

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ

ΤΙΤΛΟΣ: «Σύνθεση, δομικός χαρακτηρισμός και ιδιότητες υβριδικών μεταλλοφωσφονικών υλικών με δισθενή μέταλλα και λανθανίδες»

Εισηγητής : ΣΤΑΥΓΙΑΝΟΥΔΑΚΗ Ι. ΝΙΚΟΛΕΤΑ Επιβλέπων καθηγητής : ΚΩΝΣΤΑΝΤΙΝΟΣ Δ. ΔΗΜΑΔΗΣ

> ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ 2011

TITLE: "Synthesis, structural characterization and properties of hybrid metal phosphonate materials containing divalent metals and lanthanides"

' Στο Γιάννη και την Κωστούλα…'

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία εκπονήθηκε στο Εργαστήριο Μηχανικής και Σχεδιασμού Κρυστάλλων του τομέα Ανόργανης Χημείας του Πανεπιστημίου Κρήτης κατά τη χρονική περίοδο 2008-2011 στα πλαίσια του Γενικού Προγράμματος Μεταπτυχιακών Σπουδών.

Θα ήθελα να ευχαριστήσω ιδιαιτέρως τους Ευγενία, Λεωνόρα, Κωστούλα και Γιάννη, την οικογένειά μου, για την αγάπη και την υποστήριξη που μου παρείχε από τότε που θυμάμαι τον εαυτό μου.

Ευχαριστώ τον επιβλέποντα καθηγητή μου κ. Κωνσταντίνο Δ. Δημάδη για την εμπιστοσύνη, την επιμονή, την υπομονή και τη βοήθεια του στην εκπόνηση της παρούσας εργασίας. Ευχαριστώ ιδιαίτερα για την υποστήριξη ιδεών, την καθοδήγηση και την παροχή της κατάλληλης συνεργασίας για την ολοκλήρωση αυτής της εργασίας.

Ευχαριστώ ιδιαίτερα τον κ. Aranda Miguel A.G. καθηγητή στο τμήμα Ανόργανης Χημείας του Πανεπιστημίου της Μάλαγα για την πολύτιμη τεχνική βοήθεια.

Θα ευχαριστήσω θερμά τους κ. Μήλιο Κωνσταντίνο και κ. Παντελή Ν. Τρικαλίτη που δέχτηκαν να γίνουν μέλη της επιτροπής αξιολόγησής μου, αφιέρωσαν χρόνο στη συγκεκριμένη εργασία και έκαναν πολύτιμες υποδείξεις για τη διόρθωσή της.

Ευχαριστώ θερμά τα μέλη της ομάδας του εργαστηρίου μας, τόσο για τη συνεργασία που είχαμε όσο και για το ότι ο καθένας ξεχωριστά και όλοι μαζί σα σύνολο βοήθησαν στο να γίνει ευχάριστη αυτή η «συγκατοίκηση». Ιδιαίτερα θέλω να ευχαριστήσω δύο ανθρώπους που έγιναν η οικογένειά μου στο Ηράκλειο της Κρήτης τα τελευταία δύο χρόνια: ευχαριστώ από καρδιάς τη συνάδελφό μου Αγγελή Σεμίνα, για την πολυδιάστατη υποστήριξη, τη φιλία της και την πολύτιμη βοήθεια της κατά τη συγγραφή και παρουσίαση αυτής της εργασίας και το συνεργάτη και συνάδελφό μου Παπαθανασίου Κωστή, για τις ατελείωτες εργαστηριακές ώρες, τις αμέτρητες

συζητήσεις, την ενθάρρυνση όταν οι μέρες έμοιαζαν να είναι «εργαστηριακά άγονες», και την παρουσία του στη ζωή μου όλο αυτό τον καιρό.

Ένα μεγάλο ευχαριστώ στη διδακτορικό μου Παπαδάκη Μαρία για τη βοήθεια και την υποστήριξή της και στη φίλη και «μεταπτυχιακό» μου, όταν ακόμα ήμουν προπτυχιακή φοιτήτρια, Μπαρούδα Ελένη.

Τέλος, θέλω να ευχαριστήσω τους Μαρίνα, Γιώτα και Μανώλη Συντιχάκη καθώς και τους Μιχάλη, Ρένα, Άρια και Αντώνη Πασσαδάκη για την υπομονή που έκαναν κατά την περίοδο της συγγραφής αυτής της εργασίας αλλά και για το ότι τα τελευταία χρόνια με έκαναν να νιώσω μέλος των οικογενειών τους.

ΣΗΜΕΙΩΣΗ :

Η παρούσα εργασία αποτελεί τη συνισταμένη της προσπάθειας πολλών ανθρώπων, πρωταρχικά όμως βασίζεται στη θέληση και την προσπάθεια τριών ατόμων, του επιβλέποντα καθηγητή μου κ. Κωνσταντίνου Δημάδη, του συνεργάτη μου Κωστή Παπαθανασίου και της δικής μου. Τα πρώτα αποτελέσματα όλης αυτής της προσπάθειας παρουσιάζονται απο εμένα, δεδομένου του ότι όμως αποτέλεσαν τη βάση όμως για περαιτέρω μελέτη θα είναι ιδιαίτερη η χαρά μου όταν θα δω να παρουσιάζεται η εξέλιξή τους από τον Κωστή. Ένα ειλικρινές ΕΥΧΑΡΙΣΤΩ και στους δυο σας..

НРАКЛЕІО 2011

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια η σύνθεση νέων, μικροπορώδων υλικών έχει προσελκύσει τεράστιο ερευνητικό ενδιαφέρον εξαιτίας των σημαντικών ιδιοτήτων που εκδηλώνουν. Συνεπώς, τα υλικά αυτά χρησιμοποιούνται για την αποθήκευση αερίων ή ως μοριακά κόσκινα, έχουν ευρεία εφαρμογή στην κατάλυση και την κατασκευή αισθητήρων, ενώ χρησιμοποιούνται κατά κόρον σε συσκευές ενεργειακών μετατροπών (κύτταρα καύσης) και παραγωγής υδρογόνου. Αξιοσημείωτη είναι και η εφαρμογή τους σε βιολογικά συστήματα και φαρμακευτικά σκευάσματα.

Στην παρούσα εργασία αρχικά περιγράφεται η σύνθεση και ο χαρακτηρισμός ισοδομικών λανθανιδών-καρβοξυφωσφονικών σκελετών (MOFs) με χρήση του υδροξυφωσφονοξικού οξέος (hydroxyphosphonoacetic acid, HPAA) σε διάφορες αναλογίες Ln³⁺ - HPAA και τιμές pH. Τα υλικά αυτά χαρακτηρίζονται για την απορρόφηση μεγάλων ποσοτήτων CO₂ και ικανοποιητικών N₂, ενώ εμφανίζουν το φαινόμενο της αντιστρεπτής μετατροπής τους από κρυσταλλικά σε άμορφα και πάλι σε κρυσταλλικά (crystalline-to-amorphous-to-crystalline transformation). Παράλληλα, εμφανίζουν ικανοποιητικές τιμές πρωτονιακής αγωγιμότητας.

Ακολούθως, παρουσιάζεται η ανάπτυξη νέας τεχνικής κρυστάλλωσης υλικών με χρήση συστήματος υδρογέλης του μετά νατρίου άλατος του αλγινικού οξέος καθώς επίσης και η εφαρμογή της για παραλαβή των νέων κρυσταλλικών υλικών Ca-ATMP (ATMP = amino-*tris*(methylenephosphonate)), Ca-PMIDA (PMIDA = phosphonomethylimino(diacetate)), Ca-HEDP (HEDP = hydroxyethylidenediphosphonate) με πολλά υποσχόμενες ιδιότητες δεδομένων των κρυσταλλικών δομών τους.

Ο χαρακτηρισμός επιτεύχθηκε με τη χρήση κρυσταλλογραφίας ακτίνων Χ, φασματοσκοπίας ATR-IR και FT-IR, στοιχειακής ανάλυσης, ηλεκτρονικής μικροσκοπίας σάρωσης (SEM), θερμοσταθμικής ανάλυσης (TGA), φασματοσκοπίας πυρηνικού μαγνητικού συντονισμού στερεάς κατάστασης (solid state NMR) ενώ παράλληλα μετρήθηκε η προσρόφηση αερίων διοξειδίου του άνθρακα και αζώτου καθώς και και η πρωτονιακή αγωγιμότητα των υλικών.

Λέξεις Κλειδιά: μικροπορώδη υλικά, HPAA, PMIDA, HEDP, ATMP, MOFs, λανθανίδια, υδρογέλη, φωσφονικά οξέα, προσρόφηση αερίων, πρωτονιακή αγωγιμότητα.

ABSTRACT

Over the last years synthesis of new microporous materials have attracted enormous scientific interest due to the important properties and the potential they demonstrate. Concequently, these materials have been used for gas adsorption or as molecular sieves, they have wide application in catalysis and sensors construction while they are principally been used in fuel cells and hydrogen production apparatus.

This study, firstly describes the synthesis of metal-phosphonocarboxylate coordination polymers (MOFs) when hydroxyphosphonoacetic acid (HPAA) is reacted with lanthanide metals ions in several Ln^{3+} - HPAA molar ratios and different pH values. These polymers posses great carbon dioxide and acceptable nitrogen adsorption while they are also characterized by a crystalline-to-amorphous-to-crystalline reversible transformation. Moreover, they express satisfactory values of proton conductivity.

In the present work we will also present the description of a new crystallization technique with the use of hydrogels formed by the hydrophilic polysaccharide sodium alginate, as well as its application to gain synthetic access to the crystalline materials Ca-ATMP (ATMP = aminonew *tris*(methylenephosphonate)), Ca-PMIDA (PMIDA = phosphonomethylimino(diacetate)), Ca-HEDP (HEDP = hydroxyethylidenediphosphonate) with many promising properties due to their interesting crystal structures.

Characterization was achieved through the use of X-Ray Crystallography (single crystal and powder), ATR-IR Spectroscopy, FT-IR-Spectroscopy, Elemental Analysis, Scanning Electron Microscopy, Thermogravimetric Analysis and Solid State NMR.

Keywords: Microporous materials, HPAA, PMIDA, HEDP, ATMP, hydrogel, phosphonic acid, gas adsorption, proton conductivity.

ΠΕΡΙΕΧΟΜΕΝΑ

ΚΕΦΑΛΑΙΟ 1: ΦΩΣΦΟΝΙΚΑ ΟΞΕΑ ΚΑΙ ΜΕΤΑΛΛΟΦΩΣΦΟΝΙΚΑ ΥΛΙΚΑ

1.1 Eu	σαγωγή	σελ.12
1.2 Iδι	ότητες των φωσφονικών οξέων	σελ.13-16
1.3 Bu	ολογική δραστικότητα των φωσφονικών οξέων – ΗΡΑΑ	σελ.17-19
1.4 Mi	ηχανισμός βιολογικής δράσης των διφωσφονικών οξέων	σελ.19-21
1.5 Ma	εταλλοφωσφονικά υλικά	σελ.21-23
1.6 Σύ	γκριση μεταλλοφωσφονικών και μεταλλοκαρβοξυλικών υλικών	σελ.23-24
1.7 Eq	ραρμογές των φωσφονικών σε υδατικά βιομηχανικά συστήματα	σελ.24-26
1.8 Λc	ανθανίδια: βιοχημεία και θεραπευτικές ιδιότητες	σελ.26-28
1.9 N-	(φωσφονομέθυλο)ιμινοδιακετικό οξύ	σελ.29-32
1.10	Αιθυλοδιάμινοτετράκις-(μεθυλενεφωσφονικόοξύ)-EDTMP -[Ethy	lenediamine
tet	rakis(methylenephosphonic acid)]	σελ.33-35
1.11	HEDP – Hydroxyethylidene-1,1-diphosphonic acid	σελ.35-36
1.12	Άμινο-τρις(μεθυλενοφωσφονικό οξύ)-AMP-[aminotris-(methylen	ephosphonic
aci	id)]	σελ.37-39
1.13	Σκοπός εργασίας	σελ.39-40

ΚΕΦΑΛΑΙΟ 2: ΜΕΘΟΔΟΙ ΧΑΡΑΚΤΗΡΙΣΜΟΥ-ΒΑΣΙΚΗ ΘΕΩΡΙΑ-Οργανολογια

2.1 Εισαγωγή	σελ.41
2.2. Βασική κρυσταλλογραφία	σελ.41
2.2.1 Κρυσταλλικές ενώσεις	σελ.41
2.2.2 Τα 7 κρυσταλλικά συστήματα	σελ.41-43
2.2.3 Δείκτες Miller	σελ.43-44
2.2.4 Περίθλαση με ακτίνες Χ	σελ.44
2.2.5 Ακτινές Χ	σελ.45-47
2.2.6 Περίθλαση ακτινών Χ σε πολυκρυσταλλικά συστήματα	σελ.47-49
2.2.7 Περίθλαση ακτινών Χ σε μικροκρυσταλλικά δείγματα	σελ.49-51
2.2.8 Πειραματική μέτρηση περίθλασης	σελ.51-52
2.3 Φασματοσκοπία υπερύθρου	σελ.52-54

2.3.1 Μοριακές δονήσεις	σελ.54
2.3.2. Δονήσεις Τάσης – Νόμος του ΗΟΟΚΕ	σελ.55-56
2.4 Θερμοσταθμική ανάλυση (Thermogravmetric analysis)	σελ.56-57
2.5 Ηλεκτρονική μικροσκοπία σάρωσης (SEM)	σελ.57-58
2.5.1 Σημαντικότερα φαινόμενα	σελ.59
2.5.1.1 Ελαστική σκέδαση	σελ.59
2.5.1.2 Παραγωγή δευτερογενών ηλεκτρονίων	σελ.59
2.5.1.3.Εκπομπή ακτινών Χ	σελ.59
2.6 Στοιχειακή ανάλυση (Elementary analysis)	σελ.60
2.7 Φασματοσκοπία πυρηνικού μαγνητικού συντονισμού (NMR)	σελ.60-62
2.7.1 NMR στερεάς κατάστασης (Solid State NMR)	σελ.62-63

ΚΕΦΑΛΑΙΟ 3: ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΛΛΟΦΩΣΦΟΝΙΚΩΝ ΥΛΙΚΩΝ

3.1 Πρωτονιακή αγωγιμότητα	σελ.64
3.1.1 Χημεία πρωτονίου – Μηχανισμοί πρωτονιακής αγωγιμότητας	σελ.64-66
3.1.2 Συστήματα που παρουσιάζουν πρωτονιακή αγωγιμότητα	
3.1.3 Δεσμός υδρογόνου	
3.1.4 Εφαρμογές	σελ.69
3.1.4.1 Μεταφορά πρωτονίων σε βιολογικά συστήματα	σελ.69-71
3.1.4.2 Τεχνολογικές εφαρμογές	σελ.71-74
3.2 Προσρόφηση αερίων	σελ.74-78

ΚΕΦΑΛΑΙΟ 4: ΑΝΑΠΤΥΞΗ ΝΕΑΣ ΤΕΧΝΙΚΗΣ ΚΡΥΣΤΑΛΛΩΣΗΣ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ΥΔΡΟΓΕΛΗΣ ΓΙΑ ΥΔΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

4.1 Εισαγωγή	σελ.79
4.1.1 Αλγινικό οξύ	σελ.79-83
4.2 Παρασκευή υδρογέλης	σελ.83-84
4.3 Φυσικές και χημικές ιδιότητες αλγινικού οξέος	σελ.84-86
4.4 Μηχανισμός ανταλλαγής ιόντων μέσω συτήματος υδρογέλης	σελ.86-89

ΚΕΦΑΛΑΙΟ 5: ΣΥΝΘΕΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ΥΔΡΟΓΕΛΗΣ

5.1 Παρασκευή υδρογέλης με υδατικά διαλύματα μετάλλων	σελ.90-91
5.2 Παρασκευή διαλυμάτων υποκαταστατών	σελ.92
5.3 Παρασκευή διαλυμάτων λανθανιδίων	σελ.92
5.4 Σύνθεση και χαρακτηρισμός Ca –ATMP	σελ.93
5.4.1 Πορεία Σύνθεσης	σελ.93
5.4.2 Χαρακτηρισμός του Ca-ATMP	σελ.93-95
5.4.3 Κρυσταλλική δομή Ca-ATMP	σελ.95-100
5.5 Σύνθεση και χαρακτηρισμός Ca – HEDP	σελ.101
5.5.1 Σύνθεση Ca-HEDP	σελ.101
5.5.2 Χαρακτηρισμός Ca-HEDP	σελ.101
5.5.3 Κρυσταλλική δομή Ca-HEDP	σελ.102-107
5.6 Σύνθεση και χαρακτηρισμός Ca – PMIDA	σελ.107
5.6.1 Σύνθεση Ca-PMIDA	σελ.107-108
5.6.2 Χαρακτηρισμός Ca-PMIDA	σελ.108
5.6.3. Κρυσταλλική δομή Ca-PMIDA	σελ.109-114

ΚΕΦΑΛΑΙΟ 6: ΣΥΝΘΕΣΗ ΥΛΙΚΩΝ Ln-ΗΡΑΑ ΣΕ ΣΥΝΘΗΚΕΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

6.2.2 Χαρακτηρισμός του μονοκρυσταλλικού υλικού Ce-HPAA	σελ.115-116	
6.3 La – HPAA	σελ.116	
6.3.1 Σύνθεση του κρυσταλλικού υλικού La-HPAA	σελ.	
6.3.2 Χαρακτηρισμός τπου κρυσταλλικού υλικού La-HPAA		
6.4 Tb – HPAA		
6.4.1 Σύνθεση του κρυσταλλικού υλικου Tb-HPAA		
6.4.2 Χαρακτηρισμός του κρυσταλλικού υλικού Tb-HPAA		
6.5 Dy – HPAA		
6.5.1 Σύνθεση του κρυσταλλικού υλικού Dy-HPAA		
6.5.2 Χαρακτηρισμός του κρυσταλλικού υλικού Dy-HPAA		
6.6 Pr – HPAA		
6.6.1 Σύνθεση του κρυσταλλικού υλικού Pr-HPAA		

6.6.2 Χαρακτηρισμός του κρυσταλλικού υλικού Pr-HPAA	
6.7 Ho – HPAA	
6.7.1 Σύνθεση του κρυσταλλικού υλικού Ηο-ΗΡΑΑ	
6.7.2. Χαρακτηρισμός του κρυσταλλικού υλικού Ηο-ΗΡΑΑ	
6.8 Sm – HPAA	
6.8.1 Σύνθεση του κρυσταλλικού υλικού Sm-HPAA	
6.8.2 Χαρακτηρισμός του κρυσταλλικού υλικού Sm-HPAA	
6.9 Gd – HPAA	
6.9.1 Σύνθεση του κρυσταλλικού υλικού Gd-HPAA	σελ.130
6.9.2 Χαρακτηρισμός του κρυσταλλικού υλικού Gd-HPAA	σελ.131-133
6.10 Γενική περιγραφή της κρυσταλλικής δομής Ln-HPAA	σελ.133-140
6.11 Γενικός χαρακτηρισμός των ισοδομικών ενώσεων Ln-HPAA	σελ.140
6.11.2. Θερμοσταθμική Ανάλυση	σελ.141-142
6.11.3 Φασματοσκοπία υπερύθρου (ATR-IR)	σελ.142-144
6.12 Συζήτηση-Συμπεράσματα	σελ.144-145

ΚΕΦΑΛΑΙΟ 7: ΒΙΒΛΙΟΓΡΑΦΙΑ

σελ.146-152

ΠΑΡΑΡΤΗΜΑ Ι: κρυσταλλογραφικά δεδομένα των ενώσεων Ca-AMP, Ca-HEDP,
Ca-PMIDA, Ce-HPAA, La-HPAA.σελ.152-190ΠΑΡΑΡΤΗΜΑ ΙΙ: Συμπληρωματικά δεδομένα ηλεκτρονικής μικροσκοπίας
σάρωσης και φασματοσκοπίας υπερύθρου για τα συστήματα υδρογελών. σελ.191-193ΠΑΡΑΡΤΗΜΑ ΙΙΙ: Δεδομένα μελέτης προσρόφησης αερίων και ανάλυσης
φθορισμου.φθορισμου.σελ.194-216ΠΑΡΑΡΤΗΜΑ ΙV: Αντιδραστήρια που χρησιμοποιήθηκαν.σελ.216-218

<u>ΚΕΦΑΛΑΙΟ 1</u>

<u>1.1. Εισαγωγή</u>

Τις τελευταίες δεκαετίες έχει παρατηρηθεί σπουδαία πρόοδος στα πεδία της υπερμοριακής χημείας, του σχεδιασμού των κρυστάλλων και της χημείας υλικών. Βασικό ρόλο έχουν διαδραματίσει σε αυτό, τα (πολυ)φωσφονικά οξέα (1–42) η χρήση των οποίων έχει επεκταθεί σε τεχνολογικές και βιομηχανικές διεργασίες όπως η χημική επεξεργασία του νερού (43–46) και η εξόρυξη πετρελαίου (47–54), η επεξεργασία ορυκτών (55,56,84) και ο αντιδιαβρωτικός έλεγχος (57–62) καθώς επίσης και η συμπλοκοποίηση και απομάκρυνση μεταλλικών ιόντων (κυρίως για τοξικά βαρέα μέταλλα) (63,64). Σημαντική είναι ωστόσο και η χρήση τους σε ιατρικές εφαρμογές όπως η ενζυμική παρεμπόδιση (69-71), ο σχεδιασμός οδοντικών υλικών (65–68), η παρασκευή αντικαρκινικών φαρμάκων (76-78) αλλά και σε θεραπείες κατά των ασθενειών εναπόθεσης ασβεστίου στον ανθρώπινο οργανισμό (85).

Στη βιβλιογραφία αναφέρεται πληθώρα ανόργανων-οργανικών υβριδικών υλικών που παρουσιάζουν εντυπωσιακά χαρακτηριστικά συναρτήσει της δομής τους. Οι παράγοντες που επηρεάζουν τη δομή αυτών των υλικών είναι πολλοί συμπεριλαμβανομένου της φύσης του μεταλλικού κέντρου (οξειδωτική κατάσταση, ιοντική ακτίνα και αριθμός συναρμογής), της φύσης και του αριθμού των λειτουργικών ομάδων του υποκαταστάτη, της παρουσίας πρόσθετων λειτουργικών ομάδων στο μόριο του τελευταίου (καρβοζυλικές, σουλφονικές, άμινο- και υδροζυ-ομάδες) καθώς και των πειραματικών συνθήκων σύνθεσης (μοριακή αναλογία αντιδρώντων, θερμοκρασία, πίεση pH κτλ.) (83,86). Η σύνθεση των μεταλλοφωσφονικών υλικών συνήθως διεξάγεται σε υδατικά διαλύματα ή σε μίγματα υδατικών/πολικών οργανικών διαλυτών όπως αλκοόλες, DMF και ακετόνη με επακόλουθο την ύπαρξη μορίων νερού στο κρυσταλλικό πλέγμα τα οποία συμμετέχουν σε εκτενές δίκτυο δεσμών υδρογόνου, με αποτέλεσμα τη

σταθεροποίηση των υπερμοριακών δομών και το σχηματισμό υλικών μίας, δύο και τριών διαστάσεων (1D, 2D, 3D) (79-81).

Αξίζει να αναφερθεί ότι η πλειοψηφία των μεταλλοφωσφονικών υλικών είναι ενώσεις συναρμογής (coordination polymers) (82), δηλαδή ενώσεις που αποτελούνται από μεταλλικά ιόντα που λειτουργούν ως σύνδεσμοι και υποκαταστάτες που λειτουργούν ως γέφυρες, αν και υπάρχουν και αρκετές αναφορές σύμπλοκων ενώσεων (molecular complexes).

1.2 Σύνθεση και ιδιότητες φωσφονικών οξέων

Το κύριο δομικό χαρακτηριστικό των φωσφονικών οξέων είναι ότι περιέχουν μια τουλάχιστον φωσφονική ομάδα –PO₃H₂ με απευθείας δεσμό P-C. Ο ομοιοπολικός αυτός δεσμός καθιστά τις ενώσεις ανθεκτικές στη χημική και θερμική διάσπαση. Οι φωσφορικοί εστέρες, σε αντιδιαστολή, περιέχουν την ομάδα P-O-C και δε συγκαταλέγονται στην παραπάνω κατηγορία. Τα παραπάνω δίνουν στα φωσφονικά οξέα την ιδιότητα να δρουν και ως παρεμποδιστές πολλών ενζύμων (87).

Η φωσφονική ομάδα είναι ισχυρά ανιοντική (88) γεγονός στο οποίο οφείλεται η τάση της να δημιουργεί ισχυρούς δεσμούς με μεταλλικά ιόντα M^{n+} (n= 1-4) ενώ η συμπεριφορά της, καθώς και των δύο αποπρωτονιωμένων της μορφών (-PO₃H⁻ και – PO₃²⁻) είναι άμεσα εξαρτώμενες από το pH. (Εικόνα 1) (97). Επιπρόσθετα, ενώ το πρώτο πρωτόνιο είναι ιδιαίτερα όξινο, δεν ισχύει το ίδιο και για το δεύτερο (90-96)

Εικόνα 1: Φωσφονικό οξύ, μονοαποπρωτονιωμένη και δις-αποπρωτονιωμένη μορφή ανάλογα με την τιμή pH.

Η βιομηχανική σύνθεση των πρώτων συνθετικών παραγώγων των φωσφονικών οξέων πραγματοποιήθηκε το 1905 με μια αντίδραση τύπου Arbuzov στην οποία χρησιμοποιήθηκαν βρώμο- ή ίωδο- παράγωγα.

Η αντίδραση πραγματοποιείται σε δύο στάδια και λαμβάνει χώρα μέσω ενός ιονικού phosphonium ενδιαμέσου, συνοδευόμενου από επέκταση των ηλεκτρονίων σθένους του φωσφόρου (99). Οι θερμοκρασίες που απαιτούνται ανέρχονται στους 150-200 ⁰C, εξαρτώμενες από την ομάδα R' (89). Η αντίδραση ολοκληρώνεται με υδρόλυση του παραγόμενου εστερα με υδροχλωρικό οξύ.

Η συνύπαρξη των φωσφονικών ομάδων με άλλες λειτουργικές ομάδες στο ίδιο μόριο π.χ υδροξύλια, σουλφονική, αμίνες, καρβοξυλική έχει σαν αποτέλεσμα τη δημιουργία πρόσθετων σημείων συναρμογής του υποκαταστάτη με το μέταλλο. Τα αμινοφωσφονικά οξέα αποτελούν ένα από τα χαρακτηριστικότερα παραδείγματα κατηγορίας φωσφονικών οξέων στην ανθρακική αλυσίδα των οποίων, περιέχονται ένα ή περισσότερα άτομα αζώτου [RN(CH₂PO₃H₂)]. Η παρουσία της πρωτονιωμένης τριτοταγούς αμινομάδας στο μόριο προσδίδει ένα επιπλέον θετικό φορτίο σε αυτό, στοιχείο ιδιαίτερα σημαντικό για τη συνθετική πορεία ματαλλοφωσφονικών υλικών δεδομένου ότι σε τιμές pH<10 όλες οι αμινομάδες των αμινοφωσφονικών οξέων

Η σύνθεση των αμινοφωσφονικών οξέων γίνεται με αντίδραση τύπου Mannich μιας αμίνης, φορμαλδεύδης και φωσφορώδους οξέος σύμφωνα με την παρακάτω αντίδραση :

$R_{3-n}NH_n + nHCHO + nH_3PO_3 \longrightarrow R_{3-n}N[CH_2P(O)(OH)_2]_n + nH_2O$

Το Η που είναι συνδεδεμένο στο P του φωσφονικού οξέος είναι όξινο, που απαιτείται για τέτοιου είδους αντιδράσεις. Παρουσία διαλύματος HCl και χρήσης αμμωνίας, πρωτοταγών και δευτεροταγών αμινών, πολυαμινών καθώς και υποκατεστημένων αμινών η αντίδραση παρουσιάζει μεγαλύτερη απόδοση (98) ενώ ταυτόχρονα δίνεται και η δυνατότητα σύνθεσης μεγάλου αριθμού αμινοφωσφονικών οξέων. Στην εικόνα 2 παρουσιάζονται οι αντιπροσωπευτικότερες δομές των πλέον χρησιμοποιούμενων φωσφονικών οξέων.

Εικόνα 2: Αντιπροσωπευτικότερες δομές φωσφονικών οξέων. PBTC 2-phosphonobutane-1,2,4tricarboxylic acid, HEDP 1-hydroxyethylidene-1,1-diphosphonic acid, AMP amino-tris-(methylenephosphonic acid), HEAMBP 2-hydroxyethylamino- bis(methylenephosphonic acid), HPAA hydroxyphosphono acetic acid, EDTMP ethylenediamine-tetrakis(methylene-phosphonic acid), TDTMP-tetramethylenediaminetetrakis(methylene-phosphonicacid),HDTMP hexamethylenediaminetetrakis(methylenephosphonicacid)DETPMP diethylenetriaminepentakis(methylenephosphonic acid)

1.3 Βιολογική δραστικότητα των φωσφονικών οξεων - ΗΡΑΑ

Ενώσεις που περιέχουν το δεσμό C-P ανακαλύφθηκαν για πρώτη φορά σε ζώντες οργανισμούς το 1959 από τους Horiguchi και Kadatsu οι οποίοι ανέφεραν την απομόνωση του 2-αμινοαιθυλοφωσφωνικού οξέος (2-aminoethylphosphonic acid $[H_2NCH_2CH_2PO_3H_2])$ από θαλάσσιες ανεμώνες, (100)ενώ 1968 το πραγματοποιήθηκε η βιοσύνθεση του από το Tetrahymena pyriformis (101). Οι εστέρες του παραπάνω οξέως είναι γνωστοί ως φωσφονολιπίδια, απαντώνται σε μύκητες, πρωτόζωα αλλά και στον άνθρωπο και παρουσιάζουν αντίσταση στην ενζυματική υδρόλυση. Η δυνατότητα του 2-aminoethylphosphonic acid να δημιουργεί δεσμό με πρωτεΐνες και ολιγοσακχαρίτες έχει σαν αποτέλεσμα το σχηματισμό φωσφονοπρωτεινών και φωσφονογλυκανών αντίστοιχα. Οι τελευταίες απαντώνται σε ανθρώπινους ιστούς. Ποσότητες της παραπάνω ένωσης έχουν προσδιοριστεί σε πληθώρα ανθρώπινων ιστών συμπεριλαμβανομένου του εγκεφάλου, της αορτής, της καρδιάς και του σπλήνα, γεγονός που αποτέλεσε κινητήριο δύναμη για περαιτέρω έρευνα του ρόλου των αμινοφωσφονικών οξέων στην ανθρώπινη βιοχημεία (102).

Ένα από τα σημαντικότερα φωσφονικά οξέα με βιολογική δραστικότητα είναι το hydroxyl-phosphono acetic acid (HPAA) που αποτελεί συνθετικο παράγωγο του βιογενούς φωσφονικου phosphonoacetate (103).

H2OC-CH2-PO3H2

PHOSPHONOACETATE

Εικόνα 3: Μοριακός τύπος των ΗΡΑΑ και Phosphonacetate.

Το σπουδαιότερο χαρακτηριστικό των φωσφονικών είναι ότι παρουσιάζουν αντιική δράση. Αν και το HPAA αποτελεί ισχυρότερο παρεμποδιστή σε σχέση με το phosphonoacetate στη δράση της αντίστροφης μεταγραφάσης του Avian Myeloblastis Virus (AMV) (104), η παρεμποδιστική του ικανότητα ενάντια στη δράση των DNA πολυμερασών του Cytomegalovirus (CMV) και του Herpes Simplex Virus type I

(HSV1) in vivo και in vitro είναι μικρότερη. Αποτελεσματικότερος παρεμποδιστής δύο αποδείχτηκε τελικά το συνθετικό φωσφονικό foscarnet και των (phosphonoformate trisodium salt) το οποίο παρουσιάζει επιπρόσθετα αντιική δράση ενάντια στον ιο της ηπατίτιδας B (HBV) (105). Στην ικανότητα συμπλοκοποίησης τους με διάφορα μέταλλα οφείλεται και η συμπεριφορά του ΗΡΑΑ, καθώς και της ένωσης phosphonacetate, ως πυροφωσφορικό στην πρόδρομης ανάλογο απελευθέρωση του σιδήρου από την τρασφερίνη, την πρωτείνη μεταφοράς του στον ορό του αίματος (106).

Παράλληλα εξαιτίας της καρβοξυλικής και φωσφονικής ομάδας που περιέχουν, τα παραπάνω φωσφονικά αποτελούν παρεμποδιστές της ανάπτυξης κρυστάλλων φωσφορικού ασβεστίου που σχετίζονται άμεσα με την εμφάνιση οστεοαρθρίτιδας, νεφρολιθίασης και αρτηριοσκλήρωσης στον ανθρώπινο οργανισμό (107). Η ικανότητα αυτή βασίζεται στην προσρόφησή του φωσφορικού ασβεστίου από την επιφάνεια, και στη συμπλοκοποίησή τους με το ιόν του ασβεστίου δια μέσου μηχανισμού επιφανειακής συναρμογής (surface complexation).

Τα φωσφονικά οξέα προσροφώνται πολύ ισχυρά πάνω στις επιφάνειες ανόργανων κρυστάλλων, χαρακτηριστικό στο οποίο βασίζεται και η δράση των gem diphosphonates που προσροφώνται στις ορυκτές επιφάνειες των οστών και επεμβαίνουν στη δράση των οστεοκλαστών, κυττάρων του οστίτη ιστού με βασική λειτουργία την αποδόμηση του οστού. Όταν τα διφωσφονικά εισάγονται από τους οστεοκλάστες στις βιοχημικές λειτουργίες του PPi διαταράσσουν το μεταβολισμό αυτών των κυττάρων και εισάγουν κυτταρικό θάνατο (108). Αντίστοιχη δράση παρουσιάζουν και τα φωσφονοκαρβοξυλικά που θεωρούνται συνθετικά ανάλογα των διφωσφονικών (109).

Εικόνα 4: Γενική αναπαράσταση των gem diphosphonates.

Η δράση των διφωσφονικών βρίσκει εφαρμογή στην πρόληψη και θεραπεία της οστεοπόρωσης, στην αντιμετώπιση της νόσου του Paget, στην παρεμπόδιση της ανάπτυξης κρυστάλλων ασβεστίου στους ανθρώπινους ιστούς αλλά και της αποδόμησης των οστών που σχετίζεται με διάφορες μορφές καρκίνου (110).

Τέλος, η παρουσία μεταλλικών ιόντων στα βιολογικά υγρά και η ικανότητα δέσμευσης των ιόντων με αμινοξέα, οργανικά οξέα και τις φωσφορυλιωμένες τους μορφές, δίνει τη δυνατότητα μελέτης της συναρμογής τους με φωσφονικά ανάλογα των οργανικών βιομορίων μέσα στον ανθρώπινο οργανισμό. Η παραπάνω διεργασία έχει σαν αποτέλεσμα την δράση των φωσφονικών υλικών σε διεργασίες όπως μεταγωγή σήματος και αντιβιωτική δράση στους ζώντες οργανισμούς καθώς επίσης και η ρύθμιση της ανάπτυξης των φυτών (111).

1.4 Μηχανισμός βιολογικής δράσης διφωσφονικών

Τα διφωσφονικά κρίνονται χρήσιμα στην θεραπεία ασθενειών που σχετίζονται με τα οστά κυρίως λόγω της ιδιότητάς τους να αναστέλλουν την οστική απορρόφηση. Η οστική άπορρόφηση είναι μια διαδικασία με την οποία οι οστεοκλάστες σπάνε το οστό και απελευθερώνονται μεταλλικά στοιχεία με αποτέλεσμα την μετακίνηση ασβεστίου από το υγρό του οστού στην κυκλοφορία του αίματος. Οι οστεοκλάστες, είναι πολυπύρηνα κύτταρα που περιέχουν πολλαπλά μιτοχόνδρια και λυσοσώματα και είναι βασικά υπεύθυνα για την απορρόφηση του οστιτή ιστού. Η διαδικασία αρχίζει με την πρόσδεση του οστεοκλάστη στον οστεώνα. Η σύμπτυξη της κυτταρικής του μεμβράνης του οστεοκλάστη έχει σαν αποτέλεσμα την έκκριση κολλαγενάσης και άλλων ενζύμων που είναι σημαντικά για την απορρόφηση. Το αποτέλεσμα είναι η παρουσία υψηλών επιπέδων ασβεστίου, μαγνησίου, φωσφόρου και προϊόντων του κολλαγόνου στην εξωκυττάρια ουσία με την δημιουργία «σήραγγας» των οστεοκλαστών στο μεταλλοποιημένο οστό. Κατά την παιδική ηλικία ο ρυθμός σχηματισμού οστών είναι μεγαλύτερος από το ρυθμό απορρόφησης ενώ με την αύξηση της ηλικίας οι ρυθμοί αντιστρέφονται.

Όπως προαναφέρθηκε, η βασική ιδιότητα των διφωσφονικών που τα καθιστά κατάλληλα φάρμακα για την καταπολέμηση των ασθενειών των οστών είναι η αναστολή της οστικής απορρόφησης. Τα προκύπτουσες μεταλλοφωσφονικές ενώσεις παρεμποδίζουν την ανάπτυξη κρυστάλλων και μάλιστα στην πλειονότητά τους προσδένενται εξίσου στον υδροξυαπατίτη, σημαντικό βήμα στην αναστολή της απορόφησης που μεσολαβείται από τους οστεοκλάστες. Αποτελεί γενική παραδοχή

19

πλέον το γεγονός ότι τα διφωσφονικά επιτελούν ένα τρίπτυχο λειτουργιών σε κυτταρικό και σε επίπεδο οστεοκλάστη με αποτέλεσμα τη μείωση του μετασχηματισμού του οστού: 1) Έμμεση, με παρεμβολή των οστεοβλαστών, ή άμεση αναστολή της επιστράτευσης των οστεοκλαστών στην επιφάνεια των οστών, 2) αναστολή της δράσης των οστεοκλαστών στην επιφάνεια των οστών και 3) τη μείωση της χρόνου ζωής των οστεοκλαστών κατά πάσα πιθανότητα μέσω κυτταρικής απόπτωσης.

Εικόνα 5 : Τρόπος δράσης των διφοσφωνικών στους οστεοβλαστες για πρόληψη της απορρόφησης.

Ο πρώτος τρόπος δράσης των διφωσφονικών, με άμεση επίδραση στους οστεοβλάστες βασίζεται στην ιδιότητα των οστεοβλαστών να πραγματοποιούν σε μεγάλο βαθμό ενδοκύττωση. Άμεσο αποτέλεσμα της παραπάνω ιδιότητας είναι τα διφωσφονικά που υπάρχουν στο χώρο της απορρόφησης να ενδοκυτταρώνονται. Το φαινόμενο αυτό έχει αποδειχτεί πειραματικά με τη χρήση ραδιοσημασμένων διφωσφονικών, τα οποία μπαίνουν με ενδοκύττωση σε ενδοκυτταρικά κενοτόπια και σε άλλα υποκυτταρικά στοιχεία όπως ο πυρήνας, τα μιτοχόνδρια και το κυτταρόπλασμα. Μετά από την εισαγωγή τους στο εσωτερικό του οστεοκλάστη τα διφωσφονικά δρουν κατά πάσα πιθανότητα ως ανάλογα του πυροφωσφορικού παρεμβαίνοντας σε ενδοκυτταρικά μεταβολικά μονοπάτια που είναι απαραίτητα για τη φυσιολογική κυτταρική λειτουργία και επιβίωση. Ένα παράδειγμα τέτοιας παρέμβασης είναι η παρεμβολή στο σχηματισμό του δακτυλίου ακτίνης του κυτταροσκελετού σε πολωμένους οστεοβλάστες που πραγματοποιούν απορρόφηση. Όσον αφορά την κυτταρική απόπτωση, πρόσφατες δημοσιεύσεις υπογραμμίζουν τη σημασία της επαγωγής της στους οστεοβλάστες από τα διφωσφονικά. Η απόπτωση είναι μια φυσιολογική κυτταρική διαδικασία και αποτελεί μια μορφή προγραμματισμένου κυτταρικού θανάτου στους πολυκυτταρικούς οργανισμούς. Έχει αποδειχτεί πειραματικά ότι η επεξεργασία με διάφορους τύπους διφωσφονικών οδηγεί στις χαρακτηριστικές μορφολογικές αλλαγές του κυττάρου που λαμβάνουν χώρα στην απόπτωση, οι οποίες μπορούν μάλιστα να απομονωθούν και να ταυτοποιηθούν in vitro σε οστεοκλάστες ποντικών. Ωστόσο η σημασία της απόπτωσης που προκαλείται από τη δράση φωσφονικών είναι ακόμα ασαφής. Αν και είναι πιθανό οι ενώσεις αυτές να αναστέλλουν την απορρόφηση με το να ωθούν τους οστεοβλάστες σε απόπτωση, δεν είναι ακόμα αποδεδειγμένο σε τέτοιο βαθμό έτσι ώστε να καταλήξουμε στο συμπέρασμα ότι η εν λόγω αναστολή οφείλεται αποκλειστικά στην άυξηση του βαθμού απόπτωσης. Κρίνεται περισσότερο πιθανό να γίνεται αναστολή σε βιοχημικά μονοπάτια που είναι σημαντικά για την λειτουργικότητα και επιβίωση του οστεοβλάστη και ως εκ τούτου το κύτταρο να οδηγείται σε κυτταρικό θάνατο.

1.5 Μεταλλοφωσφονικά υλικά

Τα μεταλλοφωσφονικά υλικά είναι ανόργανα-οργανικά υβρίδια που προκύπτουν από τη συναρμογή των φωσφονικών οξέων με μεταλλικά ιόντα. Κατά κύριο λόγο οι δομές αυτές είναι πολυμερή συναρμογής αν και συναντώνται και μοριακές μεταλλοφωσφονικές δομές (112). Τα υλικά αυτά βρίσκουν ευρεία εφαρμογή σε διαφορους τομείς όπως η κατάλυση, η προσρόφηση και αποθήκευση αερίων, η ιονανταλλαγή, η παρένθεση (intercalation) κλπ. (113-116). Πολλά από αυτά τα υλικά είναι μικροπορώδη (115,117) ή εμφανίζουν μαγνητικές ιδιότητες (118).

Η σύνθεση υλικών με συγκεκριμένες φυσικές και χημικές ιδιότητες είναι δυνατή με την επιλογή κατάλληλου αριθμού φωσφονικών ομάδων, άλλων λειτουργικών ομάδων στο μόριο του υποκαταστάτη και κατάλληλου μεταλλικού ιόντος (119). Στην πλειονότητά τους τα φωσφονικά οξέα είναι υποκαταστάτες που δημιουργούν φυλλόμορφες (layered) ή υποστηλωμένες δομές (pillared) (119d) ενώ τα μεταλλοφωσφονικά υλικά με μονοφωσφονικούς υποκαταστάτες έχουν συνήθως δισδιάστατη φυλλόμορφη δομή. Η αύξηση του αριθμού των φωσφονικών ομάδων

priori πρόβλεψη των δομών που προκύπτουν. Αυτός είναι και ο λόγος για τον οποίο από τη βιβλιογραφία υπολείπονται δομικά χαρακτηρισμένα μεταλλοφωσφονικά υλικά με υποκαταστάτη με περισσότερες από τέσσερις φωσφονικές ομάδες.

Στην προσπάθεια κατηγοριοποίησης και συστηματοποίησης των διάφορων μεταλλοφοσφωνικών υλικών έχουν γίνει διάφοροι συσχετισμοί ανάμεσα στην οξειδωτική κατάσταση ή την ιοντική ακτίνα του μεταλλικού ιόντος και στο μήκος του δεσμού M-O. Οι συγκεκριμένες μελέτες βασίζονται στον αριθμό συναρμογής του μεταλλικού ιόντος. Από τα αποτελέσματα γίνεται εμφανές ότι ενώ η ιοντική ακτίνα επηρρεάζει ανάλογα το μήκος του δεσμού, δεν υπάρχει άμεση συσχέτιση μεταξύ της οξειδωτικής κατάστασης του μεταλλικού ιόντος και του μήκους του δεσμού. Πιο συγκεκριμένα, όσο αυξάνει η ιοντική ακτίνα του μεταλλικού ιόντος τόσο αυξάνει και ο δεσμός M-O στα μεταλλοφωσφονικά υλικα. Χαρακτηριστικό παράδειγμα αποτελούν τα υλικά M-AMP (M= Mg, Ca, Sr,Ba) (120) όπως φαίνεται και από το διάγραμμα.

Εικόνα 6: Σχέση του μήκους δεσμού M-O (M= Mg, Ca, Sr, Ba) με την ιοντική ακτίνα σε μια σειρά υβριδικών ενώσεων M-AMP. Η αύξηση της ιοντικής ακτίνας συνεπάγεται την αύξηση του δεσμού M-O.

Αντίστοιχες είναι οι παρατηρήσεις για τα υλικά M-HPAA (M= Mg, Ca, Sr,Ba) όπως φαίνεται παρακάτω (121-123).

Εικόνα 7: Σχέση του μήκους δεσμού M-O (M= Mg, Ca, Sr, Ba) με την ιοντική ακτίνα σε σειρά υβριδικών ενώσεων M-HPAA.

Η ίδια ακριβώς τάση παρατηρείται στα ιόντα των αλκαλίων αλλά όχι και στα δισθενή μέταλλα μετάπτωσης της πρώτης στήλης του περιοδικού πίνακα.

Εικόνα 8: Σχέση του μήκους δεσμού M-O (M= Li, Na, K, Rb) με την ιοντική ακτίνα σε σειρά υβριδικών ενώσεων M-HPAA.

1.6 Σύγκριση μεταλλοφωσφονικών και μεταλλοκαρβοξυλικών υλικών

Στην παγκόσμια βιβλιογραφία παρατηρείται πολυπληθέστερος όγκος δεδομένων για μεταλλοκαρβοξυλικά υλικά σε σύγκριση με τα μεταλλοφωσφονικά, εξαιτίας της πληθώρας πολυκαρβοξυλικών υποκαταστατών (είτε εμπορικά διαθέσιμων, ή συνθετικών) των πρώτων. Από πλευράς χημείας συναρμογής, υπάρχουν μερικά στοιχεία που αξίζει να μελετηθούν πιο προσεκτικά:

α) Στα μεταλλοφωσφονικά υλικά το άτομο του P είναι συνδεδεμένο με 3 άτομα O σε σύγκριση με τα μεταλλοκαρβοξυλικά όπου το κεντρικό άτομο C είναι συνδεδεμένο με δύο με αποτέλεσμα τη δημιουργία περισσότερων θέσεων συναρμογής. Επίσης, ο P των φωσφονικών έχει τετραεδρική γεωμετρία, ενώ ο C των καρβοξυλικών, επίπεδη. Ο συνδιασμός αυτών των δομικών χαρακτηριστικών παράγει πολυμερικά υλικά συναρμογής με δραματικές δομικές διαφορές, όπως θα αναλυθεί εκτενέστερα παρακάτω.

β) η φωσφονική ομάδα αποπρωτονιώνεται σε δύο διακριτά στάδια ανάλογα με το pH του διαλύματος (124) ενώ η καρβοξυλομάδα σε ένα. Άρα, οποιαδήποτε αλλαγή στο pH του διαλύματος μπορεί να οδηγήσει στη δημιουργία δομικά διαφορετικών υλικών.

γ) Η φωσφονική ομάδα μπορεί να εστεροποιηθεί εις διπλούν σε αντίθεση με την καρβοξυλική όπου μπορεί να λάβει χώρα μια μονάχα εστεροποίηση με αποτέλεσμα την αύξηση της διαλυτότητας των πρώτων υλικών (125-128)

Phosphonate-based Building Units

Εικόνα 9: Δομικές και λειτουργικές διαφορές σε καρβοξυλικά και φωσφονικά οξέα

1.7 Εφαρμογές των φωσφονικών οξέων σε υδατικά βιομηχανικά συστήματα

Η χρήση φυσικού σκληρού νερού στις διάφορες βιομηχανικές διεργασίες (αφαλάτωση, εξόρυξη πετρελαίου, ψυξη, βρασμό κλπ) προκαλεί σημαντικά προβλήματα που σχετίζονται με το σχηματισμό και την εναπόθεση (scale formation) δυσδιάλυτων αλάτων (ανθρακικού και φωσφορικού ασβεστίου, διοξειδίου του πυριτίου και πυριτικών αλάτων των Mg²⁺, Ca²⁺, Ba²⁺, Sr²⁺) στις επιφάνειες των βιομηχανικών εξοπλισμών με αποτέλεσμα τη βαθμιαία διάβρωση των μεταλλικών επιφανειών. Μολονότι το φυσικό νερό θεωρείται το καταλληλότερο ψυκτικό μέσο σε εξώθερμες βιομηχανικές διεργασίες εξαιτίας της μεγάλης του θερμοχωρητικότητας και του μικρού του κόστους μελέτες έχουν αποδείζει ότι δεν είναι ιδανικό.

Σημαντικότερη αιτία αποτελεί η παρουσία μέσα σε αυτό διαλυμένων μεταλλικών και ανόργανων συστατικών τα οποία κατά την ανακύκλωσή του (δηλαδή την ψύξη του θερμού νερού με εξάτμιση) ή κάτω από ειδικές συνθήκες συγκέντρωσης, θερμοκρασίας και pH καταβυθίζονται και επικάθονται στις επιφάνειες ανταλλαγής θερμότητας. Η σχηματική αναπαράσταση ανταλλαγής θερμότητας παρουσιάζεται στην εικόνα 10.

Η εναπόθεση αυτή εξαρτάται από τη σύσταση του νερού, από το pH του, από τη θερμοκρασία του και τη χαμηλή ταχύτητα ροής του. Πιο αναλυτικά ο σχηματισμός αυτών των ιζημάτων πάνω σε κρίσιμες επιφάνειες παρεμποδίζει την αποτελεσματική εναλλαγή θερμότητας και την ομαλή ροή του νερού, αφού μειώνεται η εσωτερική διάμετρος των σωλήνων ροής ενώ παράλληλα οδηγεί σε υπέρμετρη σπατάλη ηλεκτρικής ενέργειας λόγω της αναγκαιότητας για μεγαλύτερη πίεση του νερού.

Η χρήση φυσικού σκληρού νερού έχει επιπρόσθετα σαν αποτέλεσμα τη μόλυνση των μεταλλικών σωληνώσεων από μικροοργανισμούς που υπάρχουν σε αυτό. Η επικάθηση αυτή, γνωστή ως biofouling οδηγεί στο σχηματισμό ενός λεπτού υμενίου στη μεταλλική επιφάνεια ενισχύοντας με αυτό τον τρόπο την πιθανότητα διάβρωσης.

Εικόνα 10 : Βιομηχανικά συστήματα ψύξης (εναλλάκτες θερμότητας).

