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Evyoprotiec

H dwotpif] owt oAokAnpwbnke xdtm omd tnv xobodijynon kot enonteicr TOL
ovupoviov kKaONyNTy Hov, K. TTéAMov Opeovovddkm, e tov omolo eiyo uio e§onpetikn
ouvepyooio e OAN TNV SLEPKELD TOV GTOVOMV LOV. O 1{0eAo VoL TOV EVYOPLOTI|ICM Bepd.
yio TNV PoriBeLd TOL GTO EXGTNUOVIKG ENINESO, TNV VITOCTHPIEN KL TNV EUTLGTOGHVN TOV
TPOG TO TPHSAOTS LoV, KOOGS KoL Yo TNV TEVTOL YOy GUUTEPLPOPE. TOL GTO EMINESO TOV

TPOCOTLKADV, AVOPOTIVOV GYECEWV.

AloBdvouonl emiong v ovEeykn vo euyoplotio® Oepud Tov Ko ynt 1oL
IMovemomuiov tov Maryland k. Tiévvn Aloipovo kol tnv €pevviTplo. ToLv 1810V
noveniotnuiov k. Cornelia Fermiiller pe touvg omoiovg eiyor eEoupetikd evolopépovoeg
ocv{nmoelc yioo tnv Evepyd ko TeAeoAoyikry Opaon (active and purposive vision) kaOdg
eniong Ko mo CVYKEKPLUEVQL, Y10 TO TPOPANLOL TNG oviyxveELON G OVEEAPTNTNG TPLGOLAGTOTNG

kivnong. Ziyovpa, n emoer] poli Tovg Lov €6mwae TOAAG Kol 181U TEPOL X PTICULOL LoD LLOLTOL.

Oo1ibela eniong va eV oploTHom ToL LEAN TNG EEETUOTIKNG EMTPOTIC TNG SLorTpi1ic Lov,
tov¢ Kvplovg I'iévvn Moraddkn (kabnynty tov Mabnuotikod TUMUOTOS KoL OGUTOPC.
™m¢g XyoAn¢ Oetikadv Emotnuav tov IMovemotmnuiov png), édvvn Tlito (kodnynt
tov Tunuortog ITANpoeoptk1c Tov AptototéAelov Iavemotnuiov O@ecoorovikng), Ztépovo

oA (ovomAN p@TH KoONnyNTY| Tov Turuotog HAektpoddymv Mnyovikav 1ov Metodfeton
IToAvteyveiov), Xproto NikoAdov (avomAnpmty kodnynti tov Tunquortog Emotiung
Yroloylotdv tov IMoveriotnuiov prtg), Fdpyo Tlpita (avominpot Kodnynty tov
Tuniuotog Emotiung YroAoylotayv tov IMovemotnuiov pftng) ko Ilévo Tpoyovid
(enixovpo kabnyNT™ 0L TURUoTog Emotiung YroAloyliot®y tov Iovemotmuiov p1ing).
Oo MBedlor vor otof® taitepor otov TIdvo Tpoyovid 0 omoiog Kotd TNV SGpKeELD TMV

TEAELTOLOV KOl KPLOIULSTEPV X PpOVV LINpEe Thvto e€onpetiid TpGOLIOC VoL 0KOVGEL, VoL



ocv{nmoetl kol va pe Bondnoel oe OAeg TG TPoomEBelég pov. Oo MBelo eniong Bepud
vor euxoplotiom Tov K. Twpyo TCpita otov onoio o@eidm TNV apylKn HLOL ETOPN UE
TOL GTOTIOTIKG €PYOAElOl TOL EKTEVMS YPNOLLOTOiNco 6tnV gpyocic pov. Idwaitepa tov

EVYOPLOTA KOL Y10 TOL XPNOLLO Y OALE TOV 6TO TEMKO Kelpevo Tng StortpifPiic.

Iowitepn  upvelor ofiler otov ouvddelpo pov, MovoAn  Aovpdkn  UHE  TOV
omolo UOpOoOTHKOUE OTEAELMTEG MOPeC OLINTIGEWY, TEPAUETOV, €VOOLOLOOUOD KO
OmoYONTEVGEDY. Oe®pd TOV €0LTO LOV TPOYUOTIKE TUYEPS OV GE €val T6c0 eEoupeTikd

cuvepydtn Bprika évol 1660 ondvio eido. Tov evyouot oAdyuyo 6,1t emOULULEL.

H epyacsioc ovti olokAnpddnke oto Tuiuo Emiotiung YTOAOYIGT®V  TOL
IMovemotuiov  pNNS kol 610 Ivotitovto TMAnpoeopiknig Tov Idpvuatog Teyvoroyiog
ko ‘Epevvog. Oo MBelo vor evyapltotiom Oepud GA0VE Toug GIAOVG KoL GLUVEPYBITEG GE
QVTE TOL LOPVUOLTO TTOV O KOBEVOLS LLE TOV TPOTO TOV GLUVERUAE GTNV TPOLYULOTOTOINGT QLLTNG
me epyocioc. AmOEEVY® VO TOVS OVOPEP® OVOUOOTIKE ylorti pior Té€Tolo. TpocmdOeLo.
00 MTaV €K TOV TPOYUATOV EAAELTAG KO EMOUEVOS Ko AdKM. ©Oa Mbeda SLmG Vo
GTOO® GTOVE CLVOPMOTOVS TOV YPOUUOTELWY T®V dV0 Wpuudtwy, Tnv Pévar  aloitldxkmn ko
Moapio Zrovpoxdkn (Tuipo Ertetiung Yroloyiotay, [Movemotiuo  pritng) Ko I'évvn

oroitlaxm, Mopio IMpePertavékn kon Atévo  epoAddxm (Ivotitovto ITANpoeoptknic), oyt
UOvo Yot Lov Tpéceepay TNV o Be1d ToVG GTOTE TNV X PELEACTNKO OAAG KoL Ylorti TO EKavay
TavTo Le 1odtepn mpobupio. OEA® eniong va evyoplotiow to idta Tor 1dpVUOTH YLor TNV
opwYN ToVG 6 OAN TNV dépKeELD TOV GTOVI®V Lov. Idtaitepa Bo 1OeAC VO EVYOPLGTHCW TO
IvoTitoUTo ITANPOPOPIKHG YIOL TV OLKOVOULKT DTOGTHPIEN KO TNV DAIKOTEXVIKT VITOdoUN
7oL oL TPocépepe. TTpénel vo Tovicw GTL 1 TPOyLoTomoinom avThg TG SOVAELAG oaiTnoe
népoL omd TN Oe®PNTIKT LEAETT), TEPOUATIOUS [e eEELSLKEVUEVES DLOTEEELS (Tobot, GVOTNUO

evepyovg Opaong) Tig onoieg diébece o Idpupa Teyvoroyiog ko Epevvog.

Oepud Bo NBEADL VoL ELYOPLOTIO® KO TOVG TPOCMTLKOVS LoV GIAOVE KO YV®MGTOVS Ol

omoiot cuvéBoray MoTe M Tapopovy Lov oto HpdikAelto  pritng 6Ao avtd tor xpévio vou



etvou mparypotikd o&éyaotn. Evyouon ko eATil® vo unv yo0ovueE.

