INETITOYTO MOPIAKHट BIOAOIIA乏 \＆BIOTEXNOAOFIA乏 IAPYMA TEXNOAOTIA \＆\＆EPEYNAL

$\Delta I \Delta A K T O P I K H ~ \triangle I A T P I B H$

MOPIAKOI MHXANIEMOI THE METAFPAФIKHェ ENEPГOHOIHะHะ TSN ГONIDISN ILTOLYMBATOTHTAइ TAEHะ II Ea KAI Eb TOY HONTIKOY

INETITOYTO MOPIAKH乏 BIOAOFIA乏 \＆BIOTEXNOAOFIA乏 IAPYMA TEXNOAOIIA \＆EPEYNA

$\Delta I \Delta A K T O P I K H ~ \triangle I A T P I B H$

MOPIAKOI MHXANILMOI THエ МЕТАГРАФIKHГ ENEPГOHOIHГHD TתN ГONIAISN IETOEYMBATOTHTAइ TAEHE II Ea KAI Eb TOY HONTIKOY

$\Delta \eta \mu$ трıс I．इтравопо́ס̊ทৎ

 oчaıpıко́ σ_{X} диatıбнof) (Scientific American, AúYovotoc 1994].
oznv onkoyéverá pov

Emííḿ̧ń paç eívan va q@tícoupe tl qúoq,

Г. Θ.

ПРОАОГОЕ

 каи Bıoveגvohoyfac (I.M.B.B.) tov Iópúpatos Texvodoүíac каı Epeuvac (I.T.E.),

 you L.M.B.B.

Euxapiotó erríņc tovs. $\Delta \rho$ c. Δ. Gávo, A. Movotáka, J. Darnell, K. Ozato

 реде́rдя.

IEPIEXOMENA

EYTYTINPIETIE - IASUSEAPIO 12
EISATSIIFI
 Histocompatibility Complex-II: MHC-II) 18
 18
 Iотобup6atótŋтац (MHC) 21
 1のтобupBatótntaç тá̧̧ņ II 24
 24
1.3.2. Avtoavooía - Avoooavenápкeies 26
 27
1.3.3.1. Cis-puөpiotuká ororxeía 28
1.3.3.2. Trans-решаүраяико́ парáyovtes 31
 iv̌epфéóvıs (IFN) (IFN-signalling) 35
2.1. Evepyonoinon yovi $\delta i \omega v \mu \varepsilon \dot{\beta} \sigma \omega$ IFN- $\alpha / 6$ 35
2.2. Evepүoпоíŋoŋ yoviठícv μ ц́ою IFN-y 37
2.3. Metadiaypévec кuttapıkés aeipec mov aס̂vatoúv va av canokpiøoúv otŗv 8́páoŋ̨ tņ IFN 39
2.4. इupueъохи́ ธ $\omega \mathrm{v}$ JAKs (Just Another Kinases) kivaociv тupooivns 40
 42
2.6. Δ оиі́ кал λ eitoupyía twv IRFs (Interferon Regulatory Eactors) негаурафıко́v napaүóv̇t ω V 43
 (E1A and Interferons) 45
4. To hovonáti tou petivoikoú o̧̧éog (R.A.) 47
5. Ekonóg ing napoúgac סiatpibís 49

1. YAIKA 51
 51
 51
1.3. Вакıпрıаке̧́ надגıéруеıе̧ 51
1.4. Kขтtapıке́я оеıр́я 52
 52
2. ME@OAOI 53
2.1. Aподóv. 53
 53
 53
 ayapózns 53
 oкриһарі́8пร 54
 54
2.2. Aváduon vouxheïvikáv ogécuv 55
 55
 56
2.2.3. Aváduon kavá Northern odıkoú RNA 56
 (restriction digest) 57
2.2.5. Kатабкеuที eג入еічe 57
 норícv плaqusıaкoú DNA (sequencing) 57
 58
 59
 59
 60
 60
 extract) aпо́ кv七тарıкéя беıре́я 60
 (Electrophoretic Mobility Shift Assay: EMSA). 60
 (DMS methylation interference analysis) 62
 Прผteivņ（crosslinking） 63
2．4．Texviés avíxvevons in vivo adAŋגemópáae （eıסikés $\mu \varepsilon ́ \theta o \delta 01)$ 64
 64
3．IIAPAPTHMA 65
 65
3．1．1．O чоре́ая pLSVoCAT 65
3．1．2．O чорÉas pGSCAT 65
3．1．3．O форéas pRC／CMV 66
3．1．4．O чорह́ą pXM 67
3．1．5．O чоре́ац LK440 67
3．1．6．O 甲оре́ą 872（－40IFNB）CAT 68
3．1．7．Adidor popeis 69
3．2．Oגıyovoukגeotíסia 70
3．2．1．Avixveutéc tou urokivntí tou Ea yoviôiou 70
3．2．2．Avixveutéc tou umokıvntń tou E6 үoviסiou 70
3．2．3．Avixvevtéc ákAตv vnokivntढv 70
$A I D T E A T D M A T A$－ $\mathcal{E} Y E T E S E$
1．AváAuon t $\omega \mathrm{v}$ cis－otorxciov tou unokivntŕ tou Ea yovisiou 73
1．1．ПДaбみiסiakés катабкevés 73
1．1．1．5＇бeıpıaкéc eג入eíqeıç（deletion constructs）tou urokivŋún e§ ω vouk 78
 Yoviסiou $\mu \varepsilon$ זņ Xprion tou evל̧úhou Bal31 74
 75
 evepyótnta tou unokivntŕ tou Ea үovioiou 75
1．2．2．Ot ouvtпpqцéves Y－X－H перıoxés apкoúv ү үa va прооцépouv 78
 80
1．3． $\mathrm{\Sigma u}$ そ̌ítnon 81
2．Medétn tov trans－मetaүpapik atnv ISRa пepioxí tou unokivntí tou Ea yovidíou 85
 85
 mapáyovtȩ nou aגAnגemôpouv μ e ta ISRE／GAS ovon zeía． 86
 90
2．4．Iotorı8ıќ про́тuпо oúv8eoņ tou ISFa оицпגокои 91
2．5．Mopiakri oúotaon tou ISFa enaүópevou oupurßókou Mia véa rexvikn 93
 Ertay ω y 95
 tupooívnc，thc Genistein 96
 фшофотчробivns 97
 99
 103
 103
3．1．1．O avacuvঠ̌aquévoc 甲орéą Ea $(-140,+14)$ CAT 103
3．1．2．O avađuvס̀บaøमévoç чopéaç GBP（GASL，－40IFN6）CAT 104
 105
3．3．Σu 亿ńrnon 106
 טпокivntes 108
 109
4．1．1．O avacuv8́uaopévoç 甲opéas Ea（－140，＋14）CAT 109
4．1．2．O avacuvóuaquévoç 甲opéaç GBP（GASL，－40IFNB）CAT 109
4．1．3．O avaøuvóuaquévoc ¢ppéac ISG54（ISRE，－40IFN6）CAT 109
4．1．4．O avaouvסuaquévoc ̣орéaç GBP（GASS，－40IFNB）CAT 109
 110
4．3．$\Sigma u \zeta$ 亿̃ınon 114
3. Ȩápınon tņ oúveroņ tou evôoyevoúc DRa mRNA anó tŋv 117
 117
5.2. इu弓ŋ́unon 120
4. इupuevoxи́ tŋ̧ JAK2 kiváong owo povonáti pecá8oonç tou orpatoc tns IFN-Y otov Ea UIOKivŋ!í 122
 122
 122
6.1.2. O avaouvঠuaopévos بopéas pRC/CMV-JAK2 122
 124
 125
 127
5. Metaypaqiký evepyonoínon tou vnokivntri tou Ea yovibiou парáyovta. A nnv Spáon tou ICSBP 130
 130
7.1.1. O avacuv8uaøpévoç чopéaৎ Ea $(-140,+14)$ CAT 130
7.1.2. O avacuvöuaopevoç φ орéa̧ $\mathrm{pXM} /$ IRF-1 130
 131
7.2. Пeıpápata napoסiки́s סıapóגvvons 132
 136
 otic ISR1 kai ISR2 (5iou X otoızeiou) nepioxés tou E6 uнокivпtí 139
 IFN-y óvo kal anó IFN-a 139
8.2. इuaxétian tov ISF1 emayópevav ounnגeypátov pe touç 140
 бирпио́кои 142
8.4. Tautonoín̆ø evóç véou enayóuevou oupinkéypatos (ISF2), to onoíov 143
8.5. Aeitoupyikí ouoxétion $\tau \omega \mathrm{V}$ ISFs (ISF1, ISF2 kai ISF α) $\mu \varepsilon$ touc ISRE ocoixeío 145
 о́́pпגeypa nou avayvopí̧eı try H neproxí 149
8．7．Aváduon tns popiaкńs oúotaons tou ISF2 enayópevou очцпגéypato̧ 151
 154
 155
8．10． $\mathrm{\Sigma u}$ そ币́tワのワ 157
 160
 160
9．1．1．H ISR2 пер 160
9．1．2．H ISR3 перıохи́ 161
 162
 164
10．Aextoupyikń avá $\lambda u \sigma \eta$ tns 3páoņs tou E1A oүкoavtiyóvou oinv petaүра甲ikn evepyórnta tou umokivntи́ tou Ea yoviסiou 165
 166
10．1．1．O araoưvóuaquévos чopéaç Ea（－140．＋14）CAT 166
10．1．2．Oı avaouvöuaqpévor popeí RSV（LTR）－E1A ka1 RSV（LTR）－E1A：dICR1 166
 167
 ouprikókou otny ISRa nepioxŋ́ anó tnv viepékqpaon tou E1A oүкодviyóvou 167
10．4． Ev そうitnoл 169
11．Гeviky 玉uלńtŋon－Mọpıaká Movtéגa 170
ПアOOLTIETE 173
IEPI A ETF 175
SUIVIKAR？ 177
EIEAIOIPA 1 IA 180

$\Sigma \mathbb{N T M E I E T E}$ $\Gamma \mathbb{A} \leq \mathbb{E} \mathbb{E} \mathbb{O}$

STNTMLHETEIE－TASEXAPIO

A：aßevivn（Adenine）
aa：aunvo̧ú（aminoacid）
A／B：avtiowpa（Antibody）
Activity：evepyórqua

Alkaline：Aגkадıкós
 отпу ацпикiגivn
Annealing：enavaíátaçn
Antigen：avtiyóvo

AP：apıvonoupívg（Aminopurin）
APC：кútrapo nou napovoráłè to avriyóvo（Antigen Presenting Cell）
B：öequeupévo（Bound）
Bacto：Bakrnprakóc（bacterial）
BGHpA：Bovine Growth Hormone poly［A＋］：ońpa noduaठ̋evuגíons tou yoviס̈iou tns aú̧ntikŕs oppóvņ boós
Binding reaction：avtífpaon oúv8eons
Blunt end：＇tuqגó＇dxpo
bp：弓eú Yn（oç）Bácewv（base pair）
BSA：adGoupínn opoú Boóc（Bovine Serum Albumin）
c：кеvтрико́ пир
C：kutorivy（Cytocine）
${ }^{\circ} \mathrm{C}$ ：Ba日доі кと丸бiou

CaM：xaגpoס̂ouגivn（Calmodulin）
cAMP：кuк $\lambda_{1 к o ́ ~-~ A M P ~}^{\text {－}}$

CID：Combined Immunodeficiency：O̧̧éa इuyyevís Avoooavenápkeıa

Comp：avrayoviorńs（Competitor）
Complex：оч́рпגеүра－оч́pпスоко
CON（constitutive）：ouataukós－ouvexṕs

Consensus：бuviotapévn $\alpha \lambda \lambda \eta \lambda o u x i \alpha$
Conversion：$\mu \varepsilon \tau \alpha \operatorname{conif}$
cpm：counts per minute：xpoúoeiç avá derrtó

Crosslinking：ठิıцนopıakń oúvôeon

CsCl：X $\lambda \omega$ рıoúxo каíoı
Cytoplasmic：киттаропдaоцатно́s（C）
Deletion：édAeıఝn（di）
Distal：aпópакрп
Domain：deroupyriós пuprivas
Drug：фа́ррако

Duplication：8indaonaбpós

 Shift Assay）

Enhancer：evioxutís
EtBr：6pwpıoúxo cuөísio

F：eגeúӨrpoç avixveutís（Free）
Fragment：Өpaúopa DNA
G：youavivn（Guanine）
GAF：（Interferon）Gamma Activation Eactor：napáyovıaç evepyonoıци́voc amó IFN－Y

GAS：Gamma Activation Site，í Gamma Activating Sequence：meprox́́ nou evepyoпorítal anó IFN－Y
GASL：GAS Large：Meyádo GAS－cis－oqotxeio（avtanókpıon oe IFN－y kal IFN－ a／6）
GASS：GAS Small：Mıpó GAS－cis－oroıxعio（avtanóxpion póvo oe IFN－γ ）
GEN： $\mathrm{Y}^{2} \mathrm{v} 1 \sigma \tau \mathrm{fivn}(\mathrm{G})$（Genistein）
Histocompatibility：Iotooǔßatótŋta
Hour $\{\mathbf{h}(\mathbf{r})\}: \dot{\omega} \rho \alpha$

ICSBP：Interferon Consensus Sequence Binding Protein：ouvถิeธukí пршtعivy

IFN：ivธะр甲єрóvn！（Interferon）
IFN－a：ivtep甲epóvŋ－a
IFN－8：ivtep甲eро́vŋ－ 6
IFN－Y：ivгepepepóvr－Y

Immune response（Ir）：avoводоүни́ апбкрюоп
IND：enayóцıvo（¢）（Inducible）
Inhibition：avaotodry
Insert：éverua
IRF：Interferon Regulatory Factor：napáyovtac puөpıそó μ evos anó IFN
ISF：Interferon Stimulated Factor：парáyovтац̧ evepyoпопиц́vo̧ anó IFN
ISG（s）：Interferon Stimulated Gene（s）：Yovíסिo（a）evepyonounuévo（a）ano IFN（ α B ท́ Y）
ISGF：Interferon Stimulated Gene Factor：mapáyovtac yovibiou evepyononŋцє́vou anó IFN

ISRE：Interferon Stimulated Response Element：nepıoxú nou avtanoкpíveral kal evepyono1eftan anó IFN
JAK：Just（Janus）Another Kinase：aкó μ a pua kivóon í pua kiváon＇Iavós＇
JH：JAK Homology domains：Aeıtoupynoí nuprives nou epqavi弓ouv opodoүia

Kb：ki\obáon（Kilobase）（K8）
Kd：kiAoס̋àtóvıo（Kilodalton）
Labelling：ońpavor

Ligation：σ Úv δ eon
Li／Urea：Aí i_{1}／oupia
Lymphocytes：גeम甲окúttapa
M：μ opıaxótŋra（Molarity）
Mb：цعүabáon（Megabase）： 1.000 .000 Báoeıc（M6）
$\mu \mathrm{gr}$ ：јккроурациа́ріо：1／ 1.000 .000 тои үраццарі́ou

$\mu l(\lambda): \mu к \rho \delta \lambda_{i \tau} \rho o: 1 / 1.000 .000$ zou Aítpou
Mutation：jeta入入ayí（mt）
MW：मopıaкó Bápos（MB）（Molecular Weight）

NEO：veouusivin（Neomycin）
 onaor μ át ω V DNA
NS：μ थ عiónóg（Non Specific）
Nuclear：mupquviкóc（N）

ONPG：o－vitpo甲aivú λ－ 8 －D－yadakrooi $\delta 10$

PCR：aגvoiőotń avtíbpaon noגupepáons（Polymerase Chain Reaction）

Pellet：iZ_{7} пu
PKC：Protein Kinase－C：пр $\omega \tau$ teivikク́ kiváon－C
Plasmid：mגaбuí 8 io
Polylinker：no

Pr：поגukג ω vikós avtiopós про tņ avoconoíqons

Promoter：unokivntis
Proximal：eYyúg

 tupooivns
P－Y：qocopotupooivn（Phosphotyrosine）：tpomononцévo apuvo̧̧ú
Py：muptusíivn（Pyrimidine）
RA：$\rho e \tau 1 v o \check{k}$ ó ofư（Retinoic Acid）

Relative：oxetikós

Repressor：кataoloגéas
Resistance：av θ ektikótnta（re）
Restriction enzyme（s）：हैvदुupo（a）пथplopiapoú
RNAases：ε v̧̧́upa nou uסpohưouv RNA
RSV－LTR：Rous Sarcoma Virus－Long Terminal Repeat：paкpiá akpaía eпavá入ŋ甲耳 tou RSV 10 ú
Sense：к ω ס̋úóc（s）
Sensitivity：euancөnoia

$\mathbf{s p : ~} \mathbf{\varepsilon 1 \delta ı} \mathrm{Kö}(\mathrm{c})$（specific）
SPH：oqryyooivn（Sp）（Sphigoshine）
STAT（s）：Signal Transducer（s）and Activator（s）of Tranecription：pera8ótnc（－es） щףvuর́t
Sticky ends：проeそéxovta áкра（бupBatá peta̧ú тouc）
STR：oraupoonopivn（S）（Staurosporin）
Subcloning：vпок $\lambda \omega$ vопоínon

Supercoiled：uпtepeגık $\omega \mu$ évos
Superinduction：чпереппаушүи́

T：Өupivn（Thymidine）
TAP（s）：Transporter（s）associated with antigen presentation：$\mu \varepsilon \tau \alpha \varphi о р \varepsilon ́ a c(-\varepsilon i c)$ cпȩepyaouév．v avtiyóvตv
THEO：日roqıגivn（T）（Theophilin）

－trans－：$\mu \varepsilon$ парépӨaon прютeivns
Transcription factor：petaypapıкós парáyovta̧
Transformation：цетаодпиайои́я
Truncation：poptakó¢ акрютпріабио́я

Tyrosine kinase（s）：kiváonieç）tupooivns

VAN：Bavaôuć of̧ư（V）（ $[0]$－Vanadate acid）
Vector：¢ор民́ac
vs：évavel（versus）
＂ x ＂：甲opés（fold）
Yield：anóbioon

皿IESNTEI

1. TO MEIZON EYMHAEFMA IETOEYMBATOTHTAE TAEHエ II (Major Histocompatibility Complex class II: MHC-II)

 na0oyóva (pathogens) anó ta ev®oyeví aviryóva (antigens) tou §eviotń (host) кal

 avtîóv $\omega \mathrm{v}$.

 avtiyóver ${ }^{1,3,10,12,18}$.

