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Abstract

An interesting research topic in population genetics is the detection of loci that are targets
of positive selection using Single Nucleotide Polymorphism (SNP) data. Many tests have
been developed for the identification of genomic signatures of positive selection based on the
skew of the distribution of SNP frequencies (Site Frequency Spectrum or SFS) that is caused
by selection. There are several methods to detect strong positive selection or in other words,
a selective sweep event. Current methods for detecting selective sweeps based on SFS do
not take into consideration the linkage disequilibrium in combination with the skew in the
allele frequencies in SFS. In this study we describe a model that combines both genomic
signatures of positive selection, that is, LD and the skewed patterns of allele frequencies. By
extensive simulations we show that is possible to detect a selective sweep by using the joint
distribution of the allele frequencies of pairs of polymorphic sites (joint-SFS). Furthermore,
we show that using pairs of SNPs, instead of independent sites, results in higher efficiency to
detect selective sweeps. Furthermore, we try to find a mathematical formula that calculates
the probability of observing a pair of Single Nucleotide Polymorphisms (SNPs) at a certain
distance from a positively selected site, using a diffusion approximation.
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Chapter 1

Introduction

The major evolutionary force that results in a better adaptation of organisms into a changing
environment is positive selection. When a species or a population adapts to its environment,
several genes might be under strong selection. Detection of selective sweeps helps population
geneticists to identify candidate genes that are affected by strong recent positive selection.
To this end, the quantification of variation is important and can be measured by genome
scans in samples of individuals. If, for instance, a region in the genome shows low variation,
statistical tests help us to decide if a gene under selection is located in the nearby region [15].
But what happens when a beneficial mutation appears in a population? What is a selective
sweep and which are the genomic signatures that are observed during a selective sweep? And
in the end, how can we detect such patterns of recent, strong, positive selection (selective
sweeps) using genomic SNP data?

1.1 Selective sweep and its genomic signatures

When a new beneficial mutation arises in a population and increases its frequency throughout
the population due to natural selection, the standing genetic variation in neighboring regions
is affected. As a result, three genomic signatures can be observed along the genome, i)reduced
level of variability, ii)increased level of linkage disequilibrium, and iii)skewed pattern of
allele frequencies [2].

As this beneficial mutation spreads throughout the population and goes to fixation, the
adjacent genomic regions that are physically linked to the selected site are dragged also to
fixation along with the beneficial mutation. Otherwise, they are discarded together with
the less fit alleles during the process that is called genetic hitchhiking [16]. As a result, the
level of variability in the region near to the positively selected site is reduced. However, in
some individuals, the selected locus can be separated from adjacent loci by recombination.
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In this case, there is a decreased strength of hitchhiking as the distance from the selected
locus is increased and consequently the variation in this region is increased again. Therefore,
recombination is a force that tends to diminish the sweep effect as the genetic distance from
the selected site increases[4].

Additionally, as the beneficial allele goes to fixation, the level of linkage disequilibrium,
that is produced between linked neutral polymorphisms, increases, due to hitchhiking effect.
Specifically, as the beneficial mutation increases in frequency it drags with it the neutral loci
that are linked with it and as a result, there is an increase in linkage disequilibrium. Also,
during the selective sweep, recombination does not have much time to break the linkage that
is produced between neutral polymorphisms and as a consequence, there are alleles with
high frequencies and long-range associations between them. [17].

There have been several studies based on patterns of LD. These studies started on 2004
with Kim and Nielsen, who used numerical simulations to study LD. Later, they were
extended by Stephan et al.[25] who obtain analytical expressions for measures of LD after
a selective sweep. Also, in another study [17] Pffafelhuber and Stephan used the star-like
approximation for the genealogy at the selected site in order to describe the patterns of LD
. This approximation of the joint genealogy at the two neutral loci, described splits in the
wild-type background and showed that it can predict the increase of LD close to a selected
site and the elimination of LD between both sides of the selected site.

As a consequence of both genomic signatures of selection that was analyzed above, there
is a distortion of the Site Frequency Spectrum in the case of selective sweep [2]. In our study,
we are interested in the detection of recent selective sweep events by studying the signature
of selection on the distribution of allele frequencies. For this purpose, we use the joint-Site
(or 2D) frequency spectrum of two loci. Both, SFS and joint SFS are analyzed extensively
below.