Σοβαρό πρόβλημα αποτελεί η διάβρωση στο χάλυβα (carbon steel), ενός υλικού διαδεδομένου για τη χρήση του στην κατασκευή σωληνώσεων ανταλλαγής θερμότητας εξαιτίας της μεγάλης συγκολητικής ικανότητας με τα μέταλλα και της χαμηλής του αξίας. Κατά τη διάβρωση (corrossion) πραγματοποιούνται οι παρακάτω αντιδράσεις :

Η άνοδος και η κάθοδος συνδέονται μέσω του διαλύματος με ροή ιοντικού φορτίου ενώ μέσω του μετάλλου συνδέονται με ροή ηλεκτρονίων. Διάβρωση συμβαίνει στην άνοδο. Οι παραπάνω οξειδοαναγωγές παρουσιάζονται και στο ακόλουθο σχήμα :

Εικόνα 11: Οξειδοαναγωγικές αντιδράσεις σε κυψελίδα διάβρωσης χάλυβα.

Και οι δύο αντιδράσεις προωθούν το σχηματισμό ενώσεων Fe^{2+} και Fe^{3+} στη μεταλλική επιφάνεια του χάλυβα, όπως οξείδια και υδροξείδια του σιδήρου $[Fe_3O_4, \gamma-Fe_2O_3, Fe(OH)_3]$.

<u>1.8 ΛΑΝΘΑΝΙΔΙΑ: ΒΙΟΧΗΜΕΙΑ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ</u>

Τα λανθανίδια (σπάνιες αλκαλικές γαίες) παρουσιάζουν παρόμοιες βιοχημικές ιδιότητες με το ασβέστιο εξαιτίας της παρόμοιας ιοντικής ακτίνας των ιόντων τους. Το γεγονός αυτό συναρτήσει της ανάπτυξης βιοχημικών εφαρμογών γύρω από το ιόν του ασβεστίου αποτέλεσε κινητήριο δύναμη για την ανάπτυξη των θεραπευτικών εφαρμογών τους από τις αρχές του εικοστού αιώνα. Αυτό γιατί παρουσιάζουν ισχυρή τάση πρόσδεσης στις πλευρές των βιολογικών μορίων όπου προσδένονται τα ιόντα ασβεστίου. Κατά κύριο λόγο δρουν ως ανιχνευτές ή παρεμποδιστές του τελευταίου.

Τα λανθανίδια (Z=57-Z=71) βρίσκονται άφθονα στη φύση, με τη μορφή οξειδίων. Έχουν ηλεκτρονιακή δομή [Xe]4f⁰ έως [Xe]4f¹⁴. Τα f ηλεκτρόνια σε αντίθεση με τα d δε συμβάλλουν στη δημιουργία δεσμών με άλλα ιόντα. Σε διαλύματα, τα περισσότερα λανθανίδια είναι σταθερά στη μορφή Ln^{3+} με εξαίρεση τα Ce, Eu που εμφανίζονται πρόσθετα στη μορφή Ce^{4+} , Eu²⁺. Χαρακτηριστικό των ατόμων αυτών των στοιχείων είναι η μείωση της ατομικής τους ακτίνας με αύξηση του ατομικού αριθμού, φαινόμενο γνωστό ως «λανθανιδική συστολή». Ο αριθμός συναρμογής των ιόντων τους ποικίλλει από 6-12, με συνηθέστερους 8 και 9, σε αντίθεση με το ιόν του ασβεστίου που έχει σταθερό αριθμό συναρμογής 6.

Σε γενικές γραμμές τα άλατα των λανθανιδίων δεν είναι τοξικά αφού δε διαπερνούν τις κυτταρικές μεμβράνες. Ούτε απορροφούνται αν καταποθούν. Ωστόσο, παρουσιάζεται τοξικότητα σε περίπτωση που χορηγηθούν ενδοφλεβίως με αποτέλεσμα, πτώση της πίεσης ακολουθούμενη από κατάρρευση του καρδιακού μυ. Δεδομένου του ότι χηλικές ενώσεις όπως Gd(DTPA) (DTPA=Diethylene triamine pentaacetic acid) είναι έως και 50 φορές λιγότερο τοξικές σε σχέση με το GdCl₃ συμπεραίνουμε οτι οι επιδράσεις τους στον ανθρώπινο οργανισμό εξαρτώνται τόσο από τη χημική μορφή της ένωσης, την οξειδωτική κατάσταση του μετάλλου αλλά και από τον τρόπο χορήγησης της ένωσης.

Απο τις πρώτες θεραπευτικές εφαρμογές των λανθανιδίων αποτέλεσε η γρήση συμπλόκων του οξαλικού δημητρίου με φωσφονικά οξέα ως αντιεμετικό και μετέπειτα στη χορήγηση των αλάτων των λανθανιδίων στη θεραπεία της φυματίωσης. Περαιτέρω έρευνες αποκάλυψαν αντιπηκτικές ιδιότητες, επίδραση στο ανοσοποιητικό σύστημα και αυξανόμενη παρεμποδιστική δράση στη λειτουργία των διαύλων νατρίου με αύξηση της ατομικής ακτίνας του μετάλλου. Παράλληλα παρεμποδίζεται η συστολή του λείου, καρδιακού και σκελετικού μυ ενώ συμβάλλουν στη μεταφορά ασβεστίου από τα μιτοχόνδρια και άλλα οργανίδια (βιοχημικοί ανιχνευτές). Η επίδρασή τους στη λειτουργία εξαρτώμενων από το ασβέστιο νευροδιαβιβαστών (επινεφρίνη, σερετονίνη, ντοπαμίνη) καθώς και η αντικατάσταση των ιόντων ασβεστίου στις πρωτεΐνες έχει σαν αποτέλεσμα την εμφάνιση άλλοτε παρεμποδιστικής και άλλοτε ενισχυτικής δράσης στα ένζυμα.

27

Εικόνα 12: Ηπατοπροστατευτική δράση τριχλωριούχου γαδολινίου

Η αλληλεπίδραση των λανθανιδίων με τα κύτταρα του ανοσοποιητικού συστήματος (129-130,131-133) είναι πλέον εξακριβωμένο φαινόμενο. Σε μικρές δόσεις μάλιστα ενισχύουν την ανοσοποιητική αντίδραση, στο σχηματισμό για παράδειγμα αντισωμάτων και την ενεργοποίηση λεμφοκυττάρων, ενώ μπορούν να έχουν θεραπευτική εφαρμογή όπως στη ρευματοειδή αρθρίτιδα, στην αθηροσκλήρωση στη νόσο Duchenne (134) και σε ασθένειες του ήπατος.

Η αντιμικροβιακή δράση των αλάτων των λανθανιδίων είναι γνωστή από τα τέλη του 19^{ου} αιώνα (135), το γεγονός αυτό πυροδότησε την έρευνα για το σχεδιασμό και τελικά τη χρήση φαρμακευτικών σκευασμάτων τους. Χαρακτηριστικό παράδειγμα αποτελεί το Flammacerium (136) που αντικατέστησε άλλα ακριβότερα βιοσυνθετικά προιόντα (137) σε περιπτώσεις εγκαυμάτων τρίτου βαθμού όπου η εκδήλωση σηψαιμίας και η δυσλειτουργία του ανοσοποιητικού συστήματος οδηγεί τελικά σε σύνδρομο πολυοοργανικής ρήξης με αναπόφευκτο αποτέλεσμα την απεβίωση του ασθενούς.

Οι σύμπλοκες ενώσεις των λανθανιδίων χρησιμοποιούνται ως παράγοντες αντίθεσης στην απεικόνιση όγκων (contrast imaging agents) στο μαγνητικό τομογράφο (MRI-Magnetic Resonance Imaging) καθώς επίσης και στη θεραπεία τους (129, 130, 138, 139). Αξιοσημείωτο παράδειγμα αποτελεί η χρήση των σύμπλοκων ενώσεων των λανθανιδίων με τις τεξαφυρίνες (texaphyrins) (140,141). Συγκεκριμένα, το σύμπλοκο Gd-texaphyrin εφαρμόζεται στη χημειοθεραπεία και τη ραδιοθεραπεία του καρκίνου εξαιτίας των οξειδοαναγωγικών ιδιοτήτων που παρουσιάζει (140,142).

28

Τέλος, τα σύμπλοκα αυτά χρησιμοποιούνται στην αντιμετώπιση της υπερφωσφαταιμίας (hyperphosphatemia) των νεφρών (143).

<u>1.9 N-(ΦΩΣΦΟΝΟΜΕΘΥΛΟ)IMINOΔΙΑΚΕΤΙΚΟ ΟΞΥ [PMIDA N-</u> (phosphonomethyl)iminodiacetic Acid]

To Pmida ανήκει στην κατηγορία των μέθυλοφωσφονικών οξέων, είναι ένα μονοφωσφονικό οξύ με δύο επιπλέον καρβοξυλικές ομάδες πέραν της φωσφονικής.

Εικόνα 13 : N-(phosphonomethyl)iminodiacetic acid

Είναι λευκό, κρυσταλλικό στερεό ελάχιστα διαλυτό στο νερό και αδιάλυτο στους περισσότερους οργανικούς διαλύτες. Έχει μοριακό τύπο $C_5H_{10}NO_7P$. Το μόριο είναι γνωστο στη βιβλιογραφία ως H4pmida και χρησιμοποιείται ως επι το πλείστον ως ενδιάμεσο στην παρασκευή αποτελεσματικών ζιζανιοκτόνων. Πιο συγκεκριμένα χρησιμοποιήθηκε για πρώτη φορά ως πρόδρομος ένωση στην παρασκευή της ένωσης glyphosate, κύριο συστατικό του ζιζανιοκτόνου Roundup® το 1974.

Το Pmida έχει την ικανότητα να συναρμόζεται εύκολα με μεγάλο αριθμό μεταλλικών ιόντων εξαιτίας των τριών οξυγονούχων ομάδων (μια φωσφονική και δύο καρβοξυλικές) και του ατόμου Ν εξαιτίας τούτου δημιουργούνται πολλαπλές θέσεις πρόσδεσης με τελικό αποτέλεσμα την αύξηση της διαστατικότητας (dimensionality) της δομής. Ο συνηθέστερος τρόπος συναρμογής περιλαμβάνει τη δημιουργία πενταμελούς δακτυλίου στον οποίο το κεντρικό άτομο του Ν λειτουργεί ως δότης ηλεκτρονίων. Παρά το γεγονός ότι ο τρόπος αυτός οδηγεί σε εξαιρετικά σταθερές ενώσεις ωστόσο αφήνει κενές θέσεις συναρμογής στη σφαίρα του μεταλλικού ιόντος, γεγονός που επιτρέπει είτε τη συναρμογή άλλων υποκαταστατών (auxiliary ligands) π.χ 4,4'-διπυριδίνη ή τη συναρμογή καρβοξυλικών ή φωσφονικών ομάδων απο γειτονικά μόρια υποκαταστατη. Αυτό έχει σαν αποτέλεσμα να παρατηρούνται δύο

είδη δεσμών N-M-O phosphonate (θ) και N-M-O carboxylate (φ) [71,6< θ <89,6 και 62,1<φ<86,4 αντίστοιχα]. Αξίζει να παρατηρηθεί ότι οι μικρότερες τιμές και για τα δύο είδη γωνιών παρατηρούνται σε δομές που περιλαμβάνουν ιόντα με μικρές ιοντικές ακτίνες (Y^{3+}, Er^{3+}) (144) ή σε πυκνά πακεταρισμένες δομές όπως $[Pb_2(pmida)]$ ·1.5H₂O (34). OI μεγαλύτερες γωνίες φ εμφανίζονται σε δομές στις οποίες οι καρβοξυλικές ομάδες δημιουργούν syn, anti γέφυρες με γειτονικά μεταλλικά χαρακτηριστικότερο παράδειγμα κέντρα με τn δομή $[Cu_2Nd_2(pmida)_2(C_2O_4)(H_2O)_6]$ ·3.5H₂O (146). Αντίστροφα οι μεγαλύτερες θ γωνίες εμφανίζονται σε δομέςόπου οι φωσφονικές ομάδες γεφυρώνουν πολλά μεταλλικά κέντρα.

Δομές στις οποίες μία ή δύο θέσεις συναρμογής στον υποκαταστάτη δεν ειναι κατειλημμένες είναι σπανιότερες στη βιβλιογραφία με παράδειγμα το μονοδιαστατο (1D) πολυμερές συναρμογής [Fe(H2PMIDA)(H2O)2] (147). Στο παρακάτω σχήμα παρουσιάζονται οι συνηθέστεροι τρόποι συναρμογής του με μεταλλικά ιόντα.

Εικόνα 14: Τρόποι συναρμογής M-Pmida. Τα επίπεδα πρωτονίωσης ων υποκαταστατών καθώς επίσης και οι γέφυρες με γειτονικά μεταλλικά κέντρα δεν παρουσιάζονται χάρην απλουστεύσεως.

Άλλος τρόπος συναρμογής περιλαμβάνει την απευθείας σύνδεση της φωσφονικής ομάδας με το μεταλλικό ιόν όπως για παράδειγμα στο διμερές $[Al_2(pmida)_2(OH)_2]^{4-}$ (148). Ενώ στις προαναφερθείσες περιπτώσεις το άτομο του αζώτου είναι πρωτονιωμένο (150-151), υπάρχουν και εξαιρέσεις όπως για παράδειγμα στην ένωση $[Mn(H_2O)(H_2pmida)]$ (149) όπου το H_2PMIDA^{2-} δε συναρμόζεται με κατιόντα μετάλλων αλλά μέσω των ομάδων συναρμογής δημιουργεί δεσμούς με πολλαπλά γειτονικά κέντρα Mn^{2+} οδηγώντας τελικά σε σχηματισμό τρισδιάστατου σκελετού.

Η σύνθεση του Pmida περιγράφηκε για πρώτη φορά από τους Moedritzer και Irani. Από την απεικόνιση του μορίου στις τρείς διαστάσεις είναι εύλογο ότι η διαμόρφωση του μορίου καθορίζεται από δεσμούς υδρογόνου των οποίων τα μήκη παρουσιάζονται στον ακόλουθο πίνακα :

D-HA	DA (A)	DHA < (deg)
(P-)O11-H11O12	2.607 (2)	174
(C-)O21-H21013	2.631 (2)	174
(C-)O31-H31012	2.594 (2)	159
N-H013	2.761 (2)	159

ΜΗΚΗ ΔΕΣΜΩΝ ΥΔΡΟΓΟΝΟΥ

ΠΙΝΑΚΑΣ 1: Μήκη δεσμών Η στο μόριο του Pmida

Όπως παρατηρούμε το οξύ λειτουργεί ως zwitterion που σχηματίζεται από τη μεταφορά ενός πρωτονίου από τη φωσφονική ομάδα στο άτομο του Ν. Κατά συνέπεια, σχηματίζεται ένα διμερές (Ο...Ο 2,61 A) όπου κάθε καρβοξυλική ομάδα προσδένεται με δεσμούς υδρογόνου με τα οξυγόνα της φωσφονικής ομάδας προς σχηματισμό τρισδιάστατου δικτύου.

Πιο συγκεκριμένα, κατά τη δημιουργία του zwitterion το O12 της φωσφονικής ομάδας αποκτά αρνητικό φορτίο με συνέπεια το διμερισμό του μορίου και το σχηματισμό των δεσμών O11-H...O12. Παράλληλα, κάθε καρβοξυλική ομάδα σχηματίζει δεσμούς του τύπου C-O-H...O-P με τα O12 και O13 των φωσφονικών οξέων. Το δίκτυο δεσμών υδρογόνου ολοκληρώνεται με δεσμό του τύπου N-H...O13 ανάμεσα στη N-H ομάδα και στον P-O13 γειτονικού μορίου. Αξίζει να σημειωθεί ότι όλοι οι δεσμοί παρουσιάζουν σχετικά μικρό μήκος, χαρακτηριστικό των δεσμών υδρογόνου στα φωσφονικά οξέα. Τέλος, οι γωνίες των δεσμών γύρω από το άτομο του N κυμαίνονται από 108,9 έως 114,5 γεγονός που υποδηλώνει την τετραεδρική συμμετρία του μορίου.

Εικόνα 17: Διάγραμμα ORTEP της ένωσης H2PMIDAH2 κατά τον a-άξονα

<u>1.10 Αίθυλοδιάμινο-τετράκις(μεθυλενοφωσφονικό οξύ) (EDTMP :</u> ethylenediamine tetrakis (methylene-phosphonic acid)</u>

Το EDTMP ανήκει στην κατηγορία των αμινομέθυλοφωσφονικών οξέων, έχει τέσσερις φωσφονικές ομάδες στο μόριό του και θεωρείται χηλικός υποκαταστάτης. Είναι φωσφονικό ανάλογο του EDTA. Έχει 8 όξινα υδρογόνα, δύο από κάθε φωσφονική ομάδα ενώ τα άτομα του αζώτου παραμένουν πρωτονιωμένα σε pH< 11.

Εικόνα 18 Δομή ΕΟΤΜΡ

Η σύσταση και το ποσοστό των ανιονικών ειδών συναρτήσει του pH και της συνολικής ιονικής ισχύος του διαλύματος παρουσιάζονται στο παρακάτω σχήμα (153).

Εικόνα 19 Η επίδραση του pH στην αποπρωτονίωση του EDTMP

Σε pH < 4 κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη με αποτέλεσμα να έχει συνολικό φορτίο «-2». Το EDTMP·H₂O κρυσταλλώνει σε μονοκλινές σύστημα

με P2₁/n με a= 10.105 Å, b= 14.898 Å, c= 11.168 Å, β = 95.01(2)° V=1974.8 (9) Å³ και Z=4. Η δομή του είναι μοριακή και σταθεροποιείται από δίκτυο δεσμών H.

Εικόνα 20: ασύμμετρη μονάδα στην κρυσταλλική δομή του EDTMO·H2O

Περαιτέρω μελέτες για τη συμπεριφορά του υποκαταστάτη κατέληξαν στον προσδιορισμό της κρυσταλικής δομής του άνυδρου EDTMP από τον Polyanchuk (154).

Αν κοιτάξουμε τα γεωμετρικά χαρακτηριστικά των φωσφονικών ομάδων θα παρατηρήσουμε ότι εξ' αιτίας της βασικότητας του ατόμου Ν λαμβάνει χώρα εσωτερική πρωτονίωση. Δύο πρωτόνια από αντιδιαμετρικά αντίθετες φωσφονικές ομάδες πρωτονιώνουν τα άτομα Ν με αποτέλεσμα το μόριο του EDTMP να περιγράφεται ως zwitterion με δύο πρωτονιωμένες και δύο αποπρωτονιωμένες φωσφονικές ομάδες. Τα μήκη των δεσμών Ρ-Ο στην πρωτονιωμένη φωσφονική ομάδα κατατάσσονται σε δύο ομάδες, μεγάλου μήκους και μικρού μήκους στην ομάδα P=O ενώ οι δεσμοί μεγάλου μήκους στην ομάδα P-OH. Στις μονοαποπρωτονιωμένες φωσφονικές ομάδες παρουσιάζονται δεσμοί μικρού, μεγάλου και ενδιάμεσου μήκους. Αντίστοιχα οι δεσμοί μικρού μήκους ανήκουν στην ομάδα P=O ενώ οι δεσμοί μεγάλου μήκους στην ομάδα P-OH.

Εικόνα 21: Κρυσταλλική δομή του άνυδρου EDTMP.

1.11 HEDP – Hydroxyethylidene 1-1-diphosphonic acid

Το HEDP είναι ένας οργανοφωσφονικός παρεμποδιστής καταβύθισης κρυσταλλικών αλάτων (scale inhibitor), αλλά και μεταλλικής διάβρωσης (corrosion inhibitor). Μπορεί να σχηματίσει σταθερές σύνθετες χηλικές ενώσεις με ιόντα Fe, Cu και Zn ή να διαλύσει τα οξειδωμένα υλικά από τις επιφάνειες των μετάλλων αυτών. Παρουσιάζει εξαιρετικές παρεμποδιστικές ιδιότητες σε θερμοκρασίες μικρότερες των 250 °C και έχει καλή χημική σταθερότητα σε υψηλές τιμές του pH. Παράλληλα παρουσιάζει αντοχή στην υδρόλυση ενώ δύσκολα αποσυντίθεται υπό φυσιολογικές συνθήκες φωτός και θερμότητας. Η αντοχή του στις οξειδώσεις από οξέα, βάσεις και οξειδωτικά υπογλωριώδες νάτριο) είναι καλύτερη από άλλων (π.χ. οργανοφωσφορικών οξέων. Μπορεί να αντιδράσει με μεταλλικά ιόντα σε υδατικά συστήματα και να σχηματίσει χηλικά σύμπλοκα, ειδικότερα με το ασβέστιο. Έτσι, χαρακτηρίζεται για τις καλές αντιδιαβρωτικές ιδιότητες του και παρεμποδίζει τον σχηματισμό δυσδιάλυτων αλάτων σε συστήματα βιομηχανικόυ ψυκτικού νερού. Όταν

προστεθεί σε άλλα παρασκευάσματα χημικών παρεμποδιστών στο βιομηχανικό νερό, παρουσιάζει πολύ καλή συνέργεια με αυτά.

Το στερεό HEDP έχει την μορφή άσπρης κρυσταλλικής σκόνης, κατάλληλης για χρήση σε ψυχρές και παγωμένες περιοχές. Μάλιστα, λόγω της υψηλής του καθαρότητας, μπορεί να χρησιμοποιθεί ως καθαριστικός παράγοντας/μέσον σε ηλεκτρονικά αντικείμενα, και ως πρόσθετο σε καθημερινά χημικά.

Επιπλέον, χρησιμοποιείται σε βραστήρες χαμηλής πίεσης, στη χημική βιομηχανία, στη μεταλλουργία, στη λίπανση κ.α. Στην υφαντική βιομηχανία το HEDP χρησιμοποιείται ως σταθεροποιητής του βαψίματος και βελτιωτικός παράγοντας.

Εικόνα 22: Δομή ΗΕDΡ

Στο εμπόριο το HEDP διατίθεται είτε ως άχρωμο παχύρευστο υγρό, είτε ως άσπρη κρυσταλλική σκόνη.

Αναπαριστώντας τον υποκαταστάτη ως LH₄, με σταδιακή αποπρωτονίωση των φωσφωνικών ομάδων του προκύπτουν τα παραγόμενα είδη που εμφανίζονται στην εικόνα 23.

Εικόνα 23: Καμπύλη αποπρωτονίωσης του HEDP στους 25 °C.
1.12 AMP [άμινο-τρις(μεθύλενοφωσφονικό) οξύ, aminotris-(methylene phosphonic) acid)]

Το AMP ανήκει στην κατηγορία των αμινομεθυλενοφωσφονικών οξέων και είναι ένα τριφωσφονικό οξύ (Εικόνα 23). Η κατηγορία αυτή των πολυφωσφονικών οξέων έχει την ιδιαιτερότητα ότι η παρουσία της πρωτονιωμένης τριτοταγούς αμινομάδας προσδίδει ένα θετικό φορτίο στο μόριο που θα πρέπει να ληφθεί υπ' όψιν στην καταμέτρηση των επί μέρους φορτίων ώστε να υπολογιστεί το τελικό φορτίο του μορίου. Η ομάδα N-H⁺ αποπρωτονιώνεται σε πολύ υψηλές τιμές pH (>10). Το AMP είναι στερεό κρυσταλλικό, λευκό, διαλυτό στο νερό και αδιάλυτο σε οργανικούς διαλύτες. Είναι σταθερό στην παρουσία άλλων οξέων ή βάσεων, σε ακραίες τιμές pH και σε θερμοκρασία T<200°C (σε T>200°C διασπάται σε διάφορα προϊόντα) (155). Έχει χαμηλή τοξικότητα, δεν συσσωρεύεται σε βιολογικούς οργανισμούς ενώ είναι πλήρως βιοαποικοδομήσιμο παρουσία φωτός και μεταλλικών ιόντων όπως Mn (156). Στο εμπόριο κυκλοφορεί ως υδατικό διάλυμα ~50% σε AMP χρώματος υποκίτρινο. Θεωρείται φθηνό αντιδραστήριο και έχει διάφορες ενδιαφέρουσες χημικές ιδιότητες και εφαρμογές.

Εικόνα 24: Δομή ΑΜΡ.

Το AMP χρησιμοποιείται συστηματικά στη βιομηχανία ως παρεμποδιστής καταβύθισης και διάβρωσης στην επεξεργασία του φυσικού νερού, τόσο σε βιομηχανικούς πύργους ψύξης-θέρμανσης όσο και σε πηγάδια εξόρυξης πετρελαίου. Μπορεί να αποτελέσει ιδανικό χηλικό υποκαταστάτη για πολλά είδη κατιόντων

σχηματίζοντας υδατοδιαλυτά πολυμερή (157,158). Επίσης στην στερεά φάση μπορεί να δημιουργήσει δίκτυο δεσμών υδρογόνου (159) (Εικόνα 24).

Εικόνα 25: Δεσμοί υδρογόνου στη δομή του ΑΜΡ.

Το AMP κρυσταλλώνει σε μονοκλινές σύστημα $P2_1/c$ με a = 12.050 Å, b = 7.474 Å, c = 11.868 Å, β =104°, Z = 4. Η δομή του είναι πολυμερής και σταθεροποιείται από ένα πλέγμα ισχυρών διαμοριακών δεσμών Η (160).

Στο μόριο του AMP (στη μορφή του οξέος) η μία από τις τρείς φωσφονικές ομάδες είναι μονοαποπρωτονιωμένη με το πρωτόνιο να βρίσκεται στο άτομο του Ν. Κατά συνέπεια ο σωστός συντακτικός τύπος του AMP είναι $^+$ HN(CH₂PO₃H₂)₂(CH₂PO₃H).

Εικόνα 26 Αποπρωτονίωση του ΑΜΡ.

Η αποπρωτονίωση του AMP λαμβάνει χώρα σε πέντε διαδοχικά βήματα οδηγώντας τελικά στο ανιονικό είδος $[HN(CH_2PO_3)_3]^{5-}$, HL^{5-} . Η αποπρωτονίωση του υδρογόνου που είναι ενωμένο στο άτομο του Ν συμβαίνει μόνο σε πολύ υψηλές τιμές

pH (161). Η σύσταση και το ποσοστό των ανιονικών ειδών του AMP σε υδατικό διάλυμα είναι συνάρτηση του pH και της συνολικής ιονικής ισχύος του διαλύματος (Εικόνα 26). Στον Πίνακα 2 δίνονται οι σταθερές αποπρωτονίωσης του AMP (162).

Εικόνα 27: Αποπρωτονίωση ΑΜΡ ανάλογα με την τιμή ΡΗ.

pK _{a1}	pK _{a2}	pK _{a3}	pK _{a4}	pK _{a5}	pK _{a6}
0.5 (0.2)	1.2 (0.1)	4.39 (0.04)	5.48 (0.02)	6.64 (0.04)	12.07 (0.03)

Πίνακας 2 : Σταθερές αποπρωτονίωσης pKa (25 0 C) του AMP (H₆L) με βάση ποτενσιομετρικές τιτλοδοτήσεις σε C = 50 mmol/l AMP, 1M NaCl και τιτλοδότη 1M NaOH.

1.13 Σκοπός εργασίας

Η σπουδαία πρόοδος που έχει επιτευχθεί τα τελευταία χρόνια στα πεδία σχεδιασμού των κρυστάλλων και της χημείας υλικών εξαιτίας της χρήσης φωσφονικών οξέων έχει ευρύτερο αντίκτυπο σε τεχνολογικές και βιομηχανικές εφαρμογές όπως η κατασκευή κυττάρων καύσης (fuel cells), η δημιουργία μεμβρανών ανταλλαγής πρωτονίων (PEM), η κατασκευή αισθητήρων και πορώδων υλικών κατάλληλων για προσρόφηση και αποθήκευση αερίων.

Στην παρούσα εργασία έγινε συστηματική μελέτη βάση της σύνθεσης κρυσταλλικών υλικών με υποκαταστάτες τα HPAA, HEDP, PMIDA, ATMP με έμφαση στην ομάδα των λανθανιδίων και των αλκαλικών γαιών. Η απομόνωση-κρυστάλλωση των εν λόγω υλικών έγινε σε συνθήκες περιβάλλοντος και τιμές pH < 2.0 για τα λανθανίδια και μεταξύ των τιμών pH=1.5-4.5 για τις αλκαλικές γαίες, ανάλογα τον εκάστοτε υποκαταστάτη. Ακολούθησε χαρακτηρισμός αυτών των ενώσεων και ιδιαίτερα για τα Ln-HPAA που απεδείχθησαν μικροπορώδη έγινε

μελέτη ιδιοτήτων που αφορούσαν την προσρόφηση αερίων διοξειδίου του άνθρακα και αζώτου, μετρήσεις πρωτονιακής αγωγιμότητας και φωταύγειας.

<u>ΚΕΦΑΛΑΙΟ 2</u>

ΜΕΘΟΛΟΙ ΧΑΡΑΚΤΗΡΙΣΜΟΥ-ΒΑΣΙΚΗ ΘΕΩΡΙΑ- ΟΡΓΑΝΟΛΟΓΙΑ

2.1 Εισαγωγή

Ο ουσιαστικός σκοπός της παρούσας εργασίας ήταν η σύνθεση, ο χαρακτηρισμός και η εύρεση πιθανών εφαρμογών των συντιθέμενων μεταλλοφοσφωνικών υλικών. Για την επίτευξη αυτού του σκοπού ακολουθήθηκαν συνθέσεις σε θερμοκρασία δωματίου καθώς επίσης και σύνθεση μέσω υδρογελών. Τα προκύπτοντα υλικά υποβλήθηκαν σε διάφορες μέθοδους χαρακτηρισμού και ανάλυσης, όπως περίθλαση με ακτίνες X (Xray powder diffraction και single crystal X-ray diffraction), φασματοσκοπία υπερύθρου (FT-IR), ηλεκτρονική μικροσκοπία (SEM), απορρόφηση αερίων (gas absorption), θερμοσταθμική ανάλυση (TGA), EDS και πυρηνικός μαγννητικός συντονισμός (NMR).

2.2. Βασική κρυσταλλογραφία

2.2.1 Κρυσταλλικές ενώσεις

Η κρυσταλλική δομή μπορεί να περιγραφεί ως την περιοδική τοποθέτηση ατόμων στις τρείς διαστάσεις του χώρου. Η περιοδική αυτή τοποθέτηση μπορεί να αναπαρασταθεί από τη μικρότερη επαναλαμβανόμενη δομική μονάδα που ονομάζεται μοναδιαία κυψελίδα (*unit cell*).

Η μοναδιαία κυψελίδα χαρακτηρίζεται από έξι βασικές παραμέτρους, τα μήκη των πλευρών της (a, b, c) και τις τρείς γωνίες μεταξύ τους (α, β, γ). Κατά σύμβαση ορίζουμε ως α τη γωνία μεταξύ των ακμών b και c, β τη γωνία μεταξύ των ακμών a και c και γ τη γωνία μεταξύ των ακμών a και b.

2.2.2 Τα 7 κρυσταλλικά συστήματα

Υπάρχουν εφτά επιτρεπόμενα κρυσταλλικά συστήματα στον τρισδιάστατο χώρο. Κάθε κρυσταλλικό σύστημα χαρακτηρίζεται από την παρουσία ή απουσία συμμετρίας (σημειακή συμμετρία και στοιχεία συμμετρίας χώρου) όπως φαίνεται και στον πίνακα 3.

Αν θεωρήσουμε την επανάληψη των ατόμων, μορίων ή ιόντων στην κρυσταλλική ένωση ως μία αλληλουχία σημείων τότε έχουμε το σχηματισμό του κρυσταλλικού πλέγματος (*lattice*) όπου κάθε σημείο αναφέρεται ως πλεγματικό σημείο (*lattice point*). Προς αποφυγή παρεξηγήσεων αξίζει να αναφερθεί ότι τα πλεγματικά σημεία και τα άτομα στην κρυσταλλική ένωση δε συμπίπτουν.

Η διαφορετική τοποθέτηση των πλεγματικών σημείων στη μοναδιαία κυψελίδα δίνει τέσσερις βασικούς τύπους πλεγμάτων P, F,I,C όπως φαίνεται και από το σχήμα.

Crystal	Lengths	Angles	Defining symmetry
system			
Triclinic	$a \neq b \neq c$	$\alpha\neq\beta\neq\gamma$	None
Monoclinic	$\mathbf{a} \neq \mathbf{b} \neq \mathbf{c}$	$\alpha = \beta = 90^\circ \ \gamma \ge 90^\circ$	Twofold axis or mirror plane or
			inverse twofold axis
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	Three orthogonal twofold or
			inverse twofold axis
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	One fourfold or inverse fourfold
			axis
Trigonal	a = b = c	$\alpha=\beta=\gamma\leq 120^\circ$	One threefold or inverse
			threefold axis
Hexagonal	$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$	$\alpha = \beta = 90^{\circ} \gamma =$	One sixfold or inverse sixfold
		120°	axis
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	Four threefold axes

Πίνακας 3:	Τα 7	Κρυσταλλικά	συστήματα.
------------	------	-------------	------------

Bravais Lattice	Crystal System		
Р	Triclinic, Monoclinic, Orthorhombic, Tetragonal, Trigonal,		
	Hexagonal, Cubic		
С	Monoelinie, Orthorhombie		
Ι	Orthorhombic, Tetragonal, Cubic		
F	Orthorhombic, Cubic		
Symmetry Element	Symbol		
Centre of inversion	-1		
Mirror plane	m(≡ -2)		
Glide plane	a, b, c, n, d		
Rotation axis	2, 3, 4, 6		
Screw axis	2 ₁ , 3 ₁ , 3 ₂ , 4 ₁ , 4 ₂ , 4 ₃ , 6 ₁ , 6 ₂ , 6 ₃ , 6 ₄ , 6 ₅		
Inversion axis	-3, -4, -6		

Πίνακας 4: Bravais συστήματα και στοιχεία συμμετρίας.

Εικόνα 28: Πιθανά πλεγματικά σημεία. Με 'P' αναπαρίσταται η Primitive μοναδιαία κυψελίδα, H'B' δείχνει πλεγματικά σημεία τοποθετημένα στο κέντρο του επιπέδου (010), με'I'μια χςροκεντρωμένη και με 'F'μια εδροκεντρωμένη μοναδιαία κυψελίδα.

Ο συνδυασμός των εφτά κρυσταλλικών συστημάτων και των τεσσάρων lattice types

δίνει τα δεκατέσσερα πιθανά Bravais πλέγματα.

Εικόνα 29 Τα 14 Bravais συστήματα

Ο συνδυασμός όλων των πιθανών στοιχείων συμμετρίας (32) έχει σαν αποτέλεσμα τη δημιουργία 230 space groups (230 διαφορετικοί τρόποι με τους οποίους μπορούν να διευθετηθούν οι μοναδιαίες κυψελίδες στο χώρο).

Τα σύμβολα ομάδων συμμετρίας χώρου δίνουν πληροφορίες για τον τύπο του πλέγματος και στοιχεία για τη συμμετρία της μοναδιαίας κυψελίδας συναρτήσει των αξόνων χ.ψ.z.

2.2.3 Δείκτες Miller

Οι δείκτες Miller προσδιορίζουν τις οικογένειες παράλληλων επιπέδων σε μία κρυσταλλική ένωση που έχουν το ίδιο d-spacing. Πρόκειται για μία τριάδα αριθμών (h,k,l) που προκύπτουν από αντιστροφή των κλασμάτων στα σημεία τομής των αξόνων από το επίπεδο του κρυσταλλικού υλικού.

Εικόνα 30: Δείκτες Miller σε χαρακτηριστικές οικογένειες επιπέδων.

2.2.4 Περίθλαση με ακτίνες Χ

Η περίθλαση μέσω ακτίνων X (XRD) είναι μία πανίσχυρη τεχνική για την ανάλυση κρυσταλλικών υλικών που μπορεί να χρησιμοποιηθεί για πληθώρα εφαρμογών με αποτέλεσμα την εύρεση της σχέσης μεταξύ δομής και ιδιοτήτων των κρυσταλλικών υλικών. Πιο συγκεκριμένα, αποφαίνεται για την ποιοτική και ποσοτική ταυτοποίηση

κρυσταλλικών φάσεων, τον προσδιορισμό του μεγέθους και του σχήματος κρυσταλλιτών, τον προσδιορισμό της υφής στερεών, τον προσδιορισμό μονοκρυστάλλων.

Γενικά, για να λάβει χώρα περίθλαση θα πρέπει το μήκος κύματος που χρησιμοποιείται να είναι συγκρίσιμο με την κλίμακα ενδιαφέροντος. Οι ακτίνες Χ είναι ιδανικές για τον προσδιορισμό των ατόμων σε μια κρυσταλλική ένωση δεδομένου του ότι το μήκος κύματός τους συμπίπτει με τα μήκη δεσμών (1 Å) των ατόμων στα κρυσταλλικά υλικά.

<u>2.2.5 Ακτίνες Χ</u>

Οι αντίνες Χ ανακαλύφθηκαν το 1895 από τον W. Roentgen. Πρόκειται για ηλεκτρομαγνητική ακτινοβολία πολύ μικρού μήκους κύματος (1 Å) ιδανική για μελέτη κρυσταλλικών υλικών όπου οι αποστάσεις μεταξύ ατόμων είναι της ίδιας τάξης μεγέθους.

Εικόνα 31: Φάσμα ηλεκτρομαγνητικής ακτινοβολίας.

Δημιουργούνται σε μία συσκευή που αποτελείται από ένα γύαλινο σωλήνα που είναι εφοδιασμένος με δύο ηλεκτρόδια, την άνοδο και την κάθοδο. Όταν η κάθοδος θερμαίνεται εκπέμπονται ηλεκτρόνια τα οποία επιταχύνονται μέσω διαφοράς δυναμικού 10-30 keV, προς μεταλλικό στόχο (Fe, Mo, Co, Cr and Cu). Όσο μεγαλύτερη είναι η θερμοκρασία τόσο μεγαλύτερος είναι και ο αριθμός ηλεκτρονίων που εκπέμπεται ανά μονάδα χρόνου. Ο σωλήνας περιέχει αέριο σε πολύ χαμηλή πίεση (10⁻⁷ atm) ώστε να περιορίζονται οι συγκρούσεις των ηλεκτρονίων με τα μόρια του αερίου. Ακολούθως τα ηλεκτρόνια προσπίπτουν στην άνοδο με μεγάλη ταχύτητα με αποτέλεσμα την παραγωγή δύο τύπων ακτίνων X άρα και την παραγωγή δύο φασμάτων ακτίνων X :

1) καθώς τα ηλεκτρόνια χτυπούν στο μεταλλικό στόχο επιβραδύνονται, ή και πολλές φορές σταματούν με αποτέλεσμα να χάνουν ενέργεια. Το μεγαλύτερο μέρος αυτής της ενέργειας μετατρέπεται σε θερμότητα ενώ το υπόλοιπο ισούται με την ενέργεια του φωτονίου που εκπέμπεται. Εξαιτίας του ότι τα ηλεκτρόνια κατά τις κρούσεις τους μπορεί να χάσουν οποιοδήποτε μέρος της κινητικής τους ενέργειας συμπεραίνουμε ότι τα φωτόνια που παράγονται μπορούν να έχουν οποιαδήποτε τιμή ενέργειας, μικρότερη ή ίση της αρχικής ενέργειας του ηλεκτρονίου, με αποτέλεσμα το φάσμα να είναι συνεχές.

2) τα κινούμενα ηλεκτρόνια συγκρούονται με τα άτομα του υλικού της ανόδου με αποτέλεσμα τα άτομα να διεγείρονται. Ένα ηλεκτρόνιο από τις εσωτερικές στιβάδες μεταπηδά σε άλλη επιτρεπόμενη (σύμφωνα με την αρχή Aufbau) τροχιά μεγαλύτερης ενέργειας. Η κενή θέση του ηλεκτρονίου μπορεί να συμπληρωθεί από ένα ηλεκτρόνιο του ατόμου που βρίσκεται στις εξωτερικές στιβάδες με ταυτόχρονη εκπομπή ενός φωτονίου. Επειδή οι επιτρεπόμενες τιμές της ενέργειας του ατόμου είναι καθορισμένες, το ίδιο θα ισχύει και για τις συχνότητες των φωτονίων που εκπέμπονται με αποτέλεσμα το προκύπτον φάσμα να αποτελείται από γραμμές, χαρακτηριστικές του υλικού της ανόδου. Αξίζει να αναφερθεί ότι ο τρόπος αυτός παραγωγής ακτίνων Χ προέρχονται από άτομα με σχετικά μεγάλο ατομικό αριθμό (Z>20)

Στα πειράματα περίθλασης χρησιμοποιείται κατά κύριο λόγο ο δεύτερος τρόπος παραγωγής ακτίνων X ενώ ο μεταλλικός στόχος είναι κατασκευασμένος απο Cu. Όταν τα κινούμενα ηλεκτρόνια προσπίπτουν στο μεταλλικό στόχο γίνεται ιονισμός ενός ηλεκτρονίου της 1s υποστοιβάδας (στιβάδα K) με αποτέλεσμα τη δημιουργία κενής θέσης. Η συμπλήρωση αυτής της θέσης γίνεται από κάποιο από τα ηλεκτρόνια μιας εξωτερικής στιβάδας (2p ή 3p) με αποτέλεσμα την απελευθέρωση ακτινών X.

Εικόνα 32: Σχηματική αναπαράσταση της δημιουργίας Κα ακτίνας Χ. Το κόκκινο βέλος δείχνει την κίνηση των el από στιβάδα υψηλότερης σε στιβάδα χαμηλότερης ενέργειας.

Στην περίπτωση του Cu η μετάπτωση 2p \rightarrow 1s χαρακτηρίζεται ως Ka με μήκος κύματος λ = 1.5418 A (L – K μετάβαση) ενώ η μετάπτωση

3p → 1s χαρακτηρίζεται ως K_β με μήκος κύματος $\lambda = 1.3922$ A (M – K μετάβαση). Η μετάπτωση K_α είναι συνηθέστερη από την K_β και εμφανίζεται σε πολλές περιπτώσεις ως διπλή με K_{α1} = 1,54051 A και K_{α2} = 1,54433 A εξαιτίας του ότι υπάρχουν δύο διαφορετικές ενεργειακές καταστάσεις για τις δύο πιθανές spin καταστάσεις του 2p ηλεκτρονίου.

Εικόνα 33: Κορυφές που οφείλονται στις μεταπτώσεις Κα και Κ_{β.}

2.2.6 Περίθλαση ακτίνων Χ σε κρυσταλλικά συστήματα

Τα συνηθέστερα μήκη κύματος που χρησιμοποιούνται σε πειράματα περίθλασης είναι 0,71 (Mo) και 1,54 A (Cu). Το 1913 ο Max Von Laue διατύπωσε την ιδέα ότι μια

σειρά ατόμων μπορεί να παίξει το ρόλο φράγματος περιθλάσεως για ακτίνες Χ. Η ορθότητα της σκέψης του αποδείχτηκε πειραματικά αν και οι εικόνες περίθλασης που λαμβάνονται με τον τρόπο αυτό είναι πολύ πιο σύνθετες εξαιτίας της τρισδιάστατης δομής του κρυστάλλου. Μελετώντας προσεκτικά τη δομή ενός κρυστάλλικού υλικού πχ. του NaCl θα παρατηρήσουμε ότι τα ιόντα βρίσκονται σε ισαπέχοντα επίπεδα με τα οποία η προσπίπτουσα ακτινοβολία σχηματίζει γωνία θ.

Εικόνα 34: Αναπαράσταση της κρυσταλλικής ένωσης NaCl

Ακτίνες Χ ανακλώνται από κάθε επίπεδο του κρυστάλλου ενώ η καλυφθήσα διαδρομή αυξάνει όσο μεγαλώνει η απόσταση του επιπέδου απο την επιφάνεια του κρυστάλλου όπως φαίνεται και απο την εικόνα 35. Η διαφορά αυτή των δύο δεσμών είναι 2dsinθ.

Εικόνα 35: Νόμος του Bragg.

Όταν η διαφορά αυτή είναι ακέραιο πολλαπλάσιο του μήκους κύματος λ έχουμε ενισχυτική συμβολή (ανακλάσεις από σειρά παράλληλων επιπέδων), μέγιστο ανακλώμενου κύματος και ισχύουσα συνθήκη $n\lambda = 2d \sin \theta$. Η συνθήκη αυτή είναι γνωστή ως νόμος Bragg και δίνει την απόσταση των ατομικών επιπέδων του κρυστάλλου d συναρτήσει του μήκους κύματος της ακτίνας X λ, της τάξης ανάκλασης n και της γωνίας ανάκλασης θ.

Η ένταση των ανακλάσεων ποικίλλει και γίνεται ασθενέστερη όσο ο παράγοντας σκέδασης f, που είναι ανάλογος του λόγου sin θ/λ αυξάνεται (υψηλότερες γωνίες σκέδασης). Σε αυτή την περίπτωση, η αλληλεπίδραση των ακτίνων X με ηλεκτρόνια που βρίσκονται απέναντι σε ένα άτομο οδηγεί σε καταστρεπτική συμβολή των ακτίνων X με αποτέλεσμα τη μείωση της έντασης των ακτινών σε υψηλές γωνίες θ. Στην περίπτωση αυτή η αύξηδη της γωνίας ανάκλασης έχει σαν αποτέλεσμα την κατανομή της έντασης σε «κύκλο» μεγαλύτερης ακτίνας με αποτέλεσμα ένας σημειακός ανιχνευτής να βλέπει μικρότερη ένταση.

Εικόνα 36: Σχηματική αναπαράσταση της πειραματικής διάταξης.

2.2.6 Περίθλαση ακτίνων Χ σε μικροκρυσταλλικά δείγματα

Τα δείγματα που αναλύθηκαν στην παρούσα μεταπτυχιακή εργασία ήταν στη πλειονότητά τους πολυκρυσταλλικές σκόνες αποτελούμενες από μικροσκοπικούς κρυστάλλους. Μικρή ποσότητα από το υλικό, εκτίθεται σε ακτίνες X και δεδομένου του ότι οι κρυσταλλίσκοι βρίσκονται σε τυχαίες κατευθύνσεις σε σχέση με την ακτίνα, ένα μικρό μόνο ποσοστό τους είναι σωστά προσανατολισμένη με αυτή.

Εικόνα 37: Τυχαίες κατευθύνσεις κρυσταλλίσκων, ένα μικρό ποσοστό μονάχα είναι σωστά προσανατολισμένο.

Αυτό έχει σαν αποτέλεσμα τη δημιουργία «κώνου» γύρω από την κατεύθυνση της ακτίνας η επιφάνεια του οποίου προέρχεται από την αλληλεπίδραση της πρώτης με μία συγκεκριμένη οικογένεια επιπέδων του κρυστάλλου. Σε ένα τυπικό περιθλασίμετρο πολυκρυσταλλικής σκόνης (powder diffractometer) οι ακτίνες X καταγράφονται από ανιχνευτή που καταγράφει γωνίες $2\theta = 1-3^0$ έως 90^0 .

Εικόνα 38: Τυπικό περιθλασίμετρο για ανάλυση μικροκρυσταλλικών δειγμάτων.

Κάθε κώνος αντιστοιχεί σε μία κορυφή του διαγράμματος περίθλασης και είναι δυνατό να συλλέχθεί πληθώρα πληροφορίων για το υλικό. Πιο συγκεκριμένα, η θέση των Bragg ανακλάσεων μας πληροφορεί α) για τις διαστάσεις της μοναδιαίας

κυψελίδας, β) για το κρυσταλλικό σύστημα, γ) για την ποιοτική ταυτοποίηση των φάσεων. Η ένταση των Bragg ανακλάσεων μας πληροφορεί α) για τη θέση και το είδος των ατόμων στη μοναδιαία κυψελίδα, β) δίνει πληροφορίες για τη συμμετρία και γ) δίνει πληροφορίες για την ποσοτική ανάλυση των φάσεων ενώ τέλος το πλάτος και το σχήμα των ανακλάσεων δίνει πληροφορίες α) για το μέγεθος των κρυσταλλίσκων (2-200nm) και β) τις πλεγματικές ατέλειες του συστήματος.

2.2.7 Πειραματική μέτρηση περίθλασης

Για τη διεξαγωγή πειράματος περίθλασης ακτίνων Χ, απαιτείται πηγή ακτίνων Χ, με συχνά χρησιμοποιούμενη συχνότητα 0,154 nm που παράγεται από χαλκό. Η αρχική δέσμη ακτίνων Χ μετατρέπεται σε μονοχρωματική ακτινοβολία με τη χρήση μονοχρωμάτορα ή με εστιάζοντες φακούς. Αφού η δέσμη περάσει από συσκευή παραλληλοποίησης, από την οποία διέρχεται ήλιο, διέρχεται από τον κρύσταλλο που είναι στερεωμένος στην κορυφή λεπτής υάλινης ράβδου, η οποία είναι τοποθετημένη στην κεφαλή ενός γωνιομέτρου. Η μηχανική αυτή διάταξη επιτρέπει την περιστροφή του κρυστάλλου σε τρία ορθογώνια επίπεδα έτσι ώστε ο κρύσταλλος να εστιάζει στη δέσμη ακτίνων Χ και να επιτυγχάνεται το μέγιστο της έντασης τους. Οι σκεδαζόμενες ακτίνες στη συνέχεια καταγράφονται χρησιμοποιώντας image plates, multiwire ditectors ή διάφορα είδη κάμερας.

Εικόνα 40 Σχηματική αναπαράσταση του οργάνου

Τα μοτίβα της περίθλασης μετασχηματίζονται σε χάρτες ηλεκτρονικής πυκνότητας με τη χρήση μαθηματικών εξισώσεων μετασχηματισμού Fourier. Αφού τα ηλεκτρόνια περιβάλλουν τα άτομα είναι δυνατό να προσδιοριστούν οι θέσεις των ατόμων. Για την απόκτηση τρισδιάστατης εικόνας οι κρύσταλλοι περιστρέφονται ενώ ένας ανιχνευτής παράγει δισδιάστατο χάρτη ηλεκτρονικής πυκνότητας για κάθε γωνία περιστροφής. Η τρίτη διάσταση δημιουργείται με τη σύγκριση των περιστροφών του κρυστάλλου με εικόνες εν σειρά.

2.3 Φασματοσκοπία υπερύθρου

Στη φασματοσκοπία υπερύθρου (όπως και υπεριώδους και μαγνητικού συντονισμού) καταγράφεται η αλληλεπίδραση των μορίων με ηλεκτρομαγνητική ενέργεια από την υπέρυθρη περιοχή του ηλεκτρομαγνητικού φάσματος. Πρόκειται για μία ευρέως διαδεδομένη τεχνική που παρέχει χρήσιμες πληροφορίες για τη δομή των ενώσεων καθώς και για την καθαρότητά τους. Η περιοχή του υπερύθρου βρίσκεται μεταξύ της περιοχής του ορατού και των μικροκυμάτων ενώ διακρίνεται στο εγγύς, στο μέσο και το άπω.

