

University of Crete

Computer Science Department

Optimising and Reformulating RQL

Queries on the Semantic Web

Georgios Serfiotis

Master’s Thesis

Heraklion, March 2005

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Βελτιστοποιώντας και Αναδιατυπώνοντας

RQL Επερωτήσεις στο Σηµασιολογικό Ιστό

Εργασία που υποβλήθηκε από τον

Γεώργιο Σερφιώτη

ως µερική εκπλήρωση των απαιτήσεων για την απόκτηση

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ∆ΙΠΛΩΜΑΤΟΣ ΕΙ∆ΙΚΕΥΣΗΣ

Συγγραφέας:

__

Γεώργιος Σερφιώτης, Τµήµα Επιστήµης Υπολογιστών

Εισηγητική Επιτροπή:

__

Βασίλης Χριστοφίδης, Αναπληρωτής Καθηγητής, Επόπτης

__

Γρηγόρης Αντωνίου, Καθηγητής, Μέλος

__

Αναστασία Αναλυτή, Ερευνήτρια Ινστιτούτου Πληροφορικής ΙΤΕ, Μέλος

∆εκτή:

__

∆ηµήτρης Πλεξουσάκης, Αναπληρωτής Καθηγητής

Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

Ηράκλειο, Μάρτιος 2005

Optimising and Reformulating RQL

Queries on the Semantic Web

Georgios Serfiotis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

A cornerstone issue in the realisation of the Semantic Web (SW) vision is

the achievement of semantic interoperability among legacy data sources

spread worldwide. In order to capture information semantics in a machine

processable way, various ontology-based formalisms have been recently

proposed (e.g., RDF/S). However, the vast majority of existing legacy data

is not yet in RDF/S or any other SW language. As a matter of fact, most of

the data is physically stored in relational database (RDB) systems and published on

the Web as XML.

SW applications, however, require to view data as virtual RDF, valid instance

of a domain or application specific RDF/S schema, and to be able to

manipulate them with high-level query languages, such as RQL. Therefore, we

propose a middleware system that allows querying RDB data using RQL.

So, our work focuses on specifying a first-order logic encoding for RDF,

namely SWLF, along with constraints preserving RDF/S semantics that will allow

specifying RDB to RDF mappings, composing RQL queries with these mappings -

thus, producing RDB queries (a.k.a query reformulation) - and performing semantic

query optimisations.

In particular, we focus on RQL query containment and minimisation. By

employing minimisation (optimisation) techniques we may reduce the requirements in

time and space, which are two very valuable resources when managing queries,

especially over distributed systems, in order to answer a query. The optimisation

removes RQL query redundancy (by taking advantage of the RDF/S constraints) and

redundancy of the reformulated query (by exploiting constraints of the underlying

RDB and other).

Supervisor: Vassilis Christophides

Associate Professor

Βελτιστοποιώντας και Αναδιατυπώνοντας RQL

Επερωτήσεις στο Σηµασιολογικό Ιστό

Γεώργιος Σερφιώτης

Μεταπτυχιακή Εργασία

Τµήµα Επιστήµης Υπολογιστών, Πανεπιστήµιο Κρήτης

Περίληψη

Ο θεµέλιος λίθος για την πραγµατοποίηση του οράµατος του Σηµασιολογικού

Ιστού είναι η επίτευξη της σηµασιολογικής διαλειτουργικότητας µεταξύ υπαρχόντων

πηγών δεδοµένων σε οργανισµούς ανά τον κόσµο. Με στόχο την περιγραφή της

σηµασιολογίας των πληροφοριών µε ένα µηχανικά αντιληπτό τρόπο, διάφοροι

φορµαλισµοί βασισµένοι σε οντολογίες έχουν πρόσφατα προταθεί (π.χ., RDF/S).

Παρόλα αυτά, η µεγάλη πλειοψηφία των υπαρχόντων δεδοµένων δεν είναι ακόµα σε

µορφή RDF/S ή άλλης γλώσσας του Σηµασιολογικού Ιστού. Για την ακρίβεια, τα

περισσότερα δεδοµένα είναι αποθηκευµένα σε σχεσιακά συστήµατα βάσεων

δεδοµένων (RDB) και δηµοσιευµένα στον Παγκόσµιο Ιστό ως XML.

Παρόλα αυτά, οι εφαρµογές του Σηµασιολογικού Ιστού απαιτούν να βλέπουν

τα δεδοµένα ως εικονική RDF, έγκυρο στιγµιότυπο ενός RDF/S σχήµατος

καθορισµένου πεδίου ή εφαρµογής, και να µπορούν να τα χειρίζονται µε υψηλού

επιπέδου γλώσσες επερώτησης, όπως η RQL. Εποµένως, προτείνουµε ένα σύστηµα

διαµεσολάβησης το οποίο επιτρέπει την επερώτηση σχεσιακών δεδοµένων

χρησιµοποιώντας RQL.

Γι’ αυτό, η δουλειά µας εστιάζεται στον ορισµό µίας λογικής κωδικοποίησης

πρώτης τάξης για την RDF – την SWLF – µαζί µε περιορισµούς που διατηρούν τη

σηµασιολογία της RDF/S. Τα παραπάνω θα επιτρέψουν τον καθορισµό

αντιστοιχήσεων µεταξύ του RDF/S και του σχεσιακού σχήµατος, τη σύνθεση των

RQL επερωτήσεων µε αυτές τις αντιστοιχήσεις – παράγοντας σχεσιακές επερωτήσεις

(αναδιατύπωση επερωτήσεων) – και τη βελτιστοποιήση επερωτήσεων.

Ιδιαίτερη έµφαση δίνεται στον εγκλεισµό και στην ελαχιστοποίηση των RQL

επερωτήσεων. Χρησιµοποιώντας τεχνικές ελαχιστοποίησης (βελτιστοποίησης)

µπορούµε να µειώσουµε τις απαιτήσεις για την απάντηση επερωτήσεων σε χρόνο και

χώρο, οι οποίοι είναι πολύτιµοι πόροι, ιδιαίτερα πάνω από κατανεµηµένα συστήµατα.

Η βελτιστοποίηση εξαλείφει τους πλεονασµούς τόσο από τις RQL επερωτήσεις

(εκµεταλλευόµενη τους RDF/S περιορισµούς) όσο και από τις αναδιατυπωµένες

επερωτήσεις (εκµεταλλευόµενη τους περιορισµούς τις σχεσιακής βάσης δεδοµένων).

Επόπτης Καθηγητής: Βασίλης Χριστοφίδης

Αναπληρωτής Καθηγητής

Στους γονείς µου και

στον αδελφό µου Ανδρέα

Ευχαριστίες
Στο σηµείο αυτό θα ήθελα να ευχαριστήσω τον επόπτη µου κ. Βασίλη

Χριστοφίδη για τα όσα µου προσέφερε στα δυόµιση και πλέον χρόνια της

συνεργασίας µας. Η βοήθεια του ήταν πολύτιµη και η καθοδήγησή του καθοριστική

για την ολοκλήρωση της εργασίας αυτής. Ιδιαίτερα θέλω να τον ευχαριστήσω για τη

συµπαράσταση του στη δύσκολη περίοδο προ της ολοκλήρωσής της. Ελπίζω να

φάνηκα αντάξιος των προσδοκιών του.

 Θα ήθελα να ευχαριστήσω και την κα. Αναστασία Αναλυτή και τον κ.

Γρηγόρη Αντωνίου, τα δύο άλλα µέλη της επιτροπής εξέτασης της µεταπτυχιακής

µου εργασίας, για τις πολύτιµες παρατηρήσεις τους.

 Επίσης, θα ήθελα να ευχαριστήσω το Πανεπιστήµιο Κρήτης και την οµάδα

Πληροφοριακών Συστηµάτων του Ινστιτούτου Πληροφορικής για τα όσα µου

προσέφεραν και όσα αποκόµισα κατά τις σπουδές στην Κρήτη.

 I would like to thank Professor Val Tannen for his contribution in

understanding the idea behind this thesis. Additionally, I would like to thank Alin

Deutsch and Nicola Onose, since by experimenting with their system we had many

questions and they were more than willing to answer them.

Ακόµη, θα ήθελα να ευχαριστήσω τους φίλους µου, ιδιαίτερα αυτούς των

φοιτητικών µου χρόνων (Βάσω, Γιώργο, ∆έσποινα, Ιωάννα, Νίκο και Παναγιώτη) για

όσα περάσαµε µαζί και τη συµπαράστασή τους στις δύσκολες στιγµές. Ιδιαίτερα θα

ήθελα να ευχαριστήσω την Ιωάννα για την επί δύοµιση χρόνια στενή συνεργασία µας

και για την ανοχή της στις αργοπορηµένες µου αφίξεις!

 Το µεγαλύτερο, όµως, ευχαριστώ το αξίζουν οι γονείς µου, ∆ιαµαντής και

Νέλλα, και ο αδελφός µου Ανδρέας για την αµέριστη συµπαράστασή τους και την

εµπιστοσύνη που µου έδειξαν όλα αυτά τα χρόνια. Σας ευχαριστώ πολύ για όλα.

Γιώργος Σερφιώτης

 i

Contents

Contents ..i

List of Tables ...v

List of Figures ..vii

Chapter 1 ..1

Introduction..1

1.1 Motivating Examples ...2

1.2 Introducing the Semantic Web Integration Middleware (SWIM)5

1.3 Organisation...6

Chapter 2 ..9

The Resource Description Framework (RDF)...9

2.1 RDF: Model, Schema and Semantics ..9

2.1.1 RDF Schema ..11

2.1.2 RDF Semantics ..13

2.2 The RDF Query Language (RQL) ...14

2.2.1 Differences between RDF and RQL Semantics...................................15

2.2.2 Basic Queries ...17

2.2.3 Composite Queries...19

2.2.3.1 Schema Navigation ..19

2.2.3.2 Data Navigation ...21

2.2.3.3 Mixed Navigation ..22

2.3 RDF View Language (RVL)..22

2.4 Conclusions..25

Chapter 3 ..27

Semantic Web Logic Framework (SWLF) ..27

3.1 Datalog Rules...27

3.2 Constraints ...28

3.3 First-order Logic Representation for RDF/S ...29

3.3.1 RDF/S Predicates ...29

3.3.2 RDF/S Constraints ...30

3.3.2.1 Basic Constraints ...31

 ii

3.3.2.2 SUB Constraints...32

3.3.2.3 Domain-range Constraints ...33

3.4 Differences between SWLF and RDF/S Semantics.....................................33

3.5 From RDF/S Schemas to SWLF..33

3.5.1 Translating the Facts into Constraints..34

3.6 From RQL Queries to SWLF...36

3.6.1 From RQL Patterns to SWLF ..37

Chapter 4 ..41

RQL Query Optimisation...41

4.1 RQLUCQ Query Containment ...41

4.1.1 Chase Algorithm ..43

4.1.1.1 Stratified-witness ...44

4.1.1.2 Stratified-witness of DEDs ..47

4.1.1.3 Chase Steps ..49

4.1.1.4 Complexity...53

4.1.2 Checking RQLUCQ Query Containment Algorithm53

4.1.2.1 Complexity...56

4.1.3 RQLCORE Query Containment..56

4.1.3.1 Why RQLCORE?..59

4.2 RQLUCQ Query Equivalence ..60

4.2.1 RQLCORE Query Equivalence...62

4.3 RQLUCQ Query Minimisation ..63

4.3.1 Backchase Algorithm...64

4.3.1.1 Complexity...65

4.3.2 Minimisation of RQLUCQ Queries..66

4.3.2.1 Complexity...71

4.3.3 RQLCORE Query Minimisation...71

4.3.4 Simplification of RQL Patterns ...73

4.3.5 Backward Translation to RQL of Minimal Queries76

4.3.5.1 The Case of Minimal RQLUCQ Queries ...76

4.3.5.2 The Case of Minimal RQLCORE Queries ..80

Chapter 5 ..83

RQL Query Reformulation ..83

5.1 From RDBs Schemas to SWLF ...84

 iii

5.1.1 Translating the Mappings into Constraints ..85

5.1.2 Datalog Semantics vs. Constraints Semantics88

5.1.3 Using Functions ...89

5.2 Reformulation Phases ..90

5.2.1 First Phase..90

5.2.1.1 Queries Not Involving Class/Property Interpretations.....................90

5.2.1.2 Queries Involving Class/Property Interpretations............................92

5.2.2 Second Phase ...93

5.2.3 Third Phase ..95

5.2.3.1 Exploiting Additional RDB Information in the Minimisation.........97

5.2.4 Forth Phase: Translating the Query into SQL......................................99

5.2.4.1 Handling of Functions..100

5.2.4.2 Choosing the Minimal Query to Be Executed101

5.2.5 Final Phase: Translating the Results into RDF Data101

5.3 Reformulation’s Soundness, Completeness and Complexity102

Chapter 6 ..103

SWIM’s Architecture...103

6.1 SWIM Query Reformulation Engine ...104

6.1.1 SWLF Compiler...104

6.1.2 MARS ..105

6.1.3 SQL Generator ...106

6.2 Related Work ...106

6.2.1 SWARD ...107

6.2.2 D2RQ ...107

6.2.3 Integration of Relational Sources Using RDF and XML...................108

6.2.4 Integration of Relational Sources using RDF Vocabularies108

6.2.5 FDR2..109

6.2.6 D2R Map..110

6.2.7 ICS-FORTH GRQL Interface..110

6.2.8 Similarity-Based Query Caching ...110

Chapter 7 ..113

Conclusion ...113

7.1 Future Work ...115

Bibliography ..117

 iv

Appendix A..121

RQL Patterns..121

RQL Property Patterns ...121

RQL Class Patterns Not Involving Proper Interpretations123

RQL Property Patterns Not Involving Proper Interpretations123

Appendix B ..125

Termination of Chase...125

Stratified-Witness for Disjunction-free DEDs...125

Termination of Chase with ∆Map ..126

Appendix C ..133

BNF Grammar for Datalog ..133

 v

List of Tables

Table 2-1: RDFS axiomatic triples ..14

Table 2-2: Function examples..18

Table 2-3: Basic RQL class path expressions and their interpretation20

Table 2-4: Basic RQL property path expressions and their interpretations.................21

Table 3-1: First-order schema for RDF ...30

Table 3-2: Basic constraints...31

Table 3-3: SUB constraints ..32

Table 3-4: Domain-range constraints...33

Table 3-5: Class patterns' translation into SWLF ..38

Table 3-6: Property patterns' translation into SWLF ...39

Table 4-1: From simple patterns to more complex property ones77

Table 4-2: From simple patterns to more complex class ones.....................................78

 vii

List of Figures

Figure 1-1: Mediation scenario: Publishing RDB as RDF ..3

Figure 1-2: On the fly creation of RQL query ...4

Figure 2-1: A simple statement's representations ..10

Figure 2-2: Statement example with literal as object...11

Figure 2-3: Definition of a property with multiple domains..15

Figure 2-4: Definition of a subproperty not preserving set inclusion of the range......16

Figure 2-5: Definition of a class as instance of another class......................................17

Figure 2-6: RVL view creation process ...24

Figure 3-1: Class/property reflexivity/transitivity ...31

Figure 3-2: Domain-range constraints ...32

Figure 3-3: An RDF/S schema and its SWLF translation..34

Figure 3-4: Constraints for the CLASS, P_SUB relations of Figure 3-3.....................35

Figure 4-1: Simple graphical containment example ..42

Figure 4-2: Chase illustrative example ..44

Figure 4-3: Chase flow graph ..45

Figure 4-4: PROP & C_SUB constraints for the RDF/S schema of Figure 3-3 where

class "Cubist" gets ignored ..50

Figure 4-5: Class hierarchy rooted on Artist for Example 4.20...................................69

Figure 5-1: The general query reformulation problem ..83

Figure 5-2: Relation database schema ...85

Figure 5-3: RDB→RDF mapping rules in SWLF ...86

Figure 5-4: The constraints corresponding to the C_EXT mappings of Figure 5-387

Figure 5-5: RDF/S Data for Example 5.7 ..91

Figure 5-6: Integrity constraints for the relational schema..97

Figure 5-7: RDF/S data answering the RQLUCQ query..102

Figure 6-1: The ICS-FORTH SWIM architecture ...103

Figure 6-2: The SWIM Query Reformulation Engine ...104

 1

Chapter 1

Introduction

Integration is one of the most pressing and expensive problems faced today by

companies and organisations maintaining a multitude of legacy databases – usually

relational databases – and corresponding applications. These systems usually contain

valuable information and are often still good for supporting specific tasks.

Unfortunately, the information they contain cannot be leveraged by other systems

without considerable effort.

 Until recently, the most common solution to integration was the field to field

mapping, where schemas from two data sources are imported and fields are mapped to

each other. However, this solution has many drawbacks. First of all, it presents

scalability problems, because the number of mappings increases exponentially with

the number of sources. Moreover, the maintenance and evolution of the mappings is

very demanding; each change in one source reflects in all corresponding mappings.

Furthermore, the definition of the mappings presupposes that the person responsible is

familiar with both sources, which usually is not the case.

 A first attempt to overcome these problems was made by moving towards

XML, in order to take advantage of a universal data encoding when integrating legacy

systems in the Web. However, XML does not capture the contextual meaning

(semantics) of the data. Therefore, organisations and companies have started moving

towards semantic technologies; data sources get mapped to domain ontologies, which,

defined using ontology languages, describe the concepts of the domain and the

relationships between them, i.e. the domain’s semantics. Ontologies enable

communication between computer systems in a way that is independent of the

individual system technologies, information architectures and applications. Moreover,

by adopting ontology languages that describe semantics in a machine processable way

– like RDF/S ([MM04]) and OWL ([HM04]), legacy systems can get integrated in the

Semantic Web ([SW01]).

 There exist two approaches to semantic integration: data warehousing and on-

demand integration. In data warehousing all data of the legacy source get translated

CHAPTER 1. INTRODUCTION

 University of Crete, Computer Science Department

2

into data of the language describing the ontology as soon as the mapping procedure is

completed. However, if we take under account the size of legacy databases in

companies and organisations, this approach is often very expensive. Moreover, it

demands constant synchronisation of the data produced with the database. On the

contrary, on-demand integration can prove very useful, because the translation of the

whole database is not needed. Each time a query is posed on the global (domain)

ontology, data are collected from the integrated sources dynamically and outputted as

virtual data of the ontology language.

On-demand integration presupposes a SW integration middleware (SWIM)

that will allow users to: (a) specify correspondences (mappings) between RDB (and

XML, since a lot of relational sources publish their data as virtual XML) sources and

mediated RDF/S schemas, (b) verify that these mappings conform to the semantics of

the employed schemas, (c) reformulate RQL queries against the underlying relational

or XML sources using the mappings, (d) employ in the queries RVL views, (e) check

queries for containment, and (f) perform query optimisations.

Lack of background work on query optimisation and reformulation for RQL or

any other RDF/S query language, the challenge is to find a way to reduce the above

problems into equivalent ones that can exploit already existent knowledge. The

current thesis tries to reveal certain aspects of a SWIM, as well as the necessary

decisions taken in order to make it feasible.

1.1 Motivating Examples

Suppose that there exists a relational database holding information about artefacts,

like their title, creator and exhibition place (bottom part of Figure 1-1). Normally this

data can be queried using SQL. But now, assume an RDF/S cultural schema, part of

which is shown at the top of Figure 1-1. Then, RQL and RVL can be used to query

this mediated schema and define views over it. For example, the query

SELECT Y

FROM {X}creates{Y}

returns the URIs of artefact (including painting and sculpture) resources created by

some artist (perhaps painter or sculptor).

CHAPTER 1. INTRODUCTION

Giorgos Serfiotis

3

Figure 1-1: Mediation scenario: Publishing RDB as RDF

However, this RQL query cannot be answered directly, since there are no

actual data; the RDF/S layer is virtual. Therefore, a middleware is needed that will

reformulate the RQL query into an SQL one based on the relationships between the

relational and the RDF/S schema. A formal way to express such relationships is the

use of mappings from RDB to RDF. Such a reformulation procedure could rewrite the

RQL query to the following SQL query

SELECT a.Title

FROM Artifacts a

WHERE a.Kind=“Painting”

UNION

SELECT a.Title

FROM Artifacts a

WHERE a.Kind=“Sculpture”

CHAPTER 1. INTRODUCTION

 University of Crete, Computer Science Department

4

Figure 1-2: On the fly creation of RQL query

 A similar case is the reformulation of RQL queries to XML queries when a

virtual RDF/S schema is positioned on top of an XML repository.

Additional functionality like semantic optimisation of the RQL queries can

prove very profitable in several cases and should be incorporated in such a

middleware. Although RQL queries written by humans rarely contain any

redundancy, this is not the case with machine-generated queries. Take for example the

graphical RQL interface presented in [ACK04] that generates on the fly queries for

the Semantic Web. Such a tool can be used for creating RQL queries through

navigating on an RDF/S schema, virtual or not.

 Look at Figure 1-2. While navigating through the properties of the RDF/S

schema of Figure 1-1, we select property “creates”. This choice generates the query

SELECT X, Y

FROM {X}creates{Y}

that returns the extent of property “creates”, i.e. all artists and the artefacts they have

created. If for some reason we decide to refine our query by selecting the property

“paints”, a new query returning both the extents of “creates” and “paints” is produced.

However, this conjunction is redundant. It is obvious that

SELECT X, Y

FROM {X}paints{Y}, {X}creates{Y}

CHAPTER 1. INTRODUCTION

Giorgos Serfiotis

5

is equivalent to

SELECT X, Y

FROM {X}paints{Y}

Although this tool for graphically generating RQL queries captures this redundancy

and minimises the query, there is a fragment of RQL it cannot handle. To be more

accurate this tool generates and minimises queries that belong to the fragment of RQL

where queries are built on extended interpretations of classes1 (and/or properties) and

ask exclusively for data information. Therefore, it does not handle queries containing

proper interpretations, like

SELECT X

FROM {X}^paints{Y}, {X}creates{Y}

Additionally, even for the RQL fragment it handles, no theorem has been proved

stating that the minimised queries are minimal, i.e. cannot get further minimised.

Moreover, with the widespread use of the Semantic Web more graphical tools

are expected to appear. Some of them may not offer optimisation services. Therefore,

a framework that will allow minimising declarative RDF/S queries, such as RQL, is

welcome, too.

1.2 Introducing the Semantic Web Integration Middleware
(SWIM)

The previous examples made obvious the need for a Semantic Web integration

middleware (SWIM) that will facilitate users to evaluate queries against virtual

RDF/S schemas and will offer them optimisation services.

The selection of a framework that will treat the above problems uniformly is

crucial. The specification of the mappings along with the ability to exploit well-

established techniques for query reformulation and optimisation leads to the

adaptation of a logic framework based on Linear Datalog, which has a straightforward

1 A class’ (property’s) proper interpretation refers to the direct instances of the class (property). On the

contrary, its extended interpretation refers to the direct instances of itself and of its subclasses

(subproperties).

CHAPTER 1. INTRODUCTION

 University of Crete, Computer Science Department

6

correspondence to the relational theory. The goal is to reduce the RQL to SQL and

RQL to XQuery (XPath) reformulation problems to relational equivalents and reuse

existing methods and results on relational query minimisation and reformulation.

In order to make feasible such a reduction, a relational representation of the

RDF/S model has been incorporated in SWIM, based on which the virtual RDF/S

schemas get translated into Datalog facts and the RDB to RDF mappings into Datalog

rules. Using this information along with a set of predefined constraints capturing the

semantics of RDF/S, the containment, minimisation and reformulation problems can

be solved. The algorithms used to solve the problems are the chase and backchase

[Deu02], which guarantee that both the RQL queries and the reformulated SQL ones

can be minimised.

The current thesis addresses the RDF to RDB aspects of SWIM. The XML

aspects are the subject of [Kof05].

1.3 Organisation

In the previous sections we introduced the problems that will concern us

throughout this thesis and gave some motivation for our concern and an overview of

the middleware whose functionality depends on solving these problems. The rest of

the thesis is organised as follows:

Chapter 2 introduces the typical RDF data model as well as the data model of

RQL and RVL, RDF’s querying and view definition languages, respectively. Special

attention is given on their semantics.

Chapter 3 presents the internal logical framework adopted in the SWIM

middleware. The first-order (relational) relations and constraints used to capture the

RDF data model and semantics are analysed. Then, the differences between the RDF

semantics and the semantics captured by the logical framework are presented. Finally,

the translation of (unions of) conjunctive RQL queries, namely RQLUCQ, and RDF/S

schemas into the internal logical representation is illustrated.

Chapter 4 is the building block of this thesis. It defines the problems of

RQLUCQ containment and minimisation and presents the algorithms used to deal with

them. These problems are translated to equivalent relational ones and solved using the

CHAPTER 1. INTRODUCTION

Giorgos Serfiotis

7

chase and backchase algorithms. Additionally, a fragment of RQLUCQ, namely

RQLCORE, is defined for which the above problems are usually solved easier.

Chapter 5 describes the whole reformulation process that starts with an

incoming RQLUCQ query and outputs equivalent reformulated SQL queries ready to

be executed.

Chapter 6 presents SWIM’s architecture. One by one the components forming

it are described and the choices made are justified. Moreover, relative systems and

works are compared to SWIM.

Chapter 7 discusses some issues that deserve further investigation and, then,

summarises this thesis.

