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ABSTRACT 
 

MicroRNAs belong to the large family of small non coding RNAs. They regulate 

protein synthesis by binding to their mRNA targets causing mRNA degradation 

or translational repression. A large number of miRNAs have been associated with 

cancer because they are often found to be located within cancer associated 

genomic region (CAGRs/FRA) to target cancer-related genes,  and to be 

differentially expressed   in tumor compared to normal tissues. Previous work in 

the Computational Biology lab had identified four new putative miRNA genes 

that were located within CAGR. However their mature molecules and their 

association with cancer phenotypes were unknown. My thesis focuses on 

resolving these two issues, using a combination of theoretical and experimental 

techniques. The specific aims of this work are:  

 The development of  a mature miRNA prediction algorithm(Chapter II, III) 

 The identification of the mature miRNA molecules of  the newly identified 

miRNA genes via a combination of computational and experimental 

methods (Chapter IV) 

 The utilization of a target prediction algorithm to predict and 

experimentally verify interactions between the mature molecules and 

cancer-related genes Chapter IV). 
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ΠΕΡΙΛΗΨΗ 
 

Τα microRNA είναι μικρά μη κωδικοποιά μόρια RNA τα οποία προσδένονται 

στην 3’ αμετάφραστη περιοχή (3’UTR) του mRNA στόχου και οδηγούν σε 

καταστολή της μετάφρασης ή/και την αποικοδόμηση του. Έχουν συνδεθεί με 

διάφορα είδη καρκίνου, μέσω της εμφάνισής τους σε γενωμικές περιοχές που 

σχετίζονται με καρκίνο (CAGR/FRA), επειδή στοχεύουν γονίδια που εμπλέκονται 

σε καρκίνο ή επειδή η έκφραση τους εμφανίζεται διαφοροποιημένη σε 

καρκινικούς ιστούς. Το εργαστήριο της Δρ. Ποϊράζη ανακάλυψε πρόσφατα 

τέσσερα καινούργια πρόδρομα microRNA σε CAGR, χωρίς ωστόσο να είναι 

γνωστά τα ώριμα μόρια και η ακριβής σχέση τους με τον καρκίνο. Στόχοι τη 

παρούσας διατριβής είναι: 

 Η δημιουργία ενός υπολογιστικού εργαλείου για την πρόβλεψη των 

ώριμων μορίων των miRNA, (περιγράφεται στο κεφάλαιο ΙΙ και ΙΙΙ). 

 Η πειραματική εύρεση των ώριμων μορίων που παράγονται από τέσσερα  

πρόδρομα miRNAs, (περιγράφεται στο κεφάλαιο IV). 

  Η υπολογιστική πρόβλεψη και πειραματική επιβεβαίωση 

αλληλεπιδράσεων μεταξύ των ώριμων μορίων και γονιδίων που έχουν 

συσχετιστεί με τον καρκίνο. (περιγράφεται στο κεφάλαιο IV). 

 

 

 



6 
 

ACKNOWLEGMENTS 
 

First I would like to acknowledge Dr. Poirazi, Dr. Kalantidis, Dr. Kardasis and Dr. 

Tsamardinos for their valuable guidance and supervision. In addition the 

member of Dr. Kalantidis’ lab, specifically Elena Dadami and  Anastasis Oulas for 

helping me in Northern blotting and in miRNA target prediction, respectively. 

Also the member of Dr. Poizari’s lab, George Kastellakis for his help in developing 

the web interface of MiRduplexSVM and Pavlos Pavlidis for the valuable 

conversations on the statistical analysis of the results. I would like to thank Dr. 

Tsamardinos lab-member Angelos Armen for his contributions regarding the 

initial development of aspects of MiRduplexSVM method. Finally I would like to 

mention that this research has been co-financed by the European Union 

(European Social Fund – ESF) and Greek national funds through the Operational 

Program "Education and Lifelong Learning" of the National Strategic Reference 

Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in 

knowledge society through the European Social Fund».  

 

 

 

 

 



7 
 

CHAPTER I - INTRODUCTION 
 

BIOGENESIS OF MICRO-RNAS 

MicroRNAs are small (~22 nts), single-stranded non-coding RNAs with a key 

regulatory role in both animals and plants.  The primary transcripts of microRNA 

genes (pri-miRNAs) consist of a stem-loop (hairpin) structure extended with 

long single-stranded tails. The tails are detached (in animals) by the 

Microprocessor complex, whose core component is the RNase III enzyme Drosha, 

leaving a hairpin-shaped, ~60-70 nts long intermediate with a characteristic 3’ 

overhang of ~2 nt, the miRNA precursor (pre-miRNA). 

Two models have been proposed on how a pri-miRNA is processed to produce a 

pre-miRNA. According to the first model, Drosha or the holoenzyme with Drosha 

providing the catalytic activity, selects an RNA hairpin bearing a terminal loop 

that is no less than 10 nucleotides long, and cuts ~22 nucleotides from the 

terminal loop – stem junction to produce a pre-miRNA, Figure 1.1 [6].  According 

to the second model, the cleavage site is determined mainly by the distance (~11 

base pairs) from the stem – single stranded tails junction, Figure 1.2 [3]. Note 

that some pre-miRNAs, the so-called mirtrons, have a similar structure with 

regular pre-miRNAs but enter the miRNA pathway without undergoing 

processing by Drosha, i.e. without undergoing the pri-miRNA stage [8]. 

Irrespectively of its production process, the pre-miRNA is then exported to the 

cytoplasm, where it is processed by another RNase III termed Dicer. Dicer 
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cleaves the pre-miRNA at a certain distance (~22 nt) from the overhang created 

by the Microprocessor[9], leaving an RNA duplex with 3’ overhangs of ~2 nts 

called the miRNA-miRNA* duplex. For each individual duplex, one of its strands, 

the mature miRNA, is loaded into a RISC (RNA-induced Silencing Complex), 

where it performs its regulatory functions. The other strand, the miRNA*, is 

degraded. It may also be the case that both strands of the duplex correspond to a 

mature miRNA; however, only one strand becomes functional each time, but with 

similar frequency [10].  

 

 

 
 
Figure 1.1. A model of how a pri-miRNA is processed to produce a pre-miRNA. In this model, 

Drosha, or a holoenzyme with Drosha providing the catalytic activity, selects an RNA hairpin 
bearing a terminal loop that isX10 nt long, and cutsB22 nt, orB2 helix turns, from the 

terminal loop/stem junction to produce a premiRNA. Efficient processing, and possibly 
recognition, also requires an extended (B10 bp), mostly double-stranded region located 

beyond the pre-miRNA stem. Figure adopted [6] 
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Figure 1.2. A ‘‘ssRNA-dsRNA Junction Anchoring’’ Model for the Processing of pri-miRNA. DGCR8 
may play a major role in substrate recognition by directly anchoring at the ssRNA-dsRNA 

junction. DGCR8 also interacts with the stem of 33 bp and the terminal loop for a full activity 
although the terminal loop structure is not critical for DGCR8 binding and cleavage reaction. 

After the initial recognition step, Drosha may transiently interact with the substrate for 
catalysis. The processing center (yellow circle) of Drosha is placed at11 bp from the basal 

segments. Figure adopted from [3] 
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FUNCTION OF MICRO-RNAS 

Micro-RNAs are controlling protein synthesis by binding to their mRNA targets 

through sequence complementarity rules. This binding leads to mRNA 

degradation or translational repression [10]. First, the mature miRNA is loaded 

into a RISC forming a miRISC complex. This complex, whereby the miRNA 

provides the specificity on target identification, regulates mRNAs expression.  At 

no-repression conditions, mRNAs recruit initiation factors and ribosomal 

subunits and form circularized structures that enhance translation. On the 

contrary, when miRISCs bind to mRNAs, they inhibit translation through various 

mechanisms. They can repress translation initiation at the cap recognition stage, 

or during the recruitment of the 60s ribosome’s subunit. Instead, they can induce 

deadenylation of the mRNA and thus inhibit circularization of the mRNA. Also, 

they can induce ribosomes to drop off prematurely repressing a postinitiation 

stage of translation. Finally, they can promote mRNA degradation by inducing 

deadenylation followed by decapping[11].  

 

MICRO-RNAS AND CANCER 

MicroRNAs play a fundamental role in many of the cell functions, as proliferation 

and differentiation [12], while they have been also found to relate with a number 

of diseases [13, 14], including many types of cancer [15]. Indicative examples are 

microRNAs let-7 [16], mir-15a/mir-16-1 family [17] and the neighboring mir-

143 and mir-145 [7], whose expression is limited in specific types of cancer 
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implying a possible tumor suppressor role. On the contrary, mir-17-92 family 

[18-20] and mir-155/BIC [21] are overexpressed in several types of cancer and 

they have been associated to oncogenic procedures. In addition, a significant 

number of microRNAs is located on genomic regions which are susceptible to 

genetic alterations as deletions, duplications, and single mutations. These 

regions are known as Cancer-Associated Genomic Regions or CAGRs, and Fragile 

Sites or FRA[4]. MiRNA genes located within, or in close proximity, to these 

regions have been suggested to be associated with chromosomal events leading 

to carcinogenesis, as graphically illustrated in Figure 1.3. 

Recent findings showed that mir-15a and mir-16a are located within the region 

13q14, which is deleted in more than half cases of B cell chronic lymphocytic 

leukemias (B-CLL) patients[22]. Detailed analysis showed that mir-15a and mir-

16a are actually located within a 30-kb distance from the region which is deleted 

and total or partial decrease of both genes’ expression is observed in 68% of B-

CLL cases [1]. Deletions in region 13q14 are also observed in prostate cancer 

with a 60% incidence, in multiple myelomas (16%-40%) as well as in other types 

of cancer, indicating that one or more tumor suppressor genes which are located 

on this region are implicated in the pathogenesis of human tumors [22]. Finally, 

it is known that approximately 30% of microRNA genes are located within 

introns of other genes and it is very likely that they are transcribed along with 

their host genes [23]. Consequently, in cases of genes which are overexpressed in 

some types of cancer, a thorough examination of their introns could lead to the 

discovery of new microRNAs with a crucial role in carcinogenesis. 
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MICRO-RNA-RELATED COMPUTATIONAL TOOLS 

Micro-RNAs have been associated with more than 150 diseases from several 

kinds of cancers to cardiovascular diseases, cerebellar neurodegeneration e.t.c. 

[24]. In addition high throughput sequencing experiments are performed to 

discover new miRNA mature molecules which could play a key role in disease 

progression. These miRNAs are often used as biomarkers and their biological 

significance is investigated through the prediction and subsequent experimental 

verification of miRNA-mRNA interactions. Although sequencing technologies 

evolve rapidly, they exhibit significant limitations. They are cost and time 

 
 

Figure 1.3. MiRNAs as cancer players. Computational prediction initiates the search for 
putative miRNAs that play a role in tumorigenesis. Some of these proposed mechanisms are 

experimentally proven, like the deletion ofmiR-15a/miR-16a cluster in B-CLL [1, 2], the c-myc 
over-expression by the reposition near a putative miR promoter [4], or miR143/miR-

145cluster down regulation in colon cancers[7]. Figure adopted with permission from Callin 
et al. [4]. 
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consuming and usually only miRNAs which are in high levels are being 

sequenced. Furthermore the predictions of miRNA-mRNA interactions it is not a 

trivial task which can be perform manually. For these reasons several 

computational tools have been developed to complement experimental 

limitations and guide future experiments. These tools focus on different aspects 

of miRNA study; like miRNA gene/ mature prediction and miRNA-mRNA 

interaction predictions. In the following paragraph an outline of several tools is 

given. 

 

miRNA gene prediction tools 

The large amount of unexplored non-coding regions in the human genome 

combined with the increasing importance of miRNAs in multiple diseases 

highlights the need for fast, flexible, and reliable miRNA identification methods. 

Toward this goal a number of different computational methods have been used 

to identify miRNA genes. Early studies focused on scanning for hairpin structures 

conserved between closely related species such as Caenorhabditis elegans and 

Caenorhabditis briggsae [25, 26], or using homology between known miRNAs 

and other regions in aligned genomes like human and mouse[27]. Other 

approaches relied on conserved regions of synteny —conserved clustering of 

miRNAs in closely related genomes—to predict novel miRNAs [27]. Subsequent 

computational studies utilized profile-based detection  [28] as well as secondary 
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structure alignment [29] of miRNAs using sequence conservation across 

multiple, highly divergent, organisms (i.e., mouse and fugu). 

The main drawback of the abovementioned tools is that they undertake a 

pipeline approach by applying stringent cut-offs and eliminating candidate 

miRNAs as the pipeline proceeds [25, 26]. This results in the loss of numerous 

true miRNAs along the line. The use of homology by some tools [27-29] to detect 

novel miRNAs based on their similarity to previously identified miRNAs is 

another drawback. These methods obviously fall short when scanning distantly 

related sequences or when novel miRNAs lack detectable homologs. 

The next generation of computational tools relied on more sophisticated 

machine learning algorithms such as support vector machines (SVMs) capable of 

taking into account multiple biological features such as free energy of the hairpin 

structure, paired bases, loop length, and stem conservation to predict novel 

miRNAs [30-37]. Two very effective computational studies utilized Hidden 

Markov Models (HMM) and a Bayesian classifier [38, 39], to simultaneously 

consider sequence and structure features at the nucleotide level for predicting 

miRNA genes. These studies, however, did not integrate conservation 

information in their algorithms, an important feature of the majority of miRNA 

genes. More recently two computational tools miRRim [40] and SSCprofiler [5] 

also employing HMMs proved to be very effective, achieving high performance 

on identifying miRNAs in the human genome. 

With the advent of large scale, high throughput methods such as tiling arrays or 

deep sequencing the identification of novel miRNA genes is taking a different 

turn [41-43]. These methods are exceptionally useful as they produce large 
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datasets that offer a relatively accurate expression map for small RNAs in the 

genome. However, since large-scale expression data are usually limited by the 

specific tissue and developmental stage of their samples, only the coupling of 

such data to computational tools (as done in two recent studies [5, 40]) can 

facilitate rapid and precise detection of novel miRNAs, while at the same time 

giving greater credence to computational predictions. 

 

miRNA mature prediction tools 

Given the importance of miRNAs in gene regulation, several computational 

approaches have been developed to complement experimental ones. Most of 

them focus on the discovery of novel miRNA genes or possible mRNA targets of 

known miRNAs[44-49]. As part of miRNA gene discovery, these tools predict 

certain features of miRNAs such as the starting position of the mature miRNA 

[39, 50, 51], the Drosha cleavage site [52] (which coincides with the start of the 

mature miRNA on a pri-miRNA). Most computational approaches labeled as 

miRNA predictors are actually pre-miRNA predictors, in the sense that they 

identify candidate genomic regions that may form pre-miRNAs but rarely 

attempt to determine the position of the miRNA itself within them. 

To the best of our knowledge, only six mature miRNA predictors have been 

proposed to date which use a machine learning approach.  
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I. ProMir [53] identifies human pre-miRNAs and their mature miRNAs by 

combining sequence and structural features in a paired hidden Markov 

model.  

II. MiRmat [54], which is composed of two parts: the prediction of Drosha 

processing site and the identification of Dicer processing site. The free 

energy distribution pattern of the downstream part of pri-microRNA 

secondary structure and Random Forest algorithm are utilized to predict 

the mature miRNA sequence.  

III. MatureBayes [55] was the first tool specifically developed to address the 

problem of mature miRNA identification. It utilizes  a Naive Bayes 

classifier to identify 22-nt mature miRNA candidates based on sequence 

and secondary structure information of their miRNA precursors [55]. It 

generates one prediction per strand and uses the 2nts overhang rule to 

define the predicted miRNA* on the opposite strand, creating two 

hypothetical duplexes.  

IV. MiRPara [56] is an SVM-based tool. It generates several independent 

predictions for each strand of any given hairpin. The size of the possible 

mature miRNAs ranges.   

V. MaturePred [57] employs an SVM classifier to predict the region which is 

most likely to contain the mature miRNA molecule in each strand of a 

hairpin based on miRNA–miRNAs* features. It consists of two models, one 

specialized in plants and one specialized in mammals.  

VI. Finally, MiRdup [58] is the latest tool that tackles the problem of mature 

miRNA identification. It does so by finding the most likely miRNA location 

within a given pre-miRNA. MiRdup is based on a random forest classifier 
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trained with experimentally validated miRNAs from miRbase, with 

features that characterize the miRNA–miRNA* duplex. MiRdup predicts 

the most probable miRNA duplex on a given hairpin.  

In all cases, the results are amenable to improvement as performance accuracy 

with respect to the identification of the exact mature miRNA molecule remains 

low. 

 

miRNA target prediction tools  

The mode of action of the mature miRNA in mammalian systems is dependent on 

complementary base pairing primarily to the 3’-UTR region of the target mRNA, 

thereafter causing the inhibition of translation and/or the degradation of the 

mRNA.  Searching through all human genes (~25,000) and/or other species for 

novel miRNA gene targets is a complicated task for which fast, flexible and 

reliable identification methods are required. Currently available experimental 

approaches working towards this goal are complex and sub-optimal [59]. 

Inefficiencies result from various sources, including difficulty in isolating certain 

miRNAs by cloning due to low expression, stability, tissue specificity and 

technical difficulties of the cloning and repression assay procedures, while 

selecting the right 3’UTR to investigate is often a challenging task of its own. 

Computational prediction of miRNA gene targets from 3’UTR genomic sequences 

is an alternative technique which offers a much faster, cheaper and effective way 

of identifying putative miRNA gene targets. Moreover, by predicting the location 
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of a miRNA gene target, these methods enable experimental biologists to 

concentrate their efforts on genomic regions more likely to contain novel genes 

that undergo miRNA regulation, thus facilitating the discovery process. 

Due to the lack of negative data in this specific biological problem, the 

performance of current miRNA target prediction tools is largely dependent on 

the overall number of predicted targets. Some tools are very efficient in 

predicting true target sites (high sensitivity), but at the same time display an 

extremely large number of overall predictions (low specificity) [60-63] . In 

contrast, other tools display an overall high specificity and a relatively low 

sensitivity [64-66]. In order to provide an estimation of a false positive rate, false 

or mock miRNAs are often generated by randomly shuffling the nucleotide 

sequence of experimentally supported miRNAs [67]. Performing target 

prediction with these “mock” miRNAs can provide an estimation of the overall 

false positive rate of a miRNA target prediction tool. 

Accurate prediction of novel miRNA gene targets requires the consideration of 

certain characteristic properties of the miRNA::target-mRNA interaction. These 

properties are based on either experimental [68-71], or computational evidence 

[26, 31-33, 39] and can be used to build a classification scheme or predictive 

model. For example, the foremost nucleotides at the 5’region of a mature miRNA 

sequence are considered crucial for recognizing and binding to the target mRNA. 

Initial research performed by Kiriakidou et al, 2004 [72] has shown that almost 

consecutive complementarity of the first 9 miRNA nucleotides to the 3'UTR of 

protein coding genes is a prerequisite for translational repression. Moreover, 

Lewis et al, 2005 [64] showed that complementary motifs to nucleotides 2-7 of 
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miRNA (commonly referred to as the miRNA seed region) remain preferentially 

conserved in several species in a statistically significant manner [73, 74].  

In general, it is believed that binding of at least 7 consecutive Watson-Crick (WC) 

base pairing nucleotides between the foremost 5’region of the miRNA and the 

mRNA target is required for sufficient repression of protein production [64, 72].  

Based on the above mentioned evidence, miRNA target prediction programs rely 

heavily on sequence complementarity of the miRNA seed region (nucleotides 2-

7) to the 3'UTR sequences of candidate target genes for identifying putative 

miRNA binding sites [65, 75]. Furthermore, most prediction tools make use of 

thermodynamics and evolutionary conservation at the binding site, in order to 

minimize false positives (increase specificity) [65, 75, 76]. Some tools utilize 

additional features such as, binding site structural accessibility [61, 77, 78], 

nucleotide composition flanking the binding sites [79, 80] or proximity of one 

binding site to another within the same 3' UTR [79, 81].  

In summary, the general features employed for miRNA target prediction are: (i) 

sequence complementarily at the 5’region of the mature miRNA, better known as 

the seed region and commonly characterized by nucleotides 2-7, (ii) secondary 

structure of the miRNA::target-mRNA hybrid molecule and the overall 

thermodynamics of the interaction expressed in free energy (ΔG) and (iii) 

species conservation observed via the use of full genome sequence alignments.  

In addition to computational tools, large scale, high throughput transcriptomic 

and proteomic methods, such as microarrays and pSILAC, have recently been 

used, often in conjunction with computational tools, for the identification of 
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novel miRNA gene targets [63, 82]. These methods are particularly useful as they 

can provide accurate protein repression data or gene expression data that may 

be correlated or anti-correlated to miRNA expression. Moreover, if such data is 

coupled to computational tools, it can facilitate rapid and precise detection of 

novel miRNA gene targets, while at the same time giving greater credence to 

computational predictions. One must keep in mind that such proteomic data may 

only provide in-direct evidence for target genes, as the signal obtained may be 

due to downstream effects and not a consequence of a direct interaction between 

miRNA and predicted target gene. 

Next Generation Sequencing (NGS) methods have also been used for the 

prediction of miRNA genes, their mature sequences [41] and their downstream 

targets. One drawback of these techniques is that multiple small RNA sequences 

are often missed due to technical difficulties of the sequencing methodology, 

such as library construction. Moreover, not all small RNA and under expressed 

mRNA sequences detected by NGS methods are true miRNAs and targets 

respectively, unless, some physical interaction between the two sequences can 

be attributed to them. Experimental verification of miRNA targets can be 

achieved via the use of luciferase assays whereby the miRNA is expressed in 

vitro, while simultaneously expressing and monitoring the target messenger RNA 

linked to a luciferase reporter gene [2, 83, 84]. This assay provides an 

experimental verification of a direct interaction between the mature miRNA and 

the target gene and furthermore provides evidence that regulation is mediated 

via the miRNA silencing pathway. However, the extent to which this interaction 
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takes place in the intact system in vivo cannot be inferred from luciferase assays 

alone. 

Currently, miRNA target prediction tools are freely available and are commonly 

built on sophisticated algorithms (i.e. machine learning) trained to recognize 

certain biological features of miRNA::target-mRNA interactions. Validation of 

computational methodologies is achieved using protein repression information 

from large scale proteomic studies (i.e. pSILAC) [82] as well as experimentally 

verified miRNA gene targets form online databases, like Tarbase (v5) [85]. 

Results from these analyses are used to obtain a comparison and prediction 

accuracy for existing target prediction tools. It is rare that target prediction tools 

are assessed for their ability to identify de novo biologically significant 

interactions. This can be achieved by directing predictions and high-throughput 

experiments towards answering a specific biological questions [86]. Such 

approaches can provide raw material for experimental biologists to investigate 

interesting biological questions, such as the molecular basis of a disease like 

cancer. 
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MOTIVATION  

Based on the above indications, members of Dr.Poirazi’s and Dr. Kalantidis 

laboratories had recently discovered new pri- or pre-microRNAs which are 

located on CAGRs [4, 5] via a combination of bioinformatics and experimental 

methods. More precisely, using SSCprofiler [5], an efficient miRNA gene 

prediction tool, four new pri- or pre-microRNAs were detected (Table 1) within 

regions which are deleted in prostate, colorectal and brain cancer 

(astrocytomas) [5], although the exact function and the potential association of 

these microRNAs with the respective cancer types were not investigated. 

TABLE 1.1. FOUR NEW miRNAs 

 
 

Exact location of the new pri- or pre-microRNAs on the genome, types of cancer related to 
alterations on these regions. (Compiled from [5]) 
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SCOPE 

The aim of the present thesis is twofold: (a) the development and application of 

computational methods for mature miRNA identification and miRNA target 

prediction and (b) the use of combined computational and experimental 

techniques to characterize the role of novel microRNA genes located on cancer 

related regions of chromosomes 9, 5 and 22. In more detail, this thesis focuses 

on: 

 The generation of one computational tool for the prediction of mature 

molecules given a miRNA precursor. 

 The determination of the mature molecule of the microRNA genes which 

are located on chromosome 9, 5 and 22. 

 The refinement and application of a computational tool for the 

computational prediction and experimental evaluation of selected 

interactions between predicted microRNAs and cancer-related target-

genes.  
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CHAPTER II – MiRduplexSVM 
 

In this part of the thesis, we introduce the problem of identifying the 

miRNA:miRNA* duplex as a first step in predicting the mature miRNA. We adopt 

this approach because (a) the duplex is a necessary stage of miRNA biogenesis 

and may contain features that determine the functional molecule and (b) given 

the duplex, it is relatively easy to experimentally determine whether both, or 

which of the two duplex strands results in the mature miRNA(s).  

We present a methodology that uses an appropriate representation of biological 

features combined with extensive optimization and training of SVM classifiers in 

order to generate predictive models of the miRNA:miRNA* duplex position on a 

hairpin sequence. Resulting models significantly outperform four existing tools, 

namely MatureBayes[55], MiRPara[56], MaturePred[57], and MiRDup[58] as 

well as a Simple Geometric Locator, a trivial method employing the position as 

the only predictor used for a baseline comparison. Moreover, our methodology 

can accurately predict the miRNA* given a known miRNA molecule and can be 

used to investigate the effects of mutagenesis on Drosha processing, leading to 

several experimentally testable predictions. In silico mutagenesis experiments 

performed on 142 hairpins suggest that both the distance from the single 

stranded stem junction and the distance from the terminal loop determine the 

Microprocessor’s cleavage site with the latter playing a major role. 
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Several factors contribute to the success of the methodology: the definition of the 

problem (predicting the whole duplex vs. a single strand or end), the 

representation of the sequence with a fixed-length vector using zero padding in 

the middle, the inclusion of the duplex flanking sequences, the production of 

positive and negative training examples based on biological constraints and not 

the simple 2nt overhang rule, the optimization of the SVM hyper-parameters 

while avoiding overfitting, and the use of two cost hyper-parameters to address 

the problem of positive and negative training examples’ imbalance. 
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METHODOLOGY 

The key idea of the proposed methodology is to train and employ a full 

polynomial SVM model to score each possible duplex position on a hairpin 

sequence and select the highest scoring one as the final predicted location. The 

various steps of our methodology are presented in the following paragraphs.  

 

Candidate Duplex Production 

The production of all possible duplexes on a hairpin structure is employed to 

generate training examples for the SVM during the training phase but also to 

produce all duplexes to be scored at prediction time; the highest scoring one is 

the final prediction.  

In a hairpin sequence, the counting of nucleotide positions starts from the 5’ end 

and continues to the 3’ end. A hairpin consists of a double-stranded part, the 

stem, and a sequence of unmatched nucleotides that connects the strands of the 

stem, called the terminal loop. The strand before the terminal loop is called the 5’ 

arm of the hairpin while the other is called the 3’ arm. The arms are not perfectly 

complementary but they form small loops and bulges. 

A miRNA:miRNA* duplex consists of two hairpin substrings on each of the two 

arms, called the 5’ strand and the 3’ strand of the duplex. We can define a duplex 

by the positions of its four ends on the respective strands of the generating 
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hairpin sequence; we name them k55, k53, k35 and k33. Figure 2.1A shows an 

example of a real hairpin (hsa-mir-17) with all the above quantities annotated. 

Notice that, because of the way of counting positions, k55 < k53 < k35 < k33 

holds.  

Not all possible substrings on the two strands define a possible duplex. Several 

constraints that are obeyed by Nature (as far as we know) need to be satisfied: 

(1) Two strands that share no matching bases do not form a possible 

miRNA:miRNA* duplex. (2) The length of each duplex strand should lie within a 

certain range, which can be deduced from known miRNAs. (3) The duplex 

overhangs should also lie within specific ranges, which can be calculated using 

the training examples. The procedure for calculating the length of the overhangs 

is described for the k55 end and is similar for the k33 end. Based on the 

secondary structure of the hairpin, we identify the position of the base that 

matches k55 on the opposite strand, say k’55. The overhang length is obviously 

k33 – k’55. However, k55 does not always have a matching base. In this case, we 

move x positions to the left (inside the hairpin) until we find a base on the 5’ arm 

that has a matching base on the 3’ arm, say on position k’55. The overhang length 

is then computed as k33 – k’55 + x. Of course, when k55 has a matching base x=0 

and the two computations coincide. (4) k55 < k53 < k35 < k33 and (5) k55, k53 

and k35, k33 need to be before and after the tip of the loop, respectively. To 

calculate the tip we identify the last matching nucleotides before the tip, which 

correspond to the loop start and loop end position, respectively. If the tip is T 

and the last matching nucleotides are X and X’, then X < T < X’ and T = X + ceil 

((X’-X) / 2), ceil refers to rounding toward positive infinity. (6) Finally, the 
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distances of k55, k53, k35 and k33 from the loop tip should lie within specific 

ranges, which can be calculated using the training examples. Specifically the 

distance of k55 and k53 from the loop tip ranges between the minimum and the 

maximum distance observed in the training examples. The distance of the 

position k35 is equal or bigger than the minimum distance observed in the 

training examples. On the other hand the distance of k33 from the loop tip is 

equal or less than the maximum distance observed in the training set. 

To assemble and detail the whole procedure together, we first predict the 

secondary structure of each hairpin using the RNAfold program [87] with the 

default parameters (-p -d0 -noLP -noPS). We then calculate the statistical 

distributions of the overhangs’ and matures’ lengths and of the distances of the 

four corners of the duplex from the loop tip, according to the secondary 

structures of hairpins in the given training set and remove the overhangs’ outlier 

values (values that are above or below three times the standard deviation from 

the mean value). This is necessary to reduce the number of candidate duplexes, 

stemming from values that are too extreme and uncommon. We then produce all 

duplex sequences that correspond to each combination of values k55, k53, k35, 

k33 that obey the constraints defined above. When only the first five constrains 

were used, the process of candidate production was named “All”, whereas when 

all six constrains were used it was named “Selected”. Contrary to earlier work 

[56], the k53 end can be positioned as far as the loop tip, allowing the 

identification of mature miRNAs that extent into the terminal loop.  

These two methodologies result in the generation of ~10.000 candidate duplexes 

per hairpin, only one of which is the true duplex. During training, true duplexes 
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are labeled positive and the rest form the negative examples. During testing, the 

true duplex is occasionally not produced due to the restrictions on the possible 

ranges of the overhangs described above. In the experiments reported here, loss 

of true duplexes due to this filtering never exceeded 4%. 

 

Duplex Vector Representation 

Extensive experimentation was first performed in order to find the minimum set 

of features like sequence, structure or thermodynamics needed to obtain 

maximum accuracy. Here we describe the representation of each of these 

features in a vector.  

Sequence 

MiRNA:miRNA* duplexes used as input to the SVM are represented by a fixed-

length numerical vector that contains nucleotide sequence information. 

Nucleotide sequences are converted to binary vectors, using a 1-of-4 encoding at 

each position: bases A, T, G and U are represented with four binary variables as 

1000, 0100, 0010 and 0001, respectively. A fixed-vector representation becomes 

problematic when strand sequences are of variable size. One solution is to 

identify the maximum possible strand length and pad with zeros or some other 

special value at the end for the missing nucleotides. In this case, the suffix of the 

nucleotide sequences will be represented with different variables each time. 

However, it has been demonstrated that end structure and nucleotide sequence 
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are the primary determinants of Dicer specificity when processing double-

stranded or short hairpin RNA [9]; we thus preferred a representation where it is 

the ends of the sequences that always correspond to the same variables. To do so 

we pad with zeros in the middle of a sequence, so that the first and the last 

nucleotides are always represented with the first and last variables, respectively. 

Zero padding is common in signal processing and while there may be better 

ways to treat missing information, it does not affect the estimation of model 

performance or invalidates any results. 

As the flanking regions around Drosha and Dicer cut sites are critical for the 

identification of these sites [52], [55], we include the flanking regions at both 

ends of each duplex strand in the representation of a candidate duplex. If a 

flanking region extends beyond the arm’s boundaries, zero padding at the 

beginning (for 5’ end flanking regions) or at the end (for 3’ end flanking regions) 

of the sequence takes place. The complete representation of a candidate duplex 

consists of the encoded nucleotide sequences of both its strands and their 

flanking regions. A preliminary version of this methodology is described in [88] 

and an example of the miRNA:miRNA* duplex representation for the hsa-mir-17 

hairpin is shown in Figure 2.1B. 
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Figure 2.1. A. Anatomy of the hsa-mir-17 hairpin, showing the duplex (grey), its four ends (k55, k53, 
k33, k35) and the two overhangs. B. Vector representation of the true miRNA:miRNA* duplex 
stemming from the has-mir-17. B.1. 5'strand 5'end (top) and 3’strand 3’ end (bottom) 10-nts 

flanking region nucleotide sequence, B.2. 5' strand (top)-3’ strand (bottom), duplex nucleotide 
sequence. Zero padding takes place in the middle. B.3.  5'strand 3'end (top), 3’strand 5’ end 

(bottom) 10-nts flanking region nucleotide sequence. Zero padding for flanking regions takes place 
at the end, because the 10-nts flanking region extends beyond the 5'arm 3'end/ 3’arm 5’ end , which 

is defined to be halfway from the terminal loop. 
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Thermodynamics 

As in the case of the representation of nucleotide sequence information, we used 

a fixed length numerical vector to encode thermodynamics information. 

Thermodynamics information was obtained by using the “UNAFold.pl” program 

[89]. “UNAFold.pl” returns a “.det” file from which we extract this information. 

The program assigns to each nucleotide a value which ranges from 0 to 1. If no 

number is assigned to a specific nucleotide we use the number which has been 

assigned to the closest nucleotide upstream. We construct a vector with these 

values which we use as input to the SVM. Note that, the process of zero padding 

is also used as described above, with the only difference that one zero was used 

for each missing nucleotide instead of four as in the case of the sequence.    

 

Structure  

Structural information was obtained by using the RNAfold program [87] with the 

default parameters (-p -d0 -noLP -noPS). The program returns a string which 

consist of dots “.”  and brackets “(” “ )” for each hairpin. We encode this 

information to a vector by converting the dot – bracket notation to 0 and 1 

respectively. The process of zero padding is used as described in the previous 

section. 
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Entropy 

Entropy information was acquired by using RNAfold’ utility:  

“mountain.pl”, http://web.mit.edu/seven/src/ViennaRNA-1.5/Utils/ [87]. As in 

the case of thermodynamics the program assigns to each nucleotide a value 

which ranges from 0 to 1. We construct a vector with these values which we use 

as input to the SVM. The process of zero padding is again used as described in the 

thermodynamics section.   

 

Sequences 

MiRBase hairpin sequences were used in all experiments described below [90]. 

However, miRBase “stem-loop” entries, do not always correspond to the exact 

pre-miRNA sequence, but consist of the latter extended with some flanking 

nucleotides. Furthermore, the Drosha cleavage site is determined by its distance 

(~11 base pairs, 13 nts on the 5’ arm and 11nts on the 3’ arm) from the stem – 

single stranded tails junction [3]. For these reasons, the described experiments 

were also performed after adding 13 nts upstream and downstream the miRBase 

stem-loop entries. We name “sequence” the miRBase sequences without adding 

any extra nucleotides, and “sequence +13” the miRBase sequences plus 13nts 

upstream and downstream the stem-loop. The sequence of these nucleotides is 

not random but corresponds to the genomic sequence adjacent to the stem/loop 

structures.  

http://web.mit.edu/seven/src/ViennaRNA-1.5/Utils/
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Training and Testing Procedures 

The training and testing procedures are depicted in Figure 2.2. Briefly, given a 

set of training hairpins, the process consists of the following steps: (a) all entries 

with unknown duplexes and/or multi-branch structures (structures with more 

than one stems are considered multi-branch) are filtered out. (b) For each 

hairpin, all possible duplexes (~10,000 per hairpin) are generated and divided 

into the single Positive (experimentally verified duplex) and Negative (the rest) 

examples. To reduce training time, only 100 randomly selected negative 

duplexes per positive sample are used for training. (c) Selected positive and 

negative duplexes are used to train an SVM classifier with a full polynomial 

Kernel K(xi, xj) = (xi • xj  +1)d , where • represents the inner product of the vectors 

and d is the degree of the polynomial. Since the distribution of the two classes is 

quite unbalanced (1:100), the penalty in the SVM objective function is weighted 

differently for each class, namely as number-of-samples/(c*number-of-positive-

samples) for positive examples and number-of-samples/(c*number-of-negative-

samples), for negative examples, where c is a hyper-parameter. Thus, the Hinge 

loss for examples of the rare class (positives) is higher than the loss for examples 

of the abundant class. The SVM software used is the MATLAB interface for 

LIBSVM (version 3.11) [91].  

