3p.com/evade.js */

2 setTimeout("console.log(new Error().stack);");

3 /* Output */

4 Error

5 at <anonymous >:1:13

Listing 4.1: The dynamically evaluated code via setTimeout cannot be attributed to
the injecting script with Error.stack.

Motivated by the aforementioned limitations, we propose StyxJS, a JS-based solution

which, at its core, aims to provide real-time and robust 3P script attribution. Realized as

a browser extension, our system runs without any a priori knowledge or processing of the

visited websites in real time and covers any executed code path. Along with a number of

additional functionalities, such as its plugin-based architecture and instrumenting 3P code

via on-the-fly, arbitrary code injection, StyxJS can be used to properly replicate certain prior

approaches, as well as facilitate new pipelines, as we extensively demonstrate through real-

world use cases (§4.4).

70 Chapter 4. Robust and Real-Time JavaScript Attribution

Figure 4.1: Architecture and workflow of StyxJS.

StyxJS targets both security and privacy practitioners, who can leverage it as the basis

for new frameworks, as well as any researchers measuring and analyzing the web ecosys-

tem. Most importantly, StyxJS can be promptly adopted by end users for employing the

privacy enhancements we discuss in §4.4, or other defenses developed in the future.

4.2 Design and Implementation

StyxJS is comprised of different components for robustly capturing all 3P scripts in a page,

regardless of how they were embedded. Before diving into the details of our approach, we

provide a brief overview of StyxJS’ architecture and operation to clearly outline each com-

ponent’s goals. A high-level depiction of StyxJS can be seen in Figure 4.1.

Content script. Our extension’s content script is injected in all documents and frames,

and is configured to run before any other code in the page. This design choice allows us

to inject our page scripts (which we describe next) in a timely manner, before malicious or

privacy-intrusive scripts can execute. We provide more details on how we tamperproof our

system against evasive scripts in §4.2.3. The content script’s main goal is to inject our attri-

bution logic into the page itself, while also maintaining a cache of 3P scripts that were pro-

cessed during previous visits to the same domain, so as to avoid redundant operations 1 .

Page scripts. The injected page scripts implement the entirety of StyxJS’s robust and

real-time attribution capabilities. In more detail, a series of API overrides is set up, so as to

capture dynamically injected 3P scripts, such asevalor setting ascriptelement’s contents.

Each script is then rewritten to include our attribution code, as we detail in §4.2.2 3 . More-

over, StyxJS adopts a plugin-based architecture, allowing for additional, custom JS rewrites

and API overrides. This, coupled with our robust attribution capabilities, constitutes a ma-

jor advancement, as it enables fine-grained and accurate 3P code instrumentation, which

is crucial for a wide range of past and future research efforts focusing on 3P scripts. We

show how to leverage this capability to retrofit existing systems in §4.4, further highlighting

4.2. Design and Implementation 71

StyxJS’ impact.

Manifest V3. Chrome has rolled out Manifest V3 (MV3) [55] and reportedly aims to force

migration for all extensions, starting with Chrome’s pre-stable versions in June 2024 [61].

Through empirical analysis we found that MV3 does not provide a foolproof way to inject

scripts before any other code executes in the page, enabling potential StyxJS-evasion vec-

tors. Specifically, a key change is that MV3 does not allow fetching and executing remote

code. While our page scripts are listed as Web Accessible Resources (WARs) [67] and reside

locally in the extension’s directory, this change prevents us from fetching and adding them

as inline scripts in the page. Adding them as script elements with their src attribute set

to their local URL is allowed, but causes the browser to execute them asynchronously and

possibly after page-controlled code has executed. While the newly introduced userScripts

API [76] solves this issue, we found that it does not inject scripts in blank iframes. This also

allows for trivial bypasses, as evasive scripts can acquire references to unprotected APIs

through such frames. Therefore, since our main goal is robustness, we decided to develop

StyxJS leveraging the well-established MV2. Nonetheless, we stress that our system has

been designed with MV3 requirements in mind, and will be readily portable once the afore-

mentioned userScripts issue is resolved. In the remainder of the text we will highlight the

few operations that need porting to MV3 in the corresponding sections. Finally, we note that

several browsers will maintain MV2 support [16,33], further rendering our system practical

until its migration to MV3.

4.2.1 Capturing 3P Scripts

Prior to performing attribution, we need to ensure that we capture all 3P scripts loaded in a

page. Next we define our notion of 3P scripts, and detail possible script inclusion methods

and how they are handled by StyxJS.

3P scripts. Strictly speaking, a 3P script is any remote JS file that does not share the same

origin [62] with the visited page. However, websites often leverage servers with different ori-

gins under their ownership, for loading resources (e.g., CDNs to boost performance). For in-

stance, Google services load scripts from gstatic.com, a resource server belonging to Google.

Since the 1P is in control of such servers, it essentially makes their resources 1P and should

be distinguished from real third parties. To that end, we leverage EFF’s PrivacyBadger’s list

of same-entity domains, which is designed and maintained for this exact purpose [57].

Standard inclusion. A page can initially load a 3P script by embedding a script ele-

ment with its src attribute set to the script’s remote URL; this will cause the browser to

send a HTTP request, fetch the script and evaluate it 2 . For the remainder of this pa-

per, we will refer to such scripts as top-level scripts. Attributing API calls back to such

scripts is rather trivial and does not require any special handling. Specifically, we rely on

JS’ built-in Error object to acquire a stack trace and inspect the script URL in each stack

72 Chapter 4. Robust and Real-Time JavaScript Attribution

frame, if any. This approach was leveraged by prior work as the sole means for script attri-

bution [201, 233, 235]. Unfortunately, while it is able to capture top-level scripts, it cannot

robustly capture and attribute dynamically injected scripts, rendering prior approaches

susceptible to evasion [124, 160].

1 let original = setTimeout;

2 setTimeout = function(){

3 let js = arguments[0];

4 if(is_3P_call()){ // Only for 3P calls

5 let cached = isCached(js);

6 if(!cached) js = rewriteJS(js);

7 else js = cached;

8 }

9 return original(js);

10 }

Listing 4.2: Simplified override for setTimeout.

Runtime inclusion. Scripts can introduce additional 3P code at runtime by utilizing

APIs and DOM properties, e.g., adding a text node as a child on a script element, or call-

ing eval 3 . For brevity, in the remainder of this work we will overload the term API to

describe all such inclusion methods, and refer to such scripts as dynamic scripts. We refer

the reader to Table B.1 (Appendix B) for a complete list of JS inclusion APIs. We used the list

provided by [201] as the starting point, but extended it to include overlooked APIs. Overall,

our system handles 30 JS inclusion APIs from nine different interfaces. In order to capture

3P scripts injected via these APIs, we leverage the page scripts injected by our content script

which runs on every new document before any other script (§4.2.3). Specifically, the content

script, which has access to the DOM, injects a series of scripts that override each of these

APIs. This ensures that whenever a 3P script calls such an API, our override code will execute

before the original.

We provide an example API override in Listing 4.2, which captures dynamic scripts eval-

uated via setTimeout. Initially, to disambiguate whether the call was initiated by the 1P

or a top-level 3P script, we simply inspect the Error stack trace (line 4). We detail how dy-

namic 3P scripts are attributed in the following paragraphs. If the call was indeed initiated

by 1P code, we directly call the original API with the provided argument (line 9). For 3P calls,

each override’s operation depends on the API’s nature. For APIs that expect raw JS code, e.g.,

eval, we directly rewrite the provided argument before calling the original API (line 6). For

markup APIs, e.g., document.write, we parse the given markup, locate scripts, inline event

handlers and javascript: URLs, and rewrite these specific parts. Finally, each rewritten

piece of code (or markup) is cached in our extension’s storage space, keyed with the origi-

nal source’s SHA-256 hash. Then, in subsequent visits to the same domain, each override

computes the given argument’s hash value and queries the cache so as to avoid redundant

4.2. Design and Implementation 73

rewrites (line 5).

4.2.2 AST rewriting

Having gained control over when a 3P script is dynamically evaluated in the page, we then

need to rewrite each one so as to add our attribution code, while maintaining its original

functionality. We provide an example dynamic script which we assume to be injected via

document.write, and its rewritten version, in Listings 4.3 and 4.4 respectively. Originally,

the script declares and calls an asynchronous function, which awaits a promise and dynam-

ically evaluates a new script. To achieve our goal, we utilize the acorn [69], estraverse [25]

and astring [38] libraries and perform the following steps. First, we parse the 3P source

code to generate its AST, enabling us to perform fine-grained rewrites. Next, we wrap the

entire script, and each function body, in a try/finally statement (lines 2-13, 5-8), where

we prepend our entry code before the try (lines 1, 4) and our exit code inside the finally

clause (lines 9,14). This approach guarantees that when the script or one of the functions

exit, either gracefully or due to an unhandled exception, our exit code will always execute

before anything else. Finally, we generate the final source code from the modified AST and

return it.

1 async func foo(){

2 await ResolveAfter5Seconds();

3 eval("alert(’Dynamically injected!’);");

4 }

5 foo();

Listing 4.3: Example dynamic 3P script.

1 let gx = S.push("doc.write", ID); // entry code

2 try{ // Try/finally wrapper

3 async func foo(){

4 let fx = S.push("doc.write",ID,"foo"); // function entry code

5 try{ // Function try/finally wrapper

6 await xxawait(fx, ResolveAfter5Seconds());

7 eval("alert(’Dynamically injected!’);");

8 }finally{

9 S.pop(fx); // function exit code

10 }

11 }

12 foo();

13 }finally{

14 S.pop(gx); // exit code

15 }

Listing 4.4: Example dynamic 3P script after StyxJS’ rewrites.

74 Chapter 4. Robust and Real-Time JavaScript Attribution

Attribution code. In order to attribute dynamic 3P scripts at runtime, we need a real-

time stack trace, akin to the Error approach for top-level scripts. In other words, we need

a 3P script or function to push onto a stack when executing, and pop from that stack when

exiting. To that end, our page scripts also creat a globally accessible stack interface; we de-

tail how we conceal and protect our stack from malicious 3P scripts in §4.2.3. As shown in

Listing 4.4, when a script is evaluated, our entry code will push a new frame in our 3P stack,

including the API that injected the script and a unique script ID, and store its stack frame’s

index (line 1). The same applies for functions, which also store their name or a unique iden-

tifier for anonymous functions (line 4). Moreover, when a new frame is pushed, we mark it

as the currently active frame and store the previous active frame, if any, as its parent. The

exit code (lines 9,14), which aims to remove the frame, operates differently from a regular

pop operation to account for asynchronous (and generator) function calls. If the exiting

frame is not last but is followed by more recent ones, we can deduce that it must be, or was

followed by, an asynchronous function that had suspended its operation until a promise

was resolved. In the meantime, other dynamic 3P scripts or functions might have been ex-

ecuted and pushed as new frames in the stack. In such cases, we cannot simply remove the

stack frame, as doing so would invalidate the stack indices stored by the following, more

recent calls. Instead, we mark the frame as completed and return, as depicted in Figure 4.2.

When, however, an exiting frame is the last active call, it simply pops itself from the stack

and removes any previous, consecutive completed calls, so as to discard unneeded frames.

Finally, upon exiting, we also iterate the chain of parent frames to find the currently active

one; if none are found our active stack frame is set to null, indicating that dynamic 3P exe-

cution has halted.

Async await calls. Another challenge is the use of the await operator. In contrast to

traditional promise-chaining,await suspends the execution of the current function until its

operand is resolved. If in the meantime the 1P calls one of the overridden APIs, our 3P stack

would be non-empty and we would wrongfully attribute 1P to 3P code. To tackle this, during

rewriting we enclose each await operand as an argument into a custom function (line 6).

This function marks the current frame as suspended, wraps the original awaited promise in

a new promise and returns it to maintain functionality (Figure 4.2 (a) and (c)). When the

original promise resolves, the wrapper promise will also resolve, propagate the results to

the awaiting function, and mark the frame as resumed (Figure 4.2 (d) and (e)). As such, even

if a 1P call to an API occurs, the 3P function is marked as suspended and, therefore, the API

call is not attributed to the 3P. It is important to note that while static, this method is resilient

against obfuscation, as await is a reserved keyword and cannot be concealed.

Generators. A challenge similar to the await issue stems from generator functions,

which return an iterator. Such functions can use the yield keyword to gradually return

values when the iterator’s next method is called, and then suspend their operation until

next is called again. To tackle this, we wrap each yield’s expression in a custom function

4.2. Design and Implementation 75

Figure 4.2: Example stack snapshot for async/await functions. (a) An eval script
(completed) has previously called foo, which is now suspended due to
await. (b) Later, a script injected with document.write executes and calls
the asynchronous function bar. (c) bar is also suspended and the dynamic
script exits. (d)foo resumes execution and exits. (e)bar resumes execution,
exits and all completed frames are removed.

that marks the frame as suspended right before yielding the value. We also wrap the entire

yield statement in a try/finally and mark the frame as resumed in the finally clause, as

it is the first statement that executes when resuming the function.

Nested dynamic code injection. As can be seen in Listing 4.4 (line 7), the call toevalhas

not been rewritten. This is due to the fact that such nested dynamic code injections will be

handled right before being evaluated, as described in the previous paragraphs. Specifically,

the corresponding API override will check if our custom 3P stack has an active frame set, i.e.,

not completed or suspended, indicating that the call was initiated by a dynamic 3P script,

and will proceed with rewriting the new script. We also construct a JS Inclusion Graph (JIG),

a directed graph detailing the relationships between 3P scripts in the page, suitable both for

offline and runtime analysis. In more detail, each graph node corresponds to a top-level or

dynamic 3P script and is annotated with that script’s URL or inclusion method, as well as a

unique ID and its parent’s ID so as to maintain script inclusion relationships.

Dynamic naming. We note that all pieces of code injected by StyxJS in these examples,

e.g., stack interface and indices, await’s wrapper function, have been named statically for

the sake of simplicity. In reality, as we outline next, they are dynamically named so they

cannot be guessed and tampered with by evasive or malicious 3P scripts.

76 Chapter 4. Robust and Real-Time JavaScript Attribution

4.2.3 StyxJS Concealment

To guarantee robust attribution, it is crucial to ensure that StyxJS cannot be bypassed by ma-

licious 3P scripts. To achieve this, we employ existing configuration and design choices [170,

201,242], as well as novel techniques tailored to our system’s architecture and modus operandi.

Basic protection. First, we need to ensure that our content script runs before anything

else in a document and promptly injects our attribution logic and overrides. To that end,

we set the run atfield in the extension’s manifest file to document start. To prevent iframe-

related attacks, e.g., retrieving original APIs from a sub-document, we set all frames:true

and match about blank:true, so as to also capture nested frames. Furthermore, to restrict

access to the original APIs and StyxJS’ variables, we utilize Immediately Invoked Function

Expressions (IIFE), private blocks and block-scoped variables. To prevent malicious scripts

from tampering with StyxJS’ operations by overriding built-in APIs, we maintain and use

references to the original APIs, e.g., Array.push. Finally, to avoid interference with other

installed extensions and ensure StyxJS executes first, we leverage the approach by Picazo-

Sanchez et al. [216]. Specifically, we disable and then re-enable all other extensions, so as to

appear as they were installed after StyxJS, and execute as such. We note that our API over-

rides do not disrupt other extensions’ functionalities, as they only consider calls initiated

by 3P scripts.

UXID token. Our design necessitates the concealment of several operations, which is

achieved through the use of a secret token. UXID is generated by the content script for ev-

ery new document, and is sufficiently long (128 bits) so as to resist brute-force attacks. If a

3P script were to somehow learn its value, it would be able to circumvent StyxJS and avoid

attribution. The content script sets each injected page script’s id attribute to UXID’s value

so it can learn it too. After executing, each script removes itself from the DOM, so as not to

leave any traces of its execution or UXID.

Dynamic variable naming. StyxJS needs to expose certain functions and variables that

must be globally accessible by all overrides and the rewritten scripts (e.g., our stack interface

and the original APIs). Naming these statically would enable trivial bypasses, as a 3P script

could access the original APIs or pollute our stack. To that end, we bundle all functionali-

ties under a single object named after the secret UXID, making it unguessable by malicious

3P code, and set it as a non-enumerable property of the window object. Moreover, since Ob-

ject.getOwnPropertyNamesandReflect.ownKeysalso return non-enumerable properties,

we override them and strip our object from the returned property list. Finally, we perform

the same steps for the JS libraries that our extension uses in a page [25, 34, 38, 69].

Web Accessible Resources. All page scripts, overrides and auxiliary libraries are listed

as web accessible resources (WARs) [67] in our extension, making them accessible by any

origin. As such, a script could probe for these WARs and detect StyxJS [169, 240]; however, it

would not learn UXID as it is never statically referenced in any file. To prevent this, we lever-

4.2. Design and Implementation 77

age the fact that our content script executes before any other code in a document and we

know precisely which WARs it will request. As such, we utilize thewebRequestAPI [68] in our

extension’s background script and monitor the WARs requested by each unique document.

If a WAR is requested more than once by the same document, we can deduce the request

originates from a malicious script probing for StyxJS’ presence and block the request. We

note that this approach is not required for MV3, as it already provides the convenient use -

dynamic urlmanifest field [50] for preventing scripts from knowing and requesting WAR

URLs.

Detecting overrides. API overrides can be detected by calling the toStringmethod on

them and identifying discrepancies [165]. To tackle this, we store the original string value for

each overridden API and overrideFunction.prototype.toString to return the expected re-

sult whenever it is called on one of the APIs. We also note that this approach coverstoString

itself; even if it is recursively called on itself, our override code will never be revealed.