 9

Chapter 2

The Resource Description Framework
(RDF)

RDF constitutes part of the activity coordinated by the World Wide Web Consortium

(W3C). It is a general-purpose language for representing and exchanging descriptive

information about web resources over the World Wide Web, e.g., metadata about

those resources, like titles, dates, and authors of Web pages. The challenge is to

enable the resource descriptions in a formal, interoperable, and humanly readable way

via appropriate languages, without making any assumption about the application

domain or the structure of the described information resources.

2.1 RDF: Model, Schema and Semantics

In RDF the concept “web resource” is generalised in order to capture anything that

can be identified and not necessarily information resources that can be accessed on

the Web. Every web resource is given a unique web identifier called Universal

Resource Identifier or URI2 ([CK04]) and gets described using simple statements. A

statement consists of a specific resource along with a property and the property’s

value, called subject, predicate and object, respectively. For example, in a sentence

stating that “Pablo Picasso painted Guernica”, the URI referring to Pablo Picasso is

the subject, the one referring to the property “painted” is the predicate and the value

“Guernica” is the object. All statements about a specific resource form its description.

There are three ways to represent RDF statements ([MM04]): i) using triples, ii)

using directed labelled graphs ([CK04]) and iii) using XML syntax ([Bec04]). In the

triples notation each statement is written as a triple of subject, predicate and object, in

that order. Alternatively, RDF statements can be modelled as nodes and arcs in a

graph. According to this notation a statement is represented by one node for the

subject, one for the object and an arc for the predicate directed from the subject to the

2 See http://www.w3c.org/Addressing

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

10

object. Note that when using the graph model each resource corresponds to just one

node; if it appears in more than one statement, all property arcs connect to the same

node.

Figure 2-1: A simple statement's representations

To exchange RDF statements in a machine-processable way the Extensible

Markup Language ([BMPS00]), known under the acronym XML, is used; the specific

XML dialect defined is called RDF/XML. The RDF/XML representation of

statements is not necessarily unique; some statements can be modelled using more

than one XML encodings. This is mainly due to the fact that properties can be

modelled both as XML attributes and XML elements and to the fact that predicates

may be nested or not. Figure 2-1 illustrates the three different representations for the

example statement stated previously. Notice that in all the above representations the

resources appear with their URI.

Each RDF statement consists, as previously stated, of a subject, a predicate and

an object. Although, the subject is always a URI reference to the resource being

described (drawn as an oval in the graph representation) and the predicate is always a

URI reference to a property, the object is either another URI reference, case of Figure

2-1, or a literal (drawn as a rectangle in the graph representation), case of Figure 2-2.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

11

Literals are simple strings either combined with a datatype URI (typed literals) or not

(plain literals). Depending on the object’s type, the predicate’s correspondence is

straightforward to a relation or an attribute.

Figure 2-2: Statement example with literal as object

Moreover, people sometimes want to express statements about a collection of

resources or literals. RDF supports three types of containers to make references to

collections, namely bags, sequences and alternatives, where each container is itself an

RDF resource. A bag represents a multi set of values, a sequence represents an

ordered list of values and an alternative represents a group of resources (or literals)

that are alternatives for a property’s single value.

A very useful feature of RDF is the ability to use shorthands instead of full URI

references in the triples representation. This way the space needed for writing the

triples reduces significantly. Having in mind that a full URI reference is formed by a

URI namespace and a local name, when a shorthand is used, a prefix is assigned to the

URI namespace and the local name gets appended to it. The use of shorthands extends

to the RDF/XML representation, too. Observe the example in Figure 2-1ii where four

prefixes are introduced.

2.1.1 RDF Schema

Having seen how statements are formed and how they are represented, the next step is

to find out how the vocabularies of terms employed by those statements are defined;

i.e. how to describe the different classes of resources and the properties used to define

resources and their values. RDF does not provide by default descriptions of

application-specific classes (e.g. Painter) and properties (e.g. paints3); however, it

provides the means needed to describe such classes and properties. These means form

3 By convention in this thesis class names start with uppercase and property names with lowercase.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

12

on their own an RDF vocabulary, i.e. a specialised set of predefined resources,

referred to as RDF Schema ([BG04]). This vocabulary is found at

“http://www.w3c.org/2000/01/rdf-schema#”, which by convention is associated to

prefix rdfs. In other words the RDF Schema provides a type system for RDF.

 The basic notion found in RDF Schema is class that corresponds to the generic

concept of Type or Category. The resources rdfs:Class, rdfs:Resource and the

properties rdf:type, rdfs:subClassOf are used for describing classes:

• Every resource that has as value of the property rdf:type the resource rdfs:Class is

a class according to RDF Schema.

• The property rfd:type is used to state that a resource is an instance of another

resource.

• The property rdfs:subClassOf allows defining class specialisations; its meaning is

that every instance of a class’ specialisation is, also, an instance of the original

class.

The other basic RDF element that allows describing and characterising classes

is property. In RDF Schema properties are described using the RDF Schema class

rdf:Property and the RDF Schema properties rdfs:domain, rdfs:range and

rdfs:subPropertyOf.

• Every resource that has as value of the property rdf:type (is an instance of) the

class rdf:Property is a property according to RDF Schema.

• The property rdfs:domain is used to indicate on which class’ instances a specific

property is applied.

• The property rdfs:range is used to indicate that the values of a particular property

are either given by a typed literal or instances of a designated class.

• The property rdfs:subPropertyOf allows defining property specialisations; its

meaning is that every instance of a property’s specialisation is, also, an instance of

the original property.

Another characteristic of RDF is that properties are defined independently of

class definitions and have, by default, global scope (i.e. may apply to all classes),

unless domain specifications are explicitly stated. Moreover, properties can have

multiple domain and range definitions. However, they cannot have locally different

ranges depending on their domains; any range applies to all domains of the property.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

13

There is, also, a number of other RDF Schema built-in properties that can be

used to provide documentation and other information about an RDF schema or about

instances, like rdfs:comment, rdfs:label, rdfs:seeAll, rdfs:isDefinedBy and

rdfs:seeAlso.

Generally speaking, the statements forming an RDF schema provide additional

descriptive information about resources.

2.1.2 RDF Semantics

As discussed in the previous sections, RDF is intended to be used for expressing

statements about resources in the form of a graph, using specific vocabularies (URIs

of resources, names of properties, classes, etc.). In order to serve this purpose, the

meaning of an RDF graph must be defined in a formal way that will allow

determining with mathematical precision the conclusions that machines can draw

from a given RDF graph. The model theory described in the RDF Semantics ([H04])

is used to define this formal meaning, i.e. specify the formal semantics of RDF/S4.

The RDF Schema’s semantic extensions to the RDF language are defined in the RDF

Semantics, too.

 A model theory assumes that the language refers to a world and describes the

minimal conditions that a world must satisfy in order to assign an appropriate

meaning for every expression in the language. A particular world is called an

interpretation, thus a model theory can be better called “interpretation theory”.

 The exact definitions of the RDF and RDFS interpretations can be found in

[Hay04]. Based on these interpretations several axiomatic rules are defined and

several RDF axiomatic triples are considered. For example, the condition stating

when a resource is a property, as seen in subsection 2.1.1, is an RDF axiomatic rule,

while [<rdf:type> <rdf:type> <rdf:Property>] is an RDF axiomatic triple.

 The definition of class and property extension is needed before proceeding

with presenting some RDFS axiomatic rules. So, a class’ extension is the set of things

that are in the class and a property’s extension is the set of object-value pairs that

satisfy the property. The RDFS axiomatic rules state, between other things, that:

• The rdfs:subPropertyOf’s extension is transitive and reflexive.

4 Term used as an alternative for both RDF and RDF Schema.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

14

• If the triplet [<x> <rdfs:subPropertyOf> <y>] exists, then the extension of x is a

subset of the extension of y.

• The rdfs:subClassOf’s extension is transitive and reflexive.

• If the triplet [<x> <rdfs:subClassOf> <y>] exists, then the extension of x is a

subset of the extension of y.

• If [<x> <rdfs:domain> <y>] and [<u> <x> <v>] exist, then u belongs in the

extension of y.

• If [<x> <rdfs:range> <y>] and [<u> <x> <v>] exist, then v belongs in the

extension of y.

Some RDFS axiomatic triples are shown in Table 2-1.

Table 2-1: RDFS axiomatic triples

<rdf:type> <rdfs:domain> <rdfs:Resource>

<rdfs:domain> <rdfs:domain> <rdf:Property>

<rdfs:range> <rdfs:domain> <rdf:Property>

<rdfs:subPropertyOf> <rdfs:domain> <rdf:Property>

<rdfs:subClassOf> <rdfs:domain> <rdfs:Class>

<rdf:type> <rdfs:range> <rdfs:Class>

<rdfs:domain> <rdfs:range> <rdfs:Class>

<rdfs:range> <rdfs:range> <rdfs:Class>

<rdfs:subPropertyOf> <rdfs:range> <rdf:Property>

<rdfs:subClassOf> <rdfs:range> <rdfs:Class>

2.2 The RDF Query Language (RQL)

RQL5 ([Kar00]) is a typed declarative query language for RDF. It is defined by a set

of basic queries and iterators that can be used to build new ones through functional

composition; it can combine schema paths for executing complicated schema

navigations; not many languages support this type of queries. However, its major

innovation lies in its ability to ask queries both on the schema and data levels. It

5 For the complete RQL syntax, formal semantics and type inference rules, readers are referred to the

RQL online documentation found at: http://139.91.183.30:9090/RDF/RQL/

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

15

supports generalised path expressions featuring variables on labels for both classes

and properties, i.e. nodes and arcs in the graph representation, respectively. Finally, it

provides set-theoretic operators, allows using XML Schema data types, aggregate

functions and arithmetic operations on data values.

Figure 2-3: Definition of a property with multiple domains

2.2.1 Differences between RDF and RQL Semantics

RQL relies on a type system that slightly differs from the axiomatic foundation

adopted by the RDF and RDFS specifications. Moreover, RQL provides additional

constraints to those offered by RDF Model Theory. More precisely, the RQL type

system and semantics (i) make a clear distinction between the different RDF/S

abstraction layers (data, schema and metaschema), (ii) enforce that a property’s

domain and range are always defined and unique (see Figure 2-3), (iii) do not allow

the existence of cycles in the class and property hierarchies (defined using the

rdfs:subClassOf and rdfs:subPropertyOf properties, respectively), (iv) state that the set

inclusion of the domain and range are preserved for specialised properties (see Figure

2-4), (v) do not consider literal types as classes, (vi) do not allow the use of typed

literals in statements in the data layer and (vii) demand that in each statement the

subject and object resources should be (direct or indirect) instances of the domain and

range classes of the property, respectively.

 The first constraint has been introduced to define the appropriate interpretation

functions that allow passing from one abstraction layer to another. The result of this

distinction is that (a) a class must be instance of a metaclass of classes (see Figure

2-5), (b) subsumption relations are not allowed between classes and metaclasses and

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

16

(c) a metaclass cannot be instance of some other node, since abstraction layers higher

than the metaschema are not defined.

Figure 2-4: Definition of a subproperty not preserving set inclusion of the range

The second constraint has been introduced to clarify the semantics of

properties since, when the optional declaration of multiple domains and constraints is

permitted, properties may have as value both resources and literals. This might result

in semantic inconsistencies, since URIs identify resources, while values identify

literals.

The introduction of cycles is, finally, prohibited because they may

considerably affect the manipulation of already created RDF/S schemas and resource

descriptions. Moreover, the fourth constraint ensures that the domains and ranges of

subproperties are subclasses of the ones of their super-properties. If this constraint is

not issued, the existence of cycles can indirectly be implied.

Example 2.1: Figure 2-4 states that d is a subclass of b, which means that every

instance of class d is an instance of class b. Moreover, it states that p is a subproperty

of q, which means that the property extent of p is a subset of q’s. This stands only

when the resources appearing in the property extent of p that are instances of its range

(and domain), namely b, appear in the property extent of q, therefore, are instances of

its range (and domain), namely d. Thus, there is a subset bs of b’s extent and a subset

ds of d’s extent such that every resource in ds is, also, in bs and reversely; a cycle is

implied. The subset bs encompasses all resources used as objects in statements

involving the property q.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

17

Figure 2-5: Definition of a class as instance of another class

Not considering typed literals at the data layer does not rule out the use of

types for literals. Since every property must have a unique range defined, the type

restriction of literals can be provided from the range of the corresponding property.

2.2.2 Basic Queries

The basic RQL queries constitute the building blocks on which more complicated

RQL queries are built. They essentially provide the means to access and browse

through RDF description bases with minimal knowledge of the employed schema(s).

RQL provides a number of functions (see Table 2-2) in order to navigate through an

RDF/S schema. For example, the domain and range functions can be used to retrieve

a property’s definition (its domain and range), while subclassOf and subPropertyOf

can be used to explore the class and property hierarchies, respectively.

 Every RDF/S description base can be viewed as a graph, i.e. as a collection of

nodes and edges. Thus, the basic queries gaining access to the data layer of such

graphs are formed by the appropriate schema names.

Example 2.2: The query

Artist

returns a bag containing all resources of type Artist, i.e. those resources belonging to

its class extent.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

18

Table 2-2: Function examples

Basic Query
Function

Result

domain(creates) Returns the domain class of property creates,

i.e. Artist

range(creates) Returns the range class of property creates, i.e.

Artifact

subClassOf^(Artist) Returns a bag containing the direct subclasses

of class Artist, i.e. Painter, Sculptor

subPropertyOf(creates) Returns a bag containing the subclasses of

property creates, i.e. paints, sculpts

Namespace(Artist) Returns the namespace where class Artist is

defined, i.e. http://www.icom.com/schema.rdf

In order to get the proper extent of a class (or property), meaning only the

nodes (edges) of the graph labelled with the class (property) name, the symbol ‘^’

must be used.

Example 2.3: Likewise, the query

creates

returns a bag of ordered pairs of resources belonging to the extended interpretation of

creates, i.e. its property extent.

 Note that the schema nodes and edges (i.e. the RDF/S schema) can, also, be

queried as normal data using metaclass names. The core RDF metaclasses Class and

Property can be used to retrieve the names of all classes and properties, respectively.

Other basic query functions are namespace, which can be used to retrieve a

namespace, standard theoretic set operators (union, minus, intersect), which can be

applied on collections of the same type and the aggregate functions min, max, avg,

sum and count.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

19

2.2.3 Composite Queries

RQL supports the SELECT-FROM-WHERE filters in a similar way as they

appear in SQL queries. The filters combine the basic queries presented above and

generalised path expressions with variables on nodes and edges to traverse RDF/S

description graphs at arbitrary depths.

The result of an RQL filter is an RDF Bag container value on which iterators

can be defined using nested queries, while ordered tuples can be represented by RDF

Sequences and be accessed through position indexes. As in SQL queries, the SELECT

clause states which variables’ values are projected in the result and constructs ordered

tuples for them. The FROM clause consists of path expressions that define the part of

the RDF/S graph that will participate in the evaluation of the query. Each path

expression corresponds to a series of steps. Each step represents movement in a

particular direction by identifying node labels and can apply one or more predicates to

eliminate nodes that fail to satisfy a given condition. These filtering conditions are

declared at the optional WHERE clause. The result of each step is a list of nodes that

serves as a starting point for the next step. Moreover, the optional clause

NAMESPACE can be used to define prefixes.

The generalised path expressions allow navigating throughout (i) the schema,

(ii) the data, or (iii) both. Furthermore, the path expressions are used to navigate either

based on classes or properties. The basic RQL path expressions are illustrated in

Table 2-3 and Table 2-4. Note that all path expressions appear in their general form

where variables are not assigned to constant values. The same interpretations are used

when variables are valuated with constants; the only difference is that they get

extended with the appropriate equalities between variables and constants. More

variations of the basic path expressions can be created using the symbol ‘^’ on the

paths used for data and mixed navigation. The examples to follow will illustrate the

above functionality.

2.2.3.1 Schema Navigation

The schema navigation involves exploring taxonomies of classes and

properties using appropriate conditions. Take for example the path expression

{$C1}@P{$C2} along with the condition @P = p, where $C1 and $C2 are class

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

20

variables and @P is a property variable. This path allows finding all related schema

classes for the given property p; $C1 and $C2 iterate over subClassOf(domain(p)) and

subClassOf(range(p)), respectively. If we want to retrieve all related schema

properties for a specific class, the path {$C}@P (@P{$D}) along with the condition

$C = … ($D = …) can be used. For each valuation p of @P, the class variable $C

($D) ranges over subClassOf(domain(p)) (subClassOf(range(p))); the results are

filtered and only those properties satisfying the condition for $C ($D) are kept. More

complex schema navigation can take place by combining the path expressions.

Table 2-3: Basic RQL class path expressions and their interpretation

Path

Expression

Interpretation

$C {c | c is a schema class}

$C{$D} {[c, d] | c, d are schema classes, d is a subclass of c}

$C{X} {[c, x] | c a schema class, x in the extended

interpretation of class c}

$C{X; $D} {[c, x, d] | c, d are schema classes, d is a subclass of c,

x is in the extended interpretation of d}

Example 2.4: The query

SELECT $D, @P2

FROM creates{$D}.@P2

is equivalent to the query

SELECT $D, @P2

FROM @P1{$D}, {$D}@P2

WHERE @P1 = creates

For each valuation of $D based on the first path, the second path gets evaluated.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

21

2.2.3.2 Data Navigation

Sometimes we are interested in browsing RDF description bases without taking into

account the domain and range restrictions imposed by schema properties. This is the

case data navigation is used. There are a number of generalised path expressions that

can be used for this kind of navigation. For example, the path $C{X} along with the

constraint $C = c can be used to retrieve the extended interpretation (extent) of a

specific class c. Likewise, the path {X}@P{Y}, @P = p retrieves the extended

interpretation of the given property p. Like in schema navigation, the path expressions

can be combined creating complex queries.

Table 2-4: Basic RQL property path expressions and their interpretations

Path Expression Interpretation

@P {p | p is a schema property}

{$C}@P{$D} {[c, p, d] | p is a schema property, c, d are schema classes, c is

a subclass of p’s domain, d is a subclass of p’s range}

{X}@P{Y} {[x, p, y] | p a schema property, [x, y] in the extended

interpretation of p}

@P{Y; $D} {[p ,y, d] | p is a schema property, d is a schema class, d is a

subclass of p’s range, y is in the extended interpretation of d,

∃x [x, y] is in the extended interpretation of p}

{X}@P{$D} {[x, p, d] | p is a schema property, d is a schema class, d is a

subclass of p’s range, ∃y in the extended interpretation of d,

[x, y] is in the extended interpretation of p}

{X; $C}@P{Y; $D} {[x, c, p, y, d] | p is a schema property, c, d are schema classes,

c is a subclass of p’s domain, d is a subclass of p’s range, x is

in the extended interpretation of c, y is in the extended

interpretation of d, [x, y] is in the extended interpretation of p}

Example 2.5: The RQL query

SELECT X, Y

FROM Painter{X}.creates{Y}

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

22

which is equivalent to

SELECT X, Y

FROM $C{X}, {X}@P{Y}

WHERE $C = Painter and @P = creates

is a complex query example.

When the paths used for data navigation get extended with the use of ‘^’, only

proper interpretations of classes (properties) are considered.

Example 2.6: In order to catch the proper interpretations the last example gets

rewritten as

SELECT X, Y

FROM ^Painter{X}.^creates{Y}

2.2.3.3 Mixed Navigation

RQL allows the combination of schema and data filtering and navigation through the

use of mixed path expressions. Thus, queries like the one in the following example

can be posed.

Example 2.7: The query

SELECT *

FROM {X; $C}creates{Y}

returns the extended interpretation (extent) of property creates while, at the same

time, iterates through the subclasses of the domain of creates so that X is in the

extended interpretation of one of them.

2.3 RDF View Language (RVL)

RVL ([Mag03]) is a view definition mechanism for the Semantic Web. We choose to

support it in our system in order to handle RDF/S views defined for personalisation

reasons on top of other RDF/S schemas. People may not always be interested on the

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

23

global virtual RDF/S schema; therefore, define RVL views over it. Since RQL queries

can be posed on the RVL views, we should be able to check them for containment and

reformulate them into SQL queries as well.

RVL is based on the RDF/S data model and takes advantage of the

expressiveness of RQL. RVL exploits the RQL type system and the abstraction levels

of an RDF/S graph to specify two operators that are able to support all the necessary

functionality. This is its most important advantage.

 Figure 2-6 presents the creation of a virtual RDF/S description schema.

Typically, an RVL view is defined as a virtual RDF schema consisting of a set of

class and property definitions and the hierarchies defined between them. Practically,

an RVL view consists of a set of statements defining parts of the view. A definition

statement refers to the creation of new virtual (meta)classes/properties, to the reuse of

a set of (meta)classes/properties, to member attribution to the virtual

(meta)classes/properties, and to the creation or reuse of subsumption relations

between classes (virtual or not) using expressions of the view definition language.

Being a virtual namespace, an RVL view gets distinguished by a unique URI given by

its creator. This URI constitutes the prefix for the unique identifiers of the virtual

structures. An RVL view’s definition has the form:

[VIEW operator

FROM RQL_path_expression

WHERE filtering conditions

USING NAMESPACE root_schema_namespace]

[……………]

USING NAMESPACE root_schema_namespace]

CREATE NAMESPACE RVL_view_namespace

The FROM-WHERE-USING NAMESPACE clauses are used exactly as in RQL. From

the newly imported clauses, VIEW, when used with one of RVL’s operands, creates in

the virtual schema constructs of the type specified by itself; CREATE NAMESPACE

defines the URI of the namespace defined for the view, like is done for a schema’s

namespace, along with a prefix that will be used as shorthand. This prefix can be used

when defining another view. The VIEW clause is the one that makes the difference

with RQL; while the SELECT clause is used to define which values will be projected

as a result, the VIEW clause defines a virtual RDF schema.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

 University of Crete, Computer Science Department

24

Figure 2-6: RVL view creation process

The two operators supported by RVL are namely the instantiation and the

subsumption operators. The instantiation operator is used to state the type of the new

construct, i.e. whose instance it is. Its general syntax replaces the definition of the

VIEW clause with “VIEW Symbol(Expression)”.

Example 2.8: The declaration

VIEW rdfs:Class(“Artist”)

USING NAMESPACE rdfs=“&http://www.w3c.org/2000/01/rdf-schema#”

is a very simple example of an RVL view defining a virtual class.

The general form of RVL views with the subsumption operator makes use of

the VIEW clause: “VIEW Symbol1<Symbol2>”, which states that Symbol2 is a

subclass (subproperty) of Symbol1.

Example 2.9: The declaration

VIEW Person<Artist>

is the simplest example of an RVL view of this type.

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Giorgos Serfiotis

25

Moreover, the two operators can be combined to form more complex view

definitions.

2.4 Conclusions

Concluding this short introduction to Semantic Web technologies, we can say that

RDF/S disposes an expressive, still simple, model that allows describing metadata

about web resources, e.g. create hierarchies of classes and properties, and favours

reusability of existing descriptions. Moreover, RDF/S is serialised in XML, therefore

native to the Web, and a W3C standard, which ensures its wide acceptance.

However, without equivalently simple and expressive query and view

definition languages, RDF/S’ handiness would be limited. RQL and RVL satisfy this

need as they successfully adopt the model of RDF/S. They allow expressing both

simple and complex queries and views using syntax similar to SQL, therefore,

familiar to the majority of users.

 27

Chapter 3

Semantic Web Logic Framework (SWLF)

The choice of a logic-based framework is crucial in order to support a Semantic Web

middleware for optimising and reformulating RQL queries and RVL views. More

precisely our goal is to establish a framework that will (i) allow reformulating an RQL

query to an SQL query using RDB→RDF mappings, (ii) allow minimising both the

RQL queries given as input and the output SQL queries, (iii) consider during the

reformulations as much information as possible in order to have optimal results – this

information comes in the form of (integrity) constraints, either for the RDF/S schemas

or the underlying relational database schemas, and in the form of materialised views,

either relational or RVL ones – and (iv) provide more fundamental features, like

checking RQL queries for containment and/or equivalence.

 While there has been significant amount of research on relational query

reformulation, there are not many theoretical foundations on RDF/S query

optimisation and reformulation; specifically for RQL queries, there is no background

theory at all. Thus, in order to solve our reformulation problem, we come to a

dilemma; shall we try to make use of existing work on relational query reformulation

or shall we start from scratch? We opt for the first alternative. Therefore, we adopt

Linear Datalog, which is a robust formalism, in our Semantic Web Logic Framework

(SWLF) in order to be compatible with relational theory and to take advantage of the

capability of logical languages to express relationships in generic ways; the latter is

indispensable in a semantic integration middleware. So, in SWLF’s context, the

RDF/S schemas are expressed as Datalog facts and the RDB→RDF mappings, the

RQL queries and the relational and RVL views are expressed as Datalog rules.

3.1 Datalog Rules

 This way the RQL reformulation/optimisation problem reduces to the

relational equivalent. Remember that there is a straightforward correspondence of

linear Datalog rules and UNION-SELECT-PROJECT-JOIN (USPJ) relational

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

28

expressions that are the ones of interest to us (we do not consider nesting, order by,

group by and aggregates). This kind of relational expressions can be seen as unions of

conjunctive queries.

