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A Commonsense Knowledge-Driven Framework for Part-of
Relation Discovery in Images

Abstract

The integration of data-driven techniques with knowledge-based methods has led to
many accomplishments in the past few years. While machine learning techniques have
proven their potential in diverse domains, they often display weaknesses that symbolic
methods can help overcome.

This thesis focuses on the development of a framework tailored for the detection
of partOf relations in images through the integration of commonsense knowledge. A
partOf relation represents the association between an entity and its component or con-
stituent part. The primary objective of this framework is to enhance the precision of
relation predictions by incorporating external information derived from problem-agnostic
knowledge graphs, specifically ConceptNet. The proposed framework, named PReDeCK,
relies on graphs for capturing structured, semantic knowledge about commonsense no-
tions. By conducting symbolic reasoning over the extracted information utilizing the ex-
pressive capabilities offered by Answer Set Programming (ASP), PReDeCK can eliminate
counter-intuitive conclusions and improve the accuracy of relation predictions.

Additionally, this thesis addresses the challenge of identifying errors in the outputs
generated by object detection models. We expand PReDeCK to detect potential errors by
cross-referencing the model’s results with established real-world knowledge. Moreover,
techniques for addressing identified errors are also outlined.

We perform experimental evaluations to assess the performance of the framework
by using a well-known image dataset, Semantic Pascal-Part, which includes a diverse
range of everyday objects and their constituent parts. Throughout the experimental phase,
we analyze various framework variations to highlight the critical role of a robust and
accurate knowledge domain, as well as the impact of incomplete or erroneous data on
the results. The outcomes of these experiments verify that the synergy between visual
data and commonsense knowledge leads to a significant improvement in the precision of
relation detection. Additionally, the results regarding the error detection task, are quite
promising, marking an initial step in quality assurance for object detection models.

Overall, this thesis provides insights into a commonsense knowledge-driven frame-
work for discovering partOf relations in images and for identifying potential errors in
the outputs generated by an object detection model through the use of symbolic reasoning.





Μεθοδολογία για τον εντοπισμό σχέσεων μέρους-όλου σε εικόνες

αξιοποιώντας γνώση κοινής λογικής

Περίληψη

Ο συνδυασμός των τεχνικών βασισμένων στα δεδομένα με μεθόδους βασισμένες

στη γνώση, έχει οδηγήσει σε σημαντικά επιτεύγματα τα τελευταία χρόνια. Ενώ οι

τεχνικές μηχανικής μάθησης έχουν αποδείξει τη δυναμική τους σε διάφορους τομε-

ίς, συχνά εμφανίζουν αδυναμίες που μπορούν να αντιμετωπιστούν με τις συμβολικές

μεθόδους.

Η παρουσιαζόμενη εργασία επικεντρώνεται στην ανάπτυξη μιας μεθοδολογίας, η

οποία είναι προσαρμοσμένη για τον εντοπισμό σχέσεων μέρους-όλου σε εικόνες μέσω

της ένταξης γνώσης κοινής λογικής. Ο κύριος στόχος αυτής της μεθοδολογίας είναι η

βελτίωση ακρίβειας στον εντοπισμό σχέσεων με την ενσωμάτωση εξωτερικής πληρο-

φορίας που προέρχεται από γράφους γνώσης που είναι ανεξάρτητοι από το πρόβλημα.

Η προτεινόμενη μεθοδολογία, με την ονομασία PReDeCK, βασίζεται σε ανοικτούς
γράφους δεδομένων για την αποτύπωση της γνώσης κοινής λογικής, και συγκεκρι-

μένα από τον ανοικτό γράφο ConceptNet. Μέσω συμβολικών μεθόδων συμβολιστικής
που αξιοποιούν την εκφραστικότητα της Answer Set Programming (ASP), το PReDeCK
χρησιμοποιεί αυτή τη πληροφορία για να εξαλείψει αντίθετα συμπεράσματα και να βελ-

τιώσει την ακρίβεια σχέσεων που εντοπίζει.

Επιπλέον, η παρούσα εργασία αντιμετωπίζει την πρόκληση του εντοπισμού σφαλ-

μάτων στα αποτελέσματα που παράγονται από μοντέλα ανίχνευσης αντικειμένων. Ε-

πεκτείνουμε το PReDeCK για τον εντοπισμό πιθανών σφαλμάτων διασταυρώνοντας τα
αποτελέσματα του μοντέλου με εδραιωμένες γνώσεις του πραγματικού κόσμου. Επι-

πλέον, παρουσιάζονται τεχνικές για την αντιμετώπιση των εντοπισμένων σφαλμάτων.

Πραγματοποιούμε πειραματικές διαδικασίες για την αξιολόγηση της απόδοσης της

μεθοδολογίας μας, χρησιμοποιώντας ένα ευρέως γνωστό σύνολο εικόνων, το Seman-
tic Pascal-Part , το οποίο περιλαμβάνει μια ποικιλία καθημερινών αντικειμένων και τα
αντίστοιχα μέρη τους. Κατά τη διάρκεια της πειραματικής φάσης, αναλύουμε διάφορες

παραλλαγές της μεθοδολογίας, για να υπογραμμίσουμε τον κρίσιμο ρόλο ενός ορθού

και ακριβούς αποθετηρίου γνώσης, καθώς και τον αντίκτυπο των ατελών ή εσφαλ-

μένων δεδομένων στα αποτελέσματα.

Τα αποτελέσματα αυτών των πειραμάτων επιβεβαιώνουν ότι ο συνδυασμός οπτικών

δεδομένων και γνώσης κοινής λογικής, οδηγεί σε σημαντική βελτίωση στην ακρίβεια

της ανίχνευσης των σχέσεων. Επιπλέον, τα αποτελέσματα σχετικά με την ανίχνευση

πιθανών σφαλμάτων είναι αρκετά ικανοποιητικά, παρέχοντας ένα αρχικό βήμα στην

διασφάλιση της ποιότητας για τα μοντέλα ανίχνευσης αντικειμένων.

Συνολικά, η εργασία παρουσιάζει πώς υλοποιείται μια μεθοδολογία που αξιοποιεί

γνώση κοινης λογικής από ανοιχτούς γράφους δεδομένων, για να ανιχνεύσει σχέσεις

μέρους-όλου μεταξύ αντικειμένων που ανιχνεύονται στις εικόνες, και για να εντοπίσει

πιθανά σφάλματα στα αποτελέσματα που παράγονται από ένα μοντέλο ανίχνευσης

αντικειμένων, μέσω της χρήσης του συμβολικού συλλογισμού.
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Chapter 1

Introduction

The rise of Machine Learning (ML) has been nothing short of revolutionary. In the past
decade, ML has seen tremendous growth thanks to the increase in computing power and
the vast data availability. Neural networks have emerged as one of the most promising
techniques in the field of ML due to their ability to learn from data and generalize patterns.
Neural networks’ abilities have led to groundbreaking achievements in various fields, such
as natural language processing, computer vision, and many more.

However, despite the remarkable success, the limitations of ML approaches are well-
recognized, and the need to couple these techniques with approaches that exploit struc-
tured knowledge and symbolic reasoning, is increasingly attracting interest [17, 20, 16].

In the field of Computer Vision in particular, the combination of low-level perception,
high-level reasoning, and commonsense knowledge exploitation is a highly desirable ob-
jective [48]. Prominent results come from approaches that aim to combine advancements
in neural networks with expressive, formal logics; yet, most approaches either focus on
rather restricted domains, such as sudoku puzzles where the domain rules are explicit and
can easily be written in a formal language (e.g., [42, 31]), or utilize rules custom-made
by experts (e.g., [2, 9]). However, these domain-specific approaches raise questions about
their ability to generalize beyond their particular domains.

In this thesis, we introduce a neuro-symbolic approach for a non-trivial vision task,
that of identifying partOf relations among objects detected in an image. Our method-
ology avoids overly simplistic assumptions and, instead, harnesses commonsense knowl-
edge from open repositories. Following the direction adopted by recent studies, as in [42],
we separate perception and reasoning. Initially, we employ a standard neural model for
simple perception tasks like object detection. Then, we rely on high-level, expressive
rules for more intricate domain inference tasks, which involve complex reasoning and
contextual understanding. This separation allows us to effectively address both basic and
complex aspects of a problem domain. We thus avoid learning complex domain rules and
constraints with an end-to-end model, when these rules can be extracted from common-
sense repositories, leading to significant simplifications of the learning process. This way,
we also eliminate the need for the laborious task of generating extensive training data. We
therefore utilize more robust perception, while working towards the “small data for big
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2 CHAPTER 1. INTRODUCTION

tasks” paradigm [48].
To accomplish this objective, relying on pre-designed domain rules does not suffice,

as it may give the impression that expert knowledge engineering is tailored for the specific
problem. Therefore, a secondary aim of this thesis is to investigate how easily and, more
important, efficiently one can extract commonsense domain knowledge that can be proven
fruitful in enhancing scene understanding. Specifically, we introduce a methodology that
harnesses an open, problem-agnostic knowledge graph, ConceptNet [36], to construct the
knowledge domain through data retrieval, cleansing, and logical inference techniques.

Figure 1.1 (top) shows a simple example regarding the target problem, where the
“Hand” bounding boxes, which are the rectangular areas enclosing the hands, should be
characterized as having a whole-part relation with the bounding box of the “Person”, and
not with the “Bicycle” bounding box, despite the overlap; the situation gets more in-
volved in information-rich environments, as shown in Figure 1.1 (bottom) (the labels of
the bounding boxes are omitted). It should be noted that our objective is not to compare
our method with a dedicated classifier trained extensively on a dataset annotated with
partOf relations, rather to use a typical, out-of-the-box object classifier, and address
the problem of partOf identification between objects without any training data, but ex-
clusively relying on logical reasoning over problem-agnostic commonsense knowledge.
After all, despite the focus on the partOf relation, solutions to the given problem can be
used to represent a large class of relations, as mentioned in [18].

Additionally, we expand our approach to leverage its outputs for identifying potential
errors in the object detection model, guided by a commonsense perspective. By utilizing
the earlier mentioned inferences, we can identify various instances where the object detec-
tion model produces inaccuracies. Our framework not only detects errors but also strives
to categorize and address them based on their types, potentially enhancing the overall
performance of the object detection model.

Our solution deploys a popular off-the-shelf model for object detection, which we
fine-tuned on a generic dataset (Semantic Pascal-Part [8]), and we couple it with com-
monsense knowledge obtained by our proposed method, in order to derive the partOf
relations. We use the NeurASP [42] framework to combine neural networks with logical
reasoning; yet, our methodology is generic enough to be used with other repositories and
reasoning tools.

The main contributions of this work are the following:

• We develop a hybrid approach that relies on state-of-the-art neuro-symbolic tools,
which enables the complement of data-driven methods with external knowledge
obtained from commonsense repositories, as well as with logical inference. Applied
to the challenge of detecting partOf relations among identified objects in an image,
even in the absence of specific training data for these relations, we systematically
assess its performance across various perspectives.

• We present a generic methodology for extracting knowledge from commonsense
knowledge graphs, which exploits both topological aspects and semantic relations,
and study how well we can reduce noise in the data, while keeping high recall score.
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• An error detection methodology is showcased that cross-references the model’s de-
tections with real-world knowledge, effectively flagging instances of errors for fur-
ther examination. Our proposed framework reports high performance scores tack-
ling the error detection task, even when object detection models were trained on
noisy data, providing a first step in quality check of an object detection model.

• In our experimental assessments, we demonstrate that integrating visual data with
commonsense knowledge, considerably outperform the results of the baselines and
is comparable to methods relying on manually annotated datasets. This enhance-
ment results in improved precision with minimal impact on recall.

All data and source code referred to in this work are publicly available.1

Outline. The rest of this thesis is structured as follows. Chapter 2 provides some
background knowledge that is necessary for this thesis, while Chapter 3 reviews related
works. In Chapters 4 and 5, we provide the details of our methodologies to detect partOf
relations between objects detected in an image, and identify possible errors of an object
detector, respectively. Chapter 6 covers the details of our implementation. The evaluation
process of our work and our findings are presented in Chapter 7. Finally, in Chapter 9, we
conclude this thesis by summarizing the key outcomes of our research.

1https://github.com/Kmrs97/PReDeCK



4 CHAPTER 1. INTRODUCTION

Figure 1.1: A pair of images, where whole-part relations among bounding boxes need to
be identified.



Chapter 2

Background

This chapter provides an in-depth exploration of the fundamental principles and tools
employed in this work. After introducing some basic concepts and tools, at the end of this
chapter we provide a table of terms and notation used throughout this work.

2.1 Knowledge Graphs

Traditional approaches for detecting partOf relations rely entirely on visual features
identified in the images, but require a wealth of annotated data to train their models.
In this work, we study how commonsense knowledge and inferencing can be exploited to
improve the accuracy of the results for the aforementioned problem.

Let’s consider again the example of Figure 1.1. Note that both hands are fully en-
closed by the bounding boxes of both the person (big yellow rectangle) and the bicycle
(red rectangle). A popular approach is to consider only the inclusion proportion of the
bounding boxes, which in this case will erroneously return that the hands may be part of
the bicycle. By incorporating commonsense knowledge, i.e., the knowledge that among
the two candidate objects only a person can have hands, we can assist a system in elimi-
nating certain counter-intuitive conclusions.

For capturing commonsense knowledge, we rely on knowledge graphs. A knowledge
graph (KG) can be characterized as a set of (subject, predicate, object) triples that form
a named graph. Subject and object are nodes of the graph, while every triple defines an
edge between the corresponding nodes, with the label of that edge being the predicate
name of that triple.

ConceptNet [36] is an open KG that captures a wide range of commonsense knowl-
edge about the world, including common relations (e.g., “PartOf”, “IsA”), between con-
cepts. This KG has been used for a variety of AI tasks, such as word sense disambigua-
tion [35], question answering [38] and more [34, 24]. A big portion of ConceptNet has
been populated manually, which unavoidably has introduced noise in the data.

5
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2.2 Answer Set Programming (ASP)

Answer Set Programming (ASP) [29] is a declarative programming paradigm that allows
the user to solve complex computational problems, such as planning, optimization, and
knowledge representation. To solve these problems, a knowledge engineer models the
domain with a set of rules and constraints; then, a reasoner generates zero or more answer
sets, which are valid solutions to the problem.

Example ASP rules are the following:

n(a). (2.1)

p(X) : − n(X). (2.2)

: − not n(a). (2.3)

: − not n( ). (2.4)

Rule 2.1 is a fact stating that constant a is an instance of predicate n, i.e., a has the
property n. Rule 2.2 in an inference rule, denoting that if variable X is instantiated with a
constant that has the property n, then this instance of X also has the property p.1 Rule 2.3
is a constraint rule stating that no possible solution should exist that contains the predicate
n with a as its argument. In Rule 2.4, one can see the use of the underscore “ ”, which
in ASP serves as a versatile placeholder for unspecified or unknown values. Hence, in
this case, the constraint rule states that no possible solution should exist that contains the
predicate n no matter what its argument is.