ΠΕΡΙΟΧΗ	Μήκος κύματος (nm)	Κυματαριθμός (cm⁻¹)
Εγγύς	0.78-2.5	12800-4000
Μέσο	2.5-50	4000-200
Άπω	50-1000	200-10

Πίνακας 5: Τρείς περιοχές της υπέρυθρης ακτινοβολίας

Εικόνα 38: Φάσμα ηλεκτρομαγνητικής ακτινοβολίας

Η ακτινοβολία υπερύθρου δεν έχει αρκετή ενέργεια για να προκαλέσει ηλεκτρονικές μεταβάσεις. Η απορρόφηση ακτινοβολίας στην περιοχή του υπερύθρου από ένα μόριο προκαλεί διεγέρσεις μεταξύ διαφόρων ενεργειακών σταθμών δονήσεων και περιστροφής του μορίου, ενώ το μόριο παραμένει στη θεμελιώδη κατάσταση.

Ένα μόριο για να απορροφά στο IR θα πρέπει οι δονήσεις ή οι περιστροφές του μορίου να προκαλούν αλλαγή στη διπολική του ροπή. Διαφορετικά, το ηλεκτρικό πεδίο τηα ακτινοβολίας αλληλεπιδρά μέσω διακυμάνσεων με τη διπολική ροπή του μορίου. Στην περίπτωση που η συχνότητα της ακτινοβολίας συνάδει με τη συχνότητα δόνησης του μορίου, η ακτινοβολία απορροφάται, προκαλώντας αλλαγή στο πλάτος της δονήσεως του μορίου.

Όταν κάποια ένωση προσβληθεί από δέσμη ηλεκτρομαγνητικής ακτινοβολίας απορροφά ενέργεια συγκεκριμένου μήκους κύματος και αφήνει να διέλθει ενέργεια σε διαφορετικά μήκη κύματος. Αν ακτινοβολήσουμε δείγμα με ενέργεια διαφορετικών μηκών κύματος και εντοπίσουμε ποια απορροφώνται και ποια διέρχονται προσδιορίζουμε το φάσμα απορρόφησης της ένωσης. Τα αποτελέσματα απεικονίζονται σε γράφημα, ο οριζόντιος άξονας του οποίου περιλαμβάνει το μήκος κύματος λ ενώ ο κατακόρυφος κατακόρυφος την ένταση των διαφόρων απορροφήσεων ενέργειας ως εκατοστιαία διαπερατότητα. Δημιουργία κορυφής δείχνει πως έλαβε χώρα απορρόφηση ενέργειας σε αυτό το μήκος κύματος.

Η πρόσθετη ενέργεια που έλαβε το μόριο πρέπει να κατανεμηθεί σε ολόκληρο το μόριο. Για παράδειγμα μπορεί να επέλθει αύξηση της κινητικής ενέργειας του μορίου, αναγκάζοντας τους δεσμούς να αποκτούν μεγαλύτερο μήκος ή να κάμπτονται περισσότερο. Εναλλακτικά, η απορρόφηση ακτινοβολίας μπορεί να αναγκάσει κάποιο ηλεκτρόνιο να μεταπηδήσει από ένα τροχιακό χαμηλής σε ένα τροχιακό υψηλότερης ενέργειας. Διαφορετικές συχνότητες ακτινοβολίας επιδρούν στα μόρια με διαφορετικούς τρόπους άλλα όλες παρέχουν πληροφορίες για τη δομή του μορίου.

2.3.1 Μοριακές δονήσεις

Σε ένα διατομικό μόριο υπάρχει ένα είδος δόνησης, η δόνηση τάσης, ενώ σε ένα πολυατομικό υπάρχουν οι δονήσεις τάσεις και οι δονήσεις κάμψης. Σε ένα πολυατομικό μόριο που αποτελείται από Ν άτομα ο αριθμός των δονήσεων είναι 3Ν-6 για τα μη γραμμικά μόρια και 3Ν-5 για τα γραμμικά. Στις δονήσεις τάσης αλλάζει η απόσταση των ατόμων κατά μήκος του δεσμού. Αντίθετα, στις δονήσεις κάμψης αλλάζει η γωνία μεταξύ των δύο δεσμών. Οι δονήσεις κάμψης διακρίνονται σε τέσσερις κατηγορίες : α) λικνιζόμενη (rocking) β) ψαλιδοειδής (scissoring) γ) παλλόμενη (wagging) δ) στρεφόμενη (twisting).

Εικόνα 39: Δονήσεις τάσης

2.3.2. Δονήσεις τάσεις - Νόμος ΗΟΟΚΕ

Η θεωρία των μοριακών δονήσεων στηρίζεται στην αρχή του αρμονικού ταλαντωτή. Θεωρώντας ότι το σύστημα αποτελείται από δύο μπάλες μάζας m συνδεδεμένες μέσω ενός αβαρούς ελατηρίου, του οποίου η τάση δίνεται μέσω μιας σταθεράς k και λαμβάνοντας υπ'όψην το νόμο του Hooke, η συχνότητα δόνησης του ελατηρίου, δίνεται απο τη σχέση:

$$v = 1/2\pi (k/\mu)^{\frac{1}{2}}$$

όπου k είναι η σταθερά της δύναμης και μ η ανηγμένη μάζα του συστήματος για την οποία

$$1/\mu = 1/m_A + 1/m_B$$

με m_A , m_B να είναι οι μάζες των δύο σφαιρών.

Η ενέργεια του συστήματος σύμφωνα με το μοντέλο του απλού αρμονικού ταλαντωτή δίνεται από τη σχέση

$$E = \frac{1}{2} kx^2$$

όπου x η μετατόπιση του ελατηρίου από τη θέση ισορροπίας του. Λόγω του ότι η μετατόπιση του ελατηρίου μπορεί να πάρει οποιαδήποτε τιμή το ίδιο ισχύει και για την ενέργεια σύμφωνα με την κλασική άποψη ενώ κατά την κβαντομηχανική θεώρηση η σκέψη υπόκειται σε σφάλμα και η ενέργεια δίνεται απο τη σχέση :

$$E = (n+1/2) h v$$

όπου ν είναι η συχνότητα δόνησης και n ο κύριος κβαντικός αριθμός με ακέραιες τιμές 0,1,2,3... Συνεπώς, η ενέργεια του κβαντομηχανικού ταλαντωτή μπορεί να είναι ακέραιο πολλαπλάσιο του $\frac{1}{2}$ hv και είναι κβαντισμένη. Η ενέργεια με n=0, $E_0 = 1/2$ hv ονομάζεται ενέργεια μηδενικού σημείου και υπάρχει ακόμα και στη θερμοκρασία του απόλυτου μηδέν γιατί είναι ανεξάρτητη από τις θερμικές κινήσεις των μορίων.

Στα πραγματικά μόρια οι δονήσεις δεν είναι εντελώς αρμονικές και η μεταβολή της δυναμικής ενέργειας του συστήματος σε σχέση με την απόσταση δεν είναι παραβολή αλλά υπακούει στην καμπύλη του Morse.

2.4 Θερμοσταθμική ανάλυση (Thermogravmetric analysis)

Η θερμοσταθμική ανάλυση συγκαταλέγεται στην ομάδα των θερμικών μεθόδων ανάλυσης στις οποίες μετρείται κάποια φυσική ιδιότητα μιας ουσίας ή των προϊόντων αντίδρασής της συναρτήσει της θερμοκρασίας όταν η τελευταία μεταβάλλεται κατά προγραμματισμένο τρόπο. Οι μέθοδοι αυτές χρησιμοποιούνται ευρύτατα τόσο στον ποιοτικό έλεγχο, όσο και σε ερευνητικές εφαρμογές σε βιομηχανικά προϊόντα όπως τα πολυμερή, φάρμακα, ορυκτά μέταλλα και κράματα.

Σε μια θερμοσταθμική ανάλυση καταγράφεται συνεχώς η μάζα του δείγματος σε ελεγχόμενη ατμόσφαιρα ως συνάρτηση της θερμοκρασίας ή του χρόνου, καθώς η θερμοκρασία του δείγματος αυξάνει (συνήθως γραμμικά με το χρόνο). Το διάγραμμα της μάζας ή του ποσοστού της μάζας ως συνάρτηση του χρόνου ονομάζεται θερμογράφημα ή καμπύλη θερμικής διάσπασης.

Οι πληροφορίες που παρέχει η θερμοσταθμική μέθοδος ανάλυσης είναι περιορισμένη σε σχέση με αυτές που λαμβάνονται σε σχέση με τις υπόλοιπες θερμικές μεθόδους. Αυτό συμβαίνει εξαιτίας του ότι οι μεταβολές της θερμοκρασίας πρέπει να προκαλούν μεταβολή στη μάζα του αναλύτη. Έτσι περιορίζονται σε αντιδράσεις διάσπασης και οξείδωσης καθώς επίσης και σε φυσικές διεργασίες, όπως η εξάτμιση, η εξάχνωση και η εκρόφηση. Η σημαντικότερη εφαρμογή της μεθόδου έγκειται στην ποιοτική και ποσοτική μελέτη πολυμερών υλικών. Τα θερμογραφήματα περιέχουν πληροφορίες για τους μηχανισμούς αποσύνθεσης τους και είναι χαρακτηριστικά για κάθε είδος πολυμερούς με αποτέλεσμα να χρησιμοποιούνται για την ταυτοποίησή τους.

Πιο συγκεκριμένα, τα θερμογραφήματα παρέχουν πληροφορίες για α) την καθαρότητα του δείγματος, β) τη θερμική σταθερότητα των υλικών, γ) για την οξειδωτική κατάσταση των μετάλλων, δ) το χρόνο ζωής του υλικού ε) την κινητική αποσύνθεσης των υλικών, στ) moisture and volatile content of materials ζ) των προσδιορισμό των συναρμοσμένων μορίων νερού στα κρυσταλλικά υλικά.

Ιδιαίτερα ενδιαφέρουσα είναι η χρήση της μεθόδου στην εγκληματολογία για την ταυτοποίηση βερνικιών και υλικών επίστρωσης επιφανειών αλλά και στην εκτίμηση της σταθερότητας εκρηκτικών υλικών. Τέλος, η μέθοδος χρησιμοποιείται για τη χρονολόγηση αντικειμένων αξίας όπως πχ. πίνακες ζωγραφικής.

2.5 Ηλεκτρονική μικροσκοπία σάρωσης (SEM)

Η γνώση της φυσικής κατάστασης της επιφάνειας των στερεών είναι μια ιδιαίτερης σημασίας πληροφορία που προέρχεται από την οπτική μικροσκοπία. Η διακρισιμότητα ης οπτικής μικροσκοπίας περιορίζεται λόγω περίθλασης σε διαστάσεις παραπλήσιες του μήκους κύματος του φωτός. Η ηλεκτρονική μικροσκοπία σάρωσης δίνει πληροφορίες με πολύ καλύτερη διακρισιμότητα.

Για τη λήψη εικόνας, η επιφάνεια του στερεού δείγματος εξετάζεται με παλινδρομική σάρωση με μία δέσμη ηλεκτρονίων ή με κατάλληλο δειγματολήπτηανιχνευτή (probe). Κατά την παλινδρομική σάρωση μια δέσμη ηλεκτρονίων σαρώνει

57

μια επιφάνεια σε ευθεία γραμμή, επιστρέφει αμέσως στην αρχική της θέση και τελικά μετατοπίζεται προς τα κάτω κατά ένα σταθερό διάστημα. Η διαδικασία επαναλαμβάνεται έως ότου σαρωθεί η επιθυμητή περιοχή της επιφάνειας. Το σήμα που αντιστοιχεί στο δεδομένο σημείο της επιφάνειας αποθηκεύεται στον υπολογιστή και τελικά μετατρέπεται σε εικόνα.

Στο ηλεκτρονικό μικροσκόπιο σάρωσης η επιφάνεια του στερεού δείγματος σαρώνεται παλινδρομικά με δέσμη ηλεκτρονίων υψηλής ενέργειας. Με την ενέργεια αυτή λαμβάνονται πολλά είδη σημάτων από την επιφάνεια, όπως οπισθοσκεδαζόμενα και δευτερογενή ηλεκτρόνια, ηλεκτρόνια Auger, φωτόνια φθορισμού ακτίνων X και άλλα φωτόνια διαφόρων ενεργειών. Όλα αυτά τα σήματα έχουν χρησιμοποιηθεί για μελέτες επιφανειών όμως τα πλέον συνηθισμένα είναι τα οπισθοσκεδαζόμενα και τα δευτερογενή ηλεκτρόνια που αποτελούν την τη βάση της τεχνικής SEM, καθώς επίσης και η εκπομπή ακτίνων X που χρησιμοποιείται στην ανάλυση με ηλεκτρονιακό μικροδειγματολήπτη.

Εικόνα 42: Σχηματική αναπαράσταση μικροσκοπίου σάρωσης (SEM)

2.5.2 Σημαντικότερα φαινόμενα

2.5.2.1 Ελαστική σκέδαση

Όταν ένα ηλεκτρόνιο συγκρούεται ελαστικά με ένα άτομο η κατεύθυνσή του ηλεκτρονίου αλλάζει αλλά η ταχύτητα του δεν επηρεάζεται σημαντικά με αποτέλεσμα η κινητική του ενέργεια να παραμένει ουσιαστικά αμετάβλητη. Η γωνία εκτροπής για συγκεκριμένη σκέδαση ποικίλλει από 0 έως 180[°]. Αν και μερικά από τα ηλεκτρόνια χάνουν ενέργεια από ανελαστικές συγκρούσεις και παραμένουν στο στερεό, η πλειονότητά τους υφίσταται πολυάριθμες συγκρούσεις με αποτέλεσμα να εξέρχονται τελικά από την επιφάνεια ως οπισθοσκεδαζόμενα ηλεκτρόνια. Η διάμετρος της οπισθοσκεδαζόμενης δέσμης είναι ένας από τους παράγοντες που επηρεάζουν σημαντικά τη διακρισιμότητα ενός ηλεκτρονικού μικροσκοπίου.

2.5.2.2 Παραγωγή δευτερογενών ηλεκτρονίων

Όταν η επιφάνεια ενός στερεού βομβαρδίζεται με δέσμη ηλεκτρονίων ενέργειας αρκετών keV, εκπέμπονται ηλεκτρόνια ενέργειας 50 keV ή μικρότερης από την επιφάνεια μαζί με τα οπισθοσκεδαζόμενα ηλεκτρόνια. Τα ηλεκτρόνια αυτά παράγονται από βάθος 50-500 A και εξέρχονται σε δέσμη, η οποία είναι ελαφρά μεγαλύτερη σε διάμετρο από την προσπίπτουσα δέσμη.τα δευτερογενή ηλεκτρόνια μπορεί να μη φτάσουν στο μεταλλάκτη με εφαρμογή μικρής αρνητικής πόλωσης στο περίβλημά του.

2.5.2.3.Εκπομπή ακτίνων Χ

Το τρίτο προϊόν του βομβαρδισμού ενός στερεού με ηλεκτρόνια είναι φωτόνια ακτινών Χ. Δύο χαρακτηριστικά φάσματα, ένα γραμμικό και ένα συνεχές, παράγονται και εκπέμπονται από την επιφάνεια του δείγματος. Η σημαντικότερη πληροφορία που μπορούμε να λάβουμε με την εφαρμογή της τεχνικής της ηλεκτρονικής μικροσκοπίας διέλευσης έγκειται στη μορφολογία και τη τοπολογία των επιφανειών των στερεών οι οποίες είναι απαραίτητες για την κατανόηση της συμπεριφοράς τους.

Εικόνα 43: Παραγόμενα είδη ηλεκτρονίων απο την επιφάνεια του στερεού.

2.6 Στοιχειακή Ανάλυση (Elemental analysis)

Καθώς οι ηλεκτρονικές μεταβάσεις είναι κβαντισμένες οι ακτίνες Χ που παράγονται έχουν συγκεκριμένα μήκη κύματος ανάλογα με τα στοιχεία του δείγματος. Η στοιχειακή ανάλυση μπορεί να αποφανθεί για το είδος και την αναλογία των ατόμων των στοιχείων στο δείγμα. Το φάσμα δίνει αποτέλεσμα έντασης συναρτήσει ενέργειας σε keV ενώ μέσω προγράμματος τα αποτελέσματα μετατρέπονται σε εκατοστιαία ποσοστά βάρους.

<u>2.7 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΠΥΡΗΝΙΚΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ</u> (<u>NMR</u>)

Η φασματοσκοπία πυρηνικού μαγνητικού συντονισμού (NMR) είναι μία από τις σπουδαιότερες φασματοσκοπικές τεχνικές μεθόδους που χρησιμοποιούνται για την παραλαβή πληροφοριών που αφορούν τις φυσικές, χημικές, ηλεκτρονιακές και δομικές ιδιότητες των μορίων. Αναπτύχθηκε το 1946 από δύο ανεξάρτητες ομάδες των Felix Bloch και Edward Mills Purcell, όπου μαζί μοιράστηκαν το βραβείο Nobel φυσικής το 1952. Το φαινόμενο του πυρηνικού μαγνητικού συντονισμού περιλαμβάνει την αλληλεπίδραση του πυρήνα ενός ατόμου με ένα εφαρμοζόμενο μαγνητικό πεδίο, που ταλαντώνεται σε συγκεκριμένη συχνότητα. Οι μαγνητικές συνθήκες μέσα στο άτομο μετρούνται παρακολουθώντας την ακινοβολία που εκπέμπεται και απορροφάται από τον πυρήνα του ατόμου.

Πολλά είδη πυρήνων συμπεριφέρονται σα να περιστρέφονται γύρω από κάποιο άξονα και εμφανίζουν γωνιακή στροφορμή spin (Ι). Δεδομένου του ότι είναι θετικά φορτισμένοι, οι περιστρεφόμενοι πυρήνες λειτουργούν ως μικροσκοπικοί μαγνήτες και κατά συνέπεια αλληλεπιδρούν με ένα εξωτερικό μαγνητικό πεδίο, που συμβολίζεται ως B₀. Όταν ένα δείγμα που περιέχει πυρήνες τοποθετηθεί ανάμεσα στους πόλους ενός ισχυρού μαγνήτη, οι πυρήνες αποκτούν διάφορους προσανατολισμούς. Ο αριθμός των διαφορετικών προσανατολισμών δίνεται από τη σχέση 2I+1, όπου I ο πυρηνικός κβαντικός αριθμός του spin. Αν $I = \frac{1}{2}$ τότε ο πυρήνας προσανατολίζεται με δυο διαφορετικών τρόπους, είτε παράλληλα (spin m = -1/2) προς το εξωτερικό μαγνητικό πεδίο. Ο παράλληλος προσανατολισμός είναι χαμηλότερης ενέργειας με αποτέλεσμα να ευνοείται αυτή η κατάσταση του spin.

Αν οι προσανατολισμένοι πυρήνες ακτινοβοληθούν με κατάλληλης συχνότητας ηλεκτρομαγνητική ακτινοβολία, λαμβάνει χώρα απορρόφηση ενέργειας με αποτέλεσμα να υπάρξει αναστροφή του spin, σε αυτή την περίπτωση οι πυρήνες έχουν συντονιστεί με την εφαρμοζόμενη ακτινοβολία. Η ακριβής συχνότητα που απαιτείται για το συντονισμό εξαρτάται από την ισχύ του εξωτερικού μαγνητικού πεδίου και από το είδος του πυρήνα. Στην πράξη, χρησιμοποιούνται υπεραγώγιμοι μαγνήτες που δημιουργούν εξαιρετικά ισχυρά μαγνητικά πεδία, μέχρι 14,1 Τ.

Όλοι οι πυρήνες με περιττό αριθμό πρωτονίων και όλοι με άρτιο αριθμό νετρονίων μπορούν να εκδηλώσουν μαγνητικά φαινόμενα. Η συχνότητα απορρόφησης δεν είναι ίδια για όλους τους πυρήνες του ίδιου είδους αφού προστατεύονται από την πλήρη επίδραση του εφαρμοζόμενου πεδίου λόγω των ηλεκτρονίων που τους περιβάλλουν.

Τα αρνητικά φορτισμένα ηλεκτρόνια που περιβάλλουν τον πυρήνα, δημιουργούν μαγνητικό πεδίο που είναι αντίθετο προς το εξωτερικό εφαρμοζόμενο πεδίο B₀. Αυτό έχει σαν αποτέλεσμα τη μείωση της μαγνητικής ροπής του εφαρμοζόμενου πεδίου που επηρεάζει τον πυρήνα. Έτσι, ο πυρήνας υφίσταται τη λεγόμενη ηλεκτρονιακή προστασία, που είναι τόσο μεγαλύτερη όσο μεγαλύτερη είναι η ηλεκτρονική πυκνότητα γύρω από τον πυρήνα. Αν B₀ είναι η ένταση του εφαρμοζόμενου πεδίου, η ένταση που πραγματικά εφαρμόζεται στον πυρήνα B_π δίνεται από τη σχέση:

$$B_{\pi} = B_0(1-\sigma)$$

όπου σ η διαμαγνητική σταθερά του ατόμου ή ο παράγοντας χημικής μετατοπίσεως με τιμές της τάξης 10⁻⁵. Η χημική μετατόπιση ενός πυρήνα, εκτός από τον παράγοντα της ηλεκτρονικής προστασίας, εξαρτάται και από άλλους παράγοντες, όπως η επίδραση του διαλύτη. Από τους σημαντικότερους παράγοντες δε, είναι η μαγνητική ανισοτροπία των δεσμών. Τα ηλεκτρόνια των δεσμών με την επίδραση του εξωτερικού πεδίου δημιουργούν επαγόμενα μαγνητικά πεδία, κατά περιοχές, διαμαγνητικά ή παραμαγνητικά τα οποία έχουν ανισότροπη κατανομή σε σχέση με τον άξονα του δεσμού.

Μέσω της φασματοσκοπίας NMR μετράται η ενεργειακή διαφορά μεταξύ των δύο καταστάσεων του spin. Για το λόγο αυτό εφαρμόζονται ηλεκτρομαγνητικά κύματα της περιοχής των ραδιοσυχνοτήτων (1-600 MHz) και μετράται η συχνότητα στην οποία λαμβάνει χώρα η μετάβαση μεταξύ των δύο καταστάσεων. Η σχέση που δίνει τη συχνότητα συντονισμού είναι :

$\omega = \gamma B \log - \gamma (B_0 + B int)$

- ω : συχνότητα της ηλεκτρομαγνητικής ακτινοβολίας
- γ : γυρομαγνητικός λόγος
- Bloc: τοπικό μαγνητικό πεδίο του πυρήνα
- Β.: εφαρμοζόμενο εξωτερικό μαγνητικό πεδιο
- Bint: εσωτερικό μαγνητικό πεδίο

2.7.1 NMR Στερεάς Κατάστασης (Solid State NMR)

Η φασματοσκοπία NMR στη στερεά κατάσταση δίνει σημαντικές πηροφορίες για τη δομή των ενώσεων. Ένα, από τα προβλήματα της τεχνικής αυτής είναι το μεγάλο εύρος των κορυφών. Μερικοί από τους παράγοντες που συνεισφέρουν στη δημιουργία ευρειών κορυφών είναι οι παρακάτω :

Διπολική σύζευξη

Στο δείγμα κάθε μαγνητικός πυρήνας δημιουργεί το δικό του τοπικό πεδίο, το οποίο αλληλεπιδρά με τα γειτονικά του. Όταν ένας πυρήνας με μαγνητική ροπή μ βρίσκεται σε μαγνητικό πεδίο, περιστρέφεται με τη συχνότητα Larmor. Ο βαθμός αλληλεπίδραση μεταξύ των δύο μαγνητικών ροπών εξαρτάται από τη μεταξύ τους απόσταση. Το πεδίο που δημιουργεί ο ένας πυρήνας στον άλλο είναι ανάλογο προς 1/r³ και ανάλογο με το (3cos²θ-1) όπου θ η γωνία μεταξύ των δύο πυρήνων.

Στα υγρά δείγματα η διπολική ροπή είναι μηδέν. Για να εξαφανιστεί η διπολική σύζευξη στα στερεά θα πρέπει ο όρος 3cos²θ-1 να γίνει ίσος με μηδέν γεγονός που επιτυγχάνεται με γρήγορη περιστροφή του δείγματος γύρω από ένα άξονα που σχηματίζει γωνία 54.7⁰ με το εφαρμοζόμενο πεδίο. Η γωνία αυτή ονομάζεται μαγική γωνία (magic angle) και η διαδικασία αυτή είναι γνωστή ως Magic Angle Spinning (MAS) ή Magic Angle Rotation (MAR).

Ανισότροπη χημική μετατόπιση

Ενώ στα υγρά δείγματα η χημική μετατόπιση είναι ισοτροπική και έχει μια τιμή για ολόκληρο τμήμα του μορίου στα στερεά κάθε μόριο έχει συγκεκριμένο προσανατολισμό στο εφαρμοζόμενο πεδίο. Έτσι, η κυκλοφορία των ηλεκτρονίων εξαρτάται σημαντικά από τον προσανατολισμό.

Σύζευξη spin-spin

Η σύζευξη spin-spin δημιουργεί ευρείες κορυφές, φαινόμενο που ελαχιστοποιείται μέσω της τεχνικής Double Resonance.

Χρόνος αποδιέγερσης

Δεδομένου του ότι τα στερεά δείγματα παρουσιάζουν πολύ μεγάλους χρόνους αποδιέγερσης (T_2) εφαρμόζεται η μέθοδος cross polarization για την ελαχιστοποίηση του φαινομένου.

<u>ΚΕΦΑΛΑΙΟ 3</u>

ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΛΛΟΦΩΣΦΟΝΙΚΩΝ ΥΛΙΚΩΝ

3.1 Πρωτονιακή αγωγιμότητα

Η πρωτονιακή αγωγιμότητα διαδραματίζει σπουδαίο ρόλο σε διάφορες διεργασίες όπως η φωτοσύνθεση στα φυτά και η παραγωγή ηλεκτρισμού σε κύτταρα καύσης υδρογόνου (hydrogen fuel cells). Συνεπώς, φαινόμενα μεταφοράς πρωτονίου έχουν μελετηθεί εκτεταμένα, από διαφορετική σκοπιά, σε διάφορους ερευνητικούς τομείς. Στη βιβλιογραφία αναφέρονται διάφορα συστήματα τα οποία παρουσιάζουν πρωτονιακή αγωγιμότητα με τεράστιας σημασίας τεχνολογικές εφαρμογές.

3.1.1 Χημεία πρωτονίου - Μηχανισμοί Πρωτονιακής αγωγιμότητας

Το πρωτόνιο είναι το μοναδικό ιόν χωρίς ηλεκτρονική στιβάδα. Κατά την αλληλεπίδρασή του με την ηλεκτρονιακή πυκνότητα του περιβάλλοντος χώρου αποκτά χαρακτήρα ηλεκτρονίου 1s. (1, 2)

Στα μέταλλα, αυτό το περιβάλλον είναι το απεντοπισμένο ηλεκτρονιακό νέφος της στιβάδας σθένους (conduction band). Σε μεταλλικό περιβάλλον το «πρωτόνιο» συμμετέχει σε υψηλό αριθμό συναρμογής τέσσερα ή έξι για τετραεδρικό ή οκταεδρικό περιβάλλον αντίστοιχα.(3,4) ενώ σε μη μεταλλικά συστήματα, αλληλεπιδρά ισχυρά με τα ηλεκτρόνια σθένους ενός ή δύο γειτονικών ηλεκτραρνητικών ατόμων (π.χ Ο). Αν το άτομο είναι απομακρυσμένο σε σχέση με άλλα ηλεκτραρνητικά άτομα η αλληλεπίδραση έχει σαν αποτέλεσμα τη δημιουργία δεσμού O-H με μήκος μικρότερο από 100 pm σε σχέση με την ιοντική ακτίνα του ανιόντος του οξυγόνου (140 pm). Σε αυτή την περίπτωση το πρωτόνιο εντάσσεται στην ηλεκτρονιακή πυκνότητα της στιβάδας σθένους του οξυγόνου. Στην περίπτωση αλληλεπίδρασης του πρωτονίου με δύο γειτονικά ηλεκτραρνητικά άτομα (απόσταση 250-280 pm) συμμετέχει σε δύο είδη δεσμών, έναν μικρού μήκους-ισχυρό, με το άτομο Ο να λειτουργεί ως δότη ηλεκτρονιακής πυκνότητας και έναν μεγάλου μήκους και ασθενή με το άτομο του Ο να λειτουργεί σα δέκτη. Έτσι, δημιουργείται ένας ασύμμετρος δεσμός Η-Ο…Η. Για πολύ μικρές αποστάσεις μεταξύ των ατόμων Ο (240 pm) σχηματίζεται συμμετρικός δεσμός και το πρωτόνιο συμμετέχει σε δύο ισοδύναμους δεσμούς Ο-Η-Ο (5).

Εικόνα 44: Τρόποι ένταξης του πρωτονίου στη στιβάδα σθένους ηλεκτραρνητικών ατόμων.

Υπάρχουν δύο βασικοί μηχανισμοί στους οποίους στηρίζεται το φαινόμενο της πρωτονιακής αγωγιμότητας των υλικών. Στον πρώτο, η μεταφορά του πρωτονίου γίνεται μέσω «ένωσης-οχήματος» (vehicle mechanism) $\pi \cdot \chi$. H₃O⁺. Το πρωτόνιο διαχέεται μαζί με την «ένωση-όχημα» στις συζυγείς βάσεις (H2O) επιτρέποντας τη μεταφορά του μέσα σε ένα κανάλι νερού που βρίσκεται στους πόρους της ένωσης. Ο μηχανισμός αυτός είναι χαρακτηριστικός για ενώσεις όπως HF, HCl, μεμβράνες Nafion (6, 7). Ο ρυθμός αγωγιμότητας συμπίπτει με το ρυθμό διάχυσης της ένωσης-«οχήματος» Γ_D. Στο δεύτερο μηχανισμό, γνωστός ως μηχανισμός Grotthus (8), τα πρωτόνια μεταφέρονται μέσω δεσμών υδρογόνου από τη μία «ένωση - όχημα» στην άλλη, με τη διαφορά ότι η ένωση παραμένει σταθερή. Αυτό έχει σαν αποτέλεσμα την αναδιοργάνωση του περιβάλλοντος πρωτονίων για τη μεταφορά του μέσα στην ένωση με άμεσο αποτέλεσμα των παραπάνω είναι ο επαναπροσανατολισμός των δίπολων μορίων του διαλύτη. Ο ρυθμός με τον οποίο πραγματοποιείται ο μηχανισμός σχετίζεται το ρυθμό μεταφοράς πρωτονίων Γ_{trans} , ρυθμό με το διαλύτη $\Gamma_{reo}{}^{S}$ επαναπροσανατολισμού των μορίων του και τα ρυθμό επαναπροσανατολισμού του πρωτονιακού περιβάλλοντος Γreo. Ο μηχανισμός αυτός συναντάται κατά κύριο λόγο σε δομές του τύπου περοβσκίτη π.χ. BaCeO3 και BaZrO3 (9).

Εικόνα 45: Μηχανισμός μεταφοράς πρωτονίου σε περοβσκίτες.

Είναι σημαντικό να παρατηρήσουμε ότι κατά τη μεταφορά του πρωτονίου έχουμε ταυτόχρονα σπάσιμο και δημιουργία δυο δεσμών Ο-Η, ενώ εξαιτίας της ισχυρής αλληλεπίδρασης ανάμεσα στο πρωτόνιο και το ιόν του οξυγόνου το φαινόμενο αυτό είναι ενεργειακά αυθόρμητο (10-12).

Εικόνα 46: Σχηματική αναπαράσταση των ρυθμών μεταφοράς πρωτονίων Γ_{trans} , επαναπροσανατολισμού των μορίων του διαλύτη Γ_{reo}^{S} και επαναπροσανατολισμού του πρωτονιακού περιβάλλοντος Γ_{reo} .

3.1.2 Συστήματα που παρουσιάζουν πρωτονιακή αγωγιμότητα

Η πρωτονιακή αγωγιμότητα είναι ένα ευρέως γνωστό φαινόμενο στα υδατικά συστήματα από τις αρχές του προηγούμενου αιώνα, αν και ο καθαρός πάγος δεν παρουσιάζει αυτό το φαινόμενο. Στα τέλη της δεκαετίας του '60 η ανάγκη για δημιουργία κατιοντικά αγώγιμων υλικών οδήγησε στην κατασκευή μεμβρανών, οι οποίες στην ενυδατωμένη τους μορφή παρουσιάζουν το φαινόμενο της πρωτονιακής αγωγιμότητας. Χαρακτηριστικό παράδειγμα αποτελεί το πολυμερές Nafion που περιέχει τις ισχυρά όξινες ομάδες -SO₃H και χρησιμοποιείται ως μεμβράνη διαχωρισμού.

Εικόνα 47: Πολυμερές Nafion

Ιστορικά, οι πρώτοι μηχανισμοί αγωγιμότητας που μελετήθηκαν αφορούσε την ηλεκτρική αγωγιμότητα των μετάλλων και των ημιαγωγών. Το γεγονός αποτέλεσε κινητήριο δύναμη για το σχεδιασμό αγωγών ιόντων λιθίου, νατρίου, καλίου, χαλκού και οξυγόνου μελετήθηκε ευρέως και χρησιμοποιήθηκε δια την παραγωγή διαφόρων συσκευών.

Τα πρώτα πρωτονιακά αγώγιμα, ενυδατωμένα στερεά συντέθηκαν το 1976 από τους Shilton και Howe. Πρόκειται για τις φυλλόμορφες (layered) ενώσεις με γενικό μοριακό τύπο H₃OUO₂XO₄·3 H₂O (X = P (HUP), X=As (HUAs)). Τα layered φωσφονικά και φωσφορικά σύμπλοκα του ζιρκονίου έχουν μελετηθεί για τη συγκεκριμένη ιδιότητα και σε αντίθεση με τα HUP και HUAs παρουσιάζουν μικρές τιμές αγωγιμότητας ακόμα και στην άνυδρη μορφή τους. Η προσθήκη σε αυτά τα υλικά των όξινων ομάδων –SO₃H ανάμεσα στα φύλλα νερού δίνει τιμές αγωγιμότητας συγκρίσιμες με αυτές του Nafion. Υπάρχει πληθώρα υλικών που παρουσιάζουν πρωτονιακή αγωγιμότητα με κοινό χαρακτηριστικό την παρουσία μορίων νερού ασθενώς συνδεδεμένα στο μόριο της ένωσης.

Χαρακτηριστικό παράδειγμα ενώσεων που παρουσιάζουν πρωτονιακή αγωγιμότητα είναι τα οξοοξέα και τα άλατά τους. Τα όξοοξέα διίστανται, ανάλογα με τη τιμή pKa, σε υδατικά διαλύματα παράγοντας ενυδατωμένα πρωτόνια με αποτέλεσμα την εμφάνιση αγωγιμότητας (14, 15). Αξίζει να αναφερθεί ότι τα οξέα αυτά παρουσιάζουν σημαντικές τιμές αγωγιμότητας ακόμα και στην άνυδρη μορφή τους εξαιτίας του αυτοϊοντισμού τους (self-dissociation) (13). Τα σπουδαιότερα παραδείγματα αυτών των ενώσεων είναι της μορφής MHXO₄ (όπου M=Rb, Cs και X= S) και M₃H(XO₄)₂ (όπου X=Se), Li₂SO₄ (210), LaPO₄ (16) αλλά και τα οχίde glasses με υψηλές ποσότητες P₂O₅ (17). Όλες αυτές οι ενώσεις χαρακτηρίζονται από το γεγονός ότι το πρωτόνιο συναρμόζεται στο οξυγόνο του τετραέδρου XO₄. Η παρουσία βασικότερων ομάδων στο μόριο της ένωσης έχει σαν αποτέλεσμα τη συναρμογή του πρωτονίου σε αυτές, όπως για παράδειγμα στην ένωση LiN₂H₅SO₄ όπου το πρωτόνιο είναι μέρος του ιόντος υδραζονίου (hydrazonium)(18).

Οξέα, όπως το θειικό (H_2SO_4) και το φωσφορικό (H_3PO_4) παρουσία οργανικών μορίων που διαθέτουν βασικές ομάδες σχηματίζουν σύμπλοκα που εμφανίζουν υψηλές τιμές πρωτονιακής αγωγιμότητας. Τέτοιο παράδειγμα αποτελούν ενώσεις που προέρχονται από ανάμιξη θειικού οξέος με τριαιθυλοδιαμίνη ($C_6H_{12}N_2$). Όμοια, μίγματα οξο οξέων με πληθώρα πολυμερών όπως για παράδειγμα πολυακριλαμίδιο με θειικό οξύ δίνουν ενώσεις (Paam*1,2 H₂SO₄) που παρουσιάζουν υψηλές τιμές πρωτονιακής αγωγιμότητας, χαμηλότερη όμως σε σχέση με αυτή του καθαρού οξέος καθώς επίσης και ενώσεις που προέρχονται από ανάμιξη πολυαιθυλαινοξειδίου (PEO) με αμμωνιακά άλατα. Τέλος, η παρένθεση οργανικών μορίων σε φωσφορικά και φωσφονικά σύμπλοκα έχει οδηγήσει στο σχηματισμό πρωτονιακά αγώγιμων υλικών (19,20), ιδιαίτερα αν τα οργανικά μόρια είναι ογκώδη και περιέχουν βασικές ομάδες στο μόριό τους. Πρόσφατα η σύνθεση της οικογένειας των υλικών STA-12 αποτέλεσε τα πρώτα κρυσταλλικά φωσφονικά MOFs με διάμετρο πόρων περίπου 1 nm και όγκο που προσεγγίζει τιμές που χαρακτηρίζουν τους όγκους των πόρων που βρίσκονται σε ζεόλιθους (21). Επιπρόσθετα, η οικογένεια αυτών των ενώσεων παρουσιάζει θερμική σταθερότητα στους 650 K, εξαιρετική προσροφητική ικανότητα υδρογόνου και μονοξειδίου του άνθρακα καθώς επίσης και διοξειδίου του άνθρακα, μεθανόλης και μεθανίου σε θερμοκρασία δωματίου.

Τα μεταλλοφωσφονικά υλικά δρούν ως πρωτονιακοί αγωγοί εξαιτίας των δομικών τους χαρακτηριστικών. Η παρουσία στη φωσφονική ομάδα τρών ατόμων οξυγόνου καθιστά πιθανή τη δημιουργία δεσμού με το μεταλλικό ιόν μέσω πολυδιάστατων σκελετών ενώ παράλληλα τα άτομα οξυγόνου μπορούν να δρούν ως δέκτες πρωτονίου για δημιουργία δεσμών υδρογόνου (22).

3.1.3 Δεσμός υδρογόνου

Οι δεσμοί υδρογόνου είναι κοινό χαρακτηριστικό όλων των πρωτονιακών αγωγών και παίζουν σημαντικό ρόλο στο ρυθμό διάχυσης και αναδιοργάνωσης του περιβάλλοντος της ένωσης-όχημα του πρωτονίου καθώς επίσης και του ρυθμού μεταφοράς του. Οι δεσμοί υδρογόνου παρουσιάζουν τρία βασικά χαρακτηριστικά στα οποία οφείλονται οι φυσικοχημικές τους ιδιότητες. Εκτός από τα γεωμετρικές και θερμοδυναμικές τους ιδιότητες αποτελούν «μονοπάτι» πάνω στο οποίο μπορούν να κινηθούν τα πρωτόνια από ένα ιόν δότη σε ένα ιόν δέκτη.(23, 24)

Πρόκειται για ασθενείς, κατευθυνόμενες αλληλεπιδράσεις μεταξύ ενός ατόμου υδρογόνου που είναι συνδεδεμένο με ένα ηλεκτραρνητικότερο άτομο X και

68

του μονήρους ζεύγους ηλεκτρονίων ενός άλλου μικρού ηλεκτραρνητικού ατόμου Υ. Η ενέργειά τους είναι μικρή και περίπου μιας τάξης μεγέθους μικρότερη από τους υπόλοιπους χημικούς δεσμούς με αποτέλεσμα να χαρακτηρίζονται από ευελιξία και θερμική αστάθεια.

Παρουσία ισχυρών ιοντικών ή ομοιοπολικών δεσμών εμφανίζεται αυξομείωση στην ισχύ του δεσμού. Χαρακτηριστικό παράδειγμα αποτελεί το διμερές $H_5O_2^+$,που παρουσιάζει ενεργειακό ελάχιστο αν η απόσταση Ο-Ο είναι 240 pm (25, 26) που αντιστοιχεί σε ισχυρό συμμετρικό δεσμό υδρογόνου. Ο δεσμός αυτός εξασθενεί παρουσία πρόσθετων δεσμών υδρογόνου από τα μόρια του διαλύτη. Παρουσία ισχυρών ομοιοπολικών ή ιοντικών δεσμών οι δεσμοί υδρογόνου εξασθενούν λιγότερο. Τέλος, αποτελούν χαρακτηριστικό των υλικών που παρουσιάζουν ισχυρή πρωτονιακή αγωγιμότητα αφού περιέχουν ασθενείς η μέτριους σε ισχύ, δεσμούς υδρογόνου, που ενισχύονται από την παρουσία άλλων δεσμών όπως για παράδειγμα στην ένωση CsHSO₄ και γενικότερα σε όλα τα όξινα άλατα των όξοοξέων με μεγάλα κατιόντα.

3.1.4 Εφαρμογές

3.1.4.1 Μεταφορά πρωτονίων σε βιολογικά συστήματα (27)

Οι περισσότερες βιοχημικές διεργασίες είναι άμεσα εξαρτώμενες απο την τιμη pH του συστήματος και περιλαμβάνουν αντιδράσεις πρωτονίωσης/αποπρωτονίωσης στις οποίες καθοριστικό ρόλο έχει η πρωτονιακή αγωγιμότητα. Σημαντικό παράδειγμα αποτελεί ο σχηματισμός της τριφωσφορικής αδενοσίνης (ATP) κατά τη φωτοσύνθεση.

Η σύνθεση του ΑΤΡ πραγματοποιείται απο ένα μοριακό συγκρότημα στην ενδότερη μιτοχονδριακή μεμβράνη. Σύμφωνα με τη χημειωσμωτική υπόθεση που προτάθηκε απο τον Peter Mitchell το 1961 η μεταφορά ηλεκτρονίων και η σύνθεση ΑΤΡ είναι συζευγμένες με μία βαθμιδωση της συγκέντρωσης των πρωτονίων μεταξύ των δύο πλευρών της εσωτερικής μιτοχονδριακής μεμβράνης, παρά με ομοιοπολικό ενδιάμεσο υψηλής ενέργειας ή μια ενεργοποιημένη στερεοδιάταξη της πρωτείνης. Η μεταφορά ηλεκτρονίων δια μέσου της αναπνευστικής αλυσίδας οδηγεί σε άντληση πρωτονίων απο τη μήτρα προς την άλλη πλευρά Η⁺ γίνεται μεγαλύτερη προς την

κυταρροπλασματική πλευρά, δημιουργείται θετικό ηλεκτρικό δυναμικό προς αυτή την πλευρά. Σύμφωνα με τον Mitchell αυτή η πρωτονιοκίνητη δύναμη οδηγεί στη σύνθεση του ATP απο το σύμπλοκο της ATPασης με πρωταρχικό γεγονός τη διατήρηση της ενέργειας σε αυτό το μοντέλο την κίνηση των πρωτονίων απο τη μία πλευρά της εσωτερικής μιτοχονδριακής μεμβράνης στην άλλη.

Η υπόθεση του Mitchell ότι η οξείδωση και η φωσφορυλίωση είναι συζευγμένες μέσω μίας βαθμίδωσης πρωτονίων υποστηρίζεται απο πληθώρα αποδείξεων. Χαρακτηριστικότερη απόδειξη αποτελεί η σύνθεση ΑΤΡ απο ανασυσταμένα κυστίδια μεμβρανών που περιέχουν βακτηριοροδοψίνη (πρωτείνη της πορφυράς μεμβράνης απο αλοβακτήρια) κατά το φωτισμό τους. Σε αυτό το πείραμα των Walther Stockenius και Efraim Racker η βακτηριοροδοψίνη αντικαθιστά την αναπνευστική αλυσίδα υποδηλώνοντας ότι η τελευταία και η συνθάση του ATP είναι βιοχημικά διαφορετικά συστήματα που συνδέονται μόνο με πρωτονιοκίνητη δύναμη. Η βακτηριοροδοψίνη αποτελεί χαρακτηριστικό παράδειγμα αντλίας πρωτονίων αφού εγκλωβίζοντας τα φωτόνια στο φωτοενεργό της κέντρο προκαλεί αλλαγή στη διάταξή της και χρησιμοποιεί την ενέργειά τους για να μετακινεί τα πρωτόνια κατά μήκος των μεμβρανών των κυττάρων, των μιτοχονδρίων ή άλλων οργανιδίων. Το γεγονός αυτό λαμβάνει χώα μέσω ομοιοπολικής σύνδεσης στο αμινοξύ Lis 216 του χρωμοφόρου εξαιτίας δημιουργίας βάσης Schiff όπως φαίνεται και στην εικόνα που ακολουθεί. Οι δεσμοί υδρογόνου απεικονίζονται με διακεκομμένες γραμμές ενώ τα μόρια νερού σα σφαίρες με αποτέλεσμα τη δημιουργία αλυσίδων συνδεδεμένων με δεσμούς υδρογόνου στο φωτοενεργό της κέντρο δημιουργώντας μονοπάτι διάχυσης πρωτονίων μέσω της μεμβράνης.

Εικόνα 48: Σχηματική αναπαράσταση της βακτηριοροδοψίνης. Οι δεσμοί υδρογόνου απεικονίζονται με διακεκομμένες γραμμές ενώ τα μόρια νερού σα σφαίρες.

Αξιοσημείωτο είναι το γεγονός ότι οι βιολογικές μεμβράνες παρουσιάζουν τον ίδιο μηχανισμό μεταφοράς πρωτονίων με τις μεμβράνες Nafion. Όξινες, υδρόφιλες ομάδες (-SO₃H) σε υδρόφοβους σκελετούς αποτελούν θέση πρόσδεσης για μόρια νερού δημιουργόντας πρόσφορο περιβάλλον για μεταφορά πρωτονίων.

3.1.4.2 Τεχνολογικές εφαρμογές

Η ενεργειακή μετατροπή και η μεταφορά σήματος είναι δύο από τις γνωστότερες διεργασίες που βασίζονται στην ηλεκτρονιακή αγωγιμότητα μετάλλων ή ημιαγωγών. Χαρακτηριστικότερο παράδειγμα αποτελεί η λειτουργία των συμβατικών μπαταριών ή αισθητήρων αερίων. Η αύξηση του πλήθους των στερεών αγώγιμων υλικών πυροδότησε τη χρησιμοποίηση του φαινομένου της πρωτονιακής αγωγιμότητας σε ποικιλία συσκευών για ενεργειακή μετατροπή, σε χημικούς αισθητήρες, σε διαδικασίες παραγωγής υδρογόνου από υδρογονάνθρακες ή αλκοόλες, στο διαχωρισμό υδρογόνου από μίγματα αερίων. Ορμώμενοι από την επιτατική ανάγκη για έλεγχο της μόλυνσης στα περισσότερα βιομηχανικά κράτη, γίνονται ολοένα και περισσότερες προσπάθειες για κατασκευή μπαταριών και κυττάρων καύσης που μετατρέπουν άμμεσα τη χημική ενέργεια σε ηλεκτρική, ώστε να μειωθεί η παραγωγή επικίνδυνων αερίων ΟΝ_X και CO. Η αρχή λειτουργίας των κυττάρων καύσης, βασίζεται στη λειτουργία των μεμβρανών ανταλλαγής πρωτονίων (PEM), αναπαράσταση των οποίων παρουσιάζεται στην εικόνα 53.

© 2007 - 2009 The University of Waikato | www.sciencelearn.org.nz Εικόνα 49: Μεμβράνη ανταλλαγής πρωτονίων

Οι μεμβράνες αυτές είναι σχεδιασμένες για μεταφορά πρωτονίων ενώ είναι μη διαπερατές απο αέρια πχ. οξυγόνο και υδρογόνο με αποτέλεσμα τον παράλληλο διαχωρισμό των αντιδρώντων. Αποτελούνται απο μια άνοδο και μια κάθοδο στις οποίες λαμβάνουν χώρα οι αντιδράσεις που φαίνονται στην εικόνα. Στις θερμοκρασίες λειτουργίας τους (70-90⁰C) που αποτελεί περιορισμό για τη σταθερότητά τους μόνο το καθαρό υδρογόνο μπορεί να χρησιμοποιηθεί ως καύσιμο. Οι μεμβράνες ανταλλαγής πρωτονίων χρησιμοποιούνται για την αποθήκευση αερίων που θα μπορούσαν να αντικαταστήσουν τη βενζίνη και το πετρέλαιο, τα κυριότερα καύσιμα σε εσωτερικές μηχανές καύσης. Αξίζει να σημειωθεί ότι η λειτουργία τους είναι αντιστρεπτή.(28)

Τα πρωτονιακά αγώγιμα στερεά των οξειδίων μπορούν να χρησιμοποιηθούν σε κύτταρα καύσιμων (SOFC) και μάλιστα πλεονεκτούν στο ότι το καύσιμο δε μολύνεται από τα προϊόντα της ηλεκτροχημικής αντίδρασης (H₂O) ενώ έχουν συνήθη λειτουργία σε υψηλές θερμοκρασίες 500-800 0 C. Στον αντίποδα, μειονεκτούν στο ότι η υψηλή βασικότητα των οξειδίων οδηγεί σε θερμική αστάθεια κατά την αντίδρασή τους με όξινα αέρια όπως CO₂, SO_x, και NO_x.

Εικόνα 50: solid oxide fuel cell

Πρόσθετα στα παραπάνω, η λειτουργία πολλών, τεχνολογικά ανώτερων, αισθητήρων βασίζεται στο φαινόμενο της πρωτονιακής αγωγιμότητας αφού χρησιμοποιούνται ως διαχωριστές ανάλογα υλικά. Αντίστοιχο παράδειγμα αποτελούν ποτενσιομετρικοί αισθητήρες εφοδιασμένοι με CaZrO₃ (29). Η εφαρμογή τους βασίζεται σε ανίχνευση υγρασίας (30, 31), αλκανίων (μεθάνιο, αιθάνιο, προπάνιο) (32), αλκοολών (33) ακόμα και CO₂ (34) σύμφωνα με μελέτες του Iwahara (35). Ενώ η λειτουργία αυτών των αισθητήρων λαμβάνει χώρα σε υψηλές θερμοκρασίες, η χρήση αισθητήρων που περιέχουν πορώδη, πρωτονιακά αγώγιμα υλικά με διαύλους νερού για ανίχνευση CO, NH₃, O₂, H₂O₂ έχει πρόσφατα αναφερθεί από τους Miura και Yamazoe (36). Τέλος, η επικάλυψη ηλεκτροδίων από πρωτονιακά αγώγιμα υλικά για την ανίχνευση γλυκόζης (37, 39), χοληστερόλης (40) ή ακόμα και οξυγόνου (41) σε βιολογικές εφαρμογές είναι πλέον γεγονός.

