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Employing Encryption Workarounds to Support

Digital Forensics Investigations

Abstract

The use of encryption in our everyday lives is ubiquitous. For example, en-
cryption is utilized to secure communications between two parties, authenticate
users when logging to a service or even certify that websites are legitimate. How-
ever, criminals can also benet from the use of encryption hiding their traces of
illicit activities and making law enforcement agencies unable to proceed with their
criminal investigations due to being locked out of digital evidence. During the last
decade the problem became more apparent as more and more law enforcement
agencies reported being blocked from investigating criminals due to the abuse of
encryption by them.

This sparked the “Going Dark” Debate across the globe. From one hand,
law enforcement and intelligence agencies pushed for weakened encryption policies
and establishing encryption countermeasures for lawful access. On the other hand,
institutions for human rights condemned this approach because it would diminish
the privacy and security of everyone. With no clear solution to the debate on
policy level, the concept of encryption workarounds was introduced that bridges
the gap between the legal and the technological aspects of the debate.

To support this approach, we present existing encryption workarounds that are
able to bypass encryption or leverage weaknesses in the cryptographic implemen-
tation of certain desktop software applications, with a focus on Windows systems.
More importantly we categorize the methods into lesystem and memory analy-
sis, we test and modify them to make them function properly. Additionally we
validate that they meet the criteria of being forensically sound so that they can
be used in criminal investigations by law enforcement and be accepted in a court
of law.

Finally, we present AWLPS, a platform that performs several encryption worka-
rounds through a Graphical User Interface. AWLPS, is designed to provide data
integrity and a forensically sound methodology when decrypting electronic evi-
dence. Furthermore, it can be expanded through a Plugin architecture, allowing
for the integration of new encryption workaround modules, thus enhancing the
platform’s durability over time.





Εκμετάλλευση Παρακάμψεων Κρυπτογραφίας για

την Υποστήριξη Ψηφιακών Εγκληματολογικών

Ερευνών

Περίληψη

Η χρήση της κρυπτογράφησης στην καθημερινή μας ζωή είναι πανταχού παρούσα.
Για παράδειγμα, η κρυπτογράφηση χρησιμοποιείται για την ασφάλεια των επικοινωνι-
ών μεταξύ δύο μερών, την ταυτοποίηση των χρηστών κατά τη σύνδεσή τους σε μια
υπηρεσία ή ακόμα και την επιβεβαίωση της εγκυρότητας ιστότοπων. Ωστόσο, οι ε-
γκληματίες μπορούν επίσης να επωφεληθούν από τη χρήση κρυπτογράφησης για να
κρύψουν τα ίχνη των παράνομων δραστηριοτήτων τους και να εμποδίζουν τις αστυνο-
μικές αρχές να προχωρήσουν στις ποινικές τους έρευνες εξαιτίας του ότι αποκλείονται
από τα ψηφιακά πειστήρια.

Την τελευταία δεκαετία το πρόβλημα έγινε πιο εμφανές καθώς ολοένα και περισ-
σότερες αστυνομικές αρχές ανέφεραν ότι εμποδίζονταν από τις έρευνες εγκληματιών
λόγω της κατάχρησης της κρυπτογράφησης από αυτούς. Αυτό ξεκίνησε τη συζήτηση
‘Going Dark’ σε ολόκληρο τον κόσμο. Από τη μία πλευρά, οι αστυνομικές αρχές και
οι υπηρεσίες πληροφοριών προώθησαν πολιτικές αποδυνάμωσης της κρυπτογράφησης
και την εγκατάσταση αντιμέτρων κρυπτογράφησης με σκοπό να μπορούν να έχουν
νόμιμη πρόσβαση στα δεδομένα τον υπόπτων. Από την άλλη πλευρά, μη κυβερνητικοί
οργανισμοί προάσπισης των ανθρωπίνων δικαιωμάτων καταδίκασαν αυτήν την προσέγ-
γιση διότι θα μείωνε την ιδιωτικότητα και την ασφάλεια όλων. Χωρίς καμία σαφή λύση
στη συζήτηση σε πολιτικό και νομικό επίπεδο, εισήχθη ο όρος ¨παρακάμψεις κρυπτο-
γράφησης’ που γεφυρώνει το χάσμα μεταξύ των νομικών και τεχνολογικών πτυχών
της συζήτησης.

Για να υποστηρίξουμε αυτήν την προσέγγιση, παρουσιάζουμε υπάρχουσες παρα-
κάμψεις κρυπτογράφησης που είναι σε θέση να παρακάμψουν την κρυπτογράφηση ή
να εκμεταλλευτούν αδυναμίες στην κρυπτογραφική εφαρμογή ορισμένων εφαρμογών
λογισμικού για συσκευές δεσκτοπ, με έμφαση στο λειτουργικό Windows. Κατηγο-
ριοποιούμε τις μεθόδους σε ανάλυση lesystem και μνήμης, τις δοκιμάζουμε και τις
τροποποιούμε για να λειτουργούν ορθά. Επιπλέον, επικυρώνουμε ότι πληρούν τα κρι-
τήρια της διαδικασίας διατήρησης πειστηρίων, ώστε να μπορούν να χρησιμοποιηθούν
σε εγκληματολογικές έρευνες από τις αστυνομικές αρχές και να γίνονται αποδεκτές
σε δικαστήρια.

Τέλος, παρουσιάζουμε το AWLPS, μια πλατφόρμα που εκτελεί διάφορες παρα-
κάμψεις κρυπτογράφησης μέσω γραφικού περιβάλλοντος χρήστη. Το AWLPS σχεδι-
άστηκε για να παρέχει ακεραιότητα δεδομένων και μια μεθοδολογία διατήρησης πει-
στηρίων όταν αποκρυπτογραφεί ψηφιακά πειστήρια. Επιπλέον, μπορεί να επεκταθεί
μέσω αρχιτεκτονικής Plugin, επιτρέποντας την ενσωμάτωση νέων μεθόδων παρακάμ-
ψεων κρυπτογράφησης, ενισχύοντας έτσι την ανθεκτικότητα της πλατφόρμας με την
πάροδο του χρόνου.
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Chapter 1

Introduction

In today’s tech-driven landscape, the role of electronic devices in criminal investi-
gations is crucial [28, 31]. Even the EU Commission states that 85% of criminal
investigations require electronic evidence to proceed to courts[20]. However, the
widespread use of encryption in popular software and devices, intended to protect
user privacy, presents a challenge for law enforcement. While encryption is gener-
ally seen as a positive for citizens’ privacy, it’s also exploited by some bad actors
looking to avoid prosecution.

Encryption is now a standard feature, with many mainstream messaging apps
oering end-to-end encryption. Despite its benets, end-to-end encryption (E2E)
comes with some serious downsides.

1.1 Areas of interest

Cybercriminals are not the only group that abuses the use of encryption in ran-
somware and to secure their communications in order to hide their illicit activities.
The widespread adoption of end-to-end encryption by mainstream communication
platforms has also resulted in a signicant surge in its use among regular criminals
lacking advanced technical expertise.

Europol reported in 2016 that 13 member states observed criminals employing
encryption software to encrypt their data [12], hindering criminal investigations,
while 8 member states identied encryption as a major challenge in combating
cybercrime. A year later, Europol noted that 20 member states reported encoun-
tering encryption almost invariably in criminal investigations [13], particularly in
areas like dark web marketplaces, child sexual exploitation material, and terrorism.

1. The Dark Web and online illegal marketplaces
Cybercriminals are the most obvious category of criminals that abuse en-
cryption to hide their illicit acts. They possess the knowledge to assess the

1



2 CHAPTER 1. INTRODUCTION

security of an application and to remain hidden using TOR1 and bulletproof
hosting 2. However, it is important here to note that in most cases they too
tend to use common end to end encrypted applications such as Jabber3 and
Internet Relay Chat (IRC) [36] or ICQ 4to a lesser extent [12].

As far as illegal marketplaces are concerned, a lot of them migrated from
the dark web to end to end encrypted messaging applications that serve
users under the protection of end to end encryption. This has led to new
initiatives being developed such as the Televend[16, 54] vending service bot,
which beneted from Telegram’s end-to-end encryption in order to sell illegal
substances.

2. Online Child Sexual Exploitation Material (CSEM)
In cases involving CSEM it has been observed by LEAs [14, 15, 16] that
criminals have shifted from using peer to peer networks hosted in the dark
web to distribute CSEM to common messaging end to end encrypted appli-
cations. Such applications used for these purposes are WhatsApp5, Viber6

and Telegram7.

In 2017 an international investigation dubbed “Operation Tantalio” led by
Interpol managed to dismantle a large CSEM network. The operation was
launched in 2016 by the Spanish National Police with a focus on the TOR
network. The investigators managed to nd links to invite-only WhatsApp
groups that shared explicit CSEM [34].

3. Terrorism
Terrorism is another major example where criminal abuse of the encryp-
tion is observed. In [14], Europol mentions that terrorist groups do not
tend to launch cyber attacks. Rather they tend to communicate using en-
crypted messaging apps and even moved their recruitment platforms from
Facebook and Twitter to end-to-end encrypted messaging platforms such
as Threema8, Signal 9 and Telegram. They have also developed an Opera-
tional Security Manual that advises their members on how to stay secure on
the internet [72].

1Tor Project, www.torproject.org/
2Sentinel One: What is Bulletproof Hosting, www.sentinelone.com/cybersecurity-101/

bulletproof-hosting/
3Cisco Jabber, www.cisco.com/c/en_in/products/unified-communications/jabber/index.

html
4ICQ, icq.com/desktop
5WhatsApp, www.whatsapp.com/
6Viber, www.viber.com/en/download/
7Telegram, telegram.org/
8Threema, threema.ch/en
9Signal, signal.org/download/
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1.2 The “Going Dark” debate

In 2015, the FBI obtained the iPhone of a terrorist that was responsible for an
attack that killed 14 people in San Bernardino, California. The FBI unsuccess-
fully attempted to access his iPhone as part of their investigation to nd out if
there were more accomplishes. The Department of Justice obtained a court order
to make Apple comply and unlock the phone. Instead, Apple refused and then
started a public trial between Apple and the Department of Justice that sparked
various LEAs saying that they were “Going Dark” in investigating criminals due
to the misuse encryption. Eventually, the FBI bought an exploit chain from a
private cybersecurity rm and was able to bypass the iPhone encryption and get
access to the data pertinent to the case [18].

In 2016, the Council of the European Union conducted a questionnaire among
EU member states to assess how European Law Enforcement Agencies (LEAs)
handle encryption in criminal investigations [19]. Subsequently declassied and
made public, the responses from member states to the question ”What main issues
do you typically encounter when seizing encrypted evidence and decrypting it?”
are illustrated in Figure 1.1. Among the 18 member states that participated in the
questionnaire, all reported facing technical issues when decrypting seized data.

Figure 1.1: Type of problems EUmember states face when dealing with encryption.

In 2019 the Manhattan District Attorney’s Oce published the report “Smart-
phone encryption and public safety” [52] smartphone devices were essential in the
prosecution of criminal cases even outside of the scope of the cyberspace. Figure
1.2 from the same report shows that the quantity of encrypted devices that the
DA receives as evidence increases every year.



4 CHAPTER 1. INTRODUCTION

Figure 1.2: Number of locked devices from cases of the Manhattan DA’s oce.

In 2021, the Signal Foundation owner of the Signal application for mobile and
desktop devices, published a subpoena they received from the United States At-
torney’s Oce in the Central District of California. The subpoena ordered Signal
to disclose to law enforcement personal data such as message history, location and
media shared for a specic suspect. Signal responded to the subpoena that it was
unable to comply with the request since the only thing that they collect from the
users and is not end-to-end encrypted was UNIX timestamps10 from when he cre-
ated the account and his last login date [65].

While many countries have established legal framework permitting LEAs to
lawfully access a suspect’s device for crime investigation, the technical capabilities
of LEAs in this regard often fall behind. The challenge is exacerbated by the
growing prevalence of encryption in both devices and software. This not only
ensures that the issue persists but also contributes to its escalation over time.

1.3 Thesis Contributions

Our contribution in this work includes:

1. An analysis of existing encryption workarounds targeting the following desk-
top software:

• Filesystem analysis

10What is unix epoch: www.epoch101.com/
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– Meo software encryption

– Mozilla Software (Firefox, Thunderbird, TOR)

– Google Chrome, Microsoft Edge, Opera browser

• Memory analysis

– Keepass password manager

– BitLocker

2. A categorization of each encryption workaround based on the encryption
workarounds taxonomy presented by Schneier et al. [39].

3. An evaluation of the above-mentioned encryption workarounds and a valida-
tion of their forensic soundness.

4. An implementation of a Volatility 3 plugin to extract the Full Volume En-
cryption Key of BitLocker out of a memory sample.

5. A review between state-of-the-art open source security tools, their features
that benet our case and their limitations.

6. Our implementation, AWLPS: an addition to the ALPS tool introduced in
[3]. It is written in Python and provides automation in performing the
aforementioned encryption workarounds while also providing a user friendly
GUI and a module base for future extensions.

1.4 Outline

The structure of the remaining sections in the thesis is outlined as follows:

Chapter 2 delves into the fundamental concepts of cryptography, digital foren-
sics, and addresses the challenges associated with encryption misuse, presenting
proposed solutions.

In Chapter 3, a comprehensive explanation of each encryption workaround
module is provided, along with a detailed account of their validation for forensic
soundness. The intricacies of the methodology are explored in this section.

Moving on to Chapter 4, rst we perform a review on existing state-of-the-art
open source security tools listing their features and their limitations with regards
to encryption. Then, attention is directed towards the presentation of our tool,
AWLPS which implements the above mentioned features and addresses the pre-
vious limitations. This chapter presents the automated functioning of AWLPS in
executing encryption workarounds. Moreover, we discuss our own implementation
of a Volatility 3 plugin to extract BitLocker keys from memory dumps.

Finally, Chapter 5 wraps up by suggesting potential future extensions in the
research of encryption workarounds and enhancements to our tool. Ethical consid-
erations surrounding encryption workarounds and the research methodology are
also addressed in the nal chapter.
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Chapter 2

Background

Within this chapter, we present a comprehensive exploration of topics essential
to our work. To begin, we oer an overview of cryptography, categorizing it into
three common types. Following that, we delve into the realm of digital forensics; its
principles, challenges, and the process of a digital forensics investigation. Lastly,
we examine the misuse of encryption, outlining our literature review, which draws
from articles and reports sourced from law enforcement agencies, shedding light
on how encryption hinders criminal investigations.

2.1 Cryptography

Cryptography, a cornerstone in the realm of information security, is both an “art
and a science that employs mathematical algorithms, principles, means, and meth-
ods for the transformation of data in order to hide their semantic content, prevent
their unauthorized use, or prevent their undetected modication”1.