DOM exposing properties. Another critical aspect that could lead to circumvention of

StyxJS, are the inherent DOM modifications that occur when rewriting dynamically injected

scripts. For instance, if a 3P script sets a script’s textproperty, StyxJS’ override for that API

will rewrite the given JS code. The 3P script could then trivially access the rewritten property

and learn UXID. We also note that a property’s effects might be visible in other properties

too, e.g., innerHTMLwill also reflect changes in text. Similarly, a rewritten node’s ancestors

will also reflect that node’s real contents through such properties; we refer to all such proper-

ties as exposing properties (EPs) and detail them in Table B.1. To overcome this, we initially

store the original value of all dynamic scripts, right before rewriting them. Moreover, after

rewriting each script, we add two unique, randomly-generated markers as comments at the

beginning and end of the modified source code. Then, we override all exposing properties’

getter methods and internally retrieve the real, modified value when called. Finally, our

overrides replace each piece of code encapsulated in our markers with the corresponding

original value before returning it. We adopt the same approach for 3P functions, to prevent

dynamic scripts from trivially reading their own (or each other’s) rewritten functions and

learning UXID.

Frame polling. A malicious script can continuously poll for the creation of iframes, so

as to exploit a race condition between when a frame is created and when StyxJS’ overrides

are set, thus accessing the original, unprotected APIs. This can be achieved with a direct

or recursive call to setInterval or setTimeout, respectively, with a zero delay. To prevent

this, we initially block accesses to an iframe’s contentWindow and contentDocument until

the frame is fully loaded [170]. However, scripts can also access a frame’s execution con-

text by using window[z], where z is a numeric index for each frame. Unfortunately, these

indexed properties cannot be overridden to prevent direct access. To tackle this, when-

ever these functions are called, we wrap their callback in a custom function that inspects

whether StyxJS has not been set up in any frame. In such cases, before calling the original

78 Chapter 4. Robust and Real-Time JavaScript Attribution

callback, it sets all protected APIs in the uninitialized frame asundefined to prevent evasive

scripts from accessing them. It also stores the original APIs in a UXID-named variable in the

frame itself, so StyxJS can restore and override them when being set up. To the best of our

knowledge, this bypass vector has not been accounted for by prior work.

Fingerprinting prevention. Recent work [249] has demonstrated that extensions can be

uniquely fingerprinted via their DOM modifications, even if they try to conceal them, e.g.,

by reverting them. This is achieved by leveraging the MutationObserver API [53], which

records and inspects all DOM modifications with a given callback function. StyxJS’ main

operation is not affected by this approach, as we inject our logic before anything else in the

page, i.e., before a MutationObserver can be setup. In addition, as mentioned previously,

all API overrides call their original counterpart, thus not performing any extension-specific

modifications. However, as we detail next (§4.2.4), there are a few cases where we need to

set additional script attributes, so as to properly handle a page’s deployed security mech-

anisms. To prevent StyxJS from being fingerprinted due to this behavior, we also override

MutationObserver and wrap the page provided callback in a filtering function. This func-

tion removes mutations caused by StyxJS and calls the original callback with the filtered

list of mutations. We also note that StyxJS is not affected by other extension fingerprinting

techniques [178, 248], as it does not inject any stylesheets nor does it react to user actions.

Moreover, our system is also secure against the attacks by [142], where malicious scripts

escalate their privileges to the extension level via message-passing, as we do not exchange

any messages. Finally, we note that detection through side-channels (e.g., timing-based)

are out of scope for StyxJS, which is in line with prior work [56, 165, 170, 242].

4.2.4 Maintaining Security Mechanisms

Agarwal et al. [100] recently found that several extensions carelessly modify page-deployed

security mechanisms, diminishing their effects. In contrast, one of StyxJS’ main require-

ments is to maintain the security guarantees offered by deployed mechanisms and never

introduce new attack vectors, while still being able to operate as intended. As prior work

has shown, composing such security policies is often challenging due to their complex-

ity [226, 246] or third-party restrictions [252], resulting in developers’ struggling with cor-

rect deployment [227] and subtle pitfalls that can even enable complete bypasses [275]. As

such, properly extending these mechanisms to accommodate our system’s operation also

faces these challenges and requires careful design choices, so as to not overly relax them

or completely break them. In the following, we detail how we handle the two mechanisms

pertinent to our system’s operation.

Content Security Policy. One of the most prominent security mechanisms is the Con-

tent Security Policy (CSP) [39], which allows a website to define what resources and from

which origins they can be loaded in the page. For instance, it could dictate that scripts can

4.2. Design and Implementation 79

only be loaded from specific domains or if their source matches a set of predefined hash

values. It is clear that if not handled correctly, such policies can hinder StyxJS’ operation, as

our rewritten scripts would not match any allowed hash value. On the other hand, overly

relaxing a CSP would diminish its security benefits and potentially open up new attack vec-

tors. Before delving into the details of our approach, we must note that we can only han-

dle CSP headers upon receiving them, before the document is created, i.e., we do not have

any knowledge of the 3P scripts that will be loaded in the page. Thus, whenever a main-

or sub-frame request is intercepted, our background script detects any CSP headers and

checks whether they set any directives pertinent to StyxJS’ execution. Specifically, the fol-

lowing three directives regulate script execution; script-src [43] considers all JS execution

in the page and serves as a fallback for the other two. script-src-elem [45] considers inline

scripts, while script-src-attr [44] regards inline event handlers, e.g., onclick. Finally,

default-src [42] serves as a generic fallback for all previous directives. If the CSP does not

enforce any relevant restrictions, by not setting any of these directives, we do not need to

perform any special handling.

Inline scripts. The first mechanism that regulates inline script execution are CSP-defined

nonce values: if an inline script is not accompanied by a legal nonce, it will be blocked. In

such cases, we do not need to perform any additional handling, since our operations do not

affect nonces – it is up to the including script to assign scripts it injects with a valid nonce.

Another way to restrict inline scripts, is defining specific hash values; if a script’s contents’

hash does not match one of the given values, it will be blocked. As such, StyxJS’ rewritten

scripts would not match any hash value and would always be blocked. To tackle this, we ini-

tially collect all hash values from the CSP and also extend it with a random nonce, unique to

the document [54]. Then, whenever a new inline script is about to be injected, we compute

its hash and compare it with the legal hashes. If it matches, indicating that the script should

be executed, we add our custom nonce to the script and proceed with rewriting it as normal.

This way, CSP’s hash check will fail due to our rewrites, but the script will still execute due

to our nonce addition. In case the script does not match any of the given hashes, we cannot

be certain that it should be blocked, e.g., the including script might add a legal nonce to the

new script after setting its contents. In such cases, we still rewrite the script, but do not add

our nonce; if the script turns out to be allowed due to a nonce, it will still execute, otherwise

it will be blocked as would happen without StyxJS.

Inline event handlers. Finally, thescript-src-attrandscript-srcdirectives can spec-

ify inline event handlers’ hash values with the ’unsafe-hashes’ keyword. The latter also

regulates the execution of javascript:URLs. Similar to the inline scripts’ approach, when

an event handler is set on a node, e.g., via innerHTML, we perform the hash check internally.

If the handler is allowed, we cannot extend it with our custom nonce, as it is not applicable

in this case. Instead, we rewrite it and set it via addEventListener, which is not consid-

ered inline and is not bound to CSP restrictions [44]. If it does not match, we still rewrite

80 Chapter 4. Robust and Real-Time JavaScript Attribution

the handler, but set it via setAttribute, which is considered inline, so as to maintain CSP

enforcement. Setting javascript: URLs in anchors’ href attribute, essentially behaves

as a click event. As such, we perform the same procedure, but instead of href, we set its

onclick handler. Finally, for javascript: URLs in iframes’ src attribute, we perform the

hash check and, if allowed, we set the frame’s srcdoc (which has precedence over src [1])

to an equivalent markup including the rewritten JS code as an inline script, carrying our

custom nonce. We note that srcdoc iframes inherit their parent document’s CSP [40], and

thus, our nonce allows the script to execute.

Trusted Types. Another mechanism related to script execution are Trusted Types (TT) [95],

which aim to prevent DOM-XSS vulnerabilities by restricting dangerous APIs to only ac-

cept trusted input. Specifically, a website can set two additional CSP directives: require-

trusted-types-for to enable TTs, andtrusted-types to define TT policy names to be used

within the page. These policies are then defined in the page with the appropriate API, and

can be used to create trusted inputs, i.e., by sanitizing the provided string argument and con-

verting it to the corresponding TT [64–66]. If malicious code was to be injected in a DOM

sink, it would either be sanitized or it would not be a TT; in any case, its execution would

be blocked. To enable seamless StyxJS integration, we extend the trusted-types directive

to also include a randomly generated policy name, which we also define in the page. This

policy converts the given string to the appropriate TT without any modifications. Then,

whenever a TT is provided in one of our overrides, StyxJS will first convert it to a string, so

as to perform our rewrites, and then convert it back to its initial TT using our custom no-op

policy, maintaining functionality. If the provided argument is not a TT but a regular string,

we perform no conversions and handle it as such, maintaining the mechanism’s security

guarantees.

CSP concealment. We also account for scripts that might attempt to detect StyxJS by

acquiring the modified CSP value and inspecting for our custom script nonce and TT pol-

icy. Specifically, a script can achieve this by registering a listener for securitypolicyvi-

olation events [63], intentionally triggering a CSP violation and inspecting the resulting

event’s originalPolicy property. As such, we override the property’s getter method and

strip our modifications, effectively returning the original CSP. Finally, we perform the same

procedure for script elements’ nonce attribute.

MV3 porting. We note that our modifications on deployed CSPs, when needed, are per-

formed on the fly using the webRequest API’s blocking mode, which is no longer supported

in MV3. In contrast, MV3’s restrictive declarativeNetRequest (DNR) API [75] relies on pre-

defined, coarse-grained rules to modify HTTP headers and does not currently support their

conditional modification. Specifically, it only allows to entirely strip or replace an existing

header, without providing more fine-grained control over its original contents. Nonethe-

less, this missing feature has been pointed out and requested by multiple extension devel-

opers and is planned to be integrated [73, 80, 81]. Once that is done, performing our CSP

4.3. Experimental Evaluation 81

modifications in MV3 will only require writing a simple regex-based rule that checks for

the existence of allowlisted script hashes or the TT directive, and extending each one with

our custom nonce and TT policy, respectively. Alternatively, we have also identified and

experimentally verified another technique for achieving this. In essence, we can use the

non-blocking webRequestAPI (available in MV3) to collect CSP header values and then com-

pletely strip them using the DNR API. Then, our content script can inject the modified CSPs

as a <meta> element in the page, ensuring that all policies are correctly deployed before any

code executes.

CSP via <meta>. While StyxJS is designed to carefully handle CSPs, it cannot handle

CSPs deployed via meta elements in the HTML. This is because browsers will directly en-

force the policy, and there is no foolproof way for us to modify it beforehand. Also, injecting

additional metaCSPs can only make the initial policy stricter [41], while our approach aims

to maintain the same level of security. This does not significantly impact our system, as

prior work has shown that such CSPs are rare [226]. In addition, such CSPs can affect StyxJS

only if they specify script hashes or the TT directive, since these are the only cases for which

we need to extend the policy with our custom nonce or TT policy. Finally, even if we do not

handle such a CSP, it would only cause breakage, but would not hurt attribution, i.e., scripts

would be correctly captured by StyxJS, but they would be blocked by the browser.

4.2.5 Summary

It is apparent that achieving correct and robust JavaScript attribution is not a simple task, as

a multitude of different factors must be taken into account. Apart from the straightforward

task of hooking relevant APIs for dynamic JS inclusions, one needs to effectively tackle sev-

eral idiosyncrasies of the language itself, such as the await and yield keywords and their

effects. Similarly, dynamic 3P scripts’ (and functions’) execution must be precisely moni-

tored even in cases of early termination due to unhandled exceptions. Crucially, robustness

further mandates careful design choices for tamperproofing the attribution scheme against

evasive scripts. Finally, any system aiming to provide security guarantees should integrate

seamlessly with existing security mechanisms deployed by websites and never diminish

their own benefits.

4.3 Experimental Evaluation

Here we present our extensive evaluation of StyxJS. We experimentally prove the robustness

and effectiveness of our system, measure the performance overhead it induces and, finally,

study how its operation may effect real websites.

Setup. We ran all experiments using Chrome 122.0.6261.94, on a machine with a 16-core

Intel Core i7-11700 @ 2.50GHz CPU and 62GB of RAM.

82 Chapter 4. Robust and Real-Time JavaScript Attribution

Table 4.1: Bypass techniques tested against StyxJS.

Bypass Prevention

1 3P function toString Uses override to remove rewrites

2
Access original APIs
via iframe

StyxJS runs on all frames on
document start& blocks
access until fully loaded

3 Enumerate window Secret, non-enumerable properties

4
Injected scripts’ sub-tree’s
and ancestry chain’s EPs

Uses EPs’ getter overrides
to filter out rewrites

4.3.1 Validation

Attribution. To validate the efficacy of using StyxJS to capture and attribute 3P code, as well

as to ensure that our system cannot be bypassed, we employed the following methodology.

First, we created an HTML page that serves as the first party, which loads two external 3P

scripts. These scripts declare and call a range of different types of functions (asynchronous,

IIFEs etc.). Moreover, they leverage all JS inclusion methods detailed in Table B.1 and dy-

namically inject new scripts in the page. Each of these functions and scripts comprises a

specific test. As aforementioned, we used the JS inclusion methods by [201] as our starting

point and extended them to capture several overlooked cases. As such, while more com-

prehensive, there might still be cases we have missed. Nonetheless, StyxJS’ modular design

allows for the straightforward addition of missed inclusion methods, or even new ones that

will be introduced in the future. In addition, all tests ultimately call insertAdjacentHTML so

as to print their output on the 1P page, including the test’s name and which top-level script

initiated the action. We then created a plugin for StyxJS that overrides insertAdjacentHTML

and validates whether the injected JS is correctly attributed to the appropriate top-level

script, based on each test’s information.

As an initial validation experiment, we first ran the embedded top-level 3P scripts se-

quentially, to allow each one to execute all of its tests in order. Next, to further stress the

capabilities of our system, we also setup the two 3P scripts to perform their tests in an in-

terleaved manner, by scheduling them via setTimeout in random intervals. Overall, this

approach allowed us to verify that StyxJS passed all tests in all cases, indicating that it ef-

fectively captures both the top-level scripts and all dynamic scripts they inject, as well as

all declared functions. In addition, StyxJS records the relationships between scripts and

composes the JS inclusion graph; a shortened version of the JIG generated from the test

page is depicted in Figure 4.3. All JIG nodes, corresponding to 3P scripts in the page, are an-

notated with their specific inclusion method (e.g., eval or the script’s URL), whether they

were fetched from the cache or were rewritten on the fly, along with their original source

code. Moreover, each script is also annotated with a unique ID (SUID) and its parent’s ID

(PSUID) so as to maintain script inclusion relationships. As shown, StyxJS is able to cap-

4.3. Experimental Evaluation 83

Figure 4.3: Test page’s JIG. We omit script node details for brevity.

ture dynamic script injection chains of arbitrary length. In this case, script1.js dynamically

injects a new script via eval, which injects another script via setTimeout, which in turn

evaluates another script. To account for JS that might have been injected but not executed

(e.g., a 3P event handler that never fires), each node is marked as executed when the corre-

sponding script is evaluated and its entry code runs. Finally, we also attempted to compare

our system’s coverage against PageGraph [239] in real websites, but found cases where Page-

Graph yielded incorrect results, preventing us from performing a fair and correct validation;

we provide more details in Appendix B.2.

Robustness. In order to validate our system’s resilience to bypass attempts, the 3P

scripts perform additional tests, each trying to uncover UXID’s secret value. As discussed

in §4.2.3, if UXID becomes known a malicious script can circumvent StyxJS. In Table 4.1 we

detail each test and how StyxJS handles it. Specifically, the scripts attempt to read the rewrit-

ten 3P functions’ string representation, access unprotected APIs from same-origin frames,

enumerate the window properties to uncover our stack interface and, finally, inspect the

exposing properties of themselves, their sub-tree and their ancestry chain. Overall, UXID is

never revealed due to the concealment techniques our system employs (detailed in §4.2.3).

Security mechanisms. To ensure that our approach described in §4.2.4 truly respects

security mechanisms and also allows StyxJS to operate correctly, we setup our test page to

deploy CSPs and TTs. For CSP we deployed a separate policy for each JS inclusion method,

including inline event handlers and javascript: URLs, by specifying legal hash values.

84 Chapter 4. Robust and Real-Time JavaScript Attribution

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

D
o

m
a

in
s
 (

C
D

F
)

Load time delta (ms) - log

1st load (rewriting)
2nd load (cached)

Figure 4.4: Page loading time delta for 1st and 2nd visit.

Specifically, we tested each inclusion method in isolation, i.e., only that method was al-

lowed by the CSP, while all other scripts should be blocked. Similarly, we also adjusted the

page to use TTs for the appropriate script inclusions. Then, for each mechanism setup, we

loaded the test page both in a StyxJS-enabled and a vanilla browser, and verified that their

results were consistent in all cases (i.e., legal scripts were correctly captured and executed,

while illegal scripts were blocked).

4.3.2 Performance Evaluation

StyxJS’ complex operation imposes a performance overhead on page load times. It is cru-

cial to measure this overhead, since StyxJS can also be deployed in end user devices. To

that end, we test our system on the top 10K domains on the Tranco list [37]. Specifically,

we setup a browser instance without StyxJS, fetch the landing page and measure its loading

time. Next, we refresh the page to measure the loading time after some resources have been

possibly cached. Then, we perform the same steps with StyxJS in place; note that StyxJS

caches dynamic scripts and does not rewrite them for subsequent page loads if they have

not changed. We average the load times over five separate runs for each browser, to account

for possible network delays or other issues, and measure the overhead StyxJS induces, i.e.,

the corresponding delta between the browser setups for the first and second page loads.

