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Abstract

Entity resolution (ER) is the problem of identifying descriptions of the same real-world entities

among or within knowledge bases (KBs). In this PhD thesis, we study the problem of ER in the Web

of data, in which entities are described using graph-structured RDF data, following the principles

of the Linked Data paradigm. The two core ER problems are: (a) how can we effectively compute

similarity of Web entities, and (b) how can we efficiently resolve sets of entities within or across

KBs. Compared to deduplication of entities described by tabular data, the new challenges for these

problems stem from the Variety (i.e., multiple entity types and cross-domain descriptions), the

Volume (i.e., thousands of Web KBs with billions of facts, hosting millions of entity descriptions)

and Veracity (i.e., various forms of inconsistencies and errors) of entity descriptions published in

the Web of data.

At the core of an ER task lies the process of deciding whether a given pair of descriptions

refer to the same real-world entity i.e., if they match (problem a). The matching decision typi-

cally depends on the assessment of the similarity of two descriptions, based on their content or

their neighborhood descriptions (i.e., of related entity types). This process is usually iterative, as

matches found in one iteration help the decisions at the next iteration, via similarity propagation

until no more matches are found. The number of iterations to converge clearly depends on the

size and the complexity of the resolved entity collections. Moreover, pairwise entity matching is by

nature quadratic to the number of entity descriptions, and thus prohibitive at the Web scale (prob-

lem b). In this respect, blocking aims to discard as many comparisons as possible without missing

matches. It places entity descriptions into overlapping or disjoint blocks, leaving to the matching

phase comparisons only between descriptions belonging to the same block. For this reason, over-

lapping blocking methods are accompanied by Meta-blocking filtering techniques, which aim to

discard comparisons suggested by blocking that are either repeated (i.e., suggested by different

blocks) or unnecessary (i.e., unlikely to result in matches) due to the noise in entity descriptions.

To address ER at the Web-scale, we need to relax a number of assumptions underlying several

methods and techniques proposed in the context of database, machine learning and semantic

Web communities. Overall, the Big Data characteristics of entity descriptions in the Web of data

call for novel ER frameworks supporting: (i ) near similarity (identify matches with low similar-

ity in their content), (i i ) schema-free (do not rely on a given set of attributes used by all descrip-

tions), (i i i ) no human in the loop (do not rely on domain-experts for training data, aligned rela-

tions, matching rules), (i v) non-iterative (avoiding data-convergence methods at several iteration

steps), and (v) scalable to very large volumes of entity collections (massively parallel architecture

needed).
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To satisfy the requirements of a Web-scale ER, we introduce the MinoanER framework. Our

framework exploits new similarity metrics for assessing matching evidence based on both the con-

tent and the neighbors of entities, without requiring knowledge or alignment of the entity types.

These metrics allow for a compact representation of similarity evidence that can be obtained from

different blocking schemes on the names and values of the descriptions, but also on the values of

their entity neighbors. This enables the identification of nearly similar matches even from the step

of blocking. This composite blocking, accompanied by a novel composite Meta-blocking captur-

ing the similarity evidence from the different types of blocks, set the ground for a non-iterative

matching. The matching algorithm, built on a massively parallel architecture, is equipped with

computationally cheap heuristics to detect matches in a fixed number of steps. The main contri-

bution of MinoanER is that it achieves at least equivalent results over homogeneous KBs (stem-

ming from common data sources, thus exhibiting strongly similar matches) and significantly bet-

ter results over heterogeneous KBs (stemming from different sources, thus exhibiting many nearly

similar matches) to state-of-the-art ER tools, without requiring any domain-specific knowledge,

in a non-iterative and highly efficient way.
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Περίληψη

Η ανάλυση οντοτήτων είναι το πρόβλημα της αναγνώρισης περιγραφών των ίδιων
οντοτήτων του πραγματικού κόσμου ανάμεσα σε διαφορετικές βάσεις γνώσης. Σε
αυτή τη διδακτορική εργασία, μελετάμε το πρόβλημα την ανάλυσης οντοτήτων στον
Παγκόσμιο Ιστό των ∆εδομένων, στον οποίο οι οντότητες περιγράφονται μέσω RDF
γράφων, ακολουθώντας τις αρχές των ∆ιασυνδεδεμένων ∆εδομένων. Τα δύο κεντρικά
προβλήματα της ανάλυσης οντοτήτων είναι: (α) πώς μπορούμε να υπολογίσουμε την
ομοιότητα οντοτήτων αποτελεσματικά, και (β) πώς μπορούμε να αναλύσουμε σύνολα
οντοτήτων εντός ή μεταξύ των βάσεων γνώσης αποδοτικά. Σε σχέση με την απαλοιφή
διπλοτύπων περιγραφών οντοτήτων σε σχεσιακές βάσεις, οι νέες προκλήσεις για αυτά
τα προβλήματα πηγάζουν από την Ποικιλία (πολλαπλοί τύποι οντοτήτων και δια-
ϑεματικές περιγραφές), τον ´Ογκο (χιλιάδες βάσεις γνώσης στον Παγκόσμιο Ιστό με
δισεκατομμύρια γεγονότα, που φιλοξενούν εκατομμύρια περιγραφές οντοτήτων), και
την Εγκυρότητα (πολλές μορφές ασυνέπειας και λαθών) των περιγραφών οντοτήτων
που δημοσιεύονται στον Παγκόσμιο Ιστό των ∆εδομένων.

Στον πυρήνα της ανάλυσης οντοτήτων βρίσκεται η διαδικασία λήψης της απόφα-
σης για το αν ένα δοθέν ζευγάρι περιγραφών αναφέρονται στην ίδια πραγματική
οντότητα, δηλαδή αν ταιριάζουν (πρόβλημα α). Η απόφαση ταιριάσματος συνήθως
εξαρτάται από την εκτίμηση της ομοιότητας δύο περιγραφών, με βάση το περιεχόμε-
νο ή ακόμα και τις γειτονικές τους περιγραφές (για οντότητες διαφορετικών τύπων).
Αυτή η διαδικασία είναι συνήθως επαναληπτική, καθώς οι αποφάσεις ταιριάσματος
σε μία επανάληψη βοηθούν στη λήψη αποφάσεων σε επόμενες επαναλήψεις, χρη-
σιμοποιώντας διάδοση ομοιότητας, έως ότου να μην βρίσκονται άλλες περιγραφές
που ταιριάζουν. Το πλήθος των απαιτούμενων για τη σύγκλιση επαναλήψεων εξαρ-
τάται από το μέγεθος και την πολυπλοκότητα των συλλογών περιγραφών οντοτή-
των. Επιπλέον, το ταίριασμα ζευγαριών περιγραφών είναι εκ φύσεως τετραγωνικής
πολυπλοκότητας ως προς το πλήθος των περιγραφών και άρα απαγορευτικό στην
κλίμακα του Παγκόσμιου Ιστού (πρόβλημα β). Στο πλαίσιο αυτό, η συσταδοποί-
ηση έχει στόχο να αποτρέψει όσο το δυνατόν περισσότερες συγκρίσεις, χωρίς να
χαθούν ταιριαστές περιγραφές. Τοποθετεί τις περιγραφές οντοτήτων σε επικαλυ-
πτόμενες ή μη-επικαλυπτόμενες συστάδες, προωθώντας στη φάση ταιριάσματος τις
συγκρίσεις μόνο μεταξύ περιγραφών που έχουν τοποθετηθεί σε κάποια κοινή συ-
στάδα. Οι μέθοδοι επικαλυπτόμενης συσταδοποίησης συνοδεύονται από τεχνικές
Μετα-συσταδοποίησης, που έχουν ως στόχο την αποτροπή των επαναλαμβανόμενων
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συγκρίσεων που προτείνονται από πολλαπλές συστάδες, καθώς και των συγκρίσεων
μεταξύ περιγραφών που είναι πιθανότερο να μην ταιριάζουν, αλλά έχουν προταθεί
λόγω ύπαρξης ϑορύβου στις περιγραφές οντοτήτων.

Για να αντιμετωπίσουμε το πρόβλημα της ανάλυσης οντοτήτων στην κλίμακα του
Παγκόσμιου Ιστού, χρειάζεται να χαλαρώσουμε ένα πλήθος υποθέσεων που υπόκει-
νται πολλών μεθόδων και τεχνικών, οι οποίες έχουν προταθεί στις ερευνητικές κοινό-
τητες των βάσεων δεδομένων, της μηχανικής μάθησης και του σημασιολογικού Ιστού.
Συνολικά, τα χαρακτηριστικά Μεγάλων ∆εδομένων που εμφανίζουν οι περιγραφές
οντοτήτων στον Παγκόσμιο Ιστό των ∆εδομένων απαιτούν νέα συστήματα ανάλυ-
σης οντοτήτων που να υποστηρίζουν: (i) σχεδόν ομοιότητα περιγραφών (αναγνω-
ρίζουν περιγραφές που ταιριάζουν και έχουν χαμηλή ομοιότητα περιεχομένου), (ii)
ανεξαρτησία ύπαρξης σχήματος (δεν στηρίζονται στην ύπαρξη ενός συγκεκριμένου
συνόλου γνωρισμάτων που χρησιμοποιούνται από όλες τις περιγραφές), (iii) πλήρη
αυτοματοποίηση (δεν στηρίζονται σε ειδικούς της εκάστοτε περιοχής για δεδομένα
εκμάθησης, αντιστοίχιση σχέσεων, κανόνες ταιριάσματος), (iv) μη-επαναληπτικότητα
(οι επαναληπτικές μέθοδοι συγκλίνουν μετά από υπερβολικά πολλές επαναλήψεις
στον Παγκόσμιο Ιστό των ∆εδομένων), και (v) κλιμακωσιμότητα σε πολύ μεγάλους
όγκους δεδομένων (απαιτούνται μαζικά παραλληλοποιήσιμες αρχιτεκτονικές).

Για να ικανοποιήσουμε τις απαιτήσεις ανάλυσης οντοτήτων στην κλίμακα του Πα-
γκόσμιου Ιστού, εισάγουμε το σύστημα MinoanER. Το σύστημά μας εκμεταλλεύεται
νέες μετρικές ομοιότητας για την εκτίμηση των ενδείξεων ταιριάσματος τόσο από
το περιεχόμενο όσο και από τις γειτονιές των περιγραφών, χωρίς να απαιτεί πρότε-
ρη γνώση ή αντιστοίχιση των τύπων των οντοτήτων. Αυτές οι μετρικές επιτρέπουν
μια συμπαγή αναπαράσταση των ενδείξεων ομοιότητας που μπορούν να αποκτη-
ϑούν από διαφορετικά σχέδια συσταδοποίησης πάνω στα ονόματα και τις τιμές των
περιγραφών, καθώς επίσης και στις τιμές των γειτονικών τους περιγραφών. Αυτό
επιτρέπει την αναγνώριση σχεδόν όμοιων περιγραφών που ταιριάζουν νωρίς, από το
βήμα της συσταδοποίησης. Η σύνθετη αυτή συσταδοποίηση, ακολουθούμενη από μία
νέα σύνθετη Μετα-συσταδοποίηση που αποτυπώνει τις ενδείξεις ομοιότητα από δια-
φορετικού τύπου συστάδες, ϑέτουν τις βάσεις για ένα μη-επαναληπτικό ταίριασμα.
Ο αλγόριθμος ταιριάσματος, σχεδιασμένος με μία μαζικά παράλληλη αρχιτεκτονική,
χρησιμοποιεί υπολογιστικά φτηνές ευριστικές μεθόδους για να αναγνωρίσει περιγρα-
φές που ταιριάζουν σε ένα προκαθορισμένο πλήθος βημάτων. Η κύρια συνεισφορά
του MinoanER είναι ότι πετυχαίνει τουλάχιστον ισάξια αποτελέσματα σε ομοιογενείς
βάσεις γνώσης (που έχουν κοινές πηγές και συνεπώς περιέχουν πολύ όμοιες περι-
γραφές οντοτήτων), και σημαντικά καλύτερα αποτελέσματα σε ανομοιογενείς βάσεις
γνώσης (που έχουν διαφορετικές πηγές και συνεπώς περιέχουν λιγότερο όμοιες περι-
γραφές), σε σχέση με συστήματα αιχμής στην ανάλυση οντοτήτων, χωρίς να απαιτεί
οποιαδήποτε γνώση ενός συγκεκριμένου πεδίου, με μη-επαναληπτικό και εξαιρετικά



αποδοτικό τρόπο.
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Chapter 1

Introduction

An increasing number of government organizations, local bodies, private companies, scientific

or citizen communities are currently describing a great variety of real-world entities (e.g., per-

sons, places, products, events) as Linked Data1, in the form of RDF triples2, i.e., subject-predicate-

object facts. The emerging Web of data aims to support a global data infrastructure, in which real-

world entities are described on the Web by data rather than documents. Exhibiting a higher degree

of interoperability than documents and ease of reuse both by humans and machines, Linked Data

emerges as a prominent paradigm for publishing structured information worldwide.

Comprehensive, machine-readable entity descriptions are hosted in Knowledge Bases (KBs).

Traditionally, KBs are manually crafted by a dedicated team of knowledge engineers (e.g., Word-

net3 and Cyc4); with the explosion of the Web, however, more and more KBs are built from existing

Web content using information extraction tools [25]. Such an automated approach offers an un-

precedented opportunity to scale-up KB construction and leverage existing knowledge published

in HTML documents [50], but it also comes at the cost of a significant degree of redundancy in

the descriptions provided across domains for the same real-world entities. Such KBs may contain

complementary and sometimes conflicting information regarding the same entity, which could

be combined in order to provide a more complete picture of the described entities than each in-

dividual KB offers and be exploited by a multitude of applications. A prerequisite for merging

complementary information or repairing contradicting information is to identify first the descrip-

tions that refer to the same real-world entity (called matches). This is the problem of entity resolu-

tion (ER), on which we focus in this work. This clearly requires an understanding of the similarity

among described entities that goes beyond strong similarity studied in traditional deduplication

and cleaning problems [76]. We essentially need to explore entity descriptions that are nearly sim-

ilar [88], since those descriptions have been created by various extraction tools of different quality,

focusing on different aspects of the entities.

1http://linkeddata.org/
2http://www.w3.org/RDF
3http://wordnet.princeton.edu
4http://www.cyc.com
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2 Chapter 1. Introduction

Example 1.1. Consider the entity descriptions presented in Figure 1.1. An entity description in the

Web of data is an identifiable set of attribute-value pairs. In this example, the entity identifiers are

given in the header rows and the attribute-value pairs are the remaining rows (attributes left, val-

ues right). The example shows entity descriptions hosted in two KBs: DBpedia (blue) and Freebase

(red). DBpedia describes two movies, Eyes Wide Shut and A Clockwork Orange, their director Stan-

ley Kubrick and his place of birth Manhattan, while Freebase provides alternative descriptions for

the same four entities. We say that two descriptions (e.g., Stanley Kubrick and A Clockwork Orange)

that are linked through such relations (e.g., director) are entity neighbors (see red edges). The sets of

attribute-value pairs used for describing these entities essentially group per subject URI (i.e., identi-

fier) a collection of RDF triples. For example the fact that Stanley Kubrick is the director of the movie

Eyes Wide Shut, expressed in the first row of the first entity description in this Figure, is expressed in

RDF (in N-triples format) as the triple: “<dbpedia:Eyes_Wide_Shut> <dbpedia-owl:director> <db-

pedia:Stanley_Kubrick> .”, where “dbpedia:” is short for http://dbpedia.org/resource/ and

“dbpedia-owl:” is short for http://dbpedia.org/ontology/ . Each triple expresses a fact about

an entity, while triples having the attribute rdf:type express the semantic types of an entity. In this ex-

ample, dbpedia:Stanley_Kubrick is declared to belong to the types Person, AmericanFilmDirectors,

and AmateurChessPlayers. Such type declarations do not impose the use of a specific set of attributes

in the Web of data, for entities of specific types. Note that different KBs may provide different (com-

plementary or conflicting) facts regarding the same entity. E.g., Freebase states that the runtime of

A Clockwork Orange is 137 minutes, while DBpedia suggests 136.

One can notice that, in our example, there exist both strongly similar and nearly similar descrip-

tions. For example, we can say that the descriptions referring to Eyes Wide Shut are strongly similar,

since they have very similar values for semantically equivalent attributes (e.g., name, runtime, cast).

However, this is not the case with the descriptions that refer to Stanley Kubrick; those descriptions

do not use any common words in their descriptions, while their attributes mostly refer to different

aspects of this entity (birthplace, active years and semantic types, versus name, birthplace and par-

ents). Hence those descriptions are more heterogeneous and in order to check if they match, we can

additionally exploit the similarity of their entity neighbors (such as birthplace and films directed by

them). For such descriptions, we can say that they are only nearly similar.

1.1 The Value of Entity Resolution

To allow better understanding a user’s intents, an entity-centric Web infrastructure enables power-

ful new user experiences, from search results that directly show key facts about people, places and

things, to improved refinement interfaces that allow searchers to quickly locate Web documents

that mention only the specific people, places or other things they are looking for [55]. We are

witnessing a new generation of Web applications that rely on entity descriptions to better serve

navigational or information seeking needs of users, namely, entity-centric search [7, 8, 15, 69] and

recommendations [14, 75, 105]. The former semantically enrich the answers of keyword queries
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Figure 1.1: A part of the Web of data from two KBs: DBpedia (blue) and Freebase (red). Each
table corresponds to an entity description, each header row to the URI of the
described entity, and each other row to an attribute (left)- value (right) pair.

with references to entities that are mentioned in the queries5, while the latter also provides rec-

ommendations of related entities based on relationships explicitly encoded in a KB [41]. Popular

use-cases of such Web applications include Google’s search that exploits the ER results of Knowl-

edge Vault [26], and Microsoft’s recommender system based on entity search results [11].

Example 1.2. Consider the query “Stanley Kubrick”, as shown in Figure 1.2. The user would prob-

ably like to know information about Stanley Kubrick, such as his age, birth place and profession,

instead of being given a list of relevant documents that, combined, contain this information, or, po-

tentially irrelevant documents that just contain these keywords. To serve this query in the Web of

data, the following process would be engaged.

Initially, a number of entity descriptions related to the entertainment industry (e.g., film mak-

ers) have been extracted from semantic annotations of Web pages and/or from domain specific KBs

(e.g., LinkedMDB6) and cross-domain KBs (e.g., DBpedia, YAGO, Freebase). Such descriptions can

be matched and matching descriptions can be linked to each other. Then, the mentions of various

entities in the user queries are recognized and matched to the extracted entity descriptions. For ex-

ample, besides Web documents related to “Stanley Kubrick”, an entity search system would enrich

5A process known as named-entity extraction [13, 38, 39, 49] and disambiguation [58].
6www.linkedmdb.org
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Figure 1.2: Searching for the entity “Stanley Kubrick” in the Web of data.

the answer with the descriptions of Stanley Kubrick in DBpedia and/or Freebase. To serve users will-

ing to extend their knowledge or simply satisfy their curiosity, an entity recommender system could

provide additional entities describing information of potential interest for the user. For example,

consider the information that Kubrick was born in Manhattan, extracted from DBpedia, that he

was married to Ruth Sobotka, extracted from YAGO, that he was the director of the movie A Clock-

work Orange, extracted from LinkedMDB, and so forth.

Given the open and decentralized nature of the Web of data, reliability and usability of entity

descriptions need to be constantly improved. Specifically, entity descriptions published in the

Web of data can be incomplete, i.e., only partially described in KBs, redundant, i.e., descriptions of

the same real-world entities usually overlap in multiple KBs, inconsistent, i.e., real-world entities

may have conflicting descriptions across KBs, and incorrect, since errors can be propagated from

one KB to the other due to manual copying or automated extraction techniques. In this respect,

ER improves the quality of Web KBs in terms of completeness, since linking nearly similar descrip-

tions will increase coverage of entity facts and relationships, conciseness, since merging strongly

similar descriptions will reduce duplicate entity facts and relationships, consistency, since match-

ing similar descriptions will enable to detect conflicting assertions, and correctness, since splitting

complex descriptions will facilitate entity repairing. In this work, we will focus on the first two of

those issues.
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1.2 Entity Resolution Workflow

The general processing steps involved in an ER task are illustrated in Figure 1.3 [35, 95, 96]. The

two core ER problems are (a) how can we effectively compute similarity of Web entities, and (b) how

can we efficiently resolve sets of entities within or across KBs.

Regarding problem (a), at the core of an ER task lies the process of making the matching deci-

sion: for a given pair of descriptions, decide if they refer to the same real-world entity (i.e., if they

match). This process aims to place matches at the same partition of the input entity collection E ,

and all the descriptions placed into the same partition should match. Specifically, the matching

decision is typically made by a match function M , mapping each pair of entity descriptions (ei ,e j )

to {tr ue, f al se}, with M(ei ,e j ) = tr ue meaning that ei and e j are matches, and M(ei ,e j ) = f al se

meaning that ei and e j are not matches.

The match function M introduces an equivalence relation among entity descriptions, so it

should satisfy the following properties:

• Reflexivity: ∀ei ∈ E , M(ei ,ei ) = tr ue,

• Symmetry: ∀ei ,e j ∈ E , M(ei ,e j ) = M(e j ,ei ), and

• Transitivity: ∀ei ,e j ,ek ∈ E , (M(ei ,e j ) = tr ue)∧ (M(e j ,ek ) = tr ue) ⇒ (M(ei ,ek ) = tr ue).

In practice, the match function is defined via a similarity function si m, measuring how sim-

ilar two entity descriptions are to each other, according to certain comparison criteria. Given a

similarity threshold θ:

M(ei ,e j ) =
true, if si m(ei ,e j ) ≥ θ,

false, otherwise.

To support the identification of nearly similar matches, existing works perform more than a

simple similarity computation on the values of two descriptions; they propagate the similarity of

the entity neighbors of two descriptions to the similarity of those descriptions. In this inherently

iterative process, the employed match function is based on a similarity that dynamically changes

from iteration to iteration, and its results include a third state, the uncertain one. Specifically,

given two similarity thresholds θ and θ′, with θ′ ≤ θ, the match function at iteration n is given by:

M n(ei ,e j ) =


true, if si mn−1(ei ,e j ) ≥ θ,

false, if si mn−1(ei ,e j ) ≤ θ′,

uncertain, otherwise.

It should be clear from Example 1.1 that finding a similarity function which can perfectly dis-

tinguish all matches from non-matches for all entity collections is impossible. Thus, in reality, we

seek a similarity function that will be only good enough, i.e., minimize the number of misclassified

pairs.
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Figure 1.3: Outline of the entity resolution process.

Regarding (b), pairwise entity matching is by nature quadratic to the number of entity descrip-

tions, and thus prohibitive at the Web scale. In this respect, blocking aims to discard as many

comparisons as possible without missing comparisons that could result into a match. It places

similar entity descriptions into blocks, leaving to the matching phase comparisons only between

descriptions within the same block, based on some criteria (called blocking keys). Specifically,

given an entity collection E , blocking creates overlapping or disjoint partitions B = {b1,b2, . . . ,bn}

of E , called blocks, for which it holds that
⋃

bi∈B
bi = E . A blocking method is called a partitioning

(or disjoint) blocking when ∀bi ,b j ∈ B ,bi ∩b j = ;, and overlapping blocking, else. The goal of

blocking is to quickly split the input entity collection into blocks that are as close as possible to

the final matching results. Hence, following the definition of the match function M , which relies

on a similarity function si m, the goal of blocking is for each pair of descriptions ei ,e j that belong

to the same block, it should hold that si m(ei ,e j ) ≥ θ.

Overlapping blocking methods are usually accompanied by Meta-blocking, which aims to dis-

card comparisons suggested by blocking that are repeated across different blocks, as well as com-

parisons that are unlikely to result in matches, suggested due to noise in entity descriptions. The

core idea for Meta-blocking is that the number and size of blocks that two descriptions share pro-

vide matching evidence: the more common blocks two descriptions share, the more similar those

descriptions are, while, the smallest the common blocks (i.e., the fewer the descriptions placed in

those blocks), the more discriminating they are, thus increasing the matching likelihood for the de-

scriptions that share them. This matching evidence is represented in the form of a blocking graph,

in which nodes correspond to entity descriptions and edges connect descriptions that co-occur in

at least one common block. The weights of the edges, extracted entirely from block statistics, rep-

resent the likelihood that connected descriptions match, i.e., how strong the matching evidence

for those descriptions is considered to be.



1.3. Requirements for a Web-scale Entity Resolution 7

1.3 Requirements for a Web-scale Entity Resolution

ER is challenged by the Variety, Volume and Veracity of the Web of data, across all the steps of the

ER workflow.

• Variety is mainly due to the descriptive, rather than prescriptive usage of ontologies/vocabularies

in entity descriptions (i.e., no DB-like schema), as well as the variety of domains of entity

types covered in KBs (there are ∼2,600 diverse vocabularies, but only 109 of them are shared

by more than one KB7).

• Volume is related both to the number of KBs and entities in KBs; the LOD cloud alone con-

tains almost 10,000 KBs with ∼150B triples describing more than 55M entities7.

• Veracity stems from various forms of inconsistencies and errors in entity descriptions, due

to the limitations of the automatic extraction techniques or of the crowd-sourced contribu-

tions.

The above Big Data characteristics of the Web of data call for novel ER frameworks that relax

a number of assumptions underlying several methods and techniques proposed in the context of

database, machine learning and semantic Web communities [22, 27]. The first is related to the

notion of similarity that better characterizes entity descriptions in the Web of data. Clearly, Vari-

ety renders inapplicable all schema-based similarity measures, which compare specific attribute

values. Similarity evidence of entities inside and across KBs can be obtained only by looking at

the bag of literals (mostly strings) contained in descriptions, regardless of the attributes they ap-

pear as values. As the value-based similarity of a pair of entities may still be weak due to Veracity

(e.g., the two descriptions of A Clockwork Orange from DBpedia and Freebase in Figure 1.1 having

different values for runtime), we need to consider additional sources of evidence related to the

similarity of neighboring entities, i.e., connected via semantic relations (see the two descriptions

of Eyes Wide Shut in DBpedia and Freebase, and the two descriptions of Manhattan, which are

neighbors of Stanley Kubrick in both KBs in Figure 1.1).

Figure 1.4 depicts two types of similarity for entities known to match from 4 benchmark datasets

used in the literature (details in Table 4.1). Every dot corresponds to a different matching pair,

while its shape denotes its origin dataset. The horizontal axis reports the normalized value similar-

ity based on the descriptions common words in a pair (weighted Jaccard [66]), while the vertical

one reports the maximum value similarity of their respective entity neighbors. We can observe

that the value-based similarity of matching entities significantly varies across different datasets.

For strongly similar entities (e.g., with a value-based similarity > 0.5) - typically hosted in homo-

geneous KBs from similar or common data sources - existing duplicate detection techniques work

well. However, to resolve nearly similar entities (e.g., value similarity < 0.5) - typically hosted in

heterogeneous KBs from diverse data sources - which cover a large part of the matching pairs

7http://stats.lod2.eu
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Figure 1.4: Value and neighbor similarity distribution of matching entities in 4 real dataset.

of entities in the Web of data, we need to additionally exploit evidence regarding the similarity

of neighboring entities. Existing works in blocking and Meta-blocking in the Web of data are also

considering only the content similarity of descriptions, and are thus challenged when dealing with

nearly similar entities.

Overall, the main requirements for a Web-scale ER method are the following:

• Near similarity support. The heterogeneity of entity descriptions met in the Web of data

calls for ER methods that can cope with not only strongly similar, but also nearly similar enti-

ties. This means that the blocking phase of an ER workflow should not discard comparisons

between descriptions that are nearly similar, as typical blocking methods in databases do,

while the matching phase should take into account not only the content, but also the entity

neighbors of two descriptions, when deciding if they match.

• Schema-free. As the published Web data use a plethora of vocabularies and schemata [29],

even within the same KB, it becomes clear that an ER method targeting matches in the

Web of data should not rely on a given set of attributes used by all the given entity descrip-

tions8. Thus, no step of the ER workflow should rely on the existence and the knowledge of

8This is not a restriction on the existence or not of a schema; a Web-scale ER method should work well in either case.
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a schema, e.g., blocking cannot operate on the values of a specific attribute only, such as a

ZIP code, assuming that all the descriptions will have a value for this attribute.

• No human in the loop. The diversity of the cross-domain and multi-type entity descrip-

tions published on the Web does not leave any ground for ER methods relying on domain-

experts to create correspondence rules or training sets of labeled matches, as they would

on a single domain. Putting humans in the loop of a Web-scale ER is known to pose signifi-

cant challenges [24]. Thus, matching descriptions in the Web of data should rely entirely on

statistics, instead of domain-knowledge, in an unsupervised way.

• Non-iterative. Iterative ER methods target nearly similar descriptions, through similarity

propagation from their neighbors. This process typically terminates when the iterations

converge to a single ER result. However, at the scale of the Web of data, such a process may

need too many iteration to converge, making iterative ER inapplicable to our problem.

• Scalable to massive volumes of data. It should be clear at this point that only scalable

ER methods are applicable at the scale of the Web of data. In this context, only massively

parallel implementations of blocking, Meta-blocking and matching can be considered.

To our knowledge, there is no work in ER that satisfies all of these requirements at the same

time. Specifically, link discovery tools suggested for the Semantic Web (e.g., LIMES [77], Silk [52,

99]) focus on domain-specific matching rules between entities of a particular type (e.g., on prod-

ucts [45,87]) to infer owl:sameAs links. The creation of such rules is labor-intensive and difficult to

generalize across domains. On the other hand, learning-based link discovery methods (e.g., [53])

can learn such complex rules, based on a training set, which is often hard to obtain when the

number of KBs becomes big.

Iterative methods such as SiGMa [66], LINDA [16] and RiMOM [91] rely on domain knowledge

regarding the equivalence of relations between neighboring entities. Initially, they detect strongly

similar entities using reasonable heuristics, such as identical literal values. Then, they use these

resources as seeds for bootstrapping an iterative algorithm that detects new matches based exclu-

sively on similarity propagation from the neighbors. The more neighboring entities are matching,

the stronger is the evidence regarding a candidate entity pair. This process is repeated until con-

verging to a stable solution (i.e., no more matches are identified). Since convergence requires mul-

tiple iterations in the Web of data, the employed algorithms cannot scale well to such voluminous

datasets.

Finally, blocking methods proposed for structured entities in relational databases [20] (e.g,

sorted neighborhood, canopy clustering) rely on blocking keys defined at schema-level. Given

the loose structuring and high heterogeneity of entities in the Web of data, we need schema-free

blocking methods that could efficiently reduce the number of candidate matches without compro-

mising the effectiveness of matching for entities belonging to multiple types. On the other hand,
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existing blocking [36] and Meta-blocking [82, 83] methods for the Web of data target only candi-

date pairs with strong content similarity. To identify such matches, we need disjunctive blocking

schemes that exploit different sources of matching evidence.

1.4 Contributions and Outline

To satisfy the requirements of a Web-scale ER, we introduce MinoanER, a parallel ER framework

that is schema-free, non-iterative, fully automated, i.e., without requiring humans in the loop, tar-

geting not only strongly similar, but also nearly similar matches. Overall, we make the following

contributions in this thesis, where each chapter corresponds to one of the ER modules of Fig-

ure 1.3 (for a survey of existing works in each module, please refer to our book [22] and tutori-

als [95, 96]):

• Blocking. In Chapter 2, we study the problem of blocking in the context of the Web of data,

which enables scaling ER to massive volumes of data in a schema-free way. We make the

following contributions, which have been published in [34, 36]:

– We formalize the notions of atomic blocking, operating on a single type of matching

evidence (e.g., place two descriptions in the same block, if they have a common word

in their values), and composite blocking, operating on multiple types of matching evi-

dence (e.g., place two descriptions in the same block, if they have a common word in

their values, or a common word in their identifiers).

– We present the architecture of a massively parallel implementation of blocking meth-

ods for Web entities. We explain how our algorithmic design and representation of

entity descriptions as (key, value) pairs allows a minimal data exchange between the

computational nodes in our cluster, which is a typical bottleneck of such algorithms.

– We empirically study the behavior of blocking methods for LOD KBs exhibiting dif-

ferent levels of heterogeneity. We are interested in quantifying the factors that make

blocking methods take different decisions on whether two descriptions from real LOD

KBs potentially match or not. We investigate typical cases of missed matches of existing

blocking methods and examine alternative ways for them to be retrieved. Many match-

ing description pairs have matching entity neighbors even if their content similarity is

low. Our analysis shows that a big number of those missed matches could be retrieved

if such information was exploited by blocking.

• Meta-blocking. In Chapter 3, we study the problem of Meta-blocking, which allows the

detection of nearly similar matches in a massively parallel way, operating only on the result

of blocking. We make the following contributions, which have been published in [32, 33]:

– We extend the distinction of blocking methods into atomic and composite, to Meta-

blocking: extending the blocking graph, which is the main conceptual model of Meta-
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blocking used with atomic blocking, we further define the disjunctive blocking graph,

which captures multiple types of matching evidence, allowing the conceptual model-

ing of composite blocking.

– We introduce parallel Meta-blocking using three alternative parallelization strategies,

which provide different advantages when combined with different Meta-blocking edge

weighting and pruning strategies, as they feature different I/O costs, number of data-

exchange steps and size of exchanged data.

– We introduce a novel load balancing algorithm called MaxBlock, in order to avoid

potential bottlenecks associated with the computation-intensive parts of our parallel

Meta-blocking. MaxBlock exploits the highly skewed distribution of block sizes in or-

der to split them in partitions of equivalent computational cost (i.e., total number of

comparisons). We experimentally compare MaxBlock with state-of-the-art methods

and demonstrate that it has significant qualitative and quantitative benefits.

• Matching. In Chapter 4, we present our novel non-iterative and scalable matching method

for the Web of data, which is fully automated (no human in the loop). We make the following

contributions9:

– We define new similarity metrics for comparing the values and the neighbors of entities

without requiring knowledge of schema, the entity types or their correspondences. We

rely on simple statistics over the KBs to recognize the most important entity relations

involved in neighbor similarity or the most distinctive attributes serving as names of

entities. The proposed similarity metrics can be efficiently computed using informa-

tion provided only by blocking.

– We propose a non-iterative matching process that exploits a disjunctive blocking graph

in a massively parallel way. Unlike the data-driven convergence of existing iterative sys-

tems, our matching method involves a specific number of steps that are independent

of data characteristics. Matching entities are found by applying 4 generic heuristics

to the disjunctive blocking graph, instead of the domain-specific similarity-threshold-

based rules employed in state-of-the-art methods. Our experiments show that Mi-

noanER outperforms to a significant extent existing ER tools when matching KBs with

high levels of heterogeneity, while it achieves at least equivalent performance over KBs

with low levels of heterogeneity, even without making any assumption regarding the

alignment of relations in the input.

