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Abstract

Technological advances have infiltrated our everyday life more than ever before. High in-

telligence devices and gadgets, equipped with cutting-edge technology algorithms, facil-

itate and empower our lifestyle. Smart-home automation, next generation hearing aids,

robots with autonomous navigation systems have brought to the foreground of the re-

search community audio signal processing problems. One such problem is the estimation

of the number of sources and the directions from which sound originates, what we most

frequently call direction of arrival (DOA) estimation.

The problem of DOA estimation is active for more than thirty years, consequently a

plethora of algorithms have been proposed in the literature. Some of them can be con-

sidered classic and frequently come from the telecommunications research area. Beam-

forming techniques belong in this category, where an appropriately weighted sum of the

signals of a microphone array is used to form a receiving beam, which scans the space and

detects areas of activity. Subspace approaches, such as the well-known MUSIC algorithm,

formulate a spatial function that gets maximized when activity is detected, relying on the

decomposition of the array sample covariance matrix. Other algorithms stemmed from

research activity on blindly separating mixtures of audio signals, i.e., the blind source sep-

aration (BSS) problem. Independent component analysis methods, where the goal is to

estimate a demixing matrix, which reveals DOA information, and sparse component anal-

ysis methods, which exploit the sparsity of activity of the sources in some appropriately

chosen domain, both fall into the BSS category. A recently emerging category is that of

estimating the intensity vector, which points towards the net flow of sound energy, hence,

revealing the corresponding DOA of the generating sound source.

The aforementioned methods fail at either estimating accurately DOAs when multiple

sources are simultaneously active, e.g., beamforming techniques, or they are computa-

tionally heavy and significantly affected by the amount of available data, e.g., ICA and

subspace approaches, while some are restricted by specific array geometries. We, thus,

observe the lack of a methodology than can address the problem of DOA estimation holis-

tically, aiming at tackling all aforementioned aspects of the problem.

In this thesis we aim at filling this gap with our proposed DRACOSS framework, i.e., an

integrated framework for tackling the problem of DOA estimation and counting of mul-

tiple, simultaneously active, sound sources utilizing microphone arrays. DRACOSS is de-

veloped in two-dimensional (2D) and three-dimensional (3D) spaces, using a uniform cir-

cular array and a spherical microphone array respectively. DRACOSS constitutes a proce-
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dure of four distinct steps: (a) exploitation of the sparsity of sound signals, (b) local single-

source DOA estimation, (c) histogram formation, and (d) post-processing of the histogram.

We detect the sparsity of involved sound signals in the time-frequency domain by utiliz-

ing a relaxed sparsity assumption, which relies on the estimation of a mean correlation

coefficient between pairs of microphones. We proceed with the collection of local DOA

estimates in detected single-activity areas, which will then be used to form histograms.

For the 2D case we employ a local DOA estimator, designed specifically for circular arrays

and form one-dimensional histograms. For the 3D case we use an intensity vector esti-

mator and then form two-dimensional histograms. In both cases, by post-processing the

histograms we provide counting and DOA estimation results for all active sound sources.

DRACOSS performs robustly under a wide collection of simulated and real scenarios in

terms of noise and reverberation conditions, in terms of the number of simultaneously

active sources and in comparison with state-of-the-art methods. We also propose the for-

mulation of two classic DOA methods, i.e., beamforming and MUSIC, through the DRA-

COSS framework, which manages to significantly improve their performance. Aiming at

constantly improving our approach and following the vivid technological stream, we show

recent, very promising results on counting by utilizing deep neural networks.

Keywords: direction of arrival, counting, microphone arrays, time-frequency domain,

spherical microphone arrays, spherical harmonic domain, sound intensity vector, histogram

processing, sparsity

Supervisor: Athanasios Mouchtaris

Associate Professor

Computer Science Department

University of Crete
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Περίληψη

Οι τεχνολογικές εξελίξεις έχουν διεισδύσει στην καθημερινότητά μας όπως ποτέ άλλοτε. Συ-

σκευές υψηλής νοημοσύνης, εξοπλισμένες με αλγορίθμους τελευταίας τεχνολογίας, διευκολύνουν

και ενισχύουν τον τρόπο ζωής μας. Συστήματα αυτοματισμού για έξυπνα σπίτια, ακουστικά βα-

ρηκοΐας επόμενης γενιάς, ρομπότ με αυτόνομα συστήματα πλοήγησης φέρνουν στο προσκήνιο

της επιστημονικής κοινότητας προβλήματα επεξεργασίας σημάτων ήχου. ΄Ενα από αυτά τα προ-

βλήματα είναι η εκτίμηση του πλήθους και των κατευθύνσεων από τις οποίες προέρχεται ο ήχος,

αυτό που συνήθως ονομάζουμε εκτίμηση κατεύθυνσης άφιξης.

Το πρόβλημα της εκτίμησης κατεύθυνσης άφιξης είναι ενεργό για πάνω από τριάντα χρόνια,

συνεπώς πληθώρα αλγορίθμων έχει προταθεί στη σχετική βιβλιογραφία. Μερικοί από αυτούς

τους αλγορίθμους προέρχονται από την περιοχή των τηλεπικοινωνιών. Σε αυτήν την κατηγορία

ανήκουν οι τεχνικές διαμόρφωσης δέσμης, στις οποίες χρησιμοποιώντας κατάλληλα βάρη, ένα

άθροισμα των σημάτων μίας συστοιχίας μικροφώνων σχηματίζει μία δέσμη δέκτη που σαρώνει το

χώρο και ανιχνεύει περιοχές ακουστικής δραστηριότητας. Οι προσεγγίσεις υποχώρων, όπως ο

διάσημος αλγόριθμος MUSIC, διαμορφώνουν μία χωρική συνάρτηση η οποία μεγιστοποιείται στα

σημεία που ανιχνεύεται δραστηριότητα χρησιμοποιώντας την αποσύνθεση της δειγματικής μήτρας

ετεροδιακύμανσης της συστοιχίας. ΄Αλλοι αλγόριθμοι έχουν αναδυθεί μέσα από τις προσπάθειες

διαχωρισμού μειγμάτων ηχητικών σημάτων. Σε αυτήν την κατηγορία ανήκουν οι μέθοδοι που

στηρίζονται στην ανάλυση ανεξάρτητων στοιχείων, στοχεύοντας στην εκτίμηση μίας μήτρας δια-

χωρισμού που εμπεριέχει πληροφορία για την κατεύθυνση άφιξης, καθώς και οι μέθοδοι ανάλυσης

αραιών στοιχείων που εκμεταλλεύονται την αραιότητα της δραστηριότητας των πηγών σε κάποιον

κατάλληλα επιλεγμένο χώρο. Μία προσέγγιση που έχει τραβήξει πρόσφατα το ενδιαφέρον είναι

αυτή της εκτίμησης του διανύσματος έντασης του ηχητικού πεδίου, το οποίο έχει κατεύθυνση

προς την καθαρή ροή ηχητικής ενέργειας, συνεπώς μπορεί να παρέχει την κατεύθυνση άφιξης

της γεννήτριας ηχητικής πηγής.

Οι προαναφερθείσες μεθοδολογίες αποτυγχάνουν είτε στην ακριβή εκτίμηση της κατεύθυνσης

άφιξης όταν πολλαπλές πήγες είναι ταυτόχρονα ενεργές, όπως οι τεχνικές διαμόρφωσης δέσμης,

είτε ενέχουν υψηλό υπολογιστικό κόστος και εξαρτώνται σημαντικά από τον όγκο των διαθέσιμων

δεδομένων, όπως οι τεχνικές ανεξαρτήτων στοιχείων και υποχώρων, ενώ κάποιοι αλγόριθμοι

απευθύνονται σε συγκεκριμένες τοπολογίες συστοιχιών μικροφώνων. Διαφαίνεται, συνεπώς, η

έλλειψη κάποιας μεθοδολογίας που να αντιμετωπίζει το πρόβλημα της εκτίμησης κατεύθυνσης

άφιξης ολιστικά και να μπορεί να ανταπεξέλθει σε όλες τις διαφορετικές πτυχές του προβλήματος.

Σε αυτήν τη διατριβή αποσκοπούμε να καλύψουμε αυτό το κενό και προτείνουμε ένα ολοκλη-

ρωμένο πλαίσιο για την επίλυση του προβλήματος εκτίμησης πλήθους και κατεύθυνσης άφιξης
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πολλαπλών, ταυτόχρονα ενεργών πηγών με τη χρήση συστοιχιών μικροφώνων. Το πλαίσιο, το

οποίο ονομάζουμε εφεξής DRACOSS, αναπτύσσεται σε διδιάστατους και τριδιάστατους χώρους,

χρησιμοποιώντας μία ομοιόμορφη, κυκλική συστοιχία και μία σφαιρική συστοιχία μικροφώνων

αντίστοιχα. Το DRACOSS αποτελεί ουσιαστικά μία διαδικασία τεσσάρων ευκρινών βημάτων: (α)

εκμετάλλευση της αραιότητας των ηχητικών σημάτων, (β) τοπική εκτίμηση κατεύθυνσης άφιξης

μίας πηγής, (γ) σχηματισμός ιστογράμματος, και (δ) επεξεργασία του ιστογράμματος. Ανιχνεύ-

ουμε την αραιότητα των ηχητικών σημάτων στο πεδίο των χρονο-συχνοτήτων χρησιμοποιώντας

μία χαλαρή υπόθεση αραιότητας που στηρίζεται στην εκτίμηση ενός συντελεστή μέσης συσχέ-

τισης μεταξύ σημάτων ζευγών μικροφώνων. Σε επόμενο βήμα συλλέγουμε τοπικές εκτιμήσεις

κατεύθυνσης άφιξης από όλες τις περιοχές μοναδιαίας δραστηριότητας, τις οποίες και χρησι-

μοποιούμε για να σχηματίσουμε ιστογράμματα. Σε διδιάστατους χώρους, ως τοπικό εκτιμητή

κατεύθυνσης χρησιμοποιούμε έναν αλγόριθμο ειδικά σχεδιασμένο για κυκλικές συστοιχίες και

σχηματίζουμε μονοδιάστατα ιστογράμματα, ενώ για τους τριδιάστατους χώρους χρησιμοποιούμε

εκτιμήσεις του διανύσματος ηχητικής έντασης και σχηματίζουμε διδιάστατα ιστογράμματα. Και

στις δύο περιπτώσεις με περαιτέρω επεξεργασία των ιστογραμμάτων παρέχουμε εκτιμήσεις του

πλήθους και των κατευθύνσεων άφιξης όλων των ενεργών ηχητικών πηγών. Το DRACOSS

παρουσιάζει εύρωστη απόδοση τόσο σε προσομοιωμένα, όσο και σε πραγματικά σενάρια, για διά-

φορες συνθήκες θορύβου και ανακλάσεων και για διάφορα πλήθη εμπλεκόμενων πηγών. Επίσης,

το προτεινόμενο πλαίσιο υπερέχει πολλών, γενικώς αναγνωρισμένων μεθόδων της βιβλιογραφί-

ας. Επιπροσθέτως προτείνουμε την ανάπτυξη δύο κλασικών μεθόδων εκτίμησης άφιξης, της

μεθόδου σχηματισμού δέσμης και του αλγορίθμου MUSIC, υπό το προτεινόμενο πλαίσιο DRA-

COSS, βελτιώνοντας έτσι σημαντικά την απόδοσή τους. Αποσκοπώντας στη συνεχή βελτίωση

της προσέγγισής μας, ακολουθώντας, δε, τις τελευταίες τεχνολογικές τάσεις, παρουσιάζουμε

πρόσφατα και πολλά υποσχόμενα αποτελέσματα αναφορικά με την εκτίμηση πλήθους ενεργών

πηγών, χρησιμοποιώντας βαθιά νευρωνικά δίκτυα.
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Chapter 1

Introduction

Approaching the end of the second decade of the 21st century, we all have noticed tremen-

dous changes in our everyday communications. As humans, we still primarily communi-

cate using our senses and our ability to speak, yet we more and more interact with smart

devices that assist our everyday living. These devices are able to sense the surrounding

acoustic scene and to extract important acoustic features to enable their further acting.

Of the fundamental acoustic features is the direction of arrival (DOA) of the active sound

sources creating the acoustic scene.

1.1 General Objective

Direction of arrival estimation of audio sources is a natural area of research for array signal

processing, and one that has had a lot of interest over recent decades [63]. The scope of

this thesis is to present a complete framework for the estimation of the direction of arrival

when multiple sound sources are simultaneously active. It provides also solutions for the

estimation of the number of active sources in cases where this information is not known.

The presented framework was originally developed for two-dimensional (2D) spaces, i.e.,

covering cases where sound sources exist on the same plane. It was later expanded to

the three-dimensional (3D) space. The devices used were a uniform circular array (UCA)

for the 2D case and a spherical microphone array for the 3D space, however the generic

nature of the proposed framework does not restrict the use of other topologies, e.g., linear

or planar arrays.

1.2 Motivation and Vision

Accurate estimation of the DOA of an audio source is a key element in many applications.

One of the oldest and most common is in teleconferencing, where the knowledge of the lo-

cation of a speaker can be used to steer a camera, or to enhance the capture of the desired

source with beamforming, thus avoiding the need for lapel microphones. Nowadays the

information of the DOA of the sound sources gets even more important as smart home au-

1



2 Chapter 1. Introduction

tomation becomes more prominent and smart devices equipped with microphone arrays

invade our homes and everyday lives. Other audio signal processing applications that use

the information of the DOA are those that deal with speech enhancement and separation

and those related to wireless acoustic sensor networks (WASN) for exact location estima-

tion of the sound sources. Other applications include event detection and tracking, robot

movement in an unknown environment, high quality audio scenes recordings and next

generation hearing aids [7, 10, 83, 95, 117].

Apart from the importance of the DOA information on the aforementioned application

areas, the problem of DOA estimation is of great interest. It gets even more challenging

when multiple sources are active, in adverse environments and using devices of common

size, average cost and capabilities.

1.3 Research Questions

The focus in the early years of research in the field of DOA estimation was mainly on

scenarios where a single audio source was active. Most of the proposed methods were

based on the time difference of arrival (TDOA) at different microphone pairs, with the

generalized cross-correlation phase transform (GCC-PHAT) being the most popular [62].

Improvements to the TDOA estimation problem—where both the multipath and the in-

formation among multiple microphone pairs were taken into account—were proposed

in [12]. An overview of TDOA estimation techniques can be found in [19].

Localizing multiple, simultaneously active sources is a more difficult problem. Indeed,

even the smallest overlap of sources—caused by a brief interjection, for example—can

disrupt the localization of the original source. A system that is designed to handle the

localization of multiple sources sees the interjection as another source that can be simul-

taneously captured or rejected as desired. An extension to the GCC-PHAT algorithm was

proposed in [9] that considers the second peak as an indicator of the DOA of a possible

second source. One of the first methods capable of estimating DOAs of multiple sources

is the well-known MUSIC algorithm and its wideband variations [7, 11, 34, 54, 104, 123].

MUSIC belongs to the classic family of subspace approaches, which depend on the eigen-

decomposition of the covariance matrix of the observation vectors.

Derived as a solution to the blind source separation (BSS) problem, independent com-

ponent analysis (ICA) methods achieve source separation, enabling in parallel multiple

source localization, by minimizing some dependency measure between the estimated

source signals [69, 72, 103]. The work of [86] proposed performing ICA in regions of the

time-frequency representation of the observation signals under the assumption that the

number of dominant sources did not exceed the number of microphones in each time-

frequency region. This last approach is similar in philosophy to sparse component analy-

sis (SCA) methods [22, ch. 10]. These methods assume that one source is dominant over
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the others in some time-frequency windows or “zones”. Using this assumption, the mul-

tiple source propagation estimation problem may be rewritten as a single-source one in

these windows or zones, and the above methods estimate a mixing/propagation matrix,

and then try to recover the sources. By estimating this mixing matrix and knowing the ge-

ometry of the microphone array, we may localize the sources, as proposed in [16, 92, 112],

for example. Most of the SCA approaches require the sources to be W-disjoint orthogonal

(WDO) [122]—meaning that in each time-frequency component, at most one source is

active—which is approximately satisfied by speech in anechoic environments, but not in

reverberant conditions. On the contrary, other methods assume that the sources may over-

lap in the time-frequency domain, except in some tiny “time-frequency analysis zones”

where only one of them is active (e.g., [22, p. 395], [94]). Unfortunately, most of the SCA

methods and their DOA extensions are computationally intensive and therefore off-line

methods (e.g., [16] and the references within).

Other than accurate and efficient DOA estimation, an important issue in sound source

localization is estimating the number of active sources at each time instant, known as

source counting. Many methods in the literature propose estimating the intrinsic dimen-

sion of the recorded data, i.e., for an acoustic problem, they perform source counting at

each time instant. Most of them are based on information theoretic criteria (see [38] and

the references within). In other methods, the estimation of the number of sources is de-

rived from a large set of DOA estimates that need to be clustered. In classification, some ap-

proaches to estimating both the clusters and their number have been proposed (e.g. [48]),

while several solutions specially dedicated to DOAs have been tackled in [22, p. 388], [70]

and [5].

Therefore the research questions that this thesis aims at tackling are: the problem

when multiple audio sources are simultaneously active and the problem of overlapping of

the audio sources at the time-frequency domain. We aim to investigate how the number of

sources affects the performance of the DOA estimation as well as how the environmental

conditions, i.e., noise and reverberation deteriorate the accuracy of the estimates. We also

aim to study the computational load of the proposed framework.

We propose and envision a framework to solve the problem of DOA estimation and

counting of multiple sound sources in a complete fashion. Our framework embraces al-

ready proposed techniques and proposes novel ones which contribute significantly to the

problem under investigation.

1.4 The Approach

Our proposed framework is based on the following steps:

• detecting areas in the time-frequency domain where one source is dominantly active

over the others.
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• single-source DOA estimation algorithms can be applied over these zones, providing

local DOA estimates

• collecting these DOA estimations into a histogram to enable the localization of mul-

tiple sources

• effective post-processing of histograms of local DOA estimates for accurate final DOA

estimation of multiple sources and counting.

1.5 Contributions of the Dissertation

The main contributions of the thesis are:

• the presentation of a generic framework for DOA estimation which is not restricted

by a specific array topology. On the contrary, the framework, called from now on

DRACOSS, could be used with any microphone array and has been so far applied

with UCAs and spherical microphone arrays.

• accurate DOA estimation when multiple sources are active. Our proposed frame-

work does not pose any inherent restriction on the number of simultaneously active

sources.

• robust performance under adverse conditions. DRACOSS manages to achieve ac-

curate DOA estimation under high reverberation and noise, even though the signal

model adopted by the framework is simple and does not take into account the effects

of reverberation or noise.

• low computational load and real-time performance.

• the proposed framework shows high modularity and scalability. Since the core build-

ing blocks of DRACOSS are independent with each other, one could easily mod-

ify and extend the framework incorporating advanced techniques and algorithms

at each of the fundamental blocks. In this context, an important enhancement to

known state-of-the-art DOA estimation algorithms was proposed under the DRA-

COSS framework.

To the best of the author’s knowledge, DRACOSS is the first framework that addresses

the problem of DOA estimation and counting in such a holistic way. DRACOSS collects

techniques and algorithms, previously proposed to solve other signal processing problems

and combines the benefits of such techniques, providing superior DOA estimation accu-

racy compared to state-of-the art methods. Specifically:
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1. DRACOSS utilizes efficiently, in the problem of DOA estimation, a sound source spar-

sity criterion previously proposed and used for blind source separation [94], namely

the mean correlation coefficient (MCC). The efficiency of the criterion in DOA esti-

mation was compared against the more simplistic W-disjoint assumption. The re-

sults of this comparison were shown in App. A, publication no.1 and App. A publica-

tion no.6. It is important to note here that DRACOSS related publications, such as

A, publication no.1, were of the first that paid such attention to the selection of sin-

gle source areas of activity for improving the DOA estimation accuracy of multiple

sources and this is a great novelty element of the framework.

2. DRACOSS for 2D spaces is one of the first frameworks that achieves real-time multi-

ple sources DOA estimation, also shown in App. A, publication no.1. The framework

has been demonstrated to operate in real time in an international conference demo

session and was shown to perform robustly with analog and digital devices in App. A,

publication no.8.

