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Abstract

This work concerns a computational study of complex polymeric systems.
We investigate the behavior of polystyrene (PS) star-shaped polymers with a
variety of functionalities (number of arms) through atomistic molecular dy-
namic simulations. We simulate three types of systems, namely a) PS stars in
melts, b) PS stars in blends with linear chains and c) PS stars in melts with
modifications of the internal structure.

Our atomistic model captures chemical characteristics of polystyrene, al-
lowing us to obtain quantitative information about the structural properties
of the material that is not easily accessible by experiments or coarse-grained
simulation models. We perform extensive equilibration and production runs in
order to be able to compute a range of statistical quantities.

The analysis focuses on the intramolecular structure and the morphology
of the material. The results are analyzed as a function of the star functional-
ity. The obtained conformational characteristics are compared with well-known
theoretical models. A comparison of the properties of stars in two external
environments, i.e., in melt and in a blend with linear chains is also made. Ad-
ditionally, we study quantitatively the internal impenetrable region of the stars
via a novel geometric algorithm. The impenetrable region is also present in the
systems such as soft colloids or hairy particles and is responsible for a complex
dynamical behavior of the material.

The aim of our study is to bridge the gap between the theoretical models and
the experimentally observed phenomena of star-shaped polymers by providing
an insight into the morphology of polystyrene stars at nanoscale.
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1. Introduction

1.1 Polymer materials

In our every-day life we come into contact with plenty of materials. The
majority of them are polymer products. Polymers are divided into natural and
synthetic. Natural polymers, also called biopolymers, are produced by living
systems. Some examples of them are proteins in the human body, DNA and
polymers from trees such as natural rubber. We are all familiar with synthetic
polymers as we can find them in many well-used products such as tires, nylon,
stockings, resins etc. Over time synthetic polymers have become the best, or
indeed only, choice for a wide variety of applications [1]. Even materials as
glass, wood and iron were massively replaced by different types of polymers
with similar physical properties as the substituted materials.

Although some of the first synthetic polymers were discovered during the
nineteenth century, the first polymer materials were manufactured and used
around 1930. One reason for that was the need, in the inter-war years, to find
replacements for natural polymers, such as rubber for financial reasons. A sec-
ond reason was that there was by then an understanding of the nature of these
materials. In 1910, Pickles had suggested that rubber was made up of long
chain molecules and after a number of studies, in 1926, Staudinger developed
the idea which became accepted by the scientific community [1]. It is worth
mentioning that the very first polymeric syntheses were those of cellulose in
1846 and of Bakelite in 1907. However, it took 30 years for cellulose to be used
as a synthetic material. During the war in 1914-1918, its derivative was used as
a fire-proof dope for treating aircraft wings, later it contributed to improve an
artificial silk and after some years of development it became the most impor-
tant injection-moulding material. Cellulose is used till today in the manufacture
of filter tips for cigarettes and in packaging materials. After the first commer-
cial manufactures of a variety of polymeric types during the 1930s, many more
types of polymers have been produced in order to improve the quality and the
properties of the invented materials such as stiffness and heat resistance. As
our needs change during the ages and every invention leads to new ideas for
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improvements, different types of polymers are produced in laboratories all the
time.

The word ′′poly-mer′′ derives from the Greek word ′′πολυ-μερές′′ which means
′′many-parts′′. As chemical entity a polymer is a complex substance consisting
of smaller and simpler chemical repeated units (parts). These repeated units
are called monomers and are attached to each other via covalent bonds in order
to construct a polymeric chain. In general, a monomer can be an atom or just
a small molecule composed of atoms. In this work we refer to monomers as a
group of bonded atomic units (See Chap. 3). Polymers that contain monomers
of only one type are called homopolymers while in any other case they are called
heteropolymers.

The structure of a polymeric chain is generated during polymerization,
the process by which elementary units (monomers) are covalently bonded to-
gether [2]. The number of the contributed monomers n is called degree of poly-
merization. In Fig. 1.1 we present a scheme of the polymerization of styrene
monomers generating the polymer called polystyrene (PS).

Figure 1.1: Process of polymerization of styrene monomer in order to produce
polystyrene (top) and a snapshot of a model polystyrene chain (down). n de-
notes the number of the attached monomers (degree of polymerization).

The major factors that affect the properties of a polymeric system and con-
sequently of the corresponding polymer material are the chemical identity of
the monomers, their number along the macromolecular chain (degree of poly-
merization) and the monomeric structure of the atoms along the chain. Once
the double bond of the monomer breaks, during this process, a variety of dif-
ferent isomers are possible for the repeating units along the chain [2]. The term
isomer is used for the molecules with identical formulas but distinct structures.
However, isomers do not necessarily share similar properties [3]. In Fig. 1.2 we
present an example of a type of stereoisomerism that is described by polymer’s
tacticity. Assume a macromolecular chain with a backbone of carbon atoms
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Figure 1.2: Representation of polymers tacticity: Isotactic, syndiotactic and
atactic.

and as ′′side-groups′′ hydrogen and an arbitrary R group every second carbon.
The four single bonds, emanating from a carbon atom, have a sp3 hybridiza-
tion structure. Sp3 structure, geometrically, means that the four bonds form a
tetrahedral with an angle of 109 ◦ between them and the central C atom.

If all backbone carbon atoms of a polymer are arranged in a zig-zag confor-
mation along the same plane, adjacent monomers have either their R group on
the same or different sides of this plane. If all the R groups of a polymer are
on the same side of the chain, the polymer is isotactic. If the R groups alter-
nate regularly, the polymer is syndiotactic and if their placement is completely
random the polymer is atactic [2] (see Fig.1.2).

Apart from the linear chain, that is actually the polymeric chain without
any branching events, there are polymers with much more complex architecture
that are composed of linear chains attached together into a given structure.
The differences in architecture of a polymer lead to different dynamics and
consequently to different properties. Some examples are: the ring that is a
linear polymer with its ends attached, star-shaped, branched and the network-
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Figure 1.3: Examples of polymer architectures: (a) linear, (b) ring, (c) star-
shaped, (d) branched, (e) network and (f) colloid.

like structure as they are presented in Fig. 1.3.

A star polymer is composed of linear chains attached to a common branch
point. The number of attached linear chains (arms) is called functionality f of
the star. Star polymers are gaining interest because of their compactness and
enhanced segmental density as compared to their linear polymers of the same
molecular weight.

This star-like polymer kind of architecture can be described as intermedi-
ate between the two extremes in a spatial organization of a large number of
low molecular units: (a) linear, flexible polymeric chains and (b) hard colloidal
particles. Colloids are stiff compact assemblies with a predominantly spheri-
cal shape. Both linear polymer and colloids are widely studied and used in
a variety of applications, as they exhibit very interesting properties [4]. The
intermediate behavior between short-range linear polymers and long-range col-
loidal interactions is a rich area of research because of the great potential to
combine polymers with colloidal mesoscopic characteristics. A way of study-
ing this behavior is by constructing more complex architectures that combine
characteristics of them both, like star-shaped polymers. For this reason star-
polymers have been studied extensively in recent years via various experimental
techniques [5, 6, 7, 8, 9].

According to Daoud and Cotton [10] stars with high number of arms exhibit
a nonuniform monomer density profile. The density of arm segments is the
highest in the central core region and decreases towards the end of the arms
where the chain segments have the largest configurational freedom [10, 11]. An
important quantity is the penetrability of the stars, which shows how easily a
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star polymer can be penetrated by neighboring elements. For a large number of
arms (increasing functionality), star-shaped polymers resemble more closely the
′′hard sphere′′ model than linear chains behavior, they become less penetrable
and exhibit liquid-like behavior. According to Pakula [12] the functionality
above which the stars do not completely penetrate each other in a melt system is
f > 24 and there is a central core in each star which remains not accessible from
elements of neighboring molecules. Such materials with intermediate properties
are expected to present rich dynamics in contrast to the simpler behavior of
the two extremes [4].

The complex interplay of dynamical processes affects an important prop-
erty of polymers called viscoelasticity. Viscosity of a fluid is a measure of its
resistance to deformation at a given rate but in liquids, it corresponds to the
informal concept of friction. Elasticity is the ability of a body to resist a distort-
ing influence and to return to its original size and shape when that influence or
force is removed. For polymers, elasticity is caused by the stretching of poly-
meric chains when forces are applied. Polymers are viscoelastic and exhibit
some of the properties of both viscous liquids and elastic solids. The viscoelas-
tic response of a polymer depends on many factors, such as temperature, the
rate at which the polymer is deformed, its internal structure etc.

In the current work, we investigate melt systems of atactic star-shaped
polystyrene (PS) polymers. A melt system refers to a highly dense system with-
out solvent. In our case all the arms of the star are identical (homopolymer-
arm stars). In polystyrene (See Fig. 1.1), the polymerized monomer, styrene,
is a derivative of petroleum and it is a vinyl monomer of type CH2=CHR. R
stands for an aromatic ring (C6H5) which is a cyclic, planar compound. As this
monomer is composed only of carbon (C) and hydrogen (H) atoms it is called
aromatic hydrocarbon.

Polystyrene is a versatile material used to make a wide variety of consumer
products both in solid and foam forms. As a hard, solid material, it is often
used in products that require transparency, such as food packaging and labora-
tory ware. When combined with various colorants, additives or other polymers,
polystyrene is used to make appliances, electronics, automobile parts, toys etc.
Foam polystyrene can be more than 95 percent air and is widely used to make
home and appliance insulation, lightweight protective packaging, surfboards,
roadway and roadbank stabilization systems etc. Lightweight polystyrene foam
provides excellent thermal insulation in numerous applications, such as building
walls and roofing, refrigerators and freezers, and industrial cold storage facil-
ities. Polystyrene insulation is inert, durable and resistant to water damage.
Styrene also occurs naturally in foods such as strawberries, cinnamon, coffee
and beef [13].
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1.2 Modelling of polymer materials

The beginning of the computer simulations comes in the early 1950s when
electronic computers became partly available for nonmilitary use. Before, com-
puter simulation started as a tool to exploit the electronic computing machines
that had been developed during and after Second Word War which performed
heavy computations involved in nuclear weapons and code breaking [14].

In very simple words, computer simulation is a program, running on the
computer, which imitates a real-life system and is able to explore the approxi-
mate behavior of a mathematical model [15, 16]. This system can be biological,
physical, financial, even sociological. The program is actually an algorithm that
takes as input an initial state of the system at given conditions and as an out-
put gives its final state. The new states are given by solving numerically the
equations that describe the mathematical model of the system under investiga-
tion. The degree of difficulty of this process depends on the complexity of the
corresponding equations.

