University of Crete

Computer Science Department

Optimising and Reformulating RQL

Queries on the Semantic Web

Georgios Serfiotis

Master’s Thesis

Heraklion, March 2005

I[TANENIZTHMIO KPHTHX
YXOAH OETIKQN ENIZETHMON
TMHMA EINIZETHMHZ YIIOAOI'IETQN
BeAlT10TOTOIOVTOG KOL AVOSLATUTOVOVTUG
RQL Engpomioceig oto Xnpacioroyikoé Ieté
Epyacio mov vrofAnonke and tov
I'eapyro Leporodt
MG LEPIKT EKTANPMCN TOV OTALTCEWDVY Y10 TNV OTOKTNON
METAIITYXIAKOY AIMTAQMATOZX EIAIKEYXHX
Zuyypoeéag:

I'empylog Zeperovne, Tppa Emoetung Ynoloyiotdv

Ewonyntwn Emeponn:

Baoiing Xpiotopiong, Avarinpmtc Kadnynmge, Eromtng

I'pnydpng Aviwviov, Kabnyntig, Mérog

Avootacio Avaivt, Epguviitpia Ivatitovtov ITAnpogopikng ITE, Mérog

Agktn:

Anpntpng [Tieovodkng, Avaminpotie Kabnyng
[Ipoedpoc Emtponrig Metantuyiokmv ZTovdnv

Hpdichero, Méptiog 2005

Optimising and Reformulating RQL

Queries on the Semantic Web

Georgios Serfiotis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

A cornerstone issue in the realisation of the Semantic Web (SW) vision is
the achievement of semantic interoperability among legacy data sources
spread worldwide. In order to capture information semantics in a machine
processable way, various ontology-based formalisms have been recently
proposed (e.g., RDF/S). However, the vast majority of existing legacy data
is not yet in RDF/S or any other SW language. As a matter of fact, most of
the data is physically stored in relational database (RDB) systems and published on
the Web as XML.

SW applications, however, require to view data as virtual RDF, valid instance
of a domain or application specific RDF/S schema, and to be able to
manipulate them with high-level query languages, such as RQL. Therefore, we
propose a middleware system that allows querying RDB data using RQL.

So, our work focuses on specifying a first-order logic encoding for RDF,
namely SWLF, along with constraints preserving RDF/S semantics that will allow
specifying RDB to RDF mappings, composing RQL queries with these mappings -
thus, producing RDB queries (a.k.a query reformulation) - and performing semantic
query optimisations.

In particular, we focus on RQL query containment and minimisation. By
employing minimisation (optimisation) techniques we may reduce the requirements in
time and space, which are two very valuable resources when managing queries,
especially over distributed systems, in order to answer a query. The optimisation

removes RQL query redundancy (by taking advantage of the RDF/S constraints) and

redundancy of the reformulated query (by exploiting constraints of the underlying

RDB and other).

Supervisor: Vassilis Christophides

Associate Professor

Beltictomorwvrog ko Avaoratvarovovros RQL

Engpotmoseig oto Enpoacrioroyiko loto

I'edpylog Zeperodtng

Metantoyokn Epyocio

Tufuo Emetung Yroloywotav, [Tavemotio Kpnng

Mepiknyn

O Bgpélog AMBog yio TNV TPAYLATOTOINGT TOV OPALATOG TOL ZNULOGIOAOYIKOD
Iotob givon 1 emitevén TG OMNUAGIOAOYIKNG SIHAEITOVPYIKOTNTOG HETAED VITAPYOVTI®V
YOV OdOUEVOV OE OPYAVIGLOVG OVEL TOV KOGHO. Mg GTOYO TNV TEPLYPAPT TNG
ONUAGIOAOYIOG TOV TANPOQOPLDY HE £Vo, UNYOVIKG avTIAnmTd Tpomo, O1dpopot
@oppoMcpoi Paciopévor oe ovioloyieg €yxovv mpoceato mpotabel (m.y., RDF/S).
ITapoia avtd, n peyddn micioymeio Twv vIOPYOVTOV dedoUEVMV dEV Elval aKOUo G
popeny RDF/S 7 dAAng yAdocag tov Inuaciodoyikod Iotod. To v axpifela, ta
neplocdTepo. dedouévo glvol amobnievpéva oe oyeclokd cvotnuaTe PAcEwv
dedopévov (RDB) kan dnpootievpéva otov Haykooo lotdé mg XML.

[Mopdra avtd, o1 QapuroYEG TOV ENHactoroykol Iotov amaitovy va PAETovV
o Ogdopéva g ewovikp RDF, éykvpo otiypiotvmo evog RDF/S oynpatog
kaBopiopévou mediov 1 €QOAPLOYNG, KOl VO UTOPOVV va Ta yewpilovtal pe vyniov
emmédov YAwooeg enepdtnong, onog N RQL. Emouévog, mpoteivovpe éva cuotnua
SloUECOMAPNONG TO OMOI0 EMTPEMEL TNV EMEPDTNOT CYECLOKADV OESOUEVOV
ypnoorotwvtac RQL.

'V avtd, n dovAeld pog eoTIAlETOl OTOV OPIGUO HIOG AOYIKNG KOOIKOTOINGNG
TpOTS TéENG Yo v RDF — v SWLF — pali pe meplopiopovg mov datnpodv
onpacworoyic tg RDF/S. Ta mopamdveo 6Oo emrpéyovv 1tov kabopiopd
avtiotoynoemv petaéy tov RDF/S kon tov oyeciaxod oynuatog, tn ovvheorn tov
RQL engpotioemv pe auTég TIG OVTIOTOLYNOELS — TOPBAYOVTOG GYECLUKEG ETEPMTNGELG

(avadloTHTWOoN ENEPOTACEWMY) — KO TN PEATIOTOTOI O ETEPWTICEMV.

[Switepn éppaon divetarl otov gykieiopd Kol oty gloyiotonoinorn tov RQL
EMEPMOTNOEMY. XPNOOTOIOVTIOS TEXVIKEG gAaylotomoinong (Beltictomoinonc)
UTOPOVLE VO LEUWGOVUE TIG OTOLTIGELS Y10 TNV OTAVINGT EMEPOTHGEMY GE YPOVO Kol
Y®PO, 01 010101 €ival TOAVTILOL TOPOL, WOIBHITEPE TAVM OO KOTAVEUNUEVO GUGTHLOTA.
H BeAtiotomoinon e&aleiper tovg mAgovacuovg t0co amd Tic RQL enepmtioeig
(expetordievopevn tovg RDF/S mepropiopotc) 6060 kot amd TG ovOSIOTUTMOUEVEG

EMEPMOTNOELG (EKUETAALEVOLEVT] TOVG TEPLOPIGHOVG TIG GYECLUKNG PACTG OESOUEV®V).

Enéntng KaOnynmig: Boaoiing Xpiotopidong
Avominpotg Kadnyntng

200G YOVEIG oV Kal

0TOV AOEAPO pov Avdpéa

Evyapotieg

Y10 omnueio avtd Ba MBeha va gvyoploTic® TOvV €mOmT Hov K. Booiin
Xpotoeidn 7y to 000 HOL TPOCEPEPE GTOL OLOWUICT Kol TALOV YPOVIAL NG
ovvepyaoiog poc. H Borfeia tov frav moAdtipn kot 1 kaBodnynon Tov KabopioTikn
Yo TNV OAOKANP®GT NG epyaciog avthg. Idwaitepa BEA® va Tov €uYOPIGTACH YioL TN
CUUTOPACTACT] TOL OTN OVOKOAN TEPiodo mpo TG oAokAnpwong ™G EAmilo va
QavnKo avTdglog TV TPOGOOKIMY TOV.

®a Mfela va evyoploTHo® Kol TNV Kd. Avootacic. AVOALTA Kol TOV K.
I'pnydpn Avioviov, ta 600 dAha pEAN TG emTpomng €€ETAONG TNG LETATTUYLOKNG
LLOV £PYOGLOG, Y10 TIC TOADTIULES TAPOTNPTOELS TOVG.

Emiong, Ba nbeka va svyapiotion 1o IMavemotiuo Kpimg kot v opdda
[MAnpogoproxmdv XZvomudtov tov Ivetitovtov ITAnpogopikig ywoo ta OGO LoV
TPOGEPEPOY KOl OGO ATOKOUION KOTA TIG 6TovdEg otnv Kpnrn.

I would like to thank Professor Val Tannen for his contribution in
understanding the idea behind this thesis. Additionally, I would like to thank Alin
Deutsch and Nicola Onose, since by experimenting with their system we had many
questions and they were more than willing to answer them.

Axoun, o MOl vo EVYOPIGTACH TOVG (IAOVG MOV, WOHTEPA OVTOVS TOV
QOLTNTIKOV pov xpdvev (Bacw, I'dpyo, Aéomowva, lodvva, Niko kot [Tavayudn) yio
oca mepdoape pali Kot T GLUTOPACTACT] TOVG 0TI OVGKOAES oTIYUES. [dwitepa Oa
NnBeia va evyapliotom v lwdvva yio v enti SVopion ¥pdvia GTEVI] CLVEPYACTO, LOG
KO Y10l TNV avOyn TNG OTIS OPYOTOPNUEVES LoV api&etg!

To peyaAdtepo, Opmg, evyaptotd 0 a&ilouv ot yoveic Hov, Aldpoavtig Kot
Néla, Ko 0 0deEAPOS pov AvOpEag Yo TNV AUEPIOTY] CLUTOPACTOCT TOVG Kol TNV

EUMLGTOGVVT] TOV LOL £JE1EAV OAOL AVTA TO YPOVIL. G EVYAPIGTD TOAD Y10, OACL.

IMdpyog Zeperdpng

Contents

COMEEIES ...ttt sttt ettt ettt ettt ae et ae et ebe b e 1
LISt OF TABIES ...ttt v
LAST OF FIGUIES ...uveiiiiieciieeiee ettt ettt et e e et e e e e s tae e stb e estaeessnaeensaesssaeassneeas vii
L] 1T o1 1<) o ST 1
INErOAUCTION ...ttt ettt ettt sa e e 1
1.1 Motivating EXamplesoccveveiieiiieiieiiecieeeece ettt 2
1.2 Introducing the Semantic Web Integration Middleware (SWIM) 5
1.3 OFZANTSALIONeeuvieiieiteeteereesteereesreesebeebeesseessaessseesseesseessseesseeseessesasseesseens 6

(] 1 ;10 <) USSP 9
The Resource Description Framework (RDF)........ccocoviievciiiiiiiiieee e 9
2.1 RDF: Model, Schema and Semanticsccooovvvvviieeiiiiiiiiiiieeeeeee e 9
2.1.1 RDF SChemacc.eoiiiiiiiiiiiiicecceec e 11
2.1.2 RDF SEMANtiCSeeuviriieiiniiiienieeieniteiesieetesie ettt s 13

2.2 The RDF Query Language (RQL) ..cccoooierieiiieiieiece e 14
2.2.1 Differences between RDF and RQL Semantics.........c.c.cocveeeveeenneennee. 15
2.2.2 Basic QUETICSeeeeveiierieeeiee et ettt ete et eree et eaneeeans 17
2.2.3 COmMPOSItE QUETIES.....cuveereerieiereeteeieerieereereesreesreebeeseesseesesesnseennas 19
2.2.3.1 Schema Navigationccceeeeuveereireririeeieeerreeesreeeneeesereeeseeeesneees 19

2.2.3.2 Data Navigationc.cccccvieeiieeerreeeiieenreeesneesseeesseesseeesseessssesssseees 21

2.2.3.3 Mixed NavIationcccceerieriiierieeie e ereesete et e e 22

23 RDF View Language (RVL)....cccoociiiiiiiniiiiiinicieeccececeeee e 22
2.4 CONCIUSIONS ...ttt ettt 25
(O] 1T o115 o OO USRS 27
Semantic Web Logic Framework (SWLF)c.cccoeeviieviiiiiiieeeeeeceee e 27
3.1 Datalog RUIES.....ccccuiiiiiiiiiiece ettt et e e s e e erae e 27
3.2 CONSIAINES .ottt ettt ettt ettt ettt sbe et sbe e ae e 28
33 First-order Logic Representation for RDF/Sccoooiiiiiiiiiiiiiee 29
3.3.1 RDF/S PrediCatescoueeiiriiiiniieieniieieeieeiesieee ettt 29
332 RDF/S CONSLraintscocuerueiieniienieniieieeiienieeitee et 30
3.3.2.1 Basic CONSAINEScc.ccveiiiiiiieicieeneeiceeniesie et 31

3.3.2.2 SUB CONSIAINES . cceeetteeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeereerreeeeeeeee 32

3.3.2.3 Domain-range CONStraintscceceerrerereerueereerveesreesseeseesseenens 33

3.4 Differences between SWLF and RDF/S Semantics..........ccccocevenenenencnnns 33
3.5 From RDF/S Schemas to SWLFccccooiiiiiiniiiiiicecceeceen 33
3.5.1 Translating the Facts into Constraints............ccceeeveereveerveeseveerneeenes 34

3.6 From RQL Queries t0 SWLFccoooiiiiieeeee e 36
3.6.1 From RQL Patterns to SWLFcccoooiiiiiiiiieeeee e, 37
CRAPLET 4 ...ttt ettt b e ettt ettt 41
RQL QUETY OptimiSAtiON........ccuveevieriierrieeiieeieesteeseeeteeseesseessessseesseessaesssesssesssesssseens 41
4.1 RQLycq Query Containmentcoueeververieieieieieieieieieeee e seeeneenes 41
4.1.1 Chase AlOTItRIMceiiiiieiiicicc e 43
4.1.1.1 Stratified-Witnesscoceevuirieiiirienienieeneeeeee e 44

4.1.1.2 Stratified-witness of DEDScccoceiiiiiininiiniiiinicicnccceccee 47
4.1.1.3 Chase StEPS c.veeuverueeienieeiienieniterieete sttt sttt ettt sttt 49

o I S 070} 1110] 554 1 USSR 53

4.1.2 Checking RQLycq Query Containment Algorithmc..ccccocevenennene 53
4.1.2.1 COMPIEXILY.curiirieirieiieiieeieerteesteeteereerteesteessaeesseeseesseesssessseesseennes 56

4.1.3 RQLcore Query Containment...........occveeeeveeerireeenreeeseeesreeeneesnneesnnns 56
4.1.3.1 WhY ROQLGEORE? .o vveeeriieiieeitie e cree et stee e sree e e stre e seveesnneessnneeeens 59

4.2 RQLuycq Query EQUIVAlENCEco.eeiiniiiiiiiiiiicicccccccecceecee 60
4.2.1 RQLcore Query Equivalence.........coccverievieeciiiieeeeeeeeeeeeeee 62

4.3 RQLuycq Query MinimiSationcc.eevueeeeviereenienienieneenieneenieserenieeeeseeennes 63
4.3.1 Backchase AIZOTIthIM........cccveriiiiiieieieceee e 64

4.3. 1.1 COMPIEXILY .curiirierieieieiie e eteeseeete vt ereesteesseeesseeseesseessseesseesseennes 65

432 Minimisation of RQLycq QUETIES........cccevivivirinininincncncncncsienne 66

2 B0 T T 0103111 o) (5.4 11 28OS 71

4.3.3 RQLcorE Query MinimiSation.........cccveeeevveercreeesreeesneesneeesneesnnessnnns 71
434 Simplification of RQL Patternscccoeeeeiieiieeiieieeieeeeeeeees 73
4.3.5 Backward Translation to RQL of Minimal Queriescc..couue....... 76
4.3.5.1 The Case of Minimal RQLycq QUETIEScocvevuieveeriiiirieieniieieeee 76
4.3.5.2 The Case of Minimal RQLcorg QUETIES.....coovvviieieeieiiieeieeceieeeeee 80

(O] 1T o1 1<) o OO U U USRS 83
RQL Query Reformulationceeevveiiiiierieeciee e e seeeivee e e sreeeereesvaeesnee s 83
5.1 From RDBs Schemas to SWLFc.oooiiiiiiiiicccece &4

i

5.1.1 Translating the Mappings into Constraints............cceceeeeveeveerereenenn 85

5.1.2 Datalog Semantics vs. Constraints SEmanticscccceeceevereereenneenn 88
5.1.3 USING FUNCHONSooviiiiiiiieciiecie ettt 89

5.2 Reformulation Phasesccccooiiiiiiniiiiiniiiicececeeeeee 90
5.2.1 FIrst PRasecoouiiiiiiiiieiicecccce e 90
5.2.1.1 Queries Not Involving Class/Property Interpretations..................... 90

5.2.1.2 Queries Involving Class/Property Interpretations..........ccccceceevuennee 92

522 Second Phasec..cocviviirieiiinieiecieeeeeeee e 93
523 Third PRhaseccocoveiiiiiiiiiiiciccctcteeeseeee e 95
5.2.3.1 Exploiting Additional RDB Information in the Minimisation......... 97

5.2.4 Forth Phase: Translating the Query into SQL.........ccccceevevieevieennneennee. 99
5.2.4.1 Handling of FUNCHONS.......cociiiiiieiieieiie e 100

5.2.4.2 Choosing the Minimal Query to Be Executed...........c.cccceevernnene. 101

5.2.5 Final Phase: Translating the Results into RDF Data 101

53 Reformulation’s Soundness, Completeness and Complexity 102
CRAPLET Ottt ettt et e et e et eesteestbeesseessaessseesseessaeseesssensseenseens 103
SWIM?’S ATCHItECIUTEveiuiiiieiiiiiiieitriesteet ettt 103
6.1 SWIM Query Reformulation ENgine..........ccccoeeveeeieeivcieeenieeeiieesiee e 104
6.1.1 SWLEF COMPILETccccuiiiiiieeiiecrie ettt siree e e seree e 104
6.1.2 IMARS L. 105
6.1.3 SQL GENETALOTeeieeeiieeeeiieeeeeireeeeeriteeeestreeeesrreeeeseraeeesesnreeeeennnees 106

6.2 Related WOTK ...c..oouiiiiiiii e 106
6.2.1 SWARD ...ttt 107
6.2.2 D2RQ ot 107
6.2.3 Integration of Relational Sources Using RDF and XML................... 108
6.2.4 Integration of Relational Sources using RDF Vocabularies.............. 108
6.2.5 FDRZ ..ottt 109
6.2.6 D2R MaD ...ttt 110
6.2.7 ICS-FORTH GRQL Interface..........ccoeeeeuieeiieieiriieeiieeeieeeiee e 110
6.2.8 Similarity-Based Query Caching..........ccccceevveeieeciienienienieeeeeeeee, 110

O] 1T 011 o U RO URRUUPTRPRR 113
CONCIUSION ..ttt 113
7.1 FUture WOTK c..cc.cooiiiiiiiiic e 115

LS 10] HT0] e4 21 o) 1) AU 117

il

F N 030153 1 T s PSR 121

ROQL PatternS....ccciiiiiiiieeiieee ettt e e e e e e e e e tre e e e enraeeeeeesneeeas 121
RQL Property PatternsSceevcviiiriieeiieerieeeiieeeieeesteesieeeeieesereesseessaneesnseesseneeens 121
RQL Class Patterns Not Involving Proper Interpretationsccceeeeveerevveenenenns 123
RQL Property Patterns Not Involving Proper Interpretationsccceeevveenennnnne 123

APPENAIX B ..ottt eens 125

Termination Of ChaSE........cccveiieriiieiietecie ettt ettt e seeesaeenseeseeens 125
Stratified-Witness for Disjunction-free DEDS.........ccccoceviriininiieniniiniiiccee 125
Termination of Chase With Anfap ..cveveeveiiiiiiiiiiiiiiiiicccce 126

APPENAIX C .ottt ettt ettt e b e et e e b e e b e e teesraeenbeenbeeteeennas 133

BNF Grammar for Datalogccccviiiiiiiiiiieiiie ettt ere e e eree e 133

v

List of Tables

Table 2-1: RDFS axiomatic triplesccccverveeviieriierieeieeriesieeseeeneesreesseessaeeseesseenens 14
Table 2-2: Function eXamples..........coecierieriiieiiienienieeieesteesieeseeeseesseesseessseesseesseennns 18
Table 2-3: Basic RQL class path expressions and their interpretation 20
Table 2-4: Basic RQL property path expressions and their interpretations................. 21
Table 3-1: First-order schema for RDFccccooiiiiiiiiiiiicceceeece 30
Table 3-2: BasiC CONSIIAINEScc.eiruirierieriieieeitesie ettt 31
Table 3-3: SUB CONSIIAINEScuveruiiiiriieieeiieierie ettt s 32
Table 3-4: Domain-range CONSIIAINTS.cccueerreereerieerierteesieeseeesseesreesseeeseesseesseensns 33
Table 3-5: Class patterns' translation into SWLFccccoovviiiiiiiiiiiie e 38
Table 3-6: Property patterns' translation into SWLFcccccoeiviiiiviiiniieeieecieeenenn 39
Table 4-1: From simple patterns to more complex property ones...........cceceeeeveeeennne. 77
Table 4-2: From simple patterns to more complex class ones..........cocceeeeveceeereennennne. 78

List of Figures

Figure 1-1: Mediation scenario: Publishing RDB as RDFcccccccoviiiiiiniincnieene 3
Figure 1-2: On the fly creation of RQL qQUETYcceoeriiniiniieiiiieiccieieceeseeeesene 4
Figure 2-1: A simple statement's representationscocueeceereerrieeseenienie e 10
Figure 2-2: Statement example with literal as object..........cccoeeeeiieniiiniieniieieee 11
Figure 2-3: Definition of a property with multiple domains.............ccccceeriieiieniennn. 15
Figure 2-4: Definition of a subproperty not preserving set inclusion of the range......16
Figure 2-5: Definition of a class as instance of another class............cccceeevveeienieenn. 17
Figure 2-6: RVL VIEW CTeatiON PIOCESSccverveeureriieienierienieeienieeniesieensesseeeesseeneeseeens 24
Figure 3-1: Class/property reflexivity/transitivitycoccceeeeeveereenienieeeeseeseeeieane 31
Figure 3-2: Domain-range CONSITAINTScccoveeieerierierieeieeree e et esieeseee e eee e 32
Figure 3-3: An RDF/S schema and its SWLF translation............cccoccceveveieenienenenen. 34
Figure 3-4: Constraints for the CLASS, P_SUB relations of Figure 3-3.................. 35
Figure 4-1: Simple graphical containment examplecccceceveevirenieninienienienene 42
Figure 4-2: Chase illustrative Xampleccceeeveeeieenienienie et 44
Figure 4-3: Chase flowW Zraphc.ccovieviieeiieiieiieeeeeteeee et eveestaeeene e 45
Figure 4-4: PROP & C_SUB constraints for the RDF/S schema of Figure 3-3 where

class "Cubist” gets 1ZNOTEAcccveervieiieiiieiiecie ettt ees 50
Figure 4-5: Class hierarchy rooted on Artist for Example 4.20.........cccccoovieiiininnnne. 69
Figure 5-1: The general query reformulation problemcccocceeiiiniiiniiiiienienne 83
Figure 5-2: Relation database SChemacccocieviiiiiieiieiieeeeeee e 85
Figure 5-3: RDB—RDF mapping rules in SWLFcccoooviiiiiiiiiiiiiceeecee, 86
Figure 5-4: The constraints corresponding to the C_EXT mappings of Figure 5-3....87
Figure 5-5: RDF/S Data for EXxample 5.7ooooiiiiiiiiieeeeeeeee e, 91
Figure 5-6: Integrity constraints for the relational schema............c..ccooceeiiiiiinnenen. 97
Figure 5-7: RDF/S data answering the RQLycq qQUeTrycoevvevvinieneniiiinieicieenee, 102
Figure 6-1: The ICS-FORTH SWIM architectureccccooevvienirienenienienieicnieenee, 103
Figure 6-2: The SWIM Query Reformulation Engine..........cccccccevoieniniineniencnnenne. 104

vii

Chapter 1

Introduction

Integration is one of the most pressing and expensive problems faced today by
companies and organisations maintaining a multitude of legacy databases — usually
relational databases — and corresponding applications. These systems usually contain
valuable information and are often still good for supporting specific tasks.
Unfortunately, the information they contain cannot be leveraged by other systems
without considerable effort.

Until recently, the most common solution to integration was the field to field
mapping, where schemas from two data sources are imported and fields are mapped to
each other. However, this solution has many drawbacks. First of all, it presents
scalability problems, because the number of mappings increases exponentially with
the number of sources. Moreover, the maintenance and evolution of the mappings is
very demanding; each change in one source reflects in all corresponding mappings.
Furthermore, the definition of the mappings presupposes that the person responsible is
familiar with both sources, which usually is not the case.

A first attempt to overcome these problems was made by moving towards
XML, in order to take advantage of a universal data encoding when integrating legacy
systems in the Web. However, XML does not capture the contextual meaning
(semantics) of the data. Therefore, organisations and companies have started moving
towards semantic technologies; data sources get mapped to domain ontologies, which,
defined using ontology languages, describe the concepts of the domain and the
relationships between them, i.e. the domain’s semantics. Ontologies enable
communication between computer systems in a way that is independent of the
individual system technologies, information architectures and applications. Moreover,
by adopting ontology languages that describe semantics in a machine processable way
— like RDF/S ([MMO04]) and OWL ([HMO04]), legacy systems can get integrated in the
Semantic Web ([SWO1]).

There exist two approaches to semantic integration: data warehousing and on-

demand integration. In data warchousing all data of the legacy source get translated

2 CHAPTER 1. INTRODUCTION

into data of the language describing the ontology as soon as the mapping procedure is
completed. However, if we take under account the size of legacy databases in
companies and organisations, this approach is often very expensive. Moreover, it
demands constant synchronisation of the data produced with the database. On the
contrary, on-demand integration can prove very useful, because the translation of the
whole database is not needed. Each time a query is posed on the global (domain)
ontology, data are collected from the integrated sources dynamically and outputted as
virtual data of the ontology language.

On-demand integration presupposes a SW integration middleware (SWIM)
that will allow users to: (@) specify correspondences (mappings) between RDB (and
XML, since a lot of relational sources publish their data as virtual XML) sources and
mediated RDF/S schemas, (b) verify that these mappings conform to the semantics of
the employed schemas, (c) reformulate RQL queries against the underlying relational
or XML sources using the mappings, (d) employ in the queries RVL views, (e) check
queries for containment, and (f) perform query optimisations.

Lack of background work on query optimisation and reformulation for RQL or
any other RDF/S query language, the challenge is to find a way to reduce the above
problems into equivalent ones that can exploit already existent knowledge. The
current thesis tries to reveal certain aspects of a SWIM, as well as the necessary

decisions taken in order to make it feasible.

1.1 Motivating Examples

Suppose that there exists a relational database holding information about artefacts,
like their title, creator and exhibition place (bottom part of Figure 1-1). Normally this
data can be queried using SQL. But now, assume an RDF/S cultural schema, part of
which is shown at the top of Figure 1-1. Then, RQL and RVL can be used to query

this mediated schema and define views over it. For example, the query

SELECT Y
FROM {Xj}creates{Y}

returns the URIs of artefact (including painting and sculpture) resources created by

some artist (perhaps painter or sculptor).

University of Crete, Computer Science Department

CHAPTER 1. INTRODUCTION

RDF Schema

Aifact >

ibited Henom
ScptuEe) String |
Mapping‘=> l @'
eformulation
1l
Relational Schema ‘u
SQL
[Artifacts
| titlekey) | Artist exhibited el |

Relational Data

However, this RQL query cannot be answered directly, since there are no
actual data; the RDF/S layer is virtual. Therefore, a middleware is needed that will
reformulate the RQL query into an SQL one based on the relationships between the
relational and the RDF/S schema. A formal way to express such relationships is the

use of mappings from RDB to RDF. Such a reformulation procedure could rewrite the

Figure 1-1: Mediation scenario: Publishing RDB as RDF

RQL query to the following SQL query

SELECT
FROM
WHERE

UNION

SELECT
FROM
WHERE

a.Title
Artifacts a
a.Kind="Painting”

a.Title
Artifacts a
a.Kind="Sculpture’

3’

Giorgos Serfiotis

4 CHAPTER 1. INTRODUCTION

-
ke e,
¢
CAL

) Portal

Artist -->creates -->#&rtifact
SubProperties:

sculpts paints

Domain:

Artist

Range:

Artifact

Include all
View query Get Resources

Eliminate duplicates E

Figure 1-2: On the fly creation of RQL query

A similar case is the reformulation of RQL queries to XML queries when a
virtual RDF/S schema is positioned on top of an XML repository.

Additional functionality like semantic optimisation of the RQL queries can
prove very profitable in several cases and should be incorporated in such a
middleware. Although RQL queries written by humans rarely contain any
redundancy, this is not the case with machine-generated queries. Take for example the
graphical RQL interface presented in [ACKO04] that generates on the fly queries for
the Semantic Web. Such a tool can be used for creating RQL queries through
navigating on an RDF/S schema, virtual or not.

Look at Figure 1-2. While navigating through the properties of the RDF/S

schema of Figure 1-1, we select property “creates”. This choice generates the query

SELECT XY
FROM {X}creates{Y}

that returns the extent of property “creates”, i.e. all artists and the artefacts they have
created. If for some reason we decide to refine our query by selecting the property
“paints”, a new query returning both the extents of “creates” and “paints” is produced.

However, this conjunction is redundant. It is obvious that

SELECT XY
FROM {X}paints{Y}, {X}creates{Y}

University of Crete, Computer Science Department

CHAPTER 1. INTRODUCTION 5

is equivalent to

SELECT XY
FROM {X}paints{Y}

Although this tool for graphically generating RQL queries captures this redundancy
and minimises the query, there is a fragment of RQL it cannot handle. To be more
accurate this tool generates and minimises queries that belong to the fragment of RQL
where queries are built on extended interpretations of classes' (and/or properties) and
ask exclusively for data information. Therefore, it does not handle queries containing

proper interpretations, like

SELECT X
FROM X} paints{Y}, {X}creates{Y}

Additionally, even for the RQL fragment it handles, no theorem has been proved
stating that the minimised queries are minimal, i.e. cannot get further minimised.
Moreover, with the widespread use of the Semantic Web more graphical tools
are expected to appear. Some of them may not offer optimisation services. Therefore,
a framework that will allow minimising declarative RDF/S queries, such as RQL, is

welcome, t00.

1.2 Introducing the Semantic Web Integration Middleware
(SWIM)

The previous examples made obvious the need for a Semantic Web integration
middleware (SWIM) that will facilitate users to evaluate queries against virtual
RDF/S schemas and will offer them optimisation services.

The selection of a framework that will treat the above problems uniformly is
crucial. The specification of the mappings along with the ability to exploit well-
established techniques for query reformulation and optimisation leads to the

adaptation of a logic framework based on Linear Datalog, which has a straightforward

" A class’ (property’s) proper interpretation refers to the direct instances of the class (property). On the
contrary, its extended interpretation refers to the direct instances of itself and of its subclasses

(subproperties).

Giorgos Serfiotis

6 CHAPTER 1. INTRODUCTION

correspondence to the relational theory. The goal is to reduce the RQL to SQL and
RQL to XQuery (XPath) reformulation problems to relational equivalents and reuse
existing methods and results on relational query minimisation and reformulation.

In order to make feasible such a reduction, a relational representation of the
RDF/S model has been incorporated in SWIM, based on which the virtual RDF/S
schemas get translated into Datalog facts and the RDB to RDF mappings into Datalog
rules. Using this information along with a set of predefined constraints capturing the
semantics of RDF/S, the containment, minimisation and reformulation problems can
be solved. The algorithms used to solve the problems are the chase and backchase
[Deu02], which guarantee that both the RQL queries and the reformulated SQL ones
can be minimised.

The current thesis addresses the RDF to RDB aspects of SWIM. The XML
aspects are the subject of [Kof05].

1.3 Organisation

In the previous sections we introduced the problems that will concern us
throughout this thesis and gave some motivation for our concern and an overview of
the middleware whose functionality depends on solving these problems. The rest of
the thesis is organised as follows:

Chapter 2 introduces the typical RDF data model as well as the data model of
RQL and RVL, RDF’s querying and view definition languages, respectively. Special
attention is given on their semantics.

Chapter 3 presents the internal logical framework adopted in the SWIM
middleware. The first-order (relational) relations and constraints used to capture the
RDF data model and semantics are analysed. Then, the differences between the RDF
semantics and the semantics captured by the logical framework are presented. Finally,
the translation of (unions of) conjunctive RQL queries, namely RQLycq, and RDF/S
schemas into the internal logical representation is illustrated.

Chapter 4 is the building block of this thesis. It defines the problems of
RQLycq containment and minimisation and presents the algorithms used to deal with

them. These problems are translated to equivalent relational ones and solved using the

University of Crete, Computer Science Department

CHAPTER 1. INTRODUCTION 7

chase and backchase algorithms. Additionally, a fragment of RQLycq, namely
RQLcore, is defined for which the above problems are usually solved easier.

Chapter 5 describes the whole reformulation process that starts with an
incoming RQLycq query and outputs equivalent reformulated SQL queries ready to
be executed.

Chapter 6 presents SWIM’s architecture. One by one the components forming
it are described and the choices made are justified. Moreover, relative systems and
works are compared to SWIM.

Chapter 7 discusses some issues that deserve further investigation and, then,

summarises this thesis.

Giorgos Serfiotis

Chapter 2

The Resource Description Framework
(RDF)

RDF constitutes part of the activity coordinated by the World Wide Web Consortium
(W3C). It is a general-purpose language for representing and exchanging descriptive
information about web resources over the World Wide Web, e.g., metadata about
those resources, like titles, dates, and authors of Web pages. The challenge is to
enable the resource descriptions in a formal, interoperable, and humanly readable way
via appropriate languages, without making any assumption about the application

domain or the structure of the described information resources.

2.1 RDF: Model, Schema and Semantics

In RDF the concept “web resource” is generalised in order to capture anything that
can be identified and not necessarily information resources that can be accessed on
the Web. Every web resource is given a unique web identifier called Universal
Resource Identifier or URF® ([CK04]) and gets described using simple statements. A
statement consists of a specific resource along with a property and the property’s
value, called subject, predicate and object, respectively. For example, in a sentence
stating that “Pablo Picasso painted Guernica”, the URI referring to Pablo Picasso is
the subject, the one referring to the property “painted” is the predicate and the value
“Guernica” is the object. All statements about a specific resource form its description.

There are three ways to represent RDF statements ((MMO04]): 1) using friples, ii)
using directed labelled graphs ([CK04]) and iii) using XML syntax ([Bec04]). In the
triples notation each statement is written as a triple of subject, predicate and object, in
that order. Alternatively, RDF statements can be modelled as nodes and arcs in a
graph. According to this notation a statement is represented by one node for the

subject, one for the object and an arc for the predicate directed from the subject to the

? See http://'www.w3c.org/Addressing

10 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

object. Note that when using the graph model each resource corresponds to just one
node; if it appears in more than one statement, all property arcs connect to the same

node.

[=http: e culture net/picassol32= <http:/139.91.183 30:9090/RDFA/RP/ExRamples/demo/culture rdf#paints >
<http: . MUSEUM BS/QUEMICE jpg>]

(i)

<7¥ml wersion="1.0"?>

<rdf ROF xminsirdf="httpAanaen w3 orgd1999/02/2 2-rdf- syntax-ns#"
wrmlngrdfs="httpsAwew w3 org/2000/0 1 rdf-schemad”
®minscult="http://132.91 183 30:3080/RDF ~RP/Examples/demo/oulture o
¥minsiadm="http://139.91.183.30: 9030/RDFAVRP/EXa mples/demosadmin . rof#E"=

<rdf. Description rof about="hitp:Awwew . culture . net/picassol 32"
<cult: paints rdf resource="httpMwsw museum esfguernica jpg'’>

<frdf. Description:=

<frdf RDF=
(i}
http: ey cUIEUNE net/picassol 32 http:Awnare . s eUm _esf%uernica Jpg

/139,917,183 30:8090/FDF AVRER/Examples/demosculture rof#p
iiiy

Figure 2-1: A simple statement's representations

To exchange RDF statements in a machine-processable way the Extensible
Markup Language ([BMPS00]), known under the acronym XML, is used; the specific
XML dialect defined is called RDF/XML. The RDF/XML representation of
statements is not necessarily unique; some statements can be modelled using more
than one XML encodings. This is mainly due to the fact that properties can be
modelled both as XML attributes and XML elements and to the fact that predicates
may be nested or not. Figure 2-1 illustrates the three different representations for the
example statement stated previously. Notice that in all the above representations the
resources appear with their URI.

Each RDF statement consists, as previously stated, of a subject, a predicate and
an object. Although, the subject is always a URI reference to the resource being
described (drawn as an oval in the graph representation) and the predicate is always a
URI reference to a property, the object is either another URI reference, case of Figure

2-1, or a literal (drawn as a rectangle in the graph representation), case of Figure 2-2.

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 11

Literals are simple strings either combined with a datatype URI (typed literals) or not
(plain literals). Depending on the object’s type, the predicate’s correspondence is

straightforward to a relation or an attribute.

http: e cUItUrE Net/picassol 32 "Picasso”

—

Fittp-4 139 91,183 30 309 0/RDFAVRFExamplesidemo/c Liture roflastiEme

Figure 2-2: Statement example with literal as object

Moreover, people sometimes want to express statements about a collection of
resources or literals. RDF supports three types of containers to make references to
collections, namely bags, sequences and alternatives, where each container is itself an
RDF resource. A bag represents a multi set of values, a sequence represents an
ordered list of values and an alternative represents a group of resources (or literals)
that are alternatives for a property’s single value.

A very useful feature of RDF is the ability to use shorthands instead of full URI
references in the triples representation. This way the space needed for writing the
triples reduces significantly. Having in mind that a full URI reference is formed by a
URI namespace and a local name, when a shorthand is used, a prefix is assigned to the
URI namespace and the local name gets appended to it. The use of shorthands extends
to the RDF/XML representation, too. Observe the example in Figure 2-1ii where four

prefixes are introduced.

2.1.1 RDF Schema

Having seen how statements are formed and how they are represented, the next step is
to find out how the vocabularies of terms employed by those statements are defined;
i.e. how to describe the different classes of resources and the properties used to define
resources and their values. RDF does not provide by default descriptions of
application-specific classes (e.g. Painter) and properties (e.g. paints’); however, it

provides the means needed to describe such classes and properties. These means form

? By convention in this thesis class names start with uppercase and property names with lowercase.

Giorgos Serfiotis

12 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

on their own an RDF vocabulary, i.e. a specialised set of predefined resources,

referred to as RDF Schema ([BGO04]). This vocabulary is found at

“http://www.w3c.org/2000/01/rdf-schema#’, which by convention is associated to

prefix rdfs. In other words the RDF Schema provides a type system for RDF.

The basic notion found in RDF Schema is cl/ass that corresponds to the generic
concept of Type or Category. The resources rdfs:Class, rdfs:Resource and the
properties rdf-type, rdfs:subClassOf are used for describing classes:

e Every resource that has as value of the property rdf:type the resource rdfs:Class is
a class according to RDF Schema.

e The property rfd:type is used to state that a resource is an instance of another
resource.

e The property rdfs:subClassOf allows defining class specialisations; its meaning is
that every instance of a class’ specialisation is, also, an instance of the original
class.

The other basic RDF element that allows describing and characterising classes
is property. In RDF Schema properties are described using the RDF Schema class
rdf:Property and the RDF Schema properties rdfs:domain, rdfs:range and
rdfs:subPropertyOf.

e Every resource that has as value of the property rdf:itype (is an instance of) the
class rdf:Property is a property according to RDF Schema.

e The property rdfs:domain is used to indicate on which class’ instances a specific
property is applied.

e The property rdfs:range is used to indicate that the values of a particular property
are either given by a typed literal or instances of a designated class.

e The property rdfs:subPropertyOf allows defining property specialisations; its
meaning is that every instance of a property’s specialisation is, also, an instance of
the original property.

Another characteristic of RDF is that properties are defined independently of
class definitions and have, by default, global scope (i.e. may apply to all classes),
unless domain specifications are explicitly stated. Moreover, properties can have
multiple domain and range definitions. However, they cannot have locally different

ranges depending on their domains; any range applies to all domains of the property.

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 13

There is, also, a number of other RDF Schema built-in properties that can be
used to provide documentation and other information about an RDF schema or about
instances, like rdfs:comment, vdfs:label, rdfs:seeAll, rdfs:isDefinedBy and
rdfs:seeAlso.

Generally speaking, the statements forming an RDF schema provide additional

descriptive information about resources.

2.1.2 RDF Semantics

As discussed in the previous sections, RDF is intended to be used for expressing
statements about resources in the form of a graph, using specific vocabularies (URIs
of resources, names of properties, classes, etc.). In order to serve this purpose, the
meaning of an RDF graph must be defined in a formal way that will allow
determining with mathematical precision the conclusions that machines can draw
from a given RDF graph. The model theory described in the RDF Semantics ([H04])
is used to define this formal meaning, i.e. specify the formal semantics of RDF/S*.
The RDF Schema’s semantic extensions to the RDF language are defined in the RDF
Semantics, too.

A model theory assumes that the language refers to a world and describes the
minimal conditions that a world must satisfy in order to assign an appropriate
meaning for every expression in the language. A particular world is called an
interpretation, thus a model theory can be better called “interpretation theory”.

The exact definitions of the RDF and RDFS interpretations can be found in
[HayO4]. Based on these interpretations several axiomatic rules are defined and
several RDF axiomatic triples are considered. For example, the condition stating
when a resource is a property, as seen in subsection 2.1.1, is an RDF axiomatic rule,
while [<rdf:type> <rdf:type> <rdf:Property>] is an RDF axiomatic triple.

The definition of class and property extension is needed before proceeding
with presenting some RDFS axiomatic rules. So, a class’ extension is the set of things
that are in the class and a property’s extension is the set of object-value pairs that
satisfy the property. The RDFS axiomatic rules state, between other things, that:

o The rdfs:subPropertyOf’s extension is transitive and reflexive.

* Term used as an alternative for both RDF and RDF Schema.

Giorgos Serfiotis

14 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

o [f the triplet [<x> <rdfs:subPropertyOf> <y>] exists, then the extension of x is a
subset of the extension of y.

e The rdfs:subClassOf’s extension is transitive and reflexive.

e If the triplet [<x> <rdfs:subClassOf> <y>] exists, then the extension of x is a
subset of the extension of y.

o [f [<x> <rdfs:domain> <y>] and [<u> <x> <v>] exist, then u belongs in the
extension of y.

e If [<x> <rdfs:irange> <y>] and [<u> <x> <v>] exist, then v belongs in the

extension of y.

Some RDFS axiomatic triples are shown in Table 2-1.

Table 2-1: RDFS axiomatic triples

<rdf:type> <rdfs:domain> <rdfs:Resource>

<rdfs:domain> <rdfs:domain> <rdf:Property>

<rdfs:range> <rdfs:domain> <rdf:Property>

<rdfs:subPropertyOf> <rdfs:domain> <rdf:Property>

<rdfs:subClassOf> <rdfs:domain> <rdfs:Class>

<rdf:type> <rdfs:range> <rdfs:Class>

<rdfs:domain> <rdfs:range> <rdfs:Class>

<rdfs:range> <rdfs:range> <rdfs:Class>

<rdfs:subPropertyOf> <rdfs:range> <rdf:Property>

<rdfs:subClassOf> <rdfs:range> <rdfs:Class>

2.2 The RDF Query Language (RQL)

RQL’ ([Kar00]) is a typed declarative query language for RDF. It is defined by a set
of basic queries and iterators that can be used to build new ones through functional
composition; it can combine schema paths for executing complicated schema
navigations; not many languages support this type of queries. However, its major

innovation lies in its ability to ask queries both on the schema and data levels. It

> For the complete RQL syntax, formal semantics and type inference rules, readers are referred to the

RQL online documentation found at: http://139.91.183.30:9090/RDF/RQL/

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 15

supports generalised path expressions featuring variables on labels for both classes
and properties, i.e. nodes and arcs in the graph representation, respectively. Finally, it
provides set-theoretic operators, allows using XML Schema data types, aggregate

functions and arithmetic operations on data values.

<?xml version="1.0"?>
<rdf:RDF ...>
<rdf:Property rdf ID="flyAlSpeed™>
<rdfs domain rdf resource="4Bird’/>
<rdfs:domain rdf . resource="#Plane’/>
<rdfs:range rdf:-resource="daftatype.Infeger/>
</rcif:Property >
</rdf:RDF>

Figure 2-3: Definition of a property with multiple domains

2.2.1 Differences between RDF and RQL Semantics

RQL relies on a type system that slightly differs from the axiomatic foundation
adopted by the RDF and RDFS specifications. Moreover, RQL provides additional
constraints to those offered by RDF Model Theory. More precisely, the RQL type
system and semantics (i) make a clear distinction between the different RDF/S
abstraction layers (data, schema and metaschema), (i7) enforce that a property’s
domain and range are always defined and unique (see Figure 2-3), (iii) do not allow
the existence of cycles in the class and property hierarchies (defined using the
rdfs:subClassOf and rdfs:subPropertyOf properties, respectively), (iv) state that the set
inclusion of the domain and range are preserved for specialised properties (see Figure
2-4), (v) do not consider literal types as classes, (vi) do not allow the use of typed
literals in statements in the data layer and (vii) demand that in each statement the
subject and object resources should be (direct or indirect) instances of the domain and
range classes of the property, respectively.

The first constraint has been introduced to define the appropriate interpretation
functions that allow passing from one abstraction layer to another. The result of this
distinction is that (a) a class must be instance of a metaclass of classes (see Figure

2-5), (b) subsumption relations are not allowed between classes and metaclasses and

Giorgos Serfiotis

16 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

(c) a metaclass cannot be instance of some other node, since abstraction layers higher

than the metaschema are not defined.

Figure 2-4: Definition of a subproperty not preserving set inclusion of the range

The second constraint has been introduced to clarify the semantics of
properties since, when the optional declaration of multiple domains and constraints is
permitted, properties may have as value both resources and literals. This might result
in semantic inconsistencies, since URIs identify resources, while values identify
literals.

The introduction of cycles is, finally, prohibited because they may
considerably affect the manipulation of already created RDF/S schemas and resource
descriptions. Moreover, the fourth constraint ensures that the domains and ranges of
subproperties are subclasses of the ones of their super-properties. If this constraint is

not issued, the existence of cycles can indirectly be implied.

Example 2.1: Figure 2-4 states that d is a subclass of b, which means that every
instance of class d is an instance of class 5. Moreover, it states that p is a subproperty
of g, which means that the property extent of p is a subset of ¢’s. This stands only
when the resources appearing in the property extent of p that are instances of its range
(and domain), namely b, appear in the property extent of ¢, therefore, are instances of
its range (and domain), namely d. Thus, there is a subset b, of b’s extent and a subset
d; of d’s extent such that every resource in d is, also, in b, and reversely; a cycle is
implied. The subset by encompasses all resources used as objects in statements

involving the property ¢g. ®

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 17

<2xml version="1.0"?>

<rdf:RDF ...>
<rdf:Class rdf-ID="Animal’/>
<ms:Animal rdf:ID="Woodpecker'/>
<ms:Woodpecker rdf:1D="Woody'/>

<HdFRDF>

Figure 2-5: Definition of a class as instance of another class

Not considering typed literals at the data layer does not rule out the use of
types for literals. Since every property must have a unique range defined, the type

restriction of literals can be provided from the range of the corresponding property.

2.2.2 Basic Queries

The basic RQL queries constitute the building blocks on which more complicated
RQL queries are built. They essentially provide the means to access and browse
through RDF description bases with minimal knowledge of the employed schema(s).
RQL provides a number of functions (see Table 2-2) in order to navigate through an
RDF/S schema. For example, the domain and range functions can be used to retrieve
a property’s definition (its domain and range), while subclassOf and subPropertyOf
can be used to explore the class and property hierarchies, respectively.

Every RDF/S description base can be viewed as a graph, i.e. as a collection of
nodes and edges. Thus, the basic queries gaining access to the data layer of such

graphs are formed by the appropriate schema names.
Example 2.2: The query
Artist

returns a bag containing all resources of type Artist, i.e. those resources belonging to

its class extent. ®

Giorgos Serfiotis

18 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Table 2-2: Function examples

Basic Query Result
Function
domain(creates) Returns the domain class of property creates,
i.e. Artist
range(creates) Returns the range class of property creates, i.e.
Artifact
subClassOfM(Artist) Returns a bag containing the direct subclasses

of class Artist, i.e. Painter, Sculptor

subPropertyOf{creates) Returns a bag containing the subclasses of

property creates, i.e. paints, sculpts

Namespace(Artist) Returns the namespace where class Artist is

defined, i.e. http://www.icom.com/schema.rdf

In order to get the proper extent of a class (or property), meaning only the
nodes (edges) of the graph labelled with the class (property) name, the symbol ‘*’

must be used.
Example 2.3: Likewise, the query
creates

returns a bag of ordered pairs of resources belonging to the extended interpretation of

creates, 1.¢. its property extent. ®

Note that the schema nodes and edges (i.e. the RDF/S schema) can, also, be
queried as normal data using metaclass names. The core RDF metaclasses Class and
Property can be used to retrieve the names of all classes and properties, respectively.
Other basic query functions are namespace, which can be used to retrieve a
namespace, standard theoretic set operators (union, minus, intersect), which can be
applied on collections of the same type and the aggregate functions min, max, avg,

sum and count.

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 19

2.2.3 Composite Queries

RQL supports the SELECT-FROM-WHERE filters in a similar way as they
appear in SQL queries. The filters combine the basic queries presented above and
generalised path expressions with variables on nodes and edges to traverse RDF/S
description graphs at arbitrary depths.

The result of an RQL filter is an RDF Bag container value on which iterators
can be defined using nested queries, while ordered tuples can be represented by RDF
Sequences and be accessed through position indexes. As in SQL queries, the SELECT
clause states which variables’ values are projected in the result and constructs ordered
tuples for them. The FROM clause consists of path expressions that define the part of
the RDF/S graph that will participate in the evaluation of the query. Each path
expression corresponds to a series of steps. Each step represents movement in a
particular direction by identifying node labels and can apply one or more predicates to
eliminate nodes that fail to satisfy a given condition. These filtering conditions are
declared at the optional WHERE clause. The result of each step is a list of nodes that
serves as a starting point for the next step. Moreover, the optional clause
NAMESPACE can be used to define prefixes.

The generalised path expressions allow navigating throughout (i) the schema,
(ii) the data, or (iii) both. Furthermore, the path expressions are used to navigate either
based on classes or properties. The basic RQL path expressions are illustrated in
Table 2-3 and Table 2-4. Note that all path expressions appear in their general form
where variables are not assigned to constant values. The same interpretations are used
when variables are valuated with constants; the only difference is that they get
extended with the appropriate equalities between variables and constants. More
variations of the basic path expressions can be created using the symbol ‘*’ on the
paths used for data and mixed navigation. The examples to follow will illustrate the

above functionality.

2.2.3.1 Schema Navigation

The schema navigation involves exploring taxonomies of classes and
properties using appropriate conditions. Take for example the path expression

{$C1}@P{$C,} along with the condition @P = p, where $C; and $C, are class

Giorgos Serfiotis

20 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

variables and @P is a property variable. This path allows finding all related schema
classes for the given property p; 8C; and 3C; iterate over subClassOf{domain(p)) and
subClassOf(range(p)), respectively. If we want to retrieve all related schema
properties for a specific class, the path {3C}@P (@P{$D;}) along with the condition
3C = ... (8D = ...) can be used. For each valuation p of @P, the class variable $C
(8D) ranges over subClassOf(domain(p)) (subClassOf{range(p))); the results are
filtered and only those properties satisfying the condition for $C ($D) are kept. More

complex schema navigation can take place by combining the path expressions.

Table 2-3: Basic RQL class path expressions and their interpretation

Path Interpretation
Expression
$C {c| ¢ is a schema class}
$C{$D} {[c, d] | ¢, d are schema classes, d is a subclass of ¢}
SC{X} {[c, x] | ¢ a schema class, x in the extended

interpretation of class c}

3C{X; 8D} | {[c x, d]|c, d are schema classes, d is a subclass of c,

x is in the extended interpretation of d}

Example 2.4: The query

SELECT $D, @P:
FROM creates{$D}.@QP-

is equivalent to the query

SELECT $D, @P>

FROM @P+{3D}, (3D}@P:
WHERE @P = creates

For each valuation of $D based on the first path, the second path gets evaluated. ®

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

21

2.2.3.2 Data Navigation

Sometimes we are interested in browsing RDF description bases without taking into

account the domain and range restrictions imposed by schema properties. This is the

case data navigation is used. There are a number of generalised path expressions that

can be used for this kind of navigation. For example, the path $C{X} along with the

constraint $C = ¢ can be used to retrieve the extended interpretation (extent) of a

specific class c. Likewise, the path {X}@P{Y}, @P = p retrieves the extended

interpretation of the given property p. Like in schema navigation, the path expressions

can be combined creating complex queries.

Table 2-4: Basic RQL property path expressions and their interpretations

Path Expression Interpretation
@P {p | p is a schema property}
{$C}@P{8D} {[c, p, d] | p is a schema property, ¢, d are schema classes, c is
a subclass of p’s domain, d is a subclass of p’s range}
(X} @P{Y} {[x, p, ¥] | p a schema property, [x, ¥] in the extended
interpretation of p}
@P{Y; $D} {[p.y, d]| p is a schema property, d is a schema class, d is a
subclass of p’s range, y is in the extended interpretation of d,
dx [x, ¥] is in the extended interpretation of p}
{(X}@P{$D} {[x, p, d] | p 1s a schema property, d is a schema class, d is a

subclass of p’s range, Jy in the extended interpretation of d,

[x, v] is in the extended interpretation of p}

{X; $C@P{Y, $D}

{[x, ¢, p, y, d] | p 1s a schema property, c, d are schema classes,
c is a subclass of p’s domain, d is a subclass of p’s range, x is
in the extended interpretation of ¢, y is in the extended

interpretation of d, [x, y] is in the extended interpretation of p}

Example 2.5: The RQL query

SELECT XY

FROM Painter{X}.creates{Y}

Giorgos Serfiotis

22 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

which is equivalent to

SELECT XY

FROM 3CIX}, (X}@P{Y}
WHERE $C = Painter and @P = creates

is a complex query example. ®

When the paths used for data navigation get extended with the use of ‘*’, only

proper interpretations of classes (properties) are considered.

Example 2.6: In order to catch the proper interpretations the last example gets

rewritten as

SELECT XY
FROM APainter{X}."creates{Y} &

2.2.3.3 Mixed Navigation

RQL allows the combination of schema and data filtering and navigation through the
use of mixed path expressions. Thus, queries like the one in the following example

can be posed.
Example 2.7: The query

SELECT *
FROM {X; $CJcreates{Y}

returns the extended interpretation (extent) of property creates while, at the same
time, iterates through the subclasses of the domain of creates so that X is in the

extended interpretation of one of them. ®

2.3 RDF View Language (RVL)

RVL ([Mag03]) is a view definition mechanism for the Semantic Web. We choose to
support it in our system in order to handle RDF/S views defined for personalisation

reasons on top of other RDF/S schemas. People may not always be interested on the

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 23

global virtual RDF/S schema; therefore, define RVL views over it. Since RQL queries
can be posed on the RVL views, we should be able to check them for containment and
reformulate them into SQL queries as well.

RVL is based on the RDF/S data model and takes advantage of the
expressiveness of RQL. RVL exploits the RQL type system and the abstraction levels
of an RDF/S graph to specify two operators that are able to support all the necessary
functionality. This is its most important advantage.

Figure 2-6 presents the creation of a virtual RDF/S description schema.
Typically, an RVL view is defined as a virtual RDF schema consisting of a set of
class and property definitions and the hierarchies defined between them. Practically,
an RVL view consists of a set of statements defining parts of the view. A definition
statement refers to the creation of new virtual (meta)classes/properties, to the reuse of
a set of (meta)classes/properties, to member attribution to the virtual
(meta)classes/properties, and to the creation or reuse of subsumption relations
between classes (virtual or not) using expressions of the view definition language.
Being a virtual namespace, an RVL view gets distinguished by a unique URI given by
its creator. This URI constitutes the prefix for the unique identifiers of the virtual

structures. An RVL view’s definition has the form:

[VIEW operator

FROM RQL_path_expression

WHERE filtering conditions

USING NAMESPACE root_schema_namespace]
[,]

USING NAMESPACE root_schema_namespace]

CREATE NAMESPACE RVL_view_namespace

The FROM-WHERE-USING NAMESPACE clauses are used exactly as in RQL. From
the newly imported clauses, VIEW, when used with one of RVL’s operands, creates in
the virtual schema constructs of the type specified by itself; CREATE NAMESPACE
defines the URI of the namespace defined for the view, like is done for a schema’s
namespace, along with a prefix that will be used as shorthand. This prefix can be used
when defining another view. The VIEW clause is the one that makes the difference
with RQL; while the SELECT clause is used to define which values will be projected
as a result, the VIEW clause defines a virtual RDF schema.

Giorgos Serfiotis

24 CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK

Source Schemas

"I External Level

Virtual
Schemal

Conceptual Level

o

%«f@? Virtual
Base

Figure 2-6: RVL view creation process

The two operators supported by RVL are namely the instantiation and the
subsumption operators. The instantiation operator is used to state the type of the new
construct, i.e. whose instance it is. Its general syntax replaces the definition of the

VIEW clause with “VIEW Symbol(Expression)”.
Example 2.8: The declaration

VIEW rdfs:Class(“Artist”)
USING NAMESPACE rdfs=“&http.//www.w3c.org/2000/01/rdf-schema#”

is a very simple example of an RVL view defining a virtual class. ®

The general form of RVL views with the subsumption operator makes use of
the VIEW clause: “VIEW Symbol;<Symbol,>”, which states that Symbol, is a
subclass (subproperty) of Symbol;.

Example 2.9: The declaration
VIEW Person<Artist>

is the simplest example of an RVL view of this type. ®

University of Crete, Computer Science Department

CHAPTER 2. THE RESOURCE DESCRIPTION FRAMEWORK 25

Moreover, the two operators can be combined to form more complex view

definitions.

2.4 Conclusions

Concluding this short introduction to Semantic Web technologies, we can say that
RDF/S disposes an expressive, still simple, model that allows describing metadata
about web resources, e.g. create hierarchies of classes and properties, and favours
reusability of existing descriptions. Moreover, RDF/S is serialised in XML, therefore
native to the Web, and a W3C standard, which ensures its wide acceptance.

However, without equivalently simple and expressive query and view
definition languages, RDF/S’ handiness would be limited. RQL and RVL satisfy this
need as they successfully adopt the model of RDF/S. They allow expressing both
simple and complex queries and views using syntax similar to SQL, therefore,

familiar to the majority of users.

Giorgos Serfiotis

Chapter 3

Semantic Web Logic Framework (SWLF)

The choice of a logic-based framework is crucial in order to support a Semantic Web
middleware for optimising and reformulating RQL queries and RVL views. More
precisely our goal is to establish a framework that will (i) allow reformulating an RQL
query to an SQL query using RDB—RDF mappings, (ii) allow minimising both the
RQL queries given as input and the output SQL queries, (7ii) consider during the
reformulations as much information as possible in order to have optimal results — this
information comes in the form of (integrity) constraints, either for the RDF/S schemas
or the underlying relational database schemas, and in the form of materialised views,
either relational or RVL ones — and (iv) provide more fundamental features, like
checking RQL queries for containment and/or equivalence.

While there has been significant amount of research on relational query
reformulation, there are not many theoretical foundations on RDF/S query
optimisation and reformulation; specifically for RQL queries, there is no background
theory at all. Thus, in order to solve our reformulation problem, we come to a
dilemma; shall we try to make use of existing work on relational query reformulation
or shall we start from scratch? We opt for the first alternative. Therefore, we adopt
Linear Datalog, which is a robust formalism, in our Semantic Web Logic Framework
(SWLF) in order to be compatible with relational theory and to take advantage of the
capability of logical languages to express relationships in generic ways; the latter is
indispensable in a semantic integration middleware. So, in SWLF’s context, the
RDF/S schemas are expressed as Datalog facts and the RDB—RDF mappings, the

RQL queries and the relational and RVL views are expressed as Datalog rules.

3.1 Datalog Rules

This way the RQL reformulation/optimisation problem reduces to the
relational equivalent. Remember that there is a straightforward correspondence of

linear Datalog rules and UNION-SELECT-PROJECT-JOIN (USPJ) relational

27

28 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

expressions that are the ones of interest to us (we do not consider nesting, order by,
group by and aggregates). This kind of relational expressions can be seen as unions of

conjunctive queries.

Definition 3.1: 4 query q over a relational schema RS has the form
!
Ua(x):-0,(x.v)
i=1

where x, y; are tuples of variables and ¢; are conjunctions of relational atoms of the
form R(wj, ..., @) belonging to RS and equality atoms of the form w=w’, where w,,

..., W, o, @ are variables or constants. &

As a result, all available background theory on relational query optimisation
gets exploited; problems like query containment, query composition, query rewriting
using views and query minimisation have been proven to be algorithmically solvable

for the kind of queries that interests us in the presence of certain classes of constraints.

3.2 Constraints

Constraints play a fundamental role in relational theory. They express relationships
that must hold between data in relational databases. Thus, they can be used in multiple
ways for integrity checking — which is how they got their name “integrity
constraints”, query optimisation via semantics, cooperative answering via semantics,
database combination in a semantically consistent manner, etc. ((GGGM98]). They
usually come in the form of (primary) keys, which are functional dependencies®, and
foreign keys, which are inclusion dependencies.

For the RQL containment, minimisation, and reformulation problems we both
introduce constraints on the relational scenario capturing RDF/S and exploit integrity
constraints coming from the underlying relational databases. Thus, we consider a
fairly large class of constraints in SWLF in order to fully take advantage of their
functionality, namely disjunctive embedded dependencies (DEDs), as were introduced

in [Deu02].

® [AHV95] provides an analytical classification of first-order (relational) constraints.

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 29

Definition 3.2: 4 disjunctive embedded dependency has the general form
l '
Vx{ca(X) - v3pp vy,)}

where x, y; are tuples of variables and ¢, qoi’ are conjunctions of relational atoms of
the form R(w,, ..., o)) and equality atoms of the form w=w , where w, ..., 0, ®, ©

are variables or constants; ¢ may be the empty conjunction.

The constraints are named DEDs after the classical embedded dependencies
(EDs) contained when /=1 ([AHV95]).

The definition of Linear Datalog as the language for representing the RDF/S
schemas, the RVL views, the RDB—RDF mappings and the RQL queries is strictly
related to the class of constraints considered. Every Datalog fact and rule gets

translated into DEDs as will be illustrated later.

3.3 First-order Logic Representation for RDF/S

SWIM’s logic-based framework (SWLF) should capture RDF/S semantics and
queries, as well as facilitate the expression of the mappings. Thus, a set of first-order
relations’ (predicates) is used for representing RDF/S schemas along with a set of

first-order constraints preserving the RDF/S semantics.

3.3.1 RDF/S Predicates

Definition 3.3: The first-order schema for describing RDF/S documents is a set R of
relations, where R={CLASS, PROP, C SUB, P SUB, C EXT, P_EXT}. Each relation
R; consists of a set A; of attributes as shown in Table 3-1. In order to enhance clarity
three basic types are used forming the set T={resource, property, class}. Each

attribute A;; has assigned to itself one type T;. B

The intuition behind the relations is pretty much obvious:
o CLASS(c) iff ¢ is an RDF/S schema class
e PROP(c, p, d) iff p is a RDF/S schema property with domain ¢ and range d

7 The terms ‘first-order’ and ‘relational’ are used alternatively. This is possible due to the

correspondence between relational expressions and first-order logic queries (FOL) as stated in [CM77].

Giorgos Serfiotis

30 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

C _SUB(d, ¢) iff d is a subclass of ¢

P _SUB(q, p) iff q is a subproperty of p

C_EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct instance)

of ¢

P_EXT(x, p, y) iff the pair (x, y) is in the proper extent (i.e., it is a direct instance)
of p.

It should be noted that class extents do not have to be disjoint, i.e., they might

overlap. The same goes for property extents.

Table 3-1: First-order schema for RDF

Relation | Type

CLASS | Setiame: Class)

C_SUB | Set(subC: Class, class: Class)
C_EXT | Set(class: Class, inst: Resource)

PROP Set(subject: Class, predicate: Property, object: Class)
P_SUB | Set(subP: Property, prop: Property)

P_EXT | Set(subject: Resource, predicate: Property, object: Resource)

The relations CLASS, PROP, C_ SUB and P_SUB are used for representing an
RDF/S schema and, thus, constitute Datalog facts. On the contrary, the C_ EXT and
P _EXT relations represent the RDF/S resource descriptions and are used in the
RDB—RDF mapping rules. These mappings populate the C EXT and P EXT

relations, i.e. state how the underlying relational data can be published as RDF data.

3.3.2 RDF/S Constraints

Although the above predicates capture successfully RDEF/S, they provide no
information about the semantics of RDF/S schemas and resource descriptions; they
cannot ensure that a valid RDF/S schema is being modelled. Thus, a set of DEDs,
namely Jy,qg, has been adopted for stating and preserving RDF/S semantics. These
constraints can be separated in three categories: basic constraints, sub (hierarchy)

constraints and domain-range constraints.

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 31

Table 3-2: Basic constraints

Description

Formal Definition

@ Every resource in the extent of a class
implies the existence of the corresponding

class

vc, x C_EXT(c, x) — CLASS(c)

@ The subclass relationship relates

vc, d C_SUB(d, c) — CLASS(c) A

classes CLASS(d)
© The domain & range of every property | vc, p, d PROP(a, p, b) — CLASS(a) A
is a class CLASS(b)

@ The domain & range of every property

is unique

va, p, b, ¢, d PROP(a, p, b) »
PROP(c,q,d) np=q—a=cab=d

O Every statement in the extent of a
property implies the existence of the

corresponding property

vx, p, y P_EXT(x, p,y) — T, d
PROP(c, p, d)

O The subproperty relationship relates

properties

Yp, g P_SUB(p, q) — Fa, b, c, d
PROP(a, p, b) A PROP(c, q, d)

Schema
Level

«| Schema
- ’@ /| Level
\
/

0]

Figure 3-1: Class/property reflexivity/transitivity

3.3.2.1 Basic Constraints

This category hosts some general constraints (see Table 3-2), which are more or less

obvious.

Giorgos Serfiotis

32 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Table 3-3: SUB constraints

Description

Formal Definition

O Every class is a subclass of itself

(reflexivity) (Figure 3-1i)

c CLASS(c) — C_SUB(c, ¢)

® The subclass relationship is

transitive (Figure 3-1i)

va, c, e C_SUB(e, c) A C_SUB(c, a)
— C_SUB(e, a)

© Every property is a sub-property of
itself (reflexivity) (Figure 3-1ii)

vc, p, d PROP(c, p, d) — P_SUB(p, p)

® The sub-property relationship is

vp, q, r P_SUB(p, q) A P_SUB(q, r)

transitive (Figure 3-1ii) — P_SUB(p, r)
OA class is both subclass and super- va, c C_SUB(c, a) »n C_SUB(a, ¢)
class of itself only (antisymmetry) — a=c
O A property is both subproperty and vp, g P_SUB(q, p) A P_SUB(p, q)
super-property of itself only — p=q
(antisymmetry)
Schema Schema p
Level Level o : o
7 / :
/ 1 g 2
(O——@ [om fea W I
Level P /
0} (i)

Figure 3-2: Domain-range constraints

3.3.2.2 SUB Constraints

The SUB constraints refer to class/property hierarchy (Table 3-3). Both the C SUB

and P_SUB relations are reflexive, transitive and antisymmetrical.

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 33

3.3.2.3 Domain-range Constraints

This category contains two constraints referring to properties’ domains and ranges

(see Table 3-4).

Table 3-4: Domain-range constraints

Description Formal Definition
@ In a valid RDF description schema the va, p, b, ¢, q, d PROP(a, p, b) A
domain (range) of every sub-property is PROP(c, q, d) A P_SUB(q, p) —
subsumed by the domain (range) of its C _SUB(c, a) A C_SUB (d, b)
super-property (Figure 3-2i)

@ In a valid RDF description base the va, p, b, x, y PROP(a, p, b) »
subject/object resources in every statement | p EXT(x, p, y) — J, d C_SUB(c, a)
are (direct or indirect) instances of the A C_SUB (d, b) A C_EXT(c, x) A
property’s domain/range classes (Figure C_EXT(d, y)

3-2ii)

3.4 Differences between SWLF and RDF/S Semantics

SWLF succeeds in almost fully capturing the RDF/S type system and semantics
adopted from RQL (see subsection 2.2.1). Thus, it presents almost the same
differences to the RDF/S Model Theory as RQL Semantics does. The only difference
rises in the handling of literal datatypes. According to RDF/S Model Theory, literal
datatypes are classes. Nevertheless, while in RQL they are not considered as classes,
in SWLF they are. However, in contrast to RDF/S Model Theory, datatype classes are

not considered to be subclasses of class rdfs:Literal.

3.5 From RDF/S Schemas to SWLF

Having defined SWLF, the first step that needs to be taken for checking either RQL
query containment or reformulating/minimising an RQL query into SQL queries is
passing from the RDF/S schema to SWLF. This means that all information
concerning an RDF/S schema has to be translated in terms of the CLASS, PROP,
C SUB and P_SUB relations. The procedure is rather straightforward:

Giorgos Serfiotis

34

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

CLASS(Artist)
CLASS(Painter)
CLASS(Cubist)
CLASS(Artifact)
CLASS(Painting)
PROP(Artist, Creates, Artifact)

ARt G Alfact >

I !)
] ! |
Painter >

paints

C_SUB(Painter, Artist)
C_SUB(Cubist, Painter)
C_SUB(Painting, Artifact)
P_SUB(Paints, Creates)

PROP(Painter, Paints, Painting)

Figure 3-3: An RDF/S schema and its SWLF translation

e For every RDF/S class c, the fact CLASS(c) is true and is added in the Datalog
program

e For every RDF property p having as domain class ¢ and range class d, the fact
PROP(c, p, d) is true and gets added in the Datalog program

e For every class d that is connected to a class ¢ through the property
rdfs:subClassOf, the fact C SUB(d, c) is true and gets added in the Datalog
program

e For every property g that is connected to a property p through the property
rdfs:subPropertyOf, the fact P_SUB(q, p) is true and gets added in the Datalog

program

Example 3.1: Following the above procedure the RDF/S schema introduced in Figure

3-3 translates into the SWLF facts presented in the same figure. ®

3.5.1 Translating the Facts into Constraints

The algorithms for solving the containment (see section 4.1) and minimisation (see
section 4.3) problems demand that all information (except the query) is passed as
input in the form of constraints. Thus, the next step for SWIM is to translate the
Datalog facts describing the RDF/S schema into DEDs. In order to fully capture the
intended meaning of the facts, for each SWLF predicate modelling RDF/S schemas
(CLASS, PROP, C SUB, P SUB) one constraint universally quantifying the

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 35

predicate’s variables and many existentially quantifying them are needed®. The
existentially quantifying constraints advertise the existence of the RDF/S schema’s
classes, properties and hierarchy relationships, while the universally quantifying ones
state that these are the only classes, properties and hierarchy relationships needed to

describe the RDF/S schema.

¥name (CLASS(name) — name="Artist” v name="Painter”’ v
name="Cubist” v name="Artifact” v name="Painting”)

Fname CLASS(name) A name="Artist”
Jname CLASS(name) A name="Painter”
Jname CLASS(name) A name="Cubist”
Fname CLASS(name) A name="Artifact”
Fname CLASS(name) A name="Painting”
7subP vprop (P_SUB(subP, prop) — (subP="creates” A prop="creates”) v
(subP="paints” A prop="“creates”) v (subP="paints” A prop="paints”))
7 subPFprop P_SUB(subP, prop) A subP="creates” A prop=‘creates”
7 subPIprop P_SUB(subP, prop) A subP="paints” A prop="creates”
F subP3prop P_SUB(subP, prop) A subP="paints” A prop="paints”

Figure 3-4: Constraints for the CLASS, P_SUB relations of Figure 3-3

With respect to the general form of DEDs, each universally quantifying

constraint has the form
/ 1
Vx{co(X)% Vo, (X)}

where ¢ is the SWLF predicate and each ¢, is a conjunction of equality atoms. Each
existentially quantifying constraint has the form
Jyp ()
where ¢ is a conjunction of one relational atom and possibly many equality atoms.
The latter form is equivalent to
TRUE « ¢ (y)

where y is a tuple of constants. Throughout this thesis we use the former notation.

¥ In the rest of this thesis these constraints will be referred to as universally (existentially) quantifying

constraints.

Giorgos Serfiotis

36 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

The constraints for C_SUB (P_SUB) take under consideration, additionally to
the facts, all the C_SUB (P_SUB) tuples following from the relation’s reflexivity and
transitivity. Figure 3-4 illustrates the constraints corresponding to part of the RDF/S

schema of Figure 3-3 (only the CLASS, P_SUB predicates are considered).

3.6 From RQL Queries to SWLF

Conjunctive RQL queries — i.e. SELECT-FROM-WHERE ones — not using aggregate
functions, nesting and negation can be seen in a rule-based formalism, which is
compatible to Datalog; the only difference is that instead of first-order predicates,
RQL path expressions’ are used. In the rest of this thesis we will focus on this

fragment of RQL, namely ROLcony, extended with union (RQLycp).

Definition 3.4: An RQLcons query has the general form: ans(U):- ..., E(U), ...,
U;,=U,, ... The rule’s head consists of the query’s name ans and the tuple U of the
returned variables; the rule’s body consists of a conjunction of ROL patterns E(U)
and equalities Up=U, between variables and/or constants. Each Ui involves the
variables Xi 8C, @P; Y, 8D; — where @P; is a property variable, $C; and $D; are
class variables, X; and Y; are resource variables, as we have already seen — or a

subset of them. ®

The above definition of RQLcony queries extends in order to comprise queries

involving union.

Definition 3.5: An RQLyco has the general form
ans(ﬁ) : —Uk body,
where ans(U) and bodyy. are given from the definition above. ®
The passing from RQLyco queries in the SELECT-FROM-WHERE

formalism into RQLycq queries in the rule formalism, which facilitates their

translation to SWLF, demands that a normalisation phase edges in reducing the

? In the rest of this thesis the terms ‘RQL path expression’ and ‘RQL pattern’ are used alternately since

they are synonymous.

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 37

complex path expressions found in the FROM clause into the general form of

RQLuycq queries.
Example 3.2: Observe the RQLycq query

SELECT X
FROM {X}paints.exhibited{Z}
WHERE Z="http://www.louvre.fr”

Initially, the normalisation reduces it to the equivalent query

SELECT X
FROM {X}paints{Y}, {Y}exhibited{Z}
WHERE Z="http://www.louvre.fr’

By replacing the constants found in the patterns with variables and adding the

corresponding equalities we get:

SELECT X

FROM X}@P+{Y}, {Y}@P:{Z}
WHERE @P;=paints and @P,=exhibited and Z= “http.//www.louvre.fr”

It is easy to derive the rule that is equivalent to the above RQL query:

ans(X) - {X@PAY}, (Y)@P:{Z), @P;=paints, @P,=exhibited,

Z="http.//www.louvre.fr’ ®

3.6.1 From RQL Patterns to SWLF

When the RQLycq query has been translated in a rule-based formalism, the only step
remaining for passing to a Datalog rule is replacing the patterns with first-order
predicates; the goal is to express the parts of the RDF/S graph that participate in the
evaluation of the query, as defined using the patterns, in terms of the SWLF relations.
Thus, a translation for each RQL pattern to SWLF is needed based on RQL patterns’

semantics and SWLF semantics.

Definition 3.6: RQL class patterns, i.e. those facilitating navigation through a

schema’s classes, are translated in SWLF as shown in Table 3-5. &

Giorgos Serfiotis

38 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Example 3.3: The class pattern $C(X) translates to C SUB(, c¢), C EXT(d, x).
Remember that C_EXT(d, x) returns only the direct instances of class c; this is why

the C_SUB(d, c) relation is introduced: to iterate through the subclasses of class c. ®

Definition 3.7: RQL property patterns, i.e. those facilitating navigation through a

schema’s properties, are translated in SWLF as shown in Table 3-6'°. m

Example 3.4: Using the translations the example presented above (section 3.6)

translates to:

ans(x) :- P_SUB(q1, p1), P_EXT(x, q1, ¥), P_SUB(Qqz, p2), P_EXT(y, q2, 2), p1="paints”,

po="exhibited”, z="www.louvre.fr’ &

Table 3-5: Class patterns' translation into SWLF

Class Pattern SWLF Translation
$C CLASS(c)
"$C
$C{3D} C_SUB(d, c¢)
A$C{3D}
$CX} C_SUB(d, c), C_EXT(d, x)
r$C{X} C_EXT(d, x)
$C{X; $D} C_SUB(d, c), C_SUB(e, d), C_EXT(e, x)
A$C{X; $D} | C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), C_EXT{(c, x)
$C{X; "$D} C_SUB(d, ¢), C_EXT(d, x)
A$C{X; "D} C_SUB(d, ¢), C_EXT(c, x), C_EXT(d, x)

Concluding this chapter and having in mind the relational schema R and the
constraints capturing RDF/S semantics (Jda,qs) We can redefine the terms description
base and description schema introduced in [ACK'02]. The new definitions will be

considered throughout the rest of the thesis.

Definition 3.8: An RDF/S description schema DS in SWLF is an instantiation of the
relational schema Rs={CLASS, PROP, C_SUB, P_SUB} satisfying oyrq. ®

!9 Not all property patterns’ translations appear in the table. See Appendix I for the complete list.

University of Crete, Computer Science Department

CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 39

Definition 3.9: An RDF/S description base DB in SWLF given a DS is an
instantiation of the relational schema Rp={C EXT, P_EXT} satisfying oyoq. ®

Table 3-6: Property patterns' translation into SWLF

Property Pattern SWLF Translation
@P PROP(a, p, b)
"@P

{$C}@P{$D} PROP(a, p, b), C_SUB(c, a), C_SUB(d, b)

{3C}*@P{3D}

{X}@P{Y} P_SUB(q, p), P_EXT(x, q, y)
Xj@pP
@P{Y}

X}Ir@P{Y} P_EXT(x, p, y)
x}r@P
"@P{Y}

{X}@P{Y; $D} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
{X}@P{$D} C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)
@P{Y; 3D}

XI@P{Y; "$D} PROP(a, p, b), P_EXT(x, p, y),

r@P{Y; "$D} C_SUB(d, b), C_EXT(d, y)

{X;$C} @P{Y,; $D} | PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
{X; $C} @P{$D} C_SUB(c, a), C_SUB(d, b), C_SUB(e, c),
{$C} @P{Y ; $D} C_SUB(f, d), C_EXT(e, x), C_EXT(f, y)
X; NC@P{Y; | PROP(a, p, b), P_EXT(x, p, y), C_SUB(c, a),

8D} C_SUB(d, b), C_EXT(c, x), C_EXT(d, y)

In the rest of this thesis we will refer to two sets of constraints, namely ogpr
and Agpr, depending on the problem we want to solve; both are based on the
constraints preserving RDF/S semantics (dyns) and those extracted from an RDF/S

description schema.

Definition 3.10: Agpr is the set of DEDs formed from dyo.q and all the constraints

extracted from a specific RDF/S description. ®

Giorgos Serfiotis

40 CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK

Definition 3.11: dgpr is a set of disjunction-free DEDs. It is the subset of Arpr that

does not include the universally quantifying constraints. ®

University of Crete, Computer Science Department

Chapter 4

RQL Query Optimisation

Throughout this chapter we will study the problems of RQL query containment,
equivalence and minimisation using two algorithms, the Chase and the Backchase.
We have managed to identify several subcases of these problems by adjusting the
fragment of RQL considered to the input information given in the form of constraints.
We consider three sets of constraints (du4, Orpr, Azpr) and two fragments of RQL
(RQLuycq and its subset RQLcoRrE).

In section 4.1 we study the containment problem for RQLycq queries
(subsection 4.1.2), where we have full knowledge of the RDF/S schema - provided by
Arpr, and proceed with the same problem for RQLcorg queries (subsection 4.1.3),
where we have partial knowledge of the RDF/S schema - provided by dgpr. Then, we
take a quick look over the equivalence problem for the same RQL fragments (section
4.2). We, also, present in section 4.3 how queries originating from both fragments of
RQL can get minimised by considering Agpr (subsection 4.3.2) and drpr (subsection
4.3.3), respectively. Finally, we show how we can simplify (minimise) RQLycq
queries without having knowledge of a specific RDF/S schema (subsection 4.3.4).
This is the case where only the knowledge of RDF/S semantics is provided through

5Mod-

4.1 RQLycq Query Containment

All problems aforementioned are based on containment of RQLycq queries. Thus, it

has to be dealt first.

Definition 4.1: 4 RQOLycp query Q; is contained in a RQLyco query Q> (Q1c0>)
given an RDF description schema DS iff for every description base DB conforming to
DS the result of Q; is contained in that of Q> (VDB Q;(DB) < Q,(DB)). &

In some cases the containment is obvious. This is the case of simple queries

that do not involve complex paths.

41

42 CHAPTER 4. RQL QUERY OPTIMISATION

Painter o Painter

creates o paints)
creates P paints

Painting = Painting }

Fainting Fainting

Figure 4-1: Simple graphical containment example

Example 4.1: It is easy to figure out that the query

SELECT X
FROM {X; Painter}paints{Y; Painting};

1s contained in

SELECT X
FROM {X; Painter}creates{Y,; Painting};

because it is pretty straightforward from the RDF/S semantics that when “a painter
paints a painting”, at the same time he creates a painting.

Alternatively, in this example, the containment can easily be spotted if the two
RQLuycq queries are seen as graphs, where the nodes correspond to classes and the
edges to properties. The subject node of the second query subsumes (is a superclass
of) the corresponding one of the first query. The same goes for the object nodes, too.

Moreover, the property edge of the second query subsumes (is a superproperty
of) the corresponding one of the first query. Thus, all instances satisfying the first
query satisfy the second one, too. Figure 4-1 illustrates the containment check

between the two graphs. B

However, deciding containment of more complex queries is not trivial. There
will be, also, cases where even seeing the queries as graphs will not allow checking
containment. Moreover, there exist many applications that need dealing with

containment in an automated way. Thus, the definition of a sound and complete

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 43

algorithm for checking RQLycq query containment is mandatory. This chapter’s goal

is to provide such an algorithm that will solve these problems.

4.1.1 Chase Algorithm

The core algorithm of this work is the chase [Deu02]. Chasing a query equals
applying a sequence of chase steps to the query. Its handiness originates from the fact
that all input information is given in the form of DEDs. The definition of a chase step

demands that the notion of homomorphism is familiar to the reader.

Definition 4.2: A homomorphism from @; into ¢ is a mapping h from the variables of

@, into those of @, such that:

i. For every equality atom w = o’ in ¢;, h(w) = h(w’) follows from the equality
atoms of ¢, and

ii. For every relational atom R(w,, ..., wy) in @;, there is an atom R(vy, ..., v) in ¢,

such that v; = h(w;) follows from the equality atoms of p,. ®

Definition 4.3: Given two conjunctive queries Q (X1, ..., Xn) <= Q1(X1, «eey Xy Vi, ooy Ym)
and Qy(uy, ..., u,) < @a(ug, ..., Uy, Uy, ..., Oy), Where @;, @, are conjunctions of
relational and equality atoms, a containment mapping from Q; to Q, is a

homomorphism m from @; to ¢, such that m(x;) = u; for 1<i<n. ®

Definition 4.4: Let d be a DED (see Definition 3.2), Q be a conjunctive query q(x) :-
@q(x, W) (see Definition 3.1) and h be a homomorphism from ¢ into ¢, We say that the
chase step of Q with d using h is applicable if h allows no extension that is a

homomorphism from ¢ A @; into @q for any | 2 i > 1. In this case, the result of

applying this chase step is the union of queries U,-Qi , Where each Q; is defined as

qi(x) :- pq A 0i (h(x1), ... h(xn), fit, ..., fir) where the fi;’s are the fresh variables. ®

The above definition of a chase step ensures that no chase step gets applied

when its result is already present in the query.
Example 4.2: The query Q(x) .- A(x, y), B(x, z) chases with the DED

x vy A(x, y)—>V(x)

Giorgos Serfiotis

44 CHAPTER 4. RQL QUERY OPTIMISATION

rendering query Q(x) :- A(x, y), B(x, z), V(x). ®

First Query: | Q: A
Constraints: A_>. A.::r v

Q A]A.Ql: AH A~V o) A v

Figure 4-2: Chase illustrative example

When the query has been chased with all available dependencies (constraints)
and no more chase steps apply, we say that the chase has ended. The resulting query is

called the universal plan.

Example 4.3: Figure 4-2 illustrates the basic idea behind chase without taking into
account variables. It contains a query and two constraints. The first constraint states
that every predicate 4 implies the existence of a predicate B. Thus, the query Q
involving a predicate A gets enriched with a predicate B resulting in query Q.
Additionally, the concurrent presence of both a predicate 4 and a predicate B implies
the existence of a predicate V" according to the second constraint. Thus, the query Q;
turns into O, by adding a predicate V. Lack of other constraints the chase ends

rendering Q, as the universal plan of Q. ®

Unfortunately, the chase of any conjunctive query with any set of embedded
dependencies is not guaranteed to terminate ([AHV95]). Obviously, this result
extends for unions of conjunctive queries chasing with DEDs. Thus, appropriate

restrictions that will guarantee termination are needed.

4.1.1.1 Stratified-witness

In order to overcome the lack of guarantees for the termination of chase with
arbitrary embedded dependencies, [Deu02] identified a property, namely stratified-
witness; the chase with constraints satisfying this property is guaranteed to terminate.
The stratified-witness property is founded on the notion of the chase flow graph of a

set C of constraints.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 45

Figure 4-3: Chase flow graph

Definition 4.5: The chase flow graph G = (V, E) of a set C of constraints is a directed
edge-labelled graph whose labels have either the value V or 7. G is constructed as

follows: for every pair of relations R, R of arities a, a and every constraint

‘v’;[.../\R(ul,...,ua)/\...—).../\RV(UI,...,U)/\]

a

in C, E contains the edges (Ri,R;.) . Also, whenever the equality x=y appears

1<i<a,1<j<a'
in the conclusion of the implication and x, y appear as the i, i component of R, R,

respectively, E contains the edge (Rl.,R;.). Moreover, if for some j, the variable v; is
existentially quantified, the edges (R,.,R}) are labelled with 3 otherwise they are

1<i<a

labelled with V. &

According to [Deu02] the set C of constraints has stratified-witness if none of

the cycles in its chase flow graph contains a 3-labelled edge.

Example 4.4: Given the following two constraints, Figure 4-3 presents their chase

flow graph.

vx vz [B(x, z) — Jy A(X, ¥)]
vx [C(x) — Fz B(x, 2)]

It follows from the flow graph that the two constraints satisfy the stratified-witness

property. B

Giorgos Serfiotis

46 CHAPTER 4. RQL QUERY OPTIMISATION

The intuition behind the endless execution of chase steps lack of stratified-
witness is simple; each added predicate 4 in the query through a sequence of chase
steps (those applied using the constraints that form the cycle) causes the addition of a
new predicate 4, which in its turn causes the addition of another predicate A4, etc.
Although the definition of a chase step prohibits executing steps that will add
predicates already present, the introduction of new variables during the chase steps

renders the prevention inactive.

Example 4.5: The chase flow graph corresponding to the following constraints

contains a cycle with a 3-labelled edge.

vx vy [A(x, y)— Fz B(y,)]
vx vy [B(x, y)— A(X, y)]

The chase of query Q(X) :- A(a;, a;) with them does not terminate as shown below

Q(X) :- A(as, a2)

— Q¢(X) :- A(ay, az), B(az, as)

— Qz(X) - A(ay, @), B(ay, as), A(az, as)

— Q3(X) :- A(ay, az), B(ay, az), A(az, as), B(as, as)

— Qu(X) :- A(ay, az), B(ay, asz), A(az, as), B(as, as), A(as, as)

— ...

Although embedded dependencies (EDs) were the initial application domain
for the stratified-witness property, the latter can be used with disjunction-free DEDs,
i.e. DEDs consisting of a single conjunctive query, too. Disjunction-free DEDs differ
from EDs in that they allow (@) equalities in the left-hand side of the constraints, ()
equalities in the right-hand of the constraints involving existentially quantified
variables, and (c) both variables and constants in the atoms used. We illustrate in

Appendix B why this is possible.

Proposition 4.1: The chase of a conjunctive query Q with a set C of disjunction-free
DEDs terminates if the chase flow graph of C has no cycle containing an F-labelled
edge. W

Using the above proposition we get the following definition.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 47

Definition 4.6: 4 set C of disjunction-free DEDs satisfying the conditions of the

above proposition satisfies the stratified-witness property. ®

4.1.1.2 Stratified-witness of DEDs

We will start by studying the case of chasing a conjunctive query Q with a finite set C
of m DEDs. Each DED d; can be seen as a union of several disjunction-free EDs d;
whose number #; is finite, too. The “worst case scenario” is that by combining m d;;’s,
one for each i, the chase flow graph of these m d;;’s will contain at least one cycle with
at least one 3-labelled graph. This scenario will take place when the chase steps
corresponding to the d;’s whose d;;’s participate in the sequence presented in such a
flow graph, get applied. The result will be an infinite number of chase steps. Under
any other circumstance, the finite number of DEDs and disjunction-free DEDs in each
DED guarantees termination of the chase.

Note that each combination cannot have more than one dj; from each d,,
because there is no way that in a chase sequence the same predicates will trigger twice
the same constraint due to the definition of chase step. Since one (or more)
predicate(s) produced through chasing some initial predicate(s) cannot trigger the
same constraints — this is the case of cycle in the chase flow graph — the chase will

terminate.

Proposition 4.2: The chase of a conjunctive query Q with a set C of DEDs terminates

if for all combinations of m dj;’s, one for each i, stratified-witness is preserved. Thus,

n

O(nﬁax)checks for stratified-witness are necessary. (C = {d; | 1<ism}, d, = _\}ldij,
e
Npax=max(n;)) A

The following definition follows from the above proposition.

Definition 4.7: 4 set C of DEDs satisfying the conditions of the above proposition

satisfies the stratified-witness property.

Since a union query consists of a finite number of conjunctive queries, if the

DEDs satisfy the stratified-witness property, the chase terminates.

Giorgos Serfiotis

48 CHAPTER 4. RQL QUERY OPTIMISATION

Proposition 4.3: The chase of a union of conjunctive queries with a set of DEDs

satisfying the stratified-witness property terminates. ®

Example 4.6: Let’s see an example where the extension of the stratified-witness for
DEDs can be used to locate a set of constraints that may not allow a query’s chase to

terminate. Imagine the following set D of constraints

(di) vxvy [A(X, y) - B(x, y) v C(x, ¥)]

(d2) vxVy [B(x, y) = F(x, y) v 3z G(x, y, 2)]
(ds) Vxvy [C(x, y) = D(x, y) v Iz E(y, 2)]
(dy) vxvy [E(x, y) > A(X y)]

We have to check eight different chase flow graphs for cycles containing at least one

J-labelled edge built using the following sub-constraints:

(d11) vx vy [A(X, y) = B(x, y)] (diz) Yy [A(x, y) = C(x, ¥)]
(d21) YxVy [B(x, y) = F(x, y)] (d2z) YxVy [B(x, y) - Fz G(X, ¥, 2)]
(d31) ¥xVy [C(x, y) = D(x, y) (dsz) ¥xVy [C(x, y) = Tz E(y, 2)]

(d4) vx W[E(X' y) _)A(X! y)]

The constraints d;», d2; (or ds2), ds; and dy create a cycle containing an 3-labelled
edge. Therefore, we cannot guarantee termination of the chase. Let’s see now what

will happen if the query
ans(x) - A(x, y)
gets chased with D

ans(x) - A(x, y)

— ans(x) .- A(x, y), B(x, y)

v ans(x) - A(x, y), C(x, y)

— ans(x) - A(x, y), B(x, y), F(x, y) (no more chase step for this query)
v ans(x) - A(x, y) , B(x, y), G(x, ¥, z) (no more chase step for this query)
v ans(x) - A(x, y), C(x, y), D(x, y) (no more chase step for this query)
v ans(x) - A(x, y), C(x, y), E(y, 2)

— ans(x) - A(x, y), B(x, y), F(x, y) (no more chase step for this query)
v ans(x) - A(x, y) , B(x, y), G(x, ¥, z) (no more chase step for this query)

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 49

v ans(x) - A(x, y), C(x, y), D(x, y) (no more chase step for this query)
v ans(x) - A(x, y), C(x, y), E(v, 2), A(Y, 2), ...

The chase of the last conjunctive query does not terminate and can go on for ever. B

4.1.1.3 Chase Steps

Applying the chase in the RDF/S scenario, the chase steps will very often produce

unsatisfiable queries, i.e. queries implying equality of distinct variables.
Example 4.7: Chasing query
ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p="paints”

with the universally quantifying constraint for P SUB in Figure 3-4 using the

homomorphism {subP—q, prop—p} results in

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p="paints”, qg="paints”, p=“creates”
v ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p="paints”, q="paints”, p="paints”
v ans(x) .- P_SUB(q, p), P_EXT(x, q, y), p="paints”, qg="creates”, p="creates”

The chased query is a union of three conjunctive queries. However, the 1% and the 3™
ones are not valid because p is set to have both the values “paints” and “creates”.

Therefore, in practice, the query is equivalent to:
ans(x) :- P SUB(q, p), P_EXT(x, q, y), p="paints”, g=“paints” R

In its original form the chase algorithm does not search after each chase step
for unsatisfiable conjunctive queries where equalities between distinct constants are
implied. It searches and removes them from the universal plan. However, the
algorithm can safely get extended so that such conjunctive queries get removed as
soon as they appear, without affecting its soundness and completeness. This
algorithm’s extension is very useful in the RDF scenario where many such
inconsistencies appear while chasing. Throughout this thesis we will refer to the
algorithm’s extension. Therefore, only the valid queries produced at each step will be

presented.

Giorgos Serfiotis

50 CHAPTER 4. RQL QUERY OPTIMISATION

vsource vYhname vdest (PROP(source, name, dest) — (source="Artist” A
name=‘creates” A dest="Artifact”) (source="Painter’ A name="paints”
A dest="Painting”))

Fsource Fname FHest PROP(source, name, dest) A source="Artist” A
name="creates” » dest="Artifact’

Fsource Fname Fdest PROP(source, name, dest) A source="Painter” A
name="paints” A dest="Painting”

vsubC vclas (C_SUB(subC, clas) — (subC="Artist’” A clas="Artist’) v
(subC="Painter” A clas="Artist”) v (subC="Painter” A clas="Painter”) v
(subC="Artifact” A clas="Artifact”) v (subC="Painting” 1 clas="Artifact”)
v (subC="Painting” » clas="Painting”))

FsubC Fclas C_SUB(subC, clas) A subC="Artist” A clas="Artist”
FsubC Fclas C_SUB(subC, clas) A subC="Painter” A clas="Artist”
FsubC Fclas C_SUB(subC, clas) A subC="Painter” A clas="Painter”
FsubC Felas C_SUB(subC, clas) A subC="Artifact” A clas="Artifact”
FsubC Felas C_SUB(subC, clas) A subC="Painting” » clas="Artifact”
FsubC Felas C_SUB(subC, clas) A subC="Painting” A clas="Painting”

Figure 4-4: PROP & C_SUB constraints for the RDF/S schema of Figure 3-3 where class
"Cubist" gets ignored

Example 4.8: Given Agpr for the RDF/S schema of Figure 3-3, as seen in Figure 3-4
and Figure 4-4, we want to chase the query below. We ignore the class “Cubist” for

simplicity reasons.

SELECT X
FROM {X}paints{Y}

translates in SWLF into
ans(x) - P_SUB(q, p), P_EXT(x, q, y), p="paints”

which is the query of the previous example. It chases with the 6" basic RDF/S
constraint using the elementary homomorphism, i.e. the one that maps each variable

to itself, and the result is'":

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), p="paints”

"' Bold letters are used to highlight the predicates that trigger a chase step. The predicates added by the

same chase step are underlined.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 51

The 3" basic constraint is applied twice using the homomorphism {a—¢, p—q, b—d}

and the elementary one resulting in:

ans(x) - P_SUB(q, p), P_EXT(x, g, y), PROP(a, p, b), PROP(c, q, d), CLASS(a),
CLASS(b), CLASS(c), CLASS(d), p="paints”

Using the universally quantifying constraint for P SUB (Figure 3-4) and the
homomorphism {subP—q, prop—p} we get:

ans(x) ;- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), CLASS(a),
CLASS(b), CLASS(c), CLASS(d), p=“paints”, g="paints”

Using the 2nd existentially quantifying constraint for PROP (Figure 4-4) we get:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, 1),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q="paints”, r="paints”, s="Painter”,

7

t="Painting”

By applying the 4™ basic constraint (domain-range uniqueness constraint) twice using
the homomorphisms {a—a, p—=p, b—b, c—s, g—r, d—t} and {a—s, p—r, b4,

c—¢, g—q, d—>d}, the query chases to:

ans(x) .- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, 1),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q=r=“paints”, a=c="Painter”,
s=“Painter”, b=d="Painting”, t=“Painting”

Chasing with the 2" domain-range constraint (property-class extent compatibility)

using the homomorphism {a—c, p—q, b—>d} results in:

ans(x) .- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C _SUB(f, d), C_EXT{(e,
x), C_EXT(f, y), p=q=r="paints”, a=c=s="Painter”, b=d=t="Painting”

Using the 1*" domain-range constraint and the elementary homomorphism the query

becomes:

ans(x) - P_SUB(q, p), P_EXT(x, g, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c.

Giorgos Serfiotis

52 CHAPTER 4. RQL QUERY OPTIMISATION

a), C SUB(d, b), C EXT(e, x), C_EXT(f, y), p=qg=r="paints”, a=c=s="Painter”,
b=d=t=“Painting”

Using the C_SUB transitivity constraint twice with the homomorphism {e—/, c—d,

a—b} and the elementary one, we get:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c,
a), C_SuUB(d, b), C SUB(e, a), C SUB(f, b), C EXT(e, x), C_EXT(f, y),
p=q=r="paints”, a=c=s="Painter”, b=d=t="Painting”

According to the 2" basic constraint and the homomorphisms {d—e, c—¢} and {d—f,

c—>d} we get the query:

ans(x) ;- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),
C_EXT(f, y), p=q=r="paints”, a=c=s="Painter”, b=d=t="Painting”

Using twice the wuniversally quantifying constraint for C SUB and the

homomorphisms {subC—»e, clas—c} and {subC—f, clas—d} we get

ans(x) - P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),
C EXT(f, y), p=q=r="paints”, a=c=s=“Painter”, e="Painter”’, b=d=t="Painting”,
f="Painting”

Since no more chase step can get applied'”, the query above is the universal plan of

the initial query. ®

2 In reality, the query will be chased with all the existentially quantified constraints for CLASS,
PROP, C_SUB, P_SUB. Although this is not shown in the universal plan due to space limitation, all
the necessary chase steps for checking containment are illustrated; the chase steps ignored do not alter

the result.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 53

4.1.1.4 Complexity

In the general case the end of the chase, as we have said, is not decidable. However,

the use of restrictions on the used constraints leads to decidable problems in the
complexity class of NP or Hf ; the stratified-witness property for disjunction-free

constraints belongs to the former class.

Proposition 4.4 (|[Deu02]): Chasing a conjunctive query with a set of disjunction-free

DEDs meeting the stratified-witness property results in a query of size

oo

where |Q)| is the initial query’s size, a is the maximum arity of the predicates used in

the relational schema on which the constraints are applied and | is the maximum

number of F-edges on a path in the constraints chase flow graph. ®

4.1.2 Checking RQLycq Query Containment Algorithm

Our algorithm for checking whether an RQLycq query is contained in another
takes as input the two queries in their SWLF translations and chases them with Azpr.
Although Azpr does not preserve stratified-witness because of the 6™ basic and 3™ sub
constraints, which introduce a cycle containing an 3-labelled edge in the chase flow
graph, it behaves as if stratified-witness was present. Due to the conditions needed to
apply a chase step the two conditions do not allow the introduction of an infinite

number of fresh variables, which is the inviolable term for the chase to diverge.

Example 4.9: Let’s try to chase the following query with the two constraints just

mentioned

ans(q) :- P_SUB(q, p)

It chases with the 6" basic constraint to

ans(q) :- P_SUB(q, p), PROP(a,, q, bs), PROP(as, p, by)
and, then, twice with the 3™ sub constraint to

ans(q) :- P_SUB(q, q), P_SUB(p, p), P_SUB(q, p), PROP(a,, q, b;), PROP(ay, p, by)

Giorgos Serfiotis

54 CHAPTER 4. RQL QUERY OPTIMISATION

No more chase step with the two constraints can be applied; the chase ends here. ®

In the example above no value is assigned to any variable. However, nothing
would change if one of them or both were equated to values. Therefore, there cannot
be an infinite execution of chase steps and the chase with Agpr terminates. Thus, by
reducing the containment problem to the relational equivalent, we give the following

theorem based on [Deu02]:

Theorem 4.1: Suppose two RQOLyco queries Q;, Q. translated in SWLF, where
0, :Uj 0,;, and a set C of DEDs, namely Arpr. Q;’s containment in Q> under C

(01ccQ>) is decidable. Q;’s chase terminates rendering the universal plan SQ;:

SO, = USQ”, where SQ;;’s are conjunctive queries. Q; is contained in Q; for every

description base DB iff for each i there is j such that there is a containment mapping

Sfrom Q5 into SQy; (i.e. SQ;; is contained in Q). W

In other words, the above theorem states that an RQLycq query QO; is
contained in an RQLycq query 0> under a set C of constraints if the universal plan of

0, namely SQy, is contained in Q..

Example 4.10: Let us see again the example of Figure 4-1. Given the same

constraints as in the chase example earlier, we want to prove that query

O;: SELECT X
FROM {X; Painter}paints{Y; Painting};

is contained in query

0, SELECT X
FROM {X; Painterjcreates{Y; Painting};

Q; translates to:

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),
P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p="paints”, c="Painter”,
d="Painting”

Then, it chases to the following universal plan SQ;:

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 55

ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), PROP(u, v, w), CLASS(a),
CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h),
CLASS(i), CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a),
C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g),
C_SUB(j, h), C_SUB(i, a), C_SUB(j, b), C_SUB(k, I), C_SUB(m, n), P_SUB(q, p),
P_SUB(o, z), C_EXT(e, x), C_EXT(f, y), C_EXT(i, x), C_EXT{(j, y), P_EXT(x, q, y),
o=p=q=r="paints”, v=z="creates”, a=c=e=g=i=s="Painter”, u=I="Artist”, b=d=f=h=j=

t="Painting”, w=n="Artifact”
0, translates to:

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),
P _SUB(q, p), C_ EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p="creates”, c="Painter”,
d="Painting”

The containment of Q; in O, demands that there is a containment mapping from Q> to
the single conjunctive query of SQ;. Such containment exists given the

homomorphism {p—v, a—u, b—-w, c—=>k, d—>m, e—e, [}, g—0, p—>z}. B

In section 3.5.1 we have illustrated how the Datalog facts describing an RDF/S
schema are interpreted as constraints. Using these constraints, the set of constraints
Agpr 1s defined for every RDF/S schema. In the previous theorem, we have defined
the reduction of the RQL query containment problem to the relational equivalent
based on this set. In the following example we will show that by the slightest
reduction to Agpr the algorithm for checking containment is no longer valid. Initially
we will employ dgpr in the containment algorithm, instead of Agpr. Then, we will
consider the set of constraints that excludes from Agpr the existentially quantifying

constraints.
Example 4.11: Suppose the queries

(Q;) SELECT X
FROM Artist{X}, Painter{X}

and

(Qy) SELECT X
FROM APainter{X}

Giorgos Serfiotis

56 CHAPTER 4. RQL QUERY OPTIMISATION

It is obvious that Q; is contained in Q,. Additionally, Q; is contained in Q; since
Painter is a subclass of Artist and has no other subclass but itself. However, the
containment of Q; in O, cannot be deduced using dzpr due to the lack of knowledge
that Painter has no subclass but itself. Moreover, the containment of 0, in O, cannot
be deduced using Azpr without the existentially quantifying constraints because we
lack the knowledge that there exists a subclass relationship between Painter and

Artist. |

The above conclusions propagate to the equivalence and minimisation

problems, which are built on top of the containment problem.

4.1.2.1 Complexity

As we have seen, the RQLycq containment problem gets reduced to the containment
of unions of conjunctive queries under Agpr, which depends on the complexity of
chase and the one of checking the containment of first query’s universal plan in the
second query. Since 4gpr behaves as if stratified-witness was present, the chase of the
first query with it terminates and is at least NP-complete. Moreover, the simple

containment check between the first query’s universal plan and the second query is

Hf -complete.

Note that the size of the universal plan derives from the chase algorithm.
Given the SWLF predicates and Agpr, the maximum arity in this case is 3 and the
maximum number of 3-edges on a path in the constraints chase flow graph is 2. This

path derives from the constraints used to capture the RDF/S semantics. Therefore, the

size of the universal plan is at least O(|Q|3Mj= 0(]Q|27), where |Q| is the size of the

largest conjunctive query forming the initial union.

4.1.3 RQLcore Query Containment

Suppose now the fragment of RQLycq queries that (a) is built on class and property
patterns whose schema (class and property) variables are assigned to values, and (b)
does not consider proper interpretations of classes and properties. We will call this

fragment RQOLcore. Although it seems very restrictive, RQLcorg encompasses a large

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 57

portion of RQLycq queries used in real scenarios asking for data information. Thus, it
is mainly oriented towards queries performing data & mixed navigation, but

encompasses some elementary schema navigation queries, too.

Definition 4.8: RQOLcore queries have the form of ROLyco queries (see Definition
3.5), with the additional restrictions (a) that the RQL patterns E(U,) do not consider

proper interpretations and (b) that the equality of all schema variables $C;, @P; and

3D, to constants is implied from the equalities. ®

The complete list of RQL patterns not involving proper interpretations can be found
in Appendix A. We should note here that RQLcorg is similar to the RQL fragment

considered in [ACKO04]: none of them considers proper interpretations.
Example 4.12: The RQLycq query

SELECT X
FROM Artist{X}

or equivalently

SELECT X
FROM $C{X}
WHERE $C=Artist

is an RQLcore query. On the contrary, the RQLycq query

SELECT X
FROM A$CLX}

is not an RQLcorg query. ®

By restricting the definition of RQLuycq query containment to RQLcore

queries we get:

Definition 4.9: An RQOLcore query Q; is contained in an RQLcore query Q) (Q,c0>)
given an RDF description schema DS iff for every description base DB conforming to
DS the result of Q is contained in that of Q> (VDB Q1(DB) < O»(DB)). &

Giorgos Serfiotis

58 CHAPTER 4. RQL QUERY OPTIMISATION

The algorithm for checking whether an RQLcorg query is contained in another
takes as input the two queries in their SWLF translations and dgpr, instead of Agpr;
the additional information supplied by Agpr is no longer needed. As with Agpp, the
chase with dgpr terminates; remember that dgpp is a subset of Agpp. Thus, by reducing
the containment problem to the relational equivalent, based on [Deu02], we give the

following theorem:

Theorem 4.2: Suppose two RQLcorg queries Q;, Q, translated in SWLF, where

0, = Uinl. , and a set C of disjunction-free DEDs, namely ogpr. Q;’s containment in

0 under C (Q;ccQ>) is decidable. The chase of Q; with C terminates rendering the

universal plan SQ;: SO, = USQ”. Q; is contained in Q> for every description base

DB iff for each i there is a j such that there is a containment mapping from Q; into

SQi (i.e. SQy; is contained in Q). M

In other words, the above theorem states that an RQLcorg query Q; is
contained in an RQLcore query O, under a set C of constraints if the universal plan of

0O, namely SQy, is contained Q.
Example 4.13: Take the queries

Q1: SELECT X
FROM Painter{X}, Artist{X}

and

Q2: SELECT X
FROM Painter{X}

The first one translates to

anss(x) - C_SUB(c, a), C EXT(c, x), a="Painter”, C _SUB(d, b), C EXT(d, x),
b="Artist”

while the second one to

ans,(x) .- C_SUB(c, a), C_EXT(c, x), a=“Painter”

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 59

The containment of Q; into O, can easily be verified. But, containment of Q; into Q;
is not trivial. Therefore, we chase O, with the existentially quantifying constraint for

C SUB(Painter, Artist).

ansy(x) - C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), a=“Painter”, d="Painter’,
b="Artist”

There is no need to illustrate more chase steps. There is a containment mapping from
0, to Q; that uses the homomorphism {c—c, d—c, x—=x, b—>b, a—a}. Thus, O, is

contained in Q;. &

Example 4.14: Using Jdgpr we can, also, confirm the containment of the RQLcore

query

SELECT X

FROM {X}@paints

into

SELECT X

FROM {X; Painter}@paints, {X}@creates &

The complexity of the RQLcorg containment problem depends on the chase
and the simple containment check, too. Since Jdrpr is a set of disjunction-free
dependencies that behaves as if stratified-witness is present, the chase of the first

query terminates and is NP-complete; the simple containment check between the first

query’s universal plan and the second query is H; -complete, while the universal

plan’s size is 0QQ|27), where |Q] is the size of the largest conjunctive query forming

the 1nitial union.

4.1.3.1 Why RQLCORE?

The gain from limiting the expressiveness of RQLycq queries to RQLcorg is double.
First of all, the partial (incomplete) knowledge of the RDF/S schema offered from
orpr suffixes to solve the containment problem; we do not need complete information,

i.e. information stating which are all classes, properties and hierarchies. Additionally,

Giorgos Serfiotis

60 CHAPTER 4. RQL QUERY OPTIMISATION

considering only the information provided from dzpr leads to lower complexity in the
containment check (and equivalence and minimisation that will be discussed later),
which stems from the fact that the chase considers only disjunction-free constraints;
fewer chase steps in order to reach the universal plan and smaller universal plan (no

additional conjunctive query introduced in the union).

4.2 RQLycq Query Equivalence

Definition 4.10: An RQLyco query Q; is equivalent to an RQLyco query Q> (Q1=0>)
given an RDF description schema DS iff for every description base DB conforming to
DS the result of Q; is equivalent to that of Q> (VDB Q;(DB)=0>(DB)). &

Having defined containment for RQLycq queries and an algorithm to check it,
the problem of checking RQLuycq query equivalence is straightforward. It is known
from relational theory that two queries Q;, O, are considered equivalent (=) iff ;0>
and Q,cQ;. This result extends to equivalence under a set C of DEDs (Q;=0, iff
Q1ccQ-and Or,ccQ)). Thus, the following definition is educed:

Definition 4.11: Two RQLyco queries Q; and Q; translated in SWLF are equivalent
under a set C of DEDs (Q;=cQ;), namely Arpr, iff Q; is contained in Q, under C
(0:1ccQ>) and vice-versa (Q>ccQ;). B

Example 4.15: We are going to check for equivalence the following queries.

(Q;) SELECT X
FROM {X}paints{Y};

and

(Qy) SELECT X
FROM {X; Painter}paints{Y; Painting};

At first the queries translate in SWLF. Q; translates to

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p="paints”

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 61

and, then, chases to SQ;:

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t),
CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c),
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x),
C_EXT(f, y), p=q=r="paints”, a=c=e=s="Painter”, b=d=f=t="Painting”

0, translates to

ans(x) - PROP(a, p, b), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d, b),
P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p="paints”, ¢ =“Painter”,
d="Painting”

and, then, chases to SQO,:

ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), CLASS(a), CLASS(b),
CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h), CLASS(i),
CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d,
b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUBY(i, g), C_SUBj, h),
C_SUB(i, a), C_SUB(j, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), C_EXT{(i, x),
C EXT(, vy), P_EXT(x, q, Yy), p=q=r="paints”, a=c=e=g=i=s="Painter”,
b=d=f=h=j=t="Painting”

There is a containment mapping both from Q, to SQ;, using the elementary
homomorphism, and from Q; to SQ,, using the elementary homomorphism, too. Thus,

01ccQzand Q,ccQ; and the queries are equivalent. B

Example 4.16: Another interesting equivalence test is the following one

SELECT X

FROM {X; Painter}creates, {X; Sculptorjcreates
and

SELECT X

FROM {X; Painterjcreates, Sculptor{X}

These queries consider an extended RDF/S schema that involves the classes Sculptor

and Sculpture and the property sculpts having the previous classes as domain and

Giorgos Serfiotis

62 CHAPTER 4. RQL QUERY OPTIMISATION

range, respectively. The following facts are, also, true: P_SUB(sculpts, creates),
C SUB(Sculptor, Artist), C SUB(Sculpture, Artifact). These facts imply some

changes to Agpr. The first query translates to

ans(x) :- PROP(a;, pi;, by, P_SUB(q;, p:), P_EXT(x, q1, yi), C_SUB(cs ay),
C_SUB(e4, c¢1), C_EXT(es, x), PROP(ay p, b,), P_SUB(q, p2), P_EXT(x, qs ¥2),
C_SUB(c,, ay), C_SUB(e, c,), C _EXT(e, x), pi=p.=‘creates”, c;="“Painter”,
c,="Sculptor”

The second one translates to

ans(x) :- PROP(a;, ps, bs), P_SUB(q;, pi), P_EXT(x, qi, y:), C_SUB(cs, ay),
C SUB(es, c¢y), C EXT(e;, x), C _SUB(e, c;), C EXT(e, x), p;=‘creates’,
c,="Painter”, c,="Sculptor”

By chasing them and checking for containment mappings the queries prove to be

equivalent. ®

The complexity of the RQLycq equivalence problem is the same with the
complexity of the RQLycq containment problem. Remember that the equivalence

check corresponds to minimum one and maximum two containment checks.

4.2.1 RQLcore Query Equivalence

By paraphrasing the definition of RQLycq query equivalence we get the

following definition for the case of RQLcogrg queries.

Definition 4.12: An RQLcorg query Q; is equivalent to an RQLcorg query Q> (01=0>)
given an RDF description schema DS iff for every description base DB conforming to
DS the result of Q; is equivalent to that of Q> (VDB Q;(DB)=0»(DB)). &

Having defined an algorithm to check containment of RQLcorg queries,

checking RQLcore query equivalence is straightforward.

Definition 4.13: Two RQLcorg queries Q; and Q> translated in SWLF are equivalent
under a set C of EDs (Q;=cQ>), namely orpr, iff Q; is contained in Q, under C

(01ccQ>) and vice-versa (Q:ccQ;). ®

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 63

Obviously, the complexity of the RQLcore equivalence problem is the same

with the one of the RQLcogrg containment problem.

4.3 RQLycq Query Minimisation

We will introduce the problem using an example.
Example 4.17: Suppose the RQLycq query

SELECT X, Y
FROM {X}paints{Y}, {X}creates{Y}

needs to be answered. It is pretty obvious that this query leads to redundant
processing; the pairs [x, y/ belonging to the extended interpretation of paints belong
to the extended interpretation of creates, t00 (/X, ¥/ painis < [X, Y] creates). By set theory,

(1%, Y] paints OV [X, Y] creates) = [%, Y] painis- Thus, this query can minimise to

SELECT X, Y
FROM {X}paints{Y} ®

However, the previous is a simple example and the minimisation is
straightforward. There are cases where the size of the query does not allow such
deductions. Moreover, we need an automated way for minimising RQLycq queries
and calculating their minimal equivalents, i.e equivalent queries that are free of

redundancy.

Definition 4.14: Given an RDF description schema DS, an RQLyco query Q gets
minimised when replaced with a minimal equivalent query SQ (VDB

Q(DB)=SQ(DB)). ®

A minimal RQLycq uses less and/or simpler RQL patterns than the original
RQLuycq query. The basic idea is that a class pattern is simpler than a property pattern;
a pattern involving proper interpretations and/or fewer variables is simpler than one

involving extended interpretations and/or more variables.

Giorgos Serfiotis

64 CHAPTER 4. RQL QUERY OPTIMISATION

Example 4.18: Suppose the RQLycq queries

SELECT X

FROM APainter{X}

and

SELECT X

FROM Painter{X}, Artist{X}

The two queries are equivalent. Moreover, the first one is free of redundancy;

therefore, it is minimal. ®

The core of the RQLycq minimisation is the backchase algorithm ([Deu02]),

which is used to discover the minimal reformulations.

4.3.1 Backchase Algorithm

The backchase algorithm [Deu02] checks all the subqueries of the universal plan for
equivalence to the original query. Thus, the backchase constitutes an application of
the chase algorithm for each subquery. The following definitions formulate formally

the notion of subqueries and state when a query is minimal according to [Deu02].

Definition 4.15: 4 conjunctive query SQ is a subquery of conjunctive query Q if there
exists a containment mapping h from SQ into Q such that whenever the image of two
distinct atoms R(x) and R(y) under h coincides, the conjunction of equalities x=y is
implied by the equality atoms in SQ.

Definition 4.16: 4 union of conjunctive queries SQ <« U,»SQi is a subquery of the
union of conjunctive queries Q <« U/,Qj if for every i there is a j such that SQ; is a

subquery of Q; in the sense of the previous definition.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 65

Definition 4.17: Let Q be a union of conjunctive queries Q = U Q. and D be a

I<isM =1

set of DEDs. We say that Q is D-minimal® if:

(i) there are no distinct 1<k, I<M such that Qy is contained in Q) under D, and
(ii) there is no m, no distinct relational atoms in Q,,’s body Rj (2) (for 1<k for

some k) and no conjunctions of equalities C; (for 1<j<k) such that denoting with Q,,;

the query obtained from Q,, by replacing R; with C;, we have that U1<i<M L OVOo,

is equivalent to UlSiSM’#m [OAV, Uisjsk Q,; under D.

A query Q is a minimal reformulation of query R under D if it is D-minimal

and equivalent to R under D. R

A union of conjunctive queries may have more than one minimal subqueries;
the intuition behind the previous definition is that no redundant data accesses are
made from any minimal query. According to [Deu02] the backchase algorithm

retrieves all minimal queries.

Theorem 4.3 ([Deu02]): Given a union of conjunctive queries Q and a set of DEDs
C, if the chase of Q under C terminates yielding the universal plan U, all C-minimal

reformulations of Q under C are subqueries of U.

4.3.1.1 Complexity

As with chase, the termination of the backchase is not guaranteed in the
general case. It depends on whether the constraints considered guarantee termination
of the chase. However, even when this is the case, the backchase is much more
expensive from the chase itself. To be exact, a full minimisation where the backchase
performs a blind search between candidate subqueries from the universal plan leads to
an NP-complete problem in the number of chase sequences, i.e. an exponential

number of NP-complete problems!

'3 The definition does not say anything about minimising the number of equality atoms in the minimal
query. However, as in [Deu02], throughout this thesis we assume w.l.0.g. that the set of equalities in a
minimal query is transitively closed, i.e. it is maximal, even if the transitive closure is not always

illustrated in the examples.

Giorgos Serfiotis

66 CHAPTER 4. RQL QUERY OPTIMISATION

In practice, approximate algorithms are used. Such an algorithm is the one
adopted to solve the Disjunctive Plan Minimisation (DPM) problem ([Ono05]). This
algorithm returns one minimal which is not always the minimum one, i.e. the one with
the least number of queries. In order to solve the DPM problem, we reduce it to Set-
Cover, where given a universe U of n elements and a collection S of subsets of U
(S={S1, ..., Si}), we search for a minimum cardinality subcollection of S that covers

all elements of U. By employing DPM finding a minimal query is NP-complete.

4.3.2 Minimisation of RQLycq Queries

By reducing the RQLycq minimisation problem to its relational equivalent we get the

following definition:

Definition 4.18: An ROLyco query translated in SWLF gets minimised when replaced

with a minimal equivalent under a set of DEDs C, namely Agpr, query. ®

So, our algorithm for minimising an RQLycq query takes as input the
universal plan of the query we want to minimise, expressed in SWLF, and 4gpr. Then,
all universal plan’s subqueries are checked (i) for minimality based on Definition 4.14

and (ii) equivalence against the universal plan (or the initial query).

Example 4.19: Does the query below minimise? If yes, find a minimal equivalent

one.

SELECT XY
FROM {X}paints{Y}, {X; Painter}creates{Y; Painting}

The query translates in SWLF to

ans(x, y) - P_SUB(q4, p1), P_EXT(X, q1, y), p+="paints”, PROP(ay, p,, bz), P_SUB(q>,
p2), C _SUB(c, a), C_SUB(d,, by), C_SUB(e, c2), C_SUB(f, d,), C_ EXT(e, x),
C_EXT(f,, y), P_EXT(x, qz, y), po="paints”, c,="Painter”, d,="Painting”

which chases to

ans(x, y) - P_SUB(q1, p1), P_EXT(x, q1, ¥), PROP(as, ps, bs), PROP(cs, q1, dy),
PROP(s;, ry, t;), CLASS(a;), CLASS(b;), CLASS(c;), CLASS(d;), CLASS(e;),

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 67

CLASS(f;), C_SUB(e;,, ¢;), C_SUB(f;, d;), C_SUB(c4, a;), C_SUB(d;, bs), C_SUB(e,
a;), C_SUB(f;, by, C_EXT(e;, x), C_EXT(f, y), pi=q:=ri="paints”,
a;=ci=e;=s{="Painter”, b;=d;=f;=t;="Painting”, PROP(a,, p,, bs), PROP(g,, qs h,),
PROP(s,, r;, t;), CLASS(ay), CLASS(by), CLASS(c;), CLASS(d,), CLASS(e,),
CLASS(f;), CLASS(g;), CLASS(hy), CLASS(i2), CLASS(j,), CLASS(s;), CLASS(t,),
C_SUB(cy ay), C_SUB(ds;, by), C_SUB(e, cy), C_SUB(f,, dy), C_SUB(e; a),
C_SUB(f,, by), C_SUB(gs;, az), C_SUB(hy; b,), C_SUB(i,, gz), C_SUB(j h),
C_SUB(iy, az), C_SUB(j,, by), P_SUB(q,, p2), C_EXT(e, x), C_EXT(f,, y), C_EXT(i,,
x), C EXT(o y), PEXT(x, q, Yy), p2=q.="creates”, c,=e,="Painter”,
ar,=g,=i>=s,="Artist”, d,=f,="Painting”, b,=h,=j,=t,="Artifact”

U ans(x, y) :- ..., q2="creates”, g,=i»= Artist”, h,="Artifact’, j,=“Painting”

) ans(x, y) :- ..., q.="creates”, g,="Artist’, i,="Painter”, h,=j,="Artifact”

) ans(x, y) :- ..., q2="creates”, g,="Artist”, i.="Painter”, h,="Artifact”, j,="Painting”
U ans(x, y) :- ..., Q2="paints”, g,=i,="Painter”, h,=j>="Painting”

During backchase we inspect subquery
ans(x, y) - P_EXT(x, q+, y), q:="paints”

which, amazingly, is a minimal reformulation; it is Arpp-equivalent to the initial query
and no atom can be removed without disturbing equivalence. Additionally, if the
translations of RQL patterns are examined, we discover that this minimal query

corresponds to the RQLycq query

SELECT X, Y
FROM {X}paints{Y} &

In the example above the query has only one minimal equivalent. However, this is not

always the case. The following example illustrates that.
Example 4.20: Suppose the query

SELECT X
FROM $C{X: Artist}

and the extended RDF/S schema where the class hierarchy graph rooted on class

Artist is shown in Figure 4-5. The query translates to

Giorgos Serfiotis

68 CHAPTER 4. RQL QUERY OPTIMISATION

ans(x) - C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), d="Artist”
This query expressed in terms of SWLF has three (!) minimal equivalents under 4zpr:
(1) ans(x) - C_SUB(e, d), C_EXT(e, x), d="Artist”

(2) ans(x) - C_EXT(e, x), e=“Artist”
v ans(x) :- C_EXT(e, x), e="Sculptor”
v ans(x) .- C_SUB(e, d), C_EXT(e, x), d="Painter”

(3“) ans(x) - C_EXT(e, x), e=“Artist”
v ans(x) - C_EXT(e, x), e="Sculptor”
v ans(x) - C_EXT(e, x), e="Painter”
v ans(x) .- C_EXT(e, x), e=“Cubist”

which correspond to the RQLycq queries

(3°) SELECT X
(1%) SELECT X

FROM NArtist{X}
FROM Artist{X}
UNION
(2") SELECT X
FROM MArtist{X} SELECT X
FROM ASculptor{X}
UNION
UNION
SELECT X
FROM ASculptor{X} SELECT X
FROM APainter{X}
UNION
UNION
SELECT X
FROM Painter{X} SELECT X
FROM ACubist{X}

In the first query redundancy has been removed without resolving the navigational
part occurring from the traversal of the subclass hierarchy of Artist; that is why the
extended interpretation of Artist is used. On the contrary, in the third minimal query
schema information has been unfolded, a union has been introduced and only the

proper interpretations of Artist’s subclasses are used. The second query lays

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 69

somewhere in the middle; a part of the schema information has been unfolded, while

some other has not. ®

Figure 4-5: Class hierarchy rooted on Artist for Example 4.20

Generally, the number of minimal queries depends on the constraints
considered and the query given as input. In our RQLycq minimisation scenario, Agpr
describes the classes, the properties and their hierarchies, and the query states which
part of the RDF/S schema will be accessed. As the number of constraints and the
schema part accessed from the query grow, the number of minimal equivalents
considerably increases.

Every RQLyco query has one minimal equivalent query where schema
information is fully unfolded and no schema navigation needs to take place. Apart
from it, there usually exists one minimal query where the unfolding has not
introduced union and several ones where partial unfolding has taken place.

The minimal queries that are of interest to us are (i) the one where all schema
information has been incorporated and (7i) the one where unfolding has not introduced
union when such a minimal exists. In the aforementioned example, these are the first
and third minimal queries, respectively. The former if executed will need to query the
RDF/S schema, while the latter will not. In the remaining minimals, if any, some of
the conjunctive queries forming each one of them need access to the RDF/S schema
and some others do not; that is the case of the second query in the previous example.
However, there is usually no reason in picking such a minimal query for execution;
only the presence of cached query results could render such queries useful.

An additional advantage of the minimisation procedure is the fact that the
RQLycq minimal query produced by unfolding all schema information can be used by
other query languages, like SPARQL ([PS05]), that consider only the RDF/S data

layer, i.e. those having access only to proper interpretations.

Giorgos Serfiotis

70 CHAPTER 4. RQL QUERY OPTIMISATION

Although this example involved a query asking exclusively for data
information, a plethora of minimal queries may appear even for RQLycq queries not
involving class/property interpretations, i.e. schema navigation ones. When the case,
the minimal query where schema information is unfolded consists of one or more

constant queries, which have the form ans(x):—C(x), where x is a tuple of variables

and C is a conjunction of equality atoms between the variables of x and constants.
When this is the case, the minimisation algorithm rather answers than minimises

schema navigation queries.
Example 4.21: The following query not accessing class/property interpretations

SELECT $D
FROM Artist{$D}

will translate to
ans(d) :- C_SUB(d, c), c="Artist”
which will chase to

ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c="Artist”, d="Artist”
v ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c="Artist”, d="Painter”

This query has two minimal equivalents. The first one is the initial query and the

second one is

ans(d) :- d="Artist”

v ans(d) :- d="Painter” &

In Example 4.11 we have seen that by relaxing the set 4gpr, the containment
algorithm is no longer valid. We will use the same query in order to illustrate the

effects in the minimisation procedure.
Example 4.22: If we use the backchase algorithm with dgpr, the query

SELECT X
FROM Painter{X}, Artist{X}

will minimise to

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 71

SELECT X
FROM Painter{X}

The same query will minimise to

SELECT X

FROM MArtist{X}

UNION

SELECT X

FROM Artist{Painter}, “Painter{X}

if Agpr without the existentially quantifying constraints is considered during

backchase. However, when Azpr is considered, the minimal query outputted is

SELECT X
FROM APainter{X}

It is obvious that 4gpr is indispensable for a complete minimisation. ®

4.3.2.1 Complexity

The set of constraints Azpr guarantees termination of backchase. Therefore, by
reducing the RQLycq minimisation problem to the equivalent problem of minimising
a conjunctive query under Agpr, we inherit the complexity of full minimisation.

If we are interested only in the minimal query where all schema information
has been unfolded, we can use the following technique. As soon as the chase ends we
extract from the universal plan the maximally contained query that uses only the
SWLF predicates C EXT and P_EXT. This query has only one minimal equivalent;

thus, we can use the algorithm for solving the DPM problem.

4.3.3 RQLcore Query Minimisation

Having defined RQLcoRrg, the problem of query minimisation extends to it.

Giorgos Serfiotis

72 CHAPTER 4. RQL QUERY OPTIMISATION

Definition 4.19: Given an RDF description schema DS, an RQLcore query Q gets
minimised when replaced with an equivalent minimal query SQ (VDB

Q(DB)=SQ(DB)). ®

An RQLcore minimal query is redundancy-free; it uses less and/or simpler
RQL patterns than the original RQLcorg query. The basic idea is that a class pattern is
simpler than a property pattern and a pattern involving fewer variables is simpler than
one involving more variables.

As with containment of RQLcorg queries, the problem reduces to an

equivalent relational one:

Definition 4.20: An RQLcore query translated in SWLF gets minimised when
replaced with an equivalent minimal query under a set of disjunction-free DEDs C,

namely dppp. B

Once more the backchase is the core of the minimisation process. The
RQLcore queries translated in SWLF get chased with dzpr and all subqueries of the

universal plan are examined for minimality and equivalence to it.

Example 4.23: Suppose we want to minimise the query Q;

SELECT X

FROM $C{X}, SEX}
WHERE $C=Artist, $E=Painter

The query translated in SWLF has the form

ans«(x) - C_SUB(d, c), C_EXT(d, x), C_SUB(f, e), C_EXT(f, x), c="Artist”,

e="Painter”
After being chased with dgpr the query becomes

ans;(x) - C_SUB(d, c), C_SUB(g, d), C_EXT(g, x), C_SUB(f, e), C_SUB(h, f),
C_EXT(h, x), c="Artist’, e=“Painter’, C_SUB(h, g), g="Artist”, h="Painter”

Suppose now the subquery O,

ansy(x) .- C_SUB(f, e), C_EXT(f, x), e="Painter”

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 73

which corresponds to the query

SELECT X
FROM SE{X}
WHERE $E=Painter

0 is equivalent to Q; under dgpr and is minimal, too. Therefore, Q; minimises to Q..

The complexity of the RQLcorg minimisation problem is the one of full
minimision of a conjunctive query under disjunction-free DEDs. However, having
observed that RQLcore queries have only one minimal equivalent, instead of the full

minimisation we may adopt Disjunctive Plan Minimisation without losses.

4.3.4 Simplification of RQL Patterns

Earlier in section 4.3, it was stated that RQLycqo minimal queries contain less and/or
simpler patterns than the original queries. It is obvious that a class pattern is simpler
than a property pattern. But, can we prove that a pattern is simpler than and equivalent
to another under given conditions and how? Our minimisation technique for RQLucq
queries can be used as a proof procedure for that, too. It allows simplifying RQL
patterns in their general form without taking under consideration specific RDF/S

schemas; therefore the chase in this case considers only g
Example 4.24: Suppose the RQLycq query
ans(X, @P, Y) :- {X; $C}@P{Y; $D}, cond(@P, Y)

that involves the pattern we want to simplify and a dummy predicate cond stating the

conditioned variables. The equivalent query in terms of SWLF is O;:

ans(x, p, y) .- PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, a), C_SUB(d,
b), C_EXT(c, x), C_EXT(d, y), cond(p, y)

Chasing with (half of) the 6™ basic constraint we get

ans(x, p, y) :- PROP(a, p, b), PROP(e, q, f), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c,
a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), cond(p, y)

Giorgos Serfiotis

74 CHAPTER 4. RQL QUERY OPTIMISATION

Chasing with the 1** domain-range constraint we get

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(X,
q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_EXT(qg, x), C_EXT(h,
y), C_EXT(c, x), C_EXT(d, y), x cond(p, y)

Now, chasing with the 2™ domain-range constraint we get

ans(x, p, y) .- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT{(x,
q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f,
b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d, y), cond(p, y)

Then, chasing with C_SUB transitivity we get

ans(x, p, y) .- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT{(x,
q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f,
b), C_SUB(g, a), C_SUB(h, b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d,
y), cond(p, y)

Finally, by applying the 1 and 3™ basic constraints, the query chases to the universal

plan U;:

ans(x, p, y) - PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f, b), PROP(e, q, 1),
P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(qg, x), C_EXT(h, y), C_SUB(g, a),
C_SUB(h, b), C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), CLASS(a),
CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h),
cond(p, y)

Now, during backchase we check the universal plan’s subquery Q>
ans(x, p, y) - P_SUB(q, p), P_EXT(x, q, y), cond(p, y)

for equivalence to the original query. Thus, we chase it using the same chase steps as

for Q; and get the universal plan U>:

ans(x, p, y) - PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f. b), PROP(e, q, f),
P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(g, x), C_EXT(h, y), C_SUB(g, a),
C_SUB(h, b), cond(p, y)

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 75

We can conclude that 0> is equivalent to Q,. There is a containment mapping from Q,
to U, (Q.cQ;) using the homomorphism {x—x, p—=p, y—=, a—a, b—=>b, g—q, c—>g,
dh}. Moreover, there is a containment mapping from O, to U; (Q;c0>) using the
elementary homomorphism.

Now, we examine the RQL property patterns’ translations from Appendix B.

We can observe that subquery Q> corresponds to the SWLF translation of the RQLuycq
query

ans(X, @P, Y) :- {X}@P{Y }, cond(@P, Y)

Thus, the pattern {X; $C@P{Y; $D} gets simplified to pattern {X}@P{Y} when only

variables @P, Y are either conditioned or projected. ®

Using the same methodology a number of pattern simplifications can be

proven.

Example 4.25: The query

ans(X) - $C{X; $D}

which corresponds to the SWLF query

ans(x) .- C_SUB(d, c), C_SUB(e, d), C_EXT(e, x)

proves to be equivalent to query

ans(X) :- "$C{X}

which corresponds to the SWLF query

ans(x) :- C_EXT(e, x)

by applying the same sequence of chase steps as in the previous example. ®

In general RQL patterns have one simplified (minimal) equivalent. Thus, the

DPM algorithm can be used instead of full minimisation. The simplified RQL pattern

Giorgos Serfiotis

76 CHAPTER 4. RQL QUERY OPTIMISATION

is extracted from the minimal SWLF query'* by investigating the RQL patterns’s
translations. Alternatively, the backward translation for minimal RQLycq queries, as

presented right below (subsection 4.3.5.1), can be used.

4.3.5 Backward Translation to RQL of Minimal Queries

In some cases we would like to restore a query expressed with SWLF terms into an
RQLucq (RQLcore) query. As we will see, the translation is rather simple in the case
of RQLcore queries; on the contrary, in the case of RQLycq queries it is more

complicated.

4.3.5.1 The Case of Minimal RQLycqo Queries

The translation procedure for minimal SWLF queries corresponding to RQLuycqo

queries takes place in two phases. In the first phase simple RQL patterns are identified

in the SWLF queries. Then, in the second one, the simple patterns are combined into

more complex ones, whenever possible.
In the first phase, the query’s FROM clause gets constructed by mapping every

atom

e C EXT(d, x)" along with an atom C SUB(d, ¢) — must not exist another atom
referencing d — to the RQL class pattern $C{X}, otherwise to the RQL class
pattern “$D{X}

o (CLASS(C) to the RQL class pattern $C

e P EXT(x, g, y) along with an atom P_SUB(q, p) to the RQL property pattern
{X}@P{Y}, otherwise to the RQL property pattern { X} @Q{Y}

e PROP(a, p, b) to the RQL property pattern @P if none of the following stands: (i)
if a, b or both appear in C_SUB predicates — C SUB(c, a), C SUB(d, b) or both —

" If a predicate C_SUB(c, ¢) or P_SUB(p, p) appears in the minimal query, it should be replaced with
CLASS(c) or PROP(a, p, b), respectively. The reason is stated in subsection 4.3.5.1. When this is the
case, more than one minimal SWLF queries exist, but only one corresponding RQL simplified pattern.

"> To be exact all C_EXT predicates minus those referring to literal classes are mapped to RQL class
patterns. Those involving literal classes cannot generate patterns because there is no such thing as the

proper interpretation of literals in RQL’s type system.

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 77

and a, b, or both are not equated to constants, then one of the patterns {3C}@P,
@P{8D}, {$C@P{3D} gets added to the WHERE clause, and (ii) if a, b, or both
are equated to constants, then the pattern @P and the patterns $4, $B, or both get
added, along with the equalities $4=domain(@P), $B=range(@P), or both in the
WHERE clause

e C SUB(c, a), as long as it was not used with an atom PROP or C_EXT, to the
RQL class pattern $C{3D; if the equality $C=38D is not implied, otherwise to
class pattern $C

e P SUB(q, p), if it was not used with an atom P_EXT(x, g, y), to the RQL property
patterns @P, since the equality g=p must hold.

The WHERE clause is formed by adding to the equalities originating from the PROP
predicates those found in the SWLF query involving variables appearing in the SWLF
predicates. Then, the SELECT clause is formed by the projected variables, i.e. the
variables found in the query’s head. However, if a projected variable is assigned to a
value and does not appear in a SWLF predicate, the value is used in the SELECT
clause instead of the variable. This will always be the case of (a) schema variables
that have been assigned to a value during chase, () schema variables that were
assigned to a value in the initial query and (c¢) variables not bound to patterns in the

initial query.

Table 4-1: From simple patterns to more complex property ones

Simple Patterns Complex Patterns
X}@P, {$C}J@P, $C{X} {X; $C}@P{Y}
XJ@P, {($C}J@P, "$C{X} | {X; "$C}@P{Y}
X3"@P, {$C}J@P, $C{X} | {X; $C}@P{Y}
XI"@P, {$C}@P, "$C{X} | {X; "$C}"@P{Y}

In the second phase we explore the FROM clause of the query. We try to
compose complex patterns using the simple ones identified in the previous phase.
Table 4-1 shows how patterns referring to a property’s domain can derive. The same
procedure is valid for patterns referring to a property’s range or both. Moreover,

Table 4-2 shows how simple class patterns can be combined into more complex ones.

Giorgos Serfiotis

78 CHAPTER 4. RQL QUERY OPTIMISATION

Finally, we should replace (@) multiple occurrences of equated variables with
just one variable and (b) in the FROM and SELECT clauses as many schema
variables as possible with constants by exploiting the equalities.

We believe that the above translation procedure is the best possible and fully

exploits the minimal SWLF query, i.e. does not reintroduce redundancy.

Table 4-2: From simple patterns to more complex class ones

Simple Patterns Complex Patterns
$C{$D}, $D{X}, "$C{X} | "$C{X; $D}
$C{$D}, $D{X} $C{X; $D}

$C{3D}, "$D{X}, "3C{X} | "$C{X; "$D}
$C{$D}, "$D{X} $C{X; 8D}

Example 4.26: Assume the following Datalog query needs to be translated back to
RQLUCQI

ans(x, ¢, p, y, d) - PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C _SUB(c, a),
C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), C_EXT(e, x), C_EXT(f, y), p="aProp”

In the first phase it will translate to

SELECT X, $C, @P, Y, $D
FROM X@PLY}, {$C}@P{3D}, $C{X}, $D{Y}
WHERE @P=aProp

In the second phase one it will take the form

SELECT X, $C, @P, Y, $D
FROM {X; $C}@P{Y; $D}
WHERE @P=aProp

By incorporating the only available equality in the SELECT and FROM clauses we
get the RQLycq query

SELECT X, $C, aProp, Y, $D
FROM {X ; $C}aProp{Y; $D} ®

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 79

As stated in section 4.3.2, there exists the special case where the body of a
minimised SWLF query contains nothing but equalities. This is the case where the
initial RQLycq query was a schema navigating query or a constant query. Such a
query cannot translate into a query of the form SELECT-FROM-WHERE. However,
since the answer is already present in the SWLF query, it can simply be translated into

a constant query as follows.
Example 4.27: Suppose the RQLycq query

SELECT $C, $D
FROM $C{8D}
WHERE $C=Artist and $D=Painter

It will minimise to query
ans(c, d) :- c="Artist”, d="Painter”

which cannot be written as a SELECT-FROM-WHERE RQLycq query. Notice that
both projected variables in the initial query are schema ones. The minimal query can

translate to the RQLycq constant query
ans($C, $D) :- $C=Artist, $D=Painter &

The above translation procedure may raise some additional questions. First of
all, why the C_SUB predicates relating a class to itself are interpreted using the
pattern $C, instead of $C{$C}? The answer is simple; for the chase and backchase
algorithms, the atoms CLASS(c) and C SUB(c, c¢) are equivalent. On the contrary,
this is not the case for RQL; $C{$8C} implies a check for a subclass relationship, while
$C does not.

Another important issue concerns the use of the RQL functions domain(@P)
and range((@P) not belonging to the RQLycq fragment. This is due to the fact that no
RQL pattern exist for imposing explicitly a restriction on a property’s domain/range.
Nevertheless, such a restriction may appear in a minimal query as illustrated by the

following example.

Giorgos Serfiotis

80 CHAPTER 4. RQL QUERY OPTIMISATION

Example 4.28: The query

SELECT @P
FROM {$C}@P
WHERE $C=Artist

translates to
ans(p) :- C_SUB(c, a), PROP(a, p, b), c="Artist”

If two more properties are defined on Artist apart from creates, then the query has two

minimal equivalents. The query

ans(p) :- p="creates”
U ans(p) :- p="-...”

) ans(p) :- p="-...”
and the query
ans(p) :- PROP(a, p, b), a="Artist”

The first one cannot translate into a SELECT-FROM-WHERE query. The second one

can translate only with the “help” of function domain to

SELECT @P
FROM @P, %A
WHERE $A=domain(@P) and $A=Artist

or even better, by exploiting the constants, to

SELECT @P
FROM @P
WHERE Artist=domain(@P)

4.3.5.2 The Case of Minimal RQLcorr Queries

The query’s FROM clause gets constructed by mapping every atom
o (C EXT(d, x) along with an atom C_SUB(d, c¢) to the RQL class pattern $C{X}

University of Crete, Computer Science Department

CHAPTER 4. RQL QUERY OPTIMISATION 81

e P EXT(x, q, y) along with an atom P_SUB(q, p) to the RQL property pattern
(X} @P{Y}

The WHERE clause is formed from the equalities involving variables appearing in the
SWLF predicates. Finally, the SELECT clause is formed by the projected variables,
i.e. the variables found in the query’s head. However, if a projected variable not
appear in an SWLF predicate is assigned to a value, the value is used in the SELECT
clause instead of the variable. This will always be the case of (a) schema variables
that were assigned to a value in the initial query and (b) variables not bound to
patterns in the initial query. Finally, we should replace (a) all multiple occurrences of
equated variables with just one and (b) in the FROM and SELECT clauses as many
schema variables as possible by exploiting the equalities.

As with RQLycq queries, there exists the possibility that a minimal query
cannot translate into the SELECT-FROM-WHERE formalism. Once again, to address

this issue we follow a similar to RQLycq translation approach.

Example 4.29: Let’s see the translation of a simple minimal SWLF query

corresponding to an RQLcogrg one.

The redundant RQLcorg query

SELECT $C, X
FROM Artist{X; $C}
WHERE $C=Artist

after being translated in SWLF, minimises to
ans(c, x) :- C_SUB(d, c), C_EXT(d, x), c="Artist”
Using the aforementioned algorithm it will translate to the RQLcorg query

SELECT $C X
FROM $CLX}
WHERE $C=Artist

or even better to

Giorgos Serfiotis

82 CHAPTER 4. RQL QUERY OPTIMISATION

SELECT Attist, X
FROM Artist{X}

after we incorporate the equalities in the FROM and SELECT clauses. B

University of Crete, Computer Science Department

Chapter 5

RQL Query Reformulation

In the previous chapter we have focused on the RQL containment and minimisation
problems exploring the potentials of the chase and backchase algorithms. However,
these algorithms can, also, be used for reformulating RQL queries given a set of

mapping rules from one schema to another.

client

query Q(P) 7 reformulated query X(S)

Gehema P gy, Cschema S

schema
COTTESPOHdEI’]CE

Figure 5-1: The general query reformulation problem

Definition 5.1: The problem of query reformulation consists of finding (whenever it
exists) a query (or queries) Qs over a schema S that return(s) the same answer to a

given query Qp over a schema P. B

The general query reformulation problem is depicted in Figure 5-1. In our case
the goal is to express the given RQLycq query translated in terms of SWLF into an
equivalent query expressed in terms of the underlying relational schema while
minimising the output (relational-reformulated) query. In order to succeed in both
goals, the following steps are needed. Initially the RQLycq query gets rewritten in
terms of C_EXT and P_EXT; after that it gets refined and reformulated against the
relational schema using RDB—RDF mappings, and minimised using constraints from
the RDB. Then, the resulting minimal relational queries are translated into appropriate
SQL queries. Once the translation is complete, they can get executed and have their

results translated into RDF/S data. Before proceeding to the algorithm’s descriptions,

&3

84 CHAPTER 5. RQL QUERY REFORMULATION

the RDB—RDF mappings used to bridge the gap between the relational world and the
world of RDF have to be introduced.

5.1 From RDBs Schemas to SWLF

Passing from the relational world to the virtual RDF world requires a mean to
associate the two worlds. This is why RDB—RDF mappings are used; these
mappings have the form of Datalog rules and need be specified just once for every
relational schema. Their goal is to virtually populate the C EXT and P_EXT

relations.

Definition 5.2: An RDB to RDF mapping is a Datalog rule of the form

¢RVLCIause (x) : _¢RelatianalCluuse (x’ y)

where %RVLCIW (x) is a conjunction of RVL clauses of the form A(x;) or A(x;, x2),

depending on whether each clause refers to the proper extent of an RDF/S class or

property, and ngmna,C,um()_c,;) is a conjunction of relational atoms of the form

R(w,, ...,) and equality atoms of the form w=w, where w,, ..., W, ®, ® are

variables or constants. ®

Artist(x) and Creates(x, y) constitute examples of RVL clauses. The translation
of the mapping rules in the internal SWLF representation is achieved using the
predicate C_ EXT for RVL clauses referring to proper extents of classes and the
predicate P EXT for RVL clauses referring to proper extents of properties. The
aforesaid RVL clauses would translate into CEXT(Artist, x) and P_EXT(x, creates,
y), respectively.

There is one exception to the rule above. Due to their nature, the classes
modelling literal types demand special handling; there is no way to limit the possible
literal values because they are infinite. Based on this fact, no mapping can be

specified for the literal classes.

Example 5.1: Figure 5-2 presents a simple relational schema consisting of four

relations whose names illustrate their intended usage. The relation Painter provides

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 85

additional information to the one supplied from Artist. Similarly, the relation Painting
works as complement to Artifact. Based on the last definition, Figure 5-3 shows the
mappings from the relational schema to the virtual RDF/S schema used in all

examples till now. ®

| Artists Painters
|| Narnel Age | |Name‘ Kat I

Artifacts
|| ANamel Artist | Year ‘Exhibitedl

Paintings
|PName| Type l

Figure 5-2: Relation database schema

The mappings supported in SWIM are very expressive and partially support
the GLAV ([FLM99]) approach, which is a mixed GAV ([UlI00]) and LAV ([Lev99]
[Lev01]) approach. More thorough analysis of the expressive power of our mappings

can be found in the related work presented in [Kof05].

5.1.1 Translating the Mappings into Constraints

As has been stressed throughout this thesis, all information (RDF/S semantics,
RDF/S schema, RDB—RDF mappings) must be given as input to the chase and
backchase algorithms in the form of constraints. Hence, the mappings need to get
translated into constraints. However, we have to make sure that no information will be
lost during translation.

We will start by indicating how constraints are extracted from mappings that
follow the GAV approach, i.e. mappings that describe the global RDF/S schema in

terms of the local relational one. These mappings have the form

¢RVLClause ('x) : _¢Rela[ianalClause (x’ y)

Giorgos Serfiotis

86 CHAPTER 5. RQL QUERY REFORMULATION

Definition 5.3: 4 mapping’s interpretation consists of two constraints:

VX VP pottionaiClause (;s ;) = Prviclause (x)
and
v;¢RVLC/ause (;) - El;gRela[ionulClause (;a ;) u

Both constraints are needed because the first one guarantees soundness of the

interpretation and the second one guarantees completeness.

C_EXT(Artist, x) :- Artists(x, Age)

C_EXT(Painter, x) :- Painters(x, Kat)

C_EXT(Artifact, x) :- Artifacts(x, Artist, Year, Exhibited)

C_EXT(Painting, x) :- Paintings(x, Type)

P_EXT(x, Creates, y) :- Artifacts(y, x, Year, Exhibited)

P_EXT (x, Paints, y) :- Atifacts(y, x, Year, Exhibited), Paintings(y, Type)

Figure 5-3: RDB—RDF mapping rules in SWLF

Example 5.2: Figure 5-4 shows how, using the above definition, the mappings of

Figure 5-3 translate into constraints. ®

When the mappings follow the LAV approach, i.e. describe the local relational
schema in terms of the global RDF/S one, or GLAV approach, apart from the two
constraints presented in Definition 5.3, we can extract one constraint from each RVL
clause of the head. These additional constraints can provide valuable information
when the mappings are not complete, i.e. when they do not provide information for all

class and property interpretations.

Definition 5.4: From every GLAV (or LAV) mapping we extract the constraints

vxvy¢RelalinnalClause (x’ y) - ¢RVLClause (x)

and

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION

87

vx¢RVLClause (x) - Ely¢RelatinnalClause (x’ y)

Additionally, for each RVL clause in their body we extract the constraint

— — - - - =
vxi¢RVLC1ause (xi) - Elx E|y¢RelationalClause (x’ y) X =X— ‘xi u

class="Artist” A inst=Name))

class="Painter’ A inst=Name))

FAName VArtist vYear VExhibited (Artifacts(AName, Artist, Year,
Exhibited) — Fclass Finst (C_EXT(class, inst) A class="Artifact” A
inst=AName))

inst) A class="Painting” A inst=PName))

vclass vinst (C_EXT(class, inst) A class="Artist” — (IName FAge
(Artists(Name, Age) A inst=Name)))

vclass Vinst (C_EXT(class, inst) A class="Painter’ —(7Name FKat
(Painters(Name, Kat) » inst=Name)))

vclass vinst (C_EXT(class, inst) A class="Artifact” —(7FAName FArtist
FYear FExhibited (Artifacts(AName, Artist, Year, Exhibited) A
inst=Name)))

(Paintings(PName, Type) A class="Painter’ A inst=Name)))

YName vAge (Artists(Name, Age) — Fclass Finst (C_EXT(class, inst) A

v¥Name vKat (Painters(Name, Kat) — Fclass Finst (C_EXT(class, inst) A

vPName vType (Paintings(PName, Type) — Fclass Finst (C_EXT(class,

vclass vinst (C_EXT(class, inst) A class="Painting” —(7FPName FType

Figure 5-4: The constraints corresponding to the C_EXT mappings of Figure 5-3

Example 5.3: Take for example the mapping rule
creates(x, y), exhibited(y, z) :- Exhibits(z, y, ...), Artifact(y, x, ...)

In SWLF it will translate into

P_EXT(x, creates, y), P_EXT(y, exhibited, z) :- Exhibits(z, y, ...), Artifact(y, x, ..

Then it will get interpreted by the constraints

(di) Yx¥yvzvpbvg P_EXT(x, p, y) A P_EXT(y, q, z) A p="creates" A q="exhibited"

F... Exhibits(z, y, ...) A Artifact(y, x, ...)

)

—

(dy) vxVyvzv.. Exhibits(z, y, ...) ~ Artifact(y, x, ...) — Fp3q P_EXT(x, p, y) A

P_EXT(y, q, z) A p="creates" A q="exhibited"

Giorgos Serfiotis

88 CHAPTER 5. RQL QUERY REFORMULATION

The interesting part is that we can, also, infer the constraints

(d11) Yxvyvp P_EXT(x, p, y) A p="creates" — Fz3... Exhibits(z, y, ...) » Artifact(y, x,

)
(d12) Wy vzvg P_EXT(y, G, z) A q="exhibits" — 3x3... Exhibits(z, y, ...) » Artifact(y, X,

)

The inverse constraints of (d;;) and (d;;) are not needed due to the existence of

constraint (d,). ®

5.1.2 Datalog Semantics vs. Constraints Semantics

Our reformulation scenario is initially described by a Datalog program'® (facts and
rules) and a set of constraints. The mapping rules having the same head imply the
existence of union when composed with the query. However, as soon as the mapping
rules get interpreted as constraints this semantics is lost; constraints having the same
body imply a conjunction when to be applied. Therefore, a disjunction has to be stated
explicitly by merging the constraints having the same RVL clauses in their body.
Notice that this does not happen for the reverse constraints, i.e. those having the same
relational atoms in their body; constraints are not merged because disjunction is not

implied from the rules’ semantics.
Example 5.4: The mapping rules below have the same head

C_EXT(Aftist, x) :- Painters(x, ...)
C_EXT(Artist, x) :- Sculptors(x, ...)

They imply that instances of class Artist are given either from the relation Painters or

from the relation Sculptors. Therefore, the constraints

Ve vx C_EXT(c, x) A c="Artist" — 7.. Painters(x, ...)
vcvx C_EXT(c, x) A c="Artist" — F... Sculptors(x, ...)

'® To be more precise our reformulation scenario is described by Datalog program when the mappings
follow the GAV approach. In the case of GLAV mappings, the terms “Datalog program” and “Datalog
rule” are used by misappropriation just to highlight the functionality of SWIM.

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 89

merge to constraint
vcvx C_EXT(c, x) A c="Artist" — (3... Painters(x, ...) v 3... Sculptors(x, ...)) &
Example 5.5: On the contrary, we do not merge the constraints

Yy vx V... Artifacts(y, x, ...) — J¢c C_EXT(c, y) » c="Artifact"
Yy vx V... Artifacts(y, x, ...) — Jo P_EXT(x, p, y) A p="Creates"

extracted from the rules

C_EXT(Artifact, y) :- Artifacts(y, x, ...)
P_EXT(x, Creates, y) :- Artifacts(y, x, ...) &

5.1.3 Using Functions

A very useful feature of SWIM is that it supports the use of simple functions in the
mapping rules, i.e., function names can be used as relational atoms, too. The
expressive power of SQL engines provides the only limitation to functions; since the
queries, after being reformulated, must be transformed to equivalent SQL queries, the
SQL engine must support the functions used at the middleware layer.

The most commonly used function is Concat(a, b, c), which states that the
value of variable a is given by concatenating the values of variables » and c. A
straightforward use for Concat is creating unique URIs for the RDF/S data-result of
the RQLuycq queries. Notice that the values of relations (a) are not unique across all
relations and (b) have not the form of a URIL Thus, if they are used, the resulting
RDF/S data will not be valid (except in the case of literal values). The following

simple example illustrates how Concat can be used to overcome this problem.

Example 5.6: Take the mapping rule populating the Artist class in Figure 5-3. This

rule could become
C_EXT(Artist, x) :- Concat(x, “http.//www.csd.uoc.gr/.../Artist.rdf#t”, y), Artists(y, Age)

The result of this rule is creating unique URISs for all Arfist instances. ®

Giorgos Serfiotis

90 CHAPTER 5. RQL QUERY REFORMULATION

Normally, all the mappings in the examples used throughout this thesis should
make use of the Concat function in order to create valid RDF data. However, for

simplicity reasons, Concat is not used in any mapping in the rest of this thesis.

5.2 Reformulation Phases

The process of reformulating an RQLycq query into an SQL one and extracting the
RDF/S results takes place in five successive phases. During the first phase the
RQLuycq query gets rewritten against the C_ EXT and P_EXT predicates. Then, the
query gets reformulated against the relational schema, while, at the same time, some
of the conjunctive queries forming the query are removed, because they cannot get
reformulated. The third phase minimises the query either by considering constraints
from the relational database or not. The forth phase takes the minimal Datalog query
and translates it into an equivalent SQL query, while in the last phase the SQL query
gets executed and, using its results, RDF/S data get created.

5.2.1 First Phase

The first phase of the RQLycq reformulation algorithm should be familiar by now,
because it involves the same steps as described for the containment and minimisation

problems.

5.2.1.1 Queries Not Involving Class/Property Interpretations

When an RQLycq query is a constant one or explores the class and property
taxonomy of the virtual RDF/S schema, our approach is based solely on the chase
algorithm. This is the case of queries built solely on schema patterns, i.e. those not
involving class/property interpretations. Such queries cannot get reformulated against
the relational schema. Moreover, all information needed to answer them is present in
the universal plans as soon as the chase with Agpr ends; there is no reason to apply the

backchase algorithm.
Example 5.7: The query

SELECT $D, $C

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 91

FROM $C{$D}
WHERE $C=Artist

asks for the subclasses of Artist. It can be seen in a rule-based formalism

<RDF xmIns:rdf="http:/fnnww w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Bag>
<rdf:li>
<rdf:Seq>
<rdf:li rdf:type="class” rdf:resource="www.csd.uoc.gr/.../culture.rdf#Painter”/>
<rdf:li rdf:type=“class” rdf:resource="www.csd.uoc.gr/.../culture.rdf#Arist"/>
</rdf:Seq>
</rdf:li>
<rdf:li>
<rdf:.Seq>
<rdf:li rdf:type="class” rdf:-resource="www.csd.uoc.gr/.../culture.rdf#Arist"/>
<rdf:li rdf:type="class” rdf:resource="www.csd.uoc.gr/.../culture.rdf#Arist”/>
</rdf.Seq>
</rdf:li>
</rdf:Bag>
</RDF=>

Figure 5-5: RDF/S Data for Example 5.7

ans($D, $C) :- $C{$D}, $C = Artist
which translates in SWLF to

ans(d, c) :- C_SUB(d, c), ¢ = “Artist”
The query chases to the universal plan

ans(d, c) :- C_SUB(d, c), CLASS(c), CLASS(d), c = “Artist”, d = “Artist”
v ans(d, ¢) :- C_SUB(d, c), CLASS(c), CLASS(d), ¢ = “Artist”, d = “Painter”

It is easy to conclude that (d, ¢c) € {(Painter, Artist), (Artist, Artist)} is the result. ®

Giorgos Serfiotis

92 CHAPTER 5. RQL QUERY REFORMULATION

The example above clearly illustrates that the results can be extracted from the
universal plan using a simple deductive engine. Moreover, having extracted the
results, it is easy to derive RDF/S data from it. Figure 5-5 shows what these data
would look like.

Obviously, the reformulation inherits chase’s complexity under Azpr.

5.2.1.2 Queries Involving Class/Property Interpretations

When an RQLycq query navigates both through the virtual RDF/S schema and data,
the algorithm considered is familiar; the query translates into SWLF, gets chased with
Agrpr and, then, gets backchased.

Comparing to the minimisation algorithm, a slight modification gets adopted.
We are interested only on minimal queries involving nothing but C_ EXT and P EXT
predicates; only these queries can be reformulated to queries against the underlying
relational schema using the RDB—RDF mappings. Therefore, we use the following
technique. As soon as the chase ends, we find the maximal subquery expressed only
in terms of C EXT and P_EXT. This query is guaranteed to be equivalent to the
universal plan. Now, we use the backchase on this maximal subquery in order to find

the minimal query expressed in terms of C_EXT and P_EXT predicates.

Example 5.8: Suppose the query

SELECT Y
FROM {X; Painter}creates{Y,; Painting}

It translates to

ans(y) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),
P _SUB(q, p), C EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p="Creates”, c="Painter”,
d="Painting”

and chases to

ans(y) - PROP(a, p, b), PROP(g, q, h), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c),
C_SUB(f, d), C_SUB(e, a), C_SUB(F, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g),
C_SUB(, h), C_SUB(i, a), C_SUB(, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y),

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 93

C EXT(i, x), C EXT(, y), P_EXT(x, q, y), p=q=“creates”, c=e="Painter’,
a=g=i="Artist”, d=f="Painting”, b=h=j="Artifact”

U ..., q="“creates”, g=i="Artist”, h="Artifact”, j="Painting”

U ..., g="creates”, g="Artist”, i="Painter”, h=j="Artifact”

U ..., q="creates”, g="Artist”, i="Painter”, h="Artifact”, j="Painting”

v

..., q="paints”, g=i="Painter”, h=j="Painting”
The minimal query involving only C_EXT and P_EXT predicates is

ans(y) - P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), p="“creates”, e="Painter’,
f="Painting”
v ans(y) :- P_EXT(x, p, y), p="paints”

which corresponds to the RQLycq query

SELECT Y

FROM {X; "Painter}"creates{Y; "Painting}
UNION

SELECT Y

FROM {X}paints{Y} &

Earlier we have stated that the chase with Azpr terminates. Normally, the first
phase of the reformulation would inherit the complexity of full minimisation.
However, based on the observation that the maximal subquery expressed in terms of
C EXT and P EXT has only one minimal equivalent, the Disjunction Plan

Minimisation can be used.

5.2.2 Second Phase

The RQLuycq query given as input has been reformulated by now into a minimal query
MQ expressed in terms of RVL clauses translated into SWLF, i.e. C_ EXT and
P_EXT. The algorithm’s second phase can be seen as an intermediate auxiliary phase.
All conjunctive queries MQ; forming MQ get examined one by one in order to locate

those that cannot be rewritten into equivalent relational ones. Keep in mind that there

Giorgos Serfiotis

94 CHAPTER 5. RQL QUERY REFORMULATION

is no guarantee that a relational database contains all information corresponding to a
specific virtual RDF/S schema.

Therefore, the conjunctive queries containing predicates for which there is no
RDB—RDF mapping have to be removed. The procedure, as illustrated below, is

rather simple.

_ ChaseWithA,, Maximal RelationalSubqueryExtraction
MQ =| MO, MQ, MU, > MR,
i

Each conjunctive query gets chased with the constraints extracted from the
RDB—RDF mappings (4uqy) producing a (union of) conjunctive query(ies) MU;
expressed in terms of SWLF and of the underlying relational schema. Then, the
maximal subquery MR; expressed in terms of the relational schema gets extracted
from each query MU; produced. The initial query MQ; and MR; get tested for
equivalence under 4y,,; whenever the check fails, the query MR; gets rejected. The
remaining MR;’s get combined and form the union MR; MR is a (union of)

conjunctive query(ies) expressed in terms of the relational schema.
Example 5.9: The RQLycq query

SELECT X
FROM Artist{X}

after chase and backchase (1* phase) becomes

ans(x) ;- C_EXT(Artist, x)
v ans(x) ;- C_EXT(Painter, x)

Suppose there is no mapping for C EXT(Painter, x). Thus, the corresponding
subquery has to be removed and the query that will be passed to the next phase is

ans(x) :- Artists(x, Age) &

As we have already mentioned many times, literals are dealt as classes
internally to SWIM. Therefore, there will be some limited cases where the minimal
query produced from the first phase will contain conjunctive queries built on C_ EXT
predicates for literals; these queries have to be removed, too, since there are no
mapping rules for them. The aforementioned procedure succeeds in removing these

queries, too.

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 95

Example 5.10: The RQLycq query

SELECT X
FROM $CX}

after chase and backchase (1* phase) becomes

ans(x) - C_EXT(Artist, x)
w ans(x) - C_EXT(Painter, x)

U
w ans(x) :- C_EXT(String, x)

w ans(x) - C_EXT(Integer, x)
U

The removal of the conjunctive queries containing C_EXT predicates that refer to

literals leads to the following query expressed in terms of the relational schema:

ans(x) :- Artists(x, Age)
U ans(x) :- Painters(x, Kat)
.. n

Unfortunately, there is the possibility that all the conjunctive queries MR; have
to be removed. This is the case where the underlying database cannot answer the
given RQLycq query; therefore, the reformulation procedure ends without returning
any result.

The termination of this phase depends once more on the constraints
considered. These are the constraints extracted from the mappings (4uqp). Although
they do not satisfy the stratified-witness property, they guarantee termination of the

chase!”.

5.2.3 Third Phase

The third phase accepts as input the query produced from the second phase of the
reformulation procedure. Although the query is minimal when outputted from the first

phase, the rewriting against the relational schema may introduce some redundancy,

'7 Appendix II provides some thoughts and examples that support this conclusion.

Giorgos Serfiotis

96 CHAPTER 5. RQL QUERY REFORMULATION

depending on the mappings. In order to remove this redundancy, the query has to get

backchased.
Example 5.11: The query

SELECT Y
FROM {X; Painter}creates{Y,; Painting}

after the 1* phase minimises to

SELECT Y

FROM {X}"\creates{Y}, "Painter{X}, “Painting{Y}
UNION

SELECT Y

FROM {X}paints{Y}

which in SWLF corresponds to

ans(y) - P_EXT(x, p, y), C_EXT(e, x), C_EXT(f. y), p="creates”, e="Painter’,
f="Painting”
v ans(y) :- P_EXT(x, p, y), p="paints”

In the 2™ phase, this query chases with 4 Map» @S presented in section 5.1, rendering the

universal plan

ans(y) - P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), Artifacts(y, x, Year, Exhibited),
Painters(x, Kat), Paintings(y, Type), p="“creates”, e="Painter”, f="Painting”
v ans(y) :- P_EXT(x, p, y), Artifacts(y, x, Year, Exhibited), Paintings(y, Type),

p="paints”

From the universal plan the maximal subquery expressed in terms of the relational

schema gets extracted and outputted.

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type)
v ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type)

The current reformulation phase will use as input the above query and backchase it.

As soon as the backchase ends, it will output the minimal query

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 97

ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type) ®

5.2.3.1 Exploiting Additional RDB Information in the Minimisation

The end of this phase finds us with a set of minimal queries that will be translated into
SQL. However, further minimisation can take place if additional information supplied
from the relational database is considered. This information usually comes in the form
of integrity constraints and constraints capturing materialised views, if there are any
defined. The most commonly used integrity constraints are functional dependencies,
like keys, and inclusion dependencies, like foreign keys, which are EDs according to
[AHV95]. The (inclusion) constraints interpreting a materialised view are generated
in the same way constraints are produced for the mapping rules that follow the GAV
approach; one constraint ensures the soundness of the interpretation and a second one

the completeness.

(1) ¥x YAge, VAge, (Artists(x, Age,), Artists(x, Age,) — Age,=Age,)
(2) vx VKat; VKat, (Painters(x, Kat,), Painters(x, Kat,) —» Kat;=Kat,)
(3) Vx VArtist, VArist, VYear, VYear, VExhibited, VExhibited, (Artifacts(x, Artist,, Year,, Exhibited,),
Artifacts(x, Artist,, Year,, Exhibited,) — Artist,=Artist,, Year,=Year,, Exhibited,=Exhibited,)
(4) Vx VType, VType, (Paintings(x, Type,), Paintings(x, Type,) — Type,=Type,)

(1) vx vKat (Painters(x, Kat) —» JAge Artists(x, Age))
(2) ¥x vType (Paintings(x, Type) —» JPainter IYear FExhibited Artifacts(x, Painter, Year, Exhibited).
(3) ¥Name Wx VYear VExhibited (Artifacts(Name, x, Year, Exhibited) — JAge Artists(x, Age))

Figure 5-6: Integrity constraints for the relational schema

In order to exploit such additional information, the third phase gets refined.
The maximal rewriting outputted from the 2™ phase gets chased with the relational
constraints (4g) and, then, gets backchased in one or more equivalent minimal

queries expressed in terms of the underlying relational database.

Example 5.12: Figure 5-6 shows the integrity constraints forming Ag. for the

relational schema issued in section 5.1. There are seven constraints; the first four are

Giorgos Serfiotis

98 CHAPTER 5. RQL QUERY REFORMULATION

primary keys and the rest are foreign keys. The maximal rewriting considered in the

previous example chases with the second foreign key to

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year,, Exhibited,)

v ans(y) :- Arifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,
Painter, Year, Exhibitedy)

Then, chases with the third foreign key to

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year,, Exhibited,), Artists(x, Age,), Artists(Painter, Agey)

v ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,
Painter, Year,, Exhibited,), Artists(x, Age;), Artists(Painter, Age;)

The first conjunctive query chases with the first foreign key constraint resulting in

ans(y) .- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year, Exhibited,), Artists(x, Age,), Artists(Painter, Age,),
Artists(x, Ages)

v ans(y) :- Arifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,
Painter, Year,, Exhibited,), Artists(x, Age;), Artists(Painter, Age,)

Applying the third primary key constraint results in

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year,, Exhibited,), Artists(x, Age;), Artists(Painter, Age,),
Artists(x, Ages), Painter=x, Year=Year,, Exhibited=Exhibited,

v ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,
Painter, Year, Exhibited,), Artists(x, Age;), Artists(Painter, Age,), Painter=x,
Year=Year,, Exhibited=Exhibited,

and chasing with the first primary key constraint provides the universal plan

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type),
Artifacts(y, Painter, Year, Exhibited,), Artists(x, Age;), Artists(Painter, Age,),
Artists(x, Age;), Painter=x, Year=Year, Exhibited=Exhibited, Age1=Age2,
Age2=Age3

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 99

v ans(y) :- Arifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y,
Painter, Year, Exhibited,), Artists(x, Age;), Artists(Painter, Age,), Painter=x,
Year=Year,, Exhibited=Exhibited,, Age1=Age2

Amazingly, this query minimises to
ans(y) :- Paintings(y, Type)
It is obvious that there can be no further minimisation of the query! ®

For this phase decidability is not guaranteed; it depends on the relational
constraints. If they satisfy the stratified-witness property, the chase with Ag.; does
terminate and the minimisation problem is decidable. Notice that any pair of
constraints used to capture a view violates the stratified-witness condition. However,
the chase is guaranteed to terminate nevertheless using the additional observation that
when one of the two constraints is used in a chase step, the second one cannot trigger
due to the definition of the chase step. This way the 3-cycle in the chase flow graph
breaks. Given its decidability, this phase’s complexity is the one of full minimisation

under DEDs.

5.2.4 Forth Phase: Translating the Query into SQL

One of the advantages of this approach is that the minimal queries resulting from the
previous phases are in first-order form. Thus, they may translate into SQL queries in a
straightforward manner: (a) the relational predicates of the query’s body form the
FROM clause, (b) the equalities involving variables introduced in any relational
predicate form the WHERE clause of the SQL query, and (¢) the head variables,
except those not bound to predicates, become the projected variables in the SELECT
clause with the names of the relational attributes to which they correspond. Head
variables not bound to predicates get substituted by their value (found through the
equalities) in the SELECT clause. This is always the case of (i) schema variables
assigned to a value in the initial RQL querry, (i) all remaining schema variables
appearing in RQL patterns that have been assigned to a value during first phase, and
(iii) variables not bound to patterns in the initial RQLycq query. The output of this

translation phase is a set of SQL queries ready to be executed at remote sources.

Giorgos Serfiotis

100 CHAPTER 5. RQL QUERY REFORMULATION

Example 5.13: The minimal query
ans(y) :- Paintings(y, Type)
corresponds to the SQL query

SELECT p.PName
FROM Paintings p

based on the knowledge that PName is the attribute corresponding to variable y. Thus,
this SQL query is an optimised reformulation of the RQL query

SELECT Y
FROM {X; Painterjcreates{Y; Painting} ®

Example 5.14: In order to clarify the translation of queries carrying schema

information suppose the RQLycq query

SELECT $C X
FROM $CX}
WHERE $C=Artist

This query at the end of the first phase has the form

ans(d, x) :- C_EXT(d, x), d="Artist”
v ans(c, x) :- C_EXT(d, x), d="Painter”, c="Artist”

which at the end of the fourth phase has become to
ans(c, x) :- Artists(x, Age), c="Artist”
The corresponding SQL query is

SELECT ‘Artist’, a.Name
FROM Artists a

5.2.4.1 Handling of Functions

We have argued for the fact that the use of the Concat function is necessary for

creating valid RDF data. Moreover, using additional functions is, also, allowed. Thus,

University of Crete, Computer Science Department

CHAPTER 5. RQL QUERY REFORMULATION 101

when translating the minimal queries into SQL ones, the functional predicates have to
be translated as well. However, there is no default translation for them. It depends on

the SQL engine that will be used for answering the SQL query.

Example 5.15: The symbol ||’ is used as the concatenation operator in Oraclel0. As
an alternative, Oraclel0 supports a function named “Concat”. In reality the minimal

query of Example 5.12 would look something like
ans(y) :- Concat(y, “http://www.csd.uoc.gr/.../Painting.rdf#”, z), Paintings(z, Type)

So, it would translate to

SELECT Concat(‘http://www.csd.uoc.gr/.../Painting.rdf#’, p.PName) as
PaintingURI
FROM Paintings p

where “PaintingURI” is the name of the new attribute produced. ®

5.2.4.2 Choosing the Minimal Query to Be Executed

The third phase that explores relational integrity constraints may output more than one
minimal query against the relational database schema. These queries shall be
equivalent, i.e., if executed, they will return the same results. Thus, as soon as the
translation ends, a decision has to be made concerning which of the minimal
reformulated queries will be executed. This decision is not trivial and is out of the
scope of this thesis. There exist various techniques that support taking such a decision
based on cost models, heuristics, etc.

Generally, the existence of more than one minimal SQL queries implies
redundant storage in the underlying relational database and is, usually, related to the

existence of materialised views.

5.2.5 Final Phase: Translating the Results into RDF Data

Translating the results of the reformulated SQL query into RDF/S data presupposes
the existence of a wrapper that will collect the results from the relational database and

make the appropriate processing. The correspondence is simple. The result of

Giorgos Serfiotis

102 CHAPTER 5. RQL QUERY REFORMULATION

executing an SQL query is a relation whose attributes are the ones projected in the
query. The relation gets mapped to an rdf:Bag; if the relation has more than one
attributes, each tuple corresponds to an rdf:li containing an rdf:Seq; in both cases each

attribute value gets mapped to an rdf:li element.

Example 5.16: Figure 5-7 shows what the RDF/S data could look like for the

minimal SQL query of the previous example. B

<RDF xmins:rdf="http://Amww.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:.Bag>
<rdf:li=http://mmww.csd.uoc.gr/.../Painting.rdf#Guernica</rdf:li>
<rdf:li=http://mmwi.csd.uoc.gr/.../Painting.rdf#MonalLisa</rdf:li>
</rdf:Bag>
</RDF>

Figure 5-7: RDF/S data answering the RQLycq query

5.3 Reformulation’s Soundness, Completeness and
Complexity

Given that the necessary conditions are met, i.e. the stratified-witness property of the
relational integrity constraints, the reformulation procedure terminates and it is sound
since every single step is sound, too. Moreover, all phases based on the chase and
backchase algorithms are complete, too. However, the entire reformulation procedure
is not complete due to the possible lack of several RDB—RDF mappings that may
lead in simplifying the query to be reformulated. Finally, the reformulation’s overall

complexity stems from the different phases’ complexities.

University of Crete, Computer Science Department

Chapter 6

SWIM’s Architecture

As has been stressed out throughout this thesis, SWIM is a middleware for
minimising and reformulating RQL queries. Figure 6-1 sketches out its general
architecture, i.e. the RDF/S virtual schema and the mappings between it and the local
sources (relational databases in this thesis’ case). For each RQL query submitted by
the user to SWIM, the reformulation engine generates several SQL queries. One of
them is chosen and gets executed. Then, its results get translated using a wrapper into

RDF/S data and get outputted to the user.

b o

wap SWIM HVTV';:';/

S Query Reformulation
Engine .

RDF/S

ODBC | T onstraints = AL
Server % N = sever

Figure 6-1: The ICS-FORTH SWIM architecture

The query reformulation engine is SWIM’s core component and gets

discussed below.

103

104 CHAPTER 6. SWIM’s ARCHITECTURE

REF;S SWLF constraints
S preserving RDF/S
RDB—*_RDF semantics
mappings E
| PP g SWLE G . Datalog query C&B Machine
ncoming ompiier :
RQL against SWLF (MARS)
query ' ! SWLF constraints
describing the
RDF/S : RDF/S schema
Semantics SWLF constraints . Reformulated &
extracted from [ofiEEER N EEGGEE minimized Datalog
RDB->RDF (MARS) query against
mappings C_EXT, P_EXT

Maximal Datalog query
against the RDB that can

o ered from it g etormulated & Reformuljted &
CDB C&?’ Machine minimized IDatta;Log SQL Generator minimized SQL
_ (MARS) query against the query
constraints RDB schema

Figure 6-2: The SWIM Query Reformulation Engine

6.1 SWIM Query Reformulation Engine

The anatomy of the query reformulation engine is presented in Figure 6-2. The engine
takes as input (a) the virtual RDF/S schema, (b) the RDF/S semantics, (c¢) the
RDB—RDF mappings, (d) any constraints originating from the relational databases
and (e) the RQL query to be reformulated.

Three basic components constitute the query reformulation engine as depicted

in Figure 6-2: the SWLF compiler, MARS’ engine and the SQL query generator.

6.1.1 SWLF Compiler

The SWLF Compiler takes as input all the information related to RDF and translates it

in terms of SWLF. More precisely:

e [t transforms the mediated RDF/S schema into Datalog facts that capture the
classes, properties and their subsumption hierarchies. Then, it extracts constraints
from them.

e [t transforms the RQL query into a Datalog rule

e [t transforms the mapping rules into rules employing SWLF terms and, then, into

DEDs.

University of Crete, Computer Science Department

CHAPTER 6. SWIM’s ARCHITECTURE 105

The translation of RDF/S semantics into constraints was done once and needs not be
repeated each time the reformulation takes place.

Once all information is expressed as Datalog facts and rules in terms of
SWLF, the Datalog program gets parsed with the use of JFlex 1.4 and JavaCup. The
parsing procedure outputs a file where all information is given in the form of
constraints (DEDs). The BNF grammar used for the parsing can be found in Appendix
C.

6.1.2 MARS

The MARS (Mixed and Redundant Storage) system ([DT02] [DTO03a] [DTO03b])
constitutes the basic component of SWIM. It was developed in the University of
Pennsylvania by Lucian Popa [Pop00] and Alin Deutsch [Deu02]. It implements the
chase, along with the checks for consistency of the queries, and backchase algorithms
referenced throughout this thesis, thus, allows checking for query equivalence and
minimising as well as reformulating queries.

MARS was originally designed for object relational databases. Later, it was
extended in order to handle XML repositories. This was achieved by establishing and
incorporating in it a relational schema and a number of relational constraints capturing
XML and its semantics. Our relational representation of RDF is somewhat similar to
XML’s. In our RDF to RDB scenario we ignore the XML handling feature of MARS
and concentrate on the reformulation and minimisation of relational queries over the
relational schema for RDF. When handling relational (and not XML) queries, the
chase and backchase algorithms are sound and complete; MARS discovers all
minimal (reformulated) queries.

MARS’ novelty is its ability to handle both materialised views and integrity
constraints. No earlier approach on reformulation had managed to prove completeness
for both aspects together. What made this possible is the fact that all information is
passed as input to the system in the form of constraints. Translating the mappings
between the local (source) schemas and global (published) schemas into constraints
allows handling both the Global-As-View (GAV) and the Local-As-View (LAV)

approaches.

Giorgos Serfiotis

106 CHAPTER 6. SWIM’s ARCHITECTURE

6.1.3 SQL Generator

The SQL Generator is the component that generates the SQL query based on the first-
order query outputted from the last call of the chase/backchase machine. The
translation is pretty straightforward: reading one-by-one the query’s atoms, the non-
functional ones are used to construct the FROM clause, the equality ones form the
WHERE clause and the functional ones get incorporated in the SELECT clause. A
Java program is responsible for this translation.

This translation is not independent of the underlying relational database
management system (RDBMS). Since each RDBMS supports different functions or
different representations of the same functions, the translation is RDBMS oriented.
Each time we want to use SWIM over a RDBMS for the first time, the generator has
to be enriched with the appropriate methods handling the RDBMS’ functions.

6.2 Related Work

RDF/S is a SW language that has become accepted as a language favouring
interoperability between information sources in the last few years. However, the
number of systems having adopted RDF/S in order to integrate/publish relational
sources in the Semantic Web is still limited. Nevertheless, many systems are under
development and new approaches are proposed daily. Some of them republish entire
relational databases as RDF/S data adopting the data warehousing approach, while the
rest, like SWIM, return virtual RDF resource descriptions when queries are posed on
virtual RDF/S schemas (on-demand retrieval).

The situation is even worse with approaches proposing and systems offering
containment and minimisation techniques for RDF/S query languages. To our
knowledge there exists only one application offering such services and there is no
system providing optimisation services along with the integration ones. Moreover,
there is a second one that deals with the idea of query caching, i.e. reusability of

previously computed results.

University of Crete, Computer Science Department

CHAPTER 6. SWIM’s ARCHITECTURE 107

6.2.1 SWARD

SWARD [PRO04] is a system under development that offers wrapping services
to relational databases by adopting the on-demand retrieval approach. This is achieved
by extracting virtual RDF/S views from the relational databases; these views, which
are defined using domain calculus expressions, express relational to RDF mappings.
RDF/S queries — QEL ([NS04]) is favoured as the query language for RDF/S — get
translated to domain calculus expressions, too, and get composed with the RDF/S
views. Then, the resulting domain calculus expression gets translated to an SQL query
whose results are returned as virtual RDF resource descriptions. SWARD allows
using in the RDF/S queries filters not expressible in SQL; in this case, the filters are
applied on the results from the SQL queries.

Moreover, SWARD allows for different terminologies in received QEL
queries by maintaining a user defined table that stores relations between terms from
different ontologies having the same meaning; this way the RDB-specific RDF/S
views can map to global ontologies. When a query uses terms of the global ontology,
the system searches the table for equivalent terms and rewrites the query.

SWARD's basic drawback is the limited expressive power of the mappings
relating a relational database to an RDF/S ontology. The RDF/S views follow the
GAYV approach and are provided only in terms of virtual RDF/S properties, i.e. of
basic RDF/S data; no schema information about instance-of, class-property
hierarchies can be expressed. Moreover, the correspondences between RDF/S views

and global ontologies are elementary, since they are based on term equivalence.

6.2.2 D2RQ

D2RQ ([BS04]) is a declarative, based on D2R Map ([Bi03]), language used to
describe mappings between relational database schemata and RDF/S (OWL)
ontologies. It is used as an add-in to the Jena tookit ((CDD"03]) rendering on-demand
retrieval feasible. It allows treating the relational databases as virtual RDF graphs,
which can be queried using RDQL; the queries based on the mappings get
reformulated to SQL queries, whose results get translated back to RDF data.

A D2RQ mapping between a global ontology and a relational database schema

is an RDF/S document that describes (a) correspondences of RDF/S classes and

Giorgos Serfiotis

108 CHAPTER 6. SWIM’s ARCHITECTURE

properties to relational elements; based on these correspondences class and property

instances get extracted on demand, and (b) how class instances are identified, i.e. how

URISs for instances are produced. This work is pretty new and under development.
D2RQ follows the GAV approach in the definition of the mappings.

Therefore, compared to our work, the mappings are less expressive.

6.2.3 Integration of Relational Sources Using RDF and XML

[HVO1] proposes an architecture for integrating heterogeneous information sources
using RDF and XML. This on-demand retrieval approach is based on a conceptual
domain model described using RDF/S. Mappings are established between the virtual
RDF/S schema and virtual or not XML DTDs using mapping rules expressed in
LMX'®. Therefore, information sources are required to be able to export their data in
XML serialisation and non-XML sources, like relational databases, can use wrappers
to achieve that. Once a query is posed on the conceptual model it gets pushed to the
underlying sources based on the mappings; then, the sources, with or without a
wrapper’s interference, return all necessary information as XML serialisation and

RDF/S data get produced.

6.2.4 Integration of Relational Sources using RDF Vocabularies

[CXO03] introduces an approach involving both query reformulation and data
warehousing. Queries are posed on a local source described by an RDF/S schema and
get mapped to the remote source, described by an RDF/S schema, too; RQL has been
adopted as the query language. The mapping is facilitated by a global RDF/S ontology
and common vocabularies. Each source schema shares with the global ontology a
dictionary that stores the common vocabulary of all the schema concepts and the
relationships between the ontology and each schema.

The interesting part is that the sources originally need not have an RDF/S
schema describing them and their data stored as RDF. If they are relational (or XML),
an RDF/S schema gets extracted and RDF/S data are created and stored into RSSDB

'8 Language for Mapping XML documents

University of Crete, Computer Science Department

CHAPTER 6. SWIM’s ARCHITECTURE 109

([ACK'01]). Thus, as soon as an RQL query on the local source gets reformulated to
an RQL query on the target source it can get executed.

The main difference with SWIM is the fact that the integration of relational
sources into global or other RDF/S ontologies demands that an RDF/S schema along
with RDF/S data gets extracted. Moreover, a basic restriction of this approach that is
worth noticing is the fact that only one-to-one mappings are considered when relating
each source’s RDF/S schema to the global ontology, i.e., a concept in one RDF/S

schema maps to a single concept in another schema.

6.2.5 FDR2

In [KTO04] the authors propose a data warehousing approach to facilitate ontology-
based querying of relational data. The goal is to relate data stored in a relational
database with a domain ontology. The first step is to extract an RDF/S representation
of the relational database. Automatically, every column of a relational table gets
mapped to an RDF/S class and all binary relations between two columns (classes) get
mapped to RDF/S properties. Then, all classes and properties get instantiated using
the relational data. The next step is to map this RDF/S representation to the domain
ontology, which is also expressed in RDF/S. The user identifies subclass
(subproperty) relationships between the classes (properties) of the RDEF/S
representation and those of the domain ontology. As soon as the mapping is done, an
RDF/S reasoner is used to deduct all possible entailments based on the hierarchy
relationships. Whenever a query on the domain ontology is posed, it gets evaluated
using these entailments.

FDR2 uses a naive approach for creating the RDF/S representation, since it
does not explore its semantics. This choice was made because it is designated for
simple relational schemas, like the ones used for keeping track of scientific
experiments and computations. Moreover, based on the mappings, we may conclude
that, using the FDR2 approach, queries built on proper interpretations cannot be

answered. Finally, FDR2 provides no query optimisation techniques.

Giorgos Serfiotis

110 CHAPTER 6. SWIM’s ARCHITECTURE

6.2.6 D2R Map

D2R Map ([Bi03]) is a declarative XML-based language used to describe flexible
mappings of complex relational structures to RDF. Its flexibilty is achieved by
employing SQL statements directly in the mapping rules; correspondences between
classes (properties) and relational elements are established stating how the classes
(properties) get instantiated and how URIs are created. This way, relational data can

get exported as RDF using a D2R processor.

6.2.7 ICS-FORTH GRAQL Interface
As has already been illustrated, the ICS-FORTH GRQL Interface ([ACKO04]) is an

interface that produces on the fly RQL queries while the user navigates through an
RDF/S schema. Its functionality is rather simple: each navigation step on an RDF/S
schema either creates or alters an existing path expression; these path expressions are
combined to form RQL queries. One of its advantages is that it performs optimisation
of the queries produced run-time. The key to optimisation is that when navigating
through hierarchies of classes (properties) already present in path expressions, the
path expressions get refined depending on whether subclasses (subproperties) are
visited. The main difference to SWIM’s query minimisation lays to its handling of

only a fragment of RQL, similar to RQLcoRe.

6.2.8 Similarity-Based Query Caching

In [Stu04] the author approaches RDF query optimisation from a different
perspective. He proposes a graph-based approach for identifying RDF queries that are
subsumed by already issued queries whose results have been cached (stored). This
approach exploits the fact that RDF statements form labelled directed graphs. Queries
are represented using graphs where the unlabelled nodes denote the variables of the
query. By comparing query graphs query subsumption can be identified. If query 4,
which was issued on the RDF/S description base DB subsumes query B, query B
needs not be executed on DB. It can be issued on the cached results of query 4.
Additionally, the author provides (i) a cost model to decide whether result

caching provides an advantage with respect to run time complexity and (ii) a cost-

University of Crete, Computer Science Department

CHAPTER 6. SWIM’s ARCHITECTURE 111

based similarity measure for RDF queries in case more than one relevant result sets
are found in the cache.

The key difference to our minimisation approach is that the graph queries can
be posed only on nodes, i.e. demand subject/object resource information. In other
words only queries asking solely for data information though joining property

interpretations are supported.

Giorgos Serfiotis

Chapter 7

Conclusion

The issue of integrating legacy systems has been challenging information society for a
long time. Initially, systems were integrated by defining one-to-one mappings
between them. However, this approach presented several drawbacks, like scalability
and maintainability. Then, organisations moved to XML in order to take advantage of
standards based integration. But, XML did not provide solutions to all problems.

The next step was to use ontologies in the integration process. For each
knowledge or application domain, an ontology is defined and legacy systems get
mapped to such ontologies. This way, systems can communicate independently from
information architectures and system technologies. Moreover, when ontologies are
described using machine processable languages, like RDF/S, legacy systems get
integrated into the Semantic Web and can be accessed through it.

Therefore, in this thesis we have proposed SWIM, a system for integrating
relational and XML ([Kof05]) sources in the Semantic Web, and have focused on the
relational aspects of the system. At the same time we have presented the optimisation
capabilities of SWIM regarding queries against SW ontologies. We have chosen
RDF/S to be the SW ontology language and RQL its corresponding query language.
We have, also, identified a fragment of RQL, namely RQLcorg, for which
optimisation is sometimes easier to perform.

Six relational predicates and a number of constraints, which form the Semantic
Web Logic Framework (SWLF), have been adopted for capturing the RDF/S data
model and its semantics. Based on this representation we have achieved to reduce the
RQL optimisation problem to its relational equivalent. Furthermore, the RQL to SQL
reformulation problem has been reduced to the problem of rewriting a query against
SWLF as a query against the relational storage schema.

The minimisation and reformulation procedures are based on the chase and
backchase algorithms; the latter is sound and complete when the chase is guaranteed
to terminate. Since these algorithms accept input in the form of constraints, all

information gets translated into disjunctive embedded dependencies (DEDs). The

113

114 CHAPTER 7. CONCLUSION

reformulation procedure exploits RDB to RDF mappings translated in SWLF. The
mappings between the local (relational) sources and the global (RDF) ones follow the
GLAV approach that combines the advantages of both the Global-As-View and
Local-As-View approaches.

It is worth noticing that the chase and backchase algorithms employed for
RDF/S semantic query optimisation were initially developped in the context of
optimisation and reformulation of queries issued against relational schemas using
dependencies capturing integrity constraints and schema mappings. However, in our
scenario the major difference that arises is the expressions of queries allowing both
schema and data navigation/filtering. In order to represent a specific RDF/S
description schema, the predicates CLASS, PROP, C_SUB and P_SUB have to get
populated. Moreover, this schema is given as input to the chase and backchase
algorithms using constraints, which implies providing the data of the relations in the
form of constraints. Using this knowledge, the minimisation process always generates
a minimal query were no schema navigation is needed in order to answer it. In
practice, the minimisation procedure sometimes rather answers than minimises the
schema part of a given query; when the case, a union is usually introduced.

Additionally, not all the minimal queries produced from the C&B algorithm are
always interesting. For example, it is hard to argue why choosing to execute the
second minimal query of Example 4.20. If accessing only proper interpretations is
desired (i.e. the relation C EXT), the third query should be chosen; if accessing
extended interpretations is desired (i.e. both the C SUB and C_EXT relations), the
first query should be chosen. The only obvious reason to select a minimal query
where schema information has partially been unfolded is in order to exploit cached
query results; if the query asking for the extended interpretation of Painter — or the
proper interpretation of either Artist or Sculptor — has already been issued and its
results have been stored, this query can be useful. Nevertheless, this presupposes a
check of all the minimal queries in order to locate those involving cached queries.

Another issue has occurred in the reformulation process. If we were interested
in considering only GAV mappings, the reformulation would be straightforward even
if they were not complete, i.e. did not provide information for all classes and
properties of the RDF/S schema. However, our goal was to consider GLAV mappings

between the virtual RDF/S schema and the relational proprietary one; so, we were

University of Crete, Computer Science Department

CHAPTER 7. CONCLUSION 115

forced to break the reformulation in three phases in order to handle/overcome
mappings’ incompleteness.

This incompleteness usually does not affect the straightforwardness of the
reformulation algorithm in purely relational scenarios. When a query does not
reformulate as a whole, a negative answer is issued. On the contrary, in the RQL
reformulation/integration scenario the majority of RQL conjunctive queries imply a
union of queries based on the class/property hierarchies. The underlying proprietary
database may not be able to answer all of them, but may have the information to
answer some of them. Our reformulation algorithm manages to handle this case, too,

by locating the maximal subquery of the original one that can be answered.

7.1 Future Work

SWIM is a middleware for RQL query optimisation and reformulation. However,
there are still some issues that deserve to be further investigated.

First of all, it would be very useful if SWIM disposed a feature that would
allow generating (semi-) automatically the mappings between the virtual RDF/S
schemata and the relational databases; users would appreciate such assistance. A
possible guideline to this direction could be to incorporate in SWIM a reverse
engineering tool in order to produce an ER-model from the relational schema; given
the concepts and the relationships between them, the mapping to RDF/S classes and
properties would be facilitated.

Another issue is the support of features originating from more expressive
RDF-based ontology languages, like OWL. OWL offers some additional features that
can prove very useful, such as inverse properties and disjointness of class and
property extensions. Incorporating them in SWIM would allow a wider range of RQL
queries to be posed and would offer increased optimisation capabilities.

Additionally, extending the RQL fragment considered, namely RQLycq could
be a hint for future work. For example, we could look into incorporating RQL
functions — like domain, range, subclassof, subpropertyof and aggregate ones — and
nested queries in the fragment.

The ability to attach to the reformulated queries schema information is an

issue that deserves further investigation, too; although the queries are posed against an

Giorgos Serfiotis

116 CHAPTER 7. CONCLUSION

RDF/S schema, the algorithm’s present form does not allow, when asking a query,
retrieving along with the instances the corresponding schema information, i.e.
returning fully typed descriptions. Such a feature would allow exploiting the power of
the RDF/S language.

Another interesting direction for further investigation is the exploitation of
cached query results either in combination with the minimisation process or
independently. The problem can be defined as follows: “Given a query or a minimal
equivalent, can it partially (or fully) be answered from the cached results of already
answered queries?”’

Finally, extended paradigms should be run in order to test whether SWIM can
be used in real life integration scenarios where the input load may severally increase.
We should have in mind that the complexities raise exponentially in the size of the

global RDF/S schema.

University of Crete, Computer Science Department

Bibliography

[ACK'01] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis,
Dimitris Plexousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Managing
Voluminous RDF Description Bases. In Proceedings of the 2™ International

Workshop on the Semantic Web, Hong Kong, 2001.

[ACKO04] Nikos Athanasis, Vassilis Christophides, and Dimitris Kotzinos.
Generating on the Fly Queries for the Semantic Web: The ICS-FORTH Graphical
ROL Interface (GRQL). In Proceedings of the 3" International Semantic Web
Conference, pages 486-501, Hiroshima, Japan, 2004.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Bec04] Dave Beckett. RDF/XML Syntax Specification. W3C
Recommendation, 10 February 2004.

[BGO4] Dan Brickley, and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, 10 February 2004.

[Bi03] Christian Bizer. D2R Map — A Database to RDF Mapping Language.
Poster at the 12" World Wide Web Conference, Budapest, Hungary, 2003.

[BMPS00] Tim Bray, Eve Maler, Jean Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C Recommendation, 6 October 2000.

[BS04] Christian Bizer, and Andy Seaborne. D2RQ — Treating Non-RDF
Databases as Virtual RDF Graphs. 3™ International Semantic Web Conference,

Hirosima, Japan, 2004.

117

118 BIBLIOGRAPHY

[CDD'03] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the Semantic Web

Recommendations. Technical Report, HP Labs, 2003.

[CKO04] Jeremy J. Carroll, and Graham Kline. Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation, 10
February 2004.

[CMT77] Ashok K. Chandra, and Philip M. Merlin. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. In Proceedings of the 9™ Annual ACM

Symposium on the Theory of Computing, pages 77-90, 1977.

[CXO03] Isabel F. Cruz, and Huiyong Xiao. Using a Layered Approach for
Interoperability on the Semantic Web. In Proceedings of the 4™ International

Conference on Web Information Systems Engineering (WISE), pages 221-231, 2003.

[Deu02] Alin Deutsch. XML Query Reformulation over Mixed and Redundant
Storage. PhD Thesis, University of Pennsylvania, 2002.

[DT02] Alin Deutsch, and Val Tannen. Querying XML with Mixed and
Redundant Storage. Technical Report, University of Pennsylvania, 2002.

[DTO03a] Alin Deutsch, and Val Tannen. MARS: A System for Publishing XML
from Mixed and Redundant Storage. In Proceedings of the 29" VLDB Conference,
Berlin, Germany, 2003.

[DTO3Db] Alin Deutsch, and Val Tannen. Reformulation of XML Queries and
Constraints. In Proceedings of the 9" International Conference on Database Theory

(ICDT), Siena, Italy, 2003.

[FLM99] Mark Friedman, Alon Y. Levy, and Todd Milstein. Navigational Plans
for Data Integration. In Proceedings of the 16™ National Conference on Artificial

Intelligence and 11™ Conference on Innovative Applications of Artificial Intelligence,

pages 67-73, 1999.

University of Crete, Computer Science Department

BIBLIOGRAPHY 119

[GGGMI8] Parke Godfrey, John Grant, Jarek Gryz, and Jack Minker. Integrity
Constraints: Semantics and Applications. In Logics for Databases and Information

Systems, pages 265-306, 1998.

[Hay04] Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February
2004.
[HMO04] Frank Van Harmelen, and Deborah L. McGuinness. OWL Web

Ontology Language Overview. W3C Recommendation, 10 February 2004.

[HVO1] Geert-Jan Houben, and Richard Vdovjak. RDF Based Architecture for
Semantic Integration of Heterogeneous Information Sources. International Workshop

on Information Integration on the Web (WIIW), Rio de Janeiro, Brazil, 2001.

[Kar00] Grigoris Karvounarakis. Querying RDF Metadata for Community Web
Portals. Master Thesis, University of Crete, 2000.

[Kof05] loanna Koffina. Integrating XML Data Sources Using RDF/S
Schemas: The ICS-FORTH Semantic Web Integration Middleware (SWIM). Master
Thesis, University of Crete, 2005.

[KT04] Maksym Korotkiy, and Jan L. Top. From Relational Data to RDFS

Model. International Conference on Web Engineering, Munich, Germany, 2004.

[Lev99] Alon Y. Levy. Logic-Based Techniques in Data Integration. Workshop
on Logic-Based Artificial Intelligence, Washington, USA, 1999.

[LevO1] Alon Y. Levy. Answering Queries Using Views: A Survey. The

International Journal on Very Large Databases, 2001.

[Mag03] Aimilia Magkanaraki. A View Definition Language for RDF/S. Master
Thesis, University of Crete, 2003.

[MMO04] Frank Manola, and Eric Miller. RDF Primer. W3C Recommendation,
10 February 2004.

Giorgos Serfiotis

120 BIBLIOGRAPHY

[NS04] Mikael Nilsson, and Wolf Siberski. RDF Query Exchange Language
(OEL) — Concepts, Semantics and RDF Syntax. http://edutella.jxta.org/spec/qel.html.

[Ono05] Nicola Onose. Extensions of the Relational Chase. Project Report of
End of Studies, 2005.

[Pop00] Lucian Popa. Object/Relational Query Optimisation with Chase and
Backchase. PhD Thesis, University of Pennsylvania, 2000.

[PRO4] Johan Petrini, and Tore Risch. Processing Queries over RDF Views of
Wrapped Relational Databases. In Proceedings of the 1% International Workshop on
Wrapper Techniques for Legacy Systems (WRAP), Delft, Netherlands, 2004.

[PSO5] Eric Prudhommeaux, and Andy Seaborne. SPARQL Query Language
for RDF. W3C Working Draft, 17 February 2005.

[Stu04] Heiner Stuckenschmidt. Similarity-Based Query Caching. In
Proceedings of the 6™ International Conference on Flexible Query Answering

Systems (), Lyon, France, 2004.

[SWO1] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web:
A new form of Web content that is meaningful to computers will unleash a revolution
of new possibilities. Scientific American, 17 May 2001. Available at
http://www.scientificamerican.com/print_version.cfm?articleID=00048144-10D2-
1C70-84A9809EC588EF21

[U1100] Jeffrey D. Ullman. Information Integration Using Logical Views.
Theoretical Computer Science, 239(2): pages 189-210, 2000.

University of Crete, Computer Science Department

Appendix A

RQL Patterns

RQL Property Patterns

The table containing all property patterns appearing in RQLycq queries and their

translations in SWLF follows.

Property Pattern Translation
@P PROP(a, p, b)
A@P

{X; "$C}@P{Y; "$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q,),
C_SUB(c, a), C_SUB(d, b), C_EXT{(c, x), C_EXT(d, y)

X; "$C}@P{Y} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
X; "$C}@P C_SUB(c, a), C_EXT(c, x)

X}@P{Y; "$D} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
@P{Y; "$D} C_SUB(d, b), C_EXT(d, y)

{X; $C}@P{Y; "$D}
{3C}@P{Y; 3D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x),
C_EXT(d,y)

{X; "$CY@P{Y; $D}
{X; "$C}@P{$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q,),
C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x),
C_EXT(, y)

{X; $C}@P{Y; $D}
{$CI@P({Y; $D}
{X; $C}@P{$D}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q,),
C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),
C_EXT(e, x), C_EXT(f, y)

{X; $Cl@P{Y}

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),

{$C}@P{Y} C_SUB(c, a), C_SUB(e, c), C_EXT(e, x)
{X; $Cl@P

{X}@P{Y; $D} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y),
{X}@P{$D} C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)
@P{Y; $D}
X}I@P{Y} P_SUB(q, p), P_EXT(x, g, y)

121

122

APPENDIX A. RQL PATTERNS

xXj@pP
@P{Y}

{$C}@P{$D}
{$C}"@P{3D}

PROP(a, p, b), C_SUB(c, a), C_SUB(d, b),

{$Cl@P
{$C}*@P

PROP(a, p, b), C_SUB(c, a)

@P{$D}
"@P{$D}

PROP(a, p, b), C_SUB(d, b)

{X; "$C}*@P{Y; "$D}

PROP(a, p, b), P_EXT(x, p, y), C_SUB(c, a),
C_SUB(d, b), C_EXT(c, x), C_EXT(d, y)

{X; "$CH@P{Y}

PROP(a, p, b), P_EXT(X, p, y),

{X; "$CH@P C_SUB(c, a), C_EXT(c, x)
XY @P{Y; ~$D} PROP(a, p, b), P_EXT(x, p, ¥),
r@P{Y; 7$D} C_SUB(d, b), C_EXT(d, y)

{X; $C}@P{Y; "$D}
{$C}*@P{Y; "$D}

PROP(a, p, b), P_EXT(X, p, y),
C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x),
C_EXT(d,vy)

{X; "$C}*@P{Y; $D}
{X; "$C}*@P{$D}

PROP(a, p, b), P_EXT(X, p, y),
C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x),
C_EXT(f,y)

{X; $C}*@P({Y; 3D}
{$C}*@P{Y; $D}
{X; $C}"@P{3D}

PROP(a, p, b), P_EXT(X, p, y),
C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d),
C_EXT(e, x), C_EXT(f, y)

{X; $CY@P{Y}

PROP(a, p, b), P_EXT(X, p, y),

{$CY@P{Y} C_SUB(c, a), C_SUB(e, c), C_EXT(e, X)
{X; sCY@P
X} @P{Y; $D} PROP(a, p, b), P_EXT(x, p, y),

{X}*@P{$D} C_SUB(d, b), C_SUB(f, d), C_EXT(f, y)
"@P{Y; $D}
X}@P{Y} P_EXT(X, p, y)

{xXy@P

"@P{Y}

University of Crete, Computer Science Department

APPENDIX A. RQL PATTERNS 123

RQL Class Patterns Not Involving Proper Interpretations

The table containing all class patterns appearing in RQLcorg queries follows.

Class Pattern
$C r$C
$C{$D} | "$C{3D}
$CLX}
$C{X; $D}

RQL Property Patterns Not Involving Proper Interpretations

The table containing all class patterns appearing in RQLcore queries follows.

Property Pattern
@P "@P
{X; $Cl@P{Y; $D} | {SC}@P{Y; $D} | {X; $C}@P{$D}
{X; $C}@P{Y} {$C}@P{Y} {X; $C}@P
{X}@P{Y; $D} {X}@P{3$D} @P{Y; $D}

X}@P{Y} xr@rP Q@P{Y}
{$C}@P{3D} {$C} @P{$D}
{$C}@P {$Cr@P
@P{$D} r@P{$D}

Giorgos Serfiotis

Appendix B

Termination of Chase

Stratified-Witness for Disjunction-free DEDs

We will start by illustrating why the stratified-witness property can be used with
disjunction-free DEDs, i.e. DEDs consisting of a single conjunctive query. First of all,
we will consider equalities in the left-hand side of dependencies. Such equalities can
easily be ignored by replacing all occurrences in the dependency of one of the
variables equated by the other, hence, resulting in an embedded dependency as
introduced in [AHV95].

Equalities in the right hand of a dependency involving at least one existentially
quantified constraint are dealt similarly. If two existentially quantified variables are
equated, the equality is removed and one of the variables is replaced by the other one
in the right-hand side of the dependency. If an existentially quantified variable is
equated with a universally quantified one, then, the equality is removed and the
universally quantified one replaces the other one. Once again the query produced is an
embedded dependency equivalent to the original dependency.

Finally, we will argue that the introduction of constants in the dependencies
cannot disturb the stratified-witness property. We can without loss of expressive
power consider constants only in equality atoms. If a set of dependencies, where
equality atoms involving constants are ignored, satisfies the stratified-witness
property and, therefore, termination is ensured, there is no way the introduction of the
unattended equalities will introduce an infinite number of fresh variables and lead the

chase to diverge.

Proposition B.1: [f a set C of disjunction-free DEDs satisfies the stratified-witness
property when equalities of variables to constants are ignored, the chase of a

conjunctive query Q with C terminates. ®

In practice, the use of constants in the constraints may reduce the number of

chase steps till the universal plan is reached, or even prevent an endless execution of

125

126 APPENDIX B. TERMINATION OF CHASE

chase steps. Unfortunately, the check for stratified-witness cannot exploit the

additional information coming with the use of constants.
Example B.1: The constraints below do not satisfy the stratified-witness.

(di) vxvy A(x, y) — Fz B(y, z)
(d2) Yyvz B(x, y) — Fz A(y, z)

and the chase of query
ans(x) - A(x, y)
with them will not terminate

ans(x) - A(x, y), B(y, 2)
— ans(x) - A(x, y), B(y, z), A(z, z1)
— ans(x) - A(x, y), B(y, z), A(z, z1), B(z1, z2)

If we refine (d;) by adding the equality “z=3”, the constraints do not satisfy the
stratified-witness property once again, since the process to verify it has not changed.

Nevertheless, the chase with the new constraints terminates.

ans(x) :- A(x, y), B(y, 3)
— ans(x) - A(x, y), B(y, 3), A(3, k)
— ans(x) - A(x, y), B(y, 3), A(3, k), B(k, 3)

The chase terminates here. ®

Termination of Chase with Aya.p

Initially, we will argue that the constraints issued from a single mapping rule do not
cause the chase to diverge, although they introduce at least one cycle in the chase flow
graph that contains at least one J-labelled edge. The two constraints ensuring
soundness and completeness (see section 5.1.1) create such a cycle. However, they
cannot trigger both; when one of them gets applied, the conclusion of the second one
is already in the query. We have, also, seen that several constraints, whose head is a

subset of the constraint ensuring completeness, can be educed. Incorporating these

University of Crete, Computer Science Department

APPENDIX B. TERMINATION OF CHASE 127

constraints may introduce new cycles containing an 3-labelled edge. Nevertheless, the
chase will terminate because each additional constraint can apply at most once,

depending on the order the constraints get applied.
Example B.2: Suppose the mapping rule

Pi(x,), Py, 2) -R(x, ¥, z, ...)

In SWLF it takes the form

P_EXT(x, P, y), P_EXT(y, P5, 2) :-R(x, ¥, z, ...)
The constraints extracted are

(di) vx¥yvzvpvg P_EXT(x, p, y) * P_EXT(y, q, z) » p="P;" * q="P," — 3.. R(x, y, Z,
..)

(ds) WxWyvzv... R(x, y, z, ...) —» Fp3q P_EXT(x, p, y) » P_EXT(y, q, z) » p="P;" *
q="P;"

(di1) VxVyv P_EXT(x, p, y) " p="P;" — 3z3..R(x, ¥, 2, ...)

(d1z) Yyvzvq P_EXT(y, q, z) » q="P," — x3... R(x, ¥, z, ...)

Suppose the query below

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p="P¢", q="P3”

If d; is applied first, the chase ends with the universal plan

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p="P+", q="Py", R(x, y, z, ...)

On the contrary, if d;; (or d;,) is applied first, d; gets applied, too. Then, the universal
plan looks like

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p="P+", q="P2", R(x, y, z’, ...), R(x, ¥, Z, ...)
Alternatively, we may apply d;; and d,,, then d twice and, finally, d; twice.

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p="P+", q="P>", R(x, y, Z), ...), R(X’, ¥, z),
P_EXT(y, q, Z), P_EXT(x, p, y), R(x, y, Z), R(x, y, z)

Giorgos Serfiotis

128 APPENDIX B. TERMINATION OF CHASE

After a number of steps and independently of the order the constraints get applied, the

chase terminates. ®

The conclusion above propagates to any mapping; the constraints extracted
from a single mapping cannot impose an infinite number of chase steps. Obviously,
the number of the chase steps depends on the number of RVL clauses appearing in the
left-hand side of the mapping, which produce an equal number of constraints. The
previous example along with other ones led us to the conclusion that whenever
possible, first the constraints of the form d, then those of the form d; and finally those
of the form d;; should be applied in order to reduce the number of the chase steps.

Now, we will extend our reasoning in order to comprise the interaction
between the constraints originating from different mappings. The fact that all class
(property) extents are expressed using a single predicate renders the emergence of
cycles containing 3-labelled edges very possible in the chase flow graph. However,
notice that the variables corresponding to the class (property) names in the C_EXT
(P_EXT) predicates are always assigned to a constant in the query and the mappings

and, consequently, the constraints. Therefore, given a chase sequence of the form

C_EXT(¢,x)——>.—%>. . —% 5C EXT(c,,y)

or

P_EXT(x,p,y)—3—>..—% 5. .—% 5P EXT(x\p,,p)
and in order to have an infinite number of chase steps, the equality ¢;=c; (p;=p,) must
stand.

Having this in mind, we can use the following technique to test the constraints
for stratified-witness: for every distinct value of the class (property) name in the
extent predicates we introduce a “virtual” predicate; the chase flow graph is built
using the “virtual” predicates and not the C_ EXT and P EXT ones. For example, the
predicate P_ EXT(x, creates, y) is handled in the chase flow graph as creates(x, y).
This trick we use is not as arbitrary as it seems; in fact it is the opposite procedure
from the one taking place when translating the RVL clauses into SWLF. Testing
dependencies for stratified-witness using this technique overcomes the inability of

exploiting the values of the class (property) names in the C_ EXT (P_EXT) predicates.

Example B.3: Suppose the mappings

University of Crete, Computer Science Department

APPENDIX B. TERMINATION OF CHASE 129

P_EXT(x, creates, y) :- Artifacts(y, x, Exhibited, Year)
P_EXT(x, isDated, x) :- Artifacts(x, Artist, Exhibited, y)

If, after translating them into constraints, we test the latter for stratified-witness, the
result will be negative; there are cycles containing at least one 3-labelled edge. If,
however, the aforementioned trick is used, the “altered” constraints satisfy stratified-

witness and we are able to recognise that the chase terminates. ®

Although the technique above allows us to overcome the fact that the check
for stratified-witness cannot handle the values in the C_EXT and P_EXT predicaets,
there are still cases that the check cannot identify as terminating due to not handling
values assigned to variables. Nevertheless, the fact that the constraints are extracted
from the mappings using a standard procedure allows a very important observation:
the chase with 4,4, always terminates! We will argue for this observation based partly
on intuition.

Since all constraints have on one side C_ EXT (P_EXT) predicates and on the
other relational predicates, every infinite chase sequence, if there could exist one,
should introduce infinite C_EXT (P_EXT) predicates. Moreover, the constraints
creating an “3J-cycle” in the chase flow graph are of even number. We will show why
there cannot be an infinite number of chase steps when two constraints create a cycle
in their chase flow graph using general examples. The same proof procedure can be

used when four or more constraints create such a cycle.

Example B.4: We will first consider the case where the cycle results in an infinite
number of C_EXT predicates. For this to happen the constraints creating the cycle

should look like

\7/0 \7/X C_EXT(C, X) A C:“C!,_) 3}/ R(X’ y,)
vy R(X, y, ...) — Jc C_EXT(c, y) A c=“C”

If these were not constraints extracted from mappings the chase of query
ans(x) - C_EXT(C, x)
would diverge:

ans(x) :- C_EXT(C, x), R(x, y, ...), C_EXT(C, y), R(y, y, ...), C_EXT(C, y), ...

Giorgos Serfiotis

130 APPENDIX B. TERMINATION OF CHASE

However, the above two constraints imply the existence of the following mapping

rules”’

C EXT(C, x) -R(x, y, ...)
C_EXT(C, x) - R(y, x, ...)

The constraints that would be given as input to the chase algorithm would be

vevx C_EXT(6, X) A 0='C" = (¥ R(X ¥,) v(H R X, ...)
Yx vy R(x, y, ...) — 3¢ C_EXT(c, y) A c=“C”
X Vy R(X, v,) — T C_EXT(C, X) AC=“C”

These constraints violate the stratified-witness, too. All the same, the chase would

terminate yielding the universal plan

ans(x) - C_EXT(C, x), R(x, y, ...), C_EXT(C, y)
v ans(x) :- C_EXT(C, x), R(y, x, ...), C_LEXT(C, y) m

Example B.5: Now, let’s study study the case where the cycle containing the 3-
labelled edge involves P_EXT. Two constraints that would result in an infinite

number of chase steps are

vxvp vy P_EXT(X, p, y) A p="P1"— Z R(x, , 2, ...)
YWy vz R(X, y, z, ...) = 3o P_EXT(y, p, 2) A p="P7”

Imagine the query
ans(x) :- P_EXT(x, P4, y)
Its chase with the constraints above would diverge

ans(x) - P_EXT(x, P4, y), R(x, v, z, ...), P_EXT(y, P;, z), R(y, z, Zz,, ...), P_EXT(z, P4,

zZ), ...

However, in SWIM the above constraints entail the existence of two mappings. The

first constraint could imply the mapping

" To be more accurate, the 1% mapping rule could have additional predicates in its body. We will

examine such a case in the following example.

University of Crete, Computer Science Department

APPENDIX B. TERMINATION OF CHASE 131

P_EXT(x, Py, y), P_EXT(y, Py, y) -R(x, ¥, 2, y, ...)
The second one implies the mapping

P_EXT(x, P, y)-R(z,x, v, y, ..)

These mappings introduce the constraints

Pxvp vy vy’ P_EXT(X, p, y) A p="P:" A P_EXT(y, q, ¥) A q="P,"— FZz R(x, y, z, ¥,
...)

Wxvp vy P_EXT(X, p, y) Ap="P:"— (723’ R(x, ¥, z, ¥, ...)) v (723’ R(z, X, y, ¥, ...))
Wwyqvy P_EXT(x, q, y) A q="P.,"—> Fz3' R(z, x, y’, y, ...)

vxvyvzvy' R(x, y, z, y, ...) = 3pdq P_EXT(x, p, y) A p="Ps" A P_EXT(y, q, y) A
q="P;"

WxWVyVzR(x,y, z, y, ...) = Ip3q P_EXT(y, p, z) » p="P;”

Let’s see the effect of the above constraints on query
ans(x) :- P_EXT(x, P4, y)
It will chase to the universal plan

ans(x) - P_EXT(x, Py, y), R(x, y, z, ¥, ...), P_EXT(y, Ps, y), P_EXT(y, P4, z)
v ans(x) .- P_EXT(x, P1, ¥), R(z, x, y, ¥, ...), P_EXT(z, P;, x), P_EXT(x, P2, ¥

Once more the chase terminates. ®

Likewise, the chase with any set of constraints extracted from RDB—RDF mappings

can be shown not to diverge. Thus, the following proposition is educed.
Proposition B.2: The chase with 4,4, terminates. ®

The key point behind the termination of chase is the standard procedure for
interpreting the mappings as constraints, and more specifically, the use of disjunction
for constraints having the same head (of RVL clauses). It is the disjunction that
prevents the constraints that create a cycle with an 3-labelled edge to be applied both
on the same conjunctive query.

The termination of the chase given 4,4, is a very powerful condition, which

encompasses cases that will rarely rise in real publishing scenarios. Consider Example

Giorgos Serfiotis

132 APPENDIX B. TERMINATION OF CHASE

B.5. It presupposes a relation R(a;, a,, a3, ...) where both the pairs <a;, a,> and <a,,
a;> instantiate the property P;. Moreover, the relational attributes a;, a; and a; must

correspond to the same classes, since a, instantiates both the domain and range of P!

University of Crete, Computer Science Department

Appendix C

BNF Grammar for Datalog

[11 PROGRAM ::= FACTLIST RULELIST QUERY
[2] FACTLIST ::= FACT FACTLIST
|
[3] FACT ::= CLASS_FACT
| PROP_FACT
| CSUB_FACT
| PSUB_FACT
[4] CLASS_FACT ::= “CLASS(* CONSTANT *)" “.”
[5] PROP_FACT ::= “PROP(* TRI_CONSTANT)" *.”
[6] CSUB_FACT ::= “CSUB(“ DBL_CONSTANT)" .”
[71 PSUB_FACT = “PSUB(“ DBL_CONSTANT “)" *”
[8] TRI_CONSTANT ::= CONSTANT “,” CONSTANT "
CONSTANT
[9] DBL_CONSTANT ::= CONSTANT “,” CONSTANT
[10] RULELIST ::= RULE RULELIST

133

134

APPENDIX C. BNF GRAMMAR FOR DATALOG

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

RULE ::= HEAD “:-” SQBODY

HEAD = “CEXT(* CONSTANT “,” VARIABLE
“)”
| “PEXT(* VARIABLE “,” CONSTANT
“,!1 VARlABLE “)!!

SQBODY = SQITEM

| SQITEM “,” SQBODY

SQITEM ::= RELATION

| COMPAR

| FUNCTION
RELATION ::= CONSTANT “(* REL_LIST “)”
REL_LIST == VARIABLE

| VALUE

| VARIABLE “,” REL_LIST
| VALUE “” REL_LIST

FUNCTION ;= CONCAT_F

CONCAT_F ::= “myConcat(” VARIABLE “,”
MIXED_CONCAT “”
MIXED_CONCAT “)”

MIXED_CONCAT := VARIABLE
| VALUE

University of Crete, Computer Science Department

APPENDIX C. BNF GRAMMAR FOR DATALOG

135

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

REL_LIST := VARIABLE
| VALUE
| VARIABLE “” REL_LIST
| VALUE “” REL_LIST

VALUE = STRING_VALUE
| NUMBER

QUERY = Q_HEAD “-* Q_BODY “.”

Q_HEAD = “QUERY(’ VARIABLE_LIST *)’

VARIABLE_LIST ::= VARIABLE

| VARIABLE “,” VARIABLE_LIST

Q_BODY = QITEM
| QITEM “” Q_BODY

QITEM ::= COMPAR
| “PROP(’ TRP_PROP)’
| “C_SUB(’ DBL_CSUB *)’
| “C_EXT(’ DBL_CEXT *)”
| “P_SUB(’ DBL_PSUB)’
| “P_EXT(TRP_PEXT)’

COMPAR = EQUALITY

EQUALITY == VARIABLE “=" VALUE
| VARIABLE “=" VARIABLE

TRP_PROP = VARIABLE “,” CONSTANT *”

Giorgos Serfiotis

136 APPENDIX C. BNF GRAMMAR FOR DATALOG
VARIABLE

[30] DBL_CSUB = VARCONST “” VARCONST

[31] DBL_CEXT ::= VARCONST “,” VARIABLE

[32] DBL_PSUB := VARCONST “” VARCONST

[33] TRP_PEXT := VARIABLE “,” VARCONST *”
VARIABLE

[34] VARCONST := VARIABLE
| CONSTANT

University of Crete, Computer Science Department