Tnv evyvopocsHvn pov Bo Bela eniong vo eKEPEo® TPOC TOLG YOVELG LoV AVEpYyvpo
Ko Mopion 0oAAG KoL TPOG ToV adep@S Hov I'dpyo. oL Ol TPELG TOVG OTHPLEXY TAVTOTE TIG
EMAOYEC OV, TOVOVOY TOV EVOOLOLOOUS L0V OTLG EVYEPLOTEG OTLYUEG Ko uetpialoy v
OmOYONTELGY| LOL OTLS dVGAPEDTES. TOLG XPWOTA®, TPAYUATIKS, Tépo TOAAG. TéAhog, Bo
NBeAo Vo EVYOPLOTIICM Od TNV KOPOLE LoV TN GUVIPOPS LoV AVal, TOV WE TPOLYLLOTIKT
oPocimon Kot He K&Be duvortd Tpoémo, oThpiée OAeG LoV TIG TPOOTAOeleg. Xt Aéva, LE
Vv omoio potpdlopon Kabnueptvé Tovg KOToug, TIg EXTLYIEG KO TIG OTOTVYIEG LTV TOV

TPOGTOOELWYV, OEA® VO LPLEPDC® CLVTY) TNV EPYAGLOL.
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Preface

We are so familiar with seeing that it takes a leap of imagination

to realize that there are problems to be solved

Richard L. Gregory

Imagine that you are relaxing in an arm-chair, without moving your body, your head, or
your eyes. In the meantime, something moves in front of your visual field. Of course, you
are able to see the change and react to the event; you do perceive the motion before even you
understand what is really moving. How does your brain process this external event and enable
you to focus your attention on the moving object? The first, quick answer somebody would
give is “‘I just see it moving”. But this is not really an answer. It just stresses the fact that
motion perception is something so effortless for humans, that it is taken for granted in every
day living. On a second thought, somebody would say ‘“Well, maybe there exists a capability of
detecting changes in the visual field: In the areas where motion occurs, the image changes over
time, whereas everywhere else the image remains unchanged”. Is this the right answer? It may
be part of the truth, but it is definitely, not all of it. Imagine for example that you are in your
car, driving on a highway. In this case, you continuously move relative to the surroundings. If
there is another car within your visual field, you can tell whether it is moving or not. But since
you also move, everything in your visual field moves and changes. Clearly, detecting changes
between consecutive views in time does not suffice for the detection of independent motion.
Finally, consider what happens when your eyes track a moving object. The image is cast on the
same part of the retina just as if the eye does not move relative to the object, but still movement
is perceived. After additional thought, it becomes clear that the mechanisms enabling biological
systems to perceive motion are not trivial at all. What appears effortless for humans and other

animals, is ultimately extremely hard to explain and reproduce.

This dissertation studies, from a computational point of view, the ability of a moving



observer to detect independently moving objects. It provides an overview of the research
done along this direction and proposes a new framework for tackling the problem. Biological
vision systems are always a source of inspiration. However, the aim of this work is not to
imitate biological vision, but to provide an appropriate computational framework that will
allow artificial robotic creatures to possess certain similar capabilities. To quote the title of
a paper written by J. Hochberg ‘‘Machines should not see as people do, but must know how
people see” [79]. It is our belief that the proposed methodology is able to overcome many of
the shortcomings of methods that have previously been proposed and permits the detection of

independent motion in a broad variety of situations and environments.



Ontiki) Aviyvevon AveEdptning Tproordototng

tvnong oné wvovuevo Mopotnpntiy
Aviavng A. Apyvpog
AdokToplkn Altortpii

Tunuo Emotiung Yroloylotwv

IMovemotiuio  p1ig

IepiAnyn

H wcovétnto avtidinyme tg xivnong etvon pio omd 11¢ mpwrtoyeveig Ko mo Pactkéc
OTTIKEC 1KOVOTNTEG TMV TEPLGGOTEPOV OO TOVG PLOAOYLKOVE OpYOVIGUOVS Tov elvor
€QOOLOGUEVOL e OTTIKOVG oucOntipec. H xopro oution yI' ovtd eivol n onpocio wov
éxel N avtiinym g xivnong oy emPiwon. Me Bdon v avtiinyn g xivnong,
évolg KIVOOUEVOG TopatnpNn TG Umopel vor e€dryel mAnpogopior GeTIKA e TOV TPOTO e
Tov omoio kiveltonl péoo GTOV TPLodLEGTOTO XMpo. TEtolov eldovg mAnpogopio eivor
eCoupeTikd ypoun oe Oéuoto TAofiynone. Akoun, n kivnon cav ontiké epébiouo, umopet
vou KoBodMYNGEL UNYOVIGHOVE €6TIOGNG TNG TPocoyNS. TAGO Yo ToOVG 0pYOVIGULOVE TOL
Bpiokovton o younAdtepn Pobuido g e£€AMENG 660 Ko Yo ToV AvOp®TO, KIVOVUEVOL
ovtikeipevo etvor ToA TOovOV Vo avTITPOSOTEVOLV elTe eMKIVILVOLG €xOpOVC elTe MOV
TpoPr). Xe k&be mepimtmon, amonteiton ypriyopn Ko KotdAANAN aviidpoomn. o to Adyo
oVTo, 01 TEPLGOHTEPOL PLoA0YIKOl OpYOVIGUOL HE OTTIKOVG oGO Tpeg €0V eEOUPETIKG,

OTOTEAEGULOTIKOVE UMYX aVIoHLOVG orvTiAnymg ¢ kivnong. Eivon yopoxtnplotikd 6Tt uévo



o pétioe Tov o eEeAyuévav {dwv Lmopovy Vo LETOSMGOVY OTTTIKE £pebiolaTo. GTOV

eYKEQOAO KOTE TNV amovsia kivnong oto e€mteptid meptaAiov [74].

H xotooKeL UNYovVIKOV GUGTNUATOV UE OTTIKEC TKOVOTNTEG OTOTEAEL OVELPO OLBOVAOV
Kot QLAGO0E0 epevvnTikd otd)0 dekoetTidv. Ewdikdtepo, efoutiog tng mAnOmpog TV
TPOKTIK®V EPUPLOYDV TOV UTOPOVV VO, £XOVV UNYUVES LE SLVOITOTNTEG OLLTOVOUN G OTTTLKTG
TAONYNONG GTO XMPO, TAPO TOAAEC €PELVNTIKEC TPOCTEOEILEC €XOVV EMKEVTPWOeL Ge
Oéuoto katovonong g onTikng avtiAnyng g kivnone. Ot meplocdtepeg amd oVTEG
TIG TPOOTAOELES, EYOVV EXNPPEACTEL OO TNV VUK TOOKELOOTIKY Bewpio yia Tnv dpoom,
GOLPMOVOL e TNV OTolal GTOYXO0G TNG OPOoTG EIVOL VO KOTHOKEVAGEL EGOTEPLKE ULCL TATIPT
OVOTOPEGTOCT TOV TPLEAATOTOV KOGUOV. Me BAom avTi) TNV TPoc€yyiomn, KAoe TpoPAn Lo
TOL OVOLPEPETONL GTO TEPLREALOV UTopel vor AVBEL [Le avaQopEg GE 0LLTT| TNV OVOTOPELOTOGT.
Top 6 ToL TOAAG KoL BOe@pNTIKE OmOTEAEGULOTA, QLLTOG O TPOTOG GKEWYT G dEV 001 YN GE GTNV
KOTOGKEVT] GLOTNUATOV TOL VO LITOPOVV VO, AELTOVPYOVV UE gvotdfela ko oflomotio
Ge PEOALOTIKA TTEPIBAALOVTX. X0V EVOALOKTIKEG TPOGEYYIOELS, OL TPOSPOTEG Bewpieg T™NG
evepyovg ko teleoroyikrig dpoong! otnpilovion 610 yeyovdg 6t 1 TApNG avomopbiotaon
10V TEPLBAALOVTOC 0PeVHG elval adbvortn, apetépov dev elvon aapaitnTn. Xe pio dedopévn
otiyuy, éva unyovikd cvotnuo mpénel vor eEdyel omd 1o mepiPdAlov uévo exeiva tol