3. The novel use of the MCC for DOA estimation, apart from making the proposed DOA

estimation approach more accurate, provided also the advantage of reduced com-

putational complexity as it was also shown in App. A, publication no.1. DRACOSS

is more accurate and computationally efficient compared also against the classical

MUSIC algorithm and compared against an ICA-based algorithm.

4. Taking advantage of sound sources sparsity, DRACOSS manages to efficiently use

single source DOA algorithms for multiple sources DOA estimation. In App. A, publi-

cation no.1 we have used a single source DOA algorithm designed for circular arrays

and in App. A, publication no.6 we have used a single source sound intensity-based

one. In both cases, these algorithms could not have been used for multiple sources

DOA estimation unless incorporated into a framework such as DRACOSS.

5. Even though histograms have been previously used for DOA estimation, DRACOSS

introduces practical, intuitive, simple, yet efficient post-processing of single dimen-

sion and 2D histograms. Avoiding to use algorithms which assume a priori knowl-

edge of the number of simultaneously sources, we achieve simultaneous accurate

DOA estimation as shown in App. A, publication no.1, 6, 7, 9. In App. A, publication

no.1 we also show simultaneous and accurate counting of the number of sources.

6. In App. A, publication no.7 we introduced a novel hybrid DOA estimation solution in

areas of single source activity by efficiently combining the benefits of sound intensity

estimation and beamforming. In the same publication our approach was compared

against the MUSIC algorithm and was shown to be superior in terms of accuracy.
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7. By introducing the idea of local DOA estimates and the formation of histograms into

the state-of-the art methods, beamforming and the MUSIC algorithm we managed

to significantly improve their performance as it was shown in App. A, publication

no.9.

8. In DRACOSS we also present the novel idea of utilizing our histograms and the in-

formation they bear in order to train neural networks which accurately estimate the

number of sources.

9. DRACOSS and its ideas were efficiently used in numerous other signal processing

problems as it was shown in App. A, publications no. 2, 3, 4, 5, 10, 11, 12.

1.6 Outline of the Dissertation

The rest of this dissertation is organized in the following way: In Chapter 2 we present the

state-of-the art of DOA estimation methods with microphone arrays. Part II is the main

part of the dissertation where the DRACOSS framework is presented. In Chapter 4 we

present DRACOSS in the 2D space and in Chapter 5 we show how DRACOSS was deployed

to the 3D space. Finally, in Chapter 6 we present applications and uses of the proposed

framework to other neighboring problems. This dissertation is concluded in Chapter 7.

Basic signal processing theory applied in the DRACOSS framework as well as theorems

that govern its functionality can be found in Part III.
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State of the Art
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Chapter 2

Direction of arrival estimation: an overview
of state-of-the-art methods

The sound source direction of arrival estimation using microphone arrays has interested

many signal processing researchers for more than 40 years. Thus, it is natural to have a

vast collection of DOA estimation algorithms. Some of them can be considered classic

and frequently come from the telecommunications research area (e.g., beamforming) and

some others were developed later in time and were more dedicated to the broadband na-

ture of the audio signals (e.g., sparse component analysis-based approaches), hence they

can be characterized as modern DOA algorithms.

An attempt to categorize the large collection of DOA estimation algorithms could be as

such:

• beamforming techniques: DOA estimation using beamforming is one of the first ap-

proaches. The basic concept in all proposed algorithms lies on the “scanning" of the

space of interest with the beamformer of the engineer’s choice. The output power

of the beamformer is estimated for every steered direction and the one that maxi-

mizes the power is considered as the DOA of the source. Several beamformers have

been used in the literature, from the well known Capon’s beamformer (a.k.a. MVDR)

[17], to more advanced ones like the superdirective beamformer proposed by Cox

et al [24] or beamformers formulated in the spherical harmonic domain (SHD) [97]

which facilitate the manipulation of spherical topologies.

• subspace approaches: Subspace approaches can be categorized along with beam-

forming techniques as spectral-based [63], since in both cases a spectrum-function

of the DOA is estimated, the peaks of which reveal the DOAs in quest. In this category

belong the well-known MUSIC and ESPRIT algorithms [102,104] and their numerous

variations [7, 11, 34, 123, 124]

• time difference of arrival approaches: Among all the approaches proposed in the lit-

erature, numerous ones are based on the time difference of arrival (TDOA) [19] at

9
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different microphone pairs to estimate the direction of arrival. Many of them use

the generalized cross-correlation phase transform (GCC-PHAT) [62], which has sig-

nificant limitations in the case of multiple sources, reverberant environments and/or

when microphones are placed around rigid bodies. Such limitations have been par-

tially solved by considering ratios of the GCC-PHAT peaks [9] and by using the redun-

dant information contained in more than two microphones [12].

• independent component analysis: During the first decade of the 21st century various

methods appeared based on independent component analysis (ICA) as a by-product

of research on the blind-source separation problem. The goal of these methods is to

estimate the matrix that mixes the original source signals into the mixture signals

received at the array microphones. The mixing matrix contains information of the

DOA of the sources, thus its accurate estimation can lead to accurate DOA estimation

of the sources. However, one of the basic drawbacks of ICA methods is the need of a

high observation length in order to accurately estimate the mixing matrices, which,

in turn, reduces the responsiveness of a potentially adopting scheme. Apart from

that, estimating the mixing matrices is a computationally costly operation which

hinders the real-time functionality of such algorithms. Traditional ICA methods are

limited to overdetermined cases, i.e., when the number of sources is lower than the

number of sensors, however recent methods have been proposed to overcome this

limitation as the one proposed in [87]. Some other proposed works on ICA for DOA

estimation can be found in [69, 71, 72, 74, 103].

• sound intensity estimation based approaches: Methods that rely on the estimation

of the net flow of the sound energy, i.e., the sound intensity, appeared quite recently

in the literature. Even though the estimation of the sound intensity can be a demand-

ing task requiring dedicated hardware [25], approximations to the sound intensity

value have been proposed which require simple signal processing procedures, such

as in [57, 95]. DOA estimation methods that rely primarily on the estimation of the

sound intensity vector can also be found in [36, 45–47, 79].

• sparse component analysis approaches: Sparse component analysis (SCA) meth-

ods [41] may be seen as natural extensions of multiple sensor single source localiza-

tion methods to multiple source localization. They basically assume that sources are

sparse in an analysis domain obtained after a sparsifying transform (usually a short-

time Fourier transform (STFT)) and that, as a consequence, one source is dominant

over the others in some time-frequency windows or “zones”. Using this assumption,

the multiple source propagation estimation problem may be rewritten as a single-

source one in these windows or zones. Their main advantage is their flexibility to

deal with not only overdetermined configurations, i.e., the cases where the number
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of sources is lower than the number of sensors, but also with underdetermined ones,

where the number of sources is higher than that of the sensors. Since in these meth-

ods the multiple source localization problem is converted to a single-source one in

the detected single-source areas at the transformation domain, this category con-

tains methods that could be characterized as hybrids that combine the benefits of

a method from another category with the ones of the SCA category. Such examples

can be found in [112].

In the following sections we will refer in details to some of the aforementioned algo-

rithms, based on their popularity and whether they were used in our proposed work for

comparative purposes.

2.1 Subspace approaches

The interest in the decomposition of the covariance matrix of a sensor array in order to

derive the signal parameters goes back in 1930 [63]. However subspace approaches were

in fact established with the introduction of the multiple signal classification (MUSIC) al-

gorithm in 1986 by Ralph O. Schmidt [104]. Three years later another, equally popular,

subspace algorithm was proposed by Roy and Kailath, known as ESPRIT, i.e., estimation

of signal parameters via rotational invariance techniques [102]. In the years that followed

several extensions, enhancements, and modifications have been proposed for both MU-

SIC and ESPRIT. In the following sections we describe the original structure of these esti-

mators as well as the modifications that are of interest in the context of DOA estimation of

audio sources.

2.1.1 The multiple signal classification (MUSIC) algorithm

MUSIC was proposed as a “high resolution” parametric spectral analysis algorithm suit-

able for narrowband signals. Thus, assuming that NS independent sources exist in the

environment and create a wavefield perceived by aQ-microphones sensor array, theQ×Q

covariance matrix of the array, CX, can be expressed and decomposed as :

CX = VCSVH + σ2nI = USΛSUHS + σ
s
nUnU

H

n , (2.1)

where V is the array’s steering matrix, CS is the source signals covariance matrix, I is the

identity matrix,Us is theQ×NS signal subspace matrix ofNS eigenvectors andΛS is aNS×NS
diagonal matrix with theNS corresponding eigenvalues on the main diagonal. The matrix

Un contains the eigenvectors that span the noise subspace, assuming noise to be zero-

mean, stationary, temporally and spatially white of variance σn and uncorrelated with all

sound source signals [7, 63, 104].
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The narrowband MUSIC pseudospectrum, the NS local maxima of which reveal the

DOAs of interest, is estimated for every direction of arrival, φ, as:

hM(φ) =
1

VUnU
H

nV
H

(2.2)

Broadband MUSIC extensions

MUSIC is an algorithm that was originally developed for narrowband signals. Thus, for

wideband signal localization—which is the case when working with sound—it needs to be

extended in a wideband suited fashion. In the literature one can find various extensions

of the MUSIC algorithm from narrowband to wideband cases [7, 11, 34, 54, 55, 68, 123, 124].

We will first refer to the one that comes as a natural extension, while remains simple and

straightforward.

Extending the MUSIC algorithm to involve broadband signals requires the application

of the algorithm for every frequency component of interest. Assuming our signals con-

tain frequency domain components indexed as k = 1, . . . ,NK, this straight strategy im-

plies the estimation ofNK covariance matrices and therefore the estimation ofNKMUSIC

pseudospectra, one for each frequency bin. A common approach, then, is to estimate the

average, e.g., the arithmetic mean [7] over all the frequency bins:

hMB(φ) =
1
NK

NK∑
k=1
hM(k;φ) (2.3)

or the geometric mean [121] over the frequency range of interest as:

hMB(φ) =
 NK∏
k=1
hM(k;φ)


1/NK

(2.4)

In [7] Argentieri and Danes developed one more broadband version of the MUSIC algo-

rithm with involves the use of frequency invariant beamformers in order to estimate a fo-

calized array and noise covariance matrices to a reference frequency component. This way

one escapes from the computationally costly operation of singular value decomposing the

array covariance matrix at each frequency of interest. This variation is called beamspace

broadband MUSIC and for the focalization process it uses the approach presented in [119]

which relies on modal analysis and beamforming.

A broadband variation of MUSIC with the formulation being developed entirely in the

spherical harmonic domain (SHD) was recently presented by Nadiri and Rafaely in [82].

In their algorithm the covariance matrix, Ca, of the received soundfield is estimated in the
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SHD as:

Ca =
1
TK

T−1∑
jt=0

K−1∑
jk=0
alm(τ − jt, k − jk), (2.5)

where alm are the spherical harmonic coefficients of order l and degree m, τ and k

denote the time and frequency indexes and NT and NK denote the interval of time and

frequency smoothing respectively. The algorithm proceeds with the selection of time-

frequency (TF) bins, appropriate for DOA estimation by applying the direct-path domi-

nance (DPD) test, i.e., the selection of those TF bins where the ratio between the first and

second highest eigenvalues of the covariance matrix, Ca, is greater than a user defined

threshold. According to the method, at those selected bins the received signal contains in-

formation of only direct sound, thus it is free, with high probability, of any contaminating

reflections. The next step involves the decomposition of the covariance matrix into the

signal and noise subspaces. The MUSIC pseudospectrum is estimated either by summing

together all spatial spectral from the selected bins or by clustering the signal subspaces to

NS clusters, as many as the known number of sources, and estimating one MUSIC pseu-

dospectrum for each speaker.

2.1.2 Estimation of signal parameters via rotational invariance techniques-The
ESPRIT algorithm

The second most well known subspace algorithm for DOA estimation is the estimation of

signal parameters via rotational invariance techniques (a.k.a. the ESPRIT algorithm), orig-

inally presented in [102]. The algorithm depends on a displacement invariance property

of the array. The microphones have to appear in pairs with identical displacement vectors,

that is the array can be described as being comprised by two identical subarrays, being

psychically displaced from each other by a constant distance . ESPRIT is computationally

more efficient in comparison to MUSIC, since it does not require knowledge and scan-

ning of the array’s manifold, however it requires double the size of sensors unless the array

geometry is that of a linear array. The method relies on the singular value decomposition

(SVD) of the array’s covariance matrix and on the estimation of the rotation operator, i.e., a

diagonal matrix that relates the measurements from one subarray to those of the displaced

subarray, and contains the information of the DOA.

ESPRIT has been formulated in the cylindrical harmonics domain by Teutsch and Keller-

man in [115], where the subarrays of individual microphones have been replaced by “sub-

modal arrays" of individual harmonics. The method was named EB-ESPRIT and for the

evaluation a circular array mounted on a rigid cylindrical baffle was used. ESPRIT was fur-

ther combined with a well known method for blind source separation (BSS), DUET, [59] in

order to deal with limitations of the DUET algorithm, such as the strong WDO assumption
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and the constraint of its functionality on two mixtures. The combination of ESPRIT and

DUET gave birth to the DESPRIT algorithm for the BSS problem presented in [101].

2.2 Independent component analysis for DOA estimation

DOA estimation methods based on independent component analysis (ICA) emerged through

research on blind source separation (BSS) for convolutive mixtures. In ICA—as evident

from its naming—the input source signals are assumed mutually independent and, thus,

separation and localization is achieved by minimizing some dependency measure between

the estimated output signals. In other words, the goal is to find a separating matrix (demix-

ing matrix) such that the output signal vectors are as independent as possible. ICA ap-

proaches for BSS have been developed both for the time and frequency domains. In this

section we will refer to a method proposed by Nesta et al [86] in 2012 which was also used

in comparisons with our proposed framework. For a more in depth discussion on ICA and

convolutive BSS with ICA, the interested reader is referred to [22, 53].

2.2.1 Generalized state coherence transform

The generalized state coherence transform (GSCT) defines a multivariate likelihood func-

tion of the time-delay associated to each source [86] and extends the authors’ previous

work on single source TDOA estimation to multiple sources. The GSCT method can be

divided into two main parts, the estimation of the demixing matrices at each frequency

component (frequency domain ICA) and the extraction of the DOAs from the estimated

demixing matrices. Estimating the demixing matrices in the frequency domain overcomes

an inherent problem of traditional ICA methods, enabling the algorithm to estimate more

sources than sensors, given that the sources’ number does not exceed the sensors’ number

at each frequency of interest.

For the first step of the GSCT method any ICA estimator can be used, such as the

joint approximate diagonalization of eigenmatrices (JADE) method [18] which exploits the

fourth-order cumulants relying on the statistical independence of the sources, or the re-

cursively regularized (RR-ICA) algorithm [88] which exploits the consistency of the mixing

matrices across frequencies and the continuity of the time activity of the sources. Given

the demixing matrices, the GSCT function is then estimated, which is a multivariate like-

lihood measure between the acoustic propagation model and the observed propagation

vectors, obtained by row-wise ratios between the elements of each inverted demixing ma-

trix. The GSCT function is given by:

G(D) =
∑
g(E(D)), (2.6)

whereD is the model vector of time differences of arrival between adjacent microphones,
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E(D) is the error measure between the model and the observation vectors and g(E(T))
is a non-linear monotonic function which decreases as the error measure increases. The

summation in Eq. (2.6) takes place over all frequency components and ratios in all the

columns of the inverted demixing matrices. As a non-linear function, g(E(T)), the authors

propose a kernel-based one [86]:

g(E(T)) = 1
2πk Fs

NK

e
−E2(D)/ (2α2

k
), (2.7)

where ak is a spatial selectivity controlling parameter, Fs denotes the sampling frequency

and NK is the total number of frequency sampling points. By associating each time delay

vector,D, of the propagation model to its corresponding DOA, one can estimate the DOAs

as the local maxima of the GSCT function.

2.3 Sound intensity estimation methods

Sound intensity is a measure of the flow of sound energy through a surface per unit area,

in a direction perpendicular to this surface. Thus, knowledge of the sound intensity vector

reveals the DOA of the source generating the sound energy as the direction opposite to the

direction of the sound intensity. Intensity-based methods utilize a pressure and a particle

velocity component to analyze the sound field. In practice, the pressure and particle veloc-

ity are estimated with an omnidirectional and three dipole microphones respectively [113].

Due to its tolerable latency, the intensity vector is an ideal candidate for real-time DOA es-

timation and has been previously employed in time-frequency domain spatial sound pro-

cessing [95]. Its performance has been examined in reverberant environments [67] and a

pseudo intensity vector has been formulated in the SHD [36, 57].

The intensity vector is defined as [37]:

I = 12Re
{
p
∗v} , (2.8)

where p is the sound pressure and v is the particle velocity vector.

2.3.1 Intensity vector approximation with B-format signals for DOA estima-
tion

In [95] the sound intensity vector—and consequently the DOA component of the DirAC

system—is estimated by using the components of a B-format signal [80], that is the omni-

directional signal of the B-format, w(τ, k) is used for the estimation of the sound pressure

and the three figure-of-eight signals, x(τ, k), y(τ, k) and z(τ, k) are used for the estimation
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of the velocity, i.e.,:
p = w(τ, k)
v = 1

Z0
√

2
[
x(τ, k), y(τ, k), z(τ, k)

]T , (2.9)

where Z0 is the characteristic acoustic impedance of air. The B-format channels are repre-

sented here at the TF domain, with τ denoting the time index and k denoting the frequency

index. Since the dipole components of the B-format signal are scaled by a factor of
√

2 [64],

in Eq. (2.11) we have the term 1
√

2
. More on the B-format signals can be found in [39].

In [61] the DOA estimation is performed in the same spirit as in [95].

2.3.2 Pseudointensity vectors for DOA estimation

In [57] the authors proposed to obtain an estimate of the sound intensity vector by means

of the zero and first-order spherical harmonic signals (or eigenbeams). They called this

estimate a pseudointensity vector (PIV), formulated as:

I(τ, k) = 12Re

{ s∗00(τ, k)
b0(k)



sx(τ, k)
sy(τ, k)
sz(τ, k)


}
, (2.10)

where the sound pressure is approximated by the zero-th order equalized eigenbeam (see

also Section C.5.1) and the particle velocity is approximated by a vector whose each el-

ement corresponds to averages of 1st order steered eigenbeams with the negative phase

towards the x, y and z-axis respectively. Thus, in relation with Eq.(2.8),

p = s00(τ,k)
b0(k)

v =
[
sx(τ, k), sy(τ, k), sz(τ, k)

]T
.

(2.11)

Each eigenbeam average is estimated as

sα(τ, k) =
1∑

m=−1
Y1m(Ωα)s1m(τ, k), α = {x, y, z}, (2.12)

where Ωα is (0, π), (0,−π/2), and (−π/2,0) for each axis. The eigenbeams can be esti-

mated using Eqs. (C.22), (C.25) and Eq.(C.29).

The PIVs are estimated at each TF point and the final DOA estimates are obtained uti-

lizing K-means clustering, assuming the number of sources to be known.
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Combining PIVs and the DPD test for enhanced DOA performance

The authors of [36] and [82] combined their approaches in order to improve the DOA es-

timation of multiple audio sources in the 3D space. In their recent publication in [79]

they proposed to apply the DPD test in order to identify TF bins that are dominated by a

single direct path signal, and then, instead of performing the MUSIC algorithm over the

selected bins, to evaluate the PIVs at those bins. They proposed two approaches at the

aforementioned concept. For the first one, the PIVs are estimated in neighborhoods of

the selected TF points and finally averaged. The second approach exploits the SVD of the

spatial correlation matrix (Eq. (2.1.1)) and estimates the PIVs using the eigenbeams of the

signal subspace.

Augmented intensity vectors for DOA estimation

In a series of publications [45–47] Hafezi et al enhance the DOA estimation through the

PIVs by exploiting possibly available higher order spherical harmonics. The authors cre-

ate a grid around the vicinity of the DOA indicated by the PIV and compute a direction-

dependent error function for each point of the grid, thus the point with the smallest error

provides a refined DOA estimation.