1.2 Site frequency Spectrum

Positive selection can be identified between species using divergence data and within a
species using polymorphism data. Divergence data are used to identify older selective events,
whereas polymorphism data are used to identify recent selective events [11]. In this study,
we are interested in recent selective events in a genome, so we use only polymorphism data
(it is an intra-species study). In order to detect recent strong positive selection we have to
identify regions along the genome that show evidence of a selective sweep. We use the
skewed patterns of allele frequencies that are caused by strong positive selection, or simply
the Site Frequency Spectrum (SFS).
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The Site Frequency Spectrum is a histogram of i entries whose ith entry represents the
number of polymorphic sites at which the mutant allele is present in i copies within the
sample [27]. There are two types of Site Frequency Spectrum, the unfolded SFS and the
folded SFS. Let’s say that we have a sample of n human chromosomal sequences from
a population of N diploid individuals, with m segregating sites (positions in a sequence
alignment that show differences (polymorphisms) between related genes). There are two
different measures of site frequencies, ξi and ni. Then, i is the number of polymorphic sites
at frequency i/n in the sample or in other words, the number of segregating sites that the
mutant base is present on i sequences in the sample and the other n− i sequences have the
ancestral base. In the case that the ancestral base is known, so it is possible to distinguish the
ancestral from the mutant base, the unfolded site frequency ξi is estimated. Conversely, when
the ancestral base is not known and it is impossible to distinguish it from the mutant base,
the folded site frequency (ni) is estimated. Therefore, ni is the number of sites at which the
less frequent base is present on i sequences out of n. The expected values of these quantities
can reveal how population-level processes shape genetic variation [27].

Measure of variation using polymorphism data is very important. If a population behaves
nicely, which means constant population size and no selection, then the observed SFS is
connected to the population-scaled mutation rate θ (=4Nµ).Then E(ξi)= θ/i, for all i [19].
But, it is not the same in the case when the population evolves under positive selection. For
example, for a panmictic population that evolves neutrally, it is predicted that the SFS is
decreasing monotonically. That is, the frequency of i-derived variants is decreasing as i
increases. In contrast, in the case where the population evolves under positive selection,
the high-frequency derived alleles increase. This means that the scaled SFS under selective
sweep differs from the scaled SFS under neutrality [1].

There are many different methods available to detect selective sweeps from genomic SNP
data based on sweep patterns shown in the SFS. These tests help us to quantify the skew in
the SFS of a sample of a population in relation to that expected under neutrality [19]. These
tests are based on 4 different estimations of the scaled mutation rate θ = 4Nµ , where N is
the effective population size and µ the mutation rate per bp and per generation. The four θ

estimators are presented below:

• Waterson’s θ [28] that is based on the number of segregating sites

θW =
S

∑
n−1
i=1

1
i

, (1.1)

where n is the sample size
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• The average number of pairwise differences between the n sequences of the sample is
also an unbiased estimator of θ

θπ =
∑i< j π(i, j)(n

2

) (1.2)

• Fu and Li’s statistic that is based on the number of singletons M [9],

qM =
n

n−1
M (1.3)

• Fay and Wu’s θH which is based on the frequency distribution of derived alleles and by
using data from an outgroup species it can distinguish the ancestral state of a polymorphism
and then detects selective sweeps by an excess of high-frequency-derived polymorphisms
[7].

θH =
2

n(n−1)

n−1

∑
i=1

kii2 (1.4)

These estimators provide four measures of nucleotide diversity. Their combinations can
be used to detect selection. The most famous statistic to detect recent selection is Tajima’s D
which compares the θ estimates from Tajima and Waterson. Specifically it is the difference
of those estimates normalized by the variance of the difference.

D =
θπ −θW√

Var(θπ −θW )
(1.5)

The problem probably is to get a good idea about the variance of the difference of the
estimators because you can find that Tajima’s D is from a normal distribution but the mean is
not zero and the variance is not one (basically, it is very difficult to construct a neutrality test
based on each possible combination of θ ). Looking at the distribution that results from this
test, D depends on the value of θ so the distribution of D can be done by all θ values. Tajima
proposed an approximate procedure to do this but you have to assume constant population
size. The problem is that demography is not included in this test. As a result, positive
Tajima’s D values may mean either balancing selection or evidence for mildly bottlenecked
demographic events, or population substructure. In all cases, the key-signature is the excess
of intermediate-frequency allelic variants. Respectively, the negative values of Tajima’s D
show that there are new mutations that result in an excess of low-frequency variants compared
to the neutral expectations. Thus, this is evidence for directional selection or population
expansions or strong bottleneck events. Notably, in bottlenecks you can take both positive or
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negative Tajima’s D values depending on the time frame, the frequency of the haplotypes
that survived after the bottleneck.

Other Tajima’s-like-tests are Fu & Li (1993) ([9]), F∗ and D∗, which are based on
singletons,

F∗ = θT −θM (1.6)

D∗ = θW −θM (1.7)

and Fay and Wu’s (2000) H [7],

H = θπ −θH (1.8)

which is influenced mostly by the high-frequency derived alleles.

In the last fifteen years, more advanced tests were developed to detect recent and strong
positive selection. Probably, the most known test has been developed by Kim and Stephan
[12] that uses the unfolded SFS . This test combines the expected reduction in variation with
the expected skew in the SFS under the presence of recombination. The test, known as Kim
and Stephan test, constructs a maximum likelihood approach to detect sweeps and give an
estimation of the location of the site of the advantageous allele and the strength of selection,
given the recombination rate.

Nielsen et al. [14] extended the Kim and Stephan test to detect deviations from neutrality
due to SNP ascertainment bias and demographic history, under the assumption that a selective
sweep has been completed.