The basic laws of nature as we know them are expressed in terms of equa-
tions which we cannot solve exactly and this is why the computer simula-
tion method is so important. For example, for the motion of more than two
interacting bodies, even the relatively simple laws of Newtonian mechanics
become hardly analytically solvable as the trajectories become deterministic
chaotic [17, 14]. In such cases of models described by differential equations, the
computer simulation methods are not only the best option but also the only
one for the prediction of the system’s evolution. Polymeric systems, as they
are composed of many interacting ′′bodies′′ whose motion is described by dif-
ferential Newton’s equations, constitute such a case. Their evolution in time is
studied through molecular dynamic (MD) simulations.

Before the appearance of computer simulation the only way to predict the
properties of a molecular substance was by using a theory that provided an
approximate description of that material. The problem was that there are very
few systems for which the equilibrium properties can be computed exactly from
the theory so the most properties of real materials were predicted on the basis
of approximate theories [14]. Even by trying to take into account the inter-
molecular interactions the problem cannot be solved as our knowledge of them
is limited. Furthermore, if the experimental data disagree with the predictions,
it means that our theory or our estimation of the intermolecular interactions,
or even both, are not accurate. This is where the computer simulations come
to bridge the gap between the analytical theory and the experiments. Through
simulations, if the results disagree with the experiments, we can improve our
model while if they disagree with the theory, we know that our theory is flawed.
Comparing to the experiments, simulations have also some advantages such as
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the lower cost and the easier human intervention like pausing and restarting
the process.

Figure 1.4: Multiscale modelling of polymer–solid interfaces from the electronic
structure level, through the atomistic level, to the mesoscopic coarse-grained
level and beyond taken from Ref. [18].

Simulations of macromolecules are very challenging because of the wide
range of time and length scales involved since there are different characteristic
time scales associated with the motion of various segments of the polymeric
chain [18]. Although during the experiments we can investigate the interactions
in different length scales along the examined area, during simulation it is dif-
ficult to treat the broad range of time and length scales simultaneously. Thus,
we use different approaches to model them in various levels of description.

The standard approach in material science is to average out the details at
the molecular level and simulate at continuum level using, for example, fluid
dynamics or finite element methods. This relies on input parameters that de-
scribe natural properties, such as viscosity and density, which are usually as-
sumed to be constant throughout the model system and not always known.
Also, this approximation breaks down at nanoscale level [18]. For a more de-
tailed description, there are two particle-based simulation methods divided into
coarse-grained (CG) and atomistic. Both of them have been used to predict
structural and dynamical properties at molecular level. A coarse-grained model
represents groups of atoms by a single particle, used to describe systems in
mesoscopic regimes. The choice of the CG representation is very important for
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every CG approach and depends on the physical problem and the questions
to be addressed. An atomistic model is a detailed all-atom presentation of the
system and provides more quantitative comparison between realistic model sys-
tems and experimental quantities. The accuracy of atomistic models depends
on the classical force fields, which are usually not designed to describe changes
in chemical bonding. To understand chemical bonding we use quantum me-
chanical methods [18]. Fig. 1.4, taken from Ref. [18], is a typical length-time
representation that describes hierarchical multiscale simulation methodologies.

Figure 1.5: (a) Serial computing where the problem is divided into instructions
that are executed one-by-one in one processor (b) Parallel computing where
the problem is divided into subproblems. Each one is executed in different
processors at the same time.

In the current work we perform atomistic molecular dynamics simulations.
Atomistic simulations of complex macromolecules result in a big number of
the ′′interacting bodies′′ in our system. This means that for simulating such
real-life’s systems we need a huge number of calculations and equations to be
solved, which in the computer language refers to high computational cost. To
overcome this problem the parallel programming has been introduced.

In traditional, serial, computations the problem is broken into a discrete
series of instructions that are executed sequentially one after another on a single
processor, which means that only one instruction may execute at any moment
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in time. Parallel programming is the division of a problem into smaller ones.
Each subproblem is further broken down to a serie of instructions while the
instructions from each part execute simultaneously on different processors [19].
In Fig. 1.5 we present both processes.

To achieve efficient parallel computation, the problem should have some
features. First of all, it should be able to be broken into discrete pieces of
work that can be solved simultaneously. Consequently, it has to be capable of
executing multiple program instructions at any moment in time and -as we
use parallel programming in order to save time- we should make sure that
the problem will be solved in less time with multiple compute resources than
with a single compute resource [19]. There are two compute resources which
we can use for parallel programming: either a single computer with multiple
processors/cores, or a computer cluster consist of an arbitrary number of such
computers connected by a network. Each computer of the network is referred
as ’node’ and in this way larger parallel computer clusters are made.

1.3 Challenges addressed in this thesis

The aim of this work is to perform atomistic simulations of star-shaped PS
polymers of a variety of functionalities (f = 4, 8, 16, 32) in two types of systems
(melts and blends) and with two types of internal structure.

The big challenge is that, to our knowledge, star-like polymers in melt have
not been studied before by an atomistic model. There are studies only for
bead-spring models (CG). Recently, atomistic simulations of mikto-arm stars
in vacuum and in blends with short linear polymers have been published by
members of our group [20, 21]. One of the difficulties of atomistic simulations is
the high number of computations as more atomic units than in CG models are
involved in order to model a specific system. To achieve good statistics for the
estimation of quantities of interest, we need multiple molecules in each system.
This leads to very time-consuming simulations as the number of numerical
operations scales with N2 for N representing the number of all the atoms in
the system. In addition, because of the high density of melt systems and reduced
mobility of the stars due to the branch-point presence, equilibration is very slow.
We also face many problems while preparing the complex polymer architectures.
However, atomistic simulations are much more precise and closer to reality as
they take into account the specific chemistry of a given system, here polystyrene.
They allow us to get a quantitative picture about the effect of functionality on
the structural properties of the studied polymer material.

Many experimental studies deal with stars with long arms (more than 10
times longer than those in our study) [8, 22]). Recent experimental study of
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PS stars with short arms (lengths comparable to our study) [11] showed that
the functionality above which PS stars start to be hardly penetrable is f > 8.
However, by using a general polymer model, Pakula [12] et al. estimated this
transition to be around f > 24.

Having in mind the limitations of CG models and since during the experi-
ments we are not able to look closely into nano (atomic) scales, the motivation
for the current study is to bridge the gap between the theories and experiments
and to get additional information about the structural properties of the PS
stars.



2. Method

2.1 Molecular dynamics

Molecular Dynamics (MD) is a computer simulation method that is used to
study the evolution of a molecular system [14]. In simple words, it is a way to
imitate a real life’s system, knowing in every step the positions and velocities
of all the bodies it is composed of, its energy, density and a variety of other
quantities of interest that we will discuss below.

This method gives us the opportunity to repeat the process as many times
as we need -with the same or different initial conditions- or stop it and restart it
again with a much lower cost than in real experiments. Moreover, we have better
control over the conditions in simulations such as the temperature and the
material composition than we have during a real-life experiment in a laboratory.

The simulated system consists of N atoms and/or molecules that interact
with each other by the terms of a force field, or so-called interatomic potential.
The problem of finding the positions and velocities of each one of them is called
N-body problem. Thus, from now on, N will be the total number of the
atoms composing the simulated system.

In order to estimate the quantities of interest in a simulation, we need to
know the trajectory of the atoms in the system. The trajectory is determined by
the positions and velocities (or momenta) in every step of the simulation. This
information can be obtained by solving numerically the classical equations of
motion of every molecule or atom in the system concerning all the interactions
between them.

2.1.1 The MD algorithm

The procedure that we follow to export the trajectory and the quantities
of interest in a simulation is very similar to the one that we follow in real
life experiments. In a laboratory we first prepare the sample of the material
we want to study under the corresponding conditions. Then, we connect the
systems with the instruments to measure the quantities of our interest. During
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the experiment we measure these quantities in specific time intervals in order
to get statistical averages of them.

Figure 2.1: Graphical representation of the MD algorithm.

The corresponding protocol in computer simulations is very general and al-
most the same for all types of MD simulations. It is the so-called MD algorithm
and its general scheme consists of the following steps:

1. We create the initial configuration of the system that consists of the initial
positions and velocities for every particle and use it as an input of the
algorithm.

2. We calculate the forces acting on every particle of the system.

3. We choose a numerical method to integrate the classical equations of
motion in order to get the new positions and velocities, store them and
replace the initial ones.

4. We calculate and store important quantities such as energy and density
by using current positions and velocities.

5. Presentation of final output values.
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The graphical representation of the algorithm is shown in Figure 2.1.
At step 1, for initializing the velocities one typical option is to generate

them from a Maxwell-Boltzmann distribution given by:

P (v) =

(
m

2πkBT

) 3
2

e
−mv2

2kBT (2.1)

where v is the velocity of the corresponding particle, m stands for its mass, kB
is the Boltzmann’s constant and T the actual temperature of the system.

During the MD simulation steps 2-4 are repeated as many times as it is
necessary (let us say K). The integer K depends on the system’s nature and
properties which we want to investigate. The initial configuration and the cor-
responding conditions that actually specify the kind of the run (procedure) are
adjusted according to the specific problem under study.

2.1.2 Equations of motion

In order to update positions and velocities in every time step in a system
consisting of N atoms, we need to solve the equations of motion. If we denote
as qk the generalized coordinates describing the molecular configuration and
q̇k their time derivatives ∀ k = 1, 2, 3, ..., 3N , in Lagragian formalism, the tra-
jectory q(t)=(q1(t), q2(t), ..., qk(t), ..., q3N(t)) satisfies the following differential
equations:

∂L

∂qk
=

d

dt

(
∂L

∂q̇k

)
(2.2)

where L is the Langragian of the system and equals to L(q, q̇, t) = K(q̇(t)) −
V (q(t)) while K represents the kinetic energy of the system and V its potential
energy. The corresponding generalized momenta pk is defined as:

pk =
∂L

∂q̇k
(2.3)

On the other hand, in Hamiltonian formalism, the generalized coordinates
obey the Hamilton’s equations:

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
(2.4)

where the Hamiltonian is defined as:

H(p,q) =
∑
k

q̇kpk − L (2.5)
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In the case of independent of velocities and a constant (time independent) V ,
the Hamiltonian corresponds to the total energy of the system:

H(p,q) = K(p) + V (q) (2.6)

In Cartesian coordinates, where the kinetic energy equals to K(ṙ) = 1
2
mṙ2

and the potential energy is denoted by V (r), the Hamilton’s equations 2.4, for
i = 1, 2, ..., N , through 2.6 become:

ṙi =
pi
mi

= vi ṗi = −∇riV (r) (2.7)

where ri represents the Cartesian position of every particle i, ṙi stands for the
time derivative of ri and represents the velocity (vi) of atom i and mi denotes
its mass.

In the classical MD simulations the total exerted force, Fi, on the particle
i is given by the interaction potential V (r) :

Fi = −∇riV (r) (2.8)

Hence, from eq. 2.7 and 2.8 we obtain Newton’s equation of motion:

Fi = ṗi = mir̈i ⇒ r̈i =
Fi

mi

i = 1, 2, ..., N (2.9)

where r̈i defines the acceleration of particle i.
To solve these second order differential equations and get the positions and

velocities of all the particles of the system we need the initial conditions for ri
and ṙi that are determined in the beginning of the problem.

2.1.3 Numerical solution of equations of motion

In order to solve numerically the equations of motion in every step of the
previous algorithm there are some well-known integration methods. A criterion
for choosing an integration method is to be relatively accurate, fast and not
computationally expensive, which means not to use a large amount of memory
space. In addition, it is very important to use an algorithm that respects the
energy conservation of the Hamiltonian system and which is time reversible as
Newton’s equation of motion is. We will mention two numerical integrators:
Velocity Verlet and Leapfrog, both variants of general Verlet integrator.

Verlet integrator is a numerical method used to solve Newton’s equations of
motion. Although, as it is shown below, it is a ′′position-only′′ scheme and this is
why it is not very applicable when velocities or momenta are requested. To gen-
erate its formula we determine as ∆t > 0 the time step of the algorithm and we
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write Taylor expansion for r(t) at (t+ ∆t) and (t−∆t), where r′(t), r′′(t), r′′′(t)
denote, correspondingly, the first, second and third time derivative:

r(t+ ∆t) =r(t) + r′(t)(t+ ∆t− t)+
r′′(t)(t+ ∆t− t)2

2!
+

r′′′(t)(t+ ∆t− t)3

3!
+O(∆t4) (2.10)

r(t−∆t) =r(t) + r′(t)(t−∆t− t)+
r′′(t)(t−∆t− t)2

2!
+

r′′′(t)(t−∆t− t)3

3!
+O(∆t4) (2.11)

Consequently:

r(t+ ∆t) = r(t) + v(t)(∆t) +
a(t)(∆t)2

2
+

b(t)(∆t)3

6
+O(∆t4) (2.12)

r(t−∆t) = r(t)− v(t)(∆t) +
a(t)(∆t)2

2
− b(t)(∆t)3

6
+O(∆t4) (2.13)

By the summation of equations 2.12 and 2.13:

r(t+ ∆t) + r(t−∆t) = 2r(t) + a(t)(∆t)2 +O(∆t4) (2.14)

we get the final scheme of general Verlet integrator:

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)(∆t)2 +O(∆t4) (2.15)

In the above equations and in what follows in the chapter:
r(t) is the position in time t,
v(t) the velocity in time t,
a(t) the acceleration in time t,
b(t) is a notation for the third derivative of r(t) with respect to the time
and O(∆t4) is the order of the error of the approximation.

Verlet algorithm does not require the velocity to compute the new position.
However, one can derive the velocity from the difference of equations 2.12-2.13:

r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3) (2.16)

or:

v(t) =
r (t+ ∆t)− r (t−∆t)

2∆t
+O(∆t3) (2.17)

Therefore, for calculating the velocity using equation 2.17 we should know
the position at next time which means that we cannot calculate both position
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and velocity in the same time step. In order to avoid this problem we present
two derivatives of the Verlet integrator.

Velocity Verlet integrator is one of the most widespread methods. The ad-
vantage over classical Verlet is that this one incorporates velocity in the same
time step as position. The formula goes as follows:

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)∆t2

2m
(2.18)

v(t+ ∆t) = v(t) +
F(t) + F(t+ ∆t)

2m
∆t (2.19)

We have to make clear that instead of acceleration a(t) we write F
m

just to
mention that a(t) is calculated from the interaction potential using r(t) and not
from v(t) , so v(t+∆t) can be calculated independently without the calculation
of a(t+ ∆t).

Leapfrog integrator, follows the formula:

r(t+ ∆t) = r(t) + v(t+
1

2
∆t)∆t (2.20)

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

F(t)∆t

m
(2.21)

Note that the initial velocity that we need for the integration in this case
is v(t − 1

2
∆t) instead of v(t) and firstly the velocity at half a time step is

calculated (eq. 2.21). Then, the positions in whole step are calculated (eq. 2.20)
with respect to the half-time step velocity. Which means that, corresponding
to equation 2.21, the velocity at this step is given by:

v(t+ ∆t) = v(t) +
F(t+ 1

2
∆t)

m
∆t (2.22)

The advantage of this algorithm is that it is less complicated, so it requires
less storage than velocity Verlet [23].

2.1.4 Thermostats and Barostats

The previous method addresses the solution of classical equations of motion
in the microcanonical statistical ensemble (NVE), where number of simulated
atoms (N), volume of the simulated system (V) and total energy of the sys-
tem(E) are been kept constant. In this case the total energy of the system, in
Cartesian coordinates, is been described by its Hamiltonian:

H(ṙ, r) = K(ṙ) + V (r) (2.23)
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with K(ṙ) standing for the total kinetic energy of the system and V (r) the
potential energy.

However, sometimes there is a need to evolve a molecular system under
specific conditions of temperature T (isotherm) and/or pressure P (isobaric
conditions) [24]. In order to maintain T and P constant we use the appro-
priate thermostats and barostats, respectively. Below, we present two kinds of
thermostats and two types of barostats that are related to the current work.

Nosé-Hoover thermostat
Nosé introduced a new parameter (degree of freedom) s which plays the role

of a heat bath aiming to damp out temperature deviations from the desirable
level and actually being an additional degree of freedom in the Lagrangian
of the system [25]. This new parameter results in one more term in potential
energy (noted as Vs) and another one in the total kinetic energy (noted as Ks)
giving the following Hamiltonian:

HNosé−Hoover(ṙ, r) = H(ṙ, r) +Ks + Vs (2.24)

where:

Ks =
p2
s

2Q
(2.25)

for

ps = Q
ṡ

s
(2.26)

being the momentum associated with s as well as Q represents the ”effective
mass” associated with s.
The potential energy with respect to s equals to:

Vs = gkBT lns (2.27)

with g equals to the total number of degrees of freedom and kB being the
Boltzmann constant.

Berendsen thermostat and barostat
Another way for performing isothermal and/or isobaric MD simulations is

to use an extended Lagrangian, by coupling the system into a temperature
and/or pressure bath [26]. This is achieved, correspondingly, by the following
equations:

dT

dt
=

1

τT
(T − Text) (2.28)

dP

dt
=

1

τP
(P − Pext) (2.29)
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where Text and Pext are the desired temperature and pressure values and τT and
τP are the time constants characterizing the frequency of the system coupling
to temperature and pressure baths [24]. The solution of these equations forces
velocities and positions to be scaled at every time step by factors xT and xP ,
respectively,with:

xT =

(
1 +

dt

τT

(
T

Text
− 1

)) 1
2

(2.30)

xP = 1− βT
dt

τP
(P − Pext) (2.31)

Velocity-rescaling thermostat is a Berendsen thermostat with the fol-
lowing, additional, stochastic term that ensures a correct kinetic energy by
modifying it according to :

dK = (K0 −K)
dt

τT
+ 2

√
KK0

g

dW
√
τT

(2.32)

where K is the kinetic energy, g the number of degrees of freedom and dW a
Wiener (stochastic) process [27].

Parrinello-Rahman barostat is a pressure coupling method similar to
the Nosé-Hoover temperature coupling giving the statistically correct NPT en-
semble, using a ”pressure bath” [27]. This barostat represents the equation of
motion of the matrix b of the simulation’s area vectors:

d2b

dt2
= VW−1b′−1(P−Pref ) (2.33)

where V is the volume of the box, W is a matrix parameter that determines
the strength of the coupling and the matrices P and Pref are, respectively, the
current and the reference pressure [14].

2.1.5 Langevin Dynamics

By adding a friction and a noise term (random force) in Newton’s equation
of motion we get the stochastic differential equation:

mir̈i = Fi − ζ ṙi + fi(t) (2.34)

called Langevin equation.
In this equation ζ is the friction coefficient and fi(t) is the random force
of the media, appearing to be uncorrelated at different times, satisfying the
fluctuation-dissipation theorem:

〈fiα(t), fiβ(t′)〉 = 2kBTζδijδαβδ(t− t′) (2.35)
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where:

δij =

{
1, i = j

0, i 6= j
(2.36)

and α, β denote Cartesian components [28].

2.2 Molecular Model - Force Field

The equation (2.8) describing the total force acting on a particle i can be
expressed as:

Fi = −∇riV (r) (2.37)

The total potential V (r) is subdivided in potentials depending on bonded
(Vbonded(r)) and non-bonded (Vnon−bonded(r)) interactions:

V (r) = Vbonded(r) + Vnon−bonded(r) (2.38)

assuming that r = (r1, r2, ..., rN) is the vector of the positions of all the N
particles (atoms) in our molecular system.

2.2.1 Bonded interactions

Bonded interactions in a molecular model are defined depending on the
number of the atoms that participate in the bond. There are covalent bonds
connecting two atoms, angle-bending including three atoms and dihedral angles,
where four atoms are included.

In addition, there are two types of dihedral angles. The improper one keeps
specific groups in a predefined plane. More specifically, it is a harmonic potential
applied to the angle between the two planes consisting the dihedral and keeps
these two planes locked. The one without this property is called proper. There-
fore, the total potential corresponding to the bonded interaction is calculated
as:

Vbonded(r) = Vbonds(r) + Vangles(r) + Vpr.dihedrals(r) + Vim.dihedrals(r) (2.39)

In the following we will discuss the particular functional forms for each compo-
nent of the potential used in this work.

1. Vbonds is a harmonic potential that represents the stretching of a covalent
bond of two atoms i an j, as it is shown in Fig. 2.2(a), given by the
equation:

Vbonds(rij) =
1

2
kij(rij − r0

ij)
2 (2.40)
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Figure 2.2: (a) Bond between atoms i and j, (b) Angle between atoms i,j,k, (c)
Proper dihedral angle between i, j, k, l where the solid line defines the plane going
through i, j, k and the dotted line the one through j, k, l (d) Improper dihedral angle
between i, j, k, l where the solid line defines the plane going through j, k, l and the
dotted line the one through i, j, k.

with rij = |ri − rj| = |rij| representing the current length of the bond,
where ri and rj are the positions of i and j atom correspondingly.
r0
ij corresponds to the equilibrium bond length and kij is the force con-

stant.
The total bond potential of the system is:

Vbonds =
∑

# of bonds

Vbonds(rij) (2.41)

2. Vangles represents the overall angle-bending potential and equals to

Vangles =
∑

# of angles

Vangles(θijk) (2.42)

where:

Vangles(θijk) =
1

2
kθ(θijk − θ0

ijk)
2 (2.43)
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is the harmonic potential of angle-bending vibration between the three
atoms i,j,k forming the θijk angle as it is shown in Fig.2.2(b). θ0

ijk is
the corresponding equilibrium angle and kθ is the angle bending force
constant. θ is connected to vectors between atoms through the relation:

cos θijk =
rij · rjk
rijrjk

(2.44)

3. Vpr.dihedrals defines the total potential of the proper dihedrals and it equals
to: ∑

# of pr.dihedrals

Vpr.dihedral(φijkl) (2.45)

For the calculation of the dihedral potential between i,j,k,l atoms we use
two types of equations, depending on the type of the particular atoms:

• The periodic form:

Vpr.dihedral(φijkl) = kφ(1 + cos (nφijkl − φ0
ijkl) (2.46)

where φijkl is the angle between the planes ijk and jkl (see Fig. 2.2.(c))
which satisfies:

cosφ = −(rij × rjk) · (rjk × rkl)

|rij × rjk||rjk × rkl|
(2.47)

φ0
ijkl is the corresponding equilibrium angle and kφ the proper dihe-

dral constant.

• The cosine series form (Ryckaert-Bellemans) according to which :

Vpr.dihedrals(φijkl) =
5∑

n=0

Cn (cos (φijkl − π))n (2.48)

with Cn for n = 1, 2, 3, 4, 5 being a prefactor in kJmol−1 units.

4. Vim.dihedrals defines the harmonic potential of the improper dihedrals of the
system (see Fig. 2.2(d)), given by:

Vim.dihedrals =
∑

# of im.dihedrals

1

2
kξ(ξijkl − ξ0

ijkl)
2 (2.49)

with ξijkl representing the angle between the planes ijk and jkl, ξ0
ijkl is the

corresponding equilibrium angle and kξ the improper dihedral constant.
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2.2.2 Non-bonded interactions

The non-bonded potentials are responsible for the intermolecular interac-
tions that do not include any kind of covalent bonds, like Van der Waals and
electrostatics.

Van der Waals is distance-dependent, attractive at long distance and re-
pulsive at short distance, interaction between pairs of atoms. To describe this
kind of interaction we use the Lennard-Jones potential (VLJ). Correspondingly,
electrostatic interactions between charged atoms are described by the Coulomb
potential (VC).

The total potential energy due to the non-bonded interactions is separated
into these two terms:

Vnon−bonded = VLJ + VC. (2.50)

Lennard-Jones interactions

LJ potential describes the pair interactions with respect to the distance rij
between the pairs by the equation:

VLJ(rij) = 4εij

((
σij
rij

)12

−
(
σij
rij

)6
)
. (2.51)

The parameters σij and εij can be derived from the parameters characteristic
for each atom i and j by using the combination rule:

σij =
1

2
(σi + σj) , εij =

√
εiεj (2.52)

The parameters σi , εi for every particle i are known from experimental data, or
quantum mechanics calculations. Note that σi represents the atomic diameter
of the atom i.

In eq. 2.51 the attractive, Van der Waals, interactions are presenting by the

term: −
(
σij
rij

)6

. The repulsion term
(
σij
rij

)12

has been added in the potential

because of the fact that two atoms i, j cannot penetrate each other when they
come at a distance smaller than the one of the sum of their atomic radii (σi

2
+

σj
2

= σij).
Hence, for rij > σij the force between i and j atoms is attractive, however,

for rij >> σij the two atoms are too far to interact which means that LJ
potential energy is close to zero (see Fig. 2.3). On the other hand, for rij < σij
this force becomes repulsive and as rij gets closer to zero the LJ potential energy
goes to infinity because of the overlap of the atoms. In the exact point where
rij = σij the potential energy is zero. There is also a point where rij = 2

1
6σij

where LJ potential reaches its minimum value, called depth of LJ well: −εij.
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Figure 2.3: Lennard-Jones potential for chosen σ = ε = 1.

Coulomb interactions

For two particles (atoms) i and j with distance rij between them and cor-
responding charges Qi and Qj, their electrostatic Coulomb interaction is calcu-
lated by:

VC(rij) =
QiQj

4πε0εrrij

(2.53)

where ε0 is the vacuum electric permittivity and εr the dimensionless relative
permittivity of the media.

However, for each atom in our simulated systems Qi = 0, thus, there are no
Coulomb interactions.

2.3 Periodic Boundary Conditions (PBC)

A real life’s system consists of a huge number of atoms of the order of the
Avogadro number (NAv = 6.023 × 1023). In order to work in smaller system
and mimic the behavior of a macroscopic system, we need to approximate this
large system by a smaller one. This is achieved by applying periodic boundary
conditions. Namely, we separate the whole space in smaller cells and study just
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one of them, the so called ′′simulation box′′ in which the number of particles is
fixed at N . All the other cells around the specific cell are just the exact copies
of the simulation box, as it is shown in Fig. 2.4.

Figure 2.4: Schematic representation of the periodic boundary conditions. The
simulation box is painted with thick lines, the boxes surrounding the simulation
box are its copies.

For a better understanding, we explain it on an example. Periodic boundary
conditions define positions of each moving particle in a way that no particle is
′′allowed to leave the box′′. When one particle goes out of the box’s limit,
the condition puts an image of it back in the box at a corresponding periodic
position, or, in other words, its periodic image enters the box.

The problem here is that when we study the interactions of an atom in
our box with all the other atoms around it, it is possible that the interactions
with an atom j and at the same time with its periodic image are taken into
account. To avoid the above problem, we apply the minimum image convention
(see Chap. 2.5) and truncate the short-range interactions as it is discussed in
the cut-off sections below.

2.4 Cut-off and tail corrections

As molecular dynamics is a computational method, there is a need to use
techniques that reduce the computational cost while at the same time do not
affect the accuracy. The most expensive calculations, in our problem, are force
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calculations. In order to decrease this computational cost we define a cut-off
distance (radius) rcut and in the calculations of the pair potential (eq. 2.51)
only the interactions between atoms whose mutual distance is smaller than rcut

are taken into account. By applying this method we compute a smaller amount
of non-bonded interactions resulting in the significant reduction of the cost. We
can now reformulate eq. 2.51 to the following:

VLJ(rij) =

4εij

((
σij
rij

)12

−
(
σij
rij

)6
)
, rij ≤ rcut

0 , rij > rcut

(2.54)

However, in order to minimize the error that would be produced by taking
into account only short-range interactions, we have to choose a sufficiently large
value for rcut, but also smaller than L

2
. The contribution of the particles with

rij > rcut for a potential V (r) is estimated with the so-called tail corrections [14]:

Vtail = 2πρ

∫ ∞
rcut

V (r)r2dr (2.55)

and for the special case of homogeneous system of atoms interacting via a
Lennard-Jones potential it is given from [14]:

VLJtail
=

8

3
πρ

[
1

3

(
1

rcut

)9

−
(

1

rcut

)3
]

(2.56)

where ρ corresponds to the average number density.

According to this, eq. 2.54 is been reformed again to:

VLJ(rij) =


4εij

((
σij
rij

)12

−
(
σij
rij

)6
)
, rij ≤ rcut

8
3
πρ

[
1
3

(
1
rcut

)9

−
(

1
rcut

)3
]
, rij > rcut

(2.57)

From eq. 2.55 it is obvious that the only case for the Vtail to be finite is if V (r)
function decays more rapidly than r−3 (in three dimensions). This condition
is satisfied if the long-range interaction between molecules is dominated by
dispersion forces [14]. This is the reason why cut-off distance, tail correction
and minimum image convention (see below) can be applied to Lennard-Jones
potential. On the other hand, all three of them are inapplicable to Coulomb
interactions where the tail correction diverges and the interactions between all
periodic images should be taken into account.
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2.5 Minimum Image Convention

Because of the huge number of atoms in the system and their infinite peri-
odic images, for all the interactions between the reference atom i and an atom
j we choose the closest image of j to i. Therefore, in every direction of the three
dimentional space, we find an image of j in the periodic boxes which fulfills:

xij <
L

2
, yij <

L

2
, zij <

L

2

where xij, yij, zij correspond to the distances between two atoms i and j in direc-
tions x, y, z of the space, respectively. L stands for the length of the simulation
box.

Consequently, as the distance between two atoms i and j is defined as rij =√
x2
ij + y2

ij + z2
ij, rij cannot be larger than

√
3L

2
.



3. Generation and equilibration
of model systems

In the current work we are interested in studying and predicting structure-
properties relations of symmetric, star-shaped, polystyrene (PS) polymers. Star-
shaped polymers are, in other words, linear chains attached to a common branch
point. In our work the ′′branch point′′ is not represented by a single atom, but
by a dendritic structure consisted of various atoms which, from now on, we call
kernel. Every star is characterized by the number of arms named functionality
f and the arm length. In our study we perform atomistic MD simulations for a
variety of functionalities, in two different types of systems. The exact charac-
teristics of the systems as well as the whole simulation process are introduced
in this chapter.

3.1 Description of the systems

We simulate polystyrene (PS) star-shaped polymers which consist of a den-
dritic structure (kernel) and a specific number of polystyrene arms attached
to it. More specifically, the kernel structure is composed of carbon units con-
nected in a way it is illustrated in Fig. 3.1. In both sketches every enumerated
ball represents a chemical carbon unit as follows: number 1 is the central car-
bon C unit and next generations are CH units except from the last one which
represent the CH2 units. The f arms are then joined to the last generation, i.e.,
to the CH2 units. The number of atoms in each dendritic structure depends on
the functionality and is summarized in Tab. 3.1. In terms of the arms, each one
of them can be thought as a linear PS chain of 40 monomeric units attached
to the kernel and terminated with the CH3 group. It means, that every arm
has the same length, we only vary the number of arms (f). Accordingly, the
notation (PS)f will be used from now on in order to specify each star with
respect to functionality f .

The two types of systems under investigation are: (a) melts composed of 15
(PS)f stars of the same functionality f and (b) blends composed of one (PS)f
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Figure 3.1: Sketch of the dendritic kernel of (a) (PS)8 and (b) (PS)32 with the
corresponding numbering of atoms. The red tails represent the attached arms.

star and a specific number of PS linear chains with the same length as the
star’s arms, i.e., 40 monomeric units. The number of the linear chains is chosen
in such way that all the blend systems have the same weight fraction (wt%):
0.097.

For the comparison we also simulate one reference system of only linear
chains in melt and two more melts with stars of functionality 8 and 16, respec-
tively, with the kernel from the star of functionality 32 labeled as (PS)f/61. At
the dendritic structure of Fig.3.1(b), for (PS)8/61 we attached an arm to every
fourth carbon unit of the last generation, e.g., 31, 35, 39 etc. Similarly, every
second carbon unit in (PS)16/61 has an arm connected to it, e.g., 31, 33, 35 etc.

The interactions between all the atoms are defined through the atomistic
force field. We use the united-atom model of TRAPPE force field [29]. The
united-atom model means that the hydrogens are not simulated explicitly but
are included together with the carbon in one unit, for example CH unit of PS
ring (for the structure of PS unit see Chapter 1 Fig. 1.1). The advantage of this
approach is that it reduces the number of atoms which we need to simulate,
thus the total number of interactions that need to be calculated. Namely, in our
model, every monomer is composed of 8 united atoms (from now on we refer
to them as atoms), so every arm contains 40×8 atoms plus 1 terminal carbon
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CHARACTERISTICS OF SIMULATED SYSTEMS

SYSTEM f number
of atoms

in the
kernel

number
of stars

number
of linear
chains

number
of atoms

in the
system

linear 0 0 0 250 80250
blend (PS)8 8 13 1 75 26656
blend (PS)16 16 29 1 105 38870
blend (PS)32 32 61 1 298 105991
melt (PS)4 4 5 15 0 19335
melt (PS)8 8 13 15 0 38715
melt (PS)16 16 29 15 0 77475
melt (PS)32 32 61 15 0 154995

melt (PS)8/61 8 61 15 0 39435
melt (PS)16/61 16 61 15 0 77955

Table 3.1: Characteristics of systems under investigation.

unit corresponding to the CH3 group, in total 320+1=321 atoms. Each linear
chain has the same number of atoms. The number of atoms in the simulation
box for all the systems is listed in Tab. 3.1.

The specific constants for bonded and non-bonded interactions (see Sec. 2.2
and equations 2.40, 2.43, 2.46, 2.48, 2.49, 2.51, 2.53 for the functional forms of
the potentials used in this work) for TRAPPE force field can be found in the
literature and are reported in the Appendix: Tab. 6.1 and Tab. 6.2 [29].

3.2 System preparation and equilibration

In order to study the structural properties of the systems first we need
to reach a state where the configuration will be independent from the initial
one. This state is the equilibrium state and the process to reach it is called
equilibration. In Fig. 3.2 we present the scheme with all the steps which we
followed during the equilibration procedure. For all our simulations we use
the GROMACS [27] simulation package. Also, all the simulation runs were
performed by parallel programming on the Fujitsu workstation in our group,
with 12 nodes. Up to 4 nodes have been used, each containing 24 Intel(R)
Xeon(R) processors.
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Figure 3.2: Scheme of the used simulation processes for the proper equilibration
of the model star systems.

The procedure follows the steps below:

Step 1:
We start from an initial configuration. For the purpose of avoiding the overlaps
of atoms, in this configuration, the arms are fully stretched when attaching to
the kernel. In Fig. 3.3 we show the snapshots of the initial configurations of two
selected stars. These snapshots have been taken after attaching the arms and
performing energy minimization procedure that is explained below.

Step 2:
The prepared stars are randomly placed in a box which size was bigger than
the one related on the final melt conditions. More specifically, the box was big
enough to avoid overlaps between molecules.

Step 3:
We run a NPT simulation which squeezes the box till the system reaches the
referred density. It means, that we applied Berendsen barostat, which keeps
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Figure 3.3: Snapshot of the initial configuration of (a) (PS)8 and (b) (PS)32

star.

the pressure constant at 1.0 atm, and the v-rescale thermostat to maintain the
temperature at 600K.

Step 4:
We apply energy minimization in between the simulation runs in order to correct
some possible configurations with stretched bonds, that can be present due to
a very close packing of the atoms close to the dendritic structure. Through
this process we get a configuration that corresponds to the minimum possible
energy.

Step 5:
To speed up the relaxation of the material we applied a heating procedure
using again Barendsen barostat and set the temperature to 700K. In this run,
Langevin dynamics are used.

Step 6: We apply, again, energy minimization process in order to correct any
possible stretches of the bonds.

Step 7:
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After the heating, we run a pre-production run. The settings used in this run are
the same as those for the production run, i.e., the same barostat and thermostat
(see in the next section). However, the data from this run are not included in
the examined trajectory, as the system needs some time to adjust to the given
temperature, which is lower that the one in the previous step of the equilibration
(i.e., heating). The length of the pre-production run was approximately 50 ns.

Step 8:
After this whole procedure our systems are fully equilibrated and we can export
all the information we need in order to examine their behavior through the
quantities of our interest.

Step 9:
The number of steps of the whole production run equals to 108 with time step
0.001 ps which means that the run lasts 105 ps or, equivalently, 100 ns. The
temperature during the production run for our systems is 600K. Therefore,
we apply Nosé-Hoover thermostat to keep the temperature around this value
and Parrinello-Rahman barostat for a constant pressure of 1 atm. In order
to make sure that our systems are well-equilibrated we check the stability of
the thermodynamical properties such as temperature, energy, density etc. The
results from the study of internal distances (see Chap. 4.1.1) is another evidence
of a well-equilibrated system.



4. Results

The main goal of every MD simulation is to collect information about the
evolution in time under specific conditions of the system under study. To quan-
tify the behavior of system components we use a set of quantities which help
us to describe the properties of the system. In this section we present some of
them and we also discuss their comparison to the theoretically predicted be-
havior. In this work we study only static properties, which means that they are
independent of time. In other words, our results do not depend on the choice
of the time window in which they were measured during the production run.
In a system in equilibrium the static properties fluctuate around their average
values during the whole simulation run. The mean values of all quantities pre-
sented in this section were obtained by averaging over all stored configurations
of the systems, i.e., we used every frame of the exported trajectory to calculate
the average properties.

4.1 Structural properties

4.1.1 Internal Distances

We start with the examination of the possible internal deformation of the
molecules in our systems. This deformation can be a consequence of a bad
packing of monomers during the equilibration procedure. In order to do that
we calculate internal distances along the arms in the stars or along the linear
chain. The quantity measures the mean-square end-to-end extension 〈R2〉(n) of
a chain segment including n bonds:

〈R2
n〉 = 〈||ri+n − ri||2〉 (4.1)

where 〈·〉 represent the statistical average over all possible pairs of atoms along
the arm/chain separated by n bonds. The statistics is improved by averaging
over all arms or chains in the system. This quantity has been used to check the
internal deformations in the melts of linear entangled chains [30]. The entan-
gled chains consist of many monomeric units (more than 10 times longer than
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those in our work) and their equilibration is very time consuming. Auhl et al.
presented a method to speed up the equilibration process and they showed that
any possible internal deformation of the chains during the process is reflected in
the plot of 〈R2

n〉/n. The same quantity was reported in simulations of entangled
stars using a bead spring model [31].
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Figure 4.1: Internal distances 〈R2
n〉/n of all systems.

In Fig. 4.1 we present 〈R2
n〉 divided by the number of bonds n for all studied

systems. There is no indication of the deformation at short distances (n < 20)
which would be manifested by a peak in this area. First comparing the blends
(triangles, squares, and circles) with melts (lines of the corresponding colors),
we observe that the data in Fig. 4.1 for these two types of systems overlap.
The data for the linear chains are systematically under the curves for the star
arms, i.e., the arms of stars are stretched in comparison to linear chains. By
comparing the stars of different functionality, it is obvious that with increasing
the functionality of the star the stretching of the arms at long distances (n > 20)
is much more pronounced.

In the ideal case of a long Gaussian chain of a length Nchain, the eq. 4.1 is
related to the stiffness of the chain through the following equation [32]:

〈R2〉 = C∞Nchainb
2 (4.2)
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where b is an average bond length and C∞ is a characteristic ratio. The Gaussian
chain represents a model of an ′′ideal′′ flexible chain with the uncorrelated
motion of bond vectors. In reality this motion is not uncorrelated and the chain
behaves as Gaussian at length scales much bigger than the bond length. The
characteristic ratio, C∞, is a quantity that measures the stiffness [2] and its
values for common polymers can be found in literature [33]. Only for the cases
of very long chain lengths (arms) C∞ could be obtained from an asymptotic
plateau of the 〈R2

n〉/n plot. In Fig. 4.1 the dashed line represents the estimation
of the value of C∞ for polystyrene at 600K [33], which corresponds to the
temperature in our simulation. It is apparent from Fig. 4.1 that there is no
plateau observed for our systems.

4.1.2 Radius of Gyration

Radius of gyration, Rg, is a structural measure about the compactness of the
molecule and gives us the opportunity to provide estimation of the molecular
size. Rg is defined by the formula:

Rg =
√
R2
g (4.3)

where:

R2
g =

∑
i

||ri − rcm||2mi∑
i

mi

, (4.4)

mi is the mass of particle i, ri is its position, rcm is the position of the center
of mass of the measured object (here a star polymer molecule).
For the purpose of our study we calculate two types of this quantity: (a) Rgmol

and (b) Rgarm . The first one represents the radius of gyration of the whole
molecule. Rgarm corresponds to the radius of gyration of a single arm of the star
(i.e., i = 1, 2, ..., 321) and, in this case, rcm represents the center of mass of one
arm. In Fig. 4.2 we show a schematic representation of the measurement of (a)
Rgmol

and (b) Rgarm quantities on a snapshot of a randomly selected star.

It has been proposed [34] that for chains obeying Gaussian statistics (ideal
chains), the radius of gyration of the molecule is related to the radius of gyration
of a single arm through Zimm-Stockmayer equation [32]:

〈R2
gmol
〉

〈R2
garm〉

=
3f − 2

f
. (4.5)
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Figure 4.2: Schematic representation of the measurement of (a) Rgmol
and (b)

Rgarm quantities on a snapshot of a randomly selected star of functionality
f = 8.
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Figure 4.3: Comparison of our data with Zimm-Stockmayer prediction.

For coarse-grained models and experimental results for stars in θ conditions
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a power low relation has been found [35]:

〈R2
gmol
〉

〈R2
garm〉

∼ fα. (4.6)

For stars in θ conditions the exponent α = 0.32 [35].
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systems.

In Tab. 4.1 we present the averages of
√
〈R2

gmol
〉 and

√
〈R2

garm〉 for each one

of our systems under investigation with the corresponding error. For simplicity

we define: Rgmol
=
√
〈R2

gmol
〉.

The error bars have been estimated as follows: first we used the block
method, i.e., we divided the trajectory into 4 blocks (time windows), we calcu-
lated the property for each block (R2

g) and obtained the error bar as a standard
deviation between the mean value from the whole trajectory (〈R2

g〉) and the
values obtained from the blocks. The number of the blocks (4) has been chosen
empirically.

According to propagation of errors of precision analysis [36], the error ∆Z
of a quantity Z = Xk with known error ∆X of the quantity X is calculated by
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Average values of Rgmol
and Rgarm

SYSTEM Rgmol
[nm] Rgarm [nm]

blend (PS)8 2.63± 0.07 1.45± 0.037
blend (PS)16 2.97± 0.088 1.45± 0.021
blend (PS)32 3.51± 0.047 1.50± 0.026
melt (PS)4 2.40± 0.03 1.43± 0.154
melt (PS)8 2.68± 0.015 1.49± 0.008
melt (PS)16 3.01± 0.002 1.52± 0.002
melt (PS)32 3.45± 0.004 1.55± 0.001

melt (PS)8/61 2.78± 0.18 1.43± 0.23
melt (PS)16/61 3.02± 0.1 1.44± 0.17

Table 4.1: Average values of Rgmol
and Rgarm with the corresponding error

(standard deviation).

the formula:

∆Z = kXk−1∆X (4.7)

The corresponding formula for the calculation of the error R̄g (standard de-

viation) of
√
〈R2

gmol
〉 and

√
〈R2

garm〉, reported in Tab. 4.1, for k = 1
2
, is given

by:

R̄g =
1

2
〈R2

g〉
−0.5

R̄2
g (4.8)

where R̄2
g is the standard deviation obtained from the block method.

In Fig. 4.3 we plot the ratio 〈R2
gmol
〉/〈R2

garm〉 and compare our data to the
above-mentioned predictions. The relation proposed by bead spring simula-
tions [35], 〈R2

gmol
〉/〈R2

garm〉 ∼ f 0.32, is plotted as a guide to the eye only and
does not correspond to the fit of the data. We observe that all three types of
systems do not agree with Zimm-Stockmayer prediction, however, they seem to
follow a power law. This power law seems to be very close to the one predicted
by Grest et al. [35] (see the dashed line in Fig.4.3).

In Fig. 4.4 we plot the distributions of instantaneous values of Rgarm for
all the systems. The differences between different types of systems (i.e., melts,
blends and with modified kernel) and systems with different functionalities are
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barely noticeable. The distributions are fairly Gaussian with small deviations
at small values of Rgarm .

4.1.3 Asphericity and prolateness

In order to get information about the shape of the PS stars in each system
we introduce two shape parameters: asphericity (a) and prolateness (p). We
obtain these parameters from radius of gyration tensor (S), whose elements are
defined as follows:

Sαβ =
1

N2
star

Nstar∑
i=1

(riα − rcmα )(riβ − rcmβ ) (4.9)

where Nstar is the number of the atoms of one molecule (star) and α and β
are Cartesian coordinates of the tensor S in three dimensions, i.e., α, β=x,y,z.
Correspondingly, riα and riβ represent the components of the vector ri. Let us
define the eigenvalues of the tensor in a way λ1 < λ2 < λ3. Then, asphericity a
and prolateness p parameters are calculated by the formula:

a =
(λ2 − λ1)2 + (λ3 − λ1)2 + (λ3 − λ2)2

2(λ1 + λ2 + λ3)2
(4.10)

and

p =
(2λ1 − λ2 − λ3)(2λ2 − λ1 − λ3)(2λ3 − λ1 − λ2)

2(λ2
1 + λ2

2 + λ2
3 − λ1λ2 − λ1λ3 − λ2λ3)

3
2

(4.11)

correspondingly.
The values of asphericity range between 0 and 1. For totally spherical shape

(λ1 = λ2 = λ3) asphericity equals to 0 and the more the shape deviates from
a sphere the closer a gets to 1. Prolateness, that fluctuates between −1 and
1, shows how oblate or prolate an object is. Value p = −1 implies a perfectly
oblate shape where λ1 < λ2 = λ3 while for prolate shapes (λ1 = λ2 < λ3) the
value is p = 1. In Fig. 4.5 we present (a) oblate, (b) spherical and (c) prolate
shapes for the corresponding values of prolateness p and asphericity a.

Fig. 4.6 and 4.7 show the distributions of asphericity and prolateness of the
stars in each one of our systems, respectively.

Between the two types of systems (blends vs. melts) the differences are
almost negligible, however, stars in blends appear to be systematically more
spherical (Fig. 4.6(a)). In case of (PS)f/61 stars we do not notice any differences
between the corresponding (PS)f in melts (Fig. 4.6(b)).

Both of the shape parameters are affected by the functionality f of the
stars. The higher the functionality the more the shape of the star approximates
a sphere. If we focus our attention on (PS)4 star it is obvious that it is the only
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Figure 4.5: Schematic representation of (a) oblate shape for value of prolateness
p = −1, (b) spherical shape for p = 0 and value of asphericity a = 0 and (c)
prolate shape for p = 1.

one with such a wide a distribution (Fig. 4.6(b)) and in terms of prolateness
parameter (Fig. 4.7(b)) the only one with the maximum of the distribution at
p = 1 which reveals the prolate shape of this star and not a spherical one. As the
functionality increases (f ≥ 8) the stars begin to be more spherical. It means
that the maximum of the a distribution gets closer to zero till f = 32, where
the stars look like spheres (Fig. 4.6(b)). For these functionalities, p distributions
(Fig. 4.7(b)) do not exhibit any particular maximum (just slightly higher values
in the range of 0.5−1 for f = 8), i.e., neither oblate nor prolate shape is present,
which is also an indication about the almost-spherical shape for higher f . The
more spherical shape of stars with higher functionality is obvious also from
Fig. 4.8, where we present snapshots of randomly selected configurations of
stars in melts.

4.1.4 Density profile

Another important structural property that we investigate is density pro-
file. Density profile gives us the information about how the atoms of the star
distribute to defined radial layers around the central carbon C of the star den-
dritic kernel, i.e., it calculates the density within one molecule with respect to
the distance d from the center of the star. Fig. 4.9 shows a schematic division
of the space around the star into spherical layers.

For our study we divide the space around each star into 100 radial layers
of the same width up to a distance of

√
3L
2

, where L is the simulation box
length. In Fig. 4.10 we present the data. The density is plotted with respect
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Figure 4.8: Snapshots of a randomly selected configuration of (a) (PS)4, (b
(PS)8, (c) (PS)16, (d) (PS)32. The central dendritic structure is painted gray
and PS atoms blue.

Figure 4.9: Sketch of defined, radial layers around the central atom of the star’s
kernel in order to calculate the density distribution in each one of them.

to d/Rgmol
for a better comparison. Moreover, in the graph we only present

the data corresponding to the arms, i.e. the atoms of the dendritic structure
are not included in the profile. In other words, in this representation the first
radial layer d = 0 has been shifted to the surface of the dendritic kernel, i.e.,
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Figure 4.10: Density profiles of all systems.

SYSTEM Average density
(kg/cm3)

blend (PS)8 0.91386± 0.000023
blend (PS)16 0.914399± 0.000014
blend (PS)32 0.915386± 0.000013
melt (PS)4 0.91886± 0.000033
melt (PS)8 0.921437± 0.000029
melt (PS)16 0.926656± 0.00002
melt (PS)32 0.936125± 0.000017

melt (PS)8/61 0.921884± 0.00005
melt (PS)16/61 0.924738± 0.000023

linear 0.913206± 0.000014

Table 4.2: Table of average densities of every system.

to the distance dk + σ/2, where dk is the distance of CH2 atom of the last
generation from the central C in the dendritic kernel (see Fig. 3.1) and σ is
its LJ diameter. The density profiles in Fig. 4.10 are decaying functions of the
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distance d. The density at short distances is higher than the corresponding
average densities of the systems (see Tab. 4.2). The values of d/Rgmol

defining
the region of the higher density depend on the functionality, i.e., the higher the
f the more extensive is the region of the higher density.

Between blends of star and linear chains and melts we do not observe any
significant differences. The density profile of (PS)8/61 star attains lower values
than the one of (PS)8. However, the data of (PS)16/61 almost overlap with those
of (PS)16.

4.1.5 Center-of-mass pair distribution function

The pair probability distribution function of star centers-of-mass (cm), gcm(d),
is proportional to the probability of finding the center-of-mass of a molecule at
a distance d from the center-of-mass of a given molecule. It is a quantity that
characterizes the mutual positions of the stars in a melt and their penetrability.
By penetrability we mean the ability of two stars to come to a close contact.
To calculate this quantity we use the equation below:

gcm(d) =
Mcm[d, d+ ∆d]

∆V [d, d+ ∆d]
(4.12)

where Mcm[d, d + ∆d] is the number of the centers-of-mass of the stars of the
system (except from the given one) in a specific radial layer of width ∆d,
∆V [d, d + ∆d] is the volume of the radial layer. Then, in order to normalize
this quantity in a way that the area under the curve (integral) equals to 1, we

divide it by
∫ L

2

0
gcm(d) dd.

Hence, we set:

gcm(d)→ gcm(d)∫ L
2

0
gcm(d) dd

(4.13)

and in Fig. 4.11 (a) we plot the gcm(d) distributions of melt systems. As in
blends there is only one star per system, there are not data from those systems.
In this graph we observe that for low functionalities (f = 4, 8) the probability
of finding cm-cm distances smaller than the corresponding Rgmol

is non-zero
(see Tab.4.1 for the values of Rgmol

). This means that the centers of mass of
these stars can approach very close to each other, which can be interpreted as
meaning that (PS)4 and (PS)8 are easily penetrable. For higher functionalities
no such phenomenon is present. There are no distances between centers of mass
smaller than Rgmol

, so the stars with (f > 8) can not be easily penetrable. For a
better understanding of the gcm(d) with respect to Rgmol

, in Fig. 4.12, we present
the data with the distances d divided by Rgmol

. As d = Rgmol
corresponds to

the point 1 on the x-axis, the above observation becomes more obvious.
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Figure 4.11: (a) Radial distribution of the distances of centers-of-mass of stars
in the melts. (b) Example of an alignment of two stars in (PS)4 melt.

In Fig. 4.11(b) we present a representative snapshot of two (PS)4 stars being
in a close contact. Due to their prolate shape they can align like two ellipsoids.
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4.2 Estimation of the core region

One of the main goals of this study is to identify the functionality of star-
shaped polymers, above which they start behaving like soft colloid particles.
Concerning the theoretical description of the star-polymer properties, Daoud
and Cotton, in 1981, predicted their properties using scaling theory [10]. They
proposed a model, the so-called blob model, giving the conformation of a star-
shaped polymer by taking into account the radial variation of the monomer
concentration. Defining d the distance from the center of the star, according
to this model, the inner structure of the star is regarded as a succession of
concentric shells of blobs, each blob in the shell having size ξ(d) like it is shown
in Fig. 4.13 [32]. Within each blob every chain behaves as there are no effects
of the neighboring chains. By purely geometrical arguments, it follows that the
size of the blob scales as ξ(d) ∼ df−1/2 and in relation to d the star is separated
into three regions: (a) the core (d < dc), (b) the unswollen region (dc < d < d′)
in the middle and (c) the swollen one in the end of the star (d > d′). Apart from
other factors such as monomer length, the values of dc and d′ depend on the
environment (media) around the star (good/bad solvent, melt etc.). In melts,
that are systems with high density and no solvent, only the unswollen region
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and the core are observable.

Figure 4.13: Schematic representation of Daoud and Cotton blob model. Each
blob in the shell has size ξ(d) where d is the distance from the center of the
star, dc defines the core region (d < dc), d

′ defines the swollen region (d > d′)
and the middle (unswollen) region corresponds to dc < d < d′.

The core is defined to be the region around the center of the star that cannot
be penetrated from atoms of different molecule [10]. In this region, the blob size
equals to the monomer size and the corresponding parts of the arms are fully
stretched. The scaling argument indicates that the radius of the core region
scales as

dc ∼ f 1/2l (4.14)

where l stands for the persistence length of the polymer. The persistence length
is related to the stiffness of the chain and the characteristic ratio (See eq. 4.2).

In an experimental work [11], eq. 4.14 is used for the estimation of the radius
of the core region of (PS)f for l=0.73 nm. It is also shown that the transition
to colloidal behavior is due to the increasing core fraction:

dc
Rgmol

(4.15)

where 〈R2
gmol
〉 ∼ 3f−2

f2
〈R2

glin
〉 and Rglin represents the radius of gyration of linear

polystyrene taken from literature (note the difference from eq. 4.5 where instead
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of Rglin C.Likos suggested Rgarm [32]). Increasing the core fraction means that
for high f the core region occupies larger volume fraction of the star. Specifically,
the value of functionality that the star-shaped polymers begin to behave like
colloids seems to be f > 8 for the experimental systems presented in ref. [11].

Another core estimation for a general model of star-shaped polymers came
from a simulation work using the density profile of the system. Pakula [12] et
al. used a lattice model for multiarm star-shaped polymers in melts and showed
that the density profile can be approximated by a Gaussian distribution with
its center at the center of mass of the star. Then, the radius of the core dc was
defined as the separation of the maximum of the Gaussian from the center of
mass of the star.

Having these studies in mind, in this chapter, we calculate some relevant
quantities in order to achieve the estimation of the impenetrable core region of
the star with respect to the functionality f .

4.2.1 Percentage of penetrated monomers

The first approach for the estimation of the core region of the stars is based
on calculating the radial distribution function. Radial distribution function,
ginter shows the probability of finding external units (units which do not belong
to the given star) in a distance d from the central C atom of the chosen star.

For the above calculation we divide the space around the star into radial
layers of width ∆d centered in the central atom of the kernel. In each layer
the total number of units is Mall = Mext + Mst, where Mext is the number of
monomers of different stars of the systems and Mst the number of monomers
belonging to the given star. We calculate the number of monomers of different
stars of the systems (Mext) in each layer as it is shown in Fig. 4.14. For the
calculation of ginter(d) we use the equation below:

ginter(d) =
Mext[d, d+ ∆d]

∆V [d, d+ ∆d]
∫ L

2

0
gall(d) dd

(4.16)

where gall(d) = Mall[d,d+∆d]
∆V [d,d+∆d]

and we divide ginter(d) by the quantity
∫ L

2

0
gall(d) dd

in order to normalize it in this way.
We average this number over the total number of the monomers in all the

shells and over the whole trajectory. The plotted data of radial distribution
function, ginter, of (PS)f and (PS)f/61 melt systems are presented in Fig. 4.15.

As expected, there is a region close to the central atom of the dendritic
structure (kernel) where the number of external monomers is very small. The
radius of this region differs with respect to the star functionality. For function-
alities f = 16 and f = 32 there is a substantial range of d wherein almost no
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Figure 4.14: Snapshots of two randomly selected stars and the defined radial
layers. d is the mean distance between the layer and the central C atom of the
star. For the calculation of radial distribution function ginter, only the monomers
belonging to the red star have been consider.

external monomers (ginter approximately zero) are found. Examination of this
range could be used as the first approximation for the radius of the impenetra-
ble region of the star (dc). For functionalities f = 4 and f = 8, at distances
d ≈ 0, ginter is non zero.

From the cumulative sum of ginter we are able to export quantitative infor-
mation about the radius of the impenetrable region of the star. A cumulative
sum is a sequence of partial sums of a given sequence. Which means that by
calculating the cumulative sum of ginter in distance d = Rgmol

, we get the per-
centage of penetrated monomers in the whole region of d ≤ Rgmol

. This happens
because of the way we have normalized the quantity under investigation, which
means that the 100% correspond to the sum of external (i.e., intermolecular
monomers) and internal monomers (Mall). In Fig. 4.16 we plot the data for
the percentage of penetrated monomers in d ≤ Rgmol

as a function of func-
tionality f . For f = 4 the percentage of penetrated monomers appears to be
significantly larger than for those of higher functionalities. The percentage of
penetrated monomers at higher functionalities (f ≥ 16) appears to be less than
10% of the total number of monomers (internal and external). For f = 32 only
5% of the monomer are penetrated which is an evidence for the soft colloidal
behavior. Due to the non-monotonic character of the quantity and the sudden
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Figure 4.15: Radial probability distribution function of the external atoms
(atoms which do not belong in the certain star) for melt systems (PS)f and
for melts of stars with modified kernel (PS)f/61.

drop at f = 8 we can assume that for f > 8 the stars are not easily penetrable.

We also use the cumulative sum to obtain information about the distance
d from the central C atom of the star, at which only a very small number of
penetrated monomers can be found. In order to do so, we define the very small
amount of external monomers as 1% of the penetrated monomers in ginter. Then,
the distance which corresponds to the 1% of the penetrated monomers will be
a good estimation of the radius of the core region, dc. We divide the data by
Rgmol

so that they can be comparable to each other and in Fig. 4.17 we present
the core fraction (see eq 4.15) as a function of functionality f . We can see that
the core fraction increases with increasing functionality and shows a change in
the tendency for f = 16. We also examined the same quantity that corresponds
to 5% of the penetrated monomers and we observed the same tendency. Our
data for the estimation of the radius of the impenetrable region (dc) are in the
range of values obtained from the experimental work on similar systems [11].
The trends reported in this work are in agreement with our data, however,
one has to keep in mind that the assumptions used in that work such as Zimm-
Stockmayer eq. 4.5 are not valid in our systems. In Chap. 4.1.2 (see Fig. 4.3) we
showed that our detailed atomistic predictions do not follow Zimm-Stockmayer
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prediction, so Rgmol
cannot be approximated by this model.

4.2.2 Void spaces

For the purpose of the core estimation we study the void spaces of the
system. This quantity could give us additional information about packing of
the monomers in the system. The coordinates of every atom of the system
correspond to its center of mass but in reality the atoms are not point particles.
In order to estimate the free space around them we have to take into account
their diameter σ. The diameters of each type of united atom are given by the
force field and are summarized in Tab. 4.3.

United atom σ [nm]

C (kernel) 0.6400
CH1 0.4650
CH2 0.3950
CH3 0.3750

C (aromatic ring) 0.3700
CH (aromatic ring) 0.3695

Table 4.3: Diameters of atomic units.

For the calculation of the free space we describe a geometrical algorithm,
similar to the one reported in [37]. Namely:

Step 1:
We divide the volume of the simulation box into a cubic grid with spacing s. As
grid points Mtotal we define the crosspoints of the grid. The grid space ranges
from s=0.05nm to s=0.5nm. The upper limit would correspond approximately
to the biggest value of σ.

Step 2:
We expand all the atomic units within their corresponding atomic radii (σ

2
)

given in Tab. 4.3.

Step 3:
We define the occupation of each point of the grid. Every grid point that is
further than the corresponding distance σ

2
from any atom of the box is defined

as a free point. Since σ stands for the diameter of each atom this means that
a free point is the one that does not overlap by any atom of the system. We
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Figure 4.18: Schematic (2D) representation of the procedure of defining grid
points as free. Assuming that the two red spheres are two united atoms and σ1

and σ2 their atomic diameters, correspondingly. The grid point A is defined as
free as its distance from the centers of both atoms 1 and 2 is larger than σ1

2

and σ2
2

, respectively. The grid point B is not defined as free because its distance
from atom 1 is smaller than σ1

2
.

count the total number of the free points of the grid (Mfree) and store their
coordinates.

Step 4:
We calculate the free volume fraction Φ which equals to:

Φ =
Mfree

Mtotal

. (4.17)

The whole process of defining one grid point as free is described schemati-
cally in Fig. 4.18. Also, in Fig. 4.19 we present a snapshot of a randomly selected
melt system, where every star is highlighted by a different color and the same
snapshot with the defined grid of randomly selected length s.

In order to improve the accuracy of our calculations we analyze this quantity
for several (here 9) frames -randomly selected but uniformly distributed over
the trajectory- instead of the whole trajectory. The final value of Φ and corre-
sponding error bars (for s = 0.1, see below) are given by averaging the values
of each one of the selected frames and estimating the standard deviation.
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Figure 4.19: (a) Snapshot of a randomly selected melt system (PS)8 inside the
periodic simulation box (blue square). Every star is defined by a different color.
The radius of the atoms does not correspond to the exact radius given by the
force field. (b) The same snapshot of (PS)8 with the schematic representation
of a grid with randomly selected length s.

For the purpose of an efficient choice of the value of the grid length, we
examine the behavior of the fraction Φ with respect to s. In Fig. 4.20 we present
the graph of free volume fraction Φ with respect to the grid space s for three
selected systems: (PS)8, (PS)32 and (PS)8/61. In all the systems a short plateau
appears for small values of s. Having in mind the efficiency of the code and
physical meaning of the grid size, we chose grid space s = 0.1 nm, which is
smaller than the smallest radius of the atomic units but computationally still
accessible.

In Fig. 4.21 we present a comparison of the free volume fraction Φ for sys-
tems with different functionalities f and different internal structure with the
corresponding error bars. For stars in melt (PS)f as the functionality increases
the free volume fraction decreases. The higher the functionality the less per-
centage of the free space. Systems with modified kernel (dendritic structure)
(PS)f/61 do not seem to be affected by the change of the functionality and both
stars with f = 8 and f = 16 exhibit very similar values of Φ. However, they
seem to slightly differ from those with the same functionality but unmodified
kernel, (PS)f . Systems with stars of f = 8 with ′′bigger′′ kernel ((PS)8/61) seem
to have less free space than the one with the ′′smaller′′ one (PS)8. The opposite
trend is observed for the pair of stars with f = 16, more specifically the value



56 Chapter 4. Results

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

 Φ

grid space s [nm]

melt (PS)8
melt (PS)32

melt (PS)8/61

Figure 4.20: Free volume fraction Φ as a function of grid length s for melt (PS)8

(empty squares), (PS)8/61 (full squares) and (PS)32 (crosses) systems.

of free volume fraction is higher for (PS)16/61 that for (PS)16.
For a better analysis of the void space around the star we calculate the

distance of every free point from the center of each star. In Fig. 4.22 we present
the radial distribution gvoid(d) of these distances for chosen grid space s = 0.1
nm, for every melt system under investigation. For a better comparison we
divide the distances d by the radius of gyration Rgmol

of the corresponding
system. We have normalized the distribution in a way that the area (integral)
below the curve equals to 1.

In the way we plotted the data (d/Rgmol
) we can easily observe that in

d = Rgmol
(point 1 on x-axis) and in a region around this point the distribution

reaches a plateau. In addition, for systems consisting of stars of f = 16, 32
the plateau seems to be reached at d = dc (see Fig. 4.17). For d ≥ dc, the
distributions for the stars with f = 16 (melt (PS)16 and melt (PS)16/61) overlap.

For smaller distances (d < dc) we do not observe any overlaps of the data of
different systems. Moreover, for (PS)f/61 stars the region close to the center of
the star wherein there are no free points is wider than the corresponding region
for stars with non-modified kernel (PS)f .
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5. Conclusions

The aim of this thesis was to study the structural behavior of polystyrene
(PS) star-shaped polymers in melts. To our knowledge, it is the first time that
star-like polymers in melt are studied by a detailed atomistic model.

In order to achieve our goal, we performed atomistic MD simulations of
polystyrene (PS) star-shaped polymers of functionalities (number of arms) f=4,
8, 16, 32 in melts. For a better comparison of the results we also prepared
models of PS star-shaped polymers in blends with linear PS chains and some
with modified internal structure. After the performance of equilibration runs,
the systems do not exhibit any deformations and we were able to calculate
a variety of statistical quantities for the structural analysis of the materials.
The results are presented as functions of f and comparisons between our data,
theory and experimental data have been made.

The size of the stars in the melt does not deviate from the corresponding
ones in blends and seems to follow a power law similar to the one suggested by
Grest [35]. Consequently, our results do not agree with the theoretical prediction
of Zimm-Stockmayer (see Fig. 4.3) [34].

The shape of the stars is strongly affected by the functionality. With increas-
ing functionality the stars get more spherical. In blends the stars are slightly
more spherical than those with the same functionality in melts. The modifica-
tion of the star kernel does not affect the shape parameters.

The density profile along the star arms for each system is non-monotonic
as it was expected from the theoretical models. In every star there is a region
around its center where the density is higher than the mean density of the
system. The radius of this region increases in a proportion to the functionality.
The effect of the modification of the star kernel is apparent in the density profile
of the star with f = 8, which deviates from the one of the corresponding star
with unmodified kernel and approximates more the profile observed for the star
with f = 4.

Concerning the positions of the center-of-mass of the stars, we showed that
for f ≤ 8 there are stars which can be in a distance smaller than their radius
of gyration Rgmol

. Stars with f = 4 have a prolate shape what helps them to
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align next to each other. For f > 8 we did not detect distances smaller than
Rgmol

and thus these stars are not easily penetrable.
For the estimation of the impenetrable region of the stars (core with radius

dc) we used various methods. We found out that the percentage of penetrated
monomers in a region smaller than Rgmol

decreases with functionality and shows
a change in the tendency for f = 16. The same trend was observed for the
ratio dc/Rgmol

estimated in a similar way. This trend is in agreement with
experimental study on similar systems [11]. We performed an estimation of the
free volume in the systems based on geometrical assumptions, where a grid was
applied to divide each simulation box. As anticipated, we found less free space
in the systems of stars with higher functionality. The distributions of the free
points around the center of the star depend on the size of the kernel.

In summary, we showed that atomistic simulations are very powerful tool
to quantify structural properties of star-like polymers in melt and that the
results can be used to test theoretical predictions and to gain more insight into
experimental tendencies.

The complexity of such systems gives us the opportunity to study a wide
range of properties. The analysis of void space in the systems is open to further
investigation such as a cluster analysis of the free points. The dynamical prop-
erties of PS star-shaped polymers will be also studied in future work, which
will provide us information about important industrial properties and their
dependence on the functionality of the star.
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TRAPPE

Atom types

Atomic Unit mass charge p type σ [nm] ε [kJoule
/mol]

C 12.0110 0.0000 A 0.6400 0.004157
CH1 13.0190 0.0000 A 0.4650 0.0831
CH2 14.0270 0.0000 A 0.3950 0.3828
CH3 15.0350 0.0000 A 0.3750 0.8159
Car 12.0110 0.0000 A 0.3700 0.2494

CHar 13.0190 0.0000 A 0.3695 0.4197

Bond types

Atomic unit
i

Atomic
unit j

func b0 [nm] kb[kJ/
mol*nm2]

CH2 CH2 1 0.154000 217700.00
CH3 CH1 1 0.154000 200000.00
CH1 Car 1 0.151000 200000.00
Car CHar 1 0.140000 400000.00

CHar CHar 1 0.140000 400000.00
CH1 CH2 1 0.154000 200000.00

C CH1 1 0.154000 217700.00
CH1 CH1 1 0.154000 217700.00

Angle types

Atomic
unit i

Atomic
unit j

Atomic
unit k

func θ0 [deg] cth [kJ/
mol*rad2]

CH3 CH1 CH2 1 112.00 520.00
CH3 CH1 Car 1 112.00 520.00
Car CH1 CH2 1 112.00 520.00
CH1 CH2 CH1 1 114.00 520.00
CHar Car CH1 1 120.00 1000.00
CHar Car CHar 1 120.00 1000.00
CHar CHar Car 1 120.00 1000.00
CHar CHar CHar 1 120.00 1000.00
CH2 CH1 CH2 1 112.00 520.00
CH1 C CH1 1 109.50 520.00

C CH1 CH2 1 112.0 520.00
CH1 CH1 CH2 1 112.0 520.00
CH1 CH1 CH1 1 112.0 520.00
CH1 CH2 CH2 1 114.0 520.00

Table 6.1: TRAPPE of PS star-shaped homopolymer
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Dihedral types

Atomic
unit i

Atomic
unit j

Atomic
unit k

Atomic
unit l

func Cn prefactors
[kJ/mol]

CH3 CH1 CH2 CH1 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4:0.0000, C5:0.0000

CH1 CH2 CH1 CH2 3 C0:8.3974, C1:16.7862
C2:1.1340,C3:-26.3160
C4:0.0000, C5:0.0000

CHar Car CH1 CH2 1 C0:240.00, C1:1.3889
C2:2

CHar Car CH1 CH3 1 C0:240.00, C1:1.3889
C2:2

Car CHar CHar CHar 2 C0:0.0000, C1:167.3600
CHar CHar CHar CHar 2 C0:0.0000, C1:167.3600
CHar CHar Car CHar 2 C0:0.0000, C1:167.3600
Car CHar CHar CH1 2 C0:0.0000, C1:167.3600
CH1 CH2 CH3 Car 2 C0:35.2600, C1:334.8000
CH1 CH3 CH2 Car 2 C0:35.2600, C1:334.8000
CH1 CH2 CH2 Car 2 C0:35.2600, C1:334.8000
CH2 CH1 CH2 CH2 3 C0:8.3974, C1:16.7862

C2:21.1340, C3:-26.3160
C4:0.0000, C5:0.0000

CH2 CH2 CH1 CH1 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4:0.0000, C5:0.0000

CH1 CH1 CH1 CH2 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4:0.0000, C5:0.0000

CH1 CH2 CH2 CH2 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4:0.0000, C5:0.0000

CH1 CH2 CH2 CH1 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4:0.0000, C5:0.0000

C CH1 CH2 CH2 3 C0:8.3974, C1:16.7862
C2:1.1340 , C3:-26.3160

C4:0.0000, C5:0.0000
CH1 C CH1 CH2 3 C0:8.3974, C1:16.7862

C2:1.1340 , C3:-26.3160
C4: 0.0000, C5:0.0000

CH1 CH1 CH1 CH1 3 C0:8.3974, C1:16.7862
C2:1.1340, C3:-26.3160
C4: 0.0000, C5:0.0000

Table 6.2: (continue) TRAPPE of PS star-shaped homopolymer
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