2.3 NeurASP

One of the most efficient ASP reasoning systems is Clingo [15], which is used for the
grounding and solving of logic programs. NeurASP [42], an extension of Clingo, is a
novel framework that combines the strengths of ASP and Neural Networks (NNs), en-
abling the development of hybrid models that can reason with high-level knowledge, while
adapting to data-driven learning. NeurASP leverages the two paradigms to address com-
plex tasks that require both data-driven prediction and reasoning.

It consists of two interconnected components: the ASP module and the NN module.
The ASP module enables the encoding of logical rules and constraints, formulated in
ASP, that define the domain knowledge and reasoning tasks. These rules are grounded
into logical atoms. The NN module comprises customizable neural networks that take
these logical atoms as input and perform computations (e.g., classification, regression) to
generate desired outputs. A neural network is represented as an ASP atom in NeurASP,
whose arguments capture the possible outcomes of the NN.

For our purposes, we use NeurASP for inferencing, i.e., to make derivations based on
the estimations of a NN, but the framework can also be used for training the NN using
logical rules in combination with numerical data.

1Predicates and constants start with a lowercase character, while variables inside predicates start with an
uppercase character. All variables are implicitly universally quantified in formulae.
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2.4 Pascal-Part and Semantic Pascal-Part Datasets

The Pascal-Part Dataset [5] is a widely used dataset in computer vision that focuses on ob-
ject segmentation and part localization. It was used to develop advanced computer vision
algorithms for various applications, such as image understanding [4], object detection [47]
and scene understanding [43].

Pascal-Part is an extension of the Pascal VOC dataset [11], which provides additional
annotations that label the parts of the objects within the images. The dataset consists of
a variety of diverse images that cover 20 object categories, such as “dog”, “person” and
“car”. The parts for each object category are also annotated in the dataset. Examples
of the part labels are “head”, “torso”, “headlight”, and “wheel”, depending on the object
category.

In our work, we utilize the Semantic Pascal-Part Dataset [8], which is the RDF version
of the Pascal-Part Dataset. In the latter, the labels for the individual parts are too specific
for many applications, e.g., “left lower arm”. The Semantic Pascal-Part Dataset general-
izes these annotations by merging the segments of the images that refer to the same part
into a unique segment, e.g., two segments labeled with “left lower arm” and “left front
arm” of the same arm are merged into a segment labeled as “arm”. Finally, these seg-
ments are converted into bounding boxes. The Semantic Pascal-Part Dataset also offers
the Pascal-Part OWL ontology that formalizes the part of relationships between the ob-
jects and their parts. The whole set of the partOf relations present in the ontology is
presented in Appendix C.

2.5 Terms and Notation

In Table 2.1, one can find important terms that are used throughout this thesis, along with
their informal explanations.

Our approach is directly reliant on the object detection task, performed by neural net-
works. Object detection is the task of identifying objects present in a given image. Every
object in an image is described as a tuple (l, bb), where l is its label and bb is a bounding
box, i.e., a rectangular area defined by the top-left and the bottom-right coordinates of the
detected object in the input image.

In our research, every label belongs to one of the following two types: “Object” or
“Part”. The classification of labels is provided by the input dataset. Based on the type of
their label, we divide objects into whole objects (objects whose label is of type “Object”)
and (object) parts (objects whose label is of type “Part”). Intuitively, whole objects de-
note detected objects that may consist of other objects, while object parts refer to detected
objects that may constitute a component of a whole object. To prevent erroneous asso-
ciations between objects from differing contexts, we utilize ConceptNet’s label category,
which assigns context-specific sense labels to its concepts.

The framework proposed in this thesis is named PReDeCK, which stands for “Part
of Relations Detection using Commonsense Knowledge”. The primary objective of PRe-
DeCK is to identify partOf relations between detected objects within an image. The
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Table 2.1: Table of Terms.

Term Explanation
bounding box (bb) a rectangular area within an image, defined by its top-left and bottom-right co-

ordinates (width and height), i.e., four integers
label (l) the classification of the contents of a bounding box (e.g., person, hand, bicycle)
object a bounding box bb associated with a label l, i.e., an (l, bb) tuple

label type labels are divided into whole-object and object-part labels (“Objects” and “Parts”)
whole object an object whose label is of type whole-object (e.g., a person)
(object) part an object whose label is of type object-part (e.g., a hand)

label category the categorization label that exists in ConceptNet, e.g., Cat is of category Animal
partOf a relation between an object part p and a whole object o in a given image i, denoting

that p is a component of o in i; these are the relations that we aim to infer
hasObject a relation between an image and some object within that image, returned by an object

detector
meronym a meronym relation between two labels, e.g., meronym(hand, person)
PReDeCK our methodology that detects partOf relations

PReDeCK+ED an expansion of PReDeCK that detects errors in hasObject relations

partOf relation defines that an object part p is part of a whole object o existing in an
image. To semantically verify possible partOf relations, our framework utilizes the
meronym relations (e.g., meronym(mouth, person)) within the knowledge domain con-
structed using our methodology, which comprises a collection of ASP-formulated triples.

Additionally, PReDeCK+ED represents an extension of our framework, designed to
identify potential errors in the outputs generated by the object detection model.



Chapter 3

Related Work

In the following section of this thesis a comprehensive overview of prior research and
literature that is relevant to the topic under investigation is provided. This review allows
us to delve into the existing body of knowledge, offering valuable context for our study,
identifying gaps and areas for further exploration, and establishing the foundation upon
which our own contributions and findings are built.

3.1 Neurosymbolic AI

Neurosymbolic AI is the field of research and applications that combines machine learning
methods, based on artificial neural networks, with symbolic approaches to computing and
Artificial Intelligence (AI) [20]. This multidisciplinary approach aims to bridge the gap
between the two paradigms to create intelligent systems that integrate the advantages of
both worlds [16]. In the past years, the significance of neurosymbolic AI has grown sub-
stantially. The domain has gathered increasing attention from the research and academic
communities. Researchers all over the world recognise the potential of Neurosymbolic
AI to address some of the most challenging open problems in AI. This notable interest
has led to various applications of the Neurosymbolic framework that tackle many real-life
tasks in numerous domains [27, 3].

3.2 Visual Relationships Detection

Visual Relationships Detection (VRD) is a cutting-edge field in computer vision and arti-
ficial intelligence that focuses on understanding the complex interactions and connections
between objects within images or videos. This research area seeks to uncover the intricate
relationships that exist among various elements present in visual data, such as identifying
actions, interactions, or spatial arrangements between objects. The applications of VRD
are wide-ranging with transformative potential across various domains [19, 25, 39]. In
[41], for example, they propose a hierarchical graph convolutional network along with
a graph attention method for Visual Dialogue Generation. In the context of Image Cap-
tioning, Yao et al. [44] introduce a combination of Graph Convolutional Networks and

9
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the Long Short-Term Memory architecture, seamlessly integrating semantic and spatial
object relationships into the image encoder.

3.3 Enhancing Visual Tasks with Knowledge Graphs

Systems that address Visual Tasks, often show weaknesses due to their inability to per-
form complex reasoning and understand complex relationships within visual data. Some
key weaknesses are their lack of contextual understanding, ambiguity handling, limited
generalization, incomplete information, and more. Importing knowledge from knowl-
edge graphs addresses these weaknesses by providing systems with structured, external
knowledge. It empowers visual systems to perform more sophisticated reasoning, better
understand contextual information, handle ambiguity, and generalize knowledge. This
integration enhances the overall capabilities of these systems, making them more versa-
tile and capable of addressing a wider range of visual tasks with improved accuracy and
depth.

In [12], the authors introduce a framework that combines knowledge graphs with
object detection algorithms. Focusing on the key computer vision task of image-based
object detection, the system extracts and generalizes knowledge from these graphs. It
utilizes semantic consistency metrics from the knowledge graph to enhance detection, en-
suring improved recall and consistent background knowledge without sacrificing mean
average precision. Dı́az-Rodrı́guez et al. [7] present the X-NeSyL methodology, which
combines deep learning representations with expert knowledge graphs to achieve explain-
able neural-symbolic learning. The system utilizes knowledge graphs to represent sym-
bolic expert knowledge, which is then leveraged by a deep learning model. The use of
knowledge graphs enhances interpretability and allows for the alignment of symbolic and
neural representation learning components. The methodology is demonstrating improved
performance and explainability compared to traditional training methods.

Commonsense Knowledge. Many approaches use knowledge repositories to inte-
grate commonsense knowledge to systems because it further enhances their ability to
reason, make better predictions, and exhibit more human-like behavior. NeuSyRE [26]
is a neuro-symbolic visual understanding and reasoning framework that enhances scene
graphs for improved downstream reasoning in visual scenes. The system employs a deep
neural network-based pipeline for object detection and relationship prediction to gen-
erate scene graphs. It leverages heterogeneous knowledge graphs, such as ConceptNet
and WordNet, to enrich the scene graphs with commonsense knowledge, providing back-
ground information and related facts about visual concepts. The integration of knowledge
graphs and commonsense knowledge enhances the expressiveness and autonomy of visual
understanding and reasoning, leading to improved performance in tasks such as image
captioning and image generation.

For the detection of partOf relations in particular, the work in [9] utilizes Logic
Tensor Networks (LTN) based on the Real Logic formalism, in order to perform classifi-
cation and meronym relations discovery between the detected objects. That system was
also evaluated on the Pascal-Part Dataset, as is ours. While the rationale is similar to ours,
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in this work the commonsense knowledge was derived from WordNet and infused in the
system manually. In contrast, our suggested approach automatically incorporates the in-
formation, and is more generic making it suitable to be applied to a variety of KGs and
domains with minimum effort. What’s more, the use of a non-monotonic language, such
as ASP, offers higher expressivity in modeling commonsense domains (e.g., defaults) in
comparison to first-order logics, such as Real Logic. It should be noted though that tools,
such as LTNs and NeurASP, present a prominent prospect in addressing tasks that require
neuro-symbolic approaches and state-of-the-art research in this direction is expected to
produce even better results in the future.

Identifying errors of an object detection model on images, may be proven very useful
and offer various insights. CSK-SNIFFER [14] is a system showcasing the application of
commonsense knowledge for the automated prediction of failures in object detection mod-
els when analyzing extensive image datasets. This system promotes human-AI collabora-
tion by pinpointing errors through spatial commonsense and offering visual explanations
for potential object detection inaccuracies, leveraging labeled data contributed by domain
experts. While the paper demonstrates its proficiency in identifying object detection errors
using spatial commonsense, it does not present precise quantitative performance metrics
for the CSK-SNIFFER system. In this study, the commonsense knowledge is given as
default by domain experts, as mentioned before, unlike our methodology which extracts
the information using an automated process. In addition, our proposed approach does not
rely on any human intervention.
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Chapter 4

Detecting partOf Relations

The primary challenge addressed in this work revolves around the accurate identifica-
tion and understanding of partOf relationships between objects that have been detected
within an image. In simpler terms, it involves understanding how various elements within
the visual scene are interconnected, particularly when one object is a constituent or com-
ponent of another. To elaborate further, consider the image shown in Figure 1.1. An
example of a possible output from an object detection tool is visualized in Figure 1.1
(top). The input image is annotated with four objects, whose labels (“Person”, “Bicycle”,
“Hand”) and bounding boxes are shown in the figure.

Utilizing an object detector’s output (represented as hasObject tuples), our frame-
work’s goal is to specify partOf relationships between the detected object parts and the
corresponding whole objects. Following our running example of Figure 1.1, our goal is to
specify that each of the two bounding boxes labeled as “Hand”, is a part of the bounding
box with label “Person”. However, a partOf relationship should not be returned between
the object parts “Hand” and the whole object “Bicycle”.

4.1 Problem Description

The problem mentioned above can be informally described as follows. Given a set of
images, each containing a variety of objects detected by some object detection model, our
goal is to specify the partOf relations amongst the detected objects.

In this work, we differentiate whole objects and (object) parts, although both cate-
gories are in general mentioned as “objects” in the object detection literature and both
categories use the same definition that we mentioned in Chapter 2 (i.e., a bounding box
with a label). The dataset that has been used classifies labels into two distinct sets: a set of
whole objects O and a set of object parts P . We utilize this information in our approach,
as is common in ML works. However, in our methodology where we gather semantic data
from knowledge graphs related to these labels, the prior information is not essential.

We further consider a partOf relation between a part and a whole object in a given
image. A partOf relation should be true, if factual information associating the corre-
sponding p and o labels contained in the relation, i.e., a meronym(p, o) relation, exists in

13
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the knowledge domain (a necessary, but not sufficient condition).
A formal definition of the visual object-part discovery setting is provided below:

Definition 4.1.1. A visual object-part discovery setting V = ⟨I,O,P, hasObject, partOf⟩
consists of

• a set of images I,

• a set of whole-object labels O,

• a set of object-part labels P ,

• a hasObject ⊆ I × (P ∪O)×BB relation, denoting the label and bounding box
of an object within an image, where BB ⊆ N4

0, and

• a partOf ⊆ I × P × BB × O × BB relation, associating an object part with its
whole object within an image, such that whenever partOf(i, p, bb1, o, bb2) holds,
it is necessary that both hasObject(i, p, bb1) and hasObject(i, o, bb2) also hold.

The visual object-part discovery problem, associated with this setting is the following:

Definition 4.1.2. Given an instance V∗ = ⟨I,O,P, hasObject∗, partOf∗⟩ of a vi-
sual object-part discovery setting, which we will call the ground truth, and a percentage
threshold th, a visual object-part discovery problem is the optimization problem to find
an instance V̂ = ⟨I,O,P, ̂hasObject, ̂partOf⟩ that

• maximizes the times that if partOf∗(i, p, bb1, o, bb2) holds, then ̂partOf(i, p, bb′1, o, bb
′
2)

also holds

• minimizes the times that if partOf∗(i, p, bb1, o, bb2) does not hold, then ̂partOf(i, p, bb′1, o, bb
′
2)

holds, and

• bb1 ≈ bb′1 and bb2 ≈ bb′2, meaning that the area of overlap of the corresponding
bounding boxes is above the given threshold th.

In other words, the goal is to find a methodology that produces a partOf relation
that approximates as closely as possible some ground truth. Note that the object detection
relation ( ̂hasObject) of the proposed instance V̂ is not necessarily equivalent with that
(hasObject∗) of the ground truth; errors produced by the ̂hasObject relation are prop-
agated in the predictions, making the problem of approximating the partOf∗ relation,
even more difficult.

In practice, the evaluation of a solution to the visual object-part discovery problem is
performed by only considering how close the returned partOf instances are to a ground
truth, e.g., with respect to popular evaluation measures like precision, recall, F1-score,
accuracy, etc, by also allowing some acceptable offset in the returned bounding boxes
compared to the respective bounding boxes in the ground truth.

Apparently, one can train a neural network on the given dataset to more accurately
detect the objects of interest or even train a classifier to explicitly detect partOf relations.
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Our goal is to show that this popular, yet laborious, practice is not the only direction,
especially when annotated data is not readily available. Even with a typical object detector
and without any partOf training data, proper application of declarative methods can still
offer leverage in tackling visual tasks.