Testing follows a similar procedure: multi-branch or unfoldable hairpins are first 

filtered out. Then, per-hairpin, all candidate duplexes are generated (note that 

the ranges of the overhang’s and mature’s length are always deduced from the 
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training set alone). The duplex with the maximum SVM score is selected as the 

algorithm’s final prediction.  

Prediction error is assessed using two metrics (see Text S1):  (a) The ACSAE (All 

Corners Sum Absolute Error) is the sum of absolute errors in number of 

nucleotides from true position between the actual and the predicted duplex end, 

taken over all four ends of the duplex. (b) The EAE (End Absolute Error) focuses 

on a specific end of the duplex; it is the absolute error of the predicted minus the 

true position (in nucleotides) in a specific duplex end. For example, if the true 

positions are k55 = XX55, k53 = XX53, k35= XX35 and k33 = XX33, and the predicted 

positions are YY55, YY53, YY35, YY33 respectively, then the ACSAE on this duplex is 

ACSAE = (|XX55 – YY55| + |XX53 – YY53| + |XX35 – YY35| + |XX33 – YY33|). The EAE 

for each duplex end is |XX55 – YY55|, |XX53 – YY53|, |XX35 – YY35|, |XX33 – YY33|, 

respectively. 

To measure prediction accuracy, we define as “correct” a prediction with error 

less or equal to a number x. Then, the prediction accuracy for an error bound of 

at most x, denoted as Accu(x), is the percentage of correct predictions in the test 

set. For example, if a model identifies correctly the position of 50% of duplexes 

with ACSAE ≤ 4, it has accuracy at 4nt of 50%: Accu(4) = 0.5.  
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Statistical significance of the results is assessed by assuming the null hypothesis 

that two methods have the same accuracy for a given error bound and applying 

the Fisher’s exact test. 

 

Optimization of SVM Hyperparameters 

The method has three hyper-parameters to optimize: the cost c, the degree of the 

kernel d of the SVM, and the length of the flanking region l (number of 

nucleotides before and after the duplex) of the vector representation. We note 

that proper selection of these hyper-parameters was critical to achieving high 

performance. They were optimized once using 5-fold cross validation on a 

 

Figure 2.2. Flowcharts of the training and testing procedures. 
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randomly-selected subset of version 17.0 of miRBase, consisting of 70% (658 in 

number) human/mouse hairpins with known duplexes. The values tested were: 

d = 1, 2, 3, c = 100, 10, 1, 0.1, 0.01, 0.001 and l = 0, 3, 6, 9, 10…15 nts. The 

performance during cross-validation was measured in terms of predicting the 

exact location of the duplex by calculating the sum of the absolute error taken 

over all four ends of the duplex (ACSAE). The best performing combination of 

parameters found was d = 3, c = 0.01 and l = 10nts. This combination of 

parameters was employed in all MiRduplexSVM models reported here. To ensure 

unbiased estimations of performance, the 658 hairpins used for hyper-parameter 

optimization were excluded from all test sets used in subsequent evaluations.  

 

Producing a Simple Geometric Locator as a Baseline Comparison 

We also develop a Simple Geometric Locator (S.G.L.), whereby each of the four 

ends of the duplex is predicted by its average location in a training set. 

Specifically, for any given hairpin, the location of each of the four ends of known 

duplexes is found by calculating its distance from the tip of the terminal loop. 

This is done for all hairpins in the training set and the average distances 

(rounded to the closest integer) are then used to generate the predictions of the 

S.G.L. for any new hairpin in the test set. The terminal loop tip was chosen as the 

reference point as it does not depend on the length of the pre-miRNA flanking 

regions included in the hairpin sequence. 
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RESULTS 

Model selection 

Extensive experimentation was first performed in order to find the minimum set 

of features like sequence, structure, entropy, thermodynamics or distance based 

characteristics needed to obtain maximum accuracy (see Table 2.1). Based on the 

error metric ACSAE we find two models that fulfill these requirements, model 8 

and model 11, as shown in Figure 2.3. Model 8 has been trained and tested using 

sequence and entropy information while model 11 using only sequence 

information (see Table2.1). Both models achieve similar accuracy in finding the 

four corners of the miRNA duplex, for an error tolerance of up to 3nts. In 

addition they perform better or similar to other models which are more complex. 

While model 8 achieves better ACSAE for errors higher than 3 nts, model 11 is 

simpler and has a higher probability of producing the true duplex.  We thus 

optimized the parameters of both models. Specifically, for both algorithms the 

degree of the kernel and the cost parameter of the SVM as well as the flanking 

sequence length (number of nucleotides before and after the duplex) were 

optimized using five-fold cross validation. In both cases the best performing 

parameters were found to be: d = 3, c = 0.01 and l = 10.  The mean prediction 

accuracies of the optimized models versus the ACSAE are shown in Figure 2.4.  

Even though, the “Sequence – Entropy” model seems to have better performance 

than the “Sequence” model, the observed differences were not statistically 

significant and we decided to select the simplest model. 
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TABLE 2.1 SET OF FEATURES USED IN MODEL SELECTION 

 
miRBase 

sequences 
Candidate 

Production 
SVM input 

Model 
Number 

Sequence Sequence 
+ 13 All Selected Sequence Entropy Thermodynamics Structure Flank A B C D E F G H    

1  +  + + +               
2  +  + +                
3  + +  +                
4  + +  + +               
5  + +  +  +              
6 +  +  +   + 12 + + + +        
7 +  +  +   + 12 + + + + + + + +    
8 +   + + +   13            
9 +   + +  +  13            

10 +   + +    13            
11 +  +  +    13            
12 +  +    +  12 + + + + + + + +    
13 +   +   +  12            

Features used for model selection. In all models sequences from miRBase were used. “Sequence” means the exact miRBase sequences were used. “Sequence + 13” means 
miRBase sequences were used after adding 13nts upstream and downstream each miRBase stem-loop entry.  Candidate duplexes were also produced in two ways, “All” 

and “Selected” (see text for details). The SVM input consisted of different features, which were used alone or in combination with others. Sequence, entropy, 
thermodynamics, structure and several distance-based features were used. Flank: the flanking sequence at both ends of each duplex strand in the representation of a 
candidate duplex. A: miRNA length, 5p strand, B: miRNA length, 3p strand, C: overhang length, 5p strand, D: overhang length, 3p strand, E: distance k55 from the loop 
tip, F: distance k53 from the loop tip, G: distance k35 from the loop tip, H: distance k33 from the loop tip, I: hairpin loop sequence length, J: distance k53 from the start 

of the loop, K:distance k35 from the end of the loop. + means that this feature was included in SVM training and testing. 
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Figure 2.3. Mean prediction accuracies achieved by the different models. The 

mean prediction accuracy shown in the figure was calculated in the following 
way. During each five-fold cross validation, 5 models were produced M1, M2, M3, 
M4, M5. For each model we calculate its prediction accuracy PA1, PA2, PA3, PA4 
and PA5 and average all of them to obtain the mean prediction accuracy, MPA, 

MPA= (PA1 + PA2 + PA3 + PA4 + PA5)/ 5. The simplest models showing good 
performance for low error values are model 8 and model 11. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4. Mean prediction accuracy for the “Sequence”- model 11 and “Sequence - Entropy” – 

model 8. The prediction accuracy shown in the figure was calculated as in Figure 2.3. Prediction 
accuracies were obtained using the best performing combination of the degree of the kernel d, 

the cost c and the flanking sequence length l. The “Sequence – Entropy” model has better 
performance than the “Sequence” model, however by performing Wilcoxon “ranksum” tests we 

note that the observed difference was not statistically significant. 
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Comparison with a Simple Geometric Locator 

The performance of MiRduplexSVM was first compared to that of the Simple 

Geometric Locator. Both methods were trained on the dataset used to optimize 

the hyper-parameters of MiRduplexSVM and tested on the remaining 30% of 

hairpins with known duplexes (290 hairpins) in version 17.0 of miRBase. Figure 

2.6A shows the prediction accuracy of each tool as a function of the ACSAE while 

Figure 2.6G (blue line) and Figure 2.7 (blue lines) show the prediction accuracy 

of MiRduplexSVM against that of the S.G.L. estimated using the ACSAE (0-8nts, 

Fig. 3G) or the EAE (0–5nts, Fig. 4), respectively. In all cases MiRduplexSVM 

greatly outperforms the S.G.L., especially for small error values. The observed 

difference in performance is statistically significant for ACSAE of 0-15 

nucleotides (Table 2.2 line 6, p=0.05), and for EAE of 0-3 nucleotides (Table 2.3, 

lines 21 – 24, p=0.05), beyond which both methods behave similarly. Having 

shown that the distance from the tip loop, while a very simple approach, is not 

sufficient to identify miRNA duplexes, we next compare MiRduplexSVM with 

existing miRNA mature prediction tools. 

 

Comparison with other State of the Art Tools 

In the following paragraphs we compare MiRduplexSVM with four state-of-the-

art mature miRNA prediction tools, namely MatureBayes [55], MiRPara [56], 
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MaturePred [57] and MiRdup [58]. To ensure fairness, in each comparison 

MiRduplexSVM is trained with the original training set of the compared tool and 

evaluated on a common hold-out test set. The procedure for building the various 

test sets is depicted in Figure 2.5. Briefly, we start with all hairpins in miRBase 

version 19.0 and exclude the ones previously seen by any of the compared tools 

(during training or parameter optimization), resulting in ~16.000 hairpins. This 

set, hereby termed “Test Set A” is used to extract test sets for the various 

comparisons according to the specifications of each tool. Test Set A.1 was used to 

evaluate MatureBayes and MiRPara and was generated by randomly selecting 

~5.000 hairpins, while maintaining the same species ratio of the original test set 

Α, out of which ~2.500 had known duplexes. Test Set A.2 consisted of hairpins 

(2688, 1578 with known duplexes) from Test Set A.1 which belonged to the 

species used in the original test set of MaturePred_Mammals. Comparison with 

 

Figure 2.5. Building test sets procedure. 
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MaturePred was also done for plants, using the Test Set A.3. This set consisted of 

all plant hairpins from Test Set A that belonged to  the species used in the 

original test set of MaturePred_Plants (2365, 365 with known duplexes). 

Performance accuracies on (a) duplex identification, using the ACSAE, and (b) 

independent corner identification, using the EAE were estimated only on 

hairpins that are predicted to contain a mature miRNA by both of the compared 

tools. Comparisons shown in Figures 2.6 and 2.7 are performed by finding the 

prediction accuracy of each tool for an ACSAE of 0-8nts and an EAE of 0-5nts and 

(a) plotting these accuracies as a function of the ACSAE metric (Figure 2.6A-F) or 

(b) plotting these accuracies against each other (Figure 2.6G and Figure 2.7). 

Specifically, on Figure 2.6G the prediction accuracy, measured as the ACSAE (in 

%), of MiRduplexSVM (y axis) at error points 0-8nts is plotted against the 

respective accuracy of each compared tool (x-axis). For example, the first point 

(triangle) on each line represents the pair of accuracies (Accui(0), 

AccuMiRduplexSVM(0)), the second point (rhombus), the pair (Accui(1), 

AccuMiRduplexSVM(1)) and so on, where i is the compared tool. The points that 

correspond to comparisons against a given tool i are connected with a line. Thus, 

if a line is right on the diagonal, then the two methods achieve the same accuracy 

for the same error tolerance. If it is above the diagonal, then MiRduplexSVM 

achieves the same accuracy for smaller error levels than the method compared 

against. The same applies to Figure 2.7, with the only difference that the accuracy 

is measured using the EAE instead of the ACSAE. The results of each tool 

comparison are summarized below. 
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MatureBayes [55] was the first tool specifically developed to address the 

problem of mature miRNA identification. It utilizes  a Naive Bayes classifier to 

identify mature miRNA candidates based on sequence and secondary structure 

information of their miRNA precursors [55]. It generates one prediction per 

strand and uses the 2nts overhang rule to define the predicted miRNA* on the 

opposite strand, creating two hypothetical duplexes. For this comparison, 

MiRduplexSVM was trained with the original training set of MatureBayes and 

both algorithms were evaluated on Test-Set A1. MatureBayes’ predictions were 

obtained using the downloadable version of the algorithm. The ACSAE was 

applied on MatureBayes’ hypothetical duplex which obtained the highest score. 

The EAE were in turn applied on the strand-specific molecules of the highest 

scoring candidate duplex for both tools. Comparison to MiRduplexSVM is shown 

in Figures 3B and 3G (pink line) for duplex prediction and Figure 2.7 (pink lines) 

for independent corner prediction. As evident from the figures, MiRduplexSVM 

significantly outperforms MatureBayes (pink lines are above the diagonal) in 

both duplex (up to 12 nts, Table 2.2, row 1) and independent corner (up to 4nts, 

Table 2.3, rows 1–4) prediction.  

MiRPara [56] is an SVM-based tool for mature miRNA prediction. We compare 

MiRduplexSVM with the stand alone application, MiRPara 4.2, which was 

available at the time of evaluation. We trained our algorithm with all duplexes in 

miRBase version 13.0, which was used as a training set for  MiRPara 4.2, and 

both algorithms were tested on Test Set A.1 (Figure 2.7). MiRPara generates 

several independent predictions for each strand of any given hairpin, whereas 

MiRduplexSVM predicts only one duplex per hairpin. In order to compare the 
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two tools in terms of the ACSAE we needed to produce a single hypothetical 

duplex for MiRPara. To this end, we consider the highest scoring predictions per 

strand as the two sides of the hypothetical duplex of any given hairpin. For 

comparisons using the EAE, we contrasted the top scoring prediction of MiRPara 

per strand against the prediction of MiRduplexSVM for the same strand. Strand-

specific comparisons were performed independently of  one another, i.e. there 

was no requirement that both strands produce a mature miRNA. Comparison to 

MiRduplexSVM is shown in Figures 3C and 3G (cyan line) for duplex prediction 

and Figure 2.7 (cyan lines) for independent corner prediction. It should be noted 

that MiRPara gave a prediction for only 3774 out of the 5000 hairpins used for 

testing. Prediction accuracy for both models was calculated on these 3774 

hairpins, which biases the comparison in favour of MiRPara. As evident from the 

figures, MiRduplexSVM significantly outperforms MiRPara (cyan lines are above 

the diagonal) in both duplex (up to 8nts, Table 2.2, row 2) and independent 

corner (up to 2nts, Table 2.3, rows 5-8) prediction. Note, that the S.G.L. also has a 

good performance for errors beyond 3-4nts (Table 2.3) indicating that even the 

simplest method can find the true mature when the tolerance for errors is more 

than a couple of nucleotides per corner.  

MaturePred [57] employs an SVM classifier to predict the region which is most 

likely to contain the mature miRNA molecule in each strand of a hairpin. It 

consists of two models, one specialized in plants, hereby termed 

MaturePred_Plants and one specialized in mammals, hereby named 

MaturePred_Mammals. We compare MiRduplexSVM with each model separately. 

In each case we train MiRduplexSVM with the respective MaturePred’s training 



46 
 

set and evaluate performances on Test Sets A.2 (for mammals) and A.3 (for 

plants). In both comparisons, MaturePred’s predictions were acquired by using 

the online version of the respective model following the recommendations on its 

web site. As in the case of MiRPara, MaturePred gives multiple independent 

predictions per strand. Thus, we measure the ACSAE and EAE for each corner as 

described for MiRPara. Comparison to MiRduplexSVM is shown in Figures 3D 

(Plants), 3E (Mammals) and 3G (Plants: green line, Mammals: red line) for duplex 

prediction and Figure 2.7 (Plants: green lines, Mammals: red lines) for 

independent corner prediction. As evident from figures 3D,E,G (lines above 

diagonal), MiRduplexSVM significantly outperforms MaturePred on duplex 

prediction for both plant and mammalian hairpins (for all errors tested, Table 

2.2, rows 3 & 4). For independent corner prediction, MiRduplexSVM outperforms 

MaturePred in a statistically significant manner only for mammalian hairpins 

(red lines above diagonal), while for plant hairpins both tools achieve similar 

performances (Fig. 4, green lines on the diagonal and Table 2.3, rows 9 - 16).  

MiRdup [58] is the latest tool that tackles the problem of mature miRNA 

identification. It does so by finding the most likely miRNA location within a given 

pre-miRNA. MiRdup is based on a random forest classifier trained with 

experimentally validated miRNAs from miRbase, with features that characterize 

the miRNA–miRNA* duplex. MiRdup predicts the most probable miRNA duplex 

on a given hairpin. Both MiRduplexSVM and MiRdup were trained on 70% of 

miRBase 17.0 (658 hairpins) and tested on the remaining 30% (290 hairpins). 

This was done since the MiRdup’s downloadable model was trained on the entire 

miRBase 19.0, and a lot of errors occurred when we tried to use it. Comparison to 
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MiRduplexSVM is shown in Figures 3F and 3G (purple line) for duplex prediction 

and Figure 2.7 (purple lines) for independent corner prediction. As evident from 

the figures, MiRduplexSVM significantly outperforms MiRdup (purple lines are 

above the diagonal) in both duplex (up to 15nts, Table 2.2, row 5) and 

independent corner (up to 3nts, Table 2.3, rows 17 – 20) prediction.  

In sum, on the task of duplex prediction, MiRduplexSVM outperforms all other 

tools it has been compared to for an error tolerance of at least 8nts and the 

increase in performance accuracy ranges from ~10% to 60% (Figure 2.6G and 

Table 2.2). With respect to individual end comparisons (Figure 2.7 and Table 

2.3), MiRduplexSVM is again found to outperform all methods, particularly for 

small EAEs (0-4nts). The only exception is MaturePred-Plants which achieves a 

similar performance. The latter maybe due to the parameter optimization of 

MiRduplexSVM which was done using mammalian hairpins and/or the small 

number of plant hairpins used to train MiRduplexSVΜ (198) compared to 

MaturePred_Plants (1.323). 
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Figure 2.6. Prediction accuracy of MiRDuplexSVM and six other methods on duplex identification. 
Panels A-F show the prediction accuracy (y-axis) of MiRDuplexSVM (in black) and a second 

compared tool (in colour) as a function of the All Corners Sum Absolute Error (ACSAE, x axis) for 
errors of 0-8nts. The performance of the Simple Geometric Locator (S.G.L.), MatureBayes, miRPara, 
MaturePred-Plants, MaturePred-Mammals and MiRdup is shown in A – blue bars, B – pink bars, C – 
cyan bars, D – green bars, E -red bars and F -purple bars, respectively. Panel G shows the prediction 
accuracy of MiRDuplexSVM (y axis) against the prediction accuracy of each compared tool (x axis). 

The colour code is the same as in A-F. Symbols (upward triangle, diamond, downward triangle, 
circle, right pointed triangle, square, left pointed triangle, pentagram star and hexagram star) 

correspond to errors less than or equal to 0, 1, 2, 3, 4, 5, 6, 7, 8 nucleotides, respectively. All points 
above the diagonal in G are statistically significant at level 0.05. 
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Figure 2.7. Prediction accuracy of MiRDuplexSVM versus six other methods on corner 
identification. Performance accuracies are estimated using the EAE for errors of 0-5nts. In each 

panel, the y axis shows the prediction accuracy of MiRduplexSVM (in %) and the x axis shows the 
prediction accuracy of other methods (in %). The colour and symbol scheme is the same as in 

Figure 2.6G. Statistically significant results are indicated with filled symbols. 
 

 

 

 

 



50 
 

TABLE 2.2 PREDICTION ACCURACIES, UP TO 20 NTS DEVIATION 

 All Corners Sum Absolute Error in nucleotides 
 <= 0 <= 1 <= 2 <= 3 <= 4 <= 5 <= 6 <= 7 <= 8 <= 9 <= 10 <= 11 <= 12 <= 13 <= 14 <= 15 <= 16 <= 17 <= 18 <= 19 <= 20 

MiRduplexSVM/ 
MatureBayes - 

Prediction 
accuacy % 

7.61
%/ 

0.08
% 

 *** 

16.38
%/ 

0.44
% 

 *** 

25.52
%/ 

1.25
% 

 *** 

33.41
%/ 

4.59
% 

 *** 

38.61
%/ 

9.86
% 

 *** 

42.95
%/ 

17.07
% 

 *** 

47.91
%/ 

28.1
% 

 *** 

51.57
%/ 

36.19
% 

 *** 

54.91
%/ 

42.47
% 

 *** 

57.25
%/ 

47.91
% 

 *** 

59.86
%/ 

54.15
% 

 *** 

62.04
%/ 

57.29
% 

 *** 

63.81
%/ 

61.27
% 
 * 

65.66
%/ 

64.29
% 
 ns 

67.11
%/ 

67.15
% 
 ns 

68.72
%/ 

68.84
% 
 ns 

70.21
%/ 

71.3
% 
 ns 

71.46
%/ 

72.46
% 
 ns 

72.95
%/ 

73.95
% 
 ns 

73.95
%/ 

74.64
% 
 ns 

74.96
%/ 

75.6
% 
 ns 

MiRduplexSVM/ 
MiRPara - 
Prediction 
accuacy % 

11.58
%/ 

0.21
% 

 *** 

23.89
%/ 

1.95
% 

 *** 

36.26
%/ 

6.58
% 

 *** 

44.95
%/ 

15.79
% 

 *** 

52.37
%/ 

26.47
% 

 *** 

57.05
%/ 

38.95
% 

 *** 

60.63
%/ 

48.68
% 

 *** 

63.58
%/ 

56.47
% 

 *** 

66.79
%/ 

63.11
% 

 ** 

69.26
%/ 

68.11
% 
 ns 

70.74
%/ 

72.11
% 
 ns 

72.79
%/ 

74.58
% 
 ns 

74.63
%/ 

76.32
% 
 ns 

76.11
%/ 

78% 
 ns 

77.26
%/ 

79.16
% 
 ns 

78.68
%/ 

80.16
% 
 ns 

80.21
%/ 

81.16
% 
 ns 

80.84
%/ 

82.05
% 
 ns 

81.89
%/ 

83% 
 ns 

82.79
%/ 

83.74
% 
 ns 

83.53
%/ 

84% 
 ns 

MiRduplexSVM/ 
MaturePred_Pla
nts - Prediction 

accuacy % 

28.77
%/ 

6.58
% 

 *** 

40.82
%/ 

11.78
% 

 *** 

46.58
%/ 

14.79
% 

 *** 

48.49
%/ 

16.16
% 

 *** 

50.14
%/ 

21.92
% 

 *** 

52.05
%/ 

25.48
% 

 *** 

53.7
%/ 

31.51
% 

 *** 

54.25
%/ 

32.33
% 

 *** 

57.81
%/ 

34.52
% 

 *** 

58.63
%/ 

36.71
% 

 *** 

59.45
%/ 

39.73
% 

 *** 

59.73
%/ 

41.37
% 

 *** 

61.64
%/ 

43.56
% 

 *** 

63.56
%/ 

45.75
% 

 *** 

64.93
%/ 

50.41
% 

 *** 

65.75
%/ 

51.51
% 

 *** 

67.67
%/ 

52.88
% 

 *** 

67.67
%/ 

53.42
% 

 *** 

68.49
%/ 

55.62
% 

 *** 

69.32
%/ 

56.99
% 

 *** 

69.86
%/ 

58.9
% 

 ** 
MiRduplexSVM/ 
MaturePred_Ma

mmals - 
Prediction 
accuacy % 

11.85
%/ 

0.25
% 

 *** 

26.93
%/ 

1.14
% 

 *** 

40.87
%/ 

3.23
% 

 *** 

51.08
%/ 

5.83
% 

 *** 

58.3
%/ 

7.92
% 

 *** 

63.31
%/ 

10.65
% 

 *** 

68.19
%/ 

14.7
% 

 *** 

71.61
%/ 

17.74
% 

 *** 

75.22
%/ 

20.85
% 

 *** 

77.19
%/ 

23.07
% 

 *** 

79.66
%/ 

25.48
% 

 *** 

81.18
%/ 

27.44
% 

 *** 

82.83
%/ 

29.85
% 

 *** 

84.41
%/ 

31.94
% 

 *** 

85.61
%/ 

33.84
% 

 *** 

86.76
%/ 

35.8
% 

 *** 

87.45
%/ 

37.83
% 

 *** 

88.21
%/ 

40.18
% 

 *** 

88.97
%/ 

42.65
% 

 *** 

89.92
%/ 

44.8
% 

 *** 

90.49
%/ 

47.34
% 

 *** 
MiRduplexSVM/ 

MiRdup - 
prediction 
accuracy % 

31.38
%/ 

1.03
% 

 *** 

47.59
%/ 

4.83
% 

 *** 

56.9
%/ 

12.76
% 

 *** 

64.83
%/ 

20% 
 *** 

73.1
%/ 

28.62
% 

 *** 

75.52
%/ 

38.62
% 

 *** 

78.97
%/ 

50.69
% 

 *** 

81.72
%/ 

60.34
% 

 *** 

83.45
%/ 

69.66
% 

 *** 

86.55
%/ 

74.48
% 

 *** 

88.62
%/ 

78.97
% 

 ** 

88.97
%/ 

80.34
% 

 ** 

90.69
%/ 

81.38
% 

 *** 

91.38
%/ 

83.1
% 

 ** 

91.72
%/ 

85.86
% 
 * 

92.76
%/ 

88.28
% 
 * 

93.79
%/ 

91.72
% 
 ns 

94.14
%/ 

92.07
% 
 ns 

94.14
%/ 

93.1
% 
 ns 

94.48
%/ 

93.45
% 
 ns 

95.86
%/ 

93.45
% 
 ns 

MiRduplexSVM/ 
Simple 

Geometric 
Locator - 

Prediction 
accuacy % 

31.38
%/ 

1.03
% 

 *** 

47.59
%/ 

4.83
% 

 *** 

56.9
%/ 

12.76
% 

 *** 

64.83
%/ 

20% 
 *** 

73.1
%/ 

28.62
% 

 *** 

75.52
%/ 

38.62
% 

 *** 

78.97
%/ 

50.69
% 

 *** 

81.72
%/ 

60.34
% 

 *** 

83.45
%/ 

69.66
% 

 *** 

86.55
%/ 

74.48
% 

 *** 

88.62
%/ 

78.97
% 

 ** 

88.97
%/ 

80.34
% 

 ** 

90.69
%/ 

81.38
% 

 *** 

91.38
%/ 

83.1
% 

 ** 

91.72
%/ 

85.86
% 
 * 

92.76
%/ 

88.28
% 
 * 

93.79
%/ 

91.72
% 
 ns 

94.14
%/ 

92.07
% 
 ns 

94.14
%/ 

93.1
% 
 ns 

94.48
%/ 

93.45
% 
 ns 

95.86
%/ 

93.45
% 
 ns 

The sum of the absolute error taken over all four ends of the predicted (MiRduplexSVM) or the hypothetical (MaturePredPlants, MaturePredMammals, MiRPara, MatureBayes) duplexes is 
calculated. MiRduplexSVM has been trained on each program’s training set and their performance has been accessed on a common blind test set. Fisher exact test were performed to 

examine if the observed differences are statistical significant. *** corresponds to pvalue ≤ 0.001, ** to pvalue ≤ 0.01, * to pvalue ≤ 0.05, and ns to non statistical.
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TABLE 2.3 PREDICTION ACCURACIES, UP TO 8 NTS DEVIATION. 

 
 End Absolute Error (EAE) 

 
 

<= 0 <= 1 <= 2 <= 3 <= 4 <= 5 <= 6 <= 7 <= 8 

MiRduplexSVM/ 
MatureBayes - 

Prediction 
accuracy % 

k55 
33.93%
/ 7.79% 

 *** 

47.07%
/ 

28.34% 
 *** 

57.03%
/ 

51.19% 
 *** 

64.58%
/ 

63.68% 
 ns 

70.14%
/ 

70.58% 
 ns 

75.19%
/ 

74.48% 
 ns 

78.53%
/ 

77.44% 
 ns 

80.84%
/ 

79.61% 
 ns 

83.44%
/ 

81.35% 
 * 

k53 
22.72%
/ 8.96% 

 *** 

42.75%
/ 

27.23% 
 *** 

55.46%
/ 

45.55% 
 *** 

63.46%
/ 

58.44% 
 *** 

69.65%
/ 

67.54% 
 * 

73.78%
/ 

73.13% 
 ns 

77.55%
/ 

76.74% 
 ns 

80.67%
/ 

79.72% 
 ns 

82.84%
/ 

81.27% 
 * 

k35 
32.15%
/ 6.9% 
 *** 

46.85%
/ 

34.66% 
 *** 

56%/ 
47.2% 
 *** 

64.23%
/ 

58.49% 
 *** 

70.73%
/ 68.4% 

 * 

74.88%
/ 

74.85% 
 ns 

77.58%
/ 

78.85% 
 ns 

80.49%
/ 

80.75% 
 ns 

82.63%
/ 

82.63% 
 ns 

k33 

25.28%
/ 

10.66% 
 *** 

45.21%
/ 

32.89% 
 *** 

56.5%/ 
49.68% 

 *** 

64.36%
/ 

60.47% 
 *** 

70.6%/ 
69.62% 

 ns 

74.8%/ 
75.12% 

 ns 

77.71%
/ 

79.16% 
 ns 

80.22%
/ 

81.31% 
 ns 

83.1%/ 
83.18% 

 ns 

MiRduplexSVM/ 
MiRPara - 
Prediction 
accuracy % 

k55 

44.34%
/ 

14.03% 
 *** 

58.2%/ 
40.65% 

 *** 

66.45%
/ 

61.68% 
 *** 

72.75%
/ 

73.44% 
 ns 

77.86%
/ 

78.59% 
 ns 

81.07%
/ 

80.93% 
 ns 

83.95%
/ 82.6% 

 ns 

85.62%
/ 

84.79% 
 ns 

87.54%
/ 

85.66% 
 * 

k53 

28.99%
/ 

16.05% 
 *** 

51.97%
/ 

42.15% 
 *** 

65.23%
/ 

60.81% 
 *** 

71.91%
/ 

72.26% 
 ns 

77.2%/ 
77.62% 

 ns 

80.75%
/ 

81.17% 
 ns 

83.85%
/ 

82.81% 
 ns 

85.49%
/ 

83.99% 
 ns 

87.16%
/ 

85.03% 
 * 

k35 

43.43%
/ 

20.95% 
 *** 

58.9%/ 
52.3% 
 *** 

68.08%
/ 

67.98% 
 ns 

73.6%/ 
75.32% 

 ns 

78.44%
/ 

79.55% 
 ns 

81.52%
/ 

81.72% 
 ns 

83.65%
/ 

83.38% 
 ns 

85.14%
/ 

84.77% 
 ns 

87.14%
/ 

86.15% 
 ns 

k33 

31.75%
/ 

14.93% 
 *** 

54.71%
/ 

40.72% 
 *** 

66.22%
/ 

61.37% 
 *** 

73.32%
/ 

73.73% 
 ns 

78.3%/ 
79.18% 

 ns 

81.65%
/ 

82.36% 
 ns 

84.12%
/ 84.5% 

 ns 

85.65%
/ 

85.78% 
 ns 

87.31%
/ 

86.97% 
 ns 

MiRduplexSVM/ 
MaturePred_Pla
nts - Prediction 

accuracy % 

k55 

37.14%
/ 

39.62% 
 ns 

46.83%
/ 

50.69% 
 * 

52.22%
/ 

57.47% 
 ** 

56.23%
/ 

62.71% 
 *** 

60.89%
/ 

68.32% 
 *** 

64.02%
/ 

71.01% 
 *** 

66.86%
/ 

74.58% 
 *** 

69.85%
/ 

76.84% 
 *** 

72.1%/ 
78.88% 

 *** 

k53 

34.09%
/ 

30.95% 
 * 

45.88%
/ 

49.96% 
 * 

52.37%
/ 

56.74% 
 * 

55.72%
/ 62.2% 

 *** 

60.16%
/ 

67.52% 
 *** 

64.31%
/ 

70.21% 
 *** 

66.28%
/ 

73.71% 
 *** 

70.07%
/ 77.2% 

 *** 

72.54%
/ 

78.51% 
 *** 

k35 

37.73%
/ 

40.68% 
 ns 

46.13%
/ 

48.05% 
 ns 

52.03%
/ 55.2% 

 ns 

57.48%
/ 

61.97% 
 ** 

61.39%
/ 66.4% 

 ** 

65.44%
/ 

70.52% 
 ** 

69.57%
/ 

73.69% 
 ** 

72.37%
/ 

76.49% 
 ** 

74.72%
/ 

78.78% 
 ** 

k33 
33.24%
/ 33.9% 

 ns 

46.2%/ 
46.79% 

 ns 

52.32%
/ 

53.87% 
 ns 

58.07%
/ 

61.75% 
 * 

62.64%
/ 

66.54% 
 * 

66.47%
/ 

70.08% 
 * 

69.2%/ 
73.25% 

 * 

72.37%
/ 

76.27% 
 * 

75.31%
/ 79% 

 * 

MiRduplexSVM/ 
MaturePred_Ma

mmals - 
Prediction 

k55 

50.69%
/ 

13.44% 
 *** 

67.03%
/ 

25.94% 
 *** 

75.96%
/ 

37.62% 
 *** 

82.61%
/ 

46.94% 
 *** 

86.79%
/ 56.1% 

 *** 

89.69%
/ 

64.47% 
 *** 

92.11%
/ 

69.69% 
 *** 

93.35%
/ 

74.11% 
 *** 

94.77%
/ 

80.33% 
 *** 
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accuracy % 

k53 
31.54%
/ 8.31% 

 *** 

56.44%
/ 22% 
 *** 

71.83%
/ 

35.11% 
 *** 

80.19%
/ 

45.13% 
 *** 

85.65%
/ 

55.49% 
 *** 

89.03%
/ 

63.66% 
 *** 

91.31%
/ 

69.12% 
 *** 

93.02%
/ 

74.16% 
 *** 

94.54%
/ 80.1% 

 *** 

k35 

48.56%
/ 

16.03% 
 *** 

66.36%
/ 25.3% 

 *** 

76.14%
/ 

33.23% 
 *** 

83.09%
/ 

42.96% 
 *** 

87.21%
/ 

48.33% 
 *** 

90.22%
/ 

53.29% 
 *** 

92.12%
/ 

57.78% 
 *** 

93.74%
/ 

62.23% 
 *** 

95%/ 
66.91% 

 *** 

k33 
39.67%
/ 16.4% 

 *** 

63.11%
/ 

28.64% 
 *** 

75.72%
/ 

36.61% 
 *** 

82.62%
/ 

43.56% 
 *** 

86.61%
/ 

49.95% 
 *** 

90.13%
/ 

54.36% 
 *** 

92.68%
/ 

59.64% 
 *** 

93.74%
/ 

64.32% 
 *** 

95.04%
/ 

69.23% 
 *** 

MiRduplexSVM/ 
MiRdup - 
Prediction 
accuracy % k55 

65.17%
/ 

15.52% 
 *** 

79.31%
/ 

44.83% 
 *** 

86.55%
/ 

73.45% 
 *** 

90%/ 
84.48% 

 * 

92.76%
/ 

92.07% 
 ns 

94.48%
/ 

95.17% 
 ns 

96.55%
/ 

96.21% 
 ns 

97.93%
/ 

97.59% 
 ns 

98.62%
/ 

97.59% 
 ns 

k53 

51.38%
/ 

13.45% 
 *** 

76.21%
/ 

43.45% 
 *** 

83.45%
/ 

70.34% 
 *** 

89.31%
/ 

83.79% 
 * 

92.07%
/ 

91.03% 
 ns 

94.83%
/ 

93.79% 
 ns 

97.59%
/ 

95.52% 
 ns 

98.28%
/ 

97.93% 
 ns 

98.97%
/ 

97.93% 
 ns 

k35 
56.9%/ 
16.55% 

 *** 

77.93%
/ 

50.69% 
 *** 

83.79%
/ 

74.83% 
 ** 

90%/ 
85.17% 

 ns 

94.48%
/ 

91.72% 
 ns 

95.52%
/ 

93.45% 
 ns 

96.21%
/ 

94.83% 
 ns 

97.59%
/ 

95.86% 
 ns 

97.59%
/ 

97.24% 
 ns 

k33 

57.59%
/ 

18.28% 
 *** 

76.55%
/ 

50.34% 
 *** 

85.17%
/ 

73.79% 
 *** 

90.34%
/ 

85.17% 
 * 

93.1%/ 
90.69% 

 ns 

96.55%
/ 

93.45% 
 ns 

96.55%
/ 

94.48% 
 ns 

97.59%
/ 

96.21% 
 ns 

97.93%
/ 

97.59% 
 ns 

MiRduplexSVM/ 
Simple 

Geometric 
Locator - 

Prediction 
accuracy % 

k55 

65.17%
/ 

15.52% 
 *** 

79.31%
/ 

44.83% 
 *** 

86.55%
/ 

73.45% 
 *** 

90%/ 
84.48% 

 * 

92.76%
/ 

92.07% 
 ns 

94.48%
/ 

95.17% 
 ns 

96.55%
/ 

96.21% 
 ns 

97.93%
/ 

97.59% 
 ns 

98.62%
/ 

97.59% 
 ns 

k53 

51.38%
/ 

13.45% 
 *** 

76.21%
/ 

43.45% 
 *** 

83.45%
/ 

70.34% 
 *** 

89.31%
/ 

83.79% 
 * 

92.07%
/ 

91.03% 
 ns 

94.83%
/ 

93.79% 
 ns 

97.59%
/ 

95.52% 
 ns 

98.28%
/ 

97.93% 
 ns 

98.97%
/ 

97.93% 
 ns 

k35 
56.9%/ 
16.55% 

 *** 

77.93%
/ 

50.69% 
 *** 

83.79%
/ 

74.83% 
 ** 

90%/ 
85.17% 

 ns 

94.48%
/ 

91.72% 
 ns 

95.52%
/ 

93.45% 
 ns 

96.21%
/ 

94.83% 
 ns 

97.59%
/ 

95.86% 
 ns 

97.59%
/ 

97.24% 
 ns 

k33 

57.59%
/ 

18.28% 
 *** 

76.55%
/ 

50.34% 
 *** 

85.17%
/ 

73.79% 
 *** 

90.34%
/ 

85.17% 
 * 

93.1%/ 
90.69% 

 ns 

96.55%
/ 

93.45% 
 ns 

96.55%
/ 

94.48% 
 ns 

97.59%
/ 

96.21% 
 ns 

97.93%
/ 

97.59% 
 ns 

The absolute error for each one of the four ends of the duplex is calculated 
independently. MiRduplexSVM has been trained on each program’s training set and 
their performance has been accessed on a common blind test set. Fisher exact test 
were performed to examine if the observed differences are statistical significant. 