2.4 Sparse component analysis for DOA estimation

Sparse component analysis (SCA) approaches have also originated from the BSS research

area. As revealed from their naming, these methods rely on some kind of sparsity of the

signals of interest in some processing domain (usually the TF domain). In order for the

sparsity to be detected, quantified and exploited, a sparsity (or - on the contrary- activity)

measure is estimated which indicates in which areas of the processing domain there is

activity of one or more of the signals of interest.

A very popular sparsity assumption, named W-disjoint orthogonality (WDO) was pre-

sented in [122] and assumes that in each time-frequency window, at most one source is

active. From a signal processing point of view, WDO is a nice assumption which is al-

most fulfilled by speech signals in anechoic environments. However, this assumption does

not hold in reverberant conditions [106] and/or when source signals are musical. On the

contrary, other methods assume that the sources may overlap in the time-frequency do-

main, except in some tiny time-frequency “analysis zones” where only one of them is ac-

tive (e.g., [94] and the references within). In [94] Puigt proposed the use of “constant-time

single-source analysis zones”, i.e., a set of frequency-adjacent time-frequency windows

over which a cross-correlation coefficient is estimated which characterizes the analysis

zone as single source (i.e., single source zone (SSZ)) or not. Another measure for deciding

if only one source is active in a TF point is the estimation of coherence between the signals
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received by the microphones as presented in [78]. In [95] the authors decide on the selec-

tion of a TF area according to the intensity vector estimates in the area. If the estimates

agree the area is used for DOA estimation, otherwise the estimates are discarded. The DPD

test proposed by Nadiri and Rafaely in [82] is also an activity detection measure (see also

Section 2.1.1).

Methods that belong in the SCA family employ one of the aforementioned criteria in

order to detect areas where only one source is active and proceed with the DOA estima-

tion over the detected areas by employing (novel or already proposed) single source DOA

methods. In this family we can categorize methods described in the preceding sections,

e.g., [47, 79, 82, 95]. The framework proposed in this thesis also belongs in the family of

SCA methods.

2.5 Counting the number of simultaneously active sources

A problem closely related to that of DOA estimation is the estimation of the number of

simultaneously active source, what we often refer to as counting. In general most DOA es-

timation methods proposed in the literature assume that the number of sources is some-

how known a priori. However, in real life conditions this number is not usually known and

we have to either arbitrarily set it or estimate it from the received data.

The most well known criteria for estimating the number of sources from the received

mixtures of signals were suggested Wax and Kailath in [120], where the authors faced the

problem of counting as a model selection one and applied the information theoretic cri-

teria introduced by Akaike (Akaike infromation criterion, a.k.a, AIC) and by Schwarz and

Rissanen (minimum description length criterion, a.k.a, MDL).

Instead of minimizing a criterion such as the aforementioned, other approaches ap-

proach the problem of counting by trying to estimate the number of significant eigenval-

ues of the array’s covariance matrix. However such approached require setting a threshold

for distinguishing between significant and non-significant values, which in practice gives

controversial results [54].

Another category in the problem of counting the number of sources is that of estimat-

ing the number of clusters in clustering-based methodss. Such an example is the one pro-

posed by Arberet et al in [6], where the number of clusters is decided through a sequential

procedure utilizing a confidence and a dissimilarity measure.

In histogram-based algorithms the direct approach is to estimate the number of signif-

icant peaks in the DOA histogram, such as in [70]. In previous work [91], we have proposed

two ways of tackling the problem, either by peak-searching (PS) and dynamically thresh-

olding the cardinality of a peak and its neighborhood, or by estimating the envelope of

the histogram through linear predictive coding (LPC), and then the number of all its local

maxima (see also Appendix D).
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Chapter 3

Description of the DRACOSS framework,
principles and concepts

In this chapter we describe the DRACOSS framework, the main building blocks and the

principles and concepts that govern the functionality of our proposed framework for DOA

estimation and counting of sound sources.

The beginning of the development of the DRACOSS framework took place together

with our work on DOA estimation utilizing a circular microphone array. The fundamen-

tal concepts were established, i.e., the exploitation of the sparsity of audio sources in an

appropriately chosen transformation domain and the post-processing of local DOA esti-

mates in the form of histograms, following our early works in DOA estimation [44, 91, 92].

At that time, the sparsity of audio signals was mostly of interest to the audio separation

community which was dealing with the demixing of audio mixtures and the ever-popular

cocktail party problem [2, 5, 30, 31, 59, 100, 101, 109, 118, 122]. From this community the

domain of SCA emerged ( [41] in [22]), along with very interesting methods from the ICA

domain ( [5, 22, 53, 85, 88, 105]).

3.1 DRACOSS building blocks

The DRACOSS framework is comprised by four fundamental building blocks, i.e., :

1. exploitation of the sources sparsity

2. local DOA estimation

3. histogram formation

4. histogram post-processing for final DOA estimation and counting

Each of the aforementioned blocks will be further discussed in the proceedings sec-

tions.

21
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3.1.1 Exploitation of the sources sparsity

As previously mentioned, one of the basic ideas in DRACOSS is the exploitation of the

sparsity of audio signals in the TF domain. Thus, we can find areas in the TF domain that

a source occurs alone or is at least dominant in comparison with other simultaneously

present sources.

We developed our DOA estimation method relying on the relaxed sparsity assumption

proposed by Puigt and Deville in [94]. According to it, the audio sources may overlap in

the transformation domain except in some areas where each source of the mixture occurs

alone.The detection of those areas is based on the mean value of a correlation coefficient

between pairs of microphones comprising the recording device, thus we call and refer to

it as the mean correlation coefficient (MCC). Areas that exhibit an MCC higher that a user-

defined threshold are considered as dominated by a single source, thus they are referred

to as single-source zones (SSZs). A graphical representation of detected SSZs in the STFT

transformation of a microphone signal can be observed in Fig. 3.1a, where hypothetically

two sources (the red and the blue) are active.

(a) (b) (c)

Figure 3.1: Visualization of detected single-source activity areas in the STFT of a mi-
crophone signal, X(τ, k) where hypothetically two sources are active, one
represented with the red and the other with the blue color:
3.1a Detected SSZs using the MCC criterion : the red and blue zones corre-
spond to SSZs of hypothetically two different sources, while the grey area
indicates overlapping of the sources activity.
3.1b Each TF point is dominated by a single source.
3.1c According to the DPD test, some TF points will be detected as single
source activity points. The gray-colored ones represent those that failed
the DPD test.

The description of the formulas for estimating the MCC will be described in Section 4.1.1.
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The theorem supporting the detection of SSZs through the estimation of the MCC and all

necessary assumptions proposed by Puigt and Deville are described in Appendix B.0.3 for

completeness of the text.

We have to note here that there are other proposed ways for detecting areas of single-

source activity, as also mentioned in Section 2.4. The most widely known is by adopting

the WDO assumption, presented by Yilmaz and Rickard in [122], which states that at each

TF point of the mixtures’ spectrum only one source is active. This is again graphically

represented in Fig. 3.1b. In our proposed work we have used the WDO assumption in

comparative results in Sections 4.2.1 and 5.2. It is also the sparsity measure we used in

our beamforming-based method described in Section 5.4.

Another recently proposed criterion for selecting single source TF points is that of the

direct path dominance (DPD) test proposed by Nadiri and Rafaely in [82] in the context of

the MUSIC algorithm in the SHD. According to the DPD test a TF point is single source if

the effective rank of the corresponding array covariance matrix is equal to one. We observe

the graphical representation of the DPD test in Fig. 3.1c. We have used the test in our

proposed MUSIC approach in the context of the DRACOSS framework in Section 5.5.

3.1.2 Local DOA estimation

Having detected all available SSZs, the multiple source signal localization problem has

been nicely transformed to a single source one, since now one can employ any single

source DOA estimation method to the SSZs.

In DRACOSS development for 2D spaces we have used a single source DOA estima-

tion method specifically designed for uniform circular arrays, proposed by Karbasi and

Sugiyama in [60]. The method is described in more details in Section 4.1.2.

In DRACOSS development for 3D spaces we have used an estimator of the intensity

vector for the DOA estimation formulated in the spherical harmonic domain as it was pro-

posed in [57].

Other DOA estimators that we have used are based on beamforming in the SHD (see

Section 5.4) or by utilizing locally the MUSIC speudospectra (in Section 5.5).

3.1.3 Histogram formation

The third step of the DRACOSS framework is the formation of a histogram of all local DOA

estimates. Histograms are a very easy and straightforward way of visualizing the gathered

information of the local DOA estimates. They are of single-dimensionality or 2D depend-

ing on the dimensionality of the local DOA estimates of the previous step. An example 1D

histogram and 2D histogram of a scenario with four involved sources can be seen in Fig-

ure 3.2. Moreover, histograms allow to control the underlining complexity by choosing an

appropriate bin width while they can be manipulated with various different approaches in
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order to conclude with a final DOA and counting estimation which is also the last building

block of DRACOSS.
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Figure 3.2: Histograms of local DOA estimates:
3.2a A 1D histogram of azimuthal DOA estimates, where one can detect
four distinct peaks corresponding to the four active sources.
3.2b A 2D histogram of pairs of elevation and azimuth DOA estimates,
where one can detect four highlighted areas corresponding to the four
active sources.

3.1.4 Histogram post-processing for final DOA estimation and counting

The last step of DRACOSS entails the manipulation of the formed histograms in order to

extract the information of the number and corresponding DOAs of all active sources. We

apply an iterative procedure, which includes the correlation of the histograms with pulses

in order to detect highlighted areas. For one-dimensional histograms we apply Blackman

windows. Narrower windows are used to accurately detect peaks in the histogram, while

wider windows estimate the contribution of a peak, and consequently of a source to the

histogram. Following a thresholds logic which dictates that active sources will have a sig-

nificant contribution to the histogram, we achieve very good counting results as described

in Section 4.2.1.

For the processing of 2D histograms we use Gaussian windows. We follow the same

iterative procedure in order to detect the presence of a source and its corresponding DOA,

assuming the total number of active sources is a priori known (see also Section 5.1.4). Aim-

ing at avoiding the use of thresholds, we show very recent, yet really promising results on

counting by training a convolutional neural network (CNN) in Section 5.6.



Chapter 4

Direction of arrival estimation in the
two-dimensional space

In this chapter we present the DRACOSS framework for multiple sound source localiza-

tion and counting in the two-dimensional space, where a uniform circular microphone

array is used to overcome the ambiguities of linear arrays. The proposed framework im-

poses relaxed sparsity constraints on the source signals. Our method is based on detecting

time-frequency (TF) zones, where one source is dominant over the others. Using appropri-

ately selected TF components in these “single-source” zones (SSZs), the proposed method

jointly estimates the number of active sources and their corresponding directions of ar-

rival (DOAs) by applying a matching pursuit-based approach to the histogram of DOA esti-

mates. DRACOSS is shown to have excellent performance for DOA estimation and source

counting, and to be highly suitable for real-time applications due to its low complexity.

Through simulations in various signal-to-noise ratio conditions (SNR) and reverberant en-

vironments and real environment experiments, we indicate that our method outperforms

other state-of-the-art DOA and source counting methods in terms of accuracy, while be-

ing significantly more efficient in terms of computational complexity. We note that the

underlying concepts are applicable to any microphone array topology, highlighting the

flexibility of the proposed DRACOSS framework.

4.1 DRACOSS in two dimensions

We consider a uniform circular array of Qmicrophones, with NS active sound sources lo-

cated in the far–field of the microphone array (see Appendix B.0.2). Assuming the free-field

model, the signal received at each microphone, qi, is

xi(t) =
NS∑
j=1
aijsj

(
t − ti(φj)

)
+ ni(t), i = 1, · · · ,Q, (4.1)
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Figure 4.1: Circular sensor array configuration. The microphones are numbered 1 to
Q and the sound sources are s1 to sNS .

where sj is one of the NS sound sources at distance rs from the center of the microphone

array, aij is the attenuation factor and ti(φj) is the propagation delay from the jth source

to the ith microphone. φj is the DOA of the source sj observed with respect to the x-axis

(Figure 4.1), and ni(t) is an additive white Gaussian noise signal at microphone qi that is

uncorrelated with the source signals, sj(t), and all other noise signals.

For one given source, the relative delay between signals received at adjacent micro-

phones, hereafter referred to as microphone pair
{
qiqi+1

}
, with the last pair being {qQq1}, is

given by [60]
τqiqi+1(φj) , ti(φj) − ti+1(φj)

= l sin(π − φj + (i −
1
2)α)/ c,

(4.2)

where α and l are the angle and distance between
{
qiqi+1

}
respectively and c is the speed of

sound. Since the microphone array is uniform, α and l are given by:

α = 2π
Q
, l = 2ra sin

α
2 , (4.3)

where ra is the array radius. We note here that in Eq. (4.2) the DOA φj is observed with

respect to the x-axis, while in [60] it is observed with respect to a line perpendicular to the

chord defined by the microphone pair
{
q1q2

}
. We also note that all angles in Eqs. (4.2) and

(4.3) are in radians.

We aim to estimate the number of the active sound sources, NS, and corresponding

DOAs, φj, employing the proposed DRACOSS framework. We will thus exploit and detect

the sparsity of the involved source signals in the TF domain, in order to estimate local

DOAs. We will use the local DOA estimates to form a histogram, which we will process

in order to acquire the final DOAs and number of sources. It should be noted that even
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though we assume the free-field model, DRACOSS is shown to work robustly in both sim-

ulated and real reverberant environments.

4.1.1 Step 1: sound sources sparsity

We adopt the sparsity criterion proposed in [94]. We partition the incoming data in over-

lapping time frames, on which we compute a Fourier transform, providing a time-frequency

(TF) representation of observations. We then define a “constant-time analysis zone”, (τ,K),
as a series of frequency-adjacent TF points (τ, k). A “constant-time analysis zone”, (τ,K) is

thus referred to a specific time frame τ and is comprised byK adjacent frequency compo-

nents. In the remainder of the section, we omit τ in the (τ,K) for simplicity.

We assume the existence, for each source, of (at least) one constant-time analysis zone—

said to be “single-source”—where one source is “isolated”, i.e., it is dominant over the oth-

ers. This assumption is much weaker than the WDO assumption [122], since sources can

overlap in the TF domain except in these few single-source analysis zones. We note that

the WDO assumption could be consider as a sparsity measure and we will show compara-

tive performance results in Section 4.2

For any pair of signals (xi, xj), we define the cross-correlation of the magnitude of their

TF transform (Xi(k),Xj(k)) over an analysis zone as:

R
′

i,j(K) =
∑
k∈K

∣∣∣Xi(k) ·Xj(k)∣∣∣ . (4.4)

We then derive the correlation coefficient, associated with the pair
{
qiqj

}
, as:

r
′

i,j(K) =
R′
i,j(K)√

R′i,i(K) · R′j,j(K)
. (4.5)

Our approach for detecting SSZs is based on the following theorem [94] (see also Section

B.0.3):

Theorem 1 A necessary and sufficient condition for a source to be isolated in an analysis

zone (K) is

r
′

i,j(K) = 1, ∀i, j ∈ {1, . . . ,Q}. (4.6)

We detect and characterize as single source zones all constant-time analysis zones that

satisfy the following inequality:

r′(K) ≥ 1 − ε, (4.7)

where r′(K) is the average correlation coefficient between pairs of observations of adjacent

microphones and ε is a small user-defined threshold.
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In our proposed framework we use analysis zones which are constant in time, thus the

detected SSZs are also defined in a constant time frame and over consecutive frequency

bins. We have the option of utilizing analysis zones constant in frequency and over con-

secutive time frames as in [93], however we have not explored this option yet.

4.1.2 Step 2: single-source local DOA estimator

Since we have detected all SSZs, we can apply any known single source DOA algorithm

over these zones. We propose a modified version of the algorithm in [60]. We have chosen

this algorithm because it is computationally efficient and robust in noisy and reverberant

environments [60, 92].

We consider the circular array geometry (Figure 4.1) introduced in Section 4.1. The

phase of the cross-power spectrum of a microphone pair is evaluated over the frequency

range of a single-source zone as:

Gqiqi+1(k) = ∠Ri,i+1(k) =
Ri,i+1(k)∣∣∣Ri,i+1(k)∣∣∣ , k ∈ K, (4.8)

where the cross-power spectrum is

Ri,i+1(k) = Xi(k) ·Xi+1(k)∗ (4.9)

and ∗ stands for complex conjugate.

We then calculate the phase rotation factors [60] as:

G
(k)
qi→q1(φ) , e

−j
2πkFs
N
k
τqi→q1 (φ), (4.10)

where τqi→q1(φ) , τq1q2(φ) − τqiqi+1(φ) is the difference in the relative delay between the sig-

nals received at pairs
{
q1q2

}
and

{
qiqi+1

}
, τqiqi+1(φ) is evaluated according to (4.2), φ ∈ [0,2π)

in radians, Fs is the sampling frequency, Nk is the total number of frequency sampling

points and k ∈ K.

We proceed with the estimation of the circular integrated cross spectrum (CICS), de-

fined in [60] as

CICS(k)(φ) ,
Q∑
i=1
G
(k)
qi→q1(φ)Gqiqi+1(k). (4.11)

The DOA associated with the frequency component k in the single-source zone with fre-

quency rangeK is estimated as,

φ̂k = arg max
0≤φ<2π

|CICS(k)(φ)|. (4.12)
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In each SSZ we focus only on “strong” frequency components in order to improve the

accuracy of the DOA estimation. In previous works [44, 91, 92], we used only one fre-

quency, corresponding to the strongest component of the cross-power spectrum of the

microphone pair
{
qiqi+1

}
in a SSZ, giving us a single DOA for each single-source zone. We

now propose the use of d frequency components in each single-source zone, i.e., the use of

those frequencies that correspond to the indices of the d highest peaks of the magnitude

of the cross-power spectrum over all microphone pairs. This way we get d estimated DOAs

from each single-source zone, improving the accuracy of the overall system.

This is illustrated in Figure 4.2, where we plot the DOA estimation error versus the SNR

for various choices of d. It is clear that using more frequency bins (the terms frequency bin

and frequency component are used interchangeably) leads in general to a lower estima-

tion error. We have to keep in mind, though, that increasing d increases the computational

complexity, which should be taken into account for a real-time system.
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Figure 4.2: DOA estimation error vs SNR in a simulated environment. Each curve cor-
responds to a different number of frequency components used in a single-
source zone.

4.1.3 Step 3: histogram formation

In the previous sections we described the first two steps of the DRACOSS framework, i.e.,

how we determine whether a constant time analysis zone is single-source and how we es-

timate the DOAs associated with the d strongest frequency components in a single-source

zone. Once we have estimated all the local DOAs in the single-source zones (Sections 4.1.1

& 4.1.2), we form a histogram from the set of estimations in a block ofNT consecutive time

frames. We smooth the histogram by applying an averaging filter with a window of length
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Figure 4.3: Example of a smoothed histogram of four sources (speakers) in a simu-
lated reverberant environment at 20 dB SNR.
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Figure 4.4: A wide source atom (dashed line) and a narrow source atom (solid line)
applied on the smoothed histogram of four sources (speakers).

NL. If we denote each bin of the smoothed histogram as b, its cardinality, h(b), is given by:

h(b) =
NB∑
i=1
w

(
b × 360◦/B− ζi

NL

)
, 1 ≤ b ≤ B, (4.13)

where B is the number of bins in the histogram, ζi is the ith estimate (in degrees) out of

NB estimates in a block, and w(·) is the rectangular window of lengthNL. An example of a

smoothed histogram of four sources at 60◦, 105◦, 165◦, and 240◦ at 20 dB SNR of additive

white Gaussian noise is shown in Figure 4.3.

4.1.4 Step 4: histogram post-processing

In each time frame we form a smoothed histogram from the estimates of the current frame

and the NT − 1 previous frames. Once we have the histogram (the length-Bvector, h), our

goal is to count the number of active sources and to estimate their DOAs.

If we observe the example histogram of four active sources at 20 dB SNR, shown in

Figure 4.3, the four sources are clearly visible and similarly shaped, which inspired us

to approach the source counting and DOA estimation problem as one of sparse approx-
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imation using source atoms. Thus the idea—proceeding along similar lines to matching

pursuit—is to find the DOA of a possible source by correlation with a source atom, esti-

mate its contribution and remove it. The process is then repeated until the contribution

of a source is insignificant, according to some criteria. This way we can jointly estimate

the number of sources and their DOAs (in contrast with [44, 91] where these tasks were

performed separately). Having a collection of DOA estimates, it seems natural to apply

clustering methods, such as K-means or a Gaussian mixture model [15], however such ap-

proaches assume a known number of sources, while in our approach this information is

not known and we intend to derive it.