Στον κατάλογο των τεχνολογικών εφαρμογών τέτοιων στερεών προστίθενται η χρήση τους σε ηλεκτροχημικές αντλίες υδρογόνου σε αντιδραστήρες (42). Παράδειγμα της λειτουργίας αυτών των αντιδραστήρων αποτελεί η μετατροπή του αιθανίου σε αιθυλένιο σε αντιδραστήρες που χρησιμοποίουν στερεά οξείδια του τύπου περοβσκίτη ως πρωτονιακά αγώγιμο υλικό (43, 44).

Εικόνα 51: αναπαράσταση της συσκευής παραγωγής υδρογόνου

3.2 Προσρόφηση αερίων

Η προσρόφηση και αποθήκευση αερίων σε μικροπορώδη υλικά έχει αποτελέσει τεράστιο τεχνολογικό επίτευγμα και βρίσκει εφαρμογή σε ενεργειακούς, περιβαλλοντικούς, βιολογικούς και φαρμακευτικούς σκοπούς. Τα πορώδη υλικά όπως ζεόλιθοι και πολυμερή MOFs (μεταλλο-οργανικοί σκελετοί) είναι κατάλληλα υλικά για προσρόφηση και αποθήκευση αερίων συμπεριλαμβανομένου των H₂, CH₄ και CO₂. Από τα παραπάνω διαφαίνεται ότι είναι επιτακτική η ανάγκη για το σχεδιασμό υλικών με αξιόλογη προσροφητική ικανότητα, ικανοποιητικό χρόνο ζωής και δυνατότητα επαναχρησιμοποίησης.

Υπάρχει πληθώρα πλεονεκτημάτων στην αποθήκευση αερίων σε μικροπορώδη υλικά, το βασικότερο όλων είναι ότι σε ένα στερεό μπορεί να αποθηκευτεί μεγαλύτερη ποσότητα αερίου υπό υψηλή πίεση από ότι σε μια δεξαμενή ίδιου όγκου. Σε αυτό θα πρέπει να προστεθεί ο παράγοντας ασφάλεια, δεδομένου του ότι μικρές ποσότητες αερίου μπορούν να μεταφερθούν και να διαχειριστούν με μεγαλύτερη ασφάλεια όταν αποθηκεύονται σε μικρές ποσότητες στερεού.

Ο συνδυασμός μεγάλου αριθμού οργανικών μορίων με πληθώρα μεταλλικών κέντρων δίνει άπειρο αριθμό οργανομεταλλικών υλικών που μπορούν να χρησιμοποιηθούν για αποθήκευση πολλών αερίων Η εσωτερική επιφάνεια πολλών MOFs ανέχεται στα 500 m²/g, τιμή κατά πολύ μεγαλύτερη από αυτή που αναφέρεται στη βιβλιογραφία για τους ζεόλιθους. Πρόσφατες έρευνες για την προσρόφηση αερίων από οργανομεταλλικούς σκελετούς συμπεριλαμβάνουν μελέτες του Yaghi για προσρόφηση τοξικών αερίων όπως CO, SO₂ από στερεά της ομάδας IRMOF-n καθώς επίσης και μελέτες του Calero για την προσρόφηση και διαχωρισμό μίγματος φυσικών αερίων με χρήση των οργανομεταλλικών σκελετών IRMOF-1, HKUST-1.

Τα μεταλλοφωσφονικά υλικά αποτέλεσαν μια ακόμη κατηγορία ενώσεων που μελετηθηκαν ως προς τις προσροφητικές τους ιδιότητες δεδομένου όμως του ότι η διάμετρος των πόρων των πρώτων υλικών δεν ήταν μεγαλύτερη από 6 Å κατατάσσονταν στους μη ικανοποιητικούς προσροφητές.

Η σύνθεση μεταλλοφωσφονικών υλικών περιλαμβάνει τη χρήση ενός μεγάλου αριθμού φωσφονικών δομικών μονάδων που μπορούν να σχηματίσουν ισχυρούς δεσμούς με πολλά μεταλλικά κατιόντα, κατά τη συναρμογή τους μέσω ενός, δύο ή τριών ατόμων οξυγόνου ανά φωσφονική ομάδα. Εξαιτίας του ότι ο δεσμός Ο3P-C είναι σταθερός σε υψηλές θερμοκρασίες αποτέλεσε κινητήριο δύναμη για το σχηματισμό τελικά θερμικά σταθερών πορώδων φωσφονικών υλικών, που θα μπορούσαν να ανταγωνιστούν τους μεταλλοκαρβοξυλικούς σκελετούς σε προσροφητική ικανότητα. Χαρακτηριστικότερα παραδείγματα αποτελούν τα piperazine-*bis*(methylenephosphonate)s, με διάμετρο πόρων Å και όπως είναι αναμενόμενο αξιοσημείωτη προσρόφηση αζώτου καθώς επίσης και η οικογένεια των υλικών STA-12, των πρώτων κρυσταλλικών φωσφονικών MOFs με διάμετρο πόρων περίπου 1 nm και όγκο που προσεγγίζει τιμές χαρακτηριστικές για ζεόλιθους με μεγάλους πόρους. Αξίζει να αναφερθεί ότι η τελευταία ομάδα υλικών παρουσιάζει εξαιρετική προσροφητική ικανότητα υδρογόνου και μονοξειδίου του άνθρακα σε χαμηλές θερμοκρασίες καθώς επίσης και απορρόφηση διοξειδίου του άνθρακα, μεθανίου και μεθανόλης σε θερμοκρασία δωματίου.

Η προσρόφηση αερίων χρησιμοποιείται πρωταρχικά για τον έλεγχο της πορωσιμότητας ενός υλικού, την κατανόηση της χημικής συμπεριφοράς της επιφάνειας του και τον προσδιορισμό της διαμέτρου των πόρων του. Δύο είναι οι βασικοί τρόποι με τους οποίους μπορούν να επιτευχθούν τα παραπάνω και αναφέρονται ως ογκομετρικός (volumetric) και βαρυμετρικός (gravimetric) προσδιορισμός. Κατά το ογκομετρικό προσδιορισμό ο όγκος του προσροφούμενου αερίου προκύπτει από μετρήσεις πίεσης πρίν και μετά την προσρόφηση ενώ κατά το βάρος σχετίζεται με την προσροφηθήσα ποσότητα του αερίου και η προσρόφηση του αερίου εκφράζεται σε ισοδύναμο όγκο υπο σταθερή πίεση ή mol/g.

75

Ανάλογα με την ισχύ των αλληλεπιδράσεων ανάμεσα στον προσροφητή και μπορεί να διακριθεί το εκάστοτε αέριο το φαινόμενο περαιτέρω σε χημειοπροσρόφηση και φυσιοπροσρόφηση. Η χημειοπροσρόφηση περιλαμβάνει το σχηματισμό χημικών δεσμών ανάμεσα στην επιφάνεια του υλικού και των μορίων φυσιοπροσρόφηση λαμβάνει του αερίου, γώρα μέσω γαλαρών ενώ η αλληλεπιδράσεων όπως δυνάμεις van der Waals. Η τελευταία δε, είναι αντιστρεπτή διαδικασία.

Έκφραση του όγκου του προσροφούμενου αερίου συναρτήση της πίεσης p/p₀ έχει σαν αποτέλεσμα τη δημιουργία ισόθερμων καμπύλων ισορροπίας. Οι ισόθερμες αυτές καμπύλες παραλαμβάνονται από μετρήσεις της μειούμενης πίεσης αερίου που προσροφάται από τους πόρους του δείγματος.

Εικόνα 52: Σχηματική αναπαράσταση του οργάνου για τον έλεγχο προσρόφησης αερίων κατά την ογκομετρική μέθοδο

Ανάλογα με το είδος των πόρων, τη θερμοκρασία και το χρησιμοποιούμενο αέριο λαμβάνονται έξι διαφορετικού τύπου καμπύλες σύμφωνα με μελέτες του Brunauer. Τα μικροπορώδη υλικά αντιστοιχούν σε ισόθερμες καμπύλες τύπου Ι. Αυτές, χαρακτηρίζονται από απότομη αύξηση στην προσρόφηση του αερίου σε σχετικά χαμηλές πιέσεις, που ουσιαστικά ερμηνεύεται ως το «γέμισμα» των πόρων αν οι διαστάσεις τους είναι της ίδιας τάξης μεγέθους με τα μόρια του αερίου. Στη συνέχεια δεν παρατηρείται παραιτέρω αύξηση στον όγκο του προσροφούμενου αερίου έως ότου η πίεση γίνει $p/p_0 = 1$. Οποιαδήποτε περαιτέρω αύξηση στην απορρόφηση σε υψηλότερες πιέσεις αντιστοιχεί σε πολυστρωματική επικάλυψη του υλικού.

Οι ισόθερμες καμπύλες τύπου ΙΙ και ΙΙΙ είναι χαρακτηριστικές της πολυστρωματικής προσρόφησης στα υλικά. Στον τύπο ΙΙ επικρατεί μεγαλύτερη χημική συγγένεια του

αερίου με την επιφάνεια, με αποτέλεσμα να παρατηρείται παρεμφερής συμπεριφορά με αυτή των ισόθερμων καμπυλών τύπου Ι σε χαμηλές πιέσεις. Στις ισόθερμες τύπου ΙΙΙ παρατηρείται ακόμα μεγαλύτερη χημική συγγένεια μεταξύ του αερίου και της επιφάνειας του υλικού με αποτέλεσμα να μην παρατηρείται προσρόφηση παρά μονάχα σε πολύ υψηλές πιέσεις. Οι ισόθερμες καμπύλες τύπου IV, V είναι χαρακτηριστικές για πορώδη συστήματα, υποδηλώνοντας πολυστρωματική προσρόφηση με αποτέλεσμα απότομη αύξηση σε υψηλές πιέσεις. Τα μεσοπορώδη υλικά αντιστοιχούν σε ισόθερμες καμπύλες τύπου IV.

Εικόνα 53: Τύποι ισόθερμων καμπυλων

Ο προσδιορισμός της επιφάνειας των υλικών γίνεται συνήθως μέσω προσρόφησης N₂, ενώ η ποσοτικοποίηση των αποτελεσμάτων γίνεται μέσω της ισότητας BET. Εξαιτίας των διαφόρων παραδοχών της αντίστοιχης θεωρίας οδηγεί σε αποκλίσεις από την ιδανική Langmuir συμπεριφορά με αποτέλεσμα να μη θεωρείται ιδανικό μοντέλο για προσρόφηση σε μικροπορώδη υλικά. Για παράδειγμα, η ισότητα χρησιμοποιείται επιτυχώς μόνο για τις ισόθερμες τύπου ΙΙ και για τις περιοχές χαμηλής πίεσης τύπου ΙV. Στις μέρες μας λαμβάνουμε ακριβέστερα αποτελέσματα μέσω μοντέλων που υπακούουν στη θεωρία DFT (Density Functional Theory) μετά την αλληλεπίδραση των υλικών με άπολα αέρια όπως N₂, Ar, Kr, ακόμα και αυτά όμως στην περίπτωση των οργανομεταλλικών σκελετών αποτυγχάνουν.

Το μέγεθος του πόρου αντιστοιχεί στη μέτρηση του ελεύθερου χώρου στον κρυσταλλικό σκελετό που «αντιλαμβάνεται» το μόριο του αερίου. Το μέγεθος του πόρου υπολογισμένο σε cm⁻³/g μπορεί να ποσοτικοποιηθεί με χρήση της μεθόδου BJH συναρτήσει της ποσότητας του αερίου που έχει προσροφηθεί.

Η προσρόφηση μορίων αερίου σε επιφάνειες στερεών είναι εξώθερμη διαδικασία. Το μέγεθος και η διακύμανση της θερμότητας που εκλύεται δίνει πληροφορίες για τον τύπο του δεσμού ανάμεσα στο αέριο και την επιφάνεια του στερεού. Υποδηλώνει επίσης πλευρικές αλληλεπιδράσεις ανάμεσα στα προσροφηθέντα μόρια. Οι θερμοκρασίες προσρόφησης προσδιορίζονται μέσω θερμιδομετρικών μεθόδων και συμπεριλαμβάνουν τον προσδιορισμό της θερμότητας που εκλύεται όταν προσροφάται γνωστή ποσότητα αερίου.

Η θερμότητα προσρόφησης υπο σταθερό όγκο δίνεται από τη σχέση

$$q_i = (Q_i / n)_V$$

Αν η διαδικασία αυτή επαναληφθεί υπο μεταβαλλόμενη ποσότητα αερίου τότε ένα γράφημα Q_i (n) υπο σταθερή θερμοκρασία και όγκο μπορεί να δημιουργηθεί. Από την κλίση της ευθείας μπορούμε να υπολογίσουμε τη μεταβολή της θερμότητας σε σχέση με την ποσότητα των μορίων του αερίου.

Η προσρόφηση αερίου στους 77 Κ χρησιμοποιείται για τη μελέτη μηχανισμών και φαινομένων που λαμβάνουν χώρα κατά την προσρόφηση. Σε θερμοκρασίες δωματίου πειράματα μικροθερμιδομετρίας σχετίζονται άμεσα με εφαρμογές όπως η αποθήκευση ή ο διαχωρισμός αερίων.

<u>ΚΕΦΑΛΑΙΟ 4</u>

<u>ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΝΕΑΣ ΤΕΧΝΙΚΗΣ ΚΡΥΣΤΑΛΛΩΣΗΣ</u> <u>ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ ΥΔΡΟΓΕΛΗΣ ΓΙΑ ΥΔΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ</u>

<u>4.1 Εισαγωγή</u>

4.1.1 Αλγινικό οξύ

Το αλγινικό οξύ (άλγη ή αλγινικό), είναι ένας ανιοντικός υδρόφιλος, κολλοειδής πολυσακχαρίτης που συναντάται στα κυτταρικά τοιχώματα διάφορων καφέ φυκών κυρίως του γένους Macrocysis pyrifera και Ascophyllum nodosum, καθώς επίσης και σε βακτήρια των οικογενειών Pseudomonas και Azotobacter. Το βακτηριακό αλγινικό οξύ, δρώντας ως μέσο ανταλλαγής ιόντων, είναι χρήσιμο στη σύνθεση μικρο- και νανοδομών που βρίσκουν εφαρμογή στην ιατρική, τη φαρμακοβιομηχανία και τη βιομηχανία τροφίμων. Απορροφά πολύ εύκολα μεγάλη ποσότητα νερού, που αγγίζει 200-300 φορές το βάρος του, σχηματίζονας υδρογέλη με πολύ μεγάλο ιξώδες. Το γρώμα του ποικίλλει από λευκό σε υποκίτρινο και στο εμπόριο πωλείται σε διάφορες μορφές (νηματοειδής, κοκκώδης, σκόνη). Έχει μοριακό τύπο $(C_6H_8O_6)_n$, το μοριακό του βάρος υπολογίζεται σε 10,000-600,000 ενώ το αντίστοιχο μοριακό βάρος της μονομερούς μονάδας είναι θεωρητικά 176,13 και πραγματικά 200, η πυκνότητά του κυμαίνεται στα 1,601 g/cm³ και εμφανίζει pK_a = 1,5-3,5. Το αλγινικό οξύ είναι αδιάλυτο στο νερό και τους οργανικούς διαλύτες και παρουσιάζει σταδιακή διαλυτοποίηση στα διαλύματα ανθρακικού νατρίου και υδροξειδίου του νατρίου. Στο εμπόριο εκτός από το αλγινικό οξύ είναι εύκολα διαθέσιμα τόσο το μετά νατρίου όσο και το μετά καλίου άλας αυτού.

Δομικά, το αλγινικό οξύ όσο και το μετά νατρίου ή καλίου άλας του είναι γραμμικά συμπολυμερή που αποτελούνται από κατάλοιπα δύο μονομερών, του β-D-

μανουρονικού οξέος (M) [β-mannuronic acid] και του α-L-γουλουρονικού οξέος (G) [a-L-gouluronic acid] ενωμένα μέσω ομοιοπολικών γλυκοζιτικών δεσμών β-1,4 και α-1,4 (εικονα 59). Το Μ κατάλοιπο έχει C1 διαμόρφωση ενώ το G C4 ανεξάρτητα του λόγου των μονομερών και του μήκους της αλυσίδας. Εξαιτίας της φυσικής προέλευσης και της βιοσυμβατότητας που παρουσιάζουν τα αλγινικά μακρομόρια μπορούν να χρησιμοποιηθούν ευρέως στη φαρμακοβιομηχανία, τη βιομηχανία τροφίμων κλπ. (1)

Εικόνα 55 Αλγινικό οξύ. Ο αριθμός και η αλληλουχία των D-mannuronic και L-glucuronic καταλοίπων στην αλυσίδα του πολυμερούς ποικίλλουν ενώ τα μόρια του νερού έχουν παραβλεφθεί.

Εικόνα 56: (a) Μονομερή του αλγινικού οξέος, (b) Αναπαράσταση του πολυμερούς, (c) Αναπαράσταση της αλληλουχίας των μονομερών σε μια αλυσίδα του πολυμερούς

Πιο συγκεκριμένα, η ικανότητα του να απορροφά ποσότητες νερού πολλαπλάσιες του βάρους του το καθιστά χρήσιμο στην παραγωγή χαρτιού και στην παρασκευή πυρασφαλούς υφάσματος. Χρησιμοποιείται ευρέως στη βιομηχανία τροφίμων ως μέσο διόγκωσης σε ποτά ή παγωτά και ως πηκτικό μέσο σε σούπες και ζελέ ενώ αναγνωρίζεται με τον χαρακτηριστικό αριθμό Ε-400.

Το μετά νατρίου άλας του αλγινικού οξέος με εμπειρικό τύπο NaC₆H₇O₆ χρησιμοποιείται στη βιομηχανία τροφίμων ως γαλακτοματοποιητής και μέσο διόγκωσης και αναγνωρίζεται με τον χαρακτηριστικό αριθμό E-401. Ιδιαίτερα εντυπωσιακή είναι η χρήση του στη μοριακή γαστρονομία, με πρωτεργάτη τον Ferran Andria ο οποίος παρασκευάζει βρώσιμο «χαβιάρι» από φυσικούς χυμούς φρούτων και λαχανικών κατά την ανάμιξη του μετά-ασβεστίου άλατος γαλακτικού οξέος με το μετά νατρίου άλατος αλγινικού οξέος. Στη φαρμακοβιομηχανία εμφανίζεται ως συστατικό σε χάπια δυσπεψίας και χάπια αδυνατίσματος αφού έχει αποδειχτεί ότι μειώνει την πρόσληψη λίπους κατά 75%. Πρόσθετα, αποτελεί συστατικό πληθώρας, ευρέως διαδεδομένων φαρμακευτικών προϊόντων (Gaviscon, Bisodol, Asilone) ενώ ακόμα, χρησιμοποιείται στην παραγωγή νημάτων για ράμματα που προάγουν την επούλωση των τραυμάτων και αφαιρούνται με λιγότερο πόνο από τα συμβατικά. Η εφαρμογή του στην κοσμετολογία (cosmetics) έγκειται στη χρήση του για παρασκευή καλλυντικών και κρέμες ανάπλασης. Κύρια είναι η χρήση του στην οδοντοτεχνική για την κατασκευή οδοντικών αποτυπωμάτων ενώ στην κλωστοϋφαντουργία χρησιμοποιείται ως πηκτική ουσία για τις βαφές υφασμάτων. Δεδομένου του ότι έχει την ιδιότητα να συνδέεται χηλικά με τα ραδιενεργά ισότοπα I-131και Sr-90 μπορεί να συμβάλλει στην απομάκρυνσή τους από το ανθρώπινο σώμα ενώ παράλληλα λειτουργεί ως κυτταρικός, ενζυμικός και πρωτεϊνικός ακινητοποιητής. Λόγω της βιοσυμβατότητας του και της ταχύτατης ζελατινοποίησης του από δισθενή κατιόντα βρίσκει σπουδαία εφαρμογή στην ελεγχόμενη απελευθέρωση φαρμάκων στο ανθρώπινο σώμα.

Το μετά καλίου άλας του αλγινικού οξέος, με εμπειρικό τύπο KC₆H₇O₆ χρησιμοποιείται ευρέως στη βιομηχανία τροφίμων και σε πειραματικό ακόμα στάδιο στη φαρμακοβιομηχανία.

Τα τελευταία χρόνια το αλγινικό οξύ και οι γέλες που σχηματίζει κατά την ανάμειξή του με διαλύματα κατιόντων χρησιμοποιούνται για την επικάλυψη των πλακιδίων της χρωματογραφίας λεπτής στιβάδας TLC(Thin Layer Chromatography) για το διαχωρισμό ενώσεων με παραπλήσια χημική σύνταξη ή για την ταυτοποίηση ουσιών που παρασκευάστηκαν από μια συνθετική πορεία (2). Η χρήση τους οφείλεται στην αντοχή και το πορώδες των σχηματιζόμενων γελών (3).

Σημαντική είναι και η εφαρμογή του (καθώς επίσης και των παραγώγων του) στη σύνθεση νέων υλικών. Για παράδειγμα η παρασκευή υδρογέλης ψευδαργύρου με χρήση του μετά νατρίου άλατος του αλγινικού οξέος έχει σαν αποτέλεσμα την παρασκευή νανοσωματιδίων ZnO έπειτα από τη θερμική αποσύνθεση της υδρογέλης (4) ενώ μέσω της sol-gel τεχνικής έχουν παρασκευαστεί τα φωσφορικά άλατα των αλκαλικών γαιών (4).

Στον αντίποδα των παραπάνω, η υδρογέλη ασβεστίου δεν κρίνεται ως το καταλληλότερο μέσο για την ιζηματοποίηση του ανθρακικού ασβεστίου μέσω βιομιμητικής προσέγγισης αν και η χρήση της στη θεραπεία της αθηροσκλήρωσης της ανθρώπινης καρδιάς δείχνει να είναι αποτελεσματική.

Όλες οι παραπάνω εφαρμογές αποδίδονται κυρίως στις ηλεκτροστατικές δυνάμεις που αναπτύσσονται μεταξύ των καρβοξυλομάδων του αλγινικού και των μεταλλικών ιόντων (Ca²⁺, Zn²⁺, Cu²⁺) (5-10), που εξαρτώνται κυρίως από το λόγο

82

M/G στις αλυσίδες του πολυμερούς, στις ιδιότητες των ιόντων (όξινη ή βασική συμπεριφορά) και την οξύτητα του μέσου (11).

4.2 Παρασκευή υδρογέλης

Η πειραματική διαδικασία βασίστηκε στη χρήση του μετά νατρίου άλατος του αλγινικού οξέος. Για την παρασκευή υδρογελών διαφόρων μεταλλικών ιόντων αρχικά παρασκευάστηκαν τα υδατικά διαλύματα του μετά νατρίου άλατος του αλγινικού οξέος (1.0 % w/v) και του εκάστοτε μεταλλικού ιόντος (1.0 mol/L). Συγκεκριμένος όγκος από το διάλυμα του μετάλλου (1 ή 2 ml ανάλογα με την πειραματική διαδικασία) μεταφέρεται σε γυάλινο διάφανο δοχείο όγκου 10 ml που περιέχει καθορισμένο όγκο από το διάλυμα του αλγινικού (5 ή 10 ml αντίστοιχα). Το μείγμα αφήνεται σε ηρεμία για 9 ώρες τόσο για να επιτευχθεί η πλήρης ανταλλαγή ιόντων M^{n+} και $N\alpha^{+}$ όσο και για να αποφευχθεί η επαφή με τον αέρα. Μετά το πέρας του προαναφερθέντος χρονικού διαστήματος, γίνεται απόχυση του επιπλέον υγρού και έκπλυση της γέλης με απιονισμένο νερό ώστε να απομακρυνθούν εναπομείναντα ιόντα από την επιφάνεια της. Στόχος είναι η ανάπτυξη κρυστάλλων εντός της γέλης, και όχι απλά στην επιφάνεια της. Ακολουθεί προσθήκη του διαλύματος του εκάστοτε υποκαταστάτη προσαρμοσμένο σε διαφορετική τιμή pH κάθε φορά, τα δοχεία σκεπάζονται ερμητικά και αφήνονται σε ηρεμία έως την παραλαβή την αποτελεσμάτων.

Εικόνα 57: Πειραματική διαδικασία για τη σύνθεση των προιόντων.

Σε γενικές γραμμές, το μετά νατρίου άλας του αλγινικού οξέος δεν έχει συγκεκριμένο μοριακό βάρος και λόγο M/G ενώ η δομή του πολυμερούς ποικίλλει ανάλογα με το περιβάλλον ανάπτυξης των βακτηρίων και των φυκών από το οποίο προέρχεται. Η διάλυσή του σε απιονισμένο νερό έχει σαν αποτέλεσμα την αποπρωτονίωση των

καρβοξυλομάδων (-COOH) και τη δημιουργία θέσεων πρόσδεσης των μεταλλικών ιόντων. Πιο συγκεκριμένα, η προσθήκη ιόντων Ca²⁺ στο διάλυμα του αλγινικού υποβοηθά το διμερισμό των αλυσίδων των καταλοίπων του γουλουρονικού οξέος (12). Οι υδρογέλες ασβεστίου αποτελούν διασταυρούμενα δίκτυα (cross-linked networks) που απορροφούν μεγάλες ποσότητες νερού όπως φαίνεται και στην εικόνα 62 ενώ οι αποπρωτονιωμένες καρβοξυλομάδες του πολυμερούς μπορούν να παρομοιαστούν με το άμινο-τελικό άκρο ενός πολυπεπτιδίου στις οποίες προσδένονται τα μεταλλικά κατιόντα λόγω ηλεκτροστατικών δυνάμεων.

Εικόνα 58: Δημιουργία υδρογέλης ασβεστίου

Μετά την ανάμιξη των δύο διαλυμάτων η συγκέντρωση του ιόντος του μετάλλου και το pH του μείγματος δεν επηρεάζουν σημαντικά τη δομή της υδρογέλης αν και η μηχανική αντοχή και το πορώδες της υδρογέλης εξαρτώνται από τη σύστασή της.

4.3 Φυσικές και χημικές ιδιότητες του αλγινικού οξέος – Επίδραση στη δημιουργία της υδρογέλης

Δεδομένου του ότι οι τιμές pK_a των G και M μονομερών κυμαίνονται από 3 έως 4, πρωτονίωση ή αποπρωτονίωση του διαλύματος του αλγινικού μεταβάλλει τις υδρόφιλες ιδιότητες του πολυμερούς και πιθανότατα το διμερισμό των αλυσίδα στο υδατικό διάλυμα. Η αλλαγή της τιμής του pH οδηγεί σε διαφορετικού μηχανισμούς σύνθεσης της υδρογέλης ασβεστίου (13). Πιο συγκεκριμένα, η ισχύς του μανουρονικού και του γουλουρονικού οξέος αντίστοιχα είναι pK_a = 3.38 και pK_a = 3.65 όπου pK_a = $-\log K_a$ και

$$K_{\rm a} = \frac{[-\rm COO^-][\rm H^+]}{[-\rm COOH]}.$$

Η αλληλουχία και η αναλογία των M,G-blocks στον πολυσακχαρίτη από διαφορετικά είδη καφέ φυκών όχι μόνο διαφοροποιεί τις φυσικές του ιδιότητες αλλά και την ενεργότητά του απέναντι σε διαφορετικά κατιόντα. Πιο συγκεκριμένα, η αλληλεπίδραση των δισθενών μετάλλων με το αλγινικό οξύ προερχόμενο από διαφορετικές οικογένειες φυκών αυξάνει με την αύξηση της περιεκτικότητας του σε γουλουρονικό οξύ (16). Αυτό οφείλεται κυρίως στο ότι η δομή ζιγκ-ζάγκ των πολυγουλουρονικών οξέων μπορεί ευκολότερα να φιλοξενήσει δισθενή κατιόντα σε σχέση με τα πολυμανουρονικά οξέα. Οι πολυγουλουρονικές αλυσίδες υφίσταται διμερισμό παρουσία των κατιόντων δημιουργώντας θέσεις συναρμογής με κοιλότητες κατάλληλες για τα δισθενή κατιόντα. Διαφορετικές αλυσίδες μπορούν να συνδεθούν μεταξύ τους για τη δημιουργία δικτύου γέλης. Όσο περισσότερες αλυσίδες συμμετέχουν στο δίκτυο τόσο μεγαλύτερο είναι το ιξώδες του προϊόντος. Ο τρόπος δημιουργίας γελών αυτού του τύπου χαρακτηρίζεται ως μοντέλο "egg-box".

Εικόνα 59 Σχηματική αναπαράσταση του μοντελου egg-box

O Haug στη μελέτη του για την πρόσδεση μεταλλικών κατιόντων σε αλγινικό οξύ που προέρχεται από καφέ φύκη της οικογένειας Laminaria Digita αναφέρει ότι η ποσότητα των πρωτονίων που απελευθερώνεται από το διάλυμα μειώνεται κατά τη σειρά : $Pb^{2+} > Cu^{2+} > Ba^{2+} > Sr^{2+} > Ca^{2+} > Co^{2+} > Ni^{2+} > Mn^{2+} > Mg^{2+}$ εξαιτίας της σχετικής ικανότητας του προσδεόμενου μετάλλου να ανταγωνίζεται τα πρωτόνια για τις θέσεις πρόσδεσης στο οργανικό τμήμα. Αντίστοιχα η τάση πρόσδεσης των αλκαλικών γαιών στο πολυμανουρονικό και πολυγουλουρονικό τμήμα μειώνεται κατά τη σειρά $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$ (17). Η ερμηνεία που δίνεται για την προτίμηση στην πρόσδεση βαρύτερων μεταλλικών ιόντων βασίζεται σε στερεοχημικές επιδράσεις δεδομένου του ότι μεγαλύτερα μόρια προσαρμόζονται

θέσεις πρόσδεσης που περιβάλλονται από δύο απόμακρες καλύτερα σε γαρακτηριστικές ομάδες. Οι περιοχές του αλγινικού που είναι πλούσιες σε γουλουρονικά κατάλοιπα παρέχουν ένα πολυδοντικό περιβάλλον για συμπλοκοποίηση, με αποτέλεσμα η πρόσδεση του μεταλλικού κατιόντος να είναι σταθερότερη, ενώ αντίθετα οι περιοχές που είναι πλούσιες σε μανουρονικά κατάλοιπα ενισχύουν τη μονοδοντική συμπλοκοποίηση. Ερμηνεία σε αυτό το φαινόμενο δίνει ο προσανατολισμός των ατόμων Ο στο καρβοξυλικό ανιόν (-COO⁻). Στο γουλουρονικό οξύ το οξυγόνο συμμετέχει στο δακτύλιο και το αξονικό οξυγόνο Ο-1 δημιουργούν ένα χωροταξικά ευνοούμενο περιβάλλον με το καρβοξιλικό ανιόν σε σχέση με το περιβάλλον που δημιουργείται από το ισημερινό Ο-1 στο κατάλοιπο του μανουρονικού οξέος.

Η σύνθεση κρυσταλλικών υλικών σε υδρογέλες ιόντων είναι πορεία δύο βημάτων.

Εικόνα 60: Σχηματική αναπαράσταση της περιορισμένης δημιουργίας κρυσταλλικού υλικού στην επιφάνεια της υδρογέλης.

Αρχικά παρατηρείται δημιουργία κρυσταλλικών πυρήνων στην επιφάνεια της υδρογέλης με αποτέλεσμα την αναπόφευκτη ανάπτυξη κρυστάλλων σε συγκεκριμένα τμήματά της ενώ στη συνέχεια η αλληλεπίδραση μεταξύ οργανικής και ανόργανης ύλης οδηγεί στη δημιουργία διευρυμένων και διευθετημένων δομικών τμημάτων (building blocks).

Εικόνα 61: Σχηματική αναπαράσταση της δημιουργίας διευθετημένων κρυσταλλικών τμημάτων στην υδρογέλη.

4.4 Μηχανισμός ανταλλαγής ιόντων μέσω συστήματος υδρογέλης

Το αλγινικό οξύ θεωρείται από διάφορους επιστήμονες ως ιονανταλλακτικό υλικό το οποίο διασταυρώνεται με τις καρβοξυλικές ομάδες διαφορετικών μακρομορίων ενώ

κατά τον Schweiger (18-20) τα περισσότερα δισθενή μέταλλα σχηματίζουν σύμπλοκα με αυτό μέσω των καρβοξυλικών ομάδων ενός μακρομορίου και δύο γειτονικών υδροξυλομάδων από το ίδιο ή διαφορετικό μακρομόριο. Εύλογο είναι λοιπόν το ερώτημα για το αν άλλοι παράμετροι όπως ο σχηματισμός χηλικών συμπλόκων και η απορρόφηση είναι σημαντικοί.

Αν το αλγινικό οξύ συμπεριφέρεται ως χηλικός υποκαταστάτης η ικανότητα προσρόφησης του θα πρέπει να είναι μεγαλύτερη σε σχέση με παρόμοιους ιονανταλλάκτες. Απάντηση στο ερώτημα έδωσε η σύγκρισή του με το ακετυλιωμένο αλγινικό οξύ αφού το τελευταίο δεν δρα χηλικά για τα μεταλλικά ιόντα. Οι τιμές RF από πειράματα χρωματογραφίας λεπτής στιβάδας (TLC) διάφορων μεταλλικών ιόντων τόσο του αλγινικού οξέος όσο και της ακετυλιωμένης του μορφής αποδεικνύουν ότι στο πρώτο παρουσιάζεται μεγαλύτερη επιλεκτικότητα πρόσδεσης γεγονός που αποδίδεται στην παρουσία υδροξυλομάδων. Τα παραπάνω αποδεικνύουν ότι το αλγινικό οξύ δρά ως χηλικός υποκαταστάτης παρά τη στερεοχημική παρεμπόδιση στο δεσμό ανάμεσα στις καρβοξυλομάδες και τα μεταλλικά κατιόντα.

Είναι σημαντικό να γνωρίζουμε τον αριθμό των καρβοξυλομάδων που συμμετέχουν στην αντίδραση ανταλλαγής του αλγινικού οξέος με πολυσθενή κατιόντα. Ο αριθμός αυτός αυξάνεται με την αύξηση του σθένους του ιόντος και μάλιστα συμπίπτει με το σθένος του ιόντος. Αντίστοιχη απορρόφηση σε κυτταρίνη και καρβοξυμεθυλοκυτταρίνη, δύο ιονανταλλάκτες δομικά όμοιους με το αλγινικό οξύ, αποδίδεται σύμφωνα με τον Muzzarelli (21) σε αλληλεπίδραση του κατιόντος της υδροξυλομάδας του μακρομορίου. Κατά την αντίδραση ιονανταλλαγής παρατηρείται μείωση στο pH του διαλύματος, το μέγεθος της οποίας εξαρτάται από την αλληλεπίδραση του αλγινικού οξέος με το μεταλλικό κατιόν. Εκμεταλλευόμενοι την αύξηση της οξύτητας κατά την αντίδραση της ιονανταλλαγής μπορούμε να καταλήξουμε σε συμπεράσματα για την αλληλεπίδραση του αλγινικού οξέος με διαφορετικά μεταλλικά κατιόντα και να κατανοήσουμε το μηχανισμό ιονανταλλαγής. Πιο συγκεκριμένα, παρατηρείται η παρακάτω συγγένεια του αλγινικού οξέος με διαφορετικά μεταλλικά κατιόντα (22):

(
$$\alpha$$
) Ag⁺ > Tl⁺, Cs⁺ > K⁺ > N α^+ > Li⁺
(β) Pb²⁺ > Ba²⁺ > Sr²⁺ > Cu²⁺, Cd²⁺ > Ca²⁺ > Be²⁺, Zn²⁺, Co²⁺, Ni²⁺ > Mn²⁺, Mg²⁺
(γ) In³⁺ > Ce³⁺ > Cr³⁺

Το συμπέρασμα που προκύπτει από την παραπάνω σειρά είναι ότι για ιόντα που αντιστοιχούν στην ίδια ομάδα του περιοδικού πίνακα η συγγένεια του αλγινικού

οξέος, άρα και η αλληλεπίδρασή του με αυτά, συσχετίζεται με το μέγθος της ιοντικής ακτίνας και μειώνεται κατά τον ακόλουθο τρόπο :

- (α) Cs⁺ > K⁺ > N α ⁺ > Li⁺
- (β) Ba²⁺> Sr²⁺ > Ca²⁺ > Mg²⁺
- $(\gamma) Cd^{2+} > Zn^{2+}$

Η ικανότητα απορρόφησης μεταλλικών ιόντων από το αλγινικό οξύ εξαρτάται τόσο από το βαθμό ιονανταλλαγής όσο και από τον τύπο του χηλικού δακτυλίου που σχηματίζεται (22). Όσο αφορά τα μονοσθενή κατιόντα των αλκαλίων πειράματα μέτρησης του ιξώδους αποκαλύπτουν ότι δεν παρατηρείται. Στην περίπτωση των δισθενών μεταλλικών ιόντων παρατηρείται πρόσδεσή τους σε δύο καρβοξυλομάδες.

Τα ιόντα αυτά κατηγοριοποιούνται περαιτέρω σε τρείς ομάδες (22) :

(α) Ba, Sr, Ca, Co, Ni, Zn

Τα ιόντα αυτά σχηματίζουν χηλικά προϊόντα (metal alginates) με το αλγινικό οξύ.

 (β) Pb, Cu, Cd

Τα χηλικά προϊόντα τους παρουσιάζουν διασταυρούμενη σύνδεση μεταξύ των μακρομορίων.

(y) Mn, Mg, Be

Στα προϊόντα δεν παρατηρείται διασταυρούμενη σύνδεση μεταξύ των μακρομορίων, είναι όμως πιθανό να σχηματίζουν non-cross-linked σύμπλοκα.

Τα τρισθενή και τα τετρασθενή κατιόντα προσδένονται σε τρείς και τέσσερις αντίστοιχα καρβοξυλομάδες. Είναι λογικό να υποθέσουμε ότι οι καρβοξυλομάδες από διαφορετικές αλυσίδες συμμετέχουν στην αντίδραση γεγονός στο οποίο οφείλεται η ζελατινοειδής υφή των προϊόντων. Στην περίπτωση ιόντων που εμφανίζουν ιδιαίτερα όξινο χαρακτήρα όπως Al(III), Fe(III) και Sn(IV), ο σχηματισμός των προϊόντων επηρρεάζεται από την παρουσία υδροξυλιωμένων ειδών αυτών των ιόντων καθώς επίσης και από τη μείωση των ελεύθερων καρβοξυλομάδων με την αύξηση του pH.

Τέλος, αξίζει να αναφερθεί ότι η προστασία των υδροξυλομάδων μειώνει την επιλεκτικότητα του αλγινικού οξέος δημιουργώντας έναν ιονανταλλάκτη που δεν παρουσιάζει σημαντικές διαφορές από άλλους με αντίστοιχα χαρακτηριστικά όπως η καρβοξυμεθυλοκυτταρίνη. Αυτός είναι και ο λόγος για τον οποίο το αλγινικό οξύ χρησιμοποιείται ως νέα στατική φάση στην χρωματογραφία λεπτής στιβάδας (TLC).

Τα ιόντα των λανθανιδίων παρουσιάζουν αξιοσημείωτη πρόσδεση στις MM περιοχες (MM blocks) σε σχέση με τα ιόντα των αλκαλικών γαιών, γεγονός που υποδηλώνει ότι ο τρόπος συναρμογής είναι κάθε φορά διαφορετικός. Αυτό αποδίδεται στην ύπαρξη προσθετων μορίων νερού στη σφαίρα συναρμογής των λανθανιδίων, τα οποία απαιτούνται για την αλληλεπίδρασή τους με το πολυμερές. Σε αντίθεση με τα δισθενή ιόντα, καθώς η ιοντική ακτίνα μειώνεται στην ομάδα των λανθανιδίων από το La³⁺ προς το Tb³⁺ η τάση πρόσδεσης αυξάνεται τόσο για τις GG όσο και για τις MM περιοχές φτάνοντας σε μέγιστο για το Tb³⁺ όπως φαίνεται και από την εικόνα 65. Το μέγεθος του ιόντος δεν επηρεάζει σημαντικά την τάση για πρόσδεση με το πολυμερές δεδομένου του ότι η ιοντική ακτίνα ποικίλλει λιγότερο, καθώς μεταβαίνουμε από το La³⁺ sto Tb³⁺ (1.22-1.04 A), σε σχέση με την αντίστοιχη των αλκαλικών γαιών (1.00-1.35 A) καθώς μεταβαίνουμε από το Ca²⁺ στο Ba²⁺. Τέλος, όλες οι μελέτες έχουν δείξει ότι η σύνδεση των μεταλλικών ιόντων δεν εξαρτάται από τη δομική διαμόρφωση του μορίου του πολυμερούς.

ΕΙΚΟΝΑ 65: Τάση πρόσδεσης των μεταλλικών ιόντων στις GG και MM περιοχές

<u>ΚΕΦΑΛΑΙΟ 5</u>

<u>ΣΥΝΘΕΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ ΜΕΣΩ ΣΥΣΤΗΜΑΤΟΣ</u> <u>ΥΔΡΟΓΕΛΗΣ</u>

Η πειραματική διαδικασία προχώρησε μέσω της παρασκευής stock διαλυμάτων τόσο των υποκαταστατών όσο και των μετάλλων που χρησιμοποιήθηκαν. Πρωταρχικός στόχος ήταν η ανάπτυξη της τεχνικής ανάπτυξης κρυσταλλικών μεταλλοφωσφονικών υλικών μέσα σε υδρογέλες αλγινικού και η διαπίστωση της εγκυρότητάς της σε υδατικά διαλύματα. Παρόμοια τεχνική εφαρμόστηκε το 2008 από ομάδα κινέζων ερευνητών για το σχηματισμό κρυσταλλικού ανθρακικού ασβεστίου (ασβεστίτη, CaCO₃). Σε αυτή την περίπτωση όμως η διαδικασία περιελάμβανε τη χρήση υδρογέλης ασβεστίου στην οποία έγινε διάχυση αερίων διοξειδίου του άνθρακα και αμμωνίας υπό θερμοστατούμενες συνθήκες.

Εικόνα 62: Μονοκρύσταλλοι CaCO₃ από υδρογέλη αλγινικού μετά νατρίου άλατος μέσω ηλεκτρονικής μικροσκοπίας (SEM).

5.1 ΠΑΡΑΣΚΕΥΗ ΥΔΡΟΓΕΛΗΣ ΜΕ ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΜΕΤΑΛΛΩΝ

Η διαδικασία παρασκευής της εκάστοτε υδρογέλης είναι από τα σημαντικότερα βήματα της τεχνικής. Πρόκειται για ένα σχετικά απλό στάδιο, αν ληφθούν σοβαρά υπ'όψην οι ακόλουθοι παράγοντες:

(α) η γέλη θα πρέπει να έχει τέτοια σύσταση ώστε να εφαρμόζει όσο το δυνατόν καλύτερα στα τοιχώματα του γυάλινου δοχείου. Αυτό έχει σαν αποτέλεσμα, το διάλυμα του υποκαταστάτη να τοποθετείται πάνω από μια ακινητοποιημένη επιφάνεια και να εισχωρεί σε αυτή μέσω των πόρων της. Σε αντίθεση με την κλασική τεχνική κρυστάλλωσης σε διάλυμα, το μεταλλικό ιόν είναι ακινητοποιημένο σε ένα πολυμερικό πλέγμα, με αποτέλεσμα να είναι ευκολότερο για τα μόρια του υποκαταστάτη να συναρμοστούν με αυτό. Επίσης, η ανάπτυξη των επιθυμητών κρυστάλλων γίνεται στα συγκεκριμένα σημεία πρόσδεσης του κατιόντος στο πλέγμα του αλγινικού.

(β) η προσθήκη μετάλλου στο διάλυμα του αλγινικού πρέπει να γίνει αργά, ώστε να αποφευχθεί η δημιουργία φυσαλίδων αέρα στη γέλη που οδηγεί σε ανομοιογένεια στη σύσταση της επιφάνειας, ενώ θα πρέπει η έγχυση να γίνει με τέτοιο τρόπο (από τα τοιχώματα προς το κέντρο) ώστε το υλικό να εφαρμόζει όσο το δυνατόν καλύτερα στα τοιχώματα του δοχείου.

(γ) η αναλογία των διαλυμάτων αλγινικού-μετάλλου πρέπει να είναι τέτοια ώστε η σχηματιζόμενη γέλη να είναι χαρακτηρίζεται από όσο το δυνατόν μεγαλύτερη μηχανική αντοχή, επιθυμητό πάχος και σταθερότητα.

(δ) το ελάχιστο χρονικό διάστημα για την ανταλλαγή των ιόντων πρέπει να τηρηθεί αυστηρά ώστε να έχουμε το μέγιστο δυνατό αποτέλεσμα ενώ η σχηματιζόμενη γέλη πρέπει να παραμείνει ερμητικά κλειστή για την αποφυγή αλληλεπίδρασής της με τον αέρα.

(ε) το σύστημα πρέπει να μείνει σε απόλυτη ηρεμία έως την παραλαβή της εκάστοτε υδρογέλης

Σε ποτήρι ζέσεως των 500 ml διαλύσαμε 1 gr μετά νατρίου άλατος αλγινικού οξέος (Alginic acid, sodium salt CAS No: 9005-38-33) σε 99 ml απιονισμένο νερό για την παραλαβή διαλύματος περιεκτικότητας 1 % w/v. 5 ml από αυτό το διάλυμα μεταγγίσθηκαν σε γυάλινο φιαλίδιο χωρητικότητας 25 ml και ακολούθησε αργή προσθήκη (με πιπέτα pasteur) 2 ml διαλύματος του εκάστοτε μετάλλου (2 mmol). Η προσθήκη μετάλλου έχει σαν αποτέλεσμα τη δημιουργία της γέλης. Για πλήρη ανταλλαγή των ιόντων νατρίου με τα ιόντα του εκάστοτε μετάλλου το σύστημα αφήνεται ερμητικά κλειστό σε ηρεμία για τουλάχιστον 9 ώρες. Μετά το πέρας του απαραίτητου χρονικού διαστήματος απομακρύνεται η περίσσεια του διαλύματος που βρίσκεται στον περιβάλλοντα χώρο της υδρογέλης και περιέχει ιόντα νατρίου, νερό και φυσικά κλάσμα ιόντων του μετάλλου που δεν ανταλλάχθηκαν και γίνεται έκπλυση με απιονισμένο νερό για την παραλαβή εναπομείνοντων ιόντων. Ακολουθεί προσεκτική αποστράγγιση της υδρογέλης και προσθήκη του διαλύματος του υποκαταστάτη.

5.2 ΠΑΡΑΣΚΕΥΗ ΔΙΑΛΥΜΑΤΩΝ ΥΠΟΚΑΤΑΣΤΑΤΩΝ

Η σύνθεση κρυσταλλικών υλικών μέσω συστήματος υδρογέλης εφαρμόστηκε παράλληλα σε δύο ομάδες μετάλλων, στις αλκαλικές γαίες και τα λανθανίδια. Σε κάθε περίπτωση παρασκευάστηκε Stock διάλυμα για κάθε υποκαταστάτη έτσι ώστε κάθε φορά να περιέχονται 0.2 mmol ή 0.1 mmol ενεργής ουσίας σε επιλεγμένο όγκο του διαλύματος. Συνεπώς ακολουθήθηκαν δύο διαφορετικές σειρές πειραμάτων άλλα σε ποικίλες αναλογίες, τόσο για να χαρτογραφήσουμε όσο το δυνατόν καλύτερα τη συμπεριφορά των υποκαταστατών με το εκάστοτε μέταλλο όσο και για να παραλάβουμε πληθώρα αποτελεσμάτων και να αποφανθούμε τελικά για την εγκυρότητα της μεθόδου. Σε κάποιες περιπτώσεις επαναλήφθηκαν γνωστές πειραματικές διαδικασίες, με δεδομένα αποτελέσματα για το σκοπό αυτό.

ΥΠΟΚΑΤΑΣΤΑΤΗΣ		0.1 mmol / ПЕІРАМА	0.2 mmol / ПЕІРАМА
BHMTPMPA(Dequest2090)		1.235 ml / 10ml H20	2.476 ml / 10ml H20
PBTC	(Dequest7000)	0.425 ml / 10ml H20	0.850 ml / 10ml H20
PMIDA		2.500 ml / 10ml H20	5.000 ml / 10ml H20
AMP	(Dequest2000)	0.451 ml / 10ml H20	0.902 ml / 10ml H20
HEDP	(Dequest2010)	0.245 ml / 10ml H20	0.491 ml / 10ml H20
HDTMP	(Dequest2054)	2.575 ml / 10ml H20	5.150 ml / 10ml H20
EDTMP	(Dequest2046)	1.680 ml / 10ml H20	3.360 ml / 10ml H20
DTPMPA	(Dequest2066)	2.300 ml / 10ml H20	4.600 ml / 10ml H20

Πίνακας 6 : Παρασκευή διαλυμάτων υποκαταστατών.

5.3 ΠΑΡΑΣΚΕΥΗ ΔΙΑΛΥΜΑΤΩΝ ΛΑΝΘΑΝΙΔΙΩΝ

ΜΕΤΑΛΛΟ	0.02 mmol / ПЕІРАМА
$Pr(NO_3)_3 \cdot 6H_2O$	0.088gr
$La(NO_3)_3 \cdot 5H_2O$	0.083gr
$Tb(NO_3)_3 \cdot 6H_2O$	0.088gr
$Ce(NO_3)_3 \cdot 6H_2O$	0.087gr
$Dy(NO_3)_3$ ·5H ₂ O	0.091gr

$Ho(NO_3)_3$ ·5 H_2O	0.087gr	
Er(NO ₃) ₃ ·5H ₂ O	0.091gr	
Sm(NO ₃) ₃ ·6H ₂ O	0.087gr	
$Gd(NO_3)_3 \cdot 6H_2O$	0.090gr	

Πινακας 7: Παρασκευή διαλυμάτων λανθανιδίων.

<u>5.4 ΣΥΝΘΕΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ Ca – ΑΤΜΡ</u>

5.4.1 Πορεία Σύνθεσης

Σε γυάλινο φιαλίδιο μέγιστου όγκου 25 ml προστίθενται 4 ml (0.04 gr) από το διάλυμα του μετά νατρίου άλατος του αλγινικού οξέος. Ακολούθως προστίθενται 2 ml (0.030 gr, 0.2 mmol) από το διάλυμα του χλωριούχου ασβεστίου και η σχηματιζόμενη υδρογέλη αφήνεται σε ηρεμία για εννέα (9) ώρες. Μετά την πάροδο του παραπάνω χρονικού διαστήματος αποχύνεται το επιπλέον υγρό, γίνεται έκπλυση με απιονισμένο νερό και προστίθενται 15.902 ml διαλύματος ATMP (0.2 mmol) που δεν έχει προσαρμοστεί σε συγκεκριμένη τιμή pH (ελεύθερη ανάμιξη). Το φιαλίδιο σφραγίζεται ερμητικά και παραμένει σε ηρεμία για 10 ημέρες έως την παραλαβή του μονοκρυσταλλικού υλικού.