To oúpirdeypa avtiyóvou/MHC-II ouviotá tov kupıótepo popıakó

 avtiyóvตv (eukóva 2) ${ }^{12,18,}$

 عvס́onגaopatıkoú ס̄к七úou (TAP; Transporter associated with Antigen Processing)

 пou anoikoסopoưv tous poduaprvous kuteapikoús ninevopoúg

Iotooup6atótŋıac (MHC)

Yovıסıakoú סimhaoiaopoú kai eminoyŕs í yoviôakrís petarponíf (gene conversion) evós apXéyovou $\mu \eta$ поגuцоряıкои́ прóठроцои yoviסiou. Me

 ousoyeveıaç ${ }^{2,4}$. Ta TAP1,2 yoviסia (Transporter(s) associated with Antigen

 avtiyóvov. O popiakós xapaktŋpı

 Necrosis Factor) xal HSP70 (Heat Shock Protein) ${ }^{2,4}$.
(6) Movtikoú (eıkóva 3B): O yevenikóg tóno̧̧ tou MHC oto novtíkı evtoní̧etal

 10XUро́ пגeovéktпpa عגaXıotonoínons t twv yevetık

 3B avtioron ${ }^{\text {a }}$.

Eucova 3: Mopioký opyavaan the yevopukric repiozíc tou MHC, atov avepomo (A) zal otov

rotooupbatótntac tágnc II

avtiyóvov ı дтooupBatótntas táenc II

 นáそņ II Yov18í $\omega \mathrm{v}^{5,9,27,44}$.

 eniלpaon tns IFN－$\gamma^{5,9}$ ．

I上TOEIAIKH EKQPAEH TRN TAEHE II ANTITONQN
（5，9．44．54）

В－дец甲оки́ стара
Макрофа́үа
$\Delta e v \delta$ рıтiká kúttapa
Өчикко́ ε m日ílio
Evepyonot μ éva T－kúttapa

ENEPTOIOIHTE EKФPAГHะ TRN TASH乏 II ANTIIONSN
$(5,9,13,14,15,16,17,21,34,37,43,47,61,200)$

IFN－ Y ：	
IL－4：	B－kúťapa，μ акрофа́ya
TNF－a：	Махроча́үо
GM－CSF：	Maxpoøàү
IL－2：	T－kutucpa

ANAETOAEIE EK $\Phi P A \Sigma H \Sigma ~ T \Omega N ~ T A \Xi H \Sigma ~ I I ~ A N T I I O N R N ~$
（5．9．16．55．58）

IFN－a／6：	
CSF－1：	Махрофа́үа
	B－kưrrapa
PGE2：	В－кúrtapa
LPS：	Maxpo¢́àz

 tapıкńs autoavooíac (BLS: Bare Lymphocyte Syndrome) $\mu \varepsilon$ B-кגஸ́vouc vyeıஸ́v

 Me пeıpáata o兀a日epŕs ס1apoduvons (stable transfection) twv RJ2.2.5.

 cDNA кגف́vos CIITA- o omoío euӨúvetal yı tov petaAlayuévo panvótumo tıS RJ2.2.5. oeıpás ${ }^{76,84}$. H цорıккí adגoíoon lou CIITA (Class II Trans-Activator)

Mopıakí aváduan dx $\lambda \lambda \omega v$ opá $\delta \omega \mathrm{v}$ avoooavenápкerac (complementation groups:

 otov дívaka 2.

$\begin{gathered} \text { Oцáśa } \\ \text { oupirinpospatikótntac } \end{gathered}$	$\begin{array}{r} \text { Moрıаки́ кат́ } \\ \text { апо́ реєаурачіка́ } \\ \text { tov virokiv } \end{array}$	Гoviסıaký pekadayń
(76,84,85,86,87,88,89,92,94)	($48,84,85$)	$(75,76,77,84,85,88,93,94,95,212)$
$\xrightarrow{\text { ALS2 }}$		
BCH	+/-	MOPIAKH A \wedge MOI Ω SH
RJ2.2.5.	$+$	TOY CIITA
B		
BLS1	-	
Ramia	-	OIKOTENEIA RFX
Nacera	-	
$\underset{\text { SJO }}{\mathbf{C}}$	-	
Robert	-	RFX5
6.1.6.	-	OIKOTENEIA RFX

 кUK

 tou X_{1} unoguonciou.

 Báoeı̧ mupıpıíivnc (Py: rich), to onoíov ©́pa evıoxutıá otnv evepyótnta tou

 a λ hnhouxíes avtíotoix $\alpha^{5,25,31,79 .}$

 แnokivntús ${ }^{5,23.215}$.

 цетаурафикйя очинерічора́я:

 enayóuevn evepyómnta tou unokivnt ${ }^{21.31(\mathrm{DRa})}$.

 бUのtatıkй éкeppaon tou IX yoviסiou ${ }^{5,50,53}$.

A．

B．

1．3．3．2．Trans－ретаүра甲ікоі́ пара́yovte؟

 ouļ avtiotonxes cis－a入入ףhouxiec tou yovioiou otógou ${ }^{5,9,30,24}$ ．H ouvepyatıkŕ

$\Delta о к ı \mu ́ ̧$ oápoonc éxppaong (expression screening) Agt11 avaouv8ิuaouévov

 (P. Emery каи B. Mach: пооютпкі́ emкоivovía).

tous he cis-otorxeía óo кat oe autó ins pú

 mRNA ka1 DRa mRNA eppavi<̧ouv avtíotpo甲n oxéon ${ }^{5,62.215}$.

 นá $̧$ nc II yovi8í $\omega v^{5,9}$.

 toug ठ̛́o kaגá Xapakinpıopévou̧ petaypaqıoús mapáYovtȩ Oct-1 kal Oct-

 avriono1xou DRa unoxivntris. ${ }^{2} 215$.

 puӨpiotikáv cis-бtolXeicov paivetal va anaiteítal yıa to popıakó dú үıopa

 5.

YB-1: Apunuzós pueprotis

2．IIP Ω MA MOPIAKA FEFONOTA TH乏 META $\triangle O \Sigma H \Sigma ~ T O Y ~ \Sigma H M A T O \Sigma ~$ TH乏 INTEPФEPONHD（IFN）（IFN－signalling）

2．1．Evepyonoinon yovibicv μ éo ω IFN－a／6

 mivaka 3）．Mopıakí үevetikí aváaưn twv yovioíiov nou evepyortoloúvtal arió

 avtiotonyou Yovilíou ${ }^{100,102,103,111,119,162,205}$（mívakac 3）．

ГONIAIO
cis－PY＠MI工TIKO ETOIXEIO

ISG15
ISG54
GBP
9－27
6－16
HLA－class I
ISRE；KOINH ПEPIOXH（consensus）：
> $\rightarrow \quad \rightarrow$
> cagTTTCggTTTCce tagTTTCacTTTCco tocTTTCagTTTCat aegTTTCtaTTTCet gagTTTCatTTTCce cagTTTCttTTCTcs TTTCNNTTTC

 $6 \mathrm{e} . \mathrm{H})^{104,107,118,141,204 .}$

 modumerríia popıakoú bapous $113 \mathrm{kd}, 91 \mathrm{kd}, 84 \mathrm{kd}$ каи 48 kd avtiotorza 101，108，110，123，127．

 ótı ouviotoúv tov пupriva tou סuvapikoú tns petaypapikńs evepyonoínons (transcriptional activators) tou ISGF-3 ounпдо́кou ${ }^{108,110.123 .128,141 . ~ M o p i a k y ́ ~}$

 tn乌 JAK-onkoyéveraç (TYK2 kal JAK1: BA. нeqá入a1o 2.4.) ${ }^{169-173.177,181 \text {, to orroiov }}$

 evepyonoínoŕs rouc yivetal petá tŋ̧v eíoo8ó touç otov kuttapıkó nupriva ${ }^{83,171,191,}$ ónou kal autoouүкротoúvtal (self-assembly) $\mu a \zeta i$ i $\mu \varepsilon$ пnv ISGF-3y uro

 pódos tns ISGF-3a unopová8as ounv petá8oon tou ońpacos tns IFN-a ${ }^{138,} 144$ оठ̃ eival: $113 \mathrm{kd}:$ STAT-2, 91 kd : STATla kal 84 kd : STAT16141. H popıakř перrypapp tņ petá8oons tou ot́patos tns IFN-a ota ISGs Yovi8ıa amokplés bíbetan otŋy

 кера́дсио 2.6.).

KYTTAPIKH
MEMBPANH

 Site), то onoiov eppaviくetal navó kal avaykaio yıa пnv enayópevn anó IFN-Y

 GBP Yovıठiou (GBP: Guanylate Binding Protein, pópıo kutraponגaopatikris

GBP
Fc γ R
ICSBP
IFP-53
IRF-1
Ly6E
Keratin

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \quad \downarrow \downarrow \\
& \text { aTTaCtct ARA } \\
& \text { tTtcCcagAAA } \\
& \text { tTTcTeggAAA } \\
& \text { aTTcTcagAAA } \\
& \text { tTTcCecgARA } \\
& \text { tTTcCoghan } \\
& \text {-TTtCtcoAR- }
\end{aligned}
$$

GAS: KOINH MEPIOXH (consensus):
 TTNCNNNAA

Mopıakí yevetikń avákuon tou povonazioú pecáo̊oong tou oŕpazos tņ IFN-Y

 nons tou avtiotoixou yovibiou oбóxou ing (strong transcriptional activator).
 ano IFN-y mupŋvik ω v GAF (Gamma Activated Factor) $\mu \varepsilon \tau \alpha ү \rho \alpha \varphi ı к \omega \dot{v}$ параүóvт ωv

 регаура甲іко́s mopdyovta ${ }^{141,154,204 .}$

2.3. Méaiגaypévec кutzapikés oeıpés mou aठuvazoúv va avtarokpı日oúv oinv סpáon ms IFN

H amokatáotaoŋ tou $\mu e x a \lambda A a Y \mu$ vov panvótumou（rescue）otiç névte

Opáóa очрплпрюратіко́тпъая	Mopiaxós onpazo8óェns		Гоvi81akń a入入oícon
	IFN－a	IFN－y	
	－	$+$	TYK2
U2	，	＋／－	p48 (ISGF-3y)
U3	－	－	STATla（p91）
U4	－	－	JAK1
Y^{1}	＋	－	JAK2

лерфокіує́и

 ［Just Another Kinase（s）in Janus Another Kinase（s）］kıvaoẃv tupooivns eíval

Gípãos tóao tņ IFN-a/8 óvo кal autoú tņ IFN-y (nivakaç 5) ${ }^{171-173}$. H
 ouYYevela a入入qגeпiópaonc twv TYK2 kal JAK2 kivaoáv tupooivnc pe tic

 ouvtпpп

 катáotaon poplakoứ mieovaøцoư (redundancy) í éva auvepyatikó paivópevo

Пеıpápata advoıiotńs avtípaons noגuprpáons (PCR: Polymerase Chain
 oठท̆

YIIO $\triangle O X E A \Sigma$ - Λ ЕМФОKINH

JAK-OIKOГENEIA
$\overline{\text { IFN-a/B }}$
IFN-y
JAK1, TYK2
Epueporonntivn
JAK1, JAK2
Au६ntikrí Oppóvn
JAK2
Проגактiv! JAK2
G-CSF
IL-6, LIF
IL-3, IL-5
IL-2, IL-4

JAK2
JAK1, JAK2, TYK2
JAK2
JAK3, JAKI

[^0]

2.5. Dopŕ kal Aervovpyia twv STATs (Signal Transducers and Activators of Transcription) petaypaêk ωv mapayóvt ωv

 tŗ JAK2 kiváons euvooúv tףv סiapopiaký adAndenibpaon pe tov STATla
 Homology) גeıLoupyıkoú tou пupǵva (domain) avayvopí̧eı ta pwo甲opuhıcuéva

 áкро ${ }^{137,138,141 .}$

 IFN-ү emtuyxávetal póvo $\mu \varepsilon$ tnv ठiapóduvon tou STATla yovioiou, yeyovóc nou amosibetai atnv aס́uvapía tou STAT18 (p84) petaypapıкoú napayovta va avayv

 $\varphi \omega \sigma \varphi \circ \rho \cup A 1 \omega \mu$ éva tugoolviká katádoina tou avtiotorxou jopiakoú exaipou ${ }^{141,144,145,171,204}$.

 STAT1, 2, amoкáגuчay tnv úmap̧n pıas peүáAns onkoyéveıac STAT

 मésoug eng STAT onoyéveias aпó etepoyeveic popiakoủs oпцato8óteç ${ }^{115,118,133,146,149,164,185,206}$ paívetal otov nívaka 7 :

MEAOE STAT-OIKOTENEIAL

MOPLAKOE EHMATOAOTHE

STAT1a, STAT16, STAT2 STAT1a STAT3 (APRF) STAT4 STAT5 IL-4 STAT (STAT6)

IFN-a/6 IFN-Y 1L- 6 продактivi IL-4

 onǒyevelas ${ }^{99,135,142,147,153,154,171,220 .}$.

2.6. Dори́ каı גertoupyía tшv IRFs (Interferon Regulatory Eactors)

 p48 unopová8os otnv cISRE (core ISRE) mepıoxí iows otepeítal brodoyıḱs oпpooíac kan пapatпpeítal m日avác póvo in vitro. 6) Me tnv Spáon tnc IFN-a/6

 кaraotodéa-dominant negative regulation- $\left(e_{1} \text { кóv } \alpha \text { 8 }\right)^{135,136,141,152,155,156, ~ 163,171 . ~}$

BEAOE XPONOY TH乏 KINHTIKH乏 TH乏 TONIAIAKH2 AПOKPIEHE THE ISG OIKOTENELAE ETHN $\triangle P A \Sigma H ~ T H \Sigma ~ I F N ~$

 umoБохє́a IFNR（ 6λ кєipevo）．

3．MOPIAKOI MHXANIइMOI THE $\triangle P A \Sigma H \Sigma ~ T O Y ~ E 1 A ~$ OFKOANTILONOY（E1A and Interferons）

 кuttápou ξ_{ε} viotí ${ }^{191,193 .}$

 прюteîveg tng onkoүéveras tou petivobגaotepatos（ Rb ：p105 kal

 фaíveta vneúӨuvn yıa tnv evepyonoínon tou c-jun petaүpaøıкоú napáyovta,

 otóxouc ${ }^{189,190,192 .}$

 кบธtapikéc वeıpéç ${ }^{218}$.
 aס̃evoioú, SV40 'Simian Virus' ka1 HPV16 10ứ Өnג由́patos avtiotolXa, emtpéneı
 E1A óao кaı anó ta T kal H7 avtiyóva, yeyovós nou ouviotá to прف́to popıaкó
 veoriáía ${ }^{194,218}$.

 otorxeiou - t $\omega \mathrm{v}$ táşns I amoxpivópev $\omega \mathrm{v}$ үovi $\delta i \omega v$.

 «́Өıкто го ISGF-За цєъаура甲ико́ оч́иплоко ${ }^{165,188,217}$.

 a8evoíoú ${ }^{194}$.

 va avaүv

 unopováac, ${ }^{165,186,196,216,218 .}$

4. TO MONOIATI TOY PETINOIKOY OEEOE (R.A.)

 -乌éoç 52.199,201.202.

 ка日oрі弓etal anó tnv de novo petaypaøии́ evepyonoinon twv p50 каи p65

 ретачрарıки́ evepyonoínoŋ.

 xорıиікои́ парáyovta ${ }^{219.221}$.
 (ligand).

5. ЕKOHO® THE HAPOYЕAะ $\triangle I A T P I B H \Sigma$

 umoঠooxéa otous yovıరิıkoúc unokıvntȩ́ otóxov̧ Ea kal E6.

 arókptan tou Ea unokivnttri.

Ta dertoupүıká ouбtatiká otoxдeía tov povoratioú tng IFN-y anó rov

七ótŋтac 七ágnc II.

 tюv גeıtougyiáv tou avooodoyıkoú ouotŕpatos, anó to enine

$\mathbb{Y} \mathbb{I} \mathbb{A}$

$\mathrm{MI} \Theta \mathbb{\triangle} \triangle \mathrm{O}$

1.1. IPOEAEY

 peגétns прой 1 Өav anó tı̧ akódouӨȩ etaıpeí̧: PROMEGA, MERK, UBI, BOEHRINGER MANNHEIM, BRL, BIORAD, ALDRICH Co., B.D.H., SIGMA CHEMICALS, SANTA CRUZ, PHARMACIA, UNITED STATES BIOCHEMICALS (USB) kal STRATAGENE.
 anó tic eqapeíȩ MINOTECH, NEW ENGLAND BIOLABS, BRL, PHARMACIA, PROMEGA kai STRATAGENE.

 GIPCO/BRL kal ICN.

Ta $\rho a \delta 1 o o n \mu a \sigma \mu e ́ v a$ vouk $\lambda e o t i \delta i a ~ a\left[{ }^{32} \mathrm{P}\right]-$ dATP, $\alpha\left[{ }^{32} \mathrm{P}\right]-$ dCTP, $\gamma\left[{ }^{32} \mathrm{P}\right]-$ dATP,

 evé oı pepbpávec vıтpoкutтapivдя anó tnv SCHLEICHER кaı SCHUELL.

1.2. BAKTHPIAKA ЕTEAEXH KAI ПAA®MIDIAKOI ФOPEIE

 (INVITROGEN), pBluescript KS/SK + (STRATAGENE), 872(-40IFNB)CAT ${ }^{1}$, ol

 otoue Sambrook et al. 58 .

1.3. BAKTHPIAKE KANAIEPTEIE

[^1]
1.4. KYTTAPIKEL EEIPE

 Jurkat, HL60 kai N-terra2. H HeLa kuttapıkĭ oeıpd avtınpoowneúeı
 Raji кútтapa про́́pxovtai anó $\lambda \hat{\mu \varphi \omega р а ~ B u r k i t t ~ к а ı ~ \varepsilon \mu \varphi a v i \zeta o u v ~}$

 T-kurráp $\omega \mathrm{v}$.

 тератокаркívตца поvтıкои́.
 ava甲opés пepréxovtal otov katádoyo tņ ATCC (American Type Culture

1.5. OPEHTIKA MELA KAAMIEPTEIAS KYTTAPIKSN EEIPSN OHAATIK $\Omega \mathrm{N}$

 yevtapuкivgs.