YOPOKTNPLOTIKE TOL UTOPOVV VO EEVLTNPETHCOVY TNV TPAYUATMOOT TV GTOHY WV TOV.

Avti n StotpiPr| pedetd éva eldk6 oAAG eEopeTikd oNnUavVTIKS TPSPANUC avTiAnymg
¢ xivnong: To mpdPAnua TG omTikng awviyvevong aveEdptntng Tpiedidiotatng kivnong.
Agdopévov evOg TopOTNPNT TOL KLVEITOL OTIC TPELS JLUOTAGELS, TO TPOPANUO ™G
aviyvevong g aveEdptnng kivnong unopei va optotel cav to TPOPANUO TG oviyvevong
OVTIKEWEVOV TIOV KIVOUVTOL oveEEPTNTO Od TOV TOPOTNPNTH GTOV TPLEALECTATO X MPO.
Ot mep1oGdTtepPeg Omd TIG VAP OVGES LEBHGIOVE YioL TNV eN{ALOT CLTOV TOL TPOPARUATOG
Baocilovtal oe diedidotota LoVTEAD KIvnong Kol 6 1dlaitepa mePLoPloTIKEG VITOOEGELG

Yoo 1o mepéArov, Tov Tpémo Kivnong tov mopatnenTy, N Kot tor V0. AKOAOLODVTOG

'Me tov 6po tereodoyixt) dpaon amodideton o oryyAkdg Gpog purposive vision

i



mv ovoxkatookevootiky Oempia, Poacilovion 6tov vroAoyioud g ontikig porc. O
VIOAOYIOUOG OTTIKNG PONiG elval éva aeOevdg optouévo TpdBANUa, o@ov elvor 160dVVOUO
pe to TpOPANUe TG awvTieToiyiong (correspondence problem). EmnpdcOeto, 0 VToAOyIoUdg
ontikig ponig Baoileton otnv VGO EVHG OUOAOD TTESIOV TOXLTHTMV, TTOV €5 OPLGUOV deV

umopel vou yiver otny mepintwon HmopEng oveEEPTNTO KIVOOUEVOV OVTIKELLEVOV.

T ot TNV gpyosia, n Tpocéyylon otnv aviyvevon aveEdptnng kivnong Pacileton
OTIG opYEG NG TeEAEOAOYIKNG dpaone. TIpotelvovianl téooeplg véeg HuéBodol aviyvevong
oveEGpTNING Kivnong kGOe pio otd Tig omoieg €xel To d1kd TS, oveEEPTNTO EVOLAQEPOV 0LPOD
KOToépvel vou eEdryel TAnpogopio Sto@opeTikig LOPPNG amd TG VIOAOLTEC, e SLoPOPETLKS
VTOAOYOTIKO KOGTOG. 'Evol GUGTNUOL TOL UTOPEL Vo YPMNOLOTOLGEL OTOLOONTOTE Ot
oTEG ook TE eveMElor ¢ TPog Wol motkiAlo Tapopétpwv. 'ETot, T0 6uvoAlkd TpdBAnua
¢ aviyvevong aveEdptntng Kivnong umopel vo ovTUETOTIGOE] TLO OmOTEAECUATIKG LECM
NG CLVEPYUGLOG TOV TEGOAPWY TPOTELVOUEVOV LeBOdwY, am’ dTL e K&be pio omd ovTég
Eexmplotd.  Owé YOPaKINPLOTIKS Ko Yo TG Téooepilc MeBddovg amotedel 10 Yeyovog
6Tt Bacilovial oe peaMoTtikd Tplodidiototo LoVTEAD kivnong kol 0Tt TPoomofovV VoL
e€dyovv amd 1o mePIPEALOV UOVO EKEIVH TOL YOPOKTNPLOTIKG Tow otoia elvon amopodtnTo
YL TNV OVTILETOTION TOL TPOPAfUOTOC TG aviyvevong aveEdptntng kivnong.  owvod
XOPOKTNPLOTIKO TOVG eivon emiong 6Tt dev Baciloviol 6ToV VTOAOYIGUS OTTIKTC POTIC, OAAG
GTOV LIOAOYIGUS TOV TTediov KABETNG pOT|C, TO 0010 oLV KoL TePLEYEL MydTepn TANpopopia Ge
oY €0M UE TNV ONTIKY| pON, UTopel amodedeLYEVOL VoL VTTOAOYLOTEL e orkpifelo amd akoAovdieg

elKOvmv.

H mpotn and 11¢ mpotetvoueveg pebddovg mpooeyyiler 1o mpdPAnuo aviyvevong
oveEGpTNING Kivnong cav évo TpORANLO EVPMOTNG EKTIUNONG TOPUUETP®V e BAOT OTTTLKA
dedopévor TPoePYOUEVD OTO GTEPEOGKOTIKS Topotnpnth mov ektelel oteped kivnom. Ot
UETPNOELG TOV TToLipVOVTOL OO TNV OTEPEOCKOTLKY dtétaEn cuvdvdlovton [e TIg LETPHOELG
ond v xivnon pe Béon éva ypouuikd povtéro. Ol mTopGUETPOL 0LTOV TOL LOVTIEAOL

oyetilovton pe T moPOoUETPOLE KIVIoNG TOL TOPOTNPNT KOl TG TOPOUETPOVS TNG

il



0TeEPEOCKOTIKNG TOL dtdtatne. H yprion Ledédwv eHpwotng extiunong odnyovv otnv
TUNUOTOTTOINGN TN GKMNVIG Le BAON TIg TPLOECTATEG TOPOUUETPOLS Kiviong Twv onueiov

™me.