*** corresponds to pvalue ≤ 0.001, ** to pvalue ≤ 0.01, * to pvalue ≤ 0.05 and ns to 
non statistical. 
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Final model  

Having established the superiority of our algorithm compared to existing tools, 

we generated a final model using all hairpins with known duplexes (5.248) 

available in miRBase 19.0 (latest version). The model was evaluated on 5.000 

randomly selected hairpins having the same species ratio as the remaining 

15.500. Mature sequences in these 5.000 hairpins were equally distributed in 

both strands. The accuracy of MiRduplexSVM was evaluated using the EAE since 

the ACSAE cannot be computed without knowledge of the true duplex. It was 

found to reach  55%, 39%, 54% and 43% correct prediction at 0 nucleotides 

deviation for k55, k53, k35 and k33, respectively (see Table 2.4). This final model 

achieves higher performance than the one seen in the comparisons with other 

tools, presumably because it is trained with a much larger training set. The 

model is available for download at http://139.91.171.154/duplexsvm/.     

 

 

TABLE 2.4. FINAL MIRDUPLEXSVM MODEL PREDICTIONS FOR EAE UP TO 5NTS. 

End Absolute Error (EAE) in nts 

Prediction 
Accuracy 

(%) 

 ≤ 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 
k55 55.46 64.66 71.33 75.62 79.44 82.25 
k53 39.4 59.04 70.88 76.14 80.24 82.97 
k35 54 64.85 71.38 76.42 80.1 82.87 
k33 43.35 61.53 70.18 75.58 80.1 82.87 

The absolute error for each one of the four ends of the duplex is calculated independently. 
 

 

 

http://139.91.171.154/duplexsvm/
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Missing Duplexes Identification 

We next tested our methodology on the problem of identifying the mature 

molecule that lies on the opposite strand of a known miRNA. This is an important 

problem as both of these molecules are frequently functional, albeit under 

different conditions, and thus experimental techniques are unlikely to detect 

them both in a single experiment. To the best of our knowledge, this is the first 

attempt to find opposite strand miRNAs using a machine learning approach. 

Towards this goal, we set the known miRNA of each hairpin as the ground truth 

for that strand and produce all candidate duplexes generated by sliding along the 

opposite strand. The final prediction is the highest scoring candidate. 

MiRduplexSVM is compared to a simple classifier, termed “Overhangs Ruler”, 

which uses the statistical distributions of overhang lengths in the training set to 

identify the most frequently occurring values for 3’ and 5’ strands. In the 

majority of the cases, these values are equal to 2nts, a number that is commonly 

used in computational studies to find the miRNA* [57], [55]. For a new test 

hairpin, the missing strand of the duplex is estimated by assigning the overhang 

lengths to the known miRNA ends. 

Both algorithms were trained on a dataset of 3.248 hairpins (containing a known 

duplex) and evaluated on a set of 2.000 hairpins (with known duplexes) using 

the EAE metric. Prediction accuracies were measured for each strand 

independently and the results are listed in Table 2.5. MiRduplexSVM was found 

to outperform the Overhangs Ruler on identifying the start position of the 
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miRNA* (Table 2.5, rows 1 and 3), while both algorithms achieve the same 

performance on predicting the end position (Table 2.5, rows 2 and 4).  

Our predictions were also contrasted to the results of a comparative genomics 

approach, a method frequently employed to find conserved miRNAs [92, 93]. 

Opposite strand molecules were identified by searching for orthologs in other 

species, utilizing the gene name of each miRNA. Orthologs with known duplexes 

were used to predict opposite strand miRNAs as long as (a) the known miRNAs 

were exactly the same across species and (b) the sequence of the opposite strand 

molecule was part of the hairpin under investigation. It is important to mention 

that if more than one orthologs met these requirements, several predictions 

were produced per hairpin. In this case, only the prediction with minimum EAE 

was used for comparison and thus the results provide an upper bound of the 

performance using orthologs based on best-case analysis. This process resulted 

in the identification of opposite strand miRNAs for 30 genes, while we note that 

TABLE 2.5. MISSING DUPLEXES PREDICTION RESULTS FOR MIRDUPLEXSVM AND THE 

OVERHANGS RULER. 

End Absolute Error (EAE) in nts 

Prediction 
Accuracy (%) 

of MiRduplexSVM / 
Overhangs Ruler 

 ≤ 0 ≤ 1 ≤ 2 

k55 70 / 56 
*** 

85 / 84 
ns 

91 / 92 
ns 

K53 53 / 53 
ns 

79 / 81 
ns 

90 / 91 
ns 

k35 67 / 53 
*** 

85 / 81 
*** 

91 / 91 
ns 

k33 58 / 56 
ns 

82 / 84 
ns 

89 / 92 
ns 

MiRduplexSVM outperforms Overhangs ruler in the identification of the start position of the 
mature miRNA that lie on the 5 or the 3’ strand, but achieves the same accuracy on the prediction 

of their end positions. Statistical significance was assessed using the Fisher exact test. *** 
corresponds to p-value ≤ 0.001, ** to p-value ≤ 0.01, * to p-value ≤ 0.05 and ns to non significant. 
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the MiRduplexSVM is capable of providing predictions every time. When 

compared to the MiRduplexSVM predictions for the same hairpins using the EAE 

metric, both methods gave the same predictions within a window of 2nts 

deviation (Table 2.6).  

Finally, we used MiRduplexSVM to predict all missing duplexes of human and 

mouse hairpins (1240 mature miRNAs, see Appendix). 

 

Microprocessor cleavage site determination 

As mentioned earlier, there are two biological models on how the 

microprocessor complex recognizes and process a pri-miRNA. The first model 

suggests that the Drosha cut site is located at ~22 nucleotides from the terminal 

loop – stem junction [6] while  the second model claims that the cleavage site is 

located at ~11nts from the stem – single stranded tails junction [3]. We use our 

TABLE 2.6. MIRDUPLEXSVM VERSUS COMPARATIVE GENOMICS ON MISSING DUPLEXES 

PREDICTION. 

End Absolute Error (EAE) in nts 
Prediction  

Accuracy (%) 
of MiRduplexSVM 

with respect to the 
comparative 

genomics 
results 

 ≤ 0 ≤ 1 ≤ 2 
k55 81.82 95.45 100 
K53 63.64 95.45 100 
k35 85.71 100 100 

k33 100 100 100 

The table shows the prediction accuracy per corner of MiRDuplexSVM when the results of a 
comparative genomics approach are set as the ground truth. When considering an error 

tolerance of up to 2nts, MiRduplexSVM gives exactly the same predictions as a strict comparative 
genomics algorithm. 
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algorithm, MiRduplexSVM to investigate concordance with these two hypotheses 

by performing in silico mutagenesis experiments. It is important to mention that, 

these junctions are not easy to define based on the secondary structure of miRNA 

hairpins. It has been shown experimentally that 8 out of 10 times, the miRNA 

hairpin’s secondary structure, and especially their loop size and actual folding, is 

different from its computational prediction as shown by chemical and enzymatic 

probing [94]. Taking into consideration these inconsistencies and  in accordance 

with Han et.al[3], we define two main regions on a given hairpin: region L, which 

includes 13 (upstream) and 11 (downstream) nucleotides from the Drosha site, 

and region U which includes all nucleotides between the Drosha cleavage site 

and the terminal loop tip, as shown in Figure 2.8. Our approach relies on the tip 

of the loop, and not its starting position, in order to avoid errors that may have 

been introduced during the secondary structure generation as discussed above.  

A hairpin consists of a double-stranded part, the stem, and a sequence of 

unmatched nucleotides that connects the strands of the stem, called the terminal 

loop. The strand before the terminal loop is called the 5’ arm of the hairpin while 

the other is called the 3’ arm. The arms are not perfectly complementary but they 

form small loops and bulges. A miRNA:miRNA* duplex consists of two hairpin 

subsequences on each of the two arms, called the 5’ strand and the 3’ strand of 

the duplex. We can define a duplex by the positions of its four ends on the 
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 generating hairpin sequence; we name them k55, k53, k35 and k33 

corresponding to the 5’strand 5’end, 5’strand 3’end, 3’strand 5’end and 3’strand 

3’end positions, respectively. Notice that, because of the way of counting 

positions, k55 < k53 < k35 < k33 [88]. 

 

Figure 2.8. Flowchart of the in silico mutagenesis  process. The L region corresponds to 
13nts before and 11 nts after the Drosha cut site. The U region corresponds to the 

hairpin starting at the Drosha site and containing the loop. 
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To calculate the tip we identify the last matching nucleotides before the tip, 

which correspond to the loop start and loop end position, respectively. If the tip 

is T and the last matching nucleotides are X for 5’ strand and X’ for 3’ strand, then 

X < T < X’ and T = X + ceil ((X’-X) / 2), ceil refers to rounding toward positive 

infinity. 

In addition, prediction error is assessed using Drosha Corner Sum Absolute Error, 

DCSAE. The DCSAE is the sum of absolute errors in number of nucleotides from 

true position between the actual and the predicted Drosha site end, taken over 

both ends of the Drosha site. For example, if the true positions of Drosha site are 

k55 = XX55 and k33 = XX33 and the predicted positions are YY55, and YY33 

respectively, then the DCSAE = |XX55 – YY55| + |XX33 – YY33|. 

In order to characterize the effect of nucleotide mutations on Drosha processing 

we used all human and mouse hairpins in miRBase 19.0 as graphically illustrated 

in Figure 2.8. To ensure the presence of the stem – single stranded tails junction 

in our sequences and the sequence - structure around it, we added whenever 

needed, 23 (upstream) and 21 (downstream) nucleotides from  the Drosha site 

[3]. Out of this dataset, MiRduplexSVM was trained with the same hairpins that 

were used during parameter optimization [88] (678) and the remaining 383 

hairpins were used for testing.  

Only 142/383 hairpins whose Drosha sites were predicted correctly (0nts 

deviation) were used for the mutagenesis experiments. In silico mutagenesis was 

performed by inserting or deleting 2, 4 or 6 matching nucleotides to L or U 

regions, thus shifting the Drosha site towards or away from the single stranded 

tails – stem junction, or the terminal loop tip. MiRduplexSVM was re-applied on 
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the mutated hairpins and the new Drosha processing sites were predicted, 

Figure 2.8. 

In order to evaluate if a mutation has a statistical significant effect on the 

MiRduplexSVM’s predictions we perform Wilcoxon rank-sum tests between the 

results obtain using the Drosha Corners Sum Absolute Error (DCSAE) before and 

after every mutation. Bonferroni correction was also applied to correct for 

multiple testing.  

Table 2.7 shows the statistically significant results from this comparison. The 

Drosha Site Average Shift (DSAS) and the percentage of hairpins in which a shift 

was observed after each mutation are also shown. In order to calculate the DSAS, 

only hairpins whose Drosha site had changed after a given mutation were taken 

into account. For each hairpin we first calculate Drosha Corners Mean Error, 

DCME = ((YY55 – XX55) + (XX33 – YY33))/2. Subsequently we estimate the 

median value over all hairpins’ DCMEs, DSAS = median(DCMEs). As evident from 

the table, all mutations in the U region (between the Drosha site and the loop tip) 

resulted in a predicted shift in the Drosha site while for the L region (between 

the Drosha site and the stem – single stranded tails junction), only the deletion of 

4nts led to significant changes. 
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Specifically, the deletion of 4 nucleotides in the L region resulted in a 0.5nt shift 

of the Drosha site towards the stem – single stranded tail junction (see Table 

2.7). This finding is in contrast with recent experimental work whereby the 

deletion of 4 matching nucleotides in the respective L region of mir-16-1, pushed 

the Drosha site away from the stem – single stranded tail junction by the same 

distance[3]. A thorough analysis of our results, revealed that for an approximate 

60% of the cases the Drosha cleavage site moves closer to the stem – single 

stranded tail junction by 1 nucleotide and the remaining 40% of the times it 

moves away by 2 nucleotides (see Table 2.8).  Deletion of nucleotides form the U 

region however results in a shift of the Drosha cleavage site which is analogous 

to the direction of the mutation: inserting or deleting nucleotides moves the 

TABLE 2.7. MUTATION ANALYSIS 

Type of  mutations DSAS 
Percentage 

% Significance 

L-4 -0,5 9.75 *** 
U+2 0.5 15.44 *** 
U+4 2.5 19.51 *** 
U+6 5 20.32 *** 
U–2 -1.5 20.32 *** 
U–4 - 4.5 43.9 *** 
U–6 -6.5 78.86 *** 

 
In silico mutagenesis experiments. The first column lists the type of the performed  mutations, 
i.e. the number of matching nts added (+) or deleted (-) in the L or U regions.  The sequence of 
the inserted nucleotides was generated randomly. The second column shows the Drosha Site 

Average Shift (DSAS) in nts which corresponds to the median of the Drosha Corners Mean 
Error. The third column reports the percentage of hairpins in which a shift was predicted. The 
last column shows the statistical significance of these effects, assessed using a. Wilcoxon rank-
sum test between DCSAE calculated on wild type and  mutated sequences for each mutation. 

*** corresponds to p-value< 0.001 
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Drosha site in a way that maintains specific distance from the stem loop tip. 

These findings are in close agreement  with the experimental work of Yan Zeng 

et al [6].  

 

 

 

 

 

 

 

 

 

 

TABLE 2.8. L REGION MUTATIONS 

Type of mutations DSAS Percentage % 

L-4 -1 58.3 
L-4 2 41.6 

 
The effect of L-4 type of mutations is shown. In 58% of the cases presenting an effect from this 

mutation the Drosha site moved one nucleotide from its original place towards the single 
stranded stem junction. In the remaining 42% of the cases, it moved 2 nucleotides towards to the 

stem loop junction. 
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CONCLUDING REMARKS  

We introduced the problem of predicting the miRNA:miRNA* duplex stemming 

from a miRNA hairpin precursor as a first step in identifying the mature 

miRNA(s); the latter is important both for experimentally verifying the miRNA 

and for computationally predicting target mRNAs. We employed biological 

knowledge and constraints in converting the problem to a classification one and 

trained a high-order polynomial SVM model to identify the true duplex among 

candidates. 

 

MiRduplexSVM outperforms existing approaches 

We compared our methodology, named MiRduplexSVM, with (a) a distance 

based Simple Geometric Locator, and (b) three state of the art miRNA mature 

prediction tools, namely MatureBayes[55], MiRPara [56] MaturePred[57] and 

MiRdup[58]. In all cases, comparisons were performed in a fair and unbiased 

manner, employing the training set of each respective tool and evaluating 

performances on a common hold out test set. We showed that (a) for mammalian 

hairpins, MiRduplexSVM greatly outperforms all other tools in identifying either 

the true duplex or each of its ends independently. (b) For plant hairpins, our tool 

outperformed MaturePred_Plants on duplex prediction and matched its 

performance on finding each end of the miRNA molecules independently. The 

latter maybe due to the parameter optimization of MiRduplexSVM which was 
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done using mammalian hairpins and/or the small number of plant hairpins used 

to train MiRduplexSVΜ (198) compared to MaturePred_Plants (1.323). This 

finding is likely to change if a new version of MiRduplexSVM devoted to plant 

miRNA prediction was developed. Overall, that large improvement in 

performance seen especially for the 0nt deviation point (i.e. identification of the 

exact miRNA duplex or molecule) suggest that MiRduplexSVM is a much more 

efficient tool for addressing the problem of mature miRNA identification than 

currently available approaches.  

 

Features of MiRduplexSVM that may underlie its high performance 

The reasons behind this remarkable increase in accuracy achieved by 

MiRduplexSVM are multiple: first, our tool is trained to recognize 

miRNA:miRNA* duplexes, as opposed to strand-specific miRNAs, which is the 

standard approach of existing tools. Duplex formation is an indispensable stage 

in the biogenesis of all miRNAs, regardless of which strand will end up producing 

the functional molecule [8]. MiRduplexSVM takes into account this biological 

process and while it does not learn to distinguish which of the two strands is the 

functional miRNA, our results show that learning duplexes is also a very 

successful strategy for identifying strand specific miRNAs. Second, our tool 

learns to identify both the start and the end positions of the miRNA:miRNA* 

sequences, while most existing tools predict only the starting nucleotide and use 

a fixed size length of 22nts to find the end position. To achieve this 
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MiRduplexSVM uses a variable length parameter for each miRNA molecule. As a 

result, MiRduplexSVM does not only outperform other tools in predicting the 

start position of strand-specific miRNA molecules, but it also succeeds in 

specifying their length. Third, MiRduplexSVM does not assume a fixed size (2nt) 

overhang length like most existing approaches. On the contrary, the length of 

each overhang is explicitly learned by the training examples. This feature is likely 

to also contribute to the algorithm’s success.  

The zero padding, flank regions, and the representation to a fixed-vector size 

may also be a performance factor. The use of different cost hyper-parameters in 

the objective function of the SVM to handle the imbalance of the positive and 

negative classes is also a key factor. The candidate duplex generation also 

required the design of a simple, yet important algorithm to compute the 

overhang of the generated candidate. Finally, our experience with training the 

models shows that optimization and tuning of the SVM hyper-parameters (cost 

and polynomial kernel degree) is crucial for achieving good performance. 

An important advantage of our model is its simplicity and cost effectiveness that 

results from the use of sequence information alone, as opposed to structure and 

thermodynamics that are often used by other tools [55-57]. In our tool, the 

secondary structure of hairpins is used in the preparatory stage, for filtering out 

multibranch precursors and estimating the distribution of overhang and mature 

miRNA lengths, but not for training the classifier. Actually, the incorporation of 

structural features in the model was not found to significantly affect 

performance (data not shown) and therefore was not explored further. Our 

results suggest that the information needed to identify miRNA:miRNA* duplexes 
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lies in the nucleotide sequence and MiRduplexSVM is capable of decoding it, 

making it a more accurate tool and at the same time less complex/expensive 

than others.  

 

 A tool for finding the complementary part of known miRNAs 

We show that MiRduplexSVM is highly successful in identifying the 

complementary mature molecule (miRNA or miRNA*) that lies on the opposite 

strand of a known miRNA. It performs much better than the commonly used 

approach, where a fixed 2nt overhang is assumed in order to find the starting 

position of the opposite strand molecule. Moreover, it provides information for 

both the start and end positions, and therefore the length, of the unknown 

miRNA molecule. Finally, for human and mouse hairpins, we show that 

MiRduplexSVM behaves like a comparative genomics algorithm with strict 

criteria on this particular task.  

 

A tool for performing in silico mutagenesis experiments 

In addition to its high performance on mature miRNA identification, 

MiRduplexSVM was used to explore the effect of mutations on determining the 

Drosha cleavage site. There are currently two biological models regarding the 
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determination of the Drosha cleavage site: According to the model of Han et al 

[3], the complex cuts ~11nts from the stem – single stranded tails junction. 

According to the model of Zeng et al [6, 95], the microprocessor complex 

recognizes and cleaves a pri-miRNA ~22nts from the stem – loop junction. Our 

results suggest a third model that combines information from both of these 

studies. 

 In silico addition and/or deletion of matching nucleotides showed that the 

region before (U region in Figure 2.8) is more important than the region after (L 

region in Figure 2.8) the Drosha processing site. Specifically, every mutation in 

the U region resulted in a shift of the Drosha cleavage site while only the deletion 

of 4 in the L region had a similar effect. Our findings are in agreement with the 

recent work of Vincent et al. [96], where the Microprocessor complex was shown 

to distinguish between hairpins from different species by relying on sequence 

motifs that lie either within the single stranded tail region (U region) or the loop 

region (L region). These motifs have been suggested to guide the Microprocessor 

complex towards its cleavage site. It is possible that the insertion/deletion of 

nucleotides in the L and U regions that we simulate with MiRduplexSVM alters 

either the motifs themselves or the distances between the motifs and the Drosha 

cleavage site, thus resulting in the observed shift in the cleavage site itself. In 

sum, both ours and previous experimental findings suggest that structural and 

sequence information on both sides influence the Drosha cleavage point.  

 

 



68 
 

CHAPTER III – SIMPLE GEOMETRIC 
LOCATOR 

 

INTRODUCTION 

Supervised machine-learning approaches are frequently applied on biological 

data to learn a regression or classification model, whether used for prediction, 

classification, or for gaining an understanding on the biological process that has 

generated the data [97].  Arguably however, it is sometimes the case that 

sophisticated and complicated methods are employed, published, and advocated 

as advances without a comparison even against the simplest baseline methods. 

We consider a baseline method as the simplest method that an expert analyst can 

conceive within a few minutes of consideration of the problem and does not 

require any engineering or scientific ingenuity or novelty. A baseline can take the 

form of comparing against predicting by the mean of the outcome on a known 

dataset, without use of any special predicting variables, or comparing against 

random guessing. Because of this lack of comparison, the added-value of the 

sophisticated methods – if any – is not quantified; it remains unknown whether 

the extra effort for implementing or applying it is worth. A false perception about 

the difficulty of the problem may be created.  

We now present an example of the above argument on the problem of identifying 

the position of miRNA mature molecules on their precursor RNA molecules, 

which typically have a hairpin-like secondary structure. In the cell, the miRNA 

precursor is first cut into a complex of two substring sequences (strands) with 
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high complementarity called the 5’ strand and the 3’ strand. The complex is called 

the miRNA:miRNA* duplex defined by its four corners denoted as k55, k53, k35 

and k33 corresponding to the 5’strand 5’end, 5’strand 3’end, 3’strand 5’end and 

3’strand 3’end positions, respectively (Figure. 1). The two strands are then 

separated and either one or both become a functional miRNA. The task is to 

predict the positions k55, k53, k35 and k33 given the sequence of a miRNA 

precursor molecule. Solving the problem can suggest novel miRNAs within 

suspected miRNA precursor sequences, to guide miRNA discovery, as well as 

provide intuition regarding the mechanisms regulating the miRNA biogenesis. 
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METHODOLOGY 

The first paper to address this prediction task is ProMiR[50] which did not use 

any baseline method. Subsequent methods used the previous methods as 

baselines without considering the simplest possible method. What is the baseline 

“straw man” on this problem? Arguably, it is making a prediction based on the 

mean position of each corner k55, k53, k35 and k33 as estimated from a training set 

of known miRNA duplexes and their precursor sequences. We call this method 

the Simple Geometric Locator (SGL) obviously providing a constant predicted 

position on any hairpin independent of the input sequence. An important detail 

to address is to define the reference point for measuring the mean position since 

miRNA precursors have various lengths. We chose the terminal loop tip as the 

reference point as it does not depend on the length of the pre-miRNA flanking 

regions included in the hairpin sequence (details are in Chapter II). 

The set of “cannons” to compare against SGL form four of the state-of-the-art 

tools for the task, namely MatureBayes1 [55], MiRPara [56], MaturePred [57] and 

the most recent MiRdup [58] published in respectable venues such as PLoS ONE, 

BMC Bioinformatics, and Nucleic Acids Research. These tools employ machine-

learning algorithms such as the Simple-Bayes Classifier, Support Vector 

Machines, and the random forest classifier. They also employ complex raw and 

constructed features that include the nucleotide sequence, the secondary 

                                                        
1 We note that MatureBayes did compare against the SGL in  Gkirtzou, K. (2009) Mature MiRNA 
Identification via the use of naive Bayes classifier. University of Crete, Computer Science 
Department.; unfortunately, the reference point used for the SGL was the beginning of the 
flanking regions, whose length is arbitrarily chosen before miRNA precursors are inserted in the 
MiRBase; hence, the performance of the SGL was found inferior in that work.  
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structure, number of loops and bulges, matches or mismatches for each 

nucleotide and others.  

In our comparison, prediction error on the task for each corner (end) is measured 

as the End Absolute Error (EAE): the absolute error of the predicted minus the 

true position (in nucleotides) for a specific duplex end. See supplementary file 1 

for an example. To measure prediction accuracy, we define as “correct” a 

prediction with error less or equal to a number x, i.e., EAE ≤ x. Then, the 

prediction accuracy for an error bound (tolerance) of at most x, denoted as 

Accu(x), is the percentage of correct predictions in the test set. For example, if a 

model identifies the position of a given duplex end in 50% of duplexes within at 

most ±4nt from their true position, it has accuracy at 4nt of 50%: Accu(4) = 0.5 . 

Statistical significance of the results is assessed by assuming the null hypothesis 

that two methods have the same accuracy for a given error bound and applying 

the Fisher’s exact test. To ensure fairness, in each comparison the SGL is trained 

(estimates the mean positions) with each method’s training set, the one 

employed in the corresponding publication, after removing all miRNA hairpins 

with unknown duplexes and multi-branch structures (structures with more than 

one stems are considered multi-branch). Other programs’ predictions are 

obtained and summarized in Chapter II. The performance accuracies are 

estimated on a common hold-out test set, as detailed in Supplementary file 1. 

Since some tools do not provide a prediction on all hairpins, the estimation of 

accuracy is computed only on the hairpins for which a prediction is made; SGL of 

course, is always providing with a prediction. 

 



72 
 

RESULTS  

The results are shown in figure 3.1 and table 3.1. First, the accuracies Accui(x) 

are computed for each tool i and duplex end for an EAE of x = 0,1,2, ... 5nt. 

Subsequently these accuracies are plotted against each other by connecting the 

points (Accui(0), AccuSGL (0)), (Accui(1), AccuSGL (1)), …, (Accui(5), AccuSGL (5)). 

For example, a point (Accui(1)= 30%, AccuSGL (1)= 40%) implies that method i 

identified 30% of the duplexes in the test set within ±1nt of their true position, 

while SGL identified 40% of duplexes within ±1nt of their true position. Thus, if a 

line is on the diagonal, then the two methods achieve the same accuracy for the 

same error tolerance. If it is below the diagonal SGL achieves lower accuracy for 

the same error tolerance and if it is above the diagonal, then the SGL achieves 

higher accuracy for the same error tolerance than the method compared against.  

SGL clearly and statistically significantly outperforms MatureBayes and 

MaturePred in predicting any of the four duplex corners for all error bounds. On 

the 5’ strand SGL and MiRdup achieve similar accuracies for absolute error of at 

most 0nt and 1nt with MiRdup slightly improving for larger error bounds; 

MiRPara on the 5’ strand is better by only 2% - 6%. In the 3’ strand, MiRdup and 

MiRPara exhibit an overall better performance than SGL. However, when 

focusing on the accuracy with zero tolerance Accu(0), i.e., the percentage of 

duplexes identified on their exact position corresponding to the first point of 

each line, only MiRPara shows statistically significantly better results with the 

difference in performance ranging from 3%-10% (see Figure3.1 and  table3.1). 
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Figure 3.1. Prediction performance per corner. Performance accuracies are estimated 
using the EAE for up to 5nts. In each subplot, the y axis shows the prediction accuracy 
of Simple Geometric Locator (in %) and x axis shows the prediction accuracy of other 

methods (in %) for the same error tolerance.  Lines comparing against the Simple 
Geometric Locator correspond to MatureBayes (magenda), MaturePred_Mammals 
(red), MaturePred_Plants (blue), MiRPara (cyan), and MiRdup (green) . In addition, 
upward triangle, diamond, downward triangle, circle, right pointed triangle, square, 
left pointed triangle, pentagram star and hexagram star correspond to errors less or 
equal than 0, 1, 2, 3, 4, 5 nucleotides, respectively. Statistically significant results are 

indicated with filled symbols. 
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TABLE 3.1 PREDICTION ACCURACIES, UP TO 8 NTS DEVIATION. 

  End Absolute Error (EAE) 
  <= 0 <= 1 <= 2 <= 3 <= 4 <= 5 <= 6 <= 7 <= 8 

Simple Geometric 
Locator/ 

MatureBayes - 
Prediction accuracy 

% 

k55 19.44
%/ 

7.79
% 

 *** 

42.94%
/ 

28.34% 
 *** 

57.3%/ 
51.19% 

 *** 

65.74%
/ 

63.68% 
 * 

70.09%
/ 

70.58% 
 ns 

73.59%
/ 

74.48% 
 ns 

76.25%
/ 

77.44% 
 ns 

78.04%
/ 

79.61% 
 ns 

79.02%
/ 

81.35% 
 ** 

k53 14.28
%/ 

8.96
% 

 *** 

39.69%
/ 

27.23% 
 *** 

55.4%/ 
45.55% 

 *** 

64.69%
/ 

58.44% 
 *** 

69.92%
/ 

67.54% 
 * 

73.1%/ 
73.13% 

 ns 

75.62%
/ 

76.74% 
 ns 

77.52%
/ 

79.72% 
 * 

78.72%
/ 

81.27% 
 ** 

k35 14.81
%/ 

6.9% 
 *** 

40.82%
/ 

34.66% 
 *** 

58.33%
/ 

47.2% 
 *** 

68.11%
/ 

58.49% 
 *** 

72.79%
/ 

68.4% 
 *** 

75.75%
/ 

74.85% 
 ns 

77.34%
/ 

78.85% 
 ns 

79.35%
/ 

80.75% 
 ns 

80.65%
/ 

82.63% 
 * 

k33 17.98
%/ 

10.66
% 

 *** 

41.64%
/ 

32.89% 
 *** 

58.67%
/ 

49.68% 
 *** 

68.09%
/ 

60.47% 
 *** 

72.82%
/ 

69.62% 
 ** 

75.86%
/ 

75.12% 
 ns 

77.87%
/ 

79.16% 
 ns 

79.64%
/ 

81.31% 
 * 

80.96%
/ 

83.18% 
 ** 

Simple Geometric 
Locator/ MiRPara - 
Prediction accuracy 

% 

k55 12.01
%/ 

14.03
% 
 * 

32.23%
/ 

40.65% 
 *** 

53.25%
/ 

61.68% 
 *** 

69.13%
/ 

73.44% 
 *** 

77.06%
/ 

78.59% 
 ns 

80.19%
/ 

80.93% 
 ns 

81.9%/ 
82.6% 

 ns 

83.4%/ 
84.79% 

 ns 

85%/ 
85.66% 

 ns 

k53 10.2
%/ 

16.05
% 

 *** 

31.85%
/ 

42.15% 
 *** 

50.75%
/ 

60.81% 
 *** 

66.97%
/ 

72.26% 
 *** 

75.29%
/ 

77.62% 
 * 

79.71%
/ 

81.17% 
 ns 

82.04%
/ 

82.81% 
 ns 

83.26%
/ 

83.99% 
 ns 

84.44%
/ 

85.03% 
 ns 

k35 10.05
%/ 

20.95
% 

 *** 

32.63%
/ 

52.3% 
 *** 

56.06%
/ 

67.98% 
 *** 

71.67%
/ 

75.32% 
 *** 

78%/ 
79.55% 

 ns 

80.81%
/ 

81.72% 
 ns 

83.04%
/ 

83.38% 
 ns 

84.43%
/ 

84.77% 
 ns 

85.61%
/ 

86.15% 
 ns 

k33 11.65
%/ 

14.93
% 

 *** 

32.7%/ 
40.72% 

 *** 

54.4%/ 
61.37% 

 *** 

68.25%
/ 

73.73% 
 *** 

76.34%
/ 

79.18% 
 ** 

80.64%
/ 

82.36% 
 * 

83.01%
/ 

84.5% 
 ns 

84.83%
/ 

85.78% 
 ns 

86.15%
/ 

86.97% 
 ns 

Simple Geometric 
Locator/ 

MaturePred_Mamm
als - Prediction 

accuracy % 

k55 22.33
%/ 

13.44
% 

 *** 

49.17%
/ 

25.94% 
 *** 

70.64%
/ 

37.62% 
 *** 

80.81%
/ 

46.94% 
 *** 

85.8%/ 
56.1% 
 *** 

89.31%
/ 

64.47% 
 *** 

90.97%
/ 

69.69% 
 *** 

92.26%
/ 

74.11% 
 *** 

93.35%
/ 

80.33% 
 *** 

k53 14.39
%/ 

8.31
% 

 *** 

43.28%
/ 22% 
 *** 

65.75%
/ 

35.11% 
 *** 

78%/ 
45.13% 

 *** 

84.51%
/ 

55.49% 
 *** 

88.65%
/ 

63.66% 
 *** 

91.02%
/ 

69.12% 
 *** 

92.4%/ 
74.16% 

 *** 

93.82%
/ 

80.1% 
 *** 

k35 17.01
%/ 

16.03
% 
 ns 

47.5%/ 
25.3% 
 *** 

67.66%
/ 

33.23% 
 *** 

79.8%/ 
42.96% 

 *** 

85.59%
/ 

48.33% 
 *** 

89.48%
/ 

53.29% 
 *** 

91.15%
/ 

57.78% 
 *** 

93.19%
/ 

62.23% 
 *** 

94.25%
/ 

66.91% 
 *** 

k33 22.2
%/ 

16.4
% 

 *** 

49.21%
/ 

28.64% 
 *** 

68.86%
/ 

36.61% 
 *** 

79.8%/ 
43.56% 

 *** 

85.87%
/ 

49.95% 
 *** 

89.34%
/ 

54.36% 
 *** 

91.52%
/ 

59.64% 
 *** 

92.96%
/ 

64.32% 
 *** 

93.93%
/ 

69.23% 
 *** 

Simple Geometric 
Locator/ 

MaturePred_Plants - 
Prediction accuracy 

k55 3.2%/ 
39.62

% 
 *** 

11.22%
/ 

50.69% 
 *** 

17.19%
/ 

57.47% 
 *** 

22.36%
/ 

62.71% 
 *** 

28.4%/ 
68.32% 

 *** 

36.42%
/ 

71.01% 
 *** 

43.41%
/ 

74.58% 
 *** 

49.02%
/ 

76.84% 
 *** 

53.97%
/ 

78.88% 
 *** 



75 
 

% k53 2.33
%/ 

30.95
% 

 *** 

7.79%/ 
49.96% 

 *** 

12.53%
/ 

56.74% 
 *** 

17.04%
/ 

62.2% 
 *** 

22.36%
/ 

67.52% 
 *** 

28.11%
/ 

70.21% 
 *** 

36.27%
/ 

73.71% 
 *** 

42.39%
/ 

77.2% 
 *** 

46.61%
/ 

78.51% 
 *** 

k35 2.95
%/ 

40.68
% 

 *** 

8.4%/ 
48.05% 

 *** 

13.19%
/ 

55.2% 
 *** 

18.05%
/ 

61.97% 
 *** 

23.07%
/ 

66.4% 
 *** 

28%/ 
70.52% 

 *** 

34.27%
/ 

73.69% 
 *** 

39.2%/ 
76.49% 

 *** 

45.17%
/ 

78.78% 
 *** 

k33 5.31
%/ 

33.9
% 

 *** 

13.19%
/ 

46.79% 
 *** 

18.05%
/ 

53.87% 
 *** 

23.95%
/ 

61.75% 
 *** 

30.58%
/ 

66.54% 
 *** 

38.03%
/ 

70.08% 
 *** 

43.26%
/ 

73.25% 
 *** 

47.75%
/ 

76.27% 
 *** 

52.25%
/ 79% 
 *** 

Simple Geometric 
Locator/ MiRdup - 

Prediction accuracy 
% 

k55 15.86
%/ 

15.52
% 
 ns 

39.31%
/ 

44.83% 
 ns 

57.24%
/ 

73.45% 
 *** 

75.86%
/ 

84.48% 
 ** 

84.14%
/ 

92.07% 
 ** 

89.66%
/ 

95.17% 
 ** 

92.76%
/ 

96.21% 
 ns 

95.52%
/ 

97.59% 
 ns 

97.24%
/ 

97.59% 
 ns 

k53 14.14
%/ 

13.45
% 
 ns 

42.41%
/ 

43.45% 
 ns 

62.76%
/ 

70.34% 
 * 

72.41%
/ 

83.79% 
 *** 

79.31%
/ 

91.03% 
 *** 

87.59%
/ 

93.79% 
 ** 

92.07%
/ 

95.52% 
 ns 

94.48%
/ 

97.93% 
 * 

96.9%/ 
97.93% 

 ns 

k35 16.9
%/ 

16.55
% 
 ns 

37.24%
/ 

50.69% 
 *** 

56.9%/ 
74.83% 

 *** 

70.69%
/ 

85.17% 
 *** 

83.79%
/ 

91.72% 
 ** 

89.66%
/ 

93.45% 
 ns 

92.41%
/ 

94.83% 
 ns 

94.83%
/ 

95.86% 
 ns 

95.52%
/ 

97.24% 
 ns 

k33 14.14
%/ 

18.28
% 
 ns 

33.1%/ 
50.34% 

 *** 

52.76%
/ 

73.79% 
 *** 

66.9%/ 
85.17% 

 *** 

81.38%
/ 

90.69% 
 *** 

88.97%
/ 

93.45% 
 * 

91.38%
/ 

94.48% 
 ns 

94.83%
/ 

96.21% 
 ns 

97.24%
/ 

97.59% 
 ns 

The absolute error for each one of the four ends of the duplex is calculated independently. Simple 
Geometric Locator has been trained on each program’s training set and their performance has been 

accessed on a common blind test set. Fisher exact test were performed to examine if the observed 
differences are statistical significant. *** corresponds to pvalue ≤ 0.001, ** to pvalue ≤ 0.01, * to 

pvalue ≤ 0.05 and ns to non statistical. 
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CONCLUDING REMARKS 

Comparing against the simplest possible method as a baseline in data analysis is 

an important step of the analysis. Foregoing this step may result in unnecessary 

effort and energy spent in code developing, publishing, and evaluations by future 

researchers, unnecessary use of computationally expensive methods and a false 

impression about their benefits and added value they provide in a given task. As 

an example we show that using the mean positions in predicting the four corners 

of a miRNA duplex complex outperforms some state-of-the-art methods and is on 

par with the rest when trying to predict the exact location of the duplex with 

zero tolerance. 
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CHAPTER IV – IDENTIFICATION OF 
THE MATURE SEQUENCE OF FOUR 

miRNA CANDIDATES 
 

In this part of the thesis we present the experimental identification of the mature 

sequence of recently identified miRNA candidates [5] that are located in a cancer 

associated genomic region frequently deleted in bladder cancer [93]. We named 

them c-miR-ch9, c-miR-ch5a, c-mir-ch5b and c-miR-ch22 and they are located at 

chr9:123327358-123327460 strand-, chr5:148958951-148959053 strand–, 

chr22:40863894-40863996 strand+ and chr5:149984684-149984786 strand- 

respectively [5].  In addition we predict cyclin D2 (CCND2), a gene with 

documented oncogenic activity, [98] as a key target of c-miR-ch9 and validate 

this interaction using luciferase reporter assays. 