5.4.2 Χαρακτηρισμός του Ca-ATMP

Η αντίδραση του ATMP με Ca^{2+} μέσω συστήματος υδρογέλης σε μοριακή αναλογία 1:1 δίνει το κρυσταλλικό πολυμερές { $Ca[HN[CH_2PO_3H_3]\cdot 3.5H_2O$ }_x σύμφωνα με την αντίδραση :

 $xCaCl_2 \cdot 2H_2O + xHN[CH_2PO_3H_2)_2(CH_2PO_3H) + 2xH_2O \rightarrow$ $\{Ca[HN[CH_2PO_3H_3] \cdot 3.5H_2O\}_x + 2xHCl + 0.5xH_2O$

Η αντίδραση βασίζεται στην αρχή της ηλεκτρουδετερότητας. Το μόριο του ATMP σε χαμηλό pH βρίσκεται στη μορφή $HN[CH_2PO_3H_2)_2(CH_2PO_3H)^-$. Υπό την παρουσία των ιόντων Ca^{2+} λαμβάνει χώρα μονοαποπρωτονίωση των δύο φωσφορικών ομάδων με αποτέλεσμα το συνολικό φορτίο του υποκαταστάτη να είναι «2-», $[HN^+(CH_2PO_3H^-)_3]^{2-}$, και το σχηματιζόμενο προϊόν ουδέτερο.

Εικόνα 63: Φυλλόμορφη δομή του Ca-ATMP μέσω μικροσκοπίας σάρωσης (SEM).

Element	App	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
C K	12.15	0.3401	35.75	2.39	25.83
O K	71.45	0.6518	109.62	2.51	59.47
P K	55.33	1.3423	41.22	0.68	11.55
Ca K	13.98	0.9598	14.56	0.41	3.15
Totals			201.15		

Πίνακας 8 : Αποτελέσματα Στοιχειακής Ανάλυσης.

Το φάσμα FT-IR του Ca-ATMP δίνεται παρακάτω. Πρόκειται για ένα τυπικό φάσμα μεταλλοφωσφονικού υλικού. Οι ισχυρές απορροφήσεις στην περιοχή 900-1100 cm⁻¹ είναι χαρακτηριστικές φωσφονικών ομάδων συναρμοσμένων με μέταλλο.

Εικόνα 64: Φάσμα FT-IR του Ca-ATMP (σε KBr)

Πιο συγκεκριμένα, οι κορυφές στην περιοχή 1180-1240 cm⁻ αποδίδονται στην τάση δόνησης του δεσμού P=O. Η χαρακτηριστική κορυφή για το δεσμό P-OH εμφανίζεται στους 2350 cm⁻¹. Μία μέτριας έντασης κορυφή στους 1660 cm⁻¹ αποδίδεται στην ομάδα P(O)(OH). Η δόνηση τάσης του δεσμού N-Η εμφανίζεται σαν ώμος στους 2700 cm⁻¹. Η ένωση Me₃NH⁺ εμφανίζει επίσης την τάση του δεσμού N-Η στην ίδια θέση. Μία ισχυρή κορυφή στους 1080 cm⁻¹ οφείλεται στην δόνηση τάσης του δεσμού C-N εμφανίζεται στους 1342 cm⁻¹. Η ένωση Μα₃NH⁺ εμφανίζει επίσης την τάση του δεσμού N-Η στην ίδια θέση. Μία ασθενούς έντασης κορυφή στους 758 cm⁻¹ αποδίδεται κατά πάσα πιθανότητα στην δόνηση του δεσμού P-C. Οι δονήσεις τάσης του δεσμού O-Η του νερού παρουσιάζονται ως φαρδιές κορυφές στους 3450 cm⁻¹ και 3260 cm⁻¹. Οι συμμετρικές και αντισυμμετρικές τάσεις δόνησης της ομάδας –CH₂- δίνουν κορυφές στην περιοχή 3030-2790 cm⁻¹. Η δόνηση παραμόρφωσης της ομάδας –CH₂- εμφανίζεται στους 1440 cm⁻¹.

5.4.3 Κρυσταλλική δομή Ca-ATMP

Τα κρυσταλλογραφικά δεδομένα της ένωσης δίνονται στον πίνακα 2.1. Το πολυμερές προϊόν κρυσταλλώνει σε μονοκλινές σύστημα P2₁/n με τις ακόλουθες διαστάσεις μοναδιαίας κυψελίδας, a = 11.236 Å, b = 8.459 Å, c = 15.532 Å, β =90.59°, V = 1476.17 Å³ και Z = 4.

Το μεταλλικό κέντρο συναρμογής του Ca²⁺ βρίσκεται σε ελαφρώς παραμορφωμένο οκταεδρικό περιβάλλον και είναι συναρμοσμένο με πέντε άτομα Ο από τα οποία πέντε προέρχονται από φωσφονικές ομάδες (O1, O2, O5, O6, O7) και ένα από μόριο νερού (O12).

Εικόνα 65: Περιβάλλον συναρμογής Ca-ATMP. Με μπλέ απεικονίζεται το Ca, με ρόζ τα Ο και με λευκό τα Η. Παρατηρούμε ότι από τους 6 υποκαταστάτες ο ένας προέρχεται από μόριο H₂O.

Όλες οι φωσφονικές ομάδες του AMP είναι αποπρωτονιωμένες και συμμετέχουν σε ένα πολύπλοκο δίκτυο ενδομοριακών και διαμοριακών δεσμών Η. Το τμήμα Ο-Ρ-Ο γεφυρώνει δύο γειτονικά άτομα Ca σε μία Ca-O-P-O-Ca διαμόρφωση.

Εικόνα 66: Μοναδιαία κυψελίδα του μονοκρύσταλλου. Το τμήμα Ο-Ρ-Ο γεφυρώνει δύο γειτονικά άτομα Ca σε μία Ca-O-P-O-Ca διαμόρφωση.

Οι αποστάσεις των δεσμών Ca-O(P) κυμαίνονται από 2.257(2) Å έως 2.328(2) Å. Η απόσταση Ca-O (H₂O) είναι μεγαλύτερη και ίση με 2.364(3) Å. Οι γωνίες των δεσμών O-Ca-O παρουσιάζουν μικρές αποκλίσεις από την ιδανική οκταεδρική γεωμετρία και κυμαίνονται από 86.32(8) έως 173.74(9).

Εικόνα 67: Γωνίες Ο-Ca-Ο στο Ca-ATMP

Απο το διάγραμμα ORTEP παρατηρούμε τις πλήρως αποπρωτονιωμένες φωσφονικές ομάδες PO⁻ καθώς και την πρωτονιωμένη αμονομάδα. Είναι εμφανές ότι κάθε μέταλλο συναρμόζεται από τρία μόρια υποκαταστάτη (ATMP), ενώ κάθε μόριο υποκαταστάτη συναρμόζεται με τέσσερα μεταλλικά κέντρα.

Εικόνα 68: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας του Ca-ATMP. Η πρωτονιωμένη αμινομάδα καθώς και μία απο τις φωσφονικές τονίζονται με μπλέ κύκλο.

Ένα μόριο AMP για κάθε άτομο Ca αποτελεί διδοντικό υποκαταστάτη σχηματίζοντας οκταμελή χηλικό δακτύλιο N1-C3-P3-O7-Ca1-O5-P2-C2-N1. Κάθε άτομο Ca είναι συναρμοσμένο με 3 φωσφονικά οξυγόνα με μονοδοντικό τρόπο ενώ καθεμία από τις 3 αυτές φωσφονικές ομάδες συναρμόζονται ταυτόχρονα και σε κάποιο γειτονικό άτομο Ca. Ένα μόριο νερού συμπληρώνει το οκτάεδρο.

Εικόνα 68: Διάγραμμα ORTEP της μοναδιαίας κυψελίδαςτου Ca-ATMP. Ο οκταμελής χηλικός δακτύλιος τονίζεται με κόκκινο κύκλο.

Υπάρχουν 3.5 μόρια νερού ανά ασύμμετρη μονάδα (asymmetric unit). Ένα από αυτά συναρμόζεται στο κέντρο του Ca ενώ τα υπόλοιπα συμπληρώνουν τα κενά του κρυσταλλικού πλέγματος και συμμετέχουν στο εκτεταμένο δίκτυο των δεσμών Η.

Εικόνα 62 : Εκτεταμένο δίκτυο των δεσμών Η στην κρυσταλλική δομή κατά τον άξονα c. Τα κενά του κρυσταλλικού πλέγματος συμπληρώνονται από μόρια νερού.

Δεδομένου του ότι όλες οι φωσφονικές ομάδες είναι πλήρως αποπρωτονιωμένες καθώς επίσης και του ότι τα μήκη των δεσμών Ca-O(P) είναι παρόμοιες οδηγεί στο συμπέρασμα ότι το αρνητικό φορτίο κάθε ομάδας –PO₃Η απεντοπίζεται μέσω των ατόμων της ομάδας O-P-O. Το μήκος των δεσμών P-C κυμαίνεται στις προβλέψιμες τιμές 1.835(3) Å, 1.831(2) Å και 1.847(20) Å. Το μήκος του δεσμού N-C εμφανίζει τις τιμές 1.506(3) Å, 1.490(3) Å και 1.512(3) Å ενώ οι γωνίες των δεσμών C-N-C είναι περίπου ~112.3°. Η μικρότερη απόσταση μεταξύ δύο μεταλλικών κέντρων είναι 5.770 Å.

Εικόνα 63 : Αποστάσεις μεταξύ των μεταλλικών κέντρων. Η μικρότερη απόσταση είναι 5.770 Å

Η περιοδική επανάληψη της μοναδιαίας κυψελίδας κατά μήκος του άξονα a οδηγεί στο σχηματισμό των δομικών φύλλων,

Εικόνα 71: Απεικόνιση της κρυσταλλικής δομής του Ca-ATMP κατά μήκος του άξονα a.

η σύνδεσή των οποίων κατά μήκος του άξονα b μέσω δεσμών Η οδηγεί στο σχηματισμό της φυλλόμορφης δισδιάστατης δομής.

ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΚΏΝ ΔΕΔΟΜΕΝΩΝ

Όνομα	Ca – ATMP
Μοριακός Τύπος	C ₃ H ₁₅ CaNO ₉ P ₃
Μοριακό Βάρος	342,15
Ομάδα χώρου	$P2_1/c$
$V(Å^3)$	1476.17
a , b, c	11.236, 8.459, 15.352 Å
α, β, γ	90°, 90,59°, 90°
Ζ	Z = 4, Z' = 0
R _{Factor} (%)	5.57

ΠΙΝΑΚΑΣ 9: Σύντομη περιγραφή των κρυσταλλογραφικών δεδομένων της ένωσης Ca-ATMP.

5.5 ΣΥΝΘΕΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ Ca-HEDP

5.5.1 Σύνθεση Ca-HEDP

Σε γυάλινο φιαλίδιο μέγιστου όγκου 25 ml προστίθενται 4 ml (0.04 gr) από το διάλυμα του μετά νατρίου άλατος του αλγινικού οξέος. Ακολούθως προστίθενται 2 ml (0.030 gr, 0.2 mmol) από το διάλυμα του χλωριούχου ασβεστίου και η σχηματιζόμενη υδρογέλη αφήνεται σε ηρεμία για εννέα (9) ώρες. Μετά την πάροδο του παραπάνω χρονικού διαστήματος αποχύνεται το επιπλέον υγρό, γίνεται έκπλυση με απιονισμένο νερό και προστίθενται 15.491 ml διαλύματος HEDP (0.2 mmol) χωρίς προσαρμογή της τιμής του pH (ελεύθερη ανάμιξη). Το φιαλίδιο σφραγίζεται ερμητικά και παραμένει σε ηρεμία για 15 ημέρες έως την παραλαβή του μονοκρυσταλλικού υλικού.

5.5.2 Χαρακτηρισμός Ca-HEDP

Εικόνα 73: Φάσμα FT-IR το Ca-HEDP

Το φάσμα FT-IR του Ca-ATMP δίνεται παρακάτω. Πρόκειται για ένα τυπικό φάσμα μεταλλοφωσφονικού υλικού. Οι ισχυρές απορροφήσεις στην περιοχή 900-1100 cm⁻¹ είναι χαρακτηριστικές φωσφονικών ομάδων συναρμοσμένων με μέταλλο. Μετατοπίσεις στις κορυφές και απουσία ή εμφάνιση πρόσθετων σε σχέση με το φάσμα του ελεύθερου υποκαταστάτη υποδηλώνουν τη συναρμογή του μεταλλικού κέντρου.

5.5.3 Κρυσταλλική δομή Ca-HEDP

To proving krustallwiel se éva triklinéz sústima ($a \neq b \neq c$, $a \neq \beta \neq \gamma$, $\gamma \neq 90^{\circ}$) P₁. Oi diastáseic the monadiaíae tou kuyelídae eínai a = 6.943, b = 7.581, c = 9.662 kai a = 92.734 Å, $\beta = 106.176$ Å kai $\gamma = 112.524^{\circ}$. V= 444.28 Å³, Z = 2.

Κάθε μεταλλικό ιόν συναρμόζει τέσσερα άτομα Ο εκ των οποίων τρία (3) προέρχονται από συναρμοσμένα μόρια νερού (O8, O8, O9), τέσσερα (4) από φωσφονική ομάδα (O1, O3,O3, O6) και ένα (1) από την υδροξυλομάδα –OH του υποκαταστάτη (O7).

Εικόνα 74: Περιβάλλον συναρμογής του μεταλλικού κέντρου στο Ca-HEDP. Το Ca απεικονίζεται με πράσινο χρώμα, τα Ο με κόκκινο και τα Η με λευκό. Παρατηρούμε ότι τα τρία από τα Ο συναρμογής προέρχονται από μόρια H₂O.

Τόσο η φωσφονική ομάδα όσο και η υδροξυλομάδα κάθε υποκαταστάτη είναι πλήρως αποπρωτονιωμένες. Τα μήκη δεσμών Ca-O (P) είναι Ca1-O3 2.445(5) Å, Ca1-O1 2.352(5) Å Ca1-O3 2.3995(5) Å Ca1-O6 2.417(5) Å ενώ οι αντίστοιχες γωνίες των δεσμών O-Ca-O κυμαίνονται από 75.9(2)° μέχρι 101.4(2)°.

Εικόνα 75: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας στο Ca-HEDP όπου παρουσιάζονται οι γωνίες των δεσμών O-Ca-O (P).

Τα μήκη δεσμών του μετάλλου με τα Ο που προέρχονται από τα συναρμοσμένα μόρια νερού κυμαίνονται από 2.465(4) Å σε 2.565(5) Å ενώ οι γωνίες Ο-Ca-O που δημιουργούνται με τα οξυγόνα των αντίστοιχων νερών είναι O8-Ca1-O9 102.0(2)°, O8-Ca1-O8 70.30(2)° και O9-Ca1-O8 71.80(2)°.

Εικόνα 76: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας στο Ca-HEDP όπου παρουσιάζονται οι γωνίες των δεσμών Ο-Ca-O απο μόρια νερού.

Τέλος, το μήκος δεσμού Ca-O με το οξυγόνο που προέρχεται από την υδοξυλομάδα του υποκαταστάτη είναι Ca1-O7 2.583(4) Å. Ενώ η ασύμμετρη δομική μονάδα δεν περιέχει κρυσταλλικά μόρια νερού.

Εικόνα 77: Μοναδιαία κυψελίδα Ca-HEDP

Σε κάθε μόριο υποκαταστάτη η φωσφονική ομάδα είναι αποπρωτονιωμένη ενώ τα μήκη δεσμού P-O είναι P1-O1 1.494(6) Å, P1-O2 1.595(5) Å, P1-O3 1.516(4) Å, P2-O4 1.546(4) Å, P2-O4 1.546(4) Å, P2-O5 1.535(5) Å και P2-O6 1.512(6) Å. Από το γεγονός ότι τα μήκη των δεσμών P-O είναι παραπλήσια συμπεραίνουμε ότι το αρνητικό φορτίο της φωσφονικής ομάδας απεντοπίζεται μέσω των ατόμων της ομάδας P-O-P. Κάθε υποκαταστάτης δρά ως διδοντικός, συνδέεται με τρία μεταλλικά κέντρα, ενώ κάθε μεταλλικό κέντρο συναρμογής με τρία διαφορεικά μόρια υποκαταστάτη και τρία μόρια νερού.

Εικόνα 78: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας του Ca-HEDP.όπου διακρίνεται ο τρόπος συναρμογής των δύο φωσφονικών ομάδων.

Από το διάγραμμα ORTEP παρατηρούμε ότι τα δύο άτομα P των φωσφονικών ομάδων συναρμόζονται με διαφορετικό τρόπο στο μεταλλικό κέντρο και διακρίνονται σε P1 και P2.

Ο P1 μέσω του O1 και ο P2 μέσω του O6 συναρμόζονται στο ίδιο μεταλλικό κέντρο Ca με αποτέλεσμα το χσηματισμό εξαμελούς δακτυλίου Ca1-O6-P2-C1-PI-O1-Ca1. Το O3που ανήκει στη φωσφονική ομάδα P1 και το O7 της αποπρωτονιωμένης υδροξυλομάδας συναρμόζονται σε ένα δεύτερο μεταλλικό κέντρο σχηματίζοντας ένα πενταμελή δακτύλιο P1-O3-Ca-O7-C1-P1. Ο δακτύλιος αυτός μέσω των C1 και P1 ενώνεται με τον εξαμελή δακτύλιο που περιγράφηκε αρχικά. Ένα διμερές O3-Ca-O3 ενώνει δύο διαφορετικά μεταλλικά κέντρα και σχηματίζει τετραμελή δακτύλιο που μέσω των O3 ενώνονται με τον πενταμελή δακτύλιο που περιγράφηκε αρχικά. Ένα διμερές O3-Ca-O3 ενώνει δύο όμοιων τριμερών μονάδων με συναρμογή μεταλλικών ιόντων με δύο μόρια νερού (O8) οδηγεί στο σχηματισμό της ασύμμετρης δομικής μονάδας. Οι μεθυλομάδες των φωσφονικών ομάδων είναι πλήρως πρωτονιωμένες ενώ τα O4 και O5 από την P2 και O2 από την P1 των φωσφονικών ομάδων παραμένουν αποπρωτονιωμένα και δε συμμετέχουν στη συναρμογή.

Η παραπάνω διευθέτηση των ατόμων οδηγεί σε μια 2D φυλλόμορφη δομή με τα επίπεδά της κάθετα στον άξονα b. Η απόσταση μεταξύ των επιπέδων υπολογίζεται στα 9.662 Å. Όλες οι αποπρωτονιωμένες φωσφονικές ομάδες του υποκαταστάτη συμμετέχουν σε ένα πολύπλοκο δίκτυο ενδομοριακών και διαμοριακών δεσμών υδρογόνου ενώ από ότι παρατηρείται οι φωσφονικές ομάδες και η υδροξυλομάδα συνδέουν γειτονικά άτομα ασβεστίου (Ca).

Εικόνα 79 : Φυλλόμορφη δομή του Ca-HEDP κατά τον a άξονα.

Εικόνα 80 : Φυλλόμορφη δομή του Ca-HEDP κατά τον b άξονα.

Η μικρότερη απόσταση μεταξύ δύο μεταλλικών κέντρων υπολογίζεται στα 3.793 Å.

Εικόνα 81 : Αποστάσεις Ca…Ca στη δομή του Ca-HEDP.

ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΤΗΣ ΕΝΩΣΗΣ Ca-HEDP

Name	Ca – HEDP
Molecular Formula	$C_2H_{10}CaO_7P_2$
Molecular Weight	248,12
Space Group	P-1
V(Å ³)	444.28
a , b , c	6.943 , 7.581 , 9.662 Å
α,β,γ	92.73°, 106.17°, 112.52°
Z	Z = 2, Z' = 0
R _{Factor} (%)	6.75

Πινακας 10 : Συνοπτική περιγραφή των κρυσταλλογραφικών δεδομένων της ένωσης Ca-HEDP.

<u>5.6 ΣΥΝΘΕΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ Ca – PMIDA</u>

<u>5.6.1</u> Σύνθεση <u>Ca-PMIDA</u>

Σε γυάλινο φιαλίδιο μέγιστου όγκου 25 ml προστίθενται 4 ml (0.04 gr) από το διάλυμα του μετά νατρίου άλατος του αλγινικού οξέος. Ακολούθως προστίθενται 2 ml (0.030 gr, 0.2 mmol) από το διάλυμα του χλωριούχου ασβεστίου και η σχηματιζόμενη υδρογέλη αφήνεται σε ηρεμία για εννέα (9) ώρες. Μετά την πάροδο του παραπάνω χρονικού διαστήματος αποχύνεται το επιπλέον υγρό, γίνεται έκπλυση

με απιονισμένο νερό και προστίθενται 15.00 ml διαλύματος PMIDA (0.045gr, 0.2 mmol) που έχουν προσαρμοστεί σε τιμή pH =4.49. Το φιαλίδιο σφραγίζεται ερμητικά και παραμένει σε ηρεμία για 20 ημέρες έως την παραλαβή του μονοκρυσταλλικού υλικού.

5.6.2 ΧΑΡΑΚΤΗΡΙΣΜΟΣ Ca-PMIDA

Ηλεκτρονική Μικροσκοπία Σάρωσης

Φασματοσκοπία FT-IR

Εικόνα 82: Μονοκρύσταλλοι Ca-PMIDA μέσω ηλεκτρονικής μικροσκοπίας σάρωσης.

Εικόνα 83: Εικόνα FT-IR της ένωσης Ca-PMIDA

Το φάσμα FT-IR του Ca-ATMP δίνεται παρακάτω. Πρόκειται για ένα τυπικό φάσμα μεταλλοφωσφονικού υλικού. Οι ισχυρές απορροφήσεις στην περιοχή 900-1100 cm⁻¹ είναι χαρακτηριστικές φωσφονικών ομάδων. Απουσία ή εμφάνιση κορυφών καθώς και μετατοπίσεις σε σχέση με το φάσμα του ελέυθερου υποκαταστάτη υποδηλώνουν συναρμογή του μεταλλικού κέντρου.
5.6.3. Κρυσταλλική δομή Ca-PMIDA

To προϊόν κρυσταλλώνει σε μονοκλινές σύστημα P2₁/c (a \neq b \neq c, a = γ = 90°, $\beta \neq$ 90°). Η μοναδιαία κυψελίδα του έχει διαστάσεις a = 5.337 Å, b = 14.240 Å, c = 13.125 Å και α = 90°, β = 92.19°, γ = 90° με V = 996.803 Å³ και Z = 4 ενώ ο παράγοντας αξιοπιστίας (R) που υποδηλώνει την αξιοπιστία μεταξύ πειραματικών δεδομένων από την περίθλαση και του κρυσταλλογραφικού μοντέλου R = 3.37%.

Εικόνα 84 : Διάγραμμα ORTEP μοναδιαίας κυψελίδας της ένωσης Ca-PMIDA.

Η σφαίρα συναρμογής του μεταλλικού κέντρου Ca^{2+} αποτελείται από 6 άτομα Ο (Α.Σ. = 6), από τα οποία δύο προέρχονται από φωσφονικές ομάδες (O8-O9), τρία απο καρβοξυλομάδες και ένα από κρυσταλλικό μόριο νερού.

Εικόνα 85: Περιβάλλον συναρμογής του μεταλλικού κέντρου στην κρυσταλλική ένωση Ca-Pmida. Με μώβ απεικονίζεται το Ca, με ρόζ τα έξι συναρμοζόμενα Ο. Ένας υποκαταστάτης προέρχεται από μόριο H₂O (τα Η απεικονίζονται με λευκό), δύο από φωσφονικές ομάδες (ο Ρ απεικονίζεται με πορτικαλί) και τρία από καρβοζυλικές ομάδες (ο C απεικονίζεται με γκρι).

Η φωσφονική ομάδα είναι μονο-αποπρωτονιωμένη -PO₃H⁻ με τα δύο οξυγόνα να συναρμόζονται γεφυρωτικά σε δύο ασβέστια. Η πρωτονιωμένη ομάδα –P-O-H παραμένει μη συναρμοσμένη. Τα μήκη δεσμού Ca-O8 και Ca-O9 είναι 2.259(2) Å και 2.299(2) Å αντίστοιχα, ενώ η γωνία O8-Ca1-O9 είναι 174.81(6)°. Το μήκος δεσμού του μετάλλου με το Ο που προέρχεται από το συναρμοσμένο μόριο νερού Ca-O11 είναι 2.314(2) Å, ελαφρώς μεγαλύτερο, γεγονός που αποδίδεται στο ότι η ηλεκτραρνητικότητα του Η είναι μικρότερη από την αντίστοιχη του P με αποτέλεσμα να έλκει λιγότερο ισχυρά το ηλεκτρονιακό νέφος και ο δεσμός να επιμηκύνεται σε σχέση με το δεσμό P-O. Η γωνία O-Ca-O είναι 90.07°. Τα μήκη του μεταλλικού κέντρου με τα Ο που προέρχονται από τις καρβοξυλομάδες του υποκαταστάτη είναι Ca-O7 2.412(2) Å, Ca-O5 2.366(2) Å και Ca-O6 2.383(2) Å ενώ οι αντίστοιχες γωνίες είναι O7-Ca1-O5 94.26(6)°, O7-Ca1-O6 176.09(6)° και O5-Ca1-O6 85.07(5)°.

Εικόνα 86: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας της ένωσης Ca-PMIDA όπου παρουσιάζονται οι γωνίες Ο-Ca-O.

Η συναρμογή του μεταλλικού κέντρου χαρακτηρίζεται ως ελαφρώς παραμορφωμένο οκτάεδρο, όπως φαίνεται και από τα μήκη των γωνιών των δεσμών Ca-O.

Εικόνα 87: Αναπαράσταση της μοναδιαίας κυψελίδας της ένωσης Ca-PMIDA

Υπάρχει ένα μόριο νερού ανά ασύμμετρη μονάδα, το άτομο N της αμινομάδας παραμένει πρωτονιωμένο και οι φωσφονικές ομάδες διακρίνονται σε P-OH (πρωτονιωμένη) και P-O⁻ (αποπρωτονιωμένη). Τα μήκη δεσμού P-O είναι P2-O8 1.492(2) Å, P2-O9 1.494(2) Å, P2-O12 1.585(2) Å, ενώ τα αντίστοιχα μήκη των δεσμών C-O είναι O5-C10 1.271(3) Å, O6-C14 1.260(3) Å, O7-C10 1.235(3) Å και O13-C14 1.243(3) Å.Το γεγονός ότι τα μήκη των δεσμών είναι σχεδόν ίδια, μας

οδηγεί στο συμπέρασμα ότι το αρνητικό φορτίο της φωσφονικής ομάδας απεντοπίζεται μέσω των ατόμων της ομάδας Ο=P-O⁻.

Κάθε μόριο του υποκαταστάτη συναρμόζεται σε πέντε διαφορετικά μεταλλικά ιόντα Ca^{2+} και δρα ως διδοντικός υποκαταστάτης. Αντίστοιχα, κάθε ιόν Ca^{2+} συναρμόζει δύο οξυγόνα από φωσφονική ομάδα, 3 από καρβοξυλικές και ένα από συναρμοσμένο μόριο νερού που βρίσκεται σε αξονική θέση (πάνω στον άξονα c). Το συναρμοσμένο μόριο νερού συμμετέχει στο σχηματισμό δικτύου δεσμών υδρογόνου που σταθεροποιούν τη δομή του κρυσταλλικού πολυμερούς. Η μικρότερη απόσταση μεταξύ μεταλλικών κέντρων είναι Ca-Ca 5.334 Å.

Εικόνα 88: Οι αποστάσεις μεταξύ των κέντρων Ca…Ca στην ένωση Ca-PMIDA.

Η περιγραφόμενη διευθέτηση των μορίων οδηγεί σε 3D pillared διαμόρφωση του μορίου στο χώρο.

Εικόνα 88 :Διαμόρφωση της δομής στο a άξονα.

Εικόνα 89: Αναπαράσταση της δομής Ca-Pmida κατά μήκος του άξονα c.

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΚΏΝ ΔΕΔΟΜΕΝΩΝ ΤΗΣ ΕΝΩΣΗΣ Ca-PMIDA.

Name	Ca – PMIDA
Molecular	C ₉ H ₁₅ CaN _{0.8} O _{0.8} P ₃
Formula	
	200.22
Molecular	280,22
Weight	F
Space Group	$P2_1/c$
V (Å ³)	996.803
a,b,c	5.337 , 14.240 , 13.125 Å
α,β,γ	90.00°, 92.12°, 90.00°
Z	Z = 4, Z' = 0
R _F (%)	3.69

ΠΙΝΑΚΑΣ 11 : Συνοπτική παρουσίαση των κρυσταλλογραφικών δεδομένων της ένωσης Ca-PMIDA.

<u>ΚΕΦΑΛΑΙΟ 6</u>

<u>ΣΥΝΘΕΣΗ ΥΛΙΚΩΝ Ln-ΗΡΑΑ ΣΕ ΣΥΝΘΗΚΕΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ</u>

6.1 Γενική Συνθετική Πορεία

Σε όλες τις συνθέσεις χρησιμοποιήθηκε υδατικό διάλυμα hydroxyphosphono acetic acid (HPAA) ενεργότητας 60% w/w. Επίσης χρησιμοποιήθηκε stock διάλυμα από το εξα- ή πεντα-ένυδρο νιτρικό άλας λανθανιδίων (Ce, La, Pr, Gd, Sm, Tb, Ho, Dy). Για τη ρύθμιση του pH χρησιμοποιήθηκαν HCl 10% κ.ο και 20% κ.ο, NaOH 5% κ.β. Στις όξινες περιοχές pH που γίνονται οι αντιδράσεις ο υποκαταστάτης αναμένεται να έχει σχετικά χαμηλό αρνητικό συνολικό φορτίο. Όμως, όπως είναι γνωστό, η οξύτητα οργανικών οξέων αυξάνεται δραματικά παρουσία μεταλλικών ιόντων, ειδικά τρισθενών και oι αντιδράσεις σγεδιάζονται βάση της αρχής της ηλεκτροουδετερότητας. Ηγενική αντίδραση για τη σύνθεση των μεταλλοφωσφονικών υλικών φαίνεται στο Σγήμα 1.

Σε γενικές γραμμές ακολουθήθηκε πορεία «χαρτογράφησης» της συμπεριφοράς του υποκαταστάτη για κάθε μέταλλο της ομάδας των λανθανιδίων. Για το σκοπό αυτό ελέχθησαν 12 διαφορετικές αναλογίες (με περίσσεια υποκαταστάτη), σε τέσσερις διαφορετικούς όγκους με χρήση 0.1 και 0.2 mmol κάθε φορά. Το pH ανάμιξης προσαρμόστηκε με κατάλληλη ποσότητα διαλυμάτων HCl 10% κ.ο ή 20% κ.ο, NaOH 5% κ.β έως την επιτρεπόμενη τιμή για κάθε σύστημα. Σε κάποιες περιπτώσεις κρίθηκε αναγκαίο να προβούμε σε δοκιμή συνθέσεων σε μια ευρεία περιοχή pH για παραλαβή καλύτερων (πιο κρυσταλλικών) υλικών. Μετά την «εξασφάλιση» των ιδανικότερων συνθηκών για αυτά τα συστήματα τα υλικά που παρελήφθησαν από την πλειονότητα των πειραματικών διαδικασιών απεδείχθησαν πανομοιότυπα. Διαφορές δεν εμφανίστηκαν στη δομή αλλά σε κάποιες περιπτώσεις στην ποιότητα της κρυσταλλικότητας και το μέγεθος των υλικών. Τα υλικά χαρακτηρίζονται ως ισοδομικά, με ελάχιστες διαφοροποιήσεις όπως πχ στο μέγεθος της μοναδιαίας κυψελίδας, τα μήκη των δεσμών ή των διαστάσεων των καναλιών νερού που περιέχουν, δεδομένου της λανθανιδικής συστολής και της αυξομείωσης της ατομικής ακτίνας των μεταλλικών ιόντων.

Πιο συγκεκριμένα, επιλεγμένη ποσότητα του υποκαταστάτη (0.1 ή 0.2 mmol) από stock διάλυμα ρυθμίζεται με χρήση διαλύματος HCl 10% κ.o., σε pH =1.5. Ακολούθως, προστίθεται, υπό συνεχή ανάδευση και στάγδην, το διάλυμα του μετάλλου (με ιδιαίτερη προσοχή για αποφυγή άμεσης συμπλοκοποίησης). Το τελικό pH του διαλύματος προσαρμόζεται σε τιμή που το θόλωμα εξαφανίζεται και ποικίλλει ανάλογα με το εκάστοτε σύστημα. Το διαυγές διάλυμα αφήνεται σε ηρεμία και υπό θερμοκρασία περιβάλλοντος για δέκα περίπου ημέρες οπότε και εμφανίζεται κρυσταλλικό προϊόν με σφαιρική μορφολογία κρυστάλλων. Το υλικό απομονώνεται με διήθηση, εκπλύνεται με άφθονο απιονισμένο νερό και αφήνεται να ξηρανθεί στον αέρα για λίγες ώρες.

Αξίζει να αναφερθεί ότι καλύτερης ποιότητας υλικά παρελήφθησαν από τις αναλογίες 1:2 και 2:4 σε όγκους 60 ή 80 ml καθώς επίσης και ότι στους προαναφερθέντες τελικούς όγκους υπάρχει μία απόκλιση της τάξης των 5-8 ml που οφείλεται στην προσθήκη των διαλυμάτων οξέος ή βάσεως για την προσαρμογή του pH.

Ln3H(O3PCHOHCOO)2(HOPCHOHCOO)2*17H2O

Εικόνα 90: Αναπαράσταση της αντίδρασης σχηματισμού των υλικών.

6.2 Ce-HPAA

6.2.1 Σύνθεση του μονοκρυσταλλικού υλικού Ce-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται γενικά και έχει μοριακή βάση τα 0.2 mmol. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω. Για να υπάρχει μια συγκεκριμένη εικόνα για τις συνθήκες της πειραματικής διαδικασίας

καλό είναι να αναφερθεί ότι το υλικό απομονώθηκε και χαρακτηρίστηκε για πρώτη φορά από ανάμιξη HPAA-Ce³⁺ σε αναλογία 3:1 (0.1 mmol), Vτελ = 40 ml και τιμή pH = 1.3.

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.40	1.37	1.31	1.29	1.24	1.20	1.18	1.14	1.11	1.10	1.01
40 ml	1.48	1.44	1.36	1.34	1.29	1.32	1.24	1.19	1.14	1.17	1.08
60 ml	1.56	1.53	1.42	1.40	1.31	1.38	1.34	1.27	1.21	1.22	1.24
80 ml	1.72	1.68	1.48	1.46	1.40	1.44	1.41	1.31	1.28	1.36	1.28

ΠΙΝΑΚΑΣ 12: Περιγραφή των πειραμάτων Ce-HPAA. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pH διαύγειας.

6.2.2 <u>Χαρακτηρισμός του μονοκρυσταλλικού υλικού Ce-HPAA</u>

Φασματοσκοπία υπερύθρου

Το φάσμα της ένωσης παρουσιάζει τις τυπικές κορυφές που αντιστοιχούν σε φωσφονικά υλικά. Η ένωση Ce-HPAA και οι υπόλοιπες που ακολουθούν χαρακτηρίζονται ως ισοδομικές. Αναλυτική περιγραφή του φάσματος ATR της οικογένειας των ενώσεων ακολουθεί στην υποπαράγραφο 6.11.3.

Εικόνα 91 : Φάσμα ΑΤR της ένωσης Ce-HPAA

Ηλεκτρονική Μικροσκοπία Σάρωσης (SEM)

Εικόνα 92: Απεικόνιση της ένωσης Ce-HPAA μέσω ηλεκτρονικής μικροσκοπίας σάρωσης (SEM)

Στοιχειακή Ανάλυση (EDS)

Element	App	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
C K	4.62	0.5011	9.22	1.02	24.52
O K	33.63	1.0811	31.11	1.03	62.07
P K	8.97	1.1126	8.06	0.35	8.31
Ce L	19.12	0.8539	22.39	0.90	5.10
Totals			70.78		

ΠΙΝΑΚΑΣ 13: Αποτελέσματα στοιχειακής ανάλυσης για την ένωση Ce-HPAA.

<u>6.3 La – HPAA</u>

<u>6.3.1</u> Σύνθεση του κρυσταλλικού υλικού La-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται γενικά και έχει μοριακή βάση τα 0.2 mmol. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-La³⁺ σε αναλογία 2:1 (0.2 mmol), Vτελ = 60 ml και τιμή pH = 1.58.

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.36	1.48	1.48	1.46	1.40	1.44	1.30	1.28	1.28	1.25	1.20
40 ml	1.51	1.52	1.49	1.45	1.43	1.49	1.40	1.37	1.35	1.36	1.29
60 ml	1.62	1.58	1.53	1.52	1.48	1.54	1.48	1.41	1.42	1.44	1.35
80 ml	1.68	1.62	1.55	1.59	1.51	1.58	1.56	1.48	1.50	1.52	1.41

ΠΙΝΑΚΑΣ 14: Περιγραφή των πειραμάτων La-HPAA. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pH διαύγειας.

6.3.2 Χαρακτηρισμός τπου κρυσταλλικού υλικού La-HPAA

Φασματοσκοπία ATR

Εικόνα 93: Φάσμα ΑΤR της ένωσης La-ΗΡΑΑ

<u>6.4 Tb – HPAA</u>

6.4.1 Σύνθεση του κρυσταλλικού υλικου Tb-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Tb³⁺ σε αναλογία 2:1 (0.2 mmol), Vτελ = 20 ml και τιμή pH = 1.15. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω :

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.20	1.15	1.12	1.05	0.98	0.80	0.81	0.78	0.75	0.78	0.66
40 ml	1.28	1.20	1.17	1.12	1.01	0.87	0.89	0.85	0.81	0.87	0.79
60 ml	1.31	1.28	1.19	1.16	1.12	0.91	0.89	0.88	0.87	0.91	0.83
80 ml	1.42	1.34	1.27	1.21	1.15	1.12	1.10	0.91	0.92	1.01	0.91

ΠΙΝΑΚΑΣ 15 : Περιγραφή των πειραμάτων Tb-EDTMP. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι, το pH διαύγειας.

6.4.2 <u>Χαρακτηρισμός του κρυσταλλικού υλικού Tb-HPAA</u>

Φασματοσκοπία ATR-IR

Περίθλαση ακτινών Χ

Στην εικόνα που ακολουθεί (Εικόνα 95) παρουσιάζεται το διάγραμμα περίθλασης ακτίνων X της ένωσης Tb-HPAA.

Εικόνα 95: XRD pattern της κσυταλλικής ένωσης Tb-HPAA

Ηλεκτρονική Μικροσκοπία Σάρωσης

Οι εικόνες 96 και 97 απεικονίζουν την κρυσταλλική ένωση Tb-HPAA μέσω μικροσκοπίου σάρωσης επιφάνειας (SEM).

Εικόνα 96: Εικόνα της κρυσταλλικής ένωσης Tb-HPAA μέσω SEM.

Εικόνα 97:Εικόνα της κρυσταλλικής ένωσης Tb-HPAA μέσω SEM.

Element	App	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
C K	5.59	0.3856	14.49	1.47	33.28
O K	23.63	0.7950	29.72	1.19	51.24
РК	14.09	1.0773	13.08	0.43	11.64
Cl K	0.38	0.6883	0.55	0.14	0.43

Στοιχειακή Ανάλυση

Tb L	16.10	0.8204	19.63	1.06	3.41				
Totals			77.48						
$\mathbf{H} \mathbf{N} \mathbf{A} \mathbf{V} \mathbf{A} \mathbf{\Sigma} 17, \mathbf{A} \mathbf{S} \mathbf{S} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$									

ΠΙΝΑΚΑΣ 17: Δεδομένα στοιχειακής ανάλυσης για την ένωση Τ
b-HPAA

<u>6.5 Dy – HPAA</u>

6.5.1 Σύνθεση του κρυσταλλικού υλικού Dy-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. . Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Dy³⁺ σε αναλογία 2:2 (0.2 mmol), Vτελ = 20 ml και τιμή pH = 1.28. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω :

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.44	1.32	1.30	1.28	1.27	1.28	1.09	1.17	1.11	1.09	0.98
40 ml	1.48	1.39	1.37	1.32	1.29	1.32	1.22	1.28	1.18	1.12	1.06
60 ml	1.54	1.42	1.40	1.38	1.32	1.34	1.33	1.34	1.21	1.18	1.11
80 ml	1.60	1.48	1.43	1.41	1.38	1.40	1.42	1.39	1.27	1.21	1.28

ΠΙΝΑΚΑΣ 18: Περιγραφή των πειραμάτων Dy-HPAA. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι, το pH διαύγειας.

6.5.2 Χαρακτηρισμός του κρυσταλλικού υλικού Dy-HPAA

Φασματοσκοπία ATR-IR

Περίθλαση ακτίνων Χ

Εικόνα 99: Διάγραμμα ακτινών Χ του υλικού Dy-ΗΡΑΑ

<u>6.6 Pr – HPAA</u>

6.6.1 Σύνθεση του κρυσταλλικού υλικού Pr-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Pr³⁺ σε αναλογία 2:4 (0.2 mmol), Vτελ =

60 ml και τιμή pH = 1.28. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω :

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.15	1.11	1.08	1.02	0.99	1.01	0.94	0.90	0.87	0.91	0.88
40 ml	1.21	1.18	1.12	1.13	1.03	1.18	1.13	0.97	0.92	0.96	0.91
60 ml	1.27	1.28	1.21	1.18	1.11	1.22	1.28	1.10	0.98	1.03	1.02
80 ml	1.32	1.28	1.25	1.21	1.18	1.30	1.36	1.21	1.05	1.12	1.08

ΠΙΝΑΚΑΣ 19: Περιγραφή των πειραμάτων Pr-HPAA. Στον πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pH διαύγειας.

6.6.2 <u>Χαρακτηρισμός του κρυσταλλικού υλικού Pr-HPAA</u>

Φασματοσκοπία ATR-IR

<u>6.7 Ho – HPAA</u>

6.7.1 Σύνθεση του κρυσταλλικού υλικού Ηο-ΗΡΑΑ

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Ho³⁺ σε αναλογία 2:1 (0.2 mmol), Vτελ = 60 ml και τιμή pH = 1.42. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω:

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.44	1.32	1.30	1.28	1.37	1.28	1.09	1.19	1.11	1.06	0.99
40 ml	1.49	1.39	1.37	1.32	1.29	1.32	1.22	1.28	1.18	1.12	1.06
60 ml	1.54	1.42	1.40	1.38	1.34	1.24	1.33	1.34	1.24	1.18	1.18
80 ml	1.63	1.48	1.43	1.41	1.38	1.40	1.42	1.39	1.27	1.21	1.28

ΠΙΝΑΚΑΣ 20: Περιγραφή των πειραμάτων Ηο-ΗΡΑΑ. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pΗ διαύγειας.

6.7.2. Χαρακτηρισμός του κρυσταλλικού υλικού Ηο-ΗΡΑΑ

Φασματοσκοπία ATR-IR

<u>6.8 Sm – HPAA</u>

6.8.1 Σύνθεση του κρυσταλλικού υλικού Sm-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Sm³⁺ σε αναλογία 2:4 (0.2 mmol), Vτελ = 60 ml και τιμή pH = 1.28. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω:

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.26	1.18	1.13	1.07	1.02	1.18	1.12	1.09	1.06	1.02	0.98
40 ml	1.32	1.22	1.19	1.16	1.11	1.24	1.20	1.18	1.11	1.08	1.01
60 ml	1.41	1.34	1.23	1.25	1.18	1.27	1.28	1.24	1.18	1.12	1.11
80 ml	1.49	1.41	1.38	1.31	1.22	1.30	1.34	1.28	1.21	1.18	1.19

ΠΙΝΑΚΑΣ 21: Περιγραφή των πειραμάτων Sm-HPAA. Στο πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pH διαύγειας.

6.8.2 Χαρακτηρισμός του κρυσταλλικού υλικού Sm-HPAA

Φασματοσκοπία ATR-IR

Εικόνα 102 : Φάσμα ATR-IR του κρυσταλλικού υλικού Sm-HPAA

Περίθλαση ακτινών Χ

Εικόνα 103 : Διάγραμμα περίθλασης ακτινών Χ.

Η σύγκριση των διαγραμμάτων περίθλασης των υλικών La-HPAA και Sm-HPAA και αποδεικνύει ότι τα υλικά είναι ισοδομικά.

Εικόνα 104: Σύγκριση διαγραμμάτων περίθλασης ακτινών Χ των ενώσεων La-HPAA και Sm-HPAA. Τα διαγράμματα είναι πανομοιότυπα γεγονός που αποδεικνύει ότι τα υλικά είναι πανομοιότυπα.

Ηλεκτρονική Μικροσκοπία Σάρωσης

Εικόνα 105 : Απεικόνιση του υλικου Sm-HPAA μέσω μικροσκοπίας σάρωσης (SEM)

Element	App	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
C K	13.19	0.4618	28.58	1.88	44.76
O K	27.98	0.7202	38.85	1.48	45.68
P K	13.11	1.1656	11.25	0.40	6.83
Cl K	0.99	0.7362	1.35	0.17	0.72
Sm L	12.97	0.8072	16.06	0.83	2.01
Totals			96.08		

Στοιχειακή Ανάλυση

ΠΙΝΑΚΑΣ 22: Δεδομένα στοιχειακής ανάλυσης για την ένωση Sm-HPAA.

<u>6.9 Gd – HPAA</u>

6.9.1 Σύνθεση του κρυσταλλικού υλικού Gd-HPAA

Η πειραματική διαδικασία είναι πανομοιότυπη με αυτή που περιγράφεται για το Ce-HPAA και έχει μοριακή βάση τα 0.2 mmol. Το υλικό απομονώθηκε και χαρακτηρίστηκε αρχικά από ανάμιξη HPAA-Gd³⁺ σε αναλογία 2:1 (0.2 mmol), Vτελ

= 40 ml και τιμή pH = 1.23. Ο συγκεντρωτικός πίνακας των αποτελεσμάτων για αυτή την ομάδα συνθέσεων παρουσιάζεται παρακάτω :

	1:1	1:2	1:3	1:4	1:6	2:2	2:4	2:6	2:8	4:4	4:8
20 ml	1.20	1.19	1.12	1.05	0.99	0.80	0.87	0.79	0.81	0.79	0.66
40 ml	1.28	1.23	1.17	1.14	1.09	0.89	0.93	0.89	0.81	0.87	0.79
60 ml	1.39	1.28	1.21	1.16	1.12	0.98	0.89	0.88	0.87	0.91	0.83
80 ml	1.42	1.34	1.27	1.21	1.15	1.12	1.10	0.97	0.96	1.01	0.91

ΠΙΝΑΚΑΣ 23: Περιγραφή των πειραμάτων Gd-HPAA. Στον πίνακα φαίνονται οι αναλογίες, οι τελικοί όγκοι και το pH διαύγειας.

6.9.2 Χαρακτηρισμός τουμ κρυσταλλικού υλικού Gd-HPAA

Φασματοσκοπία ATR-IR

Ηλεκτρονική μικροσκοπία Σάρωσης

Εικόνα 107 : Εικόνατου υλικού Gd-HPAA μέσω μικροσκοπίας σάρωσης.

Element	App	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
СК	2.39	0.4860	4.92	0.74	39.11
O K	5.47	0.8376	6.53	0.56	38.99

Στοιχειακή Ανάλυση

P K	3.11	0.9028	3.45	0.25	10.62
Gd L	16.94	0.9108	18.59	0.94	11.29
Totals			33.49		

ΠΙΝΑΚΑΣ 24: Δεδομένα στοιχειακής ανάλυσης για την ένωση Gd-HPAA.

Περίθλαση ακτίνων Χ

Εικόνα 108 : Διάγραμμα Περίθλασης ακτινών Χ του υλικού Gd-HPAA

6.10 ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΡΥΣΤΑΛΛΙΚΗΣ ΔΟΜΗΣ Ln-ΗΡΑΑ

Τα πολυμερή $Ln_3H(O_3PCHOHCOO)_2(HO_3PCHOHCOO)_2*17H_2O$ έχουν μοριακό τύπο $C_8O_{41}H_{11}P_4Ln_3$ και μοριακό βάρος, που όπως είναι αναμενόμενο ποικίλλει ανάλογα με το μεταλλικό ιον, κατά μέσο όρο 1340. Τα υλικά κρυσταλλώνουν σε ορθορομβικό σύστημα *Iba2* με διαστάσεις και λοιπά κρυσταλλογραφικά δεδομένα που για τρία από τα πολυμερή της οικογένειας παρουσιάζονται στον παρακάτω πίνακα.

Compound	La-HPA	Ce-HPA	Pr-HPA	
reference				
Chemical formula	$C_8O_{41}H_{11}P_4La_3$	$C_8O_{41}H_{11}P_4Ce_3$	$C_8O_{41}H_{11}P_4Pr_3$	
Formula Mass	1338.03	1341.66	1344.04	
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	
a/Å	13.4679(4)	13.4016(6)	13.3554(4)	
b/Å	26.8554(5)	26.6928(10)	26.5397(7)	
<i>c</i> /Å	11.1155(5)	11.0969(5)	11.01297(30)	
a/°	90.0	90.0	90.0	
β/°	90.0	90.0	90.0	
γ/°	90.0	90.0	90.0	
Unit cell volume/Å ³	4020.34(26)	3969.6(4)	3903.53(23)	
Temperature/K	20	20	20	
Space group	Iba2	Iba2	Iba2	
No. of formula units	4	4	4	
per unit cell, Z				
No. of independent	1102	868	1050	
reflections				
Data / Restrains /	5121/63/129	4705/58/120	5291/57/126	
Parameters				
R _{WP}	0.0857	0.0456	0.0539	
R _P	0.0632	0.0350	0.0393	
R _F	0.0651	0.0342	0.0600	
CCDC number	846353	846355	846355	

ΠΙΝΑΚΑΣ 25 : Συνοπτικός πίνακας κρυσταλλογραφικών δεδομένων για τα υλικά Ce-HPAA, La-HPAA, Pr-HPAA.

Η μοναδιαία κυψελίδα των υλικών αποτελείται από δύο σαφώς κρυσταλλογραφικά διαχωρισμένα άτομα Ln. Στο σχήμα παρουσιάζεται το περιβάλλον συναρμογής των Ln1 και Ln2 (από το πολυμερές La-HPAA). Όπως παρατηρούμε, το μεταλλικό κέντρο La³⁺ είναι συναρμοσμένο με 9 άτομα Ο, από τα οποία δύο άτομα Ο (O9) προέρχονται από δύο φωσφονικές ομάδες (P2) του υποαταστάτη, δύο άτομα Ο (O12) προέρχονται από δύο καρβοξυλικές ομάδες του υποκαταστάτη (P2) ενώ οι υπόλοιπες πέντε πλευρές συναρμόζουν μόρια νερού (Ow5, Ow6, Ow8).

Εικόνα 109: Περιβάλλον συναρμογής του Ln1. Με μπλέ το άτομο La, με κόκκινο τα άτομα Ο.