Me Bdéon tn devtepn néBodo, N eneEepyocion TNG GTEPEOCKOTIKN G TANpoPopiag 0dnyel
otV SeTpOUdTOON Uog oknviig e Bdon 1o Baboc tg: SAo tor onueia Tng etkdvog
OV OWVTLOTOLYOVV GE €val OTPAORO 0LV KOWvY, KOTE TPOGEYYLoN, ONOGTHOY Ond TOV
nopotnpNTH. Ot TPayUoTikég TIEG TOL PEBovg dev vroloyilovTon apov cvTi 1| TANPOoYopic,
dev amonteital Yoo Tnv entAvon 1ov TpoPAUatog. QoTOCc0 KmOdEIKVIETON TG UTOPEl
va eEoyel molotikyy mAnpoeopic yioo T0 BAOOC WG GKNVIAG ooV EUUEGO OTOTEAEGLOL
¢ uebddov. Tétowor mAnpoeopior eivon pio oyxéon dbtabng peto&h TOV GTPOUETOV
KooV BaBovg. Xe kbébe otpdua Kool Pabovg ektedeiton aviyvevon g aveEEpTNTNG
kivnong pe ypnon uHedddmv edpmotng eKTiUNONG TV Topouétpov e kivnong. O
KIVOUOUEVOC ToporTNpN TG Umopel vo EMAEEEL VO Y PNOLLOTOUGEL TNV TUNLOTOTOINGOT eVHg
UOVO OTPOUOTOS BABOVLE MG TPOG TG TPLOOAOTATEG TOPOUUETPOLS Kiviong, eoTAlovTog
TPUKTIKG TNV TPOGOYT TOVL GE VoL GLYKEKPLUEVO TUNUOL LOG GKNVIG KOl TANPAVOVTOG
HKpOTEPO VIOAOYLOTIKO KOGTOG o’ &1l epopudloviog Ty mpdn uéBodo. Qot6c0, M
UEB0B0G CUUTANPWVETOL KO 0td TNV SuVOTOTNTH GLVIVOGOD TNG TANPoYopiag Kivnong
omd GAOL TOL CTPAULOTOL, [LE OTOYO TNV EEXYWYT LG GUVOAKN G ELKOVOLG Y10 TIG TPLOOLAGTOTEG

ToPapETPOLG Kivnong oe pion oxnv.

Ot 300 TPWTEG TPOTELVOUEVEG UEBOSOL TOPEYOLY WO AETTOUEPT) KOTAYPOLPT] TNG
oveEGptnNg kivnong oe pio oknviy. Qo1660, o TOAAEG TEPLTTAOELS, elvarl emBuunTy
n toxeio eEoymyy KATOLOV GUUTEPUCUATOV OYETIKE UE TNV oveEEptntn Kivnon o€
ploe oknvr, oxkéuo Kt ov ovT] elvonr moAh moloTikY.  AvTté emtuyydveton UE TNV
tpitn uébodo, n omoia Pacileton otnv éupecn cvYKpPLoN cLuVOPTHGE®Y TOV PBéBoLE, TOV
e€dryovton omd TN OTEPEOGKOTIKT SATOEN Ko TNV KivNnoT. AGUVETEIEG OTIC GUYKPLVOUEVEG
TOGHTNTEC OMOTEAOVV €VOEIEN TEPLOTOTEP MV OLTTO Uil TPLOAAGTOTMY KIVIIGE®Y GTNV TEPLOYN

cvykpione. H pébodogc mov ypnowonoleiton elvon meplocdTEPO MOLOTIKY 0o TG OVO

v



TPONYOVUEVEG UG KOL OTTOPEVYEL TOVTEADS TNV EKTIUNOT TOV TOPUUETPOV KIVNONG TOV
nopotnpnty. Emniong, oe aviibeon pe T 800 mpomnyovueves, yivetar yprion kEmolwv
VIOOEGEMV GE Gy LLE TNV KivNOT TOV TOPOTNPNTH, Ol 0TToieg SUMG € 0LV KOBUPE TOLOTIKG
xopoxTipo. To TeAKS amoTéAecua TN LeBddov eivor €vog yEPTNG TOV OIGLVEXEL®Y TNG

TpLodidiototng Kivnong o piow oxknvij.

Téhog, N TétopTn UEB0SOC elvorl oKOUO O TOLOTIKY KOl YPIyop™, WLKG KO OEV
omokpiveton o avt Koot TV Ymapén aveEdptntng kivnong oAAd oe uetoforéc
NG TPLOdEGTOTNG Kivnong Tov TopotnpnTi 1} TOV oveEEpTnTo KIVOOUEVOV CVTIKELLEVOV.
Me tov 1810 tpémo mov M oaviyvevon UeTafoAwyv, Otav epopudletor oTig e1kOveg, dlvel
TANpoeopior Yoo TG aAAayéc otn Béom TV ovTIKEWWEV@Y, 1M oviyvevon UeToROADV
eQopUOLOUEVT OE LETPT|CULES OVUTOPOOTAGELS TNG Kivnong mopéyel TANpoYopic Yol Tig

UeTaBOAEC TNG TorY VTNTOLC.

H oc0ykpion TV TpoTetvopevov UeBodmv yior aviyvevon oveEdptnng kivnong ko
oVTOV oL ON VIdpyoLy ot PiPAloypapic delyvel 6Tl oL TPWTES KEVOLYV TOAD AlydTEpO

TEPLOPLOTIKEG VITOOESELS YIoL TO TEPIPEAAOV, TNV Kiviion 1 TO GO TOV TOPATNPNTY.

[Tépo amd 10 aveEdptnto evdloépov K&be piog omd Tig mpotetvéueveg UeBGd0vg
oviyvevong aveEdptnng Kivnong, Wdaitepo evola@épov Topovotdlel N OAOKANP®GT| TOVG
oe éva evioio mAoiclo.  Ztdyo¢ TG OAOKANPMONG €lvol 0 GLVOVLOCUOS TV BETIKOV
YOPOKTINPLOTIK®V TNG KEBe LeBddov, mg mpog Uiow TotKiAlo StoopeTikdyv Kpttnpiwy. XT0
OAOKANPOUEVO TTEPIPEALOV, 1) EVEPYOTOINGT T®V TG TANPOPOPLOKAY (KOl TLO OLTHLTN TIKOV
VIOAOYLOTIKG) UeBSdmV e€apTdton amd tnv TAnpoopior Tov eEdyetanl and Tig Aydtepo
TANPOQOPLOKES (KOl AYOTEPO OMOLTNTIKEG VTOAOYLIOTIKA) HeBGd0vS. H 0AokAipwon avti
umopel var yopoktnpiotel cov opt{ovtio, ved TV évvola 0Tl EMTLYXAVETOL UEGH TNG
GLVEPYOOIOG OVTOVOU®MY JEPYUCLOV TOV OLVTOAAAGGOLV TIG SLUPOPETIKEC OMOYELS TOV
StabéTouv o to TpdPANUL, avTi péom piog oukoAovBiog Stodtkootmy ke pio otd Tig omoleg

enelepydleton 1o amoTédecuo NG AAANG (KGOt 0AoKA|p®SN). "Eva T€T010 0A0KANpwUEVO



cvoTNUA €xEl TOAAOTAG TAEOVEKTIHUOTO, TOV GYETILOVTOL LUE TO TAPOPOPLOKS TTEPLEYOUEVO
TV OTOTEAEGUATOV TOV, TNV EVGTAOELD, TNV EVLPMSTIOL, TNV VTOAOYLIGTIKT TdGS00M Ko TNV

ENMEKTOAGIULOTNTE TOV.