8. MIR (2) $\mathrm{O} \triangle \mathrm{OI}$

2.1. AHOMON $\Omega 2 H$ NOYKAEINIKQN OEESN

 перıүра́цетаı avaдutiká artó tous Sambrook et al. ${ }^{58}$.

 nepiypáqovtal anó tovç Sambrook et al. ${ }^{58}$.

ayapóZns

 (Low Melting Point Agarose: BRL). Tédoc, oe akpaíec nepirtóoeı̧ ónou ๆ пpoç

Me akonó tпv anoцáкрuvon avemӨúpntcv mapanpoïóvtov tns opyavikŕs

2.1.5. Aпоро́vюoŋ oдikoú RNA anó kuťapikéc oeıpés,

 artó touç Sambrook et al. ${ }^{58}$.

2.2. ANAAYгH NOYKAEINIK』N OEESN

 DNA-nodupepáons I.

 кечáда1о 2.3.3.).
 kiváon (T_{4} Kinase).

 ava入utiкéc גeптоии́peiec перiypáqovtai aпó touç Sambrook et al. ${ }^{58}$.
 labelling).

 reprypápovtar antó rouȩ Sambrook et al．${ }^{58}$ ．
8）Nick Translation．

 neprypápovtaı anó touç Sambrook et al．${ }^{58}$ ．

2．2．2．Y6pıסопоínoŋ vouk

 Sıádupa u6pıסonoínons to onoíov nepléxex： 7% SDS， $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$

 aпóhutๆ evepyótņa tou 8ıahúpato̧ ubpı8onoínons tou avixveuti̊ そenepvoúae та $106 \mathrm{cpm} / \mathrm{ml}$ ．
 סıaגúpatoৎ દ́кnduons（ 5% SDS， $40 \mathrm{mM} \mathrm{Na} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}, 1 \mathrm{mM}$ EDTA）кац

2．2．3．Aváduon katá Northern oגıкоú RNA

 апоঠ̋ィ
 $\delta ı \lambda$ úpatoç peraqopáç（transfer buffer） $50 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ pH：7．2．Tia
 ex日con autŕs ae UV（ 312 mm ）axtivobodía yıa 2^{\prime} кal tedikŕn toroӨétnon otous
 Sambrook et al． 58 ．

(restriction digest)

 Báon та пршто́коג入a поч перічрáqovtal otou̧ Sambrook et al. ${ }^{58}$.

пגабрıઠıaкळ́v кабабкеuผ́v (deletion analysis)

 $5^{\prime}-\Pi \rho \circ \varepsilon$ §́x

 перıypáqovtal ava入utiká anó touc Sambrook et al. ${ }^{58}$.

popíwv пגaopıס̊ıaкoú DNA (sequencing)

 (USB: Sequenase TM kit. Version 2.0).

 кגáбдатоя Klenow (N.E.BIOLABS). Eкрета入Aevópevoi tnv $5^{\circ} \rightarrow 3^{\circ}$

 evepyórnraç, twy Sl xal Mung Bean vouxגeacév бe povókג ω vo DNA,

y) Avubpáoele oúvBeans yopiov DNA (ligation). H avtiópaon autŕ

 §erepvoúre ta 5 u Weiss/pl.
 tiç napanávo [3.] popraкéç avaloyíc, au̧̧ávovtaç póvo tov xpóvo enćaoņ

 Sambrook et al.58.

 7.0 kcu 20 mM RbCl 2 .

 MOPS pH: $6.5,75 \mathrm{mM} \mathrm{CaCl} 2_{2} \mathrm{Ka1} 20 \mathrm{mM} \mathrm{RbCl}{ }_{2}$.

 45.

 tous Grunstein wal Hogness ${ }^{165}$.

2．3．TEXNIKE ANIXNEYEH工 IN VITRO AAAHAEMIAPAEERN DNA －IP Ω TEINHE

 ยท

 кスáouazos ${ }^{108,120 .}$

 mM Tris pH：7．4， 1 mM EDTA， 20% glycerol， 1 mM DTT kal 1 mM PMSF．
甲u\áooovtal otous $-80^{\circ} \mathrm{C}$ ．

Mobility Shift Assay: EMSA)

 aкоДoúӨ aç $^{108,210:}$
 кеца́えага 2.2.1.a,6).

 otous $30^{\circ} \mathrm{C}$.

 Mia тUmikí avtiopaon oúvieons (binding reaction) mepleíxe ta asódou θa ovotatisá:
 $-10^{8} \mathrm{cpm} / \mathrm{pgr}$.

 óyкou tns avtiopaonc.
To Siáduna oúvíeonc eíxe tny akóגou日n oúotaon:
12 mM Hepes-KOH, pH: 7.9
4 mM TRISCL, pH: 7.9
60 mM KCl
1 mM EDTA
1 mM DTT
12% glycerol

methylation interference analysis)

 tn̄ texvikíl npoataoiaç anó DNAse (DNAse footprinting), ta пеıрápata

 tnv xprion tns T_{4} kiváong.

 enळ́aons tou DMS emhéyovtaı eurrepıáá).

 Stáhupa éкネouoņs:
siáduй éкдouans
$0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{COOH}$
$0.1 \mathrm{M} \mathrm{Mg}(\mathrm{COOH})_{2}$
1\% SDS
1 mM EDTA

 mapouoía 10－20 $\mu \mathrm{gr}$ tRNA．

 20% ．

（crosslinking）

 акриланіб̈пs．

 buffer）yıa 2 ळ́pes atouc $4^{\circ} \mathrm{C}$ ，to onoiov anotedeítal anó ta akódou θ a бuб兀атıká：
4% 甲ориа入 δ 厄ữ δ n（MERK）
100 mM Tris， $\mathrm{pH}: 8.0$
100 mM Boric Acid
2 mM EDTA，pH： 8.0

 ououg $4^{\circ} \mathrm{C}$ ．
 прळгદivตv（ 50 mM Tris，pH：8．0， 2% SDS， 100 mM DTT， 10% glycerol）каи

 17%

2．4．TEXNIKE』 ANIXNEYミH』 IN VITRO AAAHAEIIIPAEESN DNA －ПP

 avaגutıкá aпó tous Graham kaı Van Der Eb ${ }^{209}$ ．

 nitrophenyl－6－D－galactoside）${ }^{211}$ ．

3．1．НААЕMIAIAKOI ФOPEI乏

3．1．1．O 甲opéac pLSV 0 CAT（pLSV0）

 try Boñeria tnc Exo III voux

 Ace I－Sph I（350 bp）$\mu \mathrm{\varepsilon}$ 七ov noגuouvôétn（polylinker）tou pUC1941．H arouárpuvon tou thńpatos tou noגuouvठétn Sma I－Hind III tou pL51CAT

a）KAwvonoinon tņ eyyúc nepioxņs tou unokivntri tou Ea yovioiou o亢nv Xba I

 vбро́גvoŋ

8）Грациопоínоп $\mu \varepsilon$ Sph I Yıа норıки́ проотаоía тп¢ катаокеии́я каи

 III voukגeáons．

3．1．2．O qopéą pGSCAT

 tцípatos DNA tou urokivntí tns a－opaipíņs（ $-500 \mathrm{bp},+20 \mathrm{bp}$ ）otnv Xba I

 tou Ea unokıvnuí oto pGSCAT بорéa．

3.1.3. O фopéą $\mathrm{pRC} / \mathrm{CMV}$

 (transient overexpression) tんv JAK2 кal STAT1 (p91) cDNAs, ta onoía $\mu \varepsilon \tau \varepsilon ́ x o u v ~$
 nupŕva ${ }^{141,168,170,171}$. To cDNA m̧S JAK2 kıváoņ (Just Another Kinase ${ }^{168,171 \text {) }}$
 evట́ to cDNA tou STAT1 petaypapıkoú napáyovta (Signal Transducer(s) and Activator(s) of Transcription ${ }^{141}$) unok $\lambda \omega$ vonominnke ano tov Bluescript $\mathrm{SK}^{+} /$.
 Өと́aeıç tou пoגuauvóétI tou pRC/CMV ${ }^{143}$. O pRC/CMV (INVITROGEN)

 (constitutive) Êeyxo tou unoxivnif (promoter-enhancer) tou CMV

$\Sigma_{\text {Xípa }}$ 1: Mopıakí avatopia tov pRC/CMV qopéa

[^2]
3．1．4．O 甲орє́ αc pXM

 прமteĭvŋ̧ кג
 tou óxıpou yovı8iou vou aßevoïoú vúnou 5 （Adenovirus－5，major late promoter：

EXípa 2：Moparaxi avarouia tou pXM بopéa．

3．1．5．O qopéaç LK440

 нoduouv 8 étn 七ou LK 440 甲opéa ${ }^{162}$ ．Eпakódou θ a donóv to yovísio tou ICSBP
 10XUPOÚ UHokivŋrí ths aktivng，nou ouviotá kal to onpavtikótepo kpitripio
 o̊ıapóduvons ékppaons．H popıakń opyávตon tou LK440 popéa bí8etal ws aколоúө $\omega \varsigma$（ Σ Xŕpo 3）：

[^3]

玉xripa 3: Mopuakrí avatopióa tou LK440 ф̣péa.

3.1.6. O بор́́aç 872(-40IFN6)CAT

O Xwoic umokivnuŕ (promoterless) qopéas 872(-40IFN6)CAT ${ }^{6}$
 каи GASL cis-puӨ

[^4]

ミXйpa 4：Moplakrí opyávoion tou بopéa 872（－40IFNB）CAT

3．1．7．Aג入or بopeíc

 KSII＋kal pBluescript SKII＋пथpıYpáqovtal גeпtourpás anó touç Sambrook et

 mac LTR（Long Terminal Repeat）пepıoxíc，yeyovós nou пpoc甲épeı uwndá
 tı̧ перıпt 10．1．2．）．

[^5]
3.2. OAITONOYKAEOTIDIA

3.2.1. Avixveutéc nou unokivntif nou Ea yovioiou

3.2.2. Avixveutés tou unokivntin tou EB yoviöiou

3.2.3. AviXveutés á入A ${ }^{2} \mathrm{~V}$ unokivntév

 a $\lambda \lambda \eta \lambda o u \chi i ́ \varepsilon, ~ \tau \omega v$ vnokivクt

a) ISRE (Interferon Stimulated Response Element) tou ISG54 unokivrifi (-109 , $80)^{100,101,107,123}$.

ISG54

gatcTCACTTTCTAGTTTCACTTTCCCTTTTGTA
6) GASL (Gamma Activated Sequence: Large element) tou GBP unokıvnví (-138, -104) ${ }^{111,119 .}$

Y) GASS (Gamma Activated Sequence: Small element) tou GBP unokivntri.

 emkáduษn aidndouxias pe to ISRE otonxeio, to onoiov avtanompivetal

GBP
ctagAGTTTCATATTACTCTAAATC

 [core] avayvópıons tou BamHI перıopıotıкоú ev̧úpou), 七a oпоía xpnoípeuav

 oúvBeonc, órtws tou 872(-40IFN6)CAT ${ }^{114,210}$.

荗IOT正

1. ANAAYEH T ΩN cis-ETOIXEISN TOY YHOKINHTH TOY EA TONIAIOY

 onoíwv o xuplotepos atóxos ทitav tóao η tautonoínon tns 'eגáxiotns' סopıká

 по入uđuv8́écn tou pLSV ${ }_{0}$ CAT 甲орéa ${ }^{41,79 .}$

 10).

 ios 91 CAT.
 זпर Xpríon tou evそúnou Bal31

 перıopıotiká otqv EcoR I 3' avayvopiotikŕ θ éon tou pUC19 moduouv8étn

 Өávou).

 проo8i8ouv ka1 tnv ovopato

 yovzoiou

 oxipáv.

Tóoo o B-avӨpஸ́rıvoç Raji kuttapıóş kגஸ́voç óvo kal o avtiotoryoç \mathbf{A}_{20} tou

 avtíotorXous unokivnté $\varsigma^{41.79 .}$

 nou avaגoyoúv orŋv oxetikŕ CAT-evepүórŋta (Relative CAT activity: BA.

 $\mu \varepsilon \lambda \varepsilon ́ t n ̧ ~(\varepsilon ı к o ́ v a ~ 12) . ~$

 evepyótпta, ouviotávtac étal to onfeío avaqopác (1) tns oú үкрiaņ t tov

 avtíatoryou чоре́a éкчраоп¢ PCMV_{6}-lacZ.

ISRLi: Eppaviלeras w¢ eגappá apvŋrikó deıtoupүıó ovorycío (negative element),
 САТ кан -140 CAT 5^{\prime} eג入eíqeav - qaíveqal va enáyeı peqaypoqiká tov Ea

 oı Raji avӨpळ́mives oeıés epqaví̧ouv גıyótepo évtovo tov apvritıкó avtó X ρ ракегí ρ а.

 Like) кai ISR $_{\mathrm{n}}$ (Interferon Stimulated Region - a) tis vées (novel) rautonompévec

《

 evepyoús uiokivq̊tés.

 vпokivクŋrí (eikóva 13).

H anouákpuvon vou TATA ouvtnpпиévou orotxeiou ($-353,-43 \mathrm{CAT}$) 8 ev

 xapaktripa evóc ioxupoú Өetıkoú evioxutikoú deitoupyikoú otongeiou (enhancer element).

 ouиперıцорá тou Ea yovıBíou.

Ea 3° deletions

 кúctopa novcukoú II, 8) Jurkat, CEM: avCónmves T-גєpuoßhactuxéc oxipés II, e) RJ225:

 ouphreprepós pe tic A_{20} кал H_{9} бelpés.

 evepүótŋŋа.

ruv hapouoía tou N Fк B otot X हiou

 TNF- α

 rдя а-б甲alpívns.

 évaptnis uns CAT－μ taypapis．

1．3．इuくńтnon

 no $\mathrm{DRa}^{22,23,25,28,29}, \mathrm{DPa}^{21}, \mathrm{~Eb}^{79} . \mathrm{Aa}^{8} \mathrm{ka1}$ 七nv＇Invariant chain＇50（n onoía Bon日á

 gene expression) ${ }^{5}$.

 anó to TATA tnc α-б甲apivns $\delta \varepsilon v$ anok λ eieran).

 tou DPa yovz8iou tautonoritan otnv meploxí -107, -102 (anokadoúfevo J-

 2).
 tns Yoviblakris táņ̃ Il onkoyévelac ouvepya̧ovtal in trans pe ric X-

B-IETOEIAIKOTHTA KAI IFN-Y EITAГתTIMOTHTA

 еуерубгдгс.

 Ea vmokıทntท́.

七á̧ņ II avtiүóvตv عíval o mapayovtaç vékpoons óүкоu TNF-a (Tumour Necrosis

 TNF-a anó tqv $\mu \varepsilon \mu$ ерávŋ otov Ea unokıvŋrí

 UHepoúprioxa, ta onoia evepyonoioúvtal tóco anó TNF-a óvo kal anó IFN-y kal

 mepıoxи́s $(-42,-28)$ tou $\mathrm{Ea}, ~ \eta$ onoia, boov apopá touגáxıtov to Aa Yovióı, éxeı
 tou TNF- ${ }^{51}{ }^{51}$

 yeyovós nou éxeı embebalwei in vivo кal anó ave乡aptntȩ pedéres

2. MEAETH T ΩN trans-METATPAФIK ΩN MAPATONT ΩN HOY £YNAEONTAI ETHN ISR α HEPIOXH TOY YHOKINHTH TOY Ea roniaioy

2.1. Tautonoínon evóg véou petaypapikoú oupirdókou (ISFa), to
 IFN-Y

 Interferon Stimulated Factor-a (eщóva 16).

$\operatorname{HELA}_{y}(\mathrm{~h})\left[0 \mathrm{~S}_{-\infty}=\right.$

IS $_{5}$

mapayoves nou aAdnAembpoúv pe ta ISRE/GAS otoixeia.

 (eıкóva 17).

 vпokivnど！．

 ゆaivetal va ouvסéetal перıбоо́tepo＇Xaגapá＇otఇv ISR3 пeploxí autoú79（6A．

 mepioxńs tou GBP umokivntrí（6A．Eicayตyrj，кeழaגalo 2．2．），$\mu e \dot{\sigma} \sigma$ tng in vitro
 （e1kóva 18）．

 пирпৃทıко́ оч́цпдоко．

 vou ISRa equvoú), E3 (ISR1, ISR2 каи ISR3), GBP (GAS) ка1 ISG54 (ISRE). H паро́ноя

 ohiyovovk

 avixveviovtas ova Roji av0póntiva exXuliopata.

とou ISRa ocolxeiou μ e inv ouvinpnuévn H mepioxń

 vпокıทntŕ ($B \lambda$. Yגıká kal MéӨoठol, кeqáגaso 2.3.4.). Oı Báaeıя yovavivns nou

 ounv Өéon -106.

 парouoná̧eta otqv eıкóva 20.

 avixveuti gva pe Bs kat Ba rouc quvBeठiepevouc (bound) pe ta ISFa oúpitioka kal emi

 1каvónteद ретаура甲ікд́я evepyonoinons (transcriptional activation), ouviotá
 aфорá zıç кuttapıkéc aetpéc Jurkat.

 avixyeutí to ISRa cis-otolxeio. Ta Raji ouviosoúv B-кúvapa aveponou II +, ta Jurkat T-

 куitapıxoúc qaivótunouc.

2.5. Mopıaки́ бúotaơn tou ISFa enayópevou ovpinגóкои Mua véa texvikú

Me akonó tnv סiamip

 (ISFa-ISRa).

Ta סiaס̋oxщá Bņ

3. TonoӨét

 1x TBE

6. इúvరెeon Yıa $1,5 \mathrm{~h}$ otouc $4^{\circ} \mathrm{C}$.

9. Avaotроф甲и́ по入ıкótптае yıa 10°.

11. Mapauoví ovous $-80^{\circ} \mathrm{C}$ yal 12 h .
12. Katakpı̆́иvion yia 30^{\prime} бtic 10.000 rpm .

15. इtepéwon, छńpavor, autopaסิıypạía.

H popiakn oứvađn tou ISFa oupndókou, nou tautomomipqke oe mupqutkd́

 avixvevtí, o onofoç unoגoyỉetal yưp

 про́tumo (धlкóva 22).

 otņ cikóva 22.

 (eıoóva 23).

H evcunconakn in vitro кatápynon (μ éow ins CIP) tns evepyótntac qúvßeons

 Qéon oúvסeons.