After excluding unresponsive websites (e.g., time out, DNS errors) and those without

3P scripts, we end up with 6,522 domains, shown in Figure 4.4. Regarding the first page

load, where we expect a larger overhead since StyxJS needs to rewrite all dynamic 3P scripts,

we find that 50% of domains require at most an additional 0.09 seconds to load, while 90%

and 95% need up to 0.8 and 1.6 more seconds, respectively. For the second load, where our

caching mechanism intervenes, half of the domains need up to an additional 0.09 seconds,

90% up to 0.65 seconds and 95% up to 1.2 seconds more to load. We observe that for half

4.4. Use Cases 85

of the domains the overhead remains the same for the first and second load, i.e., our cache

does not seem to provide any benefits. This is expected, as we find that 95% of scripts can

be rewritten in just 0.002 seconds, a minimal amount of time that cannot be significantly

reduced. Yet, for a few domains (∼10%), our caching mechanism slightly reduces the over-

head, further improving the user experience and enabling wide adoption.

Overall, the overhead induced by our system for the majority of the domains is negligi-

ble, as StyxJS can accurately and robustly attribute web scripts, which is crucial for the accu-

racy of measurement studies and the effectiveness of countermeasures (as we demonstrate

in §4.4). Nonetheless, StyxJS supports allowlisting domains in case a user observes pro-

hibitively larger loading times. Finally, the storage footprint of our entire cache, spanning

∼6.5K domains and ∼188K dynamic 3P scripts, is roughly 400MB, making our approach

suitable for end user deployment.

Breakage. To measure the breakage StyxJS might cause to real websites, we followed an

approach similar to prior work [170]; while their work had a different focus, it also relied on

a browser extension that heavily depended on API overriding. We randomly picked 50 out of

the top 150 Tranco websites that include 3P scripts and proceeded to manually investigate

them. We browsed each website without StyxJS, and recorded all encountered functionali-

ties, e.g., signing up, logging in, editing settings, posting articles or comments etc. We stress

that we did not set a time limit for this experiment, but tried to be exhaustive and uncover as

many functionalities as possible. Next, having learned the website’s functionalities, behav-

ior and appearance, we revisited it with StyxJS and exercised the same functionalities. After

this procedure, we verified that StyxJS did not cause any breakage, as we did not encounter

any appearance or functionality issues, thus not affecting the user experience. Coupled

with the low, and typically negligible overhead, this further corroborates the suitability of

StyxJS for end user deployment.

4.4 Use Cases

We designed StyxJS to have a plugin-based architecture, so as to simplify the creation of new

pipelines on top of its robust and real-time attribution capabilities. Here we pick three ex-

isting systems, one that relies on browser instrumentation and two on JS instrumentation,

as representative use cases. We present each system alongside its limitations, and demon-

strate proof-of-concept (PoC) techniques for bypassing them. Next, we retrofit them as a

plugin on top of StyxJS, to highlight how our system enables a wide range of studies and sys-

tems. We also provide additional insights and discuss our improvements over the original

tools.

86 Chapter 4. Robust and Real-Time JavaScript Attribution

4.4.1 SugarCoat

Overview. SugarCoat [242] aims to address the privacy-functionality trade-off stemming

from the explicit blocking of privacy-intrusive scripts, embedded in thousands of websites,

since blocking them can cause significant breakage. This is achieved through safe resource

replacements for such scripts, which can then be adopted by content blocking tools. In

more detail, SugarCoat relies on a PageGraph-enabled browser [56] being driven by a pri-

vacy researcher so as to dynamically trace privacy-related API calls by harmful 3P scripts,

and then map them to their JS source code. The target scripts are rewritten so as to redirect

these API calls to mock API implementations, thus protecting privacy while also maintain-

ing functionality.

Limitations & bypasses. While SugarCoat addresses a significant problem, it also suf-

fers from certain core limitations. Initially, the generation of safe replacements happens

offline; the replacements can only be adopted by existing content blocking tools at a later

time. In other words, the system’s benefits, while practical, are not immediate for end users.

In addition, this offline pipeline must be run for each newly seen script, be it an updated or

a completely new script. Finally, another core limitation, is the inherent shortcoming of its

dynamic analysis approach, which only covers executed code paths. As such, SugarCoat’s

effectiveness in generating complete and safe script replacements, heavily depends on its

pre-processing’s coverage, as we outline next. Based on these limitations and our analysis,

we have devised bypass techniques that a malicious 3P script can use to avoid attribution

and maintain access to privacy-sensitive APIs.

Executed code paths. SugarCoat can only capture accesses to privacy sensitive APIs that

were executed during its offline pre-processing. A malicious 3P script can exploit this lim-

itation and alter its behavior depending on whether it executes in SugarCoat’s PageGraph-

instrumented browser or if it is a SugarCoat-generated replacement. To illustrate this, con-

sider a 3P script that originally has the following structure:

1 func oracle(){ return !cookie.includes("abc"); } // Returns false

2
3 if(oracle()){ // false. ‘else‘ clause is executed

4 func snoop(){ return storage.getItem("KEY"); }

5 }else{

6 func snoop(){ return storage.getItem("KEY"); } // Declare same function

7 }

8 let secret = snoop();

Listing 4.5: SugarCoat-evading 3P script.

The script leverages an oracle to determine whether it’s a SugarCoat replacement or not.

In this case, the 3P author has preemptively crawled a large number of domains embedding

her malicious script, and has collected information on what cookies each one sets. As a re-

sult, if the script runs in the PageGraph browser, which does not impose any API restrictions,

4.4. Use Cases 87

it should be able to access this information (line 1). Then, regardless of the result, it per-

forms the exact same operation, e.g., accessing a sensitive value in localStorage, through

the snoop function (8); the difference lies in where this function is declared (4, 6). When

the script is initially analyzed, the oracle will determine it is not a replacement and Sugar-

Coat will map thelocalStorageaccess to thesnoop function declared in theelse clause (6).

Therefore, the script replacement will have the following structure (simplified for brevity):

1 mockCookie={...}; mockStorage={...}; // SugarCoat mock APIs

2
3 // Returns true due to mock cookie API

4 func oracle(){ return !mockCookie.includes("abc"); }

5
6 if(oracle()){ // true. ‘if‘ clause is executed

7 func snoop(){ return storage.getItem("KEY"); } // Not replaced with mock API

8 }else{

9 func snoop(){ return mockStorage.getItem("KEY"); }

10 }

11 let secret = snoop();

Listing 4.6: SugarCoat-evading 3P script replacement.

When adopted by a content blocking tool and ran in a user’s browser, the replacement

script will again call its oracle. However, the cookie API has been replaced with a mock im-

plementation (line 4 in Listing 4.6) and the oracle will not be able to retrieve the expected

cookie, indicating that this is in fact a SugarCoat replacement script. As such, the snoop

function, now declared in the if statement (7), will access the original localStorage API,

fetching the secret value and effectively bypassing SugarCoat’s protection. We note that the

oracle in this example is rather simplified for demonstration purposes. In practice, since

the mock APIs adopted by content blocking tools are public knowledge, 3P script authors

can implement much more elaborate oracles, e.g., by leveraging several APIs, looking for

discrepancies that indicate if their script is in its original form or a replacement.

Stringifying functions. A more direct approach to bypass SugarCoat relies on its over-

sight to prevent scripts from retrieving their functions’ string representation. Specifically,

SugarCoat assigns the original API to a variable, so as to restore it after the script’s execution,

and dynamically names it to prevent scripts from guessing and using it directly. However,

a script can achieve this by calling a function’s toString, extract the variable’s name and

restore the original API right before using it. We also note that this approach can be used as

a generic oracle for the first bypass technique we demonstrated, as a 3P script can trivially

check if one of its functions has been rewritten by SugarCoat.

PageGraph oversights. Another limitation we identified, which also leads to a trivial by-

pass, is that PageGraph fails to correctly capture string-to-code evaluations via setTimeout

and setInterval calls, as well as javascript: URLs in anchors’ href attribute. Specifi-

cally, the system adds each script as a node in the final graph and connects it to the rest

88 Chapter 4. Robust and Real-Time JavaScript Attribution

of the graph with an execute edge, allowing it to attribute the injection back to another

node. In contrast, the aforementioned script inclusions are not connected to any other

node, preventing attribution. As a result, a 3P script can simply inject all of its functionality,

including accesses to privacy sensitive APIs, through a single call to one of these functions

and evade SugarCoat’s rewriting. It is important to note that this specific bypass technique

is not tied to SugarCoat, but affects any system that relies on PageGraph for script prove-

nance [120, 166, 230, 239, 243].

We stress that we experimentally verified each bypass technique, by writing PoC evad-

ing scripts that access sensitive APIs and then generating their replacements via SugarCoat.

Our findings were disclosed to and acknowledged by the Brave browser [91], which issued

fixes for the PageGraph-related bypasses and awarded us with a bounty.

StyxJS adaptation. Adapting SugarCoat on top of StyxJS was straightforward, as we only

needed to implement the mock APIs, adjust them to utilize our 3P attribution and inject

them on each page right after our overrides (§4.2.1). SugarCoat’s pre-processing is not appli-

cable in our case, as StyxJS operates in real-time and does not require any prior knowledge

of the websites or the scripts they include.

In more detail, we created mocks for the same APIs as [242] (storage, cookie, naviga-

tor, XMLHttpRequest, and Fetch), but instead of replacing and restoring the APIs, we over-

ride their prototypes’ properties and functions to disambiguate between 1P and 3P calls at

runtime, by utilizing our 3P attribution scheme. Then, whenever an API is called by a target

privacy-intrusive 3P script, the override will redirect the call to the mock API instead of the

real one. This has two significant advantages; first, we do not need to locate the source lo-

cations where the API is called since we rely on dynamic code interception and, thus, cover

any executed codepath. This makes our approach robust against evasion techniques such

as the one presented in Listing 4.5. Moreover, it solves another limitation, related to async

calls. As [242] mentions, if a 3P async function accesses a protected API and its execution is

temporarily suspended, other benign code will access the mock API instead of the original,

as it has not been restored yet, until the async function resumes and completes. Disam-

biguating API calls at runtime, coupled with our async/await handling (§4.2.2), solves this

issue as the async function will be marked as suspended, enabling correct API call attribu-

tion. Overall, our SugarCoat plugin, including mock implementations and recording pro-

tected API calls for analysis, totals 274 lines of code (LoC), while the original mock APIs [30]

need 465 LoC. This is because SugarCoat has to replicate each API in its entirety and prop-

erly mimic its behavior, due to its replace & restore approach. In contrast, StyxJS essentially

extends the original API and can utilize existing properties. For instance, a script can create

a regular XHR object without any intervention from StyxJS, but sending the request will be

blocked by the corresponding override.

Comparison. Next, we utilized our plugin to measure its effectiveness and compare it to

the original version. Initially, we collected the filter list rules generated by SugarCoat [29],

4.4. Use Cases 89

Table 4.2: API calls captured by SugarCoat and StyxJS.

Network Storage + cookie Navigator

SugarCoat 2,494 15,577 9,103
StyxJS 3,547 76,904 64,865

which define specific privacy-invasive scripts that should not be blocked for compatibility.

Next, we collected the current script exception rules from the same filter lists as [242] (Ea-

syList [78], EasyPrivacy [79], Brave [84] and uBlock Origin (uBO) [96]), so as to find domains

that likely included these scripts at the time of our experiment. This procedure yielded 3,025

domains. We then set up a browser with uBO, configured to redirect target 3P scripts to the

original SugarCoat replacements [28, 29], as intended by their system. We also modified

SugarCoat’s script replacements to record API accesses. Next, we visited each domain and

waited for 5 seconds after the load event to allow scripts to execute. Finally, we repeated the

same process for these domains with StyxJS’ plugin, targeting the same 3P scripts. Overall,

we found 1,616 domains that were responsive and included at least one target script.

As shown in Table 4.2, the API accesses protected by the original SugarCoat scripts are

significantly fewer than the ones covered by StyxJS. To further shed light on the underlying

causes of this discrepancy, we sampled and manually inspected 20 of SugarCoat’s script

replacements in an attempt to identify whether relevant API call sites were missed during

its offline pre-processing. Through this process, we found that 18 out of 20 script replace-

ments actually missed several privacy-invasive API calls and only covered a subset of them.

For instance, for the popular Google Analytics script, SugarCoat captured a few calls to nav-

igator.userAgent and XMLHttpRequest. However, the script also reads and writes cookies

several times and sends additional requests, which were not replaced by SugarCoat’s mock

APIs. In another script, apart from missing API calls tostorage,cookieandnavigatorprop-

erties, the script replacement threw an exception due to SugarCoat’s rewrites, preventing it

from fully executing and possibly reaching further API calls. These findings further high-

light two crucial SugarCoat shortcomings. First, scripts do not always necessarily expose

all of their functionalities, making offline pre-processing inadequate. Second, SugarCoat’s

script replacements were generated over three years ago, making them obsolete and error-

prone. It also highlights that generating one-off script replacements is not a robust, long

term solution, as one needs to constantly generate replacements for new or updated scripts

(and push them upstream to content blocking tools). To better illustrate this limitation, we

collected the scripts that current filter lists exempt from blocking and visited them daily for

one week. We found that from 238 scripts that were responsive, 10% were updated once,

while another 10% changed multiple times. In other words, SugarCoat would have to pre-

process these scripts several times in a single week to accurately capture their current ver-

sion. In contrast, StyxJS does not suffer from these limitations as it captures the current 3P

script versions in real time, without prior processing, and covers all executed code paths.

90 Chapter 4. Robust and Real-Time JavaScript Attribution

When comparing our plugin’s performance overhead to the original system, we find that

for the first page load it requires up to 0.16 and 1 seconds more for 50% and 90% of the do-

mains respectively. For subsequent loads, the overhead is reduced to up to 0.12 and 0.77

seconds more for the same fraction of domains. We also performed a breakage comparison

on 50 randomly chosen domains, to test whether StyxJS causes additional breakage. We

visited each website with both the original system and StyxJS’ plugin and exercised the var-

ious functionalities. We found one domain in which images would not load correctly with

SugarCoat, possibly due to its script replacements being outdated. Most importantly, we

encountered no issues stemming from StyxJS’ operation.

Further insights. Since SugarCoat-generated rules and script replacements target spe-

cific scripts, without accounting for dynamic GET parameters or paths in script URLs (e.g.,

client IDs or version numbers), we relaxed the filter rules to account for such cases by replac-

ing dynamic parts with wildcards. We also collected the scripts that are currently exempt

from blocking in the various lists. We then set up StyxJS to run for all 3,025 domains, out of

which 2,127 (70%) included at least one privacy-harming, but compatibility-critical script,

which current filter lists allow. Overall, our plugin prevented 7,184 network related, 274,284

storage and cookie and 236,073 navigator API calls, without any a priori analysis of the

scripts. This further corroborates StyxJS’ practicality and immediate privacy benefits for

users, as it can promptly target such scripts solely based on their URLs.

4.4.2 LeakInspector

Overview. Recently, Senol et al. [233] studied the prevalence of online trackers exfiltrating

personal data from HTML forms before their submission. Specifically, they measured the

exfiltration of e-mail addresses and passwords and found several cases where trackers or

session replay scripts extracted both, either intentionally or inadvertently. To aid users in re-

mediating such privacy-invasive practices, they released LeakInspector [32]. This browser

extension aims to detect and, optionally, block tracker or 3P scripts from sniffing sensitive

elements, pertaining to personally identifiable information (PII), and sending their value to

known tracker domains. This is achieved by detecting such input fields in a page, defining

a custom value getter method on each one, and attributing the read operation to the call-

ing script. It also collects the value of all protected fields and inspects outgoing requests to

detect and block encoded, hashed and plaintext leakage to trackers.

Limitations & bypasses. LeakInspector relies on naive stack walking for attribution

when detecting such read operations, by solely leveraging Error.stack. As mentioned in

§4.1, this leads to trivial bypasses through the use of dynamically injected scripts, effectively

nullifying its defenses. For instance, a malicious script can still read sensitive input fields’

values by simply injecting a new script through setTimeout or document.write. Moreover,

we have identified several other technical malpractices that enable other types of trivial by-

4.4. Use Cases 91

passes. First, as aforementioned, LeakInspector defines a custom valuemethod on each

PII input field, but does not take precaution to override the corresponding method on the

HTMLInputElement prototype itself. As such, a malicious script can acquire the prototype’s

method and call that instead of LeakInspector’s custom method. Even if this issue was ad-

dressed, the system is configured to run on each new document on document idle, after

attacker-controlled code has executed. Therefore, a malicious script would still be able to

acquire an unprotected reference toHTMLInputElement’svaluemethod. Similarly, the same

can be achieved by acquiring the API reference through a sub-document, as the system has

not been configured to run in all frames and does not defend against frame polling. In ad-

dition, LeakInspector uses a direct reference to Error.stack, allowing an evasive script to

override the stack trace, remove its information, and avoid attribution. Finally, the system

relies on common encodings and hashing algorithms to detect and block PII leakage at the

network level. As such, a script can utilize any of the above bypass techniques to read PII val-

ues and avoid detection, and simply utilize unsupported or nested encodings to send them

to tracker domains. As in the previous use case, we have setup a PoC script that employs all

bypass techniques and experimentally verified each one.

StyxJS adaptation. We retrofitted LeakInspector’s approach as a new plugin on top of

StyxJS, amounting to 158 LoC. Moreover, we configured the plugin to also inject Mozilla’s

Fathom e-mail field detector [14] in each page, as done by the original system. Instead of re-

lying on HTTP request inspection to detect and block PII leakage, which is prone to evasion,

we decided to tackle the root cause of the issue. Specifically, we aim to robustly prevent 3P

scripts from reading sensitive fields’ values in the first place. To achieve this, we initially

override the HTMLInputElement prototype’s value getter method and attribute reads by 3P

scripts using StyxJS’ underlying infrastructure. Our override also identifies whether the in-

put field being read constitutes PII, using the same heuristics as [32]. This covers several

different types, such as e-mails, passwords and credit card numbers. If the call originates

from a 3P script and targets a PII input field, our override will return a predefined dummy

value instead of the real one and will also inform the user by highlighting the target element

and annotating it with information about the sniffing attempt. In addition, we override the

InputEvent prototype’s data getter and perform the same steps, in order to prevent scripts

from registeringoninputevent listeners and gradually constructing the element’s value. We

note that this exfiltration method has not been accounted for by LeakInspector. Moreover,

our plugin targets all 3P scripts, but can be trivially adjusted to only prevent known tracker

scripts from reading sensitive values. Finally, we leveraged our PoC script and verified that

StyxJS effectively prevents all read operations that LeakInspector previously missed.