To. TEWPOUATIKE ATOTEAEGUOTO, TTOV TTaPEXOVTOL Yiow K&Oe pice omd TIG TPOTEWVOUEVES
UeBGB0VG BelY VoLV TNV ATOTEAEGUOTIKOTN TG TOVS GE SLEUPOPES X ALPOK T PLOTIKEG TEPUTTWGELS
oKNVAV pe aveEdpTo Kivovueva oviikeipevo. ITo oLYKeKPLUEVO, Ol TPOTELVOUEVEC
UéB0d01 UTOPOVV Vo oviyveHhouv aveEGpTNTN TPLodidoTotn Kivnon oe oknvég e Heydin
dtakvpuovon tov PBABovg, Ywpic Vo amontohv Yyveon TV TOPOUETpOV Kivnong Tov
TOPOTNPNTY, YVAOT TOV TOPOUETP®Y TNG OTEPEOCKOTIKNG TOL didtatng 1 kolumpdpiopo
TOV KOUEPWY. O TEPOUATICUOS EYIVE GE TPOGOUOLOMEVOL dedoUéva, KOODG emiong Kol Ge
TPAYUOTIKEG OKOAOVOTEC GTEPEOCKOTIKAV ELKOVMV TOV GLYKEVTPOON KOV KévovTog xprion

HL0G POUTTOTIKTG TAOLTOOPLLOLG.

vi
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Abstract

Motion perception is one of the primitive and very basic visual capabilities of most of
the biological organisms possessing visual sensors. This is due to the importance of motion
perception in survival. Based on the perception of motion, a moving observer can acquire useful
information about his own motion in the 3D space, which is extremely useful for navigational
purposes. Moreover, motion information is a perceptual cue that can drive visual attention. For
all animals, starting from the organisms in the lowest evolutionary scale and up to man, moving
objects are likely to be dangerous enemies to be avoided or prey to be caught and, therefore,
rapid and appropriate reaction is of utmost importance. Thus, most biological organisms with
optical sensors have extremely effective mechanisms for motion perception. It is interesting
to note that only the eyes of the highest animals can signal to the brain in the absence of

movement [74].

The construction of artificial systems possessing visual capabilities has been a dream for

centuries and a challenging research goal for decades. Motion perception in particular, has
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attracted a lot of research efforts due to its fundamental importance for many visually assisted
tasks. Most of the efforts have been influenced by the reconstructionist vision paradigm,
according to which, the goal of vision is to provide an internal full representation of the external
3D world. According to this approach to vision, any world related problem can be solved
through references in this global representation. Despite the multitude of elegant theoretic
results, this methodological approach did not give rise to systems working robustly in realistic
environments. As an alternative, the new theories of active and purposive vision suggest that
a global representation of the environment, besides being impossible to achieve, is also not
needed. At any given instance in time, the aspects of the environment that should be recovered

are those that can sufficiently serve the current goals of the system.

This dissertation studies the problem of visual detection of independent 3D motion. Given
an observer pursuing unrestricted 3D motion, the problem of independent motion detection can
be defined as the problem of detecting objects that move independently of the observer in 3D
space. Most of the existing techniques for solving this problem rely on two dimensional models
of motion and on restrictive assumptions about the environment, the observers’ motion, or both.
Following the reconstructionist approach, they are based on the computation of optical flow,
which amounts to solving the ill-posed correspondence problem. In addition, the computation
of optical flow is based on the assumption of a smooth motion field, which by definition does

not hold in the case of a scene with objects that move independently of the observer.

In the proposed framework, independent motion detection is approached based on the
principles of purposive vision. Four new methods for independent motion detection are
proposed, each of which has its own, independent interest because it deals with different aspects
of the problem with a different associated computational cost. A system that can select from this
set of methods gains flexibility in a number of different parameters. Thus the overall problem
of independent motion detection can be more effectively solved through the cooperation of the
four proposed methods rather than by each of them separately. A common characteristic of the

four methods is that they rely on realistic three dimensional models of motion. Another common
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characteristic is that they do not rely on the computation of optical flow, but on the computation
of normal flow, which although less informative than optical flow, can be accurately computed

from sequences of images.

In the first of these methods, the problem is formulated as robust estimation applied to
the visual input acquired by a binocular, rigidly moving observer. Measurements based on
the stereoscopic configuration of the observer and his motion are combined in a linear model.
The parameters of this model are related to the 3D motion parameters of the observer and the
parameters of his stereo configuration. The use of robust regression methods for this model

leads to a segmentation of the scene points according to their 3D motion parameters.

In the second method, the processing of the stereo information is used to perform depth
layering, i.e. segmentation of the full set of scene points into subsets of points corresponding to
a common depth. The actual depths are not computed, since they are not needed for the solution
of the problem. It is shown, however, that as a side effect, qualitative information about depth
can be extracted, in the form of an ordering of the depth layers. Within each depth layer, motion
segmentation is performed. Motion segmentation is achieved through the robust estimation of
motion parameters in each depth layer. The moving observer may choose to use the 3D motion
segmentation of only one depth layer. Practically, this is equivalent to focusing attention on a
part of the scene in view. As aresult, the observer may acquire the desired information at a lower
computational cost compared to the cost of the first method. However, the method is completed
with a mechanism that enables the combination of information across depth layers to provide

an integrated view of 3D motion in the whole of the scene.

The first two methods provide a detailed segmentation of the 3D scene with respect to
its 3D motion characteristics. However, in many cases, it is important to provide information
about independent motion detection very quickly, even if this information is of qualitative
nature. This is achieved by the third method which performs an indirect comparison of depth

functions computed from stereo and motion. Inconsistencies in the compared quantities signal
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the presence of more than one rigid motions. This method is more qualitative compared to the
two previous methods, because solving for the motion parameters of the observer is completely

avoided. The final outcome of the method is a map of 3D motion discontinuities.

Finally, the fourth method is even faster and more qualitative than the previous ones, since
it does not provide information on independent motion itself, but on changes of the 3D motion
parameters of the observer, or of the independently moving objects. Therefore, it can be used as a
method for the detection of maneuvering objects. In the same way that change detection applied
to the image intensity function provides information about constancy in the locations of objects,
change detection applied to computable visual motion representations renders information about

constancy of the 3D motion parameters.

In addition to the independent interest in each of the proposed methods, their integration in
one unified framework is also important. The goal of integration is the combination of the best of
the properties of each method with respect to a number of different criteria. The activation of the
more informative (and computationally more intensive) methods depends on the information
provided by the less informative (and computationally less intensive) ones as well as on the
goals of the system. This type of integration can be characterized as horizontal, in the sense that
the problem is actually solved through the cooperation of autonomous modules that exchange
their different view on the problem at hand, rather than through a long chain of modules each of

which processes the output of the previous module (vertical integration).