2.7. In vitro avaoto ní tng evepyótntac oúvôeaņ thv ISFa
 tupooivns, tns Genistein

 $\mu \mathrm{gr} / \mathrm{ml}$) evóç avaotoגéa кıvaoळ́v tupooívŋ̧ (Genistein) ${ }^{33,116,119,166}$ каи عпакóגou日n

 neıpápata tou X cis-ouvtnpnuévou otonXeíou tou Ea vnowivntí (XEa), to onoiov

GENISTEIN - - $+\cdots+$

${ }^{156}-\mathrm{MuN}$

2.8. Katápynon inc evepyótntac oúvoroons vou ISFa enayópevou
 фwapotupoaivys

 ovous $4^{\circ} \mathrm{C}$.

H пגípņ katápynon tı̧ enayópevņ evepyótntac oúvôzoņ tou ISFa

H in vitro kataotoגŕ ths evepyótntac oúvöeons tou ISF a enayouevou (IFN-Y

2.9. Σu 亿́vпのп

 боv 8ıaцeц16paviкó unoסoxéa otov кuttapıó nupriva (Signal transduction
 STAT1 (p91/84: Signal Transducer and Activator of Transcription) ${ }^{81,141,171 \text {, to }}$

Avtïgeta, ta GAS кaı ISRE cis-גeıtoupyıká otoıxeía Oecopoúvtal tóoo ıkavá

(cons)	GAS	:	5'-TTNCNNNAA-3'
(Ea)	ISRa	;	

 axodoú $\theta \omega$ ¢:

a）AגAףAouxia avayvópionc：
6）Mopıaxó Bápos：

TTNCNNNCA

$-75 \mathrm{kd}$
Δ ıatдpeital kas uetá onó 24 h

TTNCNNNAA ${ }^{204}$
$91 \mathrm{kd}^{81,132,137,138}$
 นetá tnv nápoóo 3h ${ }^{116,185}$

 1，2，3 рорıакढ́v 1бориорф́v ${ }^{109,119 .}$

 avŋ̧kouv otnv eupútepn oıкoүéveıa t $\omega \mathrm{v}$ STAT пр 2．5．），aqoú epqaviלouv tıs akódoulles 1810 tntes－opolótnues pe tous STAT1

MOPIAKE IAIOTHTE THE ISF OIKOFENEIA

KINHTIKH EПAГ $\Omega \Gamma \mathrm{H} \Sigma$

ENEPTOHOIHะH
ANA工TOAH
MOPIAKH
$\mathrm{P}-\mathrm{Y}$ ：
ミYЕTAミH ENEPГOПOIHエH

Гpíyopn， никро́терп वㅍó 30	$\begin{aligned} & \text { IFN- } / \beta \text {, } \\ & \text { IFN-Y } \end{aligned}$	Avaouodéas Kıvaónv Tupooivis Genistein	＇\triangle ицери́¢＇	Өعиıки́

 GASL пepioxŕs tou GBP unokivntí evioxúeı tqv Aeıtoupyıń ouбxévioŋ tov

 Ea (-140, +14) CAT avaauvסuaouévŋ̧ кataokeuís avacpopás, anétuxav va

 oцо́\$oүou DRa^{77}.

 ónou ๆ emayóцevŋ aпó IFN-у цetaypaqukí evepyonoínor tou DRa yovıס́ou

 Yoviठí ω v.

 anó tŋv popıaкй́ к $\lambda \omega$ vonoínon tnc IL-4 STAT (STAT6) ${ }^{220}$.

H avaduon tns mpoteivikńs oúotaons rou W cis-otoryeiou ths anópakpns

 перлеixe ка1 'rpootáteve' то TGCA potibo kal pàıota tnv yovavivn tns

 ano8i8ctal otnv nhoúoia oe noupives (Pu) 5^{\prime} пepioxŕ tns ISRa Sikh $\omega \mathrm{Vn}$,

 $\triangle \mathrm{ta} \mathrm{\tau piBris}{ }^{207}$.
 tou Ea unokivntí biapop甲ผ́vetal otnv ouvepyatikń biapopiakń quaikń

3．エYTKPITIKH KINHTIKH MEAETH TH乏 EПAFOMENH乏 AIO IFN－y METAГPAФIKH工 $\triangle P A \Sigma T H P I O T H T A \Sigma ~ T Q N ~ E a ~ K A I ~ G B P ~$ YIIOKINHTSN

3．1．1．O avaouvסuaopévos чopéaç Ea $(-140,+14)$ CAT

 vouk ＋14）CAT，o onoíoc 甲épeı unpootá anó to yoví̊ıo ava甲opác CAT tıc＇minimum＇
 Ea unokivñí（euxóva 26）．

3.1.2. O avađuvঠvaซرиévoৎ чopéaৎ GBP (GASL, -40IFN6) CAT

 tou Yovibiou ths IFN-8 (-40 :IFN6) - o onoioc nepléxeı ouanaftiká póvo tŋv

 пepıopıotikí θ éon tou noגuouvठétn (PL) autoú qou GASL (-138, -104) cis-
 3.2.3.) H Bopukŕ opYáv ω on thc GBP (GASL, -40IFN6) CAT kataokeuńs qaivetal बтдV عiкóva 27.

Enkóva 27: Mopıaki reptypaepi tņ opyavaoņ tп̧ GBP (GASL, -4DIFNB) CAT kazaokeuric. On

 BamH I.

 mapoúcaç pe入érns.

3．3．Σu そ́ィทのท

 －40IFN6）CAT avađuv§uбuévตv kataokeváv oe HeLa kutzapixés oerpés，

 перıохळ゙v．

H－140 Ea 5 édheıчn tou Ea viokivntri nepihapßáveı ta ISRa，X кaı Y cis－ גeıtoupyıká otorzeía，ta onoía θ ewpoúvtal tóoo avaykaía óשo kal ikavá（ jóvo av

H GBP（GASL，－40IFNB）CAT avađuvơvaouévn xatađkeuý pueítal

 IFN－y ouny xutzapıkị xà入ıépyera．
 yovi8iou，to onoíov tautonorý θ дцe anıó tny epeuvдtıkí ouá8a tou R．Flavell5． 29 va

 ка1 npooraciac anó RNAáon（RNAase protection）${ }^{29}$ ，eíte otnv סıa甲оретı及й

 emípaon tnc IFN－Y．

 hapouoíac evós de novo ouvtiӨépevou popiou ${ }^{85}$－б́rms iowc ing Clita

4. IN VIVO KATAETOAH THE METAГPAФIKHE \triangle PAETHPIOTHTA』 TOY EA YHOKINHTH. इYTKPITIKH ANAAYEH ME TOYェ GBP KAI ISG54 YחOKINHTED

 avaouvôuaopévę kataokeuȩ́ Ea ($-140,+14$) CAT, GBP (GASL, -401FN6) CAT, ISG54 (ISRE, -40IFNB) CAT kal GBP (GASS, -401FNB) CAT avtiotolXa, napouoia

4.1.1. O avaouvर́vaopı́vos 甲орéac Ea (-140, +14) CAT

 eıcóva 26.

4.1.2. O avaauvÓuaopévoç qopéaç GBP (GASL, -4OIFN6) CAT

 форéaç GBP (GASL, -40IFNB) CAT eppaviくeral ̧avá pa̧̧i $\mu \mathrm{e}$ tou̧ ISG54 (ISRE, 40IFNB) CAT каı GBP (GASS, -40IFN6) CAT avaouvőuaouévouq popeí otnv ع1kóva $29 \Gamma^{78}$.

4.1.3. O avaouvḂuaøuévoc qорéaç ISG54 (ISRE, -4OIFNB) CAT

Fia tnv 8nuıoupyía tns avaouv8uaouévns karaokeuńs ISG54 (ISRE, -40IFNB)

 paivetal ounv eıkóva 29A.

4.1.4. O avaouvóvaouévoc чopéaç GBP (GASS, -40IFN8) CAT

 кג ω vonoinor tou GASS (GAS Small: -126, -106) cis-puөpıotıкoú otoıxéou tou

 Hind IIII ń EcoR I-Xba I.

H pорıаки́ opyávwoŋ tп̧ GBP (GASS 4x, -40IFN6) CAT avaouvסuaøuévņ
 форé ω र otnv elkóva 29.

a) Etqupooropivд (Staurosporin: S). AvaotoAéac (inhibitor) eupéoc 甲áouato̧,

 otı̧ Ea, GASL, GASS kal ISRE avaouvסuaouéves kataokevés

 unokivniti tou yovibiou tns IFN-6. Me touq ISRE, GASS кan GASL okiaypappévoug
 avacuvSucapivec кагаокеบés.

Σ זıŋ elxóva 30A nepıypáqetal η oxetıkí CAT-evepyótrqta (Relative CAT activity: BA. FA $\omega \sigma \sigma a ́ p 10$) $\tau \omega v \mathrm{Ea}(-140,+14)$ CAT, ISG54 (ISRE, -40IFNB) CAT ka1 GBP (GASL, -40IFNB) CAT kavaokยuஸ́v tóoo pě́́ anó in 8páon tns IFN-Y
 Genistein ($\mathrm{X} \alpha \mu \eta \lambda \dot{\eta}$).

 avaouvठ̈vaguevar kataokevov: a) Ea (-140, +14) CAT (paúpa bicypappata\} enayetal povo anó

 1SRE avacuv

 CAT, o onció "anavé" tóao ae IFN-y óoo xai oe IFN-a' o GASS tov qopśa GBP (GASS 4x -

 цетаурафикй аvaбтодй (transcriptional inhibition).

H kataokeuń GBP (GASS 1x -40LFN6) CAT, n onoía 甲épeı to GASS cisotolyeío pía póvo qopá pпpootá amó to CAT yovíbio avaqopás, Éev mapouoíaoe
 30B.

 CAT，ISG54（ISRE，－40IFN8）CAT kal GBP（GASL，－40IFN8）CAT mגaøp

 धпачо́цєvท очиперı甲орá tou Ea үoviôiou．

Me báon tŋv avӨekt

 nou ta $\varnothing \omega \sigma \varphi \circ \rho \cup \lambda 1 \omega$ vouv kal ta evepyonoloúv．
 кан tnv нetaypa甲ıń evepyonoínon tou Ea unokivnøń eivai n JAK2 kiváan（日ג．

 прютеїvıки́ кıváon－C（Protein kinase－C）．
 aпó IFN unokivntóv kataotéheqal magovoía Genistein, ónos avalúetal ae

 talk) peta\}ú tous, yeүovó̧ nou embebanovetan kal anó tŋv 10XUpŋ́ avaotoht́ tou
 Staurosporin.

 tou ISRE unootorxeiov, óoov apopá inv kataotodí tns IFN-a emayóuevns evzpyórnzac qutoú anó Genistein ka Staurosporin. He⿴avodoyeitan houóv óvı ta

 evóc катабто入éa ${ }^{102,112} \mathrm{k} \lambda \pi$.

Eví ta GASL kal ISRE cis-puӨpıotıká oroıXeia eppaviלovtal navá kal

 кaı ISRE avaouv δ uafuévตv qopé ωv anó tŋv emi8paon tou Vanadate, to onoiov

 บнобтрю́pata.

 evturncoaká amoठèx $Ө$ ei yıa tnv mepímtaon tns e-jun oykompateîvns ${ }^{81}$,

 גuyiopatoc (bending) каı pepıки́s кuкhonoínonc (looping) autoú, pe tehıкó oкопó

 kıvaoஸ゙v aII＇qutó t $\omega \mathrm{V}$ JAKs ${ }^{13}$ ．

5．EEAPTHエH THГ $\Sigma Y N \Theta E \Sigma H \Sigma ~ T O Y ~ E N A O F E N O Y \Sigma ~ D R a ~ m R N A ~ A \Pi O ~$ THN KATAAYTIKH ENEPIOTHTA KINA乏』N TYPOEINHE

 DRa avEpámvou yovı8íou ${ }^{5,9,224}$ ．

 акодои́Өюc：

$\mathrm{mgr})$ סrałúpatoc－H to onoiov mepléरes：
6 M UREA
3 M Licl
$20 \mathrm{mM} \mathrm{NaAc}, \mathrm{pH}: 5,2$
$300 \mu \mathrm{gr} / \mathrm{ml}$ Hrapinns（Heparin： $50 \mathrm{mgr} / \mathrm{ml}$ ）
$0,5 \%$ SDS
2．Opoyevonoinon ae vádıvo ouoyevomonntń（Porter－Emergen）$\mu \varepsilon$ 15－20 ω Өñoeļ （strokes）．
3．Tonoéz
4．Duyokévtpnon 10.000 rpm रa 30° otous $4^{\circ} \mathrm{C}$ ．
5．ヨénhupa 2x цe 81áhvpa－W（ 4 ml ）to onoíov пepléxeı： 8 M UREA
4 M Licl
6．EnavaSiáduon qe 3 ml סiádupa－S to onoiov пepiéXeı 2% SDS
$60 \mathrm{mM} \mathrm{NaAc}, \mathrm{pH}: 5,2$

 (Гevioteivnc), THEO (Өeoxiגivnc). SPH (Eyryyooivnc), VAN (O-Bavab̄koú oद̧éoc). H iola

 avadúӨnke каı ektıpŋ̈өnke pe Báon vov Өópubo (baekground) tuXaiov onpeiov

甲aívetar $\omega ¢$ akohoú $\theta \omega$ ¢ ounv cikóva 32.

 mRNA, avaloye the to siooç kel miv popiaki puanodoyta tou aveforotyou papuákotavactokea nov xpnoiponoleital eival eppavis. H nגextpovikí Biávain tnc ontikis aváhuonc fuay bưnou Macintosh-IIci (Apple), evó o 'Scanner' túnou Colour OneScanner

 napouøia IFN-Y $100 \mathrm{u} / \mathrm{ml}$ Yia $24-48 \mathrm{~h}$ pe roug avtiotonXoug avaoroגeis
 akohoú $\theta \omega \mathrm{c}^{78,222}$:

[^6]| W7 | STR | GEN | THEO | SPH | VAN |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $15 \mu M$ | 100 nM | $30 \mu \mathrm{gr} / \mathrm{ml}$ | $150 \mu \mathrm{gr} / \mathrm{ml}$ | 50 nM | 1 mM |

MHXANIミMOI ФAPMAKOAOFIKHエ ANAこTOAHะ

W7	STR	GEN	THEO	SPH	VAN
Ca／CaM CaM－avacy．	PTK JAK PKC	PTK	CAMP Ca／CaM JAK aסevud．kukגán	PKC	PTP

 oнкочéve1aç ${ }^{13,33.78 .181 .222}$ ．

 anó thy kata入utikí ס̂paotikotnta tns abevulikńs kukháong tou cAMP，He

 1．3．3．2．）tou DRa unokivntri．

 ＋14）CAT avađuv8́vaouévņ kataokeuris óoo kal ae avaגúoeţ katá Northern tou

H U巛nגŕ Sopukń opoגoyia tんv x

 gvalúaelc kavd Northern tou DRa үovibiou．

6．$\Sigma Y M M E T O X H$ TH乏 JAK2 KINADHE $\Sigma T O$ MONOMATI METADOEHE TOY ミHMATOE THE IFN－y ITON EA YIIOKINHTH

Me okonó tnv tautomoinon tnc oupuetoxńs tns JAK2 kiváons otous

 кечádaıo 3．1．1．o七ŋ̧ eikóva 26.

6．1．2．O avaouvठvaøuévos чoрéac pRC／CMV－JAK2

 otry Xba I nepıopıotıkŕ θ éan tou noduouv to cDNA tП̧ JAK2 kıváoņ tou novtikoú（mJAK2）${ }^{175}$ ．$\mu \dot{\varepsilon} \sigma \omega$ avtíopaons oúvס́aņ

 quovodoyiac tou pRC/CMV (INVITROGEN) qорÉa (BA. FAwooćpio). To yovıס́axo éverpa toy cDNA rns JAK2 kivanns opíerai ano vouc api 日poús 1 kan 3630 (bp), eve or BstE II xan Apa I

 то проava甲epópevo tou túnou DH5a. Гia tnv apıotomoinon (optimization) t $\omega \mathrm{V}$
 (AMP) $\varepsilon \lambda \lambda \alpha \tau \omega \theta \mathrm{\eta} \kappa \varepsilon$ ога $30 \mu \mathrm{gr} / \mathrm{ml}$.

甲оре́a pRC／CMV－JAK2，oь oпoíe ovopáo日n＿av dl：B／A，dl：B／X kal dl：X／A avriororxa．

 Yoviסıakó Өpaúopa（internal fragment）píkouc 740 bp ．H povopopıaкı́ avtiôpaor

 ava入入oi $\omega \tau \alpha$ ．

H tpitn kal чedeutaía кataokeuí pRC／CMV－JAK2／dl：X／A（7．6 kbpl

 étol to hetoopyixó thríza tou popiou to omotov apapcital

 pRC/CMV-JAK2/dl:B/X avaćuvסvaøuévn кatackeuń.

 пapouซia IFN-y $100 \mathrm{u} / \mathrm{ml}$, yıa Xpóvo 24-48h. H kavovıkoпoinon twy CAT-

 перıұрáqоขгаи ounv eıкóva 35.

 tov pRC/CMV-JAK2 ¢орéa óoo каı yıa tıৎ dl:B/X, dl:B/A каı dl:X/A
 JAK2/dl:B/X, o1 кataokevés pRC/CMV-JAK2/dl:B/A кa1 pRC/CMV-JAK2/dl:X/A

 mapoúgaç peגérns.

 (inducible levels) anó IFN-y عпíne δ a katá $1,6 x$ x qopés.

 aпó to aкóhou日a yeyovóta:

 4).

 кеча́лало 5).

 тov Baөpó enaywүŕs ($3,5 \mathrm{x}$) tns GASL cjs-puөpıotikris mepioxŕs tou GBP

 GBP (GASL) uпокıvクгஸ́v (6λ. кepáגaıa 3, 4).

H tedikń embebaicoun tns evepyoú auppetoxńs tnls JAK2-mpeteĨvikńs

 cDNA tņ JAK2 (dl:B/A, dl:B/X кan dl:X/A) twv oпоíwv o te入ıкóc oкопóc ŕtav η

 akóגou $n^{141,168,170,171 .}$

 JAK2-пр

 кал tov avtiotorxo סıцерй tou̧ popıasó ouvetaípo.

 anouaí IFN-Y kal va evepyomoleí cov avtiotonXo urokivntṅ otóXo (Ea), ouviotá

 нetaүpapikís evepyonoínons tou Ea yovi8iou.