In a modern context, cryptography serves as a subsystem within a larger infor-
mation or computer system, fortifying its defenses by maintaining the condential-
ity of data and ensuring their integrity and authenticity. The ubiquitous presence
of cryptography in modern computing plays a pivotal role in safeguarding online
transactions, protecting sensitive information, and forming the foundation of se-
cure communication protocols. This, in turn, contributes signicantly to upholding
the integrity and privacy of digital interactions.

2.1.1 Symmetric Encryption

Symmetric encryption relies on a single key to perform both the encryption and
decryption processes. Usually the decryption process is the exact same as the en-
cryption process. Figure 2.1 illustrates the process of encrypting a plaintext and
transforming it to an unreadable ciphertext through a symmetric key algorithm
and a symmetric encryption key. Then, the same encryption key is used along

1See NIST Glossary on “cryptography”, csrc.nist.gov/glossary/term/cryptography

7
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Figure 2.1: Symmetric key encryption and decryption process.

with the symmetric decryption algorithm to transform the ciphertext to the orig-
inal plaintext. Generally, symmetric encryption is used to encrypt data at-rest
such as passwords in passwords managers, text messages from messaging applica-
tions stored locally in a device or even in full device encryption. Some common
symmetric encryption algorithms are OTP and AES [56] which can have multiple
variations.

2.1.2 Asymmetric Encryption

Asymmetric encryption operates similarly with the symmetric encryption with one
big dierence. Instead of having one key to do both the encryption and decryption,
there are two dierent keys used for encryption process. The keys are generated
together as a key pair, either key can be used to encrypt and only the counterpart
can be used to decrypt the ciphertext back to the plaintext. Asymmetric encryp-
tion is mainly used to securely establish communication with HTTPS through
TLS.
Figure 2.2 illustrates the process of encryption and decryption using an asymmetric
encryption algorithm. First, the plaintext is transformed to an unreadable cipher-
text using an asymmetric encryption key and an asymmetric encryption algorithm.
Then, the same ciphertext can be transformed back to the original plaintext by us-
ing the corresponding asymmetric decryption algorithm and the counterpart of the
key pair. Some notable asymmetric encryption algorithms are RSA[60], DSA[58],
DH[57] which can have multiple variations, and the more recent post quantum
algorithms proposed in the NIST PQC project2 .

2NIST Post-Quantum Cryptography csrc.nist.gov/projects/post-quantum-cryptography
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Figure 2.2: Asymmetric key encryption and decryption process.

2.1.3 Hashes

Hashes are one-way mathematical functions that transform any given input size
into a xed length output. The output, hash value is often times used as a sig-
nature to ngerprint and identify les, verify that the data remained unchanged
or even securely store user passwords. Apart from the irreversibility of the hash
value back to the original input, a good hash function should also have “collision
resistance”. This property states that it is computationally infeasible to nd two
dierent inputs that produce the same output. This feature drastically limits the
likelihood that two distinct inputs will share the exact same hash value.

Another important feature is the “avalanche” eect. This causes a slight
change in the hash input to have a drastic change in the produced output. This
is very important especially when storing hashed passwords. Even if the hashed
passwords eventually leak, an attacker would not be able to guess the correct input
of the hash function i.e. the password, by comparing how close the hash output is
to some other already known values.

Some notable hash functions are MD5 [59], SHA-1 [61], SHA-2 [62] and SHA-3
[63].

2.2 Digital Forensics

Digital forensics, is a branch of forensic science that involves the “application of
computer science and investigative procedures involving the examination of digital
evidence - following proper search authority, chain of custody, validation with
mathematics, use of validated tools, repeatability, reporting, and possibly expert
testimony” 3.

As dened in the rst Digital Forensics Research Workshop [8]. “The use of

3This is the rst denition of “Digital Forensics” by NIST (CNSSI 4009-2015 from DoDD
5505.13E) available here: csrc.nist.gov/glossary/term/digital_forensics
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Figure 2.3: Hashing process.

scientically derived and proven methods toward the preservation, collection, vali-
dation, identication, analysis, interpretation, documentation, and presentation of
digital evidence derived from digital sources for the purpose of facilitating or fur-
thering the reconstruction of events found to be criminal, or helping to anticipate
unauthorized actions shown to be disruptive to planned operations”.

2.2.1 Principles

In the book titled ”Digital Forensics,” Arnes et al. [73] outline the fundamental
principles of digital forensics, as described below.

• Evidence integrity
“Evidence integrity” refers to the preservation of evidence in its original form.
This is a requirement that is equally valid both for the original evidence when
it is collected, as well as for the copy of the evidence that is used for analysis
and then referred to when evidence is presented to a court.

• Chain of custody
“Chain of custody” refers to the tracking of evidence through its collection,
safeguarding, and analysis lifecycle by documenting each person who handled
the evidence, the date/time it was collected or transferred, and the purpose
for the transfer 4.

• Forensic soundness
An investigation is “forensically sound” if it adheres to established digital
forensics principles, standards, and processes.

4See NIST glossary, csrc.nist.gov/glossary/term/chain_of_custody
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Figure 2.4: The process of a digital forensics investigation.

2.2.2 The digital forensics investigation process

Digital evidence can be discovered in a variety of sources, including computers,
mobile devices, internet infrastructure, industrial systems, and other digital de-
vices. The application of the forensic process and its fundamental principles is
essential to ensure the integrity and reliability of an investigation. In this section,
we outline the ve phases of the digital forensics investigation process as presented
in the book “Digital Forensics” [73], based on the principles of digital forensics
and informed by established practices in both law enforcement and industry.

• Identication
The identication phase forms the basis for all the following phases of the
investigation process. In this phase it is important to identify which digital
objects (computers, phones, car infotainment systems etc.) are useful as ev-
idence during the investigation.

An investigation may concentrate on several objectives, including identifying
supporting information to substantiate a case, pinpointing information that
refutes a hypothesis for a case, or validating the authenticity and accuracy
of provided information.

Additionally, the investigator needs to be adequately prepared to investigate
a case. In this phase, it is crucial to ensure the proper functioning of all
forensic tools in their arsenal and verify the forensic soundness of the methods
to be employed in subsequent phases.

• Collection
In the collection phase, the investigator meticulously duplicates data from all
conscated devices, taking utmost care to avoid any alterations. This pre-
caution is essential because forensic analysis is ideally conducted on forensic
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copies to preserve the original data source. Typically, the forensic technician
overseeing evidence acquisition utilizes a combination of software and hard-
ware write blockers. These tools ensure that the digital device is parsed in
read-only mode, preventing any unintentional modications to the data.

• Examination
Examining data often involves reorganizing, parsing, and preprocessing raw
data to ensure it is comprehensible for forensic investigators during sub-
sequent analysis. To streamline this process, analysts commonly employ
forensic tools and techniques tailored for extracting information relevant to
the case.

• Analysis
Following the examination phase, data undergoes preparation for analysis.
This involves employing various techniques such as statistical methods, man-
ual analysis, understanding protocols and data formats, linking multiple data
objects, and creating timelines.

The analysis phase is inherently iterative. Initial hypotheses regarding data
containing potential evidence guide the analysis, but new hypotheses may
emerge during the process, prompting the collection of additional data ob-
jects. Investigations progress iteratively until results are deemed sucient
for the investigation’s purpose, although achieving absolute certainty may
be practically unfeasible in many cases.

• Presentation
This stage involves the conclusive documentation and presentation of inves-
tigation results, whether to a court of law or other relevant audiences, such
as a corporation’s top management or crisis management team. The presen-
tation relies on objective ndings derived from a thorough analysis of digital
evidence, ensuring a sucient level of certainty. It is crucial that the nd-
ings are succinctly summarized, and all investigative actions are thoroughly
accounted for and described in a manner comprehensible to the intended
audience.

2.2.3 Legal principles

In the context of a digital forensics investigation, adherence to widely accepted
legal principles is paramount to ensure the integrity of the process, the protection
of individuals rights, and the admissibility of evidence in court. The following legal
principles should be carefully observed throughout the digital forensics investiga-
tion:

• Data minimization
The principle of “Data minimization” is very important to consider while
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investigating a digital forensics case. According to [33], investigators should
identify the minimum amount of personal data they need to full their pur-
pose. They should hold that much information, but no more. The account-
ability principle means that they need to be able to demonstrate that they
have appropriate processes to ensure that they only collect and hold the
personal data they need.

• Proportionality
According to Interpol [35], ensuring that the actions taken by the investiga-
tors and the methodology they used to gather evidence needs to be fair and
proportionate to the interests of justice.

The prejudice (i.e. the level of intrusion or coercion) caused to the rights of
any party should not outweigh the probative value of the evidence (i.e. its
value as proof).

2.3 Criminal Use of Encryption & Countermeasures

2.3.1 The encryption debate

Europol published in 2015 the “Internet Organised Crime Threat Assess-
ment”[11] that discuses the proposed solutions for tackling the encryption misuse
problem and their limitations.

• Outlaw encryption for general use
There have been various proposals over the years to combat the criminal
abuse of encryption. The rst and most straightforward solution is to outlaw
the use of encryption by citizens, some argue that ordinary citizens should
not need to use encryption if they have nothing to hide while others state
that the citizens right to privacy should not matter if it degrades national
security and/or impedes criminal investigations.

However, these two arguments are awed. Nowadays encryption is out of
the hands of the governments. It does not require any special infrastructure
and most encryption algorithms are publicly available. Making encrypted
communications illegal will only hurt law abiding citizens, criminals could
implement their own or use an available illegal encrypted communication
service. Another counter-argument is that cyber related crime often spans
multiple legal jurisdictions, sometimes even outside the EU and there is no
guarantee that other countries would introduce a ban on encryption as well.
Therefore, an outright ban on encryption would mostly hurt citizens and
would be a very easy obstacle for criminals to overcome.

• Key escrow
Instead of banning encryption for everyone, the concept of key escrow
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was introduced. Key escrows would be either government agencies or third
parties entrusted with storing and securing private keys. Anyone that would
want to use any form of encryption would be rst required to submit their
private key in the escrow. Then law enforcement agencies would be able to
access any encrypted data related to a criminal investigation by submitting
a warrant to the key escrow. However there are some problems with this
approach that make it infeasible.

1. Forward secrecy
Most modern implementations of encryption employ “forward secrecy”.
With forward secrecy the private key changes every session. Thus mak-
ing it impossible to access plaintext data with a key that was submitted
before the session created.

2. Compliance
Verifying that every key used for encryption is submitted to the escrow
is impossible. The only way a LEA could make sure that all the keys
of a user are validly submitted to the escrow system is when they need
to access their data.

3. Easy targets for hackers
Key escrows are essentially databases, and therefore are prime targets
for cybercriminals. There are multiple reports of database breaches each
year [69]. A key escrow breach could potentially have a severe impact
to all the users aected by the breach. The threat actors would be able
to access all the encrypted data of their victims, that may include social
networks accounts, cloud storage and even bank accounts.

4. Jurisdiction issues
Jurisdiction is another key challenge, one law enforcement agency in one
country may require access to keys that are stored in another country.
This would require international agreements and cooperation, which
becomes more dicult if one of the countries involved is outside the
EU.

• Weakened encryption
It has been suggested that only encryption that can be ‘cracked’ by law
enforcement agencies should be allowed. That means that encryption keys
might be limited to a certain size that it’s feasible to be brute-forced by
supercomputers, or that software vendors might be compelled to introduce
backdoors in their software and disclose them to governments so they can
workaround encryption.

The issue is that what is available to law enforcement agencies is also avail-
able to cybercriminals and opposing nation state actors. Backdoor vulner-
abilities get discovered and cybercriminal nancing grows, allowing them
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access to more specialized hardware comparable to that available of most
LEAs.
Clipper Chip was promoted by the US government, included a backdoor
allowing access for US law enforcement and intelligence agencies. By the
end of 1996 it was already defunct due to lo backlash from the US public 5,
low adoption rate from vendors and attacks that demonstrated the backdoor
could be exploited by malicious actors [24].

• Obligation to disclose
Another proposed solution is to make suspects criminally liable if they refuse
to hand over their encryption keys to the authorities when they are investi-
gated like refusing a breathalyzer test when driving. However this solution
would not work when the keys are transient and not on the suspect’s device
or the encryption is seamless to the user or the suspect is unable to disclose
the keys.

For example, in 2015 the FBI wanted to access the iPhone of a dead terrorist
responsible for the 2015 attack in San Bernardino [18] to see if he and his
collaborators planned another attack. Only the dead terrorist knew the PIN
code that unlocked the device, which then sparked a long public legal battle
between the Department of Justice and Apple.

Governments could also reach an agreement with the software vendors to
implement security architectures that do not enable end-to-end encryption.
Keys can be made accessible for LEAs through a legal/warrant request to the
service provider, to hand over the encryption keys or decrypted application
data of the user. The issue is that software vendors serve an international
audience and enforcing no end-to-end encryption will impact users outside
the EU/jurisdiction. Companies might prefer to leave the market than de-
teriorate the security of their products [47].

2.3.2 Encryption workarounds

Due to the limitations of the aforementioned solutions and the usefulness of encryp-
tion to safeguard people’s right to privacy, it has become clear that new methods
of working around encryption should be developed. Kerr and Schneier [39] have
introduced a taxonomy of possible ways to work around encryption. Those cate-
gories are nding the key, guessing the key, compelling the key, exploiting a aw
in the encryption scheme, accessing plaintext and locating a plaintext copy stored
elsewhere.

• Find the key
One method for a Law Enforcement Agency to decrypt data involves locating

5Article from the “Wired” against the adoption of Clipper chip, available here: https://www.
wired.com/1994/09/clipping-clipper-matt-blaze/
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an existing copy of the encryption key. This copy might take the form of a
physical item, like a post-it note hidden in the suspect’s room, or a digital
version stored in a keystore (e.g. a password manager).

• Guess the key
While random encryption keys are typically long enough to render brute-
forcing practically impossible, the passwords, passcodes, and passphrases
used to protect these keys are often more limited in length. Easily memorable
and typable, these passwords can be susceptible to guessing6. Additionally,
users tend to reuse passwords, therefore they might be obtained from other
known sources, for example previous database breaches[71]. Given that the
password serves as the gateway to the encryption key, which in turn de-
crypts the protected data, successfully guessing the password is tantamount
to obtaining the encryption key and accessing the encrypted data.

• Compel the key
A third strategy involves the LEAs compelling the key from an individual
who possesses or is aware of it. In many instances, the crucial key is a
password or passcode. Broadly speaking, compelling a key could encompass
any form of coercion. In authoritarian regimes or criminal contexts, coercion
might involve threats, bribery, seduction, or even torture7.