In our study we are based on Nielsen et al. [14] test to detect selective sweeps, not using
single sites but pairs of consecutive SNPs, by calculating the joint Site Frequency Spectrum.
Usually the term ‘joint SFS’ or ‘2D SFS’ is used to denote the SFS calculated simultaneously
in a structured population and has been firstly mentioned by Wakeley and Hay [26] who
implemented it among SNP sites between two different populations, to infer divergence times
and gene flow. Here, however, the term ‘joint SFS’ or ‘2D SFS’ means something different:
the joint SFS between consecutive SNP sites along the genome. This was derived from the
idea that under positive selection two consecutive nucleotide positions, displaying SNPs, may
be linked due to the selective sweep effect and the reduced effect of recombination nearby
the selected site. In this way, the loss of information between linked sites when calculating
the SFS, to detect positive selection, can be compensated [3].

But, why do we use pairs of SNPs? Most theoretical studies of selective sweeps have
focused on a model with one selected and one partially linked neutral locus [18]. But, maybe,
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a selective sweep generates distinct patterns on multi-locus allele frequencies.So, we use
a model of one selected and two consecutive neutral loci. In this way, we take advantage
of both genomic signatures of positive selection, the increase in LD between neutral sites
and the skew in the allele frequencies. Furthermore, using pairs is more accurate because
selective sweeps do not only affect sequence diversity at a single neutral locus, but also the
joint allele distribution of several partially linked neutral loci [17].

1.3 Difussion Theory

Here, we want to extend the site-frequency spectrum theory to consider the case where the
sites are linked and they are not independent. We will use diffusion approximation to estimate
the joint distribution of allele frequencies at linked sites.

The quantity we are interested in is the gene frequency or, differently, the proportion
of a gene in the population that we study. In mathematical theory of population genetics,
as it was founded by Fisher, Haldane and Wright, one of the problems is to investigate the
change of gene frequencies when they are affected by mutation, natural selection, migration
and random sampling of gametes (genetic drift). This is a stochastic process due to random
sampling of gametes, which is a chance event. A mathematical approach that was developed
to study similar problems, and it is proved that is the most powerful, is called Diffusion
Theory. In this approach, the change in gene frequencies is a continuous stochastic process
since the gene frequencies in large populations change almost continuously with time.

Generally, in such stochastic processes in population genetics, we have two major
problems, (i) the gene frequency distribution at equilibrium and (ii) the probability of gene
fixation. These problems are very important when we are trying to understand the genetic
structure of the population of our interest. Gene frequency distributions have been studied
extensively by Wright and have been extended by the work of Kimura [13] on the distribution
of gene frequencies under irreversible mutation. This concept of gene frequency distribution
is applicable not only to individual gene but even to nucleotide pairs. The second problem,
the probability of fixation of a mutant gene in a population, is very important in evolutionary
genetics studies and it has been studied firstly by Fisher and Haldane and extended by Kimura
who used Kolmogorov backward equation to solve the problem. Motoo Kimura [13] was the
first that gave a solution to the diffusion equation. Also, Robertson developed a theory in
relation with this problem but for small population numbers. Using diffusion theory, we can
study the fate of a gene in the population which can be either fixed or lost from the population
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within a finite time interval. The process of change in gene frequencies can be treated using
diffusion equations and particularly the Kolmogorov backward equation,

L =
1
2

K

∑
i, j=1

αi j(χ)
∂ 2

∂ χi ∂ χ j
+

K

∑
i=1

bi(χ)
∂

∂ χi
. (1.9)

The Kolmogorov backward equation is one of the simplest and most useful equations
in diffusion theory, where the αi j(χ) in the first term represents the drift and bi(χ) in the
second term represents the infinitesimal covariance matrix (general formula for multi-variate
diffusion processes). Generally, this equation describes the change of allele frequencies due
to drift (first term of the equation after the equality) and selection (the second term of the
equation), but without mutation.

For example, let’s say that we have an allele of interest that starts with a specific frequency
and then we have different time intervals where the time is scaled by the effective population
size, N. By using the diffusion method we can get an expectation for our allele frequency
with genetic drift given a certain starting frequency and the sample size.

Furthermore, we can use the backward equation to get properties relevant to population
genetics studies. For example, we can calculate the mean time of alleles starting at given
frequencies until they become fixed in the population. Also, we can calculate the mean time
of loss. Furthermore, in our case, we can also ask how long do we expect two neutral alleles
to be segregating in the population of a given size given a certain starting frequency.

For example, when the allele frequency is 1/2N (i.e. a new mutation that occurs in the
population) we can ask: ‘What is the fate of this new mutation?’, ‘ What is the probability
that this new mutation will be fixed in the population?’. ‘How does this probability change
with the population size?’. And in the case that it gets lost ‘what is the probability of loss?’ A
further question is, how long does it take for neutral mutation on average until this mutation
been fixed in the population? For this last question, time is estimated to be 4N generations
which means that it takes very long time for a neutral allele starting as a new variant to
survive and become fixed in the population.