7. METAГPAФIKH ENEPROHOIHEH TOY YHOKINHTH TOY Ea METAГPAФIKOY ПAPAГONTA. ADYNAMIA METAГPAФIKHE KATAETOAHE AHO THN $\triangle P A \Sigma H$ TOY ICSBP

 $140,+14)$ CAT.

7.1.1. O avaouvSUaopévoç ¢opéaç Ea (-140, +14) CAT

7.1.2. O avaouvŚvaouévoç ¢opéaç $p X M /$ IRF-1

 (Adenovirus Major Late Promoter), evف́ to ouvtiÁ́qevo mRNA otaerponoreítat

 tou pXM/IRF-1 avaouvôuaopévou qopéa qaívetai otп̧ モıкóva 36.

 пара́үovta ($2,2 \mathrm{~kb}$).

7.1.3. O avaのvvס́vaopévoc чopéaç LK440/ICSBP (PUE:5)

 avti8paons cưvס́eonc гuழג

 tou yovi8íou ths aktivņ (pActin), evஸ́ to avtíotor又o ouvtıépevo mRNA

 7.1.2.).

 регаүрафикой катабтод́́a ($1,9 \mathrm{~kb}$).

 40IFN6) CAT кaı ISG54 (ISRE, -40IFN8) CAT avacuvôuaouévol ழopeíc, o1 onoiol

 GBP (GASL, -40IFN6) CAT kataøkevric μ áptupa (zıkóva 38).

 นฉ้

 v $\omega \mathrm{v}$ Ea $(-140,+14)$ CAT ka1 LK $440 /$ ICSBP fi ISG54（ISRE， 40 IFN6）CAT kal LK440／ICSBP avaouvôuaouévตv kataoxevóv mapouaía tov pXM／IRF－1

 ＋14）CAT，LK440／ICSBP кaı pXM／IRF－1：v凹ュÁr CAT－evepyótnta mapovoía（í

 （activator）］，日）ISG54（ISRE，－40IFN6）CAT K＠1 LK440／ICSBP：a8iuvapia негаүрарікท́ еvepyonoinoдя ka1 1）ISG54（ISRE，－40IFN6）CAT，LK440／ICSBP
 IRF－1，CAT－цегаүра甲ькй̧́ evepyótŋุtaç（eıкóva 39）．

 avacuvß

7.3. $\mathbf{\Sigma v}$ 亿nınon

 טпокivntí.

 1, eıóva 10 kaı 12).

In vitro aváduor emihoyís tav δ uvatáv-áptotov avayvopıotiкáv $Ө \varepsilon ́ \sigma e \omega v ~$ oúvo̊eonc (optimum binding sites) tou IRF-1 (Interferon Regulatory Factor-1: 8λ


```
G(A) A A A (G/C) (T / C) GARAR(G/C) (T / C)
```

 бuv

 12 B):

IRF-1	:	$G(A) R A R(G / C)(T / C) G A R A(G / C)(T / C)$									
ISRL,	;	G	AAA		T		G	ttaa			
\|SRL		;		AA	G		T	G	GARA	C	T

 anókpıon tou Ea (-140, +14) CAT popéa évavtı т $\omega \mathrm{V}$ GBP (GASL, -40IFN6) CAT,

 ס̀apopıaкои́ бupmiósou.

 cis-meproxís Өa pпopoúar va anotehéael éva meavó mŋxaviotikó povtého, to

 Consensus Sequence Binding Protein: 6ג. Fג由бoápıo) $\mu \varepsilon \tau \alpha \gamma \rho a \varphi ı$ и́ катaotodéa161-163 ouviotá Éva axópa evioxutixó otonzeio tņ biakpitńs-
 $\tau \omega \mathrm{V}$ Ea kal ISG54-GBP vпokivŋtciv.

 єпаүшүи́s ${ }^{162}$.

 (36x) tou 'ISRE' cis-otoryeiou [ISG54 (ISRE, -40IFN6) CAT] katá 80\%, үeYovóg

 ouprlókou, nou ouv ठéetal kal evepyononcí Aeıtoupyıká tŋ̧ ISRL cis-mepioxí vou

 tou Ea unokivncí. Ta meıpápata apoıbaiou kpúou avtaywviouoú t $\omega \mathrm{v}$ EMSA

 оидппдо́к ω ．

8．MEAETH T ΩN trans－METAГPAФIK ΩN MAPAГONTתN MOY ミYNAEONTAI ETIL ISR1 KAI ISR2（5＇TOY X ETOIXEIOY） חEPIOXE TOY E6 YIIOKINHTH

8．1．Taviomoinon evóg véou petaypaqıкoú oupindóкou（ISF1），to
 tóoo anó IFN－y óoо каı aпó IFN－a

 eк XU Aípaca HeLa kU

 vouk

 （Interferon Stimulated Factor－1），to onofov epqavi弓eı u世ף oúvoreons pe to ISR1 cis－бtorxeio ${ }^{79}$（eukóva 40）．

ISR_{1}

 autwv (ISF1) of HeLa mupryiza exxulíquar.
 petaypaqikoúg mapáyovieg nou aג入Пגemípoúv pe to ISRE oroixeio

 Пара́рьгцд, кеча́лаıо 3.2.).

 paivetal va avayropiלeı pe vYndń ouYYéveıa oúvócons tic ISR2 nal ISR3 cis-

оииніо́коч

Me orox

8.4. Tautomoinoŋ evós véou enayópevou oupitéypalog (ISF2), to onoiov evepyonoreital tóбо pe IFN-y óбо ка1 pe IFN-a

$-\mathrm{H}+\mathrm{ISR}_{2}{ }^{\lrcorner}$

Гia גóүouç evko入íac kar oponoүévelaç tņ ovopazohoyfaç o ixvn日étņ H+ISR2
 (core ISR2).

 oupulókov eival eppavís oe óגa ta nupŋ̧vixá exxuגíguata HeLa кut táp ω v
 ouv

 oúyXpovn tautonoinon tov ISF2 enaүópevou oupmiokou kal tou H-ouotatakoú

 avixveucil (Eree: 6i. Гhoood́pio).

otorycío

 aśéqueuto avixyevtí, evó o óos comp (competitor) tov 'kpúo' avtayoviotí (6λ. . 「גcoodpıo)' je to oúpboえo 'h' avartaptotoúpe tiç ตpec (hours) mapapovic tnc IFN-y otqy HeLa

 mapatnpeital orov cISR2 av1Xveutri - akpıBஸ́s kát and to ISF2 enaүóuevo

 oúvo̊eonc (affinity) 七ou ISF2 oummiéypatoc μ e tnv cISR2 ($-152,-143$) cis-пreproxŕ,

 кatapyeita 1 axupd anó tov av̌ayตvioús tov [SRa kal GASL (50x) cis-meptoxav, evó п

 oúv8eonc (Eikóva 44). $^{\text {4 }}$

ISGF3 =

 Gene Eactor: 6 . Fhwooápıo).

 пeproxń, n onoía Sev mapovoíaoe кavéva avixveúono 甲avótuno μ eímons thS evepyotпraç oúvôeoņ t ωv ISGF-епаүо́pev ωv оuцш入óк ωv.

 пapáyovtec (eıkóva 44).

 paSioonpuáuévev ixvilectáv.
 umokivntú ($-170,-80$). Ol μ aúpes tedeies oupbodi̧ouy tis Báoelc yovarivms mou

 норıакои́ проти́nou mpootaoías Báбewv, tóбo tou eпayópevou ISF3 óco kat tou

 eıkóva 45B.

 tov ISR cis-atoryeíwy, evẃ to ouotatıkó oúpnגoko H eppavíę éva roxupá
 H cis-orolxeiou (8λ. кeца́дaio 8.10.).

8.7. AváAuon tņ popıakŋ́s oúgraons rou ISF2 emayópevou оицпде́ypaxos

 Chemical) opoionoגık

 qutó xan Sev avạ́petal yıa tnv napoúoa Sounkŕ aváduon tns popıakí̧ oúouaons cou ISF2 оицпスóкои.

 ekXudiouata anó B-кútrapa Raji ii anó ertayopeva pe IFN-Y if IFN-a Yıa 3h HeLa

 tnc véaç texvixiç ol paưpes tencíec kafopiZour nç

 vitro gyagrodŕs The SSF2 evepyótneac gưvóeons ano env spaon vov NEM avaotohéa．H

 Bé入oc）．Me tov Spo F＇（Eree）emionpaivouple tov aß̄équevto avixveurí（Bג．「hwooápto）．

Meıpápata EMSA adhnhemípaons tns akpaías paסıoonuaбuévnc ISR2

七п¢ кик кад hiépүeia（eıкóva 48）．

Exkova 48: Фapıakokivntukд் (DRUG) aváivoף tņ LSE2 enayópevņ evzpyótntac aúvôzoņ anó

 ε vó ISR-ouvסzópevou кataotohéa, tou onoiou п evepyonoínon paivetal va
 encoans $\mu \varepsilon$ IFN-y).

 оvора弓ópevळv ISR1，ISR2 каи ISR379．Eпaкódovөŋ aváduon twv－trans－

 kal ol loxupá enayópevé anó IFN popıakés prop甲és twv ISF（1，2，3 ка1 a）²

KINHTIKH EHARMFHE	ENEPTOIOIHEH	ФAPMAKOKINHTIKH ЕYMIEPIФOPA	MOPIAKH ミYェTAEH	－cig－AAAHAOYXIA ANAINSPIEHE
「priyopn， щкро́терп ап̈́ 60	$\begin{aligned} & \text { IFN-a/B } \\ & \text { IFN-y } \\ & (\mathrm{CHX}) \end{aligned}$	Auıvonoupívт： eroqiAivn： КаиттоӨекічп： Киклог弓єццібп： NEM：		$\begin{gathered} \text { ISR } \\ \text { ISRE } \\ \text { GASL } \end{gathered}$

[^7]

ISR1:
ISR2:
cISR2:
ISRa:
ISR- consensus:

> A- CTGCAAGTTTCAGA TTTCAGAAGGGGACCTGCAR GGACCTGCARACTG ACTARATAGGACCTGGTTGCAAG
$5^{\prime}-\mathrm{Py}$ IGCARPu-3

 (versions) tns ISR-consensus' aגAnhouxía̧ oúr8eonc. n omoía Sıapopqóveran $\mu \varepsilon$ Báon éva đuvenpŋนévo 'TGCA' tetpavoukגeotıôıkó cis-atol Xeío.

 cis-a $\lambda \lambda$ п λ ouxíec.

 nupñva ка1 סıaסoxıń oúvőeoń tous otic ISR avtiotoixes avayvopıotakés

 autoú $5,60,61,63,77,84$.

 ou

9. TAYTOПOIHEH NESN EПATOMEN ΩN ЕYMHAEFMAT ΩN ETIE ISR2 KAI ISR3 IEPIOXEE TOY E6 YHOKINHTH META THN ПPO乏ӨHKH PETINOIKOY OEEOX (R.A.) ΣE EMBPYIKEV KYTTAPIKEL EEIPE

Me aroxo tnv in vitro avixvevon enayópevav anó petıoíkó o̧̧u (Retinoic

9.1.1. H ISR2 пер1оXIj

七ņ ISR2 перıoxńs, ev

 (епко́va 49B).

A

- MyM

B

9.1.2. H ISRJ пteptoxú

 (eъкóva 50).

 R.A. оијинеүца.

 tḩ eıóvas 50, emBe6aı́veı tnv unobeon tns deıtoupyikris tous opodoyias,

 avtıopoú (1 $\mu \mathrm{gr} / \mathrm{\mu l}$) tov CF-1 xopıovıкоú цетаүрафıкои́ парáүovta ${ }^{219}$ yıa 30°

 avixvevtris, eva pe tov ópo comp (competitor) o xpuoç aveayoviotics Qs 'pr' (preimmune:

甲aivóruno. H uчn
 ISR2 nepioxíS.

 unoठิoxéac petivol̆coú of̧éoç).

 avtiotolXo Yovibio otóXo ${ }^{198}$. H emayópevn anó R.A. do novo petaүpapıikí

Me Gáon doıпóy tnv opodoyía tns enayópevņ anó [FN-y yovióakís

 evepyonoínons t ω v tásn¢ I kal II үоvıöiciv.

Yпootдрí̧oupe Aonnóv tпу ánoчп ótı to enayópevo anó R.A. пupпvikó

H avtiyovikí avayvcion tou errayópevou anó R.A. ouprikéypato̧ anó
 embebanóve t tף

 2RIIBP μ гдаүрафикó пара́yovıa ${ }^{198}$.

 о६́éos (cıкóva 52).

H-2RIIBP:	aGG(A/T)CA
ISR2 :	GGGA CC
ISR3 :	tGA A TC
Consensus:	$5^{\circ}-$ HGPuAPy $\mathrm{H}-3{ }^{\circ}$

 eival npoqavris.

10. AEITOYPIIKH ANAAYEH THE $\triangle P A \Sigma H \Sigma ~ T O Y ~ E I A ~$ OГKOANTIFONOY ЕTHN METAГPAФIKH ENEPГOTHTA TOY YHOKINHTH TOY EA TONIAIOY

Me otóxo tnv deıtoupyıkń peגétn tns ouvéneıas tns umepék甲paons tou E1A

 EMSA in vitro סokıpé oưvo̊eons ta onoía avalúovtal w̧ akoגoúӨ ω ¢

10．1．ПАабнбெаке́я кабаокечи́я

10．1．1．O avaouvסvaopévos qopéas $E \alpha(-140,+14)$ CAT

 CAT avaouvర̂uaŋjévņ kataokeufí nepıүpáqovtal ava入utiká oto keqá入alo 3．1．1．

10．1．2．Ot avaouvE̊vaouévor qopeís RSV（LTR）－E1A кai RSV（LTR）E1A：dlCR1

 perpoioú，（pRSV－LTR：8ג．Гג由ббápıo）otic Hind III kai Pst I перtopıotıкés

 катаокеuи̧́ ̣aívetal otnv elкóva 53.

Enkóva 53：Mopıakí opyávตon tnc סouís tou pRSV／E1A（ $4,1 \mathrm{~kb}$ ）qvaouv8uqajuźvou qopéc．Ta

O чоре́aৎ RSV(LTR)-E1A:dICR1, проє́pxetaı anó тоv патрıкó чоре́a RSV(LTR)-

 oүкоavtiyóvou anoteגci tףv Bađukí epeuvntikí Өeparoגoyia tns unouripias

 emaүó

 tпद otov yovióıaкó unoкıvŋtrí otóxo (eiкóva 54).

七 $\omega \mathrm{v}$ пеıцдца́t ω у паро

10.3. Kataotohń tnc evepyóntag oúvôeons tou ISFa emayópevou
 oүнодугiYōvou
 mepioxís tou Ea unokivŋrí pe ouvodiká kutcapiká ekxuniopara108.213 HeLa

 очипגо́коч aпó тпv rapouбía tnc E1A оүкопрюteivnc.

 оүкопрютвілпе (हико́va 54).

$\mathrm{ISF}_{\alpha}=$

ISRa
 evepyóritac иnc Ea (-140, +14) CAT araouv

 abedueuto paס́revepyo avixveutn

10.4. $\mathbf{\Sigma u}$ 亿ทinon

H Јчп

 Eıoayผyŋ́, кера́גano 3)191,193,194.

 óoo kal tou baӨцoú autoouүкpótnons twv STATla, STAT16, STAT2 kai STAT3

 va عíval o CR1 (22-188 aa) Bopukóc Hupívaç ${ }^{188,226,}$

 propoúv kal va ouvumápxouv): a) ElA-erayórvn kataotoAñ tns de novo

 avayvตplotikŕ tous a入Aņhouxía đúvo̊eons.

 TKO（Transcriptional Knockout） 19 kd ，to onoiov órpuoupyé avevepyá
 парáyovtec，anokגeíovtac éton tqv oúvôeon autúv otnv ISRE cis－pu日poxikí tous

 Eiepruváca1 ${ }^{124}$ ．

 ouocripatos．

11．ГENIKH इYZHTHエH－MOPIAKA MONTEAA

 Sıapepßралıкó tns vnoסoxéa otov unokivntí tou Ea yoviסiou．

H oúvo̊eon tņ IFN－y diov avtiotoixo unoठoxéa tns пpoka入eí env

 би́иплока каı va ta evepyono1عi．

To teגikó pnXaviotikó povtéso petaypapikńs evepүonoinons tou Ea

 пора́уоvтес ${ }^{5,60-69,215 .}$

 oyкoavtryóvou (eıkóva 55).
 evepyonoínons rou Ea unokivntи́ щeprypáqetal otఇv eucóva 55.

 petá unv Bpóon us IFN-

 avtiotor $\alpha \omega$ urokivntov tous.

 orov nupŕva xal avaүv ISR1. ISR2 каи ISR3 сіs-puөpıotıés пepioxés tou E6 unoкıทпtŕ (eıкóvg 56).

 CIITA ρ ソӨ
 evepyonoínons tou EB uHokıvņí пeprүpá甲etal otnv enkóva 56.

 Hetd זnv ipdor mic IFN-Y.

IIP(DOIITIRES

 окоуévelas.

 tous.

 anó tov pepépavikó tns unoठ̊oxéa otov unokivñŕ otóxo.

 прюteĭvec（EMSA）tou ISRa cis－oloixelou Lautonoínoav tnv mapouoia evós

 ката入oinhy tupooívis twv ISFa mapayóvtcov ouviotá tov tкavó kas avayкaio
 періохи́．

 yevioteîvn．
 Ea，GBP kal ISG54 umokıvŋtév tautonoreital ae yeyovota oúyxpovøs

H mi日avótepr unouriqia kiváon mou eu日úvetal yıa tףv ekגektikr

 trans－ano8íetal ounv evepyótnta oúvBeaņ tou IRF1 mapáyovta，o onoíos

 ISFs．

 tou Ea unokivntri petá tクु umepékqpaoŋ tou E1A oykoavtiyóvou rou Ad5

SUMIMARY

In this study we are describing a novel cis-regulatory element ISRa of the Ea promoter, which overlaps with the H cis-conserved sequence. The ISRa region appears to be necessary both for the B-specific and the IFN-y inducible transcriptional activity of the Ea promoter.