We chose to model each source atom as a smooth pulse, such as that of a Blackman

window, although the choice of the window did not prove to be critical. The choice of the

width is key, and reasoning and experiments showed that a high accuracy of the method

requires wide source atoms at lower SNRs and narrow source atoms at higher SNRs. Fur-

thermore, the resolution of the method—the ability to discriminate between two closely

spaced sources—is adversely affected as the width of the source atom increases. This sug-

gests making the width a parameter in the estimation process, however this would come

at the cost of an increase in computational complexity—something we wish to avoid—so

we chose to use fixed-width source atoms.

Further investigation revealed that a two-width method provided a good compromise

between these constraints, where a narrower width is used to accurately pick the loca-

tion of each peak, but a wider width is used to account for its contribution to the overall

histogram and provide better performance at lower SNRs. This dual-width approach is

illustrated in Figure 4.4. Note that the wider width source pulse is centered on the same

index as the narrow one.

The correlation of the source pulse with the histogram must be done in a circular man-

ner, as the histogram “wraps” from 359◦ to 0◦. An efficient way to do this is to form a

matrix whose rows (or columns) contain wrapped and shifted versions of the source pulse,

as we now describe.

Let vJ be a length-J row vector containing a length-J Blackman window, then let u be

a length-B row vector whose first J values are populated with vJ and then padded with

B− J zeros. Let u(o) denote a version of u that has been “circularly" shifted to the right by

o elements, the circular shift means that the elements at either end wrap around, and a

negative value of o implies a circular shift to the left.

Choose J = 2J0 + 1 where J0 is a positive integer. The maximum value of vJ (or equiv-

alently u) will occur at (J0 + 1)-th position. Define z = u(−J0). The maximum value of the

length-Brow vector z occurs at its first element. Let the elements of z be denoted zj, and its

energy be given by Ez =
∑
z2
j

. Now form the matrix Z, which consists of circularly shifted

versions of z. Specifically, the o-th row of Z is given by z(o−1).
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As previously discussed, we need two widths of source atoms, so let ZN and ZW be

matrices for the peak detection (denoted by “N” for narrow) and the masking operation

(denoted by “W” for wide), respectively, with corresponding source atom widths JN and

JW.

In order to estimate the number of active sources,NS, we create γ, a length-NSMAX vector

whose elements, γi, are some predetermined thresholds, representing the relative energy

of the i-th source. Our joint source counting and DOA estimation algorithm then proceeds

as follows:

1. Set the loop index i = 1

2. Form the product a = ZNhi

3. Let the elements of a be given by aj,

find j∗ = argmax
j

ai such that j∗ is further than nw × B/360◦ from all formerly lo-

cated maximum indices, where nw denotes a minimum offset between neighboring

sources

4. The DOA of this source is given by (j∗ − 1) × 360◦/B

5. Calculate the contribution of this source as

δi = (z(i
∗
−1)

W )T
aj∗

EzN

6. If
∑
δi < γi go to step 10

7. Remove the contribution of this source as

hi+1 = hi − δi

8. Increment i

9. If i ≤ NSMAX go to step 2

10. N̂S = i − 1 and the corresponding DOAs are those estimated in step 4

It should be noted that this method was developed with the goal of being computation-

ally efficient so that the source counting and DOA estimation could be done in real-time.

By real-time we refer to the response of our system within the strict time constraint de-

fined by the duration of a time frame. It should be clear that ZN and ZW are circulant

matrices and will contain B− JN and B− JW zeros on each row, respectively, and both of

these properties were exploited to provide a reduced computational load.
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4.2 Evaluation

We investigated the performance of DRACOSS for 2D spaces in simulated and real envi-

ronments. In both cases we used a uniform circular array placed in the center of each en-

vironment. All the parameters and their corresponding values can be found in Table 4.1,

unless otherwise stated.

Since the radius of the circular array is ra = 0.05m, the highest frequency of interest is

set to 4000 Hz in order to avoid spatial aliasing [16, 33]. Note that the final values chosen

for the source atom widths (i.e., JN = 81 and JW = 161) correspond to 40◦ and 80◦ respec-

tively. However, due to the shape of the Blackman window, the effective widths are closer

to 20◦ and 40◦.

Table 4.1: Experimental parameters
parameter notation value

number of microphones Q 8
sampling frequency Fs 44100 Hz

array radius ra 0.05 m
speaker distance rs 1.5 m

frame size 2048 samples
overlapping in time 50%

FFT size 2048 samples
TF zones width K 344 Hz

overlapping in frequency 50%
highest frequency of interest 4000 Hz

single-source zones threshold ε 0.2
frequency bins/SSZ d 2

number of bins in the histogram B 720
histogram bin size 0.5◦

averaging filter window length NL 5◦
history length (block size) NT 43 frames (1 second)
narrow source atom width JN 81

wide source atom width JW 161
noise type additive white Gaussian noise

4.2.1 Simulated Environment

We conducted various simulations in a reverberant room using speech recordings. We

used the fast image-source method (ISM) [65, 66] to simulate a room of 6 × 4 × 3meters,

characterized by reverberation time RT60 = 0.25 s. The uniform circular array was placed

in the center of the room, coinciding with the origin of the x and y-axis. The speed of
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sound was c = 343m/s. In each simulation the sound sources had equal power and the

signal-to-noise ratio at each microphone was estimated as the ratio of the power of each

source signal to the power of the noise signal. In real-life situations we do not expect all

sources to experience the same SNR, since some speakers may be further from the array

and/or more quiet than others.

In order to more accurately measure the performance all around the array, we simu-

lated each orientation of sources in 10◦ steps around the array, that is, for each sources’

set-up, we moved the set-up by 10◦ for each next-simulation, leading to a total number of

36 different positionings of the same set-up around the array. This is shown more clearly

in Figure 4.8.

The performance of our system was measured by the mean absolute estimated error

(MAEE) which measures the difference between the true DOA and the estimated DOA over

all speakers, all orientations and all the frames of the source signals, unless otherwise

stated.

MAEE = 1
NONFNS

∑
o,f ,s

|φ(o,f ,s) − φ̂(o,f ,s)|, (4.14)

whereφ(o,f ,s) is the true DOA of the sth speaker in the oth orientation around the array in the

f th frame and φ̂(o,f ,s) is the estimated DOA.NO is the total number of different orientations

of the speakers around the array, i.e., the speakers move in steps of 10◦ in each simulation,

which leads to NO = 36 different runs. NF is the total number of frames after subtracting

NT − 1 frames of the initialization period. We remind the reader that NS is the number of

active speakers in the f th frame.

DOA estimation

We present and discuss our results for DOA estimation assuming known number of ac-

tive sources. In our first set of simulations we investigated the spatial resolution of our

proposed method, i.e., how close two sources can be in terms of angular distance while

accurately estimating their DOA. Figure 4.5 shows the MAEE against SNR of additive white

Gaussian noise, for pairs of static, continuously active speakers for angular separations

from 180◦ down to 20◦. The duration of the speech signals was approximately three sec-

onds. DRACOSS performs well for most separations, but the effective resolution with the

chosen parameters is apparently around 30◦.
In Figure 4.6 we plot an example DOA estimation of four intermittent speakers across

time with the speakers at 60◦, 105◦, 165◦, and 240◦. Note that the estimation of each

source is prolonged for some period of time after he/she stops talking or respectively is

delayed when he/she starts talking. This is due to the fact that the DOA estimation at each

time instant is based on a block of estimates of length NT frames (NT = 43 frames, which
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corresponds to 1 second in this example). We refer to these periods as “transition peri-

ods”, which we define as the time interval starting when a new or existing speaker starts or

stops talking and endingNT seconds later. An example of a transition period is also shown

in Figure 4.6 as the grey-shaded area.
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Figure 4.5: DOA estimation error vs SNR for pairs of simultaneously active speakers
in a simulated reverberant environment.

We demonstrate how the size of a block of estimates affects the DOA estimation in Fig-

ure 4.7. We plot the MAEE versus SNR for the four intermittent speakers scenario for block

sizes—also referred to as history lengths—equal to 0.25s, 0.5s and 1s. The speakers were

originally located at 0◦, 45◦, 105◦ and 180◦ and even though they were intermittent, there

was a significant part of the signals where all four speakers were active simultaneously.

There is an obvious performance improvement as the history length increases, as the al-

gorithm has more data to work with in the histogram. However increasing the history also

increases the latency of the system, in turn decreasing responsiveness.

Aiming to highlight the consistent behavior of our proposed framework no matter

where the sources are located around the array, in Figure 4.8 we plot the absolute error

as an average over time, separately for each of six static, simultaneously active speakers

and each of 36 different orientations around the array. For the first simulation the sources

were located at 0◦, 60◦, 105◦, 180◦, 250◦, and 315◦ in a simulated reverberant environ-

ment with 20 dB SNR and a one-second history. They were shifted by 10◦ for each next

simulation preserving their angular separations. The duration of the speech signals was
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Figure 4.6: Estimation of DOA of four intermittent speakers at 60◦, 105◦, 165◦, and
240◦ in a simulated reverberant environment with 20 dB SNR and a one-
second block size. The gray-shaded area denotes an example “transition
period".

approximately 10 seconds and, as already stated, the MAEE was evaluated as the average

absolute error in the estimation over time. The MAEE is always below 3◦ for any position-

ing of the sources around the array for all the sources.

We investigate the robustness to reverberation in Figure 4.9, which shows the MAEE

versus SNR for three static, continuously active speakers originally located at 0◦, 160◦, and

240◦ for reverberation time RT60 = {0.25,0.4,0.6} s. For low reverberation conditions—

RT60 = 0.25 s—the proposed method performs very well for all SNR conditions as was

expected and shown in the preceding results. For medium reverberation with RT60 = 0.4
s and source atom widths JW = 161(80◦) and JN = 81(40◦) the MAEE is low for high SNR

but increases rapidly for lower signal-to-noise ratios. However, by using wider pulses—i.e.,

JW = 241(120◦) and JN = 141(70◦)—we can mitigate erroneous estimates due to reverber-

ation and keep the error lower than 10◦ for all SNR values. For RT60 = 0.6 s—which could

characterize a highly reverberant environment—the DOA estimation is effective for SNR

values above 5 dB, exhibiting an MAEE lower than 7◦, when using JW = 241(120◦) and

JN = 181(90◦). Note that increasing the source atom widths improves the DOA estimation

accuracy, but also decreases the resolution of the method.

DRACOSS is a DOA estimation framework, not a tracking one. However motivated by

its good performance, we aimed at investigating its tracking potential and we ran simu-
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Figure 4.7: DOA estimation error vs SNR for four intermittant speakers in a simulated
reverberant environment.

lations that included moving sources. In Figure 4.10 one speaker is static at 90◦ and the

other is moving clockwise. Both speakers were males. In Figure 4.11 two male speakers are

moving in a circular fashion around the array. One of them is moving anticlockwise while

the other is moving clockwise. We observe a consistent DOA estimation in both scenarios,

even though we do not use any source labeling techniques. This preliminary simulation

results, along with their real-environment experiments counterparts (Figs. 4.17 and 4.18),

indicate that the proposed framework could be extended to include tracking capabilities.

The slight shift of the estimations to the right of the true DOA is due to the one-second

history length. Anomalies in the DOA estimation are mainly present around the cross-

ing points, which was expected, since the effective resolution of the proposed method is

around 30◦ (see also Figure 4.5).

Comparison with alternative methods

We compared the performance of the DRACOSS framework against MUSIC (Section 2.1.1),

and ICA-GSCT (Section 2.2.1). We also compared against the WDO assumption, i.e., we re-

placed the MCC at step 2 of DRACOSS with the WDO assumption (Section 2.4). The other

three steps of the framework stay the same. The performance of the methods was eval-

uated by using the MAEE over those estimates where the absolute error was found to be

lower than 10◦—where an estimate is considered to be successful. Along with the MAEE,
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Figure 4.8: DOA estimation error of six static sources versus the true DOA. Different
markers correspond to different speakers.

we provide “success scores”, i.e., percentages of estimates where the absolute error was

lower than 10◦ (Table 4.2 to be discussed later). Since the error was very high for plenty

of estimates especially at lower SNR values for some of the methods, the MAEE over all

estimates was considerably affected, not allowing us to have a clear image of the perfor-

mance. Additionally for some of the methods, e.g., MUSIC, there were cases where the

number of detected peaks, and consequenlty DOAs was lower than the number of sources,

thus such cases had to be excluded from the evaluation. Furthermore, in a real system, a

stable consistent behaviour—which is reflected in the “success scores”— is equally impor-

tant as accuracy and computational complexity. We could extract similar observations on

the consistency of the bahavior of the methods by providing the variances of the estimates.

Hoewever, the “success scores” cover also the case where the DOA of a source could not

be estimated, thus we believe it is a more appropriate measure in our case. We note that a

similar method of performance evaluation was adopted in [16].

In Figure 4.12 we plot the MAEE versus the SNR for six static, continuously active speak-

ers, originally located at 0◦, 60◦, 105◦, 180◦, 250◦, and 315◦ in a simulated reverberant

environment with a one-second block size. The simulation was performed for each orien-

tation of sources in 10◦ steps around the array. All four methods exhibit very good results,

with an increasing performance from lower to higher SNR values. Even though the differ-

ences are small between the methods, we note that DRACOSS exhibits the lowest MAEE

for SNR values below 15 dB (and the highest success scores, shown in Table 4.2 to be dis-
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Figure 4.9: DOA estimation error vs SNR for three static, continuously active speakers
in a simulated environment for RT60 = {0.25,0.4,0.6} s.

cussed later). We remind here that the performance of the methods was evaluated by using

the MAEE over those estimates where the absolute error was found to be lower than 10◦.
Thus, the results of Figure 4.12 should be observed and evaluated together with the results

in Table 4.2.

For the estimation of the demixing matrices in ICA-GSCT we have used the Joint Ap-

proximate Diagonalization of Eigenmatrices (JADE) method [18] which exploits the fourth-

order cumulants relying on the statistical independence of the sources. However since the

accuracy of the estimation of the demixing matrices (and consequently of the correspond-

ing mixing matrices) for ICA-GSCT at each frequency bin depends on the sufficiency of the

observed data—i.e., the block size—we ran the preceding simulation scenario using mix-

ing matrices obtained also with the recursively regularized ICA (RR-ICA) algorithm [88].

The RR-ICA algorithm exploits the consistency of demixing matrices across frequencies

and the continuity of the time activity of the sources and recursively regularizes ICA. In this

way, it provides improved estimates of the demixing matrices even when a short amount

of data is used. We note that the code for RR-ICA is provided by the authors of [88] and

can be found in [84]. The maximum number of ICA iterations was set to 20 and the natural

gradient step-size to 0.1. The maximum order of the least mean square filter was set to 10

and the corresponding step size to 0.01. These values gave the best results among various

parametrizations and are in the range of values recommended in [88].
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Figure 4.10: Estimated DOA of one static and one moving speaker around the circular
array in a simulated reverberant environment at 20 dB SNR.

In Figure 4.13 we compare the performance of ICA-GSCT using these two different

methods for the estimation of the mixing matrices, i.e., the JADE algorithm and RR-ICA

method. We observe that both methods exhibit good and similar results for all SNR values.

We note that RR-ICA performs slightly better for SNR higher than 5 dB as was expected but

did not provide a significant improvement compared to JADE for our particular simulation

scenario.

Table 4.2: DOA estimation success scores

SNR(dB)
Method 0 5 10 15 20

DRACOSS 61.62% 84.07% 95.45% 99.16% 99.69%
WDO 54.96% 80.38% 95.40% 99.57% 99.94%

MUSIC 47.89% 64.82% 77.34% 92.58% 99.89%
JADE ICA-GSCT 55.44% 68.66% 80.38% 89.17% 93.90%

RR-ICA GSCT 40.66% 57.69% 73.70% 88.04% 96.48%

In Table 4.2 we provide success scores (percentages of frames with absolute error <

10◦) for the proposed and all aforementioned methods. We observe that for an SNR of 20

dB, all methods successfully estimate the DOAs for more than 90% out of a total amount
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Figure 4.11: Estimated DOA of two moving speakers around the circular array in a sim-
ulated reverberant environment at 20 dB SNR.

of approximately 83,000 estimates. Specifically, DRACOSS along with WDO and MUSIC

almost achieve score of 100%, with the proposed framework being much more efficient in

terms of complexity (see also Table 4.3). When the SNR gets lower, the performance of the

methods deteriorates, which can also be observed in Figures 4.12 and 4.13. However, our

proposed method’s score is higher than the other methods for SNR values below 15 dB.

We present complexity estimation results for the preceding scenario with six sources in

Table 4.3. We estimated the total number of operations that each method performs to de-

rive a curve whose local maxima act as DOA indicators. More specifically, we estimated the

total number of the following operations: for DRACOSS and WDO, to obtain the smoothed

version of the histogram of the estimates; for MUSIC, to estimate the average pseudospec-

trum; and for ICA-GST, to estimate the GSCT-kernel density function at each time instant.

By the term “operation", we refer to any multiplication, addition or comparison, as many

dedicated processors—such as DSPs—only take one cycle for each of these operations.

Our framework has the lowest computational complexity. MUSIC requires almost one

and a half times as many operations, while WDO needs almost three times as many oper-

ations. The complexity of ICA-GSCT is much higher than all the other methods. These re-

sults were expected, since WDO follows the same procedure as the proposed method, but

for all the frequency components whereas we work with d components in single-source

zones only. On the other hand, MUSIC performs eigenvalue decomposition for each fre-

quency component and averages the information from all frequency components, con-
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DRACOSS

Figure 4.12: DOA estimation error vs SNR for six static speakers in a simulated rever-
berant environment.

Table 4.3: Computational complexity

Method number of operations

DRACOSS 2,638,424

WDO 10,235,565

MUSIC 3,903,280

ICA-GSCT 35,254,348

tributing significantly to its high complexity.

Source counting results

In order to evaluate the performance of DRACOSS in counting the number of sources (see

Section 4.1.4), we provide source counting results for simulation scenarios ranging from

one to six static, simultaneously active sound sources in a reverberant environment with

an SNR of 20 dB. In these six simulation scenarios, the smallest angular distance between

sound sources was 45◦ and the highest was 180◦ while the sources were active for approxi-

mately 10 seconds, leading to roughly 14,000 source number estimations for each scenario.

The thresholds vector was set to γ = [0.15,0.14,0.12,0.1,0.065,0.065,0.065] and the
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Figure 4.13: DOA estimation error vs SNR for six static speakers in a simulated rever-
berant environment.

minimum offset between neighboring located sources was set to nw = 10◦. We present

these results in terms of a confusion matrix in Table 4.4 where the rows correspond to true

numbers of sources and the columns correspond to the estimated ones. The method cor-

rectly estimates the number of sources more than 87% of the time for all the cases. Overall

the method presents very good performance with a mean percentage of success equal to

93.52%.

Table 4.4: Confusion matrix for counting success scores

N̂S

1 2 3 4 5 6 7

NS

1 100% 0% 0% 0% 0% 0% 0%
2 0% 100% 0% 0% 0% 0% 0%
3 0% 3.76% 96.16% 0.08% 0% 0% 0%
4 0% 0.42% 8.50% 88.84% 2.20% 0.04% 0%
5 0.01% 2.23% 2.99% 0.55% 88.28% 5.76% 0.18%
6 0.87% 2.91% 1.42% 0.17% 5.91% 87.84% 0.88%

We compared our DRACOSS framework with additional proposed source counting meth-

ods (see Appendix D and [91]) and the minimum description length (MDL) information
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criterion [120] under the four intermittent speakers scenario, an example of which can be

seen in Figure 4.6. For the Peak Search method (PS), γstatic = 0.05
∑
b h(b) and the LPC

order used was 16. The thresholds for DRACOSS were γ = [0.15,0.14,0.12,0.1]. The min-

imum offset between neighboring located sources was set to nw = 10◦ and was common

for all these histogram-based methods. The MDL was estimated in the frequency domain

from the STFT of the observations in blocks ofNT frames. In Table 4.5 we give success rates

of the source counting (percentage of frames correctly counting the number of sources) for

the four methods under consideration with various history lengths and differing values of

SNR. The success rates were again calculated over all orientations of the sources in 10◦

steps around the array (preserving the angular separations) while the transition periods

were not taken into account.