It is worth noting that, in addition to our scientific findings, this is the first, to the 

best of our knowledge, integrative approach in which the prediction of putative 

pre-miRNAs is followed by the experimental verification of their mature 

sequence and the computational prediction of a target is experimentally 

confirmed using reporter assays. 
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MATERIALS AND METHODS 

Mature miRNA prediction by primer extension 

We designed three overlapping primers (each 15 nts in length) to bind to the 

verified positive strand of the each precursor sequence. As a positive control of 

the primer extension reaction hsa-let-7a-5p was selected and only one primer 

complement to its mature sequence was used. The primers were labeled using 

γ32 ATP and three primer extension reactions were performed under the 

following conditions: (A) incubation of 4 μg of Hela total RNA with the respective 

primer at 65°C for 5 min, followed by 1 min on ice; (B) subsequent incubation for 

30 min at 16°C; (C) gradual increase in the temperature (0.1°C /sec) to 42°C and 

incubation for another 30 min at the later temperature. This gradual increase in 

temperature provides optimum conditions for primer extension and prevents 

the dehybridization of the primer. The reaction was terminated by incubation for 

5 min at 85°C. In order to determine buffer’s, dNTPs’, reverse transcriptase’s and 

RNase inhibitor’s concentrations, we followed the HT SuperRTkit manufacturer’s 

instructions.  

Primers for c-miR-ch9:  

 5’ ACC AGG GGA CAC CGT  

 5’ CTG CCA GGT TCC ACC  

 5’ TTA CCT CTC CCC CTG 
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Primers for c-miR-ch5a:  

 5’ GAA GAC AGG TGT CAT 

 5’ CCC CAG GCC CCC GAA 

 5’ TAC GCC CAC AGC CCC 

Primers for c-miR-ch22:  

 5’ CGA CCG CCC GCC TGC 

 5’ CGA GGA CAC GGC CGA 

 5’ GGT GAC CCG CGG CGA 

Primers for c-miR-ch5b:  

 5’ GCC CCT TCC CAC CTG 

 5’ CGC GCG AGC CTC GCC 

 5’ GGG TGC GGG CAC CGC 

Primer for hsa-let-7a-5p  

 5’ AAC TAT ACA ACC TAC 

 

RNA extraction and northern blot analysis 

Total RNA was extracted from HeLa cells grown in culture using Trizol. Eighty 

micrograms of total RNA were analyzed with DNA oligonucleotides probes and 

30 μg of total RNA were analyzed using LNA oligonucleotides on a 15% 

denaturing polyacrylamide gel containing 7 M urea and transferred to Nytran N 

membrane (Schleicher and Schuell). Membranes were probed with standard 

DNA or LNA oligonucleotides. Several DNA oligonucleotides concerning all 
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miRNA candidates and one LNA oligonucleotide concerning only c-miR-ch9 were 

used. For c-miR-ch5a, two DNA probes were complement arm to the strand 

which produces the mature miRNA and one was complement arm to the 

opposite strand [5]. For c-miR-ch5b, one DNA probe was complement arm to the 

predicted mature sequence and another one was complement to the adjacent 

sequence. For c-mir-ch22, two DNA overlapping probes were used, due to the 

fact that primer extension analysis gave two possible mature sequences. For c-

miR-ch9 one DNA probe was complement arm to the predicted mature sequence 

and the other was complement arm to the adjacent sequence, which was used as 

a negative control. The LNA probe was complement arm to the predicted mature 

sequence. Ten picomoles of each DNA oligonucleotide probe and two picomoles 

of the LNA oligonucleotide probe were end-labeled with [γ-32P] ATP by using T4 

polynucleotide kinase. Prehybridization of the ðlters was performed in 7% SDS, 

5 × SSC, 1× Denhardt’s solution and 0.02 M Na2HPO4 pH 7.2. Hybridizations 

were performed in the same solution at 50°C after the addition of the 

radiolabeled DNA oligonucleotide and at 60°C after the addition of the 

radiolabeled LNA oligonucleotide. Following an overnight hybridization, the 

membranes were washed at 50°C and 60°C, for DNA and LNA probes 

respectively, in low stringency buffer [2 x SSC, 0.3% SDS] twice for 30 min. An 

extra washing step was performed for LNA probes using 1 × SSC, 0.3% SDS, for 

15 min, at 60°C. For DNA probes, membranes were stripped by washing in a high 

stringency buffer (0.1 × SSC and 0.5% SDS) for 30 min at 80°C and reprobed with 

the negative polarity oligonucleotides.  
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DNA probes for c-miR-ch5a: 

 Positive 1: ACA GCC CCC AGG CCC CCG AAG ACA GG  

 Positive 2: AGG CCC CCG AAG ACA GGT GTC ATG GA 

 Positive 3: TAC GCC CAC AGC CCC CAG GCC CCC GA 

 Negative: GGG GAG CCA GCA GGG AGG ACA TAC GC 

DNA probes for c-miR-ch5b: 

 Positive: GGG TGC GGG CAC CGC GCG AGC CTC GC 

 Negative: CCT TCC CAC CTG CGC TAT TCC CGG CG 

DNA probes for c-miR-ch22: 

 Positive1: CGG CGA GGA CAC GGC CGA CCG 

 Positive2: GAT GGT GAC CCG CGG CGA GGA 

Probes for c-miR-ch9: 

• DNA 

 Positive: TAC CTC TCC CCC TGC CAG 

 Negative: ACC AGG GGA CAC CGT GTG 

• LNA 

 Positive: TAC CTC TCC CCC TGC CAG 
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Vectors and DNA constructs 

To generate reporter vectors bearing miRNA-binding sites, we used two 

mammalian vectors phRL-TK (Promega, Madison, US) and pGL4-10 carrying the 

Renilla luciferase gene (hRluc) and firefly luciferase gene (luc), respectively. 

Specific oligonucleotides having XbaI ends and containing binding sites (b.s.) in 

triple repeats for the predicted c-miR-ch9::CCND2 interaction, were generated 

(Metabion). The phRL-TK vector was used for normalization. The oligos were 

cloned into the pGL4-10 vector at the XbaI site downstream of the luc gene. For 

all reporter constructs, two types of cassettes were prepared and studied side by 

side: wild type (pGL4-10 + wt—Triplet) and carrying mutations (pGL4-10 + 

mut—Triplet). We further PCR amplified the actual b.s. from the 3'UTR of CCND2 

including ~500bp flanking regions on either side of the b.s. Following PCR 

mutagenesis of this construct (~1000bp), we cloned both wt-3'UTR (pGL4-10 + 

wt–3'UTR) and mut-3'UTR (pGL4-10 + mut-3'UTR) into the PGL4-10 vector. The 

empty vector (pGL4-10) was utilized as a control to observe the effect of our 

miRNA on the construct per se. All constructs were verified by sequencing. 

Additionally, anti-c-miR-ch9 LNA (Exiqon, Berlin, Germany) was used to inhibit 

the expression of c-miR-ch9. The sequences used in our studies are listed in 

Figure 4.1. Positions of mutations in the mutated constructs are indicated in 

bold. 
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Figure 4.1. Cloned sequences and primers. (a) Mutant seed regions designed for pGL4-10 + mut – 

Triplet and pGL4-10 + mut-3’UTR. (b) Primers for CCND2 3’UTR amplification and PCR mutagenesis 
for pGL4-10 + mut-3’UTR. (c) LNA sequence 

 

 

Transfection assay 

Human HeLa 229 cell lines (LGC Promochem, ATCC Number: CCL-2.1) were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) at 37°C, in a humidified 

atmosphere of 5% CO2. The cells were transfected in the 24-well plates in 

serum-free DMEM by using Lipofectamine 2000 (Invitrogen) according to 

manufacturers’ instructions. For each transfection experiment, 350 ng of 

appropriate reporter construct, 50ng of normalization vector and 400 ng of 

pBSK(+) as a carrier plasmid, were used in order to obtain optimal results. HeLa 

a 
Wild type interaction: 
5’ AGTGGGGGCCGAGTTGTTCCCCCAGCCTGCCAA CCND2 
                            ||||||| 
              3’  ATGGAGAGGGGGACGGTC c-miR-ch9 
 
Wild type: GGGGGCCGAGTTGTTCCCCCAGCCTGCCAA 
 
Mutated interaction: 
5’ AGTGGGGGCCGAGTTGTTCCCCCAGCGAGGGAA CCND2 
                            |  |  | 
              3’  ATGGAGAGGGGGACGGTC c-miR-ch9 
 
Mutant: GGGCCGAGTTGTTCCCCCAGCGAGGGAA 
 
b 
P1-FORWARD: TCTAGAATGGTGACTGACCCTTGAGC 
P2-REVERSE: TCTAGAATCCTGCTAGCAATGGGATG 
Mutagenesis Left : CAGCGAGGGAAATTTTGATCCTTCCCCTCTTT 
Mutagenesis Right: ATTTCCCTCGCTGGGGGAACAACTCG 
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cells were also transfected with the empty pGL4-10 vector which was used as a 

reference point. Cells were harvested 48h after transfection and assayed both for 

firefly and Renilla luciferase activity using Dual Luciferase Assay System 

(Promega). The luciferase activity was measured using Dual Luciferase Assay 

System (Promega) with a FB 12 Luminometer (Berthold Detection Systems). For 

the inhibition of endogenous c-miRCh9 miRNA in HeLa cells the transfection of 

anti-c-miR-ch9 LNA (Dharmacon) at varying concentrations ranging from 25–50 

nM was performed, using Lipofectamine 2000 according to manufacturer’s 

instructions. Final expression values form transfection assays reported here 

were calculated by averaging all repeats for the particular construct. Values for 

error bars were calculated using the following formula for estimating the 

standard error of the mean: σM = σ/√N, where σ is the standard deviation of the 

original distribution and N is the sample size (the repetition number). 
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RESULTS 

Experimental identification of the mature miRNA sequence for four novel miRNA 

candidates 

Our goal was to extract the mature (functional) miRNA sequence from the four 

potential pre-miRNAs, c-mir-ch5a, c-mir-ch5b, c-mir-ch9, c-mir-ch22, and show 

that these small RNA molecules are expressed in various cell lines. Unfortunately, 

according to recently produced deep sequencing data from HeLa cells [41], no 

small RNA sequences are expressed from the genomic location where the pre-

miRNAs were detected. As a result, no prior experimental evidence was available 

regarding the location and/or sequences of the mature miRNAs. To address this 

problem, we used an adjustment of the primer extension methodology for 

identifying the most probable miRNA mature sequence from a putative 

precursor. Specifically, instead of using one primer complement to the mature 

sequence, which in our case was unknown, we designed three different 

overlapping primers that are complementary to the positive strand of the 

precursor sequence, namely the strand producing a small RNA (see Figure 4.2a). 

Using these primers we performed three primer extension reactions. The length 

of the extended primers further defines the location of the mature sequence on 

the precursor. The primer may bind to the precursor and/or the mature 

sequence. We assume that binding of the primer to both the mature as well as 

the precursor sequence will result in competition of binding and this will be 

evident in the banding patterns resulting from the primer extension reactions.  
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c-mir-ch9 

For the first primer extension reaction the longest expected product is 19nt and 

the results show a band in the vicinity of 19nts (Figure 4.2b column 1). This 

product could be the result of either the extension of the precursor or the 

extension of the mature. Hence, the way that this band was generated remains to 

be verified by investigating the products of the other 2 primer extension 

reactions. If this band is a direct result of the extension of the mature, then the 

other 2 primers extension reaction would be expected to produce sequences of 

length more than 31nts, resulting from the binding and extension of the primer 

to the precursor sequence. Clearly this is not the case.  

The second primer extension reaction produced one band (Figure 4.2b column 

2) which is potentially derived due to the extension of the precursor. For this 

primer extension reaction the longest expected product through precursor 

binding and elongation is 31nts and the observed band corresponds to this 

length.  

The observed banding patterns of the third reaction (Figure 4.2b column 3) 

reveal two products, one at 43nts and one at 19nts. We believe that the long 

band, which could be visualized only after 4 days of exposure, is due to precursor 

elongation since the longest expected product through precursor binding and 

extension would be 43nts. We consider the short band, which was detectable 

after overnight exposure, as a result of the extension of the mature sequence and 

we use this as our reference point for the prediction of the c-miR-ch9 mature 

sequence.  Based on that, we determine that the 5’ start of the mature sequence 

is at the 26th nucleotide of the precursor’s sequence. Having identified the 5’ end 
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of our mature sequence, and knowing that our mature sequence is 18nts long, we 

are able to deduce the 3’ end of the mature sequence (Figure 4.2c). According to 

the results from our primer extension methodology we predict that the mature 

sequence for the potential miRNA (c-miR-ch9) is 5’ CUGGCAGGGGGAGAGGUA.  

Due to the novelty of the methodology (primer extension has never been used 

before for the prediction of the miRNA mature sequence) and the fact that some 

of the bands were faint we decided to verify our prediction with a northern blot 

analysis. We carried out a northern blot analyses using a DNA probe complement 

arm to the mature sequence as predicted by our primer extension reaction 

(black arrows in Figure 4.2c) and we also used a negative control, a DNA probe 

complement arm to the adjacent sequence (green arrows in Figure 4.2c, data not 

shown). Additionally, to increase sensitivity and signal of the experiment we also 

used an LNA probe complementary to the mature sequence (Figure 4.2d). 
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Figure 4.2. MiRNA mature prediction methodology, c-mir-ch9.  
a) Three primers were designed to bind to the whole length of the verified positive strand of the 

hypothetical miRNA [5] c-miR-ch9. b) MiRNA mature prediction methodology results. Each column 
displays the banding patterns from the corresponding primers shown in (a). The banding patterns 
of the first and the second columns result from the annealing of the first and the second primers to 

the precursor (denoted by P) sequence. While the banding pattern on the third column is a 
consequence of the annealing of the third primer to the precursor, 43nts band, and the mature (M) 
sequence, 19nts band. c) Predicted potential mature miRNA sequence. Based on the results in (b) 
and the fact that the expected mature is 18nts long [5] we conclude that the mature sequence is 

between the 24th and the 41stnt on the verified positive (5p) strand. The black arrows indicate the 
predicted mature miRNA sequence. The green arrows indicate the sequence which was used as a 
negative control for the northern blot. d) Northern blot analysis. In order to verify the predicted 
mature miRNA sequence we perform a northern blot analysis using a DNA probe complement to 
the predicted mature, (black arrows in c), and as a negative control a DNA probe complement to 
the adjacent sequence, (green arrows in c). In order to increase our experiments sensitivity and 

signal an LNA probe complement to the predicted mature was also used. The upper observed band 
is ~18 nts long as expected from previous published data [5]. 
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c-mir-ch5a 

For the first primer extension reaction the longest expected product is 20nts and 

the results show a band in the vicinity of 20nts (Figure 4.3b column 1). This 

product could be the result of either the extension of the precursor or the 

extension of the mature. Hence, the exact binding remains to be verified by 

investigating the products of the other 2 primer extension reactions. If this band 

is a direct result of the extension of the mature, then the other 2 primers 

extension reaction would be expected to produce sequences of length more than 

31nts, resulting from the binding and extension of the primer to the precursor 

sequence. Clearly this is not the case.  

The second primer extension reaction produces one band (Figure 4.3b column 2) 

which is potentially derived due to the extension of the mature. For this primer 

extension reaction the longest expected product through precursor binding and 

elongation is 31nts but the observed band was 21nts.  

No band was observed from the third reaction (Figure 4.3b column 3). We 

consider the short band (Figure 4.3b column 2), which was detectable after 

overnight exposure, as a result of the extension of the mature sequence and we 

used this as our reference for the prediction of the c-miR-ch5a mature sequence.  

Based on this, we determine that the 5’ start of the mature sequence is at the 10th 

nucleotide of the precursor’s sequence. Having identified the 5’ end of our 

mature sequence, and knowing that our mature sequence is 25nts long [5], we 

are able to deduce the 3’ end of the mature sequence (Figure 4.3c). According to 

the results from our primer extension methodology we predict that the mature 
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sequence for the potential miRNA (c-miR-ch5a) is 

5’CCUGUCUUCGGGGGCCUGGGGGCUGU.  

Thereafter, we carried out a northern blot analyses using a DNA probe 

complement arm to the mature sequence as predicted by our primer extension 

reaction (black arrows in Figure 4.3b) and we also use a negative control, a DNA 

probe complement arm to the adjacent sequence (green arrows in Figure 4.3b). 

Northern blot analysis did not give the expected results. The “positive 3” (blue 

arrows in Figure 4.3b) and “negative” (green arrows in Figure 4.3b) probes 

produce the banding pattern shown in Figures 4.3ci and 4.3cii respectively. 

According to Oulas et.al [5] we expected the mature sequence to be 25nts long 

and to be produced from the 5’ strand of the predicted precursor (Figure 4.3b, 

sequence highlighted in red). Surprisingly the band produced from that strand 

was 30 nts. In addition, the opposite strand also produced a band lower than 

25nts. Because the reason for these inconsistencies was not clear, we decided to 

not devote more time and materials in the identification of the mature sequence 

of this specific precursor.  
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Figure 4.3. MiRNA mature prediction methodology, c-mir-ch5a.  
a) MiRNA mature prediction methodology results. The banding patterns of the first column 

results from the annealing of the first primer to the precursor (denoted by P) sequence. While 
the banding pattern on the second column is a consequence of the annealing of the second 

primer to the mature, 21nts band, and the mature (M) sequence. b) Predicted potential mature 
miRNA sequence. Based on the results in (a) and the fact that the expected mature is 25nts long 

[5] we conclude that the mature sequence is between the 10th and the 36thnt on the verified 
positive (5p) strand. The black arrows indicate the predicted mature miRNA sequence. Blue 

arrows indicate the sequence which was randomly selected to investigate if a part of the 
precursor, other than the predicted mature, could produce a banding pattern. The green arrows 

indicate the sequence which was used as a negative control for the northern blot. c) Northern 
blot analysis. In order to verify the predicted mature miRNA sequence we perform a northern 

blot analysis using DNA probes complement to the predicted mature, (black - blue arrows in b), 
and as a negative control a DNA probe complement to the adjacent sequence, (green arrows in 
b). Note that the northern blot for the predicted mature sequence did not produce a band, (data 

not shown).  i) The observed lower band – corresponding to the blue arrows – is ~30 nts, 5nts 
longer than expected from previous published data [5]. ii) The observed bands – corresponding 

to the green arrows – are less than 25nts long, and are produced from the 3’ strand of c-mir-
ch5a which was unexpected from previous published data[5].  
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c-mir-ch5b 

For the first primer extension reaction unexpectedly no band was observed, 

(Figure 4.4a column 1). The second primer extension reaction produced two 

bands (Figure 4.4a column 2) which are potentially produced due to the 

extension of the precursor. For this primer extension reaction the longest 

expected product through precursor binding and elongation up to the start of the 

terminal loop is 31nts and the longest observed band corresponds to this length.  

The observed banding patterns of the third reaction (Figure 4.4a column 3) 

revealed two products, one at 22nts and one lower than 27nts. We believe that 

the long band is due to precursor elongation and the short band (22nts) due to 

the extension of the mature sequence and we use this as our reference point for 

the prediction of the c-mir-ch5b mature sequence. Based on that, we determined 

that the 5’ start of the mature sequence is at the 21th nucleotide of the 

precursor’s sequence. Having identified the 5’ end of our mature sequence, and 

knowing that our mature sequence is 25nts long [5], we were able to deduce the 

3’ end of the mature sequence (Figure 4.4b). According to the results from our 

primer extension methodology we predict that the mature sequence for the 

potential miRNA (c-miR-ch5b) is 5’GCGAGGCUCGCGCGGUGCCCGCACC.  

Following the same methodology as in the previous examples, we carried out a 

northern blot analyses using a DNA probe complement to the mature sequence 

as predicted by our primer extension reaction (black arrows in Figure 4.4b) and 

we also used a negative control, a DNA probe complement arm to the adjacent 

sequence (green arrows in Figure 4.4b). The complement arm to the mature 

sequence DNA probe produced two bands (Figure 4.4c), one faint at 16nts and 
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one clear at 18nts. Because the miRNA mature sequences are between 18 – 27 

nts long and the 18nts band was sharper than the 16nts band, we conclude that 

the mature sequence produces the longer band and perhaps the smaller band is 

due to degradation products. Based on both primer extension’s reaction data and 

our Northern blot analysis we conclude that the mature sequence is: 

5’GCGAGGCUCGCGCGGUGC – 18nts long. 
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Figure 4.4. MiRNA mature prediction methodology, c-mir-ch5b.  
a) MiRNA mature prediction methodology results. The first primer extension reaction, first 

column, did not result any bands. The banding pattern on the second column is a consequence of 
the annealing of the second primer to the precursor (denoted by P) sequence. While the banding 

pattern on the third column results from the annealing of the third primer to the mature 
sequence (M). The top band corresponds to the extension of the precursor and the small band 

(22nts) to the extension of the mature. b) Predicted potential mature miRNA sequence. Based on 
the results in (a) and the fact that the expected mature is 25nts long [5] we anticipate the 

mature sequence to be between the 21th and the 45thnt on the verified positive (3p) strand. The 
black arrows indicate the predicted mature miRNA sequence. The green arrows indicate the 

sequence which was used as a negative control for the northern blot. c) Northern blot analysis. In 
order to verify the predicted mature miRNA sequence we perform a northern blot analysis using 

DNA probes complement to the predicted mature, (black - arrows in b), and as a negative control 
a DNA probe complement to the adjacent sequence, (green arrows in b). The observed band is 

18nts long. Based on the primer extension and northern blot’s results, we conclude that the 
mature sequence is 18nts long and its sequence begins at the 21st nt and ends at the 38th nt (red 

arrows in b) on the verified positive 3p strand. 
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c-mir-ch22 

The first primer extension reaction produced several bands (Figure 4.5a column 

1). Their sizes range between 15nts to 27nts. The sharper band is 18nts long. 

This product could be the result of either the extension of the precursor or the 

extension of the mature. Hence, the exact binding remained to be verified by 

investigating the products of the other 2 primer extension reactions. If this band 

has a direct result of the extension of the mature, then the other 2 primers 

extension reaction would be expected to produce sequences of length more than 

31nts, resulting from the binding and extension of the primer to the precursor 

sequence. Clearly this was not the case.  

The second primer extension reaction (Figure 4.5a column 2) produced a similar 

banding pattern with the first reaction: a sharp band at 18nts and faint bands 

between 27 and 18 nts. The sharp band could be a result of either the extension 

of the precursor or the extension of the mature.  

The observed banding patterns of the third reaction (Figure 4.5a column 3) 

reveal one product, at 18nts. The absence of other bands was probably due to 

competition of binding of the primer between the precursor and the mature 

sequence.  

From the results of the primer extension reactions, we could not conclude which 

one of the two 18nts sharp bands produced by the 2nd and 3rd reaction, was due 

to the extension of the mature sequence. In addition because the expected length 

of the mature sequence was unknown[5] we set the length of the possible 

mature at 21nts.  
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Considering all the above, we predicted two possible miRNA mature molecules 

with the following sequences, 5’ CGGUCGGCCGUGUCCUCGCCG (Figure 4.5b black 

arrows) and 5’ UCCUCGCCGCGGGUCACCAUC (Figure 4.5b red arrows). To 

resolve which one of the predicted matures corresponds to the real one we 

perform northern blot analysis using probes complement to each one of them. 

Unfortunately, none of the Northern blots revealed any band (data not shown). 

Thus, we could not conclude the mature sequence of the c-mir-ch22 precursor.  
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To sum up, candidates c-mir-ch5a, c-mir-ch5b and c-mir-ch22, show several 

inconsistencies among the experiments. For c-mir-ch5a, the predicted mature 

based on the primer extension reaction was not verified via Northern blot 

analysis. On the contrary, a randomly selected sequence, which is in part 

 

Figure 4.5. MiRNA mature prediction methodology, c-mir-ch22.  
a) MiRNA mature prediction methodology results. The first primer extension reaction results to 

a sharp band at 18nts which is the outcome of the extension of the precursor (denoted by P). The 
banding pattern on the second column is a consequence of the annealing of the second primer to 

the precursor or the mature (P/M) sequence. Also the banding pattern on the third column is 
the effect of the annealing of the third primer to the precursor or the mature sequence (P/M). b) 

Predicted potential mature miRNA sequences. Based on the results in (a) and the fact that the 
length of the expected mature is unknown [5] we predict two 21nts-long mature sequences. The 

black and red arrows indicate the predicted mature miRNA sequences based on the banding 
pattern of the 2nd and the 3rd primer extension reaction respectively. Northern blot analysis did 

not confirm any of these predictions. 
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overlapping with the predicted mature, produced a band ~30 nts. In addition, 

the negative control probe, which was complement arm to the loop and a part of 

the opposite strand, 3’, produced a band less than 25nts, Figure 4.3. Both results 

were unexpected in contrast with previous published data [5] and thus we were 

not able to resolve what is the mature sequence of that precursor.  

According to previous experiments the expected mature sequence for c-mir-ch5b 

was 25nts long [5]. On the other hand, our experiments led to the conclusion that 

the mature length is 18 nts with 5’GCGAGGCUCGCGCGGUGCCCGCACC sequence, 

Figure 4.4.  

For c-mir-ch22 we chose to  set the length of the expected mature sequence at 

21nts as it  was unknown [5]. Along with the primer extension analysis we 

predict two possible matures, but none of them was confirmed via Northern blot 

analysis, Figure 4.5.  

Finally, only for c-mir-ch9 our experiments were consistent with previous 

published data [5]. The mature sequence was 18nts long and was produced by 

the 5’ strand of the precursor. We confirmed both by predicting its mature 

sequence via primer extension analysis and then we verified our prediction by 

Northern blot using DNA and LNA probes, Figure 4.2.  For these reasons, the 

following experiments were performed only for c-mir-ch9.  
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Study of c-mir-ch9 expression in different cell lines 

Our goal was to investigate the expression levels of c-mir-ch9 in different cell 

lines. Northern blot analysis was performed on total RNA, which was kindly 

provided by Aristides Eliopoulos lab, IMBB, FORTH. The cell lines, which were 

evaluated, derived from different cancer types, bladder, lung, ovarian and 

melanoma. Several cell lines were examined for each cancer type, T24, VM cubi 

and EJ for bladder, SKME S1, H1299, HCC44 and H60 for lung, SKOV3 for ovarian 

and A375 for melanoma. In addition, HEK 293 cell line was also evaluated. As 

shown in Figure 4.6 and 4.7, c-mir-ch9 is expressed in bladder (T24, EJ) and lung 

(HCC44) cancer cell lines.  
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Figure 4.6. Northern blot analysis. The expression of c-mir-ch9 was evaluated on 30 μg of total 
RNA from different cell lines. T24, EJ and VM cubi derived from bladder cancer, SKOV3 ovarian 
cancer, HEK 293, A375 melanoma and H60 lung cancer. Hela cells were used in two quantities, 

30μg and 80μg. In order to estimate the expression levels we employed the same LNA probe 
which was used during the evaluation of the mature sequence, Figure 4.2. As evident, only T24 

and EJ express c-mir-ch9. Even after two days of exposure none of the other cell lines showed any 
level of expression.  
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Figure 4.7. Northern blot analysis. The expression of c-mir-ch9 was evaluated on total RNA from 
different cell lines, T24, EJ derived from bladder cancer, SKME, H1299 and HCC44 lung cancer. 
The amount of the RNA used was 17.7μg and 12.9μg for T24 and EJ respectively and 30μg for 

the rest cell lines. In order to estimate the expression levels we utilized the same LNA probe 
which was used during the evaluation of the mature sequence, Figure 4.2. As evident from the 
figure, the expression of c-mir-ch9 is detectable in even more stringent conditions than in the 

previous experiment (Figure 4.6) since the annealing temperature was at 60oC. Moreover, 
HCC44 cell line express c-mir-ch9 in low levels as the corresponding band was obvious only after 

3 days of exposure.  
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Computational prediction of c-miR-ch9 targets 

Following the experimental verification of the mature miRNA sequence of c-miR-

ch9, we used TargetProfiler to scan all human 3'UTRs for potential targets of c-

miR-ch9 [targetProfiler]. A total of 33 predicted targets for c-miR-ch9 achieved 

an HMM score of 6.2 (maximum score assigned by TargetProfiler =6.7) or higher 

(Table 4.1) and 17 of these where 8mers (as per Guo et al. [88]). One of these 

high scoring targets (HMM score: 6.2) was found to be located on a 3'UTR 

transcribed from chromosome 12. The miRNA::targetmRNA was an 8mer and 

displayed a low free energy (-23.70ΔG). Moreover, the seed was fully conserved 

in seven other organisms, excluding chimp. On selecting a miRNA target site for 

experimental verification it can be informative to obtain an intersection of 

predictions from other available target prediction tools. This target site was 

further confirmed by four other tools (TargetScan [99], StarMir [77], PITA [61], 

RNAhybrid [100]) which were used to perform target prediction using our novel 

miRNA sequence. The gene corresponding to this 3'UTR was CCND2, a gene with 

documented oncogenic activity [98] that is known to play a role in the G1/S 

transition of the cell cycle. 
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TABLE 4.1. c-miR-ch9 PREDICTED TARGETS. 

Target 
Type 

HMM 
Score 

Location (chr:start-
end) 

Sequence (targetX&XmiRNA) Bracket notation Conser
vation 
score 

Str
and 

7mer-
m8 

6.2 10:6019369-
6019401 

GAAGAGGACACCAGCCCAAGCUGGAC
CUGCCAUX&XCUGGCAGGGGGAGAG
GUA 

.(((....((...(((((((..&..))))))
)...)).))). 

7 1 

8mer 6.2 11:26973747-
26973779 

GAGGUUCAAGGUGCUGCUUUGCAUG
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

.............((((((...(.(((((((..
&..))))))).)..)))))) 

7 1 

7mer-
m8 

6.2 1:156619755-
156619787 

AACCUGUCAGCUUGCACCAUCCCCAC
CUGCCACX&XCUGGCAGGGGGAGAG
GUA 

..............(((.(((((.(((((((..
&..)))))))))).))))). 

7 1 

8mer 6.2 11:72794632-
72794664 

CUCAAAAGGUGAUUUUGUCCUUAGA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

..........(((.((((....(((((((..&

..))))))))))).))).. 
7 -1 

7mer-
m8 

6.2 12:3771033-
3771065 

CCCGCUGUUAAACUGCAUAGGGCAG
CCUGCCACX&XCUGGCAGGGGGAGA
GGUA 

..........(((((((..&..)))))))...

....... 
7 -1 

8mer 6.2 12:4282963-
4282995 

AGUGGGGGCCGAGUUGUUCCCCCAG
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

(((((..(((((((..&..))))))).)).
).)).. 

7 1 

7mer-
m8 

6.2 1:35849529-
35849561 

GUAGGAGGUUUAGUGGCUGCUCUG
GCCUGCCAUX&XCUGGCAGGGGGAG
AGGUA 

..............(((.((((..(((((((..
&..))))))).)))).))). 

7 -1 

8mer 6.2 14:62243818-
62243850 

UAUUGCAUGUCCAGCUGGAUUCUGG
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

..........(((...((((..(((((((..&

..)))))))))))..))). 
7 -1 

7mer-
m8 

6.2 16:70239699-
70239731 

CAGCUGUUCUGUAUCAGUCCUACCA
CCUGCCAUX&XCUGGCAGGGGGAGA
GGUA 

..............(((.((.(((((((..&.

.)))))))))...))).. 
7 -1 

8mer 6.2 17:44836546-
44836578 

UUGCAUCCUGCUGGGGCUGAACAUG
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

........(((.....(.(((((((..&..))
))))).)....))). 

7 -1 

8mer 6.2 19:44061675-
44061707 

AGCUUCCCCCAAGAAGUCCCCGCCAC
CUGCCAAX&XCUGGCAGGGGGAGAG
GUA 

...............(((.((.(((((((..&

..))))))).)).).)).. 
7 -1 

8mer 6.2 19:45595285-
45595317 

AGGCAGCUGGUGGCUUUGCCCUCCA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

..........((((((((.(((((((..&..)
)))))).)))).)))) 