In vitro EMSA experiments of the ISRa cis-element identified the presence of a very quickly inducible nuclear complex ISFa, with high binding affinity for the GAS and ISRE regulatory regions of the GBP and ISG54 promoters respectively. Analysis of the molecular composition of the ISFa complex revealed the presence of two closely migrating proteins with approximate molecular weight $70-80 \mathrm{kd}$. Further biochemical analysis showed that tyrosine phosphorylation of ISFa is required for binding to its DNA target-site, ISRa-

Comparative functional analysis of the Ea and GBP promoters disclosed the similarities in their transcriptional as behaviour as judged by their time-course response to the IFN-Y action and their strong sensitivity to the action of two tyrosine kinase inhibitors, staurosporin and genistein.

The molecular mechanism of the IFN-y inducible transcriptional activation of the Ea, GBP and ISG54 promoters involves coupled events of phosphorylation and dephosphorylation, which could take place either on the same or distinct molecular substrates (ISF a).

The most probable candidate kinase that selectively phosphorylates the ISFa complexes and consequently activates the Ea promoter seems to be the JAK2 kinase, whose overexpression increases either the basic or the inducible transcriptional levels.

The transcriptional behaviour of the ISRL elements within the Ea promoter either in cis- or in trans- is attributed to the binding activity of the IRF1 transcription factor, which seems to participate in nuclear complexes that appear to be highly resistant to the repressing function of the ICSBP protein.

Trans- analysis of the nuclear transcription complexes of the E8 promoter revealed the existence of three IFN-Y inducible complexes ISF1, ISF2 and ISF3, with very strong binding affinity for the ISR, ISRE and GAS elements. The structural and functional homology of the ISFa, ISF1, ISF2 and ISF3 complexes allows their molecular classification in a novel family of transcription factors called ISFs.

Molecular studies on the mechanism of the retinoic acid function on the E6 promoter uncovered the existence of inducible complexes from embryonic cell lines, with high binding activity for the ISR2 and ISR3 cis-regulatory sequences. The retinoic acid inducible nuclear complex seems to be composed of transcriptional heterodimeric factors, of which at least one molecular partner is the H-2RIIBP (RXRB) retinoic receptor or an immunologically related factor.

The strong repression of the IFN-Y inducible transcriptional activity of the Ea promoter after the overexpression of the E1A oncoantigen of the Ad5 adenovirus correlates with the concordant inhibition of binding of the ISFa inducible complex, although the involvement of additional (alternative) mechanisms cannot be excluded.