92 Chapter 4. Robust and Real-Time JavaScript Attribution

Table 4.3: Comparison between ScriptProtect and StyxJS.

ScriptProtect StyxJS

Domains 112 169
Scripts

- Blocked 12 22
- Sanitized 102 161

API accesses
- Blocked 18 140
- Sanitized 719 1,775

4.4.3 ScriptProtect

Overview. ScriptProtect [201] aims to prevent benign-but-buggy 3P scripts from acciden-

tally introducing DOM-XSS vulnerabilities. It achieves this by overriding dangerous HTML

sinks that can lead to new JS being evaluated (e.g., innerHTML) and sanitizing their input,

while APIs that lead to direct JS execution (e.g., setTimeout) are entirely blocked. The sys-

tem offers two modes of operation: for new or relatively short codebases, 1P developers

can explicitly use unsafe API variants (e.g., document.unsafeWrite), essentially calling the

original sink. For existing applications, where rewriting calls to unsafe counterparts can be

costly, it dynamically disambiguates 3P from 1P calls inside the sink overrides by leveraging

the stack trace provided by the Error object [46].

Limitations. Unfortunately, for the dynamic 3P attribution mode, ScriptProtect only

inspects the top-level stack frame to decide whether a call to a DOM sink originates from a

3P and should be sanitized or blocked. While this makes sense in certain cases, a 3P script

could inadvertently evade ScriptProtect and introduce a DOM-XSS vulnerability, in case

1P code calls one of its functions. Such 1P calls to 3P code is common practice for many

3P scripts such as analytics, SSO and DOM-manipulation libraries [36,48,49,83]. Moreover,

ScriptProtect has overlooked several JS inclusion methods (see Table B.1) and in some cases

only partially captures them – we have found cases where their interception fails and new JS

code is executed. This further allows 3P scripts to unintentionally circumvent its defenses

and introduce DOM-XSS bugs. We have experimentally verified these limitations.

StyxJS adaptation. To retrofit ScriptProtect on top of StyxJS, we created a plugin (110

LoC) implementing all their dangerous sinks’ overrides, as well as the ones that they missed,

and adjusted them to use our 3P attribution interface. It also injects DOMPurify [85, 154] in

each page for the markup APIs’ sanitization step, as per the original system.

To showcase StyxJS’ ability to robustly and conveniently retrofit existing pipelines, but

also combine them or introduce new ones, we decided to target outdated JS libraries for

our experiment, as they are more likely to be vulnerable, an issue highlighted by prior stud-

ies [179, 201, 254]. To that end, we slightly modified the original system to target specific 3P

scripts, and modified DOMPurify to use references to original APIs, as we found cases where

ScriptProtect would wrongfully attribute such calls to 3P scripts. To construct a dataset of

4.5. Discussion & Limitations 93

outdated JS libraries we referred to [179], which reported the 30 most popular libraries of

the time. We also gathered the 20 most currently-popular libraries (according to Wappa-

lyzer [87]). Next we removed duplicates, NodeJS modules (which are irrelevant in our con-

text), and well-known, functionality-critical libraries that might entirely break a website if

tampered with (e.g., jQuery [49], RequireJS [58]); this left us with 32 JS libraries.

Next, we visited each library’s repository and gathered the version numbers that have

not been updated in over two years. We also identified URLs commonly used to include

each library in the wild, based on repository documentation and relevant StackOverflow

questions. Based on these URLs and versions, we compiled a list of regex-based filter rules

that we fed into our plugin and the original system, in order to capture these scripts specifi-

cally. We note that our dataset is rather limited, as we might have missed versions, URLs and

even entire libraries. However, our goal is not to study the use of such libraries, but to com-

pare StyxJS’ effectiveness over ScriptProtect in a realistic use case; as such, we believe the

compiled dataset serves our goal. Finally, we visited the landing page of the top 3K domains

with both systems and recorded protected API accesses; this process yielded 169 domains

that included one of the outdated libraries.

As shown in Table 4.3, StyxJS offers a significant improvement over ScriptProtect as it

blocks approximately 8 times more and sanitizes 2.5 times more API calls, while covering 57

more domains where at least one protected API was called. StyxJS also captures 10 and 59

more scripts which called at least one blocked or sanitized API, respectively. Regarding page

load times, we observe that our plugin takes up to 0.07-0.12 and 0.7-0.73 seconds more for

50% and 90% of the domains respectively, for two subsequent page loads, once again high-

lighting the practicality of our approach.

To investigate possible breakage due to StyxJS, we analyzed 50 random domains with

both systems. We found 19 cases where the original system threw an exception and caused

minor breakage, such as appearance issues, submitting cookie policies, playing videos, and

breaking the search functionality. Moreover, in five of these domains, ScriptProtect caused

their navigation menus to not load properly, effectively disabling access to other pages. In

contrast, we did not encounter any such issues with StyxJS in any of the domains.

4.5 Discussion & Limitations

In this section we discuss limitations of our approach and a potential direction for wider

adoption.

Eval. A common issue in overriding eval is that it is not executed in the same scope as

the code that called it [201, 263], which might cause breakage. Recently, [230] showed that

only 1.9% of 1P and 3P scripts use eval; even this small fraction is an upper bound, as not

all calls will cause breakage. Indeed, during our large-scale performance evaluation (§4.3.2)

only ∼11% of all eval calls threw an exception. Again, this is also an upper bound as we do

94 Chapter 4. Robust and Real-Time JavaScript Attribution

not expect all cases to be caused by StyxJS.

JS bundling. If a website bundles several JS files into one, StyxJS would be unable to

attribute API calls to their true origin. The same applies if the 1P hosts 3P scripts in its own

domain or inlines them in its HTML. This is an inherent limitation of any system attempt-

ing script attribution and is not tied to StyxJS’ approach. Nonetheless, recent work [218] has

shown that 3P bundles are way more prevalent than 1P ones; in such cases StyxJS can cap-

ture the entire bundle, but not distinguish individual scripts. Finally, as proposed by [218],

studying bundles’ API usage so as to reduce their security impact on websites is an interest-

ing future direction that could significantly benefit from StyxJS’ capabilities.

Browser adoption. Ideally, web script attribution could be addressed internally by browsers

and exposed via a native JS API as a substitute for StyxJS’ capabilities. Moreover, such an ad-

dition could potentially solve our aforementioned limitations, while also being extremely

useful for security and privacy practitioners, as it would facilitate the development of a

plethora of different countermeasures. As such, having established the significant improve-

ments StyxJS offers, we hope our work can incentivize browser adoption.

Chapter 5

Related Work

5.1 Black-Box Web Application Scanning

Web application scanning has received considerable attention from the research commu-

nity through the years, as both black-box [132,137,141,167,213,253,256] and white-or grey-

box [104, 143, 150, 152, 155, 156, 185, 207, 224, 234, 264, 269] techniques have been proposed

and thoroughly evaluated. Moreover, several studies have carried out extensive compar-

isons between black-box vulnerability scanners [105, 133, 208, 260, 270], collectively agree-

ing that such tools suffer from certain core limitations, such as detecting and correctly mod-

elling all injection points, replaying the necessary steps to perform an injection, or their in-

adequacy on persisting the authentication state. In the following paragraphs, we relate our

work to the most prominent black-box approaches proposed in prior work.

As early as 2006, Kals et al. [167] designed a simple web application vulnerability scanner

that visited pages, extracted HTML forms and tested for common XSS and SQL injection

payloads. Later, Doupé et al. [132] highlighted the importance of taking the application’s

state into account for better coverage and implemented their approach in a state-aware

crawler which, however, only considered static HTML links and forms for detecting state

changes, navigating and clustering similar pages together. As we outlined, these features

only, fall short for navigation and can also incorrectly cluster pages that offer different func-

tionality (e.g., through input elements or buttons outside an HTML form). In another line of

work, Duchéne et al. [136, 137] inferred a control flow model for the application under test

and an attack grammar to generate appropriate payloads for detecting XSS flaws; however,

their approaches do not consider client-side events and require the ability to reset the ap-

plication. Pellegrino et al. proposed jÄk [213], which considered client-side events towards

covering a larger part of the application, but did not use a fully-fledged browser and only

considered reflected XSS. More recently, Eriksson et al. [141] developed an XSS scanner that

tackled some of the limitations we address in our work. We provide a detailed comparison

in§2.3.3. Finally, a multitude of other works have focused on identifying specific flaws, such

as client-side XSS [183, 253, 256], CSRF [112, 171] and unrestricted file uploads [121, 181].

The common thread among all these works is that they suffer from at least one of the

95

96 Chapter 5. Related Work

core limitations we highlight in this study. Moreover, they all constitute standalone tools

that target a specific selection of vulnerability types. In contrast, ReScan aims to address

these challenges in a scanner-agnostic manner irrespectively of the specific tests carried

out by each scanner.

URL clustering has also been used in different domains, e.g., the detection of phishing

pages. Such systems deduce page similarity either through visual analysis [98,126,188,189]

and comparing benign to suspicious webpages, or by utilizing URL and HTML related fea-

tures that mainly focus on a page’s textual contents [180,186,268]. Despite being successful

for their respective goals, such approaches are not suitable in our context. Specifically, a

visual representation of a page might not reflect the subtle yet important elements that de-

note different functionality, such as hidden buttons or input elements [187]. Moreover, two

pages’ textual contents might differ significantly even in conceptually similar pages (e.g.,

two product pages with different reviews). Fundamentally, our system aims to cluster pages

that essentially offer the same functionality regardless of their specific contents and precise

appearance.

5.2 Web Authentication and Authorization

Cookies and Sessions. Several prior studies have explored certain aspects of authentication

and authorization flaws in web apps. Sivakorn et al. [238] manually audited 25 popular do-

mains (and their respective mobile apps and browser extensions). Calzavara et al. [115] re-

cently implemented black-box strategies for identifying session integrity flaws using a brow-

ser extension, and audited 20 popular websites where they found several vulnerabilities

under different threat models. However, the most challenging parts of the process are not

automated and app-agnostic (e.g. account creation, status oracles), rendering large-scale

deployment and analysis infeasible. Neither of these studies included the JavaScript-based

threats that we explore. In another work, Calzavara et al. [112] conducted a large-scale study

on TLS vulnerabilities that can enable session hijacking. Kwon et al. [177] exploited the

shortcomings of a specific TLS cipher suite and proved that, under certain assumptions, it

is possible to disable cookie attributes in HTTPS traffic. Finally, Jonker et al. [151] proposed

Shepherd, a system for automated login that can enable post-login studies. However, their

system does not handle account creation which is the most challenging process. Instead, it

relies on the BugMeNot service [74] for acquiring credentials, which further limits their sys-

tem’s coverage as that service explicitly prohibits websites that are high-value or have user

accounts with sensitive information, thereby limiting the overall suitability of their system

for representative large-scale studies. Moreover, they located valid credentials for 26,758

domains of Alexa’s Top 1M and managed to log into 7,113 (26.6%) of them; this is more that

three times less than our audited websites (which include numerous popular and inter-

esting domains prohibited from BugMeNot). Calzavara et al. [251] leveraged and extended

5.2. Web Authentication and Authorization 97

Shepherd to perform a large-scale measurement on several session security aspects, includ-

ing session fixation vulnerabilities, transmitting passwords over unencrypted connections

and session invalidation malpractices upon logout and also revisited our session hijacking

attacks, all one year later after our own work. The authors managed to log into 6.1K websites

(1K less than Shepherd and four times less than our audited websites) and their approach

suffered from the same inherent limitations. More recently, Rautenstrauch et al. [220] per-

formed a comparative analysis on several security aspects in both the pre- and post-login

states of websites, such as security headers, use of vulnerable JavaScript libraries and num-

ber of JavaScript inclusions and client-side XSS. However, their system relied on manual

account registration, limiting their scope to∼200 websites. A notable exception is the study

by Al Roomi et al. [225], carried out in 2023, which automatically evaluated website login

policies at scale, e.g., hosting login pages over HTTP, storing plaintext passwords and the

capability to enumerate registered users, which are orthogonal to our work. While their sys-

tem adopted similar techniques to ours for automated account setup, it managed to register

accounts in 45K websites. This improvement can be largely attributed to their system being

able to solve CAPTCHAs, one of the main reasons for failed registrations in our case.

While these studies provide useful insights, they are inherently small-scale, require sig-

nificant manual effort, or are complimentary to our work as they focus on different prob-

lems that enable session hijacking (e.g. TLS vulnerabilities). In contrast, our work achieves

orders of magnitude larger coverage of audited domains, analyzes the root causes of such

attacks and further explores the use of other defense mechanisms, as well as the privacy

leakage users face. Orthogonal to our work are prior studies that proposed defenses against

session hijacking attacks [99, 108, 113, 114, 125, 203, 265].

Cookies and Browsers Singh et al. [236] built a framework for analyzing the usage of

browser features in the wild and detecting browsers’ access-control flaws, e.g., secure cook-

ies being sent over HTTP. Franken et al. [146] evaluated how different browsers and anti-

tracking extensions handle third party requests and showed that cookie-bearing third party

requests can be leaked by all browsers, even in the presence of protection mechanisms like

sameSite cookies. Zheng et al. [279] studied how cookie integrity can be diminished by

various adversaries due to specification violations in browser and server-side implementa-

tions, and demonstrated practical attacks on popular websites. Cookies are also commonly

used for tracking, and Cahn et al. [110] explored their use through empirical large-scale

measurements and reported the prevalence of third party cookies. Moreover, Englehardt et

al. [140] showed that a passive eavesdropper can exploit third-party cookies to reconstruct

up to 74% of a user’s browsing history. These studies are orthogonal to our work since we

do not examine browser shortcomings in terms of leaking cookies that can lead to session

hijacking; instead, we explore the effects of developer malpractices which, however, can be

exacerbated by browsers’ inability to properly handle cookies.

Security Headers and Policies Chen et al. [118] examined the CORS specification, and

98 Chapter 5. Related Work

browser/server-side implementations, and found security issues in all cases, several pre-

viously unknown, which could even lead to data theft and account hijacking. Kranch et

al. [173], performed the first in-depth study on HSTS and HPKP, identifying various mis-

configurations in preloaded domains as well as Alexa’s Top 1M. Mendoza et al. [196] exam-

ined HTTP header inconsistencies between websites and their mobile counterparts, and

reported cases of mismatches in set cookie flags. Stock et al. [254] presented a longitu-

dinal study on the Web’s evolution and, among other things, measured the adoption of

security mechanisms. Finally, Roth et al. [228] analyzed websites’ security header incon-

sistencies stemming from different client configurations with varying characteristics, e.g.,

user agent, vantage point and language settings. While we leverage certain aspects of these

studies [173], our goal is not to evaluate these mechanisms in a generic context; instead, we

evaluate the deployment of the relevant mechanisms and how they either enable or prevent

session hijacking specifically.

SSO and Sessions Several studies have focused on SSO-related vulnerabilities. Zhou

and Evans [281] implemented SSOScan, a tool that detected vulnerabilities in Facebook’s

SSO scheme and found that of the 1,660 audited websites, 146 leaked credentials and 202

misused them. While SSOScan handles SSO authentication flows, several issues render it

unsuitable for our study; however, we do incorporate one of their heuristics in our frame-

work. Mainly, our system needs to handle non-SSO websites, which account for the vast ma-

jority of sites we audit (∼92%); this necessitates more advanced and robust form-handling

capabilities to address the more complex and diverse nature of non-SSO registration. For

instance, SSOScan only uses an input element’sidandnameattributes to infer its type, while

we leverage all of its attributes, dedicated label elements, as well as the input’s preceding

text as possible labels. Also, since SSOScan processes all input elements of a page at once,

there is a chance that it uses an unrelated submit button; we avoid this by processing each

form separately. Finally, if SSOScan is not able to locate a conventional submit button it will

not be able to submit the form, while our system attempts to do so via Selenium’s submit

method. For SSO workflows, we identified several challenges that SSOScan was not able to

handle. For instance, SSOScan’s oracle relies on the SSO login button not being displayed

after logging in, which, as aforementioned, is not always the case. We address this by sepa-

rating our SSO and SSO Login oracles. In addition, SSOScan operates only on the homepage

for locating candidate elements, while we employ a crawling approach to obtain better cov-

erage. Finally, their tool only considers English sites.

Fett et al. [144] proposed and evaluated a formal model of the OAuth 2.0 protocol. Wang

et al. [272] employed differential testing to identify logic flaws in SSO implementations and

found several popular IdPs and RPs to be vulnerable. Calzavara et al. [111] implemented a

lightweight browser-side monitor for web protocols (e.g., OAuth) that uses formalized pro-

tocol specifications to enforce confidentiality and integrity checks. Yang et al. [276] used

symbolic execution to audit SSO SDK libraries and discovered seven classes of vulnerabili-

5.3. Third-party Scripts and Attribution 99

ties in 10 SDKs. Zuo et al. [284] proposed a tool to identify vulnerable authorization imple-

mentations in mobile apps, which relied on differential traffic analysis for identifying fields

of interest in exchanged messages. They used Facebook’s SSO to audit ∼5K apps (306 were

vulnerable). They also explored data leakage in mobile apps [283] that use a cloud-based

back-end, stemming from key misuse and authorization flaws. However, their leakage ex-

ploration focuses on a very limited set of information and they manually setup an account

on only 30 apps. Ghasemisharif et al. [147] demonstrated that SSO magnifies the scale and

stealthiness of account hijacking, while rendering remediation impossible in most cases.