Όσο αφορά το περιβάλλον συναρμογής του Ln 2 ,μεταλλικό κέντρο La³⁺ είναι συναρμοσμένο απο 9 άτομα Ο, όμοια με το Ln1. Εδώ η μία θέση συναρμογής καλύπτεται από ένα άτομο Ο (O1) της φωσφονικής ομάδας (P1), ένα καρβοξυλικό άτομο Ο (O11) και το άτομο Ο από την υδροξυλομάδα (O10) από τη φωσφονική ομάδα P2. Οι υπόλοιπες θέσεις συναρμογής καλύπτονται από δύο καρβοξυλικά άτομα Ο (O5-O6) από δύο διαφορετικούς P1 υποκαταστάτες ενώ οι δύο τελευταίες θέσεις συναρμογής συμπληρώνονται από άτομα Ο από μόρια H₂O (Ow1 και Ow4).

Εικόνα 110 : Περιβάλλον συναρμογής του μεταλλικού κέντρου Ln2. Με κόκκινο παρουσιάζονται τα άτομα Ο, με κίτρινο το άτομο Ρ, με μπλέ το άτομο La.

Εικόνα 110: Διάγραμμα ORTEP της μοναδιαίας κυψελίδας των πολυμερών Ln-HPAA.

Έτσι, η ασύμμετρη δομική μονάδα της μοναδιαίας κυψελίδας περιέχει 29 άτομα (εκτός από Η), εκ των οποίων 2 λανθανίδια, 2 μόρια υποκαταστάτη, και 9 μόρια νερού.

Εικόνα 111: Μοναδιαία κυψελίδα των πολυμερών Ln-HPAA.

Οι δεσμοί Ln-O ποικίλλουν από 2.286(21) Å - 2.927(24) Å. Μεγαλύτερες Ln-O αποστάσεις θεωρούνται αλληλεπιδράσεις και όχι δεσμοί.

Τα δύο μόρια του υποκαταστάτη (P1-P2) συναρμόζονται με διαφορετικό τρόπο στο μέταλλο. Ο υποκαταστάτης P1 χρησιμοποιεί δύο φωσφονικά οξυγόνα (O1-

O2) για να συναρμοστεί με δύο μεταλλικά κέντρα. Το O3 της φωσφονικής ομάδας δε συναρμόζεται αλλά κατευθύνεται προς τις κοιλότητες, γεγονός που φαίνεται με μεγάλη ευκρίνεια από το διάγραμμα ORTEP.

Το μόριο του υποκαταστάτη με P1 δρα χηλικά ενώνοντας δύο άτομα Ln2 μέσω δύο ζευγών ατόμων Ο από μια καρβοξυλική και μια φωσφονική ομάδα σχηματίζοντας εξαμελή δακτύλιο Ln(2)-O5-C2-C1-P1-O2-Ln(2).Η άλλη υδροξυλομάδα και το άλλο καρβοξυλικό Ο του P1 υποκαταστάτη προσδένονται σε ένα δεύτερο άτομο Ln2 σχηματίζοντας πενταμελή δακτύλιο Ln(2)-O6-C2-C1-O4-Ln(2). Με αυτό τον τρόπο σχηματίζεται μια στιβάδα (layer) κατά μήκος του ab άξονα.

Εικόνα 112: Μοναδιαία κυψελίδα του υλικού με την ευκρινή παρουσία του εξαμελή και πενταμελή δακτυλίου που δημιουργούνται απο τον υποκαταστάτη P1.

Το μόριο του υποκαταστάτη με P2 ενώνει τα δύο διαφορετικά μεταλλικά κέντρα. Το άτομο Ln 1 προσδένει ένα άτομο Ο από την καρβοξυλική ομάδα και ένα άλλο O9 από τη φωσφονική ομάδα ενώ το Ln2 συνδέεται στο άλλο άτομο Ο μέσω καρβοξυλικής και υδροξυλομάδας. Τα εναπομείναντα δύο άτομα Ο της φωσφονικής ομάδας (O7 και O8) δε συναρμοσμόζονται και προσανατολίζονται προς το εσωτερικό των καναλιών. Πιο συγκεκριμένα, ακολουθόντας την πορεία Ln2-O11-C4-C3-P2-O9-Ln1-O9-P2-C3-O10-Ln2 θα παρατηρήσει τη σύνδεση των δύο διαφορετικών Ln2 μέσω ενός μεταλλικού ιόντος Ln1.

Με αυτό τον τρόπο σχηματίζεται το τριμερές Ln(2)O9-Ln(1)O9-Ln(2) με γωνία 126^{0} για το La-HPAA και 130^{0} για το Ce-HPAA.

Εικόνα 113: Σχηματισμός της γωνίας του τριμερούς Ln(2)O9-Ln(1)O9-Ln(2) στο πολυμερές Ce-HPAA.

Η κρυσταλλική δομή αποτελείται από φύλλα κατασκευασμένα από LnO9 πολύεδρα που διαχωρίζονται από περιοχές P1 και συνδέονται μέσω του υποκαταστάτη P2 και μορίων H₂O (Ow8) με αποτέλεσμα τη δημιουργία τρισδιάστατου σκελετού.

Εικόνα 114: Δημιουργία τρισδιάστατου σκελετού λόγω σύνδεσης των "φύλλων" μέσω του υποκαταστάτη P2 και των μορίων νερού (Ow8).

Αν κοιτάξουμε καλύτερα την τρισδιάστατη δομή, θα παρατηρήσουμε τη σύνδεση μεταξύ των κατιονικών τριμερών -Ln3(P2)₂- μονάδων στο επίπεδο ab μέσω της φωσφονικής ομάδας P1 που συνδέει τρία διαφορετικά Ln2 μεταλλικά κέντρα. Έτσι σχηματίζονται κενοί χώροι σχήματος ρόμβου στο επίπεδο ab με αποτέλεσμα τη δημιουργία ελικοειδών καναλιών κατά την τοποθέτηση των φύλλων κατά μήκος του

c άξονα. Η σύνδεση των τριμερών ολοκληρώνεται από τη συνένωση των Ln1O9 πολυέδρων μέσω δεσμών υδρογόνου που σχηματίζονται από τα μόρια νερού Ow8.

Εικόνα 115: Τρισδιάστατη δομή του υλικού κατά τον άξονα c.

Τέσσερα, μη συναρμοσμένα μόρια H₂O (8 ανά δομική μονάδα) πληρούν τα κανάλια. Τα μόρια νερού αλληλεπιδρούν ισχυρά τόσο μεταξύ τους σχηματίζοντας δίκτυο δεσμών Η όσο και με τα άτομα Ο των καρβοξυφωσφονοακετικών ομάδων με αποτέλεσμα τη σταθεροποίηση του δικτύου.

Εικόνα 116: Κανάλια νερού στη δομική μονάδα της ένωσης.

Τα μόρια νερού Ow4 που συνδέονται με το Ln2 προσανατολίζονται προς το εσωτερικό των ελικοειδών καναλιών σχηματίζοντας ορθογώνια παράθυρα (window) μέσα στα οποία βρίσκονται πιο ευκίνητα μόρια (Ow3 για τα La-HPAA και Ce-HPAA και Ow3, Ow9 για το Pr-HPAA). Το μέγεθος των παραθύρων είναι 7.5*10.2 Å² για το La-HPAA, 7.7*10.1 Å² για το Ce-HPAA και 7.7*9.8 Å² για το Pr-HPAA. Η μείωση που παρατηρείται για το Pr-HPAA οφείλεται στη μείωση του όγκου της μοναδιαίας κυψελίδας ως αποτέλεσμα της λανθανιδικής συστολής.

Εικόνα 117: Σχηματική αναπαράσταση μορίων νερού που βρίσκονται μέσα στο χώρο ενός μονοδιάστατου «καναλιού».

<u>6.11 ΓΕΝΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΩΝ ΙΣΟΔΟΜΙΚΩΝ ΚΡΥΣΤΑΛΛΙΚΩΝ</u> <u>ΕΝΩΣΕΩΝ Ln-ΗΡΑΑ</u>

6.11.1 Φασματοσκοπία Πυρηνικού Μαγνητικού Συντονισμού (³¹P NMR-MAS)

Στο παρακάτω σχήμα παρουσιάζεται το φάσμα ³¹P NMR-MAS του υλικού Ln-HPAA. Παρατηρούμε 2 ισότροπες χημκές μετατοπίσεις στα 7 και 14 ppm αντιστοιχα. Δεδομένου του ότι από το φάσμα απουσιάζει η κορυφή γύρω στα 20 ppm που είναι χαρακτηριστική της τεραεδρικής ομάδας C-P(O)(OH)₂ επιβεβαιώνεται και η απουσία τους από την κρυσταλλική δομή των υλικών.

Οι χημικές μετατοπίσεις στα 7 και 14 ppm αντίστοιχα αποδίδονται στις μονοαποπρωτονιωμένες (-CPO₃H⁻-) και δις αποπρωτονιωμένες (-CPO₃²⁻) φωσφονικές ομάδες, γεγονός που συμπίπτει με την ύπαρξη δύο κρυσταλογραφικά διαφορετικών ατόμων P.

Κάθε κορυφή χαρακτηρίζεται ως τριπλή (triplet) με χημική μετατόπιση $\Delta \delta = 1.3-1$ ppm, πολύ μικρότερη από ότι αναμένεται, δεδομένου του βαθμού αποπρωτονίωσης της φωσφονικής ομάδας και αποδίδεται στο ελάχιστα διαφορετικό χημικό περιβάλλον γύρω από τα άτομα του φωσφόρου. Ο «διαχωρισμός» (splitting) των δυο κορυφών οφείλεται τόσο στην αποπρωτονίωση των ομάδων όσο και στις διαφορετικές αλληλεπιδράσεις των δεσμών Η με τα μόρια του H₂O. Από τα δεδομένα των αναλύσεων προκύπτει ότι η σχετική αναλογία των δύο ομάδων στο μόριο της ένωσης είναι 1:1.

6.11.2. Θερμοσταθμική Ανάλυση

Η θερμοσταθμική συμπεριφορά είναι παρόμοια για όλα τα μέλη της οικογένειας των υλικών, μικρή διαφορά παρατηρείται στην τελική τιμή του βάρους τους. Όλες οι μετρήσεις χαρακτηρίζονται από την ύπαρξη τριών σταδίων κατά την αφυδάτωση των υλικών που αφορά την περιοχή θερμοκρασιών 35-200 °C.

Για το υλικό Ln-HPAA συγκεκριμένα, το πρώτο στάδιο αφυδάτωσης ξεκινά σε θερμοκρασία περιβάλλοντος και ολοκληρώνεται στους 50 °C. Το υλικό χάνει το 1.53 % της συνολικής του μάζας, γεγονός που σχετίζεται με την απώλεια ενός μορίου νερού ασθενώς συνδεδεμένου στην ένωση. Το δεύτερο στάδιο αφορά την περιοχή 50-100 °C και αντιστοιχεί στην απώλεια επτά (7) μορίων νερού από τα κανάλια της δομής λόγω της μείωσης της μάζας του υλικού κατά 10.53%, τιμή που συγκλίνει στη θεωρητική τιμή 10.76% που αντιστοιχεί στην απώλεια οκτώ (8) μορίων νερού. Το τρίτο βήμα περιλαμβάνει την απώλεια των εναπομεινάντων εννέα (9) μορίων νερού σε περιοχή θρμοκρασιών 100-200 °C, πέντε εκ των οποίων είναι και τα κρυσταλλικά νερά του υλικού (Ow1, Ow4, Ow5, Ow6, Ow8). Σε αυτή την περιοχή, το ποσοστό απώλειας μάζας ανέρχεται στο 21.44%, ποσοστό που βρίσκεται σε συμφωνία με τη θεωρητική τιμή 22.8% που υπολογίζεται για την ολοκληρωτική αφυδάτωση του μορίου της ένωσης. Πάνω από τους 250 °C το υλικό αρχίζει να αποσυντίθεται ενώ η ολική απώλεια μάζας στους 900 °C αντιστοιχεί στο 43.98 %, τιμή που βρίσκεται σε συμφωνία με τη θεωρητική τιμή 43.03 % βάσει του σχηματισμού των υλικών LaPO₄ και του άμορφου P_2O_5 . Για τα υλικά Pr-HPAA και Gd-HPAA η απώλεια μάζας στους 200 °C είναι μικρότερη από τη θεωρητική κατά 19% εξαιτίας αλληλεπικάλυψης του τρίτου βήματος με πλήρη θερμική αποσύνθεση του υλικού.

Άξιο αναφοράς για τα συγκεκριμένα υλικά αποτελεί το γεγονός επανάκτησης της μάζας τους κατά τη διέλευση μίγματος N₂-υδρατμών σε θερμοκρασίες έως τους 42 °C, φαινόμενο το οποίο δεν παρατηρείται όταν υπο αυτές τις συνθήκες η θερμοκρασία του περιβάλλοντος χώρου φτάσει στους 80 °C.

6.11.3 Φασματοσκοπία υπερύθρου (ATR-IR)

Το φάσμα ATR-IR του ελεύθερου υποκαταστάτη παρουσιάζει μια έντονη κορυφή στα 1734 cm⁻¹ οφειλόμενη στην ασύμμετρη δόνηση έκτασης v_{as} (C=O) και έντονες αλληλεπικαλυπτόμενες κορυφές στην περιοχή 900-1250 cm⁻¹ εξαιτίας των δονήσεων έκτασης v(P=O) και v(P-O).

Εικόνα 119: Φάσμα ΑΤR-IR του ελεύθερου ΗΡΑΑ

Το κύριο χαρακτηριστικό των φασμάτων ATR-IR των πολυμερών αυτής της οικογένειας υλικών είναι η συστηματική απουσία της κορυφής στους 1734 cm⁻¹, η οποία αντιστοιχεί στην ασύμμετρη δόνηση v_{as} (C=O) της ομάδας -COOH του ελεύθερου υποκαταστάτη. Οι κορυφές στους 1583 cm⁻¹ και 1438-1440 cm⁻¹ αντίστοιχα αποδίδονται στις ασύμμετρες και συμμετρικές δονήσεις της καρβοζυλικής ομάδας και της ομάδας [-O-C-O-] αντίστοιχα, ένδειξη ότι η πρόσδεση στην καρβοξυλομάδα είναι η ίδια σε όλα τα υλικά. Οι κορυφές απορρόφησης στην περιοχή 3490-3058 cm⁻¹ αποδίδονται στις δονήσεις τάσης του δεσμού Ο-Η του νερού, γεγονός που υποδηλώνει την ύπαρξη τόσο κρυσταλλικού νερού που συμμετέχει σε δίκτυο δεσμών Η (3300 cm⁻¹) όσο και την ύπαρξη συναρμοσμένων μορίων νερού στην ένωση. Οι υπόλοιπες κορυφές σε χαμηλότερους κυματαριθμους είναι τυπικές των κάρβοξυακετοφωσφονικών. Χαρακτηριστικό παράδειγμα αποτελεί η κορυφή στους 776 cm⁻¹ στη δόνηση κάμψης του δεσμού P-C.

Figure 120 : Φάσμα ATR-IR του υλικού Ce-HPAA

<u>6.12 ΣΥΖΗΤΗΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

Τα μέλη της οικογένειας των υλικών Ln-HPAA αποτελούν τρισδιάστατους μεταλλοφωσφονικούς σκελετούς που σχηματίζονται από τη συνένωση των τριμερών δομικών μονάδων Ln2O9Ln1O9Ln2. Η συνένωση επιτυγχάνεται μέσω του υποκαταστάτη P2 και μορίων νερού (Ow8) και οδηγεί στο σχηματισμό τρισδιάστατης δομής η οποία αποτελείται από χαρακτηριστικές κοιλότητες σχήματος ρόμβου. Η πλήρωση αυτών των κοιλοτήτων από οχτώ μόρια νερού ανα δομική μονάδα ενισχύει τη σταθερότητα της δομής και επιφέρει σημαντικές ιδιότητες στα προκύπτοντα υλικά όπως πχ.πρωτονιακή αγωγιμότητα.

Πιο συγκεκριμένα, το πολυμερές La-HPAA αποτελεί μικροπορώδες υλικό που προσροφά ποσότητα αερίου αζώτου που αντιστοιχεί σε επιφάνεια 10 m²/gr και αντίστοιχα 300 m²/gr για αέριο διοξείδιο του άνθρακα (Παράρτημα III). Η θερμοσταθμική συμπεριφορά του υλικού αποκαλύπτει την αφυδάτωσή του σε τρία διακριτά στάδια από τους 35-200 °C ενώ είναι δυνατή η επανάκτηση μορίων νερού κατά τη διέλευση μίγματος αζώτου- υδρατμών στους 42 °C. Μελέτες πρωτονιακής αγωγιμότητας έδωσαν θετικά αποτελέσματα, αν και οι τιμές δεν ήταν ιδιαίτερα υψηλές ενώ παρατηρείται η αναμενόμενη μείωση στην τιμή με αύξηση της θερμοκαρασίας λόγω αφυδάτωσης του υλικού.
Σε γενικές γραμμές τα υλικά αυτά μπορούν να χαρακτηριστούν ως πρωτονιακά αγώγιμα, μικροπορώδη φωσφονικά MOFs με αξιόλογη προσρόφηση διοξειδίου του άνθρακα.(ΠΑΡΑΡΤΗΜΑ ΙΙΙ)

<u>Κεφαλαιο 7</u>

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

<u>ΜΕΡΟΣ 1</u>

- 1. A. Clearfield, Chem. Mater., 1998, 10, 2801.
- 2. K. Maeda, Microporous Mesoporous Mater., 2004, 73, 47.
- 3. K. D. Demadis, in Solid State Chemistry Research Trends, ed. R. W. Buckley, Nova Science Publishers, New York, 2007, p. 109.
- 4. C. V. K. Sharma and A. Clearfield, J. Am. Chem. Soc., 2000, 122, 4394.
- 5. A. Clearfield, Prog. Inorg. Chem., 1998, 47, 371.
- 6. A. Vioux, L. Le Bideau, P. Hubert Mutin and D. Leclercq, Top. Curr. Chem., 2004, 232, 145.
- 7. A. H. Mahmoudkhani and V. Langer, Phosphorus Sulfur Silicon, 2002, 177, 2941.
- 8. A. H. Mahmoudkhani and V. Langer, J. Mol. Struct., 2002, 609, 97.
- 9. A. N. Lazar, A. Navaza and A. W. Coleman, Chem. Commun., 2004, 1052.
- 10. A. H. Mahmoudkhani and V. Langer, Cryst. Growth Des., 2002, 2, 21.
- 11. Z.-Y. Du, A. V. Prosvirin and J.-G. Mao, Inorg. Chem., 2007, 46, 9884.
- 12. Z.-Y. Du, H.-B. Xu and J.-G. Mao, Inorg. Chem., 2006, 45, 6424.
- 13. B.-P. Yang and J.-G. Mao, Inorg. Chem., 2005, 44, 566.
- 14. C. Lei, J.-G. Mao, Y.-Q. Sun, H.-Y. Zeng and A. Clearfield, Inorg. Chem., 2003, 42, 6157.
- 15. A. K. Cheetham, G. Ferey and T. Loiseau, Angew. Chem. Int. Ed. Engl., 1999, 38, 3268.
- 16. P. M. Forster and A. K. Cheetham, Top. Catal., 2003, 24, 79.
- 17. C. A. Merrill and A. K. Cheetham, Inorg. Chem., 2007, 46, 278.
- 18. S. H. Jhung, J. W. Yoon, J.-S. Hwang, A. K. Cheetham and J.-S. Chang, Chem. Mater., 2005, 17, 4455.
- 19. C. A. Merrill and A. K. Cheetham, Inorg. Chem., 2005, 44, 5273.
- 20. M. M. Gomez-Alcantara, A. Cabeza, M. Martinez-Lara, M. A. G. Aranda, R. Suau, N. Bhuvanesh and A. Clearfield, Inorg. Chem., 2004, 43, 5283.
- A. Cabeza, O. Y. Xiang, C. V. K. Sharma, M. A. G. Aranda, S. Bruque and A. Clearfield, Inorg. Chem., 2002, 41, 2325.
- 22. A. Cabeza, M. A. G. Aranda and S. Bruque, J. Mater. Chem., 1999, 9, 571.
- 23. A. Turner, P.-A. Jaffres, E. J. MacLean, D. Villemin, V. McKee and G. B. Hix, J. Chem. Soc. Dalton Trans. 2003, 1314.
- 24. G. B. Hix, D. S. Wragg, P. A. Wright and R. E. Morris, J. Chem. Soc. Dalton Trans. 1998, 3359.
- 25. A. Turner, B. M. Kariuki, M. Tremayne and E. J. MacLean, J. Mater. Chem., 2002, 12, 3220.
- 26. N. Zakowsky, G. B. Hix and R. E. Morris, J. Mater. Chem., 2000, 10, 2375.
- 27. N. Stock and T. Bein, Angew. Chem. Int. Ed. Engl., 2004, 43, 749.
- 28. S. Bauer and N. Stock, Angew. Chem. Int. Ed. Engl., 2007, 46, 6857.
- 29. P. M. Forster, N. Stock and A. K. Cheetham, Angew. Chem. Int. Ed. Engl., 2005, 44, 7608.
- 30. S. Bauer, T. Bein and N. Stock, J. Solid State Chem., 2006, 179, 145.
- 31. B. A. Breeze, M. Shanmugam, F. Tuna and R. E. P. Winpenny, Chem. Commun. 2007, 5185.
- 32. S. Langley, M. Helliwell, J. Raftery, E. I. Tolis and R. E. P. Winpenny,
- Chem. Commun. 2004, 142.
- V. Baskar, M. Shanmugam, E. C. San udo, M. Shanmugam, D. Collison, E. J. L. McInnes, Q. Wei and R. E. P. Winpenny, Chem. Commun. 2007, 37.
- 34. A. Harrison, D. K. Henderson, P. A. Lovatt, A. Parkin, P. A. Tasker and R. E. P. Winpenny, Dalton Trans. 2003, 4271.

- 35. C. Serre, J. A. Groves, P. Lightfoot, A. M. Z. Slawin, P. A. Wright, N. Stock, T. Bein, M. Haouas, F. Taulelle and G. Ferey, Chem. Mater., 2006, 18, 1451.
- 36. G. Ferey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 2005, 38, 217.
- 37. C. Serre, C. Lorentz, F. Taulelle and G. Ferey, Chem. Mater., 2003, 15, 2328.
- 38. K. Barthelet, M. Nogues, D. Riou and G. Ferey, Chem. Mater., 2002, 14, 4910.
- 39. G. Alberti, M. Casciola, U. Costantino and R. Vivani, Adv. Mater., 1996, 8, 291.
- 40. R. Vivani, G. Alberti, F. Costantino and M. Nocchetti, Microporous Mesoporous Mater., 2008, 107, 58.
- 41. R. Vivani, F. Costantino, U. Costantino and M. Nocchetti, Inorg. Chem., 2006, 45, 2388.
- 42. U. Costantino, M. Nocchetti and R. Vivani, J. Am. Chem. Soc., 2002, 124, 8428.
- 43. K. D. Demadis and S. D. Katarachia, Phosphorus Sulfur Silicon, 2004, 179, 627.
- 44. K. D. Demadis and P. Lykoudis, Bioinorg. Chem. Appl., 2005, 3, 135.
- 45. K. D. Demadis, Phosphorus Sulfur Silicon, 2006, 181, 167.
- 46. K. D. Demadis and E. Mavredaki, Env. Chem. Lett., 2005, 3, 127.
- 47. S. J. Dyer, C. E. Anderson and G. M. Graham, J. Pet. Sci. Eng., 2004, 43, 259.
- 48. J. E. Oddo and M. B. Tomson, Appl. Geochem., 1990, 5, 527.
- 49. J. J. Xiao, A. T. Kan and M. B. Tomson, Langmuir, 2001, 17, 4668.
- 50. S. J. Friedfeld, S. He and M. B. Tomson, Langmuir, 1998, 14, 3698.
- V. Tantayakom, H. S. Fogler, P. Charoensirithavorn and S. Chavadej, Cryst. Growth Des., 2005, 5, 329.
- 52. F. H. Browning and H. S. Fogler, AIChE J., 1996, 42, 2883.
- 53. R. Pairat, C. Sumeath, F. H. Browning and H. S. Fogler, Langmuir, 1997, 13, 1791.
- 54. V. Tantayakom, H. S. Fogler, F. F. de Moraes, M. Bualuang, S. Chavadej and P. Malakul, Langmuir, 2004, 20, 2220.
- 55. A.-L. Penard, F. Rossignol, H. S. Nagaraja, C. Pagnoux and T. Chartier, Eur. J. Ceram. Soc., 2005, 25, 1109.
- 56. M. J. Pearse, Min. Eng., 2005, 18, 139.
- 57. I. Sekine, T. Shimode and M. Yuasa, Ind. Eng. Chem. Res., 1992, 31, 434.
- 58. B. Mosayebi, M. Kazemeini and A. Badakhshan, Br. Corr. J., 2002, 37, 217.
- 59. Yu I. Kouznetsov, Prot. Met., 2001, 37, 434.
- 60. Yu V. Balaban-Irmenin, A. M. Rubashov and N. G. Fokina, Prot. Met., 2006, 42, 133.
- 61. J. L. Fang, Y. Li, X. R. Ye, Z. W. Wang and Q. Liu, Corrosion, 1993, 49, 266.
- 62. A. Paszterna' k, S. Stichleutner, I. Felh+ osi, Z. Keresztes, F. Nagy, E. Kuzmann, A. Ve' rtes, Z. Homonnay, G. Pet+o and E. Ka'lma' n, Electrochim. Acta, 2007, 53, 337.
- 63. Biogeochemistry of Chelating Agents, ed. B. Nowack, J. M. Van Briessen, J. M. ACS Symposium Series, ACS, Washington DC, 2003, Vol. 910.
- 64. T. P. Knepper, Trends Anal. Chem., 2003, 22, 708.
- 65. K. Miyazaki, T. Horibe, J. M. Antonucci, S. Takagi and L. C. Chow, Dent. Mater., 1993, 9, 46.
- 66. M. Atai, M. Nekoomanesh, S. A. Hashemi and S. Amani, Dent. Mater., 2004, 20, 663.
- 67. J. W. Nicholson and G. Singh, Biomaterials, 1996, 17, 2023.
- 68. H. Tschernitschek, L. Borchers and W. Geurtsen, J. Prosth. Dent., 2006, 96, 12.
- 69. F. Cheng and E. Oldfield, J. Med. Chem., 2004, 47, 5149.
- C. Temperini, A. Innocenti, A. Guerri, A. Scozzafava, S. Rusconi and C.T. Supuran, Bioorg. Med. Chem. Lett., 2007, 17, 2210.
- 71. E. Davini, C. Di Leo, F. Norelli and P. Zappelli, J. Biotechnol., 1993, 28, 321.
- 72. M. Bottrill, L. Kwok and N. J. Long, Chem. Soc. Rev., 2006, 35, 557.
- 73. I. G. Finlay, M. D. Mason and M. Shelley, Lancet Oncol., 2005, 6, 392.
- 74. V. Kubicek, J. Rudovsky, J. Kotek, P. Hermann, L. Vander Elst, R. N. Muller, Z. I. Kolar, H. T. Wolterbeek, J. A. Peters and I. Lukes, J. Am. Chem. Soc., 2005, 127, 16477.
- 75. H. Kung, R. Ackerhalt and M. Blau, J. Nucl. Med., 1978, 19, 1027.
- 76. S. S. Padalecki and T. A. Guise, Breast Cancer Res., 2001, 4, 35.
- 77. V. Stresing, F. Daubine, I. Benzaid, H. Monkkonen and P. Clezardin, Cancer Lett., 2007, 257, 16.

- R. Layman, K. Olson and C. Van Poznak, Hematol. Oncol. Clinics North Am., 2007, 21, 341.
- 79. A. Clearfield, Curr. Opin. Solid State Mater. Sci., 2002, 6, 495.
- 80. A. Clearfield, Curr. Opin. Solid State Mater. Sci., 1996, 1, 268.
- E. Barouda, K. D. Demadis, S. Freeman, F. Jones and M. I. Ogden, Cryst. Growth Des., 2007, 7, 321.
- B. L. Carlberg, Precipitation squeeze can control scale in high-volume wells, Oil and Gas Journal, 1983, Vol. 81, Dec. 26, p. 152-154.
- 83. (a) T.-T. Luo, H.-L. Tsai, S.-L. Yang, Y.-H. Liu, R.D. Yadav, C.-C. Su, C.-H. Ueng, L.-G. Lin, K.-L. Lu, Angew. Chem. Int. Ed. 2005, 44, 6063–6067, (b) S. Bauer, N. Stock, Angew. Chem. Int. Ed. 2007, 46, 6857–6860, (c) M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, J. M. Lehn, Angew. Chem. Int. Ed. 2004, 43, 3644. 2004, 116, (d) Anthony K. Cheetham, C. N. R. Rao, Russell K. Feller, Chem. Commun., 2006, 4780–4795, (e) N. Stock, T. Bein, Angew. Chem. Int. Ed. 2004, 43, 749–752.
- 84. Pearse M.J. Minerals Engineering 2005, 18, 139-149.
- 85. Bottrill, M.; Kwok, L.; Long, N.J. Chem. Soc. Rev. 2006, 35, 557-571.
- 86. P.M. Forster, N. Stock, A.K. Cheetham, Angew. Chem. Int. Ed. 2005, 44, 7608–7611, (b) N. Stock, T. Bein, J. Mater. Chem. 2005, 15, 1384–1391.
- 87. B. Nowack, Water Research, 2003, 37, 2533-2546.
- 88. K. Popov, H. Ronkkomaki and L. H. J. Lajunen, Pure Appl. Chem., 2001, 73, 1641.
- 89. Abraham Clearfield, Journal of Alloys and Compounds 2006, 418, 128–138.
- 90. M. Dyba, M. Jezowska-Bojczuk, E. Kiss, T. Kiss, H. Kozzowski, Y. Leroux and D. El Manouni, J. Chem. Soc. Dalton Trans. 1996, 1119.
- 91. E. Gumienna-Kontecka, J. Jezierska, M. Lecouvey, Y. Leroux and H. Kozzowski, J. Inorg. Biochem., 2002, 89, 13.
- 92. E. Gumienna-Kontecka, R. Silvagni, R. Lipinski, M. Lecouvey, F. C. Marincola, G. Crisponi, V. M. Nurchi, Y. Leroux and H. Kozzowski, Inorg. Chim. Acta, 2002, 339, 111.
- 93. E. Matczak-Jon, B. Kurzak, A. Kamecka and P. Kafarski, Polyhedron, 2002, 21, 321.
- 94. B. Boduszek, M. Dyba, M. Jezowska-Bojczuk, T. Kiss and H. Kozzowski, J. Chem. Soc. Dalton Trans., 1997, 973.
- 95. B. Kurzak, A. Kamecka, K. Kurzak, J. Jezierska and P. Kafarski, Polyhedron, 1998, 17, 4403.
- 96. E. Matczak-Jon, B. Kurzak, A. Kamecka, W. Sawka-Dobrowolska and P. Kafarski, J. Chem. Soc. Dalton Trans., 1999, 3627.
- 97. K. Popov, H. Rönkkömäki, L.H.J. Lajunen, Pure Appl. Chem. 2001, 73, 1641.
- 98. Kurt Moedritzer, Riyad R. Irani, J. Org. Chem. 1966, 31(5), 1603-1607.
- 99. Abraham Clearfield, Journal of Alloys and Compounds 2006, 418, 128–138.
- 100. J. S. Thayer, Applied Organometallic Chemistry, 1989, 3, 203-209.
- 101. M Horiguchi, J. S. Kittredge, E. Roberts, Biochim. Biophys. Acta, 1988, 165,164-166.
- 102. P. Mastalerz, P. Kafarski, John Wiley and Sons Publishers, 2000.
- 103. S. V. Kononova, M. A. Nesmeyanova, Biochemistry (Moscow), 2002, 67,184-195.
- 104. B. Eriksson, G. Stening, B. Oberg, Antiviral Research, 1982, 2, 81-95.
- 105. Y.-X. Han, R. Xue, W. Zhao, Z.-X. Zhou, J.-N. Li, H.-S. Chen, X.-H. Chen, Y.-L. Wang, Y.-H. Li, Y.-W. Wu, X.-F. You, L.-X. Zhao, J.-D. Jiang, Antiviral Research, 2005, 68,147-153.
- 106. W. R. Harris, C. E. Brook, C. D. Spilling, S. Elleppan, W. Peng, M. Xin, J. Van Wyk, Journal of Inorganic Biochemistry, 2004, 98, 1824-1836.
- 107. J. D. Sallis, Calcium Phosphonates in Biological and Industrial Systems, Kluwer Academic Publishers, 1998.
- 108. R. Graham, G. Russell, Phosphorus, Sulfur and Silicon, 1999, 144-146, 793-820.
- 109. F. P. Coxon, F. H. Ebetino, E. H. Mules, M. C. Seabra, C. E. McKenna, M. J. Rogers, Bone , 2005, 37, 349-358.
- 110. a) R. W. Sparidans, I. M. Twiss, S. Talbot, Pharm World Sci 1998, 20, 206-213, b) S. G. Senaratne, K. W. Colston, Breast Cancer Res. 2002, 4, 18-23.

- 111. H. Sankovics, M. Daskalakis, C. P. Raptopoulou, A. Terzis, V. Tangoulis, S. Giapintzakis, T. Kiss, A. Salifoglou, Inorganic Chemistry, 2002, 41, 13.
- 112. G.-L. Zheng, J.-F. Ma, J. Yang, J. Chem. Res. 2004, 387-388.
- 113. A. Clearfield, J. Mol. Catal. 1984, 27, 251-262.
- 114. G. Alberti, M. Casciola, Solid State Ionics 2001, 145, 3-16.
- 115. A. Groves, S.R. Miller, S.J. Warrender, C. Mellot-Draznieks, P. Lightfoot, P.A. Wright, Chem. Commun. 2006, 3305–3307.
- 116. (a) Ricardo A. Bermu' dez, Yaitza Col_n, Genaro A. Tejada, Jorge L. Colon, Langmuir 2005, 21, 890-895, (b) Yiping Zhang, Karen J. Scott, Abraham Clearfield Chem. Mater. 1993, 5, 495-499.
- 117. (a) John A. Groves, Stuart R. Miller, Stewart J. Warrender, Caroline Mellot-Draznieks, Philip Lightfoot, Paul A. Wright, Chem. Commun., 2006, 3305–3307, (b) G. Alberti, R. Vivani, F. Marmotini, Journal of Porous Materials, 1998, 5, 205–220, (c) J.M. Taylor, A.H. Mahmoudkhani, G.K.H. Shimizu, Angew. Chem. Int. Ed. 2007, 46, 795-798, (d) M.M. Gómez-Alcántara, A. Cabeza, L. Moreno-Real, M.A.G. Aranda, A. Clearfield, Microporous Mesoporous Mater. 2006, 88, 293-303
- 118. C. Bellitto, E.M. Bauer, G. Righini, Inorganica Chimica Acta, 2008, 361, 3785-3799.
- (a) C. V. Krishnamohan Sharma, Abraham Clearfield, J. Am. Chem. Soc. 2000, 122, 4394-4402, (b) A.H. Mahmoudkhani, V. Langer, Cryst. Growth Des. 2002, 2, 21-25, (c) Deyuan Kong, Jennifer L. McBee, Abraham Clearfield, Crystal Growth & Design, 2005, 5(2), 643 649 (d) Sanjit Konar, Jerzy Zon, Andrey V. Prosvirin, Kim R. Dunbar, and Abraham Clearfield, Inorganic Chemistry, 2007, 46(13); 5229-5236.
- 120. K. D. Demadis, S. D. Katarachia, H. Zhao, R. G. Raptis and P. Baran, Cryst. Growth Des., 2006, 6, 836.
- 121. K. D. Demadis, M. Papadaki, R. G. Raptis and H. Zhao, J. Solid State
- Chem., 2008, 181, 679.
- 122. K. D. Demadis, M. Papadaki, R. G. Raptis and H. Zhao, Chem. Mater., 2008, 20, 4835.
- 123. R. M. P. Colodrero, P. Olivera-Pastor, A. Cabeza, M. Papadaki, K. D. Demadis and M. A. G. Aranda, Inorg. Chem., 2010, 49, 761.
- 124. K. Popov, H. Ronkkomaki and L. H. J. Lajunen, Pure Appl. Chem., 2001, 73, 1641
- 125. K. D. Demadis, J. D. Sallis, R. G. Raptis and P. Baran, J. Am. Chem. Soc., 2001, 123, 10129.
- 126. J. Jokiniemi, S. Peraniemi, J. J. Vepsalainen and M. Ahlgren, CrystEngComm, 2008, 10, 1011.
- 127. P. A. Turhanen, K. D. Demadis, S. Peraniemi and J. J. Vepsalainen, J. Org. Chem., 2007, 72, 1468.
- 128. (a) H. Kumpulainen, R. Saari, M. Lehtonen, J. Rautio, T. Jarvinen and J. Vepsalainen, Tetrahedron Lett., 2006, 47, 2003; (b) R. Murugavel, A. Choudhury, M. G. Walawalkar, R. Pothiraja and C. N. R. Rao, Chem. Rev., 2008, 108, 3549.
- 129. K. Wang, Y. Cheng, X. Yang and R. Li, Met. Ions Biol. Syst., 2003, 40, 707.
- 130. C. H. Evans, Triends Biochem. Sci., 1983, 445.
- 131. D. R. Koop, B. Klopfenstein, Y. Iimuro and R. G. Thurman, Mol. Pharmacol., 1997, 51, 944.
- 132. C. A. Rivera, B. U. Bradford, K. J. Hunt, Y. Adachi, L. W. Schrum, D. R. Koop, E. R. Burchardt, R. A. Rippe and R. G. Thurman, Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281, G200.
- 133. E. B. Harstad and C. D. Klaassen, Toxicol. Appl. Pharmacol., 2002, 180, 178.
- 134. E. W. Yeung, S. I. Head and D. G. Allen, J. Physiol., 2003, 552, 449.
- 135. M. A. Jakupec, P. Unfried and B. K. Keppler, Rev. Physiol. Biochem. Pharmacol., 2005, 153, 101.
- 136. J. P. Garner and P. S. Heppell, Burns, 2005, 31, 379.
- 137. R. Papini, Br. Med. J., 2004, 329, 158. Chem. Soc. Rev., 2006, 35, 6.
- 139. F. Rosch and E. Forssell-Aronsson, Met. Ions Biol. Syst., 2004, 42, 77.
- 140. J. L. Sessler and R. A. Miller, Biochem. Pharmacol., 2000, 59, 733.

- 141. T. D. Mody, L. Fu and J. L. Sessler, in Progress in Inorganic Chemistry, ed. K. D. Karlin, John Wiley & Sons, Inc., New York, vol. 49, 2001.
- 142. A. M. Evens, Curr. Opin. Oncol., 2004, 16, 576.
- 143. F. Albaaj and A. Hutchison, Drugs, 2003, 63, 577.
- 144. S. F. Tang, J. L. Song, X. L. Li and J. G. Mao, Cryst. Growth Des., 2006, 6, 2322.
- 145. J. G. Mao, Z. K. Wang and A. Clearfield, Inorg. Chem., 2002, 41, 6106.
- 146. C. Oldham, in Comprehensive Coordination Chemistry, ed. S. G. Wilkinson, Pergamon Press, 1987, pp. 435.
- 147. F. N. Shi, F. A. A. Paz, P. Girginova, J. Rocha, V. S. Amaral, J. Klinowski and T.Trindade, J. Mol. Struct., 2006, 789, 200.
- 148. V. Georgantas, N. Kotsakis, C. P. Raptopoulou, A. Terzis, L. Iordanidis, M. Zervou, T. Jakusch, T. Kiss and A. Salifoglou, J. Inorg. Biochem., 2009, 103, 1530.
- 149. Y. Fan, G. H. Li, Z. Shi, D. Zhang, J. N. Xu, T. Y. Song and S. H. Feng, J. Solid State Chem., 2004, 177, 4346.
- 150. L. Cunha-Silva, D. Ananias, L. D. Carlos, F. A. A. Paz and J. Rocha, Z. Kristall., 2009, 224, 261.
- 151. L. Cunha-Silva, S. Lima, D. Ananias, P. Silva, L. Mafra, L. D. Carlos, M. Pillinger, A. A. Valente, F. A. A. Paz and J. Rocha, J. Mater. Chem., 2009, 19, 2618.
- 152. L. Cunha-Silva, L. Mafra, D. Ananias, L. D. Carlos, J. Rocha and F. A. A. Paz, Chem. Mat., 2007, 19, 3527.
- 153. Constantin Mateescu, Ecaterina Princz, Gilles Bouet, Mustayeen A. Khan, Phosphorus, Sulfur, and Silicon, 2006, 181, 947–958
- 154. G. V. Polyanchuk, L. M. Shkolnikova, M. V. Rudomino, N. M. Dyatlova and S. S. Makarevich, J. Struct. Chem., 1985, 26, 586.
- 155. Kaslina NA, Polyakova IA, Kessenikh AV, Zhadanov BV, Rudomino MV, Churilina NV, Kabachnik MI, J. Gen. Chem. USSR 1985, 55, 472–5.
- 156. B. L. Carlberg, Oil and Gas Journal, 1983, 81, 152-154.
- 157. A. Cabeza, X. Ouyang, C.V.K. Sharma, M.A.G. Aranda, S. Bruque, A. Clearfield, Inorg. Chem. 2002, 41, 2325-2333.
- 158. K. Sawada, T. Araki and T. Suzuki, Inorg. Chem. 1987, 26, 1199-1204.
- 159. A. Clearfield, Current Opinion in Solid State and Materials Science 1996, 1, 268-278.
- 160. J.J. Daly and P.J. Wheatley, J. Chem. Soc. (A), 1967, 212.
- 161. G. Grossmann, K.A. Burkov, G. Hagele, L.A. Myund, S. Hermens, C. Verwey, S.M. Arat-ool, Inorganica Chimica Acta 357 (2004) 797-808.
- 162. R. Pairat C. Sumeath, F. Henry Browning and H. Scott Fogler, Langmuir 1997, 13, 179
- 163. F. N. Shi, F. A. A. Paz, P. Girginova, J. Rocha, V. S. Amaral, J. Klinowski and T. Trindade, J. Mol. Struct., 2006, 789, 200.

<u>ΜΕΡΟΣ 2</u>

1. C. Giacovazzo, H. L. Monacco, D. Viterloo, F. Scordari, G. Lulli, G. Zanotti and M. Catti, Fundamentals of Crystallography, Oxford University Press, 1992.

2. C. Hammond, The Basics of Crystallography and Diffraction, Oxford University Press, 2006, 2nd ed.

3. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterisation of Materials, Springer, 2005

4. Basic solid state Chemistry, Anthony R. West, Wiley Press, Second Edition.

5. Σημειώσεις μεταπτυχιακού μαθήματος 'ΧΗΜΕΙΑ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ', Π.Ν. Τρικαλίτης, 2010-2011.

- 6. Friebolin, H. Ein- und zweidimensional NMR Spektroskopie; VCH, Weinheim, 1988.
- 7. Butler, I. S.; J Harrod, F. Ανόργανη Χημεία, Αρχές και Εφαρμογές. Εκδόσεις Π.Τραυλός-Ε. Κωσταράκη, 1994.
- 8. Brian, S. C. Fourier Transformation Infrared Spectroscopy. CRC Press, 1996.

<u>ΜΕΡΟΣ 3</u>

1. Goodenough, J. B. NATO ASI Ser. B 1990, 217, 195.

2. Goodenough, J. B. Methods Enzymol. 1986, 127, 263.

3. Kreuer, K. D.; Dippel, Th.; Hainovsky, N. G.; Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 1736.

4. Kreuer, K. D. J. Mol. Struct. 1988, 177, 265.

5. Schuster, P., Zundel, G., Sandorfy, C., Eds.; The Hydrogen Bond; North-Holland: Amsterdam, 1976.

6. Kreuer KD. Proton conductivity: materials and applications. Chemistry of Materials. 1996, 8, 610-641.

7. Chipot C, Gorb LG and Rivall JL. Journal of Chemical Physics 1994, 98, 1601-1607.

8. van Grotthuss, C. J. D. Ann. Chim. 1806, 58, 54.

9. E. C. C. de Souza, R. Muccillo, Materials Research. 2010, 13, 385-394.

10. Noam A. Chemical Physics Letters. 1995, 244, 456-462.

11. Goodenough JB. Solid State Microbatteries. Designing a Solid Electrolyte III. Proton Conduction and Composites. New York: Plenum Press; 1990.

12. Kreuer KD, Dippel Th, Hainovsky N and Maier J. Berichte der Bunsengesellschaft für Physikalische Chemie. 1992, 96, 1736-1742.

13. Munson, R. A. J. Phys. Chem. 1964, 68, 3374.

14. Potier, A.; Rousselet, D. J. Chim. Phys. (Paris) 1973, 70, 873.

15. Baranov, A. I.; Dobrzhanskii, G. F.; Ilyukhin, V. V.; Ryabkin, V. S.; Sokolov, Yu. N.; Sorokina, N. I.; Shuvalov, L. A. Sov. Phys. Crystallogr. 1981, 26, 717.

16. Norby, T.; Christiansen, N. Solid State Ionics 1995, 77, 240.

17. Abbe, Y. Phosphorous Lett. 1994, 20, 3.

18. Kreuer, K. D.; Weppner, W.; Rabenau, A. Solid State Ionics 1981, 3/4, 353.

19. Casciola, M.; Costantino, U.; Calevi, A. Solid State Ionics 1993, 61, 245.

20 Alberti, G.; Costantino, U.; Casciola, M.; Vivani, R.; Peraio, A. Solid State Ionics 1991, 46, 61.

21. S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki,

N. Guillou, G. Ferey, S. Bourrelly and P. L. Liewellyn, J. Am. Chem. Soc., 2008, 130, 15967

22. Dimos D and Mueller C. Annual Review of Materials Research. 1998, 28, 397-419.

23 Marechal, Y. Proton Transfer in Hydrogen-Bonded Systems; Bountis, T., Ed.; Plenum Press: New York, 1992; p 1.

24. Marechal, Y. J. Mol. Liq. 1991, 48, 253.

25. Scheiner, S. J. Am. Chem. Soc. 1981, 103, 315.

26. Janoschek, R. J. Mol. Struct. 1994, 321, 45.

27. BIOXHMEIA I, Jeremy M.Berg, John L. Tymoczko, Lubert Stryer. Πανεπιστημιακές Εκδόσεις Κρήτης 2005 σελ. 430-432.

28 Miura, N.; Yamazoe, N. Solid State Ionics 1992, 53-56, 975.

29 Yajima, T.; Koide, K.; Fukatsu, N.; Ohashi, T.; Iwahara, H. Sensors Actuators 1993, B13-14, 697.

30 Yajima, T.; Iwahara, H.; Koide, K.; Yamamoto, K. Sensors Actuators 1991, B5, 145.

31 Iwahara, H. Kagaku Kogyo 1993, 44, 846.

32 Iwahara, H.; Hibino, T. Proc. Electrochem. Soc. 1993, 93-7, 464.

33 Hibino, T.; Iwahara, H. Chem. Lett. 1992, 1225.

34 Hibino, T.; Iwahara, H. Chem. Lett. 1992, 1221.

35 Iwahara, H. Solid State Ionics 1995, 77, 289.

36 Miura, N.; Yamazoe, N. Solid State Ionics 1992, 53-56, 975.

37. Wang, J. Talanta 1994, 41, 857.

38. Moatti-Sirat, D.; Poitout, V.; Thome, V.; Gangnerau, M. N.; Zhang, Y.; Hu, Y.; Wilson,

G. S. Lemonnier, F.; Klein, J. C.; Reach, G. Diabetologia 1994, 37, 610.

39. Moussy, F.; Jakeway, S.; Harrison, D.; Rajotte, R. V. Anal. Chem. 1994, 66, 3882.

40. Jin, L. T.; Zhao, G. Z.; Fang, Y. Z. Chin, J. Chem. 1994, 12, 343 1994.

41. Kuwata, S.; Miura, N.; Yamazoe, N. Chem. Lett. 1988, 1197.

42. Chowdari, B. V. R., ed.: Solid State Ionics: Materials and Applications; World Science: Singapore, 1992; p 247.

43. Iwahara, H.; Esaka, T.; Uchida, H.; Yamauchi, T.; Ogaki, K. Solid State Ionics 1986, 18/19, 1003.

44. Hibino, T.; S. Hamakawa, S.; H. Iwahara, H. J. Chem. Soc. Jpn. 1993, 238.

<u>ПАРАРТНМА I</u>

ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΚΑ ΔΕΔΟΜΕΝΑ ΤΩΝ ΕΝΩΣΕΩΝ Ca-AMP, Ca-HEDP, Ca-PMIDA, Ce-HPAA, La-HPAA.