BIBAIOTPACIIA

1. Fehling, H.-J., Viville, S., VanEwijk, W., Benoist, C. and Mathis, D. (1989). Fine-tuning of MHC class II gene expression in defined microenvironments. TIG, 5, 342-347.
2. Trowsdale, J. (1993). Genomic structure and function in the MHC. TIG, 9, 117-122.
3. Steinmetz, M. and Haas, W. (1993). Recent expreriments with MHC knockout mice: More questions than answers. BioEssays, 15, 613-615.
4. Milner, C.M. and Campbell, R.D. (1992). Genes, genes and more genes in the human major histocompatibility complex. BioEssays, 14, 565-571.
5. Glimeher, L.H. and Kara, C.J. (1992). Sequences and factors: a guide to MHC class II transcription (review). Annual Reviews of Immunology, 18, 13-41.
6. Doyle, C., Ford, P.J., Ponath, P., Spies, T. and Strominger, J.L. (1990). Regulation of the invariant chain gene in normal and mutant B lymphocytes. Proc. Natl. Acad. Sci. USA, 87, 4590-4594.
7. Dorn, A., Durant, B., Marfing, C., LeMeur, M., Benoist, C. and Mathis, D. (1987). The conserved MHC class Il boxes -X and -Y are transcriptional control elements and specifically bind nuclear proteins. Proc. Natl. Acad. Sci. USA, 84, 6249-6253.
8. Dedrick, R.L. and Jones, P.P. (1990). Sequence elements required for activity of a murine MHC class II promoter bind common and cell-type specific nuclear factors. Mol. Cell. Biol., 10, 593-604.
9. Benoist, C. and Mathis, D. (1990). Regulation of major histocompatibility complex class II genes: X, Y and other letters of the alphabet (review). Annual Reviews of Immunology, 8, 681-715.
10. Kourilsky, P. and Claveries, J.-M. (1989). MHC restriction, alloreactivity, and thymic education: a common link? Cell, 56, 327-329.
11. Kaufman. J.F., Auffray, C., Korman, A.J., Shackelford, D.A. and Strominger, J. (1984). The class II molecules of the human and murine major histocompatibility complex. Cell, 36, 1-13.
12. Engelhard. V.H. (1994). How cells process antigens. Scientific American, August, 54-61.
13. Williams, B.R.G. (1991). Transcriptional regulation of interferon-stimulated genes. Eur. J. Biochem., 200, 1-11.
14. Revel, M. and Chebath. J. (1986). Interferon-activated genes. TIBS, 11, 166170.
15. Kerr, I.M. and Stark, G.R. (1991). The control of interferon-inducible gene expression. FEBS, 285, 194-198.
16. Gupta, S.L. (1990). Regulation of cellular gene expression by interferongamma: Involvement of multiple pathways. Intl. J. Cell. Clon., 8, 92-102.
17. Pestka, S., Langer, J.A., Zoon, K.C. and Samuel, C.E. (1987). Interferons and their actions (review). Ann. Rev. Biochem., 56, 727-777.
18. VonBoehmer, H. and Kisielow, P. (1991). How the immune system learns about self. Scientific American, October, 50-59.
19. Saluz, H.P., Wiebauer, K. and Wallace, A. (1991). Studying DNA modifications and DNA-protein interactions in vivo. TIG, 7, 207-211.
20. Wright, K.L. and Ting, J.P.-Y. (1992). In vivo footprint analysis of the HLA-DRA gene promoter: Cell-specific interaction at the octamer site and up-regulation of X box binding by interferon-y. Proc. Natl. Acad. Sci. USA, 89, 7601-7605.
21. Yang, Z., Sugawara, M., Ponath, P.D., Wessendorf, L., Banerji, J., Li, Y. and Strominger, J.L. (1990). Interferon-Y response region in the promoter of the human DPA gene. Proc. Natl. Acad Sci. USA, 87, 9226-9230.
22. Tsang, S.Y., Nakanishi, M. and Peterlin, B.M. (1990). Mutational analysis of the DRA promoter: cis-acting sequences and trans-acting factors. Mol. Cell. Biol., 10, 711-719.
23. Tsang, S.Y., Nakanishi. M. and Peterlin, B.M. (1988). B-cell specific and interferon- y inducible regulation of the HLA-DRa gene. Proc. Natl. Acad. Sci. USA, 85, 8598-8602.
24. Voliva, C.F., Aronheim. A., Walker, M.D. and Peterlin, B.M. (1992). B-cell factor 1 is required for optimal expression of the DRA promoter in B cells. Mol. Cell. Biol., 12, 2383-2390.
25. Sugawara, M., Ponath, P.D., Shin, J., Yang, Z. and Stromiger, J.L. (1991). Delineation of a previously unrecognized cis-acting element required for HLA class II gene expression. Proc. Natl. Acad. Sci. USA, 88, 10347-10351.
26. Sakurai, M. and Strominger, J.L. (1988). B-cell specific onhancer activity of conserved upstream elements of the class II major histocompatibility complex DQB gene. Proc. Natl Acad Sci. USA, 85, 6909-6913.
27. Latron, F., Jotterand-Bellomo, M., Maffei, A., Scarpellino, L., Bernard, M., Strominger, J.L. and Accolla, R.S. (1988), Active suppression of major histocompatibility complex class II gene expression during differentiation from B cells to plasma cells. Proc. Natl. Acad. Sci. USA, 85, 2229-2233.
28. Sherman, P.A., Basta, P.V., Moore, T.L., Brown, A.M., Ting, J.P.-Y. (1989). Class II box consensus sequences in the HLA-DRa gene: transcriptional function and interaction with nuclear proteins. Mol. Cell. Biol., 9, 50-56.
29. Blanar, M.A. Boettger, E.C. and Flavell, R.A. (1988). Transeriptional activation of HLA-DRa by interferon-y requires a trans-acting protein. Proc. Natl. Acad. Sci. USA, 85, 4672-4676.
30. Kobr, M., Reith, W., Herrero-Sanchez, C. and Mach, B. (1990). Two DNAbinding proteins discriminate between the promoters of different members of the major histocompatibility complex class II multigene family. Mol. Cell. Biol., 10, 965-971.
31. Cogswell, J.P., Basta, P.V. and Ting, J.P.-Y. (1990). X-box binding proteins positively and negatively regulate transcription of the HLA-DRA gene through interaction with discrete upstream W and V elements. Proc. Nat]. Acad. Sci. USA, 87, 7703-7707.
32. Haseqawa, S.L. and Boss, J.M. (1991). Two B cell factos bind the HLA-DRA box region and recognize different subsets of HLA elass II promoters. Nuel. Acids Res., 19, 6269-6276.
33. Ryu, K., Koide, Y., Yamashita, Y. and Yoshida, T.O. (1993). Inhibition of tyrosine phosphorylation prevents IFN-y-induced HLA-DR molecule expression. J. Immunol., 150, 1253-1262.
34. Panek, R.B., Moses, H., Ting. J.P.-Y. and Benveniste, E.N. (1992). Tumor necrosis factor- α response elements in the $H L A-D R A$ promoter: identification of a tumor necrosis factor- α-induced DNA-protein complex in astrocytes. Proc. Natl. Acad. Sci. USA, 89, 11518-11522.
35. Vilen, B.J., Penta, J.F. and Ting, J.P.-Y. (1992). Structural constraints within a trimeric transcriptional regulatory region. J. Biol. Chom., 267, 23728-23734.
36. Vilen, B.J., Cogswell, J.P. and Ting, J.P.-Y. (1991). Stereospecific alignment of the X and Y elements is required for major histocompatibility complex class II DRA promoter function. Mol. Cell. Biol., 11, 2406-2415.
37. Arenzana-Seisdedos, F., Mogensen, S.C., Vuillier, F., Fiers, W. and Virelizier, J.-L. (1988). Autocrine secretion of tumor necrosis factor under the influence of inteferon-Y amplifies HLA-DRA gene induction in human monocytes. Proc. Natl. Acad. Sci. USA, 85, 6087-6091.
38. Mathis, D.J., Benoist, C.O., Williams II, V.E., Kanter, M.R. and McDevitt, H.O. (1983). The murine E_{a} immune response gene. Coll, 32, 745-754.
39. Viville, S., Jongeneel, V., Koch, W., Mantovani, R., Benoist, C. and Mathis, D. (1991). The E_{a} promoter: a linker-scanning analysis. J. Irnmunol.. 146, 3211-3217.
40. Dorn, A., Benoist, C. and Mathis, D. (1989). New B-lymphocyte specific enhancer-binding protein. Mol. Cell. Biol., 9, 312-320.
41. Thanos, D., Mavrothalassitis, G. and Papamatheakis, J. (1988). Mutliple regulatory regions on the 5^{*} side of the mouse E_{a} gene. Proc. Natl. Acad. Sci. USA, 85, 3075-3079.
42. Finn, P.W., Kara, C.J., Douhan III, J., Van T.T., Folsom, V. and Glimcher, L.H. (1990). Interferon-y regulates binding of two nuclear protein complexes in a macrophage cell line. Proc. Natl. Acad. Sci. USA, 87, 914918.
43. Finn, P.W., Kara, C.J., Van, T.T., Douhan III, J., Boothby, M.R., Glimcher, L.H. (1990). The presence of a DNA binding complex correlates with E6 class II MHC gene expression. EMBO J., 9, 1543-1549.
44. Kara, C.J. and Glimcher, L.H. (1993). Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo. J. Immunol., 150, 4934-4942.
45. Brown, A., Barr, C. and Ting, J. (1991). Sequences homologous to class II MHC W, X and Y elements mediated constitutive and IFN-y induced expression of human class II-associated invariant chain gene. J. Immunol., 146, 3183-3189.
46. Blanar, M.A., Burkly, L.C. and Flavell, R.A. (1989). NFкB binds within a region required for B-cell-specific expression of the major histocompatibility complex class II gene $E_{\mathrm{a}}{ }^{d}$. Mol. Cell. Biol., 9, 844-846.
47. Cogswell, J., Austin, J. and Ting, J. (1991). The W element is a positive regulator of $H L A-D R A$ transcription in various $D R+$ cell types. J. Immunol., 146, 1361-1367.
48. Kara, C.J. and Glimcher, L.H. (1991). In vivo footprinting of MHC class II genes: bare promoters in the bare lymphocyte syndrome. Science, 252, 709712.
49. Liou, H.-C., Polla, B.S., Aragnol, D., Leserman, L.D., Griffith, I.J. and Glimcher, L.H. (1988). A tissue-specific DNase I-hypersensitive site in a class II A_{a} gene is under trans-regulatory control. Proc. Natl. Acad. Sci. USA, 85, 2738-2742.
50. Zhu, L. and Jones, P.P. (1990). Transcriptional control of the invariant chain gene involves promoter and enhancer elements common to and distinct from major histocompatibility complex class II genes. Mol. Cell. Biol., 10, 3906-3916.
51. Freund, Y.R., Dedrick, R.L. and Jones, P.P. (1990). Cis-acting sequences required for class II gene regulation by interferon-y and tumor necrosis factor-a in a murine macrophage cell line. J. Exp. Med., 171, 1283-1299.
52. Lonergan, M., Dey, A., Becker, K.G., Drew, P.D. and Ozato, K. (1993). A regulatory element in the 62 -microglobulin promoter identified by in vivo footprinting. Mol. Cell. Biol, 13, 6629-6639.
53. Eades, A.-M., Litfin, M. and Rahmasdorf, H.J. (1990). The IFN- γ response of the murine invariant chain gene is mediated by a complex enhancer that includes several MHC class Il consensus elements. J. Immunol., 144, 43994409.
54. Athanassakis-Vassiliadis, I., Thanos, D. and Papamatheakis, J. (1989). Induction of class II major histocompatibility complex antigens in murine placenta by 5 -azacytidine and interferon-y involves different cell populations. Eur. J. Immunol., 19, 2341-2348.
55. Gravallese, E.M. Boothby, M.R., Smas, C.M. and Glimcher, L.H. (1989). A lipopolysaccharide-induced DNA-binding protein for a class II gene in B cells is distinet from NFkB. Mol. Cell. Biol., 9, 3184-3192.
56. Boothby, M., Gravallese, E., Liou, H.-C. and Glimcher, L.H. (1988). A DNA binding protein regulated by IL-4 and by differentiation in B cells. Science, 242, 1599-1562.
57. Smith, E.L., Freeman, G., Vogt, M. and Dulbecco, R. (1960). The nucleic acid of polyoma virus. Virology, 12, 185-191.
58. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular cloning. A Laboratory Manual, Second Edition, Cold Spring Harbor.
59. Rothman, P., L1, S.C., Gorham, B., Glimcher, L., Alt, F. and Boothby, M. (1991). Identification of a conserved lipopolysaccharide-plus-interleukin-4responsive element located at the promoter of germ line e transcripts. Mol. Cell. Biol., 11, 5551-5561.
60. Reith, W., Herrero-Sanchez, C., Kobr, M., Silacci, P., Berte, C., Barras, E., Fey. S. and Mach. B. (1990). MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. Genes and Development, 4, 1528-1540.
61. Liou, H.-C., Boothby, M.R., Finn, P.W., Davidon, R., Nabav, N., Zeleznik-Le, N.J., Ting. J.P.-Y. and Glimcher, L.H. (1990). A new member of the leucine zipper class of proteins that binds to the HLA-DRa promoter. Science, 247, 1581-1584.
62. Didier, D.K., Schiffenbauer, J., Woulfe, S.L., Zacheis, M. and Schwartz, B.D. (1988). Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc. Natl. Acad. Sci. USA, 85, 7322-7326.
63. VanHuijsduijner, R.H., Li, X.Y., Black, D., Matthes, H., Benoist, C. and Mathis, D. (1990). Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits. EMBO J., 9, 3119-3127.
64 Maity. S.N., Vuorio, T. and De Crombrugghe, B. (1990). The B subunit of a rat heteromeric CCAAT-binding transcription factor shows a striking sequence identity with the yeast Hap2 transcription factor. Proc. Natl. Acad. Sci, USA, 87, 5378-5382.
64. Li, X.-Y., Mantovani, R., VanHuijsduijnen. H., Andre. I., Benoist, C. and Mathis, D. (1991). Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucl. Acids Res., 20, 1087-1091.
65. Kern, M.J. and Woodward, J.G. (1991). The same CCAAT box-binding factor binds to the promoter of two coordinately regulated major histocompatibility complex class II genes. Mol. Cell. Biol., 11, 578-581.
66. Zeleznik-Le, N.J., Azizkhan, J.C. and Ting, J.P.-Y. (1991). Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene. Proc. Nat1. Acad. Sci. USA, 88, 18731877.
67. Mantovani, R., Pessara, U., Tronche, F., Li, X.-Y., Knapp, A.-M., Pasquali, J.-L.. Benoist, C. and Mathis, D. (1992). Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J., 11, 3315-3322.
68. Kara, C.J., Liou, H.-C., Ivashkiv, L.B., Glimeher, L.H. (1990). A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain. Mol. Cell. Biol. 10, 1347-1357.
69. Ivashkiv, L.B., Liou, H.-C., Kara, C.J., Lamph, W.W., Verma, I.M. and Glimcher, L.H. (1990). mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13acetate, response element. Mol. Cell. Biol., 10, 1609-1621.
70. Ono, S.J., Bazil, V., Levi, B.-Z., Ozato, K. and Strominger, J.L. (1991). Transcription of a subset of human class II major histocompatibility complex genes is regulated by a nucleoprotein complex that contains c-fos or an antigenically related protein. Proc. Natl. Acad. Sci. USA, 88, 43044308.
71. Wright, K.L., Vilen, B.J., Itoh-Lindstrom, Y., Moore, T.L., Li, Guoxuan, Criscitiello, M., Cogswell, P., Clarke, J.B. and Ting, J.P.-Y. (1994). CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors. EMBO J., 13, 4042-4053.
72. Siogrist, C.A., Durant, B., Emery, P., David, E., Hearing, P., Mach, B. and Reith, W. (1993). RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol. Cell. Biol., 13, 63756384.
73. Zhang, X.-Y., Jabrane-Ferrat, N., Asiedu, C.K., Samac, S., Peterlin, B.M. and Ehrlich. M. (1998). The major histocompatibility complex class II promoterbinding protein RFX (NF-X) is a methylated DNA-binding protein. Mol. Cell. Biol., 13, 6810-6818.
74. Reith, W., Satola, S., Sanchez, H.C., Amaldi, I., Lisowska-Grospierre, B., Griscelli, C., Hadam, M.R. and Mach, B. (1988). Congenital immunodeficiency with a regulatory defect in MHC class II gene expression lacks a specific HLA-DR promoter binding protein, RF-X. Cell, 53, 897-906.
75. Steimle, V., Otten, L.A.; Zufferey, M. and Mach, B. (1993). Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell, 75, 135-146.
76. Steimle, V., Siegrist, C.-A., Mottet, A., Lisowska-Grospierre, B. and Mach, B. (1994). Regulation of MHC class II expression by interferon-y mediated by the transactivator gene CIITA. Science, 265, 106-109.
77. Stravopodis, D., Gregoriou, M., Thanos, D. and Papamatheakis, J. (1995). The activation of a tyrosine phosphorylated factor that binds to the H box is correlated with interferon- Y (IFN-ү) expression of the Ea promoter. (In preparation).
78. Thanos, D., Gregoriou, M., Stravopodis, D., Liapaki, K., Makatounakis, T. and Papamatheakis, J. (1993). The MHC class II E6 promoter: a complex arrangement of positive and negative elements determines B cell and interferon- γ (IFN- γ) regulated expression. Nucl. Acids Res., 21, 6010-6019.
79. Tjian, R. and Maniatis, T. (1994). Transcriptional activation: A complex puzzle with few easy pieces (review). Cell, 77, 5-8.
80. Karin, M. (1994). Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors (review). Curr. Biol., 6, 415-424.
81. Buratowski, S. (1994). The basics of basal transcription by RNA polymerase II. Cell, 77, 1-3.
82. Silver, P.A. (1991). How proteins enter the nucleus. Cell, 64, 489-497.
83. Mach, B., Steimle, V. and Reith, W. (1994). MHC class II-deficient combined immunodeficiency: a disease of gene regulation (review). Immunol. Rev, 138, 207-221.
84. Kara, C.J. and Glimcher, L.H. (1993). Promoter accessibility within the environment of the MHC is affected in class II-deficient combined immunodeficiency. EMBO J., 12, 187-193.
85. Rubin Lab. (1990). Methods Book, 2nd Edition.
86. Bénichou, B. and Strominger, J.L. (1991). Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis. Proc. Natl. Acad. Sci. USA, 88, 4285-4288.
87. Ombra, M.N., Perfetto, C., Autiero, M., Anzisi, A.M., Pasquinelli, R., Maffei, A. Del Pozzo, G. and Guardiola, J. (1993). Reversion of a transcriptionally defective MHC class II-negative human B-cell mutant. Nucl. Acids Res, 21, 381-386.
88. Yang, Z., Accolla, R.S., Pious, D., Zegers, B.J.M. and Strominger, J. (1988). Two distinct genetic loci regulating class Il gene expression are defective in human mutant and patient cell lines. EMBO J., 7, 1965-1972.
89. Doyle, C., Ford, P.J.. Ponath, P.D., Spies, T. and Strominger, J.L. (1990). Regulation of the clas II-associated invariant chain gene in normal and mutant B-lymphocytes. Proc. Natl. Acad. Sci. USA, 87, 4590-4594.
90. Mao, C., Davies, D., Kerr, I.M. and Stark, G.R. (1993). Mutant human cells defective in induction of major histocompatibility complex class II gene by interferon-y. Proc. Natl. Acad. Sci. USA, 90, 2880-2884.
91. Sloan, J.H. and Boss, J.M. (1988). Conserved upstream sequences of human class II genes in wild-type but not mutant B-cell lines. Proc. Natl. Acad. Sci. USA, 85, 8186-8190.
92. Cönczy, P., Reith, W., Barras, E., Lisowska-Grospierre, B., Griscelli, C., Hadam, M.R. and Mach, B. (1989). Inherited immunodeficiency with a defect in a major histocompatibility complex class II promoter-binding protein differs in the chromatin structure of the HLA-DRA gene. Mol. Cell. Biol., 9, 296-302.
93. Stimac, E., Urieli-Shoval, S., Kempin, S. and Pious, D. (1991). Defective HLA-DRA X box binding in the class II transactive transcription factor mutant 6.1 .6 and in cell lines from class II immunodeficient patients. J. Immunol., 146, 4398-4405.
94. Reith, W., Barras, E., Satola, S., Kobr, M., Reinhart, D., Herrero-Sanchez, C. and Mach, B. (1989). Cloning of the major histocompatibility complex class II promoter binding protein affected in a hereditary defect in class II gene regulation. Proc. Natl. Acad. Sci. USA, 86, 4200-4204.
95. Pellegrini, S., John, J.. Shearer, M., Kerr, I.M. and Stark, G.R. (1989). Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway. Mol. Cell. Biol., 9, 4605-4612.
96. McKendry, R., John, J., Flavell, D., Müller, M., Kerr, I.M. and Stark, G.R. (1991). High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both α - and γ-interferons. Proc. Natl. Acad. Sci. USA, 88, 11455-11459.
97. John, J., McKendry, R., Pellegrini, S., Flavell, D., Kerr, I.M. and Stark, G.R. (1991). Isolation and characterization of a new mutant human cell line unresponsive to alpha and beta interferons. Mol. Cell. Biol., 11, 4189-4195.
98. Hunter, T. (1993). Cytokine connections. Nature, 366, 114-115.
99. Reid. L.E., Brasnett, A.H., Gilbert, C.S., Andrew, G., Porter, C.G., Gewert, D.R., Stark, G.R. and Kerr, IM. (1989). A single DNA response element can confer inducibility by both α - and γ-interferons. Proc. Natl. Acad. Sci. USA, 86, 840-844.
100. Levy, D.E., Kessler, D.S., Pine, R., Reich, N. and Darnell Jr., J.E. (1988), Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes and Development, 2, 383-393.
101. Decker, T., Lew, D.J., Cheng, Y.-S.E., Levy. D.E. and Darnell Jr., J.E. (1989). Interactions of α - and Y-interferon in the transeriptional regulation of the gene encoding a guanylate-binding protein. EMBO J., 8, 2009-2014.
102. Strehlow, I. and Decker. T. (1992). Transcriptional induction of IFN-Y responsive genes is modulated by DNA surrounding the interferon stimulation response element. Nucl. Acids Res., 20, 3865-3872.
103. Blanar, M.A., Baldwin Jr., A.S., Flavell, R.A. and Sharp, P.A. (1989). A gamma-interferon-induced factor that binds the interferon response sequence of the MHC class I gene, H-2K ${ }^{\text {b }}$. EMBO J., 8, 1139-1144.
104. Marx, J. (1992). Taking a direct path to the genes. Science, 257, 744-745.
105. Parrington, J., Rogers, N.C., Gewert, D.R., Pine, R., Veals, S.A., Levy, D.E., Stark, G.R. and Kerr, I.M. (1993). The interferon-stimulated response elements of two human genes detect overlapping sets of transeription factors. Eur. J. Biochem., 214, 617-626.
106. Pellegrini, S. and Schindler, C. (1993). Early events in signalling by interferons (review). TIBS, 18, 338-342.
107. Levy, D.E., Kessler, D.S., Pine, R. and Darnell, Jr. J.E. (1989). Cytoplasmic activation of ISGF3, the positive regulator of interferon-a-stimulated transcription, reconstituted in vitro. Genes and Development, 3, 1362-1371.
108. Decker. T., Lew, D.J., Mirkovitch, J. and Darnell, Jr., J.E. (1991). Cytoplasmic activation of GAF an IFN- γ-regulated DNA-binding factor. EMBO J., 10, 927-932.
109. Kessler, D.S., Veals, S.A., Fu. X.-Y. and Levy, D.E. (1990). Interferon-a regulates nuclear translocation and DNA-binding affinity of ISGF3, a mutlimeric transcriptional activator. Genes and Development, 4, 1753-1765.
110. Lew, D.J., Decker, T., Strehlow, I. and Darnell, J.E. (1991). Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by alpha and gamma interferons. Mol. Cell. Biol, 11, 182-191.
111. Lew, D.J., Decker, T. and Darnell, Jr., J.E. (1989). Alpha interferon and gamma interferon stimulate transcription of a single gene through different signal transduction pathways. Mol. Cell. Biol., 9, 5404-5411.
112. Loh, J.E., Chang, C.-H., Fodor, W.L. and Flavell, R.A. (1992). Dissection of the interferon- γ-MHC class II signal transduction pathway reveals that type I and type II interferon systems share common signalling component(s). EMBO J., 11, 1351-1363.
113. Näf, D., Hardin, S.E. and Weissmann, C. (1991). Multimerization of AAGTGA and GAAAGT generates sequences that mediate virus inducibility by mimicking an interferon promoter element. Proc. Natl. Acad. Sci. USA, 88, 1369-1373.
114. Eilers, A., Baccarini, M., Horn, F., Hipskind, R.A., Schindler, C. and Decker, T. (1994). A factor induced by differentiation signals in cells of the macrophage lineage binds to the gamma interferon activation site. Mol. Cell. Biol., 14, 1364-1373.
115. Wilson, K.C. and Finbloom, D.S. (1992), Interferon-y rapidly induces in human monocytes a DNA-binding factor that recognizes the y response region within the promoter of the gene for the high-affinity Fey receptor. Proc. Natl. Acad. Sci. USA, 89, 11964-11968.
116. Sanger, F., Nicklen, S. and Coulson, A.R. (1977). DNA sequencing with chain termination inhibitors. Proc. Nat1. Acad. Sci. USA, 74, 5463-5467.
117. Yuan, J., Wegenka, U.M., Lütticken, C., Buschmann, J., Decker, T., Schindler, C., Heinrich, P.C. and Horn, F. (1994). The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol. Cell. Biol., 14, 1657-1668.
118. Igarashi, K., David, M., Finbloom, D.S. and Larner, A.C. (1993). In vitro activation of the transcription factor gamma interfer on activation factor by gamma interferon: evidence for a tyrosine phosphatase/kinase signaling cascade. Mol. Cell. Biol., 13, 1634-1640.
119. Dignam, J., Lebovitz, M. and Roeder, R. (1983). Accurate transeription initiation by RNA polymerase II in a soluble extract from isolated nuclei. Nucl. Acids Res., 11, 1475-1489.
120. Perez, C., Wietzerbin, J. and Benech, P.D. (1993). Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-Y) activation of the human high-affinity Fcy receptor gene: a novel IFN regulatory mechanism. Mol. Cell. Biol., 13, 2182-2192.
121. Reich, N.C. and Darnell, Jr., J.E. (1989). Differential binding of interferoninduced factors to an oligonucleotide that mediates transcriptional activation. Nucl. Acids Res., 17, 3415-3424.
122. Fu, X.-Y., Kessler, D.S., Veals, S.A., Levy, D.E. and Darnell, Jr. J.E. (1990). ISGF3, the transcriptional activator induced by interferon a, consists of multiple interacting polypeptide chains. Proc. Natl. Acad. Sci. USA. 87. 8555-8559.
123. Petricoin III, E., David, M., Fang. H., Grimley, P., Larner, A.C. and Vande Pol, S. (1994). Human cancer cell lines express a negative transcriptional regulator of the interferon regulatory factor family of DNA binding proteins. Mol. Cell. Biol, 14, 1477-1486.
124. Haque, S.J. and Williams, B.R.G. (1994). Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-independent signaling pathway for IFN-a. J. Biol. Chem., 269, 19523-19529.
125. Driggers, P.H., Elenbaas, B.A., An, J.-B., Lee, I.J. and Ozato, K. (1992). Two upstream elements activate transcription of a major histocompatibility complex class I gene in vitro. Nucl. Acids Res., 20, 2533-2540.
126. Mirkovitch, J., Decker, T. and Darnell, Jr., J.E. (1992). Interferon induction of gene transcription analyzed by in vivo footprinting. Mol. Cell. Biol., 12, 1-9.
127. Levy, D. and Darnell, Jr., J.E. (1990). Interferon-dependent transcriptional activation: signal transduction without second messenger involvement? (review). New Biol., 2, 923-928.
128. Improta, T., Schindler, C., Horvath, C.M., Kerr, I.M, Stark, G.R. and Darnell, Jr., J.E. (1994). Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. Proc. Natl. Acad. Sci. USA, 91, 4776-4780.
129. Loh, J.E., Schindler, C., Ziemiecki, A., Harpur, A.G., Wilks, A.F. and Flavell, R.A. (1994). Mutant cell lines unresponsive to alpha/beta and gamma interferon are defective in tyrosine phosphorylation of ISGF-3a components. Mol. Cell. Biol., 14, 2170-2179.
130. Greenlund. A.C., Farrar, M.A., Viviano, B.L. and Schreiber, R.D. (1994). Ligand-induced IFN Y receptor tyrosine phosphorylation couples the recoptor to its signal transduction system (p91). EMBO J., 13, 1591-1600.
131. Pearse, R.N., Feinman, R., Shuai, K., Darnell, Jr., J.E. and Ravetch, J.V. (1993). Interferon-ү-induced transcription of the high-affinity Fc receptor for IgG requires assembly of a complex that includes the $91-\mathrm{kDa}$ subunit of transcription factor ISGF3. Proc. NatL. Acad. Sci. USA, 90, 4314-4318.
132. Learner, A.C., David. M., Feldman, G.M., Igarashi, K.-I., Hackett, R.H., Webb, S.A., Sweitzer, S.M., Petricoin III, E.F. and Finbloom, D.S. (1993). Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science, 261, 1730-1746 (a-d) (see all the following references in the same issue).
133. Müller, M., Laxton, C., Briscoe, J., Schindler, C., Improta, T., Darnell, Jr., J.E., Stark, G.R. and Kerr, I.M. (1993). Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-a and -y signal transduction pathways. EMBO J., 12, 4221-4228.
134. Schindler, C., Shuai, K., Prezioso, V.R. and Darnell, Jr., J.E. (1992). Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science, 257, 809-813.
135. Pine, R., Canova, A. and Schindler, C. (1994). Tyrosine phosphorylated p91 binds to a single element in the ISGF2/IRF-1 promoter to mediate induction by IFNa and IFNY, and is likely to autoregulate the p91 gene. EMBO J., 13, 158-167.
136. Fu, X.-Y., Schindler, C., Improta, T., Aebersold, R. and Darnell, Jr., J.E. (1992). The proteins of ISGF-3, the interferon α-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl. Acad Sci. USA, 89, 7840-7843.
137. Schindler, C., Fu, X.-Y., Improta, T., Aebersold, R. and Darnell, Jr., J.E. (1992). Proteins of transcription factor ISGF-3: one gene encodes the 91-and $84-\mathrm{kDa}$ ISGF-3 proteins that are activated by interferon-a. Proc. Natl. Acad. Sci. USA, 89, 7836-7839.
138. Veals, S.A., Schindler, C., Leonard, D., Fu, X.-Y., Aebersold. R.. Darnell. Jr., J.E. and Levy, D.E. (1992). Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol. Cell. Biol., 12, 3315-3324.
139. Veals, S.A., Santa Maria, T. and Levy, D.E. (1993). Two domains of ISGF3y that mediate protein-DNA and protein-protein interactions during transcription factor assembly contribute to DNA-binding specificity. MoL. Cell. Biol., 13, 196-206.
140. Darnell, Jr., J.E., Kerr, I.M. and Stark, G.R. (1994). Jak-STAT pathway and transcriptional activation in response to IFNs and other extracellular signaling proteins (review). Science, 264, 1415-1421.
141. Akira, S., Kishio, Y.. Inoue, M., Wang, X.-J., Wei, S., Matsusaka, T., Yoshide, K., Sudo, T., Naruto, M. and Kishimoto, T. (1994). Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gpl30-mediated signaling pathway. Coll, 77, 63-71.
142. Zhong, Z., Wen, Z. and Darnell. Jr., J.E. (1994). Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc. Natl. Acad. Sci. USA, 91, 4806-4810.
143. Fu, X.-Y. (1992). A transcription factor with SH2 and SH3 domains is directly activated by an interferon a-induced cytoplasmic protein tyrosine kinase(s). Cell, 70, 323-335.
144. Shuai, K., Horvath, C.M., Huang, L.H.T., Qureshi, S.A., Cowburn, D. and Darnell, Jr., J.E. (1994). Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell, 76, 821-828.
145. Wegenka, U.M., Lütticken, C., Buschmann, J., Yuan, J., Lottspeich, F.. Müller-Esterl. W., Schindler, C., Roeb, E., Heinrich, P.C. and Horn, F. (1994). The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol. Cell. Biol., 14, 3186-3196.
146. Zhong, Z., Wen, Z. and Darnell, Jr., J.E. (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to opidermal growth factor and interleukin-6. Science, 264, 95-98,
147. Lütticken, C., Wegenka, U.M., Yuan, J., Buschmann. J., Schindler, C., Ziemiecki, A., Harpur, A.G., Wilks, A.F., Yasukawa, K., Taga, T., Kishimoto, T., Barbieri, G., Pellegrini, S., Sendtner, M., Heinrich, P.C. and Horn, F. (1994). Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science, 263, 89-92.
148. Sadowski, H.B. and Gilman, M.Z. (1993). Cell-free activation of a DNAbinding protein by opidermal growth factor. Nature, 362, 79-83.
149. David, M. and Larner, A.C. (1992). Activation of transcription factors by interferon-alpha in a cell-free system. Science, 257, 813-815.
150. Watanabe, N., Sakakibara, J., Hovanessian, A.G., Taniguchi, T. and Fujita, T. (1991). Activation of IFN-8 element by IRF-1 requires a post-translational event in addition to IRF-1 synthesis. Nucl. Acids Res., 19, 4421-4428.
151. Harada, H., Fujita, T., Miyamoto, M., Kimura, Y., Maruyama, M., Furia, A., Miyata, T. and Taniguchi, T. (1989). Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell, 58, 729-739.
152. Yamamoto, K., Quelle, F.W., Thierfelder, W.E., Kreider, B.L., Gilbert, D.J., Jenkins, N.A., Copeland. N.G., Silvennoinen, O. and Ihle, J.N. (1994). Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol. Cell. Biol., 14, 4342-4349.
153. Shuai, K., Schindler, C., Prezioso, V.R. and Darnell, Jr., J.E. (1992). Activation of transcription by IFN-y: tyrosine phosphorylation of a $91-\mathrm{kD}$ DNA binding protein. Science, 258, 1808-1812.
154. Harada, H., Takahashi, E.-I., Itoh, S., Harada, K., Hori, T.-A. and Taniguchi, T. (1994). Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol. Cell. Biol., 14, 1500-1509.
155. Kanno, Y., Kozak, C.A., Schindler, C., Driggers, P.H., Ennist, D.L., Gleason, S.L., Darnell, Jr., J.E. and Ozato, K. (1993). The genomic structure of the murine ICSBP gene reveals the presence of the gamma interferonresponsive element, to which an ISGF3a subunit (or similar) molecule binds. Mol. Cell. Biol., 13, 3951-3963.
156. Rein, T, Müller, M. and Zorbas, H. (1994). In vivo footprinting of the IRF-1 promoter: inducible occupation of a GAS element next to a persistent structural alteration of the DNA. Nucl. Acids Res., 22, 3033-3037.
157. Tanaka. N., Kawakami. T. and Taniguchi, T. (1993). Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol., 13, 4531-4538.
158. Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, T., Watanabe, N., Kündig, T.M. Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C.L., Narendran, A., Suzuki, H., Ohashi, P.S., Paige, C.J., Taniguchi, T. and Mak. T.W. (1993). Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell, 75, 83-97.
159. Harada, H., Kitagawa, M., Tanaka, N., Yamamoto, H., Harada, K., Ishihara, M. and Taniguchi, T. (1993). Anti-oncogenic and oncogenic potentials of interfer on regulatory factors-1 and -2. Science, 259, 971-974.
160. Driggers, P.H., Ennist, D.L., Gleason, S.L., Mak, W.-H., Marks, M.S., Levi, B.-Z., Flanagan, J.R., Appella, E. and Ozato, K. (1990). An interferon-Yregulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc. Natl. Acad. Sci. USA, 87, 3749-3747.
161. Nelson, N., Marks, M.S., Driggers, P.H. and Ozato, K. (1993). Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol. Cell. Biol., 13, 588-599.
162. Bovolenta, C., Driggers, P.H, Marks, M.S., Medin, J.A., Politis, A.D., Vogel, S.N., Levy. D.E., Sakaguchi, K., Appella, E., Coligen, J.E. and Ozato, K. (1994). Molecular interactions between interferon consensus sequence binding protein and members of the interferon regulatory factor family. Proc. Natl. Acad. Sci. USA, 91, 5046-5050.
163. Harroch, S., Revel, M. and Chebath. J. (1994). Induction by interleukin-6 of interferon regulatory factor 1 (IRF-1) gene expression through the palindromic interferon response element pIRE and cell type-dependent control of IRF-1 binding to DNA. EMBO J., 13, 1942-1949.
164. Grunstein, M. and Hogness, D. (1975). Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA, 72, 3961-3964.
165. Igarashi, K.-I., David. M., Larner, A.C. and Finbloom, D.S. (1993). In vitro activation of a transcription factor by gamma interferon requires a membrane-associated tyrosine kinase and is mimicked by vanadate. Mol. Cell. Biol., 13, 3984-3989.
166. David, M., Grimley, P.M., Finbloom, D.S. and Larner, A.C. (1993). A nuclear tyrosine phosphatase downregulates interferon-induced gene expression. Mol. Cell. Biol., 13, 7515-7521.
167. Wilks, A.F. and Harpur, A.G. (1994). Cytokine signal transduction and the JAK family of protein tyrosine kinases (review). BioEssays, 16, 313-320.
168. Silvennoinen, O., Ihle, J.N., Schlessinger, J. and Levy, D.E. (1993). Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature, 366, 583-585.
169. Ziemiecki, A., Harpur, A.G. and Wilks, A.F. (1994). JAK protein tyrosine kinases. Their role in cytokine signalling (review). Trends Cell Biol., 4, 207212.
170. Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K., Thierfelder, W.E., Kreider, B. and Silvennoinen, O. (1994). Signaling by the cytokine receptor superfamily: JAKs and STATs (review). TIBS, 19, 222-227.
171. Müller, M., Briscoe, J., Laxton, C., Guschin, D., Ziemiecki, A., Silvennoinen, O., Harpur, A.G., Barbieri, G.. Witthuhn, B.A., Schindler, C., Pellegrini, S., Wilks, A.F., Ihle, J.N., Stark, G.R. and Kerr, I.M. (1993). The protein tyrosine kinase JAK1 complements defects in interferon $-\alpha / 6$ and -Y signal transduction. Nature, 366, 129-135.
172. Watling, D., Guschin, D., Müller, M, Silvennoinen, O., Witthuhn, B.A. Quelle, F.W., Rogers, N.C., Schindler, C., Stark, G.R., Ihle, J.N. and Kerr, I.M. (1993). Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon- γ signal transduction pathway. Nature, 366, 166-170.
173. Silvennoinen, O., Witthuhn, B.A., Quelle, F.W., Cleveland, J.L., Yi, T. and Ihle, J.N. (1993). Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc. Natl. Acad. Sci. USA, 90, 8429-8433.
174. Witthuhn, B.A., Quelle, F.W., Silvennoinen, O., Yi, T., Tang. B., Miura, O. and Thle, J.N. (1993), JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell, 74, 227-236.
175. Argetsinger, L.S., Campbell, G.S., Yang. X., Withuhn, B.A., Silvennoinen, O., Ihle, J.N. and Carter-Su, C. (1993). Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell, 74, 234-244.
176. Valazquez, L., Fellous, M., Stark, G. and Pellegrini, S. (1992). A protein tyrosine kinase in the interferon a/6 signaling pathway. Cell, 70, 313-322.
177. Kawamura, M., McVicar, D.W., Johnston, J.A., Blake, T.B., Chen, Y.-Q., Lal, B.K., Lloyd, A.R., Kelvin, D.J., Staples, J.e., Ortaldo, J.R. and O'Shea, J.J. (1994). Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl. Acad. Sci. USA, 91, 6374-6378.
179a. Johnston, J.A., Kawamura, M., Kirken, R.A., Chen, Y.-Q., Blake, T.B., Shibuya, K., Ortaldo, J.R., McVicar, D. and O'Shea, J.J. (1994). Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature, 370, 151-157.