We can observe similar behavior as in Figure 4.7. Longer history length leads to in-

creased success rates for all four methods, affecting however, the responsiveness of the

system. The MDL method is severely affected by noise and the amount of available data.

While it achieves a high percentage of success for one-second history length and 20 dB

SNR, this percentage falls dramatically as the history length is reduced and most obviously

as the SNR becomes lower. For SNRs equal to 0 and 5 dB the criterion fails completely since

it always responds as if there are no active sources. The DRACOSS framework is clearly the

best performing source counting method. Moreover, in DRACOSS the DOA estimation and

the source counting are performed in a single step (as explained in Section 4.1.4), resulting

in computational efficiency.

Table 4.5: Source counting success rates excluding transition periods
History SNR (dB)

Method Length 0 5 10 15 20

MDL 0.25s 0% 0% 2.3% 15.7% 21.6%
PS 0.25s 34.7% 44.8% 60.2% 71.5% 79.1%

LPC 0.25s 25.7% 40.5% 57.0% 63.0% 64.6%
DRACOSS 0.25s 42.9% 61.5% 77.8% 84.7% 86.7%

MDL 0.5s 0% 0% 6.8% 38.8% 74.8%
PS 0.5s 44.5% 60.1% 77.5% 84.9% 88.2%

LPC 0.5s 35.5% 59.5% 73.8% 75.6% 74.2%
DRACOSS 0.5s 64.3% 84.8% 95.7% 96.7% 96.7%

MDL 1s 0% 0% 21.2% 70.8% 87.7%
PS 1s 47.3% 68.7% 83.6% 90.5% 92.7%

LPC 1s 45.4% 81.9% 85.4% 82.5% 80.1%
DRACOSS 1s 82.1% 99.2% 100% 100.0% 100.0%
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Figure 4.14: DOA estimation error for two speakers separated by 45◦ versus the true
DOA in a real environment. Each different marker corresponds to a differ-
ent speaker.

4.2.2 Real Environment

We conducted experiments in a typical office room with approximately the same dimen-

sions and placement of the microphone array as in the simulations and with reverbera-

tion time approximately equal to 0.4 s. The algorithm was implemented in software exe-

cuted on a standard PC (Intel 2.40 GHz Core 2 CPU, 2GB RAM). We used eight Shure SM93

microphones (omnidirectional) with a TASCAM US2000 8-channel USB soundcard. We

measured the execution time and found it to be 55% real time (i.e., 55% of the available

processing time). In the following results, some percentage of the estimated error can be

attributed to the inaccuracy of the source positions.

We demonstrate the performance of our DRACOSS system for two simultaneously ac-

tive male speakers in Figure 4.14. The speakers were separated by 45◦ and they moved 10◦

in each experiment in order to test the performance all around the array. The duration

of each experiment was approximately six seconds. The signal to noise ratio in the room

was, on average, 15 dB. We plot the MAEE versus each different DOA, where the MAEE

is evaluated as the mean absolute error in the estimation over time. The mean absolute

error is lower that 2.5◦ for every positioning of the speakers around the array (among 36

different orientations) while for about half of the orientations, the MAEE is below 1◦ for

both speakers.
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Figure 4.15: Estimated DOA of three static speakers in a real environment.
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Figure 4.16: Estimated DOA of six static speakers in a real environment.

The next experiment involved three speakers sitting around the microphone array at

0◦, 160◦, and 240◦. The speakers at 0◦ and 240◦ were males, while the speaker at 160◦ was

female. The signal to noise ratio in the room was also around 15 dB. In Figure 4.15 we plot

the estimated DOA in time. All three speakers are accurately located through the whole

duration of the experiment.
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Figure 4.17: Estimated DOA of one static speaker and one moving speaker around the
circular array in a real environment.

In Figure 4.16 we plot the estimated DOAs of six static speakers versus time. This exper-

iment is the only one that involved loudspeakers instead of actual speakers. We used six

Genelec 8050 loudspeakers that reproduced pre-recorded audio files of six continuously

active, actual speakers, three males and three females positioned alternately. The loud-

speakers were approximately located at 0◦, 60◦, 105◦, 180◦, 250◦, and 315◦ at a distance

of 1.5 meters from the center of the array. The signal to noise ratio in the room was esti-

mated at 25 dB. The DOA of all six sources is in general accurately estimated. The DOA

estimation of the second speaker deviates slightly from the true DOA for some periods of

time (e.g., around the sixth second of the experiment). This might be attributed to a lower

energy of the signal of the particular speaker over these periods in comparison to the other

speakers.

We also conducted experiments with moving sources. The scenarios followed the simu-

lations (see Figures 4.10 and 4.11). However, since these are experiments in real conditions

we do not show the ground-truth DOA of the sources, since this information cannot be ex-

actly known. For these experiments, the signal to noise ratio in the room was, on average,

20 dB. We plot the DOA estimation in Figures 4.17 and 4.18. The DOA estimation is in gen-

eral effective except for the areas around the crossing points. Nevertheless, as we stated

for the corresponding simulations, our method shows the potential of localizing moving

sources that cross each other.
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Figure 4.18: Estimated DOA of two moving speakers around the circular array in a real
environment.



Chapter 5

Direction of arrival estimation in the
three-dimensional space

This chapter presents multiple sound source localization and counting in the 3D space

utilizing a compact spherical microphone array in the DRACOSS framework. Thus, as for

the 2D DOA estimation, the proposed methods are based on detecting TF zones where

one source is dominant over the others, i.e., SSZs. As a local DOA estimator for the sec-

ond step of the DRACOSS framework, we use a sound intensity vector estimator, via the

encoding of the signals of the spherical microphone array from the space domain to the

spherical harmonic domain. A smoothed 2D histogram (the third DRACOSS step) of these

estimates reveals the DOA of the present sources and through an iterative process, accu-

rate 3D DOA information can be obtained. Additionally we incorporate beamforming and

the MUSIC algorithm into the DRACOSS framework and enhance their performance. We

show promising counting results by training a convolutional neural network with 2D his-

tograms.

5.1 DRACOSS in three dimensions

In this section we describe the development of the DRACOSS framework in the 3D space.

We are now looking to estimate not only the azimuth but also the elevation of an emitting

source. These two estimates together define the 2D DOA, Ω =
(
θ, φ

)
, of the source in the

3D space as shown graphically in Figure 5.1.

For the estimation of the DOA we will follow the steps of the DRACOSS framework as

described in Chapter 3. As a first step, for the exploitation of the sparsity of the sound

sources, we will again use the MCC criterion that we used in DRACOSS in 2D spaces (see

Chapter 4, Section 4.1.1) which we will recall here for the sake of completeness. As a local

DOA estimator (second step) we will use the intensity vector I(τ, k), which indicates the

direction of sound flow at a TF point (τ, k) where τ indicates the timeframe and k the fre-

quency index respectively. For the third and fourth steps of DRACOSS we will formulate

49
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Figure 5.1: Direction of arrival of an emitting source in the 3D space,Ω =
(
θ, φ

)
, where

θ ∈ [−π/2, π/2] denotes the elevation and φ ∈ [0,2π) denotes the az-
imuth.

and post-process 2D histograms as described later in Sections 5.1.3 and 5.1.4.

The intensity vector is formulated in the spherical harmonic domain (SHD), thus we

will now provide an overview of the process of how to spatially encode the microphone

array sensor signals to a set of spherical harmonic signals for the sake of completeness.

For an extended overview of this process the reader is referred to [98].

Let us assume a microphone array that consists ofQmicrophones positioned at
(
Ωq, r

)
=

(θq, φq, r). The spherical harmonic signals are approximated as:

slm(k, r) ≈
Q∑
q=1
gq(Ωq)xq(k, Ωq, r)Y∗lm(Ωq), (5.1)

where xq(k, Ωq, r) are the separate microphone signals for frequency k, Y∗
lm
(Ωq) are the

complex conjugate spherical harmonic functions, and gq(Ωq) is selected so that it provides

an accurate approximation of the spherical Fourier transform [114]. The accuracy of this

approximation depends on how uniformly the microphones are distributed on the surface

of the sphere, the type of the array, the radius r and the frequency k [96]. By omitting

the frequency and radial dependency, the equalized spherical harmonic signals can be

expressed in matrix form as:
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s ≈ gqB−1YHx, (5.2)

where (H) denotes Hermitian transposition,

x = [x1, x2, . . . , xQ]T ∈ CQ×1 (5.3)

are the microphone array input signals,

s = [s00, s1−1, s10, s11, . . . , sLL]T ∈ C(L+1)
2
×1 (5.4)

are the spherical harmonic signals describing the decomposition of a soundfield com-

prised by plane waves (see also Appendix C.5), gq(Ωq) = 4π
Q

, assuming a uniform distri-

bution of microphones on the surface of a sphere (see also Appendix C.6.3),

B = diag{[b0, b1, b1, b1, . . . , bL]} ∈ C(L+1)
2
×(L+1)2 (5.5)

is a diagonal matrix containing the equalization weights that depends on the array type,

whether it is rigid or open, and is used in (5.2) to compensate for the effect of the micro-

phone array [114]. Y ∈ CQ×(L+1)2 is the matrix containing the spherical harmonics up to

order L for the Qmicrophones

Y(Ωq) =



Y00(Ω1) Y00(Ω2) . . . Y00(Ωq)
Y1−1(Ω1) Y1−1(Ω2) . . . Y1−1(Ωq)
Y10(Ω1) Y10(Ω2) . . . Y10(Ωq)
Y11(Ω1) Y11(Ω2) . . . Y11(Ωq)

...
...

...
...

YLL(Ω1) YLL(Ω2) . . . YLL(Ωq)



T

, (5.6)

where (T) denotes transposition. The number of microphones to reconstruct L indepen-

dent spherical harmonics signals is Q ≥ (L+ 1)2 [1].

5.1.1 Step 1: sound sources sparsity

We now recall the estimation of the MCC criterion for the detection of single source zones

(SSZs) in the TF domain of the microphone array signals. A SSZ is a series of K frequency-

adjacent TF points (τ,K) where one source is dominant over any other active source and

satisfies the following criterion:

ρ(τ,K) ≥ 1 − ε, (5.7)
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where ρ(τ,K) is the average correlation coefficient between pairs of observations of adja-

cent microphones and ε is a small user-defined threshold.

The correlation coefficient ρi,j(τ,K) is defined as

ρi,j(τ,K) =
Ri,j(τ,K)√

Ri,i(τ,K) · Rj,j(τ,K)
, (5.8)

whereRi,j(τ,K) =
∑
k∈K

∣∣∣Xi(τ, k) ·Xj(τ, k)∣∣∣ is the cross-correlation of the magnitude of the TF

transform over an analysis zone for any pair of signals (xi, xj). Thus, SSZ detection takes

place in the TF domain. Xi(τ, k) and Xj(τ, k) are the microphone signals of the ith and the

jth microphones respectively in the TF domain. Note that xq(k, r, Ω) in Equation (5.1) is

now expressed in the TF domain as Xq(k,n) for the qth microphone by omitting the (r, Ω)
parameters. The reader is also referred to Section 4.1.1 for a more detailed description of

the definition and detection of SSZs.

5.1.2 Step 2: single-source local DOA estimator

The local DOA estimator is based on the sound intensity [37] and it has been utilized in

parametric sound reproduction systems [95]. As in [57] (see also Section 2.3.2), the instan-

taneous active intensity vector can be approximated in the TF domain as

I(τ, k) = 12Re

{ s∗00(τ, k)
b0(k)



sx(τ, k)
sy(τ, k)
sz(τ, k)


}
, (5.9)

where s∗00 is the complex conjugate of the 0th order spherical harmonic signal, b0(k) is the

mode strength compensation and sx, sy and sz are averages of the 1st order spherical har-

monic signals with their positive phase towards the x, y and z-axis respectively. Each of

these signals is calculated as

sα(τ, k) =
l∑

m=−l

Ylm(Ωα)
bl(k)

slm(τ, k), α = {x, y, z}, (5.10)

whereYlm(Ωα) is the spherical harmonic base function of order l = 1 and degreem,Ωα is set

to (0,0), (0, π/2) and (π/2,0) for each axis and bl(k) is the mode strength compensation

for the specific order and depends on the type of the array [114]. We graphically show the

intensity vector and the corresponding DOA for an emitting source in Figure 5.2.
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z

y

x

Figure 5.2: Vector I indicates the direction of sound flow, thus the DOA of the emmit-
ing source is −I = Ω = (

θ, φ
)
, where θ ∈ [−π/2, π/2] denotes the elevation

and φ ∈ [0,2π) denotes the azimuth.

5.1.3 Step 3: histogram formation

After the detection of a SSZ, we estimate the intensity vector I(τ, k) at d selected frequency

components belonging to the SSZ, i.e., those TF points that correspond to the indices of

the d highest peaks of the magnitude of the cross-power spectrum over all microphone

pairs. In this manner we have dDOA estimates at each detected SSZ .

Once we have estimated all the local DOAs in the SSZs (Sections 5.1.1 & 5.1.2), we form

a 2D histogram, h(i, j), from the set of estimations in a block ofNT consecutive time frames

which slides one frame each time. An example of such a histogram is shown in Figure 5.3.

We smooth the 2D histogram by applying an averaging filter, e.g., a circularly symmetric

Gaussian windowwA(θ, φ) of zero mean and standard deviation (std) equal to σA.

Figure 5.3: 2D histogram of four sources at (43,−31)◦, (−48,9)◦, (75,−104)◦, and
(16,−86)◦.
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hs(θ, φ) =
∑
i

∑
j

h(i, j)wA(θ − j, φ − i), (5.11)

wherew(θ, φ) = 1
2πσ2 e

−
1
2

θ2+φ2

σ2 is the Gaussian window, h(θ, φ) is the original 2D histogram

and hs(θ, φ) is the smoothed one. The smoothed version of the histogram in Figure 5.3 is

depicted in Figure 5.4.

Figure 5.4: Smoothed 2D histogram of four sources at (43,−31)◦, (−48,9)◦,
(75,−104)◦, and (16,−86)◦.

5.1.4 Step 4: histogram post-processing

In order to extract the final DOA estimates of the sources, we proceed further by processing

the 2D smoothed histogram. We detect the highest peak of the smoothed histogram and

we identify its index as the DOA of the first source. Then, we remove its contribution from

the histogram by applying a Gaussian window wC(θ, φ) of zero mean and std equal to

σC. We proceed to the detection of the second peak and the removal of its contribution

and iteratively to the next peak until we reach the numberNS of sources. The steps of the

aforementioned iterative procedure are described in detail in Algorithm 1 and in Figure 5.5

we show an example for a scenario with four sources at (54,82)◦, (43, 118)◦, (−58,307)◦,
and (−22, 172)◦ at RT60=0.2 s and 45 dB SNR of additive white Gaussian noise.

We note here that we process the 2D-histograms in the same spirit as we did for the

single-dimensional histograms in Chapter 4.1.4. Our approach is more of a practical, in-

tuitive, yet efficient nature. One could choose and adopt a probabilistic framework, such

as that of GMM, however we would like to avoid any approach that demands a priori the
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Algorithm 1 2D Histogram Processing for 3D DOA estimation

1. Set the loop index i = 1.

2. Find (θi, φi) = argmax
θ,φ
his(θ, φ), where his(θ, φ) is the smoothed histogram at the

current iteration. The DOA of this source is (θi, φi).

3. Calculate the contribution of the current source as

δi = ys(θ, φ) �wC(θ − θi, φ − φi),

where the operator � stands for element-wise multiplication.

4. Remove the contribution of this source as

yi+1s (θ, φ) = yis(θ, φ) − δi.

5. Increment i .

6. If i < NS go to step 2.

number of clusters, in our case the number of simultaneously active sources.

5.2 Evaluation

The performance of the DRACOSS framework in 3D spaces is investigated by conducting

extended simulations in anechoic and reverberant environments. We have employed a

rigid spherical microphone array comprising 32 microphones, placed according to the

angular positions of the 3D sphere covering problem solutions [23] and radius equal to

ra = 0.042m. We used the spherical microphone array room impulse response generator

by Jarrett et al [58] which is based on the image method of Allen and Berkley [4] to simulate

a room of 8 × 8 × 6 meters. The spherical array was placed in the centre of the room,

coinciding with the origin of the x, y and z-axis and the simulated sound sources were

placed 1.5m away from the centre of the array. The speed of sound was c = 343m/s

while the frequency range used was 500-3800 Hz to avoid aliasing phenomena [82]. In
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(a) (b) (c) (d)

Figure 5.5: Visualization of Algorithm 1:
5.5a The 2D histogram given as input to Algorithm 1. Four sources are
clearly visible.
5.5b The 2D histogram after the first iteration. The contribution of the first
detected source at (54,82)◦ has been removed while the DOAs of the three
remaining sources are highlighted.
5.5c The 2D histogram after the second iteration.
5.5d The 2D histogram after the third iteration where only the contribu-
tion the fourth source at (−22, 172)◦ is present.

each simulation the sound sources had equal power and the signal-to-noise ratio at each

microphone was estimated as the ratio of the power of each source signal to the power of

the noise signal. Any other parameters and their corresponding values can be found in

Table 5.1.

Table 5.1: Simulation parameters

parameter notation value

sampling frequency Fs 48000 Hz
frame size 2048 samples

overlapping in time 50%
FFT size 2048 samples

TF zones width K 375 Hz
overlapping in frequency 50%

SSZ threshold ε 0.2
frequency bins/SSZ d 2
histogram bin size 0.5◦ × 0.5◦

averaging window std σA 5◦
localization window std σC 20◦

We demonstrate the performance of our framework by the mean estimation error (MEE)

which measures the angular distance between a unit vector pointing at the true DOA (v)
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and a unit vector pointing at the estimated DOA (v̂) [57] over all sound sources, all posi-

tions and all the frames of the source signals. The error is defined as

MEE = 1
NONFNS

∑
o,f ,s

cos−1
(
vT
osf
v̂osf

)
, (5.12)

where cos−1
(
vT
osf
v̂osf

)
expresses the angular distance between the true DOA, vosf of the sth

active source in the oth positioning in the f th frame and the estimated one, v̂osf . The asso-

ciation between the true and the estimated DOA of a source is determined based on the

permutation that leads to the minimum error, given the permutations between the true

DOAs and the estimated ones. NO is the total number of different positions of the sound

sources around the array, i.e., the sound sources were placed in different and random ori-

entations in each simulation and the total number of different positions isNO = 10. NF is

the total number of frames after subtractingNT − 1 frames of the initialization period and

NS is the total number of active sources, which is assumed to be known. In all the simula-

tions speech sound files were used of duration approximately equal to 9 seconds, leading

to NF = 375 frames. Any gaps or silent periods were manually removed. The block size is

equal to 1 second, i.e.,NT = 46 frames.

In our first set of simulations we investigated the spatial resolution of our proposed

method, i.e., how close two sources can be while accurately estimating their DOA. Fig-

ure 5.6 shows the MEE against the angular separation of two continuously active sound

sources, one male and one female speaker, for SNR={15,20,45}dB of additive white Gaus-

sian noise and reverberation time RT60 = {0.4,0.8} s. The MEE is very low even when the

sources are very close to each other, e.g., for angular separation equal to 20◦, RT60=0.8 s

and SNR=15 dB, the MEE is equal to 5.74◦. With increasing SNR and decreasing reverbera-

tion time the MEE is improved as expected and shown in Figure 5.6.

Aiming at highlighting the impact of the SSZ selection on the DOA estimation robust-

ness, we compare the MCC criterion against the W-disjoint orthogonality (WDO) assump-

tion [122], where each TF point is assumed to be dominated by a single source (see also

Section 2.4). Therefore I(τ, k) is estimated for every TF point in the frequency range of in-

terest. Figure 5.7 shows the MEE versus the reverberation time, RT60 = {0,0.2,0.4,0.6,0.8} s,

where RT60=0 s corresponds to the anechoic case at SNR={15,20,45}dB for scenarios with

four simultaneously and continuously active sources, two male and two female speakers.