More recently, Ghasemisharif et al. [148] also analyzed flaws and malpractices in SSO de-

ployments, stemming not from the protocols themselves, but from the interplay between

the SSO and each RP’s local account and session management. Finally, Jannett et al [163]

analyzed the implications of dual-window SSO deployments, which, in contrast to the tra-

ditional, redirection-based SSO, utilizes in-browser communication channels for the proto-

col flow, and found that in certain cases it can enable XSS attacks, identity theft and account

takeovers. While we use SSO as an alternative way for registering test accounts, identifying

flaws in SSO implementations and specifications is not our objective. Nonetheless, these

studies shed light on a different problem that can lead to session hijacking.

5.3 Third-party Scripts and Attribution

A significant body of work has studied various aspects of 3P scripts and proposed counter-

measures. Here we outline the most prominent studies, categorized by their core design.

Browser instrumentation. Several systems have been proposed for restricting scripts

according to specified security policies [26, 128, 198, 273, 278, 282] and manually-curated

task capabilities [190]. Apart from requiring heavy browser modifications, they all require

significant manual work by developers, e.g., using new APIs, or have extravagant dependen-

cies (e.g., virtual browsers [116]), limiting their practicality. In contrast, StyxJS is transparent

to the hosting application and does not require any such interventions.

Prior work has also studied 3P scripts from the angle of user tracking and content block-

ing. Iqbal et al. [160] designed AdGraph, an ML approach relying on page structure, be-

havior and requests to detect ads and tracking resources; they also highlighted the need

for robust script attribution. The following systems were built on top of PageGraph [239],

which captures further page interactions and is more robust than AdGraph. Sjösten el

al. [239] trained a classifier to detect ads in a language-agnostic fashion and generate fil-

ter lists. Chen et al. [120] relied on JS execution signatures to detect scripts evading filter

lists, while Smith et al. [243] trained a classifier to measure the breakage caused by filter lists.

Jueckstock et al. [166] also studied website breakage, focusing on 3P storage restrictions.

Finally, Sarker et al. [230] relied on concealed API usage to detect obfuscated scripts; their

system leveraged a combination of PageGraph, for script provenance, and VisibleV8 [165]

100 Chapter 5. Related Work

(VV8) for API call detection. The common thread among all these works is that PageGraph

(and VV8) is a passive monitoring tool. In other words, while extremely useful for offline pre-

processing or post-mortem analyses, it cannot be used as-is to provide real time protection

mechanisms for end users, as we extensively outlined in §4.4.1. Aside from this fundamen-

tal characteristic, PageGraph is only integrated by the Brave browser [91], which has less

than 5% market share [77], even when combined with other unpopular browsers. As such,

even if PageGraph supported active script interception and tampering, users would need

to switch to Brave or build their own instrumented browsers, which is highly unlikely.

JS instrumentation. A few systems have been proposed to sandbox JS, either holistically

or for 3P scripts specifically. Phung et al. [215] designed a Firefox-specific JS reference mon-

itor relying on prototype patching. Their system could not run in iframes and considered

all scripts. Agten et al. [101], proposed JSand to sandbox 3P scripts through proxy objects;

it is unclear how they handled objects than cannot be wrapped in proxies [165]. Moreover,

both systems required developers to write specific security policies. Tran et al. [263] im-

plemented JaTE, a Firefox extension to impose object-level access control among scripts;

they also resorted to some straightforward script rewriting, but also utilized proxies and did

not handle deployed CSPs to accommodate their rewritten scripts. Moreover, both JaTe

and JSand had limited consideration of JS inclusion methods. Terrace et al. [261] sand-

boxed 3P scripts in a virtual DOM; however, 1P code needed to utilize custom methods

to interact with 3P code. Several other works that performed different types of measure-

ments [161, 195, 223, 244, 266] or proposed various countermeasures [159, 232, 235, 245], ei-

ther relied on naive stack walking to capture 3P calls or did not even disambiguate between

1P and 3P scripts. As such, we believe several of these systems to be excellent candidates for

retrofitting on top of StyxJS to enhance their capabilities.

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we initially demonstrated how the Web’s ever-increasing complexity

and the inherent challenges that emerge, can severely undermine the effectiveness of ex-

isting security and privacy solutions that do not (fully) take them into consideration. As

an immediate consequence, Web applications’ security and users’ privacy are left at stake

and exposed to significant risk. On the flipside, we also showed how novel, black-box and

context-agnostic techniques have become a necessity in order to effectively tackle several

of these challenges, further fortifying the Web’s overall security posture and users’ privacy.

Specifically, with Web browsers and applications incorporating and supporting com-

plex new features and functionality, vulnerability scanners that operate through raw HTTP

requests are facing considerable obstacles that hinder their detection capabilities. None-

theless, developing an alternative scanner for the modern Web ecosystem that replicates all

the features offered by existing scanners would require an exorbitant and infeasible amount

of engineering effort. Alternatively, we have opted for a strategy that allows for both forward

and backward compatibility, as our system, ReScan, mediates communication between ap-

plications and scanners that already exist or will be developed in the future. Apart from me-

diating communication with a fully-fledged modern browser, our framework also includes

enhancement modules that tackle multiple limitations that affect state-of-the-art scanners.

Our experimental evaluation demonstrated how our framework significantly improves the

detection of vulnerabilities, as well as the achieved code coverage, in both benchmark and

modern Web applications.

Subsequently, we developed a completely automated black-box auditing framework for

Web applications that detects authentication and authorization flaws revolving around the

handling of cookies and stem from the incorrect, incomplete, or non-existent deployment

of appropriate security mechanisms. Our framework is comprised of a series of modules

that include novel mechanisms to differentially analyze Web applications, assess the de-

ployment of security mechanisms, and detect what user data is exposed. At the heart of our

framework lies a custom browser automation tool designed for robust and fault-tolerant

101

102 Chapter 6. Conclusion

black-box interaction with Web applications. We used our framework to conduct the largest

study on session hijacking to date and audit 25K domains, leading to a series of alarming

findings. Despite the increasing adoption of HTTPS, HSTS is rarely deployed (correctly or

at all), and∼11K domains are vulnerable to eavesdropping attacks that enable partial or full

access to users’ accounts. Furthermore, 23% of domains are susceptible to cookie hijack-

ing through JavaScript, the majority of which also include third party scripts that execute in

the first party origin. We also demonstrated how hijacked cookies allow access to sensitive

and personal user information though various avenues of exposure. Our study reveals that

cookie hijacking remains a severe and pressing threat, as adoption of appropriate security

mechanisms remains limited and developers continue to struggle with correct deployment.

In an effort to shed light on the scale of this threat, guide remediation efforts, and further

incentivize the adoption of security mechanisms, we have managed to directly notify∼43%

of the affected domains and have also deployed a service for providing reports.

Finally, the ability to correctly and robustly (i.e., even in the face of malicious evasive

scripts) differentiate between 1P and 3P scripts is the linchpin of a multitude of security

and privacy countermeasures and policy-enforcement mechanisms. However, the ability

to deploy these mechanisms and guarantee their effectiveness is undermined when con-

fronted with embedded 3P scripts, as they are executed within the boundaries of the first

party’s origin. This limitation also impacts web measurement studies, which may underes-

timate the magnitude and effect of certain threats due to the inability to truly disambiguate

1P and 3P code. To address that gap, we proposed StyxJS, a framework for effectively pro-

viding real-time web script attribution. Our system has been tailored to account for a mul-

titude of dynamic script inclusion methods and to tackle JavaScript idiosyncrasies that can

hinder correct attribution. At the same time, our design has been guided towards precisely

preventing common and custom evasion tactics employed by malicious scripts, while also

respecting page-deployed security mechanisms. We conducted an extensive experimental

evaluation that highlights the effectiveness and capabilities of our system, and also demon-

strated how vastly different security systems can be retrofitted on top of StyxJS. We believe

that our system provides functionality that is invaluable for a wide range of security mecha-

nisms and analysis pipelines, and we have open sourced it so that security researchers and

practitioners can leverage it.

6.2 Future Work

We have outlined the limitations of our work in the corresponding sections and provided

some guidelines on how we plan to address them. Here, we summarize the most promi-

nent directions for our future work.

ReScan FPs and FNs. ReScan aims to eliminate or at the very least reduce the amount of

false positives and negatives generated by existing scanners, regarding specifically XSS vul-

6.2. Future Work 103

nerabilities. It is apparent that such a feature would certainly be invaluable for other types of

vulnerabilities as well. However, achieving this requires the knowledge of specific details for

each vulnerability type. For instance, we need to infer and account for what type of vulner-

ability is tested at any given HTTP request and how successful exploitation can be verified.

As such, we plan to compose such vulnerability-specific modules as part of our future work.

ReScan’s overhead. We believe the significant benefits and improvements ReScan of-

fers to the underlying scanners, both in terms of vulnerability detection and code coverage,

render its unavoidable performance overhead a necessary but acceptable trade-off. Ideally,

however, we would like to further reduce the induced overhead and enhance the practi-

cality of our system, e.g., by identifying specific HTTP requests that do not require precise

workflow execution and proxying them directly to the Web application.

Automated account creation. While our approach described in Chapter 3 allowed us to

audit orders of magnitude more domains than prior studies, automated account creation

remains a significant obstacle. Therefore, we plan to explore additional techniques and

heuristics to further improve the overall process’ effectiveness. For instance, a new module

could identify error messages by the application after a failed form submission, that might

reveal or provide a hint on the expected format for a specific input field, further increasing

the chances of successfully completing the registration process.

Further countermeasures. As extensively outlined in §4.4, StyxJS is capable of accom-

modating diverse pipelines as custom plugins, while solving their inherent limitations and

safeguarding their operation against malicious and evasive scripts. As part of our future

work, we plan to further leverage this capability and explore additional countermeasures

that can be developed on top of our system, both existing and novel ones. For instance, pos-

sible use cases include anti-tracking mechanisms and preventing 3P scripts from reading

authentication cookies and other sensitive information.

104

Bibliography

[1] 4.8.2 The iframe element - HTML5, 2010. https://www.w3.org/TR/2010/WD-html5-
20100624/the-iframe-element.html.

[2] HTML5 - Developer Guidelines — MDN, 2011. https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/HTML5.

[3] spiderman — w3af - Open Source Web Application Security Scanner, 2013. http:

//w3af.org/plugins/crawl/spider man.

[4] GB Gallery Slideshow - WordPress plugin — WordPress.org, 2014. https://

wordpress.org/plugins/gb-gallery-slideshow/.

[5] Open Web Application Security Project - The OWASP Top 10 , 2017. https://

www.cloudflare.com/learning/security/threats/owasp-top-10/.

[6] Dashlane - world password day: How to improve your passwords, 2018.

https://blog.dashlane.com/world-password-day/.

[7] Four cents to deanonymize: Companies reverse hashed email addresses, 2018.

https://freedom-to-tinker.com/2018/04/09/four-cents-to-deanonymize-
companies-reverse-hashed-email-addresses/.

[8] Vega Tutorial - How to Set Up Vega to Work with Browser, 2018. https:

//rkhal101.github.io/ posts/WAVS/vega/vega browser setup.

[9] WIRED - a new Google+ blunder exposed data from 52.5 million users, 2018. https:

//www.wired.com/story/google-plus-bug-52-million-users-data-exposed/.

[10] WIRED - the Facebook hack exposes an Internet-wide failure, 2018. https:

//www.wired.com/story/facebook-hack-single-sign-on-data-exposed/.

[11] Ars Technica - DHS: Multiple US gov domains hit in serious DNS hijacking wave,

2019. https://arstechnica.com/information-technology/2019/01/multiple-
us-gov-domains-hit-in-serious-dns-hijacking-wave-dhs-warns/.

[12] Cisco Talos - DNS Hijacking Abuses Trust In Core Internet Service, 2019.

https://blog.talosintelligence.com/2019/04/seaturtle.html.

105

https://www.w3.org/TR/2010/WD-html5-20100624/the-iframe-element.html
https://www.w3.org/TR/2010/WD-html5-20100624/the-iframe-element.html
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
http://w3af.org/plugins/crawl/spider_man
http://w3af.org/plugins/crawl/spider_man
https://wordpress.org/plugins/gb-gallery-slideshow/
https://wordpress.org/plugins/gb-gallery-slideshow/
https://www.cloudflare.com/learning/security/threats/owasp-top-10/
https://www.cloudflare.com/learning/security/threats/owasp-top-10/
https://blog.dashlane.com/world-password-day/
https://freedom-to-tinker.com/2018/04/09/four-cents-to-deanonymize-companies-reverse-hashed-email-addresses/
https://freedom-to-tinker.com/2018/04/09/four-cents-to-deanonymize-companies-reverse-hashed-email-addresses/
https://rkhal101.github.io/_posts/WAVS/vega/vega_browser_setup
https://rkhal101.github.io/_posts/WAVS/vega/vega_browser_setup
https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/
https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/
https://www.wired.com/story/facebook-hack-single-sign-on-data-exposed/
https://www.wired.com/story/facebook-hack-single-sign-on-data-exposed/
https://arstechnica.com/information-technology/2019/01/multiple-us-gov-domains-hit-in-serious-dns-hijacking-wave-dhs-warns/
https://arstechnica.com/information-technology/2019/01/multiple-us-gov-domains-hit-in-serious-dns-hijacking-wave-dhs-warns/
https://blog.talosintelligence.com/2019/04/seaturtle.html

106 Bibliography

[13] Email addresses harvester, 2019. https://github.com/maldevel/EmailHarvester.

[14] Fathom and Fathom 3.7.3 documentation, 2019. https://mozilla.github.io/
fathom/.

[15] Google / Harris Poll - Online Security Survey, 2019. https://services.google.com/
fh/files/blogs/google security infographic.pdf.

[16] Opera, Brave, Vivaldi to ignore Chrome’s anti-ad-blocker changes, despite shared

codebase — ZDNET, 2019. https://www.zdnet.com/article/opera-brave-
vivaldi-to-ignore-chromes-anti-ad-blocker-changes-despite-shared-

codebase/.

[17] 2020. https://securitytxt.org/.

[18] ChromeDriver - WebDriver for Chrome, 2020. https://sites.google.com/a/
chromium.org/chromedriver/downloads.

[19] Cookie Hunter - Notification Service, 2020. https://cookiehunter.ics.forth.gr/
results.php.

[20] Geckodriver, 2020. https://github.com/mozilla/geckodriver.

[21] html5lib - PyPI, 2020. https://pypi.org/project/html5lib/.

[22] Puppeteer, 2020. https://developers.google.com/web/tools/puppeteer.

[23] The Chromium Projects - HTTP Strict Transport Security, 2020. https:

//www.chromium.org/hsts.

[24] Content Security Policy (CSP) — MDN, 2021. https://developer.mozilla.org/en-
US/docs/Web/HTTP/CSP.

[25] estraverse - npm, 2021. https://www.npmjs.com/package/estraverse.

[26] Introduction — Caja — Google for Developers, 2021. https://

developers.google.com/caja/.

[27] Servive Worker API - Web APIs — MDN, 2021. https://developer.mozilla.org/en-
US/docs/Web/API/Service Worker API.

[28] sugarcoat-paper-dataset/resources at master - SugarCoatJS/sugarcoat-paper-

dataset - GitHub, 2021. https://github.com/SugarCoatJS/sugarcoat-paper-
dataset/tree/master/resources.

https://github.com/maldevel/EmailHarvester
https://mozilla.github.io/fathom/
https://mozilla.github.io/fathom/
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://www.zdnet.com/article/opera-brave-vivaldi-to-ignore-chromes-anti-ad-blocker-changes-despite-shared-codebase/
https://www.zdnet.com/article/opera-brave-vivaldi-to-ignore-chromes-anti-ad-blocker-changes-despite-shared-codebase/
https://www.zdnet.com/article/opera-brave-vivaldi-to-ignore-chromes-anti-ad-blocker-changes-despite-shared-codebase/
https://securitytxt.org/
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://cookiehunter.ics.forth.gr/results.php
https://cookiehunter.ics.forth.gr/results.php
https://github.com/mozilla/geckodriver
https://pypi.org/project/html5lib/
https://developers.google.com/web/tools/puppeteer
https://www.chromium.org/hsts
https://www.chromium.org/hsts
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.npmjs.com/package/estraverse
https://developers.google.com/caja/
https://developers.google.com/caja/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://github.com/SugarCoatJS/sugarcoat-paper-dataset/tree/master/resources
https://github.com/SugarCoatJS/sugarcoat-paper-dataset/tree/master/resources

Bibliography 107

[29] sugarcoat-paper-dataset/rules.txt at master - SugarCoatJS/sugarcoat-paper-dataset

- GitHub, 2021. https://github.com/SugarCoatJS/sugarcoat-paper-dataset/
blob/master/rules.txt.

[30] sugarcoat/mocks at master - SugarCoatJS/sugarcoat - GitHub, 2021. https:

//github.com/SugarCoatJS/sugarcoat/tree/master/mocks.

[31] XDriver, 2021. https://gitlab.com/kostasdrk/xdriver3-open/.

[32] LeakInspector: an add-on that warns and protects against personal data exfiltration,

2022. https://github.com/leaky-forms/leak-inspector.

[33] Manifest v3 in Firefox: Recap and Next Steps — Mozilla Add-ons Community Blog,

2022. https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-
recap-next-steps/.

[34] node-forge - npm, 2022. https://www.npmjs.com/package/node-forge.

[35] RFC 9113 - HTTP/2, 2022. https://datatracker.ietf.org/doc/html/rfc9113.

[36] Web - Facebook Login - Documentation - Facebook for Developers, 2022.

https://developers.facebook.com/docs/facebook-login/web.

[37] A research-oriented top sites ranking hardened against manipulation - Tranco, 2023.

https://tranco-list.eu/.

[38] astring - npm, 2023. https://www.npmjs.com/package/astring.

[39] Content Security Policy (CSP) - HTTP — MDN, 2023. https://

developer.mozilla.org/en-US/docs/Web/HTTP/CSP.

[40] Content Security Policy Level 3, 2023. https://www.w3.org/TR/CSP3/#security-
inherit-csp.

[41] Content Security Policy Level 3, 2023. https://w3c.github.io/webappsec-csp/
#multiple-policies.