• Exploit a aw
In such a scenario, access is obtained without needing the key, exploiting a
vulnerability in the system designed to prevent unauthorized entry. Various
forms of weaknesses can be exploited. These may include a aw in the
mathematical foundation of the encryption algorithm, a vulnerability in the
random-number generator supplying inputs to the encryption algorithm, or
weaknesses stemming from the implementation of the algorithm in software
on a computer. One such example was when the FBI used an exploit chain
to access the iPhone of a deceased terrorist at San Bernardino in 2015 [18].

• Access plaintext while in use
Intended end users cannot read ciphertext, therefore encrypted data must
be decrypted to be read by them. This creates a security gap that LEAs can
leverage to gain access to the decrypted data. The technical complexity of
these methods varies, from grabbing the device while it is unlocked and used
by the suspect [5, 7] to advance techniques such as the 0-day exploit that
was used by the FBI to reveal the IP address and apprehend “Brian Kil”
[23].

6Cupp See: github.com/Mebus/cupp
7See relevant XKCD comic about compelling encryption keys: xkcd.com/538/
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• Locate a plaintext copy
Another strategy is to obtain a separate and unencrypted copy of the in-
formation. The target might possess multiple copies of the desired records,
and LEAs could potentially access an unencrypted version. This method
involves searching for an alternative copy of the sought-after information. In
this context, this approach may be viewed more as an alternative strategy
than a workaround. Rather than bypassing encryption, it entirely avoids
the encryption process. Given the popularity of cloud services, the FBI, for
instance, has established a legal framework to access backup data for various
applications stored in the cloud 8.

Figure 2.5: Kerr & Schneier’s encryption workarounds taxonomy.

One such successful case of encryption workaround is the “EncroChat” case.
EncroChat, was a service that provided secure phones to criminal organizations.
Authorities in Europe and especially in France often encountered these devices
in their investigations but were unable to decrypt them due to the sophisticated
security measures of the devices. Eventually, the French authorities with the help
of Netherlands and Europol managed to break the encryption security mechanisms
of EncroChat by inltrating the service and installing a malware able to intercept
and decrypt the criminals’ communications. This operation, lead to the dismantle
of the EncroChat service and numerous arrests across Europe[17].

Europol in [11] states that LEAs, researchers and industry should work to-
gether to develop a framework that enable working around encryption. This meth-
ods should leverage weaknesses in the implementation and usage of cryptographic
primitives like symmetric and asymmetric algorithms and also attacking hashes

8A page from an FBI training document was made public in 2021 depict-
ing various applications and what data can the FBI get from cloud backups.
propertyofthepeople.org/document-detail/?doc-id=21114562. A blog by Mal-
wareBytes discusses it in more detail. www.malwarebytes.com/blog/news/2021/12/

heres-what-data-the-fbi-can-get-from-whatsapp-imessage-signal-telegram-and-more
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whenever possible. Using the aforementioned methods when a legal basis has been
established and respecting citizens rights, we focused our research on nding en-
cryption workarounds that would enhance the capacity of LEAs to successfully
access encrypted data. Next chapter introduces the encryption workarounds we
found. For a categorization of the encryption workarounds, refer to Appendix A.1.



Chapter 3

Methodology

In this chapter we present a compilation of encryption workarounds we found
online targeting various software applications. We split the workarounds in two
categories based on the type of the le that is being analyzed, either le system or
memory, then for each software we explain how it is aected by the workaround
in detail.

First, we give a brief overview of the workaround method by introducing the
targeted software. Then in the Architecture section, we discuss in detail the ar-
chitecture of the targeted software, how it handles encryption and/or credentials
storage and possible methods that can mitigate the threat of the workaround.
In the Scenario section, we discuss how it would benet LEAs to leverage the
workaround by linking the workaround method with the high level taxonomy in-
troduced by Kerr and Schneier[39]. In the Setup section, we demonstrate the
workaround along with the prerequisites needed to run the workaround. Finally,
in the Validation section we validate that the method is forensically sound us-
ing digital forensic best practices so it can be used eectively by LEAs by being
admissible in a court of law.

Note, that the workarounds presented in this section were not implemented
by us. Our contribution is (i) the mapping between the technical encryption
workarounds to the higher level overview of Kerr et al.[39], (ii) the testing of the
modules, and nally (iii) the validation of their forensic soundness in the context
of digital forensics.

While the process of device acquisition is crucial in the eld of digital forensics
and demands careful handling, it falls beyond the scope of this thesis. We made
every eort to adhere to best practices and procedures, but it’s important to note
that we lacked access to resources like hardware write blockers and imaging devices.

19
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3.1 File system analysis

File system forensics plays a pivotal role in digital investigations by providing
access to a wealth of information stored on a computer or storage device. Un-
derstanding the le system is essential for data recovery, evidence preservation,
artifact identication, timeline reconstruction, and malware analysis, making it a
cornerstone of digital forensics practice. Below, we list three cases we explored
for bypassing encryption through le system analysis. These methods are for the
following software:

1. Mozilla software such as the Firefox browser , Thunderbird email client and
TOR browser

2. Google Chrome and similar browsers Microsoft Edge and Opera

3. Meo encryption software

3.1.1 Mozilla software

Firefox developed by Mozilla is one of the most known browsers, according to
their statistics page1 it is used by 362 million people across the globe to access
the world wide web. Firefox and other mozilla based software such as Thun-
derbird and TOR browser oer the functionality to save and remember login
credentials for websites and email accounts. When a user visits a website and lls
a credentials form they will be asked whether they prefer the browser to remem-
ber the credentials next time they visit the website as seen in Figure 3.1. If the
user agrees, Firefox will save the credentials (username & password) locally in the
user’s machine along with the corresponding url of the website.

Figure 3.1: Mozilla Firefox prompt to save web credentials when logging in a
website.

1See https://www.enterpriseappstoday.com/stats/refox-statistics.html
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3.1.1.1 Architecture

Mozilla software encrypts the remembered credentials before storing them locally,
but the encryption key is saved as a plaintext in the user’s machine. Over the
years, there were various methods that Mozilla software handled credential stor-
age dierently, but the encryption key was always stored as plaintext. Therefore,
the same credential recovery method can be leveraged in all versions (newest ver-
sion: 121.0) as of the current writing of this thesis. In the next paragraph we
rst describe the current process of credential storage and in second paragraph we
compare it to the older versions.

How Firefox stores passwords:

Mozilla encrypts both usernames and passwords using AES-CBC and stores
them in the logins.json le (refer to Listing 1), along with other information
related to each credential pair. The encryption key used is derived using the
“Password-Based Key Derivation Function 2 (PBKDF2)”[53], which requires
a password to generate an encryption key. This password is a combination of
the SHA256 output of the ”Global Salt” value dened by Mozilla, along with a
user-supplied password, which is optional and empty by default. The ”Global
Salt” is stored in the key4.db le, along with other data needed for encryption,
such as the Initial Vector (IV), encryption key length, and iteration count, which
are encoded using ASN.1[2] before being placed inside the le. This whole process
is illustrated in Figure 3.2. Finally, for a detailed explanation for the rest of the
elds and their forensic value in Listing 1 see Nelson et al.[50].

Listing 1 Example output of logins.json

{

"id": 2,

"hostname": "https://www.facebook.com",

"httpRealm": null,

"formSubmitURL": "https://www.facebook.com",

"usernameField": "email",

"passwordField": "pass",

"encryptedUsername": "MDoEEPgAAAAA...BBBTY9R5lmfPOMv4kv1VHnBm",

"encryptedPassword": "MDoEEPgAAAAA...BBDZFlrgDUOzEMXjCOa2rxDY",

"guid": "{0256321d-c4b7-4969-b66e-d030d6ba2027}",

"encType": 1,

"timeCreated": 1661366966952,

"timeLastUsed": 1661366966952,

"timePasswordChanged": 1661366966952,

"timesUsed": 3

}
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Figure 3.2: Decryption process of saved user web credentials in Mozilla software
such as Firefox.

Older Versions: Previous versions of Mozilla software followed the same princi-
ple for storing credentials. The only thing that changed was the type of encoding,
encryption and the le names 2. Notice that instead of key4.db and logins.json les
it has keys3.db and signons.sqlite instead. But the methodology remains the same,
all versions up to the newest in time of testing, which is version 121.1 (released
January 9, 2024).

Mitigations: Decrypting user passwords will work in most cases since the

2For previous Firefox versions see github.com/lclevy/firepwd/blob/master/mozilla_pbe.

svg
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method of storing the encryption key for the credentials in plaintext form ex-
isted in all the versions that supported credentials storage. If a user sets a browser
master password to access the credentials then this method will not work. The
master password which is not stored in the device, is used to derive the encryption
key that encrypts the data, without it the decryption will fail. However, this is
not the default option in all the above-mentioned software and must be explicitly
enabled by the user.

If a master password is set, the investigators would have to know or obtain the
password in order to gain access to the web logins. One such way is by performing
bruteforce attacks if the password is relatively short. Another way is to guess the
password by trying popular passwords or passwords that the user might use in
other services, due to the fact that password reuse is popoular among users [9].

3.1.1.2 Scenario

This method can be categorized as “Finding the key” in Kerr & Schneier’s
Taxonomy which generally do not lead to human rights problems [39]. This
workaround enables LEAs to nd credentials for a suspect’s online accounts that
are saved in the browser. They may provide useful information for investigators
such as online communication via messaging apps, photos and other les from
cloud backups. Additionally, the recovered passwords might grant access to other
accounts since users commonly reuse their passwords across various online services
[9, 21].

3.1.1.3 Setup

The experiment was performed both in Windows and Linux Operating Systems.
Both OSes were installed in a Virtual Machine. For the Linux OS we used Kali
Linux x64 version 2021.1. For Windows we used Windows 10 x64 version 20H2.
In both cases the next steps are similar the only thing that changes is the path of
the default proles, therefore we only show the windows version.

The default location paths for the proles on Windows and Linux OSes are the
following:

• Windows: C:\Users\<UserName>\AppData\Roaming\Mozilla\Firefox\Profiles

• Linux: ∼/.mozilla/firefox

Tools: We used firefox decrypt that retrieves the passwords of a Mozilla prole
if no master password is set. The tool requires python 3 to be installed in the
target system, with older versions using python2. However, we sticked to the
newest available version at the time and used python 3.10.6 for Windows.

Installation:

• Python version 3.10.6: downloaded from https://www.python.org/downloads
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• Git (GitBash): downloaded from https://gitforwindows.org/, if you are
on Linux git is included by default on most distros.

• firefox decrypt: to install the script open a terminal or GitBash if you are
on Windows and type:

git clone git@github.com:unode/firefox_decrypt.git

Target Software We installed Mozilla software that uses the aforementioned
process of storing and accessing credentials. Such tools are:

• Firefox: Version 121.1 (64-bit), released January, 2024.

• Thunderbird: Version 115.6.0 (64-bit), released December, 2023

• TOR Browser: Version 13.0.9 (based on Mozilla Firefox 115.7.0esr)(64-
bit), released Jan, 2024

1. Firefox
There is no additional conguration needed for Mozilla Firefox to store and
access passwords. We manually created new dummy logins by navigating to
the Passwords section of Firefox (Figures 3.3 and 3.4).

Figure 3.3: How to navigate to the Firefox saved logins and passwords page.
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Figure 3.4: Firefox Passwords page.

We run the Firefox Decrypt3 to obtain the passwords. We get prompted
to select a user prole. Depending on the number of users that use the
same computer we may have more than 2 proles to select from. A user can
create as many dierent proles in Firefox that have dierent congurations,
preferences and history (including passwords and cookies). However, in the
case of one user with one prole we will be presented with only 2 prole
options to select. The correct prole is always the option 2 because it is the
default-release prole. The output (Figure 3.5) contains a list of usernames
and plaintext passwords along with the websites they are being used for.

py firefox_decrypt.py

3Firefox Decrypt: available at github.com/unode/firefox_decrypt, credits unode
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Figure 3.5: Firefox decrypted passwords.
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2. Thunderbird
We used the same exact process as we did with Firefox. The only dierence
is the location of the default prole. Firefox Decrypt by default uses the
Mozilla Firefox proles save location, which is dierent depending on the
OS. The tool accepts as a second optional argument a path to a dierent
location to search for Mozilla proles.

py firefox decrypt.py <path to thunderbird profile>

Invoking the tool with the default location where thunderbird saves the pro-
les will get return a list of credentials used by thunderbird, those are mainly
email accounts as seen at Figure 3.6.

Figure 3.6: Thunderbird decrypted passwords.

3. TOR Browser
Decrypting passwords stored in the TOR Browser follows a similar process
to thunderbird. The location of the TOR prole must be supplied to Firefox
Decrypt. However, there is one notable dierence from Thunderbird, the
TOR Browser is designed with strict privacy and security controls in mind.
The developers have disabled TOR from storing and remembering passwords
by default. A user must manually turn this feature on from the settings.

To enable storing passwords, a user must navigate to the TOR Browser
settings page as shown at Figure 3.7, click the Privacy & Security tab on the
left. Then select the “Use custom settings for history” history dropdown,
enable (i) Remember browsing and download history (ii) Remember search
and form history options, depicted in Figure 3.8. After these changes, TOR
will ask the user every time they login to a website if they want the TOR
Browser to remember and auto-ll passwords.
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Figure 3.7: Open TOR Browser settings.

Figure 3.8: Settings that need to be enabled to allow TOR to store passwords.

For the expirement we manually added a dummy entry in the password
manager as we did with Firefox. The credentials we added for the twitter
onion website were:

• username: twitter onion id
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• password: twitter onion password

We then run the Firefox Decrypt tool by providing the path to the TOR
prole and got the username and plaintext password along with the url of
the twitter onion website.

py firefox decrypt.py <path to TOR profile>

Figure 3.9: TOR decrypted passwords.

3.1.1.4 Validation

Firefox decrypt by default searches for mozilla proles in the current system. How-
ever, in the context of an investigation, the examiner will run the workaround from
their workstation and will take as input the location of the suspect’s user prole.
The workaround will not alter in any way or form the source. Nevertheless, it is
advised to use a forensically acquired physical or logical extraction of the suspect’s
le system.

To validate the preservation of the source, we compared its hash signature from
before and after running the workaround. Since there are two les involved in the
key storage and decryption process (logins.json, key4.db), we calculated the
hashes for both les using MD54 and SHA2565. Table 3.1 shows that that the
logins.json le did not change and Table 3.2 shows that the key4.db le did
not change as well.