4.2 Overview of the Methodology

Figure 4.1 illustrates the key components and workflow of our methodology. Initially, we
extract relevant information pertaining to the dataset’s labels from a Knowledge Graph
(KG) using the Knowledge Filtering Module. In our work, we use the Semantic Pascal-
Part [8] dataset. Knowledge graphs, which organize information by connecting concepts
and relationships in a network, are pivotal for our approach. For this purpose, we have
chosen ConceptNet [36], a well-established, open-source knowledge graph that aligns
with our project’s data requirements. The Knowledge Filtering Module serves a dual
purpose: it extracts triples composing multiple subgraphs for our dataset’s labels from
ConceptNet, and it also filters this information to eliminate potential noisy data. All the
retrieved triples undergo a filtering process with the remaining information being stored
locally in Neo4j [33]. These subgraphs constitute our framework’s knowledge domain,
a structured and comprehensive collection of subject-specific facts. Subsequently, these
stored subgraphs are converted into ASP facts and integrated into the Reasoner.

For the object detection task, i.e., the generation of hasObject tuples for the im-
ages of the dataset, we employ the YOLOv5 model [10]. The outputs of object detec-
tion are used as input for the Reasoner, too. For reasoning, we employ the NeurASP
framework [42], which combines neural networks with Answer Set Programming (ASP)
for joint logic-based reasoning and deep learning. Within the Reasoner, we have for-
mulated the meronym ASP Enrichment Ruleset, comprising numerous ASP inference
rules aimed at enhancing our knowledge domain.

Finally, leveraging the enriched knowledge domain and the detected objects, the partOf
Discovery Ruleset uses logical inference to identify partOf relationships between the
objects deteted in the images. The framework’s outputs are stored locally in a JSON file.

4.3 Components Analysis

4.3.1 Knowledge Filtering Module

ConceptNet is widely used as a source of problem-agnostic, commonsense knowledge for
application in a wide range of domains. Its broad coverage comes with the cost of noisy
and often erroneous data, a problem more-or-less met with most other online repositories.
Many solutions have been proposed in the literature for ironing out noise from such KGs
and for keeping only the data that are relevant to the problem at hand. Some of these
approaches take into consideration topological relations among nodes whose relatedness
is under investigation, e.g., the number of connecting paths (e.g., [46, 22]) or the number
of common nodes that two nodes share (e.g., [6, 45]); others lay emphasis on the semantics
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Figure 4.1: Component diagram of our proposed neuro-symbolic approach to partOf
relation detection in images.

(e.g., [28]). Unless one wishes to develop domain-specific solutions, no single line of
knowledge extraction techniques has been shown to provide satisfactory results, as recent
studies discuss [40].

In light of these results, we present below generic steps that consider both topological
and semantics-related aspects, while being generic enough to easily be applied to similar
KGs with minor adaptations.

The Knowledge Filtering Module begins by taking the dataset’s labels as input in
string format, retrieving all associated triples for specified relationships from ConceptNet.
It then proceeds to apply a filtering process to eliminate potential noise, resulting in the
creation of multiple subgraphs related to the dataset’s labels. Once the filtering process is
completed, the produced subgraphs are stored locally.

To assess the effectiveness of our approach, we consider as ground truth instance (i.e.,
V∗) the Semantic Pascal-Part ontology, provided by the creators of the Semantic Pascal-
Part dataset. Evidently, just by deploying the knowledge filtering module, we managed to
successfully match a pretty low number of the “part of” relations (4/100) present in the
ground truth.

Further details of the steps within the knowledge filtering module are presented below:

1. Node Label Filtering. Considering the labels of the objects we expect to find in the
images, we extracted from ConceptNet a subgraph for each label, having as starting
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node a ConceptNet node that can be associated to that label (exact string match or
synonym). Moreover, we requested the starting node to be a noun. The resulting
subgraph contains all 1-hop neighbors, which was sufficient for the given KG to get
the information we needed for our purpose, although more distant neighbors may
also be useful/needed in other KGs.

2. Edge Label Filtering. For the creation of the labels’ subgraphs, we only kept the
ConceptNet edges having one of the following labels: PartOf, HasA, IsA, Has-
Context, Synonym. Note that, apart from being relevant to our purposes, similar
relations are rather generic and can be met in other KGs, such as WordNet[32],
Yago[37], DBpedia[1] etc.

3. Edge Weight Filtering. In ConceptNet, each edge is associated with a weight, de-
noting how strong the assertion is between the two linked nodes. As per Concept-
Net’s documentation, a weight of 1 is considered the “typical” weight, indicating
that the assertion is as reliable as the majority of other assertions in the knowledge
graph. Hence, considering the prior statement, we pruned edges with weight lower
than 1, for more reliable information.

4. Node Type Filtering. Finally, we applied another filtering step, based on the node
type capturing the context of use. For example, one can find in ConceptNet both
of the following triples (cat, is type of, animal) and (cat, is type of, woman).
Although such associations are not necessarily erroneous, the latter is out of con-
text for our purposes. In order to keep context-specific data in our subgraphs, we
exploited the characterization (sense label) that ConceptNet assigns to nodes ac-
cording to their category (e.g., animal, person, artifact). As such, although in Con-
ceptNet both “cat(n, animal)” and “cat(n, person)” can be found, we only considered the
former for our purposes. This information is readily available in ConceptNet for
most nodes, but can also be easily extracted with other methods, e.g., by consider-
ing WordNet inheritance relations, if for instance one utilizes KGs that lack such
characterizations.

Eventually, we extracted a subset of ConceptNet comprising 6,544 nodes and 7,617
edges and stored it locally in a Neo4j Graph Database. Figure 4.2 provides a visual
representation of the subgraph constructed via ConceptNet for the label “Bird”. In this
illustration, we have chosen to display only the edges labeled “Part of” and “IsA”. In the
subgraph numerous triples exist, such as (pennon, isA, wing), (syrinx,is part of ,bird), etc.
Notably, the only triple found in our ground truth and directly derived from ConceptNet is
(beak, is part of, bird), while others can be indirectly obtained (e.g., head, tail). However,
some noisy cases are also present in the subgraph. For instance, there is a triple indicating
the relationship (bird, is part of, bird). Without appropriate handling, such data could
potentially lead to erroneous outputs.

This information will be used by the reasoning module described later, in order to
help identify relevant relations.
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Figure 4.2: Subgraph with the extracted information from ConceptNet regarding the label
“Bird”. In the subgraph, a number of relations connected with “Bird” are shown. For
instance, the triples (wing,partOf,bird), (beak,partOf,bird), (bird,isA,animal), etc., exist
in the subgraph.

4.3.2 Object Detection Model

For the detection of the visual information that exists in an image, i.e., the hasObject tu-
ples, we rely on typical off-the-shelf tools and methods. In particular, we use a YOLOv5l [10]
neural network, which we fine-tuned on the Pascal-Part Dataset for object detection. The
neural network was fine-tuned using three parameter variations. We fine-tuned:

1. A model using pre-trained weights (PreYoloL)

2. A model from scratch (ScrYoloL)

3. A model using noise-imputed annotations of the training set (NoisyYoloL)

The object detection model receives images as input and provides output in the form
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of detected objects, along with their associated bounding box coordinates and correspond-
ing class labels. An example of the outputs of the object detection model is visualized in
Figure 4.3. Given as input the image shown on the left, the object detection model out-
puts the coordinates of the illustrated bounding boxes coupled with a classification label,
as presented on the right image. Note that not all the outputs of the object detector were
visualized in the example, for clarity reasons.

The outputs of the object detection model are given as input to the NeurASP frame-
work.

Figure 4.3: Example of an object detector’s input (left) and output (right).

4.3.3 Reasoning Module

For the reasoning task, we deployed the NeurASP framework, which combines neural
networks and ASP. The reasoner takes as input (i) the information extracted from Con-
ceptNet, stored in form of subgraphs and (ii) the objects detected by the object detection
model in an image (hasObject relations). The reasoner’s role is to enhance the informa-
tion within the subgraphs, i.e., the knowledge domain, using the meronym Enrichment
Ruleset. This enrichment aims to improve the matching ratio of the meronym relation-
ships with respect to the ground truth. By combining the enriched knowledge domain with
the object detector’s outputs and employing the partOf Discovery Ruleset, the reason-
ing module identifies partOf relationships between the detected objects. The reasoning
process is explained below in more details.

To start with, all information extracted from the KG is then modeled into ASP facts,
in order to be used for the inference purposes stated above. Specifically, with Cypher [13]
queries (shown in Appendix B), we extracted the stored data and transformed them into
ASP predicates. For example, the ASP fact meronym(beak, bird, animal) states that a
beak is part of a bird, and both concepts are categorized as animal. Note that, although
typically meronym can be considered a binary relation, we extended it with a category
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argument (e.g., animal), to differentiate between object and part labels that may appear
under various categories.

In addition, we manually characterized each label according to its associated category,
e.g., object(car, artifact), part(tail,animal). These label categories were determined
through diligent searching within ConceptNet. Furthermore, we separated the labels that
denote objects to the ones that denote object parts. The object detector’s outputs are also
represented in ASP within the NeurASP framework.

When all of the aforementioned information is successfully formulated in ASP, we ap-
ply a number of ASP rulesets which eventually can lead to the generation of partOf rela-
tions. We model 3 rulesets, namely, the bounding box overlap, the knowledge (meronym)
enrichment, and the partOf detection ruleset, each discussed in the sequel.

First, though, let us briefly describe how NeurASP integrates neural network estima-
tions as part of the logic program. In NeurASP, a neural network is represented by a
neural atom nn, which in our case takes the form

nn(label(1, I, B),[person, cat, . . . , other]) : −
box(I,B,Xmin, Ymin, Xmax, Ymax, C).

This rule classifies the bounding box B, which is located at (Xmin, Ymin, Xmax, Ymax)
within image I , into one (1) of the classes (labels) {person, cat, ..., other}, with confi-
dence C. As such, for each image, the neural network outputs labels to each bounding
box found, which is then used as input for the inference rulesets described next.

For instance, NeurASP converts the outputs of the deployed neural network in ASP
for the image in Figure 4.3 as follows.

box(img, b0, 223, 228, 513, 503, 958).

box(img, b1, 265, 291, 286, 324, 472).

box(img, b2, 271, 362, 369, 502, 772).

box(img, b3, 277, 110, 455, 394, 930).

box(img, b9, 364, 250, 446, 374, 891).

box(img, b10, 433, 352, 465, 399, 825).

box(img, b11, 447, 390, 512, 480, 796).

Subsequently, the neural atom produces atoms regarding the labels of the bounding
boxes.

label(0, img, b0,motorbike).

label(0, img, b1, headlight).

label(0, img, b2, wheel).

label(0, img, b3, person).

label(0, img, b9, leg).

label(0, img, b10, foot).

label(0, img, b11, wheel).
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Bounding Box Overlap Ruleset. Given a set of labeled bounding boxes identified
in an image and transformed into ASP atoms by NeurASP, a typical step is to identify
the portion of overlap between pairs of bounding boxes. In fact, very often this is the
only measure applied to infer partOf relations [9]; this is going to be a baseline case to
compare our method against, as explained in the next section.

For our purposes, we devised a set of ASP rules, that are presented in Appendix A.1,
to enable our framework to discover the spatial relations between the detected objects
in an image. Particularly, we wish to find pairs of bounding boxes with 75% overlap
(empirically set); if such coverage is identified, we store this information with the help
of the candidatePartOf/2 predicate, which takes the IDs of the two bounding boxes
as arguments. Specifically, a candidatePartOf(b1, b2) atom denotes that the area of
bounding box b2 covers by 75% or more the area of b1, implying that b1 may be part of
b2.

Consider again the example image shown in Figure 4.3. The prior ruleset will infer
the following atoms for the objects detected in the image.

candidatePartOf(b1, b0).
candidatePartOf(b2, b0).
candidatePartOf(b9, b0).
candidatePartOf(b10, b0).
candidatePartOf(b11, b0).
candidatePartOf(b1, b3).
candidatePartOf(b9, b3).
candidatePartOf(b10, b3).

Depending solely on the visual data, an approach would erroneously identify the
aforementioned atoms as the solution to the target problem. Evidently, such an approach
would yield incorrect results and poor performance. For example, resulting to the con-
clusion that an object part labeled as “headlight”, is part of a whole object “person”,
contradicts commonsense knowledge.

Knowledge (meronym) Enrichment Ruleset. As a next step, we materialize the
implicit knowledge that exists in the extracted graph from ConceptNet and enrich it, by
exploiting the synonym, inverse, subsumption, and meronym relationships between con-
cepts. We therefore apply a set of logical inference rules, as for instance:

meronym(X,Z,C) : −
meronym(X,Y,C),

isSynonymWith(Y,Z,C).

meronym(X,Y,C) : −
meronym(X,Z,C),

hypernym(Z, Y,C).

The first rule states that if we know that label X is a meronym of label Y , and Y is a
synonym of Z, then we can infer that X should also be considered as a meronym of Z.
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The second rule indicates that if we know that label X is a meronym of label Z, and
Z is a hypernym of Y , then we can deduce a meronym relationship between X and Y .
A hypernym is a term that represents a broader or more general category of concepts or
words. The complete ruleset is showcased in the Appendix A.2.

Revisiting the subgraph of the label “bird”, illustrated in Figure 4.2, our approach,
utilizing the second meronym rule, can make a logical inference, establishing the fact
meronym(head, bird, animal), and consequently, it improves the matching ratio with
the ground truth. This inference stems from the presence of the following information
in our knowledge domain: (animal, hypernym, bird) and (head,meronym, animal).
Note that all these labels share the common category of “animal”.

Another characteristic example is the “aeroplane” label found in the dataset, which is
poorly described in ConceptNet, e.g., no association with the “wheel” concept is modeled.
Yet, such an association does exist for the “airplane” ConceptNet node; by exploiting the
synonymity relation between these two terms, we can significantly enrich the information
obtained.

It is interesting to note that by relying exclusively on the PartOf relation found in
ConceptNet, i.e., without applying the knowledge enrichment ruleset described above, we
would only match information about 4 out of the 100 meronym relations that exist in the
Semantic Pascal-Part ontology, which acts as our ground truth. Yet, with the application
of such generic inference rules, we achieved a 85% coverage of the meronym relations
present in the ground truth.

PartOf Detection Ruleset. We exploit all the information obtained by the previous
steps, in order to detect partOf relations between objects detected in an image. One
can devise different inference schemes, from rather simplistic to more complex ones, as
we elaborate in the next section. A declarative approach, as the one we propose in this
study, enables not only intuitiveness in modeling the inference rules that generate partOf
knowledge, but also interpretability of the results, in order to promote explainability and
facilitate future refinements.

For our purposes, in addition to a couple of baselines that only consider the overlap
between bounding boxes or the knowledge that is explicitly found in ConceptNet (without
any enrichment), we further suggest a simple, yet effective scheme, that can be summa-
rized by the following rule:

partOf(B1, L1, B2, L2) : −
candidatePartOf(B1, B2),

partBox(B1, L1, C),

objectBox(B2, L2, C),

meronym(L1, L2, C).

Intuitively, a bounding box B1 having label L1 is part of bounding box B2 with la-
bel L2 if (i) the inspected bounding boxes are overlapping with a ratio over 75%, i.e.,
candidatePartOf(B1, B2), (ii) box B1 is of type Part, box B2 is of type Object,
and both belong to the same category C, and (iii) a meronym association between the
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detected labels has been extracted from ConceptNet or inferred using inference rules. A
number of auxiliary rules are modeled in our logic program, in order to generate the pred-
icates mentioned in the aforementioned rule.

We exhibit how our partOf detection ruleset effectively addresses the issue discussed
in the preceding paragraphs, specifically concerning the example image depicted in Fig-
ure 4.3. Our methodology filters the candidatePartOf/2 atoms using the auxiliary
predicates that were produced, along with the knowledge domain which is established
through ConceptNet and enriched by the meronym Enrichment ruleset. By excluding
any conflicting associations that go against commonsense knowledge, such as inferring
that the “headlight” is a part of the “person” when considering only spatial information in
our example, this straightforward yet powerful approach yields the following inferences.

partOf(b1, headlight, b0,motorbike).

partOf(b2, wheel, b0,motorbike).

partOf(b11, wheel, b0,motorbike).

partOf(b9, leg, b3, person).

partOf(b10, foot, b3, person).

One can observe that our ruleset dropped the outputs that don’t align with our knowl-
edge domain, in contrast to what a method focusing only on visual data and spatial asso-
ciations would produce.

4.4 Example

Consider the image shown in Figure 1.1 (top). The output of the NN would generate the
following facts:

box(img, b1, 63, 433, 411, 624, 832).

box(img, b3, 160, 301, 346, 611, 932).

box(img, b17, 267, 439, 305, 464, 795).

box(img, b21, 314, 427, 348, 451, 862).

Next, the neural atom would produce the facts regarding the label of the bounding boxes:

label(0, img, b1, bicycle).

label(0, img, b3, person).

label(0, img, b17, hand).

label(0, img, b21, hand).

Considering the type and category of every label, further information is constructed:

objectBox(b1, bicycle, artifact).

objectBox(b3, person, body).
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partBox(b17, hand, body).
partBox(b21, hand, body).

One can observe in the image that the bounding boxes indicating the “Hands” are both
covered enough by the bounding boxes of the “Bicycle” and the “Person”, so the following
facts are generated, as well:

candidatePartOf(b17, b1).
candidatePartOf(b21, b1).
candidatePartOf(b17, b3).
candidatePartOf(b21, b3).

Taking advantage of the knowledge we acquired through the previous steps, since
the fact meronym(hand, bicycle, artifact) does not exist in our knowledge base, the
candidate relations associating the two labels are rejected. The output of our methodology
would be:

partOf(b17, hand, b3, person).
partOf(b21, hand, b3, person).

4.5 Summary

The methodology presented here addresses the well-known challenge in Computer Vision,
which involves detecting partOf relationships among objects in an image. By leverag-
ing an open knowledge graph like ConceptNet to gather information about the labels in
the dataset and enhancing this information with a range of generic inference rules, we
achieved an 85% matching coverage of meronym relations as found in the ground truth.
However, achieving a perfect 100% coverage has proven challenging due to the potential
introduction of noisy information, despite our efforts to minimize its impact and maintain
result quality.

Furthermore, by employing our partOf Discovery ruleset, our methodology success-
fully identified partOf relationships among detected objects with a high level of pre-
cision, filtering out incorrect associations that baseline approaches might produce. The
results presented in Chapter 7 affirm that this approach outperforms baseline methods
that rely solely on visual data.

It’s significant to highlight that these devised rules can be easily adapted for various
tasks. More elaborate inference schemes can be deployed, especially if one aims to in-
tegrate domain-specific knowledge or apply inductive logic programming to create rules
tailored to the data. However, the key takeaway from this study is that even with a simple
yet generic approach, the combination of data-driven methods with external knowledge
and inference can lead to improved performance in detection tasks.



Chapter 5

Identifying Errors in Object
Detector’s Output

In alignment with the previously outlined challenge, which centers on defining partOf
relationships among detected objects, this investigation pivots towards the task of identi-
fying errors in the outputs of object detection models.

Despite their considerable capabilities, object detection models are not immune to
errors, particularly in complex and dynamic real-world situations, or when training data
are sparse or noisy. The utilization of external knowledge sources and commonsense
reasoning can be proven quite valuable in detecting potential model errors. These re-
sources provide a valuable mechanism for flagging incorrect outputs by cross-referencing
the model’s results with established real-world knowledge.

By detecting errors, we provide a critical first step in quality control, allowing subse-
quent processes to further investigate and resolve the identified errors. While the primary
objective is error detection, our aim extends beyond mere identification. We aspire to ad-
dress these errors effectively, whether by providing insights, generating corrective actions,
or enhancing the accuracy of the object detection outcomes. This separation of detection
and resolution ensures a more systematic and efficient approach to improving the accu-
racy and reliability of object detection models, making them more adaptable to diverse
and dynamic real-world scenarios.

5.1 Problem Description

The issue we previously outlined can be informally expressed in the following way. Given
a set of images and the outputs of an off-the-shelf object detection model for this set of
images, our objective is to pinpoint cases where the object detection model generates in-
correct or incomplete results. These errors may include misclassifications, missed objects,
or incorrect bounding boxes, according to a provided ground truth of object detection re-
sults for the input images.

The prior problem can be formally defined, by adapting Definition 4.1.2, as follows:

25
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Definition 5.1.1. Given an instance V∗ = ⟨I,O,P, hasObject∗, partOf∗⟩ of a visual
object-part discovery setting, which we consider the ground truth, and another instance
V̂ = ⟨I,O,P, ̂hasObject, ̂partOf⟩, where ̂hasObject approximates the hasObject∗

relation, a simplified error detection problem concerns the finding of erroneous cases of
̂hasObject relations, in terms of their labels or the coordinates of their bounding boxes.

5.2 Overview of the Methodology

In Figure 5.1, we present an overview of our Error Detection methodology. We extend
the existing partOf methodology to include the capability to identify potential errors that
could arise in the object detection model’s outputs. The process leading up to the partOf
Discovery is identical to the one detailed in Section 4.2. However, an additional ruleset
was formulated, the Error Detection Ruleset, to tackle the aforementioned task of error
identification. The Error Detection Ruleset is in charge of discovering potential errors
in the object detector’s outputs, categorizing them and reporting which detection arose the
error. Once errors are detected, the Error Handling Module takes charge of resolving
these errors based on their specific category.

Throughout the error handling process, some data may undergo modifications. Con-
sequently, the outputs of these processes are fed back into the error detection module to
scan for potential new error triggers. This iterative process between the modules contin-
ues until no more errors are identified. We store the outputs of the framework locally in
separate JSON files. Upon the completion of the execution, two JSON files are generated:
one containing the detected objects and their partOf relations, and another containing
the identified errors.

5.3 Error Detection and Handling

This section covers the rules and techniques that were implemented to expand our frame-
work’s capabilities to identify errors in the outputs of the object detection model and take
actions to rectify them.

Observing the outputs of the object detection model (hasObject tuples) and the prior
rulesets, we were led to the assumption that by combining the two, we could possibly
discover erroneous outputs of the model.

Initially, we attempted to address this issue by formulating some constraint rules, led
by the capabilities offered by ASP. The constraint rules that were devised were trying to
detect and resolve the errors simultaneously. This approach had a negative effect in terms
of the mAP score, which is a metric that is traditionally used in Computer Vision to assess
an object detection model. (More detailed explanation in 7.2.1). Our initial intention
was to improve the object detection model’s performance, and the reported results were
doing the exact opposite. Monitoring the results to understand why that happened, we re-
alised that we were detecting errors quite naively, disregarding important information that
could be attained by the existing outputs of the framework. Furthermore, we came to the
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Figure 5.1: Error detection and Handling methodology outline.

conclusion that there are different cases of errors, that can be detected by different condi-
tions, and must be resolved by different techniques. Hence, this called for the separation
of the error detection and the error handling procedures. The errors can be categorized as
presented in Table 5.1 and explained in detail in the next sections.

Table 5.1: Error Cases.

Error Case
Erroneous Detection

Object Part Whole Object
Case P ✓
Case O ✓

Case PO ✓ ✓
Case MO ✓

Beyond error detection, the framework extends to proposing a methodology for han-
dling identified errors based on their types. This involves potential modifications to the
object detection model’s outputs or providing insights to facilitate manual correction of
detected errors.

5.3.1 Error Case P

Case P errors indicate that an object part that is present in the detector’s outputs, was
possibly misclassified.
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An Error Case P occurs when an object part p is detected (i) with low confidence
score, (ii) can be spatially related with a whole object o and (iii) lacks semantically
association with any whole object present in the image, then there is an error associated
with the object part p.

5.3.1.1 Error Detection Methodology

Error case P can be formulated in ASP as shown below. Numerous auxiliary rules were
devised to establish the presented rule. The spatialPartOf/4 rule defines a spatial con-
nection between bounding boxes B1 and B2 considering their coordinates and their type
(Object/Part). The highConfidence/1 predicate specifies that the confidence score of
a bounding box B exceeds the selected threshold, which was empirically set to 0.4. The
single/1 predicate indicates that an object part is not semantically associated with any
whole object within the image, while the predicates knownPart/1 and knownObject/1
report that in our knowledge domain there is meronym information regarding the labels
of the associated bounding boxes. These latter predicates were formulated to disregard
labels for which our knowledge domain lacks any relevant information. The complete
collection of the auxiliary rules that were formulated, can be found in Appendix A.4.

errorCaseP (B1) : −
spatialPartOf(B1, , B2, ),

knownPart(B1),

knownObject(B2),

highConfidence(B2),

not highConfidence(B1),

single(B1).

An example of an identified Error Case P is visualized in Figure 5.2. In the image,
the object detector identified a “Handlebar” (depicted by the yellow box) with low confi-
dence. While it was spatially linked to a “Person” (indicated by the blue box), there was
no semantic correlation with any whole object in the image. Evidently, the framework
correctly detected this error.

5.3.1.2 Error Handling Methodology

While the framework is being executed, not only it detects objects using the model but
also stores the class probability distribution for each bounding box. Consequently, for
every bounding box identified in an image, we maintain a stack that holds its top k most
likely classes based on the model’s predictions.

As already mentioned, errors falling under Case P indicate potential misclassification
of an object part. In an effort to rectify such errors and enhance the object detection
performance, we undertake a procedure where we substitute the label of the object part
with the subsequent most probable label from the stack. This iterative process continues
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Figure 5.2: Error Case P example. In the image, an object part classified as “Handlebar”
is detected with low confidence, that can be spatially connected with the detected whole
object “Person”. Because the two cannot be semantically associated, the framework iden-
tifies a case P error triggered by the “Handlebar” bounding box.

until the specific bounding box no longer generates errors in the framework’s inferences.
It is important to note that if the probability of a class in the stack is equal to zero (0) or if
the stack for a particular bounding box is empty, that box is categorized as “Other”.

In Figure 5.3, we showcase how our proposed technique handles the error that was
identified in the earlier example. The image on the right demonstrates the outcomes after
error resolution. The framework adeptly adjusts the label from “Handlebar” to “Hand”,
aligning it accurately with the correct classification.

5.3.2 Error Case O

Case O errors indicate that the object detection model has possibly returned incorrect
outputs about a whole object detection.

This error case occurs when (i) a whole object o is detected with low confidence
score, (ii) o can be spatially related with an object part p with high confidence, (iii) o
and p cannot be semantically associated, and (iv) the semantically associated parts with
the whole object o do not exceed the defined threshold.
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Figure 5.3: Error Case P handling example. The label “Handlebar” of the bounding box
that triggered the error is correctly changed to “Hand”.

5.3.2.1 Error Detection Methodology

Following the ASP rule that was devised to capture Case O errors is displayed. While
the rest of the rules were already explained in 5.3.1.1, a new predicate is introduced in
this rule. A context/1 fact defines that a bounding box classified as a whole object is
semantically linked to a certain number of object parts, denoted as N , each with a high
confidence score. The specific value of N has been set as 2.

errorCaseO(B2) : −
spatialPartOf(B1, , B2, ),

knownPart(B1),

knownObject(B2),

highConfidence(B1),

not highConfidence(B2),

not context(B2),

single(B1).

Figure 5.4 exhibits the occurrence of a Case O error. Here, “Animal Wing” object
parts (highlighted by the blue boxes) have been detected with high confidence, and they
are spatially associated with a low-confidence “Aeroplane” (indicated by the orange box).
This contradicts the commonsense knowledge present in our knowledge domain, leading
to the appropriate identification of a Case O error (indicating that the “Aeroplane” box is
probably wrong).
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Figure 5.4: Error Case O example. The error is triggered by the whole object “Aeroplane”.
This happens because “Aeroplane” is detected with low confidence and is spatially asso-
ciated with the bounding boxes labeled as “Animal wing”, which have been detected with
high confidence.

5.3.2.2 Error Handling Methodology

As it was pointed out, Case O errors indicate that the object detector possibly misclassi-
fied a whole object. This kind of errors are handled similarly as Case P errors by updating
the whole object’s label following the procedure that was previously mentioned in Sec-
tion 5.3.1.2.

The image on the right of Figure 5.5 exemplifies how the framework rectifies the error
mentioned in the previous section, by changing the label from “Aeroplane” to “Bird”.

5.3.3 Error Case PO

This kind of error indicates that either an object part p or a whole object o was wrongly
detected.

Error Case PO involving a detected whole object o and a detected object part p occurs
when (i) p and o are both detected with low confidence score, (ii) p and o can be spatially
related, (iii) p and o cannot be semantically associated and (iv) there are not enough
semantically associated parts with the whole object o.
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Figure 5.5: Error Case O handling example. To resolve the error, the framework changes
the label “Aeroplane” to “Bird”.

5.3.3.1 Error Detection Methodology

The ASP formulation of the specified error is showcased below. The composing factors of
the rule are already explained in the previous error cases. A Case PO error event is shown
in Figure 5.6. The detection of “Person” and “Muzzle” (highlighted in purple) met the
predefined conditions for Case PO errors. Clearly, both outputs are incorrect.

errorCasePO(B1, B2) : −
spatialPartOf(B1, , B2, ),

knownPart(B1),

knownObject(B2),

not highConfidence(B1),

not highConfidence(B2),

not context(B2),

single(B1).

5.3.3.2 Error Handling Methodology

This category of errors arises when either one or both of the entangled bounding boxes
are inaccurately classified. Our framework handles this error case in a similar manner
as discussed in 5.3.1.2; however, with a distinction in label replacement, guided by the
probability distributions associated with both bounding boxes. It peeks into the stacks and
summarizes the probabilities for the next two most probable label combinations, consid-
ering both altering the label of the object part while retaining the label of the whole object,
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Figure 5.6: Error Case PO example. The detection of spatially connected “Person” and
“Muzzle” objects, both with low confidence, led to the event of the case PO error.

and vice versa. Subsequently, the labels are adjusted to align with the label combination
that yields the highest overall probability summation.

Following the error resolution process for the previously shown case, the framework
addresses one of the problematic labels by changing the “Muzzle” label to “Head”, as
demonstrated in the image on the right of Figure 5.7.

5.3.4 Error Case MO

Error Case MO indicates a missing whole object (MO) from the object detector’s outputs
for the image. This kind of error can be triggered by various subcases.

• Subcase 1: A whole object o and an object part p are detected (i) p and o are both
detected with high confidence score, (ii) p and o can be spatially related and (iii)
the object part p cannot be semantically associated with any whole object detected
in the image.

• Subcase 2: A whole object o and an object part p are detected, (i) the object part p
has high confidence score, (ii) the whole object o is semantically associated with a
number of high confident object parts, (iii) p and o can be spatially related but (iv)
the object part p cannot be semantically associated with any whole object detected
in the image.
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Figure 5.7: Error Case PO handling example. The framework addresses the error by
changing the “Muzzle” label to “Head”. Following the label modification, there is no
violation within the knowledge domain. Consequently, the “Person” box, while visually
incorrect, remains unalterable.

• Subcase 3: An object part p is detected (i) with high confidence score and (ii) it
cannot be spatially associated with a whole object o.

5.3.4.1 Error Detection Methodology

Case MO errors are formulated in ASP as displayed next. Note that Subcases 1 and
2 can be combined into one rule when formulated in ASP using the disjunction rule
1 {highConfidence(B2); context(B2)}. This rule defines that if at least one of highConfidence/1
or context/1 holds, then the disjunction rule holds as well.

errorCaseMO(B1) : −
spatialPartOf(B1, , B2, ),

knownPart(B1),

knownObject(B2),

highConfidence(B1),

1 {highConfidence(B2); context(B2)} ,
single(B1).
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errorCaseMO(B1) : −
not spatialPartOf(B1, , , ),

knownPart(B1),

highConfidence(B1),

single(B1).

Undetected whole object error correctly occurs in Figures 5.8 and 5.9. Numerous ob-
ject parts with high confidence were identified, but were unable to semantically correlated
with a whole object.

Figure 5.8: Error Case MO example 1. Multiple high-confidence object parts are detected
(e.g., “Nose”,“Muzzle”, etc.) that cannot be spatially connected with any whole object
within the image.

5.3.4.2 Error Handling Methodology

The current challenge extends beyond merely recognizing the absence of a whole object; it
involves quantifying the number of missing detections within that category and providing
a list of potential classes for those missing objects.

To address this challenge, a new set of rules has been developed. This new rule-
set takes on the responsibility of identifying potential missing whole object classes. It
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Figure 5.9: Error Case MO example 2. The object parts “Wheel” and “Hand” are detected
with high confidence, but cannot be related with a whole object.

achieves this by leveraging information within the framework’s knowledge domain, as
well as information from the object part that triggered the error.

Once these missing classes are identified, the ruleset categorizes them into groups,
ensuring that every class within a group shares common parts with the other classes in
that group, in accordance with the knowledge domain. Finally, the ruleset provides a
count of the missing whole objects, which corresponds to the number of groups formed,
along with a list of potential classes for the missing objects. The aforementioned ruleset
is presented in Appendix A.4.1.

The presented handling procedure had the following outputs for the examples shown
in Figures 5.8 and 5.9.

The framework accurately identifies that at least one whole object is absent as shown
in Figure 5.10, and suggests that it belongs to the class “Person”. Only a single possible
class is presented because most of the detected parts are unique to the class “Person” (e.g.,
“Hand”, “Mouth”), according to our knowledge repository. In such instances, our ruleset
is designed to handle this information appropriately.

In the case displayed in Figure 5.11, in the outputs is being reported that at least two
whole objects were missed by the object detector. This results from the fact that within
our knowledge domain, there are no classes that share both the parts “Wheel” and “Hand”.
Consequently, two sets of potential classes are presented for each missing object.
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Figure 5.10: Error Case MO handling example 1. The framework reports that at least 1
whole object with label “Person” should have been returned by the object detector.

Figure 5.11: Error Case MO handling example 2. The framework reports that at least 2
whole objects are missing. The possible classes for one of the undetected whole objects
include “Aeroplane”, “Bicycle”, etc. The only possible label for the other missing object
is “Person”.
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5.3.5 Wrong detection coordinates

As we explored various error scenarios, it became evident that some errors were originat-
ing from inaccurate coordinates provided by the object detection model for the bounding
boxes of detected objects. An illustrative example of this issue is presented in Figure
5.12 (where we focus exclusively on the relevant errors while omitting the remaining de-
tections). In this example, the object detector successfully identifies and classifies the
object “Person”, along with the object parts “Hand” and “Foot”, all with high confidence
scores.

As outlined in Section 4.3.3, our approach incorporates an inclusion ratio of 75%
to discover spatial associations between whole objects and their constituent parts. Ap-
parently, this inclusion ratio cannot be satisfied for the detections within the presented
image example. Consequently, our error discovery ruleset erroneously reports two Case
MO errors. This misclassification could lead to inaccurate assumptions and suboptimal
framework performance.

To address this issue, we implement an initial filtering step for detected errors, as
illustrated in Figure 5.13. By substantially reducing the inclusion ratio to a negligible
value and then re-executing the framework, we are able to separate from the initially dis-
covered errors, the inaccurate coordinates errors. In the case of coordinate inaccuracies,
the framework issues a warning about the affected bounding boxes.

Figure 5.12: Example image where errors are detected due to inaccurate bounding boxes
coordinates. The bounding box of the “Person”, should be larger to include the object
parts “Hand” and “Foot”.
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Figure 5.13: Errors Filtering Pipeline.

5.3.6 Interesting Cases

Observing the outputs of the presented methodology of identifying errors in the outputs of
the object detection model, some interesting cases showed up. Following, some examples
cases will be presented to showcase how the deployed model, the knowledge domain used
or even the annotations of the ground truth have an effect in our method.

Figure 5.14 illustrates error case P, where the object detector identified a “Sheep”
(indicated by the blue bounding box) and a “Nose” (indicated by the yellow bounding
box) in the image. Notably, the “Nose” detection received a low confidence score. What
makes this case intriguing is that it’s entirely logical for a sheep to have a nose, aligning
with commonsense. However, in the Semantic Pascal-Part Ontology that we use as ground
truth, such connection doesn’t exist i.e., there is no meronym(nose,sheep). As a result, in
the ground truth annotations regarding the objects present in an image, there is no object
part classified as “Nose”. Consequently, the error detection was valid based on the object
detector’s output and the ontology.

It’s worth noting that this error was identified solely by leveraging the ontology as
our knowledge domain. In contrast, when we employ our methodology to construct
the knowledge domain using ConceptNet, naturally, an association between “Nose” and
“Sheep” emerges due to common knowledge. In this scenario, the error may go unde-
tected because, according to the knowledge domain, such an association is consistent
with commonsense.

In some other scenarios that may arise, we encounter situations similar to the one
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depicted in Figure 5.15. In this particular case, our framework incorrectly identified an
error case P. In the image the object detection model detects an object part “Body” with
low confidence. Due to its coordinates it can be spatially associated with the whole object
“Person”. The two cannot be semantically associated because they belong to different
contexts according to their label category (Person, Artifact). Hence, the conditions have
been met for the framework to arise an error case P. However, in the ground truth annota-
tion there is no annotated object regarding the yellow bounding box. Clearly, there is an
object within the image, and the object detector successfully identifies it. However, since
it does not align with the ground truth, the error is categorized as a False Positive.

Figure 5.14: A low-confidence (yellow) bounding box “Nose” is detected that is spatially
associated with a detected whole object “Sheep”. An error case P is triggered, because in
the ground truth there is no meronym(nose,sheep), hence the yellow box was misclassi-
fied. However, a sheep having a nose is not against commonsense knowledge. Using the
knowledge domain constructed via ConceptNet, this error cannot be detected.

In Figure 5.16, an illustrative case highlights the impact of confidence scores on the
suggested approach for handling detections. Initially, in the image on the left were de-
tected a whole object “Bicycle” and an object part “Leg” that can be spatially associated.
Both of these detections fall below the confidence threshold, and there’s no semantic con-
nection between them, leading to the accurate identification of an error case, referred to
as PO.

However, when our framework attempts to rectify this error, a peculiar situation arises.
This is because the “Leg” receives a higher confidence score than the “Bicycle”, causing
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Figure 5.15: An object part “Body” (yellow box) is detected by the object detection model
and causes a case P error. However, no object exists in the ground truth annotations
regarding the yellow bounding box. Hence, this error detection case was incorrect.

the framework to relabel the latter as “Person” (as seen in the right image). Clearly, the
incorrect detection pertains to the “Leg”, and due to the confidence scores provided by the
model, the framework fails to resolve the error correctly.

Interestingly, in the initial detection, no “Person” was identified by the model. Nev-
ertheless, in the ground truth annotations, a “Person” does indeed exist. Furthermore, the
“Bicycle” also exists. One might describe this handling outcome as “neutral” since the
“Bicycle” is erroneously discarded, but a “Person” is accurately classified.

Depicted in Figure 5.17, we encounter a case where our error-handling process leads
to incorrect label changes and a decline in object detection performance. The “Wheel”
object part (indicated by the yellow box) is detected with a confidence score below the
designated threshold in the left image. Furthermore, the “Wheel” shares a spatial rela-
tionship with a detected “Person”, although no semantic validation exists. Surprisingly,
the object detection model fails to identify the existing “Bicycle” in the image, resulting
in our methodology erroneously triggering an error case, denoted as P.

In an attempt to address this error, the handling process mistakenly relabels “Wheel”
to “Chair”, as illustrated in the right image, leading to a decrease in overall object detec-
tion performance.

Lastly, another interesting insight that was provided observing the outputs of our
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Figure 5.16: Both a “Bicycle” and a “Leg” are detected with confidence scores below the
threshold in the image (left), leading to the correct identification of an error case PO due
to their lack of semantic connection. However, when the framework attempts to rectify
the error (right), the fact that “Leg” is assigned a higher confidence score than “Bicycle”
results in the relabeling of the “Bicycle” as “Person”. This handling outcome can be
described as “neutral”, as the “Bicycle” is wrongly dropped, but a “Person” is correctly
classified.

methodology is depicted in Figure 5.18. The object detector detects an object part clas-
sified as “Headlight” with high confidence score, within the image. However, the object
box cannot be spatially related with any whole object in the image. Driven by that in-
formation, the framework reports an error MO case, i.e. that a whole object is missing
from the outputs generated by the object detection model. Moreover, the error handling
procedure suggests that the missing whole object belongs to one of the dataset’s vehicle
classes (such as bus, car, bicycle, etc.). It is evident that a car is present in the image but
was not detected. Nonetheless, there are no corresponding ground truth annotations for
a car or any of its components, which leads to the conclusion that the error detection is
incorrect, but clearly is not. Examining such error cases can provide valuable insights into
potential inaccuracies or missing annotations within the dataset.

5.4 Summary

In this chapter we explained how we expanded our framework to identify possible errors
in the object detection model outputs, i.e., the hasObject tuples. Deploying the Error
Detection Ruleset enabled the discovery and categorization of errors, while utilizing the
Error Handling Module, our framework deals with the detected errors according to their
type. Overall, our methodology reports very promising results as shown in Chapter 7. In
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Figure 5.17: Figure showcases a scenario where our error-handling process results in an
incorrect label change. Specifically, a “Wheel” object part (indicated by the yellow box)
is detected with a confidence score below the specified threshold in the left image. This
“Wheel” is spatially connected to a detected “Person”, though no semantic validation
exists. The object detection model fails to recognize the existing “Bicycle” in the image,
leading our methodology to trigger an erroneous error case P. In an attempt to rectify this
error, the handling process inaccurately relabels the “Wheel” as “Chair”, as depicted in
the right image, ultimately decreasing the overall object detection performance.

particular in some cases the precision score of this method was equal to 100%. Neverthe-
less, the framework’s ability to detect possible errors in the outputs of an object detection
model can be further enhanced. A possible upgrading is the integration of additional in-
formation sources about the objects in an image, and tools for more robust and precise
results. Furthermore, the error handling techniques used in this work, did not met our
expectations, i.e., improving the task of object detection. Hence, a couple of more refined
techniques are proven necessary.

However, the presented methodology provides the first step in quality control of an
object detection model, enabling subsequent processes to thoroughly examine and rectify
the identified errors.
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Figure 5.18: Object detector identifies a “Headlight” (red box) with high confidence, but
does not relate it to a whole object, triggering an MO error case. The missing object is
likely a vehicle (e.g., car), but such object is not annotated in the dataset. Examining such
cases may reveal incorrect or missing annotations in the dataset.



Chapter 6

Implementation

In this chapter, we provide an in-depth description of the execution process of our frame-
work, named PReDeCK. PReDeCK’s execution pipeline is presented visually in Figure
6.1. Initially, the framework exports all the available data about the labels of the dataset
from ConceptNet. The data is retrieved by sending HTTP queries to ConceptNet through
python for every label. Subsequently, this data undergoes the filtering process, and sub-
graphs for each label are created and stored locally in Neo4j. This process is repeated
for the derived concepts as well, to export information about the neighboring nodes of
the dataset’s labels that are available in ConceptNet. Consequently, the information that
the subgraphs hold is represented in ASP format. Once this process is concluded, the
generated facts are integrated into NeurASP.

The meronym Enrichment ASP Ruleset leverages the previously generated facts to
inference additional meronym relations among the labels within the dataset. Its objective
is to attain the utmost coverage of these relations that exist in the ground truth. After
the execution of the enrichment ruleset, PReDeCK’s knowledge domain is complete. To
enhance efficiency, this process was conducted external to the framework. Instead, the
knowledge domain was inferred, materialized, and then incorporated into the framework
as facts.

Once the knowledge domain is fully established, we initiate the process by inputting
the Test Set’s images into PReDeCK. For each image, the object detector outputs all the
detected objects, which are also represented in ASP within NeurASP. Following that, the
partOf Discovery ASP Ruleset comes into play, utilizing both the knowledge domain
and the detector’s outputs to infer partOf relations among the identified objects within
the image.

The Error Detection Ruleset leverages all available information to identify poten-
tial errors in the object detector’s outputs. These detected errors are stored locally in a
JSON file. In the event that any errors are discovered within an image, this information
is promptly forwarded to the Error Handling Module. The Error Handling Module is
tasked with the responsibility of addressing these identified errors according to their type,
and, if necessary, making modifications to the data. Following any such modifications,
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Figure 6.1: PReDeCK’s Execution Pipeline

PReDeCK performs a re-evaluation to check for any newly introduced errors. This iter-
ative process is imperative, as resolving certain error cases may trigger the emergence of
other error cases. Ultimately, when all errors have been effectively addressed, the results
are stored in a separate local JSON file.

Finally, the Evaluation Module uses the framework’s outputs to assess its effective-
ness on multiple fronts.This includes evaluating its performance in discovering partOf
relations between objects within an image, its ability to pinpoint erroneous outputs from
the object detection model, and its accuracy in resolving them.

It’s of note that our methodology and implementation have been designed with a high
degree of generalization. With relatively minor adjustments and a modest amount of
effort, the framework can be readily adapted to a wide range of tasks and diverse datasets.

6.1 Framework set-up

Instruction on how to set the framework up and the necessary tools are presented below.
NeurASP Framework. First, install the NeurASP framework as instructed in https:

//github.com/azreasoners/NeurASP/tree/master. Instead of installing
the packages that are listed in the previous repository, install the provided anaconda envi-
ronment running the following commands:

conda env create -n predeck --file env.yml
conda activate predeck
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Then, replace the files neurasp.py and mvpp.py with the ones provided in the sub-
mitted repository. In “NeurASP” folder, insert the file string parser.py and the folder
“ConceptNet”. Moreover, insert the folder “PReDeCK” in “NeurASP/examples/”.

Object detection model and Dataset. While in the working directory “NeurASP/examples/PReDeCK”
the following steps must be done. Install YOLOv5 according to the instructions found in
https://github.com/ultralytics/yolov5, and also download the Seman-
tic Pascal-Part dataset we used in our work, from https://universe.roboflow.
com/pascalpart/pascal-part-fquij. When the download is complete, copy
the images of the test set in a folder in the current directory.

Running the framework. The provided folder, “PReDeCK”, includes a configura-
tion file, named config.yaml. In the configuration file one can fill the required fields,
accordingly. These fields include the specification of the images’ directory path as well
their size (in the provided dataset the size is 640). The model that is to be deployed for
the execution must be specified in the file as well, along with path of the output file where
the results will be recorded. Finally, the user can specify which of the provided exper-
iments/methods to be executed and enable or disable the evaluation process. When all
the aforementioned fields are filled successfully, the framework can be executed using the
command:

python run.py

Commonsense Knowledge exportation via ConceptNet. For the given methods,
the knowledge domain is already incorporated in the python scripts. If the user wishes
to construct a different domain from ConceptNet, or enhance the existing, all the nec-
essary files are provided. First, you have to initialize a local graph through Neo4j, and
insert the credentials in the python files, when needed. Next, by running python
neo concept categories.py the local graph that includes the requested infor-
mation is ready. Note that all the queried labels and relations can be modified inline in
the given scripts. At last, to represent the knowledge derived from ConceptNet in ASP,
run python create CNrules file.py. To avoid, the previous steps, we have pro-
vided the facts represented in ASP in the file “CNrules.txt”.

In general, the method is quite adaptable and can be configured according to the needs
of the user.

ASP Rulesets. All the ASP rules formulated for this study, can be found in the
“ASP PReDeCK Rules.ipynb” notebook.

Object Detection Evaluation. The evaluation for the object detection models was
carried out using the following tool https://github.com/rafaelpadilla/review_
object_detection_metrics.

The instructions stated above along with all the necessary sources and files can be
found in the following github repository: https://github.com/Kmrs97/PReDeCK/
tree/main
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Chapter 7

Evaluation

In this chapter, we describe the evaluation process for the presented methodologies, we
report the results, and discuss strengths and limitations.

7.1 Setting

The evaluation was conducted using a test set sampled from the Pascal-Part Dataset, main-
taining the same class proportions as the original dataset. This test set comprises 991
images, covering all the original dataset’s classes. The annotations for these images serve
as the ground truth against which we compare our results. In total, the test set includes
24,512 objects, 154,558 parts, and 15,811 ”part of” (meronym) relations.

For object detection, we employed a YOLOv5l model, fine-tuned in three different
ways as described in Section 4.3.2.

The commonsense knowledge integrated into the framework for the experiments was
constructed through various means. The knowledge domain is either created from various
adaptations of information extracted from ConceptNet (including variations like no infer-
ence rules or incorrect information) or by considering the Semantic Pascal-Part Ontology
provided alongside the dataset.

7.2 Design of Experiments

The Design of Experiments section provides information about the hypotheses that were
made within the evaluation process of the proposed framework. Additionally, the evalua-
tion metrics deployed for the assessment of our approach, are explained in detail.

7.2.1 Evaluation Measures

The evaluation of partOf relation and errors detection relies on the object detection task.
For that reason, we start this section by describing which detected objects were considered
correct and which ones were discarded. Then, we proceed with the evaluation measures
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for partOf relation detection between objects. Finally, we elaborate on how we assess
the errors by the object detector, that were identified by the framework.

Object detection. To evaluate the performance of the fine-tuned YOLO model that we
used for object detection, we employ mean Average Precision (mAP). Average Precision
(AP) is calculated for each class across all images, and mAP is defined as the mean of
those AP scores. To compute AP, the predicted bounding boxes are compared with the
ground truth annotations, in terms of localization and classification.

For localization, we use the Intersection over Union (IoU) value shown in (7.1), which
is equal to the area of the intersection between the predicted and ground truth bounding
boxes, divided by the area of their union.

IoU =
Area of Intersection

Area of Union
=

A ∩B

A ∪B
(7.1)

If the IoU value between a predicted bounding box b and a ground truth bounding
box b′ exceeds a specified threshold (usually 0.5), and the predicted label of b is the same
as the label of b′, then the object prediction is considered correct; otherwise the object
prediction is incorrect.

PartOf detection. A partOf(b1, l1, b2, l2) relation suggestion is considered as True
Positive (TP), if it satisfies the conditions below:

• Both objects are detected correctly, i.e., b1 (with label l1) and b2 (with label l2) are
correctly matched with bounding boxes b1′ (with label l1′) and b2′ (with label l2′),
respectively, as given in the ground truth.

• There is a partOf relation in the ground truth annotations between the examined
objects, i.e., partOf(b1′, l1′, b2′, l2′).

Accordingly, a predicted partOf(b1, l1, b2, l2) relation that does not satisfy all the
conditions above is considered as a False Positive (FP), while the absence of a partOf(b1, l1, b2, l2)
relation prediction for a partOf(b1′, l1′, b2′, l2′) relation in the ground truth is considered
as a False Negative (FN). Overall, the evaluation results for the partOf relation detection
task are reported in terms of precision P = TP/(TP+FP ), recall R = TP/(TP+FN),
and F1 = 2PR/(P +R).

Error Detection. Depending on the type of error detected, a True Positive (TP) may
vary. In instances of errors categorized as P, O, and PO, denoting errors identified in
either an object part or the whole object (or both), a TP occurs when the bounding boxes
associated with an error are actually misclassified according to the ground truth. For
example, if an error is detected and reported using the predicate errorCaseP (b1), a TP
is confirmed if b1 was indeed misclassified. In the case of error case PO, where two
bounding boxes triggered the error, it suffices for at least one of them to be incorrectly
identified for a TP to be counted.

A precise detection of a case MO error is considered, if there are actually undetected
whole objects in the associated image. For this particular scenario the positives and neg-
atives are measured in number of images and not errors, because a number of bounding
boxes that trigger a case MO error may refer to the same missing whole object.
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The Precision metric is employed to assess the detected errors. For Case MO errors,
the Recall is also reported.

Error Handling. As described earlier, for cases P,O and PO through the error han-
dling process, the model’s output labels may undergo modifications. Consequently, the
process is also evaluated with Mean Average Precision (mAP).

However, error case MO is treated differently, as we not only detect the absence of
whole objects in the detections, but also strive to ascertain the quantity of undetected ob-
jects and their potential labels. Therefore, the framework’s precision in achieving this
objective requires evaluation, for which we have developed four distinct evaluation ap-
proaches.

1. Firstly, as mentioned earlier, we verify whether undetected whole objects error is
correctly reported (MO1).

2. Secondly, we employ a variation of the first method and check if the framework
accurately identifies the exact number of missing whole objects, too (MO2).

3. Thirdly, we validate whether the reported possible classes align with the actual
classes of the missing objects (MO3).

4. Lastly, we utilize a combination of the second and third methods for a more rigorous
assessment (MO4).

Employing these multiple approaches enables a comprehensive assessment of the
framework’s capability to identify the absence of whole objects, determine the number
of undetected whole objects, and infer their potential labels. This multifaceted evaluation
strategy allows for a more nuanced and robust understanding of the framework’s perfor-
mance in handling error case MO.

7.2.2 Hypotheses

PartOf Detection Methodology. Our approach to discover partOf relations between the
detected objects in an image, named PReDeCK, was compared with (i) a visual baseline
approach that considers only visual features for the detection of the partOf relations, (ii)
PReDeCKGT that uses the information available in the Semantic Pascal-Part ontology (i.e.,
the ground truth) and therefore exhibits ideal performance, (iii) PReDeCKCN, a variation
of our suggested methodology that utilizes knowledge from ConceptNet, but omits the
inference phase and (iv) PReDeCKNoisy, where the knowledge domain was intentionally
imputed with false meronym information while ignoring correct ones. We introduced
this variation to underscore the significance of having a robust and accurate knowledge
domain when addressing these types of problems.

In our evaluation process, we considered the aforementioned comparisons based on a
number of hypotheses stated below:

• Hypothesis 1: Our approach achieves improved performance in terms of Precision,
compared to the visual baseline. This hypothesis is grounded on the assumption that
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the use of both visual and commonsense information can eliminate false partOf
outputs.

The visual baseline approach that was employed for comparison, follows a naı̈ve
strategy to discover the partOf relations, using only the geometric data of the
detected objects. If the inclusion ratio ir(b1, b2) between two bounding boxes b1
and b2 exceeds a given threshold θ, then the partOf relation stands:

partOf(b1, l1, b2, l2)=

{
true, if ir(b1, b2) ≥ θ

false, otherwise
, where

ir(b1, b2) =
area(b1 ∩ b2)

area(b1)
.

We empirically set the threshold θ value to 0.75. Note that labels l1 and l2 are
completely ignored.

• Hypothesis 2: Commonsense knowledge from problem-agnostic KGs, as used in
our proposed methodology, can help achieve performance close to (but cannot ex-
ceed) the ground truth approach (PReDeCKGT), in terms of precision and recall for
the prediction of part of relations.

The PReDeCKGT method uses the same ruleset as the presented methodology, but
instead of relying on the information extracted from ConceptNet as its knowledge
domain, it uses the information obtained from the Semantic Pascal-Part ontology.
This information is error-free and contains all possible meronym relations that are
present in the dataset’s annotations.

To highlight the significance of the knowledge domain and see how close we get
with the knowledge that we extract from ConceptNet to a baseline with complete
knowledge, we define two variations for PReDeCKGT. The first one, PReDeCKGT1,
considers only the type of the predicted label (Object/Part) to infer partOf rela-
tions. In other words, it uses a variation of the rule presented in Section 4.3.3, where
it omits the last predicate of the rule that checks if there is a meronym relation in
the knowledge repository. In this case, when two bounding boxes that meet the
spatial conditions, are classified as belonging to different types, this is sufficient
evidence for deriving a partOf relation among them.

The second approach, PReDeCKGT2, uses the rule defined in Section 4.3.3 as is,
and all the available information about meronym knowledge, present in the ground
truth, to discover the partOf relations between the detections.

• Hypothesis 3: PReDeCK’s results outperform identically implemented frameworks
that lack or rely on false knowledge.

We compare our method against two variations that utilize smaller parts of our
constructed knowledge domain. PReDeCKCN1 uses the labels’ types and categories
along with information that is directly accessible through the edge “PartOf” of Con-
ceptNet, with no further knowledge enrichment.
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PReDeCKCN2 discovers the partOf relations without the specification of the type
and category for the labels. In this case the following variation of the partOf /4
rule is used:

partOf(B1, L1, B2, L2) : −
candidatePartOf(B1, B2),

label( , , B1, L1),

label( , , B2, L2),

meronym(L1, L2, ).

Finally, in order to demonstrate the impact of inaccurate or missing information
within a knowledge domain on the method’s performance, we deploy PReDeCKNoisy.
More specifically, we initially manually linked all the meronym information re-
lated to the label ”Person” with the labels ”Car” and ”Bicycle,” and subsequently
excluded it from the knowledge domain.

Error Detection. The extension of the framework to recognise errors of the object
detection model, referred to as PReDeCK+ED, was similarly deployed using two differ-
ent knowledge domains PReDeCK+EDGT and PReDeCK+EDCN, following the presented
hypotheses:

• Hypothesis 1. Due to the absence of the complete knowledge, PReDeCK+EDCN

can discover an increased number of errors in the images, but with less precision.
On the other hand, we expect PReDeCK+EDGT to identify errors with a very high
level of precision.

PReDeCK+EDGT, utilizes all the available meronym knowledge that exists in the
Semantic Pascal-Part Ontology (i.e. ground truth). In contrast, PReDeCK+EDCN

relies on knowledge exported from ConceptNet and enriched through the inference
phase. Given the importance of precision for optimal performance in this context,
we have refined the meronym enrichment ruleset to minimize inaccuracies present
in the generated knowledge domain. As a result, fewer meronym relations were
inferred, achieving a 72% coverage of the knowledge found in the ground truth.

• Hypothesis 2. Deploying a better object detection model can lead to fewer error
detections with high precision.

For the evaluation of the error detection methodology, we deploy all the differ-
ent variations of the Yolov5 model we fine-tuned, namely PreYoloL,ScrYoloL, and
Noisy YoloL.

7.3 Experimental Results

Following, the results of the experiments conducted according to the hypotheses discussed
above are presented.
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Table 7.1: Object Detection Models Performance.

Model mAP (%)
PreYoloL 54.8
ScrYoloL 41.3
NoisyYoloL 26.2

7.3.1 Object Detection Model

As previously stated within this thesis, it is important to note that the effectiveness of our
methodology is directly impacted by the choice of the deployed object detection model.
Consequently, we initiate this section by presenting the performance results of the Yolov5
models we have fine-tuned. The Table 7.1 displays the Mean Average Precision (mAP)
for each fine-tuned model. These models include:

• PreYoloL, the model was fine-tuned on the dataset using pre-trained weights.

• ScrYoloL, the model was trained from scratch

• NoisyYoloL, the model was trained using noise-imputed training annotations. In
this case, manual noise was introduced into the annotations, where 20% of each
occurrence of whole object classes in the training set had their labels randomly
replaced with other whole object labels.

In the case of the partOf relations discovery method, we employed only the pre-
trained model. This decision was made to ensure the object detector’s optimal perfor-
mance, as this approach aligns with the requirement for achieving the highest level of
accuracy in the method. In contrast, for the error detection method, we employed all
available models to observe the variance in the results.

7.3.2 PartOf Relations Discovery

7.3.2.1 PReDeCK-Visual Baseline (Hypothesis 1)

The visual baseline was able to correctly discover ∼7k partOf relations, but a very
large amount of false detections (∼23k) were reported, too. This led to a precision of
23.5%, as presented in Tables 7.2 and 7.3. On the contrary, PReDeCK was able to
decrease the number of FPs by ∼68%, elevating the precision to 47.3% (+23.8%) without
compromising the recall score. The recall was only decreased by 3.6%.

PReDeCK outperformed the visual baseline approach and increased the F1 score by
∼13.4%. Hence, by incorporating commonsense knowledge to tackle the discussed prob-
lem, we were able to double the precision of the results.
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7.3.2.2 PReDeCK-PReDeCKGT (Hypothesis 2)

The PReDeCKGT1 approach outperformed the visual baseline by reporting the same true
positives (TPs) while decreasing the number of false positives (FPs) by approximately
63.2%. This led to an increased precision of 45.5%, representing a 22% improvement. Us-
ing the information regarding the meronym annotations, PReDeCKGT2 further reduced
the number of FPs, yielding a precision equal to 47.6%.

Recall remains unchanged throughout the first three methods because, despite each
method using different conditions to establish a partOf relation, the detected boxes re-
main the same. The recall score does not take into account the false positives, but solely
rely on true positives. As previously noted, a true positive (TP) is a prediction that cor-
rectly associates two detected objects with a partOf relation according to the ground
truth, regardless the inference method. The varying conditions in these methods are de-
signed to eliminate false positives consulting their knowledge domain, while keeping the
number of true positives unaffected, thus maintaining consistent recall values.

The results of PReDeCKGT2 can be considered as the best possible results that the sug-
gested methodology has to offer, because it employs the ground truth information about
the meronym relations as its knowledge domain. As observed in Table 7.3, the perfor-
mance of PReDeCK is very close to the one reported by PReDeCKGT2. The precision
only slightly decreased by 0.3%, while the recall decreased by 3.6%. PReDeCK was able
to report scores very close to the highest possible scores because it employs a very broad
coverage of meronym relations in its knowledge domain. This was accomplished due
the knowledge enrichment ruleset we devised, that was able to achieve a 85% coverage of
the ground truth through inference, missing only 15 relations compared to PReDeCKGT2.

7.3.2.3 PReDeCK - PReDeCKCN variations (Hypothesis 3)

Owing to the lack of information, PReDeCKCN1 achieved a mere 1% recall, as evidenced
in Table 7.3. In the knowledge domain of PReDeCKCN1 exist only 4 out of the 100
meronym relations that are present in the ground truth, because is constructed using only
the “Part Of” edge that is available in ConceptNet. In this case we explicitly defined that
to report a partOf relation between two detected objects, their labels must be associated
with a meronym relation within the knowledge domain. So, naturally, it discards most of
the partOf predictions, because they fail to meet the conditions of the employed rules. In
contrast, leveraging a wider range of the available knowledge that exists in ConceptNet,
and enhancing it through our knowledge enrichment rules, PReDeCK attained a precision
of 47.3%, marking a substantial 40.1% increase in recall, resulting in an overall score of
41.7%. These results highlight the need of enriching the knowledge that one can get from
open repositories through reasoning, particularly when the information sources are not
specifically tailored to address the target problem.

When omitting information regarding label types and categories, PReDeCKCN2 demon-
strated a precision of 46.5%, only marginally lower by 0.8% compared to that of PRe-
DeCK. This observation aligns with the fact that providing the framework with the infor-
mation of the label type (Object/Part) is not a necessity. While data-driven approaches
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could be highly impacted by the absence of this information, our framework’s perfor-
mance was insignificantly affected. This relies on the fact that in our work we utilize
commonsense knowledge, and this information can be implicitly derived through the facts
that exist in the constructed knowledge domain.

The introduction of noisy information into the knowledge domain significantly re-
duced recall to 14.7%, a 27% decrease from PReDeCK’s recall performance. In this
particular variation, we intentionally introduced incorrect meronym associations into our
knowledge repository, linking parts of a person with cars and bicycles (e.g., meronym(head, bicycle, artifact)).
This decision was motivated by the frequent overlap between these objects in the dataset
images, where parts of a person are often enclosed by the detected bounding boxes of cars
or bicycles. Consequently, numerous false partOf relations were reported between the
parts of a person and the whole objects “Car” or “Bicycle”. For instance, in the example
shown in 1.1 (top), this approach would erroneously indicate a partOf(hand, bicycle, artifact).
Additionally, we deliberately omitted all correct meronym relations associated with the
label “Person” to assess the impact on the results. Since the “Person” label is the most
frequent in the dataset, discarding all predictions related to “Person” significantly affected
recall.

In summary, PReDeCK outperformed identical approaches employing incomplete or
false information within their knowledge domain.

7.3.2.4 Alternating IoU Value

Our work heavily relies on the object detection task, however our focus is not to strictly
detect the objects within an image, instead we want to be able to predict partOf relations
amongs them. Observing the results of the object detector, we realised that in many cases,
am accurate partOf prediction was discarded due to the IoU value, that is commonly
defined as 0.5. Following that observation we decided to decline a little from the usual
value and see how this affects the results of the framework. After experimenting with a
range of different IoU values for the matching of whole objects and object parts respec-
tively, we concluded that lowering the IoU value for the labels categorized as Parts, led
to better results in terms of Average Precision. This may be due to the difficulty that an
object detection may exhibit in localizing the small area of the parts. In addition, the parts
may appear in different shapes and forms in the dataset, adding an additional struggle for
the model. For example, the label “Leg”, appears in 7 different forms (all the animals and
the person have legs).

The results shown in Table 7.4 correspond to an IoU value of 0.3 for matching the
object parts. The choice of 0.3 over other alternatives was deliberate, as it enhances the
performance of the partOf methodology while simultaneously preserving the integrity
of the object detection task. We observe an increase of up to 5.7% in precision and 5.3%
in recall, compared to the results of Table 7.3, with an IoU value of 0.5.
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Table 7.2: Total True positives (TP), False positives (FP) and False negatives (FN).

Method TP FP FN
Visual baseline 7,157 23,255 8,654
PReDeCKGT1 7,175 8,556 8,654
PReDeCKGT2 7,175 7,872 8,654
PReDeCKCN1 162 258 15,649
PReDeCKCN2 6,600 7,589 9,211
PReDeCKNoisy 2,325 2,264 13,486
PReDeCK 6,600 7,350 9,211

Table 7.3: Precision (P), recall (R) and F1 with IoU = 0.5.

Method P (%) R (%) F1 score (%)
Visual baseline 23.5 45.3 30.95
PReDeCKGT1 45.5 45.3 45.4
PReDeCKGT2 47.6 45.3 46.42
PReDeCKCN1 38.6 1 1.95
PReDeCKCN2 46.5 41.7 43.97
PReDeCKNoisy 50.7 14.7 22.79
PReDeCK 47.3 41.7 44.32

Table 7.4: Precision (P), recall (R) and F1 with IoU = 0.3.

Method P (%) R (%) F1 score (%)
Visual baseline 26.3 50.6 34.61
PReDeCKGT1 50.9 50.6 50.75
PReDeCKGT2 53.2 50.6 51.87
PReDeCKCN2 52.1 44.8 49.31
PReDeCK 53 46.8 49.71
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7.3.3 Error Detection

7.3.3.1 PReDeCK+EDCN - PReDeCK+EDGT (Hypothesis 1)

The precision scores for error detection in different cases are presented in Tables 7.5,
7.6, 7.7, and 7.8, corresponding to the four cases discussed in Section 4.3.3. In most
instances, precision scores exceed 60%, with some reaching 100%. The lowest score,
37.5%, is observed in Table 7.6, which pertains to the model trained from scratch using
ConceptNet knowledge. This score is due to the framework’s inability to cover certain
essential information. This inability lies to the fact that, to avoid noisy information within
the knowledge domain, we employed a variation of the knowledge enrichment ruleset that
excluded almost all the rules involving synonym information. Some were not entirely ex-
cluded, but were augmented with more strict conditions (e.g. hypernym), to infer new
meronym relations. Unfortunately, this led to a knowledge domain covering only 72% of
the ground truth, compared to the 85%, that was previously achieved. Consequently, cru-
cial information such as meronym(Hair, Person), meronym(Tail,Horse), meronym(Tail, Sheep),
and others was omitted.

In the same tables, one can observe the low number of errors detected in cases P, O,
and PO, which aligns with our expectations. As previously outlined, we implemented
numerous condition rules to detect the possible error cases. Reducing the number of
conditions for flagging erroneous outputs, leads to unsatisfactory results because it returns
a higher number of false positives, lowering the precision of the framework. Moreover,
efforts to address these false positive detections, has a significant negative impact on the
mAP of the deployed models.

In summary, adopting more conditions to detect possible errors, resulted in high preci-
sion scores, which is the desirable outcome when addressing these fine-grained problems.
Additionally, utilizing ConceptNet-derived information as the knowledge domain yielded
more error detections, translating to an increased number of False Positives, compared
to employing the complete ontology knowledge, aligning with our previously discussed
hypothesis.

7.3.3.2 Deploying various object detection models (Hypothesis 2)

In cases P and O, we observe that the ScrYoloL model had the worst performance. This
happens because of the large variance in confidence scores when detecting the objects.
The model detects some objects with high confidence score, while others with lower, re-
sulting in more false errors in the mentioned cases. On the other hand, when we imputed
the training set with noise, we concluded that the NoisyYoloL model outputs its detections
with a lower confidence score. Therefore, more case PO errors were identified and even
though the precision score compared to the other models is lower, it is a descent score of
72.73% (Table 7.7). As expected, the pre-trained model, PreYoloL, detects a lower num-
ber of errors with very high precision. This holds for all error cases except error case MO.
As presented in Table 7.8, for both knowledge domains, the model exhibits low perfor-
mance in terms of Precision. This can partly be explained by the model’s high confidence
in detecting objects and the incomplete knowledge of the ConceptNet-derived knowledge



7.3. EXPERIMENTAL RESULTS 59

domain. Diving deeper in the outputs, although a number of cases were spotted, where
the model detected an object part with high confidence, both the specific part and its cor-
responding whole object were missing from the ground truth annotations. NoisyYoloL,
naturally fails to detect whole objects in many images. PReDeCK+ED is able to detect
that absence in ∼65% of those images with a nearly perfect precision score of 97.05%
and 93.2% for each knowledge domain respectively.

Table 7.5: Error Case P results.

Model
PReDeCK+EDGT PReDeCK+EDCN

TP FP Precision TP FP Precision
ScrYoloL 7 4 64.64 43 21 67.19
PreYoloL 9 1 90 56 23 70.89

NoisyYoloL 7 5 58.33 32 15 68.09

Table 7.6: Error Case O results.

Model
PReDeCK+EDGT PReDeCK+EDCN

TP FP Precision TP FP Precision
ScrYoloL 3 2 60 3 5 37.5
PreYoloL 2 0 100 5 1 83.33

NoisyYoloL 2 0 100 2 0 100

Table 7.7: Error Case PO results.

Model
PReDeCK+EDGT PReDeCK+EDCN

TP FP Precision TP FP Precision
ScrYoloL 7 0 100 7 0 100
PreYoloL 1 0 100 9 0 100

NoisyYoloL 6 0 100 8 3 72.73

Table 7.8: Error Case MO results (MO1).

Model
PReDeCK+EDGT PReDeCK+EDCN

TP FP FN Precision Recall TP FP FN Precision Recall
ScrYoloL 331 32 305 91.18 52.04 392 95 244 80.49 61.64
PreYoloL 208 39 278 84.21 42.8 293 158 193 64.97 60.29

NoisyYoloL 560 17 305 97.05 64.74 562 41 303 93.2 64.97
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7.3.3.3 Error Handling

The number of detected errors for Cases P, O and PO are relatively low compared to the
entire test set. Changing the labels to resolve the specific errors, did not have any signif-
icant increase or decrease in the mAP score. While some label changes were accurate,
in other cases, especially due to incomplete or missing knowledge, labels were updated
erroneously. In some other instances, a label modification may corrected a label, but er-
roneously changed another in the process. After the error handling process regarding the
cases P, O and PO, all outputs aligned with the commonsense knowledge provided by the
specified knowledge domain.

Regarding the case MO errors, the additional evaluation methods results are presented
in Table 7.9. When detecting the exact number of missing whole objects as defined
in MO2, using the ontology knowledge led to precision scores up to 50%. Using the
knowledge domain derived from ConceptNet, reduced this score to a peak of 32.17%.
This occurred due to the presence of facts exported for ConceptNet, that are aligned with
commonsense but are not provided by the ontology. This issue led to more commonalities
regarding the parts between the dataset’s whole object classes, and consequently narrowed
down the number of whole object possible categories that corresponds to the number of
undetected objects.

Reporting an accurate possible class for the missing objects (MO3) achieved a pre-
cision score up to 66.61% and 44.6% using the Ontology knowledge and ConceptNet
knowledge, respectively. Finally, identifying the exact number of missing whole objects
and the correct possible class, per the definition of MO4, attained a score up to 46.62%
with the Ontology knowledge domain deployed, and 19.73% with the ConceptNet knowl-
edge. The latter score, is somewhat low for the same reasons that were explained before
concerning the MO2 score.

Table 7.9: Error Case MO additional evaluation methods Precision (P).

Model
PReDeCK+EDGT PReDeCK+EDCN

MO2 MO3 MO4 MO2 MO3 MO4
ScrYoloL 50.14 64.71 42.7 31.62 44.34 17.86
PreYoloL 48.99 58.8 40.49 28.38 44.6 19.73

NoisyYoloL 53.03 66.61 46.62 32.17 44.51 12.11
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Discussion

Overall, we came down to the following observations. The integration of commonsense
knowledge with visual features offers significant benefits for the problems addressed in
this study. Despite our extreme assumption that no training data was used to develop
a classifier for the detection of partOf relations, our methodology reports notably high
scores in detecting partOf relations between objects that exist in an image. This outcome
underscores the significance of integrating commonsense knowledge with data-driven ap-
proaches. With a partOf classifier in place, a hybrid system has the potential to attain
even higher overall performance scores.

Evidently, as shown in 7.3.2.1, it significantly improves the precision with a negligible
impact on recall, when it comes to discovering partOf relations between objects detected
in an image. Across almost all experiments, the precision score approximately doubled
when compared to the visual baseline, which considers only spatial information to report
the partOf relations.

Our data extraction methodology, using an external Knowledge Graph (ConceptNet)
not designed for the partOf discovery task, achieves results that closely resemble the
performance having complete meronym knowledge of the ground truth (see 7.3.2.2).
Furthermore, our methodology minimizes the inclusion of noisy information to a great
extent. The importance of having a robust and accurate knowledge domain, when ad-
dressing this kind of problems, is showcased observing the results reported in 7.3.2.3.

In addition, by utilizing the outputs generated by the previous method, our framework
was extended to identify false or missing outputs of the object detector. The precision in
detecting each case was quite satisfactory, with notable success in identifying instances
where the deployed model failed to detect certain whole objects in images (Case MO).

Despite the effort of reducing the inclusion of noisy data, even the slightest number of
noisy information in the knowledge domain affects the error detection task. Incomplete
or inaccurate knowledge lead to more errors’ triggers, that in the majority of the cases,
result to a decrease in precision, as shown in 7.3.3.1.

By implementing the framework according to the hypothesis outlined in 7.3.3.2,
which defines that deploying high-performance object detection models can yield more
precise error detections, we successfully identified inaccuracies and missing annotations
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in the deployed dataset by observing the outputs.
Moreover, by inspecting the grounded facts for both tasks, it is easier to interpret how

the method ended up with the specific results, due to the declarative nature of the rulesets.