The minimum angular separation between the sources was 19.94◦. As it is shown in Fig-

ure 5.7 the proposed SSZ criterion experiences lower error for all SNR and RT60 conditions

which was expected since the MCC selects only TF points belonging to single-source zones

and avoids the use of TF points with spurious I(τ, k) information.

We show the performance of the proposed framework when the number of simultane-

ously active sources is considered to be relatively high, i.e., NS = 6 in Figure 5.8. Three
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Figure 5.6: MEE versus angular separation between two sound sources in various
SNR and reverberation conditions.
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Figure 5.7: MEE versus RT60 for scenarios with four simultaneously active sound
sources in various SNR conditions.

male and three female speech sound files were used with the minimum angular separa-

tion between them being at 21.14◦. Once again the MEE versus the reverberation time for

various SNR conditions is shown. The MEE is higher compared to the four sources scenar-

ios shown in Figure 5.7. The method performs robustly in moderate reverberation condi-

tions, experiencing MEE equal to 19.57◦ in the worst case scenario, i.e., at RT60 = 0.8 s

and SNR=15 dB.
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Figure 5.8: MEE versus RT60 for scenarios with six simultaneously active sound
sources in various SNR conditions.

5.3 From intensity vector estimates to spatially constrained beam-
forming

Local DOA estimation through sound intensity vector possesses low computational com-

plexity, since it can provide instantaneous time-frequency estimates. However, by defini-

tion, the intensity vector estimation exploits the spherical harmonic analysis of the sound

field up to the first order (see also Eq. (5.9)), even though the available microphone array

may provide higher orders for the analysis. On the other hand, DOA estimation relying on

steered-response beamforming, even though it can exhibit high accuracy and exploits the

full potential of the recording device, it suffers from high computational complexity due

to the exhaustive search of the 3D space. These two different approaches motivated us to

enhance the local DOA estimator of DRACOSS (step 2) by proposing a hybrid methodology

that takes advantage of the simplicity of the intensity vector estimation and the accuracy

of beamforming.

Assume that, although −I(τ, k) might not point exactly to the DOA of a source, it will

point towards the “neighborhood" of a true source, i.e., it aims near the true direction.

We call this a coarse DOA estimation, Ωc =
(
θc, φc

)
. We could then beamform around the

area where−I(τ, k) is pointing, i.e., perform spatially constrained beamforming (SCB), and

thus obtain a refined DOA estimation. The beamforming is performed over the spherical

sector defined by −I(τ, k) and a vector of angle distance equal to γb from −I(τ, k) (see also

Fig. 5.9). The DOA,Ωf =
(
θf , φf

)
, is then estimated as the index where the power of the SCB
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gets maximized, i.e.,

Ωf = argmax
ΩS
|p(τ, k, Ωs)|2, (5.13)

where Ωs belongs to the set of points in the spherical sector to be scanned, and p(k,n, Ωs)
is the beamformer’s output for a regular beampattern steered at direction Ωs [98] with

p(τ, k, Ωs) given by

p(τ, k, Ωs) = Y∗(Ωs)s. (5.14)

Y∗(Ωs) and s are estimated using Eqs. (5.4) and (5.6).

Figure 5.9: The gradient green spherical sector defines the beamforming area

Once we have estimated all the refined DOAs in the detected SSZs (first step of DRA-

COSS, see also Section 5.1.1), we proceed with the third and fourth step of the proposed

framework as they were described in Sections 5.1.3 and 5.1.4.

5.3.1 Evaluation

We investigate the performance of the DRACOSS framework using the refined local DOA

estimator by conducting extended simulations and real measurements in reverberant en-

vironments. For the simulations we used the spherical microphone array room impulse

response generator by Jarrett et al [58] (as in Section 5.2) to simulate a room of 5.6× 6.3×
2.7meters in order to agree with the dimensions of the room where we conducted the real

experiments. The angle for the spatially constrained beamforming was set to γb = 10◦ and

the spherical harmonic order was L = 3. The rest of the simulation parameters are the

same as described in Table 5.1.

Results in a simulated environment

In our first set of simulations we investigate the performance of the refined local DOA

estimator (denoted as “IVs+SCB” in the plots) for several angular distances between two

continuously active sources for SNR={10, 15,20}dB and RT60 = 0.4 s in comparison with

the local DOA estimator which relies solely on the intensity vector estimation (denoted

as “IVs” in the plots). We show the results in Figure 5.11. In all examined cases, IVs+SCB



5.3. From intensity vector estimates to spatially constrained beamforming 61

Figure 5.10: 2D histogram for six sound sources with the intensity vector (left), the cor-
responding pseudospectrum for the MUSIC subspace method with direct-
path dominance test (middle) and the 2D histogram for intensity vector +
SCB (right).
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Figure 5.11: MEE versus angular separation between 2 sound sources for RT60 = 0.4 s
and various SNR conditions.

exhibits better performance than the IVs one, for all SNR conditions and angular separa-

tions.

In our second set of simulations we compare the DRACOSS framework with the MUSIC

algorithm as implemented in [82] and denoted as “DPD-MUSIC” (see also Section 2.1.1).

In Figure 5.10 the 2D histograms for the IVs and the IVs+SCB methods and the pseudospec-

trum of the DPD-MUSIC are shown for a case of six simultaneously active sources in a

simulated reverberant environment with RT60 = 0.6 s. The pink markers denote the true

position of the sources. The processing of these representations of 2D estimates is based

on one second history for all three methods assuming a known number of sources and

follows the steps described in Section 5.1.4. Results in different acoustical conditions are

shown in Fig. 5.12, for scenarios involving one, three and six simultaneously active speak-

ers in highly reverberant conditions of RT60 = 0.6 s and SNR={10, 15,20} dB. DPD-MUSIC
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and IVs demonstrate similar performance while IVs+SCB exhibits a clear advantage espe-

cially for higher signal-to-noise ratios.
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Figure 5.12: MEE versus number of sources for RT60 = 0.6 s and various SNR conditions.

Results in a real environment

For the conduction of real experiments we recorded room impulse responses using the

EigenMike [77] spherical microphone array in a reverberant room of the same dimensions

and reverberation time as in the simulations. We show our results in Figure 5.13 at the left

plot, while at the right one we plot a simulated counterpart. DRACOSS with the refined

DOA estimator, IVs+SCB, shows high accuracy for medium and higher SNR conditions

even when six sources are simultaneously active. For lower SNR conditions and as the

number of sources increases the performance degrades as it was expected, following sim-

ilar tendency between the simulated and real results.

5.4 Beamforming in the DRACOSS framework

Steered-response power (SRP) methods for DOA estimation are based on scanning the

sound field with a beamformer. The beamformer is steered in different directions of in-

terest and the output power is then calculated. This signifies the SRP function which

is utilized to identify the DOA of active sources as the indices of the local peaks of the

SRP function. The results of the SRP can be enhanced by applying a phase transform [32].

SRP methods have been proposed for robust real-time applications using a coarse-to-fine

search-grid contraction [21] or stochastic search-grid contraction [35].

Axis-symmetric beamforming in the spherical harmonic domain is performed by sim-
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Figure 5.13: MEE versus number of sources for real RIRs in a room of RT60 = 0.3 s and
various SNR conditions (left) and its simulated counterpart (right).

ply weighting and summing the spherical harmonic signals [97]. The single channel out-

put, i.e., p, of the beamformer is

p(Ωs) = [y(Ωl) � sT]d, (5.15)

where y(Ωl) ∈ C1×(L+1)
2

is a row of the spherical harmonics matrix (Eq. (5.6)), � denotes

the Hadamard product and d is a vector of weights defined as

d = [d0, d1, d1, d1, . . . , dL, dL, dL]T ∈ R(L+1)
2
×1. (5.16)

The power map of a beamformer can be provided by the output of the SRP function,

which is defined as the energy of the beamformer in a grid of directions [57]

P(Ωl) = |p(Ωl)|2, (5.17)

where Ωl = (θl, φl) consists of all the elevation and azimuthal angles of the search grid. A

power map is shown in Fig. 5.14, for six simultaneously active audio sources. The peaks in

the power map indicate the DOAs of the audio sources.

Aiming at enhancing the presence of the DOAs in such 2D representations, we propose

to first obtain single DOAs from power maps at each time-frequency point. That is, we

include the beamforming into the DRACOSS framework by adopting the WDO assumption

[122] as the first DRACOSS step and then we identify the highest peak of the power map as

the DOA of the specific TF point which we define as a local DOA (DRACOSS second step).

By collecting all DOAs from the TF points of interest, we proceed with steps 3 and 4, that is
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Figure 5.14: An SRP map snapshot of a scenario with six simultaneously active sources
in a simulated environment of RT60=0.3 s. The pink markers denote the
actual positions of the audio sources.

Figure 5.15: An SRP histogram for a scenario with six simultaneously active sources
in a simulated environment of RT60=0.3 s. The pink markers denote the
actual positions of the audio sources.

we form 2D histograms which we process and infer the azimuthal and elevation angles of

multiple sources, assuming their number to be known a priori. In Figure 5.15 we can see

such a 2D histogram which corresponds to the same scenario as in Figure 5.14. Comparing

the two representations, the advantage of the DRACOSS framework is already clear. We

will show this positive effect reflected also at the evaluation results in Section 5.4.2. In the

following section we present the formulation of four beamformers which we have used as

local DOA estimators in the DRACOSS framework step 2.
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5.4.1 Rotationally-symmetric beamformers

The types of axis-symmetric beamformers utilized in DRACOSS for local DOA estimation

are:

• A regular beamformer, dr, with unity gains [97]

dr(l) = 1, ∀l = [0, . . . ,L]. (5.18)

• A minimum-sidelobe beamformer, dms, [26]. It smooths the sidelobes of the regular

beamformer and provides complete sidelobe suppression with the cost of a wider

main lobe. The weights are given by

dms(l) = g0
Γ(L+ 1)Γ(L+ 2)

Γ(L+ 1 + l)Γ(L+ 2 + l)
, (5.19)

where Γ is the gamma function, and g0 =
√
(2L+1)
(L+1)2 .

• A maximum-energy beamformer, dmaxE, that maximizes the energy concentration

towards the look direction [14, 125]

dmaxE(l) = CPl(E), (5.20)

wherePl(E) is the lth Legendre polynomial,E the largest root of PL+1 and C a normal-

ization constant [27].

• A Dolph-Chebyshev beamformer

ddc =
2π
R
PACTx0, (5.21)

whereP,A,C,T ∈ R(L+1)×(L+1), x0 ∈ R(L+1)×1 andRare defined as in [97] in (6.66-6.71).

The elements of the vector ddc are re-arranged so that they match (Eq. (5.16)), where

the same weight is applied to the spherical harmonic signals of the same order.

The directivity patterns of the aforementioned beamformers are shown in Fig. 5.16. The

input parameters of the Dolph-Chebyshev beamformer were: R = 10λ/20 with λ = 30dB.

5.4.2 Evaluation

The evaluation of DRACOSS with beamforming-based local DOA estimators is conducted

with numerical simulation and real measurements in reverberant environments. We again

use the MEE as a performance measure (see also Eq. (5.2)). The scanning area for the
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Figure 5.16: Directivity patterns of the axis-symmetric beamformers: regular (top
left), minimum sidelobes (top right), maximum energy (bottom left) and
Dolph-Chebyshev (bottom right).

beamformers comprises a set of 1002 points on a sphere. The distribution of the points is

defined from a geodesic sphere constructed from an icosahedron with an iterative process

[52]. The rest of the simulation and real experiments parameters are as those in Section

5.3.1. We note that the DOA estimation results for the four axis-symmetric beamformers

(see also Section 5.4.1) that we present hereafter are solely from the proposed 2D DOA

histograms processing. Due to the energy spread of the beamformers, obtaining multiple

sources DOA estimates directly from the power maps (see Figure 5.14) had a significant

error and was considered very inaccurate [36].

DOA results with simulated room impulse responses

In our first set of simulations, shown in Fig. 5.17, we plot the MEE versus the number of

active sources in a simulated reverberant environment of RT60=0.6 s for SNR={0, 10,20}
dB for the four different types of beamformers of Section 5.4.1. We notice that all four

beamformers provide very good results for medium and high SNR conditions even when

the number of active sources increases. However, their performance degrades as the SNR

decreases with the minimum-sidelobe beamformer exhibiting the best performance.

DOA results with measured room impulse responses

The real measurements were performed by recording RIRs with the EigenMike [77] in a

listening room with approximately the same dimensions as in the numerical simulations.
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Figure 5.17: MEE versus number of sources for RT60 = 0.6 s and various SNR condi-
tions for four types of axis-symmetric beamformers.

The reverberation time in the recording room was approximately equal to RT60=0.3 sec.

We show our first set of results in Figure 5.18 at the left plot, while at the right we plot a

simulated counterpart. The SNR for both environments was at 45 dB. The performance

of all beamformers is very good - the MEE is below three degrees in all cases - following

similar tendency between the simulated and real results.
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Figure 5.18: MEE versus number of sources for RT60 = 0.3 s for (a) real and (b) simu-
lated measurements.

5.5 MUSIC in the DRACOSS framework

Apart from beamforming, a very popular algorithm for multiple source localization is the

MUSIC algorithm, which has been recently formulated in the spherical harmonic domain

[82] as we have previously mentioned in Sections 2.1.1 and 5.3.1 where we compared the

DRACOSS framework with IVs and IVs+SCB as local DOA estimators with the MUSIC-DPD
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(a) (b)

Figure 5.19: 5.19a A MUSIC-DPD pseudospectrum and 5.19b a MUSIC-DPD his-
togram for a scenario with six simultaneously active sources at a simulated
environment of RT60=0.3 s. The pink markers denote the actual positions
of the audio sources.

formulation. As a reminder, in MUSIC-DPD [82] the authors propose to estimate the nar-

rowband MUSIC pseudospectrum only in TF points that are identified as dominated by a

single source using the direct-path dominance (DPD) test. In the aforementioned imple-

mentation of MUSIC-DPD algorithm, the selected incoherent narrowband pseudospectra

are averaged to provide one pseudospectrum, the local peaks of which reveal the DOAs of

the active sources.

Our work on 2D histograms of local DOAs motivated us to modify the MUSIC-DPD al-

gorithm by incorporating it in the DRACOSS framework, aiming at improving its accuracy

in localizing multiple sources. We, thus, propose to estimate a local DOA as the index of

the highest peak of each narrowband pseudospectrum (step 2 of DRACOSS) at TF points

approved by the DPD test (which now acts as step 1 of DRACOSS). All the local DOAs for a

block ofNT consecutive time frames are then provided as input to the 2D histogram forma-

tion and processing steps of the proposed framework (see also Sections 5.1.3 and 5.1.4). In

Fig. 5.19a we show an example of the MUSIC pseudospectrum as in [82] and in Fig. 5.19b

the proposed MUSIC 2D histogram.

5.5.1 Evaluation

As for the previous DRACOSS setups, the evaluation of the DRACOSS-MUSIC was con-

ducted with simulations and measurements in a real environments. Apart from other pa-

rameters that remain as in Section 5.3.1, the scanning area for the MUSIC pseudospectra

comprises a set of 1002 points on a sphere with a distribution defined from a geodesic

sphere constructed from an icosahedron with an iterative process [52]. The windows used

at the histograms processing had std equal to σA = 5◦ and σC = 20◦. We have utilized

speech files of duration approximately 7 seconds, with any silent periods removed. The
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2D histograms and the MUSIC pseudospectra have resulted from 1 second of data, i.e.,

NT = 46 frames.

DOA results with simulated room impulse responses

In Fig. 5.20 we explore the performance of the MUSIC algorithm when the DOA results

from the averaged 2D pseudospectra, denoted as “MUSIC-SH DPD-incoh", and when it

results from the 2D histograms, denoted as “MUSIC-SH DPD-2Dhist". It is clear that for

high and moderate SNR values the proposed 2D histogram based processing exhibits an

advantage versus the averaged pseudospectra approach. In low SNR conditions both ap-

proaches fail to provide a reasonable MEE especially when the number of active sources

is increased.
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Figure 5.20: MEE versus number of sources for RT60 = 0.6 s and various SNR condi-
tions for two approaches of the MUSIC-DPD algorithm.

We show the performance of the two MUSIC-DPD approaches along with the beam-

formers presented in Section 5.4 for various angular separation values between two sources

in a reverberant environment of RT60=0.4 sec and SNR=20 dB in Figure 5.21. All four beam-

formers as well as the MUSIC-SH DPD-2Dhist show very low MEE for all angular separa-

tions. As expected, when the sources get closer the MEE is higher but still in a very rea-

sonable range of values except for the MUSIC-SH DPD-incoh which exhibits the highest

error.

DOA results with measured room impulse responses

In our set of results with real RIRs we demonstrate the performance of the MUSIC-SH DPD-

incoh and MUSIC-SH DPD-2Dhist approaches in Fig. 5.22 at the left plot with a simulated
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Figure 5.21: MEE vs angular separation for RT60 = 0.4 s and SNR=20 dB.

counterpart at the right side of the figure, also at SNR=45 dB. The MUSIC-SH DPD-2Dhist

approach outperforms the MUSIC-SH DPD-incoh for all tested number of sources.
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Figure 5.22: MEE versus number of sources for RT60 = 0.3 s for (a) real and (b) simu-
lated measurements.

5.6 Counting with neural networks

In Chapter 4 we showed how we can post-process the one-dimensional histograms and

estimate simultaneously not only the DOAs, but also the number of simultaneously active

sources. We could follow an approach in the same spirit for the 2D histograms, but this

would entail the decision of a vector of thresholds to account for the contribution of each

source at the 2D histogram (see Section 4.1.4). Instead, we decided to follow a different

approach inspired by the recent, ever-rising popularity of neural networks.
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If we observe an adequate amount of 2D histograms such as those in Figures 5.4, 5.15,

and 5.19b, we soon get the impression that the human eye gets trained and can easily iden-

tify the number of highlighted areas in the histogram, and consequently the number of ac-

tive sources. This observation along with available, easy-to-use, powerful software tools,

inspired us to to build and train a neural network (NN), where as training data we provide

2D histograms and as the outcome we get the number of active sources in the histogram.

We have to note here that we do not aim in developing a novel neural network architec-

ture. We instead treat the NN field as a black box and use already developed and mature

libraries, freely available, such as the Theano framework [116] in order to experiment with

different parameterizations and end-up with an efficient NN architecture.

With this in mind, we treated the 2D histograms as greyscale images and as proposed

in the literature decided to focus on training a convolutional neural network (CNN). The

concept of this idea is depicted in Figure 5.23.

Convolutional Neural Network 

number of sources

Figure 5.23: Counting using CNNs trained with 2D histograms.

5.6.1 Implementation specifics

For the implementation of our NN we have used the Keras library [20] with Theano back-

end [116]. We trained a convolution neural network which consists of two 2D-convolutional
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layers, one LSTM layer and one Dense layer at the output. The first two convolutional lay-

ers produced six output filters and the convolution window was of size 30×30 for the first

layer and 10× 10 for the second layer. The dimensionality of the output of the LSTM layer

was equal to 5. In order to avoid overfitting we have used a maxpooling layer followed by

two dropout layers after the convolutional layers and before the LSTM one.

Although this architecture gave very promising results, as shown in Section 5.6.2, we

have to note that most of our decisions are based on intuition and through a trial-and-

error process. The interested reader may acquire more information from [20, 51, 89] and

the references within.

5.6.2 Evaluation

We fed our CNN with 180000 histograms as training data. In this amount of data we find

2D histograms corresponding to one up to six simultaneously active sources and 18000

different arrangements of the sources around the spherical microphone array—3000 for

each different number of sources. The validation set consisted of 18000 histograms and

the test set includes 6000 histograms of new arrangements of the sources around the array.

All used histograms were generated using the DRACOSS framework as described in

Section 5.3 and with the parameterization as described in Section 5.3.1 assuming noiseless

and free field conditions. We show the counting results in the form of a confusion matrix in

Table 5.2. The network exhibits a robust performance for all different number of sources.

The accuracy in counting is very high when the number of sources is moderate to low,

while it gets unstable when five or six sources are involved, still though with high accuracy.

The overall accuracy of the trained NN reached as high as 88.9%.