Experiments have been carried out using each of the proposed methods. The results of
these experiments demonstrate their effectiveness in detecting independently moving objects
in a variety of scenes. More specifically, the methods are capable of detecting independent
3D motion in scenes with large depth variations, without requiring prior information regarding
the motion parameters of the observer or regarding the parameters of his stereo configuration.
Experimentation was conducted using both simulated data, and real sequences of stereoscopic

images that were acquired using a robotic platform.
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Chapter 1

Introduction

Those who wish to succeed must ask the right preliminary questions.

Aristotle

The understanding of the vision process has been a challenging interdisciplinary area of
research for centuries. The motivation behind efforts to understand the mechanisms of visual
perception is twofold. On the one hand, there is the long sought goal of humans to understand
their body and mind and to answer important questions about their own nature. On the other

hand, there is the also long sought practical goal of knowledge exploitation in everyday life.

Philosophers and scientists have studied diverse aspects of visual perception over the
centuries and proposed theories explaining the underlying mechanisms [76, 99, 43, 72, 112].
Biologists, neuroscientists, psychologists and ethologists [89, 200, 41, 84, 107, 205, 68, 51, 146,
183] have studied biological organisms and their visual capabilities. The eyes of biological
organisms have lenses and a network of very small receptive units that constitute the light-

sensitive retina [74]. The lens focuses an image of the world onto the retina, which then sends

1



messages along the optic nerve fibers to the brain. Sets of specialized neurons in the brain
can then represent the imaged scene. Given that more than half of the neurons in our brain
are devoted to solving vision problems [7], it is not surprising that the understanding of our
visual system is not an easy problem. Equivalently, designing machines that can ‘‘see” is a very

difficult task.

The advent of digital computers allowed the perspective of a computational theory for
visual perception. Grounded in information theory, a computational theory of vision seeks to
describe what information is extracted from the image(s) and how this information is extracted,
processed and used [13]. In its earliest years (mid-1950’s), computer vision was concerned
primarily with recognition tasks in two dimensional images of static scenes such as documents,
or high-altitude views of the earth surface. Research in robot vision has started in the mid 1960’s.
Information about the third dimension, which is lost due to the projection of light on the 2D
image plane, cannot be ignored in robot vision, because a robot must operate in environments
where depth variations are large compared to the absolute distance of the robot from the scene
points. Research on recovering the three dimensional structure started in the early 1970’s, by
considering only single images of a static scene. By the mid-1970’s research started to deal with

time sequences of images of a possibly time-varying scene, obtained by a moving visual sensor.

Forty years of research have produced theoretical solutions to many computer vision
problems; however many of these solutions are based, explicitly or implicitly, on unrealistic
assumptions about the class of allowable scenes, and consequently, they often perform unsatis-
factorily when applied to real-world situations. Although the results of machine vision research
during the last decades are by no means negligible, there are fundamental difficulties in devel-
oping computational theories that support robust and real-time vision systems [13]. Most of the
previous research efforts were based on the assumption that the purpose of vision is to provide
an accurate symbolic representation of the external 3-D world. The general interpretation of the
world, could then be further used to solve any world-related problem. This reconstructionist

paradigm [112] considered vision as a goal by itself.



Introduction

During the last decade, a new vision paradigm has attracted the interest of the computational
vision research community. In the new paradigm, called active vision [9, 23, 7], vision is more
readily understood in the context of the visual behaviors in which the system is engaged [6].
Active vision considers vision as part of a complex system that interacts in specific ways with
the world. Consequently, it tries to explore those aspects of the world that are important to the
system at a given point in time. The interest in active vision is largely motivated by the fact
that all biological vision systems are highly active and purposive. Other motivations come from
interdisciplinary influences from the fields of psychophysics and neurophysiology on one hand
[63, 205], and progress in robotics on the other. In particular, an active vision platform could not
be built without the presence of the compact CCD arrays, motors and control systems of today,

as well as current microprocessor technology [165].

A successful vision system should support two general goals: navigation and recognition
in complex, dynamic environments [7]. A large proportion of research in computer vision
addresses, implicitly or explicitly, these two goals. For both goals, the notion of visual attention
[129] is of central importance. Attention can be understood as the selective sensing in space,
time and resolution, whether it is achieved by modifying physical camera parameters or the
way the data is processed after leaving the camera [165]. Attention may be either task-driven or
data-driven [23]. In the first case, attention is used to focus information gathering and processing
in areas that are more likely to support the achievement of the system’s goals. For example,
in the case of visual search for a specific object, focus of attention mechanisms may be used
to direct visual processing in areas of the visual field which are more likely to contain the
desired object. In the second case, attention is used in order to cope with unexpected events. For
example, a sudden motion across the visual field may represent danger, so attention should be
attracted for a more detailed investigation of this event. In either case, the role of attention is
crucial for a vision system, since it drastically reduces the computational effort that should be
spent in order to accomplish its tasks. Consequently, advances in the understanding of visual

attention are considered very important towards the development of effective, real-time vision



systems.

One of the visual cues that play an extremely important role in driving attention is motion.
Most of the primitive, survival tasks of biological organisms are based on the perception of
motion: It is very likely for a moving object to be either prey to be caught, or enemy to be
avoided [74]. Even in the case where the observer moves in a static environment, the perception
of motion provides important information regarding his own motion in the 3D space [64].
Consequently, the perception of motion is essential for many behaviors that an autonomous

biological or man-made system should exhibit in real world environments.

Recognizing the importance of the visual perception of motion, this dissertation studies one
of its very basic subproblems, that of independent 3D motion detection. Due to the egomotion
(or self-motion) of an observer in the 3D space the whole visual field appears to be moving in
a specific manner, which depends on the observer’s 3D motion parameters and the structure of
the scene in view [64]. In case that certain objects move independently, the 3D velocity of the
observer relative to all points in his environment is not the same. The problem of independent
3D motion detection is defined as the problem of locating such objects, if they exist in a scene.
The existence of biological organisms with independent motion detection capabilities motivates
efforts towards constructing artificial systems with similar capabilities [65]. The ability to detect
independent motion is a prerequisite for the autonomous navigation of a robot in dynamic
environments. Furthermore, in other application areas that are not directly related to robotics,
such as animation and virtual reality, independent motion detection mechanisms form powerful

tools for automating tasks which are otherwise too complicated to perform.

In the rest of this chapter, we present the traditional, reconstructionist approach taken in
computer vision during the last decades. We will reason on problems related to the application
of this approach to real systems and we will present the new paradigm of purposive, active
vision. The role of attention mechanisms in active vision systems will be investigated and

special emphasis will be given to motion perception as a cue to attention.



1.1 Marr’s vision paradigm

1.1 Marr’s vision paradigm

Marr [112] was the first to articulate a comprehensive computational theory of vision, which has
been an enormous contribution in many different respects. Specifically, Marr proposed that the
general goal of computer vision is to produce an accurate, 3D representation of a scene and a
quantitative description of the characteristics of the objects present in it. Then, all vision related
problems could be solved through symbolic processing applied to the information provided by
such a representation. Marr’s theory reflects the theories of the neurologists of his time [89, 189]
according to which the various parts of the brain that are responsible for vision, analyze all

available information, at different levels of abstraction and complexity.