9This work is under submission.
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Chapter 2

Blocking

2.1 Introduction

To enhance performance, blocking is typically used as a pre-processing step for ER to reduce the

number of unnecessary comparisons, i.e., comparisons between descriptions that do not match.

After blocking, each description can be compared only to others placed within the same block.

The desiderata of blocking are to place (i ) matching descriptions in common blocks (effectiveness),

and (i i ) minimize the number of suggested comparisons (efficiency). However, efficiency dictates

skipping many comparisons, possibly leading to many missing matches, which in turn implies low

effectiveness. Thus, the main objective of blocking is to achieve a trade-off between minimizing

the number of suggested comparisons, while also minimizing the number of missed matches.

Most blocking methods proposed for structured entities assume both the availability and knowl-

edge of the schema of the input descriptions, i.e., they refer to relational databases. As a typical

example, standard blocking [42] would suggest candidate matches in database records of persons,

only if those records shared the same ZIP code field (e.g., they live in the same address). To ef-

fectively resolve heterogeneous and loosely structured entities across domains, blocking methods

proposed for the Web of Data [78, 80, 81] disregard such strong assumptions about schema knowl-

edge and rely on the content, name or identity of descriptions to decide whether they potentially

match. For example, token blocking [78] considers two entity descriptions worthy to compare,

only if they share at least one common word (token) in their values, regardless of the attribute

names for which those values appear. Yet, the effectiveness and efficiency of such blocking meth-

ods is not thoroughly studied for LOD KBs exhibiting different levels of heterogeneity in terms of

descriptions’ content (e.g., number of tokens or frequency distribution of common tokens) and

semantics (e.g., number and variety of entity types).

Moreover, most schema-free blocking methods proposed for the Web of Data [80, 81], only

take the content of descriptions into account when placing entities in blocks, disregarding any,

potentially useful, matching evidence that may be provided by neighboring descriptions, i.e., en-

tities of different types connected via important relations. For example, if two descriptions of the

same movie are connected via a “directedBy” relation to two matching descriptions of the same

director, then this is an important positive evidence that the movie descriptions also match. We

13
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examine whether such neighborhood evidence can be taken into consideration to improve the

effectiveness of blocking.

Finally, the process itself of creating the blocks and retrieving the candidate pairs suggested

by blocking could raise significant scalability concerns when applied to large volumes of entity

collections. Thus, we introduce parallel adaptations of existing blocking methods, which enable

blocking in entity collections of massive volumes, without compromising the effectiveness of the

original blocking, while minimizing the data exchange between the map and the reduce phase.

In summary, the main contributions of this chapter, which have been published in [34,36], are:

• We formalize the notions of atomic blocking, operating on a single type of matching evi-

dence (e.g., place two descriptions in the same block, if they have a common word in their

values), and composite blocking, operating on multiple types of matching evidence (e.g.,

place two descriptions in the same block, if they have a common word in their values, or

a common word in their identifiers).

• We present the Hadoop architecture of a massively parallel implementation of blocking

methods for Web entities. We explain how our algorithmic design and representation of

entity descriptions as (key, value) pairs allows a minimal data exchange between the com-

putational nodes in our cluster, which is a typical bottleneck of MapReduce algorithms.

• We empirically study the behavior of blocking methods for LOD KBs exhibiting different

levels of heterogeneity. We are interested in quantifying the factors (e.g., frequency distribu-

tions of common tokens) that make blocking methods take different decisions on whether

two descriptions from real LOD KBs potentially match or not.

• We investigate typical cases of missed matches of existing blocking methods and examine al-

ternative ways for them to be retrieved. Many matching description pairs, given by a ground

truth of known matches, have matching entity neighbors even if their content similarity is

low. Our analysis shows that a big number of those missed matches could be retrieved if

such information was exploited by blocking.

The rest of the chapter is organized as follows: Section 2.2 introduces the formal model of

blocking used in this work. Section 2.3 overviews works related to blocking, Section 2.4 presents

our implementation of blocking methods in MapReduce. Section 2.5 benchmarks the content-

based blocking methods for the Web of Data, and, finally, Section 2.6 summarizes this chapter.

2.2 Formal Blocking Model

Blocking methods are in general defined over key values that can be used to decide whether or

not an entity description could be placed in a block using an indexing function. The ’uniqueness’
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of key values determines the number of entity descriptions placed in the same block, i.e., which

are considered as candidate matches. For entities described in relational databases, blocking keys

defined by the value of a specific attribute or combination of attributes, i.e., they are schema-based.

If, for example, the blocking key is defined for the attribute “name”, then entity descriptions with

same names (or an adequate string transformation function over these names) would end up in

the same block. More formally, the building blocks of a blocking method can be defined as [12]:

• An indexing function hke y : E → 2B is a unary function that, applied to an entity description

using a specific blocking key, returns as a value the set of blocks under which the description

will be indexed.

• A co-occurrence function oke y : E × E → {tr ue, f al se} is a binary function that, applied

to a pair of entity descriptions, returns ‘true’ if the intersection of the sets of blocks pro-

duced by the indexing function on its arguments, is non-empty, and returns ‘false’ other-

wise; oke y (ek ,el ) = tr ue iff hke y (ek )∩hke y (el ),;.

It should be stressed that as relational blocking keys have unique values, entity descriptions

are placed in at most one block, i.e., the indexing function returns a singular set of blocks. This is

not the case of blocking methods for Web entities, given that the employed schema-free blocking

keys are typically multi-valued. For example, Web entities are usually indexed using the set of

tokens appearing in all or a subset of attribute-value pairs. Thus, the same entity description may

be placed by the indexing function to several blocks.

The co-occurrence function for every pair of descriptions placed in the same block returns

‘true’, each pair of descriptions whose co-occurrence function returns ‘true’ shares at least one

common block, and the union of the block elements is the input entity collection. Formally:

Definition 2.1 (Atomic Blocking). Given an entity collection E , atomic blocking is defined by an

indexing function hke y for which the generated blocks B ke y = {bke y
1 , . . . , bke y

m } satisfy the following

conditions:

(i) ∀ek ,el ∈ bke y
i : bke y

i ∈ B ke y ,oke y (ek ,el ) = tr ue,

(ii) ∀(ek ,el ) : oke y (ek ,el ) = tr ue,∃bke y
i ∈ B ke y ,ek ,el ∈ bke y

i ,

(iii)
⋃

bke y
i ∈B ke y

bke y
i = E .

In general, blocking techniques are characterized by their redundancy attitude as: (i) partition-

ing, that place each description into a single block, i.e., ∀e ∈ E , |hke y (e)| = 1, and (ii) overlapping,

that could place a description in multiple blocks, i.e., ∀e ∈ E , |hke y (e)| ≥ 1. When blocking keys

fail to uniquely identify an entity, placing a description to a single block according to partition-

ing approach, would directly result in missed matches, if such matches exist. On the other hand,

placing entity descriptions in multiple blocks, as in overlapping approaches, reduces the chances
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of missing true matches, but entails a greater number of comparisons. As a matter of fact, the

occurrence of two descriptions in several blocks, provides evidence regarding their similarity [82].

This way, overlapping approaches can be further divided into: (a) overlap-positive, that consider

the number of common blocks between two descriptions proportional to the likelihood that they

are matches, (b) overlap-negative, that consider the number of common blocks between two de-

scriptions inversely proportional to the likelihood that they are matches, and (c) overlap-neutral,

that consider the number of common blocks between two descriptions irrelevant to the likelihood

that they are matches.

Given that using a single key is not enough for building effective and efficient blocking meth-

ods, in practice we need to consider several keys that the indexing function exploits to build

different sets of blocks. Such a composite blocking method is characterized by a composite co-

occurrence function defined as the disjunction or the conjunction of atomic ones. In the sequel,

we are interested in disjunctive blocking methods formally defined as follows:

Definition 2.2 (Composite Blocking). Given an entity collection E , disjunctive (conjunctive) block-

ing is defined by a set of indexing functions H for which the generated blocks B = ⋃
hke y∈H

B ke y satisfy

the following conditions:

(i) ∀ek ,el ∈ b : b ∈ B ,oH (ek ,el ) = tr ue,

(ii) ∀(ek ,el ) : oH (ek ,el ) = tr ue,∃b ∈ B ,ek ,el ∈ b,

where oH (ek ,el ) =∨
(
∧

)hke y∈H oke y (ek ,el ) in disjunctive (conjunctive) blocking.

Atomic blocking can be seen as a special case of composite blocking, consisting of a singular

set of indexing functions, i.e., H = {hke y }.

Measures. The effectiveness and efficiency of a blocking method can be evaluated using the

measures described in Table 2.1, with respect to a given ground truth, i.e., a set M of known match-

ing pairs of descriptions. Those are the standard measures used to evaluate the quality of the

blocking results [21]. The range of all measures is [0,1], with 1 being the ideal value of a perfect

blocking, fulfilling completely both requirements of Definition 2.2. We define the number of True

Positives (TP), also referred to as true matches, as

T P = |{(ek ,el )|oH (ek ,el ) = tr ue ∧ (ek ,el ) ∈ M }|, (2.1)

i.e., number of matching pairs that have been placed in a common block, the number of False

Positives (FP) as

F P = |{(ek ,el )|oH (ek ,el ) = tr ue ∧ (ek ,el ) ∉ M }|, (2.2)

i.e., number of non-matching pairs that have been placed in a common block, the number of True

Negatives (TN) as

T N = |{(ek ,el )|oH (ek ,el ) = f al se ∧ (ek ,el ) ∉ M }|, (2.3)
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Table 2.1: Quality Measures.
Name Formula Description

Recall T P
T P+F N

Measure what fraction of the
known matches are candidate
matches.

Precision T P
T P+F P

Measure what fraction of the
candidate matches are known
matches.

F-measure 2 Pr eci si on·Recal l
Pr eci si on+Recal l

The harmonic mean of preci-
sion and recall.

RR 1− comparisons with blocking
comparisons without blocking

Returns the ratio of reduced
comparisons when blocking is
applied.

H3R 2 RR·Recal l
RR+Recal l

The harmonic mean of recall
and reduction ratio.

i.e., number of non-matching pairs that have not been placed in a common block, and the number

of False Negatives (FN), also referred to as missed matches, as

F N = |{(ek ,el )|oH (ek ,el ) = f al se ∧ (ek ,el ) ∈ M }|, (2.4)

i.e., number of matching pairs that have not been placed in a common block.

Intuitively, the recall of blocking measures how many of the known matching pairs of descrip-

tions have been placed in at least one common block, i.e., it captures the effectiveness of blocking,

while the precision of blocking measures the fraction of matching pairs being placed in common

blocks divided by the total number of pairs being placed in common blocks. Reduction Ratio (RR)

is the percentage of comparisons that we save if we apply the given blocking method, with respect

to an exhaustive comparison of all possible pairs of descriptions, i.e., it captures the efficiency of

blocking.

In general, a good blocking method should have a low impact on recall, i.e., high effectiveness,

and a great impact on the number of required comparisons, i.e., high efficiency. Typically, this

trade-off is captured by the F-measure, the harmonic mean of recall and precision. However, in

blocking, F-measure is dominated by the values of precision, which are usually many orders of

magnitude lower than those of recall, so F-measure cannot be easily used to express this trade-

off. Moreover, precision is not as important as recall is for blocking, since precision can only be

improved by a non-iterative ER method that follows blocking, whereas the recall of blocking is the

upper threshold of such ER methods. Thus, we define H3R as the harmonic mean of recall and

RR, a measure which has also been used in [59]. Similar to F-measure, H3R gives high values only

when both recall and RR have high values. Unlike F-measure, H3R manages to capture the trade-

off between effectiveness and efficiency in a more balanced way. Note that H3R evaluates the

actual performance of a blocking method, rather than estimating it, as [80] does. In the sequel, we



18 Chapter 2. Blocking

will explore how different indexing functions are used by various blocking methods to maximize

the effectiveness and efficiency of blocking in different contexts.

2.3 Related Work

In this section, we focus on blocking methods proposed in the literature and analyze their appli-

cability to entities met in the Web of Data. We leave out of this review clustering methods which

have been proposed for blocking (e.g., [47, 71]).

2.3.1 Schema-based Blocking

The simplest hash-based blocking method for relational databases, standard blocking [42], uses

a single attribute value as a blocking key and places descriptions in blocks defined for each dis-

tinct blocking key. Since each description is placed in exactly one block, standard blocking is a

partitioning approach, so each distinct pair of descriptions cannot be compared more than once.

Sort-based blocking methods order entity descriptions according to a sorting criterion and

perform blocking based on it. It is expected that matching descriptions will be neighbors after the

sorting, so neighbor descriptions constitute candidate matches. Initially, entity descriptions are

ordered based on their blocking keys [48]. Then, a window, resembling a block, of fixed length

slides over the ordered descriptions, each time comparing only the contents of the window. An

adaptive variation of the sorted neighborhood method is to dynamically decide on the size of the

window [103]. In this case, adjacent blocking keys in the sorted descriptions that are significantly

different from each other, are used as boundary pairs, marking the positions where one window

ends and the next one starts. Hence, this variation creates non-overlapping blocks. In a similar

line of work, the sorted blocks method [28] allows setting the size of the window, as well as the

degree of desired overlap.

Following the intuition of the overlap-positive approaches, q-gram based blocking [46] uses a

list of q-grams to generate blocking keys, where a q-gram is a substring of q characters. For exam-

ple, the string “Eiffel” can be converted to the list of bi-grams [“ei”,“if”,“ff”,“fe”,“el”]. Sub-lists of

this list are generated, by recursively removing one q-gram each time. For instance, some of the

sub-lists for the string “Eiffel” are [“ei”,“if”,“ff”,“fe”,“el”], [“if”,“ff”,“fe”,“el”], [“ei”, “ff”,“fe”,“el”], and

[“ei”,“ff”,“el”]. Each sub-list is then converted (by concatenation) into a string and used as a block-

ing key. This way, typographical, or spelling errors are excused. For example, descriptions with the

values “Eiffel” and “Eifel”, respectively, will be placed in some common blocks. In a similar way,

suffixes of values, i.e., sub-strings produced by removing some of the first characters of the val-

ues, can be used for blocking [2], ignoring potential errors in the removed characters. Specifically,

each suffix corresponds to a distinct blocking key, and entity descriptions containing this suffix

are inserted into the block corresponding to this suffix. To prevent a large number of descriptions

being placed into the same block, e.g., when using suffixes of small size, two thresholds are set: (i)
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a threshold reflecting the minimum length of suffix strings that will be generated and (ii) a thresh-

old reflecting the maximum block size, i.e., number of entity descriptions contained in each block.

String-map [57] maps string blocking keys to objects in a d-dimensional Euclidean space. Each

dimension is defined by selecting two objects, called pivots, that are chosen to be as dissimilar as

possible, using a similarity measure. Blocks are then generated by extracting objects in this space

that are close to each other, i.e., within a distance threshold. String-Map is based on FastMap [40],

an algorithm with linear complexity to the number of strings.

Finally, [60] introduces a method for building blocks using Maximal Frequent Itemsets (MFI)

as blocking keys. Abstractly, each MFI (an itemset can be a set of tokens) of a specific attribute

in the schema of a description defines a block, and descriptions containing the tokens of an MFI

for this attribute are placed in a common block. Using frequent itemsets to construct blocks may

significantly reduce the number of candidates for matching pairs. However, since many matching

descriptions share few, or even no common tokens, further requiring that those tokens are parts

of frequent itemsets is too restrictive for those pairs of matching descriptions, resulting in many

missed matches in the Web of data. Moreover, MFI blocking requires a-priori knowledge of the

desired block sizes, and is also based on the notion of a schema, information which is unavailable

at the Web of data.

Although blocking has been extensively studied for tabular data, the proposed approaches

cannot be used for the Web of data, since their blocking keys rely on the existence of a schema, i.e.,

a fixed set of attributes, based on which the descriptions are placed into blocks. However, the high

heterogeneity of entity descriptions in the Web of data makes the use of schema-based blocking

keys inapplicable. In this context, entity descriptions do not follow a fixed schema, and, further-

more, even a single description typically uses attributes defined in multiple LOD vocabularies.

Threshold-based blocking

String-similarity join algorithms (e.g., [9, 18, 102]) construct blocks which are guaranteed to con-

tain all pairs of descriptions whose values’ string similarities for a specific attribute are above a

certain threshold and potentially some pairs whose string values similarities are below that thresh-

old. To achieve that, without computing the similarity of all pairs of descriptions, this family of

algorithms use the tokens of the attribute values of the descriptions as blocking keys. This in-

verted index is created only by the first non-frequent tokens of each description (i.e., the most

discriminating), based on the prefix filtering principle [18]. [9] additionally applies a size filter-

ing [5] on the sets of tokens to disregard some of the candidate pairs, based on the fact that

Jaccar d(x, y) ≥ t ⇒ t · |x| ≤ |y |. The ppjoin+ algorithm [102] introduces a positional filtering, i.e.,

the position in the ordered set of tokens, in which a token appears, to further reduce the number

of candidate pairs. Specifically, it estimates the maximum possible intersection size of two token

sets x, y by considering that, if the first common token of x and y is the first token in x and the sec-

ond token in y , then the maximum intersection that these sets can have is 1+mi n(|x|−1, |y |−2).
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Tuning the appropriate similarity threshold is non-trivial and it also affects the performance of

the string-similarity join algorithms [56]. Smaller thresholds entail less pruning, and thus, more

time. Furthermore, [73] proves experimentally that algorithms based on prefix filtering are only ef-

fective when the similarity threshold is extremely high. However, this is not the case in the Web of

data, where highly heterogeneous descriptions, yielding very low similarity in their literal values,

can refer to the same entity.

In a similar fashion to string-similarity joins, the key idea of (disjunctive) blocking with Locality-

Sensitive Hashing (LSH) (e.g., [70]) is to hash descriptions multiple times, using a family of in-

dexing functions, in such a way that similar descriptions (e.g., with Jaccard similarity, approxi-

mated by minhasing [17]) are more likely (with probabilistic guarantees) to be placed into the

same bucket than dissimilar ones. Any two descriptions that hash at least once into the same

bucket, for any of the employed indexing functions, are considered to be a candidate pair. This

technique assumes an a-priori knowledge of a minimum similarity threshold between entity de-

scription pairs, above which, such pairs are considered candidate matches. However, as we will

see in our experimental evaluation (see Section 2.5), often, matching descriptions do not share

many common tokens and thus, have very low, even zero, similarity when computed only on the

values of their attributes. Those matches would not be placed in the same bucket and thus, they

would not be considered candidate matches. Effectively choosing a minimum similarity thresh-

old also depends on the KBs. For example, when seeking matches between two homogeneous

KBs, a high similarity threshold can be used, since such KBs have more similar values. Using a

lower threshold in homogeneous KBs would result in many false candidate pairs. Accordingly,

using a high similarity threshold in heterogeneous KBs, in which descriptions have lower similar-

ity values, would yield many missed matches. Consequently, applying LSH across domains is an

open research problem, due to the difficulty in knowing or tuning a similarity threshold that can

be generalized to identify matches across several domains in an effective and efficient way.

2.3.2 Schema-free Blocking

The simplest blocking method for the Web of Data is token blocking [78], which relies on the min-

imal assumption that matching descriptions should at least share a common token. It indexes

descriptions based on the set of all tokens in the values of an entity description. Each distinct to-

ken t in the values of a description, defines a new block bt , essentially building an inverted index

of descriptions. Two descriptions are placed in the same block, if they share a token in their values.

Example 2.1. Given the entity collection of Figure 2.1, Figure 2.2 shows the blocks generated by

token blocking. In the generated blocks, we save the comparisons (e1,e5), (e1,e7), (e2,e4), (e3,e4),

(e4,e5), (e5,e6) and (e6,e7), and we successfully place the matches (e1,e6) and (e2,e5) in common

blocks. Still, pairs, such as (e1,e2), (e1,e3), and (e3,e6), lead to unnecessary comparisons. Note also

that the pair (e1,e6) is contained in 4 different blocks, which leads to repeated comparisons.

Next, we present three extensions of token blocking: attribute clustering blocking, in which
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e1 = {(about, Eiffel Tower), (architect, Sauvestre), (year, 1889), (located, Paris)}
e2 = {(about, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886), (located, NY)}
e3 = {(about, Auguste Bartholdi), (born, 1834), (work, Paris)}
e4 = {(about, Joan Tower), (born, 1938)}
e5 = {(work, Lady Liberty), (artist, Bartholdi), (location, NY)}
e6 = {(work, Eiffel Tower), (year-constructed, 1889), (location, Paris)}
e7 = {(work, Bartholdi Fountain), (year-constructed, 1876), (location, Washington)}

Figure 2.1: A set of entity description.

Figure 2.2: Token blocking example. Descriptions having a common token are placed in a
common block.

candidate matches should at least share a common token for similar attributes known globally,

prefix-infix(-suffix) blocking, in which candidate matches should additionally share a common

URI infix, and ppjoin+, in which only a small subset of the tokens in the descriptions’ values are

used as blocking keys.

To tackle the coarse-grained approach of token blocking, attribute clustering blocking [81] fur-

ther requires the common tokens of descriptions that should be considered candidate matches to

appear for semantically similar attributes. This should improve the low precision of token block-

ing, at a, hopefully, low cost in recall. In the previous example, it would not place e1 and e3 in

the same block, for their common token Paris, because this token appears in the values of two

semantically different attributes (located and wor k). To achieve this, prior to token blocking, it

clusters attributes based on the similarities of their values over the entire dataset. Each attribute

from one entity collection is connected to its most similar attribute in the other entity collection

and connected attributes, taken by transitive closure, form non-overlapping clusters. Then, each

token t in the values of an attribute, belonging to a cluster c, defines a block bc.t . Hence, com-

parisons between descriptions without a common token in a similar attribute, are discarded. Like

token blocking, attribute clustering generates overlapping blocks. Compared to the blocks of to-

ken blocking, it produces a larger number of smaller blocks.
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Figure 2.3: Attribute clustering blocking example. Pairs of most similar attributes are linked
(a). Connected attributes form clusters (b). Descriptions with a common token
in the values of attributes of the same cluster, are placed in a common block (c).

Example 2.2. As an example, consider that the descriptions of Figure 2.1 consist of two clean entity

collections, D1 = {e1,e2,e3,e4} and D2 = {e5,e6,e7}. Using Jaccard similarity, the attribute wor k

(with values: {Lady, Liberty, Eiffel, Tower, Bartholdi, Fountain}) of D2 is the most similar attribute

to about of D1. Similarly, the transitive closure of the pairs of most similar attributes between D1

and D2 (Figure 2.3(a) depicts such pairs), produce the clusters of attribute names (Figure 2.3(b)). A

subset of the blocks constructed for each cluster is shown in Figure 2.3(c). This way, the comparisons

(e1,e3) and (e3,e6) that were suggested by token blocking, due to the common token Paris, are now

discarded, since the token Paris appears in different attribute clusters for e3 than for e1 and e6, as

shown in the bottom blocks of Figure 2.3(c). Again, both unnecessary (e.g., e4 and e6 are both placed

in block C 1.Tower (Figure 2.3(c))), and repeated (e.g., (e1,e3) is still contained in 4 different blocks)

comparisons are generated.

Unlike previous methods analyzing the content of descriptions, prefix-infix(-suffix) blocking

[80] exploits the naming pattern in the descriptions’ URIs. The prefix describes the domain of

the URI, the infix is a local identifier, and the optional suffix contains details about the format,

or a named anchor. For example, the prefix of “http://liris.cnrs.fr/olivier.aubert/foaf.rdf#me” is

“http://liris.cnrs.fr”, the infix is “/olivier.aubert” and the suffix is “/foaf.rdf#me”. Given a set of de-

scriptions, this method generates one block collection using as blocking keys the tokens in the

descriptions literal values and the URI infixes. It is constrained by the extent to which common

naming policies are followed by the KBs. In a favourable scenario, it creates additional blocks

than token blocking for the names of the descriptions, which enables to consider matching de-

scriptions, even with no common tokens in their literal values.

Example 2.3. Figure 2.4(c) shows the blocks produced after applying prefix-infix(-suffix) blocking

to the descriptions of Figure 2.4(a) (the descriptions of Figure 2.1, slightly modified to illustrate the
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Figure 2.4: Prefix-infix(-suffix) blocking example. A set of descriptions (a), their subject URIs
(b), and the blocks from their tokens and infixes (c).

characteristics of the method), while Figure 2.4(b) presents the URI identifiers of the descriptions.

Summary of schema-free blocking methods

Overall, Table 2.2 summarizes, simplified, the criteria employed by the aforementioned schema-

free blocking methods to consider two descriptions as candidate matches, i.e., their co-occurrence

functions as defined in Section 2.2. Token blocking makes the simplest assumption about match-

ing pairs of descriptions, i.e., that they share at least one common token in their values, aiming

at the maximum possible recall, even if this entails a low precision, since many pairs that share a

common word are expected to be non-matches. To tackle this coarse-grained approach, attribute

clustering blocking further requires the common tokens of descriptions that should be considered

candidate matches to appear for semantically similar attributes. This should improve the low pre-

cision of token blocking, at a, hopefully, low cost in recall (attribute clustering blocking cannot

have higher recall than token blocking). Finally, as we will see in the next section, it is quite com-

mon for matches in heterogeneous data, to not even share a single token. To cope with such cases,

prefix-infix(-suffix) blocking assumes that those kinds of pairs should at least have similar parts of

their entity identifiers. In the next section we will see if those assumptions are verified or not, for
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Table 2.2: Co-occurrence functions for considering two descriptions candidate match.
Method Criterion

Token blocking The descriptions have a common token in their values.
Attribute cluster-
ing blocking

The descriptions have a common token in the values of at-
tributes that have similar values in overall.

Prefix-infix(-
suffix) blocking

The descriptions have a common token in their literal values,
or a common URI infix.

ppjoin+
The descriptions have a common infrequent token and a
close number of tokens overall.

LSH
The descriptions hash at least once into the same bucket, for
any of the employed hash functions.

Table 2.3: Blocking methods with respect to the redundancy attitude and algorithmic attitude.

Redundancy attitude Algorithmic

Overlapping attitude
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Standard blocking [42, 61] X X

Q-grams [46] X X

Suffixes [2] X X

Sorted neighborhood [48, 63] X X

Adaptive sorted neighborhood [103] X X

MFI [60] X X

Token blocking [78] X X

Attribute clustering blocking [81] X X

Prefix-infix(-suffix) blocking [80] X X

ppjoin+ [98, 102] X X

LSH blocking [70] X X

different levels of heterogeneity in the input entity collections. Since ppjoin+ and LSH blocking re-

quire a pre-defined similarity threshold for pairs to be considered as candidate matches and there

is no generic or efficient way of setting it, we have not included these methods in our experimental

study.

The categorization of the blocking methods presented in this chapter with respect to the char-

acteristics of the produced blocks (i.e., partitioning vs. overlapping blocks) and the algorithmic

approach (hash-based vs. sort-based) used are presented in Table 2.3. Partitioning approaches
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are sensitive to typos and erroneous values, since misplaced entity descriptions potentially result

in missed matches. Therefore, due to the varying data quality, they are not suited for ER in the

Web of data. Data heterogeneity makes sort-based approaches not easily applicable as well, since

the missing knowledge of the schema of the data incommodes the sorting process.

2.4 Scaling Blocking Methods to Very Large Entity Collections

Next, we present the MapReduce version of the evaluated methods, designed to cope with Web

data. MapReduce [23] offers a fault-tolerant, optimized execution for applications, distributed

across independent nodes. Its programs consist of two consecutive procedures grouped together

into jobs: Map receives a (key, value) pair and transforms it into one or more new pairs; Reduce re-

ceives a set of pairs that share the same key and are sorted according to their value, and performs

a summary operation on them to produce a new, usually smaller set of pairs. Optionally, a Com-

bine function can be provided, to process the output of each mapper, like a local, mini-reducer,

and decrease the amount of data transferred through the cluster network.

In our implementation, we try to minimize the size of data transferred from mappers to re-

ducers, by using a minimal representation of entity ids as numerical ids, by using a combiner

whenever possible, and by transmitting as little information as necessary for each task. We have

also tried to minimize the number of MapReduce jobs required for each method, since each new

job bears a significant I/O and setup cost.

2.4.1 Token Blocking

Token blocking is essentially an inverted index of descriptions. Each token is a key in this index,

associated with a list of all the descriptions containing it. Our implementation of token blocking

in MapReduce is based on the procedure illustrated in Figure 2.5. In the map phase, one entity

description of the local input split is processed at a time. For each token t in the values of a de-

scription ei , a (t , ei ) pair is emitted by the mapper. In the reduce phase, all descriptions having a

common token will be processed by the same reduce function, i.e., placed in the same block.

2.4.2 Attribute Clustering Blocking

Given two clean entity collections, our implementation of attribute clustering blocking can be

briefly sketched by the following steps, each representing a MapReduce job. Figure 2.6 illustrates

a high-level flow of the process.

Attribute Creation. First, we gather the values of each attribute. In the map phase, we emit

an (attribute, value) pair for each attribute-value pair in a description. We also keep the entity

collection of this attribute in the key. In the reduce phase, all the values of an attribute are grouped

together and their concatenation is emitted as the value of this attribute.

Attribute Similarities. In the second job, we compute the pairwise Jaccard similarities be-
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Figure 2.5: Token blocking in MapReduce.

Figure 2.6: Attribute clustering blocking in MapReduce.

tween the trigram sets of all attributes. A mapper outputs each input attribute, as many times, as

the number of total mappers. Each time, a composite key, consisting of the current mapper id

and another mapper id, will determine in which reducer the attribute will be placed, and to which

other attributes it will be compared. For example, assuming 3 mappers in total, the mapper with

id 2, emits for each input attribute, 3 different keys: 1_2, 2_2, and 2_3. The keys 1_2 and 2_3 will

result in comparing the contents of mapper 2 to the contents of mappers 1 and 3, while 2_2 will

result in comparing the contents of mapper 2 to each other. The value of each emitted pair is the

input attribute with its values and the current mapper id. In the reduce phase, we compute simi-

larities of attributes, ensuring that each comparison is performed once. For each pair of attributes,

we emit a (key, value) pair, with one attribute being the key and the second attribute along with

their similarity score being the value.

Best Match. In the third job, we use an identity mapper, which just forwards its input. A com-

biner keeps for each attribute of each entity collection, only the attribute of the other entity collec-

tion with the local highest similarity score. In the reduce phase, we pick for each attribute of each
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Figure 2.7: Prefix-infix(-suffix) blocking in MapReduce.

entity collection, the attribute with the maximum similarity score, in overall, from the other en-

tity collection. Before this job ends, we start the first step of clustering the most similar attributes

together. To accomplish that, we emit for each best-matching attribute pair, two (attribute, clus-

terId) pairs, one for each attribute, with the same clusterId. Ids of clusters with common attributes

are marked, in order to be merged at the next step. This job uses a single reduce task, in which an

iterative (sequential) transitive closure algorithm is run, in order to make sure that the clusters to

be merged will cover the transitive closure of connected attributes (i.e., if the clusters of connected

pairs of attributes are different, those clusters have to be merged into one cluster, iteratively, until

all connected attributes belong to the same cluster).

Final Clustering and Blocking. In the final job, we associate each attribute with a final cluster

id, according to the marks of the previous step. Then, we perform token blocking (Section 2.4.1),

with only difference that in each key emitted from a mapper, there is also a cluster prefix, enabling

distinctions between blocks for the same token. For example, if the same token t appears in a

description ei for attributes in clusters c j and ck , then the mapper will emit the pairs (c j .t ,ei ) and

(ck .t ,ei ), instead of a single (t ,ei ).

2.4.3 Prefix-Infix(-Suffix) Blocking

Our MapReduce implementation of this method consists of three jobs. The first two are the

MapReduce adaptation of the infix extraction algorithm [80]. The third job reads the descriptions,

as well as the infixes produced by the second job and creates the blocks. A high-level representa-

tion of the process is depicted in Figure 2.7.

Prefix Removal. In the map phase, we output a (key, value) pair for each URI in a description.

The key is the second token of the URI (after “http”) and the value consists of the whole URI and

the identifier of the entity description having this URI. This clusters the URIs according to their

second token, which usually represents the domain (e.g., “dbpedia”), in the reduce phase. For

each URI in a cluster, we find, among all its possible prefixes, the one with the largest set of distinct

(immediately) next tokens. The part of the URI following the prefix is the key of each output pair,
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with value consisting of the input key, i.e., the second token of the URI, and the entity identifier

having this URI.

Suffix Removal. We apply Prefix Removal, on each reverse URI (without prefix), to remove the

suffix.

Infix&Token Blocking. We create the final blocks, based on the output of Suffix Removal and

the initial entity collection. We use two different mappers, operating in parallel; an identity map-

per, forwarding the output of Suffix Removal and the mapper of token blocking, operating on the

tokens of literal values only of the input descriptions. In the reduce phase, all the descriptions

having a common token or infix in their literals or URIs will be placed in the same block.

Summary of parallel blocking

The parallel adaptation of existing blocking methods in MapReduce, enables scaling them to large

volumes of entity collections. Sequential token blocking does not exploit the fact that practically

all computations can be executed in parallel for different parts of the input, this way reducing the

blocking time significantly. Regarding the other two blocking methods, a sequential clustering of

the attributes and URI prefixes is too resource-intensive to enable scaling them to big entity col-

lections without an expensive high-end server. Our parallel adaptations of those methods enables

a fast and cost-efficient blocking in such entity collections. Finally, we do not claim that our imple-

mentation is optimal; we have not examined a better load balancing than the default hash-based,

and the same parallelization strategy could be easily adapted in other platforms, such as Apache

Spark1, yielding more efficient results for methods that require more than one MapReduce jobs

(i.e., attribute clustering blocking and prefix-infix(-suffix) blocking).

2.5 Benchmarking Content-based Blocking Methods in the Web of Data

In this section, we present the experimental framework we have designed for evaluating existing

blocking methods. We describe the datasets and the measures we employed to study the behavior

of the blocking methods under different characteristics of entity descriptions in the LOD cloud.

We have used a cluster of 15 Ubuntu 12.04.3 LTS servers (1 master, 14 slaves), each with 8 CPUs,

8GB RAM and 60GB of disk, provided by ∼okeanos [65]. Each node could run simultaneously 4

map or reduce tasks, each with a heap size of 1250MB, leaving resources required for I/O and

communication with the master. We used Apache Hadoop 1.2.0 and Java version 1.7.0_25 from

OpenJDK. The source code and datasets used in this study are publicly available2.