Chapter 2

Materials and Methods

2.1 The Model

Most theoretical studies of selective sweeps have focused on a model with one selected
and one partially linked neutral locus[18]. However, genetic data are available for many
partially linked loci. This raises the question that maybe, selective sweeps also generate
distinct patterns on multi-locus allele frequencies [18]. Furthermore, as it is known, selective
sweeps do not only affect sequence diversity at a single neutral locus, but also, the joint allele
distribution of several partially linked neutral loci [17]. For these reasons, in our study, we
consider a three locus model of one selected site and two partially linked neutral loci. For
each locus, we assume that there are only two allelic types (i.e. a biallelic segregation model)
and with simulations we show that using a multi-locus model results in high power in the
detection of selective sweeps.

Assume a beneficial allele S which arises in a population of N haploid individuals at time
t = 0, it has a selective advantage of s with respect to the wild type allele, and it increases in
frequency until it fixes in the population. The effect of selection on removing bad alleles or
with other words, the scaled selection coefficient is α = sN. In our model, we assume that
only when the beneficial allele fixes in the population, selection can be detected. So, we let
T be the time of fixation . Furthermore, assume that reproduction in the population follows a
Wright-Fisher model. As time is measured in units of N generations, the frequency path of
the beneficial allele in the population can be described by the differential equation:

dX = αX(1−X)coth(αX)dt +(X(1−X))2dW (2.1)

where W = standard Brownian motion and X0 = 0.
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If we take genetic drift into account, the process stops when fixation time of the beneficial
allele is about 2log(α)/α , when the frequency of the beneficial allele is XT = 1− ε .

In our model two neutral variants are partially linked to the selected locus at t = 0 and
increase their frequencies together with the beneficial allele [24]. We refer to the neutral
locus as the left, L, and right, R, neutral locus. As a result we have two possible geometries
for study, either (a) the neutral loci are on the same side of the selected site or (b) the selected
locus is in the middle of both neutral loci. Furthermore, for the selected S-locus we have the
wild type b allele and the beneficial B allele. For the other two neutral loci left and right (or
L-loci and R-loci), we have the L, l and R, r alleles, respectively.

In our study, we chose to focus on the (a) geometry (Figure 2.1) as it was referred above
and all of our results and the statistical method for sweep detection, that we suggest, are
based on this model. During reproduction, recombination events might occur and can break
up the association of these three loci. So, we have to consider the scaled recombination
rates (scaled with the distance on the genome) which are different for the two geometries
presented above. For the geometry of interest we denote the recombination rates between
the selected and neutral loci by ρSL, and ρLR, respectively. Note that the recombination rate
between the selected and the R neutral locus is ρSR = ρSL +ρLR. Generally, recombination
rate is scaled to the distance along the genome.

Fig. 2.1 The studied geometry where S is the selected site and L and R the two neutral,
consecutive, polymorphic sites that are located on the same side of the selected site. Also,
ρSL, ρLR, ρSR are the scaled recombination rates between the sites.

2.2 Computational and theoretical estimation of 2D-SFS

In the following section we describe how a 2D-SFS (or Joint Site Frequency Spectrum) can
be estimated both computationally by simulations and theoretically by diffusion theory.
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2.2.1 Computational estimation of a 2D-SFS

We performed two types of simulations to generate genealogies under neutrality and positive
selection assuming that for each locus there are only two allelic types. For the neutral
simulations of populations with constant size, we used the standard coalescent simulation
program ms [21]. Two models reflecting the population’s history were chosen, simulating
genealogies with both constant size and experiencing a bottleneck phase. In order to specify
that the demographic parameters change over time for the bottleneck effect, the -eN switch
of ms was used. Particularly, we set that the population size shrunk 100 times at the time
point t1 = 0.002 and expanded to the original size at the time point t2 = 0.04. The time when
the demographic change occurs is measured from the present backwards in units of 4N0

generations.

Two sample sizes were set, with 20 and 500 individuals, respectively, and the sampling
process was repeated for 1000 times. The θ value was set to 200 (where θ = 4N0µ). For all
possible combinations of the above parameters, we allowed for recombination ρ to occur at
rates 1 or 10 (where ρ = 4N0r). We also considered that the population was not completely
isolated and allowed gene flow with rate 4N0m = 0.2, where m measures the fraction of each
sub-population that is made up of new migrants in each generation. To simulate genealogies
under positive selection and the trajectories for the selected positions we used the mssel
algorithm created (and kindly provided) by R.R. Hudson. We simulated trajectories for 60
bottleneck scenarios, all for 10,000 generations, setting the following parameters: bottleneck
severity, eliminating 40, 200, 400, 4000 and 8000 generations during the effect; bottleneck
length, allowing for the effect to last for 80, 200 and 400 generations; bottleneck times,
setting when the effect starts in units of 4N generations counting from the present backwards:
0.005, 0.01, 0.03, 0.05, 0.055, 0.1, 0.5. The position of the selective sweep was set to be in at
position 0.5.