MD5

before e87db014a559182377892015746759
after e87db014a559182377892015746759

SHA256

before 2e60129ed5b1bd470a0d926526a3ae3991dd7b49d8322bd8994dd44b36d53ee6
after 2e60129ed5b1bd470a0d926526a3ae3991dd7b49d8322bd8994dd44b36d53ee6

Table 3.1: MD5 & SHA256 hashes of “logins.json” before and after running the
decryption workaround

4See https://www.man7.org/linux/man-pages/man1/md5sum.1.html
5See https://www.man7.org/linux/man-pages/man1/sha256sum.1.html
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MD5

before bf1c07bde40ab12230797b28d6ae04
after bf1c07bde40ab12230797b28d6ae04

SHA256

before 02a31a29edf7602e712448715ca0424997b5ae6184aaacb1a62d7e4c39b736b9
after 02a31a29edf7602e712448715ca0424997b5ae6184aaacb1a62d7e4c39b736b9

Table 3.2: MD5 & SHA256 hashes of “key4.db” before and after running the
decryption workaround
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3.1.2 Chrome Decrypt

Google Chrome is the most used browser in personal computers 6. Like Firefox,
Chrome oers the functionality to save and remember user credentials including
passwords to online accounts. Figure 3.10 shows the prompt that Chrome displays
when a user logins to a website that hasn’t logged in before with those credentials.
If the user clicks the ”Save” button then chrome will remember the credentials
used and will prompt to auto-ll them next time the user visits the same website.
Last but not least, Microsoft Edge and Opera browser follow the process of
storing and retrieving web credentials, therefore the same encryption workaround
described below can be leveraged to obtain plaintext credentials.

Figure 3.10: Google Chrome prompt to save credentials

6Chrome had the 66,18% of the Desktop browser marketshare from Nov 2021 to Nov 2022,
https://www.enterpriseappstoday.com/stats/desktop-browser-statistics.html
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3.1.2.1 Architecture

logins table

eld type
origin url VARCHAR

action url VARCHAR
username element VARCHAR
username value VARCHAR

password element VARCHAR
password value BLOB

submit element VARCHAR
signon realm VARCHAR
date created INTEGER

blacklisted by user INTEGER
scheme INTEGER

password type INTEGER
times used INTEGER
form data BLOB

display name VARCHAR
icon url VARCHAR

federation url VARCHAR
skip zero click INTEGER

generation upload status INTEGER
possible username pairs BLOB

id INTEGER
date last used INTEGER

moving blocked for BLOB
date password modied INTEGER

Table 3.3: List of elds and their respective types of the logins table that Chrome
uses to store passwords

Chrome manages a local sqlite le called Login Data in the user’s computer.
The le contains information that the chrome password manager collects. More
specically, the Table 3.3 contains the user’s credentials that Chrome manages and
autolls on behalf of the user.

• origin url: Is the url that the credentials belong so that Chrome can detect
the correct credentials and use them in the correct site.It is of type VARCHAR

because it stores strings.

• username value: Is the username for the specic account that belongs to
this url. It is of type VARCHAR because it stores strings.

• password value: Contains the encrypted password for this url. Notice, that
it is of type BLOB which is used for storing binary data7. Additionaly, the
encryption key that decrypts the Login Data le is further secured by relying
on the undelying operating system as seen in Figure 3.11.

7Read more about BLOB ype, https://sqldocs.org/sqlite/sqlite-blob/
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Other elds can also have forensic value, refer to Chapter 3.1.2.2 for more
details.

Logins DataCredentials & metadata

username: johndoe19

password: pass123

URL: website.com

username_value:
johndoe19

password_value:
<encrypted password>

url: website.com

Data Protection

API

CryptProtectData

Keychains

(OS managed)

PKBF2

AES CBC 128 bit

Figure 3.11: Password encryption process in Chrome

Windows: Chrome encrypts the passwords stored in the Login Data by calling
the CryptProtectData function of the Windows Data Protection API (DP
API). Similarly, in order to decrypt the password it calls the CryptUnprotectData
function from the Windows API [44]. The documentation mentions that decrypt-
ing data protected with CryptProtectData is only possible if performed by the
same user on the same computer, with two notable exceptions—neither of which
is used by Chrome:

1. Roaming user: A user with a roaming prole can decrypt their data from
another computer in the same network. Usually, this type of prole is en-
countered in corporate environments.

2. Protect in local machine If the ag CRYPTPROTECT LOCAL MACHINE

has been enabled when the CryptProtectData was called then every authen-
ticated user in the same computer can decrypt the data.

DPAPICK: Additional independent research [10] has shown that it is possible
to decrypt DPAPI protected data oine provided that you know the Windows
user password. This method is called DPAPICK and works for local Windows
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accounts (no active directory nor Microsoft Live) and without TPM protection
enabled. The way DPAPI works with Chrome is that it encrypts the key that
decrypts the passwords in the Login Data le and it creates a DPAPI blob. A
DPAPI blob consists of two parts, (i) the encryption & decryption keys (DPAPI
master keys) and (ii) the encrypted data itself.

• Master keys: Master keys can be of two types:

1. System: Every system has System Master Keys that are used to encrypt
data that must be accessible for every user. These can be found in the
folder:
%windir%\System32\Microsoft\Protect\S-1-5-18\User

2. User: Unique to each user and stored in
%APPDATA%\Microsoft\Protect
within a folder that is the user Security IDentier (SID).
This specic category of master keys is utilized by Chrome to ensure
that the passwords of a single user are inaccessible by all the other users.

These Master Key les are also binary, hex-formatted data structures holding
several elds, however the DPAPI Master Key itself is encrypted too and needs
a user password (hash) and the user SID (which is the folder name). This User
Master Key can be decrypted using the user SID and the SHA1 hash of the clear
text user password (UTF-16LE encoded).

MacOS/Linux: In MacOS and Linux the passwords are encrypted using AES-
128-CBC. AES is a symmetric block cipher algorithm that uses a key and an
Initialization Vector(IV) to both encrypt and decrypt data. In this instance, the
iv is 16 bytes of the character space (0x20) while the key is generated by the
Password-Based Key Derivation Function 2 (PBKDF2) [53].

In order to derive the encryption key from the PBKDF2 Chrome generates
a random password and stores it in a keychain (such as Gnome keyring, KDE
keyring, MacOS Keychain Access, etc.) managed by the operating system (e.g.
Linux Pluggable Authentication Module)8. We chose to prioritize our research on
unlocking Windows secrets as it promised the most signicant impact, although
we did not concentrate on Linux and MacOS. Nevertheless, exploring this aspect
remains part of our future agenda.

3.1.2.2 Scenario

This method of workaround falls under the same category in Kerr’s & Schneier’s
taxonomy [39] as the workaround for the Mozilla password manager which is ”Find-
ing the key”. Although the data we are after are encrypted, we are able to obtain

8See “An introduction to Pluggable Authentication Modules (PAM) in Linux” by Redhat,
https://www.redhat.com/sysadmin/pluggable-authentication-modules-pam
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the decryption key from the operating system and decrypt them provided that we
know the Windows user password. Decrypting the database may yield the user’s
credentials to various online accounts such as end to end encrypted messaging ap-
plications, cloud backups, online forums etc., that may be valuable in the scope of
a criminal or civil investigation.

Further analysis of the Login Data database may be fruitful. In [22] the author
describes how Chrome interacts and populates the Login Data database and what
information can be obtained from various elds. For example, whenever a user
clicks the ’Never’ option in the Chrome prompt (Figure 3.10), it still creates an
entry in the logins table with the website url and the blacklisted by user ag
set to ’true’ (see Table 3.3). This can reveal if a user attempted successfully or
not to login to a particular site.

The eld times used counts the times Chrome auto-lled the password in the
login form of the website on behalf of the user and therefore can reveal the times
the user has logged in that particular site.

Lastly, if the user doesn’t perform any action in the Chrome prompt - Save
or Never -, Chrome creates an entry in the stats table with the website domain,
username & update time. Therefore, an investigator can learn the websites that
the user tried to log in with a particular username along with the last time he
tried.

3.1.2.3 Setup

To evaluate this encryption workaround using the DPAPICK technique, we em-
ployed the following methodology. First we setup a virtual machine with all the
required software, then we performed an acquisition to get the virtual machine to
ewf format and then run the script to perform the encryption workaround. It is
important to note that apart from Google Chrome we also performed the same
expirement to Microsoft Edge and Opera browser as well, due to the fact that they
utilize the same method to protect their user passwords.

Virtual Machine: As described above, we setup a virtual machine running Win-
dows 10, and we installed the following:

•• Windows 10 Pro version 22H2 build 19045.2846 (Released April 2023)

– username: ChromeUser
The account is local (not connected to AD not even to a Microsoft
online user account)

– password: 123

• Google Chrome browser version 117.0.5938.89 64-bit (Released September
2023), saved credentials (not signed in to google account):
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– url: www.facebook.com

– username: chromeuser@testemail.com

– password: chrome facebook password123

• Opera browser version 103.0.4928.47 64-bit (Released October 2023), saved
credentials:

– url: www.twitter.com

– username: operauser@testemail.com

– password: opera twitter password123

• Microsft Edge browser version 118.0.2088.76 64-bit (Released October 2023),
saved credentials:

– url: www.binance.com

– username: edgeuser@testemail.com

– password: edge binance password123

Acquisition & Analysis: To acquire the image of the virtual machine and mount
it in our forensic workstation we used did the following:

• Convert the virtual disk image to raw:

$ VBoxManage clonemedium <virtual.vdi> output.img

--format raw

• Convert the raw image to Expert Witness Format (ewf)9:

$ ewfacquire -t <target> input

• Mount10 the ewf image, :

$ sudo imount ewf_image.e01

• Extract the following les to unlock DPAPI protected blobs:

9Github repo of libewf which has the ewfacquire tool, https://github.com/libyal/libewf
10Python package for imount, https://pypi.org/project/imagemounter/
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– Local State:
C:\Users\ChromeUser\AppData\Local\Google\Chrome\User Data\
Local State

– Login Data:
C:\Users\ChromeUser\AppData\Local\Google\Chrome\User Data\
Default\Login Data

– Masterkey le:
C:\ChromeUser\AppData\Roaming\Microsoft\Protect\
S-1-5-21-3472447873-910604344-166312159-1001\
ad489ebb-0f94-4a4c-8005-48fc871e4cf6

The MK lename will be displayed once the script is run with only the
local state and login data as arguments.

• Run the decryption script11:

$ python3 browserdec.py -t <path to local state> --loginfile <path

to login data> -m <path to mk file> -p <windows user password> -s

<Windows user security id> -v

3.1.2.4 Validation

Finally, it was important to conrm the forensic integrity of the methodology
employed in the “Setup” section, ensuring that it did not modify the content of
the extracted les. To accomplish this, we conducted a comparison between the
pre-workaround md5 and sha256 hashes of the Login Data, Local State, and
MasterKey les for each browser and those obtained after employing the DPAPICK
method. As depicted in Tables 3.4, 3.5, and 3.6 the MD5 and SHA256 hashes of
the Login Data, Local State, and MasterKey les, utilized by the DPAPICK
technique to decrypt stored web logins in Google Chrome, demonstrate no alter-
ation in the content of the respective les. For conciseness, the tables specically
present the validation of the DPAPICK approach for Google Chrome, while we
have also veried its validity for Microsoft Edge and Opera.

11dpapilab-ng browserdec.py script that extracts chrome passwords oine https://github.

com/tijldeneut/dpapilab-ng/blob/main/browserdec.py
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Login Data

MD5

before 8c7a7434bfb9f648db7c37ac2d4fbcd4
after 8c7a7434bfb9f648db7c37ac2d4fbcd4

SHA256

before 6a2dd95e2a8e7674582d4179ca6e89d2e44f8837e1a2f90f377962b6ec5d3719
after 6a2dd95e2a8e7674582d4179ca6e89d2e44f8837e1a2f90f377962b6ec5d3719

Table 3.4: MD5 & SHA256 hashes of the les associated with the DPAPICK
method for Google Chrome.

Local State

MD5

before 80822b05f234dac760c34363a754fdea
after 80822b05f234dac760c34363a754fdea

SHA256

before 4f9178daa352340c6d48aa340a945fd0a6aeed9861f00578c00d338f29ddd7
after 4f9178daa352340c6d48aa340a945fd0a6aeed9861f00578c00d338f29ddd7

Table 3.5: MD5 & SHA256 hashes of the “Local State” le.
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masterkey le

MD5

before bc61c32cb3a99f53f872eb9cf7305f7d
after bc61c32cb3a99f53f872eb9cf7305f7d

SHA256

before 1f30e91aaea241cd5cad40aadb427a65d2ca0a3eddb0f822acc7f90acfbee12e
after 1f30e91aaea241cd5cad40aadb427a65d2ca0a3eddb0f822acc7f90acfbee12e

Table 3.6: MD5 & SHA256 hashes of the masterkey le.
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3.1.3 Meo encryption software

Meo12 is an encryption software published by NCH Software. It is available in both
Windows (7/8/8.1/10/11) and MacOS (10.5 - 10.14) and it oers the functionality
of encrypting les and emails using either Blowsh or DES encryption algorithm.

3.1.3.1 Architecture

To encrypt a le or an email, Meo requires a password given by the user. The
password then is used to generate the encryption key for the equivalent encryption
algorithm, Blowsh13 or DES (as seen in Figure 3.12). To decrypt the encrypted
le, Meo requests the password from the user once again, if the password is correct
it decrypts the le successfully. On the other hand, if the password is incorrect it
fails decrypting the le and displays an incorrect password message.

In order for Meo to determine if the password that was given during the decryp-
tion process by the user is the correct one, it needs to know the correct password in
the rst place. Therefore, meo hashes the password during the encryption process
and it stores it at the start of the encrypted le. In the next section we discuss in
detail the process of storing the password by Meo and how we can leverage it to
retrieve the password and decrypt the le.

Figure 3.12: High-level overview of Meo encryption process.

Analysis: As described above, Meo stores the password used to encrypt the le
in the start of the encrypted le. The author of the blog [66] has performed the
initial analysis on Meo which this section focuses on but their analysis is limited

12Available at https://www.nchsoftware.com/encrypt/index.html
13According to MEO FAQ, Blowsh will be 256 bit only if the provided password is large enough,

we do not have any information about the size of the key for DES, https://www.nchsoftware.
com/encrypt/kb/1335.html
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only on the encryption based on the Blowsh algorithm. Figure 3.13 describes
the process, rst, the password is hashed using the MD5 hash function algorithm,
next every byte of the hash value xor-ed with the value 254 (0xfe in hexadecimal
format) and then it is inserted at the start of the encrypted le.

Figure 3.13: Process of user password storage.

The resulting value is stored in the rst bytes of the encrypted le along with
other relevant information as seen in gure 3.14. The rst 9 bytes (red) contain
the header that identify the le as encrypted by Meo which are always the same
“ HCN 0.1”. Next, after skipping 11 unused bytes that are irrelevant, the next 4
(green) contain the length of the hashed password (in little endian format). In our
testing we did not see any variation in key length, this eld remains unused. The
next 32 bytes (pink) are the hashed and xor-ed value of the user password that we
described above.