1https://spark.apache.org/
2csd.uoc.gr/~vefthym/minoanER/



2.5. Benchmarking Content-based Blocking Methods in the Web of Data 29

2.5.1 Datasets

Our study relies on real data from the Billion Triples Challenge 2012 dataset3 (BTC12), DBpedia,

Kasabi4, the Linked Archives Hub project5, and OAEI benchmarks6. To capture the differences in

the heterogeneity and semantic relationships of descriptions, we distinguish between data origi-

nating from KBs in the center and the periphery of the LOD cloud. In general, central KBs, such

as DBpedia and Freebase, are derived from a common source, Wikipedia, from which they extract

information regarding an entity. Such descriptions often refer to the original wiki page and fea-

ture synonym attributes whose values share a significant number of common tokens. Since they

have been exhaustively studied in the literature, descriptions across central LOD KBs are heav-

ily interlinked using in their majority owl:sameAs links [90], expressing equivalence relations. In

our experiments, we used the DBpedia (BTC12DBpedia) and Freebase (BTC12Freebase) KBs from

BTC12, and the raw infoboxes from DBpedia 3.5 (Infoboxes), i.e., two different versions of DBpedia.

From the OAEI benchmark datasets, we used the one including the DBLP and Rexa (OAEI 2009) -

describing authors and publications - that has been widely used in the literature (e.g., in [66]). We

also included a movies dataset, used in [81], extracted from DBpedia movies and IMDB, to validate

the correctness of our algorithms.

On the other hand, KBs in the periphery of the LOD cloud are highly heterogeneous and

sparsely interlinked. In our experiments, we considered the BTC12Rest, the BBCmusic and the

LOCAH KBs. BTC12Rest originates from BTC12, which consists of multiple KBs, like DBLP, geon-

ames and drugbank. BBCmusic originates from Kasabi and contains descriptions regarding music

bands and artists, extracted from MusicBrainz and Wikipedia. For LOCAH, we used the latest pub-

lished version at Archives hub (March 2014). This, rather small KB links descriptions of people,

from UK archival institutions, with their descriptions in DBpedia.

Table 2.4: KBs characteristics.

RDF triples
entity de-
scriptions

avg. attribute-
value pairs per

description
attributes

entity
types

attributes/
entity
types

duplicates
(within
dataset)

BTC12DBpedia 102,306,242 8,945,920 11.44 36,354 258,202 0.14 0
Infoboxes 27,011,880 1,638,149 16.49 31,857 5,535 5.76 0
BTC12Rest 849,656 31,668 26.83 518 33 15.7 863
BTC12Freebase 25,050,970 1,849,180 13.55 8,323 8,232 1.01 12,058
BBCmusic 268,759 25,359 10.60 29 4 7.25 372
LOCAH 12,932 1,233 10.49 14 4 3.5 250
DBpediamov 180,680 27,615 6.54 5 1 5 0
IMDB 816,012 23,182 35.20 7 1 7 0
DBLP 12,074,269 1,642,945 7.35 30 10 3 0
Rexa 64,787 14,771 4.39 12 3 4 0

Table 2.4 provides statistics about these KBs, for the number of contained triples, descriptions,

3km.aifb.kit.edu/projects/btc-2012/
4archive.org/details/kasabi
5data.archiveshub.ac.uk/
6oaei.ontologymatching.org/
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attributes, and the average number of attribute-value pairs per description. We have also included

the number of entity types, taken as the distinct values of the property rdf:type, when provided.

Observe that BTC12DBpedia contains more types than attributes. This is due to the fact that DB-

pedia entities may have multiple types from taxonomic ontologies like Yago. IMDB is the KB with

the highest number of attribute-value pairs per description. Finally, we have included in each KB

the number of duplicate descriptions based on our ground truth, i.e., descriptions that have been

reported to be equivalent (via owl:sameAs links) across all KBs of our testbed. Taking into account

the transitivity of equality, those descriptions should be regarded as matches, too.

In this setting, we combine BTC12DBpedia with each of the KBs of Table 2.4 to produce the

datasets presented in Table 2.5, on which we finally ran our experiments. To combine two KBs,

for the dirty ER setting, we simply concatenate them into a singe file, while for clean-clean ER, we

seek candidate matches between those KBs.

- D1 combines BTC12DBpedia with Infoboxes. Since it contains two versions of the same KB, it

is considered as a homogeneous dataset. This is the biggest dataset in terms of triples, as well as

attributes.

- D2 combines BTC12DBpedia with BTC12Rest. Since it is constructed by many different KBs, it

is the most heterogeneous dataset. Note that BTC12Rest has the highest number of attributes per

entity type.

- D3 combines BTC12DBpedia with BTC12Freebase. It is the biggest dataset in terms of entity de-

scriptions, matches, entity types and comparisons.

- D4 combines BTC12DBpedia with BBCmusic. Note that BBCmusic extracts some of its data from

MusicBrainz, which, in turn, extracts data from Wikipedia. Also, BBCmusic is edited and main-

tained by users and BBC staff.

- D5 combines BTC12DBpedia with LOCAH, the smallest KB, both in terms of triples and entity

descriptions.

- D6 combines DBpedia movies and IMDB, as originally used in [81]. It is the most homogeneous

dataset, it only contains descriptions of movies (i.e., a single entity type) using the smallest num-

ber of attributes among all datasets. However, the significantly greater (even by six orders of

magnitude, compared to the other datasets) ratio of matches to non-matches is not typical of

the datasets we can find in the Web of data.

- D7 combines DBLP and Rexa. Both KBs use the same ontology; Rexa’s attributes are a subset

of those used by DBLP. Also, it is the dataset with the lowest number of attribute-value pairs per

description. Note that this dataset is a typical benchmark used to evaluate instance matching

algorithms.

Following the distinction of our KBs between central and peripheral, we also distinguish our

datasets between central (D1, D3, D6, and D7), composed of central KBs, and peripheral (D2, D4,

and D5), part of which are peripheral KBs. For all the datasets, we consider both their clean-clean

and dirty versions. In practice, for our datasets, the clean-clean and dirty versions of a KB are

the same; their distinction serves only as means for measuring how well a blocking method can
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Table 2.5: Datasets characteristics.
D1 D2 D3 D4 D5 D6 D7

RDF triples 129,318,122 103,155,898 127,357,212 102,575,001 102,319,174 996,692 12,139,056
entity descriptions 10,584,069 8,977,588 10,795,100 8,971,279 8,947,153 50,797 1,657,716
avg. attribute-value pairs

12.22 11.49 11.80 11.43 11.44 19.62 7.32
per description
attributes 68,211 36,872 44,677 36,383 36,368 12 42
entity types 263,737 258,232 266,434 258,206 258,205 1 10

matches 1,564,311 30,864 1,688,606 23,572 1,087 22,405 1,532
matches (incl. duplicates) 1,564,311 31,727 1,700,664 23,944 1,337 22,405 1,532
matches/non-matches 1.07 ·10−7 1.09 ·10−7 1.02 ·10−7 1.04 ·10−7 9.85 ·10−8 3.5 ·10−5 6.3 ·10−8

matches/non-matches
(dirty)

2.79 ·10−8 7.87 ·10−10 2.92 ·10−8 5.95 ·10−10 3.34 ·10−11 1.74 ·10−5 1.1 ·10−9

comparisons (w/o blocking)

clean-clean 1.47 ·1013 2.83 ·1011 1.65 ·1013 2.27 ·1011 1.1 ·1010 6.4 ·108 2.4 ·1010

dirty 5.6 ·1013 4.03 ·1013 5.83 ·1013 4.02 ·1013 4 ·1013 1.29 ·109 1.37 ·1012

identify links across different KBs and within the same KB.

GroundTruth. Our ground truths were built using a methodology met in the literature (e.g., [80,

81]). For D2-D5, we consider the owl:sameAs links to/from DBpedia 3.7 (the version used in

BTC12). For D1, we consider the subject URIs of Infoboxes that also appear as subjects in BTC12DBpedia.

The ground truth of D6, provided in [81], is made of DBpedia movies connected with IMDB movies

through the imdbId property. The ground truth of D7 is provided by OAEI, since it is a benchmark

dataset, containing equivalence links between authors, as well as publications.

Our pre-processing, implemented in MapReduce, parses RDF triples in order to transform

them into entity descriptions, which are the input of the methods used in our study. It simply

groups the triples by subject, and outputs each group as an entity description, using the subject

as the entity identifier, removing triples containing a blank node. Moreover, we kept only the

entity descriptions for which we know their linked description in BTC12DBpedia and removed the

rest. This way, we know that any suggested comparison between a pair of descriptions outside the

ground-truth is false.

2.5.2 Quality Results

Identified Matches (TPs)

Token blocking: The premise of this algorithm is that matching descriptions should at least share

a common token, disregarding the comparisons between descriptions that do not share common

tokens. Therefore, the higher the number of common tokens, i.e., tokens shared by the KBs com-

posing a dataset, a description has, the higher the chances it will be placed in a block with a

matching description, increasing recall. Figure 2.8 (left) presents the distributions of common

tokens per description, showing that descriptions in central datasets feature many more common
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Table 2.6: Statistics and evaluation of blocking methods.
D1 D2 D3 D4 D5 D6 D7

Token blocking statistics:
blocks 1,639,962 122,340 1,019,501 57,085 2,109 40,304 18,553
comparisons (clean-clean) 1.68 ·1012 3.74 ·1010 6.56 ·1011 2.39 ·1010 8.72 ·108 2.91 ·108 1.45 ·109

RR (clean) 88.51% 86.81% 96.03% 89.48% 92.09% 54.50% 94.04%
comparisons (dirty) 5.56 ·1012 3.68 ·1012 4.27 ·1012 4.02 ·1012 1.01 ·1012 2.05 ·109 2.35 ·1011

RR (dirty) 90.08% 90.87% 92.67% 90.01% 97.48% −58.85% 82.93%

common tokens per entity (median) 4 3 4 2 0 19 12
Attribute clustering blocking statistics:
blocks 5,602,644 150,293 1,673,855 39,587 3,724 43,716 19,148
comparisons 3.22 ·1011 4.20 ·109 1.84 ·1011 1.43 ·109 7.13 ·108 2.13 ·108 8.38 ·108

RR 97.80% 98.52% 98.89% 99.37% 93.54% 66.80% 96.55%

common tokens in common att.
clusters per entity (median)

4 0 4 2 0 19 11

attribute clusters 16,886 124 2,106 6 8 4 8
attributes per attribute cluster (me-
dian)

2 142 9 4,261 3,946 3 3.5

Prefix-Infix(-Suffix) blocking statistics:
blocks 3,266,798 141,517 789,723 45,403 2,098 N/A 18,442
comparisons (clean-clean) 1.10 ·1012 1.78 ·1010 2.75 ·1011 2.30 ·109 4.08 ·108 N/A 1.28 ·109

RR (clean) 92.48% 93.72% 98.34% 98.99% 96.30% N/A 94.72%
comparisons (dirty) 4.39 ·1012 3.45 ·1012 5.34 ·1012 3.32 ·1012 1.76 ·1012 N/A 2.23 ·1011

RR (dirty) 92.16% 91.44% 90.84% 91.76% 95.59% N/A 83.78%
Recall:
Token blocking (clean-clean) 98.38% 92.46% 95.52% 87.76% 72.13% 99.92% 99.54%
Token blocking (dirty) 98.38% 89.99% 94.85% 87.95% 77.34% 99.92% 99.54%
Attribute clustering blocking 97.31% 68.42% 92.10% 76.84% 71.11% 99.55% 99.54%
Prefix-Infix(-Suffix) blocking (clean-
clean)

100% 91.71% 87.68% 95.44% 68.17% N/A 99.54%

Prefix-Infix(-Suffix) blocking (dirty) 100% 89.25% 87.06% 95.50% 74.12% N/A 99.54%
Precision:
Token blocking (clean-clean) 1.56 ·10−6 1.00 ·10−6 2.49 ·10−6 1.30 ·10−6 1.13 ·10−6 1.21 ·10−4 1.18 ·10−6

Token blocking (dirty) 3.64 ·10−7 5.14 ·10−9 3.78 ·10−7 1.05 ·10−8 1.29 ·10−9 7.51 ·10−5 6.5 ·10−9

Attribute clustering blocking 8.51 ·10−6 5.76 ·10−6 1.01 ·10−5 1.41 ·10−5 1.35 ·10−6 1.52 ·10−4 1.97 ·10−6

Prefix-Infix(-Suffix) blocking (clean-
clean)

1.87 ·10−6 2.19 ·10−6 5.72 ·10−6 1.01 ·10−5 2.05 ·10−6 N/A 1.19 ·10−6

Prefix-Infix(-Suffix) blocking (dirty) 6.04 ·10−7 8.21 ·10−9 2.77 ·10−7 1.23 ·10−8 6.99 ·10−10 N/A 6.84 ·10−9

F-measure:
Token blocking (clean-clean) 3.13 ·10−6 2.00 ·10−6 9.72 ·10−7 2.06 ·10−8 1.94 ·10−9 2.42 ·10−4 2.35 ·10−6

Token blocking (dirty) 7.28 ·10−7 1.03 ·10−8 7.55 ·10−7 2.10 ·10−8 2.59 ·10−9 1.50 ·10−4 1.30 ·10−8

Attribute clustering blocking 1.70 ·10−5 1.15 ·10−5 2.02 ·10−5 2.82 ·10−5 2.69 ·10−6 3.04 ·10−4 3.94 ·10−6

Prefix-Infix(-Suffix) blocking (clean-
clean)

3.75 ·10−6 4.38 ·10−6 9.98 ·10−7 2.02 ·10−5 4.11 ·10−6 N/A 2.38 ·10−6

Prefix-Infix(-Suffix) blocking (dirty) 1.21 ·10−6 1.64 ·10−8 5.55 ·10−7 2.46 ·10−8 1.40 ·10−9 N/A 1.37 ·10−8

H3R:
Token blocking (clean-clean) 93.18% 89.55% 95.77% 88.61% 80.90% 70.53% 97.04%
Token blocking (dirty) 94.05% 90.43% 93.75% 88.97% 86.25% N/A (RR < 0) 90.48%
Attribute clustering blocking 97.55% 80.76% 95.37% 86.66% 80.80% 79.95% 98.16%
Prefix-Infix(-Suffix) blocking (clean-
clean)

96.09%
92.70%

92.70% 97.18% 79.83% N/A 97.07%

Prefix-Infix(-Suffix) blocking (dirty) 95.92% 90.33% 88.91% 93.59% 83.50% N/A 90.98%

tokens than those in peripheral ones7. For example, 41.43% and 44% of descriptions in D1 and

7We take the median values and not the averages, as the latter are highly influenced by extreme values and our
distributions are skewed.
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D3, respectively, have 2-4 common tokens, while for D2, D4 and D5 the corresponding values are

33.26%, 26.03% and 12.97%. We observe a big difference in the distributions of D6 and D7, which

contain many more common tokens per description, to those of the other datasets. Only 23.75%

of the descriptions in D6 and 44% of the descriptions in D7 have 0 - 10 common tokens. Figure 2.8

(left) also shows that a big number of descriptions in peripheral datasets, do not share any com-

mon tokens. Those are hints that the recall of token blocking in central datasets is higher than in

peripheral datasets.

Figure 2.8: Common tokens (top) and common tokens in common clusters (bottom) per
entity description distributions for D1-D7.

Indeed, D6 is the dataset with the highest recall (99.92%) and the highest number of com-

mon tokens per entity (19), while D5 is the dataset with the lowest recall (72.13%) and number

of common tokens per entity (0). There is a big difference in the number of common tokens in

D6, compared to D1 and D3, which is not reflected by their small difference in recall. Due to the

high ratio of matches to non-matches in D6 (Table 2.5), descriptions in this dataset have many

common tokens and this leads to high recall.

Attribute clustering blocking: The goal of attribute clustering is to improve the precision of token

blocking, while retaining its recall as much as possible (it cannot have higher recall). To do this,

it restricts the number of attributes on which descriptions, featuring a common token, should be

compared. Comparisons between descriptions that do not share a common token in a common

attribute cluster, are discarded. Hence, descriptions with many common tokens in common clus-

ters are more likely to be matched. Figure 2.8 (top) presents the distributions of the number of
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common tokens in common attribute clusters per entity. It shows a clearer distinction between

central and peripheral datasets than Figure 2.8 (top); the descriptions in central datasets have

many more common tokens in common clusters, while many descriptions in peripheral datasets

do not have any common token in a common cluster. This occurs, because values in the descrip-

tions of peripheral datasets are much less similar than those of central datasets, leading to a bad

clustering of the attributes and, thus, to lower recall. In fact, D6 is the dataset with the highest re-

call (99.55%) and the highest number of common tokens in common attribute clusters per entity

(19). On the other hand, D2 and D5, which have the lowest recall values (68.42% and 71.11%) also

have the lowest number of common token in common attribute clusters per entity (0).

In central datasets (D1, D3, D6, D7), many, small clusters of similar attributes are formed, as

the values of the descriptions are similar. This leads to a minor (or zero, in D7) decrease in re-

call, compared to token blocking, while it significantly improves its precision (even by an order of

magnitude in D3). D1 forms many (16,886), small attribute clusters (of 2 attributes in the median

case), since in most cases there is a 1-1 mapping between the attributes of the KBs that compose

it. These clusters contain the same attribute used by the two versions of DBpedia.

However, this approach has a substantial impact on recall in peripheral datasets (D2, D4, D5),

even if it still improves precision in all datasets (even by an order of magnitude for D4). The de-

scriptions in those datasets have few common tokens, in the first place, which leads to a bad clus-

tering of attributes; few clusters of many attributes, not similar to each other, are formed. Hence,

if we make the blocking criterion of token blocking stricter, by also considering attributes, then

the more distinct attributes used per entity type, the more difficult it is for an entity description,

to be placed in a common block with a matching description. For BTC12Rest (part of D2), the ratio

between attributes and entity types (last row of Table 2.4) is the highest (15.7), leading to a great im-

pact on recall (-24.04%). This dataset has the biggest number of data sources that compose it and

many different attribute names can be used for the same purpose; hence, big attribute clusters are

formed. LOCAH (part of D5) only has 3.5 attributes per entity type. Thus, the recall of attribute

clustering blocking is insignificantly reduced (-1.02%), compared to that of token blocking.

Prefix-Infix(-Suffix) blocking: Prefix-Infix(-Suffix) blocking is built on the premise that many URIs

contain useful information. Its goal is to extend token blocking and improve both its recall, by

also considering the subject URIs of the descriptions, and its precision, by disregarding some un-

needed tokens in the URI values (either in the prefix or suffix). It achieves good recall values in

KBs with similar naming policies in the URIs, as in D4, part of which is BBCmusic, which also has

Wikipedia as a source. However, it misses many matching pairs of descriptions, when the names

of the URIs do not contain useful information, as in D3 that uses random strings as ids, or have

different policies, as in D5, which uses concatenations of tokens, without delimiters, as URIs. The

recall of D1 is 100%, because the dataset is constructed this way; it consists of two versions of

the same KB, DBpedia, and the URIs appearing as subjects in Infoboxes are only those URIs that

also appear as subjects in BTC12DBpedia. PI S is not applicable (marked N/A) to D6, since URIs

have been replaced with numerical ids in the provided dataset. In D7, recall is the same as in
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the other blocking methods, since the matches can be found by tokens in the literal values of the

descriptions.

Missed Matches (FNs)

A non-negligible number of matching pairs of descriptions do not share any common tokens at all.

Such descriptions, constituting the false negatives of token blocking, should not be assumed faulty,

or noisy. We distinguish two different sources of information that can be exploited for successfully

placing descriptions of missed matches in common blocks:

1. The matches of their neighbors: Given that a description can have, as one of its values, an-

other description, neighborhoods of related descriptions are formed, spinning the Web of

data. The knowledge of matches in the neighbors of a description is valuable for correctly

matching this description. For example, if a description e10 is related to e1, e20 is related to

e2, and we know that e10 and e20 match, then we can use this knowledge as a hint that e1

and e2 could possibly match, too.

2. A third, matching description: In dirty datasets (typically peripheral), which are composed

of KBs that potentially contain duplicate descriptions, a description e1 could have more

than one matching description, e.g., both e2 and e3. Identifying one of these matches, e.g.,

(e1, e3), knowing that (e2, e3) is a match, leads to also identify the missing match (e1, e2).

Table 2.7 provides details about the number and the characteristics of false negative pairs of de-

scriptions, and the set of individual descriptions that constitute these pairs8.

We focus first on the neighbors of these descriptions, namely descriptions that appear in their

values. We found that almost all the descriptions in the false negatives have at least one neighbor

(second row of Table 2.7). Looking more thoroughly, we counted the percentage of descriptions

in false negatives that have at least one neighbor belonging to the ground truth (third row of Ta-

ble 2.7). In all cases, this percentage is more than 10% and goes up to 58% for D4. This means

that, not only do these descriptions have neighbors, but many of these neighbors can be matched

to other descriptions in the same entity collection as well. Then, we counted the percentage of

descriptions in false negatives that have neighbors, which have already been matched to another

description (fourth row of Table 2.7). This percentage is over 20% in most datasets, while it reaches

up to 51.84% for D4. Finally, we counted the percentage of false negative pairs, whose descriptions

have neighbors, which match to each other (fifth row of Table 2.7). This percentage is 0 for D1, as

matches in this dataset are defined as descriptions that have the same subject URI. However, in

some peripheral datasets (D2, D4), examining the matches of the neighbors of the descriptions is

meaningful.

8D6 is excluded, as it does not contain any descriptions with neighbors and D7 is excluded, as it only yields 7 missed
matches.
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Table 2.7: Characteristics of the missed match of token blocking.
D1 D2 D3 D4 D5

FNs 25,419 3,176 87,672 2,886 303
descriptions in FNs,
with neighbor(s)

99.64% 100% 99.99% 100% 100%

descriptions in FNs,
with neighbor(s) in
ground truth

22.60% 53.94% 36.43% 58.36% 11.57%

descriptions in FNs,
with neighbor(s) with
an identified match

20.94% 48.54% 34.05% 51.84% 7.59%

FNs with matching
neighbors

0% 24.81% 0.38% 37.63% 0%

FNs with common,
identified matches

0% 25.35% 10.54% 0.14% 8.58%

Another useful piece of information for the missed matches of dirty datasets is whether their

descriptions have been correctly matched to a third description. The last row of Table 2.7 quanti-

fies this statistic, showing that there are datasets, both peripheral (D2, D5) and central (D3), for

which this kind of information could, indeed, be useful.

The information of Table 2.7 is lost when we only consider the tokens in the values of the

descriptions to create the blocks in a single round, but it could be useful to an iterative method.

Iterative blocking [101], based on some initial blocks, aims to identify matches of type (ii), as well

as eliminate redundant comparisons. In our experiments, the recall of iterative blocking, given

the blocks of token blocking from the dirty dataset with the smallest number of comparisons (D6),

was the same as that of token blocking (99.92%), since both of its KBs contain no duplicates (Ta-

bles 2.4, 2.5), but the number of comparisons performed was almost half of those suggested by

token blocking. We also applied iterative blocking to the dirty dataset with the lowest recall (D5),

giving the blocks generated by token blocking as input. The process did not terminate within a

reasonable amount of time, even so, the recall of iterative blocking was 78.09% after a first pass,

whereas the recall of token blocking was 77.34%.

Regarding attribute clustering blocking, it misses the matches that are also missed by token

blocking, plus matches that, even if they share common tokens, those tokens appear in the values

of attributes in different clusters. The matches missed by prefix-infix(-suffix) blocking are those

with no common tokens in their literal values and no common infixes in their URIs.

Non-matches (FPs and TNs)

Next, we examine the ability of blocking methods to identify non-matches, namely their ability to

avoid placing non-matching descriptions in the same block. A key statistic for this, regarding the

datasets, is the ratio of matches to non-matches (Table 2.5). The higher the ratio, the easier it is

for a blocking method to have better precision, as it statistically has better chances of suggesting a

correct comparison. D6 is the dataset with the highest such ratio and precision, while D5 has the

lowest ratio and, in most blocking methods, the lowest precision, too. It is clear from Table 2.6 that
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Table 2.8: Analysis of 1K sampled match and 1K sampled non-match.
D1 D2 D3 D4 D5 D7

matches with
neighbors

967 956 913 918 859 973

non-matches
with neighbors

966 955 912 917 854 973

neighbors of
matches (me-
dian)

17 80 100 138 121 1

neighbors of
non-matches
(median)

72 80 105 171 121 1

matches with
matching neigh-
bors

862 254 7 766 570 966

non-matches
with matching
neighbors

32 22 0 0 542 590

attribute clustering is the most precise method, since, in almost every case, it results in the fewest

wrong suggestions. On the contrary, the least precise method is token blocking, in all cases. The

differences in precision, in some cases even by an order of magnitude, also determine F-measure,

since the differences in recall are not that big. All the evaluated methods have very low precision,

i.e., the vast majority of suggested comparisons correspond to non-matches. This comes naturally

from the fact that matching pairs are only a scintilla of all possible description pairs, as shown in

Table 2.5.

Structural Analysis of Matches and Non-matches

To better understand the characteristics of matches versus those of non-matches in the evaluated

datasets, we have analyzed sample pairs of matching and non-matching descriptions. In partic-

ular, we have taken 1,000 random pairs of matches and non-matches from each dataset and we

have focused on their neighbor pairs of descriptions. The results of this analysis are presented in

Table 2.8.

First, we counted the number of pairs of descriptions that both have neighbors. We found

that those numbers, presented in the first two rows of Table 2.8 for matches and non-matches,

respectively, are almost the same. Practically, almost all the pairs of descriptions are linked to

other pairs of description, in all datasets. Then, we measured the median number of neighbors

(pairs of descriptions) that a match has (Table 2.8, row 3) and the same median number for non-

matches (Table 2.8, row 4). Again, there are no significant differences between those two lines.

Those numbers vary greatly from dataset to dataset, ranging from 1 (for D7) to 171 (for D4). Finally,

we counted the number of pairs, whose neighbor pairs match. For matches (Table 2.8, row 5),

this number is always higher than the corresponding number for non-matches (Table 2.8, row 6).

Intuitively, this means that when a match is found, the chances that there is another match in its

neighbor pairs are increased.
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2.5.3 Performance Results

Table 2.6 shows that all the evaluated methods manage to greatly reduce the number of compar-

isons that would be required if blocking was not employed, e.g., by one (D1-D4, D7) or two (D5)

orders of magnitude for token blocking. This is reflected by high RR in all cases. An exception

is D6, which is much smaller in terms of descriptions and, consequently, comparisons without

blocking. Moreover, its descriptions contain many more common tokens than the other datasets,

leading to more comparisons per entity. Therefore, token blocking does not save many of the com-

parisons that would be required without blocking and in D6 dirty, it even produces twice as many

comparisons.

With respect to H3R, we notice that, in general, central datasets have higher scores, i.e., they

present a better balance between recall and reduction ratio. This means that in these datasets,

comparisons that are discarded by blocking mostly correspond to non-matches, while many of

the comparisons discarded by blocking in peripheral datasets correspond to matches. Again, D6

has a different behavior, since it initially contains a much smaller number of comparisons and

a high ratio of matches to non-matches, so the reduction ratio for this dataset is limited. These

measures are not applicable to token blocking, when applied to D6 dirty, since in that case the

reduction ratio is negative.

2.5.4 Lessons Learned

We now present the key points of our evaluation. Central datasets are mostly derived from Wikipedia,

from which they extract information regarding an entity. This way, descriptions in such datasets

follow similar naming policies and feature many common tokens (Figure 2.8) in the values of se-

mantically similar, or equivalent attributes (see the small size of clusters in Table 2.6). Those are

exactly the premises on which the evaluated blocking methods are built.

For these reasons, the recall achieved by token blocking in central datasets is very high (ranges

from 99.92% to 94.85%). With the exception of D6 (featuring a higher ratio of matching to non-

matching descriptions), the precision achieved by token blocking in these datasets ranges from

2.49 ·10−6 to 3.64 ·10−7. The gains in precision brought by attribute clustering blocking in central

datasets are up to one order of magnitude (for D3), with a minor cost on recall (from 0% to 3.42%).

Prefix-infix(-suffix) blocking can improve both recall and precision of token blocking for central

datasets, as in D1, but, it can also deteriorate these values, as in the dirty case of D3, which uses

random identifiers as URIs, in which recall drops by 7.79% and precision by 26.72%. In a nutshell,

many redundant comparisons are suggested by blocking methods in all datasets (see precision

and F-measure in Table 2.6), due to the small ratio of matches to non-matches in the datasets

(Table 2.5). However, as H3R reveals, the comparisons that are discarded by blocking in central

datasets mostly correspond to non-matches.

On the contrary, descriptions in peripheral datasets are more diverse, following different nam-

ing policies and sharing few common tokens (Figure 2.8), since they stem from various sources.
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The lack of similar values in those descriptions leads to a bad clustering of attributes; big clusters

of attributes not similar to each other are formed (Table 2.6).

For these reasons, the recall of token blocking for peripheral datasets drops even to 72.13%,

while precision ranges from 1.3 · 10−6 to 1.29 · 10−9. The gains in precision brought by attribute

clustering blocking (up to one order of magnitude) in peripheral datasets, come at the cost of a

drop in recall up to 24.04% (corresponding to 7,421 more missed matches). Prefix-infix(-suffix)

blocking can improve the precision of token blocking in peripheral datasets, even by an order of

magnitude (for D4), or decrease it by an order of magnitude (for D5), while it decreases recall from

0.74% to 3.96%, i.e., more matches are missed. In the case of D4, in which both KBs use Wikipedia

as a source, recall is improved by up to 7.68%. Overall, however, H3R reveals that many of the

comparisons that are discarded by blocking in peripheral datasets correspond to matches.

Nevertheless, information for the missed matches, e.g., from the neighborhoods of their de-

scriptions (Table 2.7), sets the ground for a new generation of ER algorithms, which will exploit

this information to identify more matches, in an iterative fashion. In Table 2.8, we have shown

that even a single match in the neighborhood of a candidate pair is a good match-indication for

that pair, too.

2.6 Conclusion

In this chapter, we have first reviewed a wide spectrum of works focusing on blocking. We have di-

vided those works into schema-based, whose blocking keys rely on the existence of a fixed schema,

and schema-free, which do no make any assumptions about the schema of the entity descriptions

to be matched. Since entity descriptions in the Web of data fall in the latter case, we focus only

on schema-free blocking methods. In detail, we evaluated, for the first time, blocking methods for

highly heterogeneous entity descriptions in the Web of data. To make this evaluation possible for

datasets of large volumes, we have introduced massively parallel adaptations of those methods

in MapReduce. Our experimental evaluation shows that entity descriptions met in central LOD

datasets feature many common tokens in the values of common attributes, while descriptions

met in peripheral datasets have significantly fewer common tokens in attributes that are not nec-

essarily semantically related (see Figure 2.8). Hence, the former can be compared only on their

content, i.e., values, (see Table 2.6), while the latter require new blocking methods which can ex-

ploit contextual information, e.g., the similarity of neighbor descriptions, linked via different types

of relations (see Tables 2.7,2.8).

Moreover, the same candidate matches suggested by blocking, may originate from multiple

blocks of different size. This means that we will have to perform the same comparison multiple

times, or, find a mechanism that can identify repeated comparisons and perform each of them

only once. Even better, this block post-processing mechanism could take advantage of the overlap-

positive characteristic of blocking methods and turn this overlap into an advantage: the more

the common blocks between two entity descriptions and/or the smaller those blocks are (i.e., the
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less frequent the common tokens between two descriptions are), the higher the chances that they

match. We will explore such mechanism, called meta-blocking, in the next chapter.

The datasets and source code used in this study are publicly available9, facilitating the bench-

marking of blocking methods for entities described in the Web of Data. Existing works in ER bench-

marks [43, 51] and evaluation frameworks [47, 64] focus on the similarity of descriptions and how

these similarities affect the matching decision of entity resolution; not on blocking, explicitly. In

all cases, datasets are built from central KBs of a single domain, e.g., only bibliographic. Those

data variations are not adequate to evaluate the blocking algorithms suitable for cross-domain ER

involving a large number of entity types. Finally, many works on ontology and instance matching,

e.g., [66, 97], have been using the OAEI benchmarks in their evaluations. Typically, those datasets

are composed of two ontologies with a 1-1 mapping in their attributes, or even a single ontol-

ogy, whose instances, i.e., entity descriptions, have some modifications in their values. We have

included and analyzed one of those benchmarks in this study.

9csd.uoc.gr/~vefthym/minoanER/



Chapter 3

Meta-Blocking

3.1 Introduction

The main characteristic of overlap-positive blocking methods is that they trade a large number of

repeated and unnecessary comparisons between non-matching entities in their effort to achieve

high recall. Meta-blocking [82] is a post processing of a collection of blocks aiming to balance the

tradeoff between the achieved reduction ratio and recall. It essentially discards all repeated com-

parisons from a collection of blocks as well as reduces the number of unnecessary comparisons.

In more detail, the functionality of Meta-blocking consists of two logical steps1. The first one

transforms the input block collection B into the blocking graph G , whose nodes correspond to

the entities grouped in B , and edges connect the co-occurring entities, denoting suggested com-

parisons. Only one edge between two entities is maintained regardless of the number of blocks

they co-occur in, thus eliminating all repeated comparisons. For instance, applying token block-

ing to the entities in Figure 3.1(a), yields the blocks of Figure 3.1(b), in which all matches, e1-e3

and e2-e4, are placed in at least one common block. The blocking graph G extracted from those

blocks is shown in Figure 3.1(c). The repeated comparison e1-e3, suggested by blocks b1 and b2, is

discarded in G , since there is only one edge connecting e1 with e3.

The second step associates every edge with a weight, proportional to the likelihood that the

adjacent entities are matching, an evidence given by the degree of overlap between the sets of

blocks in which those entities have been placed. Low-weighted edges are less likely to correspond

to matches, so they are pruned. The pruned blocking graph G ′ is then transformed into a new

block collection B ′ by creating a new block for every retained edge. For instance, G ′ in Figure 3.1(d)

is derived from G in Figure 3.1(c) by discarding the edges with (Jaccard) weight lower than the

average one (1/4). Given that the only matches are e1-e3 and e2-e4, the blocks b5, b6, b7 and b8

in Figure 3.1(b) contain 8 unnecessary comparisons. In total, the resulting blocks in Figure 3.1(e)

contain 5 comparisons, of which only 3 are unnecessary. Compared to the initial blocks B in

Figure 3.1(b), the comparisons entailed by the final blocks B ′ of Figure 3.1(e) were reduced by 62%

without any impact on recall.