7 -1 

8mer 6.2 2:166362026-
166362058 

UGCCUACCUGUCAAACUGUGUGAAA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

......(((........(((((((..&..)))
))))......))). 

7 1 

7mer-
m8 

6.2 2:48517574-
48517606 

UGAAUUCGAGUAUUUUAAUGUUAU
ACCUGCCAUX&XCUGGCAGGGGGAG
AGGUA 

........................(((((((..
&..))))))).......... 

7 1 

7mer-
m8 

6.2 3:31653720-
31653752 

UAAAAGUGAAAGAGAAAGGGUUUU
UCCUGCCACX&XCUGGCAGGGGGAG
AGGUA 

...................(((..(((((((..
&..)))))))..)))..... 

7 1 

8mer 6.2 4:114731538-
114731570 

CAGUAAAUAUAUUGAGCCAUGUUAA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

..............(((.(.((..(((((((..
&..)))))))..)).)))). 

7 -1 

8mer 6.2 5:14561539-
14561571 

AGAAGUUCUUUCUCAUUCUCUUUCA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

...............(((((..(.(((((((..
&..))))))))..))))).. 

7 1 

8mer 6.2 5:71536909-
71536941 

AUCUAGUUAAGUCGCUGAACAAUUA
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

.........(((.........(((((((..&..
)))))))......))). 

7 1 

8mer 6.2 8:92477834-
92477866 

GCAUCUAUAAAAGUAAAUUCUAGUG
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

................((((..(.(((((((..
&..))))))).).))))... 

7 1 

7mer-
m8 

6.2 X:40964086-
40964118 

UUCAUCUACUUAGACUUUUUAAAUG
CCUGCCAUX&XCUGGCAGGGGGAGA
GGUA 

............(((((((...(.(((((((..
&..))))))).)))))))). 

7 1 

7mer-
m8 

6.2 X:44727602-
44727634 

AAUGCUGUUAUUUUUUCCAGAUUU
ACCUGCCAUX&XCUGGCAGGGGGAG
AGGUA 

.......((((((((((.......(((((((..
&..))))))))))))))))) 

7 1 



104 
 

8mer 6.2 X:48787540-
48787572 

UUAUUGGGAGACUUUUGUCUUCCA
GCCUGCCAAX&XCUGGCAGGGGGAG
AGGUA 

........(.((((((..(((((((..&..))
))))))))))).).. 

7 1 

7mer-
m8 

6.7 1:157210240-
157210272 

GGCUGGGGAGUGUUUAUUUUAAGA
UCCUGCCAUX&XCUGGCAGGGGGAG
AGGUA 

.............((((((....((((((((..
&..))))))))...)))))) 

7 1 

7mer-
m8 

6.7 1:157466940-
157466972 

UGGACUGUGCCUAUGGAUUUGGAU
UCCUGCCAUX&XCUGGCAGGGGGAG
AGGUA 

......(((((...........(((((((((..
&..)))))))))...))))) 

7 -1 

8mer 6.7 1:208661990-
208662022 

AACAGUAACGAGUAGCCAGAGUACU
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

.............(((......(((((((((..
&..)))))))))....))). 

7 1 

8mer 6.7 16:28755701-
28755733 

CGUUCCCCAGGGGAGCUGGGGAAUU
CCUGCCAAX&XCUGGCAGGGGGAGA
GGUA 

.......(((......(((((((((..&..))
)))))))....))). 

7 1 

8mer 6.7 17:24980601-
24980633 

AAAUGGAGACUUCCAAUCACCAGCUC
CUGCCAAX&XCUGGCAGGGGGAGAG
GUA 

.............(((..(((((((((..&..
)))))))))....))). 

7 -1 

7mer-
m8 

6.7 19:55989973-
55990005 

GCCCGGCCUCCCGCCCAUGGGGUCUC
CUGCCAUX&XCUGGCAGGGGGAGAG
GUA 

........((((((((((..&..))))))))
))....... 

7 1 

7mer-
m8 

6.7 20:47955090-
47955122 

CCUGUUGGCUUGUGAAAUGAGCCCU
CCUGCCACX&XCUGGCAGGGGGAGA
GGUA 

..............((((((((((..&..)))
)))))))....... 

7 -1 

7mer-
m8 

6.7 21:15346087-
15346119 

GAAACCCAUUUAACUGUCACACACUC
CUGCCACX&XCUGGCAGGGGGAGAG
GUA 

............((.((.....(((((((((..
&..))))))))))).))... 

7 1 

7mer-
m8 

6.7 5:172496015-
172496047 

AAAAAAAAUUGCAUUUUAUAUGAUU
CCUGCCAUX&XCUGGCAGGGGGAGA
GGUA 

......................(((((((((..
&..)))))))))........ 

7 1 

8mer 6.7 5:65902001-
65902033 

UGAAUUUCUACGGAGCUUGAUGAU
UCCUGCCAAX&XCUGGCAGGGGGAG
AGGUA 

.......((((.....(((((((((..&..))
)))))))...)))). 

7 1 

7mer-
m8 

6.7 8:74868493-
74868525 

GUAACAGGAAAAGUUUUCAUUAACU
CCUGCCAUX&XCUGGCAGGGGGAGA
GGUA 

................(((((((((..&..))
)))))))........ 

7 -1 

The table shows details for the total number of predicted targets for c-miRCh9. The 
target site on CCND2 is highlighted in red. 

 

 

Experimental verification of the c-miR-ch9::CCND2 interaction 

Since c-miR-ch9 was found in a genomic region that is frequently deleted in 

various cancer types and CCND2 has a documented oncogenic activity [98], the 

predicted interaction appears, at least in principle, quite plausible. Thus, we next 

performed experiments using reporter constructs carrying a firefly luciferase 

reporter to test whether the predicted interaction is functional. Given that many 

of the mammalian targets often contain binding sites (b.s.) for multiple miRNAs 

[76], we used constructs carrying binding sites that were repeated three times 
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(pGL4-10 + wt-Triplet) but also ~1,000 bp of the 3'UTR of CCND2 containing a 

single copy of the b.s. (pGL4-10 + wt-3'UTR). Moreover, constructs having 

mutations in the 5' seed site that disrupt the native pairing within the binding 

region of the triplet-cassette, as well as within the 3'UTR (designated as pGL4-10 

+ mut-Triplet and pGL4-10 + mut-3'UTR respectively) were also transfected, in 

order to provide a negative control. Furthermore, we performed transfection of 

empty vectors (pGL4-10) as a calibration control. All types of cassettes 

(constructs) prepared were placed into the pGL4-10 vector, downstream of the 

luc gene at XbaI site. HeLa cells were subsequently transfected with these 

reporter vectors carrying potential binding sites for c-miR-ch9. For every 

transfection assay, all constructs were tested in parallel: an empty luciferase 

vector (pGL4-10—Control), a wild-type triplet cassette containing potential 

binding sites for c-miR-ch9 (pGL4-10 + wt-Triplet), a wild-type 3'UTR containing 

a single copy of the potential b.s. for c-miR-ch9 (pGL4-10 + wt-3'UTR), a mutated 

triplet cassette containing binding sites with four point mutations (pGL4-10 + 

mut Triplet) and a mutated 3'UTR containing the same point mutations (pGL4-

10 + mut-3'UTR). Since c-miR-ch9 was previously found to be expressed in HeLa 

cells at relatively high levels [5], there was no need for miRNA precursor 

overexpression. Firefly luciferase activity was measured and normalized against 

Renilla luciferase activity. The HeLa transfections were repeated 3 times using 

triplicate samples and the average relative expression is presented in Figure 5. 

The reporter construct carrying the wild-type CCND2 potential triplet binding 

sites (pGL4-10 + wt-Triplet) and the CCND2 wild-type-3'UTR (pGL4-10 + wt-

3'UTR) appeared to be efficiently downregulated: the luciferase activity dropped 

to 49% (2.0 fold reduction-t-test: 1E-07) and 20% (5.0 fold reduction t-test: 
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2.22E-12), respectively, compared to 100% in the standardization control (pGL4-

10—empty vector). We also assayed the mutated constructs pGL4-10 + mut-

Triplet and pGL4-10 + mut-3'UTR, bearing CCND2 binding sites harbouring 

mutations in the “seed” element (at position 3, 4, 6 and 7—see Figure 4.1A). The 

transfection experiments confirmed that the downregulation previously 

observed was a result of the specific binding sites present in the wt-constructs. 

Luciferase expression was significantly increased both for the triplet mutated 

cassette (pGL4-10 + mut-Triplet) as well as the mutated-3'UTR (pGL4-10 + mut-

3'UTR). This shows that miRNA-targeted regulation was suppressed due to 

truncated binding of the miRNA to the targets site(s). Specifically, in the case of 

pGL4-10 + mut-Triplet there was a ~2 fold increase (t-test: 2.09E-06) in 

luciferase activit y with respect to wt constructs (Figure 4.8A). Similarly for 

pGL4-10 + mut-3'UTR a 2.4 fold increase (t-test: 7.2E-06) was observed with 

respect to wt conditions (Figure 4.8B). It should be noted that, as expected, t-test 

analysis of pGL4-10 + mut-triplet expression vs. pGL4-10 expression showed 

that there was no significant difference between the expression of these two 

constructs (t-test: 0.663864). In the 3'UTR transfection assays, contrary to the 

triplet cassette assays, the levels of the pGL4-10 + mut-3'UTR expression did not 

achieve similar expression levels as in the pGL4-10 (empty) vector. One possible 

explanation for this is that by cloning a large portion of the CCND2 3'UTR we 

may have included other potential miRNA targets sites hence rendering this 

construct subject to additional regulation by other miRNAs. Three additional 

transfection experiments performed using the pGL4-10 + wt-Triplet constructs 

together with the anti-cmiR-Ch9 LNA inhibitor (25 nM) in order to block the 

predicted interaction of c-miR-ch9 with our reporter constructs, further 
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confirmed the true nature of this regulation. The co-transfection of anti-c-miR-

ch9 LNA resulted in 1.5-fold increase (t-test: 0.004) in luciferase activity in the 

pGL4-10 + wt-Triplet-plusLNA transfected constructs with respect to the pGL4-

10 + wt-Triplet (Figure 4.8C). Co-transfection of anti-c-miR-ch9 and pGL4-10 + 

wt-3'UTR was also performed and similar fold increase (1.5) in luciferase activity 

was observed in the pGL4-10 + wt-3'UTR-plus-LNA transfected constructs with 

respect to the pGL4-10 + wt-3'UTR (Figure 4.8E). An average for all the 

transfection experiments performed (total of 5 experiments with 3 triplicates for 

every condition) is shown in (Figure 4.8D). Although standard error bars show 

greater deviation from the mean in this summary of results, t-test analysis 

reveals that results remain statistically significant (pGL4-10 vs. pGL4-10 + wt-

Triplet—t-test: 5.68E-10, pGL4-10 + wt-Triplet vs. pGL4-10 + mut-Triplet—ttest: 

1.68E-05, pGL4-10 + wt-Triplet vs. pGL4-10 + wt-Tripletplus-LNA—t-test: 

0.005805). As previously reported pGL4-10 vs. pGL4-10 + mut-triplet expression 

is not statistically significant (t-test: 0.221165). While confirmatory of the role of 

c-miRCh9 in targeting and regulating CCND2 targets sites, the lower luciferase 

expression observed for pGL4-10 + wt-Triplet-plusLNA with respect to pGL4-10 

or pGL4-10 + mut-triplet also suggests the possible regulation of CCND2 by 

additional miRNAs in the same target site, which is in agreement with 

computational predictions (see Discussion). 
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Figure 4.8. miRNA-sensor assay using luciferase expression as an indicator of miRNA activity after 
transfection of heLa cells with various constructs. (A) Relative luciferase expression after transfection 
of heLa cells with triplet-cassette constructs: pGL4-10—an empty pGL4-10 vector for standardization 

control, pGL4-10 + wt-Triplet—vector containing a wild-type triplet cassette containing potential 
binding sites for c-miR-ch9, pGL4-10 + mut-Triplet— a vector containing a triplet cassette with 

mutated binding sites for c-miR-ch9. (B) Relative luciferase expression after transfection of heLa cells 
with 3'UTR constructs. pGL4-10 — an empty pGL4-10 vector for standardization control, pGL4-10 + 
wt-3'UTR—vector containing a wild-type 3'UTR containing a single potential binding site for c-miR-
ch9, pGL4-10 + mut-3'UTR—a vector containing a single mutated potential binding site for c-miR-
ch9. (c) The pGL4-10 + wt-Triplet cassette transfection was repeated with concurrent addition of 

anti-LNA for our c-miR-ch9. (D) An average over all transfection experiments performed (total of 5 
experiments with 3 triplicates for every condition). (E) Relative luciferase expression after 
transfection of HeLa cells with 3’UTR constructs: pGL4-10 – an empty pGL4-10 vector for 

standardization control, pGL4-10 + wt-3’UTR – vector containing a wild-type 3’UTR containing a 
single potential binding site for c-miR-ch9, pGL4-10 + mut-3’UTR – a vector containing a single 

mutated potential binding site for c-miR-ch9 and pGL4-10 + wt-3’UTR + LNA(25nM) - pGL4-10 + wt-
3’UTR transfection was repeated with concurrent addition of anti-LNA for our c-miR-ch9 (3 

triplicates where performed for every condition). 

 

E 
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CONCLUDING REMARKS 

We performed experimental verification on computational predictions of 

biological significance. In previous work [5] we showed the prediction and 

verification (via northern blot analysis) of 4 novel potential miRNA gene 

candidates.  

As a follow-up to this work, using a modified version of primer extension 

analysis, we predicted the mature sequence of these miRNA genes.  The mature 

sequences of, c-mir-ch9 and c-mir-ch5b, were also confirmed by Northern blot 

analysis. Due to the fact that several inconsistencies were observed among 

experiments as analyzed in chapter III, the rest of the experiments were 

performed only for c-miR-ch9.  

First we evaluated the expression pattern of c-miR-ch9 in cell lines from 

different cancer types. The cell lines, which were examined, were T24, VM cubi 

and EJ for bladder cancer, SKME S1, H1299, HCC44 and H60 for lung, SKOV3 for 

ovarian and A375 for melanoma and HEK 293. C-miR-ch9 is expressed in bladder 

(T24, EJ) and lung (HCC44) cancer cell lines.  

Thereafter, we utilized TargetProfiler to identify potential targets. The candidate 

under investigation, c-miR-ch9, is located in a cancer associated genomic region 

commonly deleted in various forms of bladder cancer [101]. Importantly, 

supporting evidence from recent deep sequencing studies do not report an 

expression for c-miR-Ch9 among the identified microRNA expression signatures 

of bladder cancer [102]. Computational identification of a highly significant and 

evolutionary conserved target binding site for this potential miRNA in the 
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CCND2 oncogene using Targetprofiler was the initial incentive for performing 

reporter gene assays. 

CCND2 is a well-known cyclin which functions in the cell cycle and specifically in 

the G1/S transition. Moreover recent reporter assays have shown that CCND2 is 

targeted by let-7a and that this interaction inhibits proliferation in human 

prostate cancer cells both in vitro and in vivo[103]. Furthermore, bioinformatics 

analysis suggested that CCND2 is a putative target for miR-154. Subsequent 

experiments confirmed that miR-154 directly targets CCND2 in hepatocellular 

carcinoma (HCC), reduces tumorigenicity and inhibits the G1/S transition in 

cancer cells [98]. In line with these findings, our luciferase reporter assay results 

show that CCND2 is also targeted by c-miR-Ch9 as depicted by the decreased 

activity of the reporter gene in wild-type binding site conditions and the 

increased activity in mutated binding site conditions. Moreover, addition of anti-

c-miR-Ch9 LNA to pGL4-10 + wt-Triplet conditions reduced regulation as shown 

by the observed increase in the reporter gene activity. However, luciferase 

activity in this case did not achieve the ~2-fold increase observed in the empty 

pGL4-10 vector or even the pGL4-10 + mut-Triplet constructs. One possible 

explanation for this is that other miRNA(s) compete for this target site. In fact, 

the target site under investigation is also a potential target site for 3 other 

known miRNAs (miR-182, miR-96 and miR-1271) as predicted by Targetprofiler 

as well as other target prediction tools (TargetScan, Diana-microT). However, 

using publicly available full genome tiling array [42] and next generation 

sequencing data [41] we observed that only miR-182 shows significant 

expression in HeLa cells. Competition between two miRNAs for the same target 
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site can explain our observed deviations in luciferase activity during LNA 

silencing of c-miR-Ch9. 
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CHAPTER V - DISCUSSION 
 

CONCLUSIONS 

This thesis has focused on two main areas: 

I.  The development of an algorithm, MiRduplexSVM, which is able to 

predict the mature molecule of a given miRNA pri-precursor. 

II. The identification of the mature miRNA molecules of four newly identified 

miRNA genes and the verification of the functional interaction between 

one of these miRNAs and a cancer related target gene. The main 

innovations of this work are discussed in the following paragraphs. 

 

MiRduplexSVM 

We presented a novel methodology for the computational identification of 

the mature molecule(s) within novel miRNA hairpins. Our methodology takes 

into account several aspects of the biogenesis of miRNAs, whereby a duplex is 

formed before the mature molecule is selected. Our tool is the first that 

predicts miRNA duplexes and is shown to achieve much higher performance 

that four existing tools on both duplex and strand-specific miRNA prediction 

for mammalian hairpins. Moreover, the tool performs equally well on plant 

hairpins, without any particular customization.  
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MiRduplexSVM can be used to identify the miRNA:miRNA* duplex of a miRNA 

gene given the precursor sequence. The precursor sequence does not need to be 

precisely defined; it may be generated by one of the numerous computational 

tools that predict miRNA genes [5, 35, 38-40]. Such an approach is useful when 

searching for novel miRNAs that may be involved in a particular phenotype. For 

example, we recently developed and used a miRNA gene finding tool to locate 

potential new miRNAs residing is cancer associated genomic regions [5]. Similar 

efforts have been reported in a number of other studies, where new miRNA 

genes were computationally predicted [38, 104]. In order to verify that a 

predicted miRNA gene/precursor produces a functional miRNA however, a 

number of wet-lab experiments must be performed, requiring significant amount 

of time, money and effort [49]. MiRduplexSVM can provide reliable predictions 

about the most likely sequence of the miRNA molecule in these cases, thus 

guiding experimental efforts and ultimately reducing working hours and costs. 

Also MiRduplexSVM can be used to identify the mature molecule that lies on the 

opposite strand of a known miRNA performing better than formerly used 

methodologies [55, 57, 92, 93]. Another case where MiRduplexSVM would be 

useful is the in-silico study of factors that determine the cleavage sites of drosha 

and dicer, which define the miRNA:miRNA* duplex. This could be done by 

performing in silico mutagenesis experiments, generating predictions that can 

then guide the much more demanding wet - lab mutagenesis experiments [3, 6]. 

The final MiRduplexSVM model and the respective web server are available 

at http://139.91.171.154/duplexsvm/.     

 

http://139.91.171.154/duplexsvm/
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Experimental identification of mature miRNA molecules and their cancer-related 
function  

Regarding the experimental verification of mature miRNA molecules, we first 

identified the mature sequences of two possible miRNA genes, c-mir-ch9,  c-mir-

ch5b.  We studied in more detail only c-miR-Ch9 whose experimental results 

were consistent with previous published data[5]. We experimentally verified its 

expression in bladder and lung cancer’s cell lines and its interaction with CCND2. 

The results reported here are important for two reasons: first, they confirm that 

our initial small RNA molecule shown by northern blot in [5] is indeed a true 

miRNA gene and second, that this miRNA targets and regulates CCND2. 

Deletion of 09q33-34.1 (7MB) region, the region where the c-mir-ch9 is located, 

has been reported in several cancer types. In bladder cancer large tumors carried 

more frequently 9p deletions and tumors deleted in the regions 9ptr-p22, 

9q22.3, 9q33, and 9q34 recurred significantly more rapidly than those without 

deletions [105]. In addition, loss of heterozygosity (LOH) on chromosome 9 is the 

most frequent genetic alteration identified in bladder tumors and is present in all 

stages and grades; approximately 60 ± 70% of bladder tumors show LOH of at 

least one locus on either arm of this chromosome [101]. Furthermore the 09q33-

34.1 (7MB) region deletion has also been reported in lung[106] and ovarian 

cancer [107], but there was no association between tumour grade, stage or 

histopathology and any losses. Relating to bladder cancer, deletion of the 09q33-

34.1 region refers to a LOH, implying that c-miR-Ch9 is expressed in lower levels 

than in wild type condition, which makes c-miR-Ch9 a probable tumor 

suppressor gene.  
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Furthermore, the role of CCND2 in proliferation, is another evidence that the 

recently discovered miRNA may function as a tumor suppressor[5]. Bladder 

cancer patients which exhibit deletion of the region retaining this miRNA may 

show increased proliferation by their inability to regulate CCND2, causing it to 

act like an oncogene and leading to failure of cells to arrest in G1/S and hence 

uncontrollable proliferation. In conclusion, our study used an integrative 

approach in which the prediction of a putative pre-miRNA is followed by the 

experimental verification of its mature sequence and the computational 

prediction of a target for this miRNA is experimentally confirmed using reporter 

assays. Our verified miRNA (c-mir-Ch9) was approved by the miRBase curation 

team and assigned the official miRNA name — hsa-mir-7150. 

Overall, the most important contributions of this thesis are the development of 

MiRduplexSVM which is currently the most accurate and precise computational 

tool for the identification of the functional part of a miRNA gene (Chapter II) and 

the experimental verification of the mature sequence of has-mir-7150 and one of 

its targets showing that has-miR-7150 is a true miRNA and could probably act as 

a tumor suppressor molecule (Chapter IV).  Smaller, yet important contributions 

include a comparative presentation of the strengths and limitations of existing 

mature miRNA prediction tools against a simple, naïve classifier which 

outperformed most of them (Chapter III). 
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 FUTURE DIRECTIONS 

MiRduplexSVM performs similarly to MaturePred in predicting mature miRNAs 

from plant precursors. Further optimization using plant precursors could lead to 

better results and is a direction I plan to explore in the future. In addition, the 

development of an interface, which combines miRNA gene, mature and target 

prediction algorithms, would be innovative in designing future biochemical 

studies which focus in the identification of uncharacterized miRNA genes.  

Future work will attempt to develop such a pipeline tool. 

Another interesting future direction concerns the further  study of hsa-miR-

7150. An extensive investigation would shed new light on its cancer-related 

function and reveal the mechanisms of its operation.  In vivo proliferation assays 

using bladder cancer cell lines and xenograph implantation using mice models 

are needed in order to explore this phenomenon.  
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APPENDIX  
 

MISSING DUPLEXES PREDICTIONS OF HUMAN AND MOUSE HAIRPINS 

>hsa-mir-95_5p 
CUCAAUAAAUGUCUGUUGAAU 
>hsa-mir-103a-1_5p 
GGCUUCUUUACAGUGCUGCCUUG 
>hsa-mir-107_5p 
AGCUUCUUUACAGUGUUGCCUUG 
>hsa-mir-208a_5p 
GAGCUUUUGGCCCGGGUUAUAC 
>hsa-mir-147a_5p 
GACAACAUUUCUGCACACACAC 
>hsa-mir-203a_5p 
AGUGGUUCUUAACAGUUCAACA 
>hsa-mir-210_5p 
AGCCCCUGCCCACCGCACACUG 
>hsa-mir-1-2_5p 
ACAUACUUCUUUAUGUACCCAU 
>hsa-mir-128-1_5p 
CGGGGCCGUAGCACUGUCUGA 
>hsa-mir-133a-1_5p 
AGCUGGUAAAAUGGAACCAAAU 
>hsa-mir-133a-2_5p 
AGCUGGUAAAAUGGAACCAAAU 
>hsa-mir-137_5p 
ACGGGUAUUCUUGGGUGGAUAAU 
>hsa-mir-152_5p 
AGGUUCUGUGAUACACUCCGACU 
>hsa-mir-153-1_5p 
GUCAUUUUUGUGAUCUGCAGCU 
>hsa-mir-153-2_5p 
UCAUUUUUGUGAUGUUGCAGCU 
>hsa-mir-184_5p 
CCUUAUCACUUUUCCAGCCCAGC 
>hsa-mir-206_5p 
ACAUGCUUCUUUAUAUCCCCAU 
>hsa-mir-320a_5p 
GCCUUCUCUUCCCGGUUCUUCC 
>hsa-mir-1-1_5p 
ACAUACUUCUUUAUAUGCCCAU 
>hsa-mir-128-2_5p 
GGGGGCCGAUACACUGUACGAGA 
>hsa-mir-101-2_5p 
UCGGUUAUCAUGGUACCGAUGCU 
>hsa-mir-370_5p 
CAGGUCACGUCUCUGCAGUUAC 
>hsa-mir-372_5p 
CCUCAAAUGUGGAGCACUAUUC 
>hsa-mir-375_5p 
GCGACGAGCCCCUCGCACAAAC 
>hsa-mir-328_5p 
GGGGGGCAGGAGGGGCUCAGGG 

>hsa-mir-326_5p 
GGAGGCAGGGCCUUUGUGAAGGCG 
>hsa-mir-133b_5p 
GCUGGUCAAACGGAACCAAGUC 
>hsa-mir-384_5p 
UAAACAAUUCCUAGACAAUAUG 
>hsa-mir-448_5p 
GAACAUCCUGCAUAGUGCUGCC 
>hsa-mir-429_5p 
CGUCUUACCAGACAUGGUUAGA 
>hsa-mir-433_5p 
UACGGUGAGCCUGUCAUUAUUC 
>hsa-mir-329-1_5p 
AGAGGUUUUCUGGGUUUCUGUUU 
>hsa-mir-329-2_5p 
AGAGGUUUUCUGGGUUUCUGUUU 
>hsa-mir-412_5p 
GAUGGUCGACCAGUUGGAAAGU 
>hsa-mir-410_5p 
AGGUUGUCUGUGAUGAGUUCGC 
>hsa-mir-487a_5p 
AGUGGUUAUCCCUGCUGUGUUC 
>hsa-mir-489_5p 
UGGUCGUAUGUGUGACGCCAUU 
>hsa-mir-494_5p 
AGGUUGUCCGUGUUGUCUUCUC 
>hsa-mir-496_5p 
AGGUUGUCCAUGGUGUGUUCA 
>hsa-mir-520e_5p 
CUCAAGAUGGAAGCAGUUUCUG 
>hsa-mir-520f_5p 
CUCUAAAGGGAAGCGCUUUCUG 
>hsa-mir-520b_5p 
CCUCUACAGGGAAGCGCUUUCU 
>hsa-mir-518b_5p 
CUCCAGAGGGAAGCGCUUUCUG 
>hsa-mir-519d_5p 
CUCCAAAGGGAAGCGCUUUCUG 
>hsa-mir-521-2_5p 
CUCCAAAGGGAAGAAUUUUCUC 
>hsa-mir-520g_5p 
ACCCUCUAGAGGAAGCACUUU 
>hsa-mir-520h_5p 
UAGAGGAAGCACUUUCUGUUUG 
>hsa-mir-521-1_5p 
CCUCCAAAGGGAAGAACUUUCU 
>hsa-mir-519a-2_5p 
CUCUACAGGGAAGCGCUUUCUG 
>hsa-mir-507_5p 
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CACUUCAAGAAGUGCCAUGCAU 
>hsa-mir-544a_5p 
UCUUGUUAAAAAGCAGAUUCU 
>hsa-mir-487b_5p 
UGGUUAUCCCUGUCCUGUUCG 
>hsa-mir-551a_5p 
GAAAUCCAGAGUGGGUGGGGCC 
>hsa-mir-552_5p 
UGUUUAACCUUUUGCCUGUUGG 
>hsa-mir-555_5p 
UCAGAUGUGGAGCACUACCUUU 
>hsa-mir-557_5p 
UGGAGGCCUGGGGCCCUCCCUG 
>hsa-mir-558_5p 
UUUUGGUAUAGUAGCUCUAGA 
>hsa-mir-562_5p 
AUAUGGUCAGUCUACUUUUAG 
>hsa-mir-563_5p 
UAGGAAAUGUGUGUUGCUCUG 
>hsa-mir-569_5p 
UUUGUGGGACAUUAACAACAGC 
>hsa-mir-571_5p 
CUCAGUGUGCCAUUUCCUUGUC 
>hsa-mir-572_5p 
GGGGCCGCUGCGGGCGGAAGG 
>hsa-mir-575_5p 
AAUUCAGCCCUGCCACUGGCUU 
>hsa-mir-578_5p 
CAAUCCCGGACAACAAGAAGCU 
>hsa-mir-579_5p 
UCGCGGUUUGUGCCAGAUGAC 
>hsa-mir-580_5p 
UAAUGAUUCAUCAGACUCAGAU 
>hsa-mir-585_5p 
CCUAGCACACAGAUACGCCCAG 
>hsa-mir-548a-1_5p 
AAAAGUAAUUGUGAUUUUUGCC 
>hsa-mir-548a-2_5p 
AAAAGUAAUUGGGGUUUUUUGC 
>hsa-mir-595_5p 
UUAACACCAGCACGCUCAAUGUAG 
>hsa-mir-598_5p 
GCGGUGAUCCCGAUGGUGUGAGC 
>hsa-mir-599_5p 
UUGAUAAGCUGACAUGGGACAG 
>hsa-mir-600_5p 
GGAAGGCUCUUGUCUGUCAGG 
>hsa-mir-603_5p 
AAAAGUAAUUGCAGUGCUUCCC 
>hsa-mir-604_5p 
UGCUUGACCUUCCACGCUCUCG 
>hsa-mir-606_5p 
CCUUGGUUUUUAGUAGUUUUAC 
>hsa-mir-607_5p 
UAUAGAUCUGGAUUGGAACCCA 
>hsa-mir-611_5p 
UGAGAGCGUUGAGGGGAGUUCCAG 
>hsa-mir-613_5p 
UGAAGGGACCCUUCCUGUAGU 

>hsa-mir-614_5p 
UCUGAAGCCUGCAGGGGCAGGC 
>hsa-mir-619_5p 
UACAGGCAUGAGCCACUGCGG 
>hsa-mir-620_5p 
AUCUAUAUCUAGCUCCGUAUAU 
>hsa-mir-621_5p 
GGUAGGCGGUGCUGCUGUGCUC 
>hsa-mir-622_5p 
UACUGGUCUCAGCAGAUUGAGG 
>hsa-mir-626_5p 
GGAGUAUUUUUAUGCAAUCUGA 
>hsa-mir-630_5p 
CCUCUUUGUAUCAUAUUUUGU 
>hsa-mir-632_5p 
UGACGGGAGGCGGAGCGGGGAA 
>hsa-mir-633_5p 
UUGCGGUAGAUACUAUUAACC 
>hsa-mir-634_5p 
AUCGAGGGUUGGGGCUUGGUGU 
>hsa-mir-636_5p 
CGCGGGCGGGGCCGGCCCCGCU 
>hsa-mir-637_5p 
UCGGGCUCCCCACUGCAGUUAC 
>hsa-mir-639_5p 
GGGGCGCGCGCGGCCUGGAGGG 
>hsa-mir-640_5p 
UUCCUGAAGAUCAGACACAUC 
>hsa-mir-643_5p 
ACCUGAGCUAGAAUACAAGUAG 
>hsa-mir-644a_5p 
UCAUAAGGAAUGUUGCUCUG 
>hsa-mir-645_5p 
AGACCAGUACCGGUCUGUGGCCU 
>hsa-mir-646_5p 
GGAGUCAGCACACCUGCUUUUC 
>hsa-mir-649_5p 
UUUUUGAUCGACAUUUGGUUGAA 
>hsa-mir-661_5p 
GGGGCAGGCGCAGGCCUGAGCCC 
>hsa-mir-662_5p 
GCCAGGCCCUGACGGUGGGGUGG 
>hsa-mir-655_5p 
AGAGGUUAUCCGUGUUAUGUUC 
>hsa-mir-656_5p 
AGGUUGCCUGUGAGGUGUUCACU 
>hsa-mir-549a_5p 
AGCUCAUCCAUAGUUGUCACU 
>hsa-mir-658_5p 
GGGCCCUGCCCGCCCGCCAGCU 
>hsa-mir-421_5p 
CCUCAUUAAAUGUUUGUUGAAUGA 
>hsa-mir-1264_5p 
AGGUCCUCAAUAAGUAUUUGUU 
>hsa-mir-668_5p 
GUAAGUGCGCCUCGGGUGAGCAUG 
>hsa-mir-151b_5p 
UCUCUUCAGGGCUCCCGAGACA 
>hsa-mir-320b-1_5p 
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UCCCUCUCUUUCUAGUUCUUCC 
>hsa-mir-320c-1_5p 
GCCUUCUCUUCCCAGUUCUUCC 
>hsa-mir-1301_5p 
GGUCGCUCUAGGCACCGCAGCA 
>hsa-mir-320b-2_5p 
AGGCUUUCUCUUCCCAGAUUUCC 
>hsa-mir-762_5p 
UCUCGGCCCGUACAGUCCGGC 
>hsa-mir-2113_5p 
CAAUGUGUGACAGGUACAGGGA 
>hsa-mir-765_5p 
AGUAGACAGCCCUUUUCAAGCC 
>hsa-mir-300_5p 
AGAGAGGUAAUCCUUCACGCAU 
>hsa-mir-892a_5p 
UACUCAGAAAGGUGCCAGUCAC 
>hsa-mir-874_5p 
CGGCCCCACGCACCAGGGUAAG 
>hsa-mir-892b_5p 
UACUCAGAAAGGUGCCAUUUAU 
>hsa-mir-889_5p 
AAUGGCUGUCCGUAGUAUGGUC 
>hsa-mir-147b_5p 
UGGAAACAUUUCUGCACAAACUAG 
>hsa-mir-887_5p 
CUUGGGAGCCCUGUUAGACUC 
>hsa-mir-665_5p 
AGGGGUCUCUGCCUCUACCCAG 
>hsa-mir-543_5p 
AAGUUGCCCGUGUUUUUUUCG 
>hsa-mir-760_5p 
CCCCUCAGUCCACCAGAGCCCGG 
>hsa-mir-301b_5p 
GCUCUGACGAGGUUGCACUACU 
>hsa-mir-208b_5p 
AAGCUUUUUGCUCGAAUUAUGU 
>hsa-mir-920_5p 
UAGUUGUUCUACAGAAGACC 
>hsa-mir-922_5p 
UCCCUCUCCCUGUCCUGGACUG 
>hsa-mir-933_5p 
AGAGGUCCUCGGGGCGCGCGUC 
>hsa-mir-935_5p 
AGUGGCGGGAGCGGCCCCUCG 
>hsa-mir-940_5p 
AGGAGCGGGGCCUGGGCAGCCC 
>hsa-mir-941-1_5p 
ACAUGUGCCCAGGGCCCGGGACA 
>hsa-mir-941-2_5p 
ACAUGUGCCCAGGGCCCGGGACA 
>hsa-mir-941-3_5p 
ACAUGUGCCCAGGGCCCGGGACA 
>hsa-mir-941-4_5p 
ACAUGUGCCCAGGGCCCGGGACA 
>hsa-mir-943_5p 
UGGGGGACGUUUGCCGGUCACU 
>hsa-mir-944_5p 
CAUCUGAUAUACAAUAUUUUCU 