Based on our sets of simulations we took all pairs of SNPs (partially linked neutral
loci) which appear consecutively in the alignment positions and we calculated the distance
of each pair from the selective sweep position. We used the position of the SNP that was
closer to the sweep position (by construction this is the location 0.5) as the value to calculate
this distance. For n SNPs, there are n(n−1)/2 pairs of SNPs. We grouped some of these
pairs in classes, since they were too many to handle. This classification is meaningful
when trying to detect positive selection, since the middle class SNPs are rarely indicators
of selective processes, whereas singletons or nearly fixed mutation SNPs are landmarks of
positive selection. Distances of each SNP pair from the sweep position were plotted against
the frequency of each SNP pair (Figure 3.1). We used linear interpolation in order to infer
continuous values for the distances from the selective sweep position. Given these values,
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we calculate the probabilities (likelihoods) to find a certain pair of SNPs in a given distance
from the selective sweep.

We calculated the natural logarithm of these probabilities for all SNP-pairs and all
positions in the alignment for both scenarios of neutrality and selection. Then we inferred
the ratios of the log-likelihood of the selective sweep scenario over the neutrality scenario.
Since we assume that the sites in the alignment evolve independently, we are able to add
the log-likelihood ratios. We then used the Composite Likelihood Ratio Test (CLR, [12])
implemented in a PERL script to construct a Maximum Likelihood approach for testing
selective sweep (null hypothesis) over neutrality (alternative hypothesis) in real data.

Since we used the conditional probability to observe a pair of SNPs in a certain distance
from the selective sweep, we need to take into account the parameter α . This is α =

(rlogNe)/s, where r is the recombination rate, Ne the effective population size and s the
selection coefficient. The CLR test is a function of α so we need to estimate α and find
its value that maximizes the CLR. For real data it is needed to calculate the p-value for
the maximum CLR value by simulating data under the alternative hypothesis (neutrality
scenario).

2.2.2 Theoretical estimation of the Joint Site Frequency Spectrum of
two polymorphic sites

In order to study theoretically, the Joint Site Frequency Spectrum (2D-SFS), we need to
derive the mathematical formula that describes the probability of a pair of consecutive SNPs
to be observed at a certain distance from a positively selected site. This probability encloses
two terms, the first term describes the probability of the pair given that there is recombination
between the polymorphic sites and the second term is the probability of the pair without
recombination between them. For simplicity we will not consider the case of recombination
in this study. Before we start working with our 3 loci model, we will define Green’s function
that we will implement in the next section.

2.2.3 Green’s Function

The Wright-Fisher model describes the process of genetic drift as random sampling with
replacement. Another way, more efficient to mathematical analysis, to model the process of
genetic drift is the diffusion approximation [6, 8, 13, 22]. When the population size is larege
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then the Wright-Fisher model is approximated by multidimensional diffusion process with
infinitesimal generator [5, 6].

L =
1
2

K

∑
i, j=1

αi j(χ)
∂ 2

∂ χi ∂ χ j
+

K

∑
i=1

bi(χ)
∂

∂ χi
(2.2)

where ai j(χ) = χ(δi j − χ j) is the infinitesimal covariance matrix and the b(χ) is the
infinitesimal drift vector. Diffusion model describes the evolution of allele frequencies under
random drift (second term of the above equation), selection (first term of the above equation)
and no mutations.

Here, we need the process of the K allele diffusion (as we have a studied geometry of 3
sites, one selected and 2 neutral loci) which can be described by Green’s function G(χ,χ ′)

[10, 20] which (in continuous space) is the solution of the differential equation:

LG(χ,χ ′) =−δ (χ −χ
′) (2.3)

with boundary condition G(χ,χ ′) = 0 where ∆ := [χ = (χ1, . . . ,χK) : ∃ k such that χk =

0] is the boundary condition, χ’ is an interior point of ∆ and δ (χ −χ ′) is the delta function
of Dirac. Generally, Green’s function G(χ,χ ′) is a Markov chain process and shows the
expected number of visits to frequency χ’ starting from a frequency χ .

Suppose,now, that G(u,v) is the solution of the equation:

LG(u;v) =−δ (u− v) (2.4)

with boundary condition to be G(z;v) = 0 for any point z at the boundary and v an interior
point of ∆. Then

G(u;v) =
∞∫

0

p(X(t) = v|X(0) = u)∂ t, (2.5)

where p(X(t) = v|X(0) = u) is the transitional probability density or simpler the probability
for an allele to reach a frequency v at time t when the starting frequency at time 0 is u.

Let’s define the Green’s function G(χ,χ ′) for the interval [u,v] by the property that:

g(χ) =
∫

G(χ,χ ′) f (χ ′),dχ
′ (2.6)

satisfies Lg =− f for u < χ < v with g(u) = g(v) = 0
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Then, if τu,v = Tu ∧Tv is the exit time from (u,v) then:

Eχ(τu,v) =
∫ v

u
G(χ,χ ′)

∂

∂ χ ′ (2.7)

Green’s function is used when we want to know where the process spends its time before
reaching a boundary point at a time τ and then we can also estimate Eτ .