<u>Ca-AMP</u>

Γωνίες μεταξύ ατόμων για την ένωση Ca-AMP

Number	Atom1	Atom2	Atom3	Angle
1	05	Cal	07	86.32(7)
2	05	Cal	012	173.74(9)
3	05	Cal	02	90.43(7)
4	05	Cal	01	95.69(7)
5	05	Cal	O6	89.90(8)
6	07	Cal	012	87.87(8)
7	07	Cal	02	93.41(7)
8	07	Cal	01	176.46(7)
9	07	Cal	O6	90.94(7)
10	012	Cal	02	87.57(8)
11	012	Cal	01	90.23(8)
12	012	Cal	O6	92.53(9)
13	02	Cal	01	89.49(7)
14	02	Cal	O6	175.64(8)
15	01	Cal	O6	86.15(7)
16	01	P1	02	115.9(1)
17	01	P1	03	111.2(1)
18	01	P1	C1	107.4(1)
19	O2	P1	03	110.0(1)
20	O2	P1	C1	108.8(1)
21	O3	P1	C1	102.8(1)
22	O4	P2	05	109.0(1)
23	O4	P2	O6	108.1(1)
24	O4	P2	C2	103.5(1)

25	05	D2	06	110 1(1)
25	05	P2	C2	110.1(1) 100.7(1)
20	05	F2	C2	109.7(1) 107.5(1)
27	00	F2	00	107.3(1)
28	0/	P3	08	114.3(1)
29	07	P3	09	111.2(1)
30	07	P3	C3	110.8(1)
31	08	P3	09	109.6(1)
32	08	P3	C3	109.7(1)
33	09	P3	C3	100.3(1)
34	P1	01	Cal	134.9(1)
35	P1	O2	Cal	169.4(1)
36	Cal	05	P2	141.0(1)
37	P2	O6	Cal	170.2(1)
38	Cal	07	Р3	142.8(1)
39	H1	N1	C1	106.4(2)
40	H1	N1	C2	106.3(2)
41	H1	N1	C3	106.4(2)
42	C1	N1	C2	112.3(2)
43	C1	N1	C3	111.8(2)
44	C2	N1	C3	113.2(2)
45	P1	C1	N1	114.7(2)
46	P1	C1	H1A	108.5(2)
47	P1	C1	H1B	108.6(2)
48	N1	C1	H1A	108.6(2)
49	N1	C1	H1B	108.6(2)
50	H1A	C1	H1B	107.6(2)
51	P2	C2	N1	113.8(2)
52	P2	C2	H2A	108.8(2)
53	P2	C2	H2B	108.8(2)
54	N1	C2	H2A	108.8(2)
55	N1	C2	H2B	108.8(2)
56	H2A	C2	H2B	107.6(2)
57	P3	C3	N1	118.3(2)
58	P3	C3	НЗА	107.7(2)
59	P3	C3	H3B	107.7(2)
60	N1	C3	НЗА	107.7(2)
61	N1	C3	H3B	107.7(2)
62	НЗА	C3	H3B	107.1(2)
63	Cal	012	H12A	136(3)
64	Cal	012	H12B	111(3)
65	H12A	012	H12B	92(4)

66	O2	Cal	05	90.43(7)
67	O2	Cal	07	93.41(7)
68	02	Cal	012	87.57(8)
69	O2	Cal	01	89.49(7)
70	02	Cal	O6	175.64(8)
71	05	Cal	07	86.32(7)
72	05	Cal	012	173.74(9)
73	05	Cal	01	95.69(7)
74	05	Cal	O6	89.90(8)
75	07	Cal	012	87.87(8)
76	07	Cal	01	176.46(7)
77	07	Cal	O6	90.94(7)
78	012	Cal	01	90.23(8)
79	012	Cal	O6	92.53(9)
80	01	Cal	O6	86.15(7)
81	01	P1	02	115.9(1)
82	01	P1	03	111.2(1)
83	01	P1	C1	107.4(1)
84	02	P1	03	110.0(1)
85	02	P1	C1	108.8(1)
86	03	P1	C1	102.8(1)
87	O4	P2	05	109.0(1)
88	O4	P2	O6	108.1(1)
89	O4	P2	C2	103.5(1)
90	05	P2	O6	118.1(1)
91	05	P2	C2	109.7(1)
92	O6	P2	C2	107.5(1)
93	07	P3	08	114.3(1)
94	07	P3	09	111.2(1)
95	07	P3	C3	110.8(1)
96	08	P3	09	109.6(1)
97	08	P3	C3	109.7(1)
98	09	P3	C3	100.3(1)
99	P1	01	Cal	134.9(1)
100	Ca1	O2	P1	169.4(1)
101	Ca1	O5	P2	141.0(1)
102	P2	O6	Ca1	170.2(1)
103	Cal	07	P3	142.8(1)
104	H1	N1	C1	106.4(2)
105	H1	N1	C2	106.3(2)
106	H1	N1	C3	106.4(2)

107	C1	N1	C2	112.3(2)
108	C1	N1	C3	111.8(2)
109	C2	N1	C3	113.2(2)
110	P1	C1	N1	114.7(2)
111	P1	C1	H1A	108.5(2)
112	P1	C1	H1B	108.6(2)
113	N1	C1	H1A	108.6(2)
114	N1	C1	H1B	108.6(2)
115	H1A	C1	H1B	107.6(2)
116	P2	C2	N1	113.8(2)
117	P2	C2	H2A	108.8(2)
118	P2	C2	H2B	108.8(2)
119	N1	C2	H2A	108.8(2)
120	N1	C2	H2B	108.8(2)
121	H2A	C2	H2B	107.6(2)
122	P3	C3	N1	118.3(2)
123	P3	C3	H3A	107.7(2)
124	P3	C3	H3B	107.7(2)
125	N1	C3	H3A	107.7(2)
126	N1	C3	H3B	107.7(2)
127	H3A	C3	H3B	107.1(2)
128	Cal	012	H12A	136(3)
129	Cal	012	H12B	111(3)
130	H12A	012	H12B	92(4)
131	H10A	O10	H10B	120(4)
132	H11A	011	H11B	80(4)
133	H13A	013	H13B	126(4)
134	H14A	014	H14B	109(7)
135	H14A	O14	O14	56(4)
136	H14A	O14	H14A	91(5)
137	H14A	O14	H14B	31(6)
138	H14B	O14	O14	60(5)
139	H14B	O14	H14A	34(6)
140	H14B	O14	H14B	95(6)
141	O14	O14	H14A	35(3)
142	014	O14	H14B	35(3)
143	H14A	O14	H14B	67(5)
144	014	H14A	O14	89(5)
145	014	H14B	O14	85(6)
146	014	O14	H14A	35(3)
147	014	O14	H14B	35(3)

148	O14	014	H14A	56(4)
149	014	O14	H14B	60(5)
150	H14A	O14	H14B	67(5)
151	H14A	014	H14A	91(5)
152	H14A	O14	H14B	34(6)
153	H14B	O14	H14A	31(6)
154	H14B	O14	H14B	95(6)
155	H14A	O14	H14B	109(7)
156	014	H14A	014	89(5)
157	014	H14B	014	85(6)

Λίστα Ατόμων για το Ca- AMP

28	Cal	0	Са	1.03792(4)	-0 <u>-34388(6)</u>	-0.16256(3)	2-x,-y,-z
Numbe ₂ 9	Pabel	Charge 0	B y bylType	£\$0294(6)	ESO1364(8)	Ø.124284(49D	Symm. Op.
30	P2 1	0	₽ ∌	0.98286(4)	603247388987(68)	0.06036(4)	⋧, ,,zy,-z
32	P3	0	P.3	0.79280(6)	60020694(69)	-0.04284(4)	⋧ , , <i></i> , <i>z</i> <i>y</i> ,- <i>z</i>
33	1 <u>9</u> 2	0	P.3 02	0.92584(67)	0.20\$9(728)	00299635(14)	⋧,३, ₂у,-z
34	P2	0	P.3 02	0.86729(68)	0.2009(29)	0.02988(43)	⋧,ҳ,₂ y,-z
34	03	0	O.co2	0.89440(18)	-0.0039(2)	002 8919123((1B2))	⋧, ,,zy,-z
36	04	0	O.co2	1.18470(18)	-0.2952(2)	0012210986(123)	⋧ , ,z y,-z
36	O3	0	O.co2	1.10336(18)	601237789(63)	-0.08746(13)	⋧, , ,zy,-z
38	04	0	O.co2	0.04590(18)	60240339(63)	9010260278(1B2)	⋧, , ,zy,-z
39	O3	0	O.co2	0.886 63 (17)	602179871(62)	0002276863(122)	⋧, ,,zy,-z
39	O8	0	O.co2	0.95396(18)	6040429(63)	-0.06490(14)	⋧, ,,zy,-z
40	O9	0	O.co2	0.60530(19)	601307808(23))	00126689(124)	⋧, ,,zy,-z
42	Ø 8	0	Ø. ∉02	Q. 84866(19)	60.0212107(63))	0.09395(14)	⋧,җ, zy,-z
43	H 9	0	₿.co2	Q.8579 1(19)	60320854(3)	0.116890.1144447	⋧ , ,z y,-z
43	<u></u> ۱۵	0	N. 4	0.7586(2)9)	60220087(63)	0014 02305((154))	⋧,җ, zy,-z
44	H1A	0	Н	0.7329	602092474	-0.1009	⋧,, ,,zy,-z
46	₿ 1B	0	U .3	Ø.Ø 49 8(2)	60,10,8673(3)	-0.1427 0(154) 1	⋧-,¥,_z y,-z
46	fl2A	0	£ 1.3	0.2660 (2)	600124715(3)	0.083540(1170)09	⋧,җ, zy,-z
48	H2B	0	Н	0.9462	601067536	-0.0342	⋧, , ,zy,-z
49	₿ 2₿	0	U .3	Ø. 0740 (2)	60,104715(3)	-0.08350(1305	⋧,җ, zy,-z
4 9	fl 3 A	0	£ 1.3	0.0888(2)	000370965(3)	0.027860.06922	⋧,җ, zy,-z
20	H2B	0	H	0.8494	60,037918	-0.0366	⋧,ҳ, zy,-z
51	₿₿B	0	U .3	Ø. 212 8(2)	003055(3)	-0.02780(04657	⋧,җ, zy,-z
23	A3 A	0	A .3	0.9498(2)	00339861(4)	-0.2988 6(017 36	⋧,ҳ, zy,-z
23	H3BA	0	H	0.267 64)	60345371(5)	-0.343(-20)0457	⋧,ҳ, ӡу,-z
54	₩12 B	0	Ŭ .3	0.882032)	60,348621((54))	0 .2 2988(6()17)	⋧,җ, zy,-z
26	Ha2A	0	fla	0.06808(4)	00465% \$2(6)	0.342626(3)	x,y ļ z y,z
26	Ha2B	0	fla	0.53802(4)	£04B 26\$ 2(6)	0.294(31)(3)	1 ,5,7,-1/2+y,1/2-z

	1			1	1	1	
57	Cal	0	Ca	1.03792(4)	0.65612(6)	-0.16256(3)	2-x,1-y,-z
58	Cal	0	Ca	1.46208(4)	0.15612(6)	-0.33744(3)	1/2+x,1/2-y,-1/2+z
59	01	0	0.2	1.19590(17)	-0.5050(2)	-0.20077(12)	2.5-x,-1/2+y,-1/2-z
60	01	0	0.2	0.80410(17)	0.5050(2)	0.20077(12)	-1/2+x,1/2-y,1/2+z
61	O6	0	0.2	0.95396(18)	-0.5671(3)	-0.10607(13)	x,-1+y,z
62	O6	0	0.2	1.04604(18)	0.5671(3)	0.10607(13)	2-x,1-y,-z
63	O10	0	0.3	1.1424(2)	0.2283(4)	-0.43748(16)	x,y,z
64	H10A	0	Н	1.124(4)	0.180(5)	-0.392(2)	x,y,z
65	H10B	0	Н	1.214(2)	0.242(6)	-0.450(3)	x,y,z
66	011	0	0.3	1.2738(3)	0.5367(3)	0.22616(17)	x,y,z
67	H11A	0	Н	1.340(3)	0.548(6)	0.199(3)	x,y,z
68	H11B	0	Н	1.261(4)	0.629(3)	0.201(3)	x,y,z
69	O13	0	0.3	1.4897(3)	0.6258(4)	0.0807(2)	x,y,z
70	H13A	0	Н	1.514(5)	0.625(6)	0.0291(16)	x,y,z
71	H13B	0	Н	1.499(4)	0.550(5)	0.118(3)	x,y,z
72	O14	0	0.3	1.0185(4)	0.4833(7)	-0.4555(3)	x,y,z
73	H14A	0	Н	0.947(3)	0.501(10)	-0.471(5)	x,y,z
74	H14B	0	Н	1.065(6)	0.532(9)	-0.489(5)	x,y,z
75	O14	0	0.3	0.9815(4)	0.5167(7)	-0.5445(3)	2-x,1-y,-1-z
76	H14A	0	Н	1.053(3)	0.499(10)	-0.529(5)	2-x,1-y,-1-z
77	H14B	0	Н	0.935(6)	0.468(9)	-0.511(5)	2-x,1-y,-1-z

<u>Ca-HEDP</u>

Γωνίες μεταξύ ατόμων για την ένωση Ca – HEDP

Number	Atom1	Atom2	Atom3	Angle
1	03	Cal	07	68.6(1)
2	03	Cal	08	151.6(2)
3	03	Cal	09	90.9(2)
4	03	Cal	08	138.1(2)
5	O3	Cal	01	101.4(2)
6	O3	Cal	03	76.9(1)
7	03	Cal	06	75.9(2)
8	07	Cal	08	138.0(2)
9	07	Cal	09	80.6(2)
10	07	Cal	08	70.9(2)
11	07	Cal	01	66.2(2)

12	07	Cal	03	134.0(2)
13	07	Cal	O6	120.0(2)
14	08	Cal	09	102.0(2)
15	08	Cal	08	70.3(2)
16	08	Cal	01	86.5(2)
17	08	Cal	03	83.8(2)
18	08	Cal	O6	79.9(2)
19	O9	Cal	08	71.8(2)
20	09	Cal	01	136.6(2)
21	O9	Cal	03	70.2(2)
22	09	Cal	O6	147.3(2)
23	08	Cal	01	71.4(2)
24	08	Cal	03	127.6(2)
25	08	Cal	O6	136.5(2)
26	01	Cal	03	153.0(2)
27	01	Cal	O6	75.9(2)
28	03	Cal	O6	77.6(2)
29	01	P1	02	111.4(3)
30	01	P1	03	116.5(3)
31	01	P1	C1	110.1(3)
32	02	P1	03	107.1(2)
33	02	P1	C1	106.6(3)
34	O3	P1	C1	104.6(3)
35	04	P2	05	110.1(3)
36	O4	P2	O6	112.2(3)
37	O4	P2	C1	106.0(3)
38	05	P2	06	112.6(3)
39	05	P2	C1	108.2(3)
40	O6	P2	C1	107.5(3)
41	P1	01	Cal	147.9(3)
42	Cal	03	P1	116.4(2)
43	Cal	03	Cal	103.1(2)
44	P1	03	Cal	140.4(3)
45	P2	O6	Cal	129.8(3)
46	Cal	07	C1	121.4(4)
47	Cal	08	H8A	95(5)

48	Cal	08	H8B	127(5)
49	Cal	08	Cal	109.7(2)
50	H8A	08	H8B	124(7)
51	H8A	08	Cal	117(5)
52	H8B	08	Cal	86(5)
53	Cal	09	Н9А	47(5)
54	Cal	09	H9B	132(4)
55	H9A	09	H9B	132(6)
56	P1	C1	P2	113.4(4)
57	P1	C1	07	105.4(4)
58	P1	C1	C2	109.5(5)
59	P2	C1	07	107.1(4)
60	P2	C1	C2	112.5(5)
61	07	C1	C2	108.7(5)
62	C1	C2	H2A	109.5(6)
63	C1	C2	H2B	109.5(6)
64	C1	C2	H2C	109.5(6)
65	H2A	C2	H2B	109.5(7)
66	H2A	C2	H2C	109.5(7)
67	H2B	C2	H2C	109.5(7)
68	08	Cal	03	138.1(2)
69	08	Cal	07	70.9(2)
70	08	Cal	08	70.3(2)
71	08	Cal	09	71.8(2)
72	08	Cal	01	71.4(2)
73	08	Cal	O3	127.6(2)
74	08	Cal	06	136.5(2)
75	03	Cal	07	68.6(1)
76	O3	Cal	08	151.6(2)
77	O3	Cal	09	90.9(2)
78	O3	Cal	01	101.4(2)
79	03	Cal	03	76.9(1)
80	03	Cal	O6	75.9(2)
81	07	Cal	08	138.0(2)
82	07	Cal	09	80.6(2)
83	07	Cal	01	66.2(2)

84	07	Cal	03	134.0(2)
85	07	Cal	O6	120.0(2)
86	08	Cal	09	102.0(2)
87	08	Cal	01	86.5(2)
88	08	Cal	03	83.8(2)
89	08	Cal	O6	79.9(2)
90	09	Cal	01	136.6(2)
91	O9	Cal	03	70.2(2)
92	O9	Cal	O6	147.3(2)
93	01	Cal	03	153.0(2)
94	01	Cal	O6	75.9(2)
95	03	Cal	O6	77.6(2)
96	01	P1	02	111.4(3)
97	01	P1	03	116.5(3)
98	01	P1	C1	110.1(3)
99	O2	P1	03	107.1(2)
100	02	P1	C1	106.6(3)
101	03	P1	C1	104.6(3)
102	O4	P2	05	110.1(3)
103	O4	P2	O6	112.2(3)
104	04	P2	C1	106.0(3)
105	05	P2	O6	112.6(3)
106	05	P2	C1	108.2(3)
107	06	P2	C1	107.5(3)
108	P1	01	Cal	147.9(3)
109	Cal	03	P1	116.4(2)
110	Cal	03	Cal	103.1(2)
111	P1	03	Cal	140.4(3)
112	P2	O6	Cal	129.8(3)
113	Cal	07	C1	121.4(4)
114	Cal	08	Cal	109.7(2)
115	Cal	08	H8A	117(5)
116	Cal	08	H8B	86(5)
117	Cal	08	H8A	95(5)
118	Cal	08	H8B	127(5)
119	H8A	08	H8B	124(7)

120	Cal	09	Н9А	47(5)
121	Cal	09	H9B	132(4)
122	Н9А	09	H9B	132(6)
123	P1	C1	P2	113.4(4)
124	P1	C1	07	105.4(4)
125	P1	C1	C2	109.5(5)
126	P2	C1	07	107.1(4)
127	P2	C1	C2	112.5(5)
128	07	C1	C2	108.7(5)
129	C1	C2	H2A	109.5(6)
130	C1	C2	H2B	109.5(6)
131	C1	C2	H2C	109.5(6)
132	H2A	C2	H2B	109.5(7)
133	H2A	C2	H2C	109.5(7)
134	H2B	C2	H2C	109.5(7)
135	01	Cal	O6	75.9(2)
136	03	Cal	03	76.9(1)
137	03	Cal	03	76.9(1)
138	01	Cal	O6	75.9(2)
139	Cal	03	Cal	103.1(2)
140	Cal	03	Cal	103.1(2)

Μήκη Δεσμών για την ένωση Ca –HEDP

Number	Atom1	Atom2	Туре	Polymeric	Length	SybylType
1	Ca1	03	Unknown	no	2.445(5)	un
2	Ca1	07	Unknown	no	2.583(4)	1
3	Ca1	08	Unknown	no	2.465(4)	1
4	Ca1	09	Unknown	no	2.493(6)	1
5	Ca1	08	Unknown	no	2.565(5)	1
6	Ca1	01	Unknown	yes	2.352(5)	un
7	Ca1	03	Unknown	yes	2.399(5)	un
8	Ca1	O6	Unknown	yes	2.417(5)	un
9	P1	01	Unknown	no	1.494(6)	un
10	P1	02	Unknown	no	1.594(5)	un

11	P1	03	Unknown	no	1.516(4)	un
12	P1	C1	Unknown	no	1.841(7)	1
13	P2	04	Unknown	no	1.546(4)	un
14	P2	05	Unknown	no	1.535(5)	un
15	P2	06	Unknown	no	1.512(6)	un
16	P2	C1	Unknown	no	1.817(7)	1
17	01	Ca1	Unknown	yes	2.352(5)	un
18	03	Ca1	Unknown	yes	2.399(5)	un
19	06	Ca1	Unknown	yes	2.417(5)	un
20	07	C1	Unknown	no	1.464(7)	1
21	08	H8A	Unknown	no	0.84(6)	1
22	08	H8B	Unknown	no	0.84(8)	1
23	08	Ca1	Unknown	no	2.565(5)	1
24	09	H9A	Unknown	no	0.85(7)	1
25	09	Н9В	Unknown	no	0.85(2)	1
26	C1	C2	Unknown	no	1.51(1)	1
27	C2	H2A	Unknown	no	0.960(6)	1
28	C2	H2B	Unknown	no	0.960(7)	1
29	C2	H2C	Unknown	no	0.960(7)	1
30	Ca1	03	Unknown	no	2.445(5)	un
31	Ca1	07	Unknown	no	2.583(4)	1
32	Ca1	08	Unknown	no	2.465(4)	1
33	Ca1	09	Unknown	no	2.493(6)	1
34	Ca1	01	Unknown	yes	2.352(5)	un
35	Ca1	03	Unknown	yes	2.399(5)	un
36	Ca1	06	Unknown	yes	2.417(5)	un
37	P1	01	Unknown	no	1.494(6)	un
38	P1	02	Unknown	no	1.594(5)	un
39	P1	03	Unknown	no	1.516(4)	un
40	P1	C1	Unknown	no	1.841(7)	1
41	P2	04	Unknown	no	1.546(4)	un
42	P2	05	Unknown	no	1.535(5)	un
43	P2	06	Unknown	no	1.512(6)	un

44	P2	C1	Unknown	no	1.817(7)	1
45	01	Ca1	Unknown	yes	2.352(5)	un
46	03	Ca1	Unknown	yes	2.399(5)	un
47	06	Ca1	Unknown	yes	2.417(5)	un
48	07	C1	Unknown	no	1.464(7)	1
49	08	H8A	Unknown	no	0.84(6)	1
50	08	H8B	Unknown	no	0.84(8)	1
51	09	H9A	Unknown	no	0.85(7)	1
52	09	Н9В	Unknown	no	0.85(2)	1
53	C1	C2	Unknown	no	1.51(1)	1
54	C2	H2A	Unknown	no	0.960(6)	1
55	C2	H2B	Unknown	no	0.960(7)	1
56	C2	H2C	Unknown	no	0.960(7)	1
57	Ca1	03	Unknown	yes	2.445(5)	un
58	Ca1	03	Unknown	yes	2.445(5)	un

Λίστα Ατόμων για το Ca-HEDP

				Xfrac +			Symm.
Number	Label	Charge	SybylType	ESD	Yfrac + ESD	Zfrac + ESD	op.
1	Cal	0	Ca	0.09199(18)	0.79418(16)	0.51492(13)	x,y,z
2	P1	0	P.3	0.4830(2)	1.2577(2)	0.62423(17)	x,y,z
3	P2	0	P.3	0.8594(2)	1.2024(2)	0.84407(17)	x,y,z
4	01	0	O.co2	0.6073(6)	1.2496(6)	0.5221(5)	x,y,z
5	02	0	O.co2	0.5336(7)	1.4759(6)	0.6838(5)	x,y,z
6	03	0	O.co2	0.2347(6)	1.1478(6)	0.5648(4)	x,y,z
7	04	0	O.co2	0.9841(7)	1.4258(6)	0.8770(5)	x,y,z
8	05	0	O.co2	0.9118(7)	1.1185(6)	0.9842(5)	x,y,z
9	06	0	O.co2	0.9028(7)	1.1116(6)	0.7199(5)	x,y,z
10	07	0	0.3	0.4463(7)	0.9418(6)	0.7386(5)	x,y,z
11	08	0	0.3	-0.1421(7)	0.4782(6)	0.3526(5)	x,y,z
12	H8A	0	Н	-0.261(7)	0.490(11)	0.343(8)	x,y,z
13	H8B	0	Н	-0.116(12)	0.428(10)	0.284(6)	x,y,z
14	09	0	0.3	-0.0765(7)	0.7682(6)	0.7139(5)	x,y,z
15	H9A	0	Н	-0.086(12)	0.686(9)	0.647(6)	x,y,z
16	H9B	0	Н	-0.022(12)	0.787(11)	0.806(2)	x,y,z

17	C1	0	C.3	0.5683(10)	1.1519(9)	0.7855(7)	x,y,z
18	C2	0	C.3	0.4984(10)	1.2150(9)	0.9073(7)	x,y,z
19	H2A	0	Н	0.5771	1.3527	0.9389	x,y,z
20	H2B	0	Н	0.5307	1.1504	0.988	x,y,z
21	H2C	0	Н	0.3431	1.1819	0.8722	x,y,z
				-			-x,1-
22	Cal	0	Ca	0.09199(18)	0.20582(16)	0.48508(13)	y,1-z
							-x,1-
23	P1	0	P.3	-0.4830(2)	-0.2577(2)	0.37577(17)	y,1-z
							-x,1-
24	P2	0	P.3	-0.8594(2)	-0.2024(2)	0.15593(17)	y,1-z
							-x,1-
25	01	0	O.co2	-0.6073(6)	-0.2496(6)	0.4779(5)	y,1-z
							-x,1-
26	O2	0	O.co2	-0.5336(7)	-0.4759(6)	0.3162(5)	y,1-z
							-x,1-
27	03	0	O.co2	-0.2347(6)	-0.1478(6)	0.4352(4)	y,1-z
•					0.4050(6)	0.1000(5)	-x,1-
28	04	0	0.co2	-0.9841(7)	-0.4258(6)	0.1230(5)	y,I-z
20	05	0	02	0.0119(7)	0.1195(6)	0.0159(5)	-x,1-
29	05	0	0.co2	-0.9118(7)	-0.1185(6)	0.0158(5)	y,1-Z
20	06	0	0.002	0.0028(7)	0.1116(6)	0.2801(5)	-X,1-
30	00	0	0.002	-0.9028(7)	-0.1110(0)	0.2801(3)	y,1-Z
31	07	0	03	-0 4463(7)	0.0582(6)	0.2614(5)	-A,1-
51		0	0.5	0.1105(7)	0.0502(0)	0.2014(3)	y,1 Z
32	08	0	03	0 1421(7)	0.5218(6)	0 6474(5)	v 1-z
			0.0	0.1.21(/)	0.0210(0)		-x.1-
33	H8A	0	Н	0.261(7)	0.510(11)	0.657(8)	v,1-z
							-x,1-
34	H8B	0	Н	0.116(12)	0.572(10)	0.716(6)	y,1-z
							-x,1-
35	09	0	O.3	0.0765(7)	0.2318(6)	0.2861(5)	y,1-z
							-x,1-
36	H9A	0	Н	0.086(12)	0.314(9)	0.353(6)	y,1-z
							-x,1-
37	H9B	0	Н	0.022(12)	0.213(11)	0.194(2)	y,1-z

							-x,1-
38	C1	0	C.3	-0.5683(10)	-0.1519(9)	0.2145(7)	y,1-z
							-x,1-
39	C2	0	C.3	-0.4984(10)	-0.2150(9)	0.0927(7)	y,1-z
							-x,1-
40	H2A	0	Н	-0.5771	-0.3527	0.0611	y,1-z
							-x,1-
41	H2B	0	Н	-0.5307	-0.1504	0.012	y,1-z
							-x,1-
42	H2C	0	Н	-0.3431	-0.1819	0.1278	y,1-z
				-			-1+x,-
43	Ca1	0	Ca	0.90801(18)	-0.20582(16)	0.51492(13)	1+y,z
							х,-
44	Cal	0	Ca	0.09199(18)	-0.20582(16)	0.51492(13)	1+y,z
				-			-x,2-
45	Cal	0	Ca	0.09199(18)	1.20582(16)	0.48508(13)	y,1-z
							1-x,2-
46	Cal	0	Ca	0.90801(18)	1.20582(16)	0.48508(13)	y,1-z
							-1+x,-
47	01	0	0.2	-0.3927(6)	0.2496(6)	0.5221(5)	1+y,z
							1-x,2-
48	01	0	0.2	0.3927(6)	0.7504(6)	0.4779(5)	y,1-z
							х,-
49	03	0	0.2	0.2347(6)	0.1478(6)	0.5648(4)	1+y,z
							-x,2-
50	03	0	0.2	-0.2347(6)	0.8522(6)	0.4352(4)	y,1-z
							-1+x,-
51	O6	0	O.2	-0.0972(7)	0.1116(6)	0.7199(5)	1+y,z
							1-x,2-
52	O6	0	0.2	0.0972(7)	0.8884(6)	0.2801(5)	y,1-z

<u>Ca- PMIDA</u>

Μήκη Δεσμών για το Ca – PMIDA

Number	Atom1	Atom2	Туре	Polymeric	Length	SybylType
1	Cal	08	Unknown	no	2.259(2)	un
2	Cal	011	Unknown	no	2.314(2)	1
3	Cal	07	Unknown	no	2.412(2)	un
4	Cal	05	Unknown	yes	2.366(2)	un
5	Cal	O6	Unknown	yes	2.383(2)	un
6	Cal	09	Unknown	yes	2.299(2)	un
7	P2	C3	Unknown	no	1.820(2)	1
8	P2	08	Unknown	no	1.492(2)	un
9	P2	09	Unknown	no	1.494(2)	un
10	P2	012	Unknown	no	1.585(2)	1
11	C3	H3A	Unknown	no	0.975(2)	1
12	C3	H3B	Unknown	no	0.918(2)	1
13	C3	N4	Unknown	no	1.501(3)	1
14	N4	H4	Unknown	no	0.909(2)	1
15	N4	C15	Unknown	no	1.493(3)	1
16	N4	C16	Unknown	no	1.501(3)	1
17	O5	C10	Unknown	no	1.271(3)	un
18	05	Cal	Unknown	yes	2.366(2)	un
19	O6	C14	Unknown	no	1.260(3)	un
20	O6	Cal	Unknown	yes	2.383(2)	un
21	07	C10	Unknown	no	1.235(3)	un
22	07	Cal	Unknown	no	2.412(2)	un
23	09	Ca1	Unknown	yes	2.299(2)	un
24	C10	C15	Unknown	no	1.527(3)	1
25	011	H11A	Unknown	no	0.850(2)	1
26	011	H11B	Unknown	no	0.918(2)	1
27	012	H12	Unknown	no	0.939(2)	1
28	013	C14	Unknown	no	1.243(3)	un
29	C14	C16	Unknown	no	1.531(3)	1
30	C15	H15A	Unknown	no	0.974(2)	1
31	C15	H15B	Unknown	no	0.938(2)	1
32	C16	H16A	Unknown	no	0.929(2)	1
33	C16	H16B	Unknown	no	1.002(2)	1
34	Cal	08	Unknown	no	2.259(2)	un
35	Cal	011	Unknown	no	2.314(2)	1
36	Cal	05	Unknown	yes	2.366(2)	un
37	Cal	O6	Unknown	yes	2.383(2)	un

38	Cal	09	Unknown	yes	2.299(2)	un
39	P2	C3	Unknown	no	1.820(2)	1
40	P2	08	Unknown	no	1.492(2)	un
41	P2	09	Unknown	no	1.494(2)	un
42	P2	012	Unknown	no	1.585(2)	1
43	C3	H3A	Unknown	no	0.975(2)	1
44	C3	H3B	Unknown	no	0.918(2)	1
45	C3	N4	Unknown	no	1.501(3)	1
46	N4	H4	Unknown	no	0.909(2)	1
47	N4	C15	Unknown	no	1.493(3)	1
48	N4	C16	Unknown	no	1.501(3)	1
49	05	C10	Unknown	no	1.271(3)	un
50	05	Cal	Unknown	yes	2.366(2)	un
51	06	C14	Unknown	no	1.260(3)	un
52	O6	Cal	Unknown	yes	2.383(2)	un
53	07	C10	Unknown	no	1.235(3)	un
54	09	Ca1	Unknown	yes	2.299(2)	un
55	C10	C15	Unknown	no	1.527(3)	1
56	011	H11A	Unknown	no	0.850(2)	1
57	011	H11B	Unknown	no	0.918(2)	1
58	012	H12	Unknown	no	0.939(2)	1
59	O13	C14	Unknown	no	1.243(3)	un
60	C14	C16	Unknown	no	1.531(3)	1
61	C15	H15A	Unknown	no	0.974(2)	1
62	C15	H15B	Unknown	no	0.938(2)	1
63	C16	H16A	Unknown	no	0.929(2)	1
64	C16	H16B	Unknown	no	1.002(2)	1

Γωνίες μεταξύ Ατόμων για το Ca -PMIDA

Number	Atom1	Atom2	Atom3	Angle
1	08	Cal	011	94.62(6)
2	08	Cal	07	86.73(6)
3	08	Cal	O5	91.01(6)
4	08	Cal	O6	89.43(6)
5	08	Cal	O9	174.81(6)
6	011	Cal	07	97.50(6)
7	011	Cal	O5	167.23(6)
8	011	Cal	O6	83.53(6)
9	011	Cal	09	90.07(6)
10	07	Cal	05	94.26(6)

11	07	Cal	06	176.09(6)
12	07	Cal	09	90.48(6)
13	05	Cal	O6	85.07(5)
14	05	Cal	09	84.84(6)
15	06	Cal	09	93.29(6)
16	C3	P2	08	109.1(1)
17	C3	P2	09	105.6(1)
18	C3	P2	012	101.84(9)
19	08	P2	09	118.32(9)
20	08	P2	012	109.60(9)
21	09	P2	012	110.99(9)
22	P2	C3	НЗА	106.0(2)
23	P2	C3	H3B	114.2(2)
24	P2	C3	N4	112.8(1)
25	H3A	C3	H3B	107.8(2)
26	H3A	C3	N4	106.5(2)
27	H3B	C3	N4	109.0(2)
28	C3	N4	H4	107.2(2)
29	C3	N4	C15	111.7(2)
30	C3	N4	C16	111.7(2)
31	H4	N4	C15	109.8(2)
32	H4	N4	C16	104.0(2)
33	C15	N4	C16	111.9(2)
34	C10	05	Cal	128.2(1)
35	C14	O6	Cal	138.8(1)
36	C10	07	Cal	134.3(1)
37	Cal	08	P2	165.5(1)
38	P2	09	Cal	140.9(1)
39	05	C10	07	127.6(2)
40	05	C10	C15	113.8(2)
41	07	C10	C15	118.6(2)
42	Cal	011	H11A	119.8(1)
43	Cal	011	H11B	131.9(1)
44	H11A	011	H11B	106.2(2)
45	P2	012	H12	112.1(1)
46	O6	C14	013	127.2(2)
47	O6	C14	C16	115.2(2)
48	013	C14	C16	117.5(2)
49	N4	C15	C10	111.7(2)
50	N4	C15	H15A	105.4(2)
51	N4	C15	H15B	110.5(2)
52	C10	C15	H15A	112.9(2)
53	C10	C15	H15B	108.2(2)
54	H15A	C15	H15B	108.1(2)
55	N4	C16	C14	110.6(2)
56	N4	C16	H16A	109.8(2)
57	N4	C16	H16B	106.1(2)
58	C14	C16	H16A	113.5(2)
59	C14	C16	H16B	107.4(2)
60	H16A	C16	H16B	109.1(2)

61	07	Cal	08	86.73(6)
62	07	Cal	011	97.50(6)
63	07	Cal	05	94.26(6)
64	07	Cal	O6	176.09(6)
65	07	Cal	09	90.48(6)
66	08	Cal	011	94.62(6)
67	08	Cal	05	91.01(6)
68	08	Cal	O6	89.43(6)
69	08	Cal	09	174.81(6)
70	011	Cal	05	167.23(6)
71	011	Cal	O6	83.53(6)
72	011	Cal	09	90.07(6)
73	05	Cal	O6	85.07(5)
74	05	Cal	09	84.84(6)
75	O6	Cal	09	93.29(6)
76	C3	P2	08	109.1(1)
77	C3	P2	09	105.6(1)
78	C3	P2	012	101.84(9)
79	08	P2	09	118.32(9)
80	08	P2	012	109.60(9)
81	09	P2	012	110.99(9)
82	P2	C3	НЗА	106.0(2)
83	P2	C3	H3B	114.2(2)
84	P2	C3	N4	112.8(1)
85	H3A	C3	H3B	107.8(2)
86	H3A	C3	N4	106.5(2)
87	H3B	C3	N4	109.0(2)
88	C3	N4	H4	107.2(2)
89	C3	N4	C15	111.7(2)
90	C3	N4	C16	111.7(2)
91	H4	N4	C15	109.8(2)
92	H4	N4	C16	104.0(2)
93	C15	N4	C16	111.9(2)
94	C10	05	Cal	128.2(1)
95	C14	O6	Cal	138.8(1)
96	Cal	07	C10	134.3(1)
97	Cal	08	P2	165.5(1)
98	P2	09	Cal	140.9(1)
99	05	C10	07	127.6(2)
100	05	C10	C15	113.8(2)
101	07	C10	C15	118.6(2)
102	Cal	011	H11A	119.8(1)
103	Cal	011	H11B	131.9(1)
104	H11A	011	H11B	106.2(2)
105	P2	012	H12	112.1(1)
106	06	C14	013	127.2(2)
107	06	C14	C16	115.2(2)
108	013	C14	C16	117.5(2)
109	N4	C15	C10	111.7(2)
110	N4	C15	H15A	105.4(2)

111	N4	C15	H15B	110.5(2)
112	C10	C15	H15A	112.9(2)
113	C10	C15	H15B	108.2(2)
114	H15A	C15	H15B	108.1(2)
115	N4	C16	C14	110.6(2)
116	N4	C16	H16A	109.8(2)
117	N4	C16	H16B	106.1(2)
118	C14	C16	H16A	113.5(2)
119	C14	C16	H16B	107.4(2)
120	H16A	C16	H16B	109.1(2)

Λίστα Ατόμων για το Ca – PMIDA

				Xfrac +	Yfrac +	Zfrac +	
Number	Label	Charge	SybylType	ESD	ESD	ESD	Symm. op.
1	Cal	0	Са	0.85412(8)	0.23299(3)	0.52271(3)	x,y,z
2	P2	0	P.3	0.54601(12)	0.17863(4)	0.26977(4)	x,y,z
3	C3	0	C.3	0.6742(4)	0.07483(14)	0.20935(17)	x,y,z
4	НЗА	0	Н	0.5943	0.0717	0.1412	x,y,z
5	H3B	0	Н	0.8446	0.0768	0.202	x,y,z
					-		
6	N4	0	N.4	0.6078(4)	0.01465(12)	0.26270(14)	x,y,z
7	H4	0	Н	0.4459	-0.0093	0.2812	x,y,z
					-		
8	05	0	O.co2	0.8037(3)	0.13001(11)	0.49894(11)	x,y,z
					-		
9	O6	0	O.co2	0.3778(3)	0.14965(11)	0.04363(12)	x,y,z
					-		
10	07	0	O.co2	0.4233(3)	0.11076(12)	0.42196(13)	x,y,z
11	08	0	O.co2	0.7049(3)	0.20275(11)	0.36230(12)	x,y,z
12	09	0	O.co2	0.5167(3)	0.25029(11)	0.18680(12)	x,y,z
					-		
13	C10	0	C.2	0.6517(4)	0.09727(15)	0.43085(17)	x,y,z
14	011	0	0.3	0.5885(3)	0.35891(12)	0.54737(13)	x,y,z
15	H11A	0	Н	0.4426	0.3591	0.519	x,y,z
16	H11B	0	Н	0.6186	0.4194	0.5689	x,y,z
17	012	0	0.3	0.2812(3)	0.14172(12)	0.30347(12)	x,y,z
18	H12	0	Н	0.2653	0.1445	0.3746	x,y,z
					-		
19	013	0	O.co2	0.2080(3)	0.03528(12)	0.13653(13)	x,y,z

					-		
20	C14	0	C.2	0.3761(4)	0.09232(14)	0.11700(17)	x,y,z
					-		
21	C15	0	C.3	0.7741(4)	0.03154(16)	0.35510(17)	x,y,z
22	H15A	0	Н	0.9294	-0.0567	0.3293	x,y,z
23	H15B	0	Н	0.8113	0.0253	0.3886	x,y,z
					-		
24	C16	0	C.3	0.6045(4)	0.09715(15)	0.19119(17)	x,y,z
25	H16A	0	Н	0.7563	-0.1009	0.1588	x,y,z
26	H16B	0	Н	0.5845	-0.1543	0.2349	x,y,z
27	Cal	0	Ca	0.14588(8)	-0.23299(3)	0.47729(3)	1-x,-y,1-z
28	P2	0	P.3	0.45399(12)	-0.17863(4)	0.73023(4)	1-x,-y,1-z
					-		
29	C3	0	C.3	0.3258(4)	0.07483(14)	0.79065(17)	1-x,-y,1-z
30	H3A	0	Н	0.4057	-0.0717	0.8588	1-x,-y,1-z
31	H3B	0	Н	0.1554	-0.0768	0.798	1-x,-y,1-z
32	N4	0	N.4	0.3922(4)	0.01465(12)	0.73730(14)	1-x,-y,1-z
33	H4	0	Н	0.5541	0.0093	0.7188	1-x,-y,1-z
34	05	0	O.co2	0.1963(3)	0.13001(11)	0.50106(11)	1-x,-y,1-z
35	O6	0	O.co2	0.6222(3)	0.14965(11)	0.95637(12)	1-x,-y,1-z
36	07	0	O.co2	0.5767(3)	0.11076(12)	0.57804(13)	1-x,-y,1-z
					-		
37	08	0	O.co2	0.2951(3)	0.20275(11)	0.63770(12)	1-x,-y,1-z
					-		
38	09	0	O.co2	0.4833(3)	0.25029(11)	0.81320(12)	1-x,-y,1-z
39	C10	0	C.2	0.3483(4)	0.09727(15)	0.56915(17)	1-x,-y,1-z
					-		
40	O11	0	0.3	0.4115(3)	0.35891(12)	0.45263(13)	1-x,-y,1-z
41	H11A	0	Н	0.5574	-0.3591	0.481	1-x,-y,1-z
42	H11B	0	Н	0.3814	-0.4194	0.4311	1-x,-y,1-z
					-		
43	012	0	O.3	0.7188(3)	0.14172(12)	0.69653(12)	1-x,-y,1-z
44	H12	0	Н	0.7347	-0.1445	0.6254	1-x,-y,1-z
45	013	0	O.co2	0.7920(3)	0.03528(12)	0.86347(13)	1-x,-y,1-z
46	C14	0	C.2	0.6239(4)	0.09232(14)	0.88300(17)	1-x,-y,1-z
47	C15	0	C.3	0.2259(4)	0.03154(16)	0.64490(17)	1-x,-y,1-z
48	H15A	0	Н	0.0706	0.0567	0.6707	1-x,-y,1-z

49	H15B	0	Н	0.1887	-0.0253	0.6114	1-x,-y,1-z
50	C16	0	C.3	0.3955(4)	0.09715(15)	0.80881(17)	1-x,-y,1-z
51	H16A	0	Н	0.2437	0.1009	0.8412	1-x,-y,1-z
52	H16B	0	Н	0.4155	0.1543	0.7651	1-x,-y,1-z
53	Cal	0	Ca	-0.14588(8)	0.23299(3)	0.52271(3)	#NAME?
							1.5-x,-
54	Cal	0	Ca	0.64588(8)	-0.26701(3)	-0.02271(3)	1/2+y,1/2-z
							1.5-x,-
55	Cal	0	Ca	0.64588(8)	-0.26701(3)	0.97729(3)	1/2+y,1.5-z
56	Cal	0	Ca	1.14588(8)	-0.23299(3)	0.47729(3)	2-x,-y,1-z
							-1/2+x,1/2-y,-
57	Cal	0	Ca	0.35412(8)	0.26701(3)	0.02271(3)	1/2+z
							-1/2+x,1/2-
58	Cal	0	Ca	0.35412(8)	0.26701(3)	1.02271(3)	y,1/2+z
					-		
59	05	0	O.2	-0.1963(3)	0.13001(11)	0.49894(11)	#NAME?
60	05	0	0.2	1.1963(3)	0.13001(11)	0.50106(11)	2-x,-y,1-z
							1.5-
61	O6	0	O.2	1.1222(3)	0.35035(11)	0.45637(12)	x,1/2+y,1/2-z
					-		-1/2+x,-1/2-
62	O6	0	O.2	-0.1222(3)	0.35035(11)	0.54363(12)	y,1/2+z
					-		1/2-x,-
63	09	0	0.2	-0.0167(3)	0.24971(11)	0.31320(12)	1/2+y,1/2-z
							1/2+x,1/2-
64	09	0	0.2	1.0167(3)	0.24971(11)	0.68680(12)	y,1/2+z

<u>Ce - HPAA</u>

Μήκη Δεσμών για το Ce – ΗΡΑΑ

Number	Atom1	Atom2	Туре	Polymeric	Length	SybylType
1	CE	O10	Unknown	no	2.4053(3)	un
2	СЕ	016	Unknown	no	2.5268(4)	un
3	CE	017	Unknown	no	2.5272(3)	un
4	CE	O18	Unknown	no	2.8571(5)	un
5	CE	O10	Unknown	no	2.4053(3)	un
6	CE	O16	Unknown	no	2.5268(4)	un
7	CE	017	Unknown	no	2.5272(3)	un
8	СЕ	O18	Unknown	no	2.8571(5)	un
9	CE1	01	Unknown	no	2.3399(4)	un
10	CE1	05	Unknown	no	2.5081(4)	un
11	CE1	09	Unknown	no	2.4123(4)	un
12	CE1	011	Unknown	no	2.7071(4)	1
13	CE1	015	Unknown	no	2.5851(4)	un
14	CE1	O2	Unknown	yes	2.4415(3)	un
15	CE1	O4	Unknown	yes	2.6098(4)	un
16	CE1	07	Unknown	yes	2.5969(4)	un
17	CE1	08	Unknown	yes	2.5177(5)	un
18	Р	012	Unknown	no	1.4794(2)	un
19	Р	O14	Unknown	no	1.6107(2)	un
20	Р	O16	Unknown	no	1.5158(2)	un
21	Р	C4	Unknown	no	1.8705(2)	1
22	P1	01	Unknown	no	1.5122(3)	un
23	P1	O2	Unknown	no	1.5524(3)	un
24	P1	03	Unknown	no	1.5543(2)	un
25	P1	C1	Unknown	no	1.8095(2)	1
26	O2	CE1	Unknown	yes	2.4415(3)	un
27	04	C1	Unknown	no	1.4200(3)	1
28	04	CE1	Unknown	yes	2.6098(4)	1
29	07	C2	Unknown	no	1.2490(2)	un
30	07	CE1	Unknown	yes	2.5969(4)	un
31	08	C2	Unknown	no	1.2687(2)	un
32	08	CE1	Unknown	yes	2.5177(5)	un
33	09	C3	Unknown	no	1.2631(2)	un
34	O10	C3	Unknown	no	1.2453(2)	un
35	011	C4	Unknown	no	1.2684(2)	1
36	C1	C2	Unknown	no	1.4831(3)	1
37	C3	C4	Unknown	no	1.5117(2)	1

38	CE1	01	Unknown	no	2.3399(4)	un
39	CE1	05	Unknown	no	2.5081(4)	un
40	CE1	09	Unknown	no	2.4123(4)	un
41	CE1	011	Unknown	no	2.7071(4)	1
42	CE1	015	Unknown	no	2.5851(4)	un
43	CE1	02	Unknown	yes	2.4415(3)	un
44	CE1	O4	Unknown	yes	2.6098(4)	un
45	CE1	07	Unknown	yes	2.5969(4)	un
46	CE1	08	Unknown	yes	2.5177(5)	un
47	Р	012	Unknown	no	1.4794(2)	un
48	Р	O14	Unknown	no	1.6107(2)	un
49	Р	O16	Unknown	no	1.5158(2)	un
50	Р	C4	Unknown	no	1.8705(2)	1
51	P1	01	Unknown	no	1.5122(3)	un
52	P1	02	Unknown	no	1.5524(3)	un
53	P1	03	Unknown	no	1.5543(2)	un
54	P1	C1	Unknown	no	1.8095(2)	1
55	O2	CE1	Unknown	yes	2.4415(3)	un
56	04	C1	Unknown	no	1.4200(3)	1
57	O4	CE1	Unknown	yes	2.6098(4)	1
58	07	C2	Unknown	no	1.2490(2)	un
59	07	CE1	Unknown	yes	2.5969(4)	un
60	08	C2	Unknown	no	1.2687(2)	un
61	08	CE1	Unknown	yes	2.5177(5)	un
62	09	C3	Unknown	no	1.2631(2)	un
63	O10	C3	Unknown	no	1.2453(2)	un
64	011	C4	Unknown	no	1.2684(2)	1
65	C1	C2	Unknown	no	1.4831(3)	1
66	C3	C4	Unknown	no	1.5117(2)	1

Γωνίες μεταξύ Ατόμων για το Ce-HPAA

Number	Atom1	Atom2	Atom3	Angle
1	O10	CE	O16	71.33
2	O10	CE	017	138.62
3	O10	CE	O18	88.8
4	O10	CE	O10	108.25
5	O10	CE	O16	137.07
6	O10	CE	017	68.85
7	O10	CE	O18	75.81
8	O16	СЕ	017	83.78

9	O16	CE	O18	61.28
10	O16	CE	O10	137.07
11	O16	CE	O16	138.83
12	O16	CE	017	82.8
13	O16	CE	O18	129.8
14	017	CE	O18	49.93
15	017	CE	O10	68.85
16	017	CE	O16	82.8
17	017	CE	017	141.17
18	017	CE	O18	142.62
19	O18	CE	O10	75.81
20	O18	CE	O16	129.8
21	O18	CE	017	142.62
22	O18	CE	O18	153.76
23	O10	CE	O16	71.33
24	O10	CE	017	138.62
25	O10	CE	O18	88.8
26	O16	CE	017	83.78
27	O16	CE	O18	61.28
28	O17	CE	O18	49.93
29	01	CE1	05	86.03
30	01	CE1	09	78.68
31	01	CE1	011	130.28
32	01	CE1	015	74.89
33	01	CE1	O2	148.4
34	01	CE1	O4	131.49
35	01	CE1	07	77.93
36	01	CE1	O8	73.97
37	05	CE1	09	142.33
38	05	CE1	011	143.69
39	05	CE1	015	135.63
40	05	CE1	O2	75.86
41	05	CE1	O4	91.2
42	05	CE1	07	69.98
43	05	CE1	O8	66.72
44	09	CE1	011	60.7
45	09	CE1	015	72.84
46	09	CE1	O2	130.55
47	09	CE1	O4	74.52
48	09	CE1	07	137.49
49	09	CE1	O8	75.97

50	011	CE1	015	66.96
51	011	CE1	02	71.43
52	011	CE1	O4	65.8
53	011	CE1	07	112.75
54	011	CE1	08	117.74
55	015	CE1	O2	100.24
56	015	CE1	O4	131.3
57	015	CE1	07	67.05
58	015	CE1	08	139.36
59	O2	CE1	O4	75.39
60	O2	CE1	07	71.64
61	O2	CE1	08	119.87
62	O4	CE1	07	145.07
63	O4	CE1	08	60.77
64	07	CE1	08	129.24
65	012	Р	014	112.75
66	012	Р	O16	113.91
67	012	Р	C4	107.9
68	O14	Р	O16	111.31
69	O14	Р	C4	102.97
70	O16	Р	C4	107.18
71	01	P1	02	115
72	01	P1	03	108.08
73	01	P1	C1	108.62
74	02	P1	03	110.67
75	02	P1	C1	106.24
76	03	P1	C1	108.02
77	CE1	01	P1	149.22
78	P1	02	CE1	129.64
79	C1	O4	CE1	123.64
80	C2	07	CE1	127.6
81	C2	08	CE1	125.41
82	CE1	09	C3	131.53
83	CE	O10	C3	143.61
84	CE1	011	C4	114.57
85	CE	016	Р	137.19
86	P1	C1	O4	114.59
87	P1	C1	C2	111.64
88	04	C1	C2	108.1
89	07	C2	08	121.34
90	07	C2	C1	116.93

91	08	C2	C1	120.92
92	09	C3	O10	124.11
93	09	C3	C4	110.41
94	O10	C3	C4	125.05
95	Р	C4	011	106.76
96	Р	C4	C3	108.62
97	011	C4	C3	120.59
98	01	CE1	05	86.03
99	01	CE1	09	78.68
100	01	CE1	011	130.28
101	01	CE1	015	74.89
102	01	CE1	02	148.4
103	01	CE1	O4	131.49
104	01	CE1	07	77.93
105	01	CE1	08	73.97
106	05	CE1	09	142.33
107	05	CE1	011	143.69
108	05	CE1	015	135.63
109	05	CE1	O2	75.86
110	05	CE1	O4	91.2
111	05	CE1	07	69.98
112	05	CE1	08	66.72
113	09	CE1	011	60.7
114	09	CE1	015	72.84
115	09	CE1	02	130.55
116	09	CE1	O4	74.52
117	09	CE1	07	137.49
118	09	CE1	08	75.97
119	011	CE1	015	66.96
120	011	CE1	02	71.43
121	011	CE1	O4	65.8
122	011	CE1	07	112.75
123	011	CE1	08	117.74
124	015	CE1	02	100.24
125	015	CE1	O4	131.3
126	015	CE1	07	67.05
127	015	CE1	08	139.36
128	02	CE1	O4	75.39
129	02	CE1	07	71.64
130	02	CE1	08	119.87
131	O4	CE1	07	145.07