>hsa-mir-1180_5p 
UGGACCCACCCGGCCGGGAAUA 
>hsa-mir-1182_5p 
UCUCCUCCCUCUCCAGCAGCGA 
>hsa-mir-1183_5p 
ACACAGAACAUUAGAGAAGAC 
>hsa-mir-1184-1_5p 
UUCUGCUCAGCAGUCAACAGUG 
>hsa-mir-663b_5p 
CGAGGGCCGUCCGGCAUCCUAG 
>hsa-mir-548e_5p 
CAAAAGCAAUCGCGGUUUUUGC 
>hsa-mir-1285-2_5p 
UGCAUCACUUGAGCCCAGCAAU 
>hsa-mir-1286_5p 
GGGACUCAGCUUGCUCUGGCU 
>hsa-mir-1289-1_5p 
AUGCAGACUCUUGGUUUCCACCCC 
>hsa-mir-1289-2_5p 
AAGGCACAUUCCUAGACCCUGC 
>hsa-mir-1290_5p 
GAGCGUCACGUUGACACUCAAA 
>hsa-mir-1295a_5p 
GCCCAGAUCCGUGGCCUAUUC 
>hsa-mir-1297_5p 
UAGGGUUGAUCUAUUAGAAUUA 
>hsa-mir-1299_5p 
CCUCAUGGCAGUGUUCUGGAAUCC 
>hsa-mir-1302-1_5p 
UGUAUGUAAGAAUAUCCCAUAC 
>hsa-mir-1302-2_5p 
UAGCAUAAAUAUGUCCCAAGC 
>hsa-mir-1302-3_5p 
UAGCAUAAAUAUUUCCCAAGC 
>hsa-mir-1302-4_5p 
UUAGAAUAAGUAUGUCUCCAUG 
>hsa-mir-1302-5_5p 
UAGGUAUAAGUAUAUCCCAUGU 
>hsa-mir-1302-6_5p 
UUGGUAAUAUAUGUAUGGCCCAC 
>hsa-mir-1302-7_5p 
UAGGACAUGUAUGUCUGGUGC 
>hsa-mir-1302-8_5p 
UUUUCAGCAUUAGUGUAUCACA 
>hsa-mir-1303_5p 
AGCGAGACCUCAACUCUACAAU 
>hsa-mir-1305_5p 
UCUACCAUUAGUUUUGAAUGUU 
>hsa-mir-548f-1_5p 
UGCAAAAGUAAUCACAGUUUUU 
>hsa-mir-548f-2_5p 
CGAACAUAAUUGCAGUUUUUAU 
>hsa-mir-548f-3_5p 
AAACCUAAUUGCAAUUUUUGC 
>hsa-mir-548f-4_5p 
AAAAGUAAUAGUGGUUUUUGCC 
>hsa-mir-548f-5_5p 
AAAGUAAUCAUGUUUUUUUCC 
>hsa-mir-1244-1_5p 
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AUCUUAUUCCGAGCAUUCCAG 
>hsa-mir-1245a_5p 
UAUAGGCCUUUAGAUCAUCUGA 
>hsa-mir-1249_5p 
AGGAGGGAGGAGAUGGGCCAAGUUC 
>hsa-mir-1258_5p 
UCCACGACCUAAUCCUAACUCC 
>hsa-mir-548o_5p 
AAAAUGUGUUGAUUGUAAUGGU 
>hsa-mir-1269a_5p 
AGUUGGCAUGGCUCAGUCCAAGU 
>hsa-mir-1273a_5p 
UGAGGCAGGAGAAUUGCUUGA 
>hsa-mir-302f_5p 
CUGUGUAAACCUGGCAAUUUUC 
>hsa-mir-548p_5p 
UUAAUUGCAGUUUUUGUCAUU 
>hsa-mir-1278_5p 
AGAUGAUAUGCAUAGUACUCCC 
>hsa-mir-1281_5p 
AGGGGGCACCGGGAGGAGGUG 
>hsa-mir-1288_5p 
AGCAGAUCAGGACUGUAACUC 
>hsa-mir-1321_5p 
CAAGUAUUAUUAUCCCUGUUUU 
>hsa-mir-1322_5p 
AGUAUCAUGAAUUAGAAACCU 
>hsa-mir-1197_5p 
CGGUUGACCAUGGUGUGUACG 
>hsa-mir-1324_5p 
UGCAUGAAGCCUGGUCCUGCCC 
>hsa-mir-1537_5p 
AGCUGUAAUUAGUCAGUUUUCU 
>hsa-mir-1538_5p 
ACAGCAGCAACAUGGGCCUCG 
>hsa-mir-1539_5p 
GGCUCUGCGGCCUGCAGGUAG 
>hsa-mir-320d-1_5p 
UUCUCGUCCCAGUUCUUCC 
>hsa-mir-320c-2_5p 
CUUCUCUUUCCAGUUCUUCC 
>hsa-mir-320d-2_5p 
UUCUCUUCCCAGUUCUUC 
>hsa-mir-1825_5p 
AGAGACUGGGGUGCUGGGCU 
>hsa-mir-1827_5p 
UCAGCAGCACAGCCUUCAG 
>hsa-mir-1912_5p 
UGCUCAUUGCAUGGGCUGUGUA 
>hsa-mir-1913_5p 
CGGCAGAGGAGGCUGCAGAGGC 
>hsa-mir-1972-1_5p 
UGCCACCACACCUGGCUUAAAU 
>hsa-mir-1973_5p 
UAUGUUCAACGGCCAUGGUAU 
>hsa-mir-1976_5p 
CAGCAAGGAAGGCAGGGGUC 
>hsa-mir-2053_5p 
AGAUUUAAUUAACAUUUGCAACC 

>hsa-mir-2117_5p 
UCUGUCCGGCAUGGUGAACAGC 
>hsa-mir-2276_5p 
GCCCUCUGUCACCUUGCAGACG 
>hsa-mir-711_5p 
AGUCUCUCCUCAGGGUGCUGC 
>hsa-mir-718_5p 
GCGCGCAAGAUGGCGGCGGGCC 
>hsa-mir-2861_5p 
UCCGGCUCCCCCUGGCCUCUC 
>hsa-mir-3116-1_5p 
UCCCUACUAUGUUCCAGGCACU 
>hsa-mir-3116-2_5p 
UCCCUACUAUGUUCCAGGCACCU 
>hsa-mir-3118-1_5p 
AAUUUUCAUAAUGCAAUCACAC 
>hsa-mir-3118-2_5p 
AAUUUUCAUAAUGCAAUCACAC 
>hsa-mir-3118-3_5p 
AAUUUUCAUAAUGCAAUCACAC 
>hsa-mir-3123_5p 
UUGAAUGAUUCUCCCAUUUC 
>hsa-mir-548s_5p 
UAAUUGCAGUUUUUGCCAUUAU 
>hsa-mir-378b_5p 
AUUGAGUCUUCAAGGCUAGUG 
>hsa-mir-3134_5p 
UGUGUAGUCUUUUAUCCCUCACA 
>hsa-mir-466_5p 
UGUGUUGCAUGUGUGUAUAUGU 
>hsa-mir-544b_5p 
UAAAAUGCAGAAUCCAUUUCU 
>hsa-mir-3138_5p 
ACUUCCCCCACCUCACUGCCCG 
>hsa-mir-3142_5p 
UGAACCUUCAGAAAGGCUGCUG 
>hsa-mir-548u_5p 
AAAAGUAAUGUGGUUUUUUUC 
>hsa-mir-3146_5p 
CUUCUUUCUAUCCUAGUAUAAC 
>hsa-mir-548v_5p 
UGAGCAAAAGUAAUUGCGGUUUU 
>hsa-mir-3149_5p 
ACACACACAUGUCAUCCACACA 
>hsa-mir-3153_5p 
AAUGUCCCUGUCCCCUUCCCCC 
>hsa-mir-3154_5p 
AGCCCCAGCUCCCGCUCACCC 
>hsa-mir-3155a_5p 
CUCCCACUGCAGAGCCUGGGG 
>hsa-mir-3166_5p 
AGGCAUUGUCUGCGUUAGGAUU 
>hsa-mir-3167_5p 
ACCAGUAUUUCUGAAAUUCUU 
>hsa-mir-3118-4_5p 
AAUUUUCAUAAUGCAAUCACAC 
>hsa-mir-3176_5p 
CGGCAGCCUCGGGCCACACUCC 
>hsa-mir-3179-1_5p 
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GUUUAAAUUACACUCCUUCUGC 
>hsa-mir-3179-2_5p 
GUUUAAAUUACACUCCUUCUGC 
>hsa-mir-3179-3_5p 
GUUUAAAUUACACUCCUUCUGC 
>hsa-mir-3188_5p 
CUGCUGUGCCGCCAGGGCCUCC 
>hsa-mir-320e_5p 
GCCUUCUCUUCCCAGUUCUUC 
>hsa-mir-3118-5_5p 
AAUAAUAUUCAUAAUGCAAUCA 
>hsa-mir-3198-1_5p 
UCACUGUUCACCCAGCACUAG 
>hsa-mir-4293_5p 
GUUCCUUGGGAAGCUGGUGACA 
>hsa-mir-4299_5p 
UGACCAAUCAUGUUACAGUGUU 
>hsa-mir-4300_5p 
AGAGGGCCAGCUAAAUCAGCAG 
>hsa-mir-4306_5p 
UAGUGUCCUUAGAGUCUCCAGA 
>hsa-mir-4307_5p 
UCAGAAGAAAAAACAGGAGAU 
>hsa-mir-4308_5p 
UCAGAGGGAACUCCAUUGGAC 
>hsa-mir-4310_5p 
CGUCUGGGGCCUGAGGCUGCAG 
>hsa-mir-4312_5p 
GGGCACAGAGAGCAAGGAGCC 
>hsa-mir-4318_5p 
UUAUGUCAUAAACCCACUGUG 
>hsa-mir-4320_5p 
UGGGGUUUGCUGUAGACAUUUC 
>hsa-mir-4322_5p 
AGUUCCGCGCCUGGCCGUGU 
>hsa-mir-4321_5p 
AGAGCCUCUGCCCCUCCCGAGA 
>hsa-mir-4323_5p 
CAGGCGGGCAUGUGGGGUGUC 
>hsa-mir-4324_5p 
UAAGGGUCUCAGCUCCAGGGAA 
>hsa-mir-4257_5p 
CAGUCCCUAGGUAGGAUUUGGGG 
>hsa-mir-4259_5p 
UGUGUCCUGAAUUGGGUGGGG 
>hsa-mir-4253_5p 
AUCGCCCUUGAGGGGCCCU 
>hsa-mir-4251_5p 
CGUCCUCCAGCUUUUUUCCUUA 
>hsa-mir-4254_5p 
AGGGUGGGGUGGCUCCUCUGCA 
>hsa-mir-4252_5p 
CUGGCAGCUCAUCAGUCCAG 
>hsa-mir-4261_5p 
UGGAAGUGGGUUCCUCCCAGU 
>hsa-mir-4265_5p 
UGGAGCUUCAGCCUACACCU 
>hsa-mir-4266_5p 
CUGCUGGCCGGGGCCCCUACUC 

>hsa-mir-4262_5p 
AAGCUGCAGGUGCUGAUGUUGG 
>hsa-mir-4268_5p 
ACAUCAGGUUCUAGAGGUUUU 
>hsa-mir-4263_5p 
UCAGGGUUUUACUUGGGAGAUUGG 
>hsa-mir-4271_5p 
CUCCAUAUCUUUCCUGCAGCC 
>hsa-mir-4272_5p 
UGCACAAAUUAAUCAGUUAAU 
>hsa-mir-4274_5p 
AGGGUAACUGAGCUGCUGCCGG 
>hsa-mir-4281_5p 
CCCCCGACAGUGUGGAGCUGGG 
>hsa-mir-4279_5p 
CUCUGUGGAGCUGAGGAGCA 
>hsa-mir-4278_5p 
AGGAGAAUCCCAUAGAACAUU 
>hsa-mir-4282_5p 
AAGUUCCAGGGGAAGAUUUUAGU 
>hsa-mir-4288_5p 
AGAGUCAUCAGCAGCACU 
>hsa-mir-4292_5p 
CCUGCUUAGGAGGCCAGAGGUG 
>hsa-mir-4290_5p 
AAGGUGAAGGGAGGGUCAGU 
>hsa-mir-4329_5p 
AGGUGUACCAGGGUUUUGGAGU 
>hsa-mir-4330_5p 
AGGCAAUUAUCUGAGGAUGCAG 
>hsa-mir-4328_5p 
CAGUUGAGUCCUGAGAACCAUUG 
>hsa-mir-1184-2_5p 
UUCUGCUCAGCAGUCAACAGUG 
>hsa-mir-1184-3_5p 
UUCUGCUCAGCAGUCAACAGUG 
>hsa-mir-1233-2_5p 
AGUGGGAGGCCAGGGCACGGCA 
>hsa-mir-1244-2_5p 
AUCUUAUUCCGAGCAUUCCAG 
>hsa-mir-1244-3_5p 
AUCUUAUUCCGAGCAUUCCAG 
>hsa-mir-1972-2_5p 
UGCCACCACACCUGGCUUAAAU 
>hsa-mir-1302-9_5p 
UAGCAUAAAUAUGUCCCAAGC 
>hsa-mir-1302-10_5p 
UAGCAUAAAUAUGUCCCAAGC 
>hsa-mir-1302-11_5p 
UAGCAUAAAUAUGUCCCAAGC 
>hsa-mir-3118-6_5p 
AAUUUUCAUAAUGCAAUCACAC 
>hsa-mir-3609_5p 
UUUUAUUCUCAUUUUCCUUUUC 
>hsa-mir-3610_5p 
UAACGGCAGCCAUCUUGUUUGUU 
>hsa-mir-3611_5p 
AGAAUUUCUUUUUCUUCACAAUU 
>hsa-mir-3615_5p 
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AGACGCCGCGCGGGGCGGGGAUU 
>hsa-mir-3618_5p 
UGUGAUUUCCAAUAAUUGAGGC 
>hsa-mir-23c_5p 
CAGGUGUCACACAGUGAGUGG 
>hsa-mir-3646_5p 
AGGUUGGGUUCAUUUCAUUUUC 
>hsa-mir-3649_5p 
UGGAACAGGCACCUGUGUGUGC 
>hsa-mir-3651_5p 
CCUGUGAUUUAUGCAUGGAGGC 
>hsa-mir-3653_5p 
Not_Predicted 
>hsa-mir-3654_5p 
CAUGAGCUGCAAUCUCAUCAC 
>hsa-mir-3656_5p 
CGGCCAGCGGGACGGCAUCC 
>hsa-mir-3657_5p 
UCACCAAUAAUGGGACACUAA 
>hsa-mir-3659_5p 
CCCUUGUACACAACACACGUG 
>hsa-mir-3660_5p 
AAAAUGCUCUUCUGUCAUUGU 
>hsa-mir-3662_5p 
ACAGUUACACUUCUUACUCUCA 
>hsa-mir-3669_5p 
UACGGAAUAUAUAUACGGAAU 
>hsa-mir-3670-1_5p 
UCUAGACUGGUAUAGCUGCUUU 
>hsa-mir-3671_5p 
CUGCUGCUGUCACAUUUACAUG 
>hsa-mir-3673_5p 
UGGAAUGUAUAUACGGAAUAU 
>hsa-mir-3684_5p 
GGACCUGUACUAGGUUUAACA 
>hsa-mir-3686_5p 
AUUUACCUUCUCUUACAGAUCA 
>hsa-mir-3687_5p 
GCGCGUGCGCCCGAGCGCGGC 
>hsa-mir-3907_5p 
UGGGGUCCAGGCUGGACCAGG 
>hsa-mir-3909_5p 
UGGGGAGCAGGCUCCGGGGGACA 
>hsa-mir-3910-1_5p 
UCUUGGUUUUAUGCCUUUUA 
>hsa-mir-3912_5p 
CAUGUCCAUAUUAUGGGUUAGU 
>hsa-mir-3914-1_5p 
UCUCAUUUUCUGGUUCCUUCU 
>hsa-mir-3914-2_5p 
UCUCAUUUUCUGGUUCCUUCUACC 
>hsa-mir-3917_5p 
CCGGGUCUGUUGGUGCUCAGAGU 
>hsa-mir-3919_5p 
UGAGUCCUUUGUUCUCUACUA 
>hsa-mir-3920_5p 
CAGAGAGUUAAGAGAAUUAGUAC 
>hsa-mir-3921_5p 
AAGGCAUAUGGUACUCAAGAGA 

>hsa-mir-3923_5p 
CUAAUCCAAUAUUACUAGCUU 
>hsa-mir-3910-2_5p 
UCUUGGUUUUAUGCCUUUUA 
>hsa-mir-3924_5p 
UAGUAGUCAAAUAUGCAGAUCU 
>hsa-mir-3928_5p 
UGAAGCUCUAAGGUUCCGCCUG 
>hsa-mir-3929_5p 
AGUGGCUCACACCAGUAAUCCC 
>hsa-mir-3935_5p 
AGCUGAUGGUUGUAUCUAUGA 
>hsa-mir-3936_5p 
UGCUGUAGAUCCCUCAAAUCC 
>hsa-mir-3937_5p 
UCAGUUGCUACAGUUCCCUGUUG 
>hsa-mir-3938_5p 
AGAUUAUCUACAAGGGAAUUUU 
>hsa-mir-3939_5p 
UUCCUGUAUGUGGGCGUGCACG 
>hsa-mir-3941_5p 
UGAUGCUCAGUUGUGUGUAGAU 
>hsa-mir-548z_5p 
AAAAGUAAUUGAGAUUUUUGCU 
>hsa-mir-548aa-1_5p 
CAAAAGAAACUGUGGUUUUUGC 
>hsa-mir-548aa-2_5p 
CAAAAGAAACUGUGGUUUUUGC 
>hsa-mir-378d-1_5p 
ACUGUUUCUGUCCUUGUUCUUG 
>hsa-mir-378e_5p 
ACUCCAGUGUCCAGGCCAGGG 
>hsa-mir-4418_5p 
UUUUGCUCUGAGUGACCGUGGU 
>hsa-mir-4419a_5p 
UGUGCCUGUAGUCUUAGCUACU 
>hsa-mir-378f_5p 
UGGACUCCCAUAGUUUUCAGGCU 
>hsa-mir-4420_5p 
UUGGUAUGAACAUCUGUGUGUU 
>hsa-mir-4421_5p 
UCUCCUUUCUGCUGAGAGUUGA 
>hsa-mir-548ac_5p 
AAAAGUUAUUGUGGUUUUUGCU 
>hsa-mir-4425_5p 
GGUCCCAUUGAAUCCCAACAGC 
>hsa-mir-4427_5p 
UCUUGGGGCUUAUUUAGACA 
>hsa-mir-4428_5p 
UGCCAUGUUGCCUGCUCCUUA 
>hsa-mir-548ad_5p 
CAAAAGUAAUUGUGGUUUUUGA 
>hsa-mir-4432_5p 
GCAUCUUGCAGAGCCGUUCC 
>hsa-mir-4436a_5p 
CCACUUAUGCCUGCCCUGCCC 
>hsa-mir-4437_5p 
ACUUUGUGCAUUGGGUCCACA 
>hsa-mir-548ae-1_5p 



129 
 

UGCCAUUAAGUUGCGGUUUUUG 
>hsa-mir-548ae-2_5p 
AAAAGUAAUUGUGGUUUUUGUC 
>hsa-mir-4438_5p 
UGUCUUUUCUAAGCCUGUGCC 
>hsa-mir-4440_5p 
AAGCAAGUGCAGUGGGGCUUGCU 
>hsa-mir-4441_5p 
CAGAGUCUCCUUCGUGUAC 
>hsa-mir-4442_5p 
GCGCCCUCCCUCUCUCCCCGG 
>hsa-mir-4444-1_5p 
UGGCCCCGCCUCUUCCUCUCGGU 
>hsa-mir-4447_5p 
UCUAGAGCAUGGUUUCUCAUCAU 
>hsa-mir-4448_5p 
ACCAAAAGACAAGAGUGCGAG 
>hsa-mir-4449_5p 
CCCUCGGCGGCCCGGGGGGCGG 
>hsa-mir-4451_5p 
UCUGUACCUCAGCUUUGCUCCCA 
>hsa-mir-4452_5p 
CACUUGAGGCCAAGAGUGCAAGG 
>hsa-mir-4457_5p 
CUCCAGUCAAUACCGUGUGAGU 
>hsa-mir-4461_5p 
UAGGUUAUGUACGUAGUCUAGG 
>hsa-mir-4462_5p 
UUCCCAGCUGCCCUAAGUCAGG 
>hsa-mir-4463_5p 
UGGUCACCACCUCCAGUUUCUG 
>hsa-mir-548aj-1_5p 
AAAAGUAAUUGCAGGUUAUGCC 
>hsa-mir-4465_5p 
CCCUGGCACGCUAUUUGAGGU 
>hsa-mir-4468_5p 
AGUCUUCUCCUGGGGCUUUGG 
>hsa-mir-4469_5p 
AGCGGCUCUAGGUGGGUUUGGC 
>hsa-mir-4470_5p 
UCGGCUUUCCAGUUUGUCUCG 
>hsa-mir-4471_5p 
AAACCUCUACUAAGUUUCCAUG 
>hsa-mir-4472-1_5p 
GACCCUUGCUCUCUCACUCUCC 
>hsa-mir-4473_5p 
CUUGUAAUGGAGAACACUAAGC 
>hsa-mir-4475_5p 
UCAAUGAGUGUGUGGUUCUAAA 
>hsa-mir-4476_5p 
CCUGUCCCUAAGUCCCUCCCAGC 
>hsa-mir-4477a_5p 
AAUCACAAAUGUCCUUAAUGGC 
>hsa-mir-4477b_5p 
AAUCACAAAUGUCCUUAAUAG 
>hsa-mir-3689c_5p 
UGUGAUAUCGUGGUUCCUGGGA 
>hsa-mir-548x-2_5p 
CACAAAAGUAAUUGUGGCUUUUG 

>hsa-mir-4479_5p 
AAGUCCGAGCGUGGCUGGCGCG 
>hsa-mir-3155b_5p 
CACUGCAGAGCCUGGGAAGGG 
>hsa-mir-4480_5p 
AGUUGACCUCCACAGGGCCACC 
>hsa-mir-4483_5p 
ACAACAUACUUAGUGCAUACC 
>hsa-mir-4484_5p 
GGGUUUCCUCUGCCUUUUUUU 
>hsa-mir-4485_5p 
AGAGGCACCGCCUGCCCAGUG 
>hsa-mir-4487_5p 
UGUCCUUCAGCCAGAGCUGG 
>hsa-mir-548al_5p 
UGCAAAAGUAAUUGCUGUUUU 
>hsa-mir-4490_5p 
UGCUCAAAUCUCUGGCCAAAGA 
>hsa-mir-4491_5p 
UGGUCACACCAGUCCACAUUAAC 
>hsa-mir-4492_5p 
UGCUUCUCCAGGCCCCGCGCGCG 
>hsa-mir-4493_5p 
AGAGAUGGGAAGGCCUUCCGG 
>hsa-mir-4494_5p 
CCCUGGUCAUCUGCAGUCUGAA 
>hsa-mir-4496_5p 
ACAUCAGCUCAUAUAAUCCUCGA 
>hsa-mir-4419b_5p 
AGUGGUGCAUGCUUAUAGUCC 
>hsa-mir-4500_5p 
AGGAGAGAAAGUACUGCCCAGA 
>hsa-mir-4502_5p 
UUUAGCAAGUUGUAAUCUUUUU 
>hsa-mir-4504_5p 
AGGUUCAUCUCUGUUGUCAUUUG 
>hsa-mir-4506_5p 
AUCAGACCAUCUGGGUUCAAG 
>hsa-mir-2392_5p 
AUCCAGCCAUUCCUCAGACCAG 
>hsa-mir-4507_5p 
UCUGGGCUGAGCCGAGC 
>hsa-mir-4512_5p 
GGCAAUAUAGUGAGACCUCGUC 
>hsa-mir-4518_5p 
UGCUGGGAUUGAUUAGUGAUGU 
>hsa-mir-4522_5p 
UGGGGGCCUCGCAGGGGGAGA 
>hsa-mir-4526_5p 
GGGCCCAGUCCCUGCUGUCAUG 
>hsa-mir-4528_5p 
ACAGAUCUUUAUAUAUAUGAU 
>hsa-mir-4530_5p 
CGACCGCACCCGCCCGAAGCU 
>hsa-mir-4531_5p 
GCCUAGGAGUCCUUGGUCAGUG 
>hsa-mir-4534_5p 
ACCCCCUUCCAGAGCCAAAAUC 
>hsa-mir-4535_5p 
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ACUGGGUCCCAGUCUUCACAG 
>hsa-mir-4540_5p 
AAGCUGCAUGGACCAGGACUUGG 
>hsa-mir-3960_5p 
CGCGCCCCCGAUCGGGGCCGCC 
>hsa-mir-3972_5p 
GCUUGGGGUGGCAGUCCUGUGGG 
>hsa-mir-3973_5p 
AGGGUAGCUCUCUGUAUUGCUU 
>hsa-mir-3975_5p 
UGAGUGAUUGCUAUUUCAAAA 
>hsa-mir-4635_5p 
GUGGGUUCUGACCCCACUUGGAUC 
>hsa-mir-4637_5p 
ACUUGGAUCUGCAAUUAGUAUUU 
>hsa-mir-4641_5p 
GGGGGCAGGGGGCAGAGGGCAUC 
>hsa-mir-4643_5p 
AGCAUUUAUAAUCAUGUGUUCA 
>hsa-mir-4644_5p 
UCUGCCUCUUUCUCCAUCCACC 
>hsa-mir-4658_5p 
CCCUUCACUCAGAGCAUCUACAC 
>hsa-mir-4662b_5p 
UUAGCCAAUUGUCUAUCUUUAG 
>hsa-mir-4669_5p 
CCCUUCACUUCCUGGCCAUCC 
>hsa-mir-4672_5p 
CCUCUGUCCAGCUGUGUGGCC 
>hsa-mir-4674_5p 
CCCAGGCGCCCGCUCCCGACCC 
>hsa-mir-4675_5p 
UGCUGGUCAACCAUAGCCCUG 
>hsa-mir-4683_5p 
AGGCGGGCCUGGAGGUGCACC 
>hsa-mir-1343_5p 
UGGGGAGCGGCCCCCGGGUGGG 
>hsa-mir-4688_5p 
CAAGCUGUUUCGUGUUCCCUCC 
>hsa-mir-4692_5p 
CUUGAUACCCACACUGCCUGGG 
>hsa-mir-4698_5p 
GGGUCUUCCUCUACAUUUCCACC 
>hsa-mir-3198-2_5p 
ACUGUUCACCCAGCACUAGCA 
>hsa-mir-4719_5p 
UGUAUGUUAUAGAUUUGUGAUU 
>hsa-mir-4721_5p 
AUGGUCAAGCCAGGUUCCAUCA 
>hsa-mir-4734_5p 
CUCGGGCCCGACCGCGCCGGCC 
>hsa-mir-4741_5p 
CCGGCCGCCUCCGAGCCCGGC 
>hsa-mir-4765_5p 
AACGUAGCUAUCCACCACUCAG 
>hsa-mir-4770_5p 
GAGUUAUGGGGUCAUCUAUCC 
>hsa-mir-4771-1_5p 
UAAUUUUAGAUCUGGUCUGCUUC 

>hsa-mir-4771-2_5p 
UAAUUUUAGAUCUGGUCUGCUUC 
>hsa-mir-4773-1_5p 
CUUUCUAUGCUCCUGUUCUGCU 
>hsa-mir-4773-2_5p 
CUUUCUAUGCUCCUGUUCUGCU 
>hsa-mir-4779_5p 
GCUUUUACUGUUCCCUCCUAGA 
>hsa-mir-4780_5p 
AGGGGGUCAGGCUCAAGGACC 
>hsa-mir-4785_5p 
UGGGGACGCGGCGGCGCUGCU 
>hsa-mir-4801_5p 
AGGCUUGGUUUUCUUAUGUGUAA 
>hsa-mir-5047_5p 
ACGAGACACAGUGCAUAAAAA 
>hsa-mir-5088_5p 
AGGCGGGGCCGGGCCUGAGGG 
>hsa-mir-5092_5p 
UGCCAAAGCCAGUGGGGACUGG 
>hsa-mir-5186_5p 
CUGAUUUCUACCAACCUUUCCU 
>hsa-mir-5188_5p 
CUGGUUUCAAUGGGUACGAUUAU 
>hsa-mir-5190_5p 
UGGCUCCAGCCCUGUCACAUGG 
>hsa-mir-5191_5p 
CACUUCAUUCUUGCUGUCCUCU 
>hsa-mir-5192_5p 
ACCUGGAACCAUUUCUCCUGG 
>hsa-mir-5193_5p 
CUGGGAUGGGGGUUGGGGGGAG 
>hsa-mir-5194_5p 
AGGCCCAUUCUUUUCACUCAGGA 
>hsa-mir-4444-2_5p 
UGGCCCCGCCUCUUCCUCUCGGU 
>hsa-mir-3670-2_5p 
UCUAGACUGGUAUAGCUGCUUU 
>hsa-mir-5100_5p 
GGUAGGAGCGUGGCUUCUGGA 
>hsa-mir-5572_5p 
AGGCACUGCCCCUGCGACCAGCC 
>hsa-mir-5680_5p 
AGGUUAGCCCAGCAUUUCCCUUC 
>hsa-mir-5681a_5p 
AGAGUAUUGCCACCCUUUCU 
>hsa-mir-5682_5p 
CUUAUCCUGCAAGGUGCUGCA 
>hsa-mir-5692c-1_5p 
AUACCCACUGUGAUAUUAAGAGU 
>hsa-mir-5692c-2_5p 
ACACCAACUGUGAUAUUAGG 
>hsa-mir-5687_5p 
CUGACUCUGAAAUCUUCUAAAU 
>hsa-mir-5688_5p 
CCUUUUUACAGGAGUUUAUUAUG 
>hsa-mir-5693_5p 
AGUUAGUUCAUUUCAGUCUGUG 
>hsa-mir-5695_5p 
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AUCUAGAUUCUUCUUGGCCUCU 
>hsa-mir-5699_5p 
CCCCAACAAGGAAGGACAAGAG 
>hsa-mir-5702_5p 
UGGGAUAUGUUGCUGAUCCAAC 
>hsa-mir-5703_5p 
GUCCCCUUCCUCGUCUUUU 
>hsa-mir-5705_5p 
AGGCCAUGAGCCCCGAAACACC 
>hsa-mir-5739_5p 
UAACUAUCAUUUCCAAGGUUG 
>hsa-mir-6072_5p 
UGGGGGCUGGUGCAGGGAUGGGC 
>hsa-mir-6073_5p 
AACUGAAAGUUGAUGAGUCACU 
>hsa-mir-6074_5p 
CACCUUCAGUCAACUGAUUUGC 
>hsa-mir-6075_5p 
CCACAUGCUCCUCCAGGCCUGC 
>hsa-mir-6079_5p 
UCCUAGACCUAGUAUCAGUGGCCA 
>hsa-mir-6080_5p 
UCUGGGAAUGCCGGUCUGGGGC 
>hsa-mir-6081_5p 
CACCAGGGCCUCUGCCCCGU 
>hsa-mir-6083_5p 
GUCUGGGAAGGUGGAAAGGGAG 
>hsa-mir-6084_5p 
UGGGCCGCAGGACCGGGCGCG 
>hsa-mir-6085_5p 
UGUGGGCCCAGCUUUACAUAGU 
>hsa-mir-6089-1_5p 
GGCCCGGCGUUCCCUCCCCUUCC 
>hsa-mir-6090_5p 
UGGGUCCGCGCGCCCUGGGCCG 
>hsa-mir-6125_5p 
GCUGCCACCUCCCCUACCGCUA 
>hsa-mir-6128_5p 
UAUAGGACUUCAGUCCAUGAU 
>hsa-mir-6130_5p 
AAAUGCAGGCAUCCCUUCUA 
>hsa-mir-6131_5p 
UCCCGCAUUCCCUCUGCUUUG 
>hsa-mir-6133_5p 
CAUGCCCUCUUCAUUGUUCUGCU 
>hsa-mir-6715a_5p 
ACAGGCACAGCCGGUUUGAGCA 
>hsa-mir-6719_5p 
GGAGGCUGAUGUCUUCAGAGC 
>hsa-mir-6089-2_5p 
GGCCCGGCGUUCCCUCCCCUUCC 
>hsa-let-7c_3p 
CUGUACAACCUUCUAGCUUUCC 
>hsa-mir-196a-1_3p 
CAACAACAUUAAACCACCCGAU 
>hsa-mir-198_3p 
UCCUUCUUCUCUAUAGAAUAAA 
>hsa-mir-7-3_3p 
CAACAAGUCACAGCCGGCCUCA 

>hsa-mir-215_3p 
UCUGUCAUUUCUUUAGGCCAAU 
>hsa-mir-217_3p 
CAUCAGUUCCUAAUGCAUUGCC 
>hsa-mir-135a-2_3p 
UGUAGGGAUGGAAGCCAUGAAA 
>hsa-mir-134_3p 
CUGUGGGCCACCUAGUCACCAA 
>hsa-mir-190a_3p 
ACUAUAUAUCAAACAUAUUCCU 
>hsa-mir-194-1_3p 
CCAGUGGAGAUGCUGUUACUUU 
>hsa-mir-181b-2_3p 
CUCACUGAUCAAUGAAUGCAAA 
>hsa-mir-383_3p 
CCACAGCACUGCCUGGUCAGA 
>hsa-mir-325_3p 
UUUAUUGAGGACCUCCUAUCAA 
>hsa-mir-346_3p 
AGGCAGGGGCUGGGCCUGCAGC 
>hsa-mir-422a_3p 
UCUCUGUCCCUGAGCCAAGCUU 
>hsa-mir-449a_3p 
CGGCUAACAUGCAACUGCUGUC 
>hsa-mir-450a-1_3p 
AUUGGGAACAUUUUGCAUGUAU 
>hsa-mir-451a_3p 
UAGUAAUGGUAAUGGUUCUC 
>hsa-mir-484_3p 
CCCGGGGGGUGACCCUGGCU 
>hsa-mir-511-1_3p 
AAUGUGUAGCAAAAGACAGAAU 
>hsa-mir-511-2_3p 
AAUGUGUAGCAAAAGACAGAAU 
>hsa-mir-492_3p 
CAGGAUUGUCCUGCAGAUCA 
>hsa-mir-181d_3p 
CCCACCGGGGGAUGAAUGUCA 
>hsa-mir-498_3p 
AAGCACCUCCAGAGCUUGAAGC 
>hsa-mir-526a-1_3p 
GAAAGCGCUUCCUUUUAGAGG 
>hsa-mir-526a-2_3p 
AACAUGCAUCCUUUCAGAGGGU 
>hsa-mir-527_3p 
GAAAGUGCUUCCCUUUGGUGAA 
>hsa-mir-504_3p 
AGGGAGUGCAGGGCAGGGUUUC 
>hsa-mir-510_3p 
UGAUUGAAACCUCUAAGAGUGG 
>hsa-mir-553_3p 
AUCUCGCUGUUUUAGACUGAGG 
>hsa-mir-554_3p 
GUGAUGGGUCAGGGUUCAUAUU 
>hsa-mir-559_3p 
UUUGGUGCAUAUUUACUUUAGG 
>hsa-mir-564_3p 
CCUCCGGGCGGCGCCGUGUCCGC 
>hsa-mir-566_3p 
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CUGGGGCAGCAGAAUCGCUUGA 
>hsa-mir-567_3p 
UUGUACUGGAAGAACAUGCAAA 
>hsa-mir-568_3p 
UAGUGUAUAUAUUAUACAUGU 
>hsa-mir-573_3p 
UAAAGUUAUGUCGCUUGUCAGG 
>hsa-mir-577_3p 
GGUUUCAAUACUUUAUCUGCU 
>hsa-mir-581_3p 
UGAUCUAAAGAACACAAAGAAU 
>hsa-mir-583_3p 
UACUGGGACCUACCUCUUUGGU 
>hsa-mir-586_3p 
GCCCUAAAAAUACAAUGCAUAA 
>hsa-mir-587_3p 
UGACUCAUCACCAGUGGAAAGC 
>hsa-mir-588_3p 
UCUUACCCACCAUGGCCAAAA 
>hsa-mir-592_3p 
UCAUCACGUGGUGACGCAACAU 
>hsa-mir-596_3p 
CAUGGCAGCUGCUGCCCUUCGG 
>hsa-mir-597_3p 
AGUGGUUCUCUUGUGGCUCA 
>hsa-mir-601_3p 
CCCAGGGAUCCUGAAGUCCUUU 
>hsa-mir-602_3p 
CCGAGUGCGUCUCCUGUCAG 
>hsa-mir-605_3p 
AGAAGGCACUAUGAGAUUUAGA 
>hsa-mir-608_3p 
AGAGCUUCCAUCAAAGGCUGCC 
>hsa-mir-609_3p 
AGAGAUGAGGGCAACACCCUAG 
>hsa-mir-610_3p 
CCAGCACACAUUUAGCUCACA 
>hsa-mir-612_3p 
AGGGGCCCUCCCUCCAUGGCAG 
>hsa-mir-617_3p 
CACCUUCAAAUGGUAAGUCCAG 
>hsa-mir-618_3p 
UCAGGAGACAAGCAGGUUUACC 
>hsa-mir-623_3p 
CGAUGUACUCUGUAGAUGUCU 
>hsa-mir-627_3p 
CUCUUUUCUUUGAGACUCACUA 
>hsa-mir-631_3p 
UGAUGGACUGAGUCAGGGGCCA 
>hsa-mir-635_3p 
AUCAUUGUUUUGUGUCCAUUGA 
>hsa-mir-638_3p 
CGCGCCGUGCGCCGCCGGCGUAA 
>hsa-mir-641_3p 
GGUGACUGUCCUAUGUCUUUCC 
>hsa-mir-647_3p 
GGCAGGAGGGAGGGUCAGGCAG 
>hsa-mir-648_3p 
AAGUGCAGGACCUGGCACUUAGU 