2.2.4 Joint Site Frequency Spectrum of two polymorphic sites

Let’s consider a sample of N haploid individuals and assume an infinite-sites-model without
recombination. The infinite-sites-model assumes that two mutations can not occur at the same
site of the chromosome both. Let’s also consider two mutations in two different polymorphic
sites that occurred in the past, the first one a at time t1 and the second b at time t2 (where
t1 < t2) and in the present population they have frequency p+1 and p2, respectively (where
0 < p1, p2 < 1). We have four different genotypes A1 which carries only the mutation a, A2

which carries only the mutation b, A3 which carries both a and b and the wild type A4 (no
mutations) with frequencies X1,X2,X3,X4, respectively.

Our goal is to calculate the joint distribution of p1 and p2. We split this in two cases
depending the allele type where the second mutation occurred. At that time (when the second
mutation occurred) in the population there are the genotypes A1 or A4 which means that after
the second mutation we take the genotypes A2 or A3, respectively (Figure 2.2).

Fig. 2.2 This is the diagram of the 2 mutation events and the allelic types that they create.
Mutation α occurs at time t1 and mutation b occurs at time t2. If the mutation b occurred
within the wild type allele then it creates the allele type A2 whereas if it occurs within the A1
allele then creates the allele A3. The two cases corresponds to two different boundaries that
are described in the text.
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Firstly, let’s take the case when the second mutation occurred within the wild type allele.
If we assume that both sites are polymorphic then the time point t0 (the time that we take the
sample) in the population there are both A1 and A2 genotypes but there is not restriction for
A4 as it can be either present or extinct. This means that we need to consider for the case
where the A4 is extinct in the present population and so X1 +X2 = 1 (the frequencies of the
other alleles are complementary) and the case where the A4 is present and then X1 +X2 < 1.

We have 3 time points, t2 where the second mutation occurred, t1 where the first mutation
occurred and t0, the time that we take the sample (present). Our goal, here, is to calculate the
probability to have A1 allele in frequency X1 and A2 allele in frequency X2 in the population
at the time that we take the sample (t0). For this, we need two transition probabilities.
Specifically, when the first mutation arises in the population at time point t1 it has frequency
δ = 1/N and so, the transition probability where the frequency X1 of A1 allele changes from
δ at t1 to u at t2 is denoted as P(X1(t2) = u|X1(t1) = δ ). Also, the transition probability of X1

and X2 from u and δ at t2 to x1 and x2 at t0 is P(X1(t0) = x1X2(t0) = x2|X1(t2) = u,X2(t2) = δ ).
Then the probability that we want to derive is

f 1(x1,x2) =
∫ 0

−∞

dt2
∫ t2

−∞

dt1
∫ 1

0
P(X1(t2) = u|X1(t1) = δ ) (2.8)

P(X1(t0) = x1X2(t0) = x2|X1(t2) = u,X2(t2) = δ )u(1−u)du (2.9)

Using the Green’s function for the above equation, we can re-write it as follows:

f1(x1,x2) =
∫ 1

0
(1−u)G(δ ;u)T1(u,δ ;x1,x2)du (2.10)

where G(δ ;u)=2δ /u and T1(u,δ ; x1,x2) is the time spent in X1=x1 and X2=x2 when the
starting frequencies are u and δ respectively, and it contains the case of x1+x2<1 inside the
boundary and the case of x1+x2=1 at the boundary. Specifically, in our case that both mutant
alleles are neutral, the T1 f unctionisexpressedas :

T1(u,δ ;x1,x2) = Ta(δ ,u;x2,x1)+Tb(x2;1−u−δ ,δ )δ (x1+ x2−1) (2.11)

where the first term after the equality is the time spent inside the boundary and the second
term is the time spent at the boundary (δ () function is used to constrain x1 and x2 to be sum 1
along the boundary).

Let’s consider, now, the second case, when the second mutation occurred within the
A1 allele.In this case,assuming again that both sites are polymorphic, the alleles that we
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can see in the population after the second mutation are A1, A3 or A4. At the time point t0
the frequency of the first mutation in the population is X1(t0)+X3(t0) and the frequency of
the second mutation is X2(t0).In this case, A3 and A4 must be present in the population in
order to be fulfilled the assumption of polymorphic sites which means that X3(t0)> 0 and
X4(t0)> 0. Also, A4 must be present as in different case the the first mutation site would be
not polymorphic. But as the first mutation site is polymorphic due to the presence of A3 and
A4, there is not restriction for A1 as it can be extinct (A1 = 0).