1Those steps do not need to be explicitly implemented, as we will explain in the following sections; they only describe
the logic of this process.
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e1 

e3 

FullName : Jack Lloyd Miller 

job : autoseller 

full name : Jack Miller 

Work : car vendor - seller 

e2 

e4 

name : Erick Green  

profession : vehicle vendor 

Erick Lloyd Green 

car trader 

e5 
Full name : James Jordan 

job : car seller 

e6 
name : Nick Papas 

profession : car dealer 

(a) 
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e1 
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e1 
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Figure 3.1: (a) A set of heterogeneous entity description, (b) the overlap-positive block
collection derived from them using token blocking, (c) the respective block-
ing graph that uses Jaccard similarity for edge weights, (d) one of the possible
pruned blocking graphs, and (e) the restructured block collection after Meta-
blocking.

The time complexity of serialized Meta-blocking is quadratic to the size of the input blocks;

it relies on the number of comparisons suggested by the input block collection, which define the

number of edges that need to be weighted and then pruned in the blocking graph [82]. The reason

is that each edge < vi , v j > is weighted after computing the intersection of the sets of blocks as-

sociated with the descriptions ei and e j , while additional computations (e.g., the total number of

edges, the number of comparisons suggested by the common blocks) may be required by different

weighting schemes, as we will see in the next section. Thus, even as a preprocessing step for ER,

sequential Meta-blocking is a heavy computational task with serious scalability limitations at the

scale of Web data.

To overcome these limitations, we adopt the MapReduce programming model for paralleliz-

ing Meta-blocking and scaling its techniques to voluminous entity collections met in the Web of

data, providing exactly the same qualitative results. The basic idea of parallel Meta-blocking is

that we process each block of the input block collection in parallel, allowing us to incrementally

compute the edge weights, for different node-, or edge-partitions of the blocking graph, depend-

ing on the parallelization strategy. When two large blocks are processed by the same computa-

tional node, the processing of those blocks will probably become the bottleneck of parallel Meta-

blocking. Therefore, we try to distribute the load of each computational node in a balanced way,

optimizing the usage of the available computational resources. Our goal is to minimize the total

execution time of Meta-blocking, making it as close as possible to the time required to process the

largest block (still quadratic with respect to the size of the largest block). In our experiments, we

show how parallel Meta-blocking can reduce the time required to process the blocks and get the

final matching results from 14 days to 95.5 minutes.
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In summary, the main contributions of this chapter, which have been published in [32,33], are:

• We extend the distinction of blocking methods into atomic and composite, to Meta-blocking:

extending the blocking graph, we define the disjunctive blocking graph, which captures mul-

tiple types of matching evidence, allowing the conceptual modeling of composite blocking.

• We implement Meta-blocking in MapReduce using 3 alternative parallelization strategies.

The first one explicitly targets the blocking graph, which builds and stores all the edges along

with their weights. This is the most intuitive approach, but it bears a significant I/O cost

that becomes the bottleneck, when building very large blocking graphs. The second strat-

egy offers a more efficient implementation, by enriching the input block collection with

indexing information used for computing the weights of the edges, without building and

storing any of them explicitly. Still, enriching the block collection with such information

requires an additional MapReduce job, which bears an additional cost. The third strategy

is independent of the blocking graph. For every entity, it aggregates the bag of all entities

that co-occur in at least one block, and then, it derives on the fly the edge weight that corre-

sponds to each neighbor from its frequency in the co-occurrence bag. Since the weights are

computed on the fly, this is the most efficient strategy, when the edge weights do not need

to be re-computed before pruning.

• We introduce a novel load balancing algorithm, called MaxBlock, in order to avoid poten-

tial bottlenecks associated with the computation-intensive parts of our MapReduce func-

tions. MaxBlock exploits the highly skewed distribution of block sizes in overlap-positive

collections in order to split them in partitions of equivalent computational cost (i.e., total

number of comparisons). We experimentally compare MaxBlock with existing approaches,

including a state-of-the-art algorithm that serves a similar purpose, and demonstrate that

our approach has significant qualitative and quantitative benefits.

• We verify the scalability of our techniques through a thorough experimental evaluation over

the four largest, real datasets that have been applied to Meta-blocking. We show that the

speedup of our parallel implementation is close to the ideal, linear case, in which doubling

the available resources results in half the execution time.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the formal model

of Meta-blocking. In Section 3.3, we overview the state-of-the-art works in the field. In Section 3.4,

we provide the overview of our parallelization strategies for Meta-blocking. Section 3.5 introduces

our MaxBlock load balancing algorithm. In Section 3.6, we experimentally evaluate the paralleliza-

tion strategies and MaxBlock, and we conclude the chapter in Section 3.7.
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3.2 Formal Meta-blocking Model

The functionality of Meta-blocking consists of two logical steps. The first one transforms the in-

put block collection B into the blocking graph G . The second step associates every edge < vi , v j >
with a weight wi , j ∈ ℜ that is proportional to the likelihood that the adjacent entities are match-

ing. Note that this is only the logical representation of Meta-blocking, which does not need to be

implemented as such. Formally:

Definition 3.1 (Blocking Graph). Given a block collection B ke y , produced by an indexing function

hke y , the blocking graph for an entity collection E , is a graph G = (V ,E , w), where there is a node

vi ∈ V for each description ei ∈ E , and an edge < vi , v j >∈ E for each pair ei ,e j ∈ E for which

oke y (ei ,e j ) = ‘tr ue ′. w : E →ℜ is a labeling function applied to the edges of G.

Table 3.1 summarizes the notation used in this chapter. The tokens used in an entity collec-

tion E is given by tokens(E ) = ⋃
ei∈E tokens(ei ), where tokens(ei ) is the set of tokens used in

the values of an entity description ei ∈ E . The number of edges |E | of the blocking graph, cor-

responds to the number of unique comparisons suggested by blocking, i.e., at most
∑

bk∈B ||bk ||,
where ||bk || is the number of comparisons suggested by a block bk , which is quadratic to the size

of bk . When bk has been created by token blocking for a token t , ||bk || = EFE (t ) · (EFE (t )−1)/2,

where EFE (t ) = |{ei |ei ∈ E , t ∈ tokens(ei )}| is the Entity Frequency of t in an entity collection E .

The use of EF is inspired by the Document Frequency DF , which has been used in Information

Retrieval to define the Inverse Document Frequency (IDF), i.e., the specificity of a term t in a docu-

ment corpus D , as I DF (t ,D) = log |D|
DF (t ) [94], where DF (t ) is the number of documents containing

the term t . We will refer to the set of blocks hke y (ei ) in which ei has been placed as Bi , and to the

common blocks of ei and e j as Bi , j , for brevity.

Next, we will present alternative ways for weighting (i.e., labeling) the edges of a blocking graph

(i.e., pairs of entity descriptions), which have been introduced in [82, 84]. All of them have the

nice property that they only rely on the input blocks in order to define the weights, without any

additional information.

• Common Blocks Scheme (CBS) captures the fundamental property of overlap-positive block

collections that the more blocks two entities share, the more likely they are matching. The labeling

function used by CBS is:

wC BS(ei ,e j ) = |Bi , j |. (3.1)

Then, CBS corresponds to the overlap similarity measure between two descriptions ei ,e j , unnor-

malized as in [102], when token blocking is used:

si mC BS(ei ,e j ) = |tokens(ei )∩ tokens(e j )|.

Intuitively, two descriptions are likely to match, if they share many common tokens.

• Enhanced Common Blocks Scheme (ECBS) improves CBS by discounting the contribution
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Table 3.1: Summary of the notation used in Meta-blocking.
Name Symbol

Set of tokens used in the values of an entity description ei tokens(ei )
Set of tokens used in the values of any description in an entity collection E tokens(E )
Entity Frequency of a token t in an entity collection E EFE (t )
Block collection (a set of blocks) B
Block collection size (number of blocks) |B |
Block collection cardinality (number of comparisons) ||B ||
Blocks containing ei Bi

Number of blocks containing ei |Bi |
Block with id i bi

Block size (number of entities) |bi |
Block cardinality (number of comparisons) ||bi ||
Blocks shared by ei and e j Bi , j

Number of blocks shared by ei and e j |Bi , j |
Blocking graph G
Node in G corresponding to ei vi

Edge in G < vi , v j >
Set of edges in G E
Weight of < vi , v j > wi , j

Degree of vi (number of adjacent nodes) |vi |

of entities participating in many blocks. The labeling function used by ECBS is:

wEC BS(ei ,e j ) = wC BS(ei ,e j ) · log
|B |
|Bi |

· log
|B |
|B j |

. (3.2)

Again, when token blocking is used, ECBS corresponds to the following similarity measure be-

tween ei and e j :

si mEC BS(ei ,e j ) = si mC BS(ei ,e j ) · log
|tokens(E )|
|tokens(ei )| · log

|tokens(E )|
|tokens(e j )| .

Intuitively, two descriptions are likely to match, if they share many common tokens, and each of

the descriptions doesn’t have too many tokens.

•Aggregate Reciprocal Comparisons Scheme (ARCS) is based on the assumption that the fewer

the comparisons suggested by the common blocks of two entities, the more likely it is that those

entities are matching. The labeling function used by ARCS is:

w ARC S(ei ,e j ) = ∑
bk∈Bi , j

1

||bk ||
. (3.3)

In the extreme case in which all the blocks in the input block collection contain two entities only,

i.e., ∀bk ∈ B , ||bk || = 1, then w ARC S yields the same weights as wC BS . We can further refine the

contribution of each common block, by introducing a log in the denominator, which makes the
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size of each common block less important than in Equation 3.3 and the number of common blocks

more important:

w ARC S(ei ,e j ) = ∑
bk∈Bi , j

1

log2(||bk ||+1)
. (3.4)

Then, ARCS corresponds to the following similarity measure between two descriptions ei and

e j , when token blocking is used:

si mARC S(ei ,e j ) = ∑
t∈tokens(ei )∩tokens(e j )

1

log2(EFE (t ) · (EFE (t )−1)/2+1)
.

This is similar in logic to using the sum of the IDFs of the common tokens between two docu-

ments in a document corpus. Intuitively, two descriptions are likely to match, if they share many,

infrequent tokens.

• Jaccard Scheme (JS) estimates the portion of blocks shared by two entities. The labeling

function used by JS is:

w JS(ei ,e j ) = |Bi , j |
|Bi |+ |B j |− |Bi , j |

. (3.5)

When token blocking is used, JS corresponds to the Jaccard similarity [54] of the token sets of two

entities ei ,e j :

si m JS(ei ,e j ) = |tokens(ei )∩ tokens(e j )|
|tokens(ei )∪ tokens(e j )| .

Intuitively, two descriptions are likely to match, if most of their individual tokens are common.

• Enhanced Jaccard Scheme (EJS) improves JS by discounting the contribution of entities

involved in too many non-repeated comparisons (i.e., high node degree). The labeling function

used by EJS is:

wE JS(ei ,e j ) = w JS(ei ,e j ) · log
|E |
|vi |

· log
|E |
|v j |

. (3.6)

EJS can be approximated by the following similarity measure between two entities ei and e j ,

when token blocking is used:

si mE JS(ei ,e j ) = si m JS(ei ,e j ) · log
A

|comp(ei ,E )| · log
A

|comp(e j ,E )| ,

where A =∑
t∈tokens(E ) EFE (t )·(EFE (t )−1)/2, and comp(el ,E ) = {ek |ek ∈ E , tokens(el )∩tokens(ek ),

;} is the subset of descriptions from E having at least one common token with el . Intuitively, two

descriptions are likely to match, if most of their common tokens are infrequent (low EF ), and their

non-common tokens are few and infrequent.

The time efficiency of each labeling function depends on the number and the nature of the

computations that need to be performed in order to evaluate the edge weights. wC BS is the easiest

function to evaluate, as it only needs to compute the intersection of two sets (of numerical block
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ids). Additionally, w JS also computes the union of those sets, while wEC BS also needs the total

size of the input block collection. Thus, those three labeling functions are very close in terms of

computational cost. w ARC S , needs to compute two things: the intersection of two block sets, as

well as the cardinality of each block belonging to the intersection, so it is heavier computationally

than the previous functions. Finally, wE JS is the heaviest function to evaluate; on top of computing

the intersection and the union of two sets of blocks, it also needs to compute the node cardinality

of the two entities, i.e., how many other entities share a common block with the entities to be

compared.

On the other hand, the pruning scheme relies on a pruning criterion which can be either

weight- or cardinality-based; the former specifies the minimum weight of the retained edges (i.e.,

a dynamic similarity threshold) and the latter the maximum number of retained edges (i.e., a top-

K functionality). Both the minimum weight and the number of retained edges are set dynamically,

driven by data statistics. The selected criterion is then combined with a pruning algorithm, which

is either edge-centric (i.e., global) or node-centric (i.e., local); the former iterates over all edges

of the graph to retain the globally best ones and the latter over all edges of the neighborhood to

retain the locally best ones. Overall, the main pruning schemes are the following:

• Weighted Edge Pruning (WEP) combines the edge-centric algorithm with a global weight

threshold that amounts to the average edge weight of the entire blocking graph. That is, it retains

all edges with a weight higher than the overall mean one.

• Cardinality Edge Pruning (CEP) couples the edge-centric algorithm with a global cardinality

threshold equal to: K = b
∑

bi ∈B |bi |
2 c. Thus, it retains the top-K edges of the entire blocking graph.

• Weighted Node Pruning (WNP) combines the node-centric pruning algorithm with a local

weight threshold that amounts to the average edge weight of each neighborhood.

•Cardinality Node Pruning (CNP) combines the node-centric pruning algorithm with a global

cardinality threshold equal to: k = b∑bi∈B |bi |/|E | − 1c. Thus, it retains the top-k edges of each

neighborhood.

The above definitions consider only one type of blocks. However, as we have seen in Chapter 2,

composite blocking schemes may also be constructed on different types of blocks. Thus, edges in

the corresponding blocking graph may be determined according to a composite co-occurrence

conditions while their weights may be extended accordingly.

Definition 3.2 (Disjunctive Blocking Graph). Given a block collection B = ⋃
hke y∈H

B ke y , produced by

a set of indexing functions H, the disjunctive blocking graph for an entity collection E , is a graph G =
(V ,E ,λ), where each node vi ∈V represents a distinct description ei ∈ E , and each edge < vi , v j >∈ E

represent a pair ei ,e j ∈ E for which F (ei ,e j ) = ‘tr ue ′. F (ei ,e j ) is a disjunction of the atomic co-

occurrence functions ok defined along with H. λ : E → Rn is a labeling function assigning a tuple

[w1, . . . , wn] to each edge ∈ E, where wk is a weight associated with each co-occurrence function ok

of H.

We will see an example of applying disjunctive Meta-blocking in Chapter 4.



48 Chapter 3. Meta-Blocking

3.3 Related Work

In this section, we first overview works related to block processing, i.e., processing the results

of blocking, before providing the final matches, and then we discuss about how existing works

address the challenge of balancing the load of block processing in a distributed environment.

Block Processing

Numerous studies have focused on the problem of block processing, whose goal is to discard redun-

dant (both unnecessary and repeated) comparisons in order to enhance the precision of blocking

collections. Most of the relevant techniques involve a functionality that operates at the block level,

based on coarse-grained characteristics of the input blocking collection, such as the size of blocks:

Block Purging [78] a-priori discards oversized blocks like b8 in Figure 3.1(b), while Block Prun-

ing [78] orders blocks from smallest to largest and terminates their processing as soon as the cost

of identifying new matches exceeds a predefined threshold. Both of these methods are equivalent,

in logic, to discarding stopwords, i.e., very frequent words which do not offer much information

about an entity, such as ‘the‘, ‘a‘, ‘to‘, etc. Those words would only add a big computational cost,

without offering much in the similarity evidence that two entities match (they have high EF , as

defined in the previous section). [79] proposes a method for discarding all repeated comparisons

from any set of blocks. In essence, when two descriptions are compared in a block, this compari-

son is not performed again in any other block this pair appears.

Such techniques are efficient, but lack in accuracy, as their crude processing cannot control its

impact on recall (in terms of matching comparisons).

Similar to Meta-blocking, Block Filtering [85], drastically reduces the size of the blocking graph

by transforming an overlap-positive block collection B into a new one B ′ that involves a lower

number of comparisons. Instead of using a graph, though, it simply removes every entity from the

least important of its blocks. The main assumption is that the larger a block is (i.e., higher ||bi ||),

the less important it is for its entities. In more details, Block Filtering orders the blocks of B in

ascending order of cardinality, i.e., suggested comparisons, and retains every entity ei in the top

Ni blocks of Bi (i.e., the Ni smallest blocks that contain ei ). For every entity ei , this threshold is

locally defined as Ni = br × |Bi |c, where r ∈ [0,1] is the ratio of Block Filtering. In this work, we

employ Block Filtering as an integral part of our parallelized approach, setting r = 0.8. This value

was experimentally verified to increase efficiency to a significant extent, pruning at least 50% of

the blocking graph’s edges, while having a negligible impact on recall [85].

[83] formalizes Meta-blocking as a binary classification task, targeting at identifying edges

that correspond to matches and non-matches between their adjacent entity descriptions. To ex-

tend the simple pruning rules of the form “if weight < threshold then discard edge” for removing

comparisons, [83] works towards assigning representative weights to edges and choosing appro-

priate thresholds for removing edges by learning composite pruning models from the data. Super-

vised Meta-blocking composes information about the co-occurring entities into comprehensive
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feature vectors. As an example, consider that each edge is associated with a feature vector [a1,

a2], where a1 is the number of common blocks shared by the adjacent descriptions, and a2 is the

total number of comparisons contained in these blocks. The resulting feature vectors are fed into

a classification algorithm that learns composite rules to effectively distinguish matching and non-

matching edges. In our example, a composite rule could be “if a1 ≤ 2 and a2 > 5 then discard edge”,

capturing the intuition that the more blocks two descriptions share and the smaller these blocks

are, the more likely the descriptions match. Concerning the set of features annotating the edges of

the blocking graph, clearly, using more features may help make the pruning of the non-matching

edges more accurate. However, the computational cost for Meta-blocking gets higher.

Load Balancing

A crucial aspect of MapReduce-based ER methods is the load balancing algorithm that distributes

evenly the overall workload among the available nodes. Several recent works examine this aspect,

with PairRange constituting the best solution so far [62]. In essence, PairRange splits evenly the

comparisons of a block collection into a predefined number of partitions, by assigning every com-

parison to a particular partition id. To this end, it involves a single MapReduce job, whose mapper

associates every entity ei in block bk with the output key r i d .k.i , where r i d denotes the index

of the comparison range, i.e., the partition id. Then, the reducer groups together all entities that

have the same r i d and block id k, reproducing the comparisons corresponding to partition r i d .

In our experimental evaluation, we compare MaxBlock with PairRange.

Another approach is BlockSplit [62]. As its name suggests, it splits the bigger blocks into

smaller sub-blocks and processes them in parallel, ensuring that every entity is compared to all en-

tities in its sub-block, as well as to the entities of its super-block. BlockSplit has been proven to be

less scalable and less generic than PairRange [62]: it needs to process multiple times the entity de-

scriptions of blocks that are split, creating an additional network and I/O overhead. Additionally,

it may still lead to unbalanced workload, due to sub-blocks of different size.

A similar approach is followed by the dynamic blocking algorithm in [72]. Instead of perfectly

balancing the load, though, its goal is to split large blocks into sub-blocks, “until they are all of

tractable size”. Yet, we already achieve this goal through Block Filtering, which completely re-

moves large blocks (instead of splitting them into sub-blocks), as it considers them to be of lower

importance.

Finally, two more load balancing algorithms were presented in [104]. Both rely on sketches

in order to minimize memory consumption; the one aims to improve the space requirements of

BlockSplit and the other of PairRange. In our case, though, all load balancing algorithms that were

compared in Section 3.6.2 fit easily to the limited memory that is available to a single node. The

reason is the optimized representation model, which represents every entity by an integer that

denotes its id, while every block consists of a list of integers and is itself identified by a unique

integer id.
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Preprocessing 

(b) 

Meta-blocking B B’ Block Filtering 

(a) 

Meta-blocking B B’ Block Filtering 

Figure 3.2: (a) The serialized workflow of Meta-blocking, and (b) its parallelized counterpart.

In summary, existing works in block processing suffer from serious accuracy and scalability

issues, or they rely on training data, while little work has been done in balancing the load of pro-

cessing block collections in distributed environments. In this sequel, we will describe a parallel

adaptation of unsupervised Meta-blocking in MapReduce, using a novel load balancing algorithm

with significant benefits over state-of-the-art algorithms.

3.4 Scaling Meta-Blocking to Very Large Entity Collections

3.4.1 Approach Overview

In the following, we elaborate on the adaptation of Meta-blocking to MapReduce. The serialized

workflow we want to parallelize is depicted in Figure 3.2(a) and consists of two consecutive stages:

the first one applies Block Filtering to the input block collection B , while the second one applies

Meta-blocking to yield the final, restructured collection B ′. The parallelized counterpart is pre-

sented in Figure 3.2(b) and consists of three stages. Again, the first one applies Block Filtering to

the input block collection and the last one implements Meta-blocking. The only difference is in

the second stage, which preprocesses the blocks in order to transform them into a suitable form

for parallel Meta-blocking.

We analyze every stage of the parallelized workflow separately, proposing at least two differ-

ent approaches in each case. The first one applies a basic strategy that relies on a straightforward

adaptation, but involves more jobs and higher I/O between the nodes. The other approach(es)

correspond(s) to more advanced strategy(ies), reducing the overhead of data exchange through

more elaborate processing. In all cases, we provide the pseudo-code of the strategy’s functional-

ity and, for the most important strategies, we accompany it with an example that facilitates its

understanding.

Section 3.4.2 presents two strategies for the first stage (Block Filtering), while Section 3.4.3 in-

troduces three strategies for the second stage (Preprocessing). The last stage of the parallel work-

flow applies one of the four pruning algorithms to the output of Preprocessing and yields a set of

retained edges; every edge corresponds to a new block that is part of the final, restructured block

collection. We examine one of the four pruning algorithms, in Section 3.4.4, and the other three

can be found in [33]. Given that the functionality and the complexity of their parallelization de-

pend on the preprocessing strategy, we present three adaptations in every section, each of them

corresponding to the output of the previous stage. Finally, that applies to all strategies of the last
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MAP function pseudo-code 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 
2: Output 

Key: cardinality of block bk, ||��|| 
Value: id of block bk, � 

3: compute comparisons in bk,||��|| 
4: emit( ||��|| , � ); 

1: Input (Single Reducer) 

All pairs <	||��||, � > sorted in  

ascending order of cardinality. 

2: Output 

The sorted list of block ids, �������. 

3: store �������	to disk 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 
2: Output 

Key: id of entity ei, � 
Value: id of block bk, � 

3: for each � ∈ �� loop 

4:       emit( � , � ); 

5: end loop 

 

1: Input  

Key: id of entity ei, � 
Value: list of associated block ids, ��  

2: Output 

Key: id of entity ei, � 
Value: list of top-N blocks in �� , �′�  

3: load ������� from the disk 

4: �′� = �������� �
�!�"(�� , �������) 

5: emit( � , �′�  ); 

(a) Basic strategy 

REDUCE function pseudo-code 

JOB 1 

JOB 2 

(b) Advanced strategy 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,
} 

2: Output 

Key: id of entity ei, � 
Value: block id and cardinality, �. ||��|| 

3: compute comparisons in block, ||��|| 
4: for each � ∈ �� loop 

5: emit(	�	, �. ||��|| ); 
6: end loop 

 

1: Input  

Key: id of entity ei, � 
Value: list of pairs < �. ||��|| >, � 

2: Output 

Key: id of entity ei, � 
Value: list of top-N blocks in �� , �′�  

3: order � in ascending block cardinality 

4: �′� = ���������������(�) 

5: emit( � , �′�  ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 3.3: Pseudo-code interpretation of (a) the basic and (b) the advanced strategy for
Block Filtering. They employ a global and a local ordering of blocks, respectively.

two stages.

Note that in every stage, special care was taken to minimize the I/O between the independent

nodes. Part of this effort focused on optimizing our representation model. Apparently, we could

use the actual blocking keys and URIs to identify the blocks and the entities, respectively. However,

the binary representation of these textual values is much larger than that of numerical identifiers.

For this reason, our model relies exclusively on numbers: we enumerate every block and entity, so

that they are uniquely identified by an integer id, and represent the edges by the concatenation of

the adjacent entity ids. Their weights are naturally represented by real numbers.

3.4.2 Stage 1: Block Filtering

The first stage applies Block Filtering to the input block collection in order to reduce the size of the

blocking graph. Central to this procedure is the sorting of blocks in ascending order of cardinality,

from the smallest to the largest one. Depending on how this sorting is performed, we present two

possible approaches for adapting Block Filtering to MapReduce.

The basic strategy orders once and globally all input blocks, using two MapReduce jobs that

exploit the automatic sorting of the input to the reduce function. The advanced strategy employs

a single MapReduce job that orders locally the blocks associated with every entity at the cost of

repeating some computations across the independent nodes.

For both strategies, every (key, value) pair of the input corresponds to a block bk ; the key

stands for the id of the block, while the value contains the list of the entity ids placed in bk : key=k

and value={i , j , . . . ,m} for bk ={ei ,e j , . . . ,em}. The output of both strategies comprises the N most

important blocks associated with the individual entities. Every key denotes the id of an entity ei ,

while the corresponding value contains the list of ids of the blocks still containing ei : key=i and

value=B ′
i .
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Basic Strategy

This strategy employs two MapReduce jobs. The first one sorts all blocks globally in ascending

order of cardinality, producing the sorted list Bsor ted . The second job uses Bsor ted in order to

identify the most important blocks for each entity.

The functionality of the first job is outlined in the upper part of Figure 3.3(a). The map func-

tion receives a block id k along with the entities contained in bk . It computes the corresponding

cardinality, ||bk ||, and emits a (||bk ||, k) pair. All pairs are sorted in descending order of their keys

(i.e., cardinalities), before they are forwarded as input to the single reduce function. The reducer

extracts and stores to the disk the values of the sorted input, i.e., the block ids that form Bsor ted .

The pseudo-code interpretation of the second job is presented in the lower part of Figure 3.3(a).

The map function gets the same input as the first job: the id of a block along with the entity ids it

contains. For every entity ei contained in the given block bk , it emits as output a pair (i ,k). MapRe-

duce groups together all pairs having the same key so that the reduce function receives as input

all block ids assigned to a specific entity ei (i.e., key=i , value=Bi ). It loads from the disk the sorted

list of block ids, Bsor ted , and uses it to get the ranking position of every block. The N blocks with

the highest ranking positions form the list of retained block ids B ′
i , which are the emitted as output:

key=i , value=B ′
i .

Advanced Strategy

The rationale behind the advanced strategy is to use a single MapReduce job that provides the

reduce function with the necessary information for sorting the blocks of each entity locally. Its

functionality is outlined in Figure 3.3(b). The map function gets as input the id and the entities

of a block bk and computes its cardinality, ||bk ||. For every entity ei ∈ bk , it emits a pair with the

entity id as the key, while the (composite) value concatenates the id and the cardinality of block

bk : key=i and value=k.||bk ||. The reduce function gathers all blocks associated with an entity ei

along with their cardinality. It sorts them in ascending number of comparisons and extracts the

top N elements from the resulting list to form B ′
i . Similar to the basic strategy, it then emits a pair

(i ,B ′
i ).

Example 3.1. Figure 3.4 illustrates the functionality of the advanced strategy of Block Filtering. For

the three entities e1, e2 and e3 of b1, we emit in the Map phase a pair with each of them as the key

and b1.3 as value, since there are three comparisons in this block. In the Reduce phase, we gather

all four pairs having e1 as key and keep only the top-3 blocks for this entity. Thus, we discard b7

from the blocks of e1.

3.4.3 Stage 2: Preprocessing

The second stage of the parallel Meta-blocking workflow prepares the input that will be processed

by the selected pruning algorithm in the third stage. It plays a crucial role, as its output determines
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b1 e1,e2,e3
… …

b4 e1,e3,e4
... ...

b6 e1,e6,e7,e9
b7 e1,e5,e6,e8,e9
... ...

Key Value

e1 b1.3
e2 b1.3
e3 b1.3
... …

Value

e1 b4.3
e3 b4.3
e4 b4.3
... …

Key

e1 b6.6
e6 b6.6
e7 b6.6
e9 b6.6
e1 b7.10
... …

M
ap

M
ap

Group	  by	  key

e1 b1.3
e1 b4.3
e1 b6.6
e1 b7.10
... …

Value

e2 b1.3
... …

Key

e3 b1.3
e3 b4.3
... …

e1 b1,b4,b6
... …

Reduce

e2 b1
... …

e3 b1,b4
... …

Reduce
ReduceM

ap

Figure 3.4: An example of the advanced strategy for Block Filtering.

the complexity of the pruning algorithm: the more computations are performed by Preprocessing

and are integrated into its output, the simpler is the functionality of the pruning algorithms and

vice versa.

This trade-off gives rise to three different strategies for Preprocessing, which share the same

input (i.e., the outcome of Block Filtering), but differ in their output. The edge-based strategy

explicitly creates the blocking graph, performing all weight computations in order to simplify the

functionality of the pruning algorithm. On the flip side, it involves two MapReduce jobs with high

I/O that store all edges to the disk. The comparison-based strategy defers all weight computations

and simply facilitates them by enriching the input of the pruning algorithms with all the necessary

information. The entity-based strategy facilitates a different approach for weight estimation that

does not require any preprocessing. Thus, it simply receives the output of Block Filtering (i.e., the

block ids retained per entity) and transforms it into a new block collection. Due to their simplicity,

the last two strategies require just one job.

Edge-based Strategy: Explicit Blocking Graph

The pseudo-code interpretation of the edge-based strategy is depicted in Figure 3.5. The first

MapReduce job transforms the output of Block Filtering into a block collection. Its map function

receives as key the id of an entity ei and as value the list of associated blocks, Bi . It swaps values

and keys, emitting for every block bk ∈ Bi a pair (k, i .|Bi |), where k and i are the block and the

entity id, respectively, while |Bi | denotes the number of blocks containing ei after Block Filtering.

The reason is that |Bi | is the cornerstone for most weighting schemes.

The reduce function of the first job groups together all entities contained in a block bk and is

able to reproduce all its comparisons.2 For every comparison between entities ei and e j (ci j ), it

emits the concatenation of their ids as key and some local information X k
i j as value: key=i . j and

2Note that a block with just one remaining entity contains no comparison and, thus, no processing is performed.
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MAP function pseudo-code 

(a) Edge-based strategy 

REDUCE function pseudo-code 

JOB 2 

Identity Mapper. 

 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: list of pieces of information,              

� = {��
	


, ��
	
 , … , ��

	
} 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj>, ��� 

3: compute total weight ��� 
from � 

4: emit( �. �, ��� ); 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, �	  

2: Output 

Key: id of block bk, � 

Value: id of entity ei with number of  

associated blocks, �. |�	| 

3: for each � ∈ �	  loop 

4:      emit( � , �. |�	| ); 

5: end loop 

1: Input  

Key: id of block bk, � 

Value: list of pairs < �. |�	| >, V 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: relevant information, ��
	
 

3: for each �	
 ∈ �� . �����������() loop 

4:      emit( �. �, ��
	
 ); 

5: end loop 

JOB 1 

Figure 3.5: Pseudo-code interpretation of the edge-based Preprocessing strategy, which ex-
plicitly creates the blocking graph.

value=X k
i j . The information in X k

i j is necessary for estimating the corresponding edge weight

and varies, depending on the selected weighting scheme. For ARCS, it comprises the cardi-

nality of block bk (i.e., X k
i j =||bk ||), while for all other schemes it concatenates |Bi | and |B j | (i.e.,

X k
i j =|Bi |.|B j |); for CBS, though, it can be empty.

The second job consists of an identity mapper and a reduce function that estimates the weight

for every edge of the blocking graph. The value list of its input, V , clusters together all local infor-

mation pertaining to the edge <vi , v j> that is specified by the input key. Based on them, the

reducer computes the corresponding edge weight wi j from Equations 3.3-3.6. For example, we

simply have wi j = |V | for CBS, as the size of the value list equals the number of common blocks,

|Bi j |. As output, the reducer emits a pair with the id and the weight of the edge: key=i . j and

value=wi j .

There is an exception to this strategy, as the EJS weighting scheme requires two additional

jobs to be applied to the output of JS. Their goal is to estimate the node degree |vi | of every entity

ei . The first job counts the edges that are adjacent to each entity, while the second one reassembles

all neighboring entities in order to estimate the weight of their adjacent edge according to EJS
formula (Equation 3.6). Their functionality is outlined in Figure 3.6.

The first job continues from the Preprocessing of the JS weighting scheme. Its map function

receives as input an individual edge from the respective blocking graph; the concatenated ids of

the adjacent entities form the key, while the value contains the corresponding edge weight. The

mapper performs no processing, but just emits two pairs: for each of the two entities, it uses its id

as the key and concatenates the id of the other entity with the edge weight to form the value.

In this way, the reduce function gathers all edges that correspond to a specific entity ei . Its in-

put value actually comprises a list with the ids of all neighboring entities appended to the weight

of the respective edge. The size of this list equals the degree |vi | of node vi that corresponds
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Blocking Graph for EJS 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: Jaccard sim. edge weight, ���� 

2: Output 

Key: entity id of the one node, � 

Value: entity id of the other node with the  

Jaccard similarity, �. ����  

3: emit(	�	, �. ���� 	); 

4: emit(	�	, �. ���� ); 

1: Input  

Key: id of entity ei, � 

Value: list of pairs < �. ���� >, 	 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: their Jaccard sim. with the node  

degree of ni, 	���� . |��| 

3: for each �. ���� ∈ 	 loop 

4:      emit( �. �, 	���� . |	| );  

5: end loop 

Identity Mapper. 

 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: a pair < 	���� . |��| , 	���� . |��| > 

2: Output 

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj> ,	�� 

3: �� =	����∙ 	 log 	� / |��| ∙ 	 log 	� / |��|; 

4: emit( �. �, �� ); 

MAP function pseudo-code REDUCE function pseudo-code 

JOB 1 

JOB 2 

(a) Basic strategy 

Figure 3.6: Pseudo-code interpretation of the edge-based Preprocessing strategy for the
EJS weighting scheme.

to ei . The reducer emits this information so that the corresponding EJS weights can be com-

puted in the second job: for each of the neighboring entities e j , it emits a pair with key=i . j and

value=JSi j .|vi |.
The second job involves an identity mapper so that the reducer gathers both values that per-

tain to an individual edge <vi , v j>, namely JSi j .|vi | and JSi j .|v j |. Having this information, the

EJS weight can be derived from the Equation 3.6. This forms the output value, while the ids of the

adjacent entities form the output key.

Comparison-based Strategy: Implicit Blocking Graph

This strategy creates the blocking graph implicitly: it enriches the description of the input block

collection with the information that is required for detecting all edges and estimating their weights

according to the selected scheme. The key to this approach is the idea that every edge <vi , v j> of

the blocking graph G corresponds to a non-repeated comparison ci j in the block collection B .

A comparison ci j in bk is non-repeated only if it satisfies the Least Common Block Index con-

dition (LeCoBI for short). That is, if the id of bk equals the least common block id of the entities ei

and e j : k = mi n(Bi ∩B j ) [79]. To assess the LeCoBI condition for two entities ei and e j , we need

to compare the lists of associated blocks, Bi and B j ; for higher efficiency, their elements should be

sorted in ascending order of block ids. The comparison-based strategy integrates this information

to its output, so that the pruning algorithms carry out all edge and weight computations in the

third stage.

This functionality is performed by one MapReduce job, which is outlined in Figure 3.7. The

map function receives as input the outcome of Block Filtering: the id of an entity ei as key and

the associated blocks Bi as values. First, it sorts Bi in ascending order of block ids. Then, for

every block bk ∈ Bi , it emits its id as the key, while the value concatenates the id of ei with the
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(b) Comparison-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, ��  

2: Output 

Key: id of block bk, � 

Value: id of entity ei and associated  

block ids, �. ��  

3: sort ��  in ascending order of block ids 

4: for each � ∈ ��  loop 

5: emit( � , �. ��  ); 

6: end loop 

1: Input  

Key: id of block bk, � 

Value: list of pairs < �. ��  >, � 

2: Output 

Key: input key 

Value: input value 

3: if ( 2 ≤ |�| ) 

4: emit( � , V ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 3.7: Pseudo-code interpretation of the comparison-based Preprocessing strategy,
which creates the blocking graph implicitly, enriching the description of the in-
put block with the necessary information for weight estimation.

b1	  
[e1,b1,b4,b6],	  
[e2,b1],	  
[e3,b1,b4],...	  

…	   …	  

Key Value 

b4	  
[e1,b1,b4,b6],	  
[e3,b1,b4],	  
[e4,b4,b5],...	  

...	   ...	  

G
roup	  by	  key	  

M
ap	  

M
ap	  

e1	   b1,b4,b6	  

e2	   b1	  
e3	   b1,b4	  
e4	   b4,b5	  
...	   ...	  

Key Value 

b1	   [e1,b1,b4,b6]	  

b4	   [e1,b1,b4,b6]	  

b6	   [e1,b1,b4,b6]	  

b1	   [e2,b1]	  
...	   …	  

Value 

b1	   [e3,b1,b4]	  

b4	   [e3,b1,b4]	  

b4	   [e4,b4,b5]	  

b5	   [e4,b4,b5]	  
...	   …	  

Key Key Value 

b1	   [e1,b1,b4,b6]	  

b1	   [e2,b1]	  

b1	   [e3,b1,b4]	  
...	   …	  

b4	   [e1,b1,b4,b6]	  

b4	   [e3,b1,b4]	  

b4	   [e4,b4,b5]	  
...	   …	  

b5	   [e4,b4,b5],...	  
...	   ...	  

Reduce	  

b5	   [e4,b4,b5]	  
...	   …	  

Reduce	  
Reduce	  

b6	   [e1,b1,b4,b6],.
..	  

...	   ...	  

Reduce	  

b6	   [e1,b1,b4,b6]	  
...	   …	  

Figure 3.8: An example of the comparison-based strategy for Preprocessing.

entire sorted list Bi : key=k, value=i .Bi . MapReduce then reassembles all blocks, by grouping

together all pairs with the same key. The reduce function receives as input the entity list of a

specific block along with the blocks that are associated with every individual entity; provided

that there are at least two entities, it emits the same (key, value) pair as output: key=k and

value={i .Bi , j .B j , . . . ,m.Bm}.

Example 3.2. Figure 3.8 provides an example of this functionality. For each block b1, b4 and b6, to

which e1 belongs, we emit a pair with their block ids as key and e1, concatenated with b1,b4,b6 as

value in the Map phase. In the Reduce phase, all the entities of b1 are grouped together (i.e., e1, e2

and e3), each accompanied with the block ids in which it belongs. We just concatenate them and

emit them as the value of the key=b1.

There are two exceptions to this functionality, because the weighting schemes ARCS and EJS
need additional information for estimating their edge weights. The former requires the cardinality

of every block contained in Bi . This can be easily embedded into the output of the previous stage

(Block Filtering), such that for ARCS, the input is not only a list of associated blocks for each

entity, but also the cardinality of each such block. Then, the rest of the process is the same as in

the other weighting schemes. In contrast, the information required by EJS can only be derived

from an elaborate processing (see [33] for details).
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(c) Entity-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of associated block ids, ��  

2: Output 

Key: id of block bk, � 

Value: id of entity ei, � 

3: for each � ∈ ��  loop 

4: emit(	�	, � ); 

5: end loop 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, �� = {�, �, … ,�} 

2: Output 

Key: input key 

Value: input value 

3: if ( 2	 ≤ |��| ) 

4: emit( � , ��  ); 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 3.9: Pseudo-code interpretation of the entity-based strategy for Preprocessing, which
does not use the blocking graph.

Entity-based Strategy: No Blocking Graph

This strategy is fundamentally different from the others in the sense that it does not require the

blocking graph. Its functionality revolves around the individual entities such that for every entity

ei , it estimates the weights of its co-occurring entities with a single iteration over the contents of

the associated blocks Bi . To facilitate this procedure, the Preprocessing stage simply transforms

the output of Block Filtering into a block collection.

This is performed with a single MapReduce job that is presented in Figure 3.9. The map func-

tion receives the id of an entity ei as input key and the associated blocks Bi as input value. For

every block bk ∈ Bi , it simply emits its id k as the key and the id of the entity i as value. Then,

MapReduce groups together all pairs with the same key, thus reassembling all blocks. In more de-

tail, the reduce function receives as input key the id k of a specific block bk = {ei ,e j , . . . ,em}, while

the input value comprises the ids of the corresponding entities: value={i , j , . . . ,m}. Without any

further processing, it emits the same (key, value) pair as output.

3.4.4 Stage 3: Pruning (WNP)

WNP refines the blocking graph by processing every node neighborhood independently of the

others. For every node, it discards the incident edges that have a weight lower than the average

edge weight of the neighborhood. We propose three parallelization strategies for this algorithm –

one for every Preprocessing strategy. They all require a single MapReduce job. You can refer to [33]

for the rest of the pruning schemes, as well as to [37] for the scalable top-k MapReduce algorithm,

used for the implementation of CEP.

Edge-based Strategy

The functionality of this strategy is outlined in Figure 3.10 – together with the comparison-based

strategy. They share the same reducer, but they differ in the mapper, due to the different input

they receive.

In more detail, Figure 3.10(a) depicts the edge-based map function. It takes as input key the id

of an individual edge <vi , v j> (i . j ) and as input value the corresponding weight (wi j ). To ensure
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MAP function pseudo-code 

1: Input  

Key: entity ids defining edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	��� 

2: Output 

Key: entity id of the one node, � 

Value: entity id of the other node with  

the edge weight,	�. ��� 

3: emit( �, �. ��� ); 

4: emit( �, �. ��� ); 

(a) Edge-based strategy 

1: Input  

Key: id of block bk, � 

Value: � = {�. 
� . �� , �. 
� . �� , … } 

2: Output 

Key: entity id of the one node, � 

Value:		�. ��j 

3: for each ��� ∈ �� . �����������() loop 

4: if ( ������ !"�!��# ���  =  true ) 

5:       compute ���	
from 
� . ��, 
� . �� ; 

6:        emit(	�	, �. ��� ); emit(	�	, �. ��j ); 

8: end loop 

(b) Comparison-based strategy 

1: Input  

Key: id of entity ei, � 

Value: list of of pairs < �. ��� >, � 

2: Output 

Key: entity ids of retained edge <ni,nj>, �. � 

Value: total weight of <ni,nj>,	��� 

3: �� = $ #% ��& �$'#(�); 

4: for each �. ��� ∈ � loop 

5:  if ( ��� > �� )  

6:  emit( �. � , ��� ); 

7: end loop 

REDUCE function pseudo-code 

Figure 3.10: Pseudo-code interpretation of (a) the edge-based and (b) the comparison-based
strategy for WNP. They share the same reduce function.

that each reducer gathers all edges adjacent to a specific node, it emits two (key, value) pairs

– one for each of the adjacent entities. In each case, the key contains one of the entity ids (i or j ),

while the value concatenates the other entity id with the edge weight ( j .wi j or i .wi j ).

The reduce function in Figure 3.10 receives as input key the id i of an entity ei that defines

a neighborhood in the blocking graph G . Its input value comprises the adjacent node/entity ids

concatenated with the respective edge weights. From them, it estimates the average weight of the

neighborhood, w̄i , in Line 3. Then, in Lines 4-7, it iterates over all adjacent edges and for every

edge <vi , v j> with a weight higher than the average one, it emits a pair (i . j , wi j ).

Comparison-based Strategy

The map function of this strategy appears in Figure 3.10(b). It operates on the enriched descrip-

tion of an individual block bk : the input key contains its id (k), while the input value is of the form

value = {i .Bi .Xi , j .B j .X j , . . .}; that is, it comprises the corresponding entity ids, the blocks ids asso-

ciated with each entity and the local information required by the selected weighting scheme. For

EJS, this information contains the node degree (Xi =|vi |), for ARCS it contains the cardinalities of

the blocks in Bi (Xi ={||b j || : b j ∈ Bi }) and for all other weighting schemes it is empty. The mapper

iterates over all comparisons in the given block (Line 3). For every non-repeated comparison, it

computes the corresponding edge weight from the associated block ids and the local information

Xi of the weighting scheme (Lines 4-5). Then, it emits two (key, value) pairs, one for each of

the adjacent entities (Line 6) – just like the mapper in Figure 3.10(a).

Example 3.3. Figure 3.11 shows an example that applies this functionality in combination with

the JS weighting scheme to the output of Figure 3.8. In the map function, for the comparison e1-e2,

we emit the pairs (e1,e2.1/3) and (e2,e1.1/3). In the reduce function, we group all the pairs with

key=e1 and calculate, for this group, a local weight threshold (e.g., 1/3). Then, for the group of e1,
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b1	  
[e1,b1,b4,b6],	  
[e2,b1],	  
[e3,b1,b4]	  

…	   …	  

b4	  
[e1,b1,b4,b6],	  
[e3,b1,b4],	  
[e4,b4,b5]	  

...	   ...	  

Key Value 

M
ap	  

M
ap	  

e1	   e2.1/3	  

e2	   e1.1/3	  

e1	   e3.2/3	  

e3	   e1.2/3	  

e2	   e3.1/2	  

e3	   e2.1/2	  
...	   …	  

Key Value 

e1	   e4.1/4	  

e4	   e1.1/4	  

e3	   e4.1/3	  

e4	   e3.1/3	  
...	   …	  

G
roup	  by	  key	  

e1	   e2.1/3	  

e1	   e3.2/3	  

e1	   e4.1/4	  
...	   …	  

Key Value 

e2	   e1.1/3	  

e2	   e3.1/2	  
...	   …	  

e3	   e1.2/3	  

e3	   e2.1/2	  

e3	   e4.1/3	  
...	   …	  

e4	   e1.1/4	  

e4	   e3.1/3	  
...	   …	  

Reduce	  
Reduce	  

Reduce	  
Reduce	  

e1.e3	   2/3	  
...	   …	  

Key Value 

e2.e3	   1/2	  
...	   …	  

e1.e3	   2/3	  

e2.e3	   1/2	  
...	   …	  

e3.e4	   1/3	  
...	   …	  

Figure 3.11: An example of the comparison-based strategy for WNP, using the JS weighting
scheme.

we emit only the pairs with a weight higher than 1/3, i.e., e1-e3, which has a weight of 2/3.

Entity-based Strategy

The outline of this strategy appears in Figure 3.12. Its map function receives as input key the id k

of block bk and as input value the entity ids contained in bk . For every entity ei ∈ bk , it simply

emits its id as key (i.e., key=i ) and the entire block bk as value (i.e., value=bk ). In this way, the

reducer aggregates the co-occurrence bag of entity ei , i.e., the ids of all entities that share at least

one block with ei . The frequency of an entity e j in this bag amounts to |Bi j |, the number of blocks

it shares with ei . This is the core information required by all weighting schemes for estimating the

corresponding edge weight wi j .

Based on this rationale, the reduce function estimates the edge weights using two data struc-

tures, which are initialized in Line 3: the array f r equenci es, which gathers the number of ap-

pearances of each entity, and the set setO f Nei g hbor s, which aggregates the ids of the distinct

co-occurring entities. For every entity in the co-occurrence bag, the reducer updates its frequency

in the array and adds it to the set of neighbors (Lines 4-7). Subsequently, it estimates the weights of

the edges incident to ei from the distinct neighbors in setO f Nei g hbor s (Lines 9-10). At the same

time, it derives the average weight of the neighborhood, w̄ , with the help of two counters (Lines

8 & 11-14). The final loop in Lines 15-19 repeats the estimation of edge weights and retains those

exceeding w̄ ; the ids of their adjacent entities are emitted as keys and their weights as values.

Note that after the loop in Lines 4-7, setO f Nei g hbor s contains the id of the neighborhood’s

center, ei . Given that ei co-occurs with itself in all blocks, its edge weight would be equal (or

close) to 1 for all weighting schemes. To avoid retaining the meaningless comparison ci ,i and to

avoid distorting the weight threshold w̄ , we remove i from setO f Nei g hbor s at the end of the

loop. For ease of presentation, we have excluded this operation from the outline of the reducer in
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 1: Input  

Key: id of entity ei, � 

Value: co-occurrence bag,	�� 

 2: Output 

Key: entity ids of retained edges <ni,nj>, �. � 

Value: total weight of <ni,nj>,	���	
 

 3: frequencies[] ← {}; setOfNeighbors ← {};  

 4: for each � ∈ � loop 

 5: frequencies[ � ]++; 

 6: setOfNeighbors .add( � ); 

 7: end loop 

 8: totalWeight = 0; totalEdges = 0; 

 9: for each � ∈ setOfNeighbors  loop 

10:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

11: totalWeight += ��� ; 

12: totalEdges ++; 

13: end loop 

14: �
	= totalWeight  / totalEdges ; 

15: for each � ∈ setOfNeighbors  loop 

16:  ��� = getWeight (	�	, �	, frequencies[	� ] ); 

17: if (	�
 < ��� ) 

18:  emit ( �. � , ��� ); 

19: end loop 

 

1: Input  

Key: id of block bk, � 

Value: list of entity ids, � = {�, �, … ,�} 

2: Output 

Key: id of entity ei, � 

Value: input value 

3: for each � ∈ �  loop  

4: emit ( �	, 	� ); 

5: end loop 

MAP function pseudo-code REDUCE function pseudo-code 

Figure 3.12: Pseudo-code interpretation of the entity-based strategy for WNP.

Figure 3.12.

For the same reason, we have simplified the use of the function g etW ei g ht () in Lines 10 and

16. In practice, its arguments depend on the selected weighting scheme:

• For CBS, it simply needs the array of frequencies as input, since wi j = f r equenci es[ j ].

• For ECBS and JS, it additionally requires the number of blocks containing ei and e j . This

information is provided by an array that contains the number of blocks for all input entities. Due

to its small size, this array can be loaded in memory in all available nodes.

• For EJS, g etW ei g ht () additionally requires the node degree corresponding to every entity.

This is equal to the number of non-repeated comparisons involving every entity and is computed

through an additional MapReduce job. This job has almost the same functionality as Figure 3.12,

but its reduce function stops at Line 7, only emitting the size of the set of neighbors for each entity

(without counting the frequencies).

• For ARCS, g etW ei g ht () requires only the cardinality of the blocks shared by every pair

of entities, and not the frequency of their co-occurrence. Given that the reducer receives a list

of whole blocks in its input value, the cardinality of each such block and the weight of each co-

occurring entity can be directly computed in the first for loop (starting at Line 4). The rest of the

process remains the same.

3.5 Load Balancing

A typical bottleneck in MapReduce algorithms is the unbalanced workload that is assigned to the

map or reduce tasks in each MapReduce job. In practice, data follow a skewed distribution, which

results in groups of data being significantly larger than others. The map or reduce tasks that pro-

cess these larger groups need substantially more time to finish, determining the efficiency of the

whole job. Load balancing, indeed, affects both phases of the MapReduce job, as the reduce phase

cannot start processing the output of the map phase, until all map tasks have finished, and the job
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is not finished unless all reduce tasks are completed.

3.5.1 Default Load Balancing

The default load balancing implementation of Hadoop is a hash-based algorithm, which assigns

each group of data, determined by the output key of the map phase, to a bucket in a hash table.

The buckets correspond to data partitions, each of which is input to a distinct reduce task. Con-

sequently, the number of data partitions is equal to the number of reduce tasks. Notice that a

reduce task can be assigned to more than one keys, since a bucket in a hash table corresponds to

more than one hashed keys. This means that the default hashing-based load balancer of Hadoop,

given a good hash function, can achieve a very good distribution in the number of keys that each

partition (reduce task) will receive. However, in skewed data, this does not guarantee a balanced

workload.

For example, assume that we have p = 10 partitions, i = 100 distinct keys k1, ...,ki , each corre-

sponding to a word, ordered in descending frequency, and each key ki has |ki | values, where the

distribution of |ki | abides by Zipf’s law. Assuming we have 1,000 values in total, i.e.,
∑ |ki | = 1,000,

then |k1| = 1,000 · 1∑
i 1/i ≈ 192, |k2| = |k1|/2 ≈ 96, . . . , |k100| = |k1|/100 ≈ 2. The default balancer of

Hadoop would ideally assign i /p = 10 keys per partition. Thus, the partition that will receive the

most frequent key k1, associated with 1/5 of the total values, will also receive 9 more keys, and it is

highly likely that this partition will be one of the slowest to process.

In the case of entity resolution algorithms, the imbalance of the workload is even greater, as

the keys typically correspond to block ids, and the values correspond to entities in those blocks,

which have to be compared. Hence, the workload of each reduce task is quadratic to the number

of input values it receives. In the previous example, the total number of comparisons would be∑ |ki | · (|ki |−1)/2 ≈ 64,500, while the biggest block k1 would yield 18,336 comparisons, i.e., ap-

proximately 1/3 of the total comparisons.

3.5.2 MaxBlock Load Balancing

To address this issue, we developed a specialized algorithm for load balancing, named MaxBlock.

Our goal is to split the input blocks into partitions with a balanced number of comparisons. In

order to ensure better results, the number of partitions is determined dynamically. Intuitively, our

load balancing strategy is to assign the biggest block to a partition of its own and set the number

of comparisons in this partition as the upper threshold of comparisons for every other partition.

Then, we create a new partition and keep adding blocks to this new partition, until this threshold

is reached. When the threshold is reached, we create a new partition, and continue this process

until all blocks have been assigned to a partition.

The functionality of MaxBlock is outlined in Algorithm 1. It sorts the block collection in de-

scending cardinality (Line 1) and removes the first and largest block, b0 (Line 2). The maximum

computational cost of each partition, maxCost , is set equal to the cardinality of b0 (Line 3). A par-
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Algorithm 1: MaxBlock
Input: B the current block collection
Output: P the set of block partitions

1 B ′ ← sort(B); // sort in descending cardinality
2 b0 ← B ′.remove(0); // remove largest block
3 maxCost ← ||b0||; // max comparisons per partition
4 P0 ← {b0}; // first partition
5 Q ← {P0}; // priority queue, sorting partitions in ascending cost
6 while B ′ , {} do // while not empty
7 bi ← B ′.remove(0); // remove first block
8 Phead ← Q.poll(); // get lowest cost partition
9 tot alCost ← ||bi || + Phead .currentCost();

10 if tot alCost ≤ maxCost then
11 Phead ← Phead ∪ {bi }; // add to partition
12 else
13 Pi ← {bi }; // create new partition
14 Q.add(Pi ); // add to queue

15 Q.add(Phead ); // place back to queue
16 if B ′ = {} then // if all blocks were processed
17 Phead ← Q.poll(); // get smallest partition
18 if isRemnantCluster(Phead ) = true then
19 B ′ ← B ′ ∪ Phead ; // re-process its blocks
20 maxCost ← maxCost + Phead .currentCost() / |Q|;
21 else
22 Q.add(Phead );

23 return Q;

tition is created for b0 (Line 4) and placed in a priority queue Q, keeping partitions in ascending

order of comparisons (Line 5). Subsequently, our algorithm iterates over the remaining blocks and

examines whether the current block fits into the partition at the head of the queue, Phead (Lines

6-10); that is, it checks whether their combined cardinality is lower than maxCost . If so, the cur-

rent block is added to Phead (Line 11); otherwise, it is placed in a new partition that is added to the

queue (Lines 13-14). Then, Phead is placed back to Q (Line 15).

Example 3.4. Figure 3.13 abstractly presents the functionality of MaxBlock. After sorting the input

blocks in descending order (Figure 3.13 (a)), we create a new partition and place the largest block

(block 1) in this new partition (Figure 3.13 (b)). The number of comparisons in this partition sets

the threshold for the maximum number of comparisons allowed in the remaining partitions. Then,

moving to the next biggest block (block 2), since it doesn’t fit in the existing partition, as it violates

the maximum comparisons threshold (Figure 3.13 (c)), we create again a new partition and place

block 2 in it (Figure 3.13 (d)). The same process continues (Figure 3.13 (e)-Figure 3.13 (i)), until all

the blocks have been placed in a partition. At the end, the number of comparisons per partition is

similar.
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Figure 3.13: An example of running MaxBlock for load balancing.

As we demonstrate in the experimental evaluation, all partitions share practically the same

computational cost, except for the smallest one, which merely covers a small fraction of maxCost .

Yet, it contains the vast majority of the blocks, with each one involving a handful of comparisons.

This is called remnant cluster and it corresponds to the tail of the power-law distribution of block

cardinalities. To achieve a perfectly flat distribution of costs, our algorithm distributes the blocks

of the remnant cluster to the other partitions.

This functionality is performed by the second if statement in Algorithm 1. Line 16 checks

whether all blocks have been placed into a partition, thus terminating the first iteration. Lines 17

and 18 examine whether the smallest partition is a remnant cluster, i.e., whether it contains more

than 50% of all blocks and their total computational cost is lower than 90% of maxCost . In case

both conditions are satisfied, the blocks of the remnant cluster are put back into the processing list

(Line 19); in addition, maxCost is updated so that their computational cost is evenly split among

the other partitions (Line 20). In case of a negative check, the smallest partition is placed back into

the priority queue and the process is terminated.

On the whole, the time complexity of MaxBlock is determined by the sorting of blocks and the

use of the priority queue, whose operations cost O(log |B |) per block. Therefore, the overall time

complexity is O(|B | log |B |), which means that MaxBlock scales well to large block collections, in-

volving a negligible overhead, as shown in Section 3.6. For example, the actual cost of sorting the
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blocks is the cost for sorting up a few million of integer values, each representing a block cardinal-

ity. This operation does not require more than a few seconds.

MaxBlock Implementation

The results of MaxBlock are fed to the Partitioner class, which is responsible for assigning a reduce

task to each key. We have overridden the default Partitioner to just send each key to the partition

that MaxBlock has defined for this key. This approach is primarily used to balance the functions

with quadratic time or space complexity. The former case involves functions that iterate over all

comparisons in a block. For the edge-based strategy, this is the reduce function in the first job

for Stage 2 - Preprocessing (Figure 3.5). For the comparison-based strategy, this case applies to all

map functions for Stage 3 - Meta-blocking (e.g., Figure 3.10(b)).

Quadratic space complexity appears in the case of the entity-based strategy, where the bot-

tleneck is the I/O overhead of its map function in Stage 3: the size of its output is quadratic with

respect to number of entities in the input value, since the whole block is emitted for each of the

contained entities. As a result, most mappers have to write only a few intermediate key-value pairs,

while those that deal with the bigger blocks have to emit a much larger bulk of data. To address this

issue, we use MaxBlock to balance the output of entity-based Preprocessing (Figure 3.9). Our goal

is to split the blocks into partitions with equal size of representation in bytes. This can be easily

done by redefining the cost of a block as the number of bytes that are required for the compressed

representation of its entities (i.e., after sorting them in ascending id and replacing every id by its

difference with the previous one).

3.6 Experiments

The goal of our experimental analysis is threefold: (i) to demonstrate that our approaches scale

well to large block collections stemming from Web data, (ii) to compare the relative time efficiency

of the edge-, comparison- and entity-based strategies, and (iii) to assess the relative time efficiency

of the various Meta-blocking configurations.

We begin with the setup of our experimental analysis in Section 3.6.1. In Section 3.6.2, we

present a comparison between the default balancer and MaxBlock. In Section 3.6.3, we show the

time efficiency of all strategies for the four pruning schemes in combination with the five weight-

ing schemes; we also discuss their relative time efficiency in view of a similar comparison in the

case of the serialized workflow. Section 3.6.4 analyzes the scalability of the comparison-based

and entity-based strategies, while Section 3.6.5 elaborates on the qualitative performance of the

Meta-blocking techniques. We conclude with a discussion on the findings of our experiments in

Section 3.6.6.
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Table 3.2: The datasets employed in our experiments.
Ddbpedi a D f r eebase

D1 D2 D1 D2

Entities |E | 1,190,733 2,164,040 3,157,726 4,204,942
Triples 1.69·107 3.50·107 1.42·108 3.90·107

Attribute Names 30,757 52,554 37,825 11,108
Triples per Entity 14.19 16.18 44.84 9.29
Matches 892,579 1,347,266
BF Comparisons 2.58·1012 1.33·1013

3.6.1 Setup

All approaches were implemented in Java, version 7, using Apache Hadoop3 version 1.2.0 on a

cluster4 with 15 Ubuntu 12.04.3 LTS servers, one master and 14 slaves, each having 8 AMD 2.1

GHz CPUs and 8 GB of RAM. Each node can run 4 map or reduce tasks simultaneously, assigning

1024 MB to each task. The available disk space amounted to 4 TB and was equally partitioned

among the 15 nodes. For Load Balancing, we employed the default mechanism of Hadoop for the

map and reduce functions that involve a processing of linear complexity. For those involving a

quadratic complexity, we distributed the relevant blocks to the available nodes using MaxBlock,

as explained in Section 3.5.2.

Datasets. To evaluate the performance of our approaches, we employ the largest datasets that

have been applied to Meta-blocking. Their technical characteristics appear in Table 3.2.

Ddbpedi a involves entities stemming from two snapshots of the DBpedia5 Infoboxes in English,

which chronologically differ by 2 years – D1 corresponds to version 3.0rc and D2 to version 3.4. In

total, they comprise 3.3 million entities, of which less than 900,000 are common (i.e., they have

the same URL). This dataset has been previously employed in the literature [78, 80–82, 92]. The

second dataset, D f r eebase , contains entities from the Billion Triple Challenge 20126. In this case,

D1 encompasses the entities from DBpedia and D2 the entities from Freebase7. For both KBs, we

have disregarded all URIs that appear in just one triple so as to avoid noisy entity descriptions. In

total, there are 7.4 million entities, of which 1.3 million are common according to the owl:sameAs

statements.

Given that both datasets comprise two individually clean (i.e., duplicate-free) entity collec-

tions, D1 and D2, they are inherently suitable for Clean-Clean ER. In our experiments, we use both

datasets for Dirty ER, as well, by merging D1 and D2 into a single dirty entity collection that con-

tains matches in itself. The ground truth is provided by existing owl:sameAs links between Free-

base and DBpedia for D f r eebase . Since Ddbpedi a , involves two different snapshots of DBpedia, we

3They are also compatible with more advanced frameworks, such as Apache Spark and Apache Flink.
4provided by GRNET’s ∼okeanos (https://okeanos.grnet.gr)
5http://dbpedia.org
6https://km.aifb.kit.edu/projects/btc-2012
7https://www.freebase.com
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Table 3.3: The block collections that were given as input to Meta-blocking.
Ddbpedi a D f r eebase

DBC DBD F RC F RD

Task Clean-Clean ER Dirty ER Clean-Clean ER Dirty ER
|B | 1,239,424 1,499,534 1,309,145 4,522,222
||B || 4.23·1010 8.00·1010 1.05·1011 2.19·1011

BPE 15.30-16.08 14.79 75.55-4.43 40.12
Recal l 0.999 0.999 0.979 0.944
Pr eci si on 2.11·10−5 1.12·10−5 1.26·10−5 5.82·10−6

consider matching descriptions those having the same subject URI.

We used token blocking [78, 81] in order to derive overlap-positive block collections from the

entity descriptions of the two datasets. We also applied Block Purging [81] to the original blocks in

order to discard the extremely large ones that contain almost half the input entities. The technical

characteristics of the resulting blocks appear in Table 3.3. In total, we have four block collections,

two for each ER task, that vary significantly in their characteristics, for example, in the number of

blocks per entity (BPE).

Measures. To assess the effectiveness and efficiency of the (restructured) block collections, we

employ the same measures as the ones in Chapter 2, i.e., Recall, Precision, RR, and H3R. To assess

the time efficiency of (Meta-)blocking methods, we use the Overhead Time (OT i me). This is the

time in minutes that intervenes between receiving an overlap-positive block collection as input

and returning the restructured blocks as output. The lower its value is, the more time-efficient is

the corresponding method.

3.6.2 Load Balancing

In this section, we examine the performance of load balancing with respect to the computationally

most intensive functions of the three strategies for parallel Meta-blocking, i.e., the functions with

quadratic time or space complexity.

Remember that quadratic time complexity appears in the reduce function of the first Prepro-

cessing job for the edge-based strategy (see Figure 3.5) as well as in all map functions of Stage 3

for the comparison-based strategy (see Figure 3.10(b)). All these functions iterate over all compar-

isons in the input blocks in order to estimate the corresponding edge weights. As a result, load

balancing aims to split the original block collection into disjoint partitions with (ideally) the same

partition cardinality, i.e., the same total number of comparisons in the blocks of the partition;

every partition is then assigned to one of the available nodes for its processing.

We compare the performance of MaxBlock with two baseline methods: the default balancer

of Hadoop and PairRange. To compare the two baseline methods with MaxBlock, we consider

the distribution of the partition cardinalities they produce. We actually summarize these distri-

butions through their minimum, maximum, median and mean partition cardinalities. The closer
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Table 3.4: The distribution of partition cardinalities produced by the default load balancer
of Hadoop, PairRange and MaxBlock.

Partitions Min Card. Max Card. Median Card. Average Card. St. Dev. Card.

DBC

Default 223 4.18·107 8.20·107 5.83·107 5.87·107 7.59·106

PairRange 442 2.71·107 2.71·107 2.71·107 2.71·107 0.48
MaxBlock 442 2.71·107 2.71·107 2.71·107 2.71·107 0.48

DBD

Default 223 7.88·107 1.48·108 9.59·107 9.68·107 9.98·106

PairRange 378 5.74·107 5.74·107 5.74·107 5.74·107 0.19
MaxBlock 378 5.74·107 5.74·107 5.74·107 5.74·107 0.19

F RC

Default 1,674 3.21·104 2.35·108 2.02·107 3.14·107 3.01·107

PairRange 2,042 1.45·107 1.45·107 1.45·107 1.45·107 0.48
MaxBlock 2,042 1.45·107 1.45·107 1.45·107 1.45·107 0.48

F RD

Default 1,119 9.81·106 9.81·107 9.01·107 5.84·107 4.64·107

PairRange 1,735 3.76·107 3.76·107 3.76·107 3.76·107 0.27
MaxBlock 1,735 3.76·107 3.76·107 3.76·107 3.76·107 0.27

these measures are to each other, the more balanced is the workload assigned to each node. We ap-

plied all approaches to the input of Stage 2 of the parallelized workflow, i.e., after applying Block

Filtering to the original block collections (see Figure 3.2(b)). The outcomes of our experiments

appear in Table 3.4.

Note that PairRange receives the number of ranges (partitions) as input from the user. This

requires the user to manually inspect the data at hand, which is cumbersome. In our experiments,

we gave PairRange an unfair advantage by using the same number of ranges as those in MaxBlock.

As a result, we observe that the two algorithms produce identical sets of partitions. Most impor-

tantly, though, their partitions exhibit a practically constant distribution of cardinalities across all

datasets: all four measures have identical values, while the standard deviation of the distribution

is lower than 1. This means that the partitions differ by a handful of comparisons in the worst

case.

In contrast, the default balancer yields distributions with much larger variance. For DBC and

DBD , it yields a normal distribution, as the median and the average cardinalities almost coincide,

lying close to the middle of the maximum and the minimum ones. The standard deviation is

an order of magnitude lower than the other measures, thus indicating minor differences in the

computational cost of the various partitions. However, the performance of the default balancer

aggravates in the case of F RC and F RD , where the standard deviation is almost equal to the average

cardinality. Another indication is that the difference between the minimum and the maximum

cardinality raises to 4 and 1 orders of magnitude, respectively. Their medians suggest that the

distribution of F RC is dominated by partitions smaller than the mean cardinality, and vice versa

for F RD .

These patterns indicate that serious bottlenecks are expected to rise in the case of the default

load balancer of Hadoop. For this reason, we did not measure the actual running time it yields.
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Neither do we present the running time of PairRange. The reason is that it is almost identical with

that of MaxBlock, which appears in Section 3.6.3. In fact, PairRange is slower than MaxBlock by a

couple of minutes, due to the higher overhead it involves: to adapt it to the functions of quadratic

time complexity, an additional MapReduce job is required for both the edge- and the comparison-

based strategy.

In more detail, we can integrate PairRange into the edge-based strategy by modifying the first

reduce function of Figure 3.5 so that a global counter estimates the total number of comparisons,

while the input is emitted without any further processing. Thus, the map function of a second, new

job receives as input an individual block and applies the mapper of PairRange to it. The second

reducer receives a balanced comparison range as input and estimates the corresponding edge

weights (i.e., it applies the reduce function of Job 1 in Figure 3.5). Finally, the third job applies Job

2 of Figure 3.5 without any modifications.

For the comparison-based strategy, PairRange needs to extend the reduce function of Prepro-

cessing in Figure 3.7 so that it estimates the total number of comparisons. Then, we need to add a

new MapReduce job to every pruning algorithm; the map function receives individual blocks and

applies the mapper of PairRange to them, while the reduce function receives a balanced com-

parison range as input and applies the functionality of the map functions in Figure 3.10(b),i.e., it

estimates the corresponding edge weights. Finally, a second MapReduce job is required for every

pruning algorithm; it consists of an identity mapper and the reduce functions in Figure 3.10(b).

Regarding the entity-based strategy, the goal of load balancing is to address the quadratic

space complexity that appears in all map functions of Stage 3 (see Figure 3.12).This can be achieved

by balancing the output of Preprocessing in Figure 3.9. Yet, among the three load balancing mech-

anisms, only the default one provided by Hadoop applies to this task without any modifications.

As explained in Section 3.5.2, MaxBlock needs to adopt a new cost function, which expresses the

disk space that is occupied by the compressed representation of the entities contained in every

block.

However, PairRange cannot consider alternate cost functions, as it is inherently crafted for bal-

ancing comparisons. To adapt it to the entity-based strategy, we need to modify its functionality

so that every block is entirely contained in a single comparison range (partition). In other words,

we need to ensure that the comparisons of no block are spread across multiple partitions; other-

wise, we have to alter the functionality of the entity-based mappers of Stage 3, which is out of the

scope of this evaluation. To meet this requirement, the number of comparison ranges should be

equal to or less than those of MaxBlock. We actually consider two configurations: using the same

number of partitions as MaxBlock (PairRangeI) and using half the partitions of MaxBlock (Pair-

RangeII). Note that PairRangeI does not necessarily produce the same distributions as PairRange

in Table 3.4, because some blocks are larger than the remaining space in their partition, but are

not broken into smaller chunks.

To evaluate the performance of load balancing for the entity-based strategy, we do not con-

sider the distribution of comparisons among partitions. Instead, we are more interested in the



3.6. Experiments 69

Table 3.5: The wall-clock time (in minutes) of Meta-blocking using the default Hadoop bal-
ancer, the two variations of PairRange, and MaxBlock for the entity-based strat-
egy over DBC , using the CBS weighting scheme across all pruning algorithms.
The overhead of executing each load balancing algorithm, compared to the de-
fault balancing, is common for all pruning algorithms and is included in the wall-
clock times.

Overhead CNP WNP CEP WEP
Default 0 88 73 163 147
PairRangeI 2 77 68 145 130
PairRangeII 1 83 74 156 139
MaxBlock 3 74 65 145 123

compressed representation of blocks in bytes and the corresponding I/O overhead. We indirectly

evaluate this aspect through the overhead time of all entity-based pruning algorithms. Table 3.5

presents the corresponding performance on top of DBC , using the CBS weighting scheme for

each algorithm. The rest of the datasets and weighting schemes yield similar results and are omit-

ted for brevity.

We observe that MaxBlock exhibits the highest overhead, compared to the default balancer,

due to its cost function, which compresses the representations of blocks before clustering them

into partitions. PairRangeII is faster than PairRangeI, due to the lower number of partitions it

involves, while the default balancer has 0 overhead, as it is the baseline of the overhead of the load

balancing algorithms. Regarding the overall time, we observe that MaxBlock consistently provides

the best execution times, with the default balancer being the least efficient one in most cases: it

yields slower times than MaxBlock by 12% (CEP) to 20% (WEP). The two variations of PairRange

fluctuate between these two extremes, with PairRangeI being consistently more efficient, because

the larger number of partitions it employs ensures a more balanced I/O overhead across the nodes.

Note that PairRangeII appears to be less time-efficient than the default load balancer over WNP,

but their difference should be attributed to its execution overhead.

On the whole, we conclude that MaxBlock consistently outperforms the default mechanism

of Hadoop across all parallelization strategies and pruning algorithms, even if it comes with a

small execution overhead, compared to the default balancer. Moreover, MaxBlock is scalable –

O(|B | · log |B |) – and terminates within a few minutes for all datasets, as shown in Table 3.5.

Compared to PairRange, MaxBlock has three advantages: (i) It determines the number of parti-

tions automatically, through a data-driven procedure. Instead, PairRange receives this parameter

as input, requiring the user to specify it, after manually inspecting the data at hand. (ii) For the

edge- and comparison-based parallelization strategies, MaxBlock consistently yields lower overall

execution times than PairRange, as it saves a whole MapReduce job. (iii) MaxBlock is more flex-

ible and generic than PairRange. Thus, it can be easily adapted to the entity-based strategy, by

incorporating a cost function that tackles quadratic space complexity. Instead, PairRange is only
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Table 3.6: The block collections after Block Filtering.
Ddbpedi a D f r eebase

DBC DBD F RC F RD

Blocks |B | 1,239,315 1,499,422 1,308,970 4,521,129
Block comparisons ||B || 1.20·1010 2.17·1010 2.96·1010 6.53·1010

BPE 12.12-12.68 11.72 57.28-3.86 19.70
Recall 0.998 0.998 0.961 0.907
Precision 7.44·10−5 4.11·10−5 4.38·10−5 1.87·10−5

suitable for balancing functions that suffer from quadratic time complexity, due to the number of

comparisons they process.

3.6.3 Time Efficiency

We applied the three parallelization strategies of all Meta-blocking techniques to the four datasets

2 times and measured the corresponding average Overhead Time. The outcomes are presented

in Table 3.7. Note that the edge-based strategy was inapplicable to F RC and F RD , as its space

requirements exceeded the available 4 TB of disk space. For the other two datasets, we terminated

prematurely the processes that ran for more than 6,000 minutes (100 hours), all of which were still

far from completion. Below, we analyze the performance of each stage of the parallelized workflow

of Meta-blocking.

Stage 1. The goal of this stage is to apply Block Filtering to the input block collection. In

Table 3.7, we observe that the basic and the advanced strategy exhibit practically equivalent over-

head times. Remember that the former involves two jobs that order once and globally the input

blocks, whereas the advanced strategy entails a single job that sorts repeatedly and locally the in-

put blocks. We can conclude, therefore, that the basic strategy offsets the cost of using two jobs

by avoiding the computations that are repeated by the advanced one. However, the main reason

for the equivalent overhead times is the linear time complexity of Block Filtering and its simple

functionality that processes very large block collections at a negligible cost.

It should be stressed here that the exemplary performance of Block Filtering justifies the lack

of a specialized load balancing algorithm for the functions with linear complexity.

Also worth noting is the qualitative performance of Block Filtering, which is presented in Ta-

ble 3.6. We observe that despite its simple functionality, Block Filtering conveys significant en-

hancements in precision at a minor cost in recall. The total cardinality of all block collections is

reduced by more than 60%, while their recall drops by less than 2%. As a result, the precision raises

by 3 times, on average. The number of blocks remains almost intact, but the average number of

blocks per entity (BPE) is significantly reduced. In this way, the computation of edge weights is

accelerated to a considerable extent.

Stages 2 & 3. To compare the parallelization strategies for Meta-blocking on an equal basis, Ta-

ble 3.7 considers the performance of Stages 2 and 3 as a whole; note that the edge-based strategy
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Table 3.7: Overhead Time (OT i me) in minutes for all Meta-blocking techniques across the
four real datasets.

DBC DBD F RC F RD
Block Basic 2 2 3 6
Filt. Adv. 2 2 3 6

Edge Comp. Entity Edge Comp. Entity Comp. Entity Comp. Entity
Based Based Based Based Based Based Based Based Based Based

CEP

ARCS 252 89 184 >6,000 135 431 1,319 1,244 3,359 3,065
CBS 222 55 145 250 87 363 781 1,343 2,556 2,842
ECBS 240 78 210 278 110 487 841 1,652 2,663 3,257
JS 223 60 190 279 94 466 777 1,480 2,574 2,832
EJS 1,996 116 >6,000 >6,000 180 >6,000 1,166 >6,000 4,090 >6,000

CNP

ARCS 554 370 73 >6,000 625 191 2,109 605 3,934 970
CBS 491 301 74 559 527 186 1,488 643 2,514 995
ECBS 555 383 76 639 633 197 1,949 665 3,058 1,187
JS 534 363 83 618 620 210 1,637 656 2,546 977
EJS 2,645 430 142 >6,000 733 382 2,319 1,069 5,222 1,993

WEP

ARCS 203 65 389 >6,000 99 319 520 1,006 1,802 1,967
CBS 220 50 123 250 76 338 501 1,088 1,414 2,031
ECBS 219 54 123 254 83 342 555 1,164 1,438 1,945
JS 219 54 132 254 84 340 540 1,097 1,431 2,093
EJS 1,993 81 204 >6,000 124 517 837 1,555 2,419 3,025

WNP

ARCS 562 363 63 >6,000 647 185 2,068 685 3,904 977
CBS 498 304 65 569 539 196 1,534 541 2,671 1,313
ECBS 568 389 73 658 647 193 1,971 588 3,046 1,238
JS 553 373 74 641 644 202 1,636 690 2,790 1,176
EJS 2,626 411 142 >6,000 700 379 2,317 1,041 5,214 2,211

was applied only to DBC and DBD , because its space requirements over the two larger datasets

exceeded the available disk space (4 TB). Special care has been taken to highlight the relative ef-

ficiency not only of the three strategies, but also of the pruning and weighting schemes. For this

reason, we examine these aspects separately.

Parallelization Strategies. We observe that when moving from left to right in Table 3.7, i.e.,

from the smallest block collection to the largest one, the Overhead Time increases analogously

for all parallelization strategies. Even for the largest dataset, though, most Meta-blocking meth-

ods require less than 2 days (∼3,000 minutes), thus being much faster than the serial processing,

which requires almost 8 days over the high-end server described in Section 3.1. Most importantly,

though, there is a considerable discrepancy among the time-efficiency of the three parallelization

strategies, which designates that the parallelization of Meta-blocking is not a trivial task.

In more detail, the edge-based strategy is consistently slower than the comparison-based one.

Their difference is particularly intense in the case of edge-centric pruning schemes, but is signifi-

cantly reduced for the node-centric ones. There are two exceptions that prove this rule: for CNP
and WNP in combination with JS, the edge-based strategy is faster (by less than 3 minutes) than

the comparison-based one over DBD .
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Regarding the entity-based strategy, it is significantly faster than the other strategies in the case

of the node-centric pruning schemes across all datasets. For DBC , for instance, it is 5 times faster

than the comparison-based strategy of WNP in combination with all weighting schemes. Com-

pared to the edge-based strategy, it is 9 times faster, on average, for the same pruning scheme and

dataset. In the case of the edge-centric algorithms, though, the entity-based strategy outperforms

only the edge-based one; compared to the comparison-based strategy, it requires at least twice as

much time.

There are two factors that determine the relative performance of the parallelization strate-

gies. The first one is the number of MapReduce jobs they involve. The larger this number is, the

higher the overhead becomes and the less efficient is the corresponding strategy. This explains

the inferior performance of the edge-based strategy, when compared to the comparison-based

one: its Preprocessing involves one more job in order to calculate the weights of all edges in the

blocking graph. The same holds for the entity-based strategy, when it is combined with the edge-

centric pruning schemes; in this case, the entity-based strategy employs one more job than the

comparison-based one in order to calculate the global pruning criterion in the absence of prepro-

cessing computations in Stage 2.

The second important factor for the time efficiency of the parallelization strategies is the I/O

they involve between the independent nodes of the cluster. The higher the I/O of a strategy is, the

higher is its overhead and the lower is its time efficiency. Comparing the edge- and comparison-

based strategies in this respect, the former involves a higher I/O, because it materializes an edge

for every comparison in the input blocks – even the repeated ones. In contrast, the comparison-

based approach creates a distinct edge only for the non-repeated comparisons. In our datasets,

the latter approach yields around 30% less comparisons. An even more time-efficient approach is

implemented by the entity-based strategy, which sends no edges through the network. Instead, it

exchanges the nodes of the blocking graph, as their number is typically orders of magnitude lower

than the number of edges. By attaching the necessary information to every graph node, the edges

can be created, weighted, and pruned locally, inside the independent nodes of the cluster.

Overall, we recommend using the entity-based strategy for node-centric pruning algorithms,

and the comparison-based strategy for edge-centric ones.

Pruning Schemes. WEP is the most efficient method for the edge- and comparison-based

strategies across all datasets, because it involves the simplest processing. For these strategies, the

second fastest method is CEP, since it merely adds one job to the functionality of WEP in order to

convert the cardinality pruning criterion into a weight one. For the entity-based strategy, though,

WEP and CEP are the least efficient methods, as they require 1 and 2 additional jobs, respectively,

in order to compute their pruning criteria.

For this strategy, the node-centric pruning schemes, CNP and WNP, are the most efficient

ones, involving a single job. In contrast, they are the most time-consuming schemes for the other

strategies, since they process every edge twice, inside the neighborhoods of both adjacent nodes.

It is interesting to compare these patterns with the relative time efficiency of pruning schemes
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Figure 3.14: Overhead Time in minutes for all configurations of the serialized workflow over
DBC .

in the case of serial processing. To this end, Figure 3.14 presents the Overhead Time of all seri-

alized workflows over the DBC dataset. The measurements were performed using the high-end

server mentioned in Section 3.1. Similar patterns were exhibited for the other datasets and are

omitted for brevity. First of all, we observe that the overhead of serial processing is significantly

higher than that of parallel processing in the vast majority of cases. Second, the pruning schemes

exhibit a similar behavior as in the case of the edge- and comparison-based strategies: the edge-

centric ones, CEP and WEP, are significantly faster than their node-centric counterparts, CNP
and WNP. However, the relations are different between cardinality- and weight-based schemes:

CEP and CNP are faster than WEP and WNP, respectively, because the latter involve an addi-

tional iteration over the edges in order to estimate their pruning criterion. Thus, the most time-

efficient serial algorithm overall is CEP, while WNP remains the most time-consuming one.

Weighting Schemes. For the edge-based strategy, CBS is the fastest weighting scheme, as the

output value of its first reduce function in Stage 2 is empty. ARCS, ECBS, JS add information

to this output value and, thus, require more time and I/O in order to process it. Given that they

involve the same number of jobs, they exhibit similar overhead times. EJS requires two additional

jobs in order to estimate the degree of every node, thus being the most time-consuming weighting

scheme.

For the comparison-based strategy, we observe slightly different patterns. CBS, ECBS and

JS yield similar overhead times, because they basically perform the same computation: for each

pair of entities, they estimate the intersection of the associated block lists. They are faster than

ARCS and EJS, as they rely exclusively on the information contained in the enriched input (i.e.,

the ids of the blocks associated with every entity). In contrast, EJS requires two additional jobs

and is the most time-consuming weighting scheme in all cases. In most cases, ARCS lies between

these two extremes, as it requires additional information and, thus, involves higher I/O than the

most efficient schemes.

For the entity-based strategy, the differences between the weighting schemes are minor, except

for EJS, which again requires an additional job and is, thus, the most time-consuming scheme.

Among the other schemes, CBS and ARCS are slightly faster, since they do not load in memory
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Figure 3.15: Speedup over DBC of (a) the comparison-based strategy for WEP, and (b) the
entity-based strategy for CNP.

the array with the number of blocks per entity, unlike JS and ECBS.

In the case of the serialized workflow, Figure 3.14 shows that ARCS is consistently the most

time-consuming weighting scheme, because it produces very low values as edge weights (with

tens of decimal digits). It is followed by EJS, which again involves higher computational cost

in order to estimate the degree of every node. The remaining schemes share almost the same

overhead, as their processing is very similar, computing the intersection of block lists.

3.6.4 Scalability

To assess the scalability of the comparison- and entity-based strategies, we estimate the speedup of

their most time-efficient pruning schemes. That is, we measure the extent to which their overhead

time decreases as we increase the number of available cluster nodes. Specifically, we apply the

comparison-based WEP and the entity-based CNP to DBC in combination with all weighting

schemes. We increase the number of slave nodes from 4 to 9 and 14; in every case, there is an

independent master node. The outcomes are presented in Figures 3.15(a) and (b) for WEP and

CNP, respectively. In every figure, there is a dotted diagonal line, which illustrates the ideal case,

where the speedup is linear to the number of nodes.

In Figure 3.15(a), we observe that all the weighting schemes show a speedup close to the ideal,

with the exception of EJS. ARCS seems to be the weighting scheme that best exploits the avail-

able resources, showing a speedup of 12.92 when using 14 nodes. ECBS, CBS and JS have al-

most identical speedup values, ranging from 11.8 to 12.3, when using 14 nodes. This is because

they basically perform the same computations, as explained previously. For EJS, the speedup is

constantly lower than that of the other weighting schemes, because of the quadratic complexity

of its additional jobs.

Regarding CNP, Figure 3.15(b) indicates that the deviation in the speedup of the various weight-

ing schemes is much smaller than for WEP. Indeed, the speedup for 14 nodes fluctuates between

8.8 for ARCS and 9.5 for ECBS. This time EJS does not yield the worst speedup, as its additional

job involves a linear complexity instead of a quadratic one.
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Figure 3.16: Average performance of the four pruning algorithms with respect to (a) Recall,
(b) RR, (c) Precision, and (d) H3R.

In practice, these patterns indicate that the more cluster nodes we used, the faster was the exe-

cution of both strategies. For WEP, the improvement in time was almost as much as the the num-

ber of additional resources (until a certain point), while for CNP, n additional nodes improved

the Overhead Time by 2n/3 times. The reason is that WEP is able to balance the workload of its

nodes right after Preprocessing, i.e., before applying Meta-blocking in Stage 3. In the case of CNP,

though, this is impossible, since the workload of every reduce function in Stage 3 is not known

a-priori.

3.6.5 Qualitative Results

To assess the quality of the restructured blocks produced by Meta-blocking, we consider their per-

formance with respect to the four relevant measures of Section 3.6.1. For every pruning scheme

and dataset, we estimated the average value and the standard deviation of every measure across

the five weighting schemes. The outcomes are presented in Figures 3.16(a) to (d). Remember that

in all diagrams, the higher a bar is, the better is the corresponding performance. We should also

note that all the MapReduce implementations are exact adaptations of their serialized counter-

parts, which means that the qualitative results of the serialized and the parallel implementations

are identical.

Starting with Figure 3.16(a), we observe that the relative recall of the pruning schemes remains

the same across all datasets: the node-centric ones, CNP and WNP, are more robust and de-

tect more matches than their edge-centric counterparts, CEP and WEP. The cardinality-based
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schemes, CEP and CNP, consistently achieve lower recall than the weight-based ones, WEP and

WNP, which exceed 0.8 across all datasets. In fact, CEP and CNP they reduce the original recall

by less than 10%, despite the significant enhancements in efficiency they convey.

Indeed, Figure 3.16(b) shows that WEP consistently achieves an RR close to 0.8, thus saving

80% of the original comparisons. The pruning of WNP is more shallow, as it retains at least one

edge per node. Its RR fluctuates between 0.46 and 0.65, thus saving around half the original com-

parisons. For CEP and CNP, RR is consistently higher than 0.99. In fact, they perform such a

deep pruning that they reduce the pairwise comparisons by 2 to 3 orders of magnitude across all

datasets. This explains their poor recall.

Yet, Figure 3.16(c) demonstrates that CEP and CNP achieve significantly higher precision

across all datasets. Compared to the input blocks, the restructured ones, produced by those

schemes, increase precision by 2 to 3 orders of magnitude. For WEP and WNP, the improvement

is slightly higher than an order of magnitude. This pattern actually indicates a clear trade-off be-

tween precision and recall: the higher precision is for a specific method and dataset, the lower is

the corresponding recall and vice versa.

To identify the scheme that achieves the overall best balance between the identified matches

and the executed comparisons, we use H3R, which is presented in Figure 3.16(d). We observe

that the cardinality-based methods, CEP and CNP, exhibit the highest values across all datasets,

fluctuating between 0.97 and 0.67. The difference between the two methods is small, even though

CNP retains twice as many comparisons as CEP, on average. Still, CNP should be preferred, since

it retains the best comparisons per entity and, thus, is more robust to recall.

These patterns are in accordance with earlier findings about the relative performance of the

four pruning schemes [82].

3.6.6 Discussion

The results of our experimental analysis demonstrate that the proposed strategies for parallel

Meta-blocking yield significant improvements in the execution time, thus enabling ER in volu-

minous datasets. However, simple strategies cannot give us the full benefit: we observed that the

edge-based strategy leads to significantly higher space requirements and is consistently slower

than the comparison- and entity-based ones. The experiments also showed that our load bal-

ancing algorithm consistently outperforms the default balancer of Hadoop, assigning an almost

identical workload to all the nodes of the cluster.

Among the four pruning schemes, the overall winner is CNP, as it involves the most time-

efficient functionality (when using the entity-based strategy) and achieves the best balance be-

tween effectiveness and efficiency in terms of H3R (CEP exhibits similar H3R values, but is sig-

nificantly less robust to recall than CNP). The five weighting schemes exhibit similar quality re-

sults and are almost equivalent with respect to time efficiency, with the exception of EJS, which

is much slower and less scalable than the rest.
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In summary, the edge-based strategy should not be used in practice. Instead, parallel Meta-

blocking should be applied using the comparison-based and entity-based strategies. The edge-

centric algorithms, CEP and WEP, should always be combined with the comparison-based strategy,

while the node-centric algorithms, CNP and WNP, should always be used with the entity-based

strategy.

To demonstrate in a more intuitive way the actual benefit of Meta-blocking, we have estimated

the times required to get the final matching results with and without Meta-blocking, given a block

collection. In the first case, we sum the times needed for the three stages of Meta-blocking and

the time required to perform the resulting comparisons of Meta-blocking. In the latter case, we

only estimate the time required to perform all the comparisons suggested by the input block col-

lection. To estimate the time required for the comparisons, we performed 1 billion comparisons,

using the Jaccard similarity of the tokens in the values of the DBC collection. The average time

required to get the similarity of 1 pair of entity descriptions was 4.9 ·10−7 minutes. Based on this

number and taking as an example the CBS weighting scheme and the CNP pruning scheme, us-

ing the entity-based strategy, we estimate that the time required to perform Meta-blocking (in-

cluding Block Filtering) and then the comparisons suggested by Meta-blocking is 76 minutes +

3.96 ·107 comparisons × 4.9 ·10−7 minutes/comparison ≈ 95.5 minutes. The corresponding time

required to perform the comparisons suggested by blocking, without using Meta-blocking, would

be 4.23 ·1010 comparisons × 4.9 ·10−7 minutes/comparison = 20,727 minutes = 345.45 hours ≈ 14

days. The cost of using Meta-blocking, in this case, is a loss of 3.79% in recall.

3.7 Conclusion

In the previous chapter, we saw how blocking can be scaled to Web of data, without any qualita-

tive cost. The scalability of blocking for Web data would be vain, if the processes that follow block-

ing remained non-scalable. In this chapter, we parallelized Meta-blocking using MapReduce and

enhanced dramatically the time efficiency of its serialized implementation. We proposed 3 paral-

lelization strategies: (i) The edge-based one implements a straightforward approach that material-

izes the blocking graph; hence, it involves high I/O and high space requirements that do not scale

well to large datasets. (ii) The comparison-based strategy offers a more elaborate implementation

that uses the blocking graph implicitly. This way, it reduces the overhead of data exchange and the

number of required MapReduce jobs, leading to significant performance gains, especially for the

edge-centric pruning schemes, CEP and WEP. (iii) The entity-based strategy is completely inde-

pendent of the blocking graph, minimizing the data exchange and the overhead of MapReduce job

chains. This approach offers an optimized implementation for the node-centric pruning schemes,

CNP and WNP. All these strategies do not affect the qualitative results of the Meta-blocking algo-

rithms suggested in [82]. We observe that the cardinality-based methods, CEP and CNP, exhibit

the best qualitative results across all datasets. The difference between the two methods is small,

even though CNP retains twice as many comparisons as CEP, on average. Still, CNP should be
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preferred, since it retains the best comparisons per entity and, thus, is more robust to recall, while

it is also the most time-efficient pruning method, when the entity-based strategy is employed.

All these strategies were combined with MaxBlock, a purpose-built load balancing algorithm that

distributes the workload evenly among the cluster nodes. We have thoroughly evaluated our par-

allelization strategies for Meta-blocking using real datasets from the Web of Data. The datasets

and the implementation of our techniques are publicly available8.

Even if the simple Meta-blocking model presented in this chapter can achieve a very efficient

computation of the most promising candidate matches, based on the similarity of their values,

it still fails to identify matching entity descriptions that have low value similarity, but are related

with another pair of similar, or even matching entities. In the next chapter, we will see how the

composite Meta-blocking model that we introduced in Section 3.2 can improve not only the effi-

ciency, but also the effectiveness of atomic blocking, and, consequently, of the whole ER workflow,

by utilizing a disjunctive blocking graph, exploiting multiple matching evidence given from the

input block collections as well as the relatedness of entities in the original entity graph.

8https://github.com/vefthym/ParallelMetablocking
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Entity Matching

4.1 Introduction

To the best of our knowledge, no existing ER framework simultaneously accomplishes: (a) support

for matching highly heterogeneous entities within or across domains, (b) full automation avoid-

ing any human intervention or presuming domain knowledge, and (c) massive parallelization of

blocking and matching computations.

As we have seen in the previous chapter, similarity evidence for matching entities inside and

across KBs in the Web of data can be obtained only by looking at the bag of literals (mostly strings)

contained in descriptions, regardless of the attributes they appear as values. As the value-based

similarity of a pair of entities may still be weak due to high veracity, we need to consider additional

sources of matching evidence related to the similarity of neighboring entities (i.e., connected via

semantic relations).

The id of an entity description may appear in the values of another entity description, this way

forming an entity graph. Figure 4.1(a) presents parts of the Wikidata (left) and DBpedia (right) KBs,

showing the entity graph that captures connections inside them. For example, Restaurant2 and

Jonny Lake are neighbor entities in this graph, connected via a “headChef” relation. If we compare

John Lake A to Jonny Lake based on their values only, it is easy to infer that those descriptions

are matching; they are strongly similar. However, we cannot be that sure about Restaurant1 and

Restaurant2, if we only look at their values. Those descriptions are nearly similar and we have to

look further, at the similarity of their neighbors (e.g, John Lake A and Jonny Lake) in order to verify

that they match.

In state-of-the-art systems, such as SiGMa [66], LINDA [16] and RiMOM [91], this is typically

done through an iterative process that relies on domain knowledge regarding the equivalence of

relations between neighboring entities. Initially, they detect strongly similar entities using reason-

able heuristics, such as identical literal values. Then, they use these resources as seeds for boot-

strapping an iterative algorithm that detects new matches based exclusively on neighbor similarity.

The more neighboring entities are matching, the stronger is the evidence regarding a candidate

entity pair. This process is repeated until converging to a stable solution (i.e., no more matches

are identified) or until no comparison exceeds the minimum similarity threshold. In this chapter,

79
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Figure 4.1: (a) Parts of entity graphs, representing the Wikidata (left) and DBpedia (right)
KBs, (b) parts of the corresponding disjunctive blocking graph, and (c) the corre-
sponding graph after pruning.

we argue that to assess the impact of neighbor similarity in a candidate pair, we do not actually

need an iterative process, while an estimation of which entity relations in this neighborhood are

important to consider can be guided by simple statistics over KBs.

This opens new perspectives in reducing the number of required comparisons due the high

volume of entities via blocking and massively parallel computing techniques. Rather than block-

ing entities based on the values of specific attributes (as in SiGMa [66] and RiMOM [91]), we con-

sider as blocking keys the entities’ tokens [82]. To avoid restricting our candidates for matching

exclusively on strongly similar entities, we consider a composite blocking scheme that allows to as-

sess both value- and neighbor-based similarity of candidate entities in conjunction with evidence

provided by the strong similarity of the entities names (e.g., rdfs:labels). This composite scheme

can be naturally implemented (via hashing) in a Big Data computing platform (e.g., Spark [106]).

Overall, this chapter makes the following contributions1:

• In Section 4.3, we define new similarity metrics for comparing the values and the neighbors

of entities without requiring knowledge of the entity types or their correspondences. We rely

on simple statistics over the KBs to recognize the most important entity relations involved

in neighbor similarity or the most distinctive attributes serving as names of entities. The

proposed similarity metrics can be efficiently computed using information provided only

by the blocks of entities.

• In Section 4.4, we show how our value and neighbor similarity metrics can be computed

based only on the information provided by token blocking. We combine the matching evi-

dence from the values and the neighbor of entities stemming from token blocking with an

1This work is under submission.
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additional blocking on the names of the entities, in a disjunctive blocking graph. We present

an efficient algorithm for weighting and then pruning the edges of this graph, corresponding

to candidate matches.

• In Section 4.5, we propose a non-iterative matching process. Unlike the data-driven con-

vergence of existing systems (e.g., LINDA [16], SiGMa [66] and RiMOM [91]), our matching

method involves a specific number of steps that are independent of data characteristics.

Matching entities are found by applying 4 heuristics to the blocking graph. Initially, we rec-

ognize matching entities based on their name. Then, the value similarity is exploited to find

matching entities with a large number of common and not frequent tokens. When value

similarity is not high, entities are matched based on both value and neighbors’ similarity

using a rank aggregation function. Finally, reciprocal evidence of matching entities is ex-

ploited: only entities that are mutually ranked in the top positions of their unified ranking

lists are considered as matches. MinoanER heuristics can be implemented in a massively

parallel system like Spark.

• In Section 4.6, we experimentally compare the effectiveness of our approach against the

state-of-the-art methods using real datasets from KBs involved in benchmarking efforts in

the field. The main conclusions drawn from our experiments is that MinoanER achieves at

least equivalent performance over KBs with a small number of attributes and entity types

(i.e., low levels of heterogeneity), even without making any assumption regarding the align-

ment of relations in the input. Yet, it outperforms to a significant extent existing ER tools

when matching KBs with a big number of attributes and entity types (i.e., high levels of het-

erogeneity).

We overview the main differences with the state-of-the-art ER methods in Section 4.2 and con-

clude this chapter in Section 4.7.

4.2 Related Work

In this section, we position MinoanER with respect to state-of-the-art techniques proposed for

linked entity descriptions.

Value-based similarities (e.g., Jaccard, Dice) usually assess the similarity of two descriptions

based on the values of specific attributes. Our value similarity is a variation of ARCS (Equation 3.4),

which drops any schema information and considers descriptions as a bag of words. Compared to

ARCS, though, we focus more on the number than the frequency of common tokens between two de-

scriptions. Relational similarity measures additionally consider neighbor similarity by exploiting

the value similarity of all or some of the entities’ neighbors. For example, SiGMa [66] and RiMOM-

IM [91] consider the similarity of “compatible” neighbors, linked with pre-aligned relations, while

LINDA [16] considers only neighbors linked via relations with similar labels (small edit distance).
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MinoanER does not aggregate different similarities in one similarity score; instead, it uses a disjunc-

tion of the different evidence coming from the values, neighbors and names of the descriptions. The

most important neighbors are detected automatically from dataset statistics.

Based on the nature of the matching decision, ER can be characterized as pairwise or collec-

tive. In pairwise ER (e.g., [61]), we only need to know the value similarity of descriptions to de-

cide if they match. Collective ER (e.g., [10]) iteratively updates the matching decision for entities

by dynamically assessing the similarity of their neighbors. The starting point for this similarity

propagation is a set of seed matches identified by a value-based blocking. MinoanER is a static

collective ER approach, in which all sources of similarity are assessed only once per candidate pair.

By considering a composite blocking not only on the value but also the neighbors similarity, we

discover in a non-iterative way most of the matches returned by the data-driven convergence of

existing systems, or even more (see Section 4.6). Next, we explore how recent works in collective

ER dynamically update their similarity assessment based on neighborhood evidence.

To capture this inherently iterative intuition, [10] performs hierarchical agglomerative cluster-

ing, where, at each iteration, the two most similar (according to a relational similarity function)

clusters, i.e., groups of matching descriptions, are merged, until the similarity of the most similar

clusters is below a threshold. When two clusters are merged, the similarities of their related clus-

ters, i.e., the clusters corresponding to descriptions which are related to the descriptions in the

merged cluster, are updated.

SiGMa [66] starts with seed matches having identical entity names. Then, it propagates the

matching decisions on the compatible neighbors of existing matches. Unique Mapping Cluster-
ing is applied for detecting matches. First, it places all pairs into a priority queue, in decreasing

(relational) similarity. At each iteration, the top pair is considered a match, if none of its entities

has been already matched and their similarity exceeds a given threshold t . For every new matched

pair, the similarities of the neighbors are recomputed and their position in the priority queue is

updated. The process ends when the top pair has a lower similarity than t .

LINDA [16] follows a very similar approach, which differs from SiGMa only in the similarity

functions used and the lack of a manual relation alignment. Instead, LINDA relies on the edit

distance of the relations names used in the two KBs to determine if they are equivalent or not.

This alignment method makes a strong assumption that entity descriptions in KBs use meaningful

names for relations and similar names for equivalent relations, which is rarely true in the Web of

Data. Finally, rather than using a similarity threshold, the resolution process in LINDA terminates

when the priority queue is empty, or after performing a predetermined number of iterations.

RiMOM-IM [68, 91] initially considers as matches entities placed in blocks of size 2 (this is

more generic than heuristic H1, as it considers all attribute value tokens). It also uses a heuristic

called “one-left object”: if two matched descriptions e1,e ′1 are connected via aligned relations r

and r ′ and all their entity neighbors via r and r ′, except e2 and e ′2, have been matched, then e2

and e ′2 are also considered matches. Finally, similar to SiGMa, RiMOM-IM employs a complex

similarity score, which requires the alignment of relations among the KBs.
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Three are the main differences of MinoanER to SiGMa, LINDA and RiMOM-IM. First, the

matching process iterates over the disjunctive blocking graph, instead of the initial KBs. Second,

MinoanER employs statistics to automatically discover distinctive entity names and important

relations. Third, MinoanER exploits different sources of matching evidence (values, names and

neighbors) to statically identify candidate matches already from the step of blocking.

On another line of research, PARIS [97] uses a probabilistic model to identify matching evi-

dence, based on previous matches and the functional nature of entity relations. Specifically, a

relation is considered to be functional if, for a given source entity, there is only one destination en-

tity (e.g., wasBornIn). The basic matching idea is that if r (x, y) is a function in one KB and r (x, y ′)
is a function in another KB, then y and y ′ are considered to be matches. The functionality, i.e.,

degree by which a relation is close to being a function (considering only its discriminability, not

its support), and the alignment of relations along with previous matching decisions determine

the decisions in subsequent iterations. Specifically, the functionality of each relation is computed

at the beginning of the algorithm and remains unchanged. Then, at the first iteration, instances

with identical values (for all attributes) are considered matches and based on those matches, an

alignment of relations takes place. At the next iteration, instances can be now compared based

on the newly aligned relations, and this process continues until convergence. In the last step, an

alignment of classes (i.e., entity types) also takes place. Unlike MinoanER, PARIS cannot deal with

structural heterogeneity, while it targets both ontology and instance matching.

Finally, [89] parallelizes the collective ER of [10], relying on a black-box matching and exploits

a set of heuristic rules for structured entities. It essentially runs multiple instances of the matching

algorithm in subsets of the input entities (similar to blocks), also keeping information for all the

entity neighbors, needed for similarity propagation. Since some rules may require the results of

multiple blocks, an iterative message-passing framework is employed. Rather than a block-level

synchronization, the MinoanER parallel computations in Spark require synchronization only across

the 4 threshold-free and schema-agnostic matching heuristics (see Section 4.5.1).

Regarding the heuristics, the ones employed by MinoanER based on values and names are

similar to heuristics that have been already employed in the literature individually (e.g., in [66, 68,

91]), while the idea of reciprocity has been applied to enhance the results of Meta-blocking [84],

but was never used in matching. In this work, we use a combination of those heuristics for the

first time, also introducing a novel rank aggregation heuristic to incorporate value and neighbor

matching evidence.

4.3 Basic Definitions

The relations of an entity description ei ∈ E , are defined as r el ati ons(ei ) = {p|(p, j ) ∈ ei ∧ e j ∈ E },

while its neighbors as nei g hbor s(ei ) = {e j |(p, j ) ∈ ei ∧ e j ∈ E }. In the example of Figure 4.1(a),

r el ati ons(Rest aur ant1) = {hasChef, territorial, inCountry}, and nei g hbor s(Rest aur ant1) =

{John Lake A, Bray, United Kingdom}.
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In the remaining of this chapter, we will focus only on clean-clean ER, i.e., the sub-problem of

ER in which we only seek for matches among two clean entity collections. We only use two entity

collections for an easier presentation of the problem, but the proposed techniques can be easily

generalized for more than two clean entity collections. This is the problem that is typically met in

the Web of data, as opposed to dirty ER, i.e., seeking for matches within a single entity collection,

which is typically met in data warehouses.

4.3.1 Entity similarity based on values

Traditionally, similarities between entity descriptions are computed based on their values. In our

work, we apply a similarity measure based on the intuition that if two entity descriptions share

many, infrequent tokens, then they have high value similarity (this is an adaptation of ARCS pre-

sented in Equation 3.4 as si mARC S , and of Adamic/Adar similarity measure [1])2. Formally:

Definition 4.1 (Value similarity). Let E1, E2 be two entity collections. The value similarity of two

entity descriptions ei ∈ E1,e j ∈ E2 is:

valueSi m(ei ,e j ) = ∑
t∈tokens(ei )∩tokens(e j )

1

log2(EFE1 (t ) ·EFE2 (t )+1)
,

where EFE (t ) = |{ei |ei ∈ E ∧ t ∈ tokens(e)}| stands for “Entity Frequency”, which is the number of

entity descriptions in E having token t in their values.

Note that valueSi m is not a normalized measure, since it can take any value in [0,+∞), with

0 valueSi m denoting the existence of no common tokens in the values of the compared descrip-

tions.

Proposition 4.1. valueSi m is a similarity metric, as it satisfies the following properties [19]:

• valueSi m(ei ,ei ) ≥ 0, (4.1)

• valueSi m(ei ,e j ) = valueSi m(e j ,ei ), (4.2)

• valueSi m(ei ,ei ) ≥ valueSi m(ei ,e j ), (4.3)

• valueSi m(ei ,ei ) = valueSi m(e j ,e j ) = valueSi m(ei ,e j )⇔ei=e j , (4.4)

• valueSi m(ei ,e j )+ valueSi m(e j ,ez ) ≤ valueSi m(ei ,ez )+ valueSi m(e j ,e j ). (4.5)

Property 4.1 states that the self-similarity of any description ei is non-negative. Although it

is not mandatory to set this lower bound at zero (e.g., the similarity measure used in LINDA [16]

can have negative values), this is a common and reasonable choice. Since valueSi m is not nor-

malized, the self-similarity of any description is not bound to a specific number; it merely de-

pends on the number and frequency of its tokens. Property 4.2 states that valueSi m is symmetric.

2Currently, we handle numbers and dates in the same way as strings, assuming string-dominated entity descriptions.
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Property 4.3 states that for any description ei the self-similarity is no less than the similarity be-

tween ei and any other description e j . Property 4.4 states that the statements valueSi m(ei ,ei ) =
valueSi m(e j ,e j ) = valueSi m(ei ,e j ) and ei = e j are equivalent. Property 4.5 states that the simi-

larity between ei and ez through e j is no greater than the direct similarity between ei and ez plus

the self-similarity of e j . This property is the equivalent of the triangle inequality in distance met-

rics [19].

Proof. Property 4.1: If tokens(ei ) ∩ tokens(e j ) = ;, then valueSi m(ei ,e j ) = 0. Else, for any

common token t ∈ tokens(ei ) ∩ tokens(e j ), it holds that EFE1 (t ) ≥ 1, and EFE2 (t ) ≥ 1 (since

t ∈ tokens(ei ), and t ∈ tokens(e j )). Thus,

log2(EFE1 (t ) ·EFE2 (t )+1) ≥ log2(2) = 1 ⇒ 1

log2(EFE1 (t ) ·EFE2 (t )+1)
> 0.

Since valueSi m(ei ,e j ) is the sum of positive numbers, it is also a positive number.

Property 4.2: tokens(ei )∩ tokens(e j ) = tokens(e j )∩ tokens(ei ). If tokens(ei )∩ tokens(e j ) =
;, then valueSi m(ei ,e j ) = valueSi m(e j ,ei ) = 0. Else, for any common token t ∈ tokens(ei )∩
tokens(e j ), it holds that EFE1 (t ) ·EFE2 (t ) = EFE2 (t ) ·EFE1 (t ) ⇒

1
l og2(EFE1 (t )·EFE2 (t )+1) = 1

l og2(EFE2 (t )·EFE1 (t )+1) ⇒ valueSi m(ei ,e j ) = valueSi m(e j ,ei ).

Property 4.3: valueSi m(ei ,ei ) refers to the similarity of two identical entity descriptions in two

entity collections E1,E2. Then, valueSi m(ei ,ei ) =∑
t∈tokens(ei )

1
l og2(EFE1 (t )·EFE2 (t )+1) .

By definition, tokens(ei )∩ tokens(e j ) ⊆ tokens(ei ) ⇒∑
t∈tokens(ei )

1
l og2(EFE1 (t )·EFE2 (t )+1) ≥∑

t∈tokens(ei )∩tokens(e j )
1

log2(EFE1 (t )·EFE2 (t )+1) ⇒ valueSi m(ei ,ei ) ≥ valueSi m(ei ,e j ).

Property 4.4: Proof of “⇐”:

ei = e j ⇒ tokens(ei ) = tokens(e j ) ⇒ tokens(ei )∩tokens(e j ) = tokens(ei ) ⇒ valueSi m(ei ,e j ) =∑
t∈tokens(ei )

1
log2(EFE1 (t )·EFE2 (t )+1) = valueSi m(ei ,ei ) = valueSi m(e j ,e j ).

Proof of “⇒”:

valueSi m(ei ,ei ) = valueSi m(ei ,e j ) ⇒∑
t∈tokens(ei )

1
log2(EFE1 (t )·EFE2 (t )+1) =

∑
t∈tokens(ei )∩tokens(e j )

1
l og2(EFE1 (t )·EFE2 (t )+1) ⇒

tokens(ei ) = tokens(ei )∩ tokens(e j ) ⇒ tokens(ei ) ⊆ tokens(e j ).

Accordingly, valueSi m(e j ,e j ) = valueSi m(ei ,e j ) ⇒ tokens(e j ) ⊆ tokens(ei ).

Since, for the needs of valueSi m, we represent an entity description as a set of tokens only, from

the last two equations, it holds that tokens(ei ) = tokens(e j ) ⇒ ei = e j .

Property 4.5: We know that tokens(ei )∩ tokens(e j ) = (tokens(ei )∩ tokens(e j )∩ tokens(ez ))∪
((tokens(ei )∩tokens(e j ))\tokens(ez )). We also know that (tokens(ei )∩tokens(e j )∩tokens(ez ))∩
((tokens(ei )∩ tokens(e j )) \ tokens(ez )) =;. Based on those properties, we have that:

valueSi m(ei ,e j ) =∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
l og2(EFE1 (t )·EFE2 (t )+1) +∑

t∈(tokens(ei )∩tokens(e j ))\tokens(ez )
1

log2(EFE1 (t )·EFE2 (t )+1) ,

and that:
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valueSi m(e j ,ez ) =∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) +∑

t∈(tokens(e j )∩tokens(ez ))\tokens(ei )
1

log2(EFE1 (t )·EFE2 (t )+1) .

Then, valueSi m(ei ,e j )+ valueSi m(e j ,ez ) =∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) +∑

t∈(tokens(ei )∩tokens(e j ))\tokens(ez )
1

log2(EFE1 (t )·EFE2 (t )+1) +∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) +∑

t∈(tokens(e j )∩tokens(ez ))\tokens(ei )
1

log2(EFE1 (t )·EFE2 (t )+1) .

However, tokens(ei )∩ tokens(e j )∩ tokens(ez ) ⊆ tokens(ei )∩ tokens(ez ) ⇒∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) ≤

∑
t∈tokens(ei )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) , and

(((tokens(ei )∩ tokens(e j )) \ tokens(ez ))∪
(tokens(ei )∩ tokens(e j )∩ tokens(ez ))∪
((tokens(e j )∩ tokens(ez )) \ tokens(ei ))) ⊆ tokens(e j ) ⇒∑

t∈(tokens(ei )∩tokens(e j ))\tokens(ez )
1

log2(EFE1 (t )·EFE2 (t )+1) +∑
t∈tokens(ei )∩tokens(e j )∩tokens(ez )

1
log2(EFE1 (t )·EFE2 (t )+1) +∑

t∈(tokens(e j )∩tokens(ez ))\tokens(ei )
1

log2(EFE1 (t )·EFE2 (t )+1) ≤
∑

t∈tokens(e j )
1

l og2(EFE1 (t )·EFE2 (t )+1) . Thus, it

holds that valueSi m(ei ,e j )+ valueSi m(e j ,ez ) ≤ valueSi m(ei ,ez )+ valueSi m(e j ,e j ).

�

Note that an interesting property of valueSi m is that the maximum contribution of a single

common token between two descriptions is 1, in the case this common token does not appear in

the values of any other entity description, i.e., when EFE1 (t )·EFE2 (t ) = 1. Note also that valueSi m

is a schema-free similarity metric, as it completely disregards any schema or domain knowledge.

4.3.2 Entity similarity based on neighbors

In addition to value similarity, we exploit the relations between descriptions to find the matching

entities of the compared KBs. This can be done by aggregating the value similarity of all pairs

of descriptions that are neighbors of the target descriptions. Formally, we define the neighbor

similarity for two descriptions ei ,e j ∈ E as follows:

nei g hbor Si m(ei ,e j ) = ∑
nei∈nei g hbor s(ei )
ne j∈nei g hbor s(e j )

valueSi m(nei ,ne j ).

Given the potentially high number of neighbors that a description might have, we propose

considering only the most valuable neighbors for computing the neighbor similarity between two

target descriptions. These are neighbors that are connected with the target descriptions via im-

portant relations, i.e., relations that exhibit high support and discriminability. Intuitively, high

support for a particular relation p indicates that p appears in many entity descriptions, while high
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discriminability for p indicates that it has many distinct values:

Definition 4.2 (Support of relation). The support of a relation p ∈ P in an entity collection E is:

suppor t (p) = |i nst ances(p)|
|E |2 , where i nst ances(p) = {(i , j )|ei ,e j ∈ E , (p, j ) ∈ ei }.

Definition 4.3 (Discriminability of relation). The discriminability of a relation p ∈P in an entity

collection E is: di scr i mi nabi l i t y(p) = |ob j ect s(p)|
|i nst ances(p)| , where ob j ect s(p) = { j |(i , j ) ∈ i nst ances(p)}.

Overall, we combine support and discriminability via the F-measure in order to locate the

most important relations.

Definition 4.4 (Importance of relation). The importance of a relation p ∈P in an entity collection

E is: i mpor t ance(p) = 2 · suppor t (p)·di scr i mi nabi l i t y(p)
suppor t (p)+di scr i mi nabi l i t y(p) .

Furthermore, we identify the most valuable relations and neighbors for every single entity de-

scription. We use topN r el ati ons(ei ) to denote the N relations in r el ati ons(ei ) with the maxi-

mum importance scores. Then, the best neighbors for ei are:

topN nei g hbor s(ei ) = {nei |(p,nei ) ∈ ei , p ∈ topN r el ati ons(ei )}.

Intuitively, strong matching evidence (high valueSi m) for the important neighbors leads to

strong matching evidence for the target pair of descriptions. Hence, we define neighbor similarity

as:

Definition 4.5 (Neighbor similarity). Let E1, E2 be two entity collections. The neighbor similarity

of two entity descriptions ei ∈ E1,e j ∈ E2 is:

nei g hbor N Si m(ei ,e j ) = ∑
nei∈topN nei g hbor s(ei )
ne j∈topN nei g hbor s(e j )

valueSi m(nei ,ne j ).

Proposition 4.2. nei g hbor N Si m is a similarity metric.

Proof. nei g hbor N Si m is the sum of similarity metrics (valueSi m), so it is also a similarity met-

ric [19]. �

Example 4.1. Continuing our example in Figure 4.1, assume that the best 2 relations for Rest aur ant1

and Rest aur ant2 are: top2r el ati ons(Rest aur ant1) = {hasChef, territorial} and

top2r el ati ons(Rest aur ant2) = {headChef, county}. Then, top2nei g hbor s(Rest aur ant1) = {John

Lake A, Bray} and top2nei g hbor s(Rest aur ant2) = {Jonny Lake, Berkshire}, and

nei g hbor 2Si m(Rest aur ant1,Rest aur ant2) = val ueSi m(Br ay, Jonny Lake) +

valueSi m(John Lake A,Ber kshi r e) + val ueSi m(Br ay,Ber kshi r e) +

valueSi m(John Lake A, Jonny Lake).
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From every entity collection, we derive the k attributes of highest importance, with their values

acting as names for any description ei that contains any of these attributes. Their support is simply

defined as suppor t (p) = |sub j ect s(p)|/|E |, where sub j ect s(p) = {i |(i , j ) ∈ i nst ances(p)} [93].

Based on these statistics, function name(ei ) returns the names of ei , and Nx denotes all names in

an entity collection Ex .

4.4 Blocking

4.4.1 Composite Blocking Scheme

To achieve a good trade-off between effectiveness and efficiency, our schema-free composite block-

ing scheme assesses name- and value-based similarities of the candidate matches in conjunction

with evidence provided by comparing value-wise their neighbors on the most important relations.

We consider the blocks constructed for all entities ei ∈ E using the indexing function hi (·) both

over entity names (∀n j ∈ names(ei ) : hN (n j )) and tokens (∀t j ∈ tokens(ei ) : hT (t j )). The compos-

ite blocking scheme of MinoanER is defined by the following disjunctive co-occurrence condition

of any two entities ei ,e j ∈ E :

F (ei ,e j ) = oN (ei ,e j )∨oT (ei ,e j )∨ (
∨

(e ′
i ,e ′

j )∈topN nei g hbor s(ei )×topN nei g hbor s(e j )

oT (e ′i ,e ′j )).

It is worth noticing that token blocking (i.e., hT ) allows for deriving valueSi m from the size

of blocks that are shared by two descriptions. As a result, no additional blocks are needed to

assess neighbor similarity of candidate entities: token blocking is sufficient also for estimating

nei g hbor N si m according to Definition 4.5.

4.4.2 Disjunctive Blocking Graph

The disjunctive blocking graph G is an abstraction of the disjunctive co-occurrence condition

of candidate matches in blocks. Nodes represent candidates from our input entity descriptions,

while edges represent pairs of candidates for which at least one of the co-occurrence conditions

is ‘true’. Each edge is labeled with three weights, quantifying similarity evidence on names, tokens

and neighbors of candidate entities. Specifically, the disjunctive blocking graph of MinoanER is

a graph G = (V ,E ,λ) (see Definition 3.2), where λ assigns to each edge a label (α,β,γ), where α is

‘1’ if oN (ei ,e j ) is true and the name block in which ei , e j co-occur is of size 2, and ‘0’ otherwise,

β= valueSi m(ei ,e j ), and γ= nei g hbor N Si m(ei ,e j ). Definition 3.2 covers the cases of an entity

collection E being composed of one, two, or more KBs. When matching k KBs, assuming that

each is clean, the disjunctive blocking graph is k-partite, with each of the k KBs corresponding to

a different independent set of nodes, i.e., there are only edges between descriptions from different

KBs. The only information needed to match multiple KBs is to which KB each description belongs,

so as to add it to the corresponding independent set.
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Example 4.2. Consider the graph of Figure 4.1(b), which is part of the disjunctive blocking graph

generated from Figure 4.1(a). John Lake A and Jonny Lake have a common name (“J. Lake”), and

there is no other entity having this name, so there is an edge connecting them with α = T . Bray

and Berkshire have some common, quite infrequent tokens in their values, so their value similarity,

reflected in theβ score of the edge that connects them, is quite high (1.2). Since Bray is a top neighbor

of Restaurant1 in Figure 4.1(a), and Berkshire is a top neighbor of Restaurant 2, there is also an edge

with a non-zero γ connecting Restaurant1 with Restaurant2. Specifically, the γ score of this edge

(1.6) is the sum of the β scores of the edges connecting Bray with Berkshire (1.2), and John Lake A

with Jonny Lake (0.4), the other two neighbors of Restaurant1 and Restaurant2.

4.4.3 Graph Weighting and Pruning Algorithms

Each edge in the blocking graph represents a suggested comparison between two descriptions. To

reduce the number of comparisons suggested by the disjunctive blocking graph, we keep for each

node the K edges with the highest β and the K edges with the highest γ weights, while pruning

edges with trivial weights (i.e., with α=0, β=0 and γ=0), since they connect descriptions unlikely

to match. Given that nodes vi and v j may have different top K edges based on β or γ, we con-

sider each undirected edge in G as two directed ones, with the same initial weights, and perform

pruning on them.

Example 4.3. Figure 4.1(c) shows the pruned version of the graph in Figure 4.1(b). Note that the

blocking graph is only a conceptual model, which we do not actually materialize; instead, we re-

trieve any necessary information from computationally cheap entity indices.

The process of weighting and pruning the edges of the disjunctive blocking graph is described

in Algorithm 2. Initially, the graph contains no edges. We start adding edges by checking the name

blocks (Lines 5-9). For each name block that contains exactly two entities, one from each KB, we

create an edge with α= 1 linking those entities3. Then, we compute the β weights (Lines 10-20) by

running a variation of Meta-blocking [82], adapted to our value similarity metric (Definition 4.1).

We keep for each entity, its connected nodes from the K edges with the highest β. In Line 20, we

compute the topN nei g bor s of each entity, and get their reverse, i.e., for each entity ei we get the

entities i nNei g hbor s[i ] that have ei as one of their topN nei g hbor s. To avoid re-computing the

value similarities that are necessary for the γ computations, we exploit the already computed βs.

Thus, we assign to each pair of i nNei g hbor s (in the entity graph) i ni , i n j of the entities ei ,e j

connected with an edge with β > 0, a partial γ equal to this β (Lines 20-26). After summing the

partial γs computed for each pair of entities (i ni , i n j ) from all its out-neighbor pairs (ei ,e j ) in the

entity graph, we get the correct γ= nei g hbor N si m(i ni , i n j ) (Definition 4.5).

The time complexity of Algorithm 2 is dominated by the processing of value evidence, which

iterates twice over all comparisons in the token blocks BT . In the worst-case, this results in one

3When we add a new edge, we initially set its weight to (α= 0,β= 0,γ= 0) and update its α,β or γ weight next. Also,
bl

k , l ∈ {1,2}, denotes the sub-block of bk that contains all entities from El , i.e., bl
k ⊂ El .
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Algorithm 2: Disjunctive Blocking Graph Construction.
Input: E1,E2, set of blocks from name and token blocking, BN and BT , resp.
Output: A disjunctive blocking graph G .

1 procedure CompositeBGraph(E1,E2,BN ,BT )
2 V ← E1 ∪E2;
3 E ←;;
4 W ←; ; // init. to (0,0,0)

// Name Evidence
5 for bk ∈ BN do
6 if |b1

k | · |b2
k | = 1 then // only one comparison in bk

7 ei ← b1
k .g et (0), e j ← b2

k .g et (0) ; // get entity descriptions in block

8 E ← E ∪ {< vi , v j >};

9 W ←W.set (α,< vi , v j >,T );

// Value Evidence
10 for ei ∈ E1 do
11 β[] ←; ; // value weights wrt all e j ∈ E2 init. to 0

12 for bk ∈ BT ∧bk ∩ei ,; do
13 for e j ∈ b2

k do // e j ∈ E2

14 β[ j ] ←β[ j ]+1/log2(|b1
k | · |b2

k |+1) ; // valueSi m

15 V alueC andi d ates ← g etTopC andi d ates(β[],K );
16 for e j ∈V alueC andi d ates do
17 E ← E ∪ {< vi , v j >};

18 W ←W.set (β,< vi , v j >,β[ j ]);

19 for ei ∈ E2 do . . . ; // ...do the same for E2

// Neighbor Evidence
20 i nNei g hbor s[] ← g etTopInNei g hbor s(E1,E2);
21 γ[][] ←; ; // neighbor weights wrt all ei ,e j ∈V init. to 0

22 for ei ∈ E1 do
23 for e j ∈ E2, s.t. W.g et (β,< vi , v j >) > 0 do
24 for i n j ∈ i nNei g hbor s[ j ] do
25 for i ni ∈ i nNei g hbor s[i ] do // nei g hbor N Si m
26 γ[i ni ][i n j ] ← γ[i ni ][i n j ]+W.g et (β,< ni ,n j >);

27 for ei ∈ E2 do . . . ; // ...do the same for E2
28 for ei ∈ E1 do
29 Nei g hborC andi d ates ← g etTopC andi d ates(γ[i ],K );
30 for e j ∈ Nei g hborC andi d ates do
31 E ← E ∪ {< vi , v j >};

32 W.set (γ,< vi , v j >,γ[vi ][v j ]);

33 for ei ∈ E2 do . . . ; // ...do the same for E2
34 return G = (V ,E ,W );

35 procedure getTopInNeighbors(E1,E2)
36 topNei g hbor s[] ←; ; // one list for each entity
37 r 1Sor ted ← sort E1’s relations by importance;
38 r 2Sor ted ← sort E2’s relations by importance;
39 for e ∈ E1 do
40 sor tedRel (e) ← r el ati ons(e).sor tB y(r 1Sor ted);
41 topN r el ati ons(e) ← sor tedRel (e).topN ;
42 for (p,o) ∈ e, where p ∈ PQ do
43 topNei g hbor s[e].add(o);

44 for ei ∈ E2 do . . . ; // ...do the same for E2
45 topInNei g hbor s[] ←; ; // the reverse of topNeighbors
46 for e ∈ E1 ∪E2 do
47 for ne ∈ topNei g hbor s[e] do
48 topInNei g hbor s[ne].add(e);

49 return topInNei g hbor s;
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computation for every pair of entities, i.e., O(|E1|·|E2|). In practice, though, we bound the number

of computations by removing excessively large blocks that correspond to highly frequent tokens

(e.g., stop-words). Following [82], this is carried out by Block Purging, which ensures that the re-

sulting blocks involve two orders of magnitude fewer comparisons than the brute-force approach,

without any significant impact on recall. This complexity is higher than that of name and neighbor

evidence, which are both linearly dependent on the number of input entities. The former involves

a single iteration over the name blocks BN , which amount to |N1∩N2|, as there is one block for ev-

ery name shared by E1 and E2. For neighbor evidence, Algorithm 2 checks all pairs of N neighbors

between every entity ei and its K most value-similar descriptions, performing K ·N 2 · (|E1|+ |E2|)
operations; the cost of estimating the top in-neighbors for each entity is dominated by the order-

ing of all relations in E1 and E2 (i.e., |Rmax | · l og |Rmax |), where |Rmax | stands for the maximum

number of relations in one of the KBs.

4.5 Non-Iterative Matching

Our matching method receives as input the disjunctive blocking graph G and performs four steps –

unlike most existing works, which involve a data-driven iterative process. In every step, a heuristic

is applied with the goal of extracting new matches from the edges of G by analyzing their weights.

The functionality of our algorithm is outlined in Algorithm 3. Next, we describe its heuristics in

the order they are applied:

Name Heuristic (H1). The matching evidence of H1 comes from the entity names. It assumes

that two candidate entities match, if they, and only they, have the same name. Thus, H1 traverses

G and for every edge < vi , v j > with α = T1, it updates the set of matches M with the correspond-

ing descriptions (Lines 2-4). All candidates matched by H1 are not examined by the remaining

heuristics.

Value Heuristic (H2). It presumes that two entities match, if they, and only they, share a common

token, or, if they share many infrequent tokens. Based on Definition 4.1, H2 identifies pairs of

descriptions with high value similarity (Lines 5-9). To this end, it goes through every node vi of G

and checks whether the corresponding description stems from the smaller in size KB, for efficiency

reasons, e.g., E1, but has not been matched yet. In this case, it locates the adjacent node v j with

the maximum β weight (Line 7). If β ≥ 1, H2 considers the pair (ei ,e j ) to be a match. Matches

identified by H2 will not be considered in the sequel.

Rank Aggregation Heuristic (H3). This heuristic identifies further matches for candidates whose

value similarity is low (β < 1), yet their neighbor similarity (γ) could be high. In this respect, the

order of candidates rather than their similarity values are used. Its functionality appears in Lines

10-23 of Algorithm 3. In essence, H3 traverses all nodes of G that correspond to a description that

has not been matched yet. For every such node vi , it retrieves two lists: the first one contains

adjacent edges with a non-zero β weight, sorted in descending order (Line 13), while the second

one includes the adjacent edges sorted in decreasing non-zero γ weights (Line 18). Then, H3
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Algorithm 3: Evidence-based Matching.
Input: E1,E2, Disjunctive Blocking Graph G .
Output: A set of matches M .

1 M ←;; // The set of matches

// Name Heuristic (H1)
2 for < vi , v j >∈G .E do
3 if G .W.g et (α,< vi , v j >) = T then
4 M ← M ∪ (ei ,e j );

// Value Heuristic (H2)
5 for vi ∈G .V do
6 if ei ∈ E1 \ M then
7 v j ← ar g maxvk∈G .V G .W.g et (β,< vi , vk >) ; // top candidate

8 if G .W.g et (β,< vi , v j >) ≥ 1 then
9 M ← M ∪ (ei ,e j );

// Rank Aggregation Heuristic (H3)
10 for vi ∈G .V do
11 if ei ∈ E1 ∪E2 \ M then
12 ag g [] ←;; // Aggregate candidate scores, init. zeros
13 valC and s ←G .valC and(ei ) ; // nodes linked to ei in decr. β

14 r ank ←|valC and s|;
15 for e j ∈ valC and s do
16 ag g [ei ].upd ate(e j ,θ · r ank/|valC and s|);

17 r ank ← r ank −1;

18 ng bC and s ←G .ng bC and(ei ) ; // nodes linked to ei in decr. γ

19 r ank ←|ng bC and s|;
20 for e j ∈ ng bC and s do
21 ag g [ei ].upd ate(e j , (1−θ) · r ank/|ng bC and s|);

22 r ank ← r ank −1;

23 M ← M ∪ (ei , g etTopC andi d ate(ag g [ei ]);

// Reciprocity Heuristic (H4)
24 for (ei ,e j ) ∈ M do
25 if < vi , v j >∉G .E ∨< v j , vi >∉G .E then
26 M ← M \ (ei ,e j );

27 return M ;

aggregates the two lists by considering the normalized ranks of their elements: assuming the size

of a list is K , the first candidate gets the score K /K , the second one (K−1)/K , while the last one 1/K .

Overall, each adjacent node of vi takes a score equal to the weighted summation of its normalized

ranks in the two lists, as determined through the trade-off parameter θ ∈ (0,1) (Lines 16 & 21): the

scores of the β list are weighted with θ and those of the γ list with 1-θ. At the end, we keep for vi ,

its top-1 candidate match v j , i.e., the one with the highest aggregate score (Line 23). Intuitively,

H3 matches ei with e j , when, based on all available evidence, there is no better candidate for ei

than e j .
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Reciprocity Heuristic (H4). It aims to clean the matches identified by H1, H2 and H3 by exploiting

the reciprocal edges of G . Given that G becomes a directed graph after pruning, a pair of nodes vi

and v j are reciprocally connected when there are two edges between them, i.e., an edge from vi

to v j and an edge from v j to vi . Hence, H4 aims to improve the precision of our algorithm based

on the rationale that two entities are unlikely to match, when one of them does not even consider

the other to be a candidate for matching. Intuitively, two entity descriptions match, only if both of

them “agree” that they are likely to match. H4 essentially iterates over all matches detected by the

above heuristics and discards those missing any of the two directed edges (Lines 24-26).

Given a pruned disjunctive blocking graph, every heuristic can be formalized as a function

that receives a pair of entities and returns true (T ) if the entities match according to the heuristic’s

rationale, or false (F ) otherwise, i.e., : Hn : E1 ×E2 → {T,F }. In this context, we formally define the

MinoanER matching process as follows:

Definition 4.6. The non-iterative matching of two KBs E1, E2, denoted by the Boolean matrix

M(E1,E2), is defined as a filtering problem of the pruned disjunctive blocking graph G: M(ei ,e j ) =
(H1(ei ,e j )∨H2(ei ,e j )∨H3(ei ,e j ))∧H4(ei ,e j ).

The time complexity of Algorithm 3 is dominated by the size of the pruned blocking graph G it

receives as input, since H1, H2 and H3 essentially go through all directed edges in G (in practice,

though, H1 reduces the edges considered by H2 and H3, and so does H2 for H3). In the worst case,

G contains 2K directed edges for every description in E1 ∪E2, i.e., |V |max =2K · (|E1|+ |E2|). Thus,

the overall complexity is linear with respect to the number of input descriptions, i.e., O(|E1|+|E2|),

which indicates high scalability.

Example 4.4. To illustrate our matching algorithm, consider the pruned disjunctive blocking graph

of Figure 4.2 (a, left), in which nodes e1−e3 represent three entity descriptions from a collection E1,

and nodes e4−e9 represent 6 entity descriptions from another collection E2. Assuming that we want

to keep the top-2 candidates per node based on the β and γ weights, the corresponding candidate

lists per entity are shown in Figure 4.2 (a, right), along with the pruned candidates. First, we treat

the edges withα= 1 as matches and remove them from the graph, along with the nodes they connect

(H1). This would return (e1,e7) as a match and remove e1 and e7 from the remaining lists of can-

didates. Next, we consider the edges with β≥ 1 as matches (H2) and update the graph accordingly,

as shown in Figure 4.2 (b). This would return (e2,e6) as a match and remove e2 and e6 from the

remaining lists of candidates. For each remaining node of E1, we take an aggregate score from its

edges and return the adjacent node with the maximum score as a match (H3). At this point, only

e3 has been left in E1, with its only candidates being e8 and e9, as shown in Figure 4.2 (c). To illus-

trate the aggregation points for each element of the candidate list, we have marked the first-ranked

candidate of each list in Figure 4.2 (c, right) with value 1 and each second-ranked candidate with

value 1/2 (since element lists are of maximum size 2 in this example). Assuming an equally weighted

aggregation for the sake of simplicity here, we see that the aggregate score of the comparison (e3,e8)
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is 2 (1 from e3’s candidates list from β, plus 1 from e3’s candidates list from γ, in both of which e8

is the top candidate), while the aggregate score of the comparison (e3,e9) is 1.5 (0.5 from e3’s can-

didates list from β, in which e9 is the second candidate, plus 1 from e9’s candidates list from γ, in

which e3 is the top candidate). This means that the rank aggregation heuristic would return e3−e8

as a match. Finally, from the discovered matches, we keep only those with reciprocal edges (H4).

This constraint filters out (e3,e8), since there is an edge from e3 to e8, but no edge from e8 back to

e3. As a result, the final matches would be (e1,e7) and (e2,e6).

4.5.1 Implementation in Spark

Figure 4.3 shows the architecture of MinoanER’s implementation in Spark. Each process is exe-

cuted in parallel for different chunks of input, in different Spark workers. Each dashed edge rep-

resents a synchronization point, at which the process has to wait for results produced by different

data chunks (and different Spark workers). As discussed in Section 4.4, our framework employs a

composite blocking scheme that is based on two types of blocks: (a) Name blocking applies the

name indexing function hN to place into the same block all entities that have identical names;

blocks with exactly 1 entity from each KB produce an edge with α= 1. (b) Token blocking applies

the token indexing function hT to place into the same block all entities with a common token in

their values; after processing these blocks, all value similarities, i.e., the β weights of the edges,

have been computed.

In more detail, we apply name blocking, while running token blocking and the extraction of

top neighbors per entity. Then, we synchronize the results of the last two processes: we combine

the value similarities computed by token blocking (theβweights) with the top neighbors per entity

to estimate the neighbor similarities (theγweights) for all entity pairs with neighbors co-occurring

in at least one block. To minimize the overall run-time, H1 starts right after name blocking, H2
after H1 and token blocking, H3 after H2 and the computation of neighbor similarities, while

H4 runs last, providing the final, filtered set of matches. During the execution of every heuristic,

each Spark worker contains only the partial information of the disjunctive blocking graph that is

necessary to find the match of a specific node (i.e., the corresponding lists of candidates based on

names, values, or neighbors).

4.6 Experimental Evaluation

In this section, we compare the effectiveness of MinoanER with state-of-the-art tools and a cus-

tom, heavily fine-tuned baseline method.

Experimental Setup. All experiments were performed with Apache Spark v2.1.0 and Java 8,

on a cluster of 4 Ubuntu 16.04.2 LTS servers. Each server has 236GB RAM and 36 Intel(R) Xeon(R)

E5-2630 v4 @2.20GHz CPU cores. Preliminary experiments have indicated that the following pa-

rameter configuration yields the best results for MinoanER across all datasets: K=15 (candidate
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Figure 4.2: An example of running our heuristics on a pruned disjunctive blocking graph.

matches per entity from values and neighbors), N=3 (most important relations per entity), k=2

(most important attributes per KB, whose values act as names), and θ=0.6 (trade-off between

value-based over neighbor-based candidates). Regarding the number of most important relations

and names, we interpret that those small numbers work well, because there are only few charac-
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Figure 4.3: The architecture of MinoanER in Spark.

teristics of an entity that make it unique (e.g., its name, and its relation to very few unique other

entities, e.g., parents, director). We are currently considering setting those parameters dynami-

cally, based on the local similarity distributions of each node’s candidates.

Datasets. In our experiments, we use 4 benchmark datasets with real data commonly used in

the literature. Table 4.1 presents their technical characteristics. All KBs contain relations between

the described entities.

Restaurant4 contains descriptions of restaurants and their addresses from two different KBs.

The ground truth contains matches only between restaurants, with 23 out of the 112 matches in

the original ground truth referring to missing entities; as a result, we consider only 89 verified

matches. This is the dataset with the highest value and neighbor similarity between matches (Fig-

ure 1.4). It is also the smallest dataset in terms of the number of entities, triples, entity types5, as

well as the one using the smallest number of vocabularies. Hence, it involves the easiest pair of

KBs to resolve.

Rexa-DBLP6 contains descriptions of publications and their authors. The ground truth con-

tains matches between both publications and authors. This dataset contains strongly similar

matches in terms of values and neighbors (Figure 1.4). Although it is relatively easy to resolve,

Table 4.1 shows that it exhibits the greatest difference with respect to the size of the KBs to be

matched (DBLP is 2 orders of magnitude bigger than Rexa in terms of descriptions, and 3 orders

of magnitude in terms of triples). We do not distinguish relations to those between entities with

global URIs and those between entities with local URIs (i.e., blank nodes), hence, the big number

4http://oaei.ontologymatching.org/2010/im/
5Extracted using the values of the attribute w3.org/1999/02/22-rdf-syntax-ns\#type.
6http://oaei.ontologymatching.org/2009/instances/
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Table 4.1: KB statistics.
Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb

E1 entities 339 18,492 58,793 5,208,100
E2 entities 2,256 2,650,832 256,602 5,328,774
E1 triples 1,130 87,519 456,304 27,547,595
E2 triples 7,519 14,936,373 8,044,247 47,843,680
E1 av. tokens 20.44 40.71 81.19 15.56
E2 av. tokens 20.61 59.24 324.75 12.49
E1 / E2 attributes 7 / 7 114 / 145 27 / 10,953 65 / 29
E1 / E2 relations 2 / 2 103 / 123 9 / 953 4 / 13
E1 / E2 types 3 / 3 4 / 11 4 / 59,801 11,767 / 15
E1 / E2 vocab. 2 / 2 4 / 4 4 / 6 3 / 1
Matches 89 1,309 22,770 56,683

of relations in this dataset.

BBCmusic-DBpedia [34] containsdescriptions of musicians, bands and their birthplaces, from

BBCmusic and the BTC2012 version of DBpedia7. In our experiments, we consider only entities

appearing in the ground truth, as well as their immediate in- and out-neighbors. The most chal-

lenging characteristic of this dataset is the high heterogeneity between its two KBs in terms of

both schema and values: DBpedia contains ∼11,000 different attributes, ∼60,000 entity types, 953

relations, the highest number of different vocabularies (6), while using on average 4 times more

tokens to describe an entity than the average entity described in BBCmusic.

Based only on the latter feature, all normalized, set-based similarity measures like Jaccard fail

to identify such matches, since a big difference in the token set sizes yields low similarity values

(Figure 1.4). We have previously shown in Section 2.5.2 that in the median case, an entity descrip-

tion in this dataset contains only 2 words in its values that are used by both KBs.

YAGO-IMDb [97] contains descriptions of movie-related entities (e.g., actors, directors, movies)

from YAGO and IMDb8. Figure 1.4 shows that a large number of matches in this dataset has low

value similarity, while a significant number of them has high neighbor similarity. Moreover, this is

the biggest dataset in terms of entities and triples, challenging the scalability of ER tools, while it

is the most balanced pair of KBs with respect to their relative size.

Baselines. In our experiments, we compare MinoanER against four state-of-the-art methods:

SiGMa, PARIS, LINDA and RiMOM. We also consider a custom baseline method, called BSL. This

method receives as input the disjunctive blocking graph G , before its pruning, and compares ev-

ery pair of descriptions that are connected by an edge in G . The resulting similarities are then

processed by Unique Mapping Clustering. Unlike our approach, though, BSL disregards all ev-

idence from neighboring descriptions. Instead, it relies exclusively on value similarity, but opti-

mizes its performance through a series of well-established string matching methods that undergo

extensive fine-tuning on the basis of the ground-truth.

7datahub.io/dataset/bbc-music, km.aifb.kit.edu/projects/btc-2012/
8http://www.yago-knowledge.org/, http://www.imdb.com/
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Table 4.2: Block statistics.
Restaurant Rexa- BBCmusic- YAGO-

DBLP DBpedia IMDb

|BN | 83 15,912 28,844 580,518
|BT | 625 22,297 54,380 495,973

||BN || 83 6.71·107 1.25·107 6.59·106

||BT || 1.80·103 6.54·108 1.73·108 2.28·1010

|E1| · |E2| 7.65·105 4.90·1010 1.51·1010 2.78·1013

Pr / Re 4.95 / 100 1.81·10−4 / 99.77 0.01 / 99.83 2.46·10−4 / 99.35
F1 9.43 3.62·10−4 0.02 4.92·10−4

Table 4.3: Evaluation of MinoanER compared to existing methods.
Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb

SiGMa [66]
Pr / Re 99 / 94 97 / 90 - / - 98 / 85
F1 97 94 - 91

PARIS [97]
Pr / Re 95 / 88 93.95 / 89 19.40 / 0.29 94 / 90
F1 91 91.41 0.51 92

LINDA [16]
Pr / Re 100 / 63 - / - - / - - / -
F1 77 - - -

RiMOM [68]
Pr / Re 86 / 77 80 / 72 - / - - / -
F1 81 76 - -

BSL Pr / Re 100 / 100 96.57 / 83.96 85.20 / 36.09 11.68 / 4.87
F1 100 89.82 50.70 6.88

MinoanER
Pr / Re 100 / 100 96.74 / 95.34 91.44 / 88.55 91.02 / 90.57
F1 100 96.04 89.97 90.79

In more detail, we examine the performance of BSL using a large number of parameter con-

figurations to detect the best performing one. Four parameters are fine-tuned to maximize its

F-measure: (i) The schema-free representation of the values in every entity. BSL uses token n-

grams for this purpose, with n ∈ {1,2,3}, thus representing every resource by the token uni-/bi-

/tri-grams that appear in its values. (ii) The weighting scheme that assesses the importance of

every token. We consider TF and TF-IDF weights. (iii) The similarity measure, for which we con-

sider the following well-established similarities: Cosine, Jaccard, Generalized Jaccard and SiGMa.

All measures are normalized to [0,1] and SiGMa similarity applies exclusively to TF-IDF weights,

by definition [66]. (iv) The similarity threshold that prunes the entity pairs processed by Unique
Mapping Clustering. We use all thresholds in [0,1) with a step of 0.05. In total, we consider 420

different configurations for BSL, reporting the one with the highest F-Measure.

4.6.1 Effectiveness Evaluation

Table 4.2 reports the performance of the blocks used by BSL and MinoanER. The number of

comparisons in token blocks (||BT ||) is at least 1 order of magnitude larger than those of name
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blocks (||BN ||), even if the latter may involve more blocks (|BN |>|BT | over YAGO-IMDb). In fact,

the comparisons suggested by names seem to depend linearly on the number of input descrip-

tions, whereas the comparisons suggested by tokens seem to depend quadratically on that num-

ber. Nevertheless, the overall comparisons in BT ∪BN are at least 2 orders of magnitude lower than

the Cartesian product |E1| · |E2|, even though recall (Re) is consistently higher than 99%. Yet, both

precision (Pr) and F-Measure (F1) remain rather low.

Table 4.3 reports the performance of MinoanER and the baselines. For every method, we re-

port its Pr, Re and F1 with respect to the descriptions in the first KB appearing in the ground truth.

Since PARIS [97] is openly available, we were able to run it on Rexa-DBLP and BBCmusic-DBpedia.

For the rest of the tools, we report their performance from the original publications9.

Table 4.3 shows that MinoanER offers competitive performance when matching KBs with few

attributes and entity types, even if it requires no domain-specific input, while significantly outper-

forming state-of-the-art ER methods for highly heterogeneous KBs. Specifically, it achieves 100%

F1 in Restaurant, which is 3% higher than SiGMa, 9% higher than PARIS, and ∼20% higher than

LINDA and RiMOM. Note that BLS also achieves perfect F1, due to the strongly similar matching

entities (Figure 1.4). In Rexa-DBLP, MinoanER also outperforms all existing ER methods. It is 2%

better than SiGMa in F1, 4.6% better than PARIS, 20% better than RiMOM, and 6% better than BSL.

As explained previously, BBCmusic and DBpedia are, by far, the most heterogeneous KBs. For this

reason, PARIS struggles to identify the matches, with BLS performing significantly better, but still

very poorly in absolute numbers. In contrast, MinoanER succeeds in identifying 89% of matches

with 91% precision, achieving a 90% F1. In YAGO-IMDb, MinoanER achieves similar performance

with SiGMa (91% F1), with more identified matches (91% vs 85%), but lower precision (91% vs

98%). Compared to PARIS, its F1 is 1% lower, due to 3% lower precision, even if our recall is better

by 1%. Finally, BSL exhibits the worst performance by far, due to the very low value similarity

between matching entities in this KB (Figure 1.4).

Comparing the performance of MinoanER (Table 4.3) to that of its input blocks (Table 4.2),

precision raises by several orders of magnitude at the cost of slightly lower recall. The lower recall

is caused by missed matches close to the lower left corner of Figure 1.4, i.e., with very low value

and neighbor similarities. This explains why the impact on recall is larger for BBCmusic-DBpedia

and YAGO-IMDb.

Evaluation of Heuristics

Table 4.4 summarizes the individual contribution of each heuristic in Algorithm 3, when executed

alone, as well as the overall contribution of neighbor similarity evidence in the matching results.

Name Heuristic (H1). This heuristic achieves both high precision (> 97% in all cases) and a

decent recall (> 66% in all cases). Hence, given no other matching evidence, H1 alone yields good

matching results, emphasizing on precision, with only an insignificant number of its suggested

9RiMOM-IM [91] is also openly available, but without execution instructions.
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matches being false positives. To illustrate the importance of this similarity evidence in real KBs,

we have marked the matches with identical names in Figure 1.4 as bordered points. Thus, we

observe that matches may agree on their names, regardless of their value and neighbor similarity

evidence.

Value Heuristic (H2). This heuristic is also very precise (> 90% in all cases), but exhibits a

lower recall (> 30%). Nevertheless, even this low recall is not negligible, especially when it com-

plements the matches found from H1. In the case of strongly similar entity descriptions as in the

Restaurant dataset, this heuristic alone can identify all the matches with perfect precision.

Rank Aggregation Heuristic (H3). This heuristic is the only one that exploits neighbor simi-

larity evidence and its contribution in terms of matches is not the same in all KBs. For KBs with

low value similarity (left part of Figure 1.4), this heuristic is the only solution for finding matches

having no/different names. In BBCmusic-DBpedia and YAGO-IMDb, it has the highest contribu-

tion in recall and F1 among all other heuristics, with the results for YAGO-IMDb being almost

equivalent to those of Table 4.3 (YAGO-IMDb features the lowest value similarities in Figure 1.4).

For KBs with medium value similarity (middle part of Figure 1.4), but not sufficient enough to find

matches with H2, aggregating neighbor with value similarity is very effective. In Rexa-DBLP, H3
yields almost perfect results. Overall, H3 is the heuristic with the greatest F1 in 3 out of 4 datasets.

Reciprocity Heuristic (H4). Since this is a filtering heuristic, i.e., it does not add new re-

sults, we measure its contribution by running the full workflow without it. Thus, the results of this

heuristic in Table 4.4 should be compared to the results in Table 4.3. This comparison shows that

this heuristic increases the precision of MinoanER, with a small, or no impact on recall. Specif-

ically, it increases the precision of BBCmusic-DBpedia by 1.51%, while its recall is decreased by

1.38%, and in the case of YAGO-IMDb, it improves precision by 0.44% with no negative impact

on recall. This results in an increase of 0.04% and 0.21% in F1 for BBCmusic-DBpedia and YAGO-

IMDb, respectively. Overall this heuristic is the weakest one, yielding only a minor improvement

in the results of MinoanER.

Contribution of neighbors. To evaluate the contribution of neighbor evidence in the match-

ing results, we have repeated Algorithm 3, without heuristic H3. Note that this experiment is

not the same as our baseline; here, we use all the other heuristics, also operating on the pruned

disjunctive blocking graph, while the baseline does not use our heuristics and operates on the

unpruned graph. The results show that neighbor evidence play a minor or even no role in KBs

with strongly similar entities, such as Restaurant and Rexa-DBLP, while having a bigger impact in

KBs with nearly similar matches, such as in BBCmusic-DBpedia and YAGO-IMDb (see Figure 1.4).

Specifically, compared to the results of Table 4.3, the use of neighbor evidence improves precision

by 2.22% and recall by 3.19% in BBCmusic-DBpedia, while, in YAGO-IMDB, precision is improved

by 2.97% and recall by 3.15%.
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Table 4.4: Evaluation of heuristics.
Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb

H1
Pr / Re 100 / 68.54 97.36 / 87.47 99.85 / 66.11 97.55 / 66.53
F1 81.33 92.15 79.55 79.11

H2
Pr / Re 100 / 100 96.15 / 30.56 90.73 / 37.01 98.02 / 69.14
F1 100 46.38 52.66 81.08

H3
Pr / Re 98.88 / 98.88 94.73 / 94.73 81.49 / 81.49 90.51 / 90.50
F1 98.88 94.73 81.49 90.50

¬H4
Pr / Re 100 / 100 96.03 / 96.03 89.93 / 89.93 90.58 / 90.57
F1 100 96.03 89.93 90.58

No Nei- Pr / Re 100 / 100 96.59 / 95.26 89.22 / 85.36 88.05 / 87.42
ghbors F1 100 95.92 87.25 87.73

4.6.2 Efficiency Evaluation

To evaluate the scalability of matching in MinoanER10, we present in Figure 4.4 the running times

and speedup of matching for each dataset, as we change the number of available processors in our

cluster, i.e., the number of tasks that can run at the same time. In each diagram, the left vertical

axis shows the running time and the right vertical axis shows the speedup, as we increase the num-

ber of available processors (from 1 to 72) shown in the horizontal axis11. Across all experiments,

we have kept the same total number of tasks, which was defined as the number of all cores in the

cluster multiplied by a parallelism factor of 3, i.e., 3 tasks are assigned to each core, when all cores

are available. This was to ensure that each task would require the same amount of resources (e.g.,

memory and disk), regardless of the number of available cores. We observe that the running times

decrease as more processors become available, and this decrease is steeper when using a small

number of processors. For example, the matching of Rexa-DBLP with 6 cores is 6 times faster

than with 1 core, while it is 10 times faster with 12 cores than with 1 core (top-right of Figure 4.4).

Overall, we observe a sub-linear speedup in all cases, which is expected when synchronization is

required for different steps (see Section 4.5.1), while bigger datasets have a speedup closer to lin-

ear than smaller tasks, since the overhead of Spark is smaller with respect to the processing times

in such cases.

It is not possible to directly compare the efficiency of MinoanER with the competitive tools

of Table 4.3; most of them are not publicly available, while the available ones do not support par-

allel execution using Spark. Note that scalability, i.e., a massively parallel architecture, is one of

the Web-scale ER requirements that we have set in Section 1.3. Additionally, the running times

reported in the original works are about sequential algorithms executed in machines with a dif-

ferent setting than ours. However, we can safely argue that our fixed-step process, as opposed to

10The scalability of blocking and Meta-blocking have been already evaluated [33, 36].
11We could not run MinoanER on the YAGO-IMDb dataset with only 1 processor, due to limited space in a single

machine, so we report its running time starting with a minimum of 4 processors. This means that the linear speedup
for 72 tasks would not be 72, but 18 (72/4).
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Figure 4.4: Scalability of matching in MinoanER w.r.t. running time (left vertical axis) and
speedup (right vertical axis) as more cores are involved.

the data-iterative processes of existing works, boosts the efficiency of MinoanER at no cost in (or,

in most cases, with even better) effectiveness. Indicatively, the running time of our framework for

Rexa-DBLP was 3.5 minutes (it took PARIS 11 minutes on one of our cluster nodes for the same

dataset), for BBCmusic-DBpedia it was 69 seconds (it took PARIS 3.5 minutes on one of our clus-

ter nodes), while the running time for YAGO-IMDb was 28 minutes (SiGMa reports 70 minutes,

and PARIS reports 51 hours). In small datasets like Restaurant, our framework can be slower than

other tools, as Spark has a setup overhead, which is significant for such cases (it took MinoanER

27 seconds to run this dataset, while PARIS needed 6 seconds).

4.7 Conclusion

In this chapter, we have presented MinoanER, a fully automated, schema-free and massively par-

allel framework for ER in the Web of data. To resolve highly heterogeneous entities met in this

context, we define schema-free similarity metrics that consider both the content and the neigh-

bors of entities. We exploit these metrics in a composite blocking scheme and conceptually build

a disjunctive blocking graph, a novel graph-based abstraction of the similarity evidence obtained



4.7. Conclusion 103

by blocking. This graph of candidate matches is processed by a non-iterative matching method

with linear cost to the number of entity descriptions. This means that we can now identify the

matches with low similarity (left part of the diagram in Figures 1.4, 4.5) based on their neighbors

and names, even from the step of blocking, without any iteration over previously found matches.

The results show that neighbor evidence plays a minor role in KBs with strongly similar enti-

ties, such as Restaurant and Rexa-DBLP, while having a bigger impact in KBs with nearly similar

entities, such as in BBCmusic-DBpedia and YAGO-IMDb. MinoanER achieves at least equivalent

performance with state-of-the-art ER tools over homogeneous KBs, even without requiring any

domain-specific knowledge, e.g., regarding the alignment of relations in the input, or training data.

Yet, it outperforms to a significant extent existing ER tools when matching highly heterogeneous

KBs, while its parallel implementation in Spark allows it to easily scale to voluminous datasets, as

the ones met in the Web of data. The employed heuristics manage to cover a wide area of matches

in the diagram of Figure 1.4, as abstractly annotated in Figure 4.5 (H1 covers a big part of the whole

diagram, H2 focuses on the right part, and H3 targets the middle-top part), but still some areas of

the diagram are not covered sufficiently (e.g., the bottom-left part), or the covered areas are not

handled in a perfect manner, since the recall of blocking is still better than that of matching. The

difficulty in identifying those matches is also reflected by the overlap of the heuristics in this figure.

If for example, a match is missed from H1 in the top-right area, this match has two more chances

to be identified (by H2 or H3), so it is easier to identify such matches. If, on the other hand, H1

Figure 4.5: The area of matches from Figure 1.4 targeted by each of the employed heuristics.
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misses one match in the bottom-left corner of Figure 4.5, then this match will not be identified

by any other heuristic. This means that there is still some room for improvement in the heuristics

used, that could increase the number of cases covered.

Furthermore, we are currently working on dynamically setting the three parameters that we

have discussed in Section 4.6 (number of candidate matches per entity, most important relations

per entity, and most important properties per KB acting as names), based on the local similarity

distributions of each node’s candidates will further increase the flexibility and effectiveness of our

framework. For example, when many of the candidate matches have a high value similarity, we ex-

pect that increasing the number of candidate matches kept per entity will yield better recall results,

while, when the neighbor similarity of candidate matches is low, reducing the number of most im-

portant relations should improve precision. The datasets and source code used in MinoanER are

publicly available12.

12http://csd.uoc.gr/~vefthym/minoanER/datasets.html



Chapter 5

Conclusion and Future Work

5.1 Synopsis of Contributions

Although Entity Resolution (ER) has been studied for more than three decades in different com-

puter science communities, it still remains an active area of research. In particular, the scale, diver-

sity, and graph structuring of entity descriptions published according to the Linked Data paradigm

challenge the core ER tasks, namely, (i) how resolution algorithms can efficiently filter the candi-

date description pairs that need to be compared and (ii) how descriptions can be effectively com-

pared for similarity. In this thesis, we introduce the MinoanER framework, which deals with these

challenging ER tasks in the Web of data in the following ways.

Regarding the first task, ER in the Web of data involves a large number of KBs (in the or-

der of hundreds) and even a larger number of entity types in different domains (in the order of

thousands) whose published descriptions could be potentially resolved (Chapter 1). Aiming at

efficiency, MinoanER employs blocking (Chapter 2) and Meta-blocking (Chapter 3) to reduce the

number of required comparisons. The indexing functions of blocking are schema-free, based on

the tokens and the names of the entity descriptions, disregarding any assumptions regarding the

way entities are described in various KBs. Meta-blocking relies on a novel disjunctive blocking

graph capturing similarity evidence provided by several atomic blocking methods (i.e., on the con-

tent, name and neighbors of descriptions) that can be then efficiently built and pruned, using only

on the blocking results. Both blocking and Meta-blocking have been implemented in a massively

parallel architecture, to allow scaling to the volumes of KBs met in the Web of data. The experi-

mental results show that our composite blocking and Meta-blocking techniques achieve for both

strongly and nearly similar entities a good tradeoff between the efficiency and the effectiveness of

the ER process, by reducing the number of suggested comparisons by more than 90%, while also

suggesting the comparisons between more than 90% of the actual matches.

Regarding the second task, MinoanER relies on new similarity metrics, that can effectively com-

pare descriptions of different entity types using simple statistics on terms, attributes or relations

employed to describe entities even in different domains without involving domain experts (Chap-

ter 4). The similarity evidence provided by these metrics and captured by the disjunctive blocking

graph, are exploited by generic heuristics in a non-iterative matching. The matching heuristics

105
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are also implemented in a massively parallel architecture, enabling MinoanER to handle ER at

the scale of the Web of data. The experimental results show that our non-iterative matching can

successfully identify not only strongly similar, but also nearly similar matches met in highly het-

erogeneous Web KBs.

To our knowledge, MinoanER is the first ER framework that can identify nearly similar matches

in a schema-free, fully automated, non-iterative and massively parallel way. The main contribu-

tion of this framework to the field, is that it achieves at least equivalent results over homogeneous

KBs (stemming from common data sources, thus exhibiting strongly similar matches), and signif-

icantly better results over heterogeneous KBs (stemming from different sources, thus exhibiting

many nearly similar matches), to state-of-the-art ER tools, without requiring any domain-specific

knowledge, e.g., regarding the schema or the alignment of relations in the input, or training data,

in a non-iterative and highly efficient way.

5.2 Short-term Improvements

The following improvements could potentially enhance flexibility and performance of MinoanER:

• Dynamically setting the fixed parameters of the matching phase (i.e., number of candidates

kept per node after pruning the blocking graph, number of most important relations per

entity, and most important properties per KB acting as names) based on the local similarity

distribution of each node would strengthen the flexibility of our matching to better adapt

to each unique case of matching. This extension aims to achieve the maximum possible

recall for matching, which is the recall of blocking. This is similar in logic to the global

vs. local pruning of the blocking graph edges: in our current design, we are using only a

global strategy, however, considering a local one, we can set different parameter values per

entity. Our intuition is that when many of the candidate matches have a high value similarity,

increasing the number of candidate matches kept per entity will result in higher recall, while,

when the neighbor similarity of candidate matches is low, reducing the number of most

important relations should improve precision. Also, when many candidates are tied at the

candidate lists, increasing the number of important relations would help breaking those ties,

with respect to the neighbor evidence, and increasing the number of important attributes

used as entity names could also help in this direction.

• Optimizing the parallel algorithms employed for blocking, Meta-blocking and matching, tai-

loring them to the specific parallelization environment used is an unexplored field in this

work. In our preliminary examples, we have seen a drastic reduce in the running times of

our algorithms when moving from MapReduce to Spark. In one setting of Meta-blocking, in

which multiple MapReduce jobs were employed, the transition from MapReduce to Spark

reduced the running time from 70 minutes to only 10, without any advanced tuning. At the

moment, we have only implemented in Spark the Meta-blocking methods that were utilized
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by MinoanER. We believe that further tuning our algorithms for Spark, and proving that their

parallelization is optimal, would yield significant efficiency benefits.

• Extending the matching evidence to indirect neighbors. In this work, we consider only the

similarity of direct (hop-1) neighbors to influence the matching decision for a candidate pair.

Extending the radius of important neighbors (e.g., to hop-2) may improve the effectiveness

of a matching method, probably bringing an overhead in efficiency. Specifically, [67] studies

this problem for matching anonymous entity descriptions (blank nodes) with a varying ra-

dius, using a textual signature of the entity description and its neighbors (the signature is a

string concatenation of all the RDF triples in which the identifier of an entity description par-

ticipates). It shows that extending the similarity evidence to indirect neighbors can yield bet-

ter qualitative results, while the signature-based algorithm allows an efficient search even

when the radius is greater than 1. As noted in [67], a parallel version of this algorithm is

worth noticing, and we believe that a signature-based extension of our work for indirect

neighbors could improve the effectiveness of MinoanER, with a small efficiency overhead.

• Support of numerical comparisons, hierarchical data, and stemming. In some cases, treat-

ing all values as tokens may have disadvantages. Those are domain-specific problems, such

as matching geographical data, which contain many numeric values (e.g., co-ordinates, poly-

gons) and an exact match of values or even tokens of those values may be ineffective. In

such cases, we may want to compare values and suggest candidate matches based, not only

on the exact match of tokens, but instead, on the proximity of the numeric values (e.g.,

co-ordinates very close to each other), a containment measure (for polygons describing

locations), or a hierarchical comparison (e.g., the facts “bornIn Manhattan” and “bornIn

NewYork” should not be considered dissimilar). This could easily integrated to our frame-

work as an additional indexing function (i.e., type of blocking) and the inclusion of the gen-

erated blocks in our disjunctive co-occurrence function. Another improvement on the com-

parison of values could be to employ stemming before blocking, this way handling typos in

a better way. The way this additional evidence could be exploited in blocking is also inter-

esting; for this reason, a domain-specific heuristic could be employed.

5.3 Directions for Future Research

There are several aspects that are worth further work and research. Here, we discuss our ongoing

and future work regarding Web table annotation, streaming ER, and the benefit of ER.

Web table annotation. In this thesis, we have studied the problem of resolving entities whose

descriptions are published in one or two RDF KBs. An interesting research question is how can we

resolve entities when one of the KBs is published in a different format, such as in the form of Web

tables? Could we exploit some of MinoanER’s components to this respect? In our ongoing work,
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we are trying to provide answers to these questions for the problem of annotating the contents of

Web tables with matching descriptions contained in a target RDF KB. The main difference with

what we have seen in this thesis is that a typical Web table contains entity descriptions of a single

domain with a fixed schema, while the target KB does not. We only consider horizontal tables, in

which each row describes a different entity and each column corresponds to a specific attribute,

which can also be a relation, or the attribute corresponding to the entity name. We make the as-

sumption that all the entities described in the same column are of the same type and that column

headers, typically existing in the first row of a horizontal Web table, do not contain meaningful

names which we could exploit for matching them to properties in a KB, as this is an assumption

holding for the majority of Web tables [6].

We are currently evaluating different approaches to this problem, whose contextual informa-

tion vary from poor (in Web tables) to rich (in KBs). First, we examine a lookup-based method,

which exploits the columns of the Web tables recognized as entity names. It essentially detects

correspondences using the minimal contextual information available in Web tables, which is then

refined (based on frequently occurring terms in entity descriptions) or enriched (by exploiting re-

lationships with other entities) with respect to the context of entities available in the KB. To do

that, it creates an index for the target KB, using token blocking, and then searches this index for

the tokens contained in the name column, to create candidate matches. The final matches are

then selected using similar heuristics to the ones we used in Chapter 4. In the opposite direc-

tion, the embeddings-based method exploits a vectorial representation of the rich entity context

in a KB (using word2vec [74] algorithm) to identify the most relevant subset of entities in the Web

table. Again, blocking is utilized to quickly store and retrieve the names of the entities, which is

required to generate candidate matches. The candidate matches are stored as nodes in a graph,

in which the cosine similarity of their vectors are used to weight the edges connecting them. The

most coherent result-set, which is the set of most visited nodes found by several iterations of a

weighted PageRank algorithm [107], is the final annotation result. Our experiments show that the

best results are acquired by a combination of these two methods [30, 31].

Progressive ER. Works in progressive ER [3,4,86,100] focus on maximizing the reported matches,

given a limited computational budget, by potentially exploiting the partial matching results ob-

tained so far in an iterative ER process. Essentially, they extend the typical ER workflow with

a scheduling phase, which is responsible for selecting which candidate matches, suggested by

blocking, will be compared in the matching phase and in what order. The goal of this new phase is

to favor more promising comparisons, i.e., those that are more likely to result in matches. This

way, those comparisons are executed before less promising ones and thus, more matches are

identified early on in the process. The partial results of matches are then propagated such that a

new scheduling phase will promote the comparison of pairs that were influenced by the previous

matches. This iterative process continues until the pre-defined computing budget is consumed.

We believe that the quality of the resulting entity graph after merging the matches, rather
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than the number of matches, should determine the benefit of the ER process under resource con-

straints. In this respect, we are interested in measuring the complementary knowledge (similar to

the notion of diversity used in information retrieval) that an ER process could achieve in the re-

sulting entity graph. Our intuition is that merges resulting from nearly similar entity descriptions

are more beneficial in this respect compared to merges from strongly similar descriptions (i.e., du-

plicates). Thus, given a constraint in the number of possible merges, we would like to perform

those that contribute most in diversifying the knowledge encoded in the resulting entity graph.

Complementary knowledge can be measured by the degree of a merged node in an entity graph,

excluding overlapping edges. Intuitively, each edge represents a fact or relationship, which we use

as a unit of knowledge increase. When two edges overlap, they represent the same knowledge unit,

so we do not gain anything by knowing both of them, whereas, when two edges represent two dif-

ferent knowledge units, then they are both useful. Thus, when we merge two matching entities,

we want to count only the number of unique knowledge units that the merging brought to our

graph. In that sense, nearly similar descriptions provide complementary knowledge units about

the entity that they describe and thus maximize the benefit of progressive ER, whereas merging

strongly similar descriptions comes with a zero benefit. Thus, we would need to reconsider the or-

der of applying our heuristics during the matching phase, placing the rank aggregation heuristic

(H3), targeting nearly similar matches, before the value heuristic (H2), targeting strongly similar

matches, or combining the name (H1) and value (H2) heuristics, such that we return first the

matches with identical names (i.e., a subset of those returned by H1) that are not strongly similar

(i.e., they are not returned by H2).

Streaming ER. We are finally interested in a streaming version of MinoanER, in which we are

not asked to find all the matching descriptions between two entity collections, but the matches of

descriptions arriving in a streaming fashion against a stored collection of entities (e.g., [3,44,100]).

For example, consider an application resolving the entities described across news feeds. A jour-

nalist using this application could be provided with several facts regarding a breaking news story,

as they get published by different agencies or witnesses, enabling him/her to form a complete pic-

ture of the events as they occur, in real-time. This would require storing only some parts of the

blocking graph, and discarding the rest, as more descriptions are fed to the system. To evaluate

which parts of the graphs are more useful to keep, we can design different strategies. For example,

we may want to keep the latest nodes of the graph, since new input entities are more likely to be

connected to them, and thus, their resolution is more likely to be helped by those latest nodes. An-

other strategy would be to keep the nodes with the highest in-degrees, since they are more likely to

influence the matching decision of their in-neighbors and new entities appearing are more likely

to be connected to those nodes.

The MinoanER framework already considers local matching decisions taken for each node,

using only its name, tokens and most important direct neighbors. Hence, the matching of a sin-

gle node does not require the identification of all existing matches. Also, the indexing functions
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used by our blocking method are schema-free and non-iterative, which means that entities can

be placed in blocks as they come, regardless of the set of attributes that they use. Moreover, the

most effective heuristic in terms of matching cases, the name heuristic (H1), can be run immedi-

ately with a close-to-zero cost. The value heuristic (H2) could also run at real-time considering

the number and size of common token blocks between two descriptions, which, together with H1,

would result in a decent streaming ER framework. The biggest challenge for a streaming version

of MinoanER would be the incorporation of the rank aggregation heuristic (H3), which requires

matching evidence from the neighbors. Streaming ER would probably imply the withdrawal of the

reciprocity heuristic (H4), sacrificing a small fraction of precision for the sake of faster process-

ing. Finally, scalability still demands a parallel architecture, since the search space of candidate

matches would incrementally increase. Such a streaming version of ER could be supported by

distributed stream-processing frameworks such as Spark streaming1 and Apache Flink2.

1https://spark.apache.org/streaming/
2https://flink.apache.org/
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Glossary

block (symb. b) a subset of entity descriptions from an entity collection (typically created using

an indexing function). 6, 10, 11, 13–22, 24, 25, 27, 28, 31, 34–36, 39, 41–77, 80, 82, 88, 89, 91,

94, 98, 99

blocking graph (symb. G) a graph whose nodes represent entity descriptions and edges con-

nect descriptions that share a common block, denoting the candidate matches suggested

by blocking. 6, 10, 11, 41–44, 47–49, 51, 53–55, 57, 72, 81, 83, 88, 89, 91, 93, 94, 97, 100, 105,

106, 109

dataset a set of entity collections, whose entity descriptions can be matched (usually referring to

a benchmark dataset). 7, 9, 21, 28–31, 33–40, 43, 65, 66, 69–72, 75–78, 96, 97, 100, 101, 103

entity collection (symb. E ) a set of entity descriptions, either from a single source (e.g., a single

KB or database), or from multiple sources. 5, 6, 14–16, 20–22, 24–28, 35, 42, 44, 45, 47, 65, 84,

87, 88, 109

entity description (symb. e) (or simply “description”, when clear from the context) an identifiable

set of attribute-value pairs, used to describe a real-world entity, including physical (e.g., a

book) and non-physical (e.g., a character in a book) objects. 1–4, 6–10, 13–15, 18–20, 25, 27,

28, 30, 31, 34, 39, 40, 44, 48, 49, 65, 66, 77, 79, 81–87, 93, 100, 105, 107, 108

ER (Entity Resolution) the problem of identifying entity descriptions that refer to the same real-

world entity. 1, 4, 5, 7–11, 13, 17, 25, 30, 39, 40, 49, 66, 76, 79, 81, 82, 84, 97, 99, 101, 105, 106,

108–110

ground truth a set entity description pairs which are known to refer to the same real-world entity

(i.e., a given set of matches), used for the evaluation of an ER task. 14, 16, 30, 31, 35, 36, 65,

96, 97, 99

KB (Knowledge Base) a single data source, containing descriptions of real-world entities (the

main difference to a database, is that a KB does not necessarily follow a specific schema).

1–5, 7–11, 13, 14, 20, 22, 29–31, 34–36, 39, 40, 65, 79–82, 86, 88, 89, 91, 96, 97, 100, 103, 105–

108

119



120 Glossary

match (noun) a pair of entity descriptions that refer to the same real-world entity; (verb) refer

to the same real-world entity. 1, 5–10, 13–21, 23–25, 30, 31, 33, 35–39, 41, 48, 65, 75, 76, 79,

81–84, 88, 91–97, 99, 100, 106, 108, 109