Figure 3.14: Header of an encrypted le with Meo.
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We performed our own analysis on the Meo encryption and decryption pro-
cess and we determined that the exact same method described in Figure 3.13 is
applied in the encryption with the DES algorithm. Additionally, even though
there are the 4 bytes that store the length of the hashed password we found out
that the lenght remains the same (32 bytes) throught our experimentation. That is
a logical observation because the output of the MD5 hash algorithm is xed length.

Finally, we tested the email encryption functionality that Meo oers. Meo en-
crypts the email body along with the attached les but not the subject line and
sends the email to the recipient with an encrypted Meo le that contains both the
original email body and attached les (Figures 3.15 & 3.16). Therefore, the same
encryption & decryption methods are applied.

Figure 3.15: Meo email encryption.

Figure 3.16: Received email encrypted by
Meo.

3.1.3.2 Scenario

The technique detailed in the “Setup” section can be labeled as “Guess the
Key” [39] as shown in Figure 2.5. This classication arises from the limited data
available through the hashed password, prompting an attempt to brute force the
correct password through guessing. Consequently, the success of this method is
intricately linked to both the strength of the user’s password and the eectiveness
of the wordlist used for the brute force attack.
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3.1.3.3 Setup

In order to decrypt les encrypted with Meo, we set up a target environment
running in a virtual machine and a forensic workstation to analyze the target
environment extraction.

• Target environment

– Windows 10 x64 Pro version 22H2 on a virtual machine

– Meo encryption software version 2.17

• Forensic workstation

– hashcat version 6.2.5 (Released November 2021)

– Python 3.12.0 (Released October 2023)

We identied all potential les encrypted with ’meo’ by collecting a list of les
marked with the .meo sux and inspecting le headers (initial 9 bytes) that contain
the string “HCN 0.1”. Subsequently, we created a script to automate the reversal
of the key storage process. We utilized hashcat [30] to attempt password cracking.
The outcome of this process varies depending on the strength of the password and
the wordlist used. For instance, the password “password123’ was easily cracked
using the “rockyou” dictionary [64]. On the contrary, when using the same dictio-
nary, hashcat was unable to crack the password “Th1s1s4V3ryL0ngPassword!$#”.

3.1.3.4 Validation

To validate that our ndings are forensically sound and that they don’t alter
evidence in no way, we compared the original plaintext les from the virtual testing
environment with the decrypted plaintext les in our forensic workstation.

MD5

original c2d9a3bdedbdd59e4217b844940c76f5
decrypted c2d9a3bdedbdd59e4217b844940c76f5

SHA256

original de49c390f0aa148059545b1d496cd4887adaf7da8490097f39a74365bac9dd
decrypted de49c390f0aa148059545b1d496cd4887adaf7da8490097f39a74365bac9dd

Table 3.7: Process of user password storage
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3.2 Memory analysis

Memory analysis in Digital Forensics is the process of examining the volatile mem-
ory (RAM) of a computer or digital device to extract and analyze information that
is currently stored in the system’s active memory. Memory analysis is particularly
valuable when dealing with live systems or incidents where time is of the essence.
It complements traditional disk-based forensics by providing a real-time snapshot
of a device’s state.

The signicance of memory analysis is emphasized in RFC 3227 [55], particu-
larly in the “2.1 Order of Volatility” section. RFC 3227 underlines the impor-
tance of addressing volatile memory rst in digital forensic investigations to ensure
the preservation of critical data that might be lost if not promptly collected. Below
we introduce two methods of encryption workarounds with memory analysis, these
are (i) BitLocker FVEK extraction, and (ii) KeePass master password recovery.

3.2.1 BitLocker

BitLocker is a full-disk encryption feature included in various versions of Microsoft
Windows operating systems. Its primary purpose is to help protect the data on
your computer by encrypting the entire hard drive or specic partitions. This
encryption ensures that if someone gains physical access to your computer or tries
to tamper with your hard drive, they won’t be able to access your data without
the necessary decryption key. According to Microsoft [46], from Windows 8.1
and onwards, BitLocker Device Encryption is automatically enabled on devices
that support Modern Standby14. Furthermore, Microsoft mentions in [46] that it
is expected that most devices in the future will automatically enable BitLocker
Device Encryption to ensure constant device protection.

3.2.1.1 Architecture

BitLocker utilizes many keys and encryption modes to achieve its encryption.
First it encrypt the le data with the Full Volume Encryption Key (FVEK).
Next it encrypts the FVEK with the Volume Master Key (VMK) and places
the encrypted FVEK in the drive metadata. Finally, it utilizes various Key
Protectors to encrypt the VMK and place it in the drive metadata as well.
Figure 3.17 illustrates the decryption process of a drive encrypted with BitLocker.
Below we explain more about each key component and nally we introduce the
encryption workaround method to access the plaintext data.

Full Volume Encryption Key: BitLocker generates the Full Volume Encryption
Key (FVEK) and encrypts all the data of a drive or volume using 128 or 256 bit
symmetric encryption. According to Microsoft [43], BitLocker Device Encryption
supports the following encryption modes:

14Read more about Modern Standby from Microsoft, https://learn.microsoft.com/en-us/
windows-hardware/design/device-experiences/modern-standby
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Figure 3.17: BitLocker decryption process

• Windows 8.1 devices

– AES 128-bit with Diuser

– AES 256-bit with Diuser

– AES 128-bit (default)

– AES 256-bit

• Windows 10 or later devices

– AES-CBC 128-bit

– AES-CBC 256-bit

– AES-XTS 128-bit Windows 10 (default)

– AES-XTS 256-bit Windows 10

Volume Master Key: The purpose of the Volume Master Key (VMK) is to
encrypt the Full Volume Encryption Key. It is an intermediate key between the
Key Protectors and the FVEK. It utilizes 256-bit symmetric encryption.

Key Protectors: Some of the most popular Key Protector types are listed below,
for more information you can refer to [45].

• Trusted Protection Module: This is currently the most common and
secure method. TPM can either be a separate chip (dTPM) located on
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the device’s motherboard, or TPM 2.0 enables manufacturers to integrate
it into the CPU/motherboard chipset. It is utilized by BitLocker to secure
cryptographic keys and to ensure that the underlying operating system has
not been tampered with. The TPM stores the key used to decrypt the
encrypted VMK from the volume’s metadata section. Additionally, TPM
can verify the integrity of the system’s boot process, ensuring that the system
boots from a trusted source and has not been tampered with.

• User password: This method automatically decrypts the BitLocker-protected
drive using the Windows user password upon the user’s login to their account.

• Recovery password: BitLocker generates a recovery key for encrypting
the VMK. The recovery key serves as a means for the user to unlock a
BitLocker-encrypted drive in situations where other methods are unavailable
or no longer possible.

Encryption workaround: When a computer is running with a BitLocker-enabled
drive, it requires the key to access it. For quick access, it stores the Full Volume
Encryption Key in the system’s RAM. This key is kept within a kernel pool al-
location in memory, as illustrated in Figure 3.18. To locate this pool, we perform
a memory search technique known as pool scanning. During pool scanning, we
examine memory pool headers to nd pools that match specic criteria. We have
the exibility to search based on any of the elds existing in the POOL HEADER

structure.

Listing 2 oers an overview of the structure. It’s worth noting that there’s no
ocial documentation available from Microsoft regarding this structure, and there
may be potential changes in newer Windows versions. However, the provided elds
are sucient for our purposes as a basis for our search. It’s crucial to recognize that
pool scanning can potentially yield false positives. To mitigate this, it’s advisable
to conduct scans with the maximum available parameters.

• Pool Tag:

– Windows 7: ”FVEc”

– Windows 8 & Windows 10 AES-CBC: ”Cngb”

– Windows 10 AES-XTS: ”None”

• Pool size: This is determined by the lenght of the key 128-bit or 256-bit
and the Windows version

• Pool type: Non-paged, due to the fact that the key always remains in
memory and cannot be paged
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Figure 3.18: Example kernel pool allocation [41].

Listing 2 Simplied POOL HEADER structure in Windows 10 version 1809 as
shown in [4]

struct POOL_HEADER

{

char PreviousSize;

char PoolIndex;

char BlockSize;

char PoolType;

int PoolTag;

Ptr64 ProcessBilled;

}
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3.2.1.2 Scenario

This method of circumventing encryption falls under the classication of ”Find
the Key”[39], as it involves the extraction of the FVEK necessary to unlock a
BitLocker-encrypted drive. Furthermore, we rmly believe that law enforcement
professionals will encounter a growing number of devices secured with BitLocker.
Microsoft’s statement regarding its increasing prevalence [46], along with the de-
fault enablement on many newer devices, underscores its role in providing seamless
protection to users.

3.2.1.3 Setup

To test the encryption workaround we used the following setup:

1. Target computer: Windows 10 Pro 64-bit version 15.19041. The operating
system was running natively on computer and not on a Virtual machine.

2. Forensic workstation: Linux Ubuntu 22.04.3 LTS x86 64

We activated BitLocker encryption on the target computer and captured its
active memory using FTK Imager (version 4.7.1). We then transferred the memory
dump to our forensic workstation for analysis. Our choice for memory analysis
was ”Volatility” (version 2.6.1), a widely recognized open-source tool known for
its ability to handle various memory le formats and adapt to changing operating
system structures. This exibility streamlined our focus on image analysis.

Moreover, we extended Volatility’s capabilities by integrating a third-party
plugin (accessible at [6]) to aid in memory examination and the extraction of
the BitLocker FVEK, as explained in the pool scanning methods outlined in the
”Architecture”.

In the following sections, we outline the specic steps taken for each stage of
the process, with ”Acquisition” providing details on how we obtained both the
system’s memory and drive.

Acquisition: Our methodology began with the initial step of acquiring evidence,
which involved capturing the active memory of the running target system. Subse-
quently, following the system’s shutdown, we proceeded with a physical acquisition
of the encrypted BitLocker drive from the target system.

• Memory: It is required for the target system to be running and logged in
to the windows user account, then we connected a USB Drive that had the
FTK Imager 4.7.1 installed and run it the target system as seen in Figure
3.19. The size of the RAM of the target computer was 32GB.

• Encrypted Drive: To acquire the drive we powered o the target system.
Next, we inserted a live USB running Kali Linux and booted in forensics
mode. In forensic mode, Kali Linux is launched directly from the USB, and
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it refrains from automatically mounting any drives. Oensive Security’s doc-
umentation regarding the forensics mode, as mentioned in [26], emphasizes
that in this mode, absolutely nothing should happen to any media without
direct user action. To capture the drive we connected an external disk
large enough to accommodate the size of the BitLocker drive, then run the
guymager tool [29] that comes with Kali Linux to acquire the drive.

For more details about the acquisition process using guymager, please consult
Figures A.2 & A.3. The size of the NVMe in the target system that was
acquired was 512GB.

Figure 3.19: Live memory acquisition with FTK Imager

Memory analysis: To unlock the BitLocker drive we rst needed to extract the
FVEK from the acquired memory dump.

• Determining memory prole: First we needed to nd the memory prole
of the extracted memory dump:

$ python2 vol.py -f <path_to_bitlocker_memdump>

imageinfo

According to Figure 3.20 we can see that the suggested memory prole for
our memory dump is the prole ”Win10x64 19041”. Now we are ready
to run the BitLocker plugin15 and extract the BitLocker FVEK from the
memory dump.

15Volatility-BitLocker, https://github.com/breppo/Volatility-BitLocker
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Figure 3.20: Memory dump information extracted by the Volatility framework.

• Extracting the FVEK: The dislocker switch (--dislocker) instructs the
BitLocker plugin to dump all the candidate FVEKs in les compatible with
the dislocker program. Each key will be stored in a separate le inside the
directory we specied. In our case inside the fvek directory.

$ python2 vol.py -f <path_to_bitlocker_mmedump>

--profile Win10x64_19041 bitlocker --dislocker

fvek/

Mount the drive:
The extracted BitLocker encrypted drive is in Expert Witness Format

(ewf). To mount the ewf extraction we used the ewfmount version 20140807.
It can be found in libewf [40] which contains a collection of efw related tools.

$ mkdir /mnt/ewf_mount

$ sudo ewfmount bitlocker_drive.E01 /mnt/ewf_mount

Next, we examined the mounted ewf image to identify all the partitions as seen
in gure 3.21. The main Windows partition that we are interested in is ewf1p3 as
it is the biggest by far and its type is labeled as “Microsoft basic data”. Dislocker
has the option to mount a selected partition by specifying the oset in bytes, as we
are interested in the third partition ewf1p3 which starts in sector 239616 and the
dislocker output in the second line states that are 512 bytes per sector that means
that our oset to mount the ewf1p3 partition will be 239616× 512 = 122683392.

After we gured the oset of the partition, we created two more mount points:

1. dislocker le:

$ mkdir /mnt/dislocker
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Figure 3.21: List partitions of the Windows drive.

2. nal folder that will mount the dislocker le:

$ mkdir /mnt/disk

Finally, we run the dislocker program found at [1] to unlock the BitLocker
encrypted drive and mount it to our system.

$sudo dislokcer -k <path_to_fvek_dump> /mnt/ewf_mount/ewf1

-O 122683392 /mnt/dislocker

$sudo mount /mnt/dislocker/dislocker-file /mnt/disk

Dislocker typically attempts to mount the drive in read-write mode by default.
However, in the case of an EWF le extraction, mounting with write permissions
is not possible. This limitation is the reason behind the error shown in Figure
3.22. This behavior is actually benecial, as it ensures that the drive is mounted
in read-only mode, thereby preventing any unintended alterations to electronic
evidence.

Figure 3.22: Unlocking BitLocker drive and mounting it at /mnt/drive.

We have veried the successful mounting of the Windows partition at our
designated mount point, /mnt/disk. This conrmation allows us to access all les
within the Windows lesystem, as depicted in Figure 3.23.
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Figure 3.23: Contents of the unlocked BitLocker drive.

3.2.1.4 Validation

In order to ensure the integrity of the process outlined in the ”Setup” section,
conrming that it did not modify the memory dump, we conducted a comparison
of the MD5 and SHA256 hashes both before and after analyzing the memory
dump. The results displayed in Table 3.8 indicate that the memory dump remains
unaltered, as neither the MD5 nor the SHA256 values exhibit any changes following
our analysis.

MD5

before 2e9203dda24978c586e2f3f3f0b35771
after 2e9203dda24978c586e2f3f3f0b35771

SHA256

before e697f4006b0e4e636dbbce3250bbbc8e4c76df78ed97b35eae7045d2c4270522
after e697f4006b0e4e636dbbce3250bbbc8e4c76df78ed97b35eae7045d2c4270522

Table 3.8: MD5 & SHA256 hashes of the memory dump
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3.2.2 KeePass

KeePass is an open-source password manager and secure digital vault that enables
users to store their passwords and other sensitive information in a secure manner.
It’s a versatile solution that’s available on multiple platforms, including Windows,
Linux, and MacOS, ensuring accessibility across various operating systems. KeeP-
ass oers oine storage for user secrets, keeping your data secure without relying
on cloud-based functionality. Additionally, it provides a highly customizable pass-
word generator, enabling you to create strong and random passwords with ease.