8.0.1 Limitations

The limitations of our work are the following. First, our methodology heavily relies on
the performance of the neural network deployed for the object detection task. Our results
are based on fine-tuned models, whose performance is not ideal for the given dataset. This
can heavily impact the overall accuracy of the partOf detection methodology. Improv-
ing the neural network’s performance is essential for enhancing the effectiveness of this
methodology. However, the use of a high-accuracy object detector may affect the effi-
ciency of the error detection methodology. In this case a dilemma is presented: while it
may lead to more precise error detections, it also risks diminishing the importance of the
proposed error detection methodology due to the robustness of its outputs.

Second, although the construction of our knowledge domain was automated, involving
the automatic extraction and filtering of information using our method, the determination
of the type and category of the labels required manual effort. Before querying ConceptNet
with the labels, we conducted a comprehensive search to manually define the category of
each label, specifying the context of use, following the sense label attribute, provided by
ConceptNet (e.g., emphasizing that we are interested in the “cat” as an animal rather than
any other interpretation of the term). Additionally, we manually separated the labels into
Objects and Parts based on the information provided along with the dataset.

Despite the effort to minimize noise from CN, a lot was produced affecting perfor-
mance. When discovering partOf relations, some noisy knowledge does not have high
impact, but when detecting errors it can be catastrophic. For this reason, for the latter
method, we limited our inference rules, to avoid noisy facts. With the numerous cur-
rent efforts to improve the quality of commonsense KGs, e.g., the CSKG [23] or the
ATOMIC2020 [21] datasets, we expect that this limitation will become less central in the
future, at least for the given domain.

Finally, during the inference phase, we noticed a significant amount of time consumed
by grounding. To overcome this delay, we opted to generate the facts separately and then
insert them into our rule-set. While this workaround helped reduce processing time, it
added complexity to the overall process. The time inefficiency issue was somewhat antic-
ipated, given the utilization of state-of-the-art tools in a field currently undergoing intense
research, with expectations of more time-efficient approaches emerging in the future. In
our work, the extended processing time is due to NeurASP’s use of clingo to ground the
entire program and enumerate all stable models. The authors in [42] acknowledge that
the current implementation of NeurASP is not highly scalable, and the mentioned issues
will be addressed in future developments. The plan involves transitioning to approxi-
mate inferences instead of exact inferences, which is expected to enhance scalability and
efficiency.
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8.0.2 Pre-trained Models Association

To showcase the generic nature of our methodology and to explore the possibilities for
mitigating the first limitation mentioned above, and the extended benefits that the integra-
tion of commonsense knowledge with data-driven methods has to offer, we performed an
additional experiment for the object detection task. In this experiment, we used a model
that was pre-trained on a different set of images, with different output classes. The model
was pre-trained on the COCO dataset [30], that has 80 object classes. Out of these classes,
only 16 are syntactically similar with the classes of the Pascal-Part Dataset.

Leveraging the information about the synonyms from ConceptNet, we were able to
match 3 more classes. Evaluating the model on our test set, considering only the 19
classes that were matched, we had the following results: in terms of mAP, the model
using only exact string matching, had a score of 62.2%. On the other hand, using the
synonyms knowledge, there was an increase of 10.7%, resulting to a mAP of 72.9%.
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Chapter 9

Conclusions

This paper presents a framework, built upon NeurASP, for discovering partOf relations
between objects detected in an image. Moreover, the proposed framework was expanded
to identify errors of the object detection model. The results show that incorporating
more valid information into a knowledge domain of a system improves the performance.
Our framework confirms that combining commonsense knowledge with data-driven ap-
proaches, leads to better results, in contrast to using only the latter. Additionally, we
demonstrate a generalized methodology for extracting and cleaning data from Concept-
Net.

As future work, we would like to expand our rulesets with additional inference capa-
bilities to further increase precision for the specified problems. For instance, formulate
cardinality constraints for the partOf task, to filter out incorrect inferences. Furthermore,
we would like to incorporate more state-of-the-art techniques for image understanding
into the framework and combine the provided information with the current, for more ro-
bust outputs. Finally, we plan to enhance the error handling technique to contribute to the
object detection task. For example, attempt to draw the bounding boxes of some missing
objects, as detected by the framework (Case MO).

65



66 CHAPTER 9. CONCLUSIONS



Bibliography
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Appendix A

ASP Auxiliary Rules

Following all the auxiliary rules that were formulated through the implementation of the
proposed methodology are presented.

A.1 Bounding Box Overlap Ruleset:

1. Rule formulated to calculate the area of a bounding box.

area(B,A) : −box( , B,Xmin, Y min,Xmax, Y max),

A = (Xmax−Xmin) ∗ (Y max− Y min).

2. The following rules overlap/2, capture the cases concerning whether two bounding
boxes overlap with each other.

overlap(B1, B2) : −box( , B1, Xmin1, Y min1, Xmax1, Y max1),

box( , B2, Xmin2, Y min2, , ),

B1! = B2,

Xmin2 ≥ Xmin1,

Xmin2 ≤ Xmax1,

Y min2 ≥ Y min1,

Y min2 ≤ Y max1.
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overlap(B1, B2) : −box( , B1, Xmin1, Y min1, Xmax1, Y max1),

box( , B2, Xmin2, , , Y max2),

B1! = B2,

Xmin2 ≥ Xmin1,

Xmin2 ≤ Xmax1,

Y max2 ≥ Y min1,

Y max2 ≤ Y max1.

overlap(B1, B2) : −box( , B1, Xmin1, Y min1, Xmax1, Y max1),

box( , B2, Xmin2, Y min2, Xmax2, Y max2),

B1! = B2,

Xmin1 < Xmax2,

Xmin2 < Xmax1,

Y min1 < Ymax2,

Y min2 < Ymax1.

3. A bounding box b1 is candidate part a bounding box b2, if its area is covered by the
area of b2 with a ratio over 75%.

candidatePartOf(Bmin,Bmax) : −box( , B1, Xmin1, Y min1, Xmax1, Y max1, ),

box( , B2, Xmin2, Y min2, Xmax2, Y max2, ),

overlap(B1, B2),

area(B1, A1), area(B2, A2),

Amin = #min{A1;A2},
Amax = #max{A1;A2},
area(Bmin,Amin),

area(Bmax,Amax),

Y max = #min{Y max1;Y max2},
Y min = #max{Y min1;Y min2},
Xmax = #min{Xmax1;Xmax2},
Xmin = #max{Xmin1;Xmin2},
Aovl = (Y max− Y min) ∗ (Xmax−Xmin),

75 <= ((100 ∗Aovl)/Amin).

A.2 Knowledge (meronym) Enrichment Ruleset

1. The meronym/3 relation is the inverse of hasA/3.
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meronym(X,Y,C) : −hasA(Y,X,C).

2. The meronym/3 relation is equivalent with the hasContext/3relation.

meronym(X,Y,C) : −hasContext(X,Y,C).

3. Transitivity holds between the meronym relations.

meronym(X,Y,C) : −meronym(X,Z,C),

meronym(Z, Y,C).

4. The isSynonymWith/3 is reflexive.

isSynonymWith(X,Y,C) : −isSynonymWith(Y,X,C).

5. If an object part X is part of a whole object Z, and Z is a subclass of an object Y ,
then X is part of Y .

meronym(X,Y,C) : −meronym(X,Z,C),

hypernym(Z, Y,C).

6. If an object part X is part of a whole object Y , and X is synonym with Z, then Z
is also part of Y .

meronym(Z, Y,C) : −meronym(X,Y,C),

isSynonymWith(X,Z,C).

7. If an object part X is part of a whole object Y , and Y is synonym with Z, then X
is part of Z.

meronym(X,Z,C) : −meronym(X,Y,C),

isSynonymWith(Y,Z,C).

A.3 PartOf Detection Ruleset

1. A bounding box type is characterized as Object, if its label exists in the set of whole
object labels O.

objectBox(B,L,C) : −label( , , B, L), object(L,C).

2. A bounding box type is characterized as Part, if its label exists in the set of object
part labels P .

partBox(B,L,C) : −label( , , B, L), part(L,C).
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A.4 Error Detection Ruleset

1. Two bounding boxes are spatially related if they belong to different type categories,
and a candidatePartOf/2 relation between them holds.

spatial partOf(B1, L1, B2, L2) : −canditatePartOf(B1, B2),

partBox(B1, L1, C),

objectBox(B2, L2, C).

2. Two bounding boxes are semantically related if a spatial partOf/4 relation be-
tween them holds and in the knowledge domain exists a meronym associating their
labels.

semantic partOf(B1, L1, B2, L2) : −spatial partOf(B1, L1, B2, L2),

meronym(L1, L2,) .

3. We consider a that a bounding box was classified by the object detection model
with high confidence score, if that score is greater or equal to 0.4. Since ASP does
not allow floats, we multiply the confidence score by 1000 (considering up to the
third significant digit).

highConfidence(B) : −box( , B, , , , , C),

C ≥ 400.

4. The following rule counts how many parts that exceed the confidence threshold, are
semantically related with a whole object Y .

hasNumberOfAccParts(Y,N) : −N = #count{(X,Y ) : semantic partOf(X, , Y, ),

partBox(X, ,C, ), C ≥ 400},
objectBox(Y, , , ).

5. We consider a whole object’s bounding box as context, if it is semantically associ-
ated with more than 2 “confident” object parts.

context(B) : −hasNumberOfAccParts(B,N), N >= 2.

6. A detected object part that cannot be semantically associated with any whole object
in an image, is considered as single.

single(B) : −partBox(B, , , ),

not semantic partOf(B, , , ).
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7. For the error detection task, we consider only bounding boxes for whom there is at
least one meronym relation in the knowledge domain regarding their classification
label. To address that, the following rules were formulated.

knownPart(B) : −partBox(B,L, , ),meronym(L, , ).

knownObject(B) : −objectBox(B,L, ,) ,meronym( , L, ).

A.4.1 Error MO Handling Ruleset

The following rules were produced to address the MO error case. Utilizing them, we are
able to find the number of the missing whole objects, as well as their possible classification
label.

• Possible class discovery

1. Infer whether an object part is not a unique part of a whole object, according
to our knowledge repository.

isNotUniquePart(X) : −meronym(X,Y ),

meronym(X,Z),

Y ! = Z.

2. Infer whether an object part is a unique part of a whole object, according to
our knowledge repository.

isUniquePartOf(X,Y ) : −part(X), object(Y ),

meronym(X,Y ),

not isNotUniquePart(X).

3. All the whole object labels that are associated with a meronym relation with
an object part that triggered a MO error case, within our knowledge domain,
are considered as possible classes.

possibleClass(B, Y ) : −single(B),

errorCaseMO(B),

label( , , B, L),

meronym(L, Y ).

4. If the object part that triggered the MO error is unique meronym of a whole
object label, then we report that a whole object with that label is definitely
missing.
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detClass(Y ) : −single(B),

label( , , B, L),

errorCaseMO(B),

isUniquePartOf(L, Y ).

• Number of missing whole objects

1. The following rule counts the number of possible labels that were infered
before, regarding a missing whole object.

numPosClasses(N) : −N = #count{X : possibleClass( , X)}.

• We find all the pairs of whole object labels that share at least one object part (ac-
cording to the knowledge domain).

sharePart(Y 1, Y 2) : −meronym(X,Y 1),

meronym(X,Y 2),

Y 1! = Y 2.

• Following, the ASP rules were formulated to group the possible classes into cate-
gories.

category(1..N) : −numPosClasses(N).

in category(S,C) : possibleClass( , S), category(C).

The number of categories cannot exceed the number of the possible labels.

: −0{in category( , )}N − 1,

numPosClasses(N).

Each category must contain labels, that share object parts with the rest of the labels
of the current category.

: −in category(S1, C),

in category(S2, C),

S1! = S2,

not sharePart(S1, S2).
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Two labels cannot belong to different categories, if they share a common part.

: −in category(S1, C1),

in category(S2, C2),

C1! = C2,

meronym(P, S1),

meronym(P, S2).

• When the possible classes are grouped into categories, we count the categories and
report the total as the (at least) missing object number.

numMissingobjects(N) : −N = #count{Y : in category( , Y )}.
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Appendix B

Cypher Queries

Below, the Cypher queries that were used through this work are shown. Some queries
regard the creation of the subgraphs for each label, while others are used to retrieve the
information from the created subgraphs. Note that all the queries were executed through
Python.

• The following query is used to create a node in the graph database.

CREATE (t:TYPE{label:LABEL})

• The query presented below is used to find the requested nodes using their labels,
and connect them through the given relation.

MATCH (o:Object) MATCH(s:Subject)
WHERE o.label=OLABEL AND s.label=SLABEL
MERGE (o)-[:RELATION]->(s)
RETURN *

• The following query was used to retrieve the nodes connected with a specific edge(relation),
from the constructed subgraphs.

MATCH (n)-[r:RELATION]->(m) RETURN n,m

In our case the queries that were used are:

MATCH (n)-[r:HASA]->(m) RETURN n,m
MATCH (n)-[r:SYNONYM]->(m) RETURN n,m
MATCH (n)-[r:ISA]->(m) RETURN n,m
MATCH (n)-[r:HASCONTEXT]->(m) RETURN n,m
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• In order to check if a node exists in our subgraph we deployed the query below. If
the label returned is not null, then the node exists.

MATCH (u:TYPE{label:LABEL) RETURN u.label

• To count the total of edges that two nodes are connected by, we formulated the
presented query.

MATCH (n{label:LABEL})-[r]->(m{label:LABEL)
RETURN COUNT(r) AS count

• The query showcased below was used to delete specified edges between two nodes
of the subgraph.

MATCH(n{label:LABEL})-[r:RELATION]->(m{label:LABEL)
DELETE r



Appendix C

Part Of (meronym) relations in
ground truth

All the meronym relations that exist in the Semantic Pascal-Part Ontology, that was
provided along with the dataset, are listed in the following tables.

Object Parts

bicycle

handlebar
wheel

headlight
saddle

chain wheel

bus

bodywork
door

headlight
license plate

mirror
wheel

window

potted plant
pot

plant

Object Parts

aeroplane

body
engine

artifact wing
stern
wheel

cow

ear
horn

muzzle
tail
eye

neck
torso
leg

head
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Object Parts

person

arm
ear

ebrow
foot
hair
hand

mouth
nose
eye

neck
torso
leg

head

cat

ear
tail
eye

neck
torso
leg

head
tv monitor screen

train
coach

headlight
locomotive

bird

animal wing
beak
tail
eye

neck
torso
leg

head

motorbike

handlebar
headlight

saddle
wheel

Object Parts

car

bodywork
door

headlight
License plate

mirror
wheel

window

horse

ear
hoof

muzzle
tail
eye

neck
torso
leg

head

bottle
body
cap

sheep

ear
horn

muzzle
tail
eye

neck
torso
leg

head

dog

ear
muzzle

nose
tail
eye

neck
torso
leg

head