>hsa-mir-650_3p 
CCUGGGCUCUGCUCCUCCUCA 
>hsa-mir-651_3p 
AAAGGAAAGUGUAUCCUAAAAG 
>hsa-mir-663a_3p 
UGGGAUCCCGCGGCCGUGUUUU 
>hsa-mir-653_3p 
UUCACUGGAGUUUGUUUCAAU 
>hsa-mir-1296_3p 
GAGUGGGGCUUCGACCCUAACC 
>hsa-mir-1468_3p 
GCAAAAUAAGCAAAUGGAAAA 
>hsa-mir-1323_3p 
AAAGUGCACCCAGUUUUGGGG 
>hsa-mir-1283-1_3p 
AAAGCGCUUCCCUUUUGAGGGU 
>hsa-mir-378d-2_3p 
UUCCCUGCUCUAAGUCCCAUUU 
>hsa-mir-802_3p 
AAGGAGAAUCUUUGUCACUUAG 
>hsa-mir-670_3p 
CUCAUAUUCAUUCAGGAGUGU 
>hsa-mir-1298_3p 
CAUCUGGGCAACUGACUGAACU 
>hsa-mir-761_3p 
AGUUUCACUUUGCUGCUCCUC 
>hsa-mir-764_3p 
AGGAGGCCAUAGUGGCAACUGU 
>hsa-mir-759_3p 
UAAAUGUUUGCACUGGCUGUUU 
>hsa-mir-770_3p 
UGGGCCUGAUGUGGUGCUGGGG 
>hsa-mir-298_3p 
AGGAACUAGCCUGCUGCUUUGC 
>hsa-mir-891a_3p 
AGUGGCACAUGUUUGUUGUGAG 
>hsa-mir-890_3p 
AACUAUUCCCUUUCUGAGUAGA 
>hsa-mir-891b_3p 
AAUGGCACAUGUUUGUUGUUAG 
>hsa-mir-190b_3p 
AACUAAAUGUCAAACAUAUUCU 
>hsa-mir-216b_3p 
CACACUUACCCGUAGAGAUUCU 
>hsa-mir-921_3p 
UCCAUGGGCCUGGAUCACUGG 
>hsa-mir-924_3p 
CAUCCAACCUAGAGUCUACAAC 
>hsa-mir-934_3p 
AGAGUCUCCAGUAAUGGACGGG 
>hsa-mir-936_3p 
UGAGAGACCUUGCUUCUACUUU 
>hsa-mir-938_3p 
CGUGGUACACCUUUAAGAACU 
>hsa-mir-942_3p 
CAUGGCCGAAACAGAGAAGUUA 
>hsa-mir-297_3p 
UAUGUAUUAUGUACUCAUAUAU 
>hsa-mir-1179_3p 
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CAACCAAUAAGAGGAUGCCAU 
>hsa-mir-1181_3p 
GCCGCCAAGGCAAGAUGGUGG 
>hsa-mir-1231_3p 
UACCCUGUCUGUUCUUGCCACAG 
>hsa-mir-1200_3p 
UUGGUUCAGGAAUUUGUCAGG 
>hsa-mir-1202_3p 
CCACUCUGCUUAGCCAGCAGGU 
>hsa-mir-1203_3p 
CUCCAGAUUGUGGCGCUGGUGC 
>hsa-mir-1204_3p 
AGGUGAGGACGUGCCUCGUGGU 
>hsa-mir-1205_3p 
UGUCAACCCUGUUCUGGAGUCU 
>hsa-mir-1206_3p 
UUUUUGCAAGCUAGUGAACGCU 
>hsa-mir-1208_3p 
GCCCUCUGAUGAGUCACCACUG 
>hsa-mir-548j_3p 
CAAAAACUGCAUUACUUUUGC 
>hsa-mir-1287_3p 
CUCUAGCCACAGAUGCAGUGAU 
>hsa-mir-1291_3p 
UUGGUUUCAAGCAGAGGCCUAA 
>hsa-mir-548k_3p 
CAAAAACCGCAAUUAUUUUUGCU 
>hsa-mir-1293_3p 
ACAAAUCUCCGGACCACUUAGU 
>hsa-mir-1294_3p 
ACAACAGUGCCAACCUCACAGG 
>hsa-mir-548l_3p 
CAAAAACUGCAGUUACUUGUGC 
>hsa-mir-1243_3p 
UUACUUUGCUUUGGUAAUAAAUC 
>hsa-mir-1246_3p 
UGACCCAAAGGAAAUCAAUCCA 
>hsa-mir-1248_3p 
UAGCAGAGUACACACAAGAAGA 
>hsa-mir-1250_3p 
GGCCACAUUUUCCAGCCCAUUCA 
>hsa-mir-1251_3p 
CGCUUUGCUCAGCCAGUGUAG 
>hsa-mir-1253_3p 
CAGGCUGAUCUUCUCCCCUUU 
>hsa-mir-1254-1_3p 
CACUGUACUCCAGCCUAGGCAA 
>hsa-mir-1255a_3p 
UAUCUUCUUUGCUCAUCCUUG 
>hsa-mir-1256_3p 
CUAAAGAGAAGUCAAUGCAUGA 
>hsa-mir-1257_3p 
UGGCAUCACUGGCCCCAUCCUU 
>hsa-mir-1260a_3p 
CGGGGUCAGAGGGAGUGCCA 
>hsa-mir-1261_3p 
CUGAAACUUUCUCCAUAGCAG 
>hsa-mir-1262_3p 
UCCUUCUGGGAACUAAUUUUUG 

>hsa-mir-1263_3p 
UCAGUAUGCCAUGUUGCCAUAU 
>hsa-mir-548n_3p 
AAAACCCGCAAUUACUUUUGCA 
>hsa-mir-548m_3p 
AAAGCCACAAAUACCUUUGCA 
>hsa-mir-1265_3p 
AACAAUACUUGACCACAUUUUGA 
>hsa-mir-1266_3p 
CCCUGUUCUAUGCCCUGAGGGA 
>hsa-mir-1267_3p 
GGGAUUACAUUUCAACAUGA 
>hsa-mir-1268a_3p 
CCAGCUACUUUGGAGGCUGAG 
>hsa-mir-1270-1_3p 
CAGGCUUUUCUUUAUCUUCUAU 
>hsa-mir-1272_3p 
UAGAAAUGUAGGCUGCAGCUC 
>hsa-mir-548h-1_3p 
UAAAAACUGGAAUUACUUUUGC 
>hsa-mir-548h-2_3p 
CAAACACCACAAUUACUUUUGC 
>hsa-mir-548h-3_3p 
CAAAAACUGCAAUUACUUUUGC 
>hsa-mir-1275_3p 
UAUGCCAAACUUAUUUUCCCCAA 
>hsa-mir-1276_3p 
UGUCUCCACUGAGCACUUGGGC 
>hsa-mir-302e_3p 
UAAGAUGGAUGUAGUAAUAGCA 
>hsa-mir-548i-1_3p 
CAAAAAUAGCAAUUAUUUUUGU 
>hsa-mir-548i-2_3p 
CAAAAAUAGCAAUUAUUUUUGU 
>hsa-mir-548i-3_3p 
CAAAAAUAGCAAUUAUUUUUGU 
>hsa-mir-548i-4_3p 
CAAAAACCACAAAUAUUAUUGC 
>hsa-mir-1279_3p 
AAAGAAGAGUAUAAGAACUUCC 
>hsa-mir-1282_3p 
UGGGAGGUACCAGAGGGCA 
>hsa-mir-1283-2_3p 
AAAUCGCUUCCCUUUGGAGUGU 
>hsa-mir-1284_3p 
GAAAGCCCAUGUUUGUAUUGG 
>hsa-mir-1252_3p 
AAUGAGCUUAAUUUCCUUUUUU 
>hsa-mir-1255b-1_3p 
UACUCUUUGUGAAGAUGCUGUG 
>hsa-mir-513b_3p 
UAAAUGUCACCUUUUUGAGAGG 
>hsa-mir-1469_3p 
UGGGGCGAGCCAACGCCGGGG 
>hsa-mir-1470_3p 
CGCGGGACGCGCCGAGGUAGG 
>hsa-mir-1471_3p 
AGCUGGCUCUAAUUUGAGGGGC 
>hsa-mir-103b-1_3p 
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CAAGGCAGCACUGUAAAGAAGC 
>hsa-mir-103b-2_3p 
CAAGGCAGCACUGUAAAGAAG 
>hsa-mir-1908_3p 
CCGGCCGCCGGCUCCGCCCCG 
>hsa-mir-1910_3p 
GGAGGCAGAAGCAGGAUGACA 
>hsa-mir-2052_3p 
UUACCAGCUAUCAAAACAA 
>hsa-mir-2054_3p 
UAUCAUUAAAAAAUGUAUUACA 
>hsa-mir-2110_3p 
UCUCACCGCGGUCUUUUCCUCC 
>hsa-mir-548q_3p 
UGAUUACUUUUUCACCAACCU 
>hsa-mir-2278_3p 
AGACAGCUUGCACUGACUCCA 
>hsa-mir-2909_3p 
AAGAUGGCUGUUGCAACUUAA 
>hsa-mir-3115_3p 
CCAACUAUUAGGCCUUUAUGU 
>hsa-mir-3119-1_3p 
CAUCAAAGUUAAAAGCCAUA 
>hsa-mir-3119-2_3p 
CAUCAAAGUUAAAAGCCAGA 
>hsa-mir-3122_3p 
GACCAUCAUCUUGUCCGAAGAG 
>hsa-mir-3125_3p 
UUCGAGAUCCCCGCCUUCCUCCU 
>hsa-mir-3128_3p 
UGAGAGUUUUUUACUUGCAAUAG 
>hsa-mir-3131_3p 
GGCCCUGGCCCCAGCUUCUUCUC 
>hsa-mir-3132_3p 
UUUCCCUUGAGCCCUCCCUCU 
>hsa-mir-3133_3p 
UGAGUUUUAAGAGUUCUUUAUA 
>hsa-mir-3135a_3p 
CUGCAGCCUUGACCUCCUGGGC 
>hsa-mir-3137_3p 
UCGUGCUCCUGGGCUACAAACC 
>hsa-mir-3139_3p 
CAGGUAUCGCAGGAGCUUUUG 
>hsa-mir-3141_3p 
CAUCAGCCUUCACUGGGACG 
>hsa-mir-3143_3p 
AGCAACUCUUUACAAUGUUUCU 
>hsa-mir-1273c_3p 
CAGAGUCUCGUUCUGUUGCCCA 
>hsa-mir-3147_3p 
CACCUCGCCCUUGUCCAACUCG 
>hsa-mir-3148_3p 
GCAUACAUCAGUUUUUUCCAAC 
>hsa-mir-3151_3p 
CAUCCCACCUGAUCCCACAGC 
>hsa-mir-3159_3p 
GGCUCACGCCUGUAAUCCCAGC 
>hsa-mir-3161_3p 
UGCUGGGCCUUUGUUUUUACC 

>hsa-mir-3163_3p 
CUUACUACCCCCAUUUUAUAGA 
>hsa-mir-3164_3p 
CCGUUUUGCUUGAAGUCGCAGU 
>hsa-mir-3165_3p 
UGAGGUCACAUUGUAUCCACCU 
>hsa-mir-1260b_3p 
UGGUGAUAGUCUGGUGGGGGCG 
>hsa-mir-3168_3p 
CUGUGUGACCCUGGGCCAGUG 
>hsa-mir-3169_3p 
GUGUGCCAAGCAUAGUCCUGUG 
>hsa-mir-3170_3p 
UGCCUGUCUUAGAACCCCUAUG 
>hsa-mir-3171_3p 
UAUAUAGAUUCCAUAAAUCUAU 
>hsa-mir-1193_3p 
UAGGUCACCCGUUUGACUAUCC 
>hsa-mir-3174_3p 
UACUGGAUCUGCAUUUUAAUUC 
>hsa-mir-3175_3p 
UCGGGCGCUUUCUCCUCCCCCU 
>hsa-mir-3178_3p 
UCUCCCGUGCCCACGCCCCAAA 
>hsa-mir-548w_3p 
CAAAACCCACAAUUACUUUUGC 
>hsa-mir-3181_3p 
CGAGCCGGCCGGGCCCGCGGGU 
>hsa-mir-3182_3p 
UGCUUGGGUUGGAUCAUAGAGCAG 
>hsa-mir-3183_3p 
CGGCGCCUCCUCGAGGGAGGAGA 
>hsa-mir-3185_3p 
AGAGCCAUCCGCCUUCUGUCCA 
>hsa-mir-3192_3p 
UUCCUCUGAUCGCCCUCUCAG 
>hsa-mir-3193_3p 
UUACCCAGCUCCUGAGCAGG 
>hsa-mir-3195_3p 
GCCGGGGCGGGGGCGGGGGCUG 
>hsa-mir-3196_3p 
GGCCCCAUUCUGCUUCUCUCCC 
>hsa-mir-3156-3_3p 
CUCCCACUUCCUGAUCUUUCU 
>hsa-mir-3197_3p 
CCUUCCCGAUCCACCGCUCUC 
>hsa-mir-3199-1_3p 
UUUCUCCUAAGGCAGUCCCUGG 
>hsa-mir-3199-2_3p 
UUUCUCCUAAGGCAGUCCCUG 
>hsa-mir-3201_3p 
CCUCUUAUUUUUACAUGCCC 
>hsa-mir-3202-1_3p 
UAAAGCUCUUCUCCCUUCCAUA 
>hsa-mir-3202-2_3p 
UAAAGCUCUUCUCCCUUCCAUA 
>hsa-mir-1273d_3p 
UGCACUUCAGCCUGGGUGACAA 
>hsa-mir-4295_3p 
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UCAAGGCUAAGAAACUAGACUG 
>hsa-mir-4296_3p 
UGGGGACUGUGUCCAUGUCU 
>hsa-mir-4297_3p 
CGGCAGGGCCAGGACGGGUCGC 
>hsa-mir-378c_3p 
AACUCUGACUUUGAAGGUGGUGA 
>hsa-mir-4294_3p 
GCCCAAGGGUGCAUGUGUCU 
>hsa-mir-4301_3p 
GUGGAGGGUGGCAGGUGCAGC 
>hsa-mir-4298_3p 
CAGAAACCAAACUGUCAAAAGU 
>hsa-mir-4304_3p 
CUCUGUGACUGCUGCCAUCCU 
>hsa-mir-4302_3p 
GGCUGAGUUUACUUAAGGU 
>hsa-mir-4303_3p 
UUCUUUAGCUUAGGAGCUAACC 
>hsa-mir-4305_3p 
CUGUGAGGGAAAUUCUCUGU 
>hsa-mir-4309_3p 
UUGUAGGGUCUGCGGUUUGAAG 
>hsa-mir-4311_3p 
CAGGUUACAGGUUCGAUCUUU 
>hsa-mir-4313_3p 
GUGGGGGAAUCAGGGGUGUAA 
>hsa-mir-4315-1_3p 
UCUGGUGCAGAACUACAGCGG 
>hsa-mir-4316_3p 
CCAGCCCAGCCCCAAUCCCACCA 
>hsa-mir-4314_3p 
UUCUGCCCCAGGGCCCAGAGU 
>hsa-mir-4319_3p 
GUGCUCAGCUCAUGGGGCUA 
>hsa-mir-4317_3p 
UAGCUCUCUUGAUAAAAUGUUU 
>hsa-mir-4256_3p 
AUUGAUUAGGUCUGAUGAUCCA 
>hsa-mir-4258_3p 
CUGGGCUUGGUUUGGGGGCGG 
>hsa-mir-4260_3p 
CCCACACCCCAGCUUGUCACAC 
>hsa-mir-4255_3p 
CCAUUUUUAGGGCAAAGAGGCA 
>hsa-mir-4325_3p 
AAGGAUGGAGAGAAGGCAGAUC 
>hsa-mir-4326_3p 
CUGGGUGGAUGGAGCAGGUC 
>hsa-mir-4327_3p 
AGGGAGUUCUCAUCAAGCCUUU 
>hsa-mir-4267_3p 
CCCAGCCUCUGUCAUCCCUGCAU 
>hsa-mir-4269_3p 
GGAAGCCACUCUGUCAGGCCUG 
>hsa-mir-4264_3p 
UGACAGGUACUGGGUAAGACU 
>hsa-mir-4270_3p 
GCCUUCCCCUGCUGGGAAGA 

>hsa-mir-4273_3p 
AUGCUUCUUCACAAUGGUCACA 
>hsa-mir-4276_3p 
UAAAUAGAGCUACUGUGUCUGA 
>hsa-mir-4275_3p 
AUAAAAAAGUGAUAAUGGGAA 
>hsa-mir-4277_3p 
CAGUGCCCUGCUCAGCUCAAGU 
>hsa-mir-4280_3p 
UAUGUUCAAGACUGAAUGACA 
>hsa-mir-4284_3p 
AGAGGGGGUAGUUAGGAGCUUU 
>hsa-mir-4286_3p 
UACCAUGACUUAAGUGUGGUGG 
>hsa-mir-4287_3p 
UGUGGUCCCUACUGGGGAGACC 
>hsa-mir-4289_3p 
CUGGGCCCUGUCUGCAGAGCC 
>hsa-mir-4291_3p 
GCUGUUCUGCUGUGGCUGCAG 
>hsa-mir-500b_3p 
AGUGCACCCAGGCAAGGAUUCU 
>hsa-mir-1270-2_3p 
CAGGCUUUUCUUUAUCUUCUAU 
>hsa-mir-4315-2_3p 
UCUGGUGCAGAACUACAGCGG 
>hsa-mir-3612_3p 
CAGUUCACUAGAGGCGUCCUGA 
>hsa-mir-3621_3p 
CCACCUGACGCCGCGCCUUUGU 
>hsa-mir-3648_3p 
CUCGAGGGGUCCCCGUGGCGU 
>hsa-mir-3650_3p 
GCUCUGUCUGGCACAUUUCUGA 
>hsa-mir-3652_3p 
CUGGGCCUCUGCUGCGUCCUG 
>hsa-mir-3655_3p 
CAAAAUGCCGGAGCGAGAUAGU 
>hsa-mir-3658_3p 
UGAUUUUUUUUUUCUUUUUGUA 
>hsa-mir-1273e_3p 
CAGCCUGGGUGACACAGCGAGA 
>hsa-mir-3661_3p 
GCUGCUCGAUCCACUGGUCC 
>hsa-mir-3665_3p 
ACUCCGCAGCUGCUCGUUCUG 
>hsa-mir-3666_3p 
AGCGUUUCACACUGCCUGGU 
>hsa-mir-3668_3p 
UUUGAUCAAUCUCUGCAAUUUU 
>hsa-mir-3672_3p 
GAUGUUUUAUGAGUCUCAUGA 
>hsa-mir-3674_3p 
UCCUUUCAAGUUUUUGCAUUUC 
>hsa-mir-3683_3p 
AUGCUACGAACAAUAUCACAGA 
>hsa-mir-3685_3p 
UUGGGGGGAUGGGCAAAGUAC 
>hsa-mir-3690-1_3p 
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CAUAUCUACCUGGACCCAGUGU 
>hsa-mir-3713_3p 
UAUCCCCAGAUGGAUACCAA 
>hsa-mir-3714_3p 
GGAAGACACCGCUGCCACCUC 
>hsa-mir-3180-4_3p 
CCUCCGGAUGCCAGUCCCUCAU 
>hsa-mir-3180-5_3p 
CCUCCGGAUGCCAGUCCCUCAU 
>hsa-mir-3908_3p 
CAGAGUCUCCCUCUGUCGCCAGG 
>hsa-mir-3911_3p 
CCUGCGCUUCUCGAUUCCCAGA 
>hsa-mir-3915_3p 
UAAGACCAUCCUUUCCUCAAU 
>hsa-mir-3916_3p 
UUCAGGGGAUGUGUCUCCUCUU 
>hsa-mir-3918_3p 
UCUCCAGCUGGGACCCUGCAC 
>hsa-mir-3926-1_3p 
UCUGCCUGCUUUUUGGCCAGC 
>hsa-mir-3926-2_3p 
UCUGCCUGCUUUUUGGCCAGC 
>hsa-mir-3943_3p 
CUAAGUAAAGUGGGGGGUGGG 
>hsa-mir-3945_3p 
UACAGCCUCUUAUGCUUUCC 
>hsa-mir-1254-2_3p 
CCUGUACUCUAGCCUGGGCA 
>hsa-mir-1268b_3p 
UAAUUCCAGCUAGUUGGGA 
>hsa-mir-548h-5_3p 
UAAAAACCACGGUUGCUUUUGC 
>hsa-mir-548ab_3p 
CAAAACCCGCAAUUAGUUUUGC 
>hsa-mir-4417_3p 
CCAGCAUCCAGGGCUCACCUAC 
>hsa-mir-4422_3p 
UGGGCCCUUCUUGAUGCUCUUG 
>hsa-mir-378g_3p 
UGGCUCCAGCCCAGCUC 
>hsa-mir-4424_3p 
UUAGUCCAUUUCAAGUUAACU 
>hsa-mir-4426_3p 
AGGAGUCUACUCUUCAUCUUG 
>hsa-mir-4429_3p 
UUUGUCUCUCCAACUCAGACU 
>hsa-mir-4430_3p 
CACUGCACUCCAACCUGGUGA 
>hsa-mir-4431_3p 
UUUCUAGUUGUCAGAGUCAUUA 
>hsa-mir-4434_3p 
UUUCAACUUUUCCUACAGUGU 
>hsa-mir-4435-1_3p 
AGUGUGACUCAGCAGGCCAACA 
>hsa-mir-4435-2_3p 
AGUGUGACUCAGCAGGCCAACA 
>hsa-mir-4439_3p 
AAGGUAUCAGUUUACCAGGCCA 

>hsa-mir-4443_3p 
UAUCCCUUUCUAGCCCUGAGCA 
>hsa-mir-548ag-1_3p 
CAAAUAUUACAUUUACUUUUGC 
>hsa-mir-548ag-2_3p 
CAAGAACCUCAAUUACCUUUGC 
>hsa-mir-4450_3p 
CACCAUCUCCCCUGGUCCCUUGG 
>hsa-mir-4453_3p 
AGGAGGCCCAGGCCGCGUCUUC 
>hsa-mir-4454_3p 
UGUCCGUGUGAAGAGACCACCA 
>hsa-mir-4455_3p 
GAAGGACAGCCAAAUUCUUCA 
>hsa-mir-4456_3p 
UGGGAGGAAGUUAGGGUU 
>hsa-mir-4458_3p 
UUUUAGUUACACUCUGCUGUGG 
>hsa-mir-4459_3p 
UGGCACUGACUCCAGCCUGGGG 
>hsa-mir-4460_3p 
GGUAAAUUCACAACCACUGUGG 
>hsa-mir-378h_3p 
UAGCAGCAAUCUGAUCUUGAGC 
>hsa-mir-3135b_3p 
UCACUGCAGCCUCGAACUCC 
>hsa-mir-4464_3p 
UAUCCAAACCUUACUAAUUCA 
>hsa-mir-548ai_3p 
AAAAAAAAUCACAAUUACUUUU 
>hsa-mir-4466_3p 
CCGGCCCGGCCCGGCCCGGCGA 
>hsa-mir-4467_3p 
CCCCUGGGCCGCCGCCUCCCU 
>hsa-mir-4472-2_3p 
UCUUGCUCCGUCGCCCAGGCCG 
>hsa-mir-4478_3p 
AGCCUCAUCCCCUGCAGCCCUG 
>hsa-mir-3689d-1_3p 
UGUGAUCCUGUUCUUCCUG 
>hsa-mir-3689d-2_3p 
UGUGAUCCUGUUCUUCCUGAGC 
>hsa-mir-3689e_3p 
CUGGGAGGUGUGAUCCCGUGC 
>hsa-mir-3689f_3p 
CUGGGAGGUGUGAUCCCACACU 
>hsa-mir-548ak_3p 
AAACCGCAAUUACUUUUGCAG 
>hsa-mir-4481_3p 
CUAGCACAUGAGCACGCUC 
>hsa-mir-4486_3p 
UAGAUGCUUGCUCUUGCCAUUG 
>hsa-mir-4488_3p 
CGCCUUGGCCCCGCCCCGCCC 
>hsa-mir-4489_3p 
UCCUGCCUGACCCUGUCCCA 
>hsa-mir-4495_3p 
AGCAAAAAGCUUAUUUACAUUU 
>hsa-mir-4497_3p 
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CCCGGCGCCCGUCCGCCCGCGG 
>hsa-mir-4498_3p 
AGCAGCCCCUGCCUUGGAUCUC 
>hsa-mir-4499_3p 
UAACUCCUUGUCUCAGUCUGUU 
>hsa-mir-4501_3p 
UUUCAUCAGAUGUCACAUUUU 
>hsa-mir-4503_3p 
GUUUCUAUUUCCUGCUUAAAUA 
>hsa-mir-4505_3p 
UCCUCCAUGUCGGCCCGCCUUG 
>hsa-mir-4508_3p 
CCUGCGCCGGCAGCUGCAAGG 
>hsa-mir-4509-1_3p 
AACCUUCUGUAUCCUUUAUUUU 
>hsa-mir-4509-2_3p 
AACCUUCUGUAUCCUUUAUUUU 
>hsa-mir-4509-3_3p 
AACCUUCUGUAUCCUUUAUUUU 
>hsa-mir-4510_3p 
CUACAAUCUUUUCUCACAACA 
>hsa-mir-4511_3p 
GGUAAAUGCAAUAGUUCUUCUU 
>hsa-mir-4513_3p 
CGGCCCCCAGAUUUCUGGUCUCC 
>hsa-mir-4514_3p 
UACCUCGUCUCUUGCCUGUUUUAG 
>hsa-mir-4515_3p 
UGGGGAGCUGGUCCUAGCUCA 
>hsa-mir-4516_3p 
CACGGCUCUGCCCACGUCUCCC 
>hsa-mir-4517_3p 
UGUGUUUGGGUGGUGUGGCUG 
>hsa-mir-4519_3p 
GCGGCCUGCAGUAAGCGGGUA 
>hsa-mir-4521_3p 
AAACUAGGAUUUCUCUUGUUAC 
>hsa-mir-1269b_3p 
AGAUGGCUUAUCAUGGGACCUCU 
>hsa-mir-4523_3p 
CGGCCGAGGCCCGGGCCGGUUC 
>hsa-mir-4525_3p 
UCAGCGUGCACUUCCCCACCCUG 
>hsa-mir-4527_3p 
CAUCAGCUCUGUGCUGCCUAC 
>hsa-mir-4532_3p 
CCUGGUAUCCUGGGUGU 
>hsa-mir-4533_3p 
GUCCACUUCCCUUUCUCUCUCU 
>hsa-mir-378i_3p 
UUCCCACUCUUGGGCCCUGGGC 
>hsa-mir-1587_3p 
UGGACUCACCUGUGACCAGC 
>hsa-mir-548an_3p 
CAAAAACCGCAAUUCCUUUUGC 
>hsa-mir-4537_3p 
GCUGAGCUGGGCUGAGCUGAGC 
>hsa-mir-4538_3p 
AGCCAGGCUGAUCUGGGCUGAG 

>hsa-mir-3974_3p 
UGACAAAUUUGACUACAGCCU 
>hsa-mir-3976_3p 
AUGACAUGGGAUUUGGCUGUU 
>hsa-mir-3977_3p 
CUUUAAUUUGUUAUGUGUUGGCA 
>hsa-mir-3978_3p 
CUUGGGCAUCGUUUUCUUUUGA 
>hsa-mir-4634_3p 
UUGGGCGGCCGCGUUUCCCCUCC 
>hsa-mir-4636_3p 
UAAAGGCUUCAAGCACGAGUUCU 
>hsa-mir-4642_3p 
CAAAGCCACUCAGUGAUGAUGC 
>hsa-mir-4647_3p 
CCCAGCACCACCACCUCCUAU 
>hsa-mir-4648_3p 
CCCCUGCUCUGUUCCCACAG 
>hsa-mir-4651_3p 
UUUGCCGGGCGCCUCAGUUCA 
>hsa-mir-4654_3p 
CAGUCUCCUUUUCCCUCAUCAU 
>hsa-mir-4656_3p 
GCCUCCUGCUUCCUGGGCUCAG 
>hsa-mir-4657_3p 
UGCCAAGAACACUACCAUAU 
>hsa-mir-4660_3p 
UCCAUCUCCCCCAGGGCCUGG 
>hsa-mir-4663_3p 
UUCCUGGAGCUCAGGCCCUUGC 
>hsa-mir-4673_3p 
CUGACCCGGCCCCUCUUGCGG 
>hsa-mir-4678_3p 
AAGAUUCUGAGCAAUAACCUAU 
>hsa-mir-4679-1_3p 
CAAAGAAUCUCUAUCACAGAAA 
>hsa-mir-4679-2_3p 
CAAAGAAUCUCUAUCACAGAAA 
>hsa-mir-4681_3p 
CAGGUGCAGGCUGCAGACCUGU 
>hsa-mir-4682_3p 
UCCAGAGCUCCAAGGCUCAGUGC 
>hsa-mir-4686_3p 
CACCCUGGGCCCAGCAGGAGCC 
>hsa-mir-4689_3p 
CCAUGCCAUGUGUCCUCAUGG 
>hsa-mir-4696_3p 
UGACAAUGUCCAUUUUGCAGU 
>hsa-mir-4705_3p 
AGCAAUUACCAAGUGAUUGGUU 
>hsa-mir-4706_3p 
CAGCCCACUCCUGUCCUGGGCU 
>hsa-mir-4710_3p 
AGCAGCUCUCGCCUCUUCGUC 
>hsa-mir-4718_3p 
CUUGGCUUCAGUUACUAGC 
>hsa-mir-451b_3p 
UGGUAACGGUUUCCUUGCCAUU 
>hsa-mir-4729_3p 
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GCGUCCCAGCAGAUAAAUGAGG 
>hsa-mir-4730_3p 
GCUGGUGUGUGCUGCUCCACAG 
>hsa-mir-4736_3p 
UGGCUGCUUGCCUGCCU 
>hsa-mir-4737_3p 
ACGGUGCCUCACAGCCACACAG 
>hsa-mir-4739_3p 
AGCCUCUCCCUUCCUCCCCUCC 
>hsa-mir-4744_3p 
UAGUAUGUCUAGUCUUUAGGUU 
>hsa-mir-4748_3p 
CAGACCCUACCCAACCCCACG 
>hsa-mir-4751_3p 
CUUCUGGGGGCUGGUCUUCAG 
>hsa-mir-4752_3p 
CAUGUUCUUCAGAUGGACAAGG 
>hsa-mir-4754_3p 
UCCGCAGGUCCAGGUUGCCGUG 
>hsa-mir-4759_3p 
AAUUCCAACAUCUAGUCCUAAA 
>hsa-mir-4767_3p 
CCGGGGGCAGAGCGCGCGGGAG 
>hsa-mir-4775_3p 
UGACUGAAACAAAAAAUUAAAA 
>hsa-mir-4784_3p 
CGUCCCUGCUCAUCCUCUCCGC 
>hsa-mir-4788_3p 
CUCCCUUAGUUGGUCCCUAAUC 
>hsa-mir-4791_3p 
UAUGUGCAGUCAAUGUCCAGU 
>hsa-mir-4792_3p 
UGGGGCCGCGCACAUCUCUGC 
>hsa-mir-4794_3p 
UAGUCUCAUGAGAUAGCCAGAUG 
>hsa-mir-4803_3p 
CAACCCACACUAUGAUGUUAAA 
>hsa-mir-5087_3p 
AGUCGCAAGCAUAAGAAAGAGA 
>hsa-mir-5090_3p 
UAAGCCUUCUGCCCCCAACUCC 
>hsa-mir-5091_3p 
UCACCGGCAGGGGUCUGGAGUC 
>hsa-mir-5094_3p 
UGGUAGGUACAGUGGGCUCAC 
>hsa-mir-5095_3p 
CGGUGGCUCACGCCUGUAAUC 
>hsa-mir-1273f_3p 
CUGCACCCCCAGCCUGGGCCA 
>hsa-mir-5096_3p 
UGACCUCAGGUGAUCCAUCCAC 
>hsa-mir-5189_3p 
UGCCAACCGUCAGAGCCCAGA 
>hsa-mir-548aw_3p 
CCGCGAUGACUUUUGCAUCAAC 
>hsa-mir-5683_3p 
AGUCAGGAUCUGCAUUUGAAUA 
>hsa-mir-5684_3p 
UGUUGCCCAGGCUGGAGUCCA 

>hsa-mir-548ax_3p 
CAAAAACCGUAAUUACUUUUGU 
>hsa-mir-5685_3p 
CGUGAUAACUGCAGGGCUGUGA 
>hsa-mir-5686_3p 
UGUAUUGUAUCGUAUCGUAUCG 
>hsa-mir-5681b_3p 
UAGAAAGGGUGGCAAUACUCU 
>hsa-mir-5689_3p 
UAGGACUACAGGUGUGUGCUA 
>hsa-mir-5690_3p 
UAAUAGAGGUAAUAGUUGAAA 
>hsa-mir-5691_3p 
CUGCUUGGUGUUCAGAGCUUGU 
>hsa-mir-5692a-1_3p 
ACACCCUGUGAUAUUAUUUGUA 
>hsa-mir-5692a-2_3p 
ACACCCUGUGAUAUUAUUUGUA 
>hsa-mir-4666b_3p 
GAAUUACAAUUUGACAUGCAAUU 
>hsa-mir-5694_3p 
CUGAGAAGUCCCAUGAUCCGC 
>hsa-mir-5696_3p 
CGUCAGACUACCUAAAUGAGCAC 
>hsa-mir-5697_3p 
CUUUAUCAUGAAACGCUUGAGG 
>hsa-mir-5698_3p 
ACAAUCACUGUACUCCCCAGG 
>hsa-mir-5700_3p 
AUAAUUUAAUGCAUUUAUUGA 
>hsa-mir-5701-1_3p 
UCAGAACAUGAAAAUAACGUCCA 
>hsa-mir-5692b_3p 
UACACCCAUGUGAUAUUUGAAG 
>hsa-mir-5704_3p 
AUAACAGGAUGAUGGCCUAAAC 
>hsa-mir-5706_3p 
CUUCAGCAUGUUUUCCAGAGG 
>hsa-mir-5707_3p 
AUGUACAGCUUUCAAACAUGCU 
>hsa-mir-5708_3p 
UCUUGGCCAGGCACAGUGGCUC 
>hsa-mir-5701-2_3p 
UCAGAACAUGAAAAUAACGUCCA 
>hsa-mir-5787_3p 
CUCGGCUCCCGCGCCGCACCC 
>hsa-mir-6068_3p 
CUGCUGGCGCAGGCUCGGCC 
>hsa-mir-6069_3p 
AGGGUGGAGGGUCACUCCUUA 
>hsa-mir-6070_3p 
UGAGCUCUUGUUGAUUGCAGUG 
>hsa-mir-6071_3p 
UCAGAACCCCCGCCACCACAGA 
>hsa-mir-6076_3p 
CCCUUUCACCCUCCUGAGUUUGG 
>hsa-mir-6077-1_3p 
UUAAGGCUGACGCUCCCUAUU 
>hsa-mir-6078_3p 
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UCAGCUGGUUUUGAGUGAGAAG 
>hsa-mir-6082_3p 
AUUGACUGGGCUAUAUUUGUC 
>hsa-mir-6086_3p 
UUUGCCUUGUUUUUCUUUUU 
>hsa-mir-6087_3p 
GGCUCUCGCUUCUGGCGCCAAG 
>hsa-mir-6088_3p 
UAUUGCCUACGCUGAUCUCA 
>hsa-mir-6124_3p 
UGCCACUCCUGCCCAGUGCCUC 
>hsa-mir-6126_3p 
UCUGCCCACCCCACACCCUGCCU 
>hsa-mir-6127_3p 
UCCUCCUCCUCCUCCUCCUUC 
>hsa-mir-6129_3p 
UUGUCCAAGUUUCCCUUUGAA 
>hsa-mir-6132_3p 
CUGCUCCCAGUCCUGCCCCUGC 
>hsa-mir-6717_3p 
UUUCCUCAUCCUGCCAGGCCACC 
>hsa-mir-6718_3p 
AUAAGCCUUUUGGCCACUAGG 
>hsa-mir-6721_3p 
UGACCUGCUUUAACCCUUCCCCA 
>hsa-mir-6723_3p 
UGGGAAGAAAGUUAGAUUUACG 
>hsa-mir-6724_3p 
UCCCGAGGCCCGAGCCGCGACC 
>hsa-mir-3690-2_3p 
CAUAUCUACCUGGACCCAGUGU 
>hsa-mir-6077-2_3p 
UUAAGGCUGACGCUCCCUAUU 
>mmu-mir-207_5p 
UGAGGGGCUGCGGGAGGAGCCGG 
>mmu-mir-762_5p 
UCUCGGCCCGCACGGUCCGGCC 
>mmu-mir-3475_5p 
CAAAUCAUGUACCCCCACAG 
>mmu-mir-678_5p 
AGCUGUGCUCCAAUAUGAGAGA 
>mmu-mir-682_5p 
UCUGGCACUGUGGUUCCUGCA 
>mmu-mir-683-1_5p 
AGGCUGCAGUGGACCCAGGCU 
>mmu-mir-684-1_5p 
UUAAGUAGGGAUAAAUUACUCU 
>mmu-mir-684-2_5p 
UUAAGUAGGGAUAAAUUACUCU 
>mmu-mir-688_5p 
AAGAAAAGUAGGGGCUUGCUUG 
>mmu-mir-690_5p 
UGUGGAGCUAAUUGGCUGUAUU 
>mmu-mir-691_5p 
UUUUGCUUUCUUCCUUGGGUCU 
>mmu-mir-692-1_5p 
AGACUGGCGCGCCCCAGGGAUCU 
>mmu-mir-692-2_5p 
AGACUGGCGCGCCCCAGGGAUCU 