Definition 3.1: A query q over a relational schema RS has the form

() ()
1

: ,
l

i i
i

q x xϕ ψ
=

−U

where x, ψi are tuples of variables and φi are conjunctions of relational atoms of the

form R(ω1, ..., ωl) belonging to RS and equality atoms of the form ω=ω’, where ω1,

..., ωl, ω, ω’ are variables or constants.

As a result, all available background theory on relational query optimisation

gets exploited; problems like query containment, query composition, query rewriting

using views and query minimisation have been proven to be algorithmically solvable

for the kind of queries that interests us in the presence of certain classes of constraints.

3.2 Constraints

Constraints play a fundamental role in relational theory. They express relationships

that must hold between data in relational databases. Thus, they can be used in multiple

ways for integrity checking – which is how they got their name “integrity

constraints”, query optimisation via semantics, cooperative answering via semantics,

database combination in a semantically consistent manner, etc. ([GGGM98]). They

usually come in the form of (primary) keys, which are functional dependencies6, and

foreign keys, which are inclusion dependencies.

 For the RQL containment, minimisation, and reformulation problems we both

introduce constraints on the relational scenario capturing RDF/S and exploit integrity

constraints coming from the underlying relational databases. Thus, we consider a

fairly large class of constraints in SWLF in order to fully take advantage of their

functionality, namely disjunctive embedded dependencies (DEDs), as were introduced

in [Deu02].

6 [AHV95] provides an analytical classification of first-order (relational) constraints.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

29

Definition 3.2: A disjunctive embedded dependency has the general form

() ()



 ∃∨→∀

= iii

l

i
xxx ψϕψϕ ,'

1

where x, ψi are tuples of variables and φ, φi
’ are conjunctions of relational atoms of

the form R(ω1, ..., ωl) and equality atoms of the form ω=ω’, where ω1, ..., ωl, ω, ω’

are variables or constants; φ may be the empty conjunction.

The constraints are named DEDs after the classical embedded dependencies

(EDs) contained when l=1 ([AHV95]).

The definition of Linear Datalog as the language for representing the RDF/S

schemas, the RVL views, the RDB→RDF mappings and the RQL queries is strictly

related to the class of constraints considered. Every Datalog fact and rule gets

translated into DEDs as will be illustrated later.

3.3 First-order Logic Representation for RDF/S

SWIM’s logic-based framework (SWLF) should capture RDF/S semantics and

queries, as well as facilitate the expression of the mappings. Thus, a set of first-order

relations7 (predicates) is used for representing RDF/S schemas along with a set of

first-order constraints preserving the RDF/S semantics.

3.3.1 RDF/S Predicates

Definition 3.3: The first-order schema for describing RDF/S documents is a set R of

relations, where R={CLASS, PROP, C_SUB, P_SUB, C_EXT, P_EXT}. Each relation

Ri consists of a set Ai of attributes as shown in Table 3-1. In order to enhance clarity

three basic types are used forming the set T={resource, property, class}. Each

attribute Aij has assigned to itself one type Ti.

The intuition behind the relations is pretty much obvious:

• CLASS(c) iff c is an RDF/S schema class

• PROP(c, p, d) iff p is a RDF/S schema property with domain c and range d

7 The terms ‘first-order’ and ‘relational’ are used alternatively. This is possible due to the

correspondence between relational expressions and first-order logic queries (FOL) as stated in [CM77].

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

30

• C_SUB(d, c) iff d is a subclass of c

• P_SUB(q, p) iff q is a subproperty of p

• C_EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct instance)

of c

• P_EXT(x, p, y) iff the pair (x, y) is in the proper extent (i.e., it is a direct instance)

of p.

It should be noted that class extents do not have to be disjoint, i.e., they might

overlap. The same goes for property extents.

Table 3-1: First-order schema for RDF

Relation Type

CLASS Set〈name: Class〉

C_SUB Set〈subC: Class, class: Class〉

C_EXT Set〈class: Class, inst: Resource〉

PROP Set〈subject: Class, predicate: Property, object: Class〉

P_SUB Set〈subP: Property, prop: Property〉

P_EXT Set〈subject: Resource, predicate: Property, object: Resource〉

The relations CLASS, PROP, C_SUB and P_SUB are used for representing an

RDF/S schema and, thus, constitute Datalog facts. On the contrary, the C_EXT and

P_EXT relations represent the RDF/S resource descriptions and are used in the

RDB→RDF mapping rules. These mappings populate the C_EXT and P_EXT

relations, i.e. state how the underlying relational data can be published as RDF data.

3.3.2 RDF/S Constraints

Although the above predicates capture successfully RDF/S, they provide no

information about the semantics of RDF/S schemas and resource descriptions; they

cannot ensure that a valid RDF/S schema is being modelled. Thus, a set of DEDs,

namely δMod, has been adopted for stating and preserving RDF/S semantics. These

constraints can be separated in three categories: basic constraints, sub (hierarchy)

constraints and domain-range constraints.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

31

Table 3-2: Basic constraints

Description Formal Definition

 Every resource in the extent of a class

implies the existence of the corresponding

class

∀c, x C_EXT(c, x) → CLASS(c)

 The subclass relationship relates

classes
∀c, d C_SUB(d, c) → CLASS(c) ∧

CLASS(d)

 The domain & range of every property

is a class
∀c, p, d PROP(a, p, b) → CLASS(a) ∧

CLASS(b)

 The domain & range of every property

is unique
∀a, p, b, c, d PROP(a, p, b) ∧

PROP(c, q, d) ∧ p = q → a = c ∧ b = d

 Every statement in the extent of a

property implies the existence of the

corresponding property

∀x, p, y P_EXT(x, p, y) → ∃c, d

PROP(c, p, d)

 The subproperty relationship relates

properties
∀p, q P_SUB(p, q) → ∃a, b, c, d

PROP(a, p, b) ∧ PROP(c, q, d)

Figure 3-1: Class/property reflexivity/transitivity

3.3.2.1 Basic Constraints

This category hosts some general constraints (see Table 3-2), which are more or less

obvious.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

32

Table 3-3: SUB constraints

Description Formal Definition

 Every class is a subclass of itself

(reflexivity) (Figure 3-1i)
∀c CLASS(c) → C_SUB(c, c)

 The subclass relationship is

transitive (Figure 3-1i)
∀a, c, e C_SUB(e, c) ∧ C_SUB(c, a)

→ C_SUB(e, a)

 Every property is a sub-property of

itself (reflexivity) (Figure 3-1ii)
∀c, p, d PROP(c, p, d) → P_SUB(p, p)

 The sub-property relationship is

transitive (Figure 3-1ii)
∀p, q, r P_SUB(p, q) ∧ P_SUB(q, r)

→ P_SUB(p, r)

A class is both subclass and super-

class of itself only (antisymmetry)
∀a, c C_SUB(c, a) ∧ C_SUB(a, c)

→ a=c

 A property is both subproperty and

super-property of itself only

(antisymmetry)

∀p, q P_SUB(q, p) ∧ P_SUB(p, q)

→ p=q

Figure 3-2: Domain-range constraints

3.3.2.2 SUB Constraints

The SUB constraints refer to class/property hierarchy (Table 3-3). Both the C_SUB

and P_SUB relations are reflexive, transitive and antisymmetrical.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

33

3.3.2.3 Domain-range Constraints

This category contains two constraints referring to properties’ domains and ranges

(see Table 3-4).

Table 3-4: Domain-range constraints

Description Formal Definition

 In a valid RDF description schema the

domain (range) of every sub-property is

subsumed by the domain (range) of its

super-property (Figure 3-2i)

∀a, p, b, c, q, d PROP(a, p, b) ∧

PROP(c, q, d) ∧ P_SUB(q, p) →

C_SUB(c, a) ∧ C_SUB (d, b)

 In a valid RDF description base the

subject/object resources in every statement

are (direct or indirect) instances of the

property’s domain/range classes (Figure

3-2ii)

∀a, p, b, x, y PROP(a, p, b) ∧

P_EXT(x, p, y) → ∃c, d C_SUB(c, a)

∧ C_SUB (d, b) ∧ C_EXT(c, x) ∧

C_EXT(d, y)

3.4 Differences between SWLF and RDF/S Semantics

SWLF succeeds in almost fully capturing the RDF/S type system and semantics

adopted from RQL (see subsection 2.2.1). Thus, it presents almost the same

differences to the RDF/S Model Theory as RQL Semantics does. The only difference

rises in the handling of literal datatypes. According to RDF/S Model Theory, literal

datatypes are classes. Nevertheless, while in RQL they are not considered as classes,

in SWLF they are. However, in contrast to RDF/S Model Theory, datatype classes are

not considered to be subclasses of class rdfs:Literal.

3.5 From RDF/S Schemas to SWLF

Having defined SWLF, the first step that needs to be taken for checking either RQL

query containment or reformulating/minimising an RQL query into SQL queries is

passing from the RDF/S schema to SWLF. This means that all information

concerning an RDF/S schema has to be translated in terms of the CLASS, PROP,

C_SUB and P_SUB relations. The procedure is rather straightforward:

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

34

Figure 3-3: An RDF/S schema and its SWLF translation

• For every RDF/S class c, the fact CLASS(c) is true and is added in the Datalog

program

• For every RDF property p having as domain class c and range class d, the fact

PROP(c, p, d) is true and gets added in the Datalog program

• For every class d that is connected to a class c through the property

rdfs:subClassOf, the fact C_SUB(d, c) is true and gets added in the Datalog

program

• For every property q that is connected to a property p through the property

rdfs:subPropertyOf, the fact P_SUB(q, p) is true and gets added in the Datalog

program

Example 3.1: Following the above procedure the RDF/S schema introduced in Figure

3-3 translates into the SWLF facts presented in the same figure.

3.5.1 Translating the Facts into Constraints

The algorithms for solving the containment (see section 4.1) and minimisation (see

section 4.3) problems demand that all information (except the query) is passed as

input in the form of constraints. Thus, the next step for SWIM is to translate the

Datalog facts describing the RDF/S schema into DEDs. In order to fully capture the

intended meaning of the facts, for each SWLF predicate modelling RDF/S schemas

(CLASS, PROP, C_SUB, P_SUB) one constraint universally quantifying the

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

35

predicate’s variables and many existentially quantifying them are needed8. The

existentially quantifying constraints advertise the existence of the RDF/S schema’s

classes, properties and hierarchy relationships, while the universally quantifying ones

state that these are the only classes, properties and hierarchy relationships needed to

describe the RDF/S schema.

Figure 3-4: Constraints for the CLASS, P_SUB relations of Figure 3-3

With respect to the general form of DEDs, each universally quantifying

constraint has the form

() ()



 ∨→∀

=
xxx i

l

i

'

1
ϕϕ

where φ is the SWLF predicate and each φi
’ is a conjunction of equality atoms. Each

existentially quantifying constraint has the form

()ψψϕ '∃

where φ’ is a conjunction of one relational atom and possibly many equality atoms.

The latter form is equivalent to

TRUE ← φ’(ψ)

where ψ is a tuple of constants. Throughout this thesis we use the former notation.

8 In the rest of this thesis these constraints will be referred to as universally (existentially) quantifying

constraints.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

36

The constraints for C_SUB (P_SUB) take under consideration, additionally to

the facts, all the C_SUB (P_SUB) tuples following from the relation’s reflexivity and

transitivity. Figure 3-4 illustrates the constraints corresponding to part of the RDF/S

schema of Figure 3-3 (only the CLASS, P_SUB predicates are considered).

3.6 From RQL Queries to SWLF

Conjunctive RQL queries – i.e. SELECT-FROM-WHERE ones – not using aggregate

functions, nesting and negation can be seen in a rule-based formalism, which is

compatible to Datalog; the only difference is that instead of first-order predicates,

RQL path expressions9 are used. In the rest of this thesis we will focus on this

fragment of RQL, namely RQLCONJ, extended with union (RQLUCQ).

Definition 3.4: An RQLCONJ query has the general form: ans(Ū):- …, Ei(Ūi), …,

Uim=Ujn, …. The rule’s head consists of the query’s name ans and the tuple Ū of the

returned variables; the rule’s body consists of a conjunction of RQL patterns Ei(Ūi)

and equalities Uim=Ujn between variables and/or constants. Each Ūi involves the

variables Xi, $Ci, @Pi, Yi, $Di – where @Pi is a property variable, $Ci and $Di are

class variables, Xi and Yi are resource variables, as we have already seen – or a

subset of them.

The above definition of RQLCONJ queries extends in order to comprise queries

involving union.

Definition 3.5: An RQLUCQ has the general form

Uk kbodyUans −:)(

where ans(Ū) and bodyk are given from the definition above.

The passing from RQLUCQ queries in the SELECT-FROM-WHERE

formalism into RQLUCQ queries in the rule formalism, which facilitates their

translation to SWLF, demands that a normalisation phase edges in reducing the

9 In the rest of this thesis the terms ‘RQL path expression’ and ‘RQL pattern’ are used alternately since

they are synonymous.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

37

complex path expressions found in the FROM clause into the general form of

RQLUCQ queries.

Example 3.2: Observe the RQLUCQ query

SELECT X

FROM {X}paints.exhibited{Z}

WHERE Z=“http://www.louvre.fr”

Initially, the normalisation reduces it to the equivalent query

SELECT X

FROM {X}paints{Y}, {Y}exhibited{Z}

WHERE Z=“http://www.louvre.fr”

By replacing the constants found in the patterns with variables and adding the

corresponding equalities we get:

SELECT X

FROM {X}@P1{Y}, {Y}@P2{Z}

WHERE @P1=paints and @P2=exhibited and Z= “http://www.louvre.fr”

It is easy to derive the rule that is equivalent to the above RQL query:

ans(X) :- {X}@P1{Y}, {Y}@P2{Z}, @P1=paints, @P2=exhibited,

Z=“http://www.louvre.fr”

3.6.1 From RQL Patterns to SWLF

When the RQLUCQ query has been translated in a rule-based formalism, the only step

remaining for passing to a Datalog rule is replacing the patterns with first-order

predicates; the goal is to express the parts of the RDF/S graph that participate in the

evaluation of the query, as defined using the patterns, in terms of the SWLF relations.

Thus, a translation for each RQL pattern to SWLF is needed based on RQL patterns’

semantics and SWLF semantics.

Definition 3.6: RQL class patterns, i.e. those facilitating navigation through a

schema’s classes, are translated in SWLF as shown in Table 3-5.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

38

Example 3.3: The class pattern $C(X) translates to C_SUB(d, c), C_EXT(d, x).

Remember that C_EXT(d, x) returns only the direct instances of class c; this is why

the C_SUB(d, c) relation is introduced: to iterate through the subclasses of class c.

Definition 3.7: RQL property patterns, i.e. those facilitating navigation through a

schema’s properties, are translated in SWLF as shown in Table 3-610.

Example 3.4: Using the translations the example presented above (section 3.6)

translates to:

ans(x) :- P_SUB(q1, p1), P_EXT(x, q1, y), P_SUB(q2, p2), P_EXT(y, q2, z), p1=“paints”,

p2=“exhibited”, z=“www.louvre.fr”

Table 3-5: Class patterns' translation into SWLF

Class Pattern SWLF Translation

$C

^$C

CLASS(c)

$C{$D}

^$C{$D}

C_SUB(d, c)

$C{X} C_SUB(d, c), C_EXT(d, x)

^$C{X} C_EXT(d, x)

$C{X; $D} C_SUB(d, c), C_SUB(e, d), C_EXT(e, x)

^$C{X; $D} C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), C_EXT(c, x)

$C{X; ^$D} C_SUB(d, c), C_EXT(d, x)

^$C{X; ^$D} C_SUB(d, c), C_EXT(c, x), C_EXT(d, x)

Concluding this chapter and having in mind the relational schema R and the

constraints capturing RDF/S semantics (δMod) we can redefine the terms description

base and description schema introduced in [ACK+02]. The new definitions will be

considered throughout the rest of the thesis.

Definition 3.8: An RDF/S description schema DS in SWLF is an instantiation of the

relational schema RS={CLASS, PROP, C_SUB, P_SUB} satisfying δMod.

10 Not all property patterns’ translations appear in the table. See Appendix I for the complete list.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Giorgos Serfiotis

39

Definition 3.9: An RDF/S description base DB in SWLF given a DS is an

instantiation of the relational schema RB={C_EXT, P_EXT} satisfying δMod.

Table 3-6: Property patterns' translation into SWLF

Property Pattern SWLF Translation

@P

^@P

PROP(a, p, b)

{$C}@P{$D}

{$C}^@P{$D}

PROP(a, p, b), C_SUB(c, a), C_SUB(d, b)

{X}@P{Y}

{X}@P

@P{Y}

P_SUB(q, p), P_EXT(x, q, y)

{X}^@P{Y}

{X}^@P

^@P{Y}

P_EXT(x, p, y)

{X}@P{Y; $D}

{X}@P{$D}

@P{Y; $D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)

{X}^@P{Y; ^$D}

^@P{Y; ^$D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(d, b), C_EXT(d, y)

{X ; $C} @P{Y ; $D}

{X ; $C} @P{$D}

{$C} @P{Y ; $D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c),

C_SUB(f, d), C_EXT(e, x), C_EXT(f, y)

{X ; ^$C}^ @P{Y ;

^$D}

PROP(a, p, b), P_EXT(x, p, y), C_SUB(c, a),

C_SUB(d, b), C_EXT(c, x), C_EXT(d, y)

In the rest of this thesis we will refer to two sets of constraints, namely δRDF

and ∆RDF, depending on the problem we want to solve; both are based on the

constraints preserving RDF/S semantics (δMod) and those extracted from an RDF/S

description schema.

Definition 3.10: ∆RDF is the set of DEDs formed from δMod and all the constraints

extracted from a specific RDF/S description.

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

 University of Crete, Computer Science Department

40

Definition 3.11: δRDF is a set of disjunction-free DEDs. It is the subset of ∆RDF that

does not include the universally quantifying constraints.

 41

Chapter 4

RQL Query Optimisation

Throughout this chapter we will study the problems of RQL query containment,

equivalence and minimisation using two algorithms, the Chase and the Backchase.

We have managed to identify several subcases of these problems by adjusting the

fragment of RQL considered to the input information given in the form of constraints.

We consider three sets of constraints (δMod, δRDF, ∆RDF) and two fragments of RQL

(RQLUCQ and its subset RQLCORE).

 In section 4.1 we study the containment problem for RQLUCQ queries

(subsection 4.1.2), where we have full knowledge of the RDF/S schema - provided by

∆RDF, and proceed with the same problem for RQLCORE queries (subsection 4.1.3),

where we have partial knowledge of the RDF/S schema - provided by δRDF. Then, we

take a quick look over the equivalence problem for the same RQL fragments (section

4.2). We, also, present in section 4.3 how queries originating from both fragments of

RQL can get minimised by considering ∆RDF (subsection 4.3.2) and δRDF (subsection

4.3.3), respectively. Finally, we show how we can simplify (minimise) RQLUCQ

queries without having knowledge of a specific RDF/S schema (subsection 4.3.4).

This is the case where only the knowledge of RDF/S semantics is provided through

δMod.

4.1 RQLUCQ Query Containment

All problems aforementioned are based on containment of RQLUCQ queries. Thus, it

has to be dealt first.

Definition 4.1: A RQLUCQ query Q1 is contained in a RQLUCQ query Q2 (Q1⊆Q2)

given an RDF description schema DS iff for every description base DB conforming to

DS the result of Q1 is contained in that of Q2 (∀DB Q1(DB) ⊆ Q2(DB)).

In some cases the containment is obvious. This is the case of simple queries

that do not involve complex paths.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

42

Figure 4-1: Simple graphical containment example

Example 4.1: It is easy to figure out that the query

SELECT X

FROM {X; Painter}paints{Y; Painting};

is contained in

SELECT X

FROM {X; Painter}creates{Y; Painting};

because it is pretty straightforward from the RDF/S semantics that when “a painter

paints a painting”, at the same time he creates a painting.

 Alternatively, in this example, the containment can easily be spotted if the two

RQLUCQ queries are seen as graphs, where the nodes correspond to classes and the

edges to properties. The subject node of the second query subsumes (is a superclass

of) the corresponding one of the first query. The same goes for the object nodes, too.

Moreover, the property edge of the second query subsumes (is a superproperty

of) the corresponding one of the first query. Thus, all instances satisfying the first

query satisfy the second one, too. Figure 4-1 illustrates the containment check

between the two graphs.

However, deciding containment of more complex queries is not trivial. There

will be, also, cases where even seeing the queries as graphs will not allow checking

containment. Moreover, there exist many applications that need dealing with

containment in an automated way. Thus, the definition of a sound and complete

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

43

algorithm for checking RQLUCQ query containment is mandatory. This chapter’s goal

is to provide such an algorithm that will solve these problems.

4.1.1 Chase Algorithm

The core algorithm of this work is the chase [Deu02]. Chasing a query equals

applying a sequence of chase steps to the query. Its handiness originates from the fact

that all input information is given in the form of DEDs. The definition of a chase step

demands that the notion of homomorphism is familiar to the reader.

Definition 4.2: A homomorphism from φ1 into φ2 is a mapping h from the variables of

φ1 into those of φ2 such that:

i. For every equality atom ω = ω’ in φ1, h(ω) = h(ω’) follows from the equality

atoms of φ2 and

ii. For every relational atom R(ω1, ..., ωl) in φ1, there is an atom R(υ1, …, υl) in φ2

such that υi = h(ωi) follows from the equality atoms of φ2.

Definition 4.3: Given two conjunctive queries Q1(x1, …, xn) ← φ1(x1, …, xn, y1, …, ym)

and Q2(u1, …, un) ← φ2(u1, …, un, υ1, ..., υk), where φ1, φ2 are conjunctions of

relational and equality atoms, a containment mapping from Q1 to Q2 is a

homomorphism m from φ1 to φ2 such that m(xi) = ui for 1≤i≤n.

Definition 4.4: Let d be a DED (see Definition 3.2), Q be a conjunctive query q(x) :-

φq(x, ψ) (see Definition 3.1) and h be a homomorphism from φ into φq. We say that the

chase step of Q with d using h is applicable if h allows no extension that is a

homomorphism from φ ∧ φi
’ into φq for any l ≥ i ≥ 1. In this case, the result of

applying this chase step is the union of queries ii
QU , where each Qi is defined as

qi(x) :- φq ∧ φi
’(h(x1), …, h(xn), fi,1, …, fi,ki) where the fi,j’s are the fresh variables.

The above definition of a chase step ensures that no chase step gets applied

when its result is already present in the query.

Example 4.2: The query Q(x) :- A(x, y), B(x, z) chases with the DED

∀x∀y A(x, y)→V(x)

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

44

rendering query Q(x) :- A(x, y), B(x, z), V(x).

Figure 4-2: Chase illustrative example

When the query has been chased with all available dependencies (constraints)

and no more chase steps apply, we say that the chase has ended. The resulting query is

called the universal plan.

Example 4.3: Figure 4-2 illustrates the basic idea behind chase without taking into

account variables. It contains a query and two constraints. The first constraint states

that every predicate A implies the existence of a predicate B. Thus, the query Q

involving a predicate A gets enriched with a predicate B resulting in query Q1.

Additionally, the concurrent presence of both a predicate A and a predicate B implies

the existence of a predicate V according to the second constraint. Thus, the query Q1

turns into Q2 by adding a predicate V. Lack of other constraints the chase ends

rendering Q2 as the universal plan of Q.

Unfortunately, the chase of any conjunctive query with any set of embedded

dependencies is not guaranteed to terminate ([AHV95]). Obviously, this result

extends for unions of conjunctive queries chasing with DEDs. Thus, appropriate

restrictions that will guarantee termination are needed.

4.1.1.1 Stratified-witness

In order to overcome the lack of guarantees for the termination of chase with

arbitrary embedded dependencies, [Deu02] identified a property, namely stratified-

witness; the chase with constraints satisfying this property is guaranteed to terminate.

The stratified-witness property is founded on the notion of the chase flow graph of a

set C of constraints.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

45

Figure 4-3: Chase flow graph

Definition 4.5: The chase flow graph G = (V, E) of a set C of constraints is a directed

edge-labelled graph whose labels have either the value ∀ or ∃. G is constructed as

follows: for every pair of relations R, R’ of arities a, a’ and every constraint

() ()'
1 1 '... ,..., ,..., ...ax R u u R αυ υ

→
 ∀ ∧ ∧ → ∧ ∧ 

in C, E contains the edges ()'

1 ,1 '
,i j i a j a

R R
≤ ≤ ≤ ≤

. Also, whenever the equality x=y appears

in the conclusion of the implication and x, y appear as the ith, jth component of R, R’,

respectively, E contains the edge ()',i jR R . Moreover, if for some j, the variable υj is

existentially quantified, the edges ()'

1
,i j i a

R R
≤ ≤

 are labelled with ∃; otherwise they are

labelled with ∀.

According to [Deu02] the set C of constraints has stratified-witness if none of

the cycles in its chase flow graph contains a ∃-labelled edge.

Example 4.4: Given the following two constraints, Figure 4-3 presents their chase

flow graph.

∀x∀z [B(x, z) → ∃y A(x, y)]

∀x [C(x) → ∃z B(x, z)]

It follows from the flow graph that the two constraints satisfy the stratified-witness

property.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

46

The intuition behind the endless execution of chase steps lack of stratified-

witness is simple; each added predicate A in the query through a sequence of chase

steps (those applied using the constraints that form the cycle) causes the addition of a

new predicate A, which in its turn causes the addition of another predicate A, etc.