132	O4	CE1	08	60.77
133	07	CE1	08	129.24
134	012	Р	O14	112.75
135	012	Р	O16	113.91
136	012	Р	C4	107.9
137	014	Р	O16	111.31
138	014	Р	C4	102.97
139	016	Р	C4	107.18
140	01	P1	O2	115
141	01	P1	O3	108.08
142	01	P1	C1	108.62
143	O2	P1	O3	110.67
144	O2	P1	C1	106.24
145	03	P1	C1	108.02
146	CE1	01	P1	149.22
147	P1	O2	CE1	129.64
148	C1	O4	CE1	123.64
149	C2	07	CE1	127.6
150	C2	08	CE1	125.41
151	CE1	O9	C3	131.53
152	CE	O10	C3	143.61
153	CE1	011	C4	114.57
154	CE	O16	Р	137.19
155	P1	C1	O4	114.59
156	P1	C1	C2	111.64
157	O4	C1	C2	108.1
158	07	C2	08	121.34
159	07	C2	C1	116.93
160	08	C2	C1	120.92
161	09	C3	O10	124.11
162	09	C3	C4	110.41
163	O10	C3	C4	125.05
164	Р	C4	011	106.76
165	Р	C4	C3	108.62
166	011	C4	C3	120.59
167	04	CE1	08	60.77
168	O4	CE1	08	60.77
169	O2	CE1	07	71.64
170	O2	CE1	07	71.64

Λίστα Ατόμων για το Ce – HPAA

				Xfrac +	Yfrac +	Zfrac +	
Number	Label	Charge	SybylType	ESD	ESD	ESD	Symm. op.
1	CE	0	Ce	-0.5	0.5	0.515824	x,y,z
2	CE1	0	Ce	-0.348297	0.278591	0.252477	x,y,z
3	Р	0	P.3	-0.286431	0.408404	0.560682	x,y,z
4	P1	0	P.3	-0.311145	0.306741	-0.076493	x,y,z
5	01	0	O.co2	-0.335958	0.313172	0.057049	x,y,z
6	02	0	O.co2	-0.204653	0.285886	-0.103039	x,y,z
7	03	0	O.co2	-0.3268	0.358169	-0.140707	x,y,z
8	O4	0	0.3	-0.498904	0.267616	-0.101342	x,y,z
9	05	0	0.2	-0.388358	0.197481	0.146995	x,y,z
10	07	0	O.co2	-0.315161	0.262431	-0.329	x,y,z
11	08	0	O.co2	-0.477364	0.276208	-0.335383	x,y,z
12	09	0	O.co2	-0.411981	0.362207	0.286594	x,y,z
13	O10	0	O.co2	-0.468424	0.428536	0.387395	x,y,z
14	011	0	0.3	-0.323872	0.321815	0.473754	x,y,z
15	012	0	O.co2	-0.235952	0.38345	0.664333	x,y,z
16	014	0	O.co2	-0.210526	0.421749	0.451211	x,y,z
17	015	0	0.2	-0.195441	0.338174	0.261823	x,y,z
18	016	0	O.co2	-0.348658	0.453661	0.596767	x,y,z
19	017	0	0.2	-0.40824	0.576812	0.59236	x,y,z
20	C1	0	C.3	-0.398414	0.262299	-0.142154	x,y,z
21	C2	0	C.2	-0.398409	0.264774	-0.277159	x,y,z
22	C3	0	C.2	-0.426223	0.386853	0.383395	x,y,z
23	C4	0	C.3	-0.373628	0.3619	0.489338	x,y,z
24	018	0	0.2	-0.304733	0.536833	0.456737	x,y,z
25	CE1	0	Ce	-0.651703	0.721409	0.252477	-1-x,1-y,z
26	Р	0	P.3	-0.713569	0.591596	0.560682	-1-x,1-y,z
27	P1	0	P.3	-0.688855	0.693259	-0.076493	-1-x,1-y,z
28	01	0	O.co2	-0.664042	0.686828	0.057049	-1-x,1-y,z
29	02	0	O.co2	-0.795347	0.714114	-0.103039	-1-x,1-y,z
30	03	0	O.co2	-0.6732	0.641831	-0.140707	-1-x,1-y,z
31	04	0	0.3	-0.501096	0.732384	-0.101342	-1-x,1-y,z
32	05	0	0.2	-0.611642	0.802519	0.146995	-1-x,1-y,z
33	07	0	O.co2	-0.684839	0.737569	-0.329	-1-x,1-y,z
34	08	0	O.co2	-0.522636	0.723792	-0.335383	-1-x,1-y,z

35	09	0	O.co2	-0.588019	0.637793	0.286594	-1-x,1-y,z
36	O10	0	O.co2	-0.531576	0.571464	0.387395	-1-x,1-y,z
37	011	0	0.3	-0.676128	0.678185	0.473754	-1-x,1-y,z
38	012	0	O.co2	-0.764048	0.61655	0.664333	-1-x,1-y,z
39	014	0	O.co2	-0.789474	0.578251	0.451211	-1-x,1-y,z
40	015	0	0.2	-0.804559	0.661826	0.261823	-1-x,1-y,z
41	016	0	0.co2	-0.651342	0.546339	0.596767	-1-x,1-y,z
42	017	0	0.2	-0.59176	0.423188	0.59236	-1-x,1-y,z
43	C1	0	C.3	-0.601586	0.737701	-0.142154	-1-x,1-y,z
44	C2	0	C.2	-0.601591	0.735226	-0.277159	-1-x,1-y,z
45	C3	0	C.2	-0.573777	0.613147	0.383395	-1-x,1-y,z
46	C4	0	C.3	-0.626372	0.6381	0.489338	-1-x,1-y,z
47	018	0	0.2	-0.695267	0.463167	0.456737	-1-x,1-y,z
48	CE1	0	Ce	-0.651703	0.278591	-0.247523	-1-x,y,-1/2+z
49	CE1	0	Ce	-0.348297	0.721409	-0.247523	x,1-y,-1/2+z
							-1/2+x,1/2+y,-
50	CE1	0	Ce	-0.848297	0.778591	-0.247523	1/2+z
							-1/2-x,1/2-y,-
51	CE1	0	Ce	-0.151703	0.221409	-0.247523	1/2+z
							-
52	02	0	0.2	-0.704653	0.785886	0.396961	1/2+x,1/2+y,1/2+z
53	02	0	0.2	-0.295347	0.214114	0.396961	-1/2-x,1/2-y,1/2+z
54	04	0	0.2	-0.501096	0.267616	0.398658	-1-x,y,1/2+z
55	04	0	0.2	-0.498904	0.732384	0.398658	x,1-y,1/2+z
							-
56	07	0	O.2	-0.815161	0.762431	0.171	1/2+x,1/2+y,1/2+z
57	07	0	0.2	-0.184839	0.237569	0.171	-1/2-x,1/2-y,1/2+z
58	08	0	0.2	-0.522636	0.276208	0.164617	-1-x,y,1/2+z
59	08	0	0.2	-0.477364	0.723792	0.164617	x,1-y,1/2+z
60	06	0	0.3	-0.427481	0.162211	0.559778	x,y,z
61	013	0	0.3	-0.50211	0.064018	1.00491	x,y,z
62	019	0	0.3	-0.406396	0.044773	0.25825	x,y,z
63	C	0	C.3	-0.30268	0.034615	0.74606	x,y,z
<u>La-HPAA</u>

Μήκη Δεσμών για το La-HPAA

Number	Atom1	Atom2	Туре	Polymeric	Length	SybylType
1	Lal	09	Unknown	no	2.31(3)	un
2	Lal	Ow5	Unknown	no	2.52(2)	un
3	Lal	Ow6	Unknown	no	2.82(3)	un
4	Lal	Ow10	Unknown	no	2.54(3)	un
5	Lal	09	Unknown	no	2.31(3)	un
6	Lal	Ow5	Unknown	no	2.52(2)	un
7	Lal	Ow6	Unknown	no	2.82(3)	un
8	La2	01	Unknown	no	2.38(3)	un
9	La2	O10	Unknown	no	2.61(3)	1
10	La2	011	Unknown	no	2.88(3)	un
11	La2	Ow1	Unknown	no	2.23(4)	un
12	La2	Ow4	Unknown	no	2.80(5)	un
13	La2	02	Unknown	yes	2.52(3)	un
14	La2	04	Unknown	yes	2.71(3)	un
15	La2	05	Unknown	yes	2.71(4)	un
16	La2	O6	Unknown	yes	2.91(4)	un
17	P1	01	Unknown	no	1.54(3)	un
18	P1	02	Unknown	no	1.54(3)	un
19	P1	03	Unknown	no	1.54(3)	un
20	P1	C1	Unknown	no	1.80(3)	1
21	P2	07	Unknown	no	1.54(4)	un
22	P2	08	Unknown	no	1.54(4)	un
23	P2	09	Unknown	no	1.54(3)	un
24	P2	C3	Unknown	no	1.83(3)	1
25	02	La2	Unknown	yes	2.52(3)	un
26	C1	04	Unknown	no	1.38(4)	1
27	C1	C2	Unknown	no	1.49(3)	1
28	O4	La2	Unknown	yes	2.71(3)	1
29	C2	05	Unknown	no	1.28(5)	un
30	C2	O6	Unknown	no	1.26(5)	un
31	05	La2	Unknown	yes	2.71(4)	un
32	O6	La2	Unknown	yes	2.91(4)	un
33	C3	O10	Unknown	no	1.40(4)	1
34	C3	C4	Unknown	no	1.51(4)	1
35	C4	011	Unknown	no	1.26(4)	un
36	C4	012	Unknown	no	1.28(3)	un

37	La2	01	Unknown	no	2.38(3)	un
38	La2	O10	Unknown	no	2.61(3)	1
39	La2	011	Unknown	no	2.88(3)	un
40	La2	Ow1	Unknown	no	2.23(4)	un
41	La2	Ow4	Unknown	no	2.80(5)	un
42	La2	02	Unknown	yes	2.52(3)	un
43	La2	O4	Unknown	yes	2.71(3)	un
44	La2	05	Unknown	yes	2.71(4)	un
45	La2	O6	Unknown	yes	2.91(4)	un
46	P1	01	Unknown	no	1.54(3)	un
47	P1	O2	Unknown	no	1.54(3)	un
48	P1	03	Unknown	no	1.54(3)	un
49	P1	C1	Unknown	no	1.80(3)	1
50	P2	07	Unknown	no	1.54(4)	un
51	P2	08	Unknown	no	1.54(4)	un
52	P2	09	Unknown	no	1.54(3)	un
53	P2	C3	Unknown	no	1.83(3)	1
54	02	La2	Unknown	yes	2.52(3)	un
55	C1	O4	Unknown	no	1.38(4)	1
56	C1	C2	Unknown	no	1.49(3)	1
57	O4	La2	Unknown	yes	2.71(3)	1
58	C2	05	Unknown	no	1.28(5)	un
59	C2	O6	Unknown	no	1.26(5)	un
60	05	La2	Unknown	yes	2.71(4)	un
61	06	La2	Unknown	yes	2.91(4)	un
62	C3	O10	Unknown	no	1.40(4)	1
63	C3	C4	Unknown	no	1.51(4)	1
64	C4	011	Unknown	no	1.26(4)	un
65	C4	012	Unknown	no	1.28(3)	un

Guniec metaxú atómun gia to La-HPAA

Number	Atom1	Atom2	Atom3	Angle
1	09	Lal	Ow5	94(1)
2	09	Lal	Ow6	109(1)
3	09	Lal	Ow10	73(1)
4	09	Lal	09	147(1)
5	09	La1	Ow5	73(1)
6	09	Lal	Ow6	91(1)
7	Ow5	Lal	Ow6	60.1(9)
8	Ow5	Lal	Ow10	66.1(9)

9	Ow5	Lal	09	73(1)
10	Ow5	Lal	Ow5	132(1)
11	Ow5	Lal	Ow6	168(1)
12	Ow6	Lal	Ow10	126(1)
13	Ow6	Lal	09	91(1)
14	Ow6	Lal	Ow5	168(1)
15	Ow6	Lal	Ow6	107.6(9)
16	Ow10	Lal	09	73(1)
17	Ow10	Lal	Ow5	66.1(9)
18	Ow10	Lal	Ow6	126(1)
19	09	Lal	Ow5	94(1)
20	09	Lal	Ow6	109(1)
21	Ow5	Lal	Ow6	60.1(9)
22	01	La2	O10	134(1)
23	01	La2	011	90.0(9)
24	01	La2	Ow1	78(1)
25	01	La2	Ow4	86(1)
26	01	La2	02	154.6(9)
27	01	La2	04	122(1)
28	01	La2	05	74(1)
29	01	La2	O6	59(1)
30	O10	La2	011	62.9(9)
31	O10	La2	Ow1	145(1)
32	O10	La2	Ow4	57(1)
33	O10	La2	O2	59.9(9)
34	O10	La2	O4	78(1)
35	O10	La2	05	110(1)
36	O10	La2	O6	133(1)
37	011	La2	Ow1	142(1)
38	011	La2	Ow4	85(1)
39	011	La2	O2	114.6(8)
40	011	La2	O4	61.4(9)
41	011	La2	05	148.5(9)
42	011	La2	O6	73.9(9)
43	Ow1	La2	Ow4	129(2)
44	Ow1	La2	O2	85(1)
45	Ow1	La2	O4	95(1)
46	Ow1	La2	05	61(1)
47	Ow1	La2	O6	69(1)
48	Ow4	La2	O2	89(1)
49	Ow4	La2	O4	133(1)

50	Ow4	La2	05	68(1)
51	Ow4	La2	O6	138(1)
52	02	La2	O4	78.0(9)
53	O2	La2	05	81.6(9)
54	02	La2	O6	132(1)
55	O4	La2	05	150(1)
56	O4	La2	O6	65(1)
57	05	La2	O6	116(1)
58	01	P1	02	107(2)
59	01	P1	03	112(2)
60	01	P1	C1	108(2)
61	02	P1	03	107(2)
62	O2	P1	C1	112(2)
63	03	P1	C1	110(2)
64	07	P2	08	115(2)
65	07	P2	09	111(2)
66	07	P2	C3	104(2)
67	08	P2	09	114(2)
68	08	P2	C3	105(2)
69	09	P2	C3	106(2)
70	La2	01	P1	149(2)
71	P1	02	La2	123(1)
72	P1	C1	O4	108(2)
73	P1	C1	C2	134(2)
74	O4	C1	C2	117(3)
75	C1	O4	La2	111(2)
76	C1	C2	05	114(3)
77	C1	C2	O6	127(3)
78	05	C2	O6	114(3)
79	C2	05	La2	127(2)
80	C2	O6	La2	105(2)
81	La1	09	P2	149(2)
82	P2	C3	O10	109(2)
83	P2	C3	C4	98(2)
84	O10	C3	C4	109(2)
85	La2	O10	C3	115(2)
86	C3	C4	011	114(3)
87	C3	C4	012	122(3)
88	011	C4	012	124(3)
89	La2	011	C4	103(2)
90	01	La2	O10	134(1)

91	01	La2	011	90.0(9)
92	01	La2	Ow1	78(1)
93	01	La2	Ow4	86(1)
94	01	La2	O2	154.6(9)
95	01	La2	O4	122(1)
96	01	La2	05	74(1)
97	01	La2	O6	59(1)
98	O10	La2	011	62.9(9)
99	O10	La2	Ow1	145(1)
100	O10	La2	Ow4	57(1)
101	O10	La2	02	59.9(9)
102	O10	La2	O4	78(1)
103	O10	La2	05	110(1)
104	O10	La2	O6	133(1)
105	011	La2	Ow1	142(1)
106	011	La2	Ow4	85(1)
107	011	La2	02	114.6(8)
108	011	La2	O4	61.4(9)
109	011	La2	05	148.5(9)
110	011	La2	O6	73.9(9)
111	Ow1	La2	Ow4	129(2)
112	Ow1	La2	02	85(1)
113	Ow1	La2	04	95(1)
114	Ow1	La2	05	61(1)
115	Ow1	La2	O6	69(1)
116	Ow4	La2	02	89(1)
117	Ow4	La2	O4	133(1)
118	Ow4	La2	05	68(1)
119	Ow4	La2	O6	138(1)
120	O2	La2	O4	78.0(9)
121	O2	La2	05	81.6(9)
122	O2	La2	O6	132(1)
123	O4	La2	05	150(1)
124	O4	La2	O6	65(1)
125	05	La2	O6	116(1)
126	01	P1	O2	107(2)
127	01	P1	03	112(2)
128	01	P1	C1	108(2)
129	O2	P1	03	107(2)
130	O2	P1	C1	112(2)
131	03	P1	C1	110(2)

132	07	P2	08	115(2)
133	07	P2	09	111(2)
134	07	P2	C3	104(2)
135	08	P2	09	114(2)
136	08	P2	C3	105(2)
137	09	P2	C3	106(2)
138	La2	01	P1	149(2)
139	P1	02	La2	123(1)
140	P1	C1	O4	108(2)
141	P1	C1	C2	134(2)
142	04	C1	C2	117(3)
143	C1	O4	La2	111(2)
144	C1	C2	05	114(3)
145	C1	C2	O6	127(3)
146	05	C2	O6	114(3)
147	C2	05	La2	127(2)
148	C2	O6	La2	105(2)
149	Lal	09	P2	149(2)
150	P2	C3	O10	109(2)
151	P2	C3	C4	98(2)
152	O10	C3	C4	109(2)
153	La2	O10	C3	115(2)
154	C3	C4	011	114(3)
155	C3	C4	012	122(3)
156	011	C4	012	124(3)
157	La2	011	C4	103(2)
158	02	La2	05	81.6(9)
159	04	La2	O6	65(1)
160	04	La2	O6	65(1)
161	02	La2	05	81.6(9)

Λίστα Ατόμων για το La – HPAA

				Xfrac +	Yfrac +	Zfrac +	
Number	Label	Charge	SybylType	ESD	ESD	ESD	Symm. op.
1	Lal	0	La	0.5	0.5	0.5397(16)	x,y,z
2	La2	0	La	0.6510(5)	0.27911(10)	0.2569(13)	x,y,z
						-	
3	P1	0	P.3	0.6902(16)	0.3037(5)	0.0749(18)	x,y,z
4	P2	0	P.3	0.7062(16)	0.4087(4)	0.5698(20)	x,y,z
5	01	0	O.co2	0.6454(24)	0.3050(9)	0.0523(19)	x,y,z

						-	
6	02	0	O.co2	0.7852(18)	0.2719(8)	0.0690(24)	x,y,z
						-	
7	03	0	O.co2	0.7206(22)	0.3558(6)	0.1198(33)	x,y,z
						-	
8	C1	0	C.3	0.5992(21)	0.2776(14)	0.1750(20)	x,y,z
						-	
9	O4	0	0.3	0.5148(23)	0.2666(13)	0.1093(32)	x,y,z
						-	
10	C2	0	C.2	0.5990(23)	0.2645(16)	0.3053(22)	x,y,z
						-	
11	05	0	O.co2	0.6855(26)	0.2595(11)	0.3506(30)	x,y,z
						-	
12	O6	0	O.co2	0.5325(30)	0.2750(13)	0.3810(31)	x,y,z
13	07	0	O.co2	0.7457(31)	0.3843(9)	0.6854(25)	x,y,z
14	08	0	O.co2	0.7859(23)	0.4233(9)	0.4773(34)	x,y,z
15	09	0	O.co2	0.6316(19)	0.4505(8)	0.599(4)	x,y,z
16	C3	0	C.3	0.6344(22)	0.3595(8)	0.4973(20)	x,y,z
17	O10	0	0.3	0.6996(31)	0.3225(7)	0.4580(27)	x,y,z
18	C4	0	C.2	0.5986(23)	0.3891(7)	0.3908(30)	x,y,z
19	011	0	O.co2	0.5385(26)	0.3658(7)	0.3252(27)	x,y,z
20	012	0	O.co2	0.6292(22)	0.4332(7)	0.3691(26)	x,y,z
21	Ow1	0	0.2	0.638(4)	0.2065(9)	0.161(5)	x,y,z
22	Ow4	0	0.2	0.817(4)	0.3414(8)	0.279(8)	x,y,z
23	Ow5	0	0.2	0.5724(24)	0.5778(7)	0.6316(21)	x,y,z
24	Ow6	0	0.2	0.5723(20)	0.5764(8)	0.3901(24)	x,y,z
25	Ow10	0	0.2	0.5	0.5	0.7683(22)	x,y,z
26	La2	0	La	0.3490(5)	0.72089(10)	0.2569(13)	1-x,1-y,z
						-	
27	P1	0	P.3	0.3098(16)	0.6963(5)	0.0749(18)	1-x,1-y,z
28	P2	0	P.3	0.2938(16)	0.5913(4)	0.5698(20)	1-x,1-y,z
29	01	0	O.co2	0.3546(24)	0.6950(9)	0.0523(19)	1-x,1-y,z
						-	
30	02	0	O.co2	0.2148(18)	0.7281(8)	0.0690(24)	1-x,1-y,z
						-	
31	03	0	O.co2	0.2794(22)	0.6442(6)	0.1198(33)	1-x,1-y,z
32	C1	0	C.3	0.4008(21)	0.7224(14)	-	1-x,1-y,z

						0.1750(20)	
						-	
33	O4	0	0.3	0.4852(23)	0.7334(13)	0.1093(32)	1-x,1-y,z
						-	
34	C2	0	C.2	0.4010(23)	0.7355(16)	0.3053(22)	1-x,1-y,z
						-	
35	05	0	O.co2	0.3145(26)	0.7405(11)	0.3506(30)	1-x,1-y,z
						-	
36	O6	0	O.co2	0.4675(30)	0.7250(13)	0.3810(31)	1-x,1-y,z
37	07	0	O.co2	0.2543(31)	0.6157(9)	0.6854(25)	1-x,1-y,z
38	08	0	O.co2	0.2141(23)	0.5767(9)	0.4773(34)	1-x,1-y,z
39	O9	0	O.co2	0.3684(19)	0.5495(8)	0.599(4)	1-x,1-y,z
40	C3	0	C.3	0.3656(22)	0.6405(8)	0.4973(20)	1-x,1-y,z
41	O10	0	0.3	0.3004(31)	0.6775(7)	0.4580(27)	1-x,1-y,z
42	C4	0	C.2	0.4014(23)	0.6109(7)	0.3908(30)	1-x,1-y,z
43	011	0	O.co2	0.4615(26)	0.6342(7)	0.3252(27)	1-x,1-y,z
44	012	0	O.co2	0.3708(22)	0.5668(7)	0.3691(26)	1-x,1-y,z
45	Ow1	0	0.2	0.362(4)	0.7935(9)	0.161(5)	1-x,1-y,z
46	Ow4	0	0.2	0.183(4)	0.6586(8)	0.279(8)	1-x,1-y,z
47	Ow5	0	0.2	0.4276(24)	0.4222(7)	0.6316(21)	1-x,1-y,z
48	Ow6	0	0.2	0.4277(20)	0.4236(8)	0.3901(24)	1-x,1-y,z
						-	-1/2+x,1/2+y,-
49	La2	0	La	0.1510(5)	0.77911(10)	0.2431(13)	1/2+z
						-	
50	La2	0	La	0.3490(5)	0.27911(10)	0.2431(13)	1-x,y,-1/2+z
						-	
51	La2	0	La	0.6510(5)	0.72089(10)	0.2431(13)	x,1-y,-1/2+z
						-	
52	La2	0	La	0.8490(5)	0.22089(10)	0.2431(13)	1.5-x,1/2-y,-1/2+z
							-
53	02	0	0.2	0.2852(18)	0.7719(8)	0.4310(24)	1/2+x, 1/2+y, 1/2+z
54	02	0	0.2	0.7148(18)	0.2281(8)	0.4310(24)	1.5-x,1/2-y,1/2+z
55	O4	0	0.2	0.4852(23)	0.2666(13)	0.3907(32)	1-x,y,1/2+z
56	04	0	0.2	0.5148(23)	0.7334(13)	0.3907(32)	x,1-y,1/2+z
							-
57	05	0	0.2	0.1855(26)	0.7595(11)	0.1494(30)	1/2+x,1/2+y,1/2+z
58	05	0	0.2	0.8145(26)	0.2405(11)	0.1494(30)	1.5-x,1/2-y,1/2+z

59	06	0	0.2	0.4675(30)	0.2750(13)	0.1190(31)	1-x,y,1/2+z
60	06	0	0.2	0.5325(30)	0.7250(13)	0.1190(31)	x,1-y,1/2+z
61	Ow2	0	0.3	0.5350(26)	0.1785(9)	0.454(6)	x,y,z
62	Ow3	0	0.3	0.505(5)	0.0757(8)	0.319(6)	x,y,z
63	Ow7	0	0.3	0.7424(29)	0.0444(9)	0.453(5)	x,y,z
64	Ow9	0	0.3	0.828(4)	0.5002(10)	0.661(4)	x,y,z

<u>ПАРАРТНМА II</u>

ΣΥΜΠΛΗΡΩΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΣΑΡΩΣΗΣ ΚΑΙ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΠΕΡΥΘΡΟΥ ΓΙΑ ΤΑ ΣΥΣΤΗΜΑΤΑ ΥΔΡΟΓΕΛΩΝ

a) Απεικονίσεις μέσω ηλεκτρονικής μικροσκοπίας σάρωσης (SEM) των υδρογελών ασβεστίου μετά από 0h (a,b), 4h (c,d), 8h (e,f), 12h (g,h).

b) Φάσμα FT-IR a) της σκόνης του αλγινικού μετά νατρίου άλατος, β)της υδρογέλης ασβεστίου μετά από 0h (b), 4h (c), 8h (d), 12h (e) αντίστοιχα.

WAVENUMBER cm-1

<u> MAPAPTHMA III</u>

ΔΕΔΟΜΕΝΑ ΜΕΛΕΤΗΣ ΠΡΟΣΡΟΦΗΣΗΣ ΑΕΡΙΩΝ ΚΑΙ ΑΝΑΛΥΣΗΣ ΦΘΟΡΙΣΜΟΥ

<u>CO2</u>

	SUMMARY REPO	DRT	
Sample	LaHPAA		
		Analysis	
Sample Mass:	0.0839 g	Adsorptive:	CO2
Micropore		Analysis Bath	
surface area:	222.3929 m²/g	Temp.:	274.150 K
Limiting			
micropore		Thermal	
volume:	0.113718 cm³/g	Correction:	No
		Warm Free	19.0373 cm ³
		Space:	Measured
Cold Free		Equilibration	
Space:	20.1755 cm ³	Interval:	5 s
Low Pressure		Automatic	
Dose:	None	Degas:	No

Relative	Absolute	Adsorbed
Pressure	Pressure	(cm ³ /g
(P/Po)	(mmHg)	STP)
0,00011738	3,06853652	0,01111677
0,00192149	50,2315407	0,35547082
0,00326003	85,2237549	0,58460187

0,00482344	126,094398	0,84237983
0,00639785	167,252655	1,12520657
0,00797411	208,459305	1,38440644
0,00954581	249,5466	1,63307356
0,01111704	290,621674	1,91273479
0,01269326	331,827179	2,2127455
0,01426714	372,97168	2,47632724
0,01583848	414,049469	2,69358924
0,01740642	455,038666	2,99645556
0,01899216	496,49292	3,21115576
0,02055284	537,292419	3,46678694
0,02212768	578,461914	3,85306488
0,02371982	620,083496	4,23698506
0,02529677	661,308105	4,40917859
0,02742428	716,925598	4,62069982
0,02843077	743,237244	4,75728374
0,03000765	784,459961	4,93391792

Slope:	-0.273500 ± 0.004219
M later en t	1.329769 ±
Correlation	0.013349
Coefficient:	0.998457
Fitted Relative	0.000100 to
Pressure Range:	0.050000
Characteristic	
Energy:	18.898188 kJ/mol
Limiting Micropore	21.368253 cm³/g

Capacity: Limiting Micropore Volume: Equivalent Surface	STP 0.039117 ± 0.001221 cm³/g
Area:	97.613850 m²/g
Affinity Coefficient (beta):	0.35000
Density Conversion Factor: Molecular Cross-	0.0018306
Sectional Area:	0.170 nm²

Absolute Pressure (mmHa)	Relative Pressure (P/Po)	Quantity Adsorbed (cm³/g STP)	Log (Po/P)^2.0000	Log Quantity Adsorbed
208.459305	0.007974115	1.3844	4.4029364	0.1413
249.546600	0.009545811	1.6331	4.0811561	0.2130
290.621674	0.011117041	1.9127	3.8181582	0.2817
331.827179	0.012693259	2.2127	3.5964348	0.3449
372.971680	0.014267144	2.4763	3.4064717	0.3938
414.049469	0.015838477	2.6936	3.2410318	0.4303
455.038666	0.017406421	2.9965	3.0951031	0.4766
496.492920	0.018992155	3.2112	2.9633066	0.5067
537.292419	0.020552843	3.4668	2.8464012	0.5399
578.461914	0.022127684	3.8531	2.7392370	0.5858
620.083496	0.023719819	4.2370	2.6402631	0.6271
661.308105	0.025296768	4.4092	2.5502013	0.6444
716.925598	0.027424283	4.6207	2.4394214	0.6647
743.237244	0.028430772	4.7573	2.3907695	0.6774
784.459961	0.030007649	4.9339	2.3188225	0.6932

Slope:	-0.628779 ± 0.007977 1.793237 ±
Y-Intercept: Correlation	0.016783
Eitted Beletive	0.998955 0.000100000
Pressure Range:	0.050000000
Characteristic Energy: Limiting	11.298726 kJ/mol
Micropore Capacity:	62.120839 cm³/g STP
Limiting Micropore	0.113718 ± 0.004481
Volume: Equivalent	cm³/g 222.392948
Surface Area:	m²/g
Affinity Coefficient (beta): Optimize	0.35000
Exponent:	Yes 1 3071
Density	1.0071
Conversion Factor:	0.0018306
Molecular Cross- Sectional Area:	0.170 nm²

Medek Quantities	
Mean Equivalent	
Pore Width:	20.453600 Å
Maximum	
Differential Pore	0.009129
Volume:	cm³/g·Å
Modal Equivalent	-
Pore Width:	17.476058 Å

Absolute Pressure (mmHg)	Relative Pressure (P/Po)	Quantity Adsorbed (cm³/g STP)	Equivalent Pore Width (Å)	Log (Po/P)^1.3071	Log Quantity Adsorbed
208,459305	0,00797411	1,38440644	13,1714523	2.634586	0,14126361
249,5466	0,00954581	1,63307356	13,321437	2.507103	0,21300575
290,621674	0,01111704	1,91273479	13,4731807	2.400301	0,28165476
331,827179	0,01269326	2,2127455	13,6209147	2.308265	0,34493147
372,97168	0,01426714	2,47632724	13,7406875	2.227836	0,39380803
414,049469	0,01583848	2,69358924	13,8336694	2.156516	0,43033137
455,038666	0,01740642	2,99645556	13,956075	2.092554	0,47660784
496,49292	0,01899216	3,21115576	14,0384992	2.033881	0,50666137
537,292419	0,02055284	3,46678694	14,1325984	1.981077	0,53992715
578,461914	0,02212768	3,85306488	14,2676483	1.932009	0,58580632
620,083496	0,02371982	4,23698506	14,3946908	1.886097	0,62705693
661,308105	0,02529677	4,40917859	14,4496634	1.843798	0,64435769
716,925598	0,02742428	4,62069982	14,5156704	1.791051	0,66470776
743,237244	0,02843077	4,75728374	14,5574635	1.767625	0,67735905
784,459961	0,03000765	4,93391792	14,6106125	1.732677	0,69319192

<u>N2</u>

La-HPAA	
Analysis Bath Temp.:	77.408 K
Thermal Correction	No
Warm Free Space:	19.1443 cm ³
BET Surface Area:	Measured 12.4317 m²/g
t-Plot Micropore Area:	8.7336 m²/g
t-Plot External Surface Area:	3.6981 m²/g
BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter:	5.120 m²/g
BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter:	7.0663 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 5643.252 Å diameter at P/Po = 0.996579740:	0.064381 cm³/g
t-Plot micropore volume:	0.003715 cm³/g
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter:	0.060322 cm³/g
BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter:	0.063172 cm³/g
Pore Size	
Adsorption average pore width (4V/A by BET):	207.1521 Å
BJH Adsorption average pore diameter (4V/A):	471.285 Å
BJH Desorption average pore diameter (4V/A):	357.592 Å

Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)
9,7349E-05	0,0744704	0,44371479
0,00016198	0,12391035	0,55395957

0,00024042	0,18391453	0,65401204
0,00031136	0,23818445	0,72416702
0,00040202	0,3075417	0,79638968
0,00053238	0,40726718	0,8795222
0,00065564	0,50155312	0,94350996
0,00078419	0,59989208	0,99997559
0,00091184	0,69754738	1,04874922
0,00103899	0,79481065	1,09165439
0,0011653	0,89143884	1,13016772
0,00129166	0,98810482	1,1651409
0,00240286	1,83815837	1,39055676
0,00510098	3,9021821	1,68896621
0,01008463	7,71461248	2,003337
0,03030471	23,1827164	2,41364796
0,05745588	43,9530106	2,69329296
0,06031797	46,1424713	2,72789506
0,08019507	61,3481941	2,99906594
0,10039151	76,7982101	3,07734668
0,12039864	92,1034088	3,15928085
0,14032732	107,348595	3,23444561
0,16034461	122,66156	3,32091619
0,1803419	137,959229	3,38837987
0,20044869	153,340668	3,44409676
0,25039382	191,54805	3,47632364
0,30025899	229,69426	3,58930981
0,35039102	268,044617	3,70191097
0,40038021	306,285706	3,77657714
0,45018087	344,382568	3,85582761
0,50021514	382,658142	3,94052083
0,55036	421,018311	4,03551068
0,60028113	459,207336	4,16344505
0,6503166	497,483826	4,30345158
0,7002221	535,660889	4,4/2/6//1
0,75012488	5/3,8358/6	4,74415559
0,80016546	612,116272	5,14678656
0,820309	627,525818	5,44360406
0,85032053	650,484253	5,9914605
0,87507976	669,424744	6,74955398
0,90005496	688,530457	7,89705356
0,92496985	707,590027	9,7005264
0,94959536	726,428223	12,8360062
0,97316012	744,454956	19,7437028
0,98115075	750,567688	24,5862404
0,98954119	756,986267	33,5338082
0,99657974	762,370667	41,6223465
0,97915594	749,041687	32,9118701
0,96493715	738,16449	23,2084439
0,93917325	718,455444	14,3972906
0,91037024	696,421509	9,93008613
0,0032039	010,100800	1,090005003
0,00740982	000,907471	0,12100043
0,00190900	030,422913 617 270025	0,0209/120
0,0009037	507 055566	5,00041000
0,10100442	000000,180	5,2000574

0,75012185	573,833557	4,92390938
0,70042603	535,816895	4,61562029
0,65036499	497,520844	4,35200401
0,60027459	459,202332	4,142763
0,5502779	420,955505	3,97404632
0,50039019	382,792053	3,82322718
0,45030972	344,48114	3,69052517
0,38130565	291,693909	3,53274293
0,33124564	253,398651	3,38579239
0,28116607	215,088425	3,24743283

BET Surface Area Report

12.4317 ± 0.1810 m²/g
0.348521 ± 0.005057 g/cm ³
STP
0.001647 ± 0.000641 g/cm ³
STP
212.575988
2.8558 cm³/g STP
0.9994741
0.1620 nm²

Area:

	Quantity Adsorbed (cm ³ /g	1/[Q(Po/P -
Relative Pressure (P/Po)	STP)	1)]
0,06031797	2,72789506	0,02353088
0,08019507	2,99906594	0,0290714
0,10039151	3,07734668	0,03626327
0,12039864	3,15928085	0,04332589
0,14032732	3,23444561	0,05046721
0,16034461	3,32091619	0,05750364
0,1803419	3,38837987	0,06493395

Micropore Volume: Micropore Area: External Surface Area:

Slope: Y-Intercept: **0.003715 cm³/g 8.7336 m²/g 3.6981 m²/g** 0.239082 ± 0.004816 cm³/g·Å STP 2.401613 ± 0.034097

	cm³/g STP
Correlation Coefficient:	0.998987
Surface Area Correction	
Factor:	1.000
Density Conversion Factor:	0.0015468
Total Surface Area (BET):	12.4317 m²/g
Thickness Range:	5.5000 Å to 9.0000 Å
Thickness Equation:	Harkins and Jura

t = [13.99 / (0.034 log(P/Po))] ^ 0.5

	Statistical Thickness	Quantity Adsorbed
Relative Pressure (P/Po)	(Å)	(cm³/g STP)
0,40038021	5,69383229	3,77657714
0,45018087	6,06271383	3,85582761
0,50021514	6,46380339	3,94052083
0,55036	6,9057919	4,03551068
0,60028113	7,39758469	4,16344505
0,6503166	7,95857696	4,30345158
0,7002221	8,60892763	4,47276771

BJH Adsorption

Pore Distribution Report

Faas

Correction Halsey t = 3.54 [-5 / In(P/Po)] ^ 0.333

Diameter	17.000 Å to
Range:	3000.000 Å
Adsorbate	
Property Factor:	9.53000 Å
Density	
Conversion	
Factor:	0.0015468
Fraction of	
Pores Open at	
Both Ends:	0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm³/g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
5637.4 - 1862.2	2225,59631	0,0130848	0,0130848	0,2351694	0,2351694
1862.2 - 1041.0	1233,46625	0,01464765	0,02773245	0,47500774	0,71017714
1041.0 - 734.9	835,616558	0,00795523	0,03568769	0,38080774	1,09098489
734.9 - 395.1	469,091061	0,01154676	0,04723445	0,98460712	2,075592

395.1 - 266.8	306,150627	0,0051651	0,05239954	0,67484377	2,75043577
266.8 - 200.8	224,244611	0,00292789	0,05532743	0,52226673	3,2727025
200.8 - 160.7	176,094685	0,00182113	0,05714856	0,41367002	3,68637252
160.7 - 133.9	144,727477	0,00115802	0,05830657	0,32005448	4,006427
133.9 - 111.1	120,292236	0,00074863	0,05905521	0,24893861	4,25536561
111.1 - 99.6	104,702031	0,00039665	0,05945186	0,15153652	4,40690213
99.6 - 78.8	86,6349443	0,00038597	0,05983783	0,17820573	4,58510786
78.8 - 64.7	70,2826623	0,00020287	0,06004071	0,11546193	4,70056979
64.7 - 54.5	58,661425	4,1952E-05	0,06008266	0,02860594	4,72917573
54.5 - 46.7	49,9176329	2,3922E-05	0,06010658	0,01916884	4,74834457
46.7 - 40.4	43,0763567	3,3665E-05	0,06014025	0,03126108	4,77960565
40.4 - 21.6	22,8505023	8,9946E-05	0,06023019	0,15745162	4,93705727
21.6 - 19.0	20,1330258	9,1981E-05	0,06032217	0,18274646	5,11980373

BJH Adsorption Cumulative Pore Volume Halsey : Faas Correction

	Pore Volume
Pore Diameter (Å)	(cm³/g)
1862,15616	0,0130848
1041,0496	0,02773245
734,913088	0,03568769
395,138369	0,04723445
266,83992	0,05239954
200,778457	0,05532743
160,664462	0,05714856
133,893955	0,05830657
111,139154	0,05905521
99,606639	0,05945186
78,7835677	0,05983783
64,7128839	0,06004071
54,4841641	0,06008266
46,6503794	0,06010658
40,4488845	0,06014025
21,6075266	0,06023019
19,0093876	0,06032217

BJH Adsorption dV/dD Pore Volume Halsey : Faas Correction

	Pore Volume
Pore Diameter (Å)	(cm³/g⋅Å)
2225,59631	7,4827E-06
1233,46625	2,3603E-05
835,616558	2,9398E-05
469,091061	3,8833E-05
306,150627	4,2169E-05
224,244611	4,5298E-05
176,094685	4,5799E-05
144,727477	3,6761E-05
120,292236	3,3974E-05
104,702031	2,881E-05
86,6349443	1,5557E-05
70,2826623	8,3556E-06
58,661425	3,2132E-06
49,9176329	4,2014E-06
43,0763567	5,3679E-06
22,8505023	1,8861E-05
20,1330258	4,3338E-05

BJH Adsorption Cumulative Pore Area Halsey : Faas Correction

	Pore Area
Pore Diameter (Å)	(m²/g)
1862,15616	0,2351694
1041,0496	0,71017714
734,913088	1,09098489
395,138369	2,075592
266,83992	2,75043577
200,778457	3,2727025
160,664462	3,68637252
133,893955	4,006427
111,139154	4,25536561
99,606639	4,40690213
78,7835677	4,58510786
64,7128839	4,70056979

54,4841641	4,72917573
46,6503794	4,74834457
40,4488845	4,77960565
21,6075266	4,93705727
19,0093876	5,11980373

BJH Adsorption dA/dD Pore Area Halsey : Faas Correction

	Pore Area
Pore Diameter (Å)	(m²/g⋅Å)
2225,59631	0,00015704
1233,46625	0,0009452
835,616558	0,00187369
469,091061	0,00426425
306,150627	0,00676262
224,244611	0,00920949
176,094685	0,0115222
144,727477	0,01131564

120,292236	0,01214579
104,702031	0,01173546
86,6349443	0,00821282
70,2826623	0,00516581
58,661425	0,00231964
49,9176329	0,00369359
43,0763567	0,00560263
22,8505023	0,03466696
20,1330258	0,08751476

BJH Desorption Pore Distribution Report

Faas Correction

t = 3.54 [-5 / In(P/Po)] ^ 0.333

Diameter	17.000 Å to
Range:	3000.000 Å
Adsorbate	
Property Factor:	9.53000 Å
Density	
Conversion	
Factor:	0.0015468
Fraction of	
Pores Open at	
Both Ends:	0.00

	Average	Incremental	Cumulative	Incremental	Cumulative
Pore Diameter	Diameter	Pore Volume	Pore Volume	Pore Area	Pore Area
Range (Å)	(Å)	(cm³/g)	(cm³/g)	(m²/g)	(m²/g)
5643.2 - 948.6	1070,49484	0,01464564	0,01464564	0,54724735	0,54724735
948.6 - 570.7	668,566265	0,01659506	0,0312407	0,99287456	1,54012191
570.7 - 334.1	392,177568	0,01547145	0,04671214	1,57800415	3,11812606
334.1 - 229.6	261,949316	0,00786137	0,05457351	1,20044129	4,31856734
229.6 - 177.8	196,689877	0,0034812	0,05805471	0,70795754	5,02652488
177.8 - 146.4	158,832082	0,00192325	0,05997797	0,48434864	5,51087352
146.4 - 124.8	133,741574	0,00105781	0,06103578	0,31637449	5,82724801
124.8 - 109.0	115,731963	0,0006098	0,06164558	0,21076457	6,03801258
109.0 - 96.6	101,991574	0,0004582	0,06210379	0,17970292	6,2177155
96.6 - 84.6	89,7081316	0,00024868	0,06235246	0,11088203	6,32859753
84.6 - 70.6	76,1297727	0,00017519	0,06252765	0,09204737	6,42064491
70.6 - 60.3	64,49591	0,00016864	0,06269629	0,10459165	6,52523656
60.3 - 52.5	55,7327516	0,00010045	0,06279674	0,07209051	6,59732706
52.5 - 46.3	48,8828069	4,473E-05	0,06284147	0,03660184	6,63392891
46.3 - 41.2	43,3548511	4,0115E-05	0,06288158	0,03701074	6,67093965

41.2 - 36.9	38,7556213	1,7264E-05	0,06289885	0,01781809	6,68875774
36.9 - 29.0	30,2848329	0,00014762	0,06304646	0,19497079	6,88372853
29.0 - 26.2	27,3941861	0,00012506	0,06317152	0,18260303	7,06633156

BJH Desorption Cumulative Pore Volume Halsey : Faas Correction

Pore Diameter (Å)	Pore Volume (cm³/g)
948,581806	0,01464564
570,697199	0,0312407
334,119064	0,04671214
229,552549	0,05457351
177,795153	0,05805471
146,442533	0,05997797
124,830424	0,06103578

109,017323	0,06164558
96,6440769	0,06210379
84,5953437	0,06235246
70,5740641	0,06252765
60,3055415	0,06269629
52,4622679	0,06279674
46,252512	0,06284147
41,1835138	0,06288158
36,9142603	0,06289885
28,9553171	0,06304646
26,1998268	0,06317152

BJH Desorption dV/dD Pore Volume Halsey : Faas Correction

	Pore Volume
Pore Diameter (Å)	(cm³/g·Å)
1070,49484	1,3009E-05
668,566265	5,6217E-05

392,177568	7,7501E-05
261,949316	7,0323E-05
196,689877	6,4035E-05
158,832082	5,5605E-05
133,741574	4,2497E-05
115,731963	3,8282E-05
101,991574	3,0254E-05
89,7081316	1,4814E-05
76,1297727	1,4594E-05
64,49591	1,5734E-05
55,7327516	9,2297E-06
48,8828069	7,5593E-06
43,3548511	6,1412E-06
38,7556213	7,4985E-06
30,2848329	3,4655E-05
27,3941861	4,9089E-05

BJH Desorption Cumulative Pore Area Halsey : Faas Correction

LAHFAA (Lahij)	
	Pore Area
Pore Diameter (Å)	(m²/g)
948,581806	0,54724735
570,697199	1,54012191
334,119064	3,11812606
229,552549	4,31856734
177,795153	5,02652488
146,442533	5,51087352
124,830424	5,82724801
109,017323	6,03801258
96,6440769	6,2177155
84,5953437	6,32859753
70,5740641	6,42064491
60,3055415	6,52523656
52,4622679	6,59732706
46,252512	6,63392891
41,1835138	6,67093965
36,9142603	6,68875774
28,9553171	6,88372853
26,1998268	7,06633156

BJH Desorption dA/dD Pore Area Halsey : Faas Correction

Pore Area
(m²/g⋅Å)
0,00053675
0,00491417
0,00939452
0,01303914
0,01478648
0,01547889
0,01361147
0,01401384
0,01258007
0,00704255
0,00843508
0,01022447
0,00726847
0,00654121

43,3548511	0,00589613
38,7556213	0,00871126
30,2848329	0,04927036
27,3941861	0,07190865

ΔΕΔΟΜΕΝΑ ΑΝΑΛΥΣΗΣ ΦΘΟΡΙΣΜΟΥ

ПАРАРТНМА IV

ΑΝΤΙΔΡΑΣΤΗΡΙΑ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΗΘΗΚΑΝ

- Alginic acid, sodium salt viscosity 20.000-40.000 cps CAS No : 9005-38-33 Sigma Aldrich, Chemie, Steinheim, Germany.
- Calsium Chloride Dihydrate CaCl₂* 2 H₂O MW =147.01 Assay 99.5-105.0% Cas No : 10035-04-8 MERC KGA, Darmstadt, Germany.
- Strontium Cloride hexahydrate SrCl₂* 6 H₂O MW =266.62 Assay >99.0% Cas No : 10025-70-4 Aldrich Chemical Company, Inc Milwaukke, USA.
- Barium Chloride Dihydrate BaCl₂ * 2 H₂O MW = 244.28 Assay > 99 % CAS No : 1036-27-09 Fluka Sigma Aldrich, Chemie, Steinheim, Germany.
- Praseodymium Nitrate hexahydrate Pr (NO₃)₃ * 6 H₂O MW = 435.01 Assay 99.5 % CAS No : 15878-77-0 Aldrich Chemical Company, Inc USA.
- Samarium Nitrate hexydrate Sm (NO₃)₃ * 6 H₂O MW = 444.47 Assay 99.5
 % CAS No : 13759-83-6 Aldrich Chemical Company, Inc USA.
- Gadolinium Nitrate hexahydrate Gd (NO₃)₃ 6 H₂O MW = 451.36Assay 99.5
 % CAS No : 19598-90-4 Aldrich Chemical Company, Inc USA.

- Terbium Nitrate hexahydrate Tb (NO₃)₃ 6 H₂O MW = 453.03Assay 99.5 %
 CAS No : 13451-19-9 Aldrich Chemical Company, Inc USA.
- Dysprosium Nitrate pentaxahydrate Dy (NO₃)₃ 5 H₂O MW = 456.61Assay
 99.5 % CAS No : 19598-90-4 Aldrich Chemical Company, Inc USA.
- Holmium Nitrate pentahydrate Ho (NO₃)₃ 5 H₂O MW = 459.03Assay 99.5
 % CAS No : 35725-31-6 Aldrich Chemical Company, Inc USA.
- Erbium Nitrate pentahydrate Er (NO₃)₃ 5 H₂O MW = 461.37Assay 99.5 % CAS No : 13476-05-6 Aldrich Chemical Company, Inc USA.
- Lanthanum Nitrate pentahydrate La (NO₃)₃ 5 H₂O MW = 433.01Assay 99.5
 % CAS No : 10277-43-7 Aldrich Chemical Company, Inc USA.
- Cerium Nitrate hexahydrate Ce (NO₃)₃ 6 H₂O MW = 434.22Assay 99.5 %
 CAS No : 10294-41-4 Aldrich Chemical Company, Inc USA.
- Hydroxyphosphono acetic acid (HPAA) MW = 156 gr/mol, 60% as active acid.
- Hydroxyethyledene-1,1-diphosphonic acid solution in water (HEDP), Dequest 2010 CAS No: 2809-21-4, MW = 206.02 gr/mol, 58-62% as active acid.
- Amino-tris(methylenephosphonic scid) solution in water (ATMP), Dequest 2000 CAS No : 6419-19-8, MW = 299.05 gr/mol, 50% as active acid.
- 2-phosphonobutane-1,2,4-tricarboxylic acid aqueous solution (PBTC), Dequest 7000, CAS No 37971-36-1, MW = 270 gr/mol, 50 % as active acid.
- Ethylenediamine-tetra(methylenephosphonic acid) sodium salt, solution in water, CAS No 220036-77-7, MW = 546 gr/mol, 24-26 % as active acid.
- N-(Phosphonomethyloiminodiacetic acid), PMIDA, CAS No 5994-61-6, MW
 = 227.11
- Diethylenetriamine penta(methylenephosphonic acid) sodium salt, solution in water, DTPMPA, Dequest 2066, CAS No 22042-96-2, MW = 617 gr/mol, 45 % as active acid.
- 1,6-Hexanediylbis(methylene)tetrakisphosphonic acid potassium salt, solution in water, HMDTMPA, Dequest 2054, CAS No 23605-75-5, MW = 721 gr/mol, 31-36 % as active acid.
- Bis[hexamethylene triaminepenta(methylenephosphonic acid)] aqueous solution - BHMTPHPN CAS No 34690-00-1, MW = 685 gr/mol, 43-48 % as active acid.