Since the goal of computer vision was to provide a representation of the world, the studies of
the various Al fields became independent and isolated. Vision researchers tackled the problem
of building a 3D representation of the environment as a problem of building a number of
operationally independent subsystems and started studying each subsystem in isolation from the
other subsystems and from the other Al disciplines [64]. A common assumption and hope was
that, after studying each subsystem in sufficient detail, all of them could be optimally integrated
in one practical system. Unfortunately, the correct blending of results has not been successful
to date. One basic problem of the reconstructionist theory of vision is that the extraction of a
complete representation of the external world has immense computational requirements. For
example, the human brain devotes half of its neurons to visual processing [7]. Moreover, even
if a complete representation was available, the extraction of information out of it would require

€normous computational resources.

1.2 Purposive and qualitative active vision

Recognizing the difficulties of the traditional approach to handle the problem of visual percep-

tion, many researchers started in the mid 80’s to look for alternative approaches. At that time,
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researchers in the fields of psychophysics and neurophysiology [16] and also of computational
studies of behavior [37], begun to realize that the sensory capabilities of an organism are adapted
to its environment, its goals and the physiology of its body. Living organisms use vision in order
to navigate safely in their environment, to recognize their prey and enemies, and to support
goals of vital importance. There are various visual systems with completely different visual
capabilities. For example, certain frog species are able to see something only if it moves [74].
There are numerous other examples of biological visual systems, whose properties deviate sig-
nificantly from those of the human visual system. A common characteristic of all these systems
is the efficiency with which they support the functions of the organisms possessing them. In
general, the visual capabilities of an organism are more effectively studied in the context of the
behaviors it is expected to exhibit. Vision and intelligence cannot be disembodied: they have no

meaning if they have no goals to achieve and a body to interact with the environment [38].

Based on the above, a new theory of vision was formulated, which was named purposive and
active vision [9, 23, 7]. The terms animate vision [26] and exploratory vision [24] have also been
used. One of the fundamental aspects of the purposive theory of vision is that the decomposition
of a vision system into subsystems is not based on the type of their input (e.g. structure from
motion, structure from shading, structure from texture, planning, learning etc), rather on the
basis of the behaviors that the system should exhibit. Each behavior is implemented by a set of
processes which cooperate for achieving the goals of the system. Each process is dedicated to
understand certain aspects of the world that are immediately related to the goal to be achieved
and, therefore, it uses a partial representation of the world. The set of processes that are active at
a certain moment in time is determined by the goals of the system. Essentially, according to this
theory, the goal of vision is to transform the visual stimuli in sequences of actions (behaviors).
This is contrasted with Marr’s theory, where the goal of vision is to transform the visual stimuli
into a global representation of the environment, which may serve the solution of any vision
related problem. A key contribution of the theory of active vision is that it provides researchers

with a new interesting question, which leads to a new way of thinking about vision: Is a general



1.2 Purposive and qualitative active vision

representation of the environment needed after all?

The purposiveness of visual processes enables the formulation and the solution of simpler
problems. Consider for example the problem of visual detection and avoidance of obstacles
[71, 87, 142, 125, 28]. According to Marr’s theory, a complete and accurate representation of
the world is built, and the problem of obstacle avoidance can be solved through symbolic
processing based on that representation. On the contrary, purposive vision approaches the
problem by defining and handling a set of immediate questions that should be answered for the
obstacle avoidance behavior to be achieved. Is the observer in collision trajectory with some
objects? How much time (in terms of the observer’s reaction time) remains until collision? Such
questions have a relative small number of answers and can be treated in a qualitative manner [7].
If it is possible to directly answer such questions, then the combination of the answers may lead
to a robust solution of the overall problem and the complete representation of the environment
is not needed any more (e.g. [125]). The goal of algorithms that answer the above questions is
to solve many, very specific problems under general (loose) assumptions rather than trying to

solve a general problem, which can only be done under very restrictive assumptions.

A fundamental issue in active vision is that the observer is actively involved in the image
acquisition process by controlling some of the related parameters that can be classified in the

following four categories [132]:

e Optical parameters, which include focal length, lens parameters etc. Such parameters

determine the way in which a scene is projected on the photo-sensitive surface.

e Sensor parameters, that determine the way in which the photo-sensitive surface is
sampled. Such parameters include the shape of the photo-sensitive surface, the distribution

and sensitivity of receptors, etc.

e Mechanical parameters, which control the position and velocity of the camera in 3D space.
Through their control, the observer is able to see different aspects of the environment, to

fixate on certain objects, to track them, etc.
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e Algorithmic parameters. Their control determines the detail in which computations
proceed, as well as the coordination of the individual subprocesses running in parallel. The
large volume of computations to be performed suggests their parallel execution and the
support of various models of parallel processing [113]. The coordination among them is
of utmost importance since all processes compete for the limited computational resources
of a system which should have a reaction time capable of keeping up with rapid changes

in the environment.

Through the control of the above parameters, the observer becomes able to [132]:

¢ Exploit natural search. Instead of using algorithmic search in an image, the selection
of appropriate parameters may enable the acquisition of images that simplify further
processing. Consider for example the case of partial occlusion. A certain object may not
be completely visible in a specific frame. By moving the visual system, the observer may
acquire more frames containing views of the object from different visual angles, which

provide supporting evidence for the object’s identity.

¢ Exploit controlled movement. Since the mechanical parts are under the system’s control,
it can perform known movements that constrain the relation of images taken at successive

time instances.

e Exploit object-centered reference coordinate systems. The ability to fixate on certain
points of the world, enables the system to use coordinate systems centered on the fixated
points, rather than on the camera nodal point (which is the case in egocentric reference
systems). Object-centered reference coordinate systems enable the definition of problems
and the achievement of behaviors relative to the fixation point (e.g. grab the object which
is at the fixation point, or look behind the current fixation point). The ability of an active
vision system to focus its attention to objects of interest, facilitates the use of deictic

representations [199], which isolate the objects that are directly related to the system goals.
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1.2 Purposive and qualitative active vision

Such representations are much less complex than those targeting a complete description

of the environment, thus facilitating the applicability of learning algorithms [200].

¢ Exploit simple mathematical models. The ability of a system to fixate on certain points
of the world can bring the points of interest near the optical axis, enabling the use of
simple projection models (e.g. orthographic projection), as opposed to the use of the more

complex perspective projection model.

¢ Exploit sensors with nonuniform resolution. Recently, technological advances have made
it possible to build foveated cameras [170, 196, 195]. It has been demonstrated that, in
certain cases, the use of nonuniform resolution cameras simplifies some of the required
computations [196]. The characteristics of such sensors [56] require a visual system to
be active, so that objects of interest can be brought into the center of the visual field and
images at maximum available detail, with the proper control of the optical and mechanical

parameters.

A general model of vision, which conforms with the general principles of active and
purposive vision, is the one proposed by Fermiiller and Aloimonos [67] and shown schematically
in Fig. 1.1. The basic entities in this model are the visual competences, the purposive

representations, the actions, learning and memory.