Although the definition of a chase step prohibits executing steps that will add

predicates already present, the introduction of new variables during the chase steps

renders the prevention inactive.

Example 4.5: The chase flow graph corresponding to the following constraints

contains a cycle with a ∃-labelled edge.

∀x∀y [A(x, y)→ ∃z B(y, z)]

∀x ∀y [B(x, y)→ A(x, y)]

The chase of query Q(X) :- A(a1, a2) with them does not terminate as shown below

Q(X) :- A(a1, a2)

→ Q1(X) :- A(a1, a2), B(a2, a3)

→ Q2(X) :- A(a1, a2), B(a2, a3), A(a2, a3)

→ Q3(X) :- A(a1, a2), B(a2, a3), A(a2, a3), B(a3, a4)

→ Q4(X) :- A(a1, a2), B(a2, a3), A(a2, a3), B(a3, a4), A(a3, a4)

→ …

Although embedded dependencies (EDs) were the initial application domain

for the stratified-witness property, the latter can be used with disjunction-free DEDs,

i.e. DEDs consisting of a single conjunctive query, too. Disjunction-free DEDs differ

from EDs in that they allow (a) equalities in the left-hand side of the constraints, (b)

equalities in the right-hand of the constraints involving existentially quantified

variables, and (c) both variables and constants in the atoms used. We illustrate in

Appendix B why this is possible.

Proposition 4.1: The chase of a conjunctive query Q with a set C of disjunction-free

DEDs terminates if the chase flow graph of C has no cycle containing an ∃-labelled

edge.

Using the above proposition we get the following definition.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

47

Definition 4.6: A set C of disjunction-free DEDs satisfying the conditions of the

above proposition satisfies the stratified-witness property.

4.1.1.2 Stratified-witness of DEDs

We will start by studying the case of chasing a conjunctive query Q with a finite set C

of m DEDs. Each DED di can be seen as a union of several disjunction-free EDs dij

whose number ni is finite, too. The “worst case scenario” is that by combining m dij’s,

one for each i, the chase flow graph of these m dij’s will contain at least one cycle with

at least one ∃-labelled graph. This scenario will take place when the chase steps

corresponding to the di’s whose dij’s participate in the sequence presented in such a

flow graph, get applied. The result will be an infinite number of chase steps. Under

any other circumstance, the finite number of DEDs and disjunction-free DEDs in each

DED guarantees termination of the chase.

 Note that each combination cannot have more than one dij from each di,

because there is no way that in a chase sequence the same predicates will trigger twice

the same constraint due to the definition of chase step. Since one (or more)

predicate(s) produced through chasing some initial predicate(s) cannot trigger the

same constraints – this is the case of cycle in the chase flow graph – the chase will

terminate.

Proposition 4.2: The chase of a conjunctive query Q with a set C of DEDs terminates

if for all combinations of m dij’s, one for each i, stratified-witness is preserved. Thus,

()mnO max checks for stratified-witness are necessary. (C = {di | 1≤i≤m}, ij

n

ji dd
i

1=
∨= ,

nmax=max(ni))

The following definition follows from the above proposition.

Definition 4.7: A set C of DEDs satisfying the conditions of the above proposition

satisfies the stratified-witness property.

Since a union query consists of a finite number of conjunctive queries, if the

DEDs satisfy the stratified-witness property, the chase terminates.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

48

Proposition 4.3: The chase of a union of conjunctive queries with a set of DEDs

satisfying the stratified-witness property terminates.

Example 4.6: Let’s see an example where the extension of the stratified-witness for

DEDs can be used to locate a set of constraints that may not allow a query’s chase to

terminate. Imagine the following set D of constraints

(d1) ∀x∀y [A(x, y) → B(x, y) ∨ C(x, y)]

(d2) ∀x∀y [B(x, y) → F(x, y) ∨ ∃z G(x, y, z)]

(d3) ∀x∀y [C(x, y) → D(x, y) ∨ ∃z E(y, z)]

(d4) ∀x∀y [E(x, y) → A(x, y)]

We have to check eight different chase flow graphs for cycles containing at least one

∃-labelled edge built using the following sub-constraints:

(d11) ∀x∀y [A(x, y) → B(x, y)] (d12) ∀x∀y [A(x, y) → C(x, y)]

(d21) ∀x∀y [B(x, y) → F(x, y)] (d22) ∀x∀y [B(x, y) → ∃z G(x, y, z)]

(d31) ∀x∀y [C(x, y) → D(x, y) (d32) ∀x∀y [C(x, y) → ∃z E(y, z)]

(d4) ∀x∀y [E(x, y) → A(x, y)]

The constraints d12, d21 (or d22), d32 and d4 create a cycle containing an ∃-labelled

edge. Therefore, we cannot guarantee termination of the chase. Let’s see now what

will happen if the query

ans(x) :- A(x, y)

gets chased with D

ans(x) :- A(x, y)

→ ans(x) :- A(x, y), B(x, y)

∨ ans(x) :- A(x, y), C(x, y)

→ ans(x) :- A(x, y), B(x, y), F(x, y) (no more chase step for this query)

∨ ans(x) :- A(x, y) , B(x, y), G(x, y, z) (no more chase step for this query)

∨ ans(x) :- A(x, y), C(x, y), D(x, y) (no more chase step for this query)

∨ ans(x) :- A(x, y), C(x, y), E(y, z)

→ ans(x) :- A(x, y), B(x, y), F(x, y) (no more chase step for this query)

∨ ans(x) :- A(x, y) , B(x, y), G(x, y, z) (no more chase step for this query)

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

49

∨ ans(x) :- A(x, y), C(x, y), D(x, y) (no more chase step for this query)

∨ ans(x) :- A(x, y), C(x, y), E(y, z), A(y, z), …

The chase of the last conjunctive query does not terminate and can go on for ever.

4.1.1.3 Chase Steps

Applying the chase in the RDF/S scenario, the chase steps will very often produce

unsatisfiable queries, i.e. queries implying equality of distinct variables.

Example 4.7: Chasing query

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”

with the universally quantifying constraint for P_SUB in Figure 3-4 using the

homomorphism {subP→q, prop→p} results in

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”, p=“creates”

∪ ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”, p=“paints”

∪ ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“creates”, p=“creates”

The chased query is a union of three conjunctive queries. However, the 1st and the 3rd

ones are not valid because p is set to have both the values “paints” and “creates”.

Therefore, in practice, the query is equivalent to:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”

In its original form the chase algorithm does not search after each chase step

for unsatisfiable conjunctive queries where equalities between distinct constants are

implied. It searches and removes them from the universal plan. However, the

algorithm can safely get extended so that such conjunctive queries get removed as

soon as they appear, without affecting its soundness and completeness. This

algorithm’s extension is very useful in the RDF scenario where many such

inconsistencies appear while chasing. Throughout this thesis we will refer to the

algorithm’s extension. Therefore, only the valid queries produced at each step will be

presented.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

50

Figure 4-4: PROP & C_SUB constraints for the RDF/S schema of Figure 3-3 where class

"Cubist" gets ignored

Example 4.8: Given ∆RDF for the RDF/S schema of Figure 3-3, as seen in Figure 3-4

and Figure 4-4, we want to chase the query below. We ignore the class “Cubist” for

simplicity reasons.

SELECT X

FROM {X}paints{Y}

translates in SWLF into

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”

which is the query of the previous example. It chases with the 6th basic RDF/S

constraint using the elementary homomorphism, i.e. the one that maps each variable

to itself, and the result is11:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), p=“paints”

11 Bold letters are used to highlight the predicates that trigger a chase step. The predicates added by the

same chase step are underlined.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

51

The 3rd basic constraint is applied twice using the homomorphism {a→c, p→q, b→d}

and the elementary one resulting in:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), CLASS(a),

CLASS(b), CLASS(c), CLASS(d), p=“paints”

Using the universally quantifying constraint for P_SUB (Figure 3-4) and the

homomorphism {subP→q, prop→p} we get:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), CLASS(a),

CLASS(b), CLASS(c), CLASS(d), p=“paints”, q=“paints”

Using the 2nd existentially quantifying constraint for PROP (Figure 4-4) we get:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q=“paints”, r=“paints”, s=“Painter”,

t=“Painting”

By applying the 4th basic constraint (domain-range uniqueness constraint) twice using

the homomorphisms {a→a, p→p, b→b, c→s, q→r, d→t} and {a→s, p→r, b→t,

c→c, q→q, d→d}, the query chases to:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q=r=“paints”, a=c=“Painter”,

s=“Painter”, b=d=“Painting”, t=“Painting”

Chasing with the 2nd domain-range constraint (property-class extent compatibility)

using the homomorphism {a→c, p→q, b→d} results in:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_EXT(e,

x), C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting”

Using the 1st domain-range constraint and the elementary homomorphism the query

becomes:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c,

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

52

a), C_SUB(d, b), C_EXT(e, x), C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”,

b=d=t=“Painting”

Using the C_SUB transitivity constraint twice with the homomorphism {e→f, c→d,

a→b} and the elementary one, we get:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c,
a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x), C_EXT(f, y),

p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting”

According to the 2nd basic constraint and the homomorphisms {d→e, c→c} and {d→f,

c→d} we get the query:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),

C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting”

Using twice the universally quantifying constraint for C_SUB and the

homomorphisms {subC→e, clas→c} and {subC→f, clas→d} we get

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),

C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, e=“Painter”, b=d=t=“Painting”,

f=“Painting”

Since no more chase step can get applied12, the query above is the universal plan of

the initial query.

12 In reality, the query will be chased with all the existentially quantified constraints for CLASS,

PROP, C_SUB, P_SUB. Although this is not shown in the universal plan due to space limitation, all

the necessary chase steps for checking containment are illustrated; the chase steps ignored do not alter

the result.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

53

4.1.1.4 Complexity

In the general case the end of the chase, as we have said, is not decidable. However,

the use of restrictions on the used constraints leads to decidable problems in the

complexity class of NP or
2

p∏ ; the stratified-witness property for disjunction-free

constraints belongs to the former class.

Proposition 4.4 ([Deu02]): Chasing a conjunctive query with a set of disjunction-free

DEDs meeting the stratified-witness property results in a query of size






 +1laQO

where |Q| is the initial query’s size, a is the maximum arity of the predicates used in

the relational schema on which the constraints are applied and l is the maximum

number of ∃-edges on a path in the constraints chase flow graph.

4.1.2 Checking RQLUCQ Query Containment Algorithm

Our algorithm for checking whether an RQLUCQ query is contained in another

takes as input the two queries in their SWLF translations and chases them with ∆RDF.

Although ∆RDF does not preserve stratified-witness because of the 6th basic and 3rd sub

constraints, which introduce a cycle containing an ∃-labelled edge in the chase flow

graph, it behaves as if stratified-witness was present. Due to the conditions needed to

apply a chase step the two conditions do not allow the introduction of an infinite

number of fresh variables, which is the inviolable term for the chase to diverge.

Example 4.9: Let’s try to chase the following query with the two constraints just

mentioned

ans(q) :- P_SUB(q, p)

It chases with the 6th basic constraint to

ans(q) :- P_SUB(q, p), PROP(a1, q, b1), PROP(a2, p, b2)

and, then, twice with the 3rd sub constraint to

ans(q) :- P_SUB(q, q), P_SUB(p, p), P_SUB(q, p), PROP(a1, q, b1), PROP(a2, p, b2)

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

54

No more chase step with the two constraints can be applied; the chase ends here.

In the example above no value is assigned to any variable. However, nothing

would change if one of them or both were equated to values. Therefore, there cannot

be an infinite execution of chase steps and the chase with ∆RDF terminates. Thus, by

reducing the containment problem to the relational equivalent, we give the following

theorem based on [Deu02]:

Theorem 4.1: Suppose two RQLUCQ queries Q1, Q2 translated in SWLF, where

U j jQQ 22 = , and a set C of DEDs, namely ∆RDF. Q1’s containment in Q2 under C

(Q1⊆CQ2) is decidable. Q1’s chase terminates rendering the universal plan SQ1:

1 1i
i

SQ SQ=U , where SQ1i’s are conjunctive queries. Q1 is contained in Q2 for every

description base DB iff for each i there is j such that there is a containment mapping

from Q2j into SQ1i (i.e. SQ1i is contained in Q2j).

In other words, the above theorem states that an RQLUCQ query Q1 is

contained in an RQLUCQ query Q2 under a set C of constraints if the universal plan of

Q1, namely SQ1, is contained in Q2.

Example 4.10: Let us see again the example of Figure 4-1. Given the same

constraints as in the chase example earlier, we want to prove that query

Q1: SELECT X

FROM {X; Painter}paints{Y; Painting};

is contained in query

Q2: SELECT X

FROM {X; Painter}creates{Y; Painting};

Q1 translates to:

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“paints”, c=“Painter”,

d=“Painting”

Then, it chases to the following universal plan SQ1:

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

55

ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), PROP(u, v, w), CLASS(a),

CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h),

CLASS(i), CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a),

C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g),

C_SUB(j, h), C_SUB(i, a), C_SUB(j, b), C_SUB(k, l), C_SUB(m, n), P_SUB(q, p),

P_SUB(o, z), C_EXT(e, x), C_EXT(f, y), C_EXT(i, x), C_EXT(j, y), P_EXT(x, q, y),

o=p=q=r=“paints”, v=z=“creates”, a=c=e=g=i=s=“Painter”, u=l=“Artist”, b=d=f=h=j=

t=“Painting”, w=n=”Artifact”

Q2 translates to:

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“creates”, c=“Painter”,

d=“Painting”

The containment of Q1 in Q2 demands that there is a containment mapping from Q2 to

the single conjunctive query of SQ1. Such containment exists given the

homomorphism {p→v, a→u, b→w, c→k, d→m, e→e, f→f, q→o, p→z}.

In section 3.5.1 we have illustrated how the Datalog facts describing an RDF/S

schema are interpreted as constraints. Using these constraints, the set of constraints

∆RDF is defined for every RDF/S schema. In the previous theorem, we have defined

the reduction of the RQL query containment problem to the relational equivalent

based on this set. In the following example we will show that by the slightest

reduction to ∆RDF the algorithm for checking containment is no longer valid. Initially

we will employ δRDF in the containment algorithm, instead of ∆RDF. Then, we will

consider the set of constraints that excludes from ∆RDF the existentially quantifying

constraints.

Example 4.11: Suppose the queries

(Q1) SELECT X

FROM Artist{X}, Painter{X}

and

(Q2) SELECT X

 FROM ^Painter{X}

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

56

It is obvious that Q2 is contained in Q1. Additionally, Q1 is contained in Q2 since

Painter is a subclass of Artist and has no other subclass but itself. However, the

containment of Q1 in Q2 cannot be deduced using δRDF due to the lack of knowledge

that Painter has no subclass but itself. Moreover, the containment of Q2 in Q1 cannot

be deduced using ∆RDF without the existentially quantifying constraints because we

lack the knowledge that there exists a subclass relationship between Painter and

Artist.

The above conclusions propagate to the equivalence and minimisation

problems, which are built on top of the containment problem.

4.1.2.1 Complexity

As we have seen, the RQLUCQ containment problem gets reduced to the containment

of unions of conjunctive queries under ∆RDF, which depends on the complexity of

chase and the one of checking the containment of first query’s universal plan in the

second query. Since ∆RDF behaves as if stratified-witness was present, the chase of the

first query with it terminates and is at least NP-complete. Moreover, the simple

containment check between the first query’s universal plan and the second query is

2

p∏ -complete.

Note that the size of the universal plan derives from the chase algorithm.

Given the SWLF predicates and ∆RDF, the maximum arity in this case is 3 and the

maximum number of ∃-edges on a path in the constraints chase flow graph is 2. This

path derives from the constraints used to capture the RDF/S semantics. Therefore, the

size of the universal plan is at least 




 +123QO = ()27QO , where |Q| is the size of the

largest conjunctive query forming the initial union.

4.1.3 RQLCORE Query Containment

Suppose now the fragment of RQLUCQ queries that (a) is built on class and property

patterns whose schema (class and property) variables are assigned to values, and (b)

does not consider proper interpretations of classes and properties. We will call this

fragment RQLCORE. Although it seems very restrictive, RQLCORE encompasses a large

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

57

portion of RQLUCQ queries used in real scenarios asking for data information. Thus, it

is mainly oriented towards queries performing data & mixed navigation, but

encompasses some elementary schema navigation queries, too.

Definition 4.8: RQLCORE queries have the form of RQLUCQ queries (see Definition

3.5), with the additional restrictions (a) that the RQL patterns Ei(Ūi) do not consider

proper interpretations and (b) that the equality of all schema variables $Ci, @Pi and

$Di to constants is implied from the equalities.

The complete list of RQL patterns not involving proper interpretations can be found

in Appendix A. We should note here that RQLCORE is similar to the RQL fragment

considered in [ACK04]: none of them considers proper interpretations.

Example 4.12: The RQLUCQ query

SELECT X

FROM Artist{X}

or equivalently

SELECT X

FROM $C{X}

WHERE $C=Artist

is an RQLCORE query. On the contrary, the RQLUCQ query

SELECT X

FROM ^$C{X}

is not an RQLCORE query.

By restricting the definition of RQLUCQ query containment to RQLCORE

queries we get:

Definition 4.9: An RQLCORE query Q1 is contained in an RQLCORE query Q2 (Q1⊆Q2)

given an RDF description schema DS iff for every description base DB conforming to

DS the result of Q1 is contained in that of Q2 (∀DB Q1(DB) ⊆ Q2(DB)).

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

58

The algorithm for checking whether an RQLCORE query is contained in another

takes as input the two queries in their SWLF translations and δRDF, instead of ∆RDF;

the additional information supplied by ∆RDF is no longer needed. As with ∆RDF, the

chase with δRDF terminates; remember that δRDF is a subset of ∆RDF. Thus, by reducing

the containment problem to the relational equivalent, based on [Deu02], we give the

following theorem:

Theorem 4.2: Suppose two RQLCORE queries Q1, Q2 translated in SWLF, where

U j jQQ 22 = , and a set C of disjunction-free DEDs, namely δRDF. Q1’s containment in

Q2 under C (Q1⊆CQ2) is decidable. The chase of Q1 with C terminates rendering the

universal plan SQ1: 1 1i
i

SQ SQ=U . Q1 is contained in Q2 for every description base

DB iff for each i there is a j such that there is a containment mapping from Q2j into

SQ1i (i.e. SQ1i is contained in Q2j).

In other words, the above theorem states that an RQLCORE query Q1 is

contained in an RQLCORE query Q2 under a set C of constraints if the universal plan of

Q1, namely SQ1, is contained Q2.

Example 4.13: Take the queries

Q1: SELECT X

 FROM Painter{X}, Artist{X}

and

Q2: SELECT X

 FROM Painter{X}

The first one translates to

ans1(x) :- C_SUB(c, a), C_EXT(c, x), a=“Painter”, C_SUB(d, b), C_EXT(d, x),

b=“Artist”

while the second one to

ans2(x) :- C_SUB(c, a), C_EXT(c, x), a=“Painter”

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

59

The containment of Q1 into Q2 can easily be verified. But, containment of Q2 into Q1

is not trivial. Therefore, we chase Q2 with the existentially quantifying constraint for

C_SUB(Painter, Artist).

ans2(x) :- C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), a=“Painter”, d=“Painter”,

b=“Artist”

There is no need to illustrate more chase steps. There is a containment mapping from

Q1 to Q2 that uses the homomorphism {c→c, d→c, x→x, b→b, a→a}. Thus, Q2 is

contained in Q1.

Example 4.14: Using δRDF we can, also, confirm the containment of the RQLCORE

query

SELECT X

FROM {X}@paints

into

SELECT X

FROM {X; Painter}@paints, {X}@creates

The complexity of the RQLCORE containment problem depends on the chase

and the simple containment check, too. Since δRDF is a set of disjunction-free

dependencies that behaves as if stratified-witness is present, the chase of the first

query terminates and is NP-complete; the simple containment check between the first

query’s universal plan and the second query is
2

p∏ -complete, while the universal

plan’s size is ()27QO , where |Q| is the size of the largest conjunctive query forming

the initial union.

4.1.3.1 Why RQLCORE?

The gain from limiting the expressiveness of RQLUCQ queries to RQLCORE is double.

First of all, the partial (incomplete) knowledge of the RDF/S schema offered from

δRDF suffixes to solve the containment problem; we do not need complete information,

i.e. information stating which are all classes, properties and hierarchies. Additionally,

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

60

considering only the information provided from δRDF leads to lower complexity in the

containment check (and equivalence and minimisation that will be discussed later),

which stems from the fact that the chase considers only disjunction-free constraints;

fewer chase steps in order to reach the universal plan and smaller universal plan (no

additional conjunctive query introduced in the union).

4.2 RQLUCQ Query Equivalence

Definition 4.10: An RQLUCQ query Q1 is equivalent to an RQLUCQ query Q2 (Q1≡Q2)

given an RDF description schema DS iff for every description base DB conforming to

DS the result of Q1 is equivalent to that of Q2 (∀DB Q1(DB)≡Q2(DB)).

Having defined containment for RQLUCQ queries and an algorithm to check it,

the problem of checking RQLUCQ query equivalence is straightforward. It is known

from relational theory that two queries Q1, Q2 are considered equivalent (≡) iff Q1⊆Q2

and Q2⊆Q1. This result extends to equivalence under a set C of DEDs (Q1≡CQ2 iff

Q1⊆CQ2 and Q2⊆CQ1). Thus, the following definition is educed:

Definition 4.11: Two RQLUCQ queries Q1 and Q2 translated in SWLF are equivalent

under a set C of DEDs (Q1≡CQ2), namely ∆RDF, iff Q1 is contained in Q2 under C

(Q1⊆CQ2) and vice-versa (Q2⊆CQ1).

Example 4.15: We are going to check for equivalence the following queries.

(Q1) SELECT X

FROM {X}paints{Y};

and

(Q2) SELECT X

FROM {X; Painter}paints{Y; Painting};

At first the queries translate in SWLF. Q1 translates to

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

61

and, then, chases to SQ1:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),

C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),

C_EXT(f, y), p=q=r=“paints”, a=c=e=s=“Painter”, b=d=f=t=“Painting”

Q2 translates to

ans(x) :- PROP(a, p, b), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d, b),

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“paints”, c =“Painter”,

d=“Painting”

and, then, chases to SQ2:

ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), CLASS(a), CLASS(b),

CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h), CLASS(i),

CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d,

b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g), C_SUB(j, h),

C_SUB(i, a), C_SUB(j, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), C_EXT(i, x),

C_EXT(j, y), P_EXT(x, q, y), p=q=r=“paints”, a=c=e=g=i=s=“Painter”,

b=d=f=h=j=t=“Painting”

There is a containment mapping both from Q2 to SQ1, using the elementary

homomorphism, and from Q1 to SQ2, using the elementary homomorphism, too. Thus,

Q1⊆CQ2 and Q2⊆CQ1 and the queries are equivalent.

Example 4.16: Another interesting equivalence test is the following one

SELECT X

FROM {X; Painter}creates, {X; Sculptor}creates

and

SELECT X

FROM {X; Painter}creates, Sculptor{X}

These queries consider an extended RDF/S schema that involves the classes Sculptor

and Sculpture and the property sculpts having the previous classes as domain and

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

62

range, respectively. The following facts are, also, true: P_SUB(sculpts, creates),

C_SUB(Sculptor, Artist), C_SUB(Sculpture, Artifact). These facts imply some

changes to ∆RDF. The first query translates to

ans(x) :- PROP(a1, p1, b1), P_SUB(q1, p1), P_EXT(x, q1, y1), C_SUB(c1, a1),

C_SUB(e1, c1), C_EXT(e1, x), PROP(a2, p2, b2), P_SUB(q2, p2), P_EXT(x, q2, y2),

C_SUB(c2, a2), C_SUB(e2, c2), C_EXT(e2, x), p1=p2=“creates”, c1=“Painter”,

c2=“Sculptor”

The second one translates to

ans(x) :- PROP(a1, p1, b1), P_SUB(q1, p1), P_EXT(x, q1, y1), C_SUB(c1, a1),

C_SUB(e1, c1), C_EXT(e1, x), C_SUB(e2, c2), C_EXT(e2, x), p1=“creates”,

c1=“Painter”, c2=“Sculptor”

By chasing them and checking for containment mappings the queries prove to be

equivalent.

 The complexity of the RQLUCQ equivalence problem is the same with the

complexity of the RQLUCQ containment problem. Remember that the equivalence

check corresponds to minimum one and maximum two containment checks.

4.2.1 RQLCORE Query Equivalence

By paraphrasing the definition of RQLUCQ query equivalence we get the

following definition for the case of RQLCORE queries.

Definition 4.12: An RQLCORE query Q1 is equivalent to an RQLCORE query Q2 (Q1≡Q2)

given an RDF description schema DS iff for every description base DB conforming to

DS the result of Q1 is equivalent to that of Q2 (∀DB Q1(DB)≡Q2(DB)).

Having defined an algorithm to check containment of RQLCORE queries,

checking RQLCORE query equivalence is straightforward.