3.2.2.1 Architecture

In May 2023, a new vulnerability was announced [67] that enabled an attacker to
retrieve the KeePass master password by examining the system memory. The de-
veloper of KeePass subsequently conrmed this vulnerability [67] and was assigned
the CVE-2023-32784 and a severity score of 7.5 (High) by the NIST National
Vulnerability Database [51]. This vulnerability aected all versions of KeePass
2 released up to that point, the most recent being 2.53.1. KeePass 2 employs
a custom-developed text box for password input, known as ”SecureTextBoxEx”.
This text box is not only used for entering the master password but also in other
parts of KeePass, such as password edit boxes. Consequently, this attack can also
be used to recover the contents of these password edit boxes. The underlying aw
exploited in this scenario is that, for each character typed, a residual string is
generated in memory. Due to the way .NET functions, eliminating these strings
once they are created is a formidable challenge. For example, if you were to type
”Password,” it would result in the following leftover strings: •a, ••s, •••s, ••••w,
•••••o, ••••••r, •••••••d. This characteristic permits partial recovery of the
master password. The initial character of the password remains unrecoverable,
while options exist for recovering the second character and all subsequent charac-
ters accurately. It’s crucial to note that the only requirement for the exploit to
succeed is that the target user must have manually typed the master password
to unlock the KeePass database. Copy-pasting the password will not leave the
password leftoever strings in memory. Importantly, KeePass does not need to be
actively running for this attack to be eective.

Mitigation KeePass version 2.54 released in June 2023 [38], approximately one
month after the aw became public. This version addressed the issue, and as of
version 2.54 and beyond, it is no longer possible to recover parts of the master
password from memory.

3.2.2.2 Scenario

This exploit falls within both the ”Exploit a aw” and ”Guess the key” categories
in the encryption workaround taxonomy classication introduced by Schneier et
al. [39]. It is a disclosed exploit and assigned a CVE by NIST NVD [51], hence the
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”Exploit the aw” classication. However, it’s essential to understand that this
exploit does not provide direct access to the password vaults by circumventing
the encryption and authentication mechanisms. Instead, it enables an attacker
to recover the partial master password, excluding only the rst two characters.
Consequently, the attacker must engage in a guessing process, as detailed in the
”Setup” section, which falls under the ”Guess the Key” category.

Forensic value Gaining access into a KeePass vault is of paramount importance
in the context of a forensic investigation, as it could provide valuable evidence
pertinent to a case. Within a KeePass vault, a wide array of information can be
stored, encompassing user credentials for online accounts and various condential
data, including, but not restricted to, potentially incriminating communications
and illicit media content that a suspect might seek to conceal from law enforcement
investigators.

Exploit longevity As mentioned in the Architecture section a x for the exploit
has been released one month after the disclosure. Suspects who have upgraded to
a newer version will not be aected by the exploit thus making the decryption
impossible. Although the impact of a high severity aw might be of signicant
value for forensic investigators, there is a limited time frame that the aw can be
leveraged.

Vulnerability Disclosure The longevity of an exploit can be extended if the
vulnerability is not disclosed to the software vendor. However, this approach may
potentially jeopardize the security and privacy of regular users who rely on the
aected software. Some countries like the US as documented in [32] and UK
as outlined in [27] have implemented a Vulnerability Equity Process (VEP).
This program involves the assessment of undisclosed vulnerabilities that have been
discovered by relevant government agencies. The assessment is based on the vul-
nerabilities’ utility and potential impact on the public. In contrast, Europol as
referenced in[11] has emphasized that weakening encryption through the intro-
duction of backdoors or not disclosing discovered vulnerabilities could ultimately
facilitate the work of malicious actors. It’s important to note that the primary aim
of this thesis is not to make assertions about disclosure policies. Instead, the the-
sis is intended to present and evaluate methods that Law Enforcement Agencies
(LEAs) can employ to access decrypted data. In the case of vulnerability ex-
ploitation, the only assertion we can make is that its longevity is typically limited,
necessitating continuous research for new vulnerabilities.

3.2.2.3 Setup

To test the exploit, we set up a new virtual machine running Windows and in-
stalled Keepass. Next, we created a new vault within Keepass and set the master
password as ”password123”. In order to caputre a memory dump of the entire
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RAM on the target system we installed the tool FTK Imager. This tool is capable
of performing a whole RAM capture and can also acquire the system’s page le.

Below are the specic version details of all the software and tools we used.

• Target: Windows 10 Pro x64 running inside VirtualBox

• Software: KeePass 2

– version: 2.53.1

– Vault master password: password123

• Acquisition tool: FTK imager 4.7.1

– memdump.mem: Memory dump of the whole RAM

– pagele.sys : Pagele of the operating system

• Windows Task Manager:

– Keepass.DMP : Dump of the Keepass process memory. This was done
by navigating to the Windows process list, right licking the KeePass
process and selecting the option ”Dump process” [Figure 3.24]

Analysis System We set up another environment that will act as the investi-
gator’s computer that will perform the decryption process.

• Investigator’s VM: Kali Linux 64bit 2023

• dotnet environment

• CVE-2023-32784 proof of concept script [68]

Exploitation After we have extracted the memory dump and setup dotnet on
our system we are able to run the exploit:

$ cd <path to exploit>

$ dotnet run <path to dump>

In both cases, memory (see Figure 3.25) & process dump (see Figure 3.26),
we were able to correctly recover almost all the characters of the password, with
an exception of the two rst characters. The rst character cannot be recovered,
and for the second character we have a list of candidate characters. We observed
that the process dump has less possible options for the second character, possibly
because of the size of the dump. In our experiment the process dump was 286.7
MB whereas the memory dump was 9.1 GB. Therefore it is possible that the dump
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Figure 3.24: Dump process memory from Windows task manager

of the whole memory might include more false positives. It is important to note
thought, that in both cases the correct character ‘a’ is included in the list.

However, we did not succeed into recovering the password while using the
system’s page le. We attribute this to the fact that the system was not used
extensively for a long time during our testing. Therefore the system did not need
to write the Keepass master password to the page le. Nonetheless, we rmly
believe that in a real life situation we would be able to recover the password from
the page le, since it has the same raw format as the memory and process dumps,
provided that the computer had previously paged the Keepass memory.
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Figure 3.25: Output of the PoC using the memory dump

Figure 3.26: Output of the PoC using the process dump

Finally, to retrieve the whole password we will have to perform educated guesses
on the rst two characters. For the second character we have a) 77 (memory
dump) and b) 16 (process dump) candidates. For the rst character we do not
have any information other that it can be any character out of the 256. So we
would have to do (a) 77 × 77 = 19.712 or (b) 16 × 256 = 4096 guesses at most.
We could also argue that some of the 256 characters are not readable and cannot
be typed by a keyboard to further limit the guesses we have to make.

Further more, we might be able to deduce the whole password by observing the
rest of the characters that we know. It is known from the early days by security
researchers that users usually pick predictable passwords [48] such as words that
are easier to remember but also easier to guess if you know part of the password.

For example, in our case , we can readily deduce that the rst and second
characters are “p” and “‘a”,based on our knowledge that the master password,
from the third to the last character, is “ssword123”. Likewise, an experienced
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investigator possessing insights into the suspect’s character may be able to infer
the rest of the suspect’s Keepass master password.

3.2.2.4 Validation

In the domain of digital forensics, it is crucial for investigators to validate their
tools and verify the integrity of electronic evidence to ensure its admissibility in
a court of law. One signicant concern is the potential alteration of electronic
evidence during the investigative process. In this case, that we’re dealing with an
exploit that opens digital dumps as read-only les, it remains paramount to verify
that this process does not in any way modify the contents of these dumps. This is
especially important because both of these digital dumps are likely to be treated
as electronic evidence in a legal context.

In Table 3.9 we observe the md5 & sha256 hash of both the process and memory
dumps from before and after running the exploit remain unchanged. Therefore,
we conclude that the exploitation process is forensically sound.

Process dump le

MD5

before 39228a432e0d5165f85396eced6d1bbf
after 39228a432e0d5165f85396eced6d1bbf

SHA256

before 61e95a8271c36eba7bf9f6cd7a8a5f1d361e2edeb8ea1e1aea50e13f455ddd
after 61e95a8271c36eba7bf9f6cd7a8a5f1d361e2edeb8ea1e1aea50e13f455ddd

Memory dump le

MD5

before d8a8bde6b9b0aa16f61c320e2832698a
after d8a8bde6b9b0aa16f61c320e2832698a

SHA256

before 11f97daec7dd62b12f16e71c8f69a6b352e969df15f9520432cd7696f63e4646
after 11f97daec7dd62b12f16e71c8f69a6b352e969df15f9520432cd7696f63e4646

Table 3.9: MD5 & SHA256 hashes of the processs & memory dump les before
and after running the exploit



Chapter 4

Implementation

In this chapter we present our contribution, AWLPS, a platform designed to
automatically execute the encryption workarounds detailed in the “Methodology”
chapter. First, we examine related open source security tools and extract the
foundational characteristics that a security tool of this scope must have. Then, in
the “Architecture” section we delve deeper in our design philosophy for the tool
following the basic guidelines we established in the “Related Tools & Principles”
section. Finally, we present our implementation of the AWLPS platform along
with a Graphical User Interface and the volatility integration features.

4.1 Related Tools & Principles

We examined the following open-source security tools favored by security profes-
sionals to understand which features make a security tool useful:

1. Autopsy1

Autopsy is an easy-to-use platform for Digital Forensics and a graphical
interface to the Sleuthkit2 and other digital forensics tools. It is used by law
enforcement, military, and corporate examiners to investigate what happened
on a computer.

2. Metasploit Framework3

Metasploit Framework is an open-source penetration testing framework de-
signed for developing, testing, and executing exploit code against a remote
target machine. It provides a comprehensive set of tools for penetration
testing, vulnerability assessment, and security research.

1See www.autopsy.com/
2See https://sleuthkit.org/sleuthkit/
3See www.metasploit.com/
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3. Volatility 34

Volatility is the world’s most widely used framework for extracting digital
artifacts from volatile memory (RAM) samples. The extraction techniques
are performed completely independent of the system being investigated but
oer visibility into the runtime state of the system. The framework is in-
tended to introduce people to the techniques and complexities associated
with extracting digital artifacts from volatile memory samples and provide
a platform for further work into this exciting area of research.

4.1.1 Extensibility

The open-source software referenced in the preceding section are designed to be
expanded by external parties. This indicates that if any component becomes ob-
solete or if new security features are required, they can be seamlessly integrated
thanks to the plugin architecture allowing the tool to be useful and relevant for
the future. These tools establish an abstract entity that outlines the requirements
for all plugins, allowing plugin authors to create new plugins in accordance with
these specied guidelines.

Autopsy oers the following kinds of modules 5 that third parties can imple-
ment to extend the usability of the tool.

• Ingest Modules
These modules are run when a new data source (such as a disk image) is
added to a case.

• Report Modules
These modules are run after the user has reviewed results and tagged les.
Their intention is to create an output report of the results, but they can also
be used to perform analysis.

• Content Viewers
These modules are graphical and focus on displaying a specic le in some
unique way. An example of a viewer module is to view the le in hexadecimal,
extract the strings from the le, and view images and movies.

• Result Viewers
These modules show information about a set of les. These modules are in
the upper right of the interface. The platform comes with viewers to view
the set of les in a table and thumbnails.

4See www.volatilityfoundation.org/releases-vol3
5Refer to https://www.sleuthkit.org/autopsy/docs/api-docs/4.1/platform_page.html

for more details about Autopsy modules
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Metasploit also oers the ability to write custom modules6. The post-exploitation
modules are are responsible for searching through a target host that is compro-
mised. The categories of the post-exploitation modules are explained in Table 4.1.
The module types related to our objective are the “gather/ credentials” and
“gather/forensics” that already have numerous modules that gather creden-
tials7.

Category Description

gather
Modules that involve data gathering/collecting/enumera-
tion.

gather/credentials Modules that steal credentials.

gather/forensics Modules that involve forensics data gathering.

manage
Modules that modies/operates/manipulates something
on the system. Session management related tasks such
as migration, injection also go here.

recon
Modules that will help you learn more about the system
in terms of reconnaissance, but not about data stealing.
Understand this is not the same as “gather” type modules.

wlan Modules that are for WLAN related tasks.

escalate

This is deprecated, but the modules remain there due to
popularity. This used to be the place for privilege esca-
lation modules. All privilege escalation modules are no
longer considered as post modules, they’re now exploits.

capture
Modules that involve monitoring something for data col-
lection. For example: key logging.

Table 4.1: Categories of post-exploitation modules in metasploit framework.

6Refer to https://docs.metasploit.com/docs/development/developing-modules/guides/

how-to-get-started-with-writing-a-post-module.html to see documentation on how to write
modules.

7For a complete list of modules refer to docs.metasploit.com/docs/modules.html, there are
about 100 modules related to encryption and credentials, alternatively start an msfconsole session
and write the following command “search credentials”.
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Volatility 3, oers relatively few modules related to encryption and credential
gathering. The hashdump8 and cachedump9 modules are responsible for dumping
windows user password hashes and LSA 10 secrets respectively. Volatility 2 (which
is now outdated) also had a module to dump the Truecrypt device encryption
masterkey and passphrase and extracting the BitLocker FVEK seen in Chapter
3.2.1.

In a similar fashion, we structured our tool to be adaptable, considering that
encryption workarounds may become obsolete or new ones may emerge.

Moreover, we anticipate that this modularity will contribute to the enhance-
ment of collaboration among Law Enforcement Agencies (LEAs), aligning with
a primary goal of the European Union’s Internal Security Fund program [37]. This
design empowers LEAs with advanced technical capabilities to seamlessly incor-
porate and distribute new encryption workarounds to those with limited technical
resources.

4.1.2 Forensic Soundness

As explained in [42], forensic soundness is used to describe the forensic process
as a whole with two clear objectives: (i) the acquisition and subsequent analysis of
electronic data has been undertaken with all due regard to preserving the data in
the state in which it was rst discovered, and (ii) the forensic process does not in
any way diminish the evidentiary value11 of the electronic data through technical,
procedural or interpretive errors.

Autopsy ensures forensic soundness through its “verify image integrity” pro-
cess 12, which validates the forensic image and les generated by Autopsy using
MD5 hashes.

