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Abstract 

 

A cornerstone issue in the realisation of the Semantic Web (SW) vision is 

the achievement of semantic interoperability among legacy data sources 

spread worldwide. In order to capture information semantics in a machine 

processable way, various ontology-based formalisms have been recently 

proposed (e.g., RDF/S). However, the vast majority of existing legacy data 

is not yet in RDF/S or any other SW language. As a matter of fact, most of 

the data is physically stored in relational database (RDB) systems and published on 

the Web as XML. 

SW applications, however, require to view data as virtual RDF, valid instance 

of a domain or application specific RDF/S schema, and to be able to 

manipulate them with high-level query languages, such as RQL. Therefore, we 

propose a middleware system that allows querying RDB data using RQL. 

So, our work focuses on specifying a first-order logic encoding for RDF, 

namely SWLF, along with constraints preserving RDF/S semantics that will allow 

specifying RDB to RDF mappings, composing RQL queries with these mappings - 

thus, producing RDB queries (a.k.a query reformulation) - and performing semantic 

query optimisations. 

In particular, we focus on RQL query containment and minimisation. By 

employing minimisation (optimisation) techniques we may reduce the requirements in 

time and space, which are two very valuable resources when managing queries, 

especially over distributed systems, in order to answer a query. The optimisation 

removes RQL query redundancy (by taking advantage of the RDF/S constraints) and 



 

 

redundancy of the reformulated query (by exploiting constraints of the underlying 

RDB and other). 
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Βελτιστοποιώντας και Αναδιατυπώνοντας RQL 

Επερωτήσεις στο Σηµασιολογικό Ιστό 
 

Γεώργιος Σερφιώτης 

 

Μεταπτυχιακή Εργασία 

 

Τµήµα Επιστήµης Υπολογιστών, Πανεπιστήµιο Κρήτης 

 

Περίληψη 

 

Ο θεµέλιος λίθος για την πραγµατοποίηση του οράµατος του Σηµασιολογικού 

Ιστού είναι η επίτευξη της σηµασιολογικής διαλειτουργικότητας µεταξύ υπαρχόντων 

πηγών δεδοµένων σε οργανισµούς ανά τον κόσµο. Με στόχο την περιγραφή της 

σηµασιολογίας των πληροφοριών µε ένα µηχανικά αντιληπτό τρόπο, διάφοροι 

φορµαλισµοί βασισµένοι σε οντολογίες έχουν πρόσφατα προταθεί (π.χ., RDF/S). 

Παρόλα αυτά, η µεγάλη πλειοψηφία των υπαρχόντων δεδοµένων δεν είναι ακόµα σε 

µορφή RDF/S ή άλλης γλώσσας του Σηµασιολογικού Ιστού. Για την ακρίβεια, τα 

περισσότερα δεδοµένα είναι αποθηκευµένα σε σχεσιακά συστήµατα βάσεων 

δεδοµένων (RDB) και δηµοσιευµένα στον Παγκόσµιο Ιστό ως XML. 

Παρόλα αυτά, οι εφαρµογές του Σηµασιολογικού Ιστού απαιτούν να βλέπουν 

τα δεδοµένα ως εικονική RDF, έγκυρο στιγµιότυπο ενός RDF/S σχήµατος 

καθορισµένου πεδίου ή εφαρµογής, και να µπορούν να τα χειρίζονται µε υψηλού 

επιπέδου γλώσσες επερώτησης, όπως η RQL. Εποµένως, προτείνουµε ένα σύστηµα 

διαµεσολάβησης το οποίο επιτρέπει την επερώτηση σχεσιακών δεδοµένων 

χρησιµοποιώντας RQL. 

Γι’ αυτό, η δουλειά µας εστιάζεται στον ορισµό µίας λογικής κωδικοποίησης 

πρώτης τάξης για την RDF – την SWLF – µαζί µε περιορισµούς που διατηρούν τη 

σηµασιολογία της RDF/S. Τα παραπάνω θα επιτρέψουν τον καθορισµό 

αντιστοιχήσεων µεταξύ του RDF/S και του σχεσιακού σχήµατος, τη σύνθεση των 

RQL επερωτήσεων µε αυτές τις αντιστοιχήσεις – παράγοντας σχεσιακές επερωτήσεις 

(αναδιατύπωση επερωτήσεων) – και τη βελτιστοποιήση επερωτήσεων. 



 

 

Ιδιαίτερη έµφαση δίνεται στον εγκλεισµό και στην ελαχιστοποίηση των RQL 

επερωτήσεων. Χρησιµοποιώντας τεχνικές ελαχιστοποίησης (βελτιστοποίησης) 

µπορούµε να µειώσουµε τις απαιτήσεις για την απάντηση επερωτήσεων σε χρόνο και 

χώρο, οι οποίοι είναι πολύτιµοι πόροι, ιδιαίτερα πάνω από κατανεµηµένα συστήµατα. 

Η βελτιστοποίηση εξαλείφει τους πλεονασµούς τόσο από τις RQL επερωτήσεις 

(εκµεταλλευόµενη τους RDF/S περιορισµούς) όσο και από τις αναδιατυπωµένες 

επερωτήσεις (εκµεταλλευόµενη τους περιορισµούς τις σχεσιακής βάσης δεδοµένων). 
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Chapter 1   

Introduction 
 

Integration is one of the most pressing and expensive problems faced today by 

companies and organisations maintaining a multitude of legacy databases – usually 

relational databases – and corresponding applications. These systems usually contain 

valuable information and are often still good for supporting specific tasks. 

Unfortunately, the information they contain cannot be leveraged by other systems 

without considerable effort. 

 Until recently, the most common solution to integration was the field to field 

mapping, where schemas from two data sources are imported and fields are mapped to 

each other. However, this solution has many drawbacks. First of all, it presents 

scalability problems, because the number of mappings increases exponentially with 

the number of sources. Moreover, the maintenance and evolution of the mappings is 

very demanding; each change in one source reflects in all corresponding mappings. 

Furthermore, the definition of the mappings presupposes that the person responsible is 

familiar with both sources, which usually is not the case. 

 A first attempt to overcome these problems was made by moving towards 

XML, in order to take advantage of a universal data encoding when integrating legacy 

systems in the Web. However, XML does not capture the contextual meaning 

(semantics) of the data. Therefore, organisations and companies have started moving 

towards semantic technologies; data sources get mapped to domain ontologies, which, 

defined using ontology languages, describe the concepts of the domain and the 

relationships between them, i.e. the domain’s semantics. Ontologies enable 

communication between computer systems in a way that is independent of the 

individual system technologies, information architectures and applications. Moreover, 

by adopting ontology languages that describe semantics in a machine processable way 

– like RDF/S ([MM04]) and OWL ([HM04]), legacy systems can get integrated in the 

Semantic Web ([SW01]). 

 There exist two approaches to semantic integration: data warehousing and on-

demand integration. In data warehousing all data of the legacy source get translated 
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into data of the language describing the ontology as soon as the mapping procedure is 

completed. However, if we take under account the size of legacy databases in 

companies and organisations, this approach is often very expensive. Moreover, it 

demands constant synchronisation of the data produced with the database. On the 

contrary, on-demand integration can prove very useful, because the translation of the 

whole database is not needed. Each time a query is posed on the global (domain) 

ontology, data are collected from the integrated sources dynamically and outputted as 

virtual data of the ontology language. 

On-demand integration presupposes a SW integration middleware (SWIM) 

that will allow users to: (a) specify correspondences (mappings) between RDB (and 

XML, since a lot of relational sources publish their data as virtual XML) sources and 

mediated RDF/S schemas, (b) verify that these mappings conform to the semantics of 

the employed schemas, (c) reformulate RQL queries against the underlying relational 

or XML sources using the mappings, (d) employ in the queries RVL views, (e) check 

queries for containment, and (f) perform query optimisations. 

Lack of background work on query optimisation and reformulation for RQL or 

any other RDF/S query language, the challenge is to find a way to reduce the above 

problems into equivalent ones that can exploit already existent knowledge. The 

current thesis tries to reveal certain aspects of a SWIM, as well as the necessary 

decisions taken in order to make it feasible. 

 

1.1 Motivating Examples 

Suppose that there exists a relational database holding information about artefacts, 

like their title, creator and exhibition place (bottom part of Figure 1-1). Normally this 

data can be queried using SQL. But now, assume an RDF/S cultural schema, part of 

which is shown at the top of Figure 1-1. Then, RQL and RVL can be used to query 

this mediated schema and define views over it. For example, the query 

SELECT Y 

FROM  {X}creates{Y} 

returns the URIs of artefact (including painting and sculpture) resources created by 

some artist (perhaps painter or sculptor). 
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Figure 1-1: Mediation scenario: Publishing RDB as RDF 

  

However, this RQL query cannot be answered directly, since there are no 

actual data; the RDF/S layer is virtual. Therefore, a middleware is needed that will 

reformulate the RQL query into an SQL one based on the relationships between the 

relational and the RDF/S schema. A formal way to express such relationships is the 

use of mappings from RDB to RDF. Such a reformulation procedure could rewrite the 

RQL query to the following SQL query 

 

SELECT a.Title 

FROM  Artifacts a 

WHERE a.Kind=“Painting” 

UNION 

SELECT a.Title 

FROM  Artifacts a 

WHERE a.Kind=“Sculpture” 
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Figure 1-2: On the fly creation of RQL query 

 

 A similar case is the reformulation of RQL queries to XML queries when a 

virtual RDF/S schema is positioned on top of an XML repository. 

Additional functionality like semantic optimisation of the RQL queries can 

prove very profitable in several cases and should be incorporated in such a 

middleware. Although RQL queries written by humans rarely contain any 

redundancy, this is not the case with machine-generated queries. Take for example the 

graphical RQL interface presented in [ACK04] that generates on the fly queries for 

the Semantic Web. Such a tool can be used for creating RQL queries through 

navigating on an RDF/S schema, virtual or not. 

 Look at Figure 1-2. While navigating through the properties of the RDF/S 

schema of Figure 1-1, we select property “creates”. This choice generates the query 

SELECT X, Y 

FROM  {X}creates{Y} 

that returns the extent of property “creates”, i.e. all artists and the artefacts they have 

created. If for some reason we decide to refine our query by selecting the property 

“paints”, a new query returning both the extents of “creates” and “paints” is produced. 

However, this conjunction is redundant. It is obvious that 

SELECT X, Y 

FROM  {X}paints{Y}, {X}creates{Y} 
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is equivalent to 

SELECT X, Y 

FROM  {X}paints{Y} 

Although this tool for graphically generating RQL queries captures this redundancy 

and minimises the query, there is a fragment of RQL it cannot handle. To be more 

accurate this tool generates and minimises queries that belong to the fragment of RQL 

where queries are built on extended interpretations of classes1 (and/or properties) and 

ask exclusively for data information. Therefore, it does not handle queries containing 

proper interpretations, like 

SELECT X 

FROM  {X}^paints{Y}, {X}creates{Y} 

Additionally, even for the RQL fragment it handles, no theorem has been proved 

stating that the minimised queries are minimal, i.e. cannot get further minimised. 

Moreover, with the widespread use of the Semantic Web more graphical tools 

are expected to appear. Some of them may not offer optimisation services.  Therefore, 

a framework that will allow minimising declarative RDF/S queries, such as RQL, is 

welcome, too. 

 

1.2 Introducing the Semantic Web Integration Middleware 
(SWIM) 

The previous examples made obvious the need for a Semantic Web integration 

middleware (SWIM) that will facilitate users to evaluate queries against virtual 

RDF/S schemas and will offer them optimisation services.  

The selection of a framework that will treat the above problems uniformly is 

crucial. The specification of the mappings along with the ability to exploit well-

established techniques for query reformulation and optimisation leads to the 

adaptation of a logic framework based on Linear Datalog, which has a straightforward 
                                                 
1 A class’ (property’s) proper interpretation refers to the direct instances of the class (property). On the 

contrary, its extended interpretation refers to the direct instances of itself and of its subclasses 

(subproperties). 
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correspondence to the relational theory. The goal is to reduce the RQL to SQL and 

RQL to XQuery (XPath) reformulation problems to relational equivalents and reuse 

existing methods and results on relational query minimisation and reformulation. 

In order to make feasible such a reduction, a relational representation of the 

RDF/S model has been incorporated in SWIM, based on which the virtual RDF/S 

schemas get translated into Datalog facts and the RDB to RDF mappings into Datalog 

rules. Using this information along with a set of predefined constraints capturing the 

semantics of RDF/S, the containment, minimisation and reformulation problems can 

be solved. The algorithms used to solve the problems are the chase and backchase 

[Deu02], which guarantee that both the RQL queries and the reformulated SQL ones 

can be minimised. 

The current thesis addresses the RDF to RDB aspects of SWIM. The XML 

aspects are the subject of [Kof05]. 

 

1.3 Organisation 

In the previous sections we introduced the problems that will concern us 

throughout this thesis and gave some motivation for our concern and an overview of 

the middleware whose functionality depends on solving these problems. The rest of 

the thesis is organised as follows: 

Chapter 2 introduces the typical RDF data model as well as the data model of 

RQL and RVL, RDF’s querying and view definition languages, respectively. Special 

attention is given on their semantics.  

Chapter 3 presents the internal logical framework adopted in the SWIM 

middleware. The first-order (relational) relations and constraints used to capture the 

RDF data model and semantics are analysed. Then, the differences between the RDF 

semantics and the semantics captured by the logical framework are presented. Finally, 

the translation of (unions of) conjunctive RQL queries, namely RQLUCQ, and RDF/S 

schemas into the internal logical representation is illustrated. 

Chapter 4 is the building block of this thesis. It defines the problems of 

RQLUCQ containment and minimisation and presents the algorithms used to deal with 

them. These problems are translated to equivalent relational ones and solved using the 
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chase and backchase algorithms. Additionally, a fragment of RQLUCQ, namely 

RQLCORE, is defined for which the above problems are usually solved easier. 

Chapter 5 describes the whole reformulation process that starts with an 

incoming RQLUCQ query and outputs equivalent reformulated SQL queries ready to 

be executed. 

Chapter 6 presents SWIM’s architecture. One by one the components forming 

it are described and the choices made are justified. Moreover, relative systems and 

works are compared to SWIM. 

Chapter 7 discusses some issues that deserve further investigation and, then, 

summarises this thesis. 
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Chapter 2  

The Resource Description Framework 
(RDF) 
 

RDF constitutes part of the activity coordinated by the World Wide Web Consortium 

(W3C). It is a general-purpose language for representing and exchanging descriptive 

information about web resources over the World Wide Web, e.g., metadata about 

those resources, like titles, dates, and authors of Web pages. The challenge is to 

enable the resource descriptions in a formal, interoperable, and humanly readable way 

via appropriate languages, without making any assumption about the application 

domain or the structure of the described information resources. 

 

2.1 RDF: Model, Schema and Semantics 

In RDF the concept “web resource” is generalised in order to capture anything that 

can be identified and not necessarily information resources that can be accessed on 

the Web. Every web resource is given a unique web identifier called Universal 

Resource Identifier or URI2 ([CK04]) and gets described using simple statements. A 

statement consists of a specific resource along with a property and the property’s 

value, called subject, predicate and object, respectively. For example, in a sentence 

stating that “Pablo Picasso painted Guernica”, the URI referring to Pablo Picasso is 

the subject, the one referring to the property “painted” is the predicate and the value 

“Guernica” is the object. All statements about a specific resource form its description. 

There are three ways to represent RDF statements ([MM04]): i) using triples, ii) 

using directed labelled graphs ([CK04]) and iii) using XML syntax ([Bec04]). In the 

triples notation each statement is written as a triple of subject, predicate and object, in 

that order. Alternatively, RDF statements can be modelled as nodes and arcs in a 

graph. According to this notation a statement is represented by one node for the 

subject, one for the object and an arc for the predicate directed from the subject to the 
                                                 
2 See http://www.w3c.org/Addressing 
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object. Note that when using the graph model each resource corresponds to just one 

node; if it appears in more than one statement, all property arcs connect to the same 

node. 

 

 

Figure 2-1: A simple statement's representations 

 

To exchange RDF statements in a machine-processable way the Extensible 

Markup Language ([BMPS00]), known under the acronym XML, is used; the specific 

XML dialect defined is called RDF/XML. The RDF/XML representation of 

statements is not necessarily unique; some statements can be modelled using more 

than one XML encodings. This is mainly due to the fact that properties can be 

modelled both as XML attributes and XML elements and to the fact that predicates 

may be nested or not. Figure 2-1 illustrates the three different representations for the 

example statement stated previously. Notice that in all the above representations the 

resources appear with their URI. 

Each RDF statement consists, as previously stated, of a subject, a predicate and 

an object. Although, the subject is always a URI reference to the resource being 

described (drawn as an oval in the graph representation) and the predicate is always a 

URI reference to a property, the object is either another URI reference, case of Figure 

2-1, or a literal (drawn as a rectangle in the graph representation), case of Figure 2-2. 
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Literals are simple strings either combined with a datatype URI (typed literals) or not 

(plain literals). Depending on the object’s type, the predicate’s correspondence is 

straightforward to a relation or an attribute. 

 

 

Figure 2-2: Statement example with literal as object 

 

Moreover, people sometimes want to express statements about a collection of 

resources or literals. RDF supports three types of containers to make references to 

collections, namely bags, sequences and alternatives, where each container is itself an 

RDF resource. A bag represents a multi set of values, a sequence represents an 

ordered list of values and an alternative represents a group of resources (or literals) 

that are alternatives for a property’s single value. 

A very useful feature of RDF is the ability to use shorthands instead of full URI 

references in the triples representation. This way the space needed for writing the 

triples reduces significantly. Having in mind that a full URI reference is formed by a 

URI namespace and a local name, when a shorthand is used, a prefix is assigned to the 

URI namespace and the local name gets appended to it. The use of shorthands extends 

to the RDF/XML representation, too. Observe the example in Figure 2-1ii where four 

prefixes are introduced. 

 

2.1.1 RDF Schema 

Having seen how statements are formed and how they are represented, the next step is 

to find out how the vocabularies of terms employed by those statements are defined; 

i.e. how to describe the different classes of resources and the properties used to define 

resources and their values. RDF does not provide by default descriptions of 

application-specific classes (e.g. Painter) and properties (e.g. paints3); however, it 

provides the means needed to describe such classes and properties. These means form 

                                                 
3 By convention in this thesis class names start with uppercase and property names with lowercase. 
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on their own an RDF vocabulary, i.e. a specialised set of predefined resources, 

referred to as RDF Schema ([BG04]). This vocabulary is found at 

“http://www.w3c.org/2000/01/rdf-schema#”, which by convention is associated to 

prefix rdfs. In other words the RDF Schema provides a type system for RDF. 

 The basic notion found in RDF Schema is class that corresponds to the generic 

concept of Type or Category. The resources rdfs:Class, rdfs:Resource and the 

properties rdf:type, rdfs:subClassOf are used for describing classes: 

• Every resource that has as value of the property rdf:type the resource rdfs:Class is 

a class according to RDF Schema. 

• The property rfd:type is used to state that a resource is an instance of another 

resource. 

• The property rdfs:subClassOf allows defining class specialisations; its meaning is 

that every instance of a class’ specialisation is, also, an instance of the original 

class. 

The other basic RDF element that allows describing and characterising classes 

is property. In RDF Schema properties are described using the RDF Schema class 

rdf:Property and the RDF Schema properties rdfs:domain, rdfs:range and 

rdfs:subPropertyOf. 

• Every resource that has as value of the property rdf:type (is an instance of) the 

class rdf:Property is a property according to RDF Schema. 

• The property rdfs:domain is used to indicate on which class’ instances a specific 

property is applied. 

• The property rdfs:range is used to indicate that the values of a particular property 

are either given by a typed literal or instances of a designated class. 

• The property rdfs:subPropertyOf allows defining property specialisations; its 

meaning is that every instance of a property’s specialisation is, also, an instance of 

the original property. 

Another characteristic of RDF is that properties are defined independently of 

class definitions and have, by default, global scope (i.e. may apply to all classes), 

unless domain specifications are explicitly stated. Moreover, properties can have 

multiple domain and range definitions. However, they cannot have locally different 

ranges depending on their domains; any range applies to all domains of the property. 
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There is, also, a number of other RDF Schema built-in properties that can be 

used to provide documentation and other information about an RDF schema or about 

instances, like rdfs:comment, rdfs:label, rdfs:seeAll, rdfs:isDefinedBy and 

rdfs:seeAlso. 

Generally speaking, the statements forming an RDF schema provide additional 

descriptive information about resources. 

 

2.1.2 RDF Semantics 

As discussed in the previous sections, RDF is intended to be used for expressing 

statements about resources in the form of a graph, using specific vocabularies (URIs 

of resources, names of properties, classes, etc.). In order to serve this purpose, the 

meaning of an RDF graph must be defined in a formal way that will allow 

determining with mathematical precision the conclusions that machines can draw 

from a given RDF graph. The model theory described in the RDF Semantics ([H04]) 

is used to define this formal meaning, i.e. specify the formal semantics of RDF/S4. 

The RDF Schema’s semantic extensions to the RDF language are defined in the RDF 

Semantics, too. 

 A model theory assumes that the language refers to a world and describes the 

minimal conditions that a world must satisfy in order to assign an appropriate 

meaning for every expression in the language. A particular world is called an 

interpretation, thus a model theory can be better called “interpretation theory”. 

 The exact definitions of the RDF and RDFS interpretations can be found in 

[Hay04]. Based on these interpretations several axiomatic rules are defined and 

several RDF axiomatic triples are considered. For example, the condition stating 

when a resource is a property, as seen in subsection 2.1.1, is an RDF axiomatic rule, 

while [<rdf:type> <rdf:type> <rdf:Property>] is an RDF axiomatic triple. 

 The definition of class and property extension is needed before proceeding 

with presenting some RDFS axiomatic rules. So, a class’ extension is the set of things 

that are in the class and a property’s extension is the set of object-value pairs that 

satisfy the property.  The RDFS axiomatic rules state, between other things, that: 

• The rdfs:subPropertyOf’s extension is transitive and reflexive. 
                                                 
4 Term used as an alternative for both RDF and RDF Schema. 
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• If the triplet [<x> <rdfs:subPropertyOf> <y>] exists, then the extension of x is a 

subset of the extension of y. 

• The rdfs:subClassOf’s extension is transitive and reflexive. 

• If the triplet [<x> <rdfs:subClassOf> <y>] exists, then the extension of x is a 

subset of the extension of y. 

• If [<x> <rdfs:domain> <y>] and [<u> <x> <v>] exist, then u belongs in the 

extension of y. 

• If [<x> <rdfs:range> <y>] and [<u> <x> <v>] exist, then v belongs in the 

extension of y. 

Some RDFS axiomatic triples are shown in Table 2-1. 

 

Table 2-1: RDFS axiomatic triples 

<rdf:type> <rdfs:domain> <rdfs:Resource> 

<rdfs:domain> <rdfs:domain> <rdf:Property> 

<rdfs:range> <rdfs:domain> <rdf:Property> 

<rdfs:subPropertyOf> <rdfs:domain> <rdf:Property>

<rdfs:subClassOf> <rdfs:domain> <rdfs:Class> 

<rdf:type> <rdfs:range> <rdfs:Class> 

<rdfs:domain> <rdfs:range> <rdfs:Class> 

<rdfs:range> <rdfs:range> <rdfs:Class> 

<rdfs:subPropertyOf> <rdfs:range> <rdf:Property> 

<rdfs:subClassOf> <rdfs:range> <rdfs:Class> 

 

2.2 The RDF Query Language (RQL) 

RQL5 ([Kar00]) is a typed declarative query language for RDF. It is defined by a set 

of basic queries and iterators that can be used to build new ones through functional 

composition; it can combine schema paths for executing complicated schema 

navigations; not many languages support this type of queries. However, its major 

innovation lies in its ability to ask queries both on the schema and data levels. It 

                                                 
5 For the complete RQL syntax, formal semantics and type inference rules, readers are referred to the 

RQL online documentation found at: http://139.91.183.30:9090/RDF/RQL/ 
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supports generalised path expressions featuring variables on labels for both classes 

and properties, i.e. nodes and arcs in the graph representation, respectively. Finally, it 

provides set-theoretic operators, allows using XML Schema data types, aggregate 

functions and arithmetic operations on data values. 

 

 

Figure 2-3: Definition of a property with multiple domains 

 

2.2.1 Differences between RDF and RQL Semantics 

RQL relies on a type system that slightly differs from the axiomatic foundation 

adopted by the RDF and RDFS specifications. Moreover, RQL provides additional 

constraints to those offered by RDF Model Theory. More precisely, the RQL type 

system and semantics (i) make a clear distinction between the different RDF/S 

abstraction layers (data, schema and metaschema), (ii) enforce that a property’s 

domain and range are always defined and unique (see Figure 2-3), (iii) do not allow 

the existence of cycles in the class and property hierarchies (defined using the 

rdfs:subClassOf and rdfs:subPropertyOf properties, respectively), (iv) state that the set 

inclusion of the domain and range are preserved for specialised properties (see Figure 

2-4), (v) do not consider literal types as classes, (vi) do not allow the use of typed 

literals in statements in the data layer and (vii) demand that in each statement the 

subject and object resources should be (direct or indirect) instances of the domain and 

range classes of the property, respectively. 

 The first constraint has been introduced to define the appropriate interpretation 

functions that allow passing from one abstraction layer to another. The result of this 

distinction is that (a) a class must be instance of a metaclass of classes (see Figure 

2-5), (b) subsumption relations are not allowed between classes and metaclasses and 
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(c) a metaclass cannot be instance of some other node, since abstraction layers higher 

than the metaschema are not defined. 

 

 

Figure 2-4: Definition of a subproperty not preserving set inclusion of the range 

 

The second constraint has been introduced to clarify the semantics of 

properties since, when the optional declaration of multiple domains and constraints is 

permitted, properties may have as value both resources and literals. This might result 

in semantic inconsistencies, since URIs identify resources, while values identify 

literals. 

The introduction of cycles is, finally, prohibited because they may 

considerably affect the manipulation of already created RDF/S schemas and resource 

descriptions. Moreover, the fourth constraint ensures that the domains and ranges of 

subproperties are subclasses of the ones of their super-properties.  If this constraint is 

not issued, the existence of cycles can indirectly be implied. 

Example 2.1: Figure 2-4 states that d is a subclass of b, which means that every 

instance of class d is an instance of class b. Moreover, it states that p is a subproperty 

of q, which means that the property extent of p is a subset of q’s. This stands only 

when the resources appearing in the property extent of p that are instances of its range 

(and domain), namely b, appear in the property extent of q, therefore, are instances of 

its range (and domain), namely d. Thus, there is a subset bs of b’s extent and a subset 

ds of d’s extent such that every resource in ds is, also, in bs and reversely; a cycle is 

implied. The subset bs encompasses all resources used as objects in statements 

involving the property q.  
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Figure 2-5: Definition of a class as instance of another class 

 

Not considering typed literals at the data layer does not rule out the use of 

types for literals. Since every property must have a unique range defined, the type 

restriction of literals can be provided from the range of the corresponding property. 

 

2.2.2 Basic Queries 

The basic RQL queries constitute the building blocks on which more complicated 

RQL queries are built. They essentially provide the means to access and browse 

through RDF description bases with minimal knowledge of the employed schema(s). 

RQL provides a number of functions (see Table 2-2) in order to navigate through an 

RDF/S schema. For example, the domain and range functions can be used to retrieve 

a property’s definition (its domain and range), while subclassOf and subPropertyOf 

can be used to explore the class and property hierarchies, respectively. 

 Every RDF/S description base can be viewed as a graph, i.e. as a collection of 

nodes and edges. Thus, the basic queries gaining access to the data layer of such 

graphs are formed by the appropriate schema names. 

Example 2.2: The query 

Artist 

returns a bag containing all resources of type Artist, i.e. those resources belonging to 

its class extent.  
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Table 2-2: Function examples 

Basic Query 
Function 

Result 

domain(creates) Returns the domain class of property creates, 

i.e. Artist 

range(creates) Returns the range class of property creates, i.e. 

Artifact 

subClassOf^(Artist) Returns a bag containing the direct subclasses 

of class Artist, i.e. Painter, Sculptor 

subPropertyOf(creates) Returns a bag containing the subclasses of 

property creates, i.e. paints, sculpts 

Namespace(Artist) Returns the namespace where class Artist is 

defined, i.e. http://www.icom.com/schema.rdf 

 

In order to get the proper extent of a class (or property), meaning only the 

nodes (edges) of the graph labelled with the class (property) name, the symbol ‘^’ 

must be used. 

Example 2.3: Likewise, the query 

creates 

returns a bag of ordered pairs of resources belonging to the extended interpretation of 

creates, i.e. its property extent.  

 Note that the schema nodes and edges (i.e. the RDF/S schema) can, also, be 

queried as normal data using metaclass names. The core RDF metaclasses Class and 

Property can be used to retrieve the names of all classes and properties, respectively. 

Other basic query functions are namespace, which can be used to retrieve a 

namespace, standard theoretic set operators (union, minus, intersect), which can be 

applied on collections of the same type and the aggregate functions min, max, avg, 

sum and count. 
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2.2.3 Composite Queries 

RQL supports the SELECT-FROM-WHERE filters in a similar way as they 

appear in SQL queries. The filters combine the basic queries presented above and 

generalised path expressions with variables on nodes and edges to traverse RDF/S 

description graphs at arbitrary depths. 

The result of an RQL filter is an RDF Bag container value on which iterators 

can be defined using nested queries, while ordered tuples can be represented by RDF 

Sequences and be accessed through position indexes. As in SQL queries, the SELECT 

clause states which variables’ values are projected in the result and constructs ordered 

tuples for them. The FROM clause consists of path expressions that define the part of 

the RDF/S graph that will participate in the evaluation of the query. Each path 

expression corresponds to a series of steps. Each step represents movement in a 

particular direction by identifying node labels and can apply one or more predicates to 

eliminate nodes that fail to satisfy a given condition. These filtering conditions are 

declared at the optional WHERE clause. The result of each step is a list of nodes that 

serves as a starting point for the next step. Moreover, the optional clause 

NAMESPACE can be used to define prefixes. 

The generalised path expressions allow navigating throughout (i) the schema, 

(ii) the data, or (iii) both. Furthermore, the path expressions are used to navigate either 

based on classes or properties. The basic RQL path expressions are illustrated in 

Table 2-3 and Table 2-4. Note that all path expressions appear in their general form 

where variables are not assigned to constant values. The same interpretations are used 

when variables are valuated with constants; the only difference is that they get 

extended with the appropriate equalities between variables and constants. More 

variations of the basic path expressions can be created using the symbol ‘^’ on the 

paths used for data and mixed navigation. The examples to follow will illustrate the 

above functionality. 

 

2.2.3.1 Schema Navigation 

The schema navigation involves exploring taxonomies of classes and 

properties using appropriate conditions. Take for example the path expression 

{$C1}@P{$C2} along with the condition @P = p, where $C1 and $C2 are class 
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variables and @P is a property variable. This path allows finding all related schema 

classes for the given property p; $C1 and $C2 iterate over subClassOf(domain(p)) and 

subClassOf(range(p)), respectively. If we want to retrieve all related schema 

properties for a specific class, the path {$C}@P (@P{$D}) along with the condition 

$C = … ($D = …) can be used. For each valuation p of @P, the class variable $C 

($D) ranges over subClassOf(domain(p)) (subClassOf(range(p))); the results are 

filtered and only those properties satisfying the condition for $C ($D) are kept. More 

complex schema navigation can take place by combining the path expressions. 

 

Table 2-3: Basic RQL class path expressions and their interpretation 

Path 

Expression 

Interpretation 

$C {c | c is a schema class} 

$C{$D} {[c, d] | c, d are schema classes, d is a subclass of c} 

$C{X} {[c, x] | c a schema class, x in the extended 

interpretation of class c} 

$C{X; $D} {[c, x, d] | c, d are schema classes, d is a subclass of c, 

x is in the extended interpretation of d} 

 

Example 2.4: The query 

SELECT $D, @P2 

FROM  creates{$D}.@P2 

is equivalent to the query 

SELECT $D, @P2 

FROM  @P1{$D}, {$D}@P2 

WHERE @P1 = creates 

For each valuation of $D based on the first path, the second path gets evaluated.  
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2.2.3.2 Data Navigation 

Sometimes we are interested in browsing RDF description bases without taking into 

account the domain and range restrictions imposed by schema properties. This is the 

case data navigation is used. There are a number of generalised path expressions that 

can be used for this kind of navigation. For example, the path $C{X} along with the 

constraint $C = c can be used to retrieve the extended interpretation (extent) of a 

specific class c. Likewise, the path {X}@P{Y}, @P = p retrieves the extended 

interpretation of the given property p. Like in schema navigation, the path expressions 

can be combined creating complex queries. 

 

Table 2-4: Basic RQL property path expressions and their interpretations 

Path Expression Interpretation 

@P {p | p is a schema property} 

{$C}@P{$D} {[c, p, d] | p is a schema property, c, d are schema classes, c is 

a subclass of p’s domain, d is a subclass of p’s range} 

{X}@P{Y} {[x, p, y] | p a schema property, [x, y] in the extended 

interpretation of p} 

@P{Y; $D} {[p ,y, d] | p is a schema property, d is a schema class, d is a 

subclass of p’s range, y is in the extended interpretation of d, 

∃x [x, y] is in the extended interpretation of p} 

{X}@P{$D} {[x, p, d] | p is a schema property, d is a schema class, d is a 

subclass of p’s range, ∃y in the extended interpretation of d, 

[x, y] is in the extended interpretation of p} 

{X; $C}@P{Y; $D} {[x, c, p, y, d] | p is a schema property, c, d are schema classes, 

c is a subclass of p’s domain, d is a subclass of p’s range, x is 

in the extended interpretation of c, y is in the extended 

interpretation of d, [x, y] is in the extended interpretation of p} 

 

Example 2.5: The RQL query 

SELECT X, Y 

FROM  Painter{X}.creates{Y} 
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which is equivalent to 

SELECT X, Y 

FROM  $C{X}, {X}@P{Y} 

WHERE $C = Painter and @P = creates 

is a complex query example.  

When the paths used for data navigation get extended with the use of ‘^’, only 

proper interpretations of classes (properties) are considered. 

Example 2.6: In order to catch the proper interpretations the last example gets 

rewritten as 

SELECT X, Y 

FROM  ^Painter{X}.^creates{Y}  

 

2.2.3.3 Mixed Navigation 

RQL allows the combination of schema and data filtering and navigation through the 

use of mixed path expressions. Thus, queries like the one in the following example 

can be posed. 

Example 2.7: The query 

SELECT * 

FROM  {X; $C}creates{Y} 

returns the extended interpretation (extent) of property creates while, at the same 

time, iterates through the subclasses of the domain of creates so that X is in the 

extended interpretation of one of them.  

 

2.3 RDF View Language (RVL) 

RVL ([Mag03]) is a view definition mechanism for the Semantic Web. We choose to 

support it in our system in order to handle RDF/S views defined for personalisation 

reasons on top of other RDF/S schemas. People may not always be interested on the 
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global virtual RDF/S schema; therefore, define RVL views over it. Since RQL queries 

can be posed on the RVL views, we should be able to check them for containment and 

reformulate them into SQL queries as well. 

RVL is based on the RDF/S data model and takes advantage of the 

expressiveness of RQL. RVL exploits the RQL type system and the abstraction levels 

of an RDF/S graph to specify two operators that are able to support all the necessary 

functionality. This is its most important advantage. 

 Figure 2-6 presents the creation of a virtual RDF/S description schema. 

Typically, an RVL view is defined as a virtual RDF schema consisting of a set of 

class and property definitions and the hierarchies defined between them. Practically, 

an RVL view consists of a set of statements defining parts of the view. A definition 

statement refers to the creation of new virtual (meta)classes/properties, to the reuse of 

a set of (meta)classes/properties, to member attribution to the virtual 

(meta)classes/properties, and to the creation or reuse of subsumption relations 

between classes (virtual or not) using expressions of the view definition language. 

Being a virtual namespace, an RVL view gets distinguished by a unique URI given by 

its creator. This URI constitutes the prefix for the unique identifiers of the virtual 

structures. An RVL view’s definition has the form: 

[VIEW  operator 

FROM  RQL_path_expression 

WHERE filtering conditions 

USING NAMESPACE  root_schema_namespace] 

[……………] 

USING NAMESPACE  root_schema_namespace] 

CREATE NAMESPACE RVL_view_namespace 

The FROM-WHERE-USING NAMESPACE clauses are used exactly as in RQL. From 

the newly imported clauses, VIEW, when used with one of RVL’s operands, creates in 

the virtual schema constructs of the type specified by itself; CREATE NAMESPACE 

defines the URI of the namespace defined for the view, like is done for a schema’s 

namespace, along with a prefix that will be used as shorthand. This prefix can be used 

when defining another view. The VIEW clause is the one that makes the difference 

with RQL; while the SELECT clause is used to define which values will be projected 

as a result, the VIEW clause defines a virtual RDF schema. 
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Figure 2-6: RVL view creation process 

 

The two operators supported by RVL are namely the instantiation and the 

subsumption operators. The instantiation operator is used to state the type of the new 

construct, i.e. whose instance it is. Its general syntax replaces the definition of the 

VIEW clause with “VIEW Symbol(Expression)”. 

Example 2.8: The declaration 

VIEW  rdfs:Class(“Artist”) 

USING NAMESPACE rdfs=“&http://www.w3c.org/2000/01/rdf-schema#” 

is a very simple example of an RVL view defining a virtual class.  

The general form of RVL views with the subsumption operator makes use of 

the VIEW clause: “VIEW Symbol1<Symbol2>”, which states that Symbol2 is a 

subclass (subproperty) of Symbol1. 

Example 2.9: The declaration 

VIEW  Person<Artist> 

is the simplest example of an RVL view of this type.  
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Moreover, the two operators can be combined to form more complex view 

definitions. 

 

2.4 Conclusions 

Concluding this short introduction to Semantic Web technologies, we can say that 

RDF/S disposes an expressive, still simple, model that allows describing metadata 

about web resources, e.g. create hierarchies of classes and properties, and favours 

reusability of existing descriptions. Moreover, RDF/S is serialised in XML, therefore 

native to the Web, and a W3C standard, which ensures its wide acceptance. 

However, without equivalently simple and expressive query and view 

definition languages, RDF/S’ handiness would be limited. RQL and RVL satisfy this 

need as they successfully adopt the model of RDF/S. They allow expressing both 

simple and complex queries and views using syntax similar to SQL, therefore, 

familiar to the majority of users. 





 

 27 

Chapter 3  

Semantic Web Logic Framework (SWLF) 
 

The choice of a logic-based framework is crucial in order to support a Semantic Web 

middleware for optimising and reformulating RQL queries and RVL views. More 

precisely our goal is to establish a framework that will (i) allow reformulating an RQL 

query to an SQL query using RDB→RDF mappings, (ii) allow minimising both the 

RQL queries given as input and the output SQL queries, (iii) consider during the 

reformulations as much information as possible in order to have optimal results – this 

information comes in the form of (integrity) constraints, either for the RDF/S schemas 

or the underlying relational database schemas, and in the form of materialised views, 

either relational or RVL ones – and (iv) provide more fundamental features, like 

checking RQL queries for containment and/or equivalence. 

 While there has been significant amount of research on relational query 

reformulation, there are not many theoretical foundations on RDF/S query 

optimisation and reformulation; specifically for RQL queries, there is no background 

theory at all. Thus, in order to solve our reformulation problem, we come to a 

dilemma; shall we try to make use of existing work on relational query reformulation 

or shall we start from scratch? We opt for the first alternative. Therefore, we adopt 

Linear Datalog, which is a robust formalism, in our Semantic Web Logic Framework 

(SWLF) in order to be compatible with relational theory and to take advantage of the 

capability of logical languages to express relationships in generic ways; the latter is 

indispensable in a semantic integration middleware. So, in SWLF’s context, the 

RDF/S schemas are expressed as Datalog facts and the RDB→RDF mappings, the 

RQL queries and the relational and RVL views are expressed as Datalog rules. 

 

3.1 Datalog Rules 

 This way the RQL reformulation/optimisation problem reduces to the 

relational equivalent. Remember that there is a straightforward correspondence of 

linear Datalog rules and UNION-SELECT-PROJECT-JOIN (USPJ) relational 
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expressions that are the ones of interest to us (we do not consider nesting, order by, 

group by and aggregates). This kind of relational expressions can be seen as unions of 

conjunctive queries. 

Definition 3.1: A query q over a relational schema RS has the form 

( ) ( )
1

: ,
l

i i
i

q x xϕ ψ
=

−U  

where x, ψi are tuples of variables and φi are conjunctions of relational atoms of the 

form R(ω1, ..., ωl) belonging to RS and equality atoms of the form ω=ω’, where ω1, 

..., ωl, ω, ω’ are variables or constants.  

As a result, all available background theory on relational query optimisation 

gets exploited; problems like query containment, query composition, query rewriting 

using views and query minimisation have been proven to be algorithmically solvable 

for the kind of queries that interests us in the presence of certain classes of constraints. 

 

3.2 Constraints 

Constraints play a fundamental role in relational theory. They express relationships 

that must hold between data in relational databases. Thus, they can be used in multiple 

ways for integrity checking – which is how they got their name “integrity 

constraints”, query optimisation via semantics, cooperative answering via semantics, 

database combination in a semantically consistent manner, etc. ([GGGM98]). They 

usually come in the form of (primary) keys, which are functional dependencies6, and 

foreign keys, which are inclusion dependencies. 

 For the RQL containment, minimisation, and reformulation problems we both 

introduce constraints on the relational scenario capturing RDF/S and exploit integrity 

constraints coming from the underlying relational databases. Thus, we consider a 

fairly large class of constraints in SWLF in order to fully take advantage of their 

functionality, namely disjunctive embedded dependencies (DEDs), as were introduced 

in [Deu02]. 

 

                                                 
6 [AHV95] provides an analytical classification of first-order (relational) constraints. 
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Definition 3.2: A disjunctive embedded dependency has the general form 

( ) ( )



 ∃∨→∀

= iii

l

i
xxx ψϕψϕ ,'

1
 

where x, ψi are tuples of variables and φ, φi
’ are conjunctions of relational atoms of 

the form R(ω1, ..., ωl) and equality atoms of the form ω=ω’, where ω1, ..., ωl, ω, ω’ 

are variables or constants; φ may be the empty conjunction.  

The constraints are named DEDs after the classical embedded dependencies 

(EDs) contained when l=1 ([AHV95]). 

The definition of Linear Datalog as the language for representing the RDF/S 

schemas, the RVL views, the RDB→RDF mappings and the RQL queries is strictly 

related to the class of constraints considered. Every Datalog fact and rule gets 

translated into DEDs as will be illustrated later. 

 

3.3 First-order Logic Representation for RDF/S 

SWIM’s logic-based framework (SWLF) should capture RDF/S semantics and 

queries, as well as facilitate the expression of the mappings. Thus, a set of first-order 

relations7 (predicates) is used for representing RDF/S schemas along with a set of 

first-order constraints preserving the RDF/S semantics. 

 

3.3.1 RDF/S Predicates 

Definition 3.3: The first-order schema for describing RDF/S documents is a set R of 

relations, where R={CLASS, PROP, C_SUB, P_SUB, C_EXT, P_EXT}. Each relation 

Ri consists of a set Ai of attributes as shown in Table 3-1. In order to enhance clarity 

three basic types are used forming the set T={resource, property, class}. Each 

attribute Aij has assigned to itself one type Ti.  

The intuition behind the relations is pretty much obvious: 

• CLASS(c) iff c is an RDF/S schema class 

• PROP(c, p, d) iff p is a RDF/S schema property with domain c and range d 
                                                 
7 The terms ‘first-order’ and ‘relational’ are used alternatively. This is possible due to the 

correspondence between relational expressions and first-order logic queries (FOL) as stated in [CM77]. 
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• C_SUB(d, c) iff d is a subclass of c 

• P_SUB(q, p) iff q is a subproperty of p 

• C_EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct instance) 

of c 

• P_EXT(x, p, y) iff the pair (x, y) is in the proper extent (i.e., it is a direct instance) 

of p. 

It should be noted that class extents do not have to be disjoint, i.e., they might 

overlap. The same goes for property extents. 

 

Table 3-1: First-order schema for RDF 

Relation Type 

CLASS Set〈name: Class〉 

C_SUB Set〈subC: Class, class: Class〉 

C_EXT Set〈class: Class, inst: Resource〉 

PROP Set〈subject: Class, predicate: Property, object: Class〉 

P_SUB Set〈subP: Property, prop: Property〉 

P_EXT Set〈subject: Resource, predicate: Property, object: Resource〉 

 

The relations CLASS, PROP, C_SUB and P_SUB are used for representing an 

RDF/S schema and, thus, constitute Datalog facts. On the contrary, the C_EXT and 

P_EXT relations represent the RDF/S resource descriptions and are used in the 

RDB→RDF mapping rules. These mappings populate the C_EXT and P_EXT 

relations, i.e. state how the underlying relational data can be published as RDF data. 

 

3.3.2 RDF/S Constraints 

Although the above predicates capture successfully RDF/S, they provide no 

information about the semantics of RDF/S schemas and resource descriptions; they 

cannot ensure that a valid RDF/S schema is being modelled. Thus, a set of DEDs, 

namely δMod, has been adopted for stating and preserving RDF/S semantics. These 

constraints can be separated in three categories: basic constraints, sub (hierarchy) 

constraints and domain-range constraints. 
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Table 3-2: Basic constraints 

Description Formal Definition 

 Every resource in the extent of a class 

implies the existence of the corresponding 

class 

∀c, x C_EXT(c, x) → CLASS(c) 

 The subclass relationship relates 

classes 
∀c, d C_SUB(d, c) → CLASS(c) ∧ 

CLASS(d) 

 The domain & range of every property 

is a class 
∀c, p, d PROP(a, p, b) → CLASS(a) ∧ 

CLASS(b) 

 The domain & range of every property 

is unique 
∀a, p, b, c, d PROP(a, p, b) ∧ 

PROP(c, q, d) ∧ p = q → a = c ∧ b = d 

 Every statement in the extent of a 

property implies the existence of the 

corresponding property 

∀x, p, y P_EXT(x, p, y) → ∃c, d 

PROP(c, p, d) 

 The subproperty relationship relates 

properties 
∀p, q P_SUB(p, q) → ∃a, b, c, d 

PROP(a, p, b) ∧ PROP(c, q, d) 

 

 

Figure 3-1: Class/property reflexivity/transitivity 

 

3.3.2.1 Basic Constraints 

This category hosts some general constraints (see Table 3-2), which are more or less 

obvious. 
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Table 3-3: SUB constraints 

Description Formal Definition 

 Every class is a subclass of itself 

(reflexivity) (Figure 3-1i) 
∀c CLASS(c) → C_SUB(c, c) 

 The subclass relationship is 

transitive (Figure 3-1i) 
∀a, c, e C_SUB(e, c) ∧ C_SUB(c, a) 

→ C_SUB(e, a) 

 Every property is a sub-property of 

itself (reflexivity) (Figure 3-1ii) 
∀c, p, d PROP(c, p, d) → P_SUB(p, p) 

 The sub-property relationship is 

transitive (Figure 3-1ii) 
∀p, q, r P_SUB(p, q) ∧ P_SUB(q, r) 

→ P_SUB(p, r) 

A class is both subclass and super-

class of itself only (antisymmetry) 
∀a, c C_SUB(c, a) ∧ C_SUB(a, c) 

→ a=c 

 A property is both subproperty and 

super-property of itself only 

(antisymmetry) 

∀p, q P_SUB(q, p) ∧ P_SUB(p, q) 

→ p=q 

 

 

Figure 3-2: Domain-range constraints 

 

3.3.2.2 SUB Constraints 

The SUB constraints refer to class/property hierarchy (Table 3-3). Both the C_SUB 

and P_SUB relations are reflexive, transitive and antisymmetrical. 
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3.3.2.3 Domain-range Constraints 

This category contains two constraints referring to properties’ domains and ranges 

(see Table 3-4). 

 

Table 3-4: Domain-range constraints 

Description Formal Definition 

 In a valid RDF description schema the 

domain (range) of every sub-property is 

subsumed by the domain (range) of its 

super-property (Figure 3-2i) 

∀a, p, b, c, q, d PROP(a, p, b) ∧ 

PROP(c, q, d) ∧ P_SUB(q, p) → 

C_SUB(c, a) ∧ C_SUB (d, b) 

 In a valid RDF description base the 

subject/object resources in every statement 

are (direct or indirect) instances of the 

property’s  domain/range classes (Figure 

3-2ii) 

∀a, p, b, x, y PROP(a, p, b) ∧ 

P_EXT(x, p, y) → ∃c, d C_SUB(c, a) 

∧ C_SUB (d, b) ∧ C_EXT(c, x) ∧ 

C_EXT(d, y) 

 

3.4 Differences between SWLF and RDF/S Semantics 

SWLF succeeds in almost fully capturing the RDF/S type system and semantics 

adopted from RQL (see subsection 2.2.1). Thus, it presents almost the same 

differences to the RDF/S Model Theory as RQL Semantics does. The only difference 

rises in the handling of literal datatypes. According to RDF/S Model Theory, literal 

datatypes are classes. Nevertheless, while in RQL they are not considered as classes, 

in SWLF they are. However, in contrast to RDF/S Model Theory, datatype classes are 

not considered to be subclasses of class rdfs:Literal. 

 

3.5 From RDF/S Schemas to SWLF 

Having defined SWLF, the first step that needs to be taken for checking either RQL 

query containment or reformulating/minimising an RQL query into SQL queries is 

passing from the RDF/S schema to SWLF. This means that all information 

concerning an RDF/S schema has to be translated in terms of the CLASS, PROP, 

C_SUB and P_SUB relations. The procedure is rather straightforward: 
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Figure 3-3: An RDF/S schema and its SWLF translation 

 

• For every RDF/S class c, the fact CLASS(c) is true and is added in the Datalog 

program 

• For every RDF property p having as domain class c and range class d, the fact 

PROP(c, p, d) is true and gets added in the Datalog program 

• For every class d that is connected to a class c through the property 

rdfs:subClassOf, the fact C_SUB(d, c) is true and gets added in the Datalog 

program 

• For every property q that is connected to a property p through the property 

rdfs:subPropertyOf, the fact P_SUB(q, p) is true and gets added in the Datalog 

program 

Example 3.1: Following the above procedure the RDF/S schema introduced in Figure 

3-3 translates into the SWLF facts presented in the same figure.  

 

3.5.1 Translating the Facts into Constraints 

The algorithms for solving the containment (see section 4.1) and minimisation (see 

section 4.3) problems demand that all information (except the query) is passed as 

input in the form of constraints. Thus, the next step for SWIM is to translate the 

Datalog facts describing the RDF/S schema into DEDs. In order to fully capture the 

intended meaning of the facts, for each SWLF predicate modelling RDF/S schemas 

(CLASS, PROP, C_SUB, P_SUB) one constraint universally quantifying the 
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predicate’s variables and many existentially quantifying them are needed8. The 

existentially quantifying constraints advertise the existence of the RDF/S schema’s 

classes, properties and hierarchy relationships, while the universally quantifying ones 

state that these are the only classes, properties and hierarchy relationships needed to 

describe the RDF/S schema. 

 

 

Figure 3-4: Constraints for the CLASS, P_SUB relations of Figure 3-3 

 

With respect to the general form of DEDs, each universally quantifying 

constraint has the form 

( ) ( )



 ∨→∀

=
xxx i

l

i

'

1
ϕϕ  

where φ is the SWLF predicate and each φi
’ is a conjunction of equality atoms. Each 

existentially quantifying constraint has the form 

( )ψψϕ '∃  

where φ’ is a conjunction of one relational atom and possibly many equality atoms. 

The latter form is equivalent to 

TRUE ← φ’(ψ) 

where ψ is a tuple of constants. Throughout this thesis we use the former notation. 

                                                 
8 In the rest of this thesis these constraints will be referred to as universally (existentially) quantifying 

constraints. 
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The constraints for C_SUB (P_SUB) take under consideration, additionally to 

the facts, all the C_SUB (P_SUB) tuples following from the relation’s reflexivity and 

transitivity. Figure 3-4 illustrates the constraints corresponding to part of the RDF/S 

schema of Figure 3-3 (only the CLASS, P_SUB predicates are considered). 

 

3.6 From RQL Queries to SWLF 

Conjunctive RQL queries – i.e. SELECT-FROM-WHERE ones – not using aggregate 

functions, nesting and negation can be seen in a rule-based formalism, which is 

compatible to Datalog; the only difference is that instead of first-order predicates, 

RQL path expressions9 are used. In the rest of this thesis we will focus on this 

fragment of RQL, namely RQLCONJ, extended with union (RQLUCQ). 

Definition 3.4: An RQLCONJ query has the general form: ans(Ū):- …, Ei(Ūi), …, 

Uim=Ujn, …. The rule’s head consists of the query’s name ans and the tuple Ū of the 

returned variables; the rule’s body consists of a conjunction of RQL patterns Ei(Ūi) 

and equalities Uim=Ujn between variables and/or constants. Each Ūi involves the 

variables Xi, $Ci, @Pi, Yi, $Di – where @Pi is a property variable, $Ci and $Di are 

class variables, Xi and Yi are resource variables, as we have already seen – or a 

subset of them.  

The above definition of RQLCONJ queries extends in order to comprise queries 

involving union. 

Definition 3.5: An RQLUCQ has the general form 

Uk kbodyUans −:)(  

where ans(Ū) and bodyk are given from the definition above.  

The passing from RQLUCQ queries in the SELECT-FROM-WHERE 

formalism into RQLUCQ queries in the rule formalism, which facilitates their 

translation to SWLF, demands that a normalisation phase edges in reducing the 

                                                 
9 In the rest of this thesis the terms ‘RQL path expression’ and ‘RQL pattern’ are used alternately since 

they are synonymous. 
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complex path expressions found in the FROM clause into the general form of 

RQLUCQ queries. 

Example 3.2: Observe the RQLUCQ query 

SELECT X 

FROM   {X}paints.exhibited{Z} 

WHERE Z=“http://www.louvre.fr” 

Initially, the normalisation reduces it to the equivalent query 

SELECT X 

FROM  {X}paints{Y}, {Y}exhibited{Z} 

WHERE Z=“http://www.louvre.fr” 

By replacing the constants found in the patterns with variables and adding the 

corresponding equalities we get: 

SELECT X 

FROM  {X}@P1{Y}, {Y}@P2{Z} 

WHERE @P1=paints and @P2=exhibited and Z= “http://www.louvre.fr” 

It is easy to derive the rule that is equivalent to the above RQL query: 

ans(X) :- {X}@P1{Y}, {Y}@P2{Z}, @P1=paints, @P2=exhibited, 

Z=“http://www.louvre.fr”  

 

3.6.1 From RQL Patterns to SWLF 

When the RQLUCQ query has been translated in a rule-based formalism, the only step 

remaining for passing to a Datalog rule is replacing the patterns with first-order 

predicates; the goal is to express the parts of the RDF/S graph that participate in the 

evaluation of the query, as defined using the patterns, in terms of the SWLF relations. 

Thus, a translation for each RQL pattern to SWLF is needed based on RQL patterns’ 

semantics and SWLF semantics. 

Definition 3.6: RQL class patterns, i.e. those facilitating navigation through a 

schema’s classes, are translated in SWLF as shown in Table 3-5.  
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Example 3.3: The class pattern $C(X) translates to C_SUB(d, c), C_EXT(d, x). 

Remember that C_EXT(d, x) returns only the direct instances of class c; this is why 

the C_SUB(d, c) relation is introduced: to iterate through the subclasses of class c.  

Definition 3.7: RQL property patterns, i.e. those facilitating navigation through a 

schema’s properties, are translated in SWLF as shown in Table 3-610.  

Example 3.4: Using the translations the example presented above (section 3.6) 

translates to: 

ans(x) :- P_SUB(q1, p1), P_EXT(x, q1, y), P_SUB(q2, p2), P_EXT(y, q2, z), p1=“paints”, 

p2=“exhibited”, z=“www.louvre.fr”  

 

Table 3-5: Class patterns' translation into SWLF 

Class Pattern SWLF Translation 

$C 

^$C 

CLASS(c) 

$C{$D} 

^$C{$D} 

C_SUB(d, c) 

$C{X} C_SUB(d, c), C_EXT(d, x) 

^$C{X} C_EXT(d, x) 

$C{X; $D} C_SUB(d, c), C_SUB(e, d), C_EXT(e, x) 

^$C{X; $D} C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), C_EXT(c, x) 

$C{X; ^$D} C_SUB(d, c), C_EXT(d, x) 

^$C{X; ^$D} C_SUB(d, c), C_EXT(c, x), C_EXT(d, x) 

 

Concluding this chapter and having in mind the relational schema R and the 

constraints capturing RDF/S semantics (δMod) we can redefine the terms description 

base and description schema introduced in [ACK+02]. The new definitions will be 

considered throughout the rest of the thesis. 

Definition 3.8: An RDF/S description schema DS in SWLF is an instantiation of the 

relational schema RS={CLASS, PROP, C_SUB, P_SUB} satisfying δMod.  

                                                 
10 Not all property patterns’ translations appear in the table. See Appendix I for the complete list. 
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Definition 3.9: An RDF/S description base DB in SWLF given a DS is an 

instantiation of the relational schema RB={C_EXT, P_EXT} satisfying δMod.  

 

Table 3-6: Property patterns' translation into SWLF 

Property Pattern SWLF Translation 

@P 

^@P 

PROP(a, p, b) 

{$C}@P{$D} 

{$C}^@P{$D} 

PROP(a, p, b), C_SUB(c, a), C_SUB(d, b) 

{X}@P{Y} 

{X}@P 

@P{Y} 

P_SUB(q, p), P_EXT(x, q, y) 

{X}^@P{Y} 

{X}^@P 

^@P{Y} 

P_EXT(x, p, y) 

{X}@P{Y; $D} 

{X}@P{$D} 

@P{Y; $D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y) 

{X}^@P{Y; ^$D} 

^@P{Y; ^$D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(d, b), C_EXT(d, y) 

{X ; $C} @P{Y ; $D} 

{X ; $C} @P{$D} 

{$C} @P{Y ; $D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), 

C_SUB(f, d), C_EXT(e, x), C_EXT(f, y) 

{X ; ^$C}^ @P{Y ; 

^$D} 

PROP(a, p, b),  P_EXT(x, p, y), C_SUB(c, a), 

C_SUB(d, b), C_EXT(c, x), C_EXT(d, y) 

 

In the rest of this thesis we will refer to two sets of constraints, namely δRDF 

and ∆RDF, depending on the problem we want to solve; both are based on the 

constraints preserving RDF/S semantics (δMod) and those extracted from an RDF/S 

description schema. 

Definition 3.10: ∆RDF is the set of DEDs formed from δMod and all the constraints 

extracted from a specific RDF/S description.  



CHAPTER 3. SEMANTIC WEB LOGIC FRAMEWORK 

 

 University of Crete, Computer Science Department 

40 

Definition 3.11: δRDF is a set of disjunction-free DEDs. It is the subset of ∆RDF that 

does not include the universally quantifying constraints.  
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Chapter 4  

RQL Query Optimisation 
 

Throughout this chapter we will study the problems of RQL query containment, 

equivalence and minimisation using two algorithms, the Chase and the Backchase. 

We have managed to identify several subcases of these problems by adjusting the 

fragment of RQL considered to the input information given in the form of constraints. 

We consider three sets of constraints (δMod, δRDF, ∆RDF) and two fragments of RQL 

(RQLUCQ and its subset RQLCORE). 

 In section 4.1 we study the containment problem for RQLUCQ queries 

(subsection 4.1.2), where we have full knowledge of the RDF/S schema - provided by 

∆RDF, and proceed with the same problem for RQLCORE queries (subsection 4.1.3), 

where we have partial knowledge of the RDF/S schema - provided by δRDF. Then, we 

take a quick look over the equivalence problem for the same RQL fragments (section 

4.2). We, also, present in section 4.3 how queries originating from both fragments of 

RQL can get minimised by considering ∆RDF (subsection 4.3.2) and δRDF (subsection 

4.3.3), respectively. Finally, we show how we can simplify (minimise) RQLUCQ 

queries without having knowledge of a specific RDF/S schema (subsection 4.3.4). 

This is the case where only the knowledge of RDF/S semantics is provided through 

δMod. 

 

4.1 RQLUCQ Query Containment 

All problems aforementioned are based on containment of RQLUCQ queries. Thus, it 

has to be dealt first. 

Definition 4.1: A RQLUCQ query Q1 is contained in a RQLUCQ query Q2 (Q1⊆Q2) 

given an RDF description schema DS iff for every description base DB conforming to 

DS the result of Q1 is contained in that of Q2 (∀DB Q1(DB) ⊆ Q2(DB)).  

In some cases the containment is obvious. This is the case of simple queries 

that do not involve complex paths. 
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Figure 4-1: Simple graphical containment example 

 

Example 4.1: It is easy to figure out that the query 

SELECT X 

FROM  {X; Painter}paints{Y; Painting}; 

is contained in 

SELECT X 

FROM  {X; Painter}creates{Y; Painting}; 

because it is pretty straightforward from the RDF/S semantics that when “a painter 

paints a painting”, at the same time he creates a painting. 

 Alternatively, in this example, the containment can easily be spotted if the two 

RQLUCQ queries are seen as graphs, where the nodes correspond to classes and the 

edges to properties. The subject node of the second query subsumes (is a superclass 

of) the corresponding one of the first query. The same goes for the object nodes, too.  

Moreover, the property edge of the second query subsumes (is a superproperty 

of) the corresponding one of the first query. Thus, all instances satisfying the first 

query satisfy the second one, too. Figure 4-1 illustrates the containment check 

between the two graphs.  

However, deciding containment of more complex queries is not trivial. There 

will be, also, cases where even seeing the queries as graphs will not allow checking 

containment. Moreover, there exist many applications that need dealing with 

containment in an automated way. Thus, the definition of a sound and complete 
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algorithm for checking RQLUCQ query containment is mandatory. This chapter’s goal 

is to provide such an algorithm that will solve these problems. 

 

4.1.1 Chase Algorithm 

The core algorithm of this work is the chase [Deu02]. Chasing a query equals 

applying a sequence of chase steps to the query. Its handiness originates from the fact 

that all input information is given in the form of DEDs. The definition of a chase step 

demands that the notion of homomorphism is familiar to the reader. 

Definition 4.2: A homomorphism from φ1 into φ2 is a mapping h from the variables of 

φ1 into those of φ2 such that: 

i. For every equality atom ω = ω’ in φ1, h(ω) = h(ω’) follows from the equality 

atoms of  φ2 and 

ii. For every relational atom R(ω1, ..., ωl) in φ1,  there is an atom R(υ1, …, υl) in φ2 

such that υi = h(ωi) follows from the equality atoms of φ2.  

Definition 4.3: Given two conjunctive queries Q1(x1, …, xn) ← φ1(x1, …, xn, y1, …, ym) 

and Q2(u1, …, un) ← φ2(u1, …, un, υ1, ..., υk), where φ1, φ2 are conjunctions of 

relational and equality atoms, a containment mapping from Q1 to Q2 is a 

homomorphism m from φ1 to φ2 such that m(xi) = ui for 1≤i≤n.  

Definition 4.4: Let d be a DED (see Definition 3.2), Q be a conjunctive query q(x) :- 

φq(x, ψ) (see Definition 3.1) and h be a homomorphism from φ into φq. We say that the 

chase step of Q with d using h is applicable if h allows no extension that is a 

homomorphism from φ ∧ φi
’ into φq for any l ≥ i ≥ 1. In this case, the result of 

applying this chase step is the union of queries ii
QU , where each Qi is defined as 

qi(x) :- φq ∧ φi
’(h(x1), …, h(xn), fi,1, …, fi,ki) where the fi,j’s are the fresh variables.  

The above definition of a chase step ensures that no chase step gets applied 

when its result is already present in the query. 

Example 4.2: The query Q(x) :- A(x, y), B(x, z) chases with the DED 

∀x∀y A(x, y)→V(x) 
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rendering query Q(x) :- A(x, y), B(x, z), V(x).  

 

 

Figure 4-2: Chase illustrative example 

 

When the query has been chased with all available dependencies (constraints) 

and no more chase steps apply, we say that the chase has ended. The resulting query is 

called the universal plan. 

Example 4.3: Figure 4-2 illustrates the basic idea behind chase without taking into 

account variables. It contains a query and two constraints. The first constraint states 

that every predicate A implies the existence of a predicate B. Thus, the query Q 

involving a predicate A gets enriched with a predicate B resulting in query Q1. 

Additionally, the concurrent presence of both a predicate A and a predicate B implies 

the existence of a predicate V according to the second constraint. Thus, the query Q1 

turns into Q2 by adding a predicate V. Lack of other constraints the chase ends 

rendering Q2 as the universal plan of Q.  

Unfortunately, the chase of any conjunctive query with any set of embedded 

dependencies is not guaranteed to terminate ([AHV95]). Obviously, this result 

extends for unions of conjunctive queries chasing with DEDs. Thus, appropriate 

restrictions that will guarantee termination are needed. 

 

4.1.1.1 Stratified-witness 

In order to overcome the lack of guarantees for the termination of chase with 

arbitrary embedded dependencies, [Deu02] identified a property, namely stratified-

witness; the chase with constraints satisfying this property is guaranteed to terminate. 

The stratified-witness property is founded on the notion of the chase flow graph of a 

set C of constraints. 
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Figure 4-3: Chase flow graph 

 

Definition 4.5: The chase flow graph G = (V, E) of a set C of constraints is a directed 

edge-labelled graph whose labels have either the value ∀ or ∃. G is constructed as 

follows: for every pair of relations R, R’ of arities a, a’ and every constraint 

( ) ( )'
1 1 '... ,..., ... ... ,..., ...ax R u u R αυ υ

→
 ∀ ∧ ∧ → ∧ ∧   

in C, E contains the edges ( )'

1 ,1 '
,i j i a j a

R R
≤ ≤ ≤ ≤

. Also, whenever the equality x=y appears 

in the conclusion of the implication and x, y appear as the ith, jth component of R, R’, 

respectively, E contains the edge ( )',i jR R . Moreover, if for some j, the variable υj is 

existentially quantified, the edges ( )'

1
,i j i a

R R
≤ ≤

 are labelled with ∃; otherwise they are 

labelled with ∀.  

According to [Deu02] the set C of constraints has stratified-witness if none of 

the cycles in its chase flow graph contains a ∃-labelled edge. 

Example 4.4: Given the following two constraints, Figure 4-3 presents their chase 

flow graph. 

∀x∀z [B(x, z) → ∃y A(x, y)] 

∀x [C(x) → ∃z B(x, z)] 

It follows from the flow graph that the two constraints satisfy the stratified-witness 

property.  
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The intuition behind the endless execution of chase steps lack of stratified-

witness is simple; each added predicate A in the query through a sequence of chase 

steps (those applied using the constraints that form the cycle) causes the addition of a 

new predicate A, which in its turn causes the addition of another predicate A, etc. 

Although the definition of a chase step prohibits executing steps that will add 

predicates already present, the introduction of new variables during the chase steps 

renders the prevention inactive. 

Example 4.5: The chase flow graph corresponding to the following constraints 

contains a cycle with a ∃-labelled edge. 

∀x∀y [A(x, y)→ ∃z B(y, z)] 

∀x ∀y [B(x, y)→ A(x, y)] 

The chase of query Q(X) :- A(a1, a2) with them does not terminate as shown below 

Q(X) :- A(a1, a2) 

→ Q1(X) :- A(a1, a2), B(a2, a3) 

→ Q2(X) :- A(a1, a2), B(a2, a3), A(a2, a3) 

→ Q3(X) :- A(a1, a2), B(a2, a3), A(a2, a3), B(a3, a4) 

→ Q4(X) :- A(a1, a2), B(a2, a3), A(a2, a3), B(a3, a4), A(a3, a4) 

→ …  

Although embedded dependencies (EDs) were the initial application domain 

for the stratified-witness property, the latter can be used with disjunction-free DEDs, 

i.e. DEDs consisting of a single conjunctive query, too. Disjunction-free DEDs differ 

from EDs in that they allow (a) equalities in the left-hand side of the constraints, (b) 

equalities in the right-hand of the constraints involving existentially quantified 

variables, and (c) both variables and constants in the atoms used. We illustrate in 

Appendix B why this is possible. 

Proposition 4.1: The chase of a conjunctive query Q with a set C of disjunction-free 

DEDs terminates if the chase flow graph of C has no cycle containing an ∃-labelled 

edge.  

Using the above proposition we get the following definition. 
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Definition 4.6: A set C of disjunction-free DEDs satisfying the conditions of the 

above proposition satisfies the stratified-witness property.  

 

4.1.1.2 Stratified-witness of DEDs 

We will start by studying the case of chasing a conjunctive query Q with a finite set C 

of m DEDs. Each DED di can be seen as a union of several disjunction-free EDs dij 

whose number ni is finite, too. The “worst case scenario” is that by combining m dij’s, 

one for each i, the chase flow graph of these m dij’s will contain at least one cycle with 

at least one ∃-labelled graph. This scenario will take place when the chase steps 

corresponding to the di’s whose dij’s participate in the sequence presented in such a 

flow graph, get applied. The result will be an infinite number of chase steps. Under 

any other circumstance, the finite number of DEDs and disjunction-free DEDs in each 

DED guarantees termination of the chase. 

 Note that each combination cannot have more than one dij from each di, 

because there is no way that in a chase sequence the same predicates will trigger twice 

the same constraint due to the definition of chase step. Since one (or more) 

predicate(s) produced through chasing some initial predicate(s) cannot trigger the 

same constraints – this is the case of cycle in the chase flow graph – the chase will 

terminate. 

Proposition 4.2: The chase of a conjunctive query Q with a set C of DEDs terminates 

if for all combinations of m dij’s, one for each i, stratified-witness is preserved. Thus, 

( )mnO max checks for stratified-witness are necessary. (C = {di | 1≤i≤m}, ij

n

ji dd
i

1=
∨= , 

nmax=max(ni))  

The following definition follows from the above proposition. 

Definition 4.7: A set C of DEDs satisfying the conditions of the above proposition 

satisfies the stratified-witness property.  

Since a union query consists of a finite number of conjunctive queries, if the 

DEDs satisfy the stratified-witness property, the chase terminates. 
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Proposition 4.3: The chase of a union of conjunctive queries with a set of DEDs 

satisfying the stratified-witness property terminates.  

Example 4.6: Let’s see an example where the extension of the stratified-witness for 

DEDs can be used to locate a set of constraints that may not allow a query’s chase to 

terminate. Imagine the following set D of constraints 

(d1) ∀x∀y [A(x, y) → B(x, y) ∨ C(x, y)] 

(d2) ∀x∀y [B(x, y) → F(x, y) ∨ ∃z G(x, y, z)] 

(d3) ∀x∀y [C(x, y) → D(x, y) ∨ ∃z E(y, z)] 

(d4) ∀x∀y [E(x, y) → A(x, y)] 

We have to check eight different chase flow graphs for cycles containing at least one 

∃-labelled edge built using the following sub-constraints: 

(d11) ∀x∀y [A(x, y) → B(x, y)]  (d12) ∀x∀y [A(x, y) → C(x, y)] 

(d21) ∀x∀y [B(x, y) → F(x, y)]  (d22) ∀x∀y [B(x, y) →  ∃z G(x, y, z)] 

(d31) ∀x∀y [C(x, y) → D(x, y)  (d32) ∀x∀y [C(x, y) →  ∃z E(y, z)] 

(d4) ∀x∀y [E(x, y) → A(x, y)] 

The constraints d12, d21 (or d22), d32 and d4 create a cycle containing an ∃-labelled 

edge. Therefore, we cannot guarantee termination of the chase. Let’s see now what 

will happen if the query 

ans(x) :- A(x, y) 

gets chased with D 

ans(x) :- A(x, y) 

→ ans(x) :- A(x, y), B(x, y) 

∨ ans(x) :- A(x, y), C(x, y) 

→ ans(x) :- A(x, y), B(x, y), F(x, y)  (no more chase step for this query) 

∨ ans(x) :- A(x, y) , B(x, y), G(x, y, z) (no more chase step for this query) 

∨ ans(x) :- A(x, y), C(x, y), D(x, y) (no more chase step for this query) 

∨ ans(x) :- A(x, y), C(x, y), E(y, z) 

→ ans(x) :- A(x, y), B(x, y), F(x, y)  (no more chase step for this query) 

∨ ans(x) :- A(x, y) , B(x, y), G(x, y, z) (no more chase step for this query) 
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∨ ans(x) :- A(x, y), C(x, y), D(x, y) (no more chase step for this query) 

∨ ans(x) :- A(x, y), C(x, y), E(y, z), A(y, z), … 

The chase of the last conjunctive query does not terminate and can go on for ever.  

 

4.1.1.3 Chase Steps 

Applying the chase in the RDF/S scenario, the chase steps will very often produce 

unsatisfiable queries, i.e. queries implying equality of distinct variables. 

Example 4.7: Chasing query 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints” 

with the universally quantifying constraint for P_SUB in Figure 3-4 using the 

homomorphism {subP→q, prop→p} results in 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”, p=“creates” 

∪ ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”, p=“paints” 

∪ ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“creates”, p=“creates” 

The chased query is a union of three conjunctive queries. However, the 1st and the 3rd 

ones are not valid because p is set to have both the values “paints” and “creates”. 

Therefore, in practice, the query is equivalent to: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints”, q=“paints”  

In its original form the chase algorithm does not search after each chase step 

for unsatisfiable conjunctive queries where equalities between distinct constants are 

implied. It searches and removes them from the universal plan. However, the 

algorithm can safely get extended so that such conjunctive queries get removed as 

soon as they appear, without affecting its soundness and completeness. This 

algorithm’s extension is very useful in the RDF scenario where many such 

inconsistencies appear while chasing. Throughout this thesis we will refer to the 

algorithm’s extension. Therefore, only the valid queries produced at each step will be 

presented. 
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Figure 4-4: PROP & C_SUB constraints for the RDF/S schema of Figure 3-3 where class 

"Cubist" gets ignored 

 

Example 4.8: Given ∆RDF for the RDF/S schema of Figure 3-3, as seen in Figure 3-4 

and Figure 4-4, we want to chase the query below. We ignore the class “Cubist” for 

simplicity reasons. 

SELECT X 

FROM  {X}paints{Y} 

translates in SWLF into 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints” 

which is the query of the previous example. It chases with the 6th basic RDF/S 

constraint using the elementary homomorphism, i.e. the one that maps each variable 

to itself, and the result is11: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), p=“paints” 

                                                 
11 Bold letters are used to highlight the predicates that trigger a chase step. The predicates added by the 

same chase step are underlined. 
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The 3rd basic constraint is applied twice using the homomorphism {a→c, p→q, b→d} 

and the elementary one resulting in: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), CLASS(a), 

CLASS(b), CLASS(c), CLASS(d), p=“paints” 

Using the universally quantifying constraint for P_SUB (Figure 3-4) and the 

homomorphism {subP→q, prop→p} we get: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), CLASS(a), 

CLASS(b), CLASS(c), CLASS(d), p=“paints”, q=“paints” 

Using the 2nd existentially quantifying constraint for PROP (Figure 4-4) we get: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q=“paints”, r=“paints”, s=“Painter”, 

t=“Painting” 

By applying the 4th basic constraint (domain-range uniqueness constraint) twice using 

the homomorphisms {a→a, p→p, b→b, c→s, q→r, d→t} and {a→s, p→r, b→t, 

c→c, q→q, d→d}, the query chases to: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 
CLASS(a), CLASS(b), CLASS(c), CLASS(d), p=q=r=“paints”, a=c=“Painter”, 

s=“Painter”, b=d=“Painting”, t=“Painting” 

Chasing with the 2nd domain-range constraint (property-class extent compatibility) 

using the homomorphism {a→c, p→q, b→d} results in: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_EXT(e, 

x), C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting” 

Using the 1st domain-range constraint and the elementary homomorphism the query 

becomes: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c, 
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a), C_SUB(d, b), C_EXT(e, x), C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, 

b=d=t=“Painting” 

Using the C_SUB transitivity constraint twice with the homomorphism {e→f, c→d, 

a→b} and the elementary one, we get: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), C_SUB(e, c), C_SUB(f, d), C_SUB(c, 
a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x), C_EXT(f, y), 

p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting” 

According to the 2nd basic constraint and the homomorphisms {d→e, c→c} and {d→f, 

c→d} we get the query: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c), 
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x), 

C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, b=d=t=“Painting” 

Using twice the universally quantifying constraint for C_SUB and the 

homomorphisms {subC→e, clas→c} and {subC→f, clas→d} we get 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c), 
C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x), 

C_EXT(f, y), p=q=r=“paints”, a=c=s=“Painter”, e=“Painter”, b=d=t=“Painting”, 

f=“Painting” 

Since no more chase step can get applied12, the query above is the universal plan of 

the initial query.  

 

                                                 
12 In reality, the query will be chased with all the existentially quantified constraints for CLASS, 

PROP, C_SUB, P_SUB. Although this is not shown in the universal plan due to space limitation, all 

the necessary chase steps for checking containment are illustrated; the chase steps ignored do not alter 

the result. 



CHAPTER 4. RQL QUERY OPTIMISATION 

 

Giorgos Serfiotis   

53

4.1.1.4 Complexity 

In the general case the end of the chase, as we have said, is not decidable. However, 

the use of restrictions on the used constraints leads to decidable problems in the 

complexity class of NP or 
2

p∏ ; the stratified-witness property  for disjunction-free 

constraints belongs to the former class. 

Proposition 4.4 ([Deu02]): Chasing a conjunctive query with a set of disjunction-free 

DEDs meeting the stratified-witness property results in a query of size 






 +1laQO  

where |Q| is the initial query’s size, a is the maximum arity of the predicates used in 

the relational schema on which the constraints are applied and l is the maximum 

number of ∃-edges on a path in the constraints chase flow graph.  

 

4.1.2 Checking RQLUCQ Query Containment Algorithm 

Our algorithm for checking whether an RQLUCQ query is contained in another 

takes as input the two queries in their SWLF translations and chases them with ∆RDF. 

Although ∆RDF does not preserve stratified-witness because of the 6th basic and 3rd sub 

constraints, which introduce a cycle containing an ∃-labelled edge in the chase flow 

graph, it behaves as if stratified-witness was present. Due to the conditions needed to 

apply a chase step the two conditions do not allow the introduction of an infinite 

number of fresh variables, which is the inviolable term for the chase to diverge. 

Example 4.9: Let’s try to chase the following query with the two constraints just 

mentioned 

ans(q) :- P_SUB(q, p) 

It chases with the 6th basic constraint to 

ans(q) :- P_SUB(q, p), PROP(a1, q, b1), PROP(a2, p, b2) 

and, then, twice with the 3rd sub constraint to 

ans(q) :- P_SUB(q, q), P_SUB(p, p), P_SUB(q, p), PROP(a1, q, b1), PROP(a2, p, b2) 
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No more chase step with the two constraints can be applied; the chase ends here.  

In the example above no value is assigned to any variable. However, nothing 

would change if one of them or both were equated to values. Therefore, there cannot 

be an infinite execution of chase steps and the chase with ∆RDF terminates. Thus, by 

reducing the containment problem to the relational equivalent, we give the following 

theorem based on [Deu02]: 

Theorem 4.1: Suppose two RQLUCQ queries Q1, Q2 translated in SWLF, where 

U j jQQ 22 = , and a set C of DEDs, namely ∆RDF. Q1’s containment in Q2 under C 

(Q1⊆CQ2) is decidable. Q1’s chase terminates rendering the universal plan SQ1: 

1 1i
i

SQ SQ=U , where SQ1i’s are conjunctive queries. Q1 is contained in Q2 for every 

description base DB iff for each i there is j such that there is a containment mapping 

from Q2j into SQ1i (i.e. SQ1i is contained in Q2j).  

In other words, the above theorem states that an RQLUCQ query Q1 is 

contained in an RQLUCQ query Q2 under a set C of constraints if the universal plan of 

Q1, namely SQ1, is contained in Q2. 

Example 4.10: Let us see again the example of Figure 4-1. Given the same 

constraints as in the chase example earlier, we want to prove that query 

Q1: SELECT X 

FROM  {X; Painter}paints{Y; Painting}; 

is contained in query 

Q2: SELECT X 

FROM  {X; Painter}creates{Y; Painting}; 

Q1 translates to: 

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), 

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“paints”, c=“Painter”, 

d=“Painting” 

Then, it chases to the following universal plan SQ1: 
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ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), PROP(u, v, w), CLASS(a), 

CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h), 

CLASS(i), CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), 

C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g), 

C_SUB(j, h), C_SUB(i, a), C_SUB(j, b), C_SUB(k, l), C_SUB(m, n), P_SUB(q, p), 

P_SUB(o, z), C_EXT(e, x), C_EXT(f, y), C_EXT(i, x), C_EXT(j, y), P_EXT(x, q, y), 

o=p=q=r=“paints”, v=z=“creates”, a=c=e=g=i=s=“Painter”, u=l=“Artist”, b=d=f=h=j= 

t=“Painting”, w=n=”Artifact” 

Q2 translates to: 

ans(x) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), 

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“creates”, c=“Painter”, 

d=“Painting” 

The containment of Q1 in Q2 demands that there is a containment mapping from Q2 to 

the single conjunctive query of SQ1. Such containment exists given the 

homomorphism {p→v, a→u, b→w, c→k, d→m, e→e, f→f, q→o, p→z}.  

In section 3.5.1 we have illustrated how the Datalog facts describing an RDF/S 

schema are interpreted as constraints. Using these constraints, the set of constraints 

∆RDF is defined for every RDF/S schema. In the previous theorem, we have defined 

the reduction of the RQL query containment problem to the relational equivalent 

based on this set. In the following example we will show that by the slightest 

reduction to ∆RDF the algorithm for checking containment is no longer valid. Initially 

we will employ δRDF in the containment algorithm, instead of ∆RDF. Then, we will 

consider the set of constraints that excludes from ∆RDF the existentially quantifying 

constraints. 

Example 4.11: Suppose the queries 

(Q1) SELECT X 

FROM  Artist{X}, Painter{X} 

and 

(Q2) SELECT X 

 FROM  ^Painter{X} 
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It is obvious that Q2 is contained in Q1. Additionally, Q1 is contained in Q2 since 

Painter is a subclass of Artist and has no other subclass but itself. However, the 

containment of Q1 in Q2 cannot be deduced using δRDF due to the lack of knowledge 

that Painter has no subclass but itself. Moreover, the containment of Q2 in Q1 cannot 

be deduced using ∆RDF without the existentially quantifying constraints because we 

lack the knowledge that there exists a subclass relationship between Painter and 

Artist.  

The above conclusions propagate to the equivalence and minimisation 

problems, which are built on top of the containment problem. 

 

4.1.2.1 Complexity 

As we have seen, the RQLUCQ containment problem gets reduced to the containment 

of unions of conjunctive queries under ∆RDF, which depends on the complexity of 

chase and the one of checking the containment of first query’s universal plan in the 

second query. Since ∆RDF behaves as if stratified-witness was present, the chase of the 

first query with it terminates and is at least NP-complete. Moreover, the simple 

containment check between the first query’s universal plan and the second query is 

2

p∏ -complete. 

Note that the size of the universal plan derives from the chase algorithm. 

Given the SWLF predicates and ∆RDF, the maximum arity in this case is 3 and the 

maximum number of ∃-edges on a path in the constraints chase flow graph is 2. This 

path derives from the constraints used to capture the RDF/S semantics. Therefore, the 

size of the universal plan is at least 




 +123QO = ( )27QO , where |Q| is the size of the 

largest conjunctive query forming the initial union. 

 

4.1.3 RQLCORE Query Containment 

Suppose now the fragment of RQLUCQ queries that (a) is built on class and property 

patterns whose schema (class and property) variables are assigned to values, and (b) 

does not consider proper interpretations of classes and properties. We will call this 

fragment RQLCORE. Although it seems very restrictive, RQLCORE encompasses a large 
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portion of RQLUCQ queries used in real scenarios asking for data information. Thus, it 

is mainly oriented towards queries performing data & mixed navigation, but 

encompasses some elementary schema navigation queries, too. 

Definition 4.8: RQLCORE queries have the form of RQLUCQ queries (see Definition 

3.5), with the additional restrictions (a) that the RQL patterns Ei(Ūi) do not consider 

proper interpretations and (b) that the equality of all schema variables $Ci, @Pi and 

$Di to constants is implied from the equalities.  

The complete list of RQL patterns not involving proper interpretations can be found 

in Appendix A. We should note here that RQLCORE is similar to the RQL fragment 

considered in [ACK04]: none of them considers proper interpretations. 

Example 4.12: The RQLUCQ query 

SELECT X 

FROM  Artist{X} 

or equivalently 

SELECT X 

FROM  $C{X} 

WHERE $C=Artist 

is an RQLCORE query. On the contrary, the RQLUCQ query 

SELECT X 

FROM  ^$C{X} 

is not an RQLCORE query.  

By restricting the definition of RQLUCQ query containment to RQLCORE 

queries we get: 

Definition 4.9: An RQLCORE query Q1 is contained in an RQLCORE query Q2 (Q1⊆Q2) 

given an RDF description schema DS iff for every description base DB conforming to 

DS the result of Q1 is contained in that of Q2 (∀DB Q1(DB) ⊆ Q2(DB)).  
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The algorithm for checking whether an RQLCORE query is contained in another 

takes as input the two queries in their SWLF translations and δRDF, instead of ∆RDF; 

the additional information supplied by ∆RDF is no longer needed. As with ∆RDF, the 

chase with δRDF terminates; remember that δRDF is a subset of ∆RDF. Thus, by reducing 

the containment problem to the relational equivalent, based on [Deu02], we give the 

following theorem: 

Theorem 4.2: Suppose two RQLCORE queries Q1, Q2 translated in SWLF, where 

U j jQQ 22 = , and a set C of disjunction-free DEDs, namely δRDF. Q1’s containment in 

Q2 under C (Q1⊆CQ2) is decidable. The chase of Q1 with C terminates rendering the 

universal plan SQ1: 1 1i
i

SQ SQ=U . Q1 is contained in Q2 for every description base 

DB iff for each i there is a j such that there is a containment mapping from Q2j into 

SQ1i (i.e. SQ1i is contained in Q2j).  

In other words, the above theorem states that an RQLCORE query Q1 is 

contained in an RQLCORE query Q2 under a set C of constraints if the universal plan of 

Q1, namely SQ1, is contained Q2. 

Example 4.13: Take the queries 

Q1: SELECT X 

 FROM  Painter{X}, Artist{X} 

and 

Q2: SELECT X 

 FROM  Painter{X} 

The first one translates to 

ans1(x) :- C_SUB(c, a), C_EXT(c, x), a=“Painter”, C_SUB(d, b), C_EXT(d, x), 

b=“Artist” 

while the second one to 

ans2(x) :- C_SUB(c, a), C_EXT(c, x), a=“Painter” 
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The containment of Q1 into Q2 can easily be verified. But, containment of Q2 into Q1 

is not trivial. Therefore, we chase Q2 with the existentially quantifying constraint for 

C_SUB(Painter, Artist). 

ans2(x) :- C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), a=“Painter”, d=“Painter”, 

b=“Artist” 

There is no need to illustrate more chase steps. There is a containment mapping from 

Q1 to Q2 that uses the homomorphism {c→c, d→c, x→x, b→b, a→a}. Thus, Q2 is 

contained in Q1.  

Example 4.14: Using δRDF we can, also, confirm the containment of the RQLCORE 

query 

SELECT X 

FROM  {X}@paints 

into 

SELECT X 

FROM  {X; Painter}@paints, {X}@creates  

The complexity of the RQLCORE containment problem depends on the chase 

and the simple containment check, too. Since δRDF is a set of disjunction-free 

dependencies that behaves as if stratified-witness is present, the chase of the first 

query terminates and is NP-complete; the simple containment check between the first 

query’s universal plan and the second query is 
2

p∏ -complete, while the universal 

plan’s size is ( )27QO , where |Q| is the size of the largest conjunctive query forming 

the initial union. 

 

4.1.3.1 Why RQLCORE? 

The gain from limiting the expressiveness of RQLUCQ queries to RQLCORE is double. 

First of all, the partial (incomplete) knowledge of the RDF/S schema offered from 

δRDF suffixes to solve the containment problem; we do not need complete information, 

i.e. information stating which are all classes, properties and hierarchies.  Additionally, 
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considering only the information provided from δRDF leads to lower complexity in the 

containment check (and equivalence and minimisation that will be discussed later), 

which stems from the fact that the chase considers only disjunction-free constraints; 

fewer chase steps in order to reach the universal plan and smaller universal plan (no 

additional conjunctive query introduced in the union). 

 

4.2 RQLUCQ Query Equivalence 

Definition 4.10: An RQLUCQ query Q1 is equivalent to an RQLUCQ query Q2 (Q1≡Q2) 

given an RDF description schema DS iff for every description base DB conforming to 

DS the result of Q1 is equivalent to that of Q2 (∀DB Q1(DB)≡Q2(DB)).  

Having defined containment for RQLUCQ queries and an algorithm to check it, 

the problem of checking RQLUCQ query equivalence is straightforward. It is known 

from relational theory that two queries Q1, Q2 are considered equivalent (≡) iff Q1⊆Q2 

and Q2⊆Q1. This result extends to equivalence under a set C of DEDs (Q1≡CQ2 iff 

Q1⊆CQ2 and Q2⊆CQ1). Thus, the following definition is educed: 

Definition 4.11: Two RQLUCQ queries Q1 and Q2 translated in SWLF are equivalent 

under a set C of DEDs (Q1≡CQ2), namely ∆RDF, iff Q1 is contained in Q2 under C 

(Q1⊆CQ2) and vice-versa (Q2⊆CQ1).  

Example 4.15: We are going to check for equivalence the following queries. 

 

(Q1) SELECT X 

FROM  {X}paints{Y}; 

and 

(Q2) SELECT X 

FROM  {X; Painter}paints{Y; Painting}; 

 

At first the queries translate in SWLF. Q1 translates to 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), p=“paints” 
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and, then, chases to SQ1: 

ans(x) :- P_SUB(q, p), P_EXT(x, q, y), PROP(a, p, b), PROP(c, q, d), PROP(s, r, t), 

CLASS(a), CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), C_SUB(e, c), 

C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, b), C_EXT(e, x), 

C_EXT(f, y), p=q=r=“paints”, a=c=e=s=“Painter”, b=d=f=t=“Painting” 

Q2 translates to 

ans(x) :- PROP(a, p, b), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d, b), 

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“paints”, c =“Painter”, 

d=“Painting” 

and, then, chases to SQ2: 

ans(x) :- PROP(a, p, b), PROP(g, q, h), PROP(s, r, t), CLASS(a), CLASS(b), 

CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h), CLASS(i), 

CLASS(j), CLASS(s), CLASS(t), C_SUB(e, c), C_SUB(f, d), C_SUB(c, a), C_SUB(d, 

b), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g), C_SUB(j, h), 

C_SUB(i, a), C_SUB(j, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), C_EXT(i, x), 

C_EXT(j, y), P_EXT(x, q, y), p=q=r=“paints”, a=c=e=g=i=s=“Painter”, 

b=d=f=h=j=t=“Painting” 

There is a containment mapping both from Q2 to SQ1, using the elementary 

homomorphism, and from Q1 to SQ2, using the elementary homomorphism, too. Thus, 

Q1⊆CQ2 and Q2⊆CQ1 and the queries are equivalent.  

Example 4.16: Another interesting equivalence test is the following one 

SELECT  X 

FROM  {X; Painter}creates, {X; Sculptor}creates 

and 

SELECT  X 

FROM  {X; Painter}creates, Sculptor{X} 

These queries consider an extended RDF/S schema that involves the classes Sculptor 

and Sculpture and the property sculpts having the previous classes as domain and 
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range, respectively. The following facts are, also, true: P_SUB(sculpts, creates), 

C_SUB(Sculptor, Artist), C_SUB(Sculpture, Artifact). These facts imply some 

changes to ∆RDF. The first query translates to 

ans(x) :- PROP(a1, p1, b1), P_SUB(q1, p1), P_EXT(x, q1, y1), C_SUB(c1, a1), 

C_SUB(e1, c1), C_EXT(e1, x), PROP(a2, p2, b2), P_SUB(q2, p2), P_EXT(x, q2, y2), 

C_SUB(c2, a2), C_SUB(e2, c2), C_EXT(e2, x), p1=p2=“creates”, c1=“Painter”, 

c2=“Sculptor” 

The second one translates to 

ans(x) :- PROP(a1, p1, b1), P_SUB(q1, p1), P_EXT(x, q1, y1), C_SUB(c1, a1), 

C_SUB(e1, c1), C_EXT(e1, x), C_SUB(e2, c2), C_EXT(e2, x), p1=“creates”, 

c1=“Painter”, c2=“Sculptor” 

By chasing them and checking for containment mappings the queries prove to be 

equivalent.  

 The complexity of the RQLUCQ equivalence problem is the same with the 

complexity of the RQLUCQ containment problem. Remember that the equivalence 

check corresponds to minimum one and maximum two containment checks. 

 

4.2.1 RQLCORE Query Equivalence 

By paraphrasing the definition of RQLUCQ query equivalence we get the 

following definition for the case of RQLCORE queries. 

Definition 4.12: An RQLCORE query Q1 is equivalent to an RQLCORE query Q2 (Q1≡Q2) 

given an RDF description schema DS iff for every description base DB conforming to 

DS the result of Q1 is equivalent to that of Q2 (∀DB Q1(DB)≡Q2(DB)).  

Having defined an algorithm to check containment of RQLCORE queries, 

checking RQLCORE query equivalence is straightforward. 

Definition 4.13: Two RQLCORE queries Q1 and Q2 translated in SWLF are equivalent 

under a set C of EDs (Q1≡CQ2), namely δRDF, iff Q1 is contained in Q2 under C 

(Q1⊆CQ2) and vice-versa (Q2⊆CQ1).  
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Obviously, the complexity of the RQLCORE equivalence problem is the same 

with the one of the RQLCORE containment problem. 

 

4.3 RQLUCQ Query Minimisation 

We will introduce the problem using an example. 

Example 4.17: Suppose the RQLUCQ query 

SELECT X, Y 

FROM  {X}paints{Y}, {X}creates{Y} 

needs to be answered. It is pretty obvious that this query leads to redundant 

processing; the pairs [x, y] belonging to the extended interpretation of paints belong 

to the extended interpretation of creates, too ([x, y]paints ⊆ [x, y]creates). By set theory, 

([x, y]paints ∩ [x, y]creates) ≡ [x, y]paints. Thus, this query can minimise to 

SELECT X, Y 

FROM  {X}paints{Y}  

However, the previous is a simple example and the minimisation is 

straightforward. There are cases where the size of the query does not allow such 

deductions. Moreover, we need an automated way for minimising RQLUCQ queries 

and calculating their minimal equivalents, i.e equivalent queries that are free of 

redundancy. 

Definition 4.14: Given an RDF description schema DS, an RQLUCQ query Q gets 

minimised when replaced with a minimal equivalent query SQ (∀DB 

Q(DB)≡SQ(DB)).  

A minimal RQLUCQ uses less and/or simpler RQL patterns than the original 

RQLUCQ query. The basic idea is that a class pattern is simpler than a property pattern; 

a pattern involving proper interpretations and/or fewer variables is simpler than one 

involving extended interpretations and/or more variables. 
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Example 4.18: Suppose the RQLUCQ queries 

SELECT X 

FROM  ^Painter{X} 

and 

SELECT X 

FROM  Painter{X}, Artist{X} 

The two queries are equivalent. Moreover, the first one is free of redundancy; 

therefore, it is minimal.  

The core of the RQLUCQ minimisation is the backchase algorithm ([Deu02]), 

which is used to discover the minimal reformulations. 

 

4.3.1 Backchase Algorithm 

The backchase algorithm [Deu02] checks all the subqueries of the universal plan for 

equivalence to the original query. Thus, the backchase constitutes an application of 

the chase algorithm for each subquery. The following definitions formulate formally 

the notion of subqueries and state when a query is minimal according to [Deu02]. 

Definition 4.15: A conjunctive query SQ is a subquery of conjunctive query Q if there 

exists a containment mapping h from SQ into Q such that whenever the image of two 

distinct atoms R(x) and R(y) under h coincides, the conjunction of equalities x=y is 

implied by the equality atoms in SQ. 

Definition 4.16: A union of conjunctive queries ii
SQ SQ←U  is a subquery of the 

union of conjunctive queries jj
Q Q←U  if for every i there is a j such that SQi is a 

subquery of Qj in the sense of the previous definition. 
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Definition 4.17: Let Q be a union of conjunctive queries 
1 ii M

Q Q
≤ ≤

=U  and D be a 

set of DEDs. We say that Q is D-minimal13 if: 

(i) there are no distinct 1≤k,l≤M such that Qk is contained in Ql under D, and 

(ii) there is no m, no distinct relational atoms in Qm’s body ( )jRj x  (for 1≤j≤k for 

some k) and no conjunctions of equalities Cj (for 1≤j≤k) such that denoting with Qm,j 

the query obtained from Qm by replacing Rj with Cj, we have that 
1 , i mi M i m

Q Q
≤ ≤ ≠

∪U  

is equivalent to ,1 , i m ji M i m i j k
Q Q

≤ ≤ ≠ ≤ ≤
∪U U  under D. 

A query Q is a minimal reformulation of query R under D if it is D-minimal 

and equivalent to R under D.  

 A union of conjunctive queries may have more than one minimal subqueries; 

the intuition behind the previous definition is that no redundant data accesses are 

made from any minimal query. According to [Deu02] the backchase algorithm 

retrieves all minimal queries.  

Theorem 4.3 ([Deu02]): Given a union of conjunctive queries Q and a set of DEDs 

C, if the chase of Q under C terminates yielding the universal plan U, all C-minimal 

reformulations of Q under C are subqueries of U. 

 

4.3.1.1 Complexity 

As with chase, the termination of the backchase is not guaranteed in the 

general case. It depends on whether the constraints considered guarantee termination 

of the chase. However, even when this is the case, the backchase is much more 

expensive from the chase itself. To be exact, a full minimisation where the backchase 

performs a blind search between candidate subqueries from the universal plan leads to 

an NP-complete problem in the number of chase sequences, i.e. an exponential 

number of NP-complete problems! 

                                                 
13 The definition does not say anything about minimising the number of equality atoms in the minimal 

query. However, as in [Deu02], throughout this thesis we assume w.l.o.g. that the set of equalities in a 

minimal query is transitively closed, i.e. it is maximal, even if the transitive closure is not always 

illustrated in the examples. 
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In practice, approximate algorithms are used. Such an algorithm is the one 

adopted to solve the Disjunctive Plan Minimisation (DPM) problem ([Ono05]). This 

algorithm returns one minimal which is not always the minimum one, i.e. the one with 

the least number of queries. In order to solve the DPM problem, we reduce it to Set-

Cover, where given a universe U of n elements and a collection S of subsets of U 

(S={S1, …, Sk}), we search for a minimum cardinality subcollection of S that covers 

all elements of U. By employing DPM finding a minimal query is NP-complete. 

 

4.3.2 Minimisation of RQLUCQ Queries 

By reducing the RQLUCQ minimisation problem to its relational equivalent we get the 

following definition: 

Definition 4.18: An RQLUCQ query translated in SWLF gets minimised when replaced 

with a minimal equivalent under a set of DEDs C, namely ∆RDF, query.  

So, our algorithm for minimising an RQLUCQ query takes as input the 

universal plan of the query we want to minimise, expressed in SWLF, and ∆RDF. Then, 

all universal plan’s subqueries are checked (i) for minimality based on Definition 4.14 

and (ii) equivalence against the universal plan (or the initial query). 

Example 4.19: Does the query below minimise? If yes, find a minimal equivalent 

one. 

SELECT X, Y 

FROM  {X}paints{Y}, {X; Painter}creates{Y; Painting} 

The query translates in SWLF to 

ans(x, y) :- P_SUB(q1, p1), P_EXT(x, q1, y), p1=“paints”, PROP(a2, p2, b2), P_SUB(q2, 

p2), C_SUB(c2, a2), C_SUB(d2, b2), C_SUB(e2, c2), C_SUB(f2, d2), C_EXT(e2, x), 

C_EXT(f2, y), P_EXT(x, q2, y), p2=“paints”, c2=“Painter”, d2=“Painting” 

which chases to 

ans(x, y) :- P_SUB(q1, p1), P_EXT(x, q1, y), PROP(a1, p1, b1), PROP(c1, q1, d1), 

PROP(s1, r1, t1), CLASS(a1), CLASS(b1), CLASS(c1), CLASS(d1), CLASS(e1), 
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CLASS(f1), C_SUB(e1, c1), C_SUB(f1, d1), C_SUB(c1, a1), C_SUB(d1, b1), C_SUB(e1, 

a1), C_SUB(f1, b1), C_EXT(e1, x), C_EXT(f1, y), p1=q1=r1=“paints”, 

a1=c1=e1=s1=“Painter”, b1=d1=f1=t1=“Painting”, PROP(a2, p2, b2), PROP(g2, q2, h2), 

PROP(s2, r2, t2), CLASS(a2), CLASS(b2), CLASS(c2), CLASS(d2), CLASS(e2), 

CLASS(f2), CLASS(g2), CLASS(h2), CLASS(i2), CLASS(j2), CLASS(s2), CLASS(t2), 

C_SUB(c2, a2), C_SUB(d2, b2), C_SUB(e2, c2), C_SUB(f2, d2), C_SUB(e2, a2), 

C_SUB(f2, b2), C_SUB(g2, a2), C_SUB(h2, b2), C_SUB(i2, g2), C_SUB(j2, h2), 

C_SUB(i2, a2), C_SUB(j2, b2), P_SUB(q2, p2), C_EXT(e2, x), C_EXT(f2, y), C_EXT(i2, 

x), C_EXT(j2, y), P_EXT(x, q2, y), p2=q2=“creates”, c2=e2=“Painter”, 

a2=g2=i2=s2=“Artist”, d2=f2=“Painting”, b2=h2=j2=t2=“Artifact” 

∪ ans(x, y) :- …, q2=“creates”, g2=i2= Artist”, h2=“Artifact”, j2=“Painting” 

∪ ans(x, y) :- …, q2=“creates”, g2=“Artist”, i2=“Painter”, h2=j2=“Artifact” 

∪ ans(x, y) :- …, q2=“creates”, g2=“Artist”, i2=“Painter”, h2=“Artifact”, j2=“Painting” 

∪ ans(x, y) :- …, q2=“paints”, g2=i2=“Painter”, h2=j2=“Painting” 

During backchase we inspect subquery 

ans(x, y) :- P_EXT(x, q1, y), q1=“paints” 

which, amazingly, is a minimal reformulation; it is ∆RDF-equivalent to the initial query 

and no atom can be removed without disturbing equivalence. Additionally, if the 

translations of RQL patterns are examined, we discover that this minimal query 

corresponds to the RQLUCQ query 

SELECT X, Y 

FROM  {X}^paints{Y}  

In the example above the query has only one minimal equivalent. However, this is not 

always the case. The following example illustrates that. 

Example 4.20: Suppose the query 

SELECT X 

FROM  $C{X; Artist} 

and the extended RDF/S schema where the class hierarchy graph rooted on class 

Artist is shown in Figure 4-5. The query translates to 
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ans(x) :- C_SUB(d, c), C_SUB(e, d), C_EXT(e, x), d=“Artist” 

This query expressed in terms of SWLF has three (!) minimal equivalents under ∆RDF: 

(1st) ans(x) :- C_SUB(e, d), C_EXT(e, x), d=“Artist” 

(2nd) ans(x) :- C_EXT(e, x), e=“Artist” 

 ∪ ans(x) :- C_EXT(e, x), e=“Sculptor” 

∪ ans(x) :-  C_SUB(e, d), C_EXT(e, x), d=“Painter” 

(3rd) ans(x) :- C_EXT(e, x), e=“Artist” 

∪ ans(x) :-  C_EXT(e, x), e=“Sculptor” 

∪ ans(x) :-  C_EXT(e, x), e=“Painter” 

∪ ans(x) :-  C_EXT(e, x), e=“Cubist” 

which correspond to the RQLUCQ queries 

(1st) SELECT X 

FROM  Artist{X} 

(2nd) SELECT X 

FROM  ^Artist{X} 

UNION 

SELECT X 

FROM  ^Sculptor{X} 

UNION 

SELECT X 

FROM  Painter{X} 

(3rd) SELECT X 

FROM  ^Artist{X} 

UNION 

SELECT X 

FROM  ^Sculptor{X} 

UNION 

SELECT X 

FROM  ^Painter{X} 

UNION 

SELECT X 

FROM  ^Cubist{X} 

In the first query redundancy has been removed without resolving the navigational 

part occurring from the traversal of the subclass hierarchy of Artist; that is why the 

extended interpretation of Artist is used. On the contrary, in the third minimal query 

schema information has been unfolded, a union has been introduced and only the 

proper interpretations of Artist’s subclasses are used. The second query lays 
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somewhere in the middle; a part of the schema information has been unfolded, while 

some other has not.  

 

 

Figure 4-5: Class hierarchy rooted on Artist for Example 4.20 

 

Generally, the number of minimal queries depends on the constraints 

considered and the query given as input. In our RQLUCQ minimisation scenario, ∆RDF 

describes the classes, the properties and their hierarchies, and the query states which 

part of the RDF/S schema will be accessed. As the number of constraints and the 

schema part accessed from the query grow, the number of minimal equivalents 

considerably increases. 

Every RQLUCQ query has one minimal equivalent query where schema 

information is fully unfolded and no schema navigation needs to take place. Apart 

from it, there usually exists one minimal query where the unfolding has not 

introduced union and several ones where partial unfolding has taken place. 

The minimal queries that are of interest to us are (i) the one where all schema 

information has been incorporated and (ii) the one where unfolding has not introduced 

union when such a minimal exists. In the aforementioned example, these are the first 

and third minimal queries, respectively. The former if executed will need to query the 

RDF/S schema, while the latter will not. In the remaining minimals, if any, some of 

the conjunctive queries forming each one of them need access to the RDF/S schema 

and some others do not; that is the case of the second query in the previous example. 

However, there is usually no reason in picking such a minimal query for execution; 

only the presence of cached query results could render such queries useful. 

 An additional advantage of the minimisation procedure is the fact that the 

RQLUCQ minimal query produced by unfolding all schema information can be used by 

other query languages, like SPARQL ([PS05]), that consider only the RDF/S data 

layer, i.e. those having access only to proper interpretations. 
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 Although this example involved a query asking exclusively for data 

information, a plethora of minimal queries may appear even for RQLUCQ queries not 

involving class/property interpretations, i.e. schema navigation ones. When the case, 

the minimal query where schema information is unfolded consists of one or more 

constant queries, which have the form ( ) : ( )ans x C x− , where x is a tuple of variables 

and C is a conjunction of equality atoms between the variables of x and constants. 

When this is the case, the minimisation algorithm rather answers than minimises 

schema navigation queries. 

Example 4.21: The following query not accessing class/property interpretations 

SELECT $D 

FROM  Artist{$D} 

will translate to 

ans(d) :- C_SUB(d, c), c=“Artist” 

which will chase to 

ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c=“Artist”, d=“Artist” 

∪ ans(d) :- C_SUB(d, c), CLASS(c), CLASS(d), c=“Artist”, d=“Painter” 

This query has two minimal equivalents. The first one is the initial query and the 

second one is 

ans(d) :- d=“Artist” 

∪ ans(d) :- d=“Painter”  

In Example 4.11 we have seen that by relaxing the set ∆RDF, the containment 

algorithm is no longer valid. We will use the same query in order to illustrate the 

effects in the minimisation procedure. 

Example 4.22: If we use the backchase algorithm with δRDF, the query 

SELECT X 

FROM  Painter{X}, Artist{X} 

will minimise to 
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SELECT X 

FROM  Painter{X} 

The same query will minimise to 

SELECT X 

FROM  ^Artist{X} 

UNION 

SELECT X 

FROM  Artist{Painter}, ^Painter{X} 

if ∆RDF without the existentially quantifying constraints is considered during 

backchase. However, when ∆RDF is considered, the minimal query outputted is 

SELECT X 

FROM  ^Painter{X}  

It is obvious that ∆RDF is indispensable for a complete minimisation.  

 

4.3.2.1 Complexity 

The set of constraints ∆RDF guarantees termination of backchase. Therefore, by 

reducing the RQLUCQ minimisation problem to the equivalent problem of minimising 

a conjunctive query under ∆RDF, we inherit the complexity of full minimisation. 

If we are interested only in the minimal query where all schema information 

has been unfolded, we can use the following technique. As soon as the chase ends we 

extract from the universal plan the maximally contained query that uses only the 

SWLF predicates C_EXT and P_EXT. This query has only one minimal equivalent; 

thus, we can use the algorithm for solving the DPM problem. 

 

4.3.3 RQLCORE Query Minimisation 

Having defined RQLCORE, the problem of query minimisation extends to it. 
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Definition 4.19: Given an RDF description schema DS, an RQLCORE query Q gets 

minimised when replaced with an equivalent minimal query SQ (∀DB 

Q(DB)≡SQ(DB)).  

An RQLCORE minimal query is redundancy-free; it uses less and/or simpler 

RQL patterns than the original RQLCORE query. The basic idea is that a class pattern is 

simpler than a property pattern and a pattern involving fewer variables is simpler than 

one involving more variables. 

As with containment of RQLCORE queries, the problem reduces to an 

equivalent relational one: 

Definition 4.20: An RQLCORE query translated in SWLF gets minimised when 

replaced with an equivalent minimal query under a set of disjunction-free DEDs C, 

namely δRDF.  

Once more the backchase is the core of the minimisation process. The 

RQLCORE queries translated in SWLF get chased with δRDF and all subqueries of the 

universal plan are examined for minimality and equivalence to it. 

Example 4.23: Suppose we want to minimise the query Q1 

SELECT X 

FROM  $C{X}, $E{X} 

WHERE $C=Artist, $E=Painter 

The query translated in SWLF has the form 

ans1(x) :- C_SUB(d, c), C_EXT(d, x), C_SUB(f, e), C_EXT(f, x), c=“Artist”, 

e=“Painter” 

After being chased with δRDF the query becomes 

ans1(x) :- C_SUB(d, c), C_SUB(g, d), C_EXT(g, x), C_SUB(f, e), C_SUB(h, f), 

C_EXT(h, x), c=“Artist”, e=“Painter”, C_SUB(h, g), g=“Artist”, h=“Painter” 

Suppose now the subquery Q2 

ans2(x) :- C_SUB(f, e), C_EXT(f, x), e=“Painter” 
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which corresponds to the query 

SELECT X 

FROM  $E{X} 

WHERE $E=Painter 

Q2 is equivalent to Q1 under δRDF and is minimal, too. Therefore, Q1 minimises to Q2. 

 

The complexity of the RQLCORE minimisation problem is the one of full 

minimision of a conjunctive query under disjunction-free DEDs. However, having 

observed that RQLCORE queries have only one minimal equivalent, instead of the full 

minimisation we may adopt Disjunctive Plan Minimisation without losses. 

 

4.3.4 Simplification of RQL Patterns 

Earlier in section 4.3, it was stated that RQLUCQ minimal queries contain less and/or 

simpler patterns than the original queries. It is obvious that a class pattern is simpler 

than a property pattern. But, can we prove that a pattern is simpler than and equivalent 

to another under given conditions and how? Our minimisation technique for RQLUCQ 

queries can be used as a proof procedure for that, too. It allows simplifying RQL 

patterns in their general form without taking under consideration specific RDF/S 

schemas; therefore the chase in this case considers only δMod. 

Example 4.24: Suppose the RQLUCQ query 

ans(X, @P, Y) :- {X; $C}@P{Y; $D}, cond(@P, Y) 

that involves the pattern we want to simplify and a dummy predicate cond stating the 

conditioned variables. The equivalent query in terms of SWLF is Q1: 

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, a), C_SUB(d, 

b), C_EXT(c, x), C_EXT(d, y), cond(p, y) 

Chasing with (half of) the 6th basic constraint we get 

ans(x, p, y) :- PROP(a, p, b), PROP(e, q, f), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, 

a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), cond(p, y) 



CHAPTER 4. RQL QUERY OPTIMISATION 

 

 University of Crete, Computer Science Department 

74 

Chasing with the 1st domain-range constraint we get 

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x, 

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_EXT(g, x), C_EXT(h, 

y), C_EXT(c, x), C_EXT(d, y), x cond(p, y) 

Now, chasing with the 2nd domain-range constraint we get 

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x, 

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, 

b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d, y), cond(p, y) 

Then, chasing with C_SUB transitivity we get 

ans(x, p, y) :- PROP(a, p, b), PROP(m, p, n), PROP(e, q, f), P_SUB(q, p), P_EXT(x, 

q, y), C_SUB(g, e), C_SUB(h, f), C_SUB(c, a), C_SUB(d, b), C_SUB(e, a), C_SUB(f, 

b), C_SUB(g, a), C_SUB(h, b), C_EXT(g, x), C_EXT(h, y), C_EXT(c, x), C_EXT(d, 

y), cond(p, y) 

Finally, by applying the 1st and 3rd basic constraints, the query chases to the universal 

plan U1: 

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f, b), PROP(e, q, f), 

P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(g, x), C_EXT(h, y), C_SUB(g, a), 

C_SUB(h, b), C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y), CLASS(a), 

CLASS(b), CLASS(c), CLASS(d), CLASS(e), CLASS(f), CLASS(g), CLASS(h), 

cond(p, y) 

Now, during backchase we check the universal plan’s subquery Q2 

ans(x, p, y) :- P_SUB(q, p), P_EXT(x, q, y), cond(p, y) 

for equivalence to the original query. Thus, we chase it using the same chase steps as 

for Q1 and get the universal plan U2: 

ans(x, p, y) :- PROP(a, p, b), P_SUB(q, p), C_SUB(e, a), C_SUB(f, b), PROP(e, q, f), 

P_EXT(x, q, y), C_SUB(g, e), C_SUB(h, f), C_EXT(g, x), C_EXT(h, y), C_SUB(g, a), 

C_SUB(h, b), cond(p, y) 
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We can conclude that Q2 is equivalent to Q1. There is a containment mapping from Q1 

to U2 (Q2⊆Q1) using the homomorphism {x→x, p→p, y→y, a→a, b→b, q→q, c→g, 

dh}. Moreover, there is a containment mapping from Q2 to U1 (Q1⊆Q2) using the 

elementary homomorphism. 

Now, we examine the RQL property patterns’ translations from Appendix B. 

We can observe that subquery Q2 corresponds to the SWLF translation of the RQLUCQ 

query 

ans(X, @P, Y) :- {X}@P{Y }, cond(@P, Y) 

Thus, the pattern {X; $C}@P{Y; $D} gets simplified to pattern {X}@P{Y} when only 

variables @P, Y are either conditioned or projected.  

Using the same methodology a number of pattern simplifications can be 

proven. 

Example 4.25: The query 

ans(X) :- $C{X; $D} 

which corresponds to the SWLF query 

ans(x) :- C_SUB(d, c), C_SUB(e, d), C_EXT(e, x) 

proves to be equivalent to query 

ans(X) :- ^$C{X} 

which corresponds to the SWLF query 

ans(x) :- C_EXT(e, x) 

by applying the same sequence of chase steps as in the previous example.  

In general RQL patterns have one simplified (minimal) equivalent. Thus, the 

DPM algorithm can be used instead of full minimisation. The simplified RQL pattern 
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is extracted from the minimal SWLF query14 by investigating the RQL patterns’s 

translations. Alternatively, the backward translation for minimal RQLUCQ queries, as 

presented right below (subsection 4.3.5.1), can be used. 

 

4.3.5 Backward Translation to RQL of Minimal Queries 

In some cases we would like to restore a query expressed with SWLF terms into an 

RQLUCQ (RQLCORE) query. As we will see, the translation is rather simple in the case 

of RQLCORE queries; on the contrary, in the case of RQLUCQ queries it is more 

complicated. 

 

4.3.5.1 The Case of Minimal RQLUCQ Queries 

The translation procedure for minimal SWLF queries corresponding to RQLUCQ 

queries takes place in two phases. In the first phase simple RQL patterns are identified 

in the SWLF queries. Then, in the second one, the simple patterns are combined into 

more complex ones, whenever possible. 

In the first phase, the query’s FROM clause gets constructed by mapping every 

atom 

• C_EXT(d, x)15 along with an atom C_SUB(d, c) – must not exist another atom 

referencing d – to the RQL class pattern $C{X}, otherwise to the RQL class 

pattern ^$D{X} 

• CLASS(C) to the RQL class pattern $C 

• P_EXT(x, q, y) along with an atom P_SUB(q, p) to the RQL property pattern 

{X}@P{Y}, otherwise to the RQL property pattern {X}^@Q{Y} 

• PROP(a, p, b) to the RQL property pattern @P if none of the following stands: (i) 

if a, b or both appear in C_SUB predicates – C_SUB(c, a), C_SUB(d, b) or both – 

                                                 
14 If a predicate C_SUB(c, c) or P_SUB(p, p) appears in the minimal query, it should be replaced with 

CLASS(c) or PROP(a, p, b), respectively. The reason is stated in subsection 4.3.5.1. When this is the 

case, more than one minimal SWLF queries exist, but only one corresponding RQL simplified pattern. 
15 To be exact all C_EXT predicates minus those referring to literal classes are mapped to RQL class 

patterns. Those involving literal classes cannot generate patterns because there is no such thing as the 

proper interpretation of literals in RQL’s type system. 
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and a, b, or both are not equated to constants, then one of the patterns {$C}@P, 

@P{$D}, {$C}@P{$D} gets added to the WHERE clause, and (ii) if a, b, or both 

are equated to constants, then the pattern @P and the patterns $A, $B, or both get 

added, along with the equalities $A=domain(@P), $B=range(@P), or both in the 

WHERE clause 

• C_SUB(c, a), as long as it was not used with an atom PROP or C_EXT, to the 

RQL class pattern $C{$D} if the equality $C=$D is not implied, otherwise to 

class pattern $C 

• P_SUB(q, p), if it was not used with an atom P_EXT(x, q, y), to the RQL property 

patterns @P, since the equality q=p must hold. 

The WHERE clause is formed by adding to the equalities originating from the PROP 

predicates those found in the SWLF query involving variables appearing in the SWLF 

predicates. Then, the SELECT clause is formed by the projected variables, i.e. the 

variables found in the query’s head. However, if a projected variable is assigned to a 

value and does not appear in a SWLF predicate, the value is used in the SELECT 

clause instead of the variable. This will always be the case of (a) schema variables 

that have been assigned to a value during chase, (b) schema variables that were 

assigned to a value in the initial query and (c) variables not bound to patterns in the 

initial query. 

 

Table 4-1: From simple patterns to more complex property ones 

Simple Patterns Complex Patterns

{X}@P, {$C}@P, $C{X} {X; $C}@P{Y} 

{X}@P, {$C}@P, ^$C{X} {X; ^$C}@P{Y} 

{X}^@P, {$C}@P, $C{X} {X; $C}^@P{Y} 

{X}^@P, {$C}@P, ^$C{X} {X; ^$C}^@P{Y} 

 

 In the second phase we explore the FROM clause of the query. We try to 

compose complex patterns using the simple ones identified in the previous phase. 

Table 4-1 shows how patterns referring to a property’s domain can derive. The same 

procedure is valid for patterns referring to a property’s range or both. Moreover, 

Table 4-2 shows how simple class patterns can be combined into more complex ones. 
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Finally, we should replace (a) multiple occurrences of equated variables with 

just one variable and (b) in the FROM and SELECT clauses as many schema 

variables as possible with constants by exploiting the equalities. 

We believe that the above translation procedure is the best possible and fully 

exploits the minimal SWLF query, i.e. does not reintroduce redundancy. 

 

Table 4-2: From simple patterns to more complex class ones 

Simple Patterns Complex Patterns

$C{$D}, $D{X}, ^$C{X} ^$C{X; $D} 

$C{$D}, $D{X} $C{X; $D} 

$C{$D}, ^$D{X}, ^$C{X} ^$C{X; ^$D} 

$C{$D}, ^$D{X} $C{X; ^$D} 

 

Example 4.26: Assume the following Datalog query needs to be translated back to 

RQLUCQ: 

ans(x, c, p, y, d) :- PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), C_SUB(c, a), 

C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), C_EXT(e, x), C_EXT(f, y), p=“aProp” 

In the first phase it will translate to 

SELECT X, $C, @P, Y, $D 

FROM  {X}@P{Y}, {$C}@P{$D}, $C{X}, $D{Y} 

WHERE @P=aProp 

In the second phase one it will take the form 

SELECT X, $C, @P, Y, $D 

FROM  {X ; $C}@P{Y; $D} 

WHERE @P=aProp 

By incorporating the only available equality in the SELECT and FROM clauses we 

get the RQLUCQ query 

SELECT X, $C, aProp, Y, $D 

FROM  {X ; $C}aProp{Y; $D}  
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As stated in section 4.3.2, there exists the special case where the body of a 

minimised SWLF query contains nothing but equalities. This is the case where the 

initial RQLUCQ query was a schema navigating query or a constant query. Such a 

query cannot translate into a query of the form SELECT-FROM-WHERE. However, 

since the answer is already present in the SWLF query, it can simply be translated into 

a constant query as follows. 

Example 4.27: Suppose the RQLUCQ query 

SELECT $C, $D 

FROM  $C{$D} 

WHERE $C=Artist and $D=Painter 

It will minimise to query 

ans(c, d) :- c=“Artist”, d=“Painter” 

which cannot be written as a SELECT-FROM-WHERE RQLUCQ query. Notice that 

both projected variables in the initial query are schema ones. The minimal query can 

translate to the RQLUCQ constant query 

ans($C, $D) :- $C=Artist, $D=Painter  

 The above translation procedure may raise some additional questions. First of 

all, why the C_SUB predicates relating a class to itself are interpreted using the 

pattern $C, instead of $C{$C}? The answer is simple; for the chase and backchase 

algorithms, the atoms CLASS(c) and C_SUB(c, c) are equivalent. On the contrary, 

this is not the case for RQL; $C{$C} implies a check for a subclass relationship, while 

$C does not. 

Another important issue concerns the use of the RQL functions domain(@P) 

and range(@P) not belonging to the RQLUCQ fragment. This is due to the fact that no 

RQL pattern exist for imposing explicitly a restriction on a property’s domain/range. 

Nevertheless, such a restriction may appear in a minimal query as illustrated by the 

following example. 
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Example 4.28: The query 

SELECT @P 

FROM  {$C}@P 

WHERE $C=Artist 

translates to 

ans(p) :- C_SUB(c, a), PROP(a, p, b), c=“Artist” 

If two more properties are defined on Artist apart from creates, then the query has two 

minimal equivalents. The query 

ans(p) :- p=“creates” 

∪ ans(p) :- p=“…” 

∪ ans(p) :- p=“…” 

and the query 

ans(p) :- PROP(a, p, b), a=“Artist” 

The first one cannot translate into a SELECT-FROM-WHERE query. The second one 

can translate only with the “help” of function domain to 

SELECT @P 

FROM  @P, $A 

WHERE $A=domain(@P) and $A=Artist 

or even better, by exploiting the constants, to 

SELECT @P 

FROM  @P 

WHERE Artist=domain(@P) 

 

4.3.5.2 The Case of Minimal RQLCORE Queries 

The query’s FROM clause gets constructed by mapping every atom 

• C_EXT(d, x) along with an atom C_SUB(d, c) to the RQL class pattern $C{X} 
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• P_EXT(x, q, y) along with an atom P_SUB(q, p) to the RQL property pattern 

{X}@P{Y} 

The WHERE clause is formed from the equalities involving variables appearing in the 

SWLF predicates. Finally, the SELECT clause is formed by the projected variables, 

i.e. the variables found in the query’s head. However, if a projected variable not 

appear in an SWLF predicate is assigned to a value, the value is used in the SELECT 

clause instead of the variable. This will always be the case of (a) schema variables 

that were assigned to a value in the initial query and (b) variables not bound to 

patterns in the initial query. Finally, we should replace (a) all multiple occurrences of 

equated variables with just one and (b) in the FROM and SELECT clauses as many 

schema variables as possible by exploiting the equalities. 

As with RQLUCQ queries, there exists the possibility that a minimal query 

cannot translate into the SELECT-FROM-WHERE formalism. Once again, to address 

this issue we follow a similar to RQLUCQ translation approach. 

Example 4.29: Let’s see the translation of a simple minimal SWLF query 

corresponding to an RQLCORE one. 

The redundant RQLCORE query 

SELECT $C, X 

FROM  Artist{X; $C} 

WHERE $C=Artist 

after being translated in SWLF, minimises to 

ans(c, x) :- C_SUB(d, c), C_EXT(d, x), c=“Artist” 

Using the aforementioned algorithm it will translate to the RQLCORE query 

SELECT $C, X 

FROM  $C{X} 

WHERE $C=Artist 

or even better to 
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SELECT Artist, X 

FROM  Artist{X} 

after we incorporate the equalities in the FROM and SELECT clauses.  
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Chapter 5  

RQL Query Reformulation 
 

In the previous chapter we have focused on the RQL containment and minimisation 

problems exploring the potentials of the chase and backchase algorithms. However, 

these algorithms can, also, be used for reformulating RQL queries given a set of 

mapping rules from one schema to another. 

 

 

Figure 5-1: The general query reformulation problem 

 

Definition 5.1: The problem of query reformulation consists of finding (whenever it 

exists) a query (or queries) QS over a schema S that return(s) the same answer to a 

given query QP over a schema P.  

The general query reformulation problem is depicted in Figure 5-1. In our case 

the goal is to express the given RQLUCQ query translated in terms of SWLF into an 

equivalent query expressed in terms of the underlying relational schema while 

minimising the output (relational-reformulated) query. In order to succeed in both 

goals, the following steps are needed. Initially the RQLUCQ query gets rewritten in 

terms of C_EXT and P_EXT; after that it gets refined and reformulated against the 

relational schema using RDB→RDF mappings, and minimised using constraints from 

the RDB. Then, the resulting minimal relational queries are translated into appropriate 

SQL queries. Once the translation is complete, they can get executed and have their 

results translated into RDF/S data. Before proceeding to the algorithm’s descriptions, 
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the RDB→RDF mappings used to bridge the gap between the relational world and the 

world of RDF have to be introduced. 

 

5.1 From RDBs Schemas to SWLF 

Passing from the relational world to the virtual RDF world requires a mean to 

associate the two worlds. This is why RDB→RDF mappings are used; these 

mappings have the form of Datalog rules and need be specified just once for every 

relational schema. Their goal is to virtually populate the C_EXT and P_EXT 

relations. 

Definition 5.2: An RDB to RDF mapping is a Datalog rule of the form 

( ) ( ): ,RVLClause RelationalClausex x yφ φ−  

where ( )RVLClause xφ  is a conjunction of RVL clauses of the form A(x1) or A(x1, x2), 

depending on whether each clause refers to the proper extent of an RDF/S class or 

property, and ( ),RelationalClause x yφ  is a conjunction of relational atoms of the form 

R(ω1, ..., ωl) and equality atoms of the form ω=ω’, where ω1, ..., ωl, ω, ω’ are 

variables or constants.  

Artist(x) and Creates(x, y) constitute examples of RVL clauses. The translation 

of the mapping rules in the internal SWLF representation is achieved using the 

predicate C_EXT for RVL clauses referring to proper extents of classes and the 

predicate P_EXT for RVL clauses referring to proper extents of properties. The 

aforesaid RVL clauses would translate into C_EXT(Artist, x) and P_EXT(x, creates, 

y), respectively. 

There is one exception to the rule above. Due to their nature, the classes 

modelling literal types demand special handling; there is no way to limit the possible 

literal values because they are infinite. Based on this fact, no mapping can be 

specified for the literal classes. 

Example 5.1: Figure 5-2 presents a simple relational schema consisting of four 

relations whose names illustrate their intended usage. The relation Painter provides 
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additional information to the one supplied from Artist. Similarly, the relation Painting 

works as complement to Artifact. Based on the last definition, Figure 5-3 shows the 

mappings from the relational schema to the virtual RDF/S schema used in all 

examples till now.  

 

 

Figure 5-2: Relation database schema 

 

The mappings supported in SWIM are very expressive and partially support 

the GLAV ([FLM99]) approach, which is a mixed GAV ([Ull00]) and LAV ([Lev99] 

[Lev01]) approach. More thorough analysis of the expressive power of our mappings 

can be found in the related work presented in [Kof05]. 

 

5.1.1 Translating the Mappings into Constraints 

As has been stressed throughout this thesis, all information (RDF/S semantics, 

RDF/S schema, RDB→RDF mappings) must be given as input to the chase and 

backchase algorithms in the form of constraints. Hence, the mappings need to get 

translated into constraints. However, we have to make sure that no information will be 

lost during translation. 

We will start by indicating how constraints are extracted from mappings that 

follow the GAV approach, i.e. mappings that describe the global RDF/S schema in 

terms of the local relational one. These mappings have the form 

( ) ( ): ,RVLClause RelationalClausex x yφ φ−  
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Definition 5.3: A mapping’s interpretation consists of two constraints: 

( ) ( ), RVLClauseRelationalClausex y x y xφ φ∀ ∀ →  

and 

( ) ( ),RVLClause RelationalClausex x y x yφ φ∀ →∃  

Both constraints are needed because the first one guarantees soundness of the 

interpretation and the second one guarantees completeness. 

 

 

Figure 5-3: RDB→RDF mapping rules in SWLF 

 

Example 5.2: Figure 5-4 shows how, using the above definition, the mappings of 

Figure 5-3 translate into constraints.  

When the mappings follow the LAV approach, i.e. describe the local relational 

schema in terms of the global RDF/S one, or GLAV approach, apart from the two 

constraints presented in Definition 5.3, we can extract one constraint from each RVL 

clause of the head. These additional constraints can provide valuable information 

when the mappings are not complete, i.e. when they do not provide information for all 

class and property interpretations. 

Definition 5.4: From every GLAV (or LAV) mapping we extract the constraints 

( ) ( ),RelationalClause RVLClausex y x y xφ φ∀ ∀ →  

and 
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( ) ( ),RVLClause RelationalClausex x y x yφ φ∀ →∃  

Additionally, for each RVL clause in their body we extract the constraint 

( ) ( )' , , 'i
i RVLClause i iRelationalClausex x x y x y x x xφ φ∀ →∃ ∃ = −   

 

 

Figure 5-4: The constraints corresponding to the C_EXT mappings of Figure 5-3 

 

Example 5.3: Take for example the mapping rule 

creates(x, y), exhibited(y, z) :- Exhibits(z, y, ...), Artifact(y, x, ...) 

In SWLF it will translate into 

P_EXT(x, creates, y), P_EXT(y, exhibited, z) :- Exhibits(z, y, ...), Artifact(y, x, ...) 

Then it will get interpreted by the constraints 

(d1) ∀x∀y∀z∀p∀q P_EXT(x, p, y) ∧ P_EXT(y, q, z) ∧ p="creates" ∧ q="exhibited" → 

∃... Exhibits(z, y, ...) ∧ Artifact(y, x, …) 

(d2) ∀x∀y∀z∀... Exhibits(z, y, ...) ∧ Artifact(y, x, …) → ∃p∃q P_EXT(x, p, y) ∧ 

P_EXT(y, q, z) ∧ p="creates" ∧ q="exhibited" 
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The interesting part is that we can, also, infer the constraints 

(d11) ∀x∀y∀p P_EXT(x, p, y) ∧ p="creates" → ∃z∃... Exhibits(z, y, ...) ∧ Artifact(y, x, 

…) 

(d12) ∀y∀z∀q P_EXT(y, q, z) ∧ q="exhibits" → ∃x∃... Exhibits(z, y, ...) ∧ Artifact(y, x, 

…) 

The inverse constraints of (d11) and (d12) are not needed due to the existence of 

constraint (d2).  

 

5.1.2 Datalog Semantics vs. Constraints Semantics 

Our reformulation scenario is initially described by a Datalog program16 (facts and 

rules) and a set of constraints.  The mapping rules having the same head imply the 

existence of union when composed with the query. However, as soon as the mapping 

rules get interpreted as constraints this semantics is lost; constraints having the same 

body imply a conjunction when to be applied. Therefore, a disjunction has to be stated 

explicitly by merging the constraints having the same RVL clauses in their body. 

Notice that this does not happen for the reverse constraints, i.e. those having the same 

relational atoms in their body; constraints are not merged because disjunction is not 

implied from the rules’ semantics. 

Example 5.4: The mapping rules below have the same head 

C_EXT(Artist, x) :- Painters(x, …) 

C_EXT(Artist, x) :- Sculptors(x, …) 

They imply that instances of class Artist are given either from the relation Painters or 

from the relation Sculptors. Therefore, the constraints 

∀c∀x C_EXT(c, x) ∧ c="Artist" → ∃... Painters(x, ...) 

∀c∀x C_EXT(c, x) ∧ c="Artist" → ∃... Sculptors(x, ...) 

                                                 
16 To be more precise our reformulation scenario is described by Datalog program when the mappings 

follow the GAV approach. In the case of GLAV mappings, the terms “Datalog program” and “Datalog 

rule” are used by misappropriation just to highlight the functionality of SWIM. 
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merge to constraint 

∀c∀x C_EXT(c, x) ∧ c="Artist" → (∃... Painters(x, ...) ∨ ∃... Sculptors(x, ...))  

Example 5.5: On the contrary, we do not merge the constraints 

∀y∀x∀… Artifacts(y, x, ...) → ∃c C_EXT(c, y) ∧ c="Artifact" 

∀y∀x∀… Artifacts(y, x, ...) → ∃p P_EXT(x, p, y) ∧ p="Creates" 

extracted from the rules 

C_EXT(Artifact, y) :- Artifacts(y, x, …) 

P_EXT(x, Creates, y) :- Artifacts(y, x, …)  

 

5.1.3 Using Functions 

A very useful feature of SWIM is that it supports the use of simple functions in the 

mapping rules, i.e., function names can be used as relational atoms, too. The 

expressive power of SQL engines provides the only limitation to functions; since the 

queries, after being reformulated, must be transformed to equivalent SQL queries, the 

SQL engine must support the functions used at the middleware layer. 

 The most commonly used function is Concat(a, b, c), which states that the 

value of variable a is given by concatenating the values of variables b and c. A 

straightforward use for Concat is creating unique URIs for the RDF/S data-result of 

the RQLUCQ queries. Notice that the values of relations (a) are not unique across all 

relations and (b) have not the form of a URI. Thus, if they are used, the resulting 

RDF/S data will not be valid (except in the case of literal values). The following 

simple example illustrates how Concat can be used to overcome this problem. 

Example 5.6: Take the mapping rule populating the Artist class in Figure 5-3. This 

rule could become 

C_EXT(Artist, x) :- Concat(x, “http://www.csd.uoc.gr/.../Artist.rdf#”, y), Artists(y, Age) 

The result of this rule is creating unique URIs for all Artist instances.  
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 Normally, all the mappings in the examples used throughout this thesis should 

make use of the Concat function in order to create valid RDF data. However, for 

simplicity reasons, Concat is not used in any mapping in the rest of this thesis. 

 

5.2 Reformulation Phases 

The process of reformulating an RQLUCQ query into an SQL one and extracting the 

RDF/S results takes place in five successive phases. During the first phase the 

RQLUCQ query gets rewritten against the C_EXT and P_EXT predicates. Then, the 

query gets reformulated against the relational schema, while, at the same time, some 

of the conjunctive queries forming the query are removed, because they cannot get 

reformulated. The third phase minimises the query either by considering constraints 

from the relational database or not. The forth phase takes the minimal Datalog query 

and translates it into an equivalent SQL query, while in the last phase the SQL query 

gets executed and, using its results, RDF/S data get created. 

 

5.2.1 First Phase 

The first phase of the RQLUCQ reformulation algorithm should be familiar by now, 

because it involves the same steps as described for the containment and minimisation 

problems. 

 

5.2.1.1 Queries Not Involving Class/Property Interpretations 

When an RQLUCQ query is a constant one or explores the class and property 

taxonomy of the virtual RDF/S schema, our approach is based solely on the chase 

algorithm. This is the case of queries built solely on schema patterns, i.e. those not 

involving class/property interpretations. Such queries cannot get reformulated against 

the relational schema. Moreover, all information needed to answer them is present in 

the universal plans as soon as the chase with ∆RDF ends; there is no reason to apply the 

backchase algorithm. 

Example 5.7: The query 

SELECT $D, $C 
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FROM  $C{$D} 

WHERE $C=Artist 

asks for the subclasses of Artist. It can be seen in a rule-based formalism 

 

 

Figure 5-5: RDF/S Data for Example 5.7 

 

ans($D, $C) :- $C{$D}, $C = Artist 

which translates in SWLF to 

ans(d, c) :- C_SUB(d, c), c = “Artist” 

The query chases to the universal plan 

ans(d, c) :- C_SUB(d, c), CLASS(c), CLASS(d), c = “Artist”, d = “Artist” 

∪ ans(d, c) :- C_SUB(d, c), CLASS(c), CLASS(d), c = “Artist”, d = “Painter” 

It is easy to conclude that (d, c) ∈ {(Painter, Artist), (Artist, Artist)} is the result.  
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The example above clearly illustrates that the results can be extracted from the 

universal plan using a simple deductive engine. Moreover, having extracted the 

results, it is easy to derive RDF/S data from it. Figure 5-5 shows what these data 

would look like. 

Obviously, the reformulation inherits chase’s complexity under ∆RDF. 

 

5.2.1.2 Queries Involving Class/Property Interpretations 

When an RQLUCQ query navigates both through the virtual RDF/S schema and data, 

the algorithm considered is familiar; the query translates into SWLF, gets chased with 

∆RDF and, then, gets backchased. 

Comparing to the minimisation algorithm, a slight modification gets adopted. 

We are interested only on minimal queries involving nothing but C_EXT and P_EXT 

predicates; only these queries can be reformulated to queries against the underlying 

relational schema using the RDB→RDF mappings. Therefore, we use the following 

technique. As soon as the chase ends, we find the maximal subquery expressed only 

in terms of C_EXT and P_EXT. This query is guaranteed to be equivalent to the 

universal plan. Now, we use the backchase on this maximal subquery in order to find 

the minimal query expressed in terms of C_EXT and P_EXT predicates. 

Example 5.8: Suppose the query 

SELECT Y 

FROM  {X; Painter}creates{Y; Painting} 

It translates to 

ans(y) :- PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), 

P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), P_EXT(x, q, y), p=“Creates”, c=“Painter”, 

d=“Painting” 

and chases to 

ans(y) :- PROP(a, p, b), PROP(g, q, h), C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), 

C_SUB(f, d), C_SUB(e, a), C_SUB(f, b), C_SUB(g, a), C_SUB(h, b), C_SUB(i, g), 

C_SUB(j, h), C_SUB(i, a), C_SUB(j, b), P_SUB(q, p), C_EXT(e, x), C_EXT(f, y), 
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C_EXT(i, x), C_EXT(j, y), P_EXT(x, q, y), p=q=“creates”, c=e=“Painter”, 

a=g=i=“Artist”, d=f=“Painting”, b=h=j=“Artifact” 

∪ …, q=“creates”, g=i=“Artist”, h=“Artifact”, j=“Painting” 

∪ …, q=“creates”, g=“Artist”, i=“Painter”, h=j=“Artifact” 

∪ …, q=“creates”, g=“Artist”, i=“Painter”, h=“Artifact”, j=“Painting” 

∪ …, q=“paints”, g=i=“Painter”, h=j=“Painting” 

The minimal query involving only C_EXT and P_EXT predicates is 

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), p=“creates”, e=“Painter”, 

f=“Painting” 

∪ ans(y) :- P_EXT(x, p, y), p=“paints” 

which corresponds to the RQLUCQ query 

SELECT Y 

FROM  {X; ^Painter}^creates{Y; ^Painting} 

UNION 

SELECT Y 

FROM  {X}^paints{Y}  

Earlier we have stated that the chase with ∆RDF terminates. Normally, the first 

phase of the reformulation would inherit the complexity of full minimisation. 

However, based on the observation that the maximal subquery expressed in terms of 

C_EXT and P_EXT has only one minimal equivalent, the Disjunction Plan 

Minimisation can be used. 

 

5.2.2 Second Phase 

The RQLUCQ query given as input has been reformulated by now into a minimal query 

MQ expressed in terms of RVL clauses translated into SWLF, i.e. C_EXT and 

P_EXT. The algorithm’s second phase can be seen as an intermediate auxiliary phase. 

All conjunctive queries MQi forming MQ get examined one by one in order to locate 

those that cannot be rewritten into equivalent relational ones. Keep in mind that there 
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is no guarantee that a relational database contains all information corresponding to a 

specific virtual RDF/S schema. 

Therefore, the conjunctive queries containing predicates for which there is no 

RDB→RDF mapping have to be removed. The procedure, as illustrated below, is 

rather simple. 
Re, MapChaseWith Maximal lationalSubqueryExtraction

i i i i
i

MQ MQ MQ MU MR∆= → →U  

Each conjunctive query gets chased with the constraints extracted from the 

RDB→RDF mappings (∆Map) producing a (union of) conjunctive query(ies) MUi 

expressed in terms of SWLF and of the underlying relational schema. Then, the 

maximal subquery MRi expressed in terms of the relational schema gets extracted 

from each query MUi produced. The initial query MQi and MRi get tested for 

equivalence under ∆Map; whenever the check fails, the query MRi gets rejected. The 

remaining MRi’s get combined and form the union MR; MR is a (union of) 

conjunctive query(ies) expressed in terms of the relational schema. 

Example 5.9: The RQLUCQ query 

SELECT X 

FROM  Artist{X} 

after chase and backchase (1st phase) becomes 

ans(x) :- C_EXT(Artist, x) 

∪ ans(x) :- C_EXT(Painter, x) 

Suppose there is no mapping for C_EXT(Painter, x). Thus, the corresponding 

subquery has to be removed and the query that will be passed to the next phase is 

ans(x) :- Artists(x, Age)  

As we have already mentioned many times, literals are dealt as classes 

internally to SWIM. Therefore, there will be some limited cases where the minimal 

query produced from the first phase will contain conjunctive queries built on C_EXT 

predicates for literals; these queries have to be removed, too, since there are no 

mapping rules for them. The aforementioned procedure succeeds in removing these 

queries, too. 
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Example 5.10: The RQLUCQ query 

SELECT X 

FROM  $C{X} 

after chase and backchase (1st phase) becomes 

ans(x) :- C_EXT(Artist, x) 

∪ ans(x) :- C_EXT(Painter, x) 

∪ … 

∪ ans(x) :- C_EXT(String, x) 

∪ ans(x) :- C_EXT(Integer, x) 

∪ … 

The removal of the conjunctive queries containing C_EXT predicates that refer to 

literals leads to the following query expressed in terms of the relational schema: 

ans(x) :- Artists(x, Age) 

∪ ans(x) :- Painters(x, Kat) 

…  

 Unfortunately, there is the possibility that all the conjunctive queries MRi have 

to be removed. This is the case where the underlying database cannot answer the 

given RQLUCQ query; therefore, the reformulation procedure ends without returning 

any result. 

The termination of this phase depends once more on the constraints 

considered. These are the constraints extracted from the mappings (∆Map). Although 

they do not satisfy the stratified-witness property, they guarantee termination of the 

chase17. 

 

5.2.3 Third Phase 

The third phase accepts as input the query produced from the second phase of the 

reformulation procedure. Although the query is minimal when outputted from the first 

phase, the rewriting against the relational schema may introduce some redundancy, 

                                                 
17 Appendix II provides some thoughts and examples that support this conclusion. 
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depending on the mappings. In order to remove this redundancy, the query has to get 

backchased. 

Example 5.11: The query 

SELECT Y 

FROM  {X; Painter}creates{Y; Painting} 

after the 1st phase minimises to 

SELECT Y 

FROM  {X}^creates{Y}, ^Painter{X}, ^Painting{Y} 

UNION 

SELECT Y 

FROM  {X}^paints{Y} 

which in SWLF corresponds to 

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), p=“creates”, e=“Painter”, 

f=“Painting” 

∪ ans(y) :- P_EXT(x, p, y), p=“paints” 

In the 2nd phase, this query chases with ∆Map, as presented in section 5.1, rendering the 

universal plan 

ans(y) :- P_EXT(x, p, y), C_EXT(e, x), C_EXT(f, y), Artifacts(y, x, Year, Exhibited), 

Painters(x, Kat), Paintings(y, Type), p=“creates”, e=“Painter”, f=“Painting” 

∪ ans(y) :- P_EXT(x, p, y), Artifacts(y, x, Year, Exhibited), Paintings(y, Type), 

p=“paints”  

From the universal plan the maximal subquery expressed in terms of the relational 

schema gets extracted and outputted. 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type) 

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type)  

The current reformulation phase will use as input the above query and backchase it. 

As soon as the backchase ends, it will output the minimal query 
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ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type)  

 

5.2.3.1 Exploiting Additional RDB Information in the Minimisation 

The end of this phase finds us with a set of minimal queries that will be translated into 

SQL. However, further minimisation can take place if additional information supplied 

from the relational database is considered. This information usually comes in the form 

of integrity constraints and constraints capturing materialised views, if there are any 

defined. The most commonly used integrity constraints are functional dependencies, 

like keys, and inclusion dependencies, like foreign keys, which are EDs according to 

[AHV95]. The (inclusion) constraints interpreting a materialised view are generated 

in the same way constraints are produced for the mapping rules that follow the GAV 

approach; one constraint ensures the soundness of the interpretation and a second one 

the completeness. 

 

 

Figure 5-6: Integrity constraints for the relational schema 

 

 In order to exploit such additional information, the third phase gets refined. 

The maximal rewriting outputted from the 2nd phase gets chased with the relational 

constraints (∆Rel) and, then, gets backchased in one or more equivalent minimal 

queries expressed in terms of the underlying relational database. 

Example 5.12: Figure 5-6 shows the integrity constraints forming ∆Rel for the 

relational schema issued in section 5.1. There are seven constraints; the first four are 
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primary keys and the rest are foreign keys. The maximal rewriting considered in the 

previous example chases with the second foreign key to 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type), 
Artifacts(y, Painter, Year2, Exhibited2) 

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y, 

Painter, Year2, Exhibited2) 

Then, chases with the third foreign key to 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type), 

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2) 

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y, 

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2) 

The first conjunctive query chases with the first foreign key constraint resulting in 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type), 

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), 

Artists(x, Age3) 

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y, 

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2) 

Applying the third primary key constraint results in 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type), 

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), 

Artists(x, Age3), Painter=x, Year=Year2, Exhibited=Exhibited2 

∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y, 

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), Painter=x, 

Year=Year2, Exhibited=Exhibited2 

and chasing with the first primary key constraint provides the universal plan 

ans(y) :- Artifacts(y, x, Year, Exhibited), Painters(x, Kat), Paintings(y, Type), 

Artifacts(y, Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), 
Artists(x, Age3), Painter=x, Year=Year2, Exhibited=Exhibited2, Age1=Age2, 

Age2=Age3 
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∪ ans(y) :- Artifacts(y, x, Year, Exhibited), Paintings(y, Type), Artifacts(y, 

Painter, Year2, Exhibited2), Artists(x, Age1), Artists(Painter, Age2), Painter=x, 

Year=Year2, Exhibited=Exhibited2, Age1=Age2 

Amazingly, this query minimises to 

ans(y) :- Paintings(y, Type) 

It is obvious that there can be no further minimisation of the query!  

 For this phase decidability is not guaranteed; it depends on the relational 

constraints. If they satisfy the stratified-witness property, the chase with ∆Rel does 

terminate and the minimisation problem is decidable. Notice that any pair of 

constraints used to capture a view violates the stratified-witness condition. However, 

the chase is guaranteed to terminate nevertheless using the additional observation that 

when one of the two constraints is used in a chase step, the second one cannot trigger 

due to the definition of the chase step. This way the ∃-cycle in the chase flow graph 

breaks. Given its decidability, this phase’s complexity is the one of full minimisation 

under DEDs. 

 

5.2.4 Forth Phase: Translating the Query into SQL 

One of the advantages of this approach is that the minimal queries resulting from the 

previous phases are in first-order form. Thus, they may translate into SQL queries in a 

straightforward manner: (a) the relational predicates of the query’s body form the 

FROM clause, (b) the equalities involving variables introduced in any relational 

predicate form the WHERE clause of the SQL query, and (c) the head variables, 

except those not bound to predicates, become the projected variables in the SELECT 

clause with the names of the relational attributes to which they correspond. Head 

variables not bound to predicates get substituted by their value (found through the 

equalities) in the SELECT clause. This is always the case of (i) schema variables 

assigned to a value in the initial RQL querry, (ii) all remaining schema variables 

appearing in RQL patterns that have been assigned to a value during first phase, and 

(iii) variables not bound to patterns in the initial RQLUCQ query. The output of this 

translation phase is a set of SQL queries ready to be executed at remote sources. 
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Example 5.13: The minimal query 

ans(y) :- Paintings(y, Type) 

corresponds to the SQL query 

SELECT p.PName 

FROM  Paintings p 

based on the knowledge that PName is the attribute corresponding to variable y. Thus, 

this SQL query is an optimised reformulation of the RQL query 

SELECT Y 

FROM  {X; Painter}creates{Y; Painting}  

Example 5.14: In order to clarify the translation of queries carrying schema 

information suppose the RQLUCQ query 

SELECT $C, X 

FROM  $C{X} 

WHERE $C=Artist 

This query at the end of the first phase has the form 

ans(d, x) :- C_EXT(d, x), d=“Artist” 

∪ ans(c, x) :- C_EXT(d, x), d=“Painter”, c=“Artist” 

which at the end of the fourth phase has become to 

ans(c, x) :- Artists(x, Age), c=“Artist” 

The corresponding SQL query is 

SELECT ‘Artist’, a.Name 

FROM  Artists a 

 

5.2.4.1 Handling of Functions 

We have argued for the fact that the use of the Concat function is necessary for 

creating valid RDF data. Moreover, using additional functions is, also, allowed. Thus, 
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when translating the minimal queries into SQL ones, the functional predicates have to 

be translated as well. However, there is no default translation for them. It depends on 

the SQL engine that will be used for answering the SQL query. 

Example 5.15: The symbol ‘||’ is used as the concatenation operator in Oracle10. As 

an alternative, Oracle10 supports a function named “Concat”. In reality the minimal 

query of Example 5.12 would look something like 

ans(y) :- Concat(y, “http://www.csd.uoc.gr/.../Painting.rdf#”, z), Paintings(z, Type) 

So, it would translate to 

SELECT Concat(‘http://www.csd.uoc.gr/.../Painting.rdf#’, p.PName) as 

PaintingURI 

FROM  Paintings p 

where “PaintingURI” is the name of the new attribute produced.  

 

5.2.4.2 Choosing the Minimal Query to Be Executed 

The third phase that explores relational integrity constraints may output more than one 

minimal query against the relational database schema. These queries shall be 

equivalent, i.e., if executed, they will return the same results. Thus, as soon as the 

translation ends, a decision has to be made concerning which of the minimal 

reformulated queries will be executed. This decision is not trivial and is out of the 

scope of this thesis. There exist various techniques that support taking such a decision 

based on cost models, heuristics, etc. 

 Generally, the existence of more than one minimal SQL queries implies 

redundant storage in the underlying relational database and is, usually, related to the 

existence of materialised views. 

 

5.2.5 Final Phase: Translating the Results into RDF Data 

Translating the results of the reformulated SQL query into RDF/S data presupposes 

the existence of a wrapper that will collect the results from the relational database and 

make the appropriate processing. The correspondence is simple. The result of 
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executing an SQL query is a relation whose attributes are the ones projected in the 

query. The relation gets mapped to an rdf:Bag; if the relation has more than one 

attributes, each tuple corresponds to an rdf:li containing an rdf:Seq; in both cases each 

attribute value gets mapped to an rdf:li element. 

Example 5.16: Figure 5-7 shows what the RDF/S data could look like for the 

minimal SQL query of the previous example.  

 

 

Figure 5-7: RDF/S data answering the RQLUCQ query 

 

5.3 Reformulation’s Soundness, Completeness and 
Complexity 

Given that the necessary conditions are met, i.e. the stratified-witness property of the 

relational integrity constraints, the reformulation procedure terminates and it is sound 

since every single step is sound, too. Moreover, all phases based on the chase and 

backchase algorithms are complete, too. However, the entire reformulation procedure 

is not complete due to the possible lack of several RDB→RDF mappings that may 

lead in simplifying the query to be reformulated. Finally, the reformulation’s overall 

complexity stems from the different phases’ complexities. 
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Chapter 6  

SWIM’s Architecture 
 

As has been stressed out throughout this thesis, SWIM is a middleware for 

minimising and reformulating RQL queries. Figure 6-1 sketches out its general 

architecture, i.e. the RDF/S virtual schema and the mappings between it and the local 

sources (relational databases in this thesis’ case). For each RQL query submitted by 

the user to SWIM, the reformulation engine generates several SQL queries. One of 

them is chosen and gets executed. Then, its results get translated using a wrapper into 

RDF/S data and get outputted to the user. 

 

 

Figure 6-1: The ICS-FORTH SWIM architecture 

 

 The query reformulation engine is SWIM’s core component and gets 

discussed below. 
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Figure 6-2: The SWIM Query Reformulation Engine 

 

6.1 SWIM Query Reformulation Engine 

The anatomy of the query reformulation engine is presented in Figure 6-2. The engine 

takes as input (a) the virtual RDF/S schema, (b) the RDF/S semantics, (c) the 

RDB→RDF mappings, (d) any constraints originating from the  relational databases 

and (e) the RQL query to be reformulated. 

 Three basic components constitute the query reformulation engine as depicted 

in Figure 6-2: the SWLF compiler, MARS’ engine and the SQL query generator. 

 

6.1.1 SWLF Compiler 

The SWLF Compiler takes as input all the information related to RDF and translates it 

in terms of SWLF. More precisely: 

• It transforms the mediated RDF/S schema into Datalog facts that capture the 

classes, properties and their subsumption hierarchies. Then, it extracts constraints 

from them. 

• It transforms the RQL query into a Datalog rule 

• It transforms the mapping rules into rules employing SWLF terms and, then, into 

DEDs. 
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The translation of RDF/S semantics into constraints was done once and needs not be 

repeated each time the reformulation takes place. 

 Once all information is expressed as Datalog facts and rules in terms of 

SWLF, the Datalog program gets parsed with the use of JFlex 1.4 and JavaCup. The 

parsing procedure outputs a file where all information is given in the form of 

constraints (DEDs). The BNF grammar used for the parsing can be found in Appendix 

C. 

 

6.1.2 MARS 

The MARS (Mixed and Redundant Storage) system ([DT02] [DT03a] [DT03b]) 

constitutes the basic component of SWIM. It was developed in the University of 

Pennsylvania by Lucian Popa [Pop00] and Alin Deutsch [Deu02]. It implements the 

chase, along with the checks for consistency of the queries, and backchase algorithms 

referenced throughout this thesis, thus, allows checking for query equivalence and 

minimising as well as reformulating queries. 

 MARS was originally designed for object relational databases. Later, it was 

extended in order to handle XML repositories. This was achieved by establishing and 

incorporating in it a relational schema and a number of relational constraints capturing 

XML and its semantics. Our relational representation of RDF is somewhat similar to 

XML’s. In our RDF to RDB scenario we ignore the XML handling feature of MARS 

and concentrate on the reformulation and minimisation of relational queries over the 

relational schema for RDF. When handling relational (and not XML) queries, the 

chase and backchase algorithms are sound and complete; MARS discovers all 

minimal (reformulated) queries. 

 MARS’ novelty is its ability to handle both materialised views and integrity 

constraints. No earlier approach on reformulation had managed to prove completeness 

for both aspects together. What made this possible is the fact that all information is 

passed as input to the system in the form of constraints. Translating the mappings 

between the local (source) schemas and global (published) schemas into constraints 

allows handling both the Global-As-View (GAV) and the Local-As-View (LAV) 

approaches. 
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6.1.3 SQL Generator 

The SQL Generator is the component that generates the SQL query based on the first-

order query outputted from the last call of the chase/backchase machine. The 

translation is pretty straightforward: reading one-by-one the query’s atoms, the non-

functional ones are used to construct the FROM clause, the equality ones form the 

WHERE clause and the functional ones get incorporated in the SELECT clause. A 

Java program is responsible for this translation. 

 This translation is not independent of the underlying relational database 

management system (RDBMS). Since each RDBMS supports different functions or 

different representations of the same functions, the translation is RDBMS oriented. 

Each time we want to use SWIM over a RDBMS for the first time, the generator has 

to be enriched with the appropriate methods handling the RDBMS’ functions. 

 

6.2 Related Work 

RDF/S is a SW language that has become accepted as a language favouring 

interoperability between information sources in the last few years. However, the 

number of systems having adopted RDF/S in order to integrate/publish relational 

sources in the Semantic Web is still limited. Nevertheless, many systems are under 

development and new approaches are proposed daily. Some of them republish entire 

relational databases as RDF/S data adopting the data warehousing approach, while the 

rest, like SWIM, return virtual RDF resource descriptions when queries are posed on 

virtual RDF/S schemas (on-demand retrieval). 

The situation is even worse with approaches proposing and systems offering 

containment and minimisation techniques for RDF/S query languages. To our 

knowledge there exists only one application offering such services and there is no 

system providing optimisation services along with the integration ones. Moreover, 

there is a second one that deals with the idea of query caching, i.e. reusability of 

previously computed results. 
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6.2.1 SWARD 

 SWARD [PR04] is a system under development that offers wrapping services 

to relational databases by adopting the on-demand retrieval approach. This is achieved 

by extracting virtual RDF/S views from the relational databases; these views, which 

are defined using domain calculus expressions, express relational to RDF mappings. 

RDF/S queries – QEL ([NS04]) is favoured as the query language for RDF/S – get 

translated to domain calculus expressions, too, and get composed with the RDF/S 

views. Then, the resulting domain calculus expression gets translated to an SQL query 

whose results are returned as virtual RDF resource descriptions. SWARD allows 

using in the RDF/S queries filters not expressible in SQL; in this case, the filters are 

applied on the results from the SQL queries. 

Moreover, SWARD allows for different terminologies in received QEL 

queries by maintaining a user defined table that stores relations between terms from 

different ontologies having the same meaning; this way the RDB-specific RDF/S 

views can map to global ontologies. When a query uses terms of the global ontology, 

the system searches the table for equivalent terms and rewrites the query. 

 SWARD's basic drawback is the limited expressive power of the mappings 

relating a relational database to an RDF/S ontology. The RDF/S views follow the 

GAV approach and are provided only in terms of virtual RDF/S properties, i.e. of 

basic RDF/S data; no schema information about instance-of, class-property 

hierarchies can be expressed. Moreover, the correspondences between RDF/S views 

and global ontologies are elementary, since they are based on term equivalence. 

 

6.2.2 D2RQ 

D2RQ ([BS04]) is a declarative, based on D2R Map ([Bi03]), language used to 

describe mappings between relational database schemata and RDF/S (OWL) 

ontologies. It is used as an add-in to the Jena tookit ([CDD+03]) rendering on-demand 

retrieval feasible. It allows treating the relational databases as virtual RDF graphs, 

which can be queried using RDQL; the queries based on the mappings get 

reformulated to SQL queries, whose results get translated back to RDF data. 

A D2RQ mapping between a global ontology and a relational database schema 

is an RDF/S document that describes (a) correspondences of RDF/S classes and 
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properties to relational elements; based on these correspondences class and property 

instances get extracted on demand, and (b) how class instances are identified, i.e. how 

URIs for instances are produced. This work is pretty new and under development. 

D2RQ follows the GAV approach in the definition of the mappings. 

Therefore, compared to our work, the mappings are less expressive. 

 

6.2.3 Integration of Relational Sources Using RDF and XML 

[HV01] proposes an architecture for integrating heterogeneous information sources 

using RDF and XML. This on-demand retrieval approach is based on a conceptual 

domain model described using RDF/S. Mappings are established between the virtual 

RDF/S schema and virtual or not XML DTDs using mapping rules expressed in 

LMX18. Therefore, information sources are required to be able to export their data in 

XML serialisation and non-XML sources, like relational databases, can use wrappers 

to achieve that. Once a query is posed on the conceptual model it gets pushed to the 

underlying sources based on the mappings; then, the sources, with or without a 

wrapper’s interference, return all necessary information as XML serialisation and 

RDF/S data get produced. 

 

6.2.4 Integration of Relational Sources using RDF Vocabularies 

[CX03] introduces an approach involving both query reformulation and data 

warehousing. Queries are posed on a local source described by an RDF/S schema and 

get mapped to the remote source, described by an RDF/S schema, too; RQL has been 

adopted as the query language. The mapping is facilitated by a global RDF/S ontology 

and common vocabularies. Each source schema shares with the global ontology a 

dictionary that stores the common vocabulary of all the schema concepts and the 

relationships between the ontology and each schema. 

The interesting part is that the sources originally need not have an RDF/S 

schema describing them and their data stored as RDF. If they are relational (or XML), 

an RDF/S schema gets extracted and RDF/S data are created and stored into RSSDB 

                                                 
18 Language for Mapping XML documents 
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([ACK+01]). Thus, as soon as an RQL query on the local source gets reformulated to 

an RQL query on the target source it can get executed. 

The main difference with SWIM is the fact that the integration of relational 

sources into global or other RDF/S ontologies demands that an RDF/S schema along 

with RDF/S data gets extracted. Moreover, a basic restriction of this approach that is 

worth noticing is the fact that only one-to-one mappings are considered when relating 

each source’s RDF/S schema to the global ontology, i.e., a concept in one RDF/S 

schema maps to a single concept in another schema. 

 

6.2.5 FDR2 

In [KT04] the authors propose a data warehousing approach to facilitate ontology-

based querying of relational data. The goal is to relate data stored in a relational 

database with a domain ontology. The first step is to extract an RDF/S representation 

of the relational database. Automatically, every column of a relational table gets 

mapped to an RDF/S class and all binary relations between two columns (classes) get 

mapped to RDF/S properties. Then, all classes and properties get instantiated using 

the relational data. The next step is to map this RDF/S representation to the domain 

ontology, which is also expressed in RDF/S. The user identifies subclass 

(subproperty) relationships between the classes (properties) of the RDF/S 

representation and those of the domain ontology. As soon as the mapping is done, an 

RDF/S reasoner is used to deduct all possible entailments based on the hierarchy 

relationships. Whenever a query on the domain ontology is posed, it gets evaluated 

using these entailments. 

 FDR2 uses a naïve approach for creating the RDF/S representation, since it 

does not explore its semantics. This choice was made because it is designated for 

simple relational schemas, like the ones used for keeping track of scientific 

experiments and computations. Moreover, based on the mappings, we may conclude 

that, using the FDR2 approach, queries built on proper interpretations cannot be 

answered. Finally, FDR2 provides no query optimisation techniques. 
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6.2.6 D2R Map 

D2R Map ([Bi03]) is a declarative XML-based language used to describe flexible 

mappings of complex relational structures to RDF. Its flexibilty is achieved by 

employing SQL statements directly in the mapping rules; correspondences between 

classes (properties) and relational elements are established stating how the classes 

(properties) get instantiated and how URIs are created. This way, relational data can 

get exported as RDF using a D2R processor. 

 

6.2.7 ICS-FORTH GRQL Interface 

As has already been illustrated, the ICS-FORTH GRQL Interface ([ACK04]) is an 

interface that produces on the fly RQL queries while the user navigates through an 

RDF/S schema. Its functionality is rather simple: each navigation step on an RDF/S 

schema either creates or alters an existing path expression; these path expressions are 

combined to form RQL queries. One of its advantages is that it performs optimisation 

of the queries produced run-time. The key to optimisation is that when navigating 

through hierarchies of classes (properties) already present in path expressions, the 

path expressions get refined depending on whether subclasses (subproperties) are 

visited. The main difference to SWIM’s query minimisation lays to its handling of 

only a fragment of RQL, similar to RQLCORE. 

 

6.2.8 Similarity-Based Query Caching 

In [Stu04] the author approaches RDF query optimisation from a different 

perspective. He proposes a graph-based approach for identifying RDF queries that are 

subsumed by already issued queries whose results have been cached (stored). This 

approach exploits the fact that RDF statements form labelled directed graphs. Queries 

are represented using graphs where the unlabelled nodes denote the variables of the 

query. By comparing query graphs query subsumption can be identified. If query A, 

which was issued on the RDF/S description base DB subsumes query B, query B 

needs not be executed on DB. It can be issued on the cached results of query A. 

 Additionally, the author provides (i) a cost model to decide whether result 

caching provides an advantage with respect to run time complexity and (ii) a cost-
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based similarity measure for RDF queries in case more than one relevant result sets 

are found in the cache. 

 The key difference to our minimisation approach is that the graph queries can 

be posed only on nodes, i.e. demand subject/object resource information. In other 

words only queries asking solely for data information though joining property 

interpretations are supported. 
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Chapter 7  

Conclusion 
 

The issue of integrating legacy systems has been challenging information society for a 

long time. Initially, systems were integrated by defining one-to-one mappings 

between them. However, this approach presented several drawbacks, like scalability 

and maintainability. Then, organisations moved to XML in order to take advantage of 

standards based integration. But, XML did not provide solutions to all problems. 

The next step was to use ontologies in the integration process. For each 

knowledge or application domain, an ontology is defined and legacy systems get 

mapped to such ontologies. This way, systems can communicate independently from 

information architectures and system technologies. Moreover, when ontologies are 

described using machine processable languages, like RDF/S, legacy systems get 

integrated into the Semantic Web and can be accessed through it. 

 Therefore, in this thesis we have proposed SWIM, a system for integrating 

relational and XML ([Kof05]) sources in the Semantic Web, and have focused on the 

relational aspects of the system. At the same time we have presented the optimisation 

capabilities of SWIM regarding queries against SW ontologies. We have chosen 

RDF/S to be the SW ontology language and RQL its corresponding query language. 

We have, also, identified a fragment of RQL, namely RQLCORE, for which 

optimisation is sometimes easier to perform. 

 Six relational predicates and a number of constraints, which form the Semantic 

Web Logic Framework (SWLF), have been adopted for capturing the RDF/S data 

model and its semantics. Based on this representation we have achieved to reduce the 

RQL optimisation problem to its relational equivalent. Furthermore, the RQL to SQL 

reformulation problem has been reduced to the problem of rewriting a query against 

SWLF as a query against the relational storage schema. 

 The minimisation and reformulation procedures are based on the chase and 

backchase algorithms; the latter is sound and complete when the chase is guaranteed 

to terminate. Since these algorithms accept input in the form of constraints, all 

information gets translated into disjunctive embedded dependencies (DEDs). The 
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reformulation procedure exploits RDB to RDF mappings translated in SWLF. The 

mappings between the local (relational) sources and the global (RDF) ones follow the 

GLAV approach that combines the advantages of both the Global-As-View and 

Local-As-View approaches. 

 It is worth noticing that the chase and backchase algorithms employed for 

RDF/S semantic query optimisation were initially developped in the context of 

optimisation and reformulation of queries issued against relational schemas using 

dependencies capturing integrity constraints and schema mappings. However, in our 

scenario the major difference that arises is the expressions of queries allowing both 

schema and data navigation/filtering. In order to represent a specific RDF/S 

description schema, the predicates CLASS, PROP, C_SUB and P_SUB have to get 

populated. Moreover, this schema is given as input to the chase and backchase 

algorithms using constraints, which implies providing the data of the relations in the 

form of constraints. Using this knowledge, the minimisation process always generates 

a minimal query were no schema navigation is needed in order to answer it. In 

practice, the minimisation procedure sometimes rather answers than minimises the 

schema part of a given query; when the case, a union is usually introduced. 

Additionally, not all the minimal queries produced from the C&B algorithm are 

always interesting. For example, it is hard to argue why choosing to execute the 

second minimal query of Example 4.20. If accessing only proper interpretations is 

desired (i.e. the relation C_EXT), the third query should be chosen; if accessing 

extended interpretations is desired (i.e. both the C_SUB and C_EXT relations), the 

first query should be chosen. The only obvious reason to select a minimal query 

where schema information has partially been unfolded is in order to exploit cached 

query results; if the query asking for the extended interpretation of Painter – or the 

proper interpretation of either Artist or Sculptor – has already been issued and its 

results have been stored, this query can be useful. Nevertheless, this presupposes a 

check of all the minimal queries in order to locate those involving cached queries. 

Another issue has occurred in the reformulation process. If we were interested 

in considering only GAV mappings, the reformulation would be straightforward even 

if they were not complete, i.e. did not provide information for all classes and 

properties of the RDF/S schema. However, our goal was to consider GLAV mappings 

between the virtual RDF/S schema and the relational proprietary one; so, we were 
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forced to break the reformulation in three phases in order to handle/overcome 

mappings’ incompleteness. 

This incompleteness usually does not affect the straightforwardness of the 

reformulation algorithm in purely relational scenarios. When a query does not 

reformulate as a whole, a negative answer is issued. On the contrary, in the RQL 

reformulation/integration scenario the majority of RQL conjunctive queries imply a 

union of queries based on the class/property hierarchies. The underlying proprietary 

database may not be able to answer all of them, but may have the information to 

answer some of them. Our reformulation algorithm manages to handle this case, too, 

by locating the maximal subquery of the original one that can be answered. 

 

7.1 Future Work 

SWIM is a middleware for RQL query optimisation and reformulation. However, 

there are still some issues that deserve to be further investigated. 

First of all, it would be very useful if SWIM disposed a feature that would 

allow generating (semi-) automatically the mappings between the virtual RDF/S 

schemata and the relational databases; users would appreciate such assistance. A 

possible guideline to this direction could be to incorporate in SWIM a reverse 

engineering tool in order to produce an ER-model from the relational schema; given 

the concepts and the relationships between them, the mapping to RDF/S classes and 

properties would be facilitated. 

 Another issue is the support of features originating from more expressive 

RDF-based ontology languages, like OWL. OWL offers some additional features that 

can prove very useful, such as inverse properties and disjointness of class and 

property extensions. Incorporating them in SWIM would allow a wider range of RQL 

queries to be posed and would offer increased optimisation capabilities. 

 Additionally, extending the RQL fragment considered, namely RQLUCQ could 

be a hint for future work. For example, we could look into incorporating RQL 

functions – like domain, range, subclassof, subpropertyof and aggregate ones – and 

nested queries in the fragment. 

 The ability to attach to the reformulated queries schema information is an 

issue that deserves further investigation, too; although the queries are posed against an 
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RDF/S schema, the algorithm’s present form does not allow, when asking a query, 

retrieving along with the instances the corresponding schema information, i.e. 

returning fully typed descriptions. Such a feature would allow exploiting the power of 

the RDF/S language. 

 Another interesting direction for further investigation is the exploitation of 

cached query results either in combination with the minimisation process or 

independently. The problem can be defined as follows: “Given a query or a minimal 

equivalent, can it partially (or fully) be answered from the cached results of already 

answered queries?” 

 Finally, extended paradigms should be run in order to test whether SWIM can 

be used in real life integration scenarios where the input load may severally increase. 

We should have in mind that the complexities raise exponentially in the size of the 

global RDF/S schema. 
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Appendix A 

RQL Patterns 
 

RQL Property Patterns 

The table containing all property patterns appearing in RQLUCQ queries and their 

translations in SWLF follows. 

 

Property Pattern Translation 

@P 

^@P 

PROP(a, p, b) 

{X; ^$C}@P{Y; ^$D} PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(d, b), C_EXT(c, x), C_EXT(d, y) 

{X; ^$C}@P{Y} 

{X; ^$C}@P 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_EXT(c, x) 

{X}@P{Y; ^$D} 

@P{Y; ^$D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(d, b), C_EXT(d, y) 

{X; $C}@P{Y; ^$D} 

{$C}@P{Y; ^$D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x), 

C_EXT(d, y) 

{X; ^$C}@P{Y; $D} 

{X; ^$C}@P{$D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x), 

C_EXT(f, y) 

{X; $C}@P{Y; $D} 

{$C}@P{Y; $D} 

{X; $C}@P{$D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), 

C_EXT(e, x), C_EXT(f, y) 

{X; $C}@P{Y} 

{$C}@P{Y} 

{X; $C}@P 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(c, a), C_SUB(e, c), C_EXT(e, x) 

{X}@P{Y; $D} 

{X}@P{$D} 

@P{Y; $D} 

PROP(a, p, b), P_SUB(q, p), P_EXT(x, q, y), 

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y) 

{X}@P{Y} P_SUB(q, p), P_EXT(x, q, y) 
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{X}@P 

@P{Y} 

{$C}@P{$D} 

{$C}^@P{$D} 

PROP(a, p, b), C_SUB(c, a), C_SUB(d, b), 

{$C}@P 

{$C}^@P 

PROP(a, p, b), C_SUB(c, a) 

@P{$D} 

^@P{$D} 

PROP(a, p, b), C_SUB(d, b) 

{X; ^$C}^@P{Y; ^$D} PROP(a, p, b),  P_EXT(x, p, y), C_SUB(c, a), 

C_SUB(d, b), C_EXT(c, x), C_EXT(d, y) 

{X; ^$C}^@P{Y} 

{X; ^$C}^@P 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(c, a), C_EXT(c, x) 

{X}^@P{Y; ^$D} 

^@P{Y; ^$D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(d, b), C_EXT(d, y) 

{X; $C}^@P{Y; ^$D} 

{$C}^@P{Y; ^$D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_EXT(e, x), 

C_EXT(d, y) 

{X; ^$C}^@P{Y; $D} 

{X; ^$C}^@P{$D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(f, d), C_EXT(c, x), 

C_EXT(f, y) 

{X; $C}^@P{Y; $D} 

{$C}^@P{Y; $D} 

{X; $C}^@P{$D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(c, a), C_SUB(d, b), C_SUB(e, c), C_SUB(f, d), 

C_EXT(e, x), C_EXT(f, y) 

{X; $C}^@P{Y} 

{$C}^@P{Y} 

{X; $C}^@P 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(c, a), C_SUB(e, c), C_EXT(e, x) 

{X}^@P{Y; $D} 

{X}^@P{$D} 

^@P{Y; $D} 

PROP(a, p, b), P_EXT(x, p, y), 

C_SUB(d, b), C_SUB(f, d), C_EXT(f, y) 

{X}^@P{Y} 

{X}^@P 

^@P{Y} 

P_EXT(x, p, y) 
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RQL Class Patterns Not Involving Proper Interpretations 

The table containing all class patterns appearing in RQLCORE queries follows. 

 

Class Pattern 

$C ^$C 

$C{$D} ^$C{$D}

$C{X} 

$C{X; $D} 

 

RQL Property Patterns Not Involving Proper Interpretations 

The table containing all class patterns appearing in RQLCORE queries follows. 

 

Property Pattern 

@P ^@P 

{X; $C}@P{Y; $D} {$C}@P{Y; $D} {X; $C}@P{$D} 

{X; $C}@P{Y} {$C}@P{Y} {X; $C}@P 

{X}@P{Y; $D} {X}@P{$D} @P{Y; $D} 

{X}@P{Y} {X}@P @P{Y} 

{$C}@P{$D} {$C}^@P{$D} 

{$C}@P {$C}^@P 

@P{$D} ^@P{$D} 
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Appendix B 

Termination of Chase 
 

Stratified-Witness for Disjunction-free DEDs 

We will start by illustrating why the stratified-witness property can be used with 

disjunction-free DEDs, i.e. DEDs consisting of a single conjunctive query. First of all, 

we will consider equalities in the left-hand side of dependencies. Such equalities can 

easily be ignored by replacing all occurrences in the dependency of one of the 

variables equated by the other, hence, resulting in an embedded dependency as 

introduced in [AHV95]. 

Equalities in the right hand of a dependency involving at least one existentially 

quantified constraint are dealt similarly. If two existentially quantified variables are 

equated, the equality is removed and one of the variables is replaced by the other one 

in the right-hand side of the dependency. If an existentially quantified variable is 

equated with a universally quantified one, then, the equality is removed and the 

universally quantified one replaces the other one. Once again the query produced is an 

embedded dependency equivalent to the original dependency. 

Finally, we will argue that the introduction of constants in the dependencies 

cannot disturb the stratified-witness property. We can without loss of expressive 

power consider constants only in equality atoms. If a set of dependencies, where 

equality atoms involving constants are ignored, satisfies the stratified-witness 

property and, therefore, termination is ensured, there is no way the introduction of the 

unattended equalities will introduce an infinite number of fresh variables and lead the 

chase to diverge. 

Proposition B.1: If a set C of disjunction-free DEDs satisfies the stratified-witness 

property when equalities of variables to constants are ignored, the chase of a 

conjunctive query Q with C terminates.  

In practice, the use of constants in the constraints may reduce the number of 

chase steps till the universal plan is reached, or even prevent an endless execution of 
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chase steps. Unfortunately, the check for stratified-witness cannot exploit the 

additional information coming with the use of constants. 

Example B.1: The constraints below do not satisfy the stratified-witness. 

(d1) ∀x∀y A(x, y) → ∃z B(y, z) 

(d2) ∀y∀z B(x, y) → ∃z A(y, z) 

and the chase of query 

ans(x) :- A(x, y) 

with them will not terminate 

ans(x) :- A(x, y), B(y, z) 

→ ans(x) :- A(x, y), B(y, z), A(z, z1) 

→ ans(x) :- A(x, y), B(y, z), A(z, z1), B(z1, z2) 

→ … 

If we refine (d1) by adding the equality “z=3”, the constraints do not satisfy the 

stratified-witness property once again, since the process to verify it has not changed. 

Nevertheless, the chase with the new constraints terminates. 

ans(x) :- A(x, y), B(y, 3) 

→ ans(x) :- A(x, y), B(y, 3), A(3, k) 

→ ans(x) :- A(x, y), B(y, 3), A(3, k), B(k, 3) 

The chase terminates here.  

 

Termination of Chase with ∆Map 

Initially, we will argue that the constraints issued from a single mapping rule do not 

cause the chase to diverge, although they introduce at least one cycle in the chase flow 

graph that contains at least one ∃-labelled edge. The two constraints ensuring 

soundness and completeness (see section 5.1.1) create such a cycle. However, they 

cannot trigger both; when one of them gets applied, the conclusion of the second one 

is already in the query. We have, also, seen that several constraints, whose head is a 

subset of the constraint ensuring completeness, can be educed. Incorporating these 
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constraints may introduce new cycles containing an ∃-labelled edge. Nevertheless, the 

chase will terminate because each additional constraint can apply at most once, 

depending on the order the constraints get applied. 

Example B.2: Suppose the mapping rule 

P1(x, y), P2(y, z) :- R(x, y, z, …) 

In SWLF it takes the form 

P_EXT(x, P1, y), P_EXT(y, P2, z) :- R(x, y, z, …) 

The constraints extracted are 

(d1) ∀x∀y∀z∀p∀q P_EXT(x, p, y) ^ P_EXT(y, q, z) ^ p="P1" ^ q="P2" → ∃... R(x, y, z, 

...) 

(d2) ∀x∀y∀z∀… R(x, y, z, …) → ∃p∃q P_EXT(x, p, y) ^ P_EXT(y, q, z) ^ p="P1" ^ 

q="P2" 

(d11) ∀x∀y∀p P_EXT(x, p, y) ^ p="P1" → ∃z∃... R(x, y, z, ...) 

(d12) ∀y∀z∀q P_EXT(y, q, z) ^ q="P2" → ∃x∃... R(x, y, z, ...) 

Suppose the query below 

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2” 

If d1 is applied first, the chase ends with the universal plan 

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z, ...) 

On the contrary, if d11 (or d12) is applied first, d1 gets applied, too. Then, the universal 

plan looks like 

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z’, ...), R(x, y, z, ...)  

Alternatively, we may apply d11 and d12, then d2 twice and, finally, d1 twice. 

ans(x) :- P_EXT(x, p, y), P_EXT(y, q, z), p=“P1”, q=“P2”, R(x, y, z’, …), R(x’, y, z), 

P_EXT(y, q, z’), P_EXT(x’, p, y), R(x’, y, z’), R(x, y, z) 
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After a number of steps and independently of the order the constraints get applied, the 

chase terminates.  

The conclusion above propagates to any mapping; the constraints extracted 

from a single mapping cannot impose an infinite number of chase steps. Obviously, 

the number of the chase steps depends on the number of RVL clauses appearing in the 

left-hand side of the mapping, which produce an equal number of constraints. The 

previous example along with other ones led us to the conclusion that whenever 

possible, first the constraints of the form d1, then those of the form d2 and finally those 

of the form d1i should be applied in order to reduce the number of the chase steps. 

Now, we will extend our reasoning in order to comprise the interaction 

between the constraints originating from different mappings. The fact that all class 

(property) extents are expressed using a single predicate renders the emergence of 

cycles containing ∃-labelled edges very possible in the chase flow graph. However, 

notice that the variables corresponding to the class (property) names in the C_EXT 

(P_EXT) predicates are always assigned to a constant in the query and the mappings 

and, consequently, the constraints. Therefore, given a chase sequence of the form 
1

1 2_ ( , ) ... ... _ ( , )i nC EXT c x C EXT c yδ δδ→ → →  

or 
1

1 2_ ( , , ) ... ... _ ( ', , ')i nP EXT x p y P EXT x p yδ δδ→ → →  

and in order to have an infinite number of chase steps, the equality c1=c2 (p1=p2) must 

stand. 

Having this in mind, we can use the following technique to test the constraints 

for stratified-witness: for every distinct value of the class (property) name in the 

extent predicates we introduce a “virtual” predicate; the chase flow graph is built 

using the “virtual” predicates and not the C_EXT and P_EXT ones. For example, the 

predicate P_EXT(x, creates, y) is handled in the chase flow graph as creates(x, y). 

This trick we use is not as arbitrary as it seems; in fact it is the opposite procedure 

from the one taking place when translating the RVL clauses into SWLF. Testing 

dependencies for stratified-witness using this technique overcomes the inability of 

exploiting the values of the class (property) names in the C_EXT (P_EXT) predicates. 

Example B.3: Suppose the mappings 
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P_EXT(x, creates, y) :- Artifacts(y, x, Exhibited, Year) 

P_EXT(x, isDated, x) :- Artifacts(x, Artist, Exhibited, y) 

If, after translating them into constraints, we test the latter for stratified-witness, the 

result will be negative; there are cycles containing at least one ∃-labelled edge. If, 

however, the aforementioned trick is used, the “altered” constraints satisfy stratified-

witness and we are able to recognise that the chase terminates.  

 Although the technique above allows us to overcome the fact that the check 

for stratified-witness cannot handle the values in the C_EXT and P_EXT predicaets, 

there are still cases that the check cannot identify as terminating due to not handling 

values assigned to variables. Nevertheless, the fact that the constraints are extracted 

from the mappings using a standard procedure allows a very important observation: 

the chase with ∆Map always terminates! We will argue for this observation based partly 

on intuition. 

Since all constraints have on one side C_EXT (P_EXT) predicates and on the 

other relational predicates, every infinite chase sequence, if there could exist one, 

should introduce infinite C_EXT (P_EXT) predicates. Moreover, the constraints 

creating an “∃-cycle” in the chase flow graph are of even number. We will show why 

there cannot be an infinite number of chase steps when two constraints create a cycle 

in their chase flow graph using general examples. The same proof procedure can be 

used when four or more constraints create such a cycle. 

Example B.4: We will first consider the case where the cycle results in an infinite 

number of C_EXT predicates. For this to happen the constraints creating the cycle 

should look like 

∀c∀x C_EXT(c, x) ∧ c=“C” → ∃y R(x, y, …) 

∀x∀y R(x, y, …) → ∃c C_EXT(c, y) ∧ c=“C” 

If these were not constraints extracted from mappings the chase of query 

ans(x) :- C_EXT(C, x) 

would diverge: 

ans(x) :- C_EXT(C, x), R(x, y, …), C_EXT(C, y), R(y, y’, …), C_EXT(C, y’), … 
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However, the above two constraints imply the existence of the following mapping 

rules19 

C_EXT(C, x) :- R(x, y, …) 

C_EXT(C, x) :- R(y, x, …) 

The constraints that would be given as input to the chase algorithm would be 

∀c∀x C_EXT(c, x) ∧ c=“C” → (∃y R(x, y, …)) ∨ (∃y R(y, x, …)) 

∀x∀y R(x, y, …) → ∃c C_EXT(c, y) ∧ c=“C” 

∀x∀y R(x, y, …) → ∃c C_EXT(c, x) ∧ c=“C” 

These constraints violate the stratified-witness, too. All the same, the chase would 

terminate yielding the universal plan 

ans(x) :- C_EXT(C, x), R(x, y, …), C_EXT(C, y) 

∪ ans(x) :- C_EXT(C, x), R(y, x, …), C_EXT(C, y)  

Example B.5: Now, let’s study study the case where the cycle containing the ∃-

labelled edge involves P_EXT. Two constraints that would result in an infinite 

number of chase steps are 

∀x∀p∀y P_EXT(x, p, y) ∧ p=“P1” → ∃z R(x, y, z, …) 

∀x∀y∀z R(x, y, z, …) → ∃p P_EXT(y, p, z) ∧ p=“P1” 

Imagine the query 

ans(x) :- P_EXT(x, P1, y) 

Its chase with the constraints above would diverge 

ans(x) :- P_EXT(x, P1, y), R(x, y, z, …), P_EXT(y, P1, z), R(y, z, z’, …), P_EXT(z, P1, 

z’), … 

However, in SWIM the above constraints entail the existence of two mappings. The 

first constraint could imply the mapping 

                                                 
19 To be more accurate, the 1st mapping rule could have additional predicates in its body. We will 

examine such a case in the following example. 
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P_EXT(x, P1, y), P_EXT(y, P2, y’) :- R(x, y, z, y’, …) 

The second one implies the mapping 

P_EXT(x, P1, y) :- R(z, x, y, y’, …) 

These mappings introduce the constraints 

∀x∀p∀y∀q∀y’ P_EXT(x, p, y) ∧ p=“P1” ∧ P_EXT(y, q, y’) ∧ q=“P2”→ ∃z R(x, y, z, y’, 

…) 

∀x∀p∀y P_EXT(x, p, y) ∧ p=“P1” → (∃z∃y’ R(x, y, z, y’, …)) ∨ (∃z∃y’ R(z, x, y, y’, …)) 

∀y∀q∀y’ P_EXT(x, q, y) ∧ q=“P2”→ ∃z∃y’ R(z, x, y’, y, …) 

∀x∀y∀z∀y’ R(x, y, z, y’, …) → ∃p∃q P_EXT(x, p, y) ∧ p=“P1” ∧ P_EXT(y, q, y’) ∧ 

q=“P2” 

∀x∀y∀z R(x, y, z, y’, …) → ∃p∃q P_EXT(y, p, z) ∧ p=“P1” 

Let’s see the effect of the above constraints on query 

ans(x) :- P_EXT(x, P1, y) 

It will chase to the universal plan 

ans(x) :- P_EXT(x, P1, y), R(x, y, z, y’, …), P_EXT(y, P2, y’), P_EXT(y, P1, z) 

∪ ans(x) :- P_EXT(x, P1, y), R(z, x, y, y’, …), P_EXT(z, P1, x), P_EXT(x, P2, y’) 

Once more the chase terminates.  

Likewise, the chase with any set of constraints extracted from RDB→RDF mappings 

can be shown not to diverge. Thus, the following proposition is educed. 

Proposition B.2: The chase with ∆Map terminates.  

The key point behind the termination of chase is the standard procedure for 

interpreting the mappings as constraints, and more specifically, the use of disjunction 

for constraints having the same head (of RVL clauses). It is the disjunction that 

prevents the constraints that create a cycle with an ∃-labelled edge to be applied both 

on the same conjunctive query. 

The termination of the chase given ∆Map is a very powerful condition, which 

encompasses cases that will rarely rise in real publishing scenarios. Consider Example 
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B.5. It presupposes a relation R(a1, a2, a3, …) where both the pairs <a1, a2> and <a2, 

a3> instantiate the property P1. Moreover, the relational attributes a1, a2 and a3 must 

correspond to the same classes, since a2 instantiates both the domain and range of P1! 
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Appendix C 

BNF Grammar for Datalog 
 

[1] PROGRAM    ::= FACTLIST RULELIST QUERY 

           ; 

[2] FACTLIST    ::= FACT FACTLIST 

           | 

           ; 

[3] FACT     ::= CLASS_FACT 

           | PROP_FACT 

           | CSUB_FACT 

           | PSUB_FACT 

           ; 

[4] CLASS_FACT    ::= “CLASS(“ CONSTANT “)” “.” 

           ; 

[5] PROP_FACT    ::= “PROP(“ TRI_CONSTANT “)” “.” 

           ; 

[6] CSUB_FACT    ::= “CSUB(“ DBL_CONSTANT “)” “.” 

           ; 

[7] PSUB_FACT    ::= “PSUB(“ DBL_CONSTANT “)” “.” 

           ; 

[8] TRI_CONSTANT   ::= CONSTANT “,” CONSTANT “,” 

           CONSTANT 

           ; 

[9] DBL_CONSTANT   ::= CONSTANT “,” CONSTANT 

           ; 

[10] RULELIST    ::= RULE RULELIST 

           | 
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           ; 

[11] RULE     ::= HEAD “:-” SQBODY 

           ; 

[12] HEAD     ::= “CEXT(“ CONSTANT “,” VARIABLE 

     “)” 

     | “PEXT(“ VARIABLE “,” CONSTANT 

     “,” VARIABLE “)” 

     ; 

[13] SQBODY    ::= SQITEM 

           | SQITEM “,” SQBODY 

           ; 

[14] SQITEM    ::= RELATION 

           | COMPAR 

           | FUNCTION 

           ; 

[15] RELATION    ::= CONSTANT “(“ REL_LIST “)” 

           ; 

[16] REL_LIST    ::= VARIABLE 

           | VALUE 

           | VARIABLE “,” REL_LIST 

           | VALUE “,” REL_LIST 

           ; 

[17] FUNCTION    ::= CONCAT_F 

           ; 

[18] CONCAT_F    ::= “myConcat(” VARIABLE “,” 

       MIXED_CONCAT “,” 

       MIXED_CONCAT “)” 

       ; 

[19] MIXED_CONCAT   ::= VARIABLE 

           | VALUE 

           ; 
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[20] REL_LIST    ::= VARIABLE 

           | VALUE 

           | VARIABLE “,” REL_LIST 

           | VALUE “,” REL_LIST 

           ; 

[21] VALUE    ::= STRING_VALUE 

           | NUMBER 

           ; 

[22] QUERY    ::= Q_HEAD “:-” Q_BODY “.” 

           ; 

[23] Q_HEAD    ::= “QUERY(” VARIABLE_LIST “)” 

           ; 

[24] VARIABLE_LIST   ::= VARIABLE 

           | VARIABLE “,” VARIABLE_LIST 

           ; 

[25] Q_BODY    ::= QITEM 

           | QITEM “,” Q_BODY 

           ; 

[26] QITEM     ::= COMPAR 

           | “PROP(” TRP_PROP “)” 

           | “C_SUB(” DBL_CSUB “)” 

           | “C_EXT(” DBL_CEXT “)” 

           | “P_SUB(” DBL_PSUB “)” 

           | “P_EXT(” TRP_PEXT “)” 

           ; 

[27] COMPAR    ::= EQUALITY 

           ; 

[28] EQUALITY    ::= VARIABLE “=” VALUE 

           | VARIABLE “=” VARIABLE 

           ; 

[29] TRP_PROP    ::= VARIABLE “,” CONSTANT “,” 
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     VARIABLE 

           ; 

[30] DBL_CSUB    ::= VARCONST “,” VARCONST 

           ; 

[31] DBL_CEXT    ::= VARCONST “,” VARIABLE 

           ; 

[32] DBL_PSUB    ::= VARCONST “,” VARCONST 

           ; 

[33] TRP_PEXT    ::= VARIABLE “,” VARCONST “,” 

     VARIABLE 

     ; 

[34] VARCONST    ::= VARIABLE 

           | CONSTANT 

           ; 