179b. Witthuhn, A.G., Silvennoinen, O., Miura, O., Lai, S.K., Cwik, C., Liu, T.E. and Thle, N.J. (1994). Involvement of the JAK-3 Janus Kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature, 370, 153-157.
180. Campbell, G.S., Argetsinger, L.S., Ihle, J.N., Kelly, P.A., Rillema J.A. and Carter-Su, C. (1994). Activation of JAK2 tyrosine kinase by prolactin receptors in Nb_{2} cells and mouse mammary gland explants. Proc. Natl. Acad. Sci. USA, 91, 5232-5236.
181. Igarashi, K.-I., Garotta, G., Ozmen, L., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Larner, A.C. and Finbloom, D.S. (1994). Interferon-Y induces tyrosine phosphorylation of interferon-y receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J. Biol. Chem., 269, 14333-14336.
182. Narazaki, M., Witthuhn, B.A., Yoshida, K., Silvennoinen, O., Yasukawa, K., Ihle, J.N., Kishimoto, T. and Taga, T. (1994). Activation of Jak2 kinase mediated by the interleukin-6 signal transducer gp130. Proc. Natl. Acad Sci. USA. 91, 2285-2289.
183. Nicholson, S.E., Oates, A.C., Harpur, A.G., Ziemiecki, A., Wilks, A.F. and Layton, J.E. (1994). Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosinephosphorylated after receptor activation. Proc. Natl. Acad. Sci. USA, 91, 2985-2988.
184. Dusanter-Fourt, I., Müller, O., Ziemiecki, A., Mayeux, P., Drucker, B., Diiane, J., Wilks, A., Harpur, A.G., Fischer, S. and Gisselbrecht, S. (1994). Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactinerythropoietin receptor chimera expressed in lymphoid cells. EMBO J., 13, 2583-2591.
185. Caldenhoven, E., Coffer, P., Yuan, J., VanDe Stolpe, A., Horn, F., Kruijer, W. and VanDer Saag, P.T. (1994). Stimulation of the human intercellular adhesion molecule-1 promoter by interleukin-6 and interferon-y involves binding of distinct factors to a palindromic response element. J. Biol. Chem., 269, 21146-21154.
186. Petricoin III, E.F., Hackett, R.H., Akai, H., Igarashi, K., Finbloom, D.S. and Larner, A.C. (1992). Modulation of interferon signaling in human fibroblasts by phorbol esters. Mol. Cell. Biol., 12, 4486-4495.
187. Nielsch, U., Zimmer, S.G. and Babiss, L.E. (1991). Changes in NF-кB and ISGF3 DNA binding activities are responsible for differences in MHC and 6IFN gene expression in Ad5- versus Ad12- transformed cells. EMBO J., 10, 4169-4175.
188. Kalvakolanu, D.V.R., Bandyopadhyay, S.K., Harter, M.L. and Sen, G.C. (1991). Inhibition of interferon-inducible gene expression by adenovirus E1A proteins: block in transcriptional complex formation. Proc. Natl. Acad. Sci. USA, 88, 7459-7463.
189. Offringa, R., Gebel, S., Van Dam, H., Timmers, M., Smits, A., Zwart, R., Stein, B., Bos, J.L., Van Der Eb, A. and Herrlich, P. (1990). A novel function of the transforming domain of E1A: repression of AP-1 activity. Cell, 62, 527-538.
190. Van Dam, H., Offringa, R., Meijer, I., Stein. B., Smits, A.M., Herrlich, P.. Bos, J.L. and Van Der Eb, A. (1990). Differential effects of the adenovirus ELA oncogene on members of the AP-1 transcription factor family. Mol. Cel. Biol., 10, 5857-5864.
191. Boulanger, P.A. and Blair, G.E. (1991). Expression and interactions of human adenovirus oncoproteins. J. Biochem., 275, 281-299.
192. Kitabayashi, I., Kawakami, Z., Chiu, R., Ozawa, K., Matsuoka, T., Toyoshima, S., Umesono, K., Evans, R.M., Gachelin, G. and Yokoyama, K. (1991). Transcriptional regulation of the c-jun gene by retinoic acid and E1A during differentiation of F9 cells. EMBO J., 11, 167-175.
193. Nevins, J.R. (1991). Transcriptional activation by viral regulatory proteins (review). TIBS, 16, 435-439.
194. Moran, E. (1993). DNA tumor virus transforming proteins and the cell cyele (review). Cur. Opin. Genet. Devel., 3, 63-70.
195. Driscoll, J. and Finley. D. (1992). A controlled breakdown: antigen processing and the turnover of viral proteins. Cell, 68, 823-825.
196. Chellappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M. and Nevins, J.R. (1991). The E2F transcription factor is a cellular target for the RB protein. Cell, 65, 1053-1061.
197. Debbas, M. and White, E. (1993). Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes and Development, 7, 546-554.
198. Nagata, T., Segars, J.H., Levi. B.-Z. and Ozato, K. (1992). Retinoic aciddependent transactivation of major histocompatibility complex class I promoters by the nuclear hormone receptor H-2RIIBP in undifferentiated embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA, 89, 937-941.
199. Segars, J.H., Nagata, T., Bours, V., Medin, J.A., Franzoso, G., Blanco, J.C.G., Drew, P.D., Becker, K.G., An, J., Tang, T., Stephany, D.A., Neel, B., Siebenlist, U. and Ozato, K. (1993). Retinoic acid induction of major histocompatibility complex class I genes in N-Terra2 embryonal carcinoma cells involves induction of $\mathrm{NF}-\mathrm{\kappa B}$ ($\mathrm{p} 50-\mathrm{p} 65$) and retinoic acid receptor 6 retinoid X receptor 6 heterodimers. Mol. Cell. Biol., 13, 6157-6169.
200. Johnson, D.R. and Pober, J.S. (1994). HLA class I heavy-chain gene promoter elements mediating synergy between tumour necrosis factor and interferons. Mol. Cell. Biol., 14, 1322-1332.
201. Zelent, A., Mendelsohn, C., Kastner, P., Krust, A., Garnier, J.-M., Ruffenach, F., Leroy, P. and Chambon, P. (1991). Differentially expressed isoforms of the mouse retinoic acid receptor 6 are generated by usage of two promoters and alternative splicing. EMBO $\mathcal{J} ., \mathbf{1 0}, 71-81$.
202. Leroy, P., Krust, A., Zelent, A., Mendelsohn, C., Garnier, J.-M., Kastner, P., Dierich, A. and Chambon, P. (1991). Multiple isoforms of the mouse retinoic acid receptor a are generated by alternative splicing and differential induction by retinoic acid. EMBO J., 10, 59-69.
203. Shivji, M.K. and La Thangue, N.B. (1991). Multicomponent differentiationregulated transcription factors in F9 embryonal carcinoma stem cells. Mol. Cell. Biol., 11, 1686-1695.
204. Shuai, K. (1994). Interferon-activated signal transduction to the nucleus (review). Cur. Opin. Cell Biol., 6, 259-259.
205. Kisselev, L. Frolova, L. and Haenni, A.-L. (1993). Interferon inducibility of mammalian tryptophanyl-tRNA synthetase: now perpectives. TIBS, 18 , 268-267.
206. Fu, X.-Y. and Zhang, J.-J. (1993). Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell, 74, 1135-1145.

208. Roitt, J., Brostoff, J. and Male, D. (1986). Immunology (Textbook). Gower Medical Publishing, London, New York.
209. Graham, F, and Van Der Eb, A. (1973). A new technique for the assay of infectivity of human-5 DNA. Virology, 57, 456-467.
210. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. and Struhl, K. (1989). Current protocols in Molecular Biology.
211. McGregor, G. and Caskey, D. (1989). Construction of plasmids that express E. coli B-galactosidase in mammalian cells. Nucl. Acids Res., 17, 23-65.
212. Durand, B., Kobr, M., Reith, W. and Mach, B. (1994). Functional complementation of Major Histocompatibility Complex Class II regulation mutant by the purified X-box-binding protein RFX. Mol. Cell. Biol., 14, 6839-6847.
213. Ktistaki, E., Lacorte, J.M., Katrakili, N., Zannis, V. and Talianidis, I. (1994). Transcriptional regulation of the ApoAIV gene involves synergism between a proximal orphan receptor response element and a distant enhancer located in the upstream promoter region of the ApoCIII gene. Nucl. Acids Res., 22, 4689-4696.
214. Pearse, R., Feinman, R. and Ravetch, J. (1991). Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: Transcriptional induction by Y -interferon is mediated through common DNA response elements. Proc. Natl. Acad. Sci. USA, 88, 11305-11309.
215. Pan, J., Ting, Y. and Baldwin, A. (1993). Regulation of MHC gene expression (review). Curr. Opin. Immunol., 5, 8-16.
216. Liu. F, and Green, R.M. (1994). Promoter targeting by adenovirus E1A through interaction with different cellular DNA-binding domains. Nature, 368, 520-525.
217. Gutch, J.M. and Reich, C.N. (1991). Repression of the Interferon Signal transduction pathway by the adenovirus E1A oncogene. Proc. Natl. Acad. Sci. USA, 88, 7913-7917.
218. Bayley, T.S. and Mymryk, S.J. (1994). Adenovirus E1A proteins and transformation (review). Intl. J. of Oncology, 5, 425-444.
219. Shea, M., King, D., Conboy, M., Mariani, B. and Kafatos, F. (1990). Proteins that bind to Drosophila chorion cis-regulatory elements: A new $\mathrm{C}_{2} \mathrm{H}_{2}$ zinc finger protein and a $\mathrm{C}_{2} \mathrm{C}_{2}$ steroid receptor-like component. Genes and Development, 4, 1128-1140.
220. Hou, J., Schindler, U., Henzel, W., Chun, H.T., Brasseur, M. and McKnight, S. (1994). An Interleukin-4 induced transcription factor: IL-4 STAT. Science, 265, 1701-1706.
221. Parker, M. (1993). Steroid and related receptors (review). Curr. Opin. Cell Biology, 5, 499-504.
222. Vassiliadis, S., Kyrpides, N., Stravopodis, D., Gregoriou, M. and Papamatheakis, J. (1993). Investigation of intracellular signals generated by Y-interferon and IL-4 leading to the induction of class II antigen expression. Mediators of Inflammation, 2, 343-348.
223. Feng, S.G. and Pawson, T. (1994). Phosphotyrosine phosphatases with SH2 domains: regulators of signal transduction TIBS, 10, 54-58.
224. Lee, S.J., Trowsdale, J. and Bodmer, F.W. (1982). cDNA clones coding for the heavy chain of human HLA-DR antigen. Proc. Natl. Acad. Sci. USA, 79, 545549.
225. Zhuang. H., Patel, V.S., He, T., Sonsteby, K.S., Niu, Z. and Wejchowski, M.D. (1994). Inhibition of erythropoietin-induced mitogenesis by a kinase deficient form of JAK2. Communication. J. Biol. Chem, 269, 21411-21414.
226. Takeda, T., Nakajima, K., Kojima, H. and Hirano, T. (1994). E1A repression of IL-6-induced gene activation by blocking the assembly of IL-6 response element binding complexes. J. Immunol., 153, 4573-4582.
227. Vassiliadis, S., Stravopodis, D., Kyrpides, N., Gregoriou, M. and Papamatheakis, J. (1993). One and two- level regulation patterns affecting NFкB mRNA and nuclear NFrB activity after treatment with TNF-a, IFNy and IL-4. European Cytokine Network, 4, 25-30.
228. Karlsson, L., Surh, C., Sprent, J. and Peterson, P. (1992). An unusual class II molecule. Immunology Today, 13, 469-470.
 Xoudakn, Movís Apetiou 4B, Hpákגe10, Kpritn. Tŋ̧ג. 324.508.

[^0]:

 дешхоциас $99,141,148,168-184$.

[^1]: 'Euyevஸ́s проореро́цгvos quó тov $\Delta p . \Delta$. ©ávo.

[^2]:
 ${ }^{\text {* }}$ Euyev́́s nробреро́pevos anó cov Δp. J. Darnell.

[^3]:

[^4]:

[^5]: ＇Euyevต́s пробчеро́цеvos anó tov $\Delta \rho$ ．A．Van Der Eb．

[^6]: $\varepsilon v \omega$ t ωv STR kau GEN η UBI Co.

[^7]:

