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Abstract

This thesis investigates black hole solutions involving branes, focusing on the entropy
of 2-charge and 3-charge systems, the fuzzball proposal, and superstrata constructions.
We explore how D-brane configurations account for black hole microstates, matching the
Bekenstein-Hawking entropy. The fuzzball proposal is examined as a resolution to the black
hole information paradox, suggesting that black holes are composed of horizonless, smooth
microstates. Additionally, we present superstrata, which extend the fuzzball framework to
provide a richer spectrum of microstate geometries for the 3-charge black hole. Our study
aims to enhance the understanding of black hole microstates within the framework of string
theory and especially supergravity.
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1 Introduction - Discussion
Black holes, one of the most intriguing predictions of Einstein’s theory of general relativity,
have long captured the interest of physicists and cosmologists. These enigmatic objects, defined
by regions of spacetime exhibit strong gravitational effects that nothing, not even light can
escape from them. Even more, they offer great insights into the nature of gravity, spacetime,
and quantum mechanics. The simplest solution to Einstein’s field equations is the Schwarzschild
black hole, characterized only by its mass. However, more complex and realistic black holes have
been theoretically discovered, verifying the field equations, that involve quantities like electric
charge, angular momentum and more.

One of the most significant kinds of black holes is the Reissner-Nordström black hole. This
object except of its mass it includes a non-zero total electric charge. It owns some very fasci-
nating new properties like the existence of more than one event horizons. Another interesting
phenomenon is the case where the charge is equal to the mass of the object. There, the solution
obtains a high-symmetrical geometry that does not appear in the other cases.

The theoretical study of black holes was soon expanded in the framework of quantum me-
chanics. Great physicists like Hawking implemented the concepts of the quantum world and
derived remarkable results for the dynamics of such objects. Perhaps the most notable are the
Hawking evaporation process and the existence of an entropy proportional to the area from the
horizon surface (Bekenstein-Hawking entropy). Having such an entropy implies a thermody-
namical description of the system and especially the existence of different microstates. These
results lead to two great problems involving the microstates of the system and the information
paradox. The appearance of them challenge the fundamental concepts of gravity and quantum
mechanics as none of them can give sufficient explanations.

In order to answer the problems, physicists turned to quantum gravity and especially string
theory. To explore the microstates of black holes and the structure of spacetime, supersymmetric
configurations using branes and strings have become a hot topic of research. Starting from
simple one-type-brane configurations and combining different types we can make promising BPS
systems of 2-charge and 3-charge black holes that give answers to our problems. Moreover,
one prominent proposal that may resolve the information paradox is the fuzzball proposal. It
suggests that black holes are complicated in general systems of branes and strings that are
horizonless structures with regular solutions that make up all the microstates of the entropy.
These systems are different up to the classical horizon scale.

In Section 2 we introduce the charged black hole solution of Reissner-Nordström using general
relativity. We examine the various quantities included in the solution and analyse the geometries
of such a black hole. From our analysis, it arises a special case of interest, the extremal solution.

Section 3 begins with an introduction upon the problems emerged from quantum mechanics
and the great need for string theory. After a small description of the M-theory, we turn our
concern in the type II string theory which will be used in our computations. We write the
metrics and potentials for some supersymmetric configurations of Dp-branes and present a new
type of black hole solutions. Most important are the D1-D5 and D1-D5-P systems and are
extensively discussed. The importance of these systems is the relation with the 5-dimensional
Reissner-Nordström black hole.

The last Section 4 is attributed to the calculation of the entropy for the 2-charge and 3-charge
black holes and the construction of their microstates. In addition, a statistical analysis has been
conducted for these systems. We state the fuzzball proposal and proceed to the microstate
geometries. We find a family of such geometries for the 2-charge case and extend our results
for the 3-charge case. The last structures are called superstrata and are an open subject in
theoretical physics with a lot of possible applications but also several remaining issues.
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2 Charged Black Holes In General Relativity

2.1 The Reissner-Nordström Black Hole

The first black hole ever discovered within the framework of general relativity is the Schwarzschild
black hole solution and it is attributed to a spherically symmetric, non-rotating object with fixed
mass. The metric describing such an object is as we know [1],[2]

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2 (2.1)

where
f(r) = 1− 2M

r
, dΩ2

2 = dθ2 + sin2 θdϕ2 (c,GN = 1) (2.2)

We observe that the solution of (2.1) depends only on its mass M. But we know that an object
can also be electromagnetically charged. So the next step is to search for a charged black hole
solution. For simplicity we will only consider electrically charged solutions, the total magnetic
charge will be zero.

To derive the equations of motion for the solution that we are searching, we need the Einstein-
Maxwell action

S =
1

16π

∫
dx4

√
−g(R− FµνF

µν) (2.3)

with R to be the Ricci scalar and F the field strength of an 1-form Maxwell potential A

R = Rµν
µν , F = dA (2.4)

The variations of the action (2.3) in respect to the metric g and the potential A will provide the
equations of motion through the variation principle

δS = 0 (2.5)

By varying the term of the Ricci scalar in respect to the metric ( δ
δgµν

) we obtain the Einstein
tensor

δ(
√
−gR) = (Rµν −

1

2
Rgµν)δg

µν
√
−g

= Gµν

√
−gδgµν

(2.6)

This is the same result as for the Schwarzschild solution but now we will get an extra term from
the same variation of the E/M term of the action

δ(
√
−gFµνF µν) = δ(

√
−gFµνFρσgµρgνσ) =

δ(
√
−g)FµνFρσgµρgνσ + 2

√
−gFµνFρσgνσδgµρ =

δgµν
√
−g(−1

2
gµνFρσF

ρσ + 2FµρF
ρ
ν )

(2.7)

Combining them we have

Gµν = 8π(FµρF
ρ
ν − 1

4
gµνFρσF

ρσ) (2.8)

Rewriting the field strength in respect of the potential as

Fµν = ∂µAν − ∂νAµ (2.9)
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and varying in respect of the potential A we get

δ

∫
dx4

√
−gFµνF µν = 2

∫
dx4

√
−gF µνδ(Fµν) = 4

∫
dx4

√
−gF µν ∂ν(δAµ)

= −4

∫
dx4 δAµ ∂ν(

√
−gF µν) = −4

∫
dx4 δAµ ∂ν(

√
−gF µν)

= −4

∫
dx4

√
−g δAµ ∇µF

µν

(2.10)

Notice that for the above result we used the generalized version of Stokes’ Theorem and the
property that our ends of integration are at infinity where we demand the variations to vanish
in order to have a stable and well defined solution. And from the (2.5) we must have

∇µF
µν = 0 (2.11)

Reissner and Nordström showed that there is a spherically symmetric solution that has the form
of the (2.1) and satisfies (2.8) and (2.11). The radial function and the field strength of this
solution are

f(r) = 1− 2M

r
+
Q2

r2
, F =

Q

r2
dt ∧ dr (2.12)

where Q is the total electric charge of the black hole. It is obvious that taking the limit of Q = 0
we obtain the Schwarzschild solution for a black hole of mass M. The addition of a magnetic
charge P is also simple

Q2 → Q2 + P 2 (2.13)

2.2 Conserved Charges of Reissner-Nordström Black Hole

We know from the no-hair theorem that the parameters of mass, charge and angular momen-
tum fully characterize stationary black hole solutions in asymptotically flat general relativity.
In order to calculate these conserved charges from our metric we will use the Komar integrals.
Specifically, as the solution for the RN black hole has no angular momentum, we will use the
two following integrals [3]

m =
1

4π

∮
∂Σ

∇µkνdΣνµ (2.14)

q =
1

4π

∮
∂Σ

F µνdΣνµ (2.15)

For both charges we must define a hypersurface Σ of constant t. Thus, we choose its boundary
∂Σ to be a surface of constant radius r, in particular it is a two-sphere at spacial infinity. Next
step is to find the unit normal vectors n and σ for these surfaces for the specific metric which
are [3]

n = (1− 2M

r
+
Q2

r2
)−

1
2∂t , σ = (1− 2M

r
+
Q2

r2
)
1
2∂r (2.16)

Lets now start by calculating the mass. In the integral we have a factor named k, that is a
timelike Killing vector field. Then from (2.14) we have

m =
1

4π

∮
∂Σ

∇µkνnµσν
√
| ω |d2ω (2.17)

where ω is the induced metric of the two-sphere and we also have that

nµσν∇µkν = nµσνgνρ∇µk
ρ = ntσrgrr∇tk

r = nµσνgνρ∇µk
ρ = ntσrgrrΓ

r
tνk

ν =

ntσrgrrΓ
r
tt = −1

2
ntσrgrrg

rr∂rgtt =
1

2

∂

∂r
(1− 2M

r
+
Q2

r2
) =

M

r2
− Q2

r3

(2.18)
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We are finally ready to calculate the integral for the mass

m = lim
r→∞

1

4π

∫ π

0

dθ

∫ 2π

0

dϕ r2 sin θ(
M

r2
− Q2

r3
) = lim

r→∞
(M − Q2

r
) =M (2.19)

In a similar way, with the use of (2.12) and (2.15), we find the electric charge of the black
hole as

q =
1

4π

∫ 2π

0

dϕ

∫ π

0

dθr2 sin θ
Q

r2
= Q (2.20)

To sum up, we showed that the parameters appeared in the metric of the black hole are
indeed the total mass and electric charge of the object. Notice that our calculations are valid
only for taking a sphere with radius bigger than the radius of the black hole in order to include
the whole charges.

2.3 Singularities and Extremal Solution

Even when writing the Schwarzschild black hole we observed some particular anomalies when
the f(r) function becomes zero or infinite. Such anomalies are called singularities and they arise
as a result from the breakdown of the theory’s equations. There can be of two kinds: coordinate
singularity and curvature singularity. The first indicates that our choice of coordinates is not
good enough and does not include the full spacetime. On the contrast, a curvature singularity
represents a point where the spacetime becomes infinite, leading to a point of infinite density.

While the solution for the Schwarzschild black hole seems to have two singularities at r = 0
and r = 2M , with the adjustment of Kruskal coordinates someone can show that it has only
one curvature singularity in the center of the black hole r = 0. The surface of the r = 2M is in
fact an event horizon. Another way of showing this, is by finding the critical points of the Ricci
squared invariant given by

R2 = RµνRµν (2.21)

Moving to the RN black hole we find the zeros of the radial function f from (2.12) to be

r± =M ±
√
M2 −Q2 (2.22)

These two points with the r = 0 make up the singularities of our metric. For all these points
the scalar curvature vanishes. But from (2.21) we see that

R2 = 4
Q4

r8
(2.23)

leaving only the r = 0 as a singularity from the geometry, while the other singularities of the
metric are coordinate singularities and correspond just to horizons.

I would like now to speak about a special case depending on the mass and the charge where
M =| Q |. This case is called extremal RN black hole and will be of great use through the next
sections. Notice that the two singularities in r± = Q coincide. So the two horizons become one.
The radial function f(r) for this case becomes

f(r) =
(r −Q)2

r2
(2.24)

We observe that by changing coordinates as

ρ = r −Q (2.25)
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we can bring the metric to the form

ds2 = −H−2(ρ)dt2 +H2(ρ)[dρ2 + ρ2dΩ2
2] , H(ρ) = 1 +

Q

ρ
(2.26)

In this coordinate system, the solution is regular at ρ = 0. The function H(ρ) will be known to
the observant reader as it is the harmonic Poisson function solving the Laplace’s equation in a
3-dimensional space

∆3H = 0 (2.27)

It is very important to examine the behavior of this metric in the near horizon limit ρ → 0
in order to see the asymptotic structure of spacetime. In this limit we can neglect the one in the
H(ρ) function and write the metric as

ds2 = − ρ2

Q2
dt2 +

Q2

ρ2
dρ2 +Q2dΩ2

2 (2.28)

Making a last change in the radial coordinate as ρ→ Q2ρ (in the right units) we end up with

ds2 = Q2(−ρ2dt2 + dρ2

ρ2
+ dΩ2

2) (2.29)

and this is now no other spacetime rather than the AdS2 × S2 with radius of curvature | Q |.
Analysing this geometry we start with a flat spacetime at infinity and as we move in the near-
horizon area we fall inside an infinite throat with constant radius. The initial geometry of the
general RN black hole had no obvious symmetries. But the current solution of the extreme case
seems to be a lot more symmetric because it belongs to the family of the AdSn×Sn geometries.
Such geometries will appear in supergravity systems of branes later on. This is not an accident.
The new solutions will be a sort of higher dimensional RN black holes with more exotic charges.
Lastly, such geometries arise in holography and AdS/CFT correspondence and have been studied
extensively.
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3 String Theory And Black Hole Solutions
We have seen so far how to construct more general black hole solutions within the framework
of general relativity. Starting with the Schwarzschild black hole, that depends only on its mass,
we added an extra electric charge and got the Reissner-Nordström black hole. In this way, we
could also add a magnetic charge, rotation (Kerr black hole) etc.

But so far we haven’t spoke anything about quantum mechanics. From quantum mechanics
and especially Quantum Field Theory (QFT) we know that energy can decay into a particle-
antiparticle pair. With this knowledge, Hawking found that such pairs can be created in the
near horizon area of the black hole and sometimes one of the two falls inside the black hole
horizon while the other escapes to infinity. The black hole lower its mass and energy with the
form of thermal radiation. Thus, the black hole behaves as a black body having a characteristic
temperature T proportional to the gravitational field strength near the horizon.

But if it has a radiation temperature, by the universal laws of thermodynamics, must also
have an entropy. In that spirit, Bekenstein and Hawking proved that the entropy of the black
hole is proportional to the area of the horizon

SBH =
A

4GN

(3.1)

where GN is the Newton’s constant related to Planck length.
The calculation of this entropy will give a very huge number even for a typical black hole. For

instance, a black hole with one solar mass will have an entropy of about 1077Joule/Kelvin [4].
Imagine what we will have for a supermassive black hole inside the center of a galaxy. Boltzmann
demonstrated that the entropy is related to the number N of microstates in a dynamical system
as follows

S ∼ log(N) (3.2)

This gives us an enormous number of microstates that correspond to the same macroscopic prop-
erties. Nonetheless, we cannot explain this number in the classical picture of general relativity,
mostly due to two emerging problems.

The biggest mystery in the realm of classical GR is; where are these microstates? How do they
look like? There are several propositions such us lying near the singularity of the black hole or
extending even up to the horizon (fuzzball proposal). The other problem is called the information
paradox. As the black hole looses mass through radiation it increases its temperature and thus
the rate of emission. After a very long period of time, the black hole would be completely
evaporated. So where did the initial information of the black hole go? These are the problems
that we cannot answer using only general relativity.

By reason of the above problems, we will implement String Theory, which is our best theory
of quantum gravity so far, in our computations in order to solve them. Subsequently, I will
provide some basic elements of String theory like the type II string theory, D-branes etc. which
will be used in extend in later problems. Our main goal is to compute the entropy of an analogous
black hole in string theory and then compute and analyze the microstates emerging from each
geometry of spacetime.
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3.1 Type II String Theory and Fundamental Objects

String theory is a vast theoretical framework in physics consisting of lots of different physical
ideas and mathematical constructs that try to interpret our world. It consists of different types
of theories that only before some years physicists realized that all of them are connected by
specific dualities. But in this project I will not provide a full review of these theories rather
than I will stick only to the objects and features of these theories appeared in the problems of
entropy and microstates inside a black hole as I mentioned above. Especially, we will consider
the low-energy limits of type IIA, type IIB theory and a bit of M-theory. Also, for simplicity we
are interested in the bosonic section and not the fermionic and supersymmetry extra terms.

We shall start by the most general case we will encounter that is not other than the 11-
dimensional supergravity which is the low-energy limit of M-theory. From bibliography [5] we
can go and write the action of this type

S11 =
1

2κ211
[

∫
d11x

√
−g(R− 1

2
F 2
4 )−

1

6

∫
Ĉ3 ∧ F4 ∧ F4 ], F4 = dĈ3 (3.3)

where the κ11 is a constant of no interest for us, at least for now.
We observe an analogy with the Einstein-Maxwell action with the only difference that the

2-form field strength is transformed in a 4-form one and we have also an extra term depending on
both the potential and the field strength. This extra term will change the equations of motions
for the Ĉ3 potential. The fundamental objects of this theory, equivalent to the electron and
magnetic monopole of Maxwell’s theory of electromagnetism, will be the electric and magnetic
objects M2 and M5 branes.

Now it is known that we can make a dimensional reduction and obtain a theory at ten
dimensions [5],[6]. From this process the 11D metric will be replaced with a 10D and generate
a gauge field C1 and a scalar σ. The scalar σ has to be the dilaton field Φ, up to some field
redefinition. The potential Ĉ3 reduces itself to two potentials C3 and B2 = Bµν = Ĉµν10.
Moreover, choosing our compactification of the eleventh dimension on a circle with period 2πR

we rescale our constants as κ210 =
κ211
2πR

.
After some changes in the fields we can write the new action as [5]

SIIA =
1

2κ210

∫
d10x(

√
−g)e−2Φ[(R + 4∂µΦ∂

µΦ− 1

2
H2

3 )−
1

2
(F̃ 2

4 + F 2
2 )]

− 1

4κ210

∫
B2 ∧ F4 ∧ F4

(3.4)

where
F2 = dC1, F4 = dC3, H3 = dB2, F̃4 = dC3 − C1 ∧H3 (3.5)

The C fields correspond to the R-R sector and the B, H to the NS-NS.
Similarly, we can write the metric for the type IIB theory [5]

SIIB =
1

2κ210

∫
d10x(

√
−g)e−2Φ[(R + 4∂µΦ∂

µΦ− 1

2
H2

3 )−
1

2
(F 2

1 + F̃ 2
3 + F̃ 2

5 )]

− 1

4κ210

∫
C4 ∧H3 ∧ F3

(3.6)

where
F̃3 = F3 − C0 ∧H3, F̃5 = F5 −

1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (3.7)

There is also a way to combine the actions of the two theories together in a single one [7] but I
would not expand into that.
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To sum up, starting from eleven dimensions and performing a dimensional reduction we
obtain two 10-dimensional theories. Looking at the fields of each theory someone would think
that they are not connected. The type IIA has potentials with odd indexes (C1,C3) while the
type IIB has even (C0,C2,C4). But in fact the two theories are connected through the T-duality
explained in Appendix A.

To see what will be the objects of this theory we must be careful to the directions they
extend. Remember that we have compactified the eleventh direction. So if we have a membrane
in the directions 0,1,2 it will not change. But having a momentum wave in the directions of 0,10
will give just a particle after the dimensional reduction of the x10 dimension.

The fundamental electrical object of type II string theory is the simple quantized string F1,
while the magnetically dual of this theory is the NS5-brane. Besides these objects, we have the so
called p-branes. p-branes are extended objects with p spacial dimensions that are charged under
a (p+1)-form potential. A special case of them are the Dp-branes which arise from the demand
of Dirichlet boundary conditions on the edges of quantized strings. They can be regarded as
large surfaces where the ends of strings move but one finds that they have a dynamics of their
own.

Regarding the potentials under which are charged the different objects we saw that the
fundamental F1 and NS5-brane are charged under the B field while a brane lets say the electric
D1-brane is charged under the C2 field potential and F3 strength and its magnetic dual D5-brane
under the Hodge dual ⋆F3 = F7. Keeping this in mind we can go and built a class of solutions
for the D-branes.

3.2 D-brane Solutions

Let us present some D-brane supersymmetric solutions to enhance our understanding of these
objects and the way they occupy the extra dimensions. We will restrict in the supergravity case
which is the low-energy approximation of string theory.

3.2.1 D1-brane

We start with the simplest case of a supersymmetric D1-brane and write the naive metric (the
metrics will be written in the string frame unless we say otherwise) of the form [4]

ds2 = Z−1/2(−dx20 + dx21) + Z1/2(dx22 + dx23 + ...+ dx29) (3.8)

which can be written in the more concrete way as

ds2 = Z−1/2(−dt2 + dx21) + Z1/2(dr2 + r2dΩ2
7) (3.9)

and we also have for the 2-form potential

C01 = Z−1 (3.10)

It is interesting that this metric resembles the extremal RN black hole and again has a harmonic
function for a scaling factor.

So the brane extends in the time and one spacial direction and is pointlike in the remaining
eight. The D1-brane behaves as a particle in the tranverse R8 space and the function Z admits
the Maxwell potential in this space. It must obeys then the Laplace equation

∆8Z = ρD1 (3.11)
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where ρD1 is the density of branes in these coordinates. Taking the branes to lie at the origin
of the coordinate system with a density of ρD1 = N1δ(x⃗), thus we have spherical symmetry, we
find

Z = c+
N1

r6
(3.12)

where r is the radius of the transverse coordinates and c a constant that we can scale to 1.
As r → 0 we approach the source and we have Z → ∞. From the metric, we see that the

R1,2 factor shrinks while the R8 blows up. This leads to the creation of a throat and a singularity
at the r = 0.

To be explicit for the previous harmonic solution we recall the formula for the Laplacian
operator in d dimensions [8]

∆Rd =
∂2

∂r2
+
d− 1

r

∂

∂r
+

1

r2
∆Sd−1 (3.13)

and for a function that obeys the Laplace equation, we have

∆dZ = 0 =⇒ Z = a+
b

rd−2
(3.14)

where a,b are constants.

3.2.2 Construction of Higher Brane Solutions

The D1-brane belongs to the type IIB theory. But as we mentioned previously, we can go from
IIB to IIA and vice versa using the T-duality. To start this attempt we change the density of
the D1-branes in the R8 space. We take a continuous distribution of such branes along a specific
direction, lets say the direction x7. This process is known as smearing of branes along one or
many dimensions. The solution then of the transverse directions will not have any dependence
of the dimension x7.

To understand the effect of smearing, I will give an example of classical electromagnetism.
Think that we have a charge distribution in a flat 2-dimensional space with coordinates x and y
and want to find the potential at any point of space. If we distribute the total charge uniformly
along the x axis from −∞ to ∞ then the potential will depend only on the y coordinate.

Turning back to our problem, the harmonic function will depend only on seven and not eight
spacial coordinates and thus

Z ∼ 1 +
N1

r5
(3.15)

We can compact the x7 on a circle and apply the T-duality. Furthermore, the application of
the T-duality along x7 changes the size of the circle as g77 → (g77)

−1(Appendix A). Hence, the
metric becomes

ds2 = Z−1/2(−dt2 + dx21 + dx27) + Z1/2(dr2 + r2dΩ2
6) (3.16)

and the 3-form potential gets an additional index

C017 = Z−1 (3.17)

This solution corresponds to a D2-brane. With the reverse process we can go back to a D1-brane.
Then, someone can create a solution for each brane using the first solution and the T-duality. I
will not provide the solution for each brane except two of them. The first one is the D5-brane
which will use a lot later on. The metric and the harmonic function for this brane is

ds2 = Z−1/2(−dt2 + dx21+dx
2
2 + dx23 + dx24 + dx25) + Z1/2(dr2 + r2dΩ2

3)

Z = 1 +
N5

r2

(3.18)
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3.2.3 D3-brane

The second is the D3-brane. For this one we have

ds2 = Z−1/2(−dt2+dx21 + dx22 + dx23) + Z1/2(dr2 + r2dΩ2
5)

Z = 1 +
N3

r4

(3.19)

This solution has a very unique behaviour in the near horizon limit. As we take the limit of
r → 0 we can neglect the one in the harmonic function and write it as Z ∼ N3/r

4. Replacing in
the metric

ds2 =
r2√
N3

(−dt2 + dx21 + dx22 + dx23) +

√
N3

r2
dr2 +

√
N3dΩ

2
5 (3.20)

This geometry can be identified as the AdS5 × S5. For large radius, away from the source the
solution approaches the flat Minkowskian spacetime. But as we travel near the center of our
coordinates the spacetime creates a throat. The interesting fact is that this throat does not
closes but acquire a finite size fixed with radius of N1/4

3 . In addition, the S5 sphere maintains
the same size. We have then a throat around the r = 0 going to infinity. This feature of the
D3-brane is what makes it so special for holography and the reason for this is that the D3 is
both electrically and magnetically charged under the C4 due to its self-duality, F5 = ⋆F5.

3.3 New Black Hole Solutions

In the previous sections we saw how to create black hole solutions within the framework of
general relativity and we introduced some brane solutions from type II string theory. We will
try now to combine them and create black hole solutions consisting of Dp-branes or a system of
them.

In Section 2 we saw two examples of black holes in the 4-dimensional spacetime, the Schwarzschild
and the Reissner-Nordström black hole. We can generalize in more dimensions and find simple
solutions (without adding any string theory) of the form

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2 (3.21)

For example, there exists a black hole solution for a simple static black hole, like the Schwarzschild
black hole, in a d-dimensional spacetime. It is called the Schwarzschild-Tangherlini black hole
[9] and is given by the metric

ds2 =− (1− µ

rd−3
)dt2 +

dr2

(1− µ
rd−3 )

+ r2dΩ2
d−2

µ =
16πGdM

(d− 2)Ωd−2

, Ωd−2 =
2π(d−1)/2

Γ(d−1
2
)

(3.22)

Again this is a black hole characterized only by its mass, which we can find with the appropriate
Komar integral as we did in 2.2. It has a singularity at r = 0 and a horizon at r = µ.

3.3.1 Non-extremal Case

We can go now back to the solution of the D3-brane (3.19) and deform it in order to resemble
the (3.22). Under this consideration we can take a solution like

ds2 = Z−1/2(−f(r)dt2 + dx21 + dx22 + dx23) + Z1/2(
dr2

f(r)
+ r2dΩ2

5) (3.23)
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When the function takes the value f(r) = 1, we take the simple supersymmetric solution of
a D3-brane we saw in the previous subsection. Otherwise, we have obtained a solution of a
non-extremal black hole from D3-branes. The function f(r) is also harmonic in the transverse
plain, obeying the Laplace equation

∆6f = 0 (3.24)

and someone can consider the solution

f(r) = 1− m

r4
(3.25)

The "electric" charge Q of the D3 can be given by the flux of the field strength

Q =

∫
F5 (3.26)

which will be proportional to the number N3 of branes up to some constants as a multiplication
factor.

The ADM mass then, coming from the gtt term, will be

M = Q+m (3.27)

Examining the result, we observe that when m < 0 the metric will describe a singular solution
with a naked singularity. So for physical reasons we consider only the case where m > 0. In that
case, we cannot obtain a stable system of such branes for this metric. If we put two or more
of these D3 black branes together the branes will collapse to a single body. This is because the
gravitational attraction is larger than the electrical repulsion.

A special case is when the mass is equal to the charge M = Q. The solution is called extremal
as we mentioned in the RN black hole case and is identical with the supersymmetric solutions we
gave earlier. The gravitational attraction will be compensated from the electrical repulsion and
the system will come to an equilibrium. These black objects will have zero Hawking temperature
and do not radiate but they have non zero mass and entropy. These solutions may sound
extremely theoretical but they are very important due to their simplicity in construction. From
now on we will be interested only in such extremal cases of black branes and also correspond
to BPS states of string theory. These states are useful as they preserve a huge number of
symmetries and have a significant impact in the computation of Hawking-Bekenstein entropy
that will concern us.

3.3.2 Example of Extremal D2-D2 Black Brane System

To complete the discussion of such black branes solutions we will go and write such a system of
two branes. For simplicity, we will take two supersymmetric D2-branes in the following directions

D21 → t, x1, x2

D22 → t, x3, x4
(3.28)

Then we smear each brane in the directions occupied by the other. For instance the D21 is
smeared in the directions of x3, x4. The metric will become

ds2 = −(Z1Z2)
−1/2dt2 + (

Z1

Z2

)1/2(dx21 + dx22) + (
Z2

Z1

)1/2(dx23 + dx24) + (Z1Z2)
1/2ds2(R5) (3.29)

where the functions Z1 and Z2 are harmonic in the R5 transverse space, so

Zi = 1 +
Qi

r3
, i = 1, 2 (3.30)
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where r is the radial coordinate of R5 and Qi are the charges of each pack of branes. As we
smeared the branes in the specific directions, the radial functions do not depend upon them.
The directions x1 to x4 have been compactified and create a T 4 manifold.

Lets make some remarks for this solution. First, if any of the Hi functions becomes one, we
obtain the solution for a simple supersymmetric D2-brane configuration like in (3.16). This can
be thought as the limit of taking the charge of a pack of D2, for instance Q1, and eliminate it.
We would expect then to have the main contribution from the other stack of branes with the
larger total charge.

In the near horizon limit where r → 0 we neglect the ones in the H functions and obtain the
metric

ds2 = − r3√
Q1Q2

dt2 +

√
Q1

Q2

(dx21 + dx22) +

√
Q2

Q1

(dx23 + dx24) +

√
Q1Q2

r3
ds2(R5) (3.31)

Taking the two charges to be of the same value Q1 = Q2 = Q, the metric simplifies to

ds2 = −r
3

Q
dt2 + ds2(T 4) +

Q

r3
ds2(R5) (3.32)

and rewrite it as
ds2 = −r

3

Q
dt2 +Q(

dr2

r3
+
dΩ2

4

r
) + ds2(T 4) (3.33)

which looks like the AdS geometry but with a different dependence over the radial coordinate. It
would be very nice if we could indeed have a dependence over r2 and obtain the AdS spacetime
which has been studied extensively for many years and is very useful to holography. This can
be done by the compactification or smearing of the branes of extra dimensions from the R5 or
using higher dimensional branes. A system of such black branes that has an asymptotic AdS
behaviour in the near horizon limit is the D1-D5 system.

3.4 The D1-D5 Supergravity Solution

In the past years, theorists have discovered a lot of different solutions from combinations of branes
that have special properties and applications to modern problems. One of these problems was
the explanation of the entropy from a black hole and the calculation of the microstates that
are related to it. The first and most simple solution of a black hole, in the regime of string
theory, that gave a glimpse to the approach for the problem was the three charge D1-D5-P BPS
black hole. For the purpose of extending our discussion to the analysis of black hole entropy,
it is crucial to examine such solutions, starting from the simpler two-charge system of D1-D5,
coming from the type IIB string theory. This system is also mapped in the D2-D2 under some
T-dualities.

Starting with the naive approach that we discussed in the previous subsection we write the
metric of the system

ds2 =
1√
Z1Z5

(−dt2 + dy2) +
√
Z1Z5ds

2(R4) +

√
Z1

Z5

ds2(T 4) (3.34)

where we have compactified the four dimensions of the branes in a T 4 torus and the remaining
y direction on a circle S1 with periodicity

y → y + 2πRy (3.35)
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The functions Zi, that are harmonical in the transverse dimensions, and the dilaton field are
given from the expressions

Zi = 1 +
Qi

r2
, i = 1, 5

e−Φ/2 = (
Z5

Z1

)1/4
(3.36)

The charges are connected with the number of branes as

Q1 =
a′3

V
N1, Q5 = a′N5 (3.37)

where we set g = 1 (the string coupling), a′ = l2s and the volume of the torus T 4 is given as
v = (2π)4V .

It is important to fully understand the structure of the branes in (3.34). The metric describes
D5-branes wrapped around the T 4 manifold and the S1 circle. They intersect with the D1-branes
that are enclosed in the S1 circle. Remember that the D1-branes are smeared in the directions
of the torus. Lastly, the functions Zi have a dependence of r2 as they are harmonic in the
transverse 4-dimensional space of R4.

The dimensions on S1 and T 4 are compact and can be reduced (Appendix B) leaving a five
dimensional metric

ds25 = −k−2/3dt2 + k1/3(dr2 + r2dΩ2
3) (3.38)

where
k = Z1Z5 = (1 +

Q1

r2
)(1 +

Q5

r2
) (3.39)

At large distances this spacetime is asymptotically flat. The only point of concern is the r = 0
that creates a singularity. To clarify the type of singularity, we compute the Ricci scalar

R = −1

6
(
2∂2rk

k4/3
+

6∂rk

rk4/3
− (∂rk)

2

k7/3
) (3.40)

In the near r = 0 region the function k behaves as k ∼ r−4 and thus the scalar

R ∼ r−2/3 (3.41)

The Ricci scalar diverges in the r = 0. The solution of the 2-charge D1-D5 system then will
have a naked singularity without a macroscopic horizon. We can change that by the alternation
of the function of k. Specifically, the addition of an extra charge with a Z function similar to
the others will provide a dependence of

k ∼ r−6 =⇒ R ∼ r0 ∼ c (3.42)

where c a constant. The curvature now is finite and the solution regular.
To preserve a better understanding of the geometry, we consider the decoupling limit in the

region near the singularity for the full metric of (3.34). It is frequent to use for this limit

a′ → 0, ρ =
r

a′
fixed, Ry,

v

a′2
fixed (3.43)

We can neglect the ones of the Z functions in this limit and the metric takes the form (in a′

units)

ds2 =
ρ2√
Q1Q5

(−dt2 + dy2) +

√
Q1Q5

ρ2
(dρ2 + ρ2dΩ2

3) +

√
Q1

Q5

ds2(T 4) (3.44)
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and with the proper coordinate transformation

ρ→ Ry√
Q1Q5

ρ, t→ t

Ry

, y → y

Ry

(3.45)

we have the final form of

ds2 =
√
Q1Q5

(
ρ2(−dt2 + dy2) +

dρ2

ρ2
+ dΩ2

3

)
+

√
Q1

Q5

ds2(T 4) (3.46)

This metric obviously corresponds to a AdS3×S3×T 4 spacetime geometry. Both the AdS3 and
S3 parts acquire the same radius in the throat region with value (Q1Q5)

1/4.
To sum up, we looked at a 2-charge case of black holes in type IIB supergravity. Starting

from the simple construction of black branes from a previous subsection we wrote down the
metric for a system of D1 and D5 branes and proceeded to the study of this solution at the
critical region around the r = 0, i.e the center of the transverse space where the branes appear
like point particles. After the reduction of the compact dimensions we observed an anomaly of
the solution. The metric has a singularity at r = 0 and an absence of a macroscopic horizon,
making the singularity to be naked. This fact, in combination with the metric of (3.46) suggests
that the solution matches with the massless limit of the extremal BTZ black hole. In this limit
the position of the singularity coincides with the horizon and the naked singularity appears. So
the 3-charge solution will correspond to the massive extremal BTZ [10].

Although the 2-charge solution lacks of a macroscopic horizon it has an entropy of the form

S ∼
√
N1N5 (3.47)

as we will discuss more extensively in Section 4. But the appearance of such an entropy should
imply the existence of a horizon due to the relation (3.1). The simplest explanations to this are
that either this 2-charge system is not a well-defined black hole solution or the metric (3.34)
is not the proper one. In a way both of them are true. As we see later, this metric is just a
mathematical tool for understanding black brane solutions and is not valid for real problems.
Also, the D1-D5 system serves as a simple test for our theory. If anyone wants to deal with a
solution that can be addressed to real problems and provide sufficient results, he should include
the 3-charged D1-D5-P system, where P stands for a momentum wave. Someone can create it
by adding momentum perturbations along the S1 circle. This system is special because we can
obtain from it the 5-dimensional RN black hole.

3.5 Type IIA Solutions

The above solutions consist only of branes from type IIB theory. These systems excite a lot of
potentials like C2, C4... etc, making sometimes the derivation and formulation of the systems’
equations tough. But we can simplify our computations by using simpler branes combinations
which are dual to our system through T and S dualities. In this subsection I will record these
dual systems of different number of conserved charges. The objects that we will work with are
the F1 and NS5, thus the fundamental electric and magnetic objects of type IIA theory that
are charged under the B field.

3.5.1 1-charge Solution

The first case is the 1-charge solution that is simple the fundamental string in ten dimensions.[11]

ds2 = Z−1(−dt2 + dy2) + ds2(R8) (3.48)
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where the harmonic function and the dilaton are

Z = 1 +
Q1

r6
, e2Φ = Z−1 (3.49)

As before the y coordinate will be compactified in a circle S1 with radius Ry. Notice that the
radial function Z is the same with the D1-brane from (3.9) as we were expecting. This solution
has also a zero area horizon at r = 0 and thus its entropy from (3.1) will be zero.

3.5.2 2-charge Solution

We move to the 2-charge solution by placing extra NS5 branes. To do this we need some
compact dimensions so we compactify other four spacial dimensions on a T 4 torus and we also
smear the strings on those directions. The metric for this F1-NS5 system is [11]

ds2 = Z−1
1 (−dt2 + dy2) + Z5ds

2(R4) + ds2(T 4) (3.50)

where
Zi = 1 +

Qi

r2
, i = 1, 5. e2Φ =

Z5

Z1

(3.51)

We can transform this solution in the D1-D5 one using the S-duality. The two systems are
analogous and provide the same results for the entropy up to perhaps some constants and
numerical factors. But this is not obvious from their metrics that can deceive us. The intuitive
problem can be solved if we write both metrics (3.34),(3.50) in the Einstein frame.

To go from the string to the Einstein frame we use the dilaton field as

gEµν = e−Φ/2gSµν (3.52)

starting from the (3.34) and using the (3.38) we find the metric of the D1-D5 in Einstein frame

ds2E = (Z3
1Z5)

−1/4(−dt2 + dy2) + (Z3
1Z5)

1/4ds2(R4) + (
Z1

Z5

)1/4ds2(T 4) (3.53)

We take the same result if we use (3.52),(3.53) and (3.54). We are then convinced that the two
systems are in a way different manifestations of the same effects. The same common properties
like the zero value of the horizon at r = 0 which worried us in the D1-D5 description appear
again. We proceed in our last case of a 3-charge system analogous to D1-D5-P by adding again
momentum along the S1 circle.

3.5.3 3-charge Solution

The metric for the 3-charged solution of F1-NS5-P is (we continue now to write our metrics in
the string frame)[11]

ds2 = Z−1
1 (−dt2 + dy2 +K(dt+ dy)2) + Z5ds

2(R4) + ds2(T 4) (3.54)

with K to be the harmonic function of the momentum wave

K =
Qp

r2
(3.55)

The solution has the same value for the dilaton field with the 2-charge case before the addition
of momentum. Also, this solution has a non-zero horizon area at r = 0 thanks to the momentum
that stabilizes the circle as we shrink it.

We observe that as we added a charge and obtained a higher charged solution, we can go all
the way around and lower our solution to a 2-charge one. This can be done by just eliminating
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the number of NS5 branes. Suddenly our system features N1 fundamental strings or one string
winded N1 times around the circle and Np momentum waves in the same circle on the y direction.
It is clear that the metric is

ds2 = Z−1
1 (−dt2 + dy2 +K(dt+ dy)2) + ds2(R4) + ds2(T 4) (3.56)

We then have the simplest system possible from our theory, the F1-P, which can be mapped in
the D1-D5 geometry with the correct dualities.

3.6 Mapping F1-P to D1-D5

In the next section we will try to construct the microstate geometries for the 2-charge F1-P and
then translate them to the D1-D5 black hole. The results will depend on the charges, the volume
of the torus and the radius of the compact circle. These quantities will obviously change under
the dualities. So here I will very briefly mention the dualities for mapping the two systems and
discuss about the conservation of the charges.

The direction of our circle S1 will be the y ≡ x5 where the F1 is wrapped and the momentum
travels. The dimensions of xi, i = 6, 7, 8, 9 are the directions of the T 4 torus. The procedure can
be routed as(

F1(5)
P (5)

)
S→
(
D1(5)
P (5)

)
T6789→

(
D5(56789)
P (5)

)
S→

(
NS5(56789)

P (5)

)
T5→ (3.57)(

NS5(56789)
F1(5)

)
S→

(
D5(56789)
D1(5)

)
(3.58)

To understand each step of this process one can look at Appendix A where I provide some basic
elements of T and S duality.

Someone could rush now and state that the new charges will be

Q′
1 = Q1, Q′

5 = Qp (3.59)

which is completely wrong. But if we keep track of the transformation of branes from the
dualities we will find that

Q′
1 = µ2Qp, Q′

5 = µ2Q1 (3.60)

where the scaling factor µ came from the dualities [11].
Having shown the relation between F1-P and D1-D5 we can find and write a solution for the

fundamental string that carries momentum and then transform it to a solution for the D1-D5
case by just rescaling it.
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4 Entropy And Microstates Of Black Holes
The previous section has provided us with all the necessary tools for studying black holes within
the framework of type II string theory and especially of supergravity. We found new solutions
of black holes using D-branes, called black branes, and even combinations of them preserving
the supersymmetry. These systems, particularly the D1-D5 and the D1-D5-P systems, are some
of the most promising structures in string theory that may correspond to physical macroscopic
BPS black holes.

The first thing that we do in this section is to use these systems and calculate the Bekenstein-
Hawking entropy we introduced in (3.1). But as we stated there, this entropy oblige a thermo-
dynamical/statistical description. In this description, the entropy is related to some kind of
microstates of the system. Unfortunately, this cannot be observed macroscopically resulting to
the information paradox.

The second part of this section will cover the research of the microstates. We start from
the 2-charge black hole and find a class of microstate geometries that belong to the fuzzball
proposal. Then, we use the previous solutions to expand in the 3-charge black hole and obtain
a similar family of microstate geometries, the called superstrata.

4.1 Entropy of the 3-charge Black Hole

The 3-charge solution of the previous chapter has a horizon at r = 0 and thus we can calculate
its Bekenstein-Hawking entropy. We start from the metric (3.54) and take the limit of r → 0

ds2 =
r2

Q1

(−dt2 + dy2 +K(dt+ dy)2) +Q5(
dr2

r2
+ dΩ2

3) + ds2(T 4) (4.1)

And now we must find the area of the horizon. We must be carefully to convert the area to the
right frame. While our metric (3.54) is written in the string frame, the (3.1) is referring to the
Einstein frame. We will find the area using our metric and it is given by

AS = AS3 · Ly · VT 4 (4.2)

where AS3 is the surface of the 3-sphere, Ly the length of the S1 compact circle at the horizon
limit and VT 4 the volume of the torus.

The 3-sphere has a radius of
√
Q5. The surface of a n-dimensional sphere is given by

ASn =
2π

n+1
2

Γ(n+1
2
)
Rn (4.3)

So we have
AS3 = 2π2Q

3/2
5 (4.4)

We saw the volume of the torus when we wrote the D1-D5 solution

VT 4 = (2π)4V (4.5)

The only left is the length of the circle as we approach r to zero. For that we must look the
behaviour of the dy2 term in our metric. This term has a factor of

r2

Q1

+
Qp

Q1

r→0→ Qp

Q1

(4.6)

The lack of the Qp

Q1
term will give a zero-area horizon. As a consequence of that, the entropy of

the 2-charge black hole would be zero as the radius and thus the perimeter of the circle would
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be eliminated. Perform the transformation

y →

√
Qp

Q1

y =⇒ Ry →

√
Qp

Q1

Ry (4.7)

and the length of the circle is

Ly = 2πRy

√
Qp

Q1

(4.8)

Combining all of them together we have

AS = 26π7RyV Q
−1/2
1 Q

3/2
5 Q1/2

p (4.9)

We remember the expression for the dilaton field from (3.51) and the way of changing frames
from (3.52). We then get in the limit of the horizon

gEµν = (
Q1

Q5

)1/4gSµν (4.10)

The two areas then are connected by the form

AE = (
gE

gS
)4AS =⇒ AE = 26π7RyV

√
Q1Q5Qp (4.11)

With such simple steps we have shown that the entropy is proportional to the square root of the
charges from the branes and the momentum modes

SBH ∼
√
Q1Q5Qp (4.12)

Moreover, we know that these charges are proportional to the number of each one

Q1 ∼ N1, Q5 ∼ N5, Qp ∼ Np (4.13)

up to numerical factors related to units and string theory. Someone can find these factors and
the value of G10 which is the Newtons’ constant of gravity in ten dimensions and substitute to
the (3.1) and get

SBH = 2π
√
N1N5Np (4.14)

Note that it depends only on the number of our elements that consist our system. This number
does not change under the dualities. Thus, this entropy is also valid for the D1-D5-P black hole.
And if we were about to take the case of making a physical black hole we expect this number to
be really high. But does this result agree with the micro-statistical description of such a system
of branes?

4.2 Microscopic Entropy

4.2.1 F1-P System

We study again the 2-charge system of F1-P (3.56) where we have only one elementary string
that winds the S1 circle N1 times. Upon that string, we add an extra charge of momentum. In
order to be bounded this momentum will travel as a transverse wave with the speed of light.
There is a variety of possible ways for that momentum to travel along the string. We approach
the calculation of the degeneracy for this system using statistical analysis.

There are a lot of different paths that someone can follow for counting these states. For our
approach we can simulate the momentum waves as a 1-dimensional massless gas. This gas lies
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inside a 1-dimensional box of the string’s length L = 2πRyN1, where Ry is the radius of the
compact circle. We can also take our waves to be only left-moving. So all the elements of the
gas travels in the same direction. Then the total energy for the gas is the same with the total
momentum of the waves given by

E = P =
Np

Ry

=
2πN1Np

L
(4.15)

The vibrations of the string can be in eight dimensions. A vibration in each dimension can be
thought as an oscillator. Then we have in total eight bosonic and eight fermionic degrees of
freedom for our gas. The two types of degrees of freedom (bosonic, fermionic) are of the same
number that results from supersymmetry. Keeping that in mind we write the partition function
for the system. The partition function is given as

Z =
∑
states

e−βEstate (4.16)

where the constant β is the inverse of the "temperature" if we take kB = 1 (Boltzmann’s
constant).

For each direction we can translate the vibrations into Fourrier modes. The energy of each
mode is ek = 2πk

L
. For the bosonic and fermionic parts of each mode we have

ZB
k =

∞∑
m=0

e−βmek =
1

1− e−βek

ZF
k =

1∑
m=0

e−βmek = 1 + e−βek

(4.17)

The m here stands as a counter of the times each mode is appeared. We call it occupation
number. We see that for a fermion can be zero or one. This is an implication from the principle
that states of two fermions of the same kind cannot occupy a state with the same energy and
the same quantum numbers. But bosons can and their counter can take all values from zero to
infinity. Writing the natural logarithm of the full partition function for all modes we can replace
the sum with an integral if we have a high number of modes.

Z = (ZBZF )8 =⇒ lnZ = 8(lnZB + lnZF ) (4.18)

For the bosonic part

ZB =
∑
k

ZB
k →

∫
ZB(k)dk →

∫
ZB(ek)

L

2π
dek =⇒

lnZB = − L

2π

∫ ∞

0

dek ln(1− e−βek) =
Lπ

12β

(4.19)

In a similar way for the fermionic part

lnZF =
L

2π

∫ ∞

0

dek ln(1 + e−βek) =
Lπ

24β
(4.20)

Combining the two parts

lnZ =
Lπ

β
= (8 + 4)

Lπ

12β
= (fB +

1

2
fF )

Lπ

12β
≡ c(

Lπ

12β
) (4.21)

where the fB and fF are the bosonic and fermionic degrees of freedom.
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We can determine the β and the entropy using the known statistical relations for the ther-
modynamical quantities.

E = −∂βlnZ =
cLπ

12β2
=⇒ β =

√
cLπ

12E
(4.22)

and for the entropy we have that

S = lnZ + βE =
cπL

6β
=
cπL

6

√
12E

cπL
= 2

√
πLE (4.23)

where from the equation (4.15)
Smicro = 2

√
2π

√
N1Np (4.24)

To our surprise we found a non-zero entropy for the 2-charge system for which we have no
horizon and thus SBH = 0. One could say that the previous computation of the Smicro is wrong
or it has no correlation with the Bekenstein-Hawking entropy. As we need to be assured that
the above procedure is correct we compute this entropy for the 3-charge solution.

4.2.2 F1-NS5-P System

In addition to the above system, we have some NS5 living in another four transverse directions
to the F1 and intersecting with them in the y direction of the circle. Due to the occupation
of extra dimensions the number of the degrees of freedom will become c = 6 consisting of four
bosonic and four fermionic. They relate to the four compact dimensions of the NS5 (T 4). The
string cannot oscillate to the other four dimensions (R4) because the string is stuck in the NS5.

If we had this number c in the previous calculations we would find

S = 2π
√
N1Np (4.25)

which is the entropy if we had only one NS5, N5 = 1. Moving towards the general case of N5 > 1
we remember that the systems F1-P and NS5-F1 are connected through dualities shown in the
(3.57). We will use a slightly different way for counting the current microstates.

Having the F1-NS5 system from the duality

F1(N1) P (Np) → NS5(N1) F1(Np) (4.26)

where the number of our objects did not changed, we take the simple case of N ′
5 = N1 = 1. We

have only one NS5 and we want to place an amount of elementary strings upon it. But these
strings can be placed with different ways. The strings are winded in the circle with coordinate
y. Immediately there are two possible microstates. There can be Np strings wounded only one
time or one string winded Np times. Beyond them we can have any possible combination of
strings and winding numbers. But their sum must always be equal to Np.∑

i

miki = Np (4.27)

where mi is the number of strings and ki the winding number for each one. If now are more
than one NS5 we have N1Np ways of placing the strings∑

i

miki = N1Np (4.28)

Statistics implies that the total number of the microstates will come from the number of parti-
tions of the N1Np as

Nmicro = e2
√
2π
√
N1Np (4.29)
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Notice that from here we obtain (4.24).
Rename N1 → N5 and Np → N1 for the 3-charge case. We take this bound state and we

add momentum in the form of waves. The Np units of momentum can be distributed along the
distinct strings. Following the previous technique and taking into consideration that now we
have c = 6 for the degrees of freedom we have

Smicro = ln[Nmicro] = 2π
√
N1N5Np (4.30)

This is the microscopic entropy of a 3-charge BPS system with left-moving momentum. To
our relief, this entropy agrees with the one we calculated in the 4.1 subsection.

Smicro = SBH (4.31)

for the 3-charge F1-NS5-P system, dual to the D1-D5-P. Our microscopic approach then is valid.
This implies a flaw in the 2-charge F1-P system. For this system, we found a microscopic entropy
but we know that it cannot have a SBH due to the absence of horizon. This obliges us to go
back to the 2-charge system and look closely the gravitational solution. We have to deal with
the absence of horizon that leads to a naked singularity, making this system a nonphysical black
hole.

4.3 Fuzzball Proposal

As far we know, gravity is an attractive force for all bodies. The magnitude of this force can be
measured and it depends on a constant called Newton’s gravitational constant GN . This in turn
depends on our spacetime. It is different if we have four or ten dimensions. Moreover, in string
theory is related to the string length (ls or a′) and the string coupling (g). For the purpose of
our discuss we are interested in the relation with the coupling. We have that the gravitation
constant is proportional to the square of the string coupling constant

GN ∼ g2 (4.32)

Looking back to the gravitational analysis, we see that for an increase in the value of GN each
object becomes smaller except the horizon radius. As we increase GN the radius becomes larger.
Take for example a star. If we increase the gravity, the radius of the star will start becoming
smaller and the horizon bigger. This will happen until a point where they will coincide and
the star will collapse into a black hole. Under this idea we can create black holes by taking
configurations of branes at a strong limit (increasing string coupling). The branes and strings of
our system lies now behind the horizon close to the singularity. But still we have the problem of
the information paradox. As the branes sit behind the horizon we cannot have any information
about the initial state of the system. A modification of this idea should be provided in order to
address this problem.

The proposal now is that as we increase the coupling we do not form a horizon. The com-
ponents of the system grow at size and they acquire the same size of the analogous horizon.
Starting from each microstate we will obtain the same object with the exact horizon size. Hawk-
ing radiation contains now the information of the branes due to the lack of a horizon. These
solutions look like the black hole asymptotically, up to the horizon scale. In order then to observe
a well behaved black hole without a naked singularity, our geometries are regular in their center.
It will be shown below, when we construct one such type of geometries, how we eliminate the
singularity and obtain a regular solution for every point in spacetime.

Even though we are not sure if this proposal is true, it is a very promising candidate for
explaining the mysterious form of black holes. Next we will construct a type of fuzzballs for the
2-charge and 3-charge case. These microstate geometries will be horizon-less and non-singular.
Furthermore, the area in the calculation of the Bekenstein-Hawking entropy corresponds to the
boundary area of the fuzzball.
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4.4 F1-P Revisited

We remember that the metric of this system is given by the (3.56) and is dual to the D1-D5
2-charge system. To find a family of fuzzballs for the 2-charge black hole we shall be able to
use the simplest system we have that is not other than the F1-P. But we should change some of
the features for this solution and modify it. If we find the type of solution that we seek, we can
straightforward expand our research for the 3-charge black hole by applying small perturbations
(momentum waves).

First we introduce light-cone coordinates

u =
t− y√

2
, v =

t+ y√
2

(4.33)

and the metric (3.56) transforms to

ds2 = 2Z−1[−dudv +Kdv2] +
4∑
i=1

dx2i +
4∑

a=1

dz2a

Z = 1 +
Q1

r2
, K =

Qp

r2

(4.34)

where xi are the non-compact dimensions and za the compact ones. The dilaton and the NS
field are

e2Φ = Z−1, Buv = −1

2
[Z−1 − 1] (4.35)

This is the naive metric for the F1-P BPS bound system. The most important point in our cal-
culations is the fact that the momentum is carried only on the transverse directions, longitudinal
vibrations do not occur. As the momentum travels through these directions the string should
bend away from the point of r = 0. So the string will not be a point particle in these dimensions
anymore. The movements of the string can be then parametrized by a vibration profile g⃗(v′).
The metric after the intersection with the non-compact dimensions becomes [11]

ds2 =
2

Z
[−dudv +Kdv2 +

√
2Aidx

idv] +
4∑
i=1

dx2i +
4∑

a=1

dz2a

Buv = −1

2
[Z−1 − 1], Bui = Z−1Ai

Z(x⃗, t, y) = 1 +
Q1

|x⃗− g⃗|2
, K(x⃗, t, y) =

Q1| ˙⃗g|2

|x⃗− g⃗|2

Ai(x⃗, t, y) = − Q1|ġi|2

|x⃗− g⃗|2
, i = 1, ..., 4

(4.36)

Each winding of the string can also carry different types of vibration profiles. Yet, given that
every strand of the string is BPS, we can superpose the functions for each strand and write the
general solution which has the same metric and fields with (4.36) but with different functions as

Z → Z(x⃗, t, y) = 1 +
∑
s

Q
(s)
1

|x⃗− g⃗(s)|2 (4.37)

and in a similar way for the K and Ai. Finding an exact solution to this problem is really
difficult and most times impossible as we have N1 strands. The difficulty lies in the existence of
the sum over the different vibration profiles. Nevertheless, there is a way to get rid of this sum.
By getting the so called black hole limit we practically increase the number of the winding and
momentum waves

N1, Np → ∞ (4.38)
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In this limit we can change the sum into an integral. We followed a similar way in the compu-
tation of the partition function of the microscopic entropy for the 2-charge system.

N1∑
s=1

→
∫ N1

s=0

ds =

∫ 2πRyN1

0

ds

dy
dy =

∫ L

0

dy

2πRy

→
∫ L

0

dv (4.39)

up to a numerical factor. Using the description with the integrals and following the dualities
from 3.57 we write the metric and the functions for the D1-D5 (in the form of Mathur’s review
[11])

ds2 =
1√

Z(1 +K)
[−(dt− Aidx

i)2 + (dy +Bidx
i)2] +

√
Z(1 +K)

4∑
i=1

dx2i +

√
1 +K

Z

4∑
a=1

dz2a

Z = 1 +
µQ1

L

∫ µL

0

dv′

|x⃗− µg⃗(v′)|2
, K =

µQ1

L

∫ µL

0

dv′(µ2ġ(v′))2

|x⃗− µg⃗(v′)|2

Ai = −µQ1

L

∫ µL

0

dv′(µġi(v
′))

|x⃗− µg⃗(v′)|2
(4.40)

where we saw the µ factor in the 3.6, the Bi is relating to the Hodge dual of Ai

dB = − ⋆4 dA (4.41)

and Q1 is the charge of the F1 string. The above metric simplifies to the naive metric (3.34) in
the correct large limit with the match

Z → Z5

1 +K → Z1

(4.42)

We will rewrite the above metric and functions in a more concrete and general way.

4.5 General Metric

From [12] we can write the most general metric for the D1-D5-P system which can also be reduced
to the D1-D5 metric. We will follow the notation from [13]. This metric must be invariant under
the rotations on T 4 and preserve all the necessary supercharges. Of course someone can easily
replace T 4 with a K3 manifold but within the context of this project we will use only the torus.
The metrics are [13]:

ds210 =
1√
α
ds26 +

√
Z1

Z2

dŝ24

ds26 = − 2√
P
(dv + β)[du+ ω +

F
2
(dv + β)] +

√
Pds24

(4.43)

where the dŝ24 is the metric for the torus T 4 and the ds24 is a non-trivial, v-dependent Euclidean
metric in the four non compact dimensions of the spatial base, which is denoted as B. The
volume form of the torus is v̂ol4 and u,v are the light-cone coordinates we introduced earlier.
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The potentials are [13]:

e2Φ =
Z2

1

P
B = −Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2

C0 =
Z4

Z1

C2 = −Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2

C4 =
Z4

Z2

v̂ol4 −
Z4

P
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) + C

C6 = v̂ol4 ∧ [−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1]

− Z4

P
C ∧ (du+ ω) ∧ (dv + β)

(4.44)

with the functions
α ≡ Z1Z2

P
, P ≡ Z1Z2 − Z2

4 (4.45)

Lets explain the unknown quantities that appear. First the Z1, Z2, Z4,F are scalar functions.
We have the 1-forms: β, ω, a1, a2, a4, the 2-forms: γ1, γ2, δ2 and the 3-form x3 upon the base B.
We also have the 4-form C but it can be set equal to zero using an appropriate gauge. They all
depend in general on the coordinates of B and on v. From now on we will choose the base space
to be the R4. To understand where all these functions and forms came from someone should
use Generalised Geometry and find the restricted spinorial structure for the D1-D5-P. But this
is beyond our interest for the moment, so we will not address it any further. When is needed I
will just provide the set of equations related to the analogous quantities.

If we look closely to the (4.43) we see a resemblance with the (4.40) when we have F = 0. For
F
2
= −Qp

r2
we can get the naive metric for the D1-D5-P. It is true that from the general metric

of (4.43) we can obtain the D1-D5 general metric and find the functions and forms appeared
in regard to the vibration profiles we introduced. In the next subsection we will produce a mi-
crostate geometry for the D1-D5 black hole which we will use as a seed to a more general family
of fuzzballs for the 3-charge case, the superstrata. To do this we express the scalar functions
and the potentials in respect of the vibrations profile [13]:

Z2 = 1 +
Q5

L

∫ L

0

dv′

|x⃗− g⃗(v′)|2
, Z4 = −Q5

L

∫ L

0

ġ5(v
′)

|x⃗− g⃗(v′)|2
dv′

Z1 = 1 +
Q5

L

∫ L

0

|⃗ġ|2

|x⃗− g⃗(v′)|2
dv′, dγ2 = ⋆4dZ2, dδ2 = ⋆4dZ4

Ai = −Q5

L

∫ L

0

ġi
|x⃗− g⃗(v′)|2

dv′, dB = − ⋆4 dA

β =
−A+B√

2
, ω =

−A−B√
2

, Q1 =
Q5

L

∫ L

0

|⃗ġ|2dv′

(4.46)

Now the vibration profile has five directions, we will explain that in a moment. With all the
above we are fully equipped to go and find a class of microstate geometries (fuzzballs) for the
2-charge case.
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4.6 Microstate Geometries from Circular Profile

We will use the so called circular vibration profile where the non-vaniching components are

g1(v
′) = a cos(

2π

L
v′), g2(v

′) = a sin(
2π

L
v′), a > 0 (4.47)

where L = 2πQ5

Ry
. The radius Ry is in the denominator now because of the T-duality. The other

components of the profile are equal to zero (g3, g4, g5 = 0). As you can see there is an extra
component than before. The first four are the vibrations that correspond to the movement of
the string in the R4. These do not break the rotational symmetry of the torus. Yet, is has
been verified that if we use also a dimension from the torus we still have the rotational invariant
solution. Thus, the g5 is the element of the profile emerging from the parametrization of the one
direction of the torus.

A good description of the R4 is in spherodial coordinates

x1 =
√
r2 + a2 sin θ cosϕ, x2 =

√
r2 + a2 sin θ sinϕ

x3 = r cos θ cosψ, x4 = r cos θ sinψ
(4.48)

and the metric is

ds24 = (r2 + a2 cos2 θ)(
dr2

r2 + a2
+ dθ2) + (r2 + a2) sin2 θdϕ2 + r2 cos2 θdψ2 (4.49)

In these coordinates the r = 0 point describes a disk with radius a. The specific profile produces
a "tube" or more exactly from literature a supertube geometry that lies in the perimeter of the
disk (r = 0, θ = π/2).

From the profile we can immediately deduce that

Z4 = 0 =⇒ δ2 = 0 (4.50)

For the forthcoming computations we will name

Σ = r2 + a2 cos2 θ (4.51)

So from (4.46) we have

Z2 = 1 +
Q5

L

∫ L

0

dv′

x23 + x24 + (x1 − a cos(2π
L
v′))2 + (x2 − a sin(2π

L
v′))2

k= 2π
L
v′

====⇒

Z2 = 1 +
Q5

2π

∫ 2π

0

dk

a′ + b′ cos k + c′ sin k
,

a′ = r2 + a2(1 + sin2 θ), b′ = −2ax1, c′ = −2ax2

(4.52)

This integral has a solution for the condition

a′
2
> b′

2
+ c′

2 (4.53)

You can easily see that is true in our case. So,

Z2 = 1 +
Q5

2π

2π√
a′2 − b′2 − c′2

=⇒ Z2 = 1 +
Q5

Σ
(4.54)

In a similar way we find for the other scalar function

Z1 = 1 +
Q5a

24π2

ΣL2
(4.55)

29



But if we compute the Q1 from (4.46) we find

Q1 =
Q5a

24π2

L2
(4.56)

and the Z1 can be written as

Z1 = 1 +
Q1

Σ
(4.57)

Next we have to find the fields A,B. Starting from A, it has only two components for i = 1, 2.

A1 =
Q5a

L

∫ 2π

0

sin k

a′ + b′ cos k + c′ sin k
dk = Rya

2 sinϕ sin θ

Σ
√
r2 + a2

(4.58)

and in the same way

A2 = −Rya
2 cosϕ sin θ

Σ
√
r2 + a2

, A3 = A4 = 0 (4.59)

The A can be written using only one direction

Aϕ = A1
∂x1
∂ϕ

+ A2
∂x2
∂ϕ

=⇒ Aϕ = −Rya
2

Σ
sin2 θ (4.60)

where

Ry =

√
Q1Q5

a
(4.61)

As the B can be evaluated from A from (4.46)

Bψ = −Rya
2

Σ
cos2 θ (4.62)

we have all we need in order to write the 1-forms and then the metric for our solution.

β =
Rya

2

√
2Σ

(sin2 θdϕ2 − cos2 θdψ2), ω =
Rya

2

√
2Σ

(sin2 θdϕ2 + cos2 θdψ2) (4.63)

and the metric in the original coordinates is

ds210 =
1√
P
(−dt2 + dy2)− 2Rya

2

√
PΣ

(sin2 θdtdϕ+ cos2 θdψdy) +
√
PΣ(

dr2

r2 + a2
+ dθ2)

+ [
√
P(r2 + a2)−

R2
ya

4

√
PΣ2

sin2 θ] sin2 θdϕ2 + [
√
Pr2 +

R2
ya

4

√
PΣ2

cos2 θ] cos2 θdψ2

+

√
1 + Q1

Σ

1 + Q5

Σ

dŝ24

(4.64)

where
P = Z1Z2 = (1 +

Q1

Σ
)(1 +

Q5

Σ
) (4.65)

For very large r this metric goes over to flat space. The mixed terms of the metric signify
an existence of angular momentum. This momentum stops the system from collapse from the
gravitational attraction between the D1 and D5 branes when they are in the supertube geometry.
Remember that this geometry is like a hyper-cylinder.

Furthermore, we study the decoupling limit in the area when

r2 + a2 → 0 =⇒ r, a→ 0 (4.66)
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Then we have
√
P ∼

√
Q1Q5

Σ
(4.67)

Also, we change the angles
ϕ→ ϕ+

t

Ry

, ψ → ψ +
y

Ry

(4.68)

After substitution we find that the mixed terms cancel out and we are left with the metric

ds2 =
√
Q1Q5(−

r2 + a2

a2R2
y

dt2 +
r2

a2R2
y

dy2 +
dr2

r2 + a2
)

+
√
Q1Q5(dθ

2 + sin2 θdϕ2 + cos2 θdψ2) +

√
Q1

Q5

dŝ24

(4.69)

The first three terms are the AdS3 spacetime in huper-polar coordinates. The full geometry is
of AdS3 × S3 × T 4 with radius after the reduction upon the torus of R = (Q1Q5)

1/4. It is the
same with the (3.46) obtained from the decoupling limit of the naive metric of (3.34) but it has
no singularity at r = 0. Now instead of an infinite throat at the singularity at r = 0 we end up
in a smooth cap at the end of the throat [14],[15]. We have created a type of geometries which
are non-singular, horizonless and preserve the appropriate supercharges. Thus, they belong
to the family of fuzzballs. In specific, the geometry created from the exact circular profile is
called a Kaluza-Klein supertube monopole [16], [17]. We state here that we can create different
geometries depending on the profile. Different profiles will produce different types of caps.

4.7 Size of Fuzzball and Entropy

We said that the previous metric is a more realistic interpretation of the 2-charge black hole.
Also, it becomes the flat metric at long radius r as the naive metric (3.34) does. So it is reasonable
to say that there must exist an area where the metric (4.40) becomes the naive metric (3.34)
with the proper limit. To find it we look again at the dual system of F1-P.

The typical wavelength of the vibration from a strand of the string is [11]

λ ∼ Ry

√
N1

Np

(4.70)

The transverse coordinates shift by a small change of

∆x = | ˙⃗g|∆y ∼ | ˙⃗g|λ (4.71)

From (4.46)
Qp ∼ Q1| ˙⃗g|2 (4.72)

=⇒ ∆x ∼

√
Qp

Q1

R

√
N1

Np

∼
√
α′ = ls (4.73)

For r >
√
α′ the metric settles down to the naive metric of the 2-charge case. This surface

is the boundary of our fuzzball. The computation of this area will provide a very interesting
result.

At r =
√
α′ in the naive metric of (3.56) we roughly have:

AS3 ∼ α′3/2, VT 4 ∼ V

Ly ∼ Ry

√
K

Z1

|r=√
α′ ∼ Ry

√
Qp

Q1

(4.74)
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where we did the approximation that

Z1, K = 1 +
Qi

ls
∼ Qi

ls
(4.75)

Then we have after the multiplication with the dilaton as we did in the 4.1 (we must compute
the area at the Einstein frame)

AE ∼ α′4√N1Np (e−2Φ ∼ Q1

α′ , g = 1) (4.76)

Finally, if we divide with the gravitational constant GN for the 10-dimensional spacetime

AE

GN

∼
√
N1Np ∼ Smicro (4.77)

This is a quite fascinating result. The area of the boundary surface of our fuzzball produces
a Bekenstein-Hawking type entropy that agrees with the microscopic entropy computed from
the same system. The fuzzball proposal is valid within the energy limits we have discussed and
gives the correct results. The boundary area is called now ’horizon’ of the fuzzball.

4.8 Superstrata

The two previous subsections showed the methodology to construct and analyze a 2-charge type
of microstate geometries for a specific vibration profile. Especially, we were able to fabricate
such geometries, that have all the expected properties of the fuzzball proposal, using a circular
profile. There is now the question if we can create a similar family of microstate geometries for
the 3-charge black hole that will also constitutes a class of fuzzballs. It was first shown in [18]
that such geometries really exist and can be generated from the 2-charge supertube solution of
(4.64).

The starting point is the supertube solution of the 1
4
-BPS D1-D5 system that has eight

supercharges and are parametrized by functions of only one variable. Adding momentum units
as deformations of the originally maximally rotating supertube will break the symmetry into
1
8
-BPS and make the functions that parametrize it to be continuous and rely on (at least) two

variables. The functions are obtained by solving the BPS conditions that we can gather in
three groups ("layers"). These conditions emerge from the enforcement of the preservation of
supersymmetry.

4.8.1 Zeroth Layer

This layer fixes on the base space and provides the equations for the β 1-form. The condition
is the u-independence. The base space must be in general an almost hyper-Kähler space. For
the purposes of our interest we have chosen our base space B to be the R4. The choice of the
Euclidean flat space makes us define a covariant derivative of the form

D ≡ d− β ∧ ∂

∂u
(4.78)

with d to be the exterior derivative on the spatial space. Moreover, we choose the β to be
v-independent which implies

dβ = ⋆4dβ (4.79)
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4.8.2 First Layer

This layer of equations are responsible for the characterization of the wrap functions Zi functions
and the 2-forms Θi fields sourced by the branes. These fields can be written in regard to the
known forms [12]:

Θ1 ≡ Da1 + γ̇2, Θ2 ≡ Da2 + γ̇1, Θ4 ≡ Da4 + δ̇2 (4.80)

Then the equations are [13]:

⋆4 DŻ1 = DΘ2, D ⋆4 DZ1 = −Θ2 ∧ dβ, Θ2 = ⋆4Θ2

⋆4 DŻ2 = DΘ1, D ⋆4 DZ2 = −Θ1 ∧ dβ, Θ1 = ⋆4Θ1

⋆4 DŻ4 = DΘ4, D ⋆4 DZ4 = −Θ4 ∧ dβ, Θ4 = ⋆4Θ4

(4.81)

4.8.3 Second Layer

The second and final layer determines the F , ω forms that are connected with the momentum
and the angular momentum respectively. They are [13]:

Dω ⋆4 Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4

⋆4 D ⋆4 (ω̇ − 1

2
DF) = ∂2v(Z1Z2 − Z2

4)− (Ż1Ż2 − (Ż4)
2 − 1

2
⋆4 (Θ1 ∧Θ2 −Θ4 ∧Θ4)

(4.82)

4.8.4 Adding the Extra Charge

We shall find a way to add the third charge in the form of momentum units. It can be achieved
if we add another component to the g profile. Indeed this works, but not for any component. It
must be the component in the direction of the torus. Then we have the circular profile with the
extra component of

g5(v
′) = − b

k
sin(

2πk

L
v′) (4.83)

where k is a positive integer and b an arbitrary parameter like a.
The 1-forms β,ω and the Z2 remain unchanged. Also, it still is F = 0. On the other hand

we have a non-zero Z4 and an extra term in the Z1 function.

Z1 = 1 +
R2
y

2Q5

[
2a2 + b2

Σ
+ b2a2k

sin2k θ cos(2kϕ)

(r2 + a2)kΣ
]

Z4 = Ryba
k sin

k θ cos(kϕ)

(r2 + a2)k/2Σ

(4.84)

The relation now for the parameters a,b with the radius and the charges is

Ry =

√
Q1Q5

a2 + b2

2

(4.85)

We observe that for a fixed radius and charges we have a family of 2-charge solutions with a free
parameter b/a. If we set b = 0 we obtain the supertube solution (4.64).

Applying the solution generating technique used in [19] in order to produce the 3-charge
solution we get

Z
(k,m)
4 = Ry

∆k,m

Σ
cos(m

√
2v

Ry

+ (k −m)ϕ−mψ) (4.86)

where
∆k,m ≡ (

a√
r2 + a2

)k sink−m θ cosm θ (4.87)

Z4 is a linear superposition of modes of the two integers k,m, m ≥ 0.
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4.8.5 General Solution

We can check that each mode solves the first layer of equations. Thus, we can write the general
solution as a linear combination of all the modes (Fourier expansion) with arbitrary coefficients
bk,m:

Z4 = Ry

∑
(k,m)

bk,m
∆k,m

Σ
cos v̂k,m (4.88)

Θ4 = −
√
2
∑
(k,m)

bk,mm∆k,m(r sin(θ)Ω
(1) sin v̂k,m + Ω(2) cos v̂k,m) (4.89)

where the Ω(i), i = 1, 2, 3 are a basis of self-dual 2-forms on R4 and

v̂k,m ≡ m

√
2v

Ry

+ (k −m)ϕ−mψ + ηkm (4.90)

The modes of k,m are related to the ϕ, ψ coordinates so the Fourier coefficients will be functions
of two variables. The terms with the dependence upon ϕ, ψ denote the deformations upon the
supertube. The ηkm are some phase constants, non-zero in general. As we were able to write the
solution in a basis expansion parametrized by the bk,m coefficients we can expand in a similar
way the other two pairs (Zi,Θi), i = 1, 2. In addition, the constant b is a combination of the
coefficients.

We found a set of solutions that solve the first layer. Next step is the imposition of the
second layer and the regularity of the total geometry.

Because the source terms in the second-layer conditions are quadratic in the first-order fields,
the expansion will be of the form

∼
∑

(k,m),(k′,m′)

bk,mbk′,m′(· · ·) (4.91)

Therefore, someone should solve only the second-layer equations for each pair (k,m), (k′,m′).
Once done that, we can write the F , ω as superpositions of the pairs’ modes

F ∼
∑

(k,m),(k′,m′)

bk,mbk′,m′Fk,mFk′,m′ (4.92)

and similar for ω.
This is the furthest we will go into technical stuff. Just to mention that physicists have not

found a solution for general pairs but only some special cases. This is because of the complexity
of the equations from the sourced terms of the second-layer.

4.8.6 Some Remarks

Starting from a 2-charge geometry with non-trivial Z4 we ended up in a 3-charge one with both
angular momentum and momentum along S1. This momentum is encoded in the F function
while the angular momentum is described by the extra term appearing in the ω field. Our system
is a rotating D1-D5-P configuration.

Rotating black holes of this kind exist when

N1N5Np − j2 > 0 (4.93)

where j is the angular momentum. This imposes for our parameters the condition [18]

b2

a2
>

k

n+
√

(m+ n)(k −m+ n)
(4.94)
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From this bound, [18], where the authors added an extra mode n in front of the v term (m →
m + n, n ≥ 0) in the (4.90) which is set to zero in [13] for simplicity, exhibited that this
regime of parameters belongs to smooth, horizonless microstate geometries. Moreover, for a
specific choice of modes we can obtain the non-rotating black hole of Strominger-Vafa type. The
momentum units were produced from the deformations upon our geometry of a supertube. They
are carried upon the compact circle and make the circle to shrink smoothly. This results in a
cap similar to the 2-charge case with the analogous properties. So we reached where we wanted.
Founded a possible way to compute the microstates for the general 3-charge black hole.

For further and deeper reading someone can start from [19] and familiarize himself with the
technique of generating 3-charge solutions from 2-charge seeds. Also [12] provides a useful insight
in the construction of the general metric used in the 2-charge and 3-charge geometries. The first
paper of introducing the importance and capabilities of superstrata is the [18] but it lacks a
lot of explanations and explicit computations. A more concrete construction of superstrata is
carried in [13],[20]. In addition to these, [21] provides a sufficient coverage of the superstratum
material. Lastly, [22] gives some explicit examples of specific-mode solutions of superstrata.

Unfortunately, superstrata cannot yet produce all the possible microstates of a black hole.
Even though, they have a huge contribution in the understanding of these geometries, the fuzzball
proposal and they offer significant insights into the microscopic physics of black holes.
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A Dualities
Dualities provide a way of mapping the various types of theories appeared in string theory. We
are interested only in two types of dualities, the S and T duality.

A.1 S-duality

S-duality or strong-weak duality refers to a relation between two theories, one with a strong
coupling constant and another with a weak one (as the name suggests). In string theory this
can be viewed by the substitution

g → 1

g
(A.1)

where g is the string coupling constant.
With this duality we can organise the distinct branes into pairs like

F1
S⇐⇒ D1, NS5

S⇐⇒ D5, ... (A.2)

The conversion from weak to strong coupling is more obvious in the first example. The ele-
mentary string is equivalent, under this duality, to the stronger coupled D1-brane. Imagine the
string like a classic rope, then the D1-brane is like a metal rope of still one dimension. You can
bend the metal rope just like the normal one but you need more strength (energy).

One last comment in this duality is that does not act upon a momentum wave.

A.2 T-duality

We stated that this duality is used to switch between type IIA and IIB theory. It is also used
in the writing of the metric for suppersymetric higher Dp-branes. To understand it intuitively
we start from a string theory compactified on a circle with radius R and a Dp-brane wrapped
upon it. After the T-duality the circle will have a new radius of

R
T⇐⇒ R′ =

l2s
R

(A.3)

For R >> lS the new circle is approximately a line and so our theory is now compact in one
dimension instead of two. The Dp-brane lost one spatial dimension so it has also to map into a
D(p-1)-brane.

Lowering or increasing the spatial dimensions of the branes we can go from IIA to IIB and
vice versa. On top of that, it is obvious that the type IIA theory comes from the M-theory after
one T-dulaity in the x10 direction. The exact changes of this duality, if we act on the direction
of z, upon the background fields is given in [23]:

g̃zz =
1

gzz
, e2Φ̃ =

e2Φ

gzz
, g̃µz =

Bµz

gzz
, B̃µz =

gµz
gzz

g̃µν = gµν −
gµzgνz −BµzBνy

gzz

B̃µν = Bµν −
Bµzgνz − gµzBνy

gzz

(A.4)

To give an example we take a D2-brane which is wrapped in the (t, x1, x2) directions and
pointlike in the others. We can perform a T-duality to an occupied direction and obtain a lower
brane or to a transverse dimension and obtain a higher brane.

D2(012)
T (1)−−→ D1(02)

D2(012)
T (3)−−→ D3(0123)

(A.5)
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Likewise in a system of branes like a D2-D2 (3.3.2):(
D2(012)
D2(034)

)
T (5)→

(
D3(0125)
D3(0345)

)
T (2)→

(
D2(015)
D4(02345)

)
T (1)→

(
D1(05)

D5(012345)

)
(A.6)

The only exception is when it acts upon the elementary objects F1, NS5. Acting in the
transverse directions leaves the objects unchanged. But it has a very unique property when it
acts upon the worldvolume. Say we have an elementary string wrapped N1 times around a circle
and we also have some momentum units Np. If we take a T-duality in the circle we cannot
eliminate that direction because

2πRN1 = ls =⇒ R ∼ ls, R′ ∼ ls (A.7)

It is still of the same magnitude. Instead of changing the dimensions of the worldvolume it will
exchange the winding number with the momentum units

F1(N1) P (Np)
T−→ F1(Np) P (N1) (A.8)

B Dimensional Reduction
In 3.4 we perform a dimensional reduction for the compact dimensions. We are left with a
5-dimensional metric which is easier to analyze. To perform such a reduction someone should
study the Kaluza-Klein theory. A sufficient coverage of the theory is provided in chapter 44 of
[6] and an explicit example in [24]. We will not provide all the technical stuff behind this theory.
Rather we use these ideas in the specific system of D1-D5 to extract the 5D reduced metric.

The exact metric in 10D was

ds210 =
1√
Z1Z5

(−dt2 + dy2) +
√
Z1Z5ds

2(R4) +

√
Z1

Z5

ds2(T 4) (B.1)

The torus is easily reduced in the absence of a Z4 function as seen in (4.43). The reason in that
is that the scalar field coming from the reduction is the same with the dilaton.

ds210 = ds26 +

√
Z1

Z5

ds2(T 4)

ds26 =
1√
Z1Z5

(−dt2 + dy2) +
√
Z1Z5ds

2(R4)

(B.2)

Only thing left is the reduction upon the circle S1 of the y direction. Let’s rewrite the metric in
a more convenient way

ds26 = − 1√
Z1Z5

dt2 +
√
Z1Z5ds

2(R4) +
1√
Z1Z5

dy2 (B.3)

and with k = Z1Z5

ds26 = [− 1√
k
dt2 +

√
kds2(R4)] +

1√
k
dy2 (B.4)

We can separate the metric into two parts. One that depends on y and one independent. The
factor in front of the dy2 will become the scalar field in the reduced lower-dimensional theory.
We write the metric in realtion to the scalar field

ds26 = e2αϕ
′
ds25 + e2βϕ

′
(dy + Aµdx

µ)2 (B.5)
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The Aµ is a gauge field that will be produced additionally to the scalar field. But in our case is
zero.

If we compare the two forms of the 6D metric we observe

e2βϕ
′
=

1√
k

(B.6)

The values of β, α are found to be connected from the theory of reduction as β = −(D − 2)α.
With D = 5 the field is

e2αϕ
′
= k1/6 (B.7)

ds25 = e−2αϕ[− 1√
k
dt2 +

√
kds2(R4)] = k−1/6[− 1√

k
dt2 +

√
kds2(R4)]

=⇒ ds25 = −k−2/3dt2 + k1/3ds2(R4)

(B.8)
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