[42] CSP: default-src - HTTP — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Content-Security-Policy/default-src.

[43] CSP: script-src - HTTP — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Content-Security-Policy/script-src.

[44] CSP: script-src-attr - HTTP — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Content-Security-Policy/script-src-attr.

https://github.com/SugarCoatJS/sugarcoat-paper-dataset/blob/master/rules.txt
https://github.com/SugarCoatJS/sugarcoat-paper-dataset/blob/master/rules.txt
https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks
https://github.com/SugarCoatJS/sugarcoat/tree/master/mocks
https://gitlab.com/kostasdrk/xdriver3-open/
https://github.com/leaky-forms/leak-inspector
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://www.npmjs.com/package/node-forge
https://datatracker.ietf.org/doc/html/rfc9113
https://developers.facebook.com/docs/facebook-login/web
https://tranco-list.eu/
https://www.npmjs.com/package/astring
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.w3.org/TR/CSP3/#security-inherit-csp
https://www.w3.org/TR/CSP3/#security-inherit-csp
https://w3c.github.io/webappsec-csp/#multiple-policies
https://w3c.github.io/webappsec-csp/#multiple-policies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-attr
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-attr

108 Bibliography

[45] CSP: script-src-elem - HTTP — MDN, 2023. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-elem.

[46] Error - JavaScript — MDN, 2023. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/Error.

[47] Error.prototype.stack - JavaScript — MDN, 2023. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global Objects/Error/Stack.

[48] Integrating Google Sign-In into your web app — Google Sign-In for Websites —

Google Developers, 2023. https://developers.google.com/identity/sign-in/
web/sign-in.

[49] jQuery, 2023. https://jquery.com/.

[50] Manifest - Web Accessible Resources — Extensions — Chrome for Developers,

2023. https://developer.chrome.com/docs/extensions/reference/manifest/
web-accessible-resources.

[51] Mr. Cooper hackers stole personal data on 14 million customers — TechCrunch, 2023.

https://techcrunch.com/2023/12/18/mr-cooper-hackers-stole-personal-
data-on-14-million-customers/?guccounter=1.

[52] MutationObserver - Web APIs — MDN, 2023. https://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver.

[53] MutationObserver - Web APIs — MDN, 2023. https://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver.

[54] nonce - HTML: HyperText Markup Language — MDN, 2023. https:

//developer.mozilla.org/en-US/docs/Web/HTML/Global attributes/nonce.

[55] Overview of the Chrome Extension Manifest V3 - Chrome for Developers, 2023.

https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/.

[56] PageGraph - brave/brave-browser Wiki - GitHub, 2023. https://github.com/brave/
brave-browser/wiki/PageGraph.

[57] privacybadger/src/js/multiDomainFirstParties.js at master - EFForg/privacybad-

ger, 2023. https://github.com/EFForg/privacybadger/blob/master/src/js/
multiDomainFirstParties.js.

[58] RequireJS, 2023. https://requirejs.org/.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-elem
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src-elem
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error/Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error/Stack
https://developers.google.com/identity/sign-in/web/sign-in
https://developers.google.com/identity/sign-in/web/sign-in
https://jquery.com/
https://developer.chrome.com/docs/extensions/reference/manifest/web-accessible-resources
https://developer.chrome.com/docs/extensions/reference/manifest/web-accessible-resources
https://techcrunch.com/2023/12/18/mr-cooper-hackers-stole-personal-data-on-14-million-customers/?guccounter=1
https://techcrunch.com/2023/12/18/mr-cooper-hackers-stole-personal-data-on-14-million-customers/?guccounter=1
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/nonce
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/nonce
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/EFForg/privacybadger/blob/master/src/js/multiDomainFirstParties.js
https://github.com/EFForg/privacybadger/blob/master/src/js/multiDomainFirstParties.js
https://requirejs.org/

Bibliography 109

[59] ReScan-evaluated applications’ Docker images, 2023. https://gitlab.com/
kostasdrk/rescanApps.

[60] ReScan repository, 2023. https://gitlab.com/kostasdrk/rescan.

[61] Resuming the transition to Manifest V3 — Blog — Chrome for Developers, 2023.

https://developer.chrome.com/blog/resuming-the-transition-to-mv3.

[62] Same-origin policy - Web Security — MDN, 2023. https://developer.mozilla.org/
en-US/docs/Web/Security/Same-origin policy.

[63] SecurityPolicyViolationEvent - Web APIs — MDN, 2023. https://

developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent.

[64] TrustedHTML - Web APIs — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Web/API/TrustedHTML.

[65] TrustedScript - Web APIs — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Web/API/TrustedScript.

[66] TrustedScriptURL - Web APIs — MDN, 2023. https://developer.mozilla.org/en-
US/docs/Web/API/TrustedScriptURL.

[67] web accessible resources - Mozilla — MDN, 2023. https://

developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/
manifest.json/web accessible resources.

[68] webRequest - Mozilla — MDN, 2023. https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions/API/webRequest.

[69] acorn - npm, 2024. https://www.npmjs.com/package/acorn.

[70] AdSense — Google for Developers, 2024. https://developers.google.com/
adsense/.

[71] beautifulsoup4 - PyPI, 2024. https://pypi.org/project/beautifulsoup4/.

[72] Blind SQL Injection — OWASP Foundation, 2024. https://owasp.org/www-
community/attacks/Blind SQL Injection.

[73] Blocking/Redirect request based on response headers, 2024. https:

//issues.chromium.org/issues/40727004.

[74] BugMeNot: share logins, 2024. https://bugmenot.com/.

https://gitlab.com/kostasdrk/rescanApps
https://gitlab.com/kostasdrk/rescanApps
https://gitlab.com/kostasdrk/rescan
https://developer.chrome.com/blog/resuming-the-transition-to-mv3
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent
https://developer.mozilla.org/en-US/docs/Web/API/SecurityPolicyViolationEvent
https://developer.mozilla.org/en-US/docs/Web/API/TrustedHTML
https://developer.mozilla.org/en-US/docs/Web/API/TrustedHTML
https://developer.mozilla.org/en-US/docs/Web/API/TrustedScript
https://developer.mozilla.org/en-US/docs/Web/API/TrustedScript
https://developer.mozilla.org/en-US/docs/Web/API/TrustedScriptURL
https://developer.mozilla.org/en-US/docs/Web/API/TrustedScriptURL
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest
https://www.npmjs.com/package/acorn
https://developers.google.com/adsense/
https://developers.google.com/adsense/
https://pypi.org/project/beautifulsoup4/
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://issues.chromium.org/issues/40727004
https://issues.chromium.org/issues/40727004
https://bugmenot.com/

110 Bibliography

[75] chrome.declarativeNetRequest — API — Chrome for Developers,

2024. https://developer.chrome.com/docs/extensions/reference/api/
declarativeNetRequest.

[76] chrome.userScripts — API — Chrome for Developers, 2024. https:

//developer.chrome.com/docs/extensions/reference/api/userScripts.

[77] Desktop Browser Market Share Worldwide — Statcounter Global Stats, 2024.

https://gs.statcounter.com/browser-market-share/desktop/worldwide.

[78] EasyList, 2024. https://easylist.to/easylist/easylist.txt.

[79] EasyPrivacy, 2024. https://easylist.to/easylist/easyprivacy.txt.

[80] Extension using v3 to modify a part of response headers value in declarativeNetRe-

quest, 2024. https://issues.chromium.org/issues/40794461.

[81] [Feature request] manifest v3: blocking responses based on ”content-type” header,

2024. https://issues.chromium.org/issues/40657203.

[82] fingerprintjs: Browser fingerprinting library., 2024. https://github.com/
fingerprintjs/fingerprintjs.

[83] Get started with Google Analytics — Google Analytics for Firebase, 2024.

https://firebase.google.com/docs/analytics/get-started?platform=web.

[84] GitHub - brave/adblock-lists: Maintains adblock lists that Brave uses, 2024.

https://github.com/brave/adblock-lists.

[85] GitHub - cure53/DOMPurify: DOMPurify - a DOM-only, super-fast, uber-tolerant

XSS sanitizer for HTML, MathML and SVG., 2024. https://github.com/cure53/
DOMPurify.

[86] Internet and social media users in the world 2023 — Statista, 2024. https:

//www.statista.com/statistics/617136/digital-population-worldwide/.

[87] JavaScript libraries market share, websites and contacts - Wappalyzer, 2024.

https://www.wappalyzer.com/technologies/javascript-libraries/.

[88] Mcafee - customer url ticketing system, 2024. https://trustedsource.org/en/
feedback/url.

[89] OWASP. Owasp zed attack proxy (zap), 2024. https://www.zaproxy.org/.

[90] OWASP ZAP - Getting Started, 2024. https://www.zaproxy.org/getting-started/.

https://developer.chrome.com/docs/extensions/reference/api/declarativeNetRequest
https://developer.chrome.com/docs/extensions/reference/api/declarativeNetRequest
https://developer.chrome.com/docs/extensions/reference/api/userScripts
https://developer.chrome.com/docs/extensions/reference/api/userScripts
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://issues.chromium.org/issues/40794461
https://issues.chromium.org/issues/40657203
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://firebase.google.com/docs/analytics/get-started?platform=web
https://github.com/brave/adblock-lists
https://github.com/cure53/DOMPurify
https://github.com/cure53/DOMPurify
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.wappalyzer.com/technologies/javascript-libraries/
https://trustedsource.org/en/feedback/url
https://trustedsource.org/en/feedback/url
https://www.zaproxy.org/
https://www.zaproxy.org/getting-started/

Bibliography 111

[91] Secure, Fast and Private Web Browser with Adblocker — Brave Browser, 2024.

https://brave.com/.

[92] StyxJS: Robust and Real-time Third-party Script Attribution, 2024. https:

//github.com/kostasDrk/StyxJS.

[93] Subresource Integrity - Web security — MDN, 2024. https://

developer.mozilla.org/en-US/docs/Web/Security/Subresource Integrity.

[94] The Privacy Sandbox: Technology for a More Private Web., 2024. https:

//privacysandbox.com/.

[95] Trusted Types API - Web APIs — MDN, 2024. https://developer.mozilla.org/en-
US/docs/Web/API/Trusted Types API.

[96] uAssets/filters at master - uBlockOrigin/uAssets - GitHub, 2024. https:

//github.com/uBlockOrigin/uAssets/tree/master/filters.

[97] Unrestricted File Upload — OWASP Foundation, 2024. https://owasp.org/www-
community/vulnerabilities/Unrestricted File Upload.

[98] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. VisualPhishNet: Zero-Day

Phishing Website Detection by Visual Similarity. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security, 2020.

[99] Ben Adida. Sessionlock: Securing Web Sessions Against Eavesdropping. In

Proceedings of the 17th International Conference on World Wide Web, 2008.

[100] Shubham Agarwal. Helping or Hindering? How Browser Extensions Undermine

Security. In Proceedings of the ACM SIGSAC Conference on Computer and Communi-

cations Security, 2022.

[101] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet, and

Frank Piessens. JSand: Complete Client-Side Sandboxing of Third-Party JavaScript

without Browser Modifications. In Proceedings of the 28th Annual Computer Security

Applications Conference, 2012.

[102] Furkan Alaca and P. C. van Oorschot. Device Fingerprinting for Augmenting Web

Authentication: Classification and Analysis of Methods. In Proceedings of the 32Nd

Annual Conference on Computer Security Applications, 2016.

[103] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. NAVEX:

Precise and Scalable Exploit Generation for Dynamic Web Applications. In 27th

USENIX Security Symposium (USENIX Security ’18), 2018.

https://brave.com/
https://github.com/kostasDrk/StyxJS
https://github.com/kostasDrk/StyxJS
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://privacysandbox.com/
https://privacysandbox.com/
https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API
https://developer.mozilla.org/en-US/docs/Web/API/Trusted_Types_API
https://github.com/uBlockOrigin/uAssets/tree/master/filters
https://github.com/uBlockOrigin/uAssets/tree/master/filters
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

112 Bibliography

[104] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,

Christopher Kruegel, and Giovanni Vigna. Saner: Composing Static and Dynamic

Analysis to Validate Sanitization in Web Applications. In IEEE Symposium on Security

and Privacy, 2008.

[105] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the Art: Automated

Black-Box Web Application Vulnerability Testing. In 2010 IEEE Symposium on

Security and Privacy, 2010.

[106] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All Your Contacts Are

Belong To Us: Automated Identity Theft Attacks on Social Networks. In Proceedings

of the 18th international conference on World wide web, 2009.

[107] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. unCaptcha: A Low-

Resource Defeat of reCaptcha’s Audio Challenge. In 11th USENIX Workshop on

Offensive Technologies (WOOT 17), 2017.

[108] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. CookiExt:

Patching the Browser Against Session Hijacking Attacks. Journal of Computer

Security, 2015.

[109] Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek Pietraszek, Andy Archer, Allan

Aquino, Andreas Pitsillidis, and Stefan Savage. Handcrafted Fraud and Extortion:

Manual Account Hijacking in the Wild. In IMC ’14 Proceedings of the 2014 Conference

on Internet Measurement Conference, 2014.

[110] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. An Empirical Study

of Web Cookies. In Proceedings of the 25th International Conference on World Wide

Web, 2016.

[111] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco

Squarcina, and Mauro Tempesta. WPSE: Fortifying Web Protocols via Browser-Side

Security Monitoring. In 27th USENIX Security Symposium (USENIX Security).

USENIX Association, 2018.

[112] Stefano Calzavara, Riccardo Focardi, Matúš Nemec, Alvise Rabitti, and Marco

Squarcina. Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabil-

ities in the Web Ecosystem. In 2019 IEEE Symposium on Security and Privacy, 2019.

[113] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta. Sur-

viving the Web: A Journey into Web Session Security. ACM Computing Surveys, 2017.

[114] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Sub-session hijacking on the

web: Root causes and prevention. In Journal of Computer Security, 2018.

Bibliography 113

[115] Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi. Testing for

Integrity Flaws in Web Sessions. In Computer Security - th European Symposium on

Research in Computer Security, ESORICS, 2019.

[116] Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, Yan Chen, and Xitao Wen. Virtual Browser:

A Virtualized Browser to Sandbox Third-Party JavaScripts with Enhanced Secu-

rity. In Proceedings of the 7th ACM Symposium on Information, Computer and

Communications Security, 2012.

[117] Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert, and Kévin

Huguenin. An Empirical Study of the Use of Integrity Verification Mechanisms for

Web Subresources. In Proceedings of The Web Conference, 2020.

[118] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson, and Min

Yang. We Still Don’t Have Secure Cross-Domain Requests: an Empirical Study of

CORS. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[119] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros Kapravelos.

Cookie Swap Party: Abusing First-Party Cookies for Web Tracking. In Proceedings of

the Web Conference, 2021.

[120] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. Detecting

Filter List Evasion with Event-Loop-Turn Granularity JavaScript Signatures. In IEEE

Symposium on Security and Privacy, 2021.

[121] Chen, Yuanchao and Li, Yuwei and Pan, Zulie and Lu, Yuliang and Chen, Juxing and Ji,

Shouling. URadar: Discovering Unrestricted File Upload Vulnerabilities via Adaptive

Dynamic Testing. IEEE Transactions on Information Forensics and Security, 19, 2024.

[122] Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan Smith. Familiarity breeds con-

tempt: The honeymoon effect and the role of legacy code in zero-day vulnerabilities.

In Proceedings of the 26th Annual Computer Security Applications Conference, 2010.

[123] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy:

A free and open source interactive HTTPS proxy, 2024. https://mitmproxy.org/.

[124] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. ZOZ-

ZLE: Fast and Precise In-Browser JavaScript Malware Detection. In 20th USENIX

Security Symposium (USENIX Security 11), 2011.

[125] Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor. One-

time Cookies: Preventing Session Hijacking Attacks with Stateless Authentication

Tokens. ACM Trans. Internet Technol., 2012.

https://mitmproxy.org

114 Bibliography

[126] Firat Coskun Dalgic, Ahmet Selman Bozkir, and Murat Aydos. Phish-IRIS: A New

Approach for Vision Based Brand Prediction of Phishing Web Pages via Compact

Visual Descriptors. 2018 2nd International Symposium on Multidisciplinary Studies

and Innovative Technologies (ISMSIT), 2018.

[127] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis: Preventing

Authentication & Access Control Vulnerabilities in Web Applications. In Proceedings

of the 18th Conference on USENIX Security Symposium, 2009.

[128] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

FlowFox: A Web Browser with Flexible and Precise Information Flow Control. In

Proceedings of the ACM Conference on Computer and Communications Security, 2012.

[129] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and Alex C Snoeren. Tripwire:

Inferring Internet Site Compromise. In Proceedings of the Internet Measurement

Conference, 2017.

[130] Levent Demir, Amrit Kumar, Mathieu Cunche, and Cedric Lauradoux. The Pitfalls of

Hashing for Privacy. IEEE Communications Surveys & Tutorials, 2017.

[131] Lieven Desmet, Frank Piessens, Wouter Joosen, and Pierre Verbaeten. Bridging the

Gap Between Web Application Firewalls and Web Applications. In Proceedings of the

fourth ACM workshop on Formal methods in security, 2006.

[132] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Enemy

of the State: A State-Aware Black-Box Web Vulnerability Scanner. In 21st USENIX

Security Symposium, 2012.

[133] Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny Can’t Pentest: An

Analysis of Black-Box Web Vulnerability Scanners. In ”Detection of Intrusions and

Malware, and Vulnerability Assessment”, 2010.

[134] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. The Cookie Hunter: Au-

tomated Black-Box Auditing for Web Authentication and Authorization Flaws. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications

Security, 2020.

[135] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. ReScan: A Middleware

Framework for Realistic and Robust Black-box Web Application Scanning. In 30th

Annual Network and Distributed System Security Symposium, NDSS, 2023.

[136] Fabien Duchéne, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. LigRE: Reverse-

engineering of control and data flow models for black-box XSS detection. In 20th

Working Conference on Reverse Engineering, 2013.

Bibliography 115

[137] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. KameleonFuzz:

Evolutionary Fuzzing for Black-Box XSS Detection. In Proceedings of the 4th ACM

Conference on Data and Application Security and Privacy, 2014.

[138] Siham el Idrissi, Naoual Berbiche, Fatima Guerouate, and Sbihi Mohamed. Per-

formance Evaluation of Web Application Security Scanners for Prevention and

Protection Against Vulnerabilities. International Journal of Applied Engineering

Research, 2017.

[139] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site

measurement and analysis. In Proceedings of ACM CCS 2016, 2016.

[140] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan

Mayer, Arvind Narayanan, and Edward W. Felten. Cookies That Give You Away: The

Surveillance Implications of Web Tracking. In Proceedings of the 24th International

Conference on World Wide Web, 2015.

[141] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black Widow: Blackbox Data-driven Web

Scanning. In 2020 IEEE Symposium on Security and Privacy, 2021.

[142] Aurore Fass, Dolière Francis Somé, Michael Backes, and Ben Stock. DoubleX: Stati-

cally Detecting Vulnerable Data Flows in Browser Extensions at Scale. In Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security, 2021.

[143] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.

Toward Automated Detection of Logic Vulnerabilities in Web Applications. In

Proceedings of the 19th USENIX Conference on Security, 2010.

[144] Daniel Fett, Ralf Küsters, and Guido Schmitz. A Comprehensive Formal Security

Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, 2016.

[145] Roy Fielding and Julian Reschke. RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content, 2014. https://tools.ietf.org/html/rfc7231#section-
4.2.1.

[146] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. Who Left Open the Cookie

Jar? A Comprehensive Evaluation of Third-Party Cookie Policies. In 27th USENIX

Security Symposium (USENIX Security 18), 2018.

[147] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich,

and Jason Polakis. O Single Sign-Off, Where Art Thou? An Empirical Analysis of

Single Sign-On Account Hijacking and Session Management on the Web. In 27th

USENIX Security Symposium (USENIX Security), 2018.

https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.1

116 Bibliography

[148] Ghasemisharif, Mohammad and Kanich, Chris and Polakis, Jason. Towards Au-

tomated Auditing for Account and Session Management Flaws in Single Sign-on

Deployments. In IEEE Symposium on Security and Privacy (SP), 2022.

[149] Shashank Gupta and Brij Bhooshan Gupta. Cross-Site Scripting (XSS) attacks and

defense mechanisms: Classification and State-of-the-art. International Journal of

System Assurance Engineering and Management, 2017.

[150] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu,

Cemal Kaygusuz, and Thorsten Holz. Atropos: Effective Fuzzing of Web Applications

for Server-Side Vulnerabilities. In 33rd USENIX Security Symposium, 2024.

[151] B. Krumnow H. Jonker, S. Karsch and M. Sleegers. Shepherd: A Generic Approach to

Automating Website Login. In Proceedings of the 2020 Workshop on Measurements,

Attacks, and Defenses for the Web, 2020.

[152] William G.J. Halfond, Shauvik Roy Choudhary, and Alessandro Orso. Penetration

Testing with Improved Input Vector Identification. In International Conference on

Software Testing Verification and Validation, 2009.

[153] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, VN Venkatakrishnan, Runqing

Yang, and Zhenrui Zhang. Vetting SSL usage in applications with SSLint. In 2015

IEEE Symposium on Security and Privacy, 2015.

[154] Mario Heiderich, Christopher Späth, and Jörg Schwenk. DOMPurify: Client-Side

Protection Against XSS and Markup Injection. In Proceedings of the 22nd European

Symposium on Research in Computer Security, 2017.

[155] Jin Huang, Junjie Zhang, Jialun Liu, Chuang Li, and Rui Dai. UFuzzer: Lightweight

Detection of PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing

Co-Analysis. In 24th International Symposium on Research in Attacks, Intrusions and

Defenses, 2021.

[156] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-

Yen Kuo. Securing Web Application Code by Static Analysis and Runtime Protection.

In Proceedings of the 13th International Conference on World Wide Web, 2004.

[157] Markus Huber, Martin Mulazzani, Edgar Weippl, Gerhard Kitzler, and Sigrun Goluch.

Exploiting Social Networking Sites for Spam. In Proceedings of the 17th ACM

conference on Computer and communications security, 2010.

[158] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha Loizon,

and Roya Ensafi. The Chain of Implicit Trust: An Analysis of the Web Third-Party

Resources Loading. In The World Wide Web Conference, 2019.

Bibliography 117

[159] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the Fingerprint-

ers: Learning to Detect Browser Fingerprinting Behaviors. In IEEE Symposium on

Security and Privacy, 2021.

[160] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and Zubair

Shafiq. AdGraph: A Graph-Based Approach to Ad and Tracker Blocking. In IEEE

Symposium on Security and Privacy, 2020.

[161] Umar Iqbal, Charlie Wolfe, Charles Nguyen, Steven Englehardt, and Zubair Shafiq.

Khaleesi: Breaker of Advertising and Tracking Request Chains. In 31st USENIX

Security Symposium (USENIX Security 22), 2022.

[162] Collin Jackson and Adam Barth. ForceHTTPS: Protecting high-security web sites

from network attacks. In Proceedings of the 17th International World Wide Web

Conference, 2008.

[163] Louis Jannett, Vladislav Mladenov, Christian Mainka, and Jörg Schwenk. DISTINCT:

Identity Theft Using In-Browser Communications in Dual-Window Single Sign-On.

In Proceedings of the ACM SIGSAC Conference on Computer and Communications

Security, 2022.

[164] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint Surface-Based

Detection of Web Bot Detectors. In European Symposium on Research in Computer

Security, 2019.

[165] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-browser Monitoring of

JavaScript in the Wild. In Proceedings of the ACM Internet Measurement Conference

(IMC), 2019.

[166] Jordan Jueckstock, Peter Snyder, Shaown Sarker, Alexandros Kapravelos, and Ben-

jamin Livshits. Measuring the Privacy vs. Compatibility Trade-off in Preventing

Third-Party Stateful Tracking. In Proceedings of The Web Conference, 2022.

[167] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. SecuBat: A Web

Vulnerability Scanner. In Proceedings of the 15th International Conference on World

Wide Web, 2006.

[168] Soroush Karami, Panagiotis Ilia, and Jason Polakis. Awakening the Web’s Sleeper

Agents: Misusing Service Workers for Privacy Leakage. In NDSS, 2021.

[169] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. Carnus:

Exploring the Privacy Threats of Browser Extension Fingerprinting. In NDSS, 2020.

118 Bibliography

[170] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J. Maso, Erik Trickel,

Panagiotis Ilia, Yan Shoshitaishvili, Adam Doupé, and Jason Polakis. Unleash

the Simulacrum: Shifting Browser Realities for Robust Extension-Fingerprinting

Prevention. In 31st USENIX Security Symposium (USENIX Security 22), 2022.

[171] Soheil Khodayari and Giancarlo Pellegrino. JAW: Studying Client-side CSRF with

Hybrid Property Graphs and Declarative Traversals. In 30th USENIX Security

Symposium, 2021.

[172] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson, Narseo

Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal study of TLS

deployment. In Proceedings of the Internet Measurement Conference 2018, 2018.

[173] Michael Kranch and Joseph Bonneau. Upgrading HTTPS in mid-air: An empirical

study of strict transport security and key pinning. In 22nd Annual Network and

Distributed System Security Symposium, NDSS, 2015.

[174] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.

”I Have No Idea What I’m Doing”-On the Usability of Deploying HTTPS. In 26th

USENIX Security Symposium (USENIX Security 17), 2017.

[175] Tammo Krueger, Christian Gehl, Konrad Rieck, and Pavel Laskov. TokDoc: A Self-

healing Web Application Firewall. In Proceedings of the 2010 ACM Symposium on

Applied Computing, 2010.

[176] Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason, J Alex

Halderman, and Michael Bailey. Security Challenges in an Increasingly Tangled Web.

In Proceedings of the 26th International Conference on World Wide Web, 2017.

[177] H. Kwon, H. Nam, S. Lee, C. Hahn, and J. Hur. (In-)Security of Cookies in HTTPS:

Cookie Theft by Removing Cookie Flags. IEEE Transactions on Information Forensics

and Security, 2019.

[178] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick

Nikiforakis. Fingerprinting in Style: Detecting Browser Extensions via Injected Style

Sheets. In 30th USENIX Security Symposium (USENIX Security 21), 2021.

[179] Tobias Lauinger, Chaabane Abdelberi, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. Thou Shalt Not Depend on Me: Analysing the Use of Out-

dated JavaScript Libraries on the Web. In Proceedings of the Network and Distributed

System Security Symposium, 2017.

Bibliography 119

[180] Jehyun Lee, Pingxiao Ye, Ruofan Liu, Dinil Mon Divakaran, and Mun Chan. Build-

ing Robust Phishing Detection System: An Empirical Analysis. In Workshop on

Measurements, Attacks, and Defenses for the Web, 2020.

[181] Taek-Jin Lee, SeongIl Wi, S. Lee, and Sooel Son. FUSE: Finding File Upload Bugs via

Penetration Testing. In NDSS, 2020.

[182] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava, and Mar-

tin Johns. Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations

via Script Gadgets. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security, 2017.

[183] Sebastian Lekies, Ben Stock, and Martin Johns. 25 Million Flows Later: Large-Scale

Detection of DOM-Based XSS. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security, 2013.

[184] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey, Damon

McCoy, Stefan Savage, and Vern Paxson. You’ve Got Vulnerability: Exploring Effective

Vulnerability Notifications. In 25th USENIX Security Symposium (USENIX Security

16), 2016.

[185] Xiaowei Li, Wei Yan, and Yuan Xue. SENTINEL: Securing Database from Logic Flaws

in Web Applications. In Proceedings of the Second ACM Conference on Data and

Application Security and Privacy, 2012.

[186] Yukun Li, Zhenguo Yang, Xu Chen, Huaping Yuan, and Wenyin Liu. A Stacking Model

Using URL and HTML Features for Phishing Webpage Detection. Future Generation

Computer Systems, 2019.

[187] Xu Lin, Panagiotis Ilia, and Jason Polakis. Fill in the Blanks: Empirical Analysis of

the Privacy Threats of Browser Form Autofill. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, 2020.

[188] Yun Lin, Ruofan Liu, Dinil Mon Divakaran, Jun Yang Ng, Qing Zhou Chan, Yiwen

Lu, Yuxuan Si, Fan Zhang, and Jin Song Dong. Phishpedia: A Hybrid Deep Learning

Based Approach to Visually Identify Phishing Webpages. In 30th USENIX Security

Symposium (USENIX Security 21), 2021.

[189] Ruofan Liu, Yun Lin, Xianglin Yang, Siang Hwee Ng, Dinil Mon Divakaran, and

Jin Song Dong. Inferring Phishing Intention via Webpage Appearance and Dynamics:

A Deep Vision Based Approach. In 31st USENIX Security Symposium (USENIX

Security 22), 2022.

120 Bibliography

[190] Wu Luo, Xuhua Ding, Pengfei Wu, Xiaolei Zhang, Qingni Shen, and Zhonghai Wu.

ScriptChecker: To tame third-party script execution with task capabilities. In

Proceedings of the Network and Distributed System Security Symposium, 2022.

[191] Francesco Marcantoni, Michalis Diamantaris, Sotiris Ioannidis, and Jason Polakis. A

large-scale study on the risks of the html5 webapi for mobile sensor-based attacks.

In The World Wide Web Conference, 2019.

[192] Moxie Marlinspike. New Tricks For Defeating SSL In Practice. BlackHat DC, 2009.

[193] Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximilian Blochberger, and

Hannes Federrath. Hashing of personally identifiable information is not sufficient.

SICHERHEIT, 2018.

[194] Arunesh Mathur, Nathan Malkin, Marian Harbach, Eyal Peer, and Serge Egelman.

Quantifying Users’ Beliefs about Software Updates. CoRR, 2018.

[195] Jonathan R. Mayer and John C. Mitchell. Third-Party Web Tracking: Policy and

Technology. In IEEE Symposium on Security and Privacy, 2012.

[196] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncovering HTTP

Header Inconsistencies and the Impact on Desktop/Mobile Websites. In Proceedings

of the 2018 World Wide Web Conference, 2018.

[197] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling AJAX by Inferring User Interface

State Changes. In Eighth International Conference on Web Engineering, 2008.

[198] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and Enforcing

Fine-Grained Security Policies for JavaScript in the Browser. In IEEE Symposium on

Security and Privacy, 2010.

[199] Michal Zalewski. The Tangled Web. No Starch Press, 2011.

[200] Yogesh Mundada, Nick Feamster, and Balachander Krishnamurthy. Half-Baked

Cookies: Hardening Cookie-Based Authentication for the Modern Web. In Proceed-

ings of the 11th ACM on Asia Conference on Computer and Communications Security,

ASIA CCS ’16. ACM, 2016.

[201] Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock, and Martin Johns.

ScriptProtect: Mitigating Unsafe Third-Party JavaScript Practices. In Proceedings of

the ACM Asia Conference on Computer and Communications Security, 2019.

[202] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter

Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You Are What You

Bibliography 121

Include: Large-Scale Evaluation of Remote Javascript Inclusions. In Proceedings of

the ACM Conference on Computer and Communications Security, 2012.

[203] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen.

SessionShield: Lightweight Protection against Session Hijacking. In Engineering

Secure Software and Systems, 2011.

[204] Hrvoje Nikšić. Wget - gnu project - free software foundation, 2020. https:

//www.gnu.org/software/wget/.

[205] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. What happens after

you are pwnd: Understanding the use of leaked webmail credentials in the wild. In

Proceedings of the Internet Measurement Conference, 2016.

[206] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis, Evangelos

Markatos, Sotiris Ioannidis, and Giorgos Vasiliadis. Master of Web Puppets: Abusing

Web Browsers for Persistent and Stealthy Computation. In NDSS, 2019.

[207] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. FUGIO: Automatic Exploit

Generation for PHP Object Injection Vulnerabilities. In 31st USENIX Security

Symposium, 2022.

[208] Muhammad Parvez, Pavol Zavarsky, and Nidal Khoury. Analysis of Effectiveness of

Black-box Web Application Scanners in Detection of Stored SQL Injection and Stored

XSS Vulnerabilities. In 10th International Conference for Internet Technology and

Secured Transactions, 2015.

[209] Avanish Pathak. An Analysis of Various Tools, Methods and Systems to Generate Fake

Accounts for Social Media. Northeastern University Boston, Massachusetts, 2014.

[210] Mateusz Pawlik and Nikolaus Augsten. Efficient Computation of the Tree Edit

Distance. ACM Trans. Database Syst., 40, 2015.

[211] Mateusz Pawlik and Nikolaus Augsten. Tree Edit Distance: Robust and Memory-

efficient. Information Systems, 56, 2016.

[212] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. Let’s Go in for

a Closer Look: Observing Passwords in Their Natural Habitat. In Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security, 2017.

[213] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow. jÄk:

Using Dynamic Analysis to Crawl and Test Modern Web Applications. In Research in

Attacks, Intrusions, and Defenses, 2015.

https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/

122 Bibliography

[214] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. Nezha: Efficient domain-

independent differential testing. In 2017 IEEE Symposium on Security and Privacy

(SP), 2017.

[215] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight Self-Protecting

JavaScript. In Proceedings of the 4th International Symposium on Information,

Computer, and Communications Security, 2009.

[216] Pablo Picazo-Sanchez, Juan Tapiador, and Gerardo Schneider. After you, please:

Browser Extensions Order Attacks and Countermeasures. International Journal of

Information Security, 2020.

[217] Jason Polakis, Marco Lancini, Georgios Kontaxis, Federico Maggi, Sotiris Ioannidis,

Angelos D. Keromytis, and Stefano Zanero. All your face are belong to us: break-

ing Facebook’s social authentication. In Annual Computer Security Applications

Conference (ACSAC), 2012.

[218] Jeremy Rack and Cristian-Alexandru Staicu. Jack-in-the-box: An Empirical Study of

JavaScript Bundling on the Web and its Security Implications. In Proceedings of the

ACM SIGSAC Conference on Computer and Communications Security, 2023.

[219] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb. Configuring Global

Software Teams: A Multi-company Analysis of Project Productivity, Quality, and

Profits. In 33rd International Conference on Software Engineering (ICSE), 2011.

[220] Rautenstrauch, Jannis and Mitkov, Metodi and Helbrecht, Thomas and Hetterich,

Lorenz and Stock, Ben. To Auth or Not To Auth? A Comparative Analysis of the Pre-

and Post-Login Security Landscape. In IEEE Symposium on Security and Privacy (SP),

2024.

[221] Derick Rethans. Xdebug - Debugger and Profiler Tool for PHP, 2023.

https://xdebug.org/.

[222] Andres Riancho. w3af - open source web application security scanner, 2013.

http://w3af.org/.

[223] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and Defending

Against Third-Party Tracking on the Web. In 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), 2012.

[224] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis

Papaevripides, and Elias Athanasopoulos. webFuzz: Grey-Box Fuzzing for Web

Applications. In European Symposium on Research in Computer Security, 2021.

https://xdebug.org/
http://w3af.org/

Bibliography 123

[225] Suood Al Roomi and Frank Li. A Large-Scale Measurement of Website Login Policies.

In 32nd USENIX Security Symposium (USENIX Security), 2023.

[226] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben Stock.

Complex Security Policy? A Longitudinal Analysis of Deployed Content Security Poli-

cies. In Proceedings of the Network and Distributed System Security Symposium, 2020.

[227] Sebastian Roth, Lea Gröber, Michael Backes, Katharina Krombholz, and Ben Stock. 12

Angry Developers - A Qualitative Study on Developers’ Struggles with CSP. In Proceed-

ings of the ACM SIGSAC Conference on Computer and Communications Security, 2021.

[228] Roth, Sebastian and Calzavara, Stefano and Wilhelm, Moritz and Rabitti, Alvise

and Stock, Ben. The Security Lottery: Measuring {Client-Side} Web Security

Inconsistencies. In 31st USENIX Security Symposium (USENIX Security), 2022.

[229] Iskander Sanchez-Rola, Matteo Dell’Amico, Davide Balzarotti, Pierre-Antoine

Vervier, and Leyla Bilge. Journey to the Center of the Cookie Ecosystem: Unraveling

Actors’ Roles and Relationships. In 2021 IEEE Symposium on Security and Privacy,

2021.

[230] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. Hiding in Plain

Site: Detecting JavaScript Obfuscation through Concealed Browser API Usage. In

Proceedings of the ACM Internet Measurement Conference (IMC), 2020.

[231] Quirin Scheitle, Oliver Hohlfeld andJulien Gamba, Jonas Jelten, Torsten Zimmer-

mann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. A Long Way to the Top:

Significance, Structure, and Stability of Internet Top Lists. In IMC, 2018.

[232] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero: Real JavaScript

and Zero Side-Channel Attacks. In Proceedings of the Network and Distributed System

Security Symposium, 2018.

[233] Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik Zuiderveen Borgesius.

Leaky Forms: a study of email and password exfiltration before form submission. In

31st USENIX Security Symposium (USENIX Security), 2022.

[234] Mikhail Shcherbakov and Musard Balliu. SerialDetector: Principled and Practical

Exploration of Object Injection Vulnerabilities for the Web. In 28th Annual Network

and Distributed System Security Symposium, NDSS, 2021.

[235] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and Carmela Troncoso.

WebGraph: Capturing Advertising and Tracking Information Flows for Robust

Blocking. In 31st USENIX Security Symposium (USENIX Security 22), 2022.

124 Bibliography

[236] Kapil Singh, Alexander Moshchuk, Helen J Wang, and Wenke Lee. On the Incoheren-

cies in Web Browser Access Control Policies. In IEEE Symposium on Security and

Privacy, 2010.

[237] Suphannee Sivakorn, Angelos D. Keromytis, and Jason Polakis. That’s the Way the

Cookie Crumbles: Evaluating HTTPS Enforcing Mechanisms. In Proceedings of the

ACM on Workshop on Privacy in the Electronic Society, 2016.

[238] Suphannee Sivakorn, Jason Polakis, and Angelos D. Keromytis. The Cracked

Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Information. In In

Proceedings of the 37th IEEE Symposium on Security and Privacy, 2016.

[239] Alexander Sjösten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and

Benjamin Livshits. Filter List Generation for Underserved Regions. In Proceedings of

The Web Conference, 2020.

[240] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering Browser

Extensions via Web Accessible Resources. In Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy, 2017.

[241] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. Anything to Hide?

Studying Minified and Obfuscated Code in the Web. In The World Wide Web

Conference, 2019.

[242] Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan. SugarCoat:

Programmatically Generating Privacy-Preserving, Web-Compatible Resource Re-

placements for Content Blocking. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security, 2021.

[243] Michael Smith, Peter Snyder, Moritz Haller, Benjamin Livshits, Deian Stefan, and

Hamed Haddadi. Blocked or Broken? Automatically Detecting When Privacy

Interventions Break Websites. Proceedings on Privacy Enhancing Technologies, 2022.

[244] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser Feature Usage

on the Modern Web. In Proceedings of the 2016 Internet Measurement Conference,

2016.

[245] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most Websites Don’t Need to Vibrate:

A Cost-Benefit Approach to Improving Browser Security. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security, 2017.

[246] Johnny So, Michael Ferdman, and Nick Nikiforakis. The More Things Change, the

More They Stay the Same: Integrity of Modern JavaScript. In Proceedings of The Web

Conference, 2023.

Bibliography 125

[247] Saumya Solanki, Gautam Krishnan, Varshini Sampath, and Jason Polakis. In (Cy-

ber)Space Bots Can Hear You Speak: Breaking Audio CAPTCHAs Using OTS Speech

Recognition. In Proceedings 10th ACM Workshop on Artificial Intelligence and

Security, AISec ’17, 2017.

[248] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and Jason

Polakis. The Dangers of Human Touch: Fingerprinting Browser Extensions through

User Actions. In 31st USENIX Security Symposium (USENIX Security 22), 2022.

[249] Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis, and Jason Polakis. Escaping

the Confines of Time: Continuous Browser Extension Fingerprinting Through

Ephemeral Modifications. In Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security, 2022.

[250] Sooel Son, Kathryn S. Mckinley, and Vitaly Shmatikov. Fix Me Up: Repairing access-

control bugs in web applications. In In Network and Distributed System Security

Symposium (NDSS), 2013.

[251] Stefano Calzavara and Hugo Jonker and Benjamin Krumnow and Alvise Rabitti.

Measuring Web Session Security at Scale. Computers and Security, 111, 2021.

[252] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. Who’s Hosting the

Block Party? Studying Third-Party Blockage of CSP and SRI. In Proceedings of the

Network and Distributed System Security Symposium, 2021.

[253] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t Trust The

Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site Scripting in

the Wild. In NDSS, 2019.

[254] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. How the Web Tangled

Itself: Uncovering the History of Client-Side Web (In)Security. In 26th USENIX

Security Symposium (USENIX Security 17), 2017.

[255] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael

Backes. Hey, you have a problem: On the feasibility of large-scale web vulnerability

notification. In 25th USENIX Security Symposium (USENIX Security 16), 2016.

[256] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Martin Johns. From

facepalm to brain bender: Exploring client-side cross-site scripting. In Proceedings

of the 22nd ACM SIGSAC conference on computer and communications security, 2015.

[257] Junhua Su and Alexandros Kapravelos. Automatic Discovery of Emerging Browser

Fingerprinting Techniques. In Proceedings of The Web Conference, 2023.

126 Bibliography

[258] Chris Sullo. Nikto2 — CIRT.net, 2024. https://cirt.net/Nikto2.

[259] N. Surribas. Wapiti : a Free and Open-Source web-application vulnerability scanner,

2023. https://wapiti.sourceforge.io/.

[260] Larry Suto and Consultant San. Analyzing the accuracy and time costs of web

application security scanners. 2010.

[261] Jeff Terrace, Stephen R. Beard, and Naga Praveen Kumar Katta. JavaScript in

JavaScript (js.js): Sandboxing Third-Party Scripts. In 3rd USENIX Conference on Web

Application Development, 2012.

[262] Kurt Thomas, Dmytro Iatskiv, Elie Bursztein, Tadek Pietraszek, Chris Grier, and

Damon McCoy. Dialing Back Abuse on Phone Verified Accounts. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security, 2014.

[263] Tung Tran, Riccardo Pelizzi, and R. C. Sekar. JaTE: Transparent and Efficient

JavaScript Confinement. In Proceedings of the 31st Annual Computer Security

Applications Conference, 2015.

[264] Trickel, Erik and Pagani, Fabio and Zhu, Chang and Dresel, Lukas and Vigna, Giovanni

and Kruegel, Christopher and Wang, Ruoyu and Bao, Tiffany and Shoshitaishvili, Yan

and Doupé, Adam. Toss a fault to your witcher: Applying grey-box coverage-guided

mutational fuzzing to detect sql and command injection vulnerabilities. In 2023

IEEE Symposium on Security and Privacy (SP), 2023.

[265] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl. SHPF:

Enhancing HTTP(S) Session Security with Browser Fingerprinting. In International

Conference on Availability, Reliability and Security, 2013.

[266] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. Beyond the

Front Page:Measuring Third Party Dynamics in the Field. In Proceedings of The Web

Conference, 2020.

[267] Kami Vaniea and Yasmeen Rashidi. Tales of Software Updates: The Process of

Updating Software. In Proceedings of the 2016 CHI Conference on Human Factors in

Computing Systems, 2016.

[268] Rakesh Verma and Keith Dyer. On the Character of Phishing URLs: Accurate and

Robust Statistical Learning Classifiers. In Proceedings of the 5th ACM Conference on

Data and Application Security and Privacy, 2015.

[269] Alexandre Vernotte, Franck Lebeau, Frédéric Dadeau, Bruno Legeard, Fabien

Peureux, and Francois Piat. Efficient Detection of Multi-step Cross-Site Scripting Vul-

nerabilities. In 10th International Conference on Information Systems Security, 2014.

https://cirt.net/Nikto2
https://wapiti.sourceforge.io/

Bibliography 127

[270] Marco Vieira, Nuno Antunes, and Henrique Madeira. Using Web Security Scanners

to Detect Vulnerabilities in Web Services. In IEEE/IFIP International Conference on

Dependable Systems Networks, 2009.

[271] Thomas Vissers, Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. Maneuver-

ing Around Clouds: Bypassing Cloud-Based Security Providers. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, 2015.

[272] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me Onto Your Accounts Through

Facebook and Google: A Traffic-Guided Security Study of Commercially Deployed

Single-Sign-On Web Services. In 2012 IEEE Symposium on Security and Privacy, 2012.

[273] Zilun Wang, Wei Meng, and Michael R. Lyu. Fine-Grained Data-Centric Content

Protection Policy for Web Applications. In Proceedings of the ACM SIGSAC Conference

on Computer and Communications Security, 2023.

[274] Rick Wash, Emilee Rader, Kami Vaniea, and Michelle Rizor. Out of the Loop: How

Automated Software Updates Cause Unintended Security Consequences. In 10th

Symposium On Usable Privacy and Security (SOUPS 2014), 2014.

[275] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. CSP

is dead, long live CSP! On the insecurity of whitelists and the future of content

security policy. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security, 2016.

[276] Ronghai Yang, Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang. Vetting Single

Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX Security

Symposium (USENIX Security), 2018.

[277] Kaizhong Zhang and Dennis Shasha. Simple Fast Algorithms for the Editing Distance

Between Trees and Related Problems. SIAM J. Comput., 18, 1989.

[278] Mingxue Zhang and Wei Meng. JSISOLATE: Lightweight In-browser JavaScript Isola-

tion. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, 2021.

[279] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan, and

Nicholas Weaver. Cookies Lack Integrity: Real-World Implications. In 24th USENIX

Security Symposium (USENIX Security), 2015.

[280] Yuchen Zhou and David Evans. Why aren’t HTTP-only cookies more widely deployed.

Proceedings of 4th Web 2.0 Security and Privacy, 2010.

128 Bibliography

[281] Yuchen Zhou and David Evans. SSOScan: Automated Testing of Web Applications

for Single Sign-On Vulnerabilities. In 23rd USENIX Security Symposium (USENIX

Security), 2014.

[282] Yuchen Zhou and David Evans. Understanding and Monitoring Embedded Web

Scripts. In IEEE Symposium on Security and Privacy, 2015.

[283] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why Does Your Data Leak?

Uncovering the Data Leakage in Cloud From Mobile Apps. In 2019 IEEE Symposium

on Security and Privacy, 2019.

[284] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. AUTHSCOPE: Towards Auto-

matic Discovery of Vulnerable Authorizations in Online Services. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

Appendix A

A.1 Static file extensions

Requests towards the following file extensions are directly proxied to the web application:

js,json,css,crt,mp3,wav,wma,ogg,mkv,zip,gz,tar,xz,rar,z,deb,iso,csv,tsv,dat,txt,

log,sql,xml,mdb,apk,bat,bin,exe,jar,wsf,fnt,fon,otf,ttf,ai,bmp,gif,ico,jpeg,png,

ps,psd,svg,tif,tiff,cer,rss,key,odp,pps,ppt,pptx,c,class,cpp,cs,h,java,sh,swift,

vb,odf,xlr,xls,xlsx,bak,cab,cfg,cpl,cur,dll,dmp,drv,icns,ini,lnk,msi,sys,tmp,

3g2,3gp,avi,flv,h264,m4v,mov,mp4,mpeg,rm,swf,vob,wmv,doc,docx,odt,pdf,rtf,tex,

wks,wps,wpd,woff,eot,xap.

A.2 ReScan’s API

ReScan’s API endpoints, which we detail next, can be split in two categories: passive, which

aim to provide valuable insights and information sharing between ReScan and the scan-

ner, and active, which alter ReScan’s behavior at runtime, according to the scanner’s needs.

For instance, if the scanner tests for stored XSS it can enable the ISD module, but disable

it later when testing for a vulnerability that does not affect other pages, e.g., open redirects.

Similarly, it might disable the authentication helper when it is not required to maintain the

session and avoid running the oracle in every request, e.g., when brute-forcing for sensitive

files and directories. Finally, disabling the URL clustering module, which will no longer cre-

ate any new clusters nor redirect already clustered pages, can be useful if the scanner wants

to perform thorough checks in all pages, e.g., harvest e-mails or registered users.

To utilize the API, the scanner simply sends its API requests to ReScan through the same

port it uses to proxy the requests targeting the web application, i.e., via the same HTTP chan-

nel. ReScan then identifies these API requests and performs the requested operation. It is

worth noting that different components of the system are responsible for handling different

API calls. For example, retrieving the entire navigation model or a specific workflow requires

communicating with the graph worker, checking the authentication state requires invoking

a browser worker, while enabling or disabling modules is handled by the orchestrator.

129

130 Appendix A.

Passive endpoints:
• /graph: Return the entire navigation model for the target application.

• /workflow: Given a request, return its workflow from the model.

• /isd: Given a request, return the detected ISD sinks.

• /isdAll: Return all detected ISD sinks and sources.

• /auth: Return if we are currently authenticated.

• /xss: Return all successful XSS injections so far.

• /isClustered: Given a URL, return if clustered and what cluster it belongs to.

Active endpoints:
• /[enable|disable]ISD: Enable/disable ISD detection and sink collection.

• /[enable|disable]Auth: Enable/disable authentication helper.

• /[enable|disable]Events: Enable/disable event discovery.

• /[enable|disable]Clustering: Enable/disable URL clustering.

A.3 Scanners’ Configuration

• w3af. We enabled the web spider plugin for crawling, the auth.generic plugin for au-

thentication and the xss plugin for auditing with the persistent xss parameter set to

true for vanilla runs and false for ReScan.

• wapiti. We used the wapiti-getcookie utility for authentication, and enabled the xss

and permanentxss auditing modules, disabling the latter for ReScan.

• Enemy of the State. The following command was issued:

$ jython crawler2 . py < t a r g e t URL>

• ZAP. The spider and ajaxSpider plugins were used for crawling (ajaxSpider was dis-

abled for ReScan) and ZAP’s standard authentication module. For auditing, we enabled

the xssmodule, which incorporates both reflected and stored XSS detection, while for

ReScan we enabled only the xss reflectedmodule.

• Black widow. The following command was issued:

$. / crawl . py −−u r l < t a r g e t URL> −−username <username>

−−passwd <password>

• ReScan. The following command was issued:

$. / rescan . py −−headless −−workers 4 −− i s d −−events

−−c l u s t e r i n g −−auth −−port <proxy port >

Appendix B

B.1 JS inclusions

In Table B.1 we outline the JS inclusion methods StyxJS captures and compare them with the

two original systems we retrofitted on top of it, namely SugarCoat’s underlying PageGraph

and ScriptProtect. ScriptProtect has missed several inclusion methods and several others

are partially captured. For instance, the system captures the injection of new code via in-

nerHTML, but only if it is utilized to inject markup. However, we found that the same API can

be used to set a script’s contents which leads to direct code execution; StyxJS captures such

cases as well. As extensively outlined in §4.4.1, while PageGraph is able to capture all inclu-

sion methods, it cannot attribute all of them back to the calling script (e.g., setTimeout for

string-to-code evaluation), leaving room for trivial bypasses.

B.2 PageGraph Validation

As mentioned in §4.3.1, we tried to validate StyxJS against PageGraph in real websites by

comparing the scripts each system captures. However, when setting up our experiment, we

found that PageGraph can sometimes incorrectly capture scripts that never execute. For in-

stance, if anonclickevent handler is set on an element and it does not execute, i.e., the click

event is never fired on that element, PageGraph marks it as executed. On the other hand,

StyxJS includes it in the JIG but does not mark it as executed since its entry code never runs.

In a different case, if a text node is appended to a script element which is not yet attached

to the DOM and therefore does not execute, PageGraph will not capture it, contrary to the

previous case. StyxJS behaves consistently, since it also includes the script in the JIG, but

does not mark it as executed. Unfortunately, this inconsistent behavior effectively prevents

us from performing a correct validation experiment. Moreover, identifying and account-

ing for all cases PageGraph might exhibit such behaviors is out of the scope of this work.

Nonetheless, in our test HTML page, where we know precisely what JS code executes and

can account for such behaviors, we found 11 distinct dynamic scripts that PageGraph failed

to attribute to a 3P, while StyxJS correctly captured all of them. All cases are attributed to

131

132 Appendix B.

Table B.1: JavaScript inclusion methods covered by different systems. Exposing
properties are marked with *.

JS API / property Condition PageGraph ScriptProtect StyxJS

HTMLScriptElement
src - X X X
*text - X X X
*innerText - X X X
*textContent - X X X
append() Text arg(s) X 7 X
appendChild() Text arg X 7 X
prepend() Text arg(s) X 7 X
insertBefore() Text arg X 7 X
replaceWith() Text arg(s) X 7 X
replaceChild() Text arg X 7 X
replaceChildren() Text arg(s) X 7 X

Text Script’s child
*textContent X 7 X
*outerText X 7 X
*nodeValue X 7 X
*data X 7 X

Element
*innerHTML - X I X
*outerHTML - X I X
insertAdjacentHTML() - X I X
setAttribute() Event X I X

Attr
*value Event X 7 X

HTMLAnchorElement
*href javascript:URL Q 7 X

HTMLIFrameElement
*src javascript:URL X X X
*srcdoc - X I X

Range
createContextualFragment() - X 7 X

document
write() - X I X
writeln() - X I X

window
eval() - X 7 X
Function() - X X X
setTimeout() - Q X X
setInterval() - Q X X

X: captured, 7: not captured, I: partially captured, Q: Captured, but not attributed.

PageGraph’s shortcomings, as detailed in §4.4.1.