Table 5.2: Confusion matrix

N̂S

1 2 3 4 5 6

NS

1 100% 0% 0% 0% 0% 0%
2 4.3% 94.6% 1.1% 0% 0% 0%
3 0% 1.4% 89.6% 9% 0% 0%
4 0% 0% 2.7% 82.8% 14.5% 0%
5 0% 0% 0% 8.4% 76.1% 15.5%
6 0% 0% 0% 1% 8.6% 90.4%

The results we achieve with the specific CNN and the specific training data set are lim-

ited by the simulated noiseless and free field conditions. In future experiments we intent

to further investigate the performance and suitability of a CNN for counting purposes with



5.6. Counting with neural networks 73

various noise and reverberation conditions and with a wider collection of NN architectures

in order to achieve high accuracy and stability results regardless of the simulation or real

experiment conditions.



74



Chapter 6

Applications and DRACOSS elements in
neighboring problems

DRACOSS is a framework which has been evolving in parallel with other, interesting prob-

lems of the audio signal processing area. Since the DOA estimation is a significant infor-

mation to a wide range of applications, we have exploited the proposed framework and

its features to a number of related problems. This chapter describes the contribution of

DRACOSS in neighboring problems and related works.

6.1 Localization of sound sources with wireless acoustic sensor
networks

In [42, 43] we proposed a method for multiple sound source exact location estimation uti-

lizing a wireless acoustic sensor network (WASN), comprised by four uniform circular ar-

rays. Each array was a four microphones UCA of radius equal to ra = 0.02m, placed on

the corners of a square-shaped area.

The proposed localization method relies on the estimation of the DOAs of each mi-

crophone array, separately, and for this purpose the DRACOSS framework was used, as

developed in the 2D-space. The accuracy of the localization relies heavily on the DOA

estimation accuracy. Moreover, since it was observed that when two sources are close to-

gether, an array may only detect one source, and thus sequentially affect the performance

of the exact location estimation algorithm, in this work we extensively studied the DOA

estimation error for the UCAs used in the WASN algorithm. The DOA estimation error at

each node of the WASN was assumed to be normally distributed with a zero mean and a

variance that was assumed to be dependent only upon the SNR at each sensor, which was

in turn determined by the length of the path from the source to the sensor. We assumed

an anechoic environment and simulated a speech source (male speaker) contaminated

by white Gaussian noise at various SNR cases ranging from 5 dB to 20 dB. The noise at

each microphone was uncorrelated with the speech source and with the noise at all the

75
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other microphones. For each signal-to-noise ratio, the simulation was repeated with the

source rotated in 1◦ increments around the array to avoid any orientation biasing effects.

Figure 6.1 shows the standard deviations obtained when the DOA estimation error at each

SNR was fitted with a Gaussian distribution. The fitted curve in figure 6.1 is given by:

std(SNR) = 1.979e−0.2815(SNR) + 1.884 (6.1)

Figure 6.1: Modeling the effect of SNR on DOA estimation error standard deviation
for a circular microphone array.

Since the proposed localization algorithm deals with multiple sources, it was also im-

portant to study the effect on DOA estimation when two sources were simultaneously ac-

tive and close to each other, specifically when they were within the MASS, i.e., the min-

imum angular source separation of the UCA. Recall that for the 8-microphones circular

array we have deployed for the development of DRACOSS in 2D-spaces, the MASS was es-

timated roughly to 25◦ (see also Figure 4.5). We performed a simulation study where two

speech sources (one male, one female) were set at various separations of up to 20◦ and

the energy of the second source was incrementally decreased so the signal-to-interferer

ratio (SIR) seen by the first source varied from 0 dB to 20 dB. These simulations were then

repeated with the sources being rotated around the array in 1◦ increments—while preserv-

ing their angular separation—to avoid any orientation biasing effects. In all simulations

only one source was detected. Figure 6.2 shows the results of these simulations, where the

DOA offset has been normalized by the separation between the sources. The fitted curve

of the normalized DOA estimate, DOAn (Figure 6.2) is given by:

DOAn(SIR) = 0.5e−0.12987(SNR) (6.2)
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Figure 6.2: Modeling the effect of MASS and SIR on DOA estimation error for a circu-
lar microphone array.

6.2 ImmACS: an immersive audio communication system

ImmACS is an immersive audio communication system which performs real-time and effi-

cient localization, coding, and reproduction of multiple sound sources and was developed

by the SPL audio group at FORTH-ICS [110]. The system aims at performing real-time, ac-

curate, and robust sound localization of multiple concurrent sources, indoors or outdoors,

low-bitrate transmission of the original sound field, and interactive reproduction using a

GUI where the user can enhance/isolate the sound(s) of his/her interest.

The DOA estimation algorithm we have used in ImmACS is DRACOSS as developed

in 2D spaces, utilizing an 8-microphone UCA. ImmACS — and consequently DRACOSS —

was demonstrated in real-time operation in the international conference ICASSP 2016 [75]

utilizing an 8-microphone MEMS UCA. The system’s operation and a comparison between

an analog UCA and a digital MEMS counterpart (shown in Figure 6.3) was investigated

in [3]. Our digital array was equipped with eight InvenSense ICS-43432 [76] digital MEMS

bottom port microphones in a uniform circular arrangement. Its diameter was 0.06m,

measured from the microphone ports, while the whole board’s diameter was 0.067m. Our

analog array was of the same geometry (8-microphones circular array with 0.03m radius)

comprised of Shure SM93 omnidirectional microphones [107].

The experiment we performed included three different types of recordings, a 10- sec-

ond rock music recording with one male singer at 0◦ and four instruments at 45◦, 90◦,
270◦, and 315◦, which is publicly available from the band “Nine Inch Nails", a 15-second

classical music recording with four sources at 0◦, 45◦, 90◦, and 270◦, which is available

from [90] and a 10-second speech recording with three speakers, where two speakers (one

male at 225◦, one female at 45◦) are continuously and simultaneously active from the
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Figure 6.3: The analog microphone array (at the left) with its digital MEMS micro-
phones counterpart (at the right).

beginning and a third speaker (female at 135◦) starts speaking at the third second and

remains active thereafter, resulting in three simultaneously active sound sources. The

recordings were multi-track (each source on a separate track) and included both impulsive

and non-impulsive sounds. Each source signal (track) was reproduced by a loudspeaker

(Genelec 8050) located at the aforementioned directions at 2.10m distance from the cen-

ter of the array. The separate tracks were reproduced simultaneously and captured from

each of the two aforementioned arrays. The sampling frequency for both arrays was set

to 48 kHz. The recordings took place in a listening room, located at FORTH-ICS, which

follows the ITU-R BS.1116 recommendation [56]. The reverberation time of the room was

measured to be RT60 = 0.27 s. The DRACOSS performance is shown in Figure 6.4 which

plots the DOA estimates obtained at each time frame, for all recordings, using the analog

(top row) and the digital (bottom row) array. The signal of each source is plotted at its

corresponding direction and the DOA estimates are overlayed on top. We observed consis-

tent and smooth DOA estimates, especially for the speech and classical music recording.

Some spurious estimates were evident in the classical recording which occurred due to the

overestimation of the number of sources at these frames. A performance degradation is

observed for the rock music recording, where the sources at 90◦, 270◦, and 315◦ failed to

be estimated for short periods of time due to the challenging setup in terms of the number
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of sources and their angular separation. Comparing the DOA estimation results between

the two arrays, we can observe that the performance of the digital array is very similar to

the analog array for all three recordings.

Figure 6.4: DOA estimates using the analog array signals (top row) and the digital ar-
ray signals (bottom row).

6.3 MusiNet: a system for efficient networked music performance

MusiNet was a research project aiming to provide a comprehensive architecture and a pro-

totype implementation of a complete networked music performance (NMP) system [81].

Such systems allow geographically distributed musicians to collaborate, or even perform

a live concert, via computer networks. For the recording and reproduction of the inter-

acting venues we proposed the use of spatial audio techniques, aiming at rendering the

spatial attributes of each audio scene along with the audio data, thus achieving a more

realistic audio impression as depicted in Figure 6.5. For this purpose we adopted ImmACS

(Section 6.2) for spatial audio attributes estimation and spatial audio reproduction, re-

spectively. Thus, DRACOSS, as an essential part of the ImmACS system, was used in the

MusiNet project for acquiring the number and DOAs of involved musicians in a participat-

ing NMP venue.



80 Chapter 6. Applications and DRACOSS elements in neighboring problems

Figure 6.5: Spatial audio recording and reproduction in MusiNet

Figure 6.6: DOA estimation result with coherent sources when two and three sources
are active with (a)-(b) the AIV estimator, and (c)-(d) the SCAIV estimator.
The gray region in the plots indicates the analysis area.

6.4 Spatially constrained active intensity vectors for DOA estima-
tion of coherent sources

In [29] we proposed a method suitable for DOA estimation of coherent sources, simultane-

ously active on the same plane. The method is based on the formulation of a higher-order
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intensity vector estimator on spatially constrained regions of the plane which we have

called SCAIV. SCAIV aims to overcome the weaknesses of first-order active intensity vec-

tor estimators. The local DOA estimates provided by SCAIV are then fed in a block-based

manner to 1D histograms which reveal the final DOAs of the sources, by adopting the logic

of steps 3 and 4 of DRACOSS for two-dimensional spaces. The advantages of SCAIV versus

the first-order active intesity vector (AIV) are highlighted in Figure 6.6 where it is obvious

that AIV fails completely at estimating the DOA of coherent sources.

6.5 Perpendicular cross-spectral fusion for sound source local-
ization

We used ideas of the DRACOSS framework in our recent work on a new DOA estimation al-

gorithm for small planar arrays, presented in [111]. The algorithm depends on the perpen-

dicular cross-spectra fusion (PCSF) of DOA estimates from estimation subsystems which

operate on each TF bin in parallel and on a coherence metric which decides upon the relia-

bility of the TF bin and consequently on the quality of the local DOA estimate. The final set

of local DOA estimates in provided as input to 2D DRACOSS steps 3 and 4 in order to form

the one-dimensional histogram and post-process it to infer the number of the sources and

their final DOAs.

PCSF achieves significant improvements in terms of the histograms’ quality which is

reflected to the MAEE as can be shown in Figures 6.7 and 6.8. The method was compared

against intensity-based DOA estimation as the one used in the DirAC framework [95] (de-

noted as DIRAC in the figures) and the method in [60] (denoted as CICS in the figures, see

also 4.1.2) as alternative local DOA estimators (DRACOSS second step) utilizing a 4 micro-

phones UCA of radius equal to 0.02m. However we have to note that this improvement

comes with a cost at the computational complexity. Moreover the algorithm demands the

existence of specific direction microphone pairs in order to ensure the presence of the

DOA subsystems and consequently its functional behavior.



82 Chapter 6. Applications and DRACOSS elements in neighboring problems

Figure 6.7: Histograms with DOAs obtained from (a) PCSF, (b) DIRAC, and (c) CICS.
Results are shown for a simulated reverberant environment ofRT60 = 0.3 s
with three simultaneously active sources at −115◦, 60◦ and 90◦.

Figure 6.8: MAEE for two sources in a simulated environment as a function of the
angular distance between the sources. Results are shown at 10 dB SNR for
(a) RT60 = 0.2 s, (b) RT60 = 0.4 s.



Chapter 7

Conclusion

7.1 Synopsis of Contributions

This thesis presented DRACOSS, an integrated framework for direction of arrival estima-

tion and counting of multiple sound sources. DRACOSS is comprised by four distinct

steps, namely the exploitation of sparsity of the sound signals and the detection of areas of

single source activity at the chosen transformation domain, the estimation of local DOAs

at the detected areas, the formation of histograms of local DOA estimates and the post-

processing of histograms in order to obtain the final DOA estimation and counting results.

DRACOSS was developed both in 2D and 3D spaces. In the first case the framework

estimates the azimuth of the active audio sources and utilizes a uniform circular array.

In the second case both the azimuth and the elevation are estimated, using an almost

uniform spherical array. For both spaces we utilized a sparsity criterion based on the auto-

and cross-correlations among pairs of microphone signals. For the 2D space the local

DOA estimator was one specifically designed for UCA arrays while for the 3D space the

DOA estimation was based on intensity vector estimates. The histograms in both spaces

were smoothed in order to highlight the presence of the sources and were post-processed

through an iterative procedure which led to the final DOA estimation and counting. For

the 3D case the smoothed histograms were also fed to a convolutional neural network

which provided very promising results in terms of counting.

DRACOSS was evaluated in a wide range of conditions, for varying number of sources,

different levels of noise and reverberation and in comparison with other state-of-the-art

methods. It showed very robust performance in terms of the mean absolute estimation

error even when as many as six sources were simultaneously active. The framework out-

performed known DOA methods of the literature, such as the MUSIC algorithm, while it

presented excellent counting results, outperforming other known counting approaches.

DRACOSS can operate with any topology of a compact microphone array, e.g., with lin-

ear, circular, cylindrical, spherical arrays, given that an appropriate local DOA estimator

is chosen. Most importantly, it was shown that the performance of state-of-the-art DOA

algorithms was significantly improved when they were adjusted in the DRACOSS frame-

83
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work. Another beneficial characteristic of the framework is the distinct and independent

nature of the four fundamental DRACOSS blocks which provides increased degrees of free-

dom to the audio engineer, such that she/he can modify the framework in order to fit best

a potential application’s needs. An additional significant benefit of DRACOSS is its low

computational cost, which allowed the implementation and operation of the framework

in real time.

7.2 Directions for Future Work and Research

Since DRACOSS is a four-step framework, decisions need to be made upon each step, thus

a wide range of combinations exist, given these decisions. Thus, further work on examin-

ing all possible combinations at each step will reveal the full potential of the framework.

Having examined thus far the MCC, WDO, and DPD sparsity criteria in varying scenarios

and with different local DOA estimators, a structured and controlled comparison between

the criteria could reveal the best candidate. The same holds for the local DOA estimators,

i.e., an extensive comparison should be performed between the intensity vector estima-

tor and the beamforming and the MUSIC-based estimators, along with comparative tests

with other proposed estimators in the literature.

Using neural networks in the DRACOSS framework is a very recent idea which needs to

be further explored. The first counting results with CNNs showed very promising perfor-

mance, however additional CNNs-based architectures with data from adverse noise and

reverberation conditions need to be examined. Furthermore we intent to investigate the

possibility of using neural networks not only for counting but also for infering the DOAs

from the histograms and not only for the 3D case but also for 2D spaces.

So far we have successfully implemented and demonstrated the real-time operation of

the DRACOSS framework in the ImmACS system using both an analog and a digital MEMS

circular microphone array. Our intention is to try and implement the 3D development

of DRACOSS in real-time and built a digital spherical microphone array with more micro-

phones, thus increased analysis capabilities.
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Systems

DRACOSS, as developed for 2D spaces is a fundamental part of the ImmACS [110] system

which was demonstrated in the international conference ICASSP 2016, operating in real

time.



Appendix B

Microphone arrays, theorems, and as-
sumptions

B.0.1 Microphone arrays geometries

A microphone array consists of multiple microphones placed at different spatial locations

in a way that the spatial information is well captured [13]. Literature review unearths a

wide variety of geometries, i.e., in the 2D space we see linear, triangular, circular or planar

arrays of random positioning of the microphones, in the 3D space, spherical, cubic or

cylindrical microphone arrays.

Figure B.1: A linear array comprised by 7 MEMS digital microphones built at the Na-
tional Technical University of Athens (image taken from [108]).

Depending on the nature of the application, the geometry of the microphone array

may play an important role in the formulation of the processing algorithms. For exam-

ple linear arrays have been widely used because of the simplicity they provide and their

convenient positioning due to their design. On the other hand this geometry suffers from

the ambiguity of distinguishing the rear-front direction of a propagating source. Circular

arrays can tackle the aforementioned ambiguity, hence they can be considered as the dom-
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Figure B.2: Two UCAs comprised by 8 analog (left) and 8 MEMS digital (right) micro-
phones, both built at FORTH-ICS [3].

Figure B.3: The Eigenmike comprised by 32 microphones, nearly uniformly placed on
the surface of a 4.2cm-radius sphere [77].

inant array geometry in 2D spaces. In the 3D space interesting structures have appeared

the recent years with the most dominant one being the sphere. Microphones mounted on

cylinders have also been popular in the research community.

In Figures B.1, B.2, B.3, B.4 we show pictures of a linear, a circular, a spherical and a

cylindrical array that are currently prototypes, built in educational institutions or are al-
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Figure B.4: A six-element array configuration mounted on a rigid cylinder, built at
Aalto University [28].

ready commercial products (in the case of the Eigenmike).

B.0.2 Far-field assumption

In all simulations and experiments it is assumed that the sources lie in the far-field of the

microphone, that is they are far enough from the center of the array so that the micro-

phones receive planar wavefronts from the emitting source. More formally, a source lies

in the far-field (or Fraunhofer) region of a microphone array if the following condition,

known as the “antenna designer’s formula", is satisfied [40]:

rs >
2d2a
λmin

. (B.1)

Thus,

rs >
2d2a fmax

c
, (B.2)

where rs is the distance from the source to the center of the array, da is the largest linear

dimension of the array, c is the speed of sound, λmin is the source’s signal minimum wave-

length and consequently fmax is the maximum frequency. Obviously, if the above condition

is not satisfied, (i.e., rs ≤
2d2a fmax

c
), then the source is located in the near-field.

If the source(s) lie in the near-field of the array, then the wave-fronts impinging on the
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microphone are spherical and the signal’s propagation vector (i.e., the signal’s direction

of propagation relative to the adopted coordinate system) varies across the array. On the

other hand, if the source(s) lies in the far-field of the array, then the wave-fronts are planar

and this vector is the same across all microphones of the array, independently of their

location. The above is illustrated in Figure B.5.

Figure B.5: The near (left) and far (right) field cases for a uniform linear array.

B.0.3 Mean correlation coefficient theorem

For completeness of the text and for the convenience of the reader, we here quote the

theorem used for the detection of SSZs. All material was originally presented in [94].

Initial assumption: when several sources are active in the same analysis zone (K), they

should vary so that the moduli of at least two observations are linearly independent

Theorem.A necessary and sufficient condition for a source to be isolated in an analysis zone

(K) is

r
′

i,j(K) = 1 ∀i, j ∈ {1, . . . ,Q}. (B.3)

Proof. Suppose that r′
i,j(K) = 1, ∀i, j ∈ {1, . . . ,Q} in a constant time analysis zone (τ,K).

We have to prove that in that case only one source is active in that zone. We consider the

moduli of the observationsXi(τ, k) as vectors of dimensionK:

V|xi| =
[
|Xi(τ, k1)|, |Xi(τ, k2)|, . . . , , |Xi(τ, kK)|

]
(B.4)

Using this notation the correlation coefficient, r′
i,j(K), can be rewritten as:

r
′

i,j(K) =
〈V|xi|,V|xj|〉

‖V|xi|‖ · ‖V|xj|‖
(B.5)



105

Applying the Cauchy-Schwarz inequality to the eq. (B.5) we obtain:

r
′

i,j(K) ≤ 1 (B.6)

The equality holds if and only if the vectorsV|xi| andV|xj| are linearly dependent, i.e., if and

only if there exists a real positive number μ such that:

V|xi| = μV|xj| (B.7)

This would mean that ∀k ∈ K it should hold that:

|Xi(τ, k)| = μ|Xj(τ, k)|, ∀i, j (B.8)

But this is not possible when more that one sources are active, because of the initial as-

sumption that states that when several sources are active in the same zone, then the mod-

uli of at least two observations are linearly independent.
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Spherical harmonic domain analysis

The local DOA estimator used in 3D DRACOSS development was based on the estimation

of the intensity vector using the spherical harmonic transform (SHT) of the acquired sig-

nal. Thus, in this section we provide basic theoretic elements of the spherical harmonic

domain analysis field in order to facilitate the potential reader and also provide complete-

ness to the text. Most of the presented material is taken from the textbooks on spherical

harmonic analysis of B. Rafaely [97] and H. Teutch [114], thus for an in depth discussion

please refer to the aforementioned books.

C.1 The acoustic wave equation

The acoustic wave equation in spherical coordinates is formulated as [114]:

∇
2
rp(r, t) −

1
c2

∂2

∂t2
p(r, t) = 0, (C.1)

where p(r, t) expresses the sound pressure as a function of time (t) and space (r) and c

is the speed of sound. The position vector r is defined as r = (
r, θ, φ

)
in the spherical

coordinate system with r being the radial distance from the origin, θ denotes the elevation

angle, measured from the z-axis downwards, θ ∈ [0, π] and φ denotes the azimuthal angle,

measured from the x-axis towards the y-axis and defined in [0,2π) (see also Fig. C.1).