>mmu-mir-694_5p 
UCAGGCAUCGCUUUCAACCC 
>mmu-mir-697_5p 
UUGACAGGUCUCAGAGGUGACU 
>mmu-mir-704_5p 
UGGGAGCUAGAGGAUGUGGUCA 
>mmu-mir-709_5p 
UGUCCCGUUUCUCUGCUUCU 
>mmu-mir-711_5p 
AAUCUCUUCUUAGGGUGCUUC 
>mmu-mir-713_5p 
UUAGUGAGACUUGAUUGACAUG 
>mmu-mir-718_5p 
AGGCCGCGGAGGGCAAGAUGG 
>mmu-mir-804_5p 
AGGUUACAACUUCCCCAGUAGA 
>mmu-mir-343_5p 
UGGGAUAGAGUGGGUGUGGCGGG 
>mmu-mir-453_5p 
CAGGAGUGCUGUGAGAAGUG 
>mmu-mir-466g_5p 
UGUGUGCAUGUGGAUGUAUGU 
>mmu-mir-1187_5p 
UUACACACACACACACACACA 
>mmu-mir-669j_5p 
GUGCAUGUGUGUAUAGUUGUGU 
>mmu-mir-1190_5p 
CGUGGGAAGGUCUCUGCUGGC 
>mmu-mir-466j_5p 
UUGUGCAUGUGUGUAUGUGUGC 
>mmu-mir-467g_5p 
AUAUGUGUGUGUGUAUAUAUA 
>mmu-mir-1902_5p 
GGAGUGUUUGCUGUAUAAUUGG 
>mmu-mir-1905_5p 
UGCUGCUGGAUGCGUUUGAUGGU 
>mmu-mir-1895_5p 
UUUCCUCUUCUUCUUGGCCGGG 
>mmu-mir-1900_5p 
AAGCUAGAAGAGGGCGGAGCCU 
>mmu-mir-1892_5p 
UUCUACUCUUGACCAAAGUUU 
>mmu-mir-1896_5p 
CUCAUUACAGUGAUGUCUUU 
>mmu-mir-1907_5p 
AGCCCCACUCCCCCUCGCUGUC 
>mmu-mir-1893_5p 
AGGUAUCUGCUGCGCCUGAGAUG 
>mmu-mir-1901_5p 
UUCCCUGAGUGAACGAGUUGAG 
>mmu-mir-1927_5p 
AGAUCCCUAGAAACCAGAGUUG 
>mmu-mir-1928_5p 
AGGAUAGAGCUUUGCGCAUUG 
>mmu-mir-1931_5p 
AGCCAUCUCCUAGGCCAGAA 
>mmu-mir-1932_5p 
AGCCUGGCCCUGAGUCUCCGACCC 
>mmu-mir-1936_5p 
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CCAGUCACACAGAGGACUUUAG 
>mmu-mir-1942_5p 
AGGCCUAUUUAAUGUUAGACA 
>mmu-mir-1945_5p 
CCCGUCAGCCCCCGAGAAAAC 
>mmu-mir-1949_5p 
GCUGGUUGGCAUUCUGGGCCU 
>mmu-mir-1951_5p 
AACCACCUCUCUUCACUUACUU 
>mmu-mir-1958_5p 
AGAACUUACUGCUUCCACUUUC 
>mmu-mir-1961_5p 
AGUUCAACACGCCCUCCCCUCU 
>mmu-mir-1962_5p 
UGGUCCCAUCUGUCUGCCUCUCU 
>mmu-mir-1965_5p 
CGCCACCAUGCCUGGCUCUUUU 
>mmu-mir-1967_5p 
UCUUUCUCUCUUUGCUCCUUU 
>mmu-mir-1946b_5p 
AGGCGUGCGCCACCACUGCCCA 
>mmu-mir-1983_5p 
AAAGCAUGCUCCAGUGGCGCA 
>mmu-mir-683-2_5p 
AGGCUGCAGUGGACCCAGGCU 
>mmu-mir-2136_5p 
CCAGUCAGGAGUCAGUUAGGA 
>mmu-mir-2137_5p 
ACCUCCUUCCUGCUGCCUU 
>mmu-mir-2139_5p 
AGCAGAGGGCCAGGACUGGCAUU 
>mmu-mir-432_5p 
UAGCUCUUGCAUUUCCUGGUGG 
>mmu-mir-599_5p 
UAUUUGAUAAGAUGACAUAGGA 
>mmu-mir-2861_5p 
UCCGGCUCCCCCUGGCCUCCC 
>mmu-mir-3472_5p 
UUUCCAGCUUCUGGCUAUUAUA 
>mmu-mir-3473a_5p 
CCUGUUGAGCCAUCUCACCAG 
>mmu-mir-3960_5p 
UCCUGCGCCCCCGAUCGGGGCC 
>mmu-mir-3961_5p 
AGAGGACCAAAUGCACUCAGAGC 
>mmu-mir-28c_5p 
ACAAAGACAAAUGAGAUAUGA 
>mmu-mir-3962_5p 
UGAGAAAUGUACUCUGCCACG 
>mmu-mir-3964_5p 
GGCCUGCUUUCCAAGUUAUGU 
>mmu-mir-3965_5p 
CAGAGAGCUGCAGCUGAGUGC 
>mmu-mir-378b_5p 
UCCUGGGCUAUCCCAGUCCAGG 
>mmu-mir-101c_5p 
UACUGCACAGUCCUGUGAUGA 
>mmu-mir-3967_5p 
UGCACCUGACUCAGGCAGCAA 

>mmu-mir-3968_5p 
AGCGUGUGGUGGUAGGAUCCGU 
>mmu-mir-3971_5p 
AGGUGGAAUGGGAGGUGGCAGG 
>mmu-mir-3473b_5p 
UGAGCCAUCUCUCCAGCCCAA 
>mmu-mir-5097_5p 
CGGACAGAUGGGCAUGGAGUCG 
>mmu-mir-5099_5p 
AGAAAUUACAUUGAUUUAAGA 
>mmu-mir-5100_5p 
UGGGAGGGAGGACUUGGGAA 
>mmu-mir-5101_5p 
UUUUCUUAGUAUCAGUUACA 
>mmu-mir-5103_5p 
UUUGGGGACCCUAGGAUCUGGG 
>mmu-mir-5104_5p 
UGAGGCAUCUCUCUAGCUCCAGA 
>mmu-mir-5106_5p 
CAACAACAACAGCAACAACCCG 
>mmu-mir-5108_5p 
UCCACUGUUCUUACCAUUCCCU 
>mmu-mir-5109_5p 
CCGUGCCUGGGCUGACACCUAG 
>mmu-mir-5118_5p 
GAGGCAGAGGUUGGCUGAUCU 
>mmu-mir-5119_5p 
CAGGGCUGGCCUAUGGGACAGA 
>mmu-mir-5121_5p 
AUGUGGUGACAUGUAGGACAGG 
>mmu-mir-466q_5p 
UGUGUGUGUGUGUGUGUAUGU 
>mmu-mir-5123_5p 
CAUAUGCCAUGGUGUGUAGAU 
>mmu-mir-5125_5p 
UAAGGAGAGCCCCAUGCCUUUG 
>mmu-mir-5126_5p 
ACGCCUCCUGCAGCUGCGGGAG 
>mmu-mir-5127_5p 
UGGUGAAAUGUGGUGACAUAU 
>mmu-mir-5128_5p 
GUCUUUCUAGCUCCUGUUUUAC 
>mmu-mir-5131_5p 
UCGGAUGCGCGUGUGGCGGAAG 
>mmu-mir-5135_5p 
ACUCGGAGCCCAGCCACCUAGA 
>mmu-mir-5136_5p 
GGUGGUUUUCACGUGAGUCUUG 
>mmu-mir-6236_5p 
UGAAAAUGGAUGGCGCUGGAGCG 
>mmu-mir-6237_5p 
UGGGACAGGACUCAACACUCA 
>mmu-mir-6238_5p 
UAUCUGACCUGAGUGAACUAGG 
>mmu-mir-6239_5p 
CCUGGGUGUUAGCGUUGGAUC 
>mmu-mir-133c_5p 
AGGCUCAUGAAGACACCAAA 
>mmu-mir-6337_5p 
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UCUAACAUUUCACAGUCCUUUUC 
>mmu-mir-6342_5p 
UCCGCUAUCAUGCAACUGUGGC 
>mmu-mir-6343_5p 
UUCAGAUAGCUAUUUAUUGC 
>mmu-mir-6346_5p 
AGGGCAGAUGACCCAAGUCCAG 
>mmu-mir-6348_5p 
GGCACAAAAGGAAAGGUGGUU 
>mmu-mir-6349_5p 
AAUUCUUUAAUCCCUCCCACC 
>mmu-mir-6357_5p 
AGGCGCGCUUGUCGGUGUAGGC 
>mmu-mir-6359_5p 
ACUGAUUGUGGCGGAGAGAUGG 
>mmu-mir-6361_5p 
CAUGGGGCUGAAUACUGUUGGG 
>mmu-mir-6363_5p 
UCGAGAUAAAAUUCCUCUACGUG 
>mmu-mir-6364_5p 
UAUAGGGCUGGGGAAUAGCUU 
>mmu-mir-6365_5p 
UCUAAUAGUAGAAGACCUGGGU 
>mmu-mir-6366_5p 
UGGCAAGUGGGUCUCCUGGGGA 
>mmu-mir-6367_5p 
AAGCAAGAACAGGAGUUCAAAGG 
>mmu-mir-6368_5p 
CUUCACUCUGUUAUUUCCUAGA 
>mmu-mir-6370_5p 
UUCAUAUGUUGGCUGCUGAUGU 
>mmu-mir-6371_5p 
AGUAGUUUGUCAUGCUGGAGGU 
>mmu-mir-6373_5p 
GCUUUCUAAUACUCAUUUUUCA 
>mmu-mir-6377_5p 
UAGAAGAGAAACCUGAAGUACU 
>mmu-mir-6379_5p 
UAGCAGUGAAAGCUUUGGGAA 
>mmu-mir-6380_5p 
GGUUGUAAGCAACUAUGUGGAUA 
>mmu-mir-6382_5p 
ACCACUUGGUUCUCUGUCACAU 
>mmu-mir-130c_5p 
UGGAUGUAAAAUGUCCCCUGCA 
>mmu-mir-6391_5p 
UGGGCAUCCUCCCAGAGUCUAG 
>mmu-mir-6394_5p 
AGCUGUUGCCUUUCCCAGGGG 
>mmu-mir-6396_5p 
ACAGGUGACUAGGGGCGAAGG 
>mmu-mir-6397_5p 
UUCUCACUGAAAGAAUCCUGGA 
>mmu-mir-6398_5p 
UUUUUGGGGGGGGGCAUAUAUUC 
>mmu-mir-6399_5p 
UCAGAUACCAUUGUUUGAUCC 
>mmu-mir-6400_5p 
CGGCUGUGUCUUGCAGGAAGC 

>mmu-mir-6401_5p 
AAUGAUACCAUAACUGGGCACUG 
>mmu-mir-6402_5p 
UGGGAAUAUUAUAACUGUUUAG 
>mmu-mir-6403_5p 
UGUGCGGCCGCUGCCUCUGUCA 
>mmu-mir-6404_5p 
UACAUCAUGUCCCAUCACUAGA 
>mmu-mir-6405_5p 
UCCAAGGGCUUCUUUCUGACUU 
>mmu-mir-496b_5p 
UUGGAAGCAGAUGGCCGAUAAUU 
>mmu-mir-6407_5p 
UGCCACAUUGCAUUCUGGGGAG 
>mmu-mir-6408_5p 
AGGGACAUUCUGUUCAAGCUCA 
>mmu-mir-6409_5p 
CAAUAACAGCUAGCGCGCAUGC 
>mmu-mir-6412_5p 
UUAGCUUGAUGUGGUACUGCAC 
>mmu-mir-6413_5p 
AGCCCUUGCCUGUCCUUGCCUAA 
>mmu-mir-6414_5p 
AGGCUUUUCAGACCCUGCUCUUU 
>mmu-mir-6420_5p 
UGGGGGUGGGAUGGAGUGGGGA 
>mmu-mir-873b_5p 
UGUGGGUGUUCCCGGGAACUUG 
>mmu-mir-6541_5p 
UGAGAGAGUCCUUGCCUGAGCA 
>mmu-mir-692-3_5p 
AGACUGGCGCGCCCCAGGGAUCU 
>mmu-mir-297a-1_3p 
UAUUGCAUGUAUAUAUUAUGC 
>mmu-mir-297a-2_3p 
CAUACCCAUACAAGCAUGCAC 
>mmu-mir-451a_3p 
UAGUAAUGGUAACGGUUCU 
>mmu-mir-484_3p 
UUACCUAGGGGGCUGGCGGCGU 
>mmu-mir-546_3p 
UUGUCUCUUGCUAUCCCUGUGC 
>mmu-mir-761_3p 
UUUCACUUUGCUGCUCCUCCUG 
>mmu-mir-763_3p 
UCUGCCUCCCAGCCAGCCAUUA 
>mmu-mir-759_3p 
UAAAUGUUUGCACUGGCUGUUU 
>mmu-mir-680-1_3p 
AUCCUCUUGACAGCCUUGGGU 
>mmu-mir-680-3_3p 
UAGGCAGCAGGUACUCUUCAU 
>mmu-mir-681_3p 
CAGGGCCUCCAGCGGGACAGUU 
>mmu-mir-686_3p 
UGGGCACCAUGGCUGGGGGUG 
>mmu-mir-687_3p 
AGUCUGUCAUUGUAUUCUUG 
>mmu-mir-695_3p 
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UUGGUCCUGGUCACCGGCUCGG 
>mmu-mir-703_3p 
UUUUUUUUUGUGUGUGGCAGUU 
>mmu-mir-705_3p 
CAGUCCUCCCUACCUCCCUAAC 
>mmu-mir-706_3p 
UUUUUUGAGAUGGCUUUUUUUU 
>mmu-mir-707_3p 
AUGGGCAUGCGGUCAUAGUUGU 
>mmu-mir-710_3p 
UUCAACUCUUUAGAACUUAGGU 
>mmu-mir-714_3p 
GGUUGGCGCGGUCGCCCGGCGC 
>mmu-mir-717_3p 
GAAGCUGCUCUCCGUUCCGAAG 
>mmu-mir-721_3p 
UCAUUUUUCUUGUUAUUGCCAC 
>mmu-mir-882_3p 
UGAUUUCUGGGUUUUUCUAAU 
>mmu-mir-105_3p 
ACGAAUGCUUGAGCAUGUGCUA 
>mmu-mir-327_3p 
GUCCAACAUCCCUCUUGAUGGC 
>mmu-mir-568_3p 
CGGUGUGUGUAUUAUACAGGU 
>mmu-mir-449b_3p 
CAGCCACAGCUACCCUGCCACU 
>mmu-mir-466f-4_3p 
UGCAUGCAUGUGUGUGCAUCUAU 
>mmu-mir-466k_3p 
GUAUGUGAAUAUAUGUGUAUA 
>mmu-mir-1195_3p 
CUAGGGCAGCCAGGAACACACA 
>mmu-mir-1903_3p 
CUCCUGGAAGAGGAACAAGUGU 
>mmu-mir-1899_3p 
UUUCAGAUUCUGCUCAUUCCGU 
>mmu-mir-1904_3p 
UCUCUUCAGGUAGAUUAAACAU 
>mmu-mir-1898_3p 
UAUAAUCUGUUUACUUUGACCUA 
>mmu-mir-1935_3p 
CCAGCCUGGUCUACAGAGUGA 
>mmu-mir-1938_3p 
CUGAACUGCAGUUCCCAUCAUG 
>mmu-mir-1940_3p 
CCUUCCAUUGGUUAAGACCUCC 
>mmu-mir-1946a_3p 
AAGGCAUGCGCCACCACUCUCG 
>mmu-mir-1950_3p 
UCAUCUCCUUAAAUGCAGAAA 
>mmu-mir-1952_3p 
UCCAAGGUGUGGAUGACAAA 
>mmu-mir-1953_3p 
GAAGGCUGUGAGGUUCCCCUCU 
>mmu-mir-1954_3p 
GACGGGGUUUCUCUGUGUAGCCC 
>mmu-mir-669n_3p 
UGUGCAUCCCACAGCACAUGU 

>mmu-mir-1956_3p 
UUCCCUGGCUGGCACCUGGACGU 
>mmu-mir-1957a_3p 
CAUGUGCAAGGCCCUGAGUUU 
>mmu-mir-1960_3p 
GCUCUCUUCUGCAGCACUGACU 
>mmu-mir-1963_3p 
AGGACUCGGCCCUUGUCCCGCA 
>mmu-mir-1969_3p 
AUCCAUGCUGCCUCCAUUUCUG 
>mmu-mir-1970_3p 
CAGUCAGGCCUAGUGGCACUCA 
>mmu-mir-1971_3p 
UCUGUUUUUCAGUCUAUCU 
>mmu-mir-2183_3p 
AUGGGGUUCUAAGAAUCUGCA 
>mmu-mir-767_3p 
UCUGCUCAUACCCUAUGGUUCCU 
>mmu-mir-3470a_3p 
AUCAGCCUGCCUCUGCCUCCU 
>mmu-mir-3470b_3p 
CCUGCCUCUGCCUCCCGAGUGC 
>mmu-mir-3471-1_3p 
UGCUCUGUCCAGUUUCUUUUU 
>mmu-mir-3471-2_3p 
CCCCUUGUGGGUGGGACAAUCU 
>mmu-mir-1186b_3p 
UGGUGCCUGACUGUGAUCCCAA 
>mmu-mir-3474_3p 
AUCUGCGUCUUGUUCCAGGUUC 
>mmu-mir-3963_3p 
UUACAGGUUUUAGGUGGAAUAU 
>mmu-mir-3966_3p 
UGUUCAUCAUGCUUGCUGCAGA 
>mmu-mir-3969_3p 
UUAGAUUAGCUACUUACAGGGC 
>mmu-mir-28b_3p 
CCAGAAUGUGUGAGGCAUCUU 
>mmu-mir-3970_3p 
AGCAGAAACCAGCAUCACCCUU 
>mmu-mir-5046_3p 
UCCGAUCCGGGAGCCUGGU 
>mmu-mir-5098_3p 
CAGGGUUUCUCUGUGUAGCCC 
>mmu-mir-5105_3p 
CCCAGCCCGUGGACGGUGUGA 
>mmu-mir-3473c_3p 
UUAUAGGAGUUGGGGAGAUG 
>mmu-mir-5110_3p 
UUCUAGCCACUUGCCCUGAGU 
>mmu-mir-5112_3p 
UGCUUCAUCCCCAGCUACA 
>mmu-mir-5113_3p 
AGGGUCACUCCCUCCUCUCUGC 
>mmu-mir-5114_3p 
UUGCAGUUCCUGUUCCAGAAG 
>mmu-mir-5115_3p 
CCUCAGCUGCGGUGGGUGUCA 
>mmu-mir-5116_3p 
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AGGCAGGGUCUUCAUAUCGAGA 
>mmu-mir-5120_3p 
UCAGUGGCAGCAGCCCCUUCAG 
>mmu-mir-5122_3p 
AAGGAGCUGCCGCUGGGCCG 
>mmu-mir-3473d_3p 
AGGGCUGGAGAGGUGGCUCAGU 
>mmu-mir-5124a_3p 
UCUUGCAGAGGACCCAAGUUCA 
>mmu-mir-5130_3p 
CUCGCACCGCGCGGCUCUCAG 
>mmu-mir-5133_3p 
UGUCUCUGCCGCUCGCUUCAG 
>mmu-mir-344i_3p 
GGCUCUAGCCAGGGUCUGACUAC 
>mmu-mir-5709_3p 
AAAGUCUUAAGGGUGUGUAUUG 
>mmu-mir-5710_3p 
CUGGCUCUUUGUCCCUCGGCA 
>mmu-mir-6240_3p 
UGUGAUUUCUGCCCAGUGCUC 
>mmu-mir-6241_3p 
UGAGGGAAUUUCCAGGUGGCCA 
>mmu-mir-6243_3p 
UCGGUUGGCCCCGGAUAGCCGG 
>mmu-mir-6244_3p 
CCGAUAGCCAUAUGCUUCCAG 
>mmu-mir-195b_3p 
AAUUACUGCUCUCCUGUAACU 
>mmu-mir-6335_3p 
UAGAAUGAGUUACAUGAGGAC 
>mmu-mir-6336_3p 
UCUUUUAUAGGUCUGAUGGAAA 
>mmu-mir-6338_3p 
UAGAAGGGAGAAUGUAUGA 
>mmu-mir-6339_3p 
AAGCUUGGGAAGCUGGUCUCCU 
>mmu-mir-6340_3p 
AGUUUGAAGCCCUUGCCGCCAG 
>mmu-mir-6341_3p 
UAGUAUAACACUGAGGGUCAAC 
>mmu-mir-6344_3p 
CAGAGUGGAGAUGGGAGAACAG 
>mmu-mir-6345_3p 
UACUAGGUUCUCCAUGGACA 
>mmu-mir-6347_3p 
UGCAGUCUUUCACAAGCUCAC 
>mmu-mir-6350_3p 
AUAUUUUCAUGCCUUGAGCAC 
>mmu-mir-6351_3p 
AGAGAUCCUCUGGGCAUGCUC 
>mmu-mir-6352_3p 
UGUGGAAUCUUGCUGUUCCUUC 
>mmu-mir-6353_3p 
AGAGCCAGGAGUGUGUGUCUGG 
>mmu-mir-6354_3p 
AGAGACUGCAACCAGGAAGUCU 
>mmu-mir-6355_3p 
UUUUAUUAUGAUGCUGAUUGU 

>mmu-mir-6356_3p 
CAGCAGGGCACUGUGCAGGAA 
>mmu-mir-6358_3p 
UGAUGGUUUGUAUAUCCUUGGA 
>mmu-mir-6360_3p 
CAUCUGGGGGUCAUAGGUCAAC 
>mmu-mir-145b_3p 
UCUGGCUUGAGAAAUUGGUGU 
>mmu-mir-6362_3p 
AGCAGGGUGUGGAGAGUCCUU 
>mmu-mir-6369_3p 
UAUGUAGCAGAGGAUAGCCUAG 
>mmu-mir-6372_3p 
UGCUGGUUUUCUAUGUCCAUC 
>mmu-mir-6374_3p 
UAAAAACUAUUAUGGUUUUCU 
>mmu-mir-6375_3p 
UGAUACCAGCUACCACAGUGU 
>mmu-mir-6376_3p 
CAUCACAGUUUCUAAUGCUCAGC 
>mmu-mir-21b_3p 
AGAAAAUCCUUCUGUACUAUCU 
>mmu-let-7j_3p 
CCCUUGCUCAGAUUAAAAGCCUGG 
>mmu-mir-6378_3p 
CUGAUUUUCUCUGAAAUAUGG 
>mmu-mir-6381_3p 
UCCUCUUCCCAGCUAGCUUGU 
>mmu-mir-6383_3p 
UCAGUGGGCAAUACUAUGCUA 
>mmu-mir-6384_3p 
GUGAGCCACGUGGGGAGAUGGA 
>mmu-mir-6385_3p 
UUUCCUCAUGUAUCUGGGCCC 
>mmu-mir-6386_3p 
GGGAUUCUCACUUGCUGAUGCA 
>mmu-mir-6387_3p 
CCCACAAUGCCGGAGGCUCCAU 
>mmu-mir-6388_3p 
AGCAGACUGUGUUCUCUGUU 
>mmu-mir-5124b_3p 
GCAUACUCAUUGGGUAGUUCUA 
>mmu-mir-6389_3p 
UGUAUUUGUGUUCAACAGCUUU 
>mmu-mir-378c_3p 
CAACAUGUAGUCUAUCUGAUCU 
>mmu-mir-6390_3p 
UUUGAUGCUUCGAAAUCUUUU 
>mmu-mir-6393_3p 
CAAGUGUCACUGUUGGCCUGG 
>mmu-mir-1957b_3p 
UGCAAGGCGCUGAGUUCCAGCC 
>mmu-mir-6395_3p 
CAGACAUGAGUCUUCUGUCAGC 
>mmu-mir-21c_3p 
CAGCUCUGUUCAGCUAUUCUCA 
>mmu-mir-6406_3p 
CAUGUGGCUGGCACUCCAGGAA 
>mmu-mir-6410_3p 
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GCCGAGGAGUUCCAUGGCCCUG 
>mmu-mir-6411_3p 
Not_Predicted 
>mmu-mir-378d_3p 
CUGUGAUUUUUAGGGUGUCAGU 
>mmu-mir-6415_3p 
CAUUACACUUUGAAGAGUCUCC 
>mmu-mir-6417_3p 
UUGUGUGCUGCUGUGAUUGUCC 
>mmu-mir-6419_3p 
UGUUGCACGUGCUGCUGAGUCU 

>mmu-mir-451b_3p 
GGUUUCCUCGCCAUUCCCAAG 
>mmu-mir-30f_3p 
GCUUCCAGUCAAGGAUGUUUAC 
>mmu-mir-3473e_3p 
GAUGCUUUCUCAGAGGACCCAA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Karathanasis Nestoras 



145 
 

 
CURRICULUM 
VITAE 

 
Born in Athens on 18/09/1983 

41 Iktinou street Artemida, Greece 

 
E-MAIL 
 

 
       nk3932@gmail.gr 

 
 
 
 
EDUCATION 

 
1. Current position: PhD thesis on miRNAs and 

cancer. An experimental and Bioinformatics 
approach.  

2. Master’s degree: in Molecular Biology- 
Biomedicine. Biology department, University of 
Crete.(8.83/ 10) 

3. Bachelor: Department of Molecular Biology and 
Genetics, Democritus university of Thrace 
(Alexandroupoli, Greece). (7.81/ 10) 

4. Highschool (18,1/20) 
 

 
 
 
 
PREVIOUS  
EXPERIENCE/ 
SCHOLARSHIPS 
 

 
1. PhD thesis: Currently, I am completing my PhD 

thesis in Dr. Poirazi’s lab at the Institute of 
Molecular biology and Biotechnology (IMBB), 
which is co-funded by a scholarship from the 
research program Herakleitos II. 

2. Master thesis: I performed my master thesis in 
Dr.Poirazi’s lab, at the Institute of Molecular biology 
and Biotechnology (IMBB), and as a scholar in Dr. 
Kelsey’s Martin lab in the department of Psychiatry 
and Biological Chemistry at the University of 
California, Los Angeles. 

3. Bachelor thesis: I performed my thesis project, as a 
scholar, in the Center for Research on Reproduction 
and Women's Health at the University of 
Pennsylvania (Dr. Coukos’s laboratory).  

4. Practical training in the gene expression lab of Dr. 
Kretsobali (IMBB). 

5. Practical training in the immunology lab of Dr. 
Athanassaki (Biology Department, University of 
Crete). 

 
 
 
 
 
 
PUBLICATIONS 
 
 
 

 
Research papers 
 

1. Karathanasis N, Tsamardinos I, Poirazi P 
MiRduplexSVM: a high-performing miRNA-duplex 
prediction methodology. Submitted to NAR 

2. Karathanasis N, Tsamardinos I, Poirazi P Don’t use 
a cannon to kill the … miRNA mosquito. Submitted 
to Bioinformatics 

mailto:nk3932@gmail.gr


146 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
PUBLICATIONS 
 
 
 
 
 

3. Karathanasis N, Oulas A, Louloupi A, Iliopoulos I, 
Kalantidis K, Poirazi P. A new microRNA target 
prediction tool identifies a novel interaction of a 
putative miRNA with CCND2.: RNA Biology, 2012 
Sep;9(9):1196-207 

 
Review papers – Book chapters 
 

4. Oulas A, Karathanasis N, Louloupi A, Poirazi P. 
Finding Cancer-Associated miRNAs: Methods and 
Tools. Mol Biotechnol. 2011 Sep;49(1):97-107. 

5. Oulas A, Karathanasis N, Poirazi P. Computational 
identification of miRNAs involved in cancer. 
Methods Mol Biol. 2011;676:23-41.  

 
Conference paper  
 

6. Karathanasis N, Tsamardinos I. Poirazi P. A 
bioinformatics approach for investigating the 
determinants of Drosha processing. 2013 IEEE 13th 
International Conference on Bioinformatics & 
Bioengineering (BIBE)  

7. Karathanasis N, Angelos A. Tsamardinos I. Poirazi 
P. SVM-based miRNA: MiRNA∗ duplex prediction. 
2012 IEEE 12th International Conference on 
Bioinformatics & Bioengineering (BIBE)  

 
 
 

 
 
 
 
 
 
 
PRESENTATIONS / 
CONFERENCES 

 
1. Nestoras Karathanasis, Angelos Armen, Ioannis 

Tsamardinos, Panayiota Poirazi.  miRNA:miRNA* 
Duplex Prediction using a SVM approach. 63RD 
Congress of the Hellenic Society of Biochemistry and 
Molecular Biology. 2012 

2. Nestoras Karathanasis, Angelos Armen, Ioannis 
Tsamardinos, Panayiota Poirazi. DuplexSVM: a 
miRNA-duplex prediction tool. 7th Conference of the 
Hellenic Society for Computational Biology & 
Bioinformatics. 2012 

3. Nestoras Karathanasis, Anastasis Oulas, Annita 
Louloupi, Ioannis Iliopoulos, Kriton Kalantidis and 
Panayiota Poirazi. A new microRNA target prediction 
tool identifies a novel interaction of a putative 
miRNA with CCND2. 7th microsymposium of small 
RNAs. 2012 

4. Anastasis Oulas, Nestoras Karathanasis, Ioannis 
Iliopoulos and Panayiota Poirazi. Prediction of 
miRNA gene targets – a combined computational and 
experimental approach, ISMB 2011 



147 
 

5. Karathanasis Nestoras, Kelsey C. Martin, Panayiota 
Poirazi “mRNA-miRNA predicted interactions 
related with synapticplastisity” The Seventh Annual 
Southern California Learning & Memory Symposium 
Neuroscience Research Building Auditorium, UCLA 
June 4, 2008 

 
 
LANGUAGES 

 
Greek (native), English (fluent) 
 

 
 
 
 
 
 
 
 
 
MOLECULAR 
BIOLOGY  
TECHNIQUES 
 
 
 

 
• Northern 
• Isolation of DNA/RNA,  
• Polymerase chain reaction (PCR),  
• Real-Time PCR 
• Colony PCR 
• Reverse Transcription 
• Primer Extention analyses 
• Electrophoretic analysis of proteins and nucleic acids, 
• Molecular cloning techniques (genetic engineering, 

transformation, minipreps, bacterial cultures, etc),  
• Isolation and characterization of protein based on 

enzymatic activities 
• Light Microscopy 
• Expression and purification of recombinant proteins,  
• Immunological assays (ELISA, immunostaining, 

western blot, immunoprecipitation) 
• Luciferase assay 
• Cell cultures 
• Radioactivity Reactions 
 

 
 
COMPUTER  
SKILLS 

 
1. Machine Learning 
2. Java computer programming language 
3. Algorithms in Bioinformatics 
4. Matlab 
5. Molecular graphics (Rasmol) 
6. Database searching (NCBI) 
7. Basic sequence alignment/analysis (BLAST) 
8. MS Office software 
 



148 
 

 
 
 
TEAM WORK 
PROJECT 

 
During my Bachelor I participated in the following team 
work projects, involving the presentation of advanced topics 
of molecular biology and research articles: 
• Gene therapy for H.I.V.  
• Function and structure of lambda repressor  
• Chemical analysis of oil  
• Soap 
• Are we determined by our genes? 
• Chromosome engineering in mice 
• Dlx proteins position the neural plate border and 

determine adjacent cell fates 
 
PERSONALITY 

 
Cooperative, well-organised, diligent, persistent, flexible and 
adaptive, fast-learner 
 

 
CAREER 
OBJECTIVES 

 
 To pursue a challenging research project leading to a PhD 

degree. 
 To contribute to the understanding of incurable diseases 

through the use of molecular biology technology. 
 

 
OTHER INTEREST 

 
Sports, cinema, music 
 

 
 

 

 

 

 

 

 

 

 



149 
 

 

 

 

 

 

 

 

 

 

 

 


	list of figures            1
	list of tables            3
	Abstract             4
	Ackowlegments           6
	Chapter I – Introduction           7
	Chapter II – MiRduplexSVM      24
	Chapter III – Simple Geometric Locator    68
	Chapter IV – Identification of the mature sequence of four miRNA candidates        77
	Chapter V – Discussion              112
	References                 117
	Appendix                 123
	Curriculum Vitae                166
	2.5. Missing duplexes prediction results for MiRduplexSVM and the Overhangs Ruler.
	2.6. MirDuplexSVM versus comparative genomics on missing duplexes prediction.
	2.7. Mutation analysis
	2.8. L region mutations
	3.1 Prediction accuracies, up to 8 nts deviation.
	4.1. c-miR-ch9 Predicted targets.
	Biogenesis of micro-RNAs
	Function of micro-RNAs
	Micro-RNAs and cancer
	Micro-RNA-related computational tools
	Motivation
	Scope
	Methodology
	Results
	Table 2.2 Prediction accuracies, up to 20 nts deviation
	Table 2.3 Prediction accuracies, up to 8 nts deviation.

	Table 2.4. Final MiRduplexSVM model predictions for EAE up to 5nts.
	Table 2.5. Missing duplexes prediction results for MiRduplexSVM and the Overhangs Ruler.
	Table 2.6. MirDuplexSVM versus comparative genomics on missing duplexes prediction.
	Table 2.7. Mutation analysis
	Table 2.8. L region mutations
	Concluding remarks
	introduction
	Methodology
	Results
	Table 3.1 Prediction accuracies, up to 8 nts deviation.

	Concluding remarks
	materials and methods
	results
	Concluding remarks
	Conclusions
	Future directions
	References

	Missing Duplexes Predictions of human and mouse hairpins