4.1.3 Operating System Interoperability

The versatility of these tools to operate across a wide range of desktop operating
systems oers users the exibility they require, tailored to their specic demands
and usage scenarios. For instance, one forensic laboratory may use Windows work-
stations, while another may opt for Linux. A procient investigator can seamlessly

8See https://volatility3.readthedocs.io/en/stable/volatility3.plugins.windows.

hashdump.html
9See https://volatility3.readthedocs.io/en/stable/volatility3.plugins.windows.

cachedump.html
10Read more about LSA here: https://learn.microsoft.com/en-us/windows-server/

security/windows-authentication/windows-authentication-architecture
11See examples of forensic mistakes during the acquisition phasehttps://www.flashbackdata.

com/top-3-mistakes-made-scene-digital-evidence/
12Autopsy Data Source Integrity Module, https://sleuthkit.org/autopsy/docs/user-docs/

4.19.3/data_source_integrity_page.html
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transition from one operating system to another as required, eliminating the ne-
cessity to learn a new security tool each time. All the tools mentioned at the start
of this section can be run from both Windows and Linux13.

4.1.4 Shortfalls with regards to our Encryption

Autopsy, Metasploit and Volatility are great tools for their intended purpose but
fall short when it comes to encryption workarounds.

• Autopsy lacks plugins for circumventing encryption14; instead, its available
plugins are primarily focused on analyzing artifacts with the assumption
that they are not encrypted. The only module related to encryption is the
encryption detection plugin which uses entropy to detect if a le might be
encrypted and does not perform any kind of decryption15.

• Metasploit is designed as an oensive tool primarily utilized by penetra-
tion testers and adversaries. While it does oer post-exploitation modules,
such as post/firefox/gather/passwords16, valuable for our purposes (as
detailed in Chapter 3), their execution necessitates a pre-established ses-
sion [49], achievable by obtaining access to a privilege shell. In the context
of a digital forensics investigation, analysts typically receive copies of disks
or memory from seized devices for analysis. Metasploit, however, relies on
the target system being operational, directly accessing it through exploits
that could potentially modify its contents, thereby posing a risk to evidence
preservation, a critical requirement. Additionally, it lacks a mechanism for
image verication through hash calculations before and after module execu-
tion.

• Volatility 317 is one of the most well known tools among digital forensics
practitioners for memory analysis. The “Memory Layer” feature removes
the need to know the intricacies of physical memory so that the user is
only dealing with virtual addresses. Additionally, the memory layout often
changes even between versions of the same operating system, Volatility 3
oers “Symbol Tables” which solve this issue by providing a map of the

13Autopsy in Windows operates as an installed program with a graphical interface, in Linux
Autopsy sets up a local server to invoke tools from TheSleuthKit and display it in browser.

14This Github repository contains modules for Autopsy. At the time of writing this thesis, it
does not have anything related to decryption or credential gathering, github.com/sleuthkit/
autopsy_addon_modules

15Ocial documentation of how the encryption detection plugin works, nothing related to
decryption, www.sleuthkit.org/autopsy/docs/user-docs/4.5.0/encryption_page.html

16See docs.metasploit.com/docs/pentesting/metasploit-guide-post-gather-modules.

html
17For a complete list of all the Volatility 3 plugins that ship with tool refer to volatility3.

readthedocs.io/en/stable/volatility3.plugins.html
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memory layout and the location of memory objects for a specic operating
system version.

Even though, Volatility 3 is a powerful tool in the digital forensic investiga-
tors arsenal, its scope is limited to forensic examination of memory images,
making it incapable of retrieving data exclusively stored on the disk of an
acquired system. That is why we decided to integrate Volatility 3 in our tool
to handle the memory analysis aspect as explained in Section 4.2.3.

4.2 Architecture

Due to the shortfalls we mentioned in the previous section we designed an archi-
tecture that will have the aforementioned benets in mind but also address the
shortfalls to the specic use of encryption workarounds in digital forensics.

Figure 4.1: AWLPS architecture diagram.

Figure 4.1 illustrates how the components of the AWLPS tool interact with
each other.

• Conguration Parser:
Reads the conguration le and passes the conguration options such as
available plugins and logging to the Control component.
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• Control:
The control component is responsible for orchestrating the whole operational
process of the tool. It translates user input through the GUI to actions
inside the tool. It implements the conguration instructions supplied by the
conguration parser such as dynamically loading the decryption modules and
also instructing which modules to run.

• Plugin:
The plugin component is responsible for handling all the operations regarding
an encryption workaround module. This includes the decryption operation,
the validation before and after the decryption to guarantee forensic soundness
and the output viewer that is responsible for displaying the results back to
the user.

• Image Handler:
This component is responsible for importing, managing and cleaning the
input of the tool. Input can be in various forms such as logical lesystems,
memory dumps and even EWF les that require specialized handling.

• Graphical User Interface (GUI):
Enables the user to easily interact with the tool and instruct the Control
component.

Furthermore, the implementation of the architecture uses Python 3 and the
chosen dependencies have been selected because they are available on every oper-
ating system, thereby ensuring operating system interoperability.

4.2.1 Plugin Architecture

AWLPS adopts a plugin architecture, primarily because it enables extensible
features allowing for the seamless addition of new encryption workarounds. This
architectural choice aligns with the trend in security tools, as evidenced by the
tools discussed in 4.1 Related tools & Principles, all of which adhere to the
plugin architecture paradigm.

In AWLPS the plugin and conguration le components are responsible for
adding the extendable functionality by abstracting and generalizing the operations
of the decryption task to accommodate extensibility.

• Plugin:

The plugin is designed to encapsulate the fundamental core functionality re-
quired for an encryption workaround module. To implement this in Python 3,
we utilized the Abstract Base Class18. To develop an encryption workaround

18https://docs.python.org/3/library/abc.html
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plugin the developer must dene a class that inherits from the abstract Plu-
gin class. To create an encryption workaround plugin, the developer needs
to dene a class that extends the abstract Plugin class. The Plugin class is
essentially a contract that the developer should adhere to by implementing
the denitions of abstract methods in the inheriting class. These methods
are listed below:

– decrypt

This is the core function of the plugin that will handle the analysis and
decryption process for the plugin.

– render

This method is responsible for consolidating all the data of the module
such as input, output as well as metadata generated by the validation
mechanisms for display back in the GUI.

– validators

Is a dictionary that registers all the validation functions that a module
will run to validate its input before and after running.

Annex B.2 further elaborates on the methodology to develop an example
plugin for the tool and how to override each of the above mentioned methods.

• Conguration le: Apart form the plugin itself, AWLPS reads a congu-
ration le at start up in order to obtain information related to the available
encryption workaround plugins and other congurable information.

Listing 3 illustrates an example of a conguration le for the tool. The
information it includes is the following:

– Tool conguration options such as the logging level.

– The available encryption workaround modules with their descriptions
and the location of the les.

– The location and description of dictionaries that are used inside the
tool to perform dictionary attacks and crack hashes.

Table 4.2 contains all the elds that a module entry should have along with
a description of how each eld is utilized within the tool.
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Listing 3 Example of AWLPS conguration le format.

{

"logging_enabled": true,

"log_level": "DEBUG",

"modules": {

"module_1" : {

"id": "example_id",

"className": "example_class_name",

"name": "Example display name",

"developer": "Example display developer",

"category": "Example display category",

"enabled": true,

"platform": "MEMORY"

},

"...",

"module_n: {}

},

dictionaries": [

{

"name": "relative path to dictionary file

/dictionary.txt",

"description": "Short description of the

dictionary, this will be

shown in the UI"

}

]

Property Type Description Required

id String

Identier of the module, must be the
same as the python lename of the

module.
Yes

className String
Name of the class for the Plugin

module.
Yes

name String
Display name of the module inside

the tool.
Yes

developer String
Display name of the target software
that the module tries to decrypt.

No

category String
Display name of the category that the

target software belongs to.
Yes

enabled Boolean Flag to enable\disable the module. Yes

platform

Enumerator:

[WINDOWS, ANDROID,

MEMORY]

Platform of the target system that
the module will extract data from.

Yes

package String
Android package of the module under

analysis (Android only).
No

view extension String or NULL
Identier linking to the module’s view

extension (Android only).
No

Table 4.2: Module elds in AWLPS conguration le.
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Figure 4.2: Dialogue selection for dictionaries inside the AWLPS tool.

Finally, as the last part of the conguration le, dictionaries contain a list of
all the available dictionaries on the system that the tool can utilize to brute
force passwords and hashes. For each dictionary registered, the conguration
le has information about the path and the name of the dictionary le along
with a short description of the dictionary to display inside the tool as seen
in Figure 4.2.

4.2.2 User Interface

We have designed AWLPS from the beginning to be an application with a Graph-
ical User Interface (GUI). Nowadays, it is very important for a security tool of
this scope to oer an “easy-to-use” GUI as all the aforementioned tools in section
4.1 have.

Digital forensics investigators often have limited time to spend on a case due
to the large number of cases. Therefore the tools that will help them the most are
tools that are easy and quick to use that have an easy learning curve to use and
will boost the productivity and eciency of the user.

Below we present a use case of AWLPS by analyzing a windows lesystem
while simultaneously showcasing the GUI. Figure 4.5, displays the menu tree of
AWLPS with all the dierent operations and actions that a user can do.
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Figure 4.3: Menu Tree of the AWLPS tool.

4.2.2.1 AWLPS Analysis of Windows Artifacts

At startup the rst thing the investigator that uses AWLPS would see is the
landing page depicted in Figure 4.4. The user is able to choose between 4 dierent
capabilities of the tool:

1. Windows encrypted artifact analysis

2. Windows Memory analysis

3. Android encrypted artifact analysis

4. Miscellaneous Android modules
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Figure 4.4: AWLPS landing page.

Next, by clicking the “Windows” button, we are redirected to the page shown
in Figure 4.6. This page is responsible for all the encryption workarounds that
perform Filesystem Analysis in Windows as explained in Chapter 3.1. The
scope this thesis excludes the Android platform which was previously implemented
and documented by Basha [3].

On the top left side of the screen, there is the section to load the input les
to perform the encryption workarounds. For the time being, there are two ways
of loading les, either by providing a path to a logical extraction 19 by clicking
the “From folder” button or by providing an “.EO1” le (EWF) that the tool
automatically mounts as a read only lesystem by clicking the “Mount EWF le”
button. In both cases, a new window dialog launches as seen in Figure 4.5 and
prompts the user to select the path of the folder or EWF le using the native le
browser of the operating system.

Below the “Source Selection” buttons, there is the “Modules” section, which
contains all the available encryption workaround modules that the tool is able to
perform for the Windows platform. The modules are placed based on the category
which they belong to, in our example there are two categories:

1. Media les: Meo encryption software

2. Browsers: Firefox, Chrome, Opera, Edge

19Read more about logical extractions in Fukami et al. [25]
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Figure 4.5: User input dialog in AWLPS to load an EWF le.

For each module we can see the name of the software it decrypts data and
optionally its developer as they are dened in the conguration le. Additionally,
we can enable or disable each module by selecting the checkbox on the left of the
module. Doing this will determine if the module will run or not when we load an
input source.

Finally, after choosing which modules to run and loading an input source by
clicking either button, AWLPS will automatically run each enabled module for the
loaded input. After the analysis nishes, we will be able to examine the results
of each module separately as seen in Figure 4.8. In the side panel on the left we
can see modules that AWLPS run for the current analysis, again separated by
category. Each module will have a colour based on the status of the decryption:

• Green: The module successfully managed to decrypt data of the target soft-
ware.

• Orange: The module managed to locate artifacts of the targeted software but
manual user intervention is required to decrypt them. For example in the
Meo module it requires the user to select a wordlist to perform a dictionary
attack as described in Chapter 3.1.3.3.

• Cyan: Target software data were not found in the given input. This usually
means that the software application is not installed in the system that we
performed analysis.
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Figure 4.6: AWLPS analysis of Windows encrypted artifacts.

• Red: The module encountered an error while trying to decrypt data from
the target software, as seen in Figure 4.7. In that case the module developer
should look at the AWLPS log les 20 of the application to see more details
about the error of the module.

Modules that are Orange or Green can be interacted with. By clicking on them
we can see in the center of the screen more details for the analysis of each module.

In Figure 4.8 we have clicked on the Firefox module on the left and therefore
we see details about the module. More specically in the top panel we can see all
the decrypted credentials that were stored by Mozilla software on our system and
on the bottom panel we see details about the image integrity of our input. We can
verify that the input did not change by comparing the before and after MD5 and
SHA256 hashes. This type of output functionality is available on all implemented
modules in our tool.

4.2.2.2 AWLPS Memory Analysis

Similar to the encrypted analysis of Windows artifacts, to perform an analysis of
memory is similar.

The tool opens in the landing page again as seen in Figure 4.4. Then, by clicking
the “Memory Analysis” button we navigate to the memory analysis screen as seen
in Figure 4.9 where we select which modules to run (i.e. BitLocker, KeePass).

20Application logs are found in the folder <project name>\out\awlps <timestamp>.log
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Figure 4.7: AWLPS instance of a failed module displayed in red.

Figure 4.8: Details of the mozilla decryption module in AWLPS.
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Figure 4.9: AWLPS memory analysis screen.

Currently, in memory analysis there is only one method of user input; loading
memory les since volatility has the ability to process dierent le types internally
through memory layers [70].

After selecting which memory modules to run and loading a memory le,
AWLPS will run all the selected modules and try to decrypt the located encrypted
artifacts. After the analysis has completed, it will display on the left the results for
each module run, as observed in Figure 4.11. In a similar manner to the Windows
artifact analysis the colour of each module depends on whether the module was
successful, more specically:

• Green: The module successfully managed to decrypt data of the target soft-
ware.

• Orange: The module managed to locate artifacts of the targeted software but
manual user intervention is required to decrypt them. For example in the
Meo module it requires the user to select a wordlist to perform a dictionary
attack as described in Chapter 3.1.3.3.

• Cyan: Target software data were not found in the given input. Target soft-
ware data were not found in the given input. This usually means that the
software application is not installed in the system that we performed analysis.

• Red: The module encountered an error while trying to decrypt data from the
target software, as seen in Figure 4.7. In that case the user should look at
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the logs of the application to see more details about the error of the module.

4.2.3 Volatility 3 Integration

Volatility 3, a renowned open-source tool, plays a crucial role in digital forensics
investigations, particularly in memory analysis. The formatting of memory varies
between les and can even change across dierent versions of the same operating
system. To address these challenges, Volatility 3 incorporates Memory Layers,
allowing it to seamlessly handle input from diverse data sources without burdening
the user with the conversion overhead.

Recognizing its utility, we opted to integrate Volatility 3 into our toolkit, lever-
aging its option to be used as a library by other tools. To streamline the process,
we developed Volatility Wrapper that plugins can utilize to import, set up and
run volatility with ease.