Definition 4.13: Two RQLCORE queries Q1 and Q2 translated in SWLF are equivalent

under a set C of EDs (Q1≡CQ2), namely δRDF, iff Q1 is contained in Q2 under C

(Q1⊆CQ2) and vice-versa (Q2⊆CQ1).

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

63

Obviously, the complexity of the RQLCORE equivalence problem is the same

with the one of the RQLCORE containment problem.

4.3 RQLUCQ Query Minimisation

We will introduce the problem using an example.

Example 4.17: Suppose the RQLUCQ query

SELECT X, Y

FROM {X}paints{Y}, {X}creates{Y}

needs to be answered. It is pretty obvious that this query leads to redundant

processing; the pairs [x, y] belonging to the extended interpretation of paints belong

to the extended interpretation of creates, too ([x, y]paints ⊆ [x, y]creates). By set theory,

([x, y]paints ∩ [x, y]creates) ≡ [x, y]paints. Thus, this query can minimise to

SELECT X, Y

FROM {X}paints{Y}

However, the previous is a simple example and the minimisation is

straightforward. There are cases where the size of the query does not allow such

deductions. Moreover, we need an automated way for minimising RQLUCQ queries

and calculating their minimal equivalents, i.e equivalent queries that are free of

redundancy.

Definition 4.14: Given an RDF description schema DS, an RQLUCQ query Q gets

minimised when replaced with a minimal equivalent query SQ (∀DB

Q(DB)≡SQ(DB)).

A minimal RQLUCQ uses less and/or simpler RQL patterns than the original

RQLUCQ query. The basic idea is that a class pattern is simpler than a property pattern;

a pattern involving proper interpretations and/or fewer variables is simpler than one

involving extended interpretations and/or more variables.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

64

Example 4.18: Suppose the RQLUCQ queries

SELECT X

FROM ^Painter{X}

and

SELECT X

FROM Painter{X}, Artist{X}

The two queries are equivalent. Moreover, the first one is free of redundancy;

therefore, it is minimal.

The core of the RQLUCQ minimisation is the backchase algorithm ([Deu02]),

which is used to discover the minimal reformulations.

4.3.1 Backchase Algorithm

The backchase algorithm [Deu02] checks all the subqueries of the universal plan for

equivalence to the original query. Thus, the backchase constitutes an application of

the chase algorithm for each subquery. The following definitions formulate formally

the notion of subqueries and state when a query is minimal according to [Deu02].

Definition 4.15: A conjunctive query SQ is a subquery of conjunctive query Q if there

exists a containment mapping h from SQ into Q such that whenever the image of two

distinct atoms R(x) and R(y) under h coincides, the conjunction of equalities x=y is

implied by the equality atoms in SQ.

Definition 4.16: A union of conjunctive queries ii
SQ SQ←U is a subquery of the

union of conjunctive queries jj
Q Q←U if for every i there is a j such that SQi is a

subquery of Qj in the sense of the previous definition.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

65

Definition 4.17: Let Q be a union of conjunctive queries
1 ii M

Q Q
≤ ≤

=U and D be a

set of DEDs. We say that Q is D-minimal13 if:

(i) there are no distinct 1≤k,l≤M such that Qk is contained in Ql under D, and

(ii) there is no m, no distinct relational atoms in Qm’s body ()jRj x (for 1≤j≤k for

some k) and no conjunctions of equalities Cj (for 1≤j≤k) such that denoting with Qm,j

the query obtained from Qm by replacing Rj with Cj, we have that
1 , i mi M i m

Q Q
≤ ≤ ≠

∪U

is equivalent to ,1 , i m ji M i m i j k
Q Q

≤ ≤ ≠ ≤ ≤
∪U U under D.

A query Q is a minimal reformulation of query R under D if it is D-minimal

and equivalent to R under D.

 A union of conjunctive queries may have more than one minimal subqueries;

the intuition behind the previous definition is that no redundant data accesses are

made from any minimal query. According to [Deu02] the backchase algorithm

retrieves all minimal queries.

Theorem 4.3 ([Deu02]): Given a union of conjunctive queries Q and a set of DEDs

C, if the chase of Q under C terminates yielding the universal plan U, all C-minimal

reformulations of Q under C are subqueries of U.

4.3.1.1 Complexity

As with chase, the termination of the backchase is not guaranteed in the

general case. It depends on whether the constraints considered guarantee termination

of the chase. However, even when this is the case, the backchase is much more

expensive from the chase itself. To be exact, a full minimisation where the backchase

performs a blind search between candidate subqueries from the universal plan leads to

an NP-complete problem in the number of chase sequences, i.e. an exponential

number of NP-complete problems!

13 The definition does not say anything about minimising the number of equality atoms in the minimal

query. However, as in [Deu02], throughout this thesis we assume w.l.o.g. that the set of equalities in a

minimal query is transitively closed, i.e. it is maximal, even if the transitive closure is not always

illustrated in the examples.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

66

In practice, approximate algorithms are used. Such an algorithm is the one

adopted to solve the Disjunctive Plan Minimisation (DPM) problem ([Ono05]). This

algorithm returns one minimal which is not always the minimum one, i.e. the one with

the least number of queries. In order to solve the DPM problem, we reduce it to Set-

Cover, where given a universe U of n elements and a collection S of subsets of U

(S={S1, …, Sk}), we search for a minimum cardinality subcollection of S that covers

all elements of U. By employing DPM finding a minimal query is NP-complete.

4.3.2 Minimisation of RQLUCQ Queries

By reducing the RQLUCQ minimisation problem to its relational equivalent we get the

following definition:

Definition 4.18: An RQLUCQ query translated in SWLF gets minimised when replaced

with a minimal equivalent under a set of DEDs C, namely ∆RDF, query.

So, our algorithm for minimising an RQLUCQ query takes as input the

universal plan of the query we want to minimise, expressed in SWLF, and ∆RDF. Then,

all universal plan’s subqueries are checked (i) for minimality based on Definition 4.14

and (ii) equivalence against the universal plan (or the initial query).

Example 4.19: Does the query below minimise? If yes, find a minimal equivalent

one.

SELECT X, Y

FROM {X}paints{Y}, {X; Painter}creates{Y; Painting}

The query translates in SWLF to

ans(x, y) :- P_SUB(q1, p1), P_EXT(x, q1, y), p1=“paints”, PROP(a2, p2, b2), P_SUB(q2,

p2), C_SUB(c2, a2), C_SUB(d2, b2), C_SUB(e2, c2), C_SUB(f2, d2), C_EXT(e2, x),

C_EXT(f2, y), P_EXT(x, q2, y), p2=“paints”, c2=“Painter”, d2=“Painting”

which chases to

ans(x, y) :- P_SUB(q1, p1), P_EXT(x, q1, y), PROP(a1, p1, b1), PROP(c1, q1, d1),

PROP(s1, r1, t1), CLASS(a1), CLASS(b1), CLASS(c1), CLASS(d1), CLASS(e1),

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

67

CLASS(f1), C_SUB(e1, c1), C_SUB(f1, d1), C_SUB(c1, a1), C_SUB(d1, b1), C_SUB(e1,

a1), C_SUB(f1, b1), C_EXT(e1, x), C_EXT(f1, y), p1=q1=r1=“paints”,

a1=c1=e1=s1=“Painter”, b1=d1=f1=t1=“Painting”, PROP(a2, p2, b2), PROP(g2, q2, h2),

PROP(s2, r2, t2), CLASS(a2), CLASS(b2), CLASS(c2), CLASS(d2), CLASS(e2),

CLASS(f2), CLASS(g2), CLASS(h2), CLASS(i2), CLASS(j2), CLASS(s2), CLASS(t2),

C_SUB(c2, a2), C_SUB(d2, b2), C_SUB(e2, c2), C_SUB(f2, d2), C_SUB(e2, a2),

C_SUB(f2, b2), C_SUB(g2, a2), C_SUB(h2, b2), C_SUB(i2, g2), C_SUB(j2, h2),

C_SUB(i2, a2), C_SUB(j2, b2), P_SUB(q2, p2), C_EXT(e2, x), C_EXT(f2, y), C_EXT(i2,

x), C_EXT(j2, y), P_EXT(x, q2, y), p2=q2=“creates”, c2=e2=“Painter”,

a2=g2=i2=s2=“Artist”, d2=f2=“Painting”, b2=h2=j2=t2=“Artifact”

∪ ans(x, y) :- …, q2=“creates”, g2=i2= Artist”, h2=“Artifact”, j2=“Painting”

∪ ans(x, y) :- …, q2=“creates”, g2=“Artist”, i2=“Painter”, h2=j2=“Artifact”

∪ ans(x, y) :- …, q2=“creates”, g2=“Artist”, i2=“Painter”, h2=“Artifact”, j2=“Painting”

∪ ans(x, y) :- …, q2=“paints”, g2=i2=“Painter”, h2=j2=“Painting”

During backchase we inspect subquery

ans(x, y) :- P_EXT(x, q1, y), q1=“paints”

which, amazingly, is a minimal reformulation; it is ∆RDF-equivalent to the initial query

and no atom can be removed without disturbing equivalence. Additionally, if the

translations of RQL patterns are examined, we discover that this minimal query

corresponds to the RQLUCQ query

SELECT X, Y

FROM {X}^paints{Y}

In the example above the query has only one minimal equivalent. However, this is not

always the case. The following example illustrates that.

Example 4.20: Suppose the query

SELECT X

FROM $C{X; Artist}

and the extended RDF/S schema where the class hierarchy graph rooted on class

Artist is shown in Figure 4-5. The query translates to

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

68

ans(x) :- C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), d=“Artist”

This query expressed in terms of SWLF has three (!) minimal equivalents under ∆RDF:

(1st) ans(x) :- C_SUB(e, d), C_EXT(e, x), d=“Artist”

(2nd) ans(x) :- C_EXT(e, x), e=“Artist”

 ∪ ans(x) :- C_EXT(e, x), e=“Sculptor”

∪ ans(x) :- C_SUB(e, d), C_EXT(e, x), d=“Painter”

(3rd) ans(x) :- C_EXT(e, x), e=“Artist”

∪ ans(x) :- C_EXT(e, x), e=“Sculptor”

∪ ans(x) :- C_EXT(e, x), e=“Painter”

∪ ans(x) :- C_EXT(e, x), e=“Cubist”

which correspond to the RQLUCQ queries

(1st) SELECT X

FROM Artist{X}

(2nd) SELECT X

FROM ^Artist{X}

UNION

SELECT X

FROM ^Sculptor{X}

UNION

SELECT X

FROM Painter{X}

(3rd) SELECT X

FROM ^Artist{X}

UNION

SELECT X

FROM ^Sculptor{X}

UNION

SELECT X

FROM ^Painter{X}

UNION

SELECT X

FROM ^Cubist{X}

In the first query redundancy has been removed without resolving the navigational

part occurring from the traversal of the subclass hierarchy of Artist; that is why the

extended interpretation of Artist is used. On the contrary, in the third minimal query

schema information has been unfolded, a union has been introduced and only the

proper interpretations of Artist’s subclasses are used. The second query lays

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

69

somewhere in the middle; a part of the schema information has been unfolded, while

some other has not.

Figure 4-5: Class hierarchy rooted on Artist for Example 4.20

Generally, the number of minimal queries depends on the constraints

considered and the query given as input. In our RQLUCQ minimisation scenario, ∆RDF

describes the classes, the properties and their hierarchies, and the query states which

part of the RDF/S schema will be accessed. As the number of constraints and the

schema part accessed from the query grow, the number of minimal equivalents

considerably increases.

Every RQLUCQ query has one minimal equivalent query where schema

information is fully unfolded and no schema navigation needs to take place. Apart

from it, there usually exists one minimal query where the unfolding has not

introduced union and several ones where partial unfolding has taken place.

The minimal queries that are of interest to us are (i) the one where all schema

information has been incorporated and (ii) the one where unfolding has not introduced

union when such a minimal exists. In the aforementioned example, these are the first

and third minimal queries, respectively. The former if executed will need to query the

RDF/S schema, while the latter will not. In the remaining minimals, if any, some of

the conjunctive queries forming each one of them need access to the RDF/S schema

and some others do not; that is the case of the second query in the previous example.

However, there is usually no reason in picking such a minimal query for execution;

only the presence of cached query results could render such queries useful.

 An additional advantage of the minimisation procedure is the fact that the

RQLUCQ minimal query produced by unfolding all schema information can be used by

other query languages, like SPARQL ([PS05]), that consider only the RDF/S data

layer, i.e. those having access only to proper interpretations.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

70

 Although this example involved a query asking exclusively for data

information, a plethora of minimal queries may appear even for RQLUCQ queries not

involving class/property interpretations, i.e. schema navigation ones. When the case,

the minimal query where schema information is unfolded consists of one or more

constant queries, which have the form () : ()ans x C x− , where x is a tuple of variables

and C is a conjunction of equality atoms between the variables of x and constants.

When this is the case, the minimisation algorithm rather answers than minimises

schema navigation queries.

Example 4.21: The following query not accessing class/property interpretations

SELECT $D

FROM Artist{$D}

will translate to

ans(d) :- C_SUB(d, c), c=“Artist”

which will chase to

ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c=“Artist”, d=“Artist”

∪ ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c=“Artist”, d=“Painter”

This query has two minimal equivalents. The first one is the initial query and the

second one is

ans(d) :- d=“Artist”

∪ ans(d) :- d=“Painter”

In Example 4.11 we have seen that by relaxing the set ∆RDF, the containment

algorithm is no longer valid. We will use the same query in order to illustrate the

effects in the minimisation procedure.

Example 4.22: If we use the backchase algorithm with δRDF, the query

SELECT X

FROM Painter{X}, Artist{X}

will minimise to

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

71

SELECT X

FROM Painter{X}

The same query will minimise to

SELECT X

FROM ^Artist{X}

UNION

SELECT X

FROM Artist{Painter}, ^Painter{X}

if ∆RDF without the existentially quantifying constraints is considered during

backchase. However, when ∆RDF is considered, the minimal query outputted is

SELECT X

FROM ^Painter{X}

It is obvious that ∆RDF is indispensable for a complete minimisation.

4.3.2.1 Complexity

The set of constraints ∆RDF guarantees termination of backchase. Therefore, by

reducing the RQLUCQ minimisation problem to the equivalent problem of minimising

a conjunctive query under ∆RDF, we inherit the complexity of full minimisation.

If we are interested only in the minimal query where all schema information

has been unfolded, we can use the following technique. As soon as the chase ends we

extract from the universal plan the maximally contained query that uses only the

SWLF predicates C_EXT and P_EXT. This query has only one minimal equivalent;

thus, we can use the algorithm for solving the DPM problem.

4.3.3 RQLCORE Query Minimisation

Having defined RQLCORE, the problem of query minimisation extends to it.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

72

Definition 4.19: Given an RDF description schema DS, an RQLCORE query Q gets

minimised when replaced with an equivalent minimal query SQ (∀DB

Q(DB)≡SQ(DB)).

An RQLCORE minimal query is redundancy-free; it uses less and/or simpler

RQL patterns than the original RQLCORE query. The basic idea is that a class pattern is

simpler than a property pattern and a pattern involving fewer variables is simpler than

one involving more variables.

As with containment of RQLCORE queries, the problem reduces to an

equivalent relational one:

Definition 4.20: An RQLCORE query translated in SWLF gets minimised when

replaced with an equivalent minimal query under a set of disjunction-free DEDs C,

namely δRDF.

Once more the backchase is the core of the minimisation process. The

RQLCORE queries translated in SWLF get chased with δRDF and all subqueries of the

universal plan are examined for minimality and equivalence to it.

Example 4.23: Suppose we want to minimise the query Q1

SELECT X

FROM $C{X}, $E{X}

WHERE $C=Artist, $E=Painter

The query translated in SWLF has the form

ans1(x) :- C_SUB(d, c), C_EXT(d, x), C_SUB(f, e), C_EXT(f, x), c=“Artist”,

e=“Painter”

After being chased with δRDF the query becomes

ans1(x) :- C_SUB(d, c), C_SUB(g, d), C_EXT(g, x), C_SUB(f, e), C_SUB(h, f),

C_EXT(h, x), c=“Artist”, e=“Painter”, C_SUB(h, g), g=“Artist”, h=“Painter”

Suppose now the subquery Q2

ans2(x) :- C_SUB(f, e), C_EXT(f, x), e=“Painter”

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

73

which corresponds to the query

SELECT X

FROM $E{X}

WHERE $E=Painter

Q2 is equivalent to Q1 under δRDF and is minimal, too. Therefore, Q1 minimises to Q2.

The complexity of the RQLCORE minimisation problem is the one of full

minimision of a conjunctive query under disjunction-free DEDs. However, having

observed that RQLCORE queries have only one minimal equivalent, instead of the full

minimisation we may adopt Disjunctive Plan Minimisation without losses.

4.3.4 Simplification of RQL Patterns

Earlier in section 4.3, it was stated that RQLUCQ minimal queries contain less and/or

simpler patterns than the original queries. It is obvious that a class pattern is simpler

than a property pattern. But, can we prove that a pattern is simpler than and equivalent

to another under given conditions and how? Our minimisation technique for RQLUCQ

queries can be used as a proof procedure for that, too. It allows simplifying RQL

patterns in their general form without taking under consideration specific RDF/S

schemas; therefore the chase in this case considers only δMod.

Example 4.24: Suppose the RQLUCQ query

ans(X, @P, Y) :- {X; $C}@P{Y; $D}, cond(@P, Y)

that involves the pattern we want to simplify and a dummy predicate cond stating the

conditioned variables. The equivalent query in terms of SWLF is Q1:

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, a), C_SUB(d,

b), C_EXT(c, x), C_EXT(d, y), cond(p, y)

Chasing with (half of) the 6th basic constraint we get

ans(x, p, y) :- PROP(a, p, b), PROP(e, q, f), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c,

a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), cond(p, y)

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

74

Chasing with the 1st domain-range constraint we get

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x,

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_EXT(g, x), C_EXT(h,

y), C_EXT(c, x), C_EXT(d, y), x cond(p, y)

Now, chasing with the 2nd domain-range constraint we get

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x,

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f,

b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d, y), cond(p, y)

Then, chasing with C_SUB transitivity we get

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x,

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f,

b), C_SUB(g, a), C_SUB(h, b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d,

y), cond(p, y)

Finally, by applying the 1st and 3rd basic constraints, the query chases to the universal

plan U1:

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f, b), PROP(e, q, f),

P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(g, x), C_EXT(h, y), C_SUB(g, a),

C_SUB(h, b), C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), CLASS(a),

CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h),

cond(p, y)

Now, during backchase we check the universal plan’s subquery Q2

ans(x, p, y) :- P_SUB(q, p), P_EXT(x, q, y), cond(p, y)

for equivalence to the original query. Thus, we chase it using the same chase steps as

for Q1 and get the universal plan U2:

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f, b), PROP(e, q, f),

P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(g, x), C_EXT(h, y), C_SUB(g, a),

C_SUB(h, b), cond(p, y)

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

75

We can conclude that Q2 is equivalent to Q1. There is a containment mapping from Q1

to U2 (Q2⊆Q1) using the homomorphism {x→x, p→p, y→y, a→a, b→b, q→q, c→g,

dh}. Moreover, there is a containment mapping from Q2 to U1 (Q1⊆Q2) using the

elementary homomorphism.

Now, we examine the RQL property patterns’ translations from Appendix B.

We can observe that subquery Q2 corresponds to the SWLF translation of the RQLUCQ

query

ans(X, @P, Y) :- {X}@P{Y }, cond(@P, Y)

Thus, the pattern {X; $C}@P{Y; $D} gets simplified to pattern {X}@P{Y} when only

variables @P, Y are either conditioned or projected.

Using the same methodology a number of pattern simplifications can be

proven.

Example 4.25: The query

ans(X) :- $C{X; $D}

which corresponds to the SWLF query

ans(x) :- C_SUB(d, c), C_SUB(e, d), C_EXT(e, x)

proves to be equivalent to query

ans(X) :- ^$C{X}

which corresponds to the SWLF query

ans(x) :- C_EXT(e, x)

by applying the same sequence of chase steps as in the previous example.

In general RQL patterns have one simplified (minimal) equivalent. Thus, the

DPM algorithm can be used instead of full minimisation. The simplified RQL pattern

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

76

is extracted from the minimal SWLF query14 by investigating the RQL patterns’s

translations. Alternatively, the backward translation for minimal RQLUCQ queries, as

presented right below (subsection 4.3.5.1), can be used.

4.3.5 Backward Translation to RQL of Minimal Queries

In some cases we would like to restore a query expressed with SWLF terms into an

RQLUCQ (RQLCORE) query. As we will see, the translation is rather simple in the case

of RQLCORE queries; on the contrary, in the case of RQLUCQ queries it is more

complicated.

4.3.5.1 The Case of Minimal RQLUCQ Queries

The translation procedure for minimal SWLF queries corresponding to RQLUCQ

queries takes place in two phases. In the first phase simple RQL patterns are identified

in the SWLF queries. Then, in the second one, the simple patterns are combined into

more complex ones, whenever possible.

In the first phase, the query’s FROM clause gets constructed by mapping every

atom

• C_EXT(d, x)15 along with an atom C_SUB(d, c) – must not exist another atom

referencing d – to the RQL class pattern $C{X}, otherwise to the RQL class

pattern ^$D{X}

• CLASS(C) to the RQL class pattern $C

• P_EXT(x, q, y) along with an atom P_SUB(q, p) to the RQL property pattern

{X}@P{Y}, otherwise to the RQL property pattern {X}^@Q{Y}

• PROP(a, p, b) to the RQL property pattern @P if none of the following stands: (i)

if a, b or both appear in C_SUB predicates – C_SUB(c, a), C_SUB(d, b) or both –

14 If a predicate C_SUB(c, c) or P_SUB(p, p) appears in the minimal query, it should be replaced with

CLASS(c) or PROP(a, p, b), respectively. The reason is stated in subsection 4.3.5.1. When this is the

case, more than one minimal SWLF queries exist, but only one corresponding RQL simplified pattern.
15 To be exact all C_EXT predicates minus those referring to literal classes are mapped to RQL class

patterns. Those involving literal classes cannot generate patterns because there is no such thing as the

proper interpretation of literals in RQL’s type system.

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

77

and a, b, or both are not equated to constants, then one of the patterns {$C}@P,

@P{$D}, {$C}@P{$D} gets added to the WHERE clause, and (ii) if a, b, or both

are equated to constants, then the pattern @P and the patterns $A, $B, or both get

added, along with the equalities $A=domain(@P), $B=range(@P), or both in the

WHERE clause

• C_SUB(c, a), as long as it was not used with an atom PROP or C_EXT, to the

RQL class pattern $C{$D} if the equality $C=$D is not implied, otherwise to

class pattern $C

• P_SUB(q, p), if it was not used with an atom P_EXT(x, q, y), to the RQL property

patterns @P, since the equality q=p must hold.

The WHERE clause is formed by adding to the equalities originating from the PROP

predicates those found in the SWLF query involving variables appearing in the SWLF

predicates. Then, the SELECT clause is formed by the projected variables, i.e. the

variables found in the query’s head. However, if a projected variable is assigned to a

value and does not appear in a SWLF predicate, the value is used in the SELECT

clause instead of the variable. This will always be the case of (a) schema variables

that have been assigned to a value during chase, (b) schema variables that were

assigned to a value in the initial query and (c) variables not bound to patterns in the

initial query.

Table 4-1: From simple patterns to more complex property ones

Simple Patterns Complex Patterns

{X}@P, {$C}@P, $C{X} {X; $C}@P{Y}

{X}@P, {$C}@P, ^$C{X} {X; ^$C}@P{Y}

{X}^@P, {$C}@P, $C{X} {X; $C}^@P{Y}

{X}^@P, {$C}@P, ^$C{X} {X; ^$C}^@P{Y}

 In the second phase we explore the FROM clause of the query. We try to

compose complex patterns using the simple ones identified in the previous phase.

Table 4-1 shows how patterns referring to a property’s domain can derive. The same

procedure is valid for patterns referring to a property’s range or both. Moreover,

Table 4-2 shows how simple class patterns can be combined into more complex ones.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

78

Finally, we should replace (a) multiple occurrences of equated variables with

just one variable and (b) in the FROM and SELECT clauses as many schema

variables as possible with constants by exploiting the equalities.

We believe that the above translation procedure is the best possible and fully

exploits the minimal SWLF query, i.e. does not reintroduce redundancy.

Table 4-2: From simple patterns to more complex class ones

Simple Patterns Complex Patterns

$C{$D}, $D{X}, ^$C{X} ^$C{X; $D}

$C{$D}, $D{X} $C{X; $D}

$C{$D}, ^$D{X}, ^$C{X} ^$C{X; ^$D}

$C{$D}, ^$D{X} $C{X; ^$D}

Example 4.26: Assume the following Datalog query needs to be translated back to

RQLUCQ:

ans(x, c, p, y, d) :- PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, a),

C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), C_EXT(e, x), C_EXT(f, y), p=“aProp”

In the first phase it will translate to

SELECT X, $C, @P, Y, $D

FROM {X}@P{Y}, {$C}@P{$D}, $C{X}, $D{Y}

WHERE @P=aProp

In the second phase one it will take the form

SELECT X, $C, @P, Y, $D

FROM {X ; $C}@P{Y; $D}

WHERE @P=aProp

By incorporating the only available equality in the SELECT and FROM clauses we

get the RQLUCQ query

SELECT X, $C, aProp, Y, $D

FROM {X ; $C}aProp{Y; $D}

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

79

As stated in section 4.3.2, there exists the special case where the body of a

minimised SWLF query contains nothing but equalities. This is the case where the

initial RQLUCQ query was a schema navigating query or a constant query. Such a

query cannot translate into a query of the form SELECT-FROM-WHERE. However,

since the answer is already present in the SWLF query, it can simply be translated into

a constant query as follows.

Example 4.27: Suppose the RQLUCQ query

SELECT $C, $D

FROM $C{$D}

WHERE $C=Artist and $D=Painter

It will minimise to query

ans(c, d) :- c=“Artist”, d=“Painter”

which cannot be written as a SELECT-FROM-WHERE RQLUCQ query. Notice that

both projected variables in the initial query are schema ones. The minimal query can

translate to the RQLUCQ constant query

ans($C, $D) :- $C=Artist, $D=Painter

 The above translation procedure may raise some additional questions. First of

all, why the C_SUB predicates relating a class to itself are interpreted using the

pattern $C, instead of $C{$C}? The answer is simple; for the chase and backchase

algorithms, the atoms CLASS(c) and C_SUB(c, c) are equivalent. On the contrary,

this is not the case for RQL; $C{$C} implies a check for a subclass relationship, while

$C does not.

Another important issue concerns the use of the RQL functions domain(@P)

and range(@P) not belonging to the RQLUCQ fragment. This is due to the fact that no

RQL pattern exist for imposing explicitly a restriction on a property’s domain/range.

Nevertheless, such a restriction may appear in a minimal query as illustrated by the

following example.

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

80

Example 4.28: The query

SELECT @P

FROM {$C}@P

WHERE $C=Artist

translates to

ans(p) :- C_SUB(c, a), PROP(a, p, b), c=“Artist”

If two more properties are defined on Artist apart from creates, then the query has two

minimal equivalents. The query

ans(p) :- p=“creates”

∪ ans(p) :- p=“…”

∪ ans(p) :- p=“…”

and the query

ans(p) :- PROP(a, p, b), a=“Artist”

The first one cannot translate into a SELECT-FROM-WHERE query. The second one

can translate only with the “help” of function domain to

SELECT @P

FROM @P, $A

WHERE $A=domain(@P) and $A=Artist

or even better, by exploiting the constants, to

SELECT @P

FROM @P

WHERE Artist=domain(@P)

4.3.5.2 The Case of Minimal RQLCORE Queries

The query’s FROM clause gets constructed by mapping every atom

• C_EXT(d, x) along with an atom C_SUB(d, c) to the RQL class pattern $C{X}

CHAPTER 4. RQL QUERY OPTIMISATION

Giorgos Serfiotis

81

• P_EXT(x, q, y) along with an atom P_SUB(q, p) to the RQL property pattern

{X}@P{Y}

The WHERE clause is formed from the equalities involving variables appearing in the

SWLF predicates. Finally, the SELECT clause is formed by the projected variables,

i.e. the variables found in the query’s head. However, if a projected variable not

appear in an SWLF predicate is assigned to a value, the value is used in the SELECT

clause instead of the variable. This will always be the case of (a) schema variables

that were assigned to a value in the initial query and (b) variables not bound to

patterns in the initial query. Finally, we should replace (a) all multiple occurrences of

equated variables with just one and (b) in the FROM and SELECT clauses as many

schema variables as possible by exploiting the equalities.

As with RQLUCQ queries, there exists the possibility that a minimal query

cannot translate into the SELECT-FROM-WHERE formalism. Once again, to address

this issue we follow a similar to RQLUCQ translation approach.

Example 4.29: Let’s see the translation of a simple minimal SWLF query

corresponding to an RQLCORE one.

The redundant RQLCORE query

SELECT $C, X

FROM Artist{X; $C}

WHERE $C=Artist

after being translated in SWLF, minimises to

ans(c, x) :- C_SUB(d, c), C_EXT(d, x), c=“Artist”

Using the aforementioned algorithm it will translate to the RQLCORE query

SELECT $C, X

FROM $C{X}

WHERE $C=Artist

or even better to

CHAPTER 4. RQL QUERY OPTIMISATION

 University of Crete, Computer Science Department

82

SELECT Artist, X

FROM Artist{X}

after we incorporate the equalities in the FROM and SELECT clauses.

 83

Chapter 5

RQL Query Reformulation

In the previous chapter we have focused on the RQL containment and minimisation

problems exploring the potentials of the chase and backchase algorithms. However,

these algorithms can, also, be used for reformulating RQL queries given a set of

mapping rules from one schema to another.

Figure 5-1: The general query reformulation problem

Definition 5.1: The problem of query reformulation consists of finding (whenever it

exists) a query (or queries) QS over a schema S that return(s) the same answer to a

given query QP over a schema P.

The general query reformulation problem is depicted in Figure 5-1. In our case

the goal is to express the given RQLUCQ query translated in terms of SWLF into an

equivalent query expressed in terms of the underlying relational schema while

minimising the output (relational-reformulated) query. In order to succeed in both

goals, the following steps are needed. Initially the RQLUCQ query gets rewritten in

terms of C_EXT and P_EXT; after that it gets refined and reformulated against the

relational schema using RDB→RDF mappings, and minimised using constraints from

the RDB. Then, the resulting minimal relational queries are translated into appropriate

SQL queries. Once the translation is complete, they can get executed and have their

results translated into RDF/S data. Before proceeding to the algorithm’s descriptions,

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

84

the RDB→RDF mappings used to bridge the gap between the relational world and the

world of RDF have to be introduced.

5.1 From RDBs Schemas to SWLF

Passing from the relational world to the virtual RDF world requires a mean to

associate the two worlds. This is why RDB→RDF mappings are used; these

mappings have the form of Datalog rules and need be specified just once for every

relational schema. Their goal is to virtually populate the C_EXT and P_EXT

relations.

Definition 5.2: An RDB to RDF mapping is a Datalog rule of the form

() (): ,RVLClause RelationalClausex x yφ φ−

where ()RVLClause xφ is a conjunction of RVL clauses of the form A(x1) or A(x1, x2),

depending on whether each clause refers to the proper extent of an RDF/S class or

property, and (),RelationalClause x yφ is a conjunction of relational atoms of the form

R(ω1, ..., ωl) and equality atoms of the form ω=ω’, where ω1, ..., ωl, ω, ω’ are

variables or constants.

Artist(x) and Creates(x, y) constitute examples of RVL clauses. The translation

of the mapping rules in the internal SWLF representation is achieved using the

predicate C_EXT for RVL clauses referring to proper extents of classes and the

predicate P_EXT for RVL clauses referring to proper extents of properties. The

aforesaid RVL clauses would translate into C_EXT(Artist, x) and P_EXT(x, creates,

y), respectively.

There is one exception to the rule above. Due to their nature, the classes

modelling literal types demand special handling; there is no way to limit the possible

literal values because they are infinite. Based on this fact, no mapping can be

specified for the literal classes.

Example 5.1: Figure 5-2 presents a simple relational schema consisting of four

relations whose names illustrate their intended usage. The relation Painter provides

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

85

additional information to the one supplied from Artist. Similarly, the relation Painting

works as complement to Artifact. Based on the last definition, Figure 5-3 shows the

mappings from the relational schema to the virtual RDF/S schema used in all

examples till now.

Figure 5-2: Relation database schema

The mappings supported in SWIM are very expressive and partially support

the GLAV ([FLM99]) approach, which is a mixed GAV ([Ull00]) and LAV ([Lev99]

[Lev01]) approach. More thorough analysis of the expressive power of our mappings

can be found in the related work presented in [Kof05].

5.1.1 Translating the Mappings into Constraints

As has been stressed throughout this thesis, all information (RDF/S semantics,

RDF/S schema, RDB→RDF mappings) must be given as input to the chase and

backchase algorithms in the form of constraints. Hence, the mappings need to get

translated into constraints. However, we have to make sure that no information will be

lost during translation.

We will start by indicating how constraints are extracted from mappings that

follow the GAV approach, i.e. mappings that describe the global RDF/S schema in

terms of the local relational one. These mappings have the form

() (): ,RVLClause RelationalClausex x yφ φ−

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

86

Definition 5.3: A mapping’s interpretation consists of two constraints:

() (), RVLClauseRelationalClausex y x y xφ φ∀ ∀ →

and

() (),RVLClause RelationalClausex x y x yφ φ∀ →∃

Both constraints are needed because the first one guarantees soundness of the

interpretation and the second one guarantees completeness.

Figure 5-3: RDB→RDF mapping rules in SWLF

Example 5.2: Figure 5-4 shows how, using the above definition, the mappings of

Figure 5-3 translate into constraints.

When the mappings follow the LAV approach, i.e. describe the local relational

schema in terms of the global RDF/S one, or GLAV approach, apart from the two

constraints presented in Definition 5.3, we can extract one constraint from each RVL

clause of the head. These additional constraints can provide valuable information

when the mappings are not complete, i.e. when they do not provide information for all

class and property interpretations.

Definition 5.4: From every GLAV (or LAV) mapping we extract the constraints

() (),RelationalClause RVLClausex y x y xφ φ∀ ∀ →

and

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

87

() (),RVLClause RelationalClausex x y x yφ φ∀ →∃

Additionally, for each RVL clause in their body we extract the constraint

() ()' , , 'i
i RVLClause i iRelationalClausex x x y x y x x xφ φ∀ →∃ ∃ = −

Figure 5-4: The constraints corresponding to the C_EXT mappings of Figure 5-3

Example 5.3: Take for example the mapping rule

creates(x, y), exhibited(y, z) :- Exhibits(z, y, ...), Artifact(y, x, ...)

In SWLF it will translate into

P_EXT(x, creates, y), P_EXT(y, exhibited, z) :- Exhibits(z, y, ...), Artifact(y, x, ...)

Then it will get interpreted by the constraints

(d1) ∀x∀y∀z∀p∀q P_EXT(x, p, y) ∧ P_EXT(y, q, z) ∧ p="creates" ∧ q="exhibited" →

∃... Exhibits(z, y, ...) ∧ Artifact(y, x, …)

(d2) ∀x∀y∀z∀... Exhibits(z, y, ...) ∧ Artifact(y, x, …) → ∃p∃q P_EXT(x, p, y) ∧

P_EXT(y, q, z) ∧ p="creates" ∧ q="exhibited"

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

88

The interesting part is that we can, also, infer the constraints

(d11) ∀x∀y∀p P_EXT(x, p, y) ∧ p="creates" → ∃z∃... Exhibits(z, y, ...) ∧ Artifact(y, x,

…)

(d12) ∀y∀z∀q P_EXT(y, q, z) ∧ q="exhibits" → ∃x∃... Exhibits(z, y, ...) ∧ Artifact(y, x,

…)

The inverse constraints of (d11) and (d12) are not needed due to the existence of

constraint (d2).

5.1.2 Datalog Semantics vs. Constraints Semantics

Our reformulation scenario is initially described by a Datalog program16 (facts and

rules) and a set of constraints. The mapping rules having the same head imply the

existence of union when composed with the query. However, as soon as the mapping

rules get interpreted as constraints this semantics is lost; constraints having the same

body imply a conjunction when to be applied. Therefore, a disjunction has to be stated

explicitly by merging the constraints having the same RVL clauses in their body.

Notice that this does not happen for the reverse constraints, i.e. those having the same

relational atoms in their body; constraints are not merged because disjunction is not

implied from the rules’ semantics.

Example 5.4: The mapping rules below have the same head

C_EXT(Artist, x) :- Painters(x, …)

C_EXT(Artist, x) :- Sculptors(x, …)

They imply that instances of class Artist are given either from the relation Painters or

from the relation Sculptors. Therefore, the constraints

∀c∀x C_EXT(c, x) ∧ c="Artist" → ∃... Painters(x, ...)

∀c∀x C_EXT(c, x) ∧ c="Artist" → ∃... Sculptors(x, ...)

16 To be more precise our reformulation scenario is described by Datalog program when the mappings

follow the GAV approach. In the case of GLAV mappings, the terms “Datalog program” and “Datalog

rule” are used by misappropriation just to highlight the functionality of SWIM.

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

89

merge to constraint

∀c∀x C_EXT(c, x) ∧ c="Artist" → (∃... Painters(x, ...) ∨ ∃... Sculptors(x, ...))

Example 5.5: On the contrary, we do not merge the constraints

∀y∀x∀… Artifacts(y, x, ...) → ∃c C_EXT(c, y) ∧ c="Artifact"

∀y∀x∀… Artifacts(y, x, ...) → ∃p P_EXT(x, p, y) ∧ p="Creates"

extracted from the rules

C_EXT(Artifact, y) :- Artifacts(y, x, …)

P_EXT(x, Creates, y) :- Artifacts(y, x, …)

5.1.3 Using Functions

A very useful feature of SWIM is that it supports the use of simple functions in the

mapping rules, i.e., function names can be used as relational atoms, too. The

expressive power of SQL engines provides the only limitation to functions; since the

queries, after being reformulated, must be transformed to equivalent SQL queries, the

SQL engine must support the functions used at the middleware layer.

 The most commonly used function is Concat(a, b, c), which states that the

value of variable a is given by concatenating the values of variables b and c. A

straightforward use for Concat is creating unique URIs for the RDF/S data-result of

the RQLUCQ queries. Notice that the values of relations (a) are not unique across all

relations and (b) have not the form of a URI. Thus, if they are used, the resulting

RDF/S data will not be valid (except in the case of literal values). The following

simple example illustrates how Concat can be used to overcome this problem.

Example 5.6: Take the mapping rule populating the Artist class in Figure 5-3. This

rule could become

C_EXT(Artist, x) :- Concat(x, “http://www.csd.uoc.gr/.../Artist.rdf#”, y), Artists(y, Age)

The result of this rule is creating unique URIs for all Artist instances.

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

90

 Normally, all the mappings in the examples used throughout this thesis should

make use of the Concat function in order to create valid RDF data. However, for

simplicity reasons, Concat is not used in any mapping in the rest of this thesis.

5.2 Reformulation Phases

The process of reformulating an RQLUCQ query into an SQL one and extracting the

RDF/S results takes place in five successive phases. During the first phase the

RQLUCQ query gets rewritten against the C_EXT and P_EXT predicates. Then, the

query gets reformulated against the relational schema, while, at the same time, some

of the conjunctive queries forming the query are removed, because they cannot get

reformulated. The third phase minimises the query either by considering constraints

from the relational database or not. The forth phase takes the minimal Datalog query

and translates it into an equivalent SQL query, while in the last phase the SQL query

gets executed and, using its results, RDF/S data get created.

5.2.1 First Phase

The first phase of the RQLUCQ reformulation algorithm should be familiar by now,

because it involves the same steps as described for the containment and minimisation

problems.

5.2.1.1 Queries Not Involving Class/Property Interpretations

When an RQLUCQ query is a constant one or explores the class and property

taxonomy of the virtual RDF/S schema, our approach is based solely on the chase

algorithm. This is the case of queries built solely on schema patterns, i.e. those not

involving class/property interpretations. Such queries cannot get reformulated against

the relational schema. Moreover, all information needed to answer them is present in

the universal plans as soon as the chase with ∆RDF ends; there is no reason to apply the

backchase algorithm.

Example 5.7: The query

SELECT $D, $C

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

91

FROM $C{$D}

WHERE $C=Artist

asks for the subclasses of Artist. It can be seen in a rule-based formalism

Figure 5-5: RDF/S Data for Example 5.7

ans($D, $C) :- $C{$D}, $C = Artist

which translates in SWLF to

ans(d, c) :- C_SUB(d, c), c = “Artist”

The query chases to the universal plan

ans(d, c) :- C_SUB(d, c), CLASS(c), CLASS(d), c = “Artist”, d = “Artist”

∪ ans(d, c) :- C_SUB(d, c), CLASS(c), CLASS(d), c = “Artist”, d = “Painter”

It is easy to conclude that (d, c) ∈ {(Painter, Artist), (Artist, Artist)} is the result.

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

92

The example above clearly illustrates that the results can be extracted from the

universal plan using a simple deductive engine. Moreover, having extracted the

results, it is easy to derive RDF/S data from it. Figure 5-5 shows what these data

would look like.

Obviously, the reformulation inherits chase’s complexity under ∆RDF.

5.2.1.2 Queries Involving Class/Property Interpretations

When an RQLUCQ query navigates both through the virtual RDF/S schema and data,

the algorithm considered is familiar; the query translates into SWLF, gets chased with

∆RDF and, then, gets backchased.

Comparing to the minimisation algorithm, a slight modification gets adopted.

We are interested only on minimal queries involving nothing but C_EXT and P_EXT

predicates; only these queries can be reformulated to queries against the underlying

relational schema using the RDB→RDF mappings. Therefore, we use the following

technique. As soon as the chase ends, we find the maximal subquery expressed only

in terms of C_EXT and P_EXT. This query is guaranteed to be equivalent to the

universal plan. Now, we use the backchase on this maximal subquery in order to find

the minimal query expressed in terms of C_EXT and P_EXT predicates.

Example 5.8: Suppose the query

SELECT Y

FROM {X; Painter}creates{Y; Painting}

It translates to

ans(y) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“Creates”, c=“Painter”,

d=“Painting”

and chases to

ans(y) :- PROP(a, p, b), PROP(g, q, h), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c),

C_SUB(f, d), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g),

C_SUB(j, h), C_SUB(i, a), C_SUB(j, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y),

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

93

C_EXT(i, x), C_EXT(j, y), P_EXT(x, q, y), p=q=“creates”, c=e=“Painter”,

a=g=i=“Artist”, d=f=“Painting”, b=h=j=“Artifact”

∪ …, q=“creates”, g=i=“Artist”, h=“Artifact”, j=“Painting”

∪ …, q=“creates”, g=“Artist”, i=“Painter”, h=j=“Artifact”

∪ …, q=“creates”, g=“Artist”, i=“Painter”, h=“Artifact”, j=“Painting”

∪ …, q=“paints”, g=i=“Painter”, h=j=“Painting”

The minimal query involving only C_EXT and P_EXT predicates is

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), p=“creates”, e=“Painter”,

f=“Painting”

∪ ans(y) :- P_EXT(x, p, y), p=“paints”

which corresponds to the RQLUCQ query

SELECT Y

FROM {X; ^Painter}^creates{Y; ^Painting}

UNION

SELECT Y

FROM {X}^paints{Y}

Earlier we have stated that the chase with ∆RDF terminates. Normally, the first

phase of the reformulation would inherit the complexity of full minimisation.

However, based on the observation that the maximal subquery expressed in terms of

C_EXT and P_EXT has only one minimal equivalent, the Disjunction Plan

Minimisation can be used.

5.2.2 Second Phase

The RQLUCQ query given as input has been reformulated by now into a minimal query

MQ expressed in terms of RVL clauses translated into SWLF, i.e. C_EXT and

P_EXT. The algorithm’s second phase can be seen as an intermediate auxiliary phase.

All conjunctive queries MQi forming MQ get examined one by one in order to locate

those that cannot be rewritten into equivalent relational ones. Keep in mind that there

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

94

is no guarantee that a relational database contains all information corresponding to a

specific virtual RDF/S schema.

Therefore, the conjunctive queries containing predicates for which there is no

RDB→RDF mapping have to be removed. The procedure, as illustrated below, is

rather simple.
Re, MapChaseWith Maximal lationalSubqueryExtraction

i i i i
i

MQ MQ MQ MU MR∆= → →U

Each conjunctive query gets chased with the constraints extracted from the

RDB→RDF mappings (∆Map) producing a (union of) conjunctive query(ies) MUi

expressed in terms of SWLF and of the underlying relational schema. Then, the

maximal subquery MRi expressed in terms of the relational schema gets extracted

from each query MUi produced. The initial query MQi and MRi get tested for

equivalence under ∆Map; whenever the check fails, the query MRi gets rejected. The

remaining MRi’s get combined and form the union MR; MR is a (union of)

conjunctive query(ies) expressed in terms of the relational schema.

Example 5.9: The RQLUCQ query

SELECT X

FROM Artist{X}

after chase and backchase (1st phase) becomes

ans(x) :- C_EXT(Artist, x)

∪ ans(x) :- C_EXT(Painter, x)

Suppose there is no mapping for C_EXT(Painter, x). Thus, the corresponding

subquery has to be removed and the query that will be passed to the next phase is

ans(x) :- Artists(x, Age)

As we have already mentioned many times, literals are dealt as classes

internally to SWIM. Therefore, there will be some limited cases where the minimal

query produced from the first phase will contain conjunctive queries built on C_EXT

predicates for literals; these queries have to be removed, too, since there are no

mapping rules for them. The aforementioned procedure succeeds in removing these

queries, too.

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

95

Example 5.10: The RQLUCQ query

SELECT X

FROM $C{X}

after chase and backchase (1st phase) becomes

ans(x) :- C_EXT(Artist, x)

∪ ans(x) :- C_EXT(Painter, x)

∪ …

∪ ans(x) :- C_EXT(String, x)

∪ ans(x) :- C_EXT(Integer, x)

∪ …

The removal of the conjunctive queries containing C_EXT predicates that refer to

literals leads to the following query expressed in terms of the relational schema:

ans(x) :- Artists(x, Age)

∪ ans(x) :- Painters(x, Kat)

…

 Unfortunately, there is the possibility that all the conjunctive queries MRi have

to be removed. This is the case where the underlying database cannot answer the

given RQLUCQ query; therefore, the reformulation procedure ends without returning

any result.

The termination of this phase depends once more on the constraints

considered. These are the constraints extracted from the mappings (∆Map). Although

they do not satisfy the stratified-witness property, they guarantee termination of the

chase17.

5.2.3 Third Phase

The third phase accepts as input the query produced from the second phase of the

reformulation procedure. Although the query is minimal when outputted from the first

phase, the rewriting against the relational schema may introduce some redundancy,

17 Appendix II provides some thoughts and examples that support this conclusion.

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

96

depending on the mappings. In order to remove this redundancy, the query has to get

backchased.

Example 5.11: The query

SELECT Y

FROM {X; Painter}creates{Y; Painting}

after the 1st phase minimises to

SELECT Y

FROM {X}^creates{Y}, ^Painter{X}, ^Painting{Y}

UNION

SELECT Y

FROM {X}^paints{Y}

which in SWLF corresponds to

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), p=“creates”, e=“Painter”,

f=“Painting”

∪ ans(y) :- P_EXT(x, p, y), p=“paints”

In the 2nd phase, this query chases with ∆Map, as presented in section 5.1, rendering the

universal plan

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), Artifacts(y, x, Year, Exhibited),

Painters(x, Kat), Paintings(y, Type), p=“creates”, e=“Painter”, f=“Painting”

∪ ans(y) :- P_EXT(x, p, y), Artifacts(y, x, Year, Exhibited), Paintings(y, Type),

p=“paints”

From the universal plan the maximal subquery expressed in terms of the relational

schema gets extracted and outputted.

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type)

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type)

The current reformulation phase will use as input the above query and backchase it.

As soon as the backchase ends, it will output the minimal query

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

97

ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type)

5.2.3.1 Exploiting Additional RDB Information in the Minimisation

The end of this phase finds us with a set of minimal queries that will be translated into

SQL. However, further minimisation can take place if additional information supplied

from the relational database is considered. This information usually comes in the form

of integrity constraints and constraints capturing materialised views, if there are any

defined. The most commonly used integrity constraints are functional dependencies,

like keys, and inclusion dependencies, like foreign keys, which are EDs according to

[AHV95]. The (inclusion) constraints interpreting a materialised view are generated

in the same way constraints are produced for the mapping rules that follow the GAV

approach; one constraint ensures the soundness of the interpretation and a second one

the completeness.

Figure 5-6: Integrity constraints for the relational schema

 In order to exploit such additional information, the third phase gets refined.

The maximal rewriting outputted from the 2nd phase gets chased with the relational

constraints (∆Rel) and, then, gets backchased in one or more equivalent minimal

queries expressed in terms of the underlying relational database.

Example 5.12: Figure 5-6 shows the integrity constraints forming ∆Rel for the

relational schema issued in section 5.1. There are seven constraints; the first four are

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

98

primary keys and the rest are foreign keys. The maximal rewriting considered in the

previous example chases with the second foreign key to

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year2, Exhibited2)

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,

Painter, Year2, Exhibited2)

Then, chases with the third foreign key to

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2)

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2)

The first conjunctive query chases with the first foreign key constraint resulting in

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2),

Artists(x, Age3)

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2)

Applying the third primary key constraint results in

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2),

Artists(x, Age3), Painter=x, Year=Year2, Exhibited=Exhibited2

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), Painter=x,

Year=Year2, Exhibited=Exhibited2

and chasing with the first primary key constraint provides the universal plan

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2),
Artists(x, Age3), Painter=x, Year=Year2, Exhibited=Exhibited2, Age1=Age2,

Age2=Age3

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

99

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), Painter=x,

Year=Year2, Exhibited=Exhibited2, Age1=Age2

Amazingly, this query minimises to

ans(y) :- Paintings(y, Type)

It is obvious that there can be no further minimisation of the query!

 For this phase decidability is not guaranteed; it depends on the relational

constraints. If they satisfy the stratified-witness property, the chase with ∆Rel does

terminate and the minimisation problem is decidable. Notice that any pair of

constraints used to capture a view violates the stratified-witness condition. However,

the chase is guaranteed to terminate nevertheless using the additional observation that

when one of the two constraints is used in a chase step, the second one cannot trigger

due to the definition of the chase step. This way the ∃-cycle in the chase flow graph

breaks. Given its decidability, this phase’s complexity is the one of full minimisation

under DEDs.

5.2.4 Forth Phase: Translating the Query into SQL

One of the advantages of this approach is that the minimal queries resulting from the

previous phases are in first-order form. Thus, they may translate into SQL queries in a

straightforward manner: (a) the relational predicates of the query’s body form the

FROM clause, (b) the equalities involving variables introduced in any relational

predicate form the WHERE clause of the SQL query, and (c) the head variables,

except those not bound to predicates, become the projected variables in the SELECT

clause with the names of the relational attributes to which they correspond. Head

variables not bound to predicates get substituted by their value (found through the

equalities) in the SELECT clause. This is always the case of (i) schema variables

assigned to a value in the initial RQL querry, (ii) all remaining schema variables

appearing in RQL patterns that have been assigned to a value during first phase, and

(iii) variables not bound to patterns in the initial RQLUCQ query. The output of this

translation phase is a set of SQL queries ready to be executed at remote sources.

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

100

Example 5.13: The minimal query

ans(y) :- Paintings(y, Type)

corresponds to the SQL query

SELECT p.PName

FROM Paintings p

based on the knowledge that PName is the attribute corresponding to variable y. Thus,

this SQL query is an optimised reformulation of the RQL query

SELECT Y

FROM {X; Painter}creates{Y; Painting}

Example 5.14: In order to clarify the translation of queries carrying schema

information suppose the RQLUCQ query

SELECT $C, X

FROM $C{X}

WHERE $C=Artist

This query at the end of the first phase has the form

ans(d, x) :- C_EXT(d, x), d=“Artist”

∪ ans(c, x) :- C_EXT(d, x), d=“Painter”, c=“Artist”

which at the end of the fourth phase has become to

ans(c, x) :- Artists(x, Age), c=“Artist”

The corresponding SQL query is

SELECT ‘Artist’, a.Name

FROM Artists a

5.2.4.1 Handling of Functions

We have argued for the fact that the use of the Concat function is necessary for

creating valid RDF data. Moreover, using additional functions is, also, allowed. Thus,

CHAPTER 5. RQL QUERY REFORMULATION

Giorgos Serfiotis

101

when translating the minimal queries into SQL ones, the functional predicates have to

be translated as well. However, there is no default translation for them. It depends on

the SQL engine that will be used for answering the SQL query.

Example 5.15: The symbol ‘||’ is used as the concatenation operator in Oracle10. As

an alternative, Oracle10 supports a function named “Concat”. In reality the minimal

query of Example 5.12 would look something like

ans(y) :- Concat(y, “http://www.csd.uoc.gr/.../Painting.rdf#”, z), Paintings(z, Type)

So, it would translate to

SELECT Concat(‘http://www.csd.uoc.gr/.../Painting.rdf#’, p.PName) as

PaintingURI

FROM Paintings p

where “PaintingURI” is the name of the new attribute produced.

5.2.4.2 Choosing the Minimal Query to Be Executed

The third phase that explores relational integrity constraints may output more than one

minimal query against the relational database schema. These queries shall be

equivalent, i.e., if executed, they will return the same results. Thus, as soon as the

translation ends, a decision has to be made concerning which of the minimal

reformulated queries will be executed. This decision is not trivial and is out of the

scope of this thesis. There exist various techniques that support taking such a decision

based on cost models, heuristics, etc.

 Generally, the existence of more than one minimal SQL queries implies

redundant storage in the underlying relational database and is, usually, related to the

existence of materialised views.

5.2.5 Final Phase: Translating the Results into RDF Data

Translating the results of the reformulated SQL query into RDF/S data presupposes

the existence of a wrapper that will collect the results from the relational database and

make the appropriate processing. The correspondence is simple. The result of

CHAPTER 5. RQL QUERY REFORMULATION

 University of Crete, Computer Science Department

102

executing an SQL query is a relation whose attributes are the ones projected in the

query. The relation gets mapped to an rdf:Bag; if the relation has more than one

attributes, each tuple corresponds to an rdf:li containing an rdf:Seq; in both cases each

attribute value gets mapped to an rdf:li element.

Example 5.16: Figure 5-7 shows what the RDF/S data could look like for the

minimal SQL query of the previous example.

Figure 5-7: RDF/S data answering the RQLUCQ query

5.3 Reformulation’s Soundness, Completeness and
Complexity

Given that the necessary conditions are met, i.e. the stratified-witness property of the

relational integrity constraints, the reformulation procedure terminates and it is sound

since every single step is sound, too. Moreover, all phases based on the chase and

backchase algorithms are complete, too. However, the entire reformulation procedure

is not complete due to the possible lack of several RDB→RDF mappings that may

lead in simplifying the query to be reformulated. Finally, the reformulation’s overall

complexity stems from the different phases’ complexities.

 103

Chapter 6

SWIM’s Architecture

As has been stressed out throughout this thesis, SWIM is a middleware for

minimising and reformulating RQL queries. Figure 6-1 sketches out its general

architecture, i.e. the RDF/S virtual schema and the mappings between it and the local

sources (relational databases in this thesis’ case). For each RQL query submitted by

the user to SWIM, the reformulation engine generates several SQL queries. One of

them is chosen and gets executed. Then, its results get translated using a wrapper into

RDF/S data and get outputted to the user.

Figure 6-1: The ICS-FORTH SWIM architecture

 The query reformulation engine is SWIM’s core component and gets

discussed below.

CHAPTER 6. SWIM’s ARCHITECTURE

 University of Crete, Computer Science Department

104

Figure 6-2: The SWIM Query Reformulation Engine

6.1 SWIM Query Reformulation Engine

The anatomy of the query reformulation engine is presented in Figure 6-2. The engine

takes as input (a) the virtual RDF/S schema, (b) the RDF/S semantics, (c) the

RDB→RDF mappings, (d) any constraints originating from the relational databases

and (e) the RQL query to be reformulated.

 Three basic components constitute the query reformulation engine as depicted

in Figure 6-2: the SWLF compiler, MARS’ engine and the SQL query generator.

6.1.1 SWLF Compiler

The SWLF Compiler takes as input all the information related to RDF and translates it

in terms of SWLF. More precisely:

• It transforms the mediated RDF/S schema into Datalog facts that capture the

classes, properties and their subsumption hierarchies. Then, it extracts constraints

from them.

• It transforms the RQL query into a Datalog rule

• It transforms the mapping rules into rules employing SWLF terms and, then, into

DEDs.

CHAPTER 6. SWIM’s ARCHITECTURE

Giorgos Serfiotis

105

The translation of RDF/S semantics into constraints was done once and needs not be

repeated each time the reformulation takes place.

 Once all information is expressed as Datalog facts and rules in terms of

SWLF, the Datalog program gets parsed with the use of JFlex 1.4 and JavaCup. The

parsing procedure outputs a file where all information is given in the form of

constraints (DEDs). The BNF grammar used for the parsing can be found in Appendix

C.

6.1.2 MARS

The MARS (Mixed and Redundant Storage) system ([DT02] [DT03a] [DT03b])

constitutes the basic component of SWIM. It was developed in the University of

Pennsylvania by Lucian Popa [Pop00] and Alin Deutsch [Deu02]. It implements the

chase, along with the checks for consistency of the queries, and backchase algorithms

referenced throughout this thesis, thus, allows checking for query equivalence and

minimising as well as reformulating queries.

 MARS was originally designed for object relational databases. Later, it was

extended in order to handle XML repositories. This was achieved by establishing and

incorporating in it a relational schema and a number of relational constraints capturing

XML and its semantics. Our relational representation of RDF is somewhat similar to

XML’s. In our RDF to RDB scenario we ignore the XML handling feature of MARS

and concentrate on the reformulation and minimisation of relational queries over the

relational schema for RDF. When handling relational (and not XML) queries, the

chase and backchase algorithms are sound and complete; MARS discovers all

minimal (reformulated) queries.

 MARS’ novelty is its ability to handle both materialised views and integrity

constraints. No earlier approach on reformulation had managed to prove completeness

for both aspects together. What made this possible is the fact that all information is

passed as input to the system in the form of constraints. Translating the mappings

between the local (source) schemas and global (published) schemas into constraints

allows handling both the Global-As-View (GAV) and the Local-As-View (LAV)

approaches.

CHAPTER 6. SWIM’s ARCHITECTURE

 University of Crete, Computer Science Department

106

6.1.3 SQL Generator

The SQL Generator is the component that generates the SQL query based on the first-

order query outputted from the last call of the chase/backchase machine. The

translation is pretty straightforward: reading one-by-one the query’s atoms, the non-

functional ones are used to construct the FROM clause, the equality ones form the

WHERE clause and the functional ones get incorporated in the SELECT clause. A

Java program is responsible for this translation.

 This translation is not independent of the underlying relational database

management system (RDBMS). Since each RDBMS supports different functions or

different representations of the same functions, the translation is RDBMS oriented.

Each time we want to use SWIM over a RDBMS for the first time, the generator has

to be enriched with the appropriate methods handling the RDBMS’ functions.

6.2 Related Work

RDF/S is a SW language that has become accepted as a language favouring

interoperability between information sources in the last few years. However, the

number of systems having adopted RDF/S in order to integrate/publish relational

sources in the Semantic Web is still limited. Nevertheless, many systems are under

development and new approaches are proposed daily. Some of them republish entire

relational databases as RDF/S data adopting the data warehousing approach, while the

rest, like SWIM, return virtual RDF resource descriptions when queries are posed on

virtual RDF/S schemas (on-demand retrieval).

The situation is even worse with approaches proposing and systems offering

containment and minimisation techniques for RDF/S query languages. To our

knowledge there exists only one application offering such services and there is no

system providing optimisation services along with the integration ones. Moreover,

there is a second one that deals with the idea of query caching, i.e. reusability of

previously computed results.

CHAPTER 6. SWIM’s ARCHITECTURE

Giorgos Serfiotis

107

6.2.1 SWARD

 SWARD [PR04] is a system under development that offers wrapping services

to relational databases by adopting the on-demand retrieval approach. This is achieved

by extracting virtual RDF/S views from the relational databases; these views, which

are defined using domain calculus expressions, express relational to RDF mappings.

RDF/S queries – QEL ([NS04]) is favoured as the query language for RDF/S – get

translated to domain calculus expressions, too, and get composed with the RDF/S

views. Then, the resulting domain calculus expression gets translated to an SQL query

whose results are returned as virtual RDF resource descriptions. SWARD allows

using in the RDF/S queries filters not expressible in SQL; in this case, the filters are

applied on the results from the SQL queries.

Moreover, SWARD allows for different terminologies in received QEL

queries by maintaining a user defined table that stores relations between terms from

different ontologies having the same meaning; this way the RDB-specific RDF/S

views can map to global ontologies. When a query uses terms of the global ontology,

the system searches the table for equivalent terms and rewrites the query.

 SWARD's basic drawback is the limited expressive power of the mappings

relating a relational database to an RDF/S ontology. The RDF/S views follow the

GAV approach and are provided only in terms of virtual RDF/S properties, i.e. of

basic RDF/S data; no schema information about instance-of, class-property

hierarchies can be expressed. Moreover, the correspondences between RDF/S views

and global ontologies are elementary, since they are based on term equivalence.

6.2.2 D2RQ

D2RQ ([BS04]) is a declarative, based on D2R Map ([Bi03]), language used to

describe mappings between relational database schemata and RDF/S (OWL)

ontologies. It is used as an add-in to the Jena tookit ([CDD+03]) rendering on-demand

retrieval feasible. It allows treating the relational databases as virtual RDF graphs,

which can be queried using RDQL; the queries based on the mappings get

reformulated to SQL queries, whose results get translated back to RDF data.

A D2RQ mapping between a global ontology and a relational database schema

is an RDF/S document that describes (a) correspondences of RDF/S classes and

CHAPTER 6. SWIM’s ARCHITECTURE

 University of Crete, Computer Science Department

108

properties to relational elements; based on these correspondences class and property

instances get extracted on demand, and (b) how class instances are identified, i.e. how

URIs for instances are produced. This work is pretty new and under development.

D2RQ follows the GAV approach in the definition of the mappings.

Therefore, compared to our work, the mappings are less expressive.

6.2.3 Integration of Relational Sources Using RDF and XML

[HV01] proposes an architecture for integrating heterogeneous information sources

using RDF and XML. This on-demand retrieval approach is based on a conceptual

domain model described using RDF/S. Mappings are established between the virtual

RDF/S schema and virtual or not XML DTDs using mapping rules expressed in

LMX18. Therefore, information sources are required to be able to export their data in

XML serialisation and non-XML sources, like relational databases, can use wrappers

to achieve that. Once a query is posed on the conceptual model it gets pushed to the

underlying sources based on the mappings; then, the sources, with or without a

wrapper’s interference, return all necessary information as XML serialisation and

RDF/S data get produced.

6.2.4 Integration of Relational Sources using RDF Vocabularies

[CX03] introduces an approach involving both query reformulation and data

warehousing. Queries are posed on a local source described by an RDF/S schema and

get mapped to the remote source, described by an RDF/S schema, too; RQL has been

adopted as the query language. The mapping is facilitated by a global RDF/S ontology

and common vocabularies. Each source schema shares with the global ontology a

dictionary that stores the common vocabulary of all the schema concepts and the

relationships between the ontology and each schema.

The interesting part is that the sources originally need not have an RDF/S

schema describing them and their data stored as RDF. If they are relational (or XML),

an RDF/S schema gets extracted and RDF/S data are created and stored into RSSDB

18 Language for Mapping XML documents

CHAPTER 6. SWIM’s ARCHITECTURE

Giorgos Serfiotis

109

([ACK+01]). Thus, as soon as an RQL query on the local source gets reformulated to

an RQL query on the target source it can get executed.

The main difference with SWIM is the fact that the integration of relational

sources into global or other RDF/S ontologies demands that an RDF/S schema along

with RDF/S data gets extracted. Moreover, a basic restriction of this approach that is

worth noticing is the fact that only one-to-one mappings are considered when relating

each source’s RDF/S schema to the global ontology, i.e., a concept in one RDF/S

schema maps to a single concept in another schema.

6.2.5 FDR2

In [KT04] the authors propose a data warehousing approach to facilitate ontology-

based querying of relational data. The goal is to relate data stored in a relational

database with a domain ontology. The first step is to extract an RDF/S representation

of the relational database. Automatically, every column of a relational table gets

mapped to an RDF/S class and all binary relations between two columns (classes) get

mapped to RDF/S properties. Then, all classes and properties get instantiated using

the relational data. The next step is to map this RDF/S representation to the domain

ontology, which is also expressed in RDF/S. The user identifies subclass

(subproperty) relationships between the classes (properties) of the RDF/S

representation and those of the domain ontology. As soon as the mapping is done, an

RDF/S reasoner is used to deduct all possible entailments based on the hierarchy

relationships. Whenever a query on the domain ontology is posed, it gets evaluated

using these entailments.

 FDR2 uses a naïve approach for creating the RDF/S representation, since it

does not explore its semantics. This choice was made because it is designated for

simple relational schemas, like the ones used for keeping track of scientific

experiments and computations. Moreover, based on the mappings, we may conclude

that, using the FDR2 approach, queries built on proper interpretations cannot be

answered. Finally, FDR2 provides no query optimisation techniques.

CHAPTER 6. SWIM’s ARCHITECTURE

 University of Crete, Computer Science Department

110

6.2.6 D2R Map

D2R Map ([Bi03]) is a declarative XML-based language used to describe flexible

mappings of complex relational structures to RDF. Its flexibilty is achieved by

employing SQL statements directly in the mapping rules; correspondences between

classes (properties) and relational elements are established stating how the classes

(properties) get instantiated and how URIs are created. This way, relational data can

get exported as RDF using a D2R processor.

6.2.7 ICS-FORTH GRQL Interface

As has already been illustrated, the ICS-FORTH GRQL Interface ([ACK04]) is an

interface that produces on the fly RQL queries while the user navigates through an

RDF/S schema. Its functionality is rather simple: each navigation step on an RDF/S

schema either creates or alters an existing path expression; these path expressions are

combined to form RQL queries. One of its advantages is that it performs optimisation

of the queries produced run-time. The key to optimisation is that when navigating

through hierarchies of classes (properties) already present in path expressions, the

path expressions get refined depending on whether subclasses (subproperties) are

visited. The main difference to SWIM’s query minimisation lays to its handling of

only a fragment of RQL, similar to RQLCORE.

6.2.8 Similarity-Based Query Caching

In [Stu04] the author approaches RDF query optimisation from a different

perspective. He proposes a graph-based approach for identifying RDF queries that are

subsumed by already issued queries whose results have been cached (stored). This

approach exploits the fact that RDF statements form labelled directed graphs. Queries

are represented using graphs where the unlabelled nodes denote the variables of the

query. By comparing query graphs query subsumption can be identified. If query A,

which was issued on the RDF/S description base DB subsumes query B, query B

needs not be executed on DB. It can be issued on the cached results of query A.

 Additionally, the author provides (i) a cost model to decide whether result

caching provides an advantage with respect to run time complexity and (ii) a cost-

CHAPTER 6. SWIM’s ARCHITECTURE

Giorgos Serfiotis

111

based similarity measure for RDF queries in case more than one relevant result sets

are found in the cache.

 The key difference to our minimisation approach is that the graph queries can

be posed only on nodes, i.e. demand subject/object resource information. In other

words only queries asking solely for data information though joining property

interpretations are supported.

 113

Chapter 7

Conclusion

The issue of integrating legacy systems has been challenging information society for a

long time. Initially, systems were integrated by defining one-to-one mappings

between them. However, this approach presented several drawbacks, like scalability

and maintainability. Then, organisations moved to XML in order to take advantage of

standards based integration. But, XML did not provide solutions to all problems.

The next step was to use ontologies in the integration process. For each

knowledge or application domain, an ontology is defined and legacy systems get

mapped to such ontologies. This way, systems can communicate independently from

information architectures and system technologies. Moreover, when ontologies are

described using machine processable languages, like RDF/S, legacy systems get

integrated into the Semantic Web and can be accessed through it.

 Therefore, in this thesis we have proposed SWIM, a system for integrating

relational and XML ([Kof05]) sources in the Semantic Web, and have focused on the

relational aspects of the system. At the same time we have presented the optimisation

capabilities of SWIM regarding queries against SW ontologies. We have chosen

RDF/S to be the SW ontology language and RQL its corresponding query language.

We have, also, identified a fragment of RQL, namely RQLCORE, for which

optimisation is sometimes easier to perform.

 Six relational predicates and a number of constraints, which form the Semantic

Web Logic Framework (SWLF), have been adopted for capturing the RDF/S data

model and its semantics. Based on this representation we have achieved to reduce the

RQL optimisation problem to its relational equivalent. Furthermore, the RQL to SQL

reformulation problem has been reduced to the problem of rewriting a query against

SWLF as a query against the relational storage schema.

 The minimisation and reformulation procedures are based on the chase and

backchase algorithms; the latter is sound and complete when the chase is guaranteed

to terminate. Since these algorithms accept input in the form of constraints, all

information gets translated into disjunctive embedded dependencies (DEDs). The

CHAPTER 7. CONCLUSION

 University of Crete, Computer Science Department

114

reformulation procedure exploits RDB to RDF mappings translated in SWLF. The

mappings between the local (relational) sources and the global (RDF) ones follow the

GLAV approach that combines the advantages of both the Global-As-View and

Local-As-View approaches.

 It is worth noticing that the chase and backchase algorithms employed for

RDF/S semantic query optimisation were initially developped in the context of

optimisation and reformulation of queries issued against relational schemas using

dependencies capturing integrity constraints and schema mappings. However, in our

scenario the major difference that arises is the expressions of queries allowing both

schema and data navigation/filtering. In order to represent a specific RDF/S

description schema, the predicates CLASS, PROP, C_SUB and P_SUB have to get

populated. Moreover, this schema is given as input to the chase and backchase

algorithms using constraints, which implies providing the data of the relations in the

form of constraints. Using this knowledge, the minimisation process always generates

a minimal query were no schema navigation is needed in order to answer it. In

practice, the minimisation procedure sometimes rather answers than minimises the

schema part of a given query; when the case, a union is usually introduced.

Additionally, not all the minimal queries produced from the C&B algorithm are

always interesting. For example, it is hard to argue why choosing to execute the

second minimal query of Example 4.20. If accessing only proper interpretations is

desired (i.e. the relation C_EXT), the third query should be chosen; if accessing

extended interpretations is desired (i.e. both the C_SUB and C_EXT relations), the

first query should be chosen. The only obvious reason to select a minimal query

where schema information has partially been unfolded is in order to exploit cached

query results; if the query asking for the extended interpretation of Painter – or the

proper interpretation of either Artist or Sculptor – has already been issued and its

results have been stored, this query can be useful. Nevertheless, this presupposes a

check of all the minimal queries in order to locate those involving cached queries.

Another issue has occurred in the reformulation process. If we were interested

in considering only GAV mappings, the reformulation would be straightforward even

if they were not complete, i.e. did not provide information for all classes and

properties of the RDF/S schema. However, our goal was to consider GLAV mappings

between the virtual RDF/S schema and the relational proprietary one; so, we were

CHAPTER 7. CONCLUSION

Giorgos Serfiotis

115

forced to break the reformulation in three phases in order to handle/overcome

mappings’ incompleteness.

This incompleteness usually does not affect the straightforwardness of the

reformulation algorithm in purely relational scenarios. When a query does not

reformulate as a whole, a negative answer is issued. On the contrary, in the RQL

reformulation/integration scenario the majority of RQL conjunctive queries imply a

union of queries based on the class/property hierarchies. The underlying proprietary

database may not be able to answer all of them, but may have the information to

answer some of them. Our reformulation algorithm manages to handle this case, too,

by locating the maximal subquery of the original one that can be answered.

7.1 Future Work

SWIM is a middleware for RQL query optimisation and reformulation. However,

there are still some issues that deserve to be further investigated.

First of all, it would be very useful if SWIM disposed a feature that would

allow generating (semi-) automatically the mappings between the virtual RDF/S

schemata and the relational databases; users would appreciate such assistance. A

possible guideline to this direction could be to incorporate in SWIM a reverse

engineering tool in order to produce an ER-model from the relational schema; given

the concepts and the relationships between them, the mapping to RDF/S classes and

properties would be facilitated.

 Another issue is the support of features originating from more expressive

RDF-based ontology languages, like OWL. OWL offers some additional features that

can prove very useful, such as inverse properties and disjointness of class and

property extensions. Incorporating them in SWIM would allow a wider range of RQL

queries to be posed and would offer increased optimisation capabilities.

 Additionally, extending the RQL fragment considered, namely RQLUCQ could

be a hint for future work. For example, we could look into incorporating RQL

functions – like domain, range, subclassof, subpropertyof and aggregate ones – and

nested queries in the fragment.

 The ability to attach to the reformulated queries schema information is an

issue that deserves further investigation, too; although the queries are posed against an

CHAPTER 7. CONCLUSION

 University of Crete, Computer Science Department

116

RDF/S schema, the algorithm’s present form does not allow, when asking a query,

retrieving along with the instances the corresponding schema information, i.e.

returning fully typed descriptions. Such a feature would allow exploiting the power of

the RDF/S language.

 Another interesting direction for further investigation is the exploitation of

cached query results either in combination with the minimisation process or

independently. The problem can be defined as follows: “Given a query or a minimal

equivalent, can it partially (or fully) be answered from the cached results of already

answered queries?”

 Finally, extended paradigms should be run in order to test whether SWIM can

be used in real life integration scenarios where the input load may severally increase.

We should have in mind that the complexities raise exponentially in the size of the

global RDF/S schema.

 117

Bibliography

[ACK+01] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis,

Dimitris Plexousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Managing

Voluminous RDF Description Bases. In Proceedings of the 2nd International

Workshop on the Semantic Web, Hong Kong, 2001.

[ACK04] Nikos Athanasis, Vassilis Christophides, and Dimitris Kotzinos.

Generating on the Fly Queries for the Semantic Web: The ICS-FORTH Graphical

RQL Interface (GRQL). In Proceedings of the 3rd International Semantic Web

Conference, pages 486-501, Hiroshima, Japan, 2004.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[Bec04] Dave Beckett. RDF/XML Syntax Specification. W3C

Recommendation, 10 February 2004.

[BG04] Dan Brickley, and R.V. Guha. RDF Vocabulary Description Language

1.0: RDF Schema. W3C Recommendation, 10 February 2004.

[Bi03] Christian Bizer. D2R Map – A Database to RDF Mapping Language.

Poster at the 12th World Wide Web Conference, Budapest, Hungary, 2003.

[BMPS00] Tim Bray, Eve Maler, Jean Paoli, and C. M. Sperberg-McQueen.

Extensible Markup Language (XML) 1.0. W3C Recommendation, 6 October 2000.

[BS04] Christian Bizer, and Andy Seaborne. D2RQ – Treating Non-RDF

Databases as Virtual RDF Graphs. 3rd International Semantic Web Conference,

Hirosima, Japan, 2004.

BIBLIOGRAPHY

 University of Crete, Computer Science Department

118

[CDD+03] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy

Seaborne, and Kevin Wilkinson. Jena: Implementing the Semantic Web

Recommendations. Technical Report, HP Labs, 2003.

 [CK04] Jeremy J. Carroll, and Graham Kline. Resource Description

Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation, 10

February 2004.

[CM77] Ashok K. Chandra, and Philip M. Merlin. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In Proceedings of the 9th Annual ACM

Symposium on the Theory of Computing, pages 77-90, 1977.

[CX03] Isabel F. Cruz, and Huiyong Xiao. Using a Layered Approach for

Interoperability on the Semantic Web. In Proceedings of the 4th International

Conference on Web Information Systems Engineering (WISE), pages 221-231, 2003.

[Deu02] Alin Deutsch. XML Query Reformulation over Mixed and Redundant

Storage. PhD Thesis, University of Pennsylvania, 2002.

[DT02] Alin Deutsch, and Val Tannen. Querying XML with Mixed and

Redundant Storage. Technical Report, University of Pennsylvania, 2002.

[DT03a] Alin Deutsch, and Val Tannen. MARS: A System for Publishing XML

from Mixed and Redundant Storage. In Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003.

[DT03b] Alin Deutsch, and Val Tannen. Reformulation of XML Queries and

Constraints. In Proceedings of the 9th International Conference on Database Theory

(ICDT), Siena, Italy, 2003.

[FLM99] Mark Friedman, Alon Y. Levy, and Todd Milstein. Navigational Plans

for Data Integration. In Proceedings of the 16th National Conference on Artificial

Intelligence and 11th Conference on Innovative Applications of Artificial Intelligence,

pages 67-73, 1999.

BIBLIOGRAPHY

Giorgos Serfiotis

119

[GGGM98] Parke Godfrey, John Grant, Jarek Gryz, and Jack Minker. Integrity

Constraints: Semantics and Applications. In Logics for Databases and Information

Systems, pages 265-306, 1998.

[Hay04] Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February

2004.

[HM04] Frank Van Harmelen, and Deborah L. McGuinness. OWL Web

Ontology Language Overview. W3C Recommendation, 10 February 2004.

[HV01] Geert-Jan Houben, and Richard Vdovjak. RDF Based Architecture for

Semantic Integration of Heterogeneous Information Sources. International Workshop

on Information Integration on the Web (WIIW), Rio de Janeiro, Brazil, 2001.

[Kar00] Grigoris Karvounarakis. Querying RDF Metadata for Community Web

Portals. Master Thesis, University of Crete, 2000.

[Kof05] Ioanna Koffina. Integrating XML Data Sources Using RDF/S

Schemas: The ICS-FORTH Semantic Web Integration Middleware (SWIM). Master

Thesis, University of Crete, 2005.

[KT04] Maksym Korotkiy, and Jan L. Top. From Relational Data to RDFS

Model. International Conference on Web Engineering, Munich, Germany, 2004.

[Lev99] Alon Y. Levy. Logic-Based Techniques in Data Integration. Workshop

on Logic-Based Artificial Intelligence, Washington, USA, 1999.

[Lev01] Alon Y. Levy. Answering Queries Using Views: A Survey. The

International Journal on Very Large Databases, 2001.

[Mag03] Aimilia Magkanaraki. A View Definition Language for RDF/S. Master

Thesis, University of Crete, 2003.

[MM04] Frank Manola, and Eric Miller. RDF Primer. W3C Recommendation,

10 February 2004.

BIBLIOGRAPHY

 University of Crete, Computer Science Department

120

[NS04] Mikael Nilsson, and Wolf Siberski. RDF Query Exchange Language

(QEL) – Concepts, Semantics and RDF Syntax. http://edutella.jxta.org/spec/qel.html.

[Ono05] Nicola Onose. Extensions of the Relational Chase. Project Report of

End of Studies, 2005.

[Pop00] Lucian Popa. Object/Relational Query Optimisation with Chase and

Backchase. PhD Thesis, University of Pennsylvania, 2000.

[PR04] Johan Petrini, and Tore Risch. Processing Queries over RDF Views of

Wrapped Relational Databases. In Proceedings of the 1st International Workshop on

Wrapper Techniques for Legacy Systems (WRAP), Delft, Netherlands, 2004.

[PS05] Eric Prud'hommeaux, and Andy Seaborne. SPARQL Query Language

for RDF. W3C Working Draft, 17 February 2005.

[Stu04] Heiner Stuckenschmidt. Similarity-Based Query Caching. In

Proceedings of the 6th International Conference on Flexible Query Answering

Systems (), Lyon, France, 2004.

[SW01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web:

A new form of Web content that is meaningful to computers will unleash a revolution

of new possibilities. Scientific American, 17 May 2001. Available at

http://www.scientificamerican.com/print_version.cfm?articleID=00048144-10D2-

1C70-84A9809EC588EF21

[Ull00] Jeffrey D. Ullman. Information Integration Using Logical Views.

Theoretical Computer Science, 239(2): pages 189-210, 2000.

 121

Appendix A

RQL Patterns

RQL Property Patterns

The table containing all property patterns appearing in RQLUCQ queries and their

translations in SWLF follows.

Property Pattern Translation

@P

^@P

PROP(a, p, b)

{X; ^$C}@P{Y; ^$D} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y)

{X; ^$C}@P{Y}

{X; ^$C}@P

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_EXT(c, x)

{X}@P{Y; ^$D}

@P{Y; ^$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(d, b), C_EXT(d, y)

{X; $C}@P{Y; ^$D}

{$C}@P{Y; ^$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x),

C_EXT(d, y)

{X; ^$C}@P{Y; $D}

{X; ^$C}@P{$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x),

C_EXT(f, y)

{X; $C}@P{Y; $D}

{$C}@P{Y; $D}

{X; $C}@P{$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),

C_EXT(e, x), C_EXT(f, y)

{X; $C}@P{Y}

{$C}@P{Y}

{X; $C}@P

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(c, a), C_SUB(e, c), C_EXT(e, x)

{X}@P{Y; $D}

{X}@P{$D}

@P{Y; $D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)

{X}@P{Y} P_SUB(q, p), P_EXT(x, q, y)

APPENDIX A. RQL PATTERNS

 University of Crete, Computer Science Department

122

{X}@P

@P{Y}

{$C}@P{$D}

{$C}^@P{$D}

PROP(a, p, b), C_SUB(c, a), C_SUB(d, b),

{$C}@P

{$C}^@P

PROP(a, p, b), C_SUB(c, a)

@P{$D}

^@P{$D}

PROP(a, p, b), C_SUB(d, b)

{X; ^$C}^@P{Y; ^$D} PROP(a, p, b), P_EXT(x, p, y), C_SUB(c, a),

C_SUB(d, b), C_EXT(c, x), C_EXT(d, y)

{X; ^$C}^@P{Y}

{X; ^$C}^@P

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(c, a), C_EXT(c, x)

{X}^@P{Y; ^$D}

^@P{Y; ^$D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(d, b), C_EXT(d, y)

{X; $C}^@P{Y; ^$D}

{$C}^@P{Y; ^$D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x),

C_EXT(d, y)

{X; ^$C}^@P{Y; $D}

{X; ^$C}^@P{$D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x),

C_EXT(f, y)

{X; $C}^@P{Y; $D}

{$C}^@P{Y; $D}

{X; $C}^@P{$D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),

C_EXT(e, x), C_EXT(f, y)

{X; $C}^@P{Y}

{$C}^@P{Y}

{X; $C}^@P

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(c, a), C_SUB(e, c), C_EXT(e, x)

{X}^@P{Y; $D}

{X}^@P{$D}

^@P{Y; $D}

PROP(a, p, b), P_EXT(x, p, y),

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)

{X}^@P{Y}

{X}^@P

^@P{Y}

P_EXT(x, p, y)

APPENDIX A. RQL PATTERNS

Giorgos Serfiotis

123

RQL Class Patterns Not Involving Proper Interpretations

The table containing all class patterns appearing in RQLCORE queries follows.

Class Pattern

$C ^$C

$C{$D} ^$C{$D}

$C{X}

$C{X; $D}

RQL Property Patterns Not Involving Proper Interpretations

The table containing all class patterns appearing in RQLCORE queries follows.

Property Pattern

@P ^@P

{X; $C}@P{Y; $D} {$C}@P{Y; $D} {X; $C}@P{$D}

{X; $C}@P{Y} {$C}@P{Y} {X; $C}@P

{X}@P{Y; $D} {X}@P{$D} @P{Y; $D}

{X}@P{Y} {X}@P @P{Y}

{$C}@P{$D} {$C}^@P{$D}

{$C}@P {$C}^@P

@P{$D} ^@P{$D}

 125

Appendix B

Termination of Chase

Stratified-Witness for Disjunction-free DEDs

We will start by illustrating why the stratified-witness property can be used with

disjunction-free DEDs, i.e. DEDs consisting of a single conjunctive query. First of all,

we will consider equalities in the left-hand side of dependencies. Such equalities can

easily be ignored by replacing all occurrences in the dependency of one of the

variables equated by the other, hence, resulting in an embedded dependency as

introduced in [AHV95].

Equalities in the right hand of a dependency involving at least one existentially

quantified constraint are dealt similarly. If two existentially quantified variables are

equated, the equality is removed and one of the variables is replaced by the other one

in the right-hand side of the dependency. If an existentially quantified variable is

equated with a universally quantified one, then, the equality is removed and the

universally quantified one replaces the other one. Once again the query produced is an

embedded dependency equivalent to the original dependency.

Finally, we will argue that the introduction of constants in the dependencies

cannot disturb the stratified-witness property. We can without loss of expressive

power consider constants only in equality atoms. If a set of dependencies, where

equality atoms involving constants are ignored, satisfies the stratified-witness

property and, therefore, termination is ensured, there is no way the introduction of the

unattended equalities will introduce an infinite number of fresh variables and lead the

chase to diverge.

Proposition B.1: If a set C of disjunction-free DEDs satisfies the stratified-witness

property when equalities of variables to constants are ignored, the chase of a

conjunctive query Q with C terminates.

In practice, the use of constants in the constraints may reduce the number of

chase steps till the universal plan is reached, or even prevent an endless execution of

APPENDIX B. TERMINATION OF CHASE

 University of Crete, Computer Science Department

126

chase steps. Unfortunately, the check for stratified-witness cannot exploit the

additional information coming with the use of constants.

Example B.1: The constraints below do not satisfy the stratified-witness.

(d1) ∀x∀y A(x, y) → ∃z B(y, z)

(d2) ∀y∀z B(x, y) → ∃z A(y, z)

and the chase of query

ans(x) :- A(x, y)

with them will not terminate

ans(x) :- A(x, y), B(y, z)

→ ans(x) :- A(x, y), B(y, z), A(z, z1)

→ ans(x) :- A(x, y), B(y, z), A(z, z1), B(z1, z2)

→ …

If we refine (d1) by adding the equality “z=3”, the constraints do not satisfy the

stratified-witness property once again, since the process to verify it has not changed.

Nevertheless, the chase with the new constraints terminates.

ans(x) :- A(x, y), B(y, 3)

→ ans(x) :- A(x, y), B(y, 3), A(3, k)

→ ans(x) :- A(x, y), B(y, 3), A(3, k), B(k, 3)

The chase terminates here.

Termination of Chase with ∆Map

Initially, we will argue that the constraints issued from a single mapping rule do not

cause the chase to diverge, although they introduce at least one cycle in the chase flow

graph that contains at least one ∃-labelled edge. The two constraints ensuring

soundness and completeness (see section 5.1.1) create such a cycle. However, they

cannot trigger both; when one of them gets applied, the conclusion of the second one

is already in the query. We have, also, seen that several constraints, whose head is a

subset of the constraint ensuring completeness, can be educed. Incorporating these

APPENDIX B. TERMINATION OF CHASE

Giorgos Serfiotis

127

constraints may introduce new cycles containing an ∃-labelled edge. Nevertheless, the

chase will terminate because each additional constraint can apply at most once,

depending on the order the constraints get applied.

Example B.2: Suppose the mapping rule

P1(x, y), P2(y, z) :- R(x, y, z, …)

In SWLF it takes the form

P_EXT(x, P1, y), P_EXT(y, P2, z) :- R(x, y, z, …)

The constraints extracted are

(d1) ∀x∀y∀z∀p∀q P_EXT(x, p, y) ^ P_EXT(y, q, z) ^ p="P1" ^ q="P2" → ∃... R(x, y, z,

...)

(d2) ∀x∀y∀z∀… R(x, y, z, …) → ∃p∃q P_EXT(x, p, y) ^ P_EXT(y, q, z) ^ p="P1" ^

q="P2"

(d11) ∀x∀y∀p P_EXT(x, p, y) ^ p="P1" → ∃z∃... R(x, y, z, ...)

(d12) ∀y∀z∀q P_EXT(y, q, z) ^ q="P2" → ∃x∃... R(x, y, z, ...)

Suppose the query below

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”

If d1 is applied first, the chase ends with the universal plan

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z, ...)

On the contrary, if d11 (or d12) is applied first, d1 gets applied, too. Then, the universal

plan looks like

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z’, ...), R(x, y, z, ...)

Alternatively, we may apply d11 and d12, then d2 twice and, finally, d1 twice.

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z’, …), R(x’, y, z),

P_EXT(y, q, z’), P_EXT(x’, p, y), R(x’, y, z’), R(x, y, z)

APPENDIX B. TERMINATION OF CHASE

 University of Crete, Computer Science Department

128

After a number of steps and independently of the order the constraints get applied, the

chase terminates.

The conclusion above propagates to any mapping; the constraints extracted

from a single mapping cannot impose an infinite number of chase steps. Obviously,

the number of the chase steps depends on the number of RVL clauses appearing in the

left-hand side of the mapping, which produce an equal number of constraints. The

previous example along with other ones led us to the conclusion that whenever

possible, first the constraints of the form d1, then those of the form d2 and finally those

of the form d1i should be applied in order to reduce the number of the chase steps.

Now, we will extend our reasoning in order to comprise the interaction

between the constraints originating from different mappings. The fact that all class

(property) extents are expressed using a single predicate renders the emergence of

cycles containing ∃-labelled edges very possible in the chase flow graph. However,

notice that the variables corresponding to the class (property) names in the C_EXT

(P_EXT) predicates are always assigned to a constant in the query and the mappings

and, consequently, the constraints. Therefore, given a chase sequence of the form
1

1 2_ (,) _ (,)i nC EXT c x C EXT c yδ δδ→ → →

or
1

1 2_ (, ,) _ (', , ')i nP EXT x p y P EXT x p yδ δδ→ → →

and in order to have an infinite number of chase steps, the equality c1=c2 (p1=p2) must

stand.

Having this in mind, we can use the following technique to test the constraints

for stratified-witness: for every distinct value of the class (property) name in the

extent predicates we introduce a “virtual” predicate; the chase flow graph is built

using the “virtual” predicates and not the C_EXT and P_EXT ones. For example, the

predicate P_EXT(x, creates, y) is handled in the chase flow graph as creates(x, y).

This trick we use is not as arbitrary as it seems; in fact it is the opposite procedure

from the one taking place when translating the RVL clauses into SWLF. Testing

dependencies for stratified-witness using this technique overcomes the inability of

exploiting the values of the class (property) names in the C_EXT (P_EXT) predicates.

Example B.3: Suppose the mappings

APPENDIX B. TERMINATION OF CHASE

Giorgos Serfiotis

129

P_EXT(x, creates, y) :- Artifacts(y, x, Exhibited, Year)

P_EXT(x, isDated, x) :- Artifacts(x, Artist, Exhibited, y)

If, after translating them into constraints, we test the latter for stratified-witness, the

result will be negative; there are cycles containing at least one ∃-labelled edge. If,

however, the aforementioned trick is used, the “altered” constraints satisfy stratified-

witness and we are able to recognise that the chase terminates.

 Although the technique above allows us to overcome the fact that the check

for stratified-witness cannot handle the values in the C_EXT and P_EXT predicaets,

there are still cases that the check cannot identify as terminating due to not handling

values assigned to variables. Nevertheless, the fact that the constraints are extracted

from the mappings using a standard procedure allows a very important observation:

the chase with ∆Map always terminates! We will argue for this observation based partly

on intuition.

Since all constraints have on one side C_EXT (P_EXT) predicates and on the

other relational predicates, every infinite chase sequence, if there could exist one,

should introduce infinite C_EXT (P_EXT) predicates. Moreover, the constraints

creating an “∃-cycle” in the chase flow graph are of even number. We will show why

there cannot be an infinite number of chase steps when two constraints create a cycle

in their chase flow graph using general examples. The same proof procedure can be

used when four or more constraints create such a cycle.

Example B.4: We will first consider the case where the cycle results in an infinite

number of C_EXT predicates. For this to happen the constraints creating the cycle

should look like

∀c∀x C_EXT(c, x) ∧ c=“C” → ∃y R(x, y, …)

∀x∀y R(x, y, …) → ∃c C_EXT(c, y) ∧ c=“C”

If these were not constraints extracted from mappings the chase of query

ans(x) :- C_EXT(C, x)

would diverge:

ans(x) :- C_EXT(C, x), R(x, y, …), C_EXT(C, y), R(y, y’, …), C_EXT(C, y’), …

APPENDIX B. TERMINATION OF CHASE

 University of Crete, Computer Science Department

130

However, the above two constraints imply the existence of the following mapping

rules19

C_EXT(C, x) :- R(x, y, …)

C_EXT(C, x) :- R(y, x, …)

The constraints that would be given as input to the chase algorithm would be

∀c∀x C_EXT(c, x) ∧ c=“C” → (∃y R(x, y, …)) ∨ (∃y R(y, x, …))

∀x∀y R(x, y, …) → ∃c C_EXT(c, y) ∧ c=“C”

∀x∀y R(x, y, …) → ∃c C_EXT(c, x) ∧ c=“C”

These constraints violate the stratified-witness, too. All the same, the chase would

terminate yielding the universal plan

ans(x) :- C_EXT(C, x), R(x, y, …), C_EXT(C, y)

∪ ans(x) :- C_EXT(C, x), R(y, x, …), C_EXT(C, y)

Example B.5: Now, let’s study study the case where the cycle containing the ∃-

labelled edge involves P_EXT. Two constraints that would result in an infinite

number of chase steps are

∀x∀p∀y P_EXT(x, p, y) ∧ p=“P1” → ∃z R(x, y, z, …)

∀x∀y∀z R(x, y, z, …) → ∃p P_EXT(y, p, z) ∧ p=“P1”

Imagine the query

ans(x) :- P_EXT(x, P1, y)

Its chase with the constraints above would diverge

ans(x) :- P_EXT(x, P1, y), R(x, y, z, …), P_EXT(y, P1, z), R(y, z, z’, …), P_EXT(z, P1,

z’), …

However, in SWIM the above constraints entail the existence of two mappings. The

first constraint could imply the mapping

19 To be more accurate, the 1st mapping rule could have additional predicates in its body. We will

examine such a case in the following example.

APPENDIX B. TERMINATION OF CHASE

Giorgos Serfiotis

131

P_EXT(x, P1, y), P_EXT(y, P2, y’) :- R(x, y, z, y’, …)

The second one implies the mapping

P_EXT(x, P1, y) :- R(z, x, y, y’, …)

These mappings introduce the constraints

∀x∀p∀y∀q∀y’ P_EXT(x, p, y) ∧ p=“P1” ∧ P_EXT(y, q, y’) ∧ q=“P2”→ ∃z R(x, y, z, y’,

…)

∀x∀p∀y P_EXT(x, p, y) ∧ p=“P1” → (∃z∃y’ R(x, y, z, y’, …)) ∨ (∃z∃y’ R(z, x, y, y’, …))

∀y∀q∀y’ P_EXT(x, q, y) ∧ q=“P2”→ ∃z∃y’ R(z, x, y’, y, …)

∀x∀y∀z∀y’ R(x, y, z, y’, …) → ∃p∃q P_EXT(x, p, y) ∧ p=“P1” ∧ P_EXT(y, q, y’) ∧

q=“P2”

∀x∀y∀z R(x, y, z, y’, …) → ∃p∃q P_EXT(y, p, z) ∧ p=“P1”

Let’s see the effect of the above constraints on query

ans(x) :- P_EXT(x, P1, y)

It will chase to the universal plan

ans(x) :- P_EXT(x, P1, y), R(x, y, z, y’, …), P_EXT(y, P2, y’), P_EXT(y, P1, z)

∪ ans(x) :- P_EXT(x, P1, y), R(z, x, y, y’, …), P_EXT(z, P1, x), P_EXT(x, P2, y’)

Once more the chase terminates.

Likewise, the chase with any set of constraints extracted from RDB→RDF mappings

can be shown not to diverge. Thus, the following proposition is educed.

Proposition B.2: The chase with ∆Map terminates.

The key point behind the termination of chase is the standard procedure for

interpreting the mappings as constraints, and more specifically, the use of disjunction

for constraints having the same head (of RVL clauses). It is the disjunction that

prevents the constraints that create a cycle with an ∃-labelled edge to be applied both

on the same conjunctive query.

The termination of the chase given ∆Map is a very powerful condition, which

encompasses cases that will rarely rise in real publishing scenarios. Consider Example

APPENDIX B. TERMINATION OF CHASE

 University of Crete, Computer Science Department

132

B.5. It presupposes a relation R(a1, a2, a3, …) where both the pairs <a1, a2> and <a2,

a3> instantiate the property P1. Moreover, the relational attributes a1, a2 and a3 must

correspond to the same classes, since a2 instantiates both the domain and range of P1!

 133

Appendix C

BNF Grammar for Datalog

[1] PROGRAM ::= FACTLIST RULELIST QUERY

 ;

[2] FACTLIST ::= FACT FACTLIST

 |

 ;

[3] FACT ::= CLASS_FACT

 | PROP_FACT

 | CSUB_FACT

 | PSUB_FACT

 ;

[4] CLASS_FACT ::= “CLASS(“ CONSTANT “)” “.”

 ;

[5] PROP_FACT ::= “PROP(“ TRI_CONSTANT “)” “.”

 ;

[6] CSUB_FACT ::= “CSUB(“ DBL_CONSTANT “)” “.”

 ;

[7] PSUB_FACT ::= “PSUB(“ DBL_CONSTANT “)” “.”

 ;

[8] TRI_CONSTANT ::= CONSTANT “,” CONSTANT “,”

 CONSTANT

 ;

[9] DBL_CONSTANT ::= CONSTANT “,” CONSTANT

 ;

[10] RULELIST ::= RULE RULELIST

 |

APPENDIX C. BNF GRAMMAR FOR DATALOG

 University of Crete, Computer Science Department

134

 ;

[11] RULE ::= HEAD “:-” SQBODY

 ;

[12] HEAD ::= “CEXT(“ CONSTANT “,” VARIABLE

 “)”

 | “PEXT(“ VARIABLE “,” CONSTANT

 “,” VARIABLE “)”

 ;

[13] SQBODY ::= SQITEM

 | SQITEM “,” SQBODY

 ;

[14] SQITEM ::= RELATION

 | COMPAR

 | FUNCTION

 ;

[15] RELATION ::= CONSTANT “(“ REL_LIST “)”

 ;

[16] REL_LIST ::= VARIABLE

 | VALUE

 | VARIABLE “,” REL_LIST

 | VALUE “,” REL_LIST

 ;

[17] FUNCTION ::= CONCAT_F

 ;

[18] CONCAT_F ::= “myConcat(” VARIABLE “,”

 MIXED_CONCAT “,”

 MIXED_CONCAT “)”

 ;

[19] MIXED_CONCAT ::= VARIABLE

 | VALUE

 ;

APPENDIX C. BNF GRAMMAR FOR DATALOG

Giorgos Serfiotis

135

[20] REL_LIST ::= VARIABLE

 | VALUE

 | VARIABLE “,” REL_LIST

 | VALUE “,” REL_LIST

 ;

[21] VALUE ::= STRING_VALUE

 | NUMBER

 ;

[22] QUERY ::= Q_HEAD “:-” Q_BODY “.”

 ;

[23] Q_HEAD ::= “QUERY(” VARIABLE_LIST “)”

 ;

[24] VARIABLE_LIST ::= VARIABLE

 | VARIABLE “,” VARIABLE_LIST

 ;

[25] Q_BODY ::= QITEM

 | QITEM “,” Q_BODY

 ;

[26] QITEM ::= COMPAR

 | “PROP(” TRP_PROP “)”

 | “C_SUB(” DBL_CSUB “)”

 | “C_EXT(” DBL_CEXT “)”

 | “P_SUB(” DBL_PSUB “)”

 | “P_EXT(” TRP_PEXT “)”

 ;

[27] COMPAR ::= EQUALITY

 ;

[28] EQUALITY ::= VARIABLE “=” VALUE

 | VARIABLE “=” VARIABLE

 ;

[29] TRP_PROP ::= VARIABLE “,” CONSTANT “,”

APPENDIX C. BNF GRAMMAR FOR DATALOG

 University of Crete, Computer Science Department

136

 VARIABLE

 ;

[30] DBL_CSUB ::= VARCONST “,” VARCONST

 ;

[31] DBL_CEXT ::= VARCONST “,” VARIABLE

 ;

[32] DBL_PSUB ::= VARCONST “,” VARCONST

 ;

[33] TRP_PEXT ::= VARIABLE “,” VARCONST “,”

 VARIABLE

 ;

[34] VARCONST ::= VARIABLE

 | CONSTANT

 ;