Considering steady-state conditions, by applying the temporal Fourier transform to

Eq. (C.1), the homogeneous Helmholtz equation is obtained in spherical coordinates:

∇
2
rp(k, r) + k2p(k, r) = 0, (C.2)

where k = ω/ c denotes the wavenumber and ω is the temporal radial frequency.

The inhomogeneous Helmholtz equation for a point source at r0 and an observation

point at r is then

∇
2
rp(k, r|r0) + k2p(k, r|r0) = −δ(r − r0), (C.3)
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where δ(r − r0) denotes a three-dimensional Dirac delta function, representing a point

source located at r0.

Solutions to the homogeneous and inhomogeneous Helmholtz equations can be for-

mulated with Bessel and Hankel functions (Section C.4) and combinations of them. Spe-

cific solutions in the case of a sound-filed comprised by plane waves are presented in Sec-

tion C.5.

z

y

x

Figure C.1: The spherical coordinate system in relation with the standard Cartesian
coordinate system.

C.2 Spherical Fourier transform

Consider a square integrable function f (θ, φ) on the unit sphere. The function f (θ, φ) can

be represented as a infinite weighted summation of spherical harmonic functions (Sec-

tion C.3) as:

f (θ, φ) =
∞∑
n=0

n∑
m=−l
flmY

lm(θ, φ). (C.4)

The terms flm are the weights and they represent the spherical Fourier transform (SFT)

coefficients for the function f (θ, φ). The inverse of the SFT, i.e., the formula for the estima-

tion of the weights flm, is:

flm =
∫ 2π

0

∫ π

0
f (θ, φ)

[
Ylm(θ, φ)

]∗ sin θdθdφ. (C.5)
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Figure C.2: Balloon plots of the imaginary (left) and real (right) parts of the spherical
harmonic functions up to fourth order [97].

The basis functions for the SFT are the spherical harmonic functions. This is why the

SFT is also referred as spherical harmonic transform (SHT).

C.3 Spherical Harmonic functions

The spherical harmonic functions (SHFs) are defined as:

Ylm(θ, φ) ≡

√
2l + 1
4π
(l −m)!
(l +m)!

Plm(cos θ)eimφ, (C.6)

where ldenotes the order andmdenotes the degree, with−l ≤ m ≤ l,Plm(·) is the associated

Legendre function and (·)! denotes the factorial function. Fig. C.2 shows the imaginary

(left side) and the real (right side) parts of the SHFs for orders up to l = 4.

Some important and frequently used properties of the SHFs are:

• Orthogonality of the spherical harmonics: The spherical harmonic functions are or-

thogonal over the sphere surface, i.e.,

∫ 2π

0

∫ π

0
[Ylm(θ, φ)]∗Yl′m′(θ, φ) sin(θ)dθdφ = δ(l − l′)δ(m −m′), (C.7)

where δ(·) is the Kronecker delta function.
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• The completeness of the spherical harmonics: According to the completeness prop-

erty

∞∑
l=0

n∑
m=−l

[
Ylm(θ, φ)

]∗
Ylm(θ′, φ′) = δ(cos θ − cos θ′)δ(φ − φ′), (C.8)

where δ(cos θ − cos θ′)δ(φ − φ′) is the Kronecker delta function on the sphere.

• The spherical harmonics addition theorem: The addition theorem relates to the com-

pleteness theorem and it is formulated as:

n∑
m=−l

[
Ylm(θ, φ)

]∗
Ylm(θ′, φ′) =

2l + 1
4π Pl(cosΘ), (C.9)

where Θ is the angle between (θ, φ) and (θ′, φ′)

C.4 Spherical Bessel and Hankel functions

Spherical Bessel functions, along with spherical Neumann functions and spherical Hankel

functions, are solutions to the differential equation

z
2 ∂
2w

∂z2
+ 2z∂w

∂z
+

(
z
2
− l(l + 1)

)
w = 0. (C.10)

Spherical Bessel functions and spherical Hankel functions are met in the sound pres-

sure expansion expression (presented later in Eqs. (C.16) and (C.20)). Thus, it is of our

interest to observe their behavior in Figs. C.3 and C.4, where we can see that the Bessel

functions exhibit several nulling points, in contrast with the Hankel functions which di-

verge towards the origin and decay similarly for all orders l as x increases.

C.5 Plane wave decomposition

Since our interest focuses on far-field conditions, our focus is on plane waves instead of

point sources. A unit-amplitude plane wave can be considered as a point source at infinity,

that is, |r0| → ∞. Taken this into account, a solution to the inhomogeneous Helmholtz

equation (Eq. (1.3)) is formulated as:

p(k, r|r0) =
eikr0

r0
e
−ik, (C.11)

where

k = 2π
λ

[
sin θ cosφ sin θ sinφ cos θ

]
(C.12)
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Figure C.3: Magnitude of the spherical Bessel function |jl(x)| for orders l = 0, 1, . . . ,6 [97].

Figure C.4: Magnitude of the spherical Hankel function |hl(x)| for orders l = 0, 1, . . . ,6
[97].

is the wavenumber vector which indicates the speed and direction of the wave propaga-

tion.

The solution can be expanded into spherical harmonic and spherical Bessel functions
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as:

p(k, r, θ, φ) = e−ikTr =
∞∑
n=0

l∑
m=−l
4πiljl(kr)Ylm(θ0, φ0)∗Ylm

(
θ, φ

)
, (C.13)

where i2 = −1, (·)∗ stands for the conjugation operation, θ0 and φ0 denote the elevation

and azimuth angle of the origin of the plane wave respectively (see also Fig. C.1), jn(·) is

the spherical Bessel function of order l (Section C.4) and Ylm(θ, φ) denotes the spherical

harmonic function of order l and degreemwith l ≥ m (see Section C.3).

Taking the SFT of the left-hand side of Eq. (C.13) we get (see also Eq. (C.4))

p(k, r, θ, φ) =
∞∑
l=0

l∑
m=−l
plmYlm

(
θ, φ

)
, (C.14)

and by comparing Eqs. (1.14) and (C.13) we find the spherical harmonic coefficients plm of

a single amplitude plane wave as:

plm = 4πiljl(kr)Ylm(θ0, φ0)∗. (C.15)

When the sound field is composed by multiple plane waves of direction amplitude

density a(k, θk, φk), the sound pressure is analyzed as:

p(k, r, θ, φ) =
∞∑
l=0

n∑
m=−l
4πiljl(kr)almYlm

(
θ, φ

)
, (C.16)

and analogously to the single plane wave, by evaluating the sound pressure on the surface

of a sphere we take its SFT as

plm = 4πiljl(kr)alm, (C.17)

where alm are the spherical Fourier coefficients of a(k, θk, φk).

C.5.1 Soundfield decomposition around a rigid scatterer

In the preceding sections we referred to the soundfield decomposition around a sphere

assuming a free space, i.e., we have referred to the so-called open sphere configuration.

Of particular interest is the expression of the sound pressure of the incoming sound field

around a rigid sphere. This is because, in practice, sound fields are measured with micro-

phones mounted on such rigid spheres. In this case the soundfield on the rigid sphere can

be expressed as

p(k, r, θ, φ)tot = p(k, r, θ, φ)in + p(k, r, θ, φ)scat, (C.18)
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where p(k, r, θ, φ)in and p(k, r, θ, φ)scat express the incoming and the scattered soundfiled

from the surface of the sphere respectively.

The expansion of the incoming soundfield, assuming it is comprised by plane waves of

directional amplitude density a(k, θk, φk), was presented in Eq. (C.16). The scattered field

can be expanded in a spherical harmonic series as:

p(k, r, θ, φ)scat =
∞∑
l=0

n∑
m=−l
−4πil

j′
l
(kra)hl(kr)
h′
l
(kra)

almYlm
(
θ, φ

)
, (C.19)

where ra is the array of the rigid spherical scatterer, hl(·) denotes the Hankel function of the

second kind, and j′
l
() and h′

l
() are the first derivatives of the Bessel and Hankel functions,

leading to a total sound pressure around the rigid scatterer defined as

p(k, r, θ, φ)tot =
∞∑
l=0

n∑
m=−l
4πil

jl(kr) − j′l(kra)hl(kr)
h′
l
(kra)

 almYlm (
θ, φ

)
. (C.20)

By defining an equalization term as:

bl(kr) =

 4πiljl(kr), open sphere

4πil
(
jl(kr) −

j′
l
(kra)hl(kr)
h′
l
(kra)

)
, rigid sphere

we can write the spherical harmonic decomposition and the spherical harmonic signals

in a more compact form as:

p(k, r, θ, φ) =
∞∑
l=0

n∑
m=−l
bl(kr)almYlm

(
θ, φ

)
, and (C.21)

plm = bl(kr)alm (C.22)

It is worth observing the behavior of the magnitude of bl(kr) for a rigid scatterer which

is depicted in Fig. C.5. In the case of the spherical scatterer the equalization term does not

have any zeros in contrast to the behavior of the Bessel function (see also Fig. C.3), which

is very important when divisions are involved.

C.6 Sampling schemes on a sphere and spherical microphone ar-
rays

In practical situations we cannot measure the sound pressure of a soundfield on every

point on a sphere, thus we sample it using sensors located on a rigid or open structure

constituting a rigid or open spherical microphone array. Sampling a sphere and placing

the microphones is not as straight forward as for example with circular microphone arrays.
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Figure C.5: The magnitude of the equalization term |bl|/ 4π for a rigid spherical scat-
terer with r = ra and n = 0, 1, . . . ,6.

First, the number of sampling points has to be decided such that an accurate approxima-

tion of the SFT of the measured sound field can be obtained. In addition and in relation

to the number of sensors, the sampling scheme, i.e., the positions of the microphones on

the surface of the sphere, has to be designed.

Sampling theorems for functions on the sphere require the functions to be order-limited

or represented by a finite number of spherical harmonics. That is, for the sound pressure

evaluated on a sphere, we should be able to represent it by a finite summation of spherical

harmonics as:

p(k, r, θ, φ) =
L∑
l=0

l∑
m=−l
4πiljl(kr)almYm

(
θ, φ

)
, (C.23)

introducing though truncation errors, which according to the value ofNcan be significant

or insignificant. Later, in Section C.6.4 we will briefly describe the nature of such errors.

If this approximation is feasible, then according to Eq. (C.5), the spherical harmonic

coefficients of the measured soundfield p(k, r, θ, φ) are

plm =
∫ 2π

0

∫ π

0
p(k, r, θ, φ)

[
Ylm(θ, φ)

]∗ sin θdθdφ (C.24)

which have to be approximated by a finite summation:
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plm =
Q∑
q=1
gqp(k, r, θq, φq)

[
Ylm(θq, φq)

]∗
, (C.25)

whereQ is the number of microphones comprising the array, gq are weights that assure the

approximation is accurate. A basic property of an ideal sampling scheme is to maintain the

orthogonality of the spherical harmonics (recall Eq. (C.7)), which means that the weights

gq, the number of the sensors Q as well as their positioning
(
θq, φq

)
has to be estimated.

Research has come up with a vast variety of different sampling schemes for a sphere

that may or may not provide equidistant coverage of the sphere. The sampling schemes

we will refer to are the (a) equal-angle sampling, (b) the Gaussian sampling and (c) the

uniform and almost uniform schemes.

C.6.1 Equal-angle sampling

In equal-angle sampling the sampling points are placed on uniformly spaced angular posi-

tions along the elevation θ and azimuthφ. The scheme requires (2L+2)(2L+2) = 4(L+1)2

sampling points in order to achieve a maximum order of reconstruction equal to L. Even

though the sampling points are taken uniformly along the azimuth and elevation, they are

not uniformly distributed on the surface of the sphere leading to a more dense distribu-

tion close to the poles. The weights gq that guarantee the orthogonality of the spherical

harmonics are independent of the azimuth for the equal-angle sampling, thus (2L + 2)
weight values have to be estimated in total, provided by:

gq =
2π

(L+ 1)2
sin(θq)

L∑
q′=0

1
2q′ + 1 sin

((
2q′ + 1

)
θq

)
, 0 ≤ q ≤ 2L+ 1 (C.26)

In Figure C.6 we can see an example of an equal-angle sampling distribution with 144

sampling points on the surface of a unit sphere.

C.6.2 Gaussian sampling

Similar to the equal-angle sampling scheme, the Gaussian scheme1 samples the azimuth

in 2(L+1) equal-angle samples, but for the elevation it requires only (L+1) samples, almost

equally spaced. This leads to a total of 2(L + 1)2 of sampling points, which is half the

number required for equal-angle sampling in order to achieve order L of reconstruction.

As with equal-sampling though the sampling is more dense close to the poles. The weights

of the Gaussian sampling are evaluated as:

1The naming of the scheme comes from Gauss who, in 1814, answered the related question on how to
discretize the Legendre transform with the minimum error and the minimum number of points. For more
information, please refer to [114].
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(a) (b)

Figure C.6: Equal-angle sampling with L = 5 and 144 sampling points in total, illus-
trated: C.6a on the surface of a unit sphere and C.6b over the θφ plane.

gq =
π
L+ 1

2
(
1 − cos2 θq

)
(L+ 2)2 P2

L+2

(
cos θq

) , 0 ≤ q ≤ L. (C.27)

The weights and the positioning of the microphones can also be found in tables [114].

In Fig. C.7 we see an example of a Gaussian sampling scheme.

(a) (b)

Figure C.7: Gaussian sampling withL= 7 and 128 sampling points in total, illustrated:
C.7a on the surface of a unit sphere and C.7b over the θφ plane.
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C.6.3 Uniform and almost uniform sampling

The equal-angle and Gaussian sampling schemes have a (almost) uniform distribution of

the sampling points along the azimuth φ and the elevation θ, however the distributions

are not uniform on the sphere, having more sampling points around the poles. An at-

tempt to distribute the samples more evenly to the surface of the sphere leads to the five

convex regular polyhedra (the Platonic solids) [8], the vertices of which can be taken as

sampling points on a sphere, providing four (tetrahedron), six (octahedron), eight (hexa-

hedron), twelve (icosahedron), and 20 (dodekahedron) sampling points. Taking sampling

points at the vertices of the platonic solids satisfies the quadrature relation:

∫ 2π

0

∫ π

0
c(θ, φ) sin θdθ dφ = 4π

Q

Q∑
q=1
c(θq, φq). (C.28)

If we replace the function c(θ, φ)with f (θ, φ)
[
Ylm(θ, φ)

]∗ in the above quadrature equa-

tion, the left-hand side of the equation becomes the SFT (eq. (C.4)), such that we can

obtain the spherical harmonic coefficients of the function f (θ, φ) as :

flm =
∫ 2π

0

∫ π

0
f (θ, φ)

[
Ylm(θ, φ)

]∗ sin θdθ dφ = 4π
Q

Q∑
q=1
f (θ, φ)

[
Ylm(θ, φ)

]∗ . (C.29)

In the above equation we identify the weights gq = 4πQ , which are constant, one of the

benefits of the uniform sampling schemes. The problem however is the tight list of options

for the number of sensors. The maximum number is 20 sensors (dodekahedron) which

leads to a maximum order of reconstruction equal to L = 2. This stems from the t-design

order specified for each platonic solid [97]. This is why researchers soon started looking

for methods to enable the uniform or almost-uniform placement of more sampling points

on the surface of a sphere, with Harding and Sloan extending the t-designs into a larger

set of sampling configurations which satisfy Eq. (C.29) and retain the convenient constant

sampling weights [49, 50]. An example of such an almost-uniform distribution is shown

in Fig. C.8. This design achieves a reconstruction order of L = 8 utilizing 144 sampling

points. Note that in order to achieve the same reconstruction order with an equal-angular

sampling scheme one would require 324 sampling points while for the Gaussian scheme

the corresponding number would be 162 sensors. As a general rule, we need at least (L+1)2

sampling points for uniform schemes in order to achieve a reconstruction order equal to

L [99].
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(a) (b)

Figure C.8: Nearly-uniform sampling with L = 8 and 144 sampling points in total, il-
lustrated: C.8a on the surface of a unit sphere and C.8b over the θφ plane.

C.6.4 Spatial aliasing

The sampling methods that we presented in the previous sections guarantee zero or neg-

ligible error for order limited functions. However, acoustic sound fields, such as those

produced by plane waves, are not order-limited on a sphere, since they are represented by

infinite series of spherical harmonics. In practical implementations, though, the infinite

summation is replaced by a finite one, introducing aliasing.

However the magnitude of the spherical harmonics coefficients of the sound pressure

function is proportional to the magnitude of the Bessel function as indicated in Eq. (C.15).

This means that the magnitude of the signals plm decays rapidly for l > kr, thus the error is

expected to be negligible if the operating frequency range of the array satisfies kr� N [99].

This is illustrated in Fig. C.3 and more explicitly in Fig. C.9 for kr = 8 and kr = 16.
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Figure C.9: The magnitude of the normalized spherical Bessel function |4πiljl(kr)| for
kr = 8 and kr = 16.
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Appendix D

Additional source counting methods

In this section we present our two alternative source counting methods, namely a peak

search approach and a linear predictive coding approach. Both methods were originally

presented in [91].

Peak Search

In order to estimate the number of sources we perform a peak search of the smoothed

histogram at each time frame in the following manner

a) We assume that there is always at least one active source in a block of estimates, i.e.

we always expect to find at least one peak at the histogram. So we set i = 1, where

i corresponds to a counter of the peaks assigned to sources so far. We also set ui =
u1 = argmax hi, i.e., the histogram bin which corresponds to the highest peak of the

smoothed histogram. Finally, we set the threshold γi+1 = max{h(ui)/2, γstatic}, where

γstatic is a user-defined static threshold.

b) We locate the next highest peak in the smoothed histogram, h(ui+1). If the following

three conditions are simultaneously satisfied:

h(ui+1) ≥ γi+1 (D.1)

ui+1 <
[
uj − uw,uj + uw

]
, ∀uj (D.2)

j < (i + 1), (D.3)

then we proceed to the detection of the next peak, i.e., i = i+1 and γi+1 = max{h(ui)/2, γstatic}.

uw is the minimum offset between neighbouring sources. (D.1) guaranties that the next

located histogram peak is higher than the updated threshold γis+1. (D.2) and (D.3) guar-
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antee that the next located peak is not in the close neighbourhood of an already located

peak with js = 1, . . . is and ujs all the previously identified source peaks.

c) We stop when a peak in the histogram fails to satisfy the threshold γis+1 or if the upper

thresholdNSMAX is reached. The estimated number of sources is N̂S = i.

In Figure D.1 we can see how the Peak Search method is applied to a smoothed histogram

where four sources are active. The black areas indicate the bins around a tracked peak of

the histogram that are excluded as candidate source indicators.
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Figure D.1: Peak Search for source counting. The black areas indicate the bins around
a tracked peak of the histogram that are excluded as candidate source in-
dicators.

Linear Predictive Coding

Linear predictive coding (LPC) coefficients are widely used to provide an all-pole smoothed

spectral envelope of speech and audio signals [73]. This inspired us to apply LPC to the

smoothed histogram of estimates to emphasize the peaks and suppress any noisy areas.

Thus, the estimated LPC envelope coincides with the envelope of the histogram. We get

our estimate of N̂S sources by counting the local maxima in the LPC envelope with the

constraint that N̂S ≤ NSMAX , where NSMAX is user defined as in Section 4.1.4. In our estima-

tion, we exclude peaks that are closer than uw, as a minimum offset between neighboring

sources.
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Figure D.2: LPC for source counting. The black curve corresponds to the LPC esti-
mated envelope of the histogram.
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A key parameter of this approach is the order of LPC. We want to avoid a very high

order that will over-fit our histogram of estimates, in turn leading to an over-estimation

of the true number of sources. On the other hand, the use of a very low order risks the

detection of less dominant sources (i.e., sources with less estimates in the histogram, thus

lower peaks). In order to decide on an optimum LPC order, we tested a wide range of

values and chose the one that gave the best results in a wide range of simulated scenarios.

In Figure D.2 we plot an example LPC envelope with order 16, along with the smoothed

histogram.
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