Our goal here is to calculate the probability of X3(t0) = x3 and X4(t0) = x4 which similar
to the first case is proportional to:

f2(x1,x3) =
∫ 1

0
uG(δ ;u)T2(u,δ ;x1,x3)du (2.12)

where G(δ ;u) = 2δ/u and T2(u,δ ;x1,x3) is the time spent in X1 = x1 and X3 = x3 when the
starting frequencies are u and δ respectively, and it contains the case of when x1 + x3 < 1
inside the boundary and the case of x1 = 0 when the A1 is extinct. Specifically, in our case
that both mutant alleles are neutral, the T2 function is expressed similar to the case 1, as:

T2(u,δ ;x1,x2) = Tc(δ ,u−δ ;x3,x1)+Td(x3;u−δ ,δ )δ (x1) (2.13)

where the first term after the equality is the time spent inside the boundary and the second
term is the time spent at the boundary x1 = 0.

At the end, combining the two previous cases, the probability of the frequencies of the
two polymorphic sites being p1 and p2 equals

g(p1, p2) = f1(p1, p2)+ f2(p1 − p2, p2)I(p1 > p2) (2.14)

up to a difference in normalization constant. Analytical formulas T (y;x1,x2) (mean time
spent at the boundary) were derived by [29] using Gauss hypergeometric function and Jacobi
polynomials.



Chapter 3

Results

3.1 Simulations Results

As it was described in Chapter 2, based on our sets of simulations we took all pairs of
consecutive SNPs that appear in the alignment and we calculated the distance of each pair
from the selective sweep site. We used the position of the SNP that was closer to 0.5 as
the value to calculate this distance. For n sequences the SNP pairs that exist are (n−1)2,
since we assumed that all sites display a SNP of some class.After, we grouped some of these
pairs in classes, since they were too many to handle. This classification makes more sense
when trying to detect positive selection, since the middle class SNPs are rarely indicators
of selective processes, whereas singletons or nearly fixed mutation SNPs are landmarks of
positive selection. Distances of each SNP pair from the sweep position were plotted against
the frequency of each SNP pair. Then, we plotted the conditional probability of all the
pairs against their position on the alignment (scaled position). The formula that we used for
the calculation of the probability was derived by Nielsen et.al 2005 (formula (6)) [14] that
describes the probability of a single SNP to be observed at a certain distance from a selective
sweep position.
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Fig. 3.1 Computational estimation of the distribution of a 2D-SFS
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3.2 Distribution of 2D-SFS with Diffusion Theory

We used Mathematica 8.0.0 software to derive the distribution of the formula (2.14) that was
presented above and describes the probability of the frequencies of two segregating sites to
be p1, p2 respectively. Unfortunately, because of the complexity of the mathematics, it takes
so long for it to run and 4 months now, has not yet, given a result.





Chapter 4

Discussion

In our study we are trying to extend the work of Nielsen (2005) [14] and construct a test to
detect positive selection based on the distribution of the Joint Site Frequency Spectrum.

For this purpose, we considered a three-loci model of one selected and two partially linked
neutral loci. For each locus we assumed that there are only two allelic types. Calculating the
joint SFS proved to be statistically more informative to the Site Frequency Spectrum, since
the detection of a selective sweep is usually obscured by the demographic effect on the SFS
and the existing methods do not incorporate demographic models [23].

So, one of the advantages of this study is that, unlike other methods for detection of
selection in the past, we consider for demography. This is very important as demographic
scenarios affect the SFS in a similar pattern like positive selection and in most cases it is
very hard to distinguish between the two signals. In both cases the variation is decreased,
but for different reasons. In the case of positive selection, this is due to hitchhiking effect
whereas in the case of bottleneck the reduction in the diversity is because of the reduction of
the effective population size. For this reason, We inferred simulated models for demography,
particularly for 60 cases of bottleneck effects, to understand where the signal of the SFS is
affected by demography and where it is affected by selection.

Previous statistical tests like Tajima’s D ignore the demographic history of a population
and as a result both positive and negative Tajima’s D values do not indicate selection
necessarily. This is because demography produces the same skew in the distribution of allele
frequencies as positive selection does. And as a result taking positive or negative values of
D, it means nothing. You have to combine this estimator with coalescent simulations that
consider the demographic history of the studied population and then you are able to reject
neutrality hypothesis.

Furthermore, we are trying to detect selective sweeps, not using single sites but pairs
of consecutive SNPs, which means that we are studying the joint Site Frequency Spectrum,
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a fact that provides many advantages. This was derived from the idea that under positive
selection two consecutive polymorphic sites, may be linked due to the selective sweep effect.
In this way, the loss of information between linked sites when calculating the Site Frequency
Spectrum, to detect positive selection, can be compensated.This study brings together the
two aforementioned issues in an attempt to improve the power of detecting selective sweeps
along the genome.

The major advantage of this method is that it combines both genomic signatures of
positive selection, the increase in Linkage Disequilibrium between neutral sites and the skew
in the site frequency spectrum . Also, as it has been shown by previous studies, selective
sweeps affect not only single sites but they generate distinct patterns on multi-locus allele
frequencies. Furthermore, the simulations have shown that using pair of SNPs result in high
power in sweep detection.