Additionally, we have created Volatility3-Bitlocker21, a plugin specically
designed for Volatility 3. This plugin extracts the BitLocker Full Volume Encryp-
tion Key (FVEK) from memory, with the memory pool tag scanning technique,
further elaborated in Chapter 3 . Figure 4.10 depicts the output of the plugin that
scanned a Windows 10 memory dump that was using AES-XTS 128 bit mode to
encrypth the volume with FVEK being the hex value located at the second column
of the output.

Figure 4.10: BitLocker FVEK extraction from acquired memory using Volatility
3.

Figure 4.11 showcases the integration of Volatility 3 and our custom plugin to
our tool AWLPS. On the center of the screen the panel “Possible BitLocker Full
Volume Encryption Key” contains information about the possible keys it found.
For example, the path of the analyzed memory le that we found the key, the
encryption mode that the key is used to decrypt the drive and nally the key
itself.

The panel “Source Validation” right below, contains all the information neces-
sary to ensure the forensic integrity of the BitLocker decryption module. More
specically, it contains the path and the name of the analyzed memory le, the
validation method (MD5 and SHA256 in this case) and nally, the values from
before and after the analysis in order to validate that the image did not change.

21See https://github.com/Dionkal/volatility3-bitlocker
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Figure 4.11: Extraction of BitLocker FVEK from the AWLPS.



Chapter 5

Conclusion

In this chapter we discuss the limitation of our tool and present future extensions
that will address them. Additionally, we include an “Ethics” section to provide
a disclaimer for our work. Finally, we conclude by summarizing the key ndings
and contributions of this thesis.

5.1 Future work

Our current eorts have centered around establishing the foundational elements
of a security tool capable of decrypting data across various applications. With
the core functionality now completed, our attention turns to enhancing the tool’s
usability by incorporating additional features. Below, we outline the key features
that we are working to integrate into our tool, AWLPS.

5.1.1 Forensic Image Loading & Handling

Currently, AWLPS doesn’t do any processing of forensic images itself. Rather
the investigator should have previously mounted the forensic image to their work-
station, in order to perform analysis and decrypt the artifacts. Our aim, is to
implement an image utility handler inside the tool that will ooad the task of
mounting, handling and dismounting a forensic raw (.dd) and expert witness for-
mat (efw, E01) image from the investigator.

5.1.2 Additional Workarounds

We designed AWLPS to be extendable as mentioned in Chapter 4. Subsequently
we would like to add more encryption workaround modules for all the supported
platforms. Currently, the tool supports 20 modules for Android, 5 modules for the
Windows le system and 2 for Windows memory.

Additionally, we want to expand our existing research mentioned in Chapter
3. More specically, we would like to support the decryption of artifacts of the

77
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methodologies we studied for other operating systems as well such as Linux and
MacOS.

Some encryption workarounds such as the “Mozilla Decryption” (see Chap-
ter 3.1.1), function as intended in Linux and MacOS systems. Other workarounds
that rely on OS libraries might have an entire dierent process for storing and
accessing encryption keys. For example, the encryption of the web logins in the
Chrome browser has an entire dierent process that relies in keychains as op-
posed to the Windows Data Protection API. To perform the chrome encryption
workaround in Linux we would need to investigate the Linux PAM subsystem as
discussed in Chapter 3.1.2.1 to subvert it.

5.1.3 Reporting & Documentation

Being able to export data in a report from the tool is very important in forensic
software, as we examined in Chapter 4. Our goal is to improve the reporting
capability of AWLPS by exporting data such as application artifacts, decrypted
le data and metadata such as forensic validations in a le. Then, these data can
be imported easily into other forensic security software for further forensic analysis
such as Autopsy. In order to streamline this process, we would need to create and
export les from our tool in JSON and csv. Moreover, we plan to support the
option to export to PDF so that the ndings from our tool can be integrated in
the investigator’s forensic report.

Additionally, we aim to incorporate in-app user documentation for each en-
cryption workaround module. This feature is designed to facilitate investigators
in understanding the purpose and functionality of each module, providing a clear
understanding of their operations.

5.1.4 User Testing

Generally, user testing is an integral part of the software development process.
It allows the developers to rene the software, harden it by squashing bugs and
making quality-of-life changes by getting feedback from the user’s usage. In our
case, we hope to distribute a demo version of our tool in various LEAs that are
members of our project consortium to gain valuable feedback directly from the
digital forensics investigators that have to deal with the encryption problem all
the time.

The feedback we will be aiming to get is on how to improve the user expe-
rience of AWLPS by xing any bugs that the users might encounter. We also
hope to get suggestions from the investigators and from new case study reports
like Europol’s IOCTA1, on what new encryption workaround modules we should
focus our research on.

1Europol releases each year an IOCTA report, our research was based on the reports of 2014-
2021 but newer reports might uncover new criminal trends, https://www.europol.europa.eu/
publications-events/main-reports/iocta-report
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5.2 Ethics

It is important to stress out that the encryption workarounds we presented in our
work were already publicly known, thus our contributions in this thesis would not
further deteriorate the security of the discussed software.

Subsequently, we tailored AWLPS to exclusively function with local forensic
copies. To decrypt the data, investigators must have previously seized the suspect’s
physical device, usually by obtaining a warrant rst. This limits the intrusion to
the suspect’s device only and ensures the privacy and security of lawful citizens
remain unchallenged. This approach eectively addresses concerns about citizens’
right to privacy by adhering to the principle of proportionality described in
Chapter 2.2.3.

5.3 Summary

Encryption oers protection through authentication and transport secure proto-
cols and safeguards citizens privacy by encrypting their communications from third
parties. Similarly, criminals benet of encryption as well by protecting their com-
munications from law enforcement.

In this thesis, we discussed the proposed solution of encryption workarounds
introduced by Kerr and Schneier [39]. Additionally, we presented encryption
workarounds for desktop operating systems and we validated that are forensi-
cally sound. Finally, we transformed ALPS into AWLPS, a modular tool designed
to execute encryption workarounds, thereby enabling law enforcement to enhance
their decryption capabilities.
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Appendix A

Appendix A

A.1 Taxonomy of encryption workarounds included in

AWLPS

The taxonomy of encryption workarounds presented by Kerr & Schneier in [39]
currently supported in AWLPS. The addition of this thesis in the taxonomy is the
following:

• Find the key:

1. Mozilla Firefox, Thunderbird and TOR

2. BitLocker

3. Google Chrome

4. Opera Browser

5. Microsoft Edge

• Guess the key:

1. Meo encryption software

• Exploit a aw:

1. KeePass 2, CVE-2023-32784

The rest of the encryption workarounds related to Android are discussed in [3].

81



82 APPENDIX A. APPENDIX A

Figure A.1: List of all the modules oered in AWLPS based on each category
introduced by Kerr & Schneier [39].
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A.2 Forensic Drive Acquisition using Guymager

To perform the experiment of unlocking a BitLocker encrypted drive we needed
to perform a physical acquisition of the encrypted drive. Althogh in a real digital
forensics case the investigators would use more specialized tools to perform a device
acquisition (i.e. hardware write blockers 1).

We on the other hand, lacking the necessary resources we used Guymager 2

to do this, a software acquisition tool that comes installed with Kali Linux. Below
are screenshots from the Guymager tool during the acquisition of a BitLocker
encrypted drive.

Figure A.2 depicts the drive selection before performing the acquisition. Guy-
mager oers two acquisition formats:

1. Linux dd raw image which performs an exact copy bit to bit to the destination
device

2. Expert Witness Format (EWF) which compresses the image and has impor-
tant metadata for forensic investigations, such as:

• Case number

• Evidence number

• Examiner that performed the acquisition

• Description of the evidence (i.e. where it was found)

• Note, additional information that might be useful to the investigator
(i.e the machine was running at the time of the acquisition)

• Hash values of the acquired device to perform data verication

1See NIST specications of a Hardware Write Blocker device, https://www.nist.gov/system/
files/documents/2017/05/09/hwb-v2-post-19-may-04.pdf

2See https://www.kali.org/tools/guymager/#tool-documentation
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Figure A.2: Guymager - drive selection

Figure A.3: Guymager - acquisition process



Appendix B

AWLPS Installation and

Extension

B.1 AWLPS Installation & Conguration

B.1.1 Linux

To setup AWLPS in Linux you will need the following, note that we used Ubuntu
Linux 22.04, if you have a dierent distribution some commands might change.

Requirements:

• git (comes preinstalled in most Linux distributions)

• Python 3 (3.10 or higher)
sudo apt install python3

• Python virtual environment (optional)
python3 -m pip install virtual-env

• libsqlcipher
sudo apt install libsqlcipher-dev

• libewf
sudo apt install ewf-tools

Setup:

1. Download AWLPS from the Github repository 1.
git clone git@github.com:Dionkal/dlps.git

1Github repository, note that it requires authorization from owner, https://github.com/

Dionkal/dlps
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2. (Optional) Setup a virtual environment:

(a) Create a virtual environment:
python3 -m venv <virtual environment name>

(b) Activate the virtual environment:
source <virtual environment name>/bin/activate

3. Install python dependencies:

• python3 -m pip install -r requirements.txt

• (Optional) Install optional dependencies. Some modules (e.g. modules
that require volatility) might not work if they are not installed.
python3 -m pip install -r requirements optional.txt

4. Start the tool:

$ ./awlps.sh

B.1.2 Windows

To setup AWLPS in Windows you will need the following:

Requirements:

• git: https://git-scm.com/download/win

• Python 3 (3.10 or higher): https://www.python.org/downloads/windows/

• Python virtual environment (optional)
python3 -m pip install virtual-env

• libsqlcipher

• libewf:
Download from here https://sourceforge.net/projects/libewf/

Setup:

1. Download AWLPS from the Github repository 2.
git clone git@github.com:Dionkal/dlps.git

2. (Optional) Setup a virtual environment:

(a) Create a virtual environment:
python -m venv <virtual environment name>

2Github repository, note that it requires authorization from owner, https://github.com/

Dionkal/dlps
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(b) Activate the virtual environment:
<virtual environment name>\Scripts\Activate.bat

3. Install python dependencies:

• python3 -m pip install -r requirements.txt

• (Optional) Install optional dependencies. Some modules (e.g. modules
that require volatility) might not work if they are not installed.
python3 -m pip install -r requirements optional.txt

4. Start the tool:

$ ./awlps.sh
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B.2 AWLPS Plugin Extension

In this section we document the extensibility of AWLPS. We have created a
simple scenario of an encryption program that we want to perform encryption
workarounds. Below we demonstrate how to integrate the workaround into AWLPS.

B.2.1 Scenario

Assume Demo is a simple encryption software that encrypts les locally. A foren-
sic examiner has found that Demo is used in a case they are investigating. They
have also found a weakness in the encryption process and managed to decrypt
data encrypted with Demo. To integrate the workaround into AWLPS the follow-
ing steps must be completed.

B.2.2 Implementation

Create a class that extends the base Plugin class. In this example we will name
it DemoDecryption .

class DemoDecryption (Plugin):

In the DemoDecryption there are 3 items need to be dened:

• Decryption

The decrypt method is the core function of the plugin. It is responsible for
performing the encryption workaround and decrypting the target appli-
cation artifacts.

To do this the method takes as input the source which is a string contain-
ing the path of the data source. After which, the encryption workaround
technique should be performed to locate and decrypt the required artifacts.

Finally, decrypt should return a Tuple that contains:

1. a list of all the detected Artifacts such as les, encryption algorithms
and anything else used in the decryption process of the application

2. a list with all the decrypted data as strings

def _decrypt(self, source: str)

-> Tuple[List[Artifact], List[str]]:

# Write decryption code here

The next code block shows how to create a new Artifact object. It requires
3 arguments:



B.2. AWLPS PLUGIN EXTENSION 89

1. name: the name of the artifact (i.e. lename)

2. path: the relative path from the source that the artifact is located

3. info: anything of importance related to the artifact, (i.e how the le is
used in the decryption)

new Artifact(name: str, path: str, info: str)

• Validation

Apart from the decryption, each module is required to dene the validation
methods of the input source to guarantee forensic soundness. To do this,
the validators object inside the DemoDecryption should be initialized as
follows:

_validators = {

"md5": lambda source: return <md5_hash_in_string>,

"sha256": lambda source: return <sha256_hash_in_string>

}

The validators object can have any string as key. It should be named
accordingly to display the validation algorithm or method used. The value is
always a function that takes as argument the path of the data source used
in the current decryption plugin. Note that each validation function dened
inside the validators object will run twice during the execution of the
DemoDecryption plugin, once before the decryption starts and then after
the decryption nishes. The plugin will automatically validate the source by
comparing the validation values before and after the decryption, if there is
any mismatch an error will be raised in the log les.

• Render

The render method is responsible for handling the decryption results of the
plugin and organizing the output for display back in the GUI.

def render(self, output: Output) -> ModuleStatus:

The output argument is the GUI component that manages how each module
will display its results.

The render function returns a ModuleStatus object which is an enumer-
ator for the status of the module, make sure to return the appropriate
ModuleStatus as shown below.
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class ModuleStatus(Enum):

"""

Enumerator for the Plugin output status after it run.

"""

FAILED = 0 # The plugin Encountered an error

NOT_FOUND = 1 # The plugin run but didn't find anything

SUCCEDED = 2 # The plugin run and found results, should have decrypted data

MANUAL = 3 # The plugin run, found important data, user attention required

Finally, the plugin code should look like the following:

import logging

from typing import List, Tuple

from utils.artifact import Artifact

from utils.plugin import Plugin, ModuleStatus

from panels.artifact_analysis.output import Output

logger = logging.getLogger('alps')

class DemoDecrypt(Plugin):

_validators = {

"md5": <md5 file validator>,

"sha256": <sha256 file validator>

}

def _decrypt(self, source) -> Tuple[List[Artifact], List[str]]:

artifacts = []

results = []

# Perform encryption workaround

# add related files and cryptographic

# primitives to the artifacts list

# decrypted data should be added to

# the results list

return artifacts, results

def render(self, output: Output) -> ModuleStatus:

status = ModuleStatus.NOT_FOUND

try:

for source in self._sources.items():

if source[1]['artifacts']:
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status = ModuleStatus.SUCCEDED

output.add_section('Extracted credentials',

['url', 'username:password', 'KEY/IV', 'Info'])

for data in source[1]['data']:

output.append_text_to_section('Extracted credentials',

data)

output.add_section('Source Validation', ['File',

'Method', 'Before', 'After'])

for name, validation in source[1]['validate_obj']

.validation.items():

output.append_text_to_section(

'Source Validation', [

source[0], name, validation['before'],

validation['after']])

except Exception as e:

logger.error(f'Error: {e}')

return ModuleStatus.FAILED

return status
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