References

[1] Andreas Wollstein, W. S. (2015). Inferring positive selection in humans from genomic
data. Investigative Genetics.

[2] BARTON, N. H. (1998). The effect of hitch-hiking on neutral genealogies. Genetical
Research, 72:123–133.

[3] Boitard S, Schlötterer C, F. A. (2009). Detecting selective sweeps: A new approach
based on hidden markov models. Genetics, 181(4):1567–78–494.

[4] Cutter, Asher D., P. B. A. (2013). Genomic signatures of selection at linked sites:
unifying the disparity among species. Nat Rev Genet, 14.

[5] Durrett, R. (2008). Probability Models for DNA Sequence Evolution. Springer, Berlin.

[6] Ewens, W. (1979). Mathematical Population Genetics. Springer, New York.

[7] Fay, JC.; Wu, C. (2000). Hitchhiking under positive darwinian selection. Genetics.

[8] Fisher, R. A. (1931). Xvii.—the distribution of gene ratios for rare mutations. Proceed-
ings of the Royal Society of Edinburgh, 50:204–219.

[9] Fu, YX.; Li, W. (1993). Statistical tests of neutrality of mutations. Genetics.

[10] Karlin, S., T. H. (1981). A Second Course in Stochastic Processes. Academic Press,
New York.

[11] Kelley JL, C. H. (2008). Positive selection in the human genome: From genome scans
to biological significance. Annual review of genomics and human genetics.

[12] Kim Y, S. W. (2002). Detecting a local signature of genetic hitchhiking along a
recombining chromosome. Genetics.

[13] Kimura (1964). Diffusion models in population genetics. J.Appl. Probab.

[14] Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., and Bustamante,
C. (2005). Genomic scans for selective sweeps using SNP data. Genome research,
15(11):1566–75.

[15] Nielsen R, Hellmann I, H. M. B. C. C. A. (2007). Recent and ongoing selection in the
human genome. Nature reviews Genetics, 8(4):857–868.

[16] Nurminsky, D. (2005). Selective Sweep. Springer, New York.



24 References

[17] Pfaffelhuber, P., Lehnert, a., and Stephan, W. (2008). Linkage disequilibrium under
genetic hitchhiking in finite populations. Genetics, 179(1):527–37.

[18] Pfaffelhuber, P. and Studeny, A. (2007). Approximating genealogies for partially linked
neutral loci under a selective sweep. Journal of Mathematical Biology, 55(3):299–330.

[19] R, R. (2013). Learning natural selection from the site frequency spectrum. Genetics.

[20] Roach, G. (1982). Green’s Functions. Cambridge University Press, Cambridge.

[21] RR, H. (2002). Generating samples under a wright-fisher neutral model of genetic
variation. Bioinformatics, 18:337–8.

[22] S., W. (1942). The distribution of gene frequencies under irreversible mutation. Proceed-
ings of the National Academy of Sciences of the United States of America, 24:253–259.

[23] Simonsen KL, Churchill GA, A. C. (1995). Properties of statistical tests of neutrality
for dna polymorphism data. Genetics, 141:413–429.

[24] Smith, J. M. and Haigh, J. (1974). The hitch-hiking effect of a favourable gene.
Genetical Research, 23:23–35.

[25] Stephan, W., Song, Y. S., and Langley, C. H. (2006). The hitchhiking effect on linkage
disequilibrium between linked neutral loci. Genetics.

[26] Wakeley, J. (1997). Using the variance of pairwise differences to estimate the recombi-
nation rate. Genet. Res.

[27] Wakeley, J. (2008). Coalescent Theory: An Introduction. Roberts Company Publishers,
Greenwood Village, Colorado.

[28] Watterson, G. (1975). On the number of segregating sites in genetical models without
recombination. Theoretical Population Biology.

[29] Xie, X. (2011). The site-frequency spectrum of linked sites. Bulletin of Mathematical
Biology, 73(3):459–494.



Appendix A

Brief definitions

Selective sweep

Selective sweep is spread of an advantageous allele throughout the population by strong
positive natural selection and associated loss of variation near it (by hitchhiking)

Hitchhiking

Hitchhiking is spread of other nearby neutral alleles along with the advantageous one
because of linkage (lack of recombination)

Recombination

Recombination the force that breaks down allelic combinations.

Neutral variation

Neutral variation does not affect the fitness of the organisms. It is only affected by random
drift.

Genetic drift

Genetic drift is the change in allele frequencies in a population due to random sampling of
gametes.

Positive selection

Positive selection is selection acting upon new advantageous mutations.
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Site Frequency Spectrum

Site Frequency spectrum is a histogram whose ith entry is the number of polymorphic sites at
which the mutant allele is present in i copies within the sample.

Genetic linkage

Genetic linkage is the tendency of alleles that are located close together on a chromosome to
be inherited together during meiosis.

Linkage disequilibrium

Linkage disequilibrium is the non-random association of alleles at different loci.
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