The system has always a set of goals to achieve. The visual competences process the
visual input extracting the information that is directly related to the system goals. This results
in purposive representations of the environment, which actually encode the intelligence of the
system. These representations trigger specific actions of the system, which can be either internal
or external. Internal actions change the state of the system, while external actions enable the
interaction of the system with its environment. Actions are stored in an associative manner
[98], that is they are accessible based on the contents of the representations. A series of actions
constitutes a specific behavior of the system. Representations and actions, as well as other

important information are stored in memory. Learning procedures enable the system to learn
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Figure 1.1: An abstract model of a purposive active vision system.

proper values for its parameters, new actions, new visual capabilities, new representations and
proper representation/action combinations that facilitate the achievement of specific goals. In
this way, a system may adapt to new situations and environments, without the need for detailed
pre-programming of all possible situations that the system may encounter. The role of learning

is of great importance in the case of systems with selective perception [114].

1.3 The role of attention in active vision

A visual signal contains information about shape, motion, color, depth, texture etc. According
to the theory of active and purposive vision, this information is much more than the system
needs or can simultaneously cope with. Thus, a fundamental problem for a vision system is
to determine what information from the image should be used and what representation of it
needs to be built so that the interaction of the system with its world can be most effective [8].
In other words, the system needs to recover partial information about the scene. The partial

information to be recovered depends on the tasks that the system must carry out, i.e. on its
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1.3 The role of attention in active vision

Reconstructive approach Active and purposive approach

Goal: Built representation Goal: Define visual capabilities

Use of all subsystems Use of processes needed
Passive image acquisition Active image acquisition
Complete visual processing Selective visual processing

Processing at maximum detail | Processing at sufficient detail

Unlimited resources Resource limitations

Table 1.1: Comparison of reconstructionist and purposive vision paradigms.

purpose. This is precisely the role of attention mechanisms in such a system. In general, focus
of attention in vision can be understood as a selection mechanism for economizing sensory
information gathering, processing and storing, with respect to a given task [24]. Thus, focus of
visual attention, active vision and purposive vision are tightly coupled concepts. A system can
only be purposive if it is active [24] and, in order to be purposive it must be able to focus its

attention [25]. Finally, for a system to be able to focus its attention, it must be active [52].

In the presence of focus of attention mechanisms, a vision system performs a spatially
selective processing of a scene, at the required resolution, taking into account only the
information needed for the effective solution of the problem at hand. On the contrary, in the
absence of any focus of attention mechanisms, a vision system must process the whole visual
field, at maximal resolution, taking into account all possible visual cues and all internal world
models. Table 1.1 (taken from [27]) summarizes the differences between the reconstructionist
and the purposive vision paradigms. In the latter, attention is used to filter the information

acquired and processed by a vision system.
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1.3.1 Types of visual attention

According to the taxonomy proposed in [165], visual attention may be task driven, context
driven or feature driven. Task driven control of visual attention may be independent of visual
processing. For example, during navigation, visual attention may shift between a distant point
and a point just in front of the vision system. If nothing unexpected happens, this strategy does

not depend on visual processing.

Context driven strategies are those based upon the availability of partial evidence supporting
a given task. For example, in a face recognition system, once the mouth of a face is located,
the nose may be searched in specific regions of the image. The TEA-1 system, presented by
Rimey and Brown [141], supports certain context related attentional strategies. TEA-1 operates
on the 2D world of dinner-table images. Another effort towards context-based attention has
been reported by Wixson [201], who tried to incorporate knowledge about world structure to

efficiently search for objects.

Feature-related control of visual attention, on the other hand, is based on the result of low-
level visual processing. Feature based focus of attention mechanisms may be classified into two
classes, according to the purpose they serve [24]: Focus on an expected stimulus and focus on an
unexpected object/event. The former steers the system under normal conditions in the sense of
““watch what you are doing” type of guidance. The latter is invoked as a protection mechanism
of the “‘watch out for what is happening” type. If an unexpected event is encountered, the system
is interrupted and must decide whether to pay attention to the unexpected event or continue the

previous activity.

1.3.2 Inputs to attention

Independently of the purpose that attention mechanisms serve, one important issue is the

identification of visual primitives and features that drive attention. Potential candidates are
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1.3 The role of attention in active vision

separable features, which can be attended to selectively, and processed separately and in parallel
[91]. Moreover, such visual features must be informative at low resolution, since, prior to any

shift of attention, the target object or event is typically in the periphery of the visual field.

Visual cues that drive attention can be distinguished into static and dynamic features [176].
For example, static features can be color, texture, corners, line endings, symmetry etc. Dynamic
features may represent motion, illumination change, and other changes in the field of view
[157]. A lot of research effort has been devoted to determining features that can drive attention.
These include color, brightness, texture, motion, depth, line orientation, curvature, line endings,
symmetry etc. [176, 91, 46, 186, 153, 145, 140]. Motion and color deserve special mention, since

they are descriptive at low resolution.

Besides determining what are the visual primitives that may trigger attention, an important
question is how these features can be combined to permit a decision on where attention should
be focused. This is the problem of target selection. Ahuja and Abbott [4] see the problem of
target selection as one of minimizing an objective function in a system for surface estimation.
Treisman [176] proposes a framework for visual search in which feature maps are related to
a master map of locations, through which focused attention serially conjoins the properties of
different objects in the scene. This model, inspired by her findings of relevant psychological
studies, is consistent with the idea of a pooled signal conveying information about the presence,
but not the absence, of a distinctive feature. Swain and Ballard [164] proposed a model of
object indexing based on color cues. In the work of Rimey and Brown [141], Bayes nets are
used to incorporate evidence provided by visual cues into the system. Clark and Ferrier [49]
propose a saliency based attention control. As visual data are acquired, a saliency value is
computed for each possible position and the attention is shifted towards the configuration of
maximum saliency. Visual features are combined to produce a saliency map by forming a
weighted combination of feature values. Swain and Stricker [165] discuss an interesting analogy
between an attentional system and a computer operating system. The operating system serves

to allocate scarce resources. Likewise, the attention mechanism in vision allocates the scarce
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resources of the fovea to multiple visual tasks. These tasks may have conflicting requirements
and, therefore, may direct the fovea to different points in visual space. Shifts in visual attention
can be thought of as arising from a scheduling system which gives control of the position of
the fovea to different visual tasks. Finally, Hinton [78] proposes a connectionist approach based
on the notion of population coding, as the means to combining simpler features to obtain more

abstract objects or constructs.

1.3.3 Attention mechanisms

The photosensitive surfaces of the eyes of many biological systems are characterized by
a nonuniform spatial distribution of photoreceptors which gives rise to nonuniform spatial
resolution. More precisely, they present maximum resolution near the fovea, at the center of
the optical axis, while the resolution decreases towards the periphery [165]. One feature of this
design is the simultaneous support of a large field of view and high acuity in the fovea. This
is an economical solution both in terms of sensory elements and in terms of the number of
neurons required for processing of the visual input. Studies have shown that, if the resolution
of the human eye were everywhere equal to its resolution near the optical axis, humans would
have a brain weighting approximately ten thousands tons [147, 132]. With the small fovea
at a premium in a large visual field, it is not surprising that the human visual system has
special fast mechanisms (saccades) for moving the fovea to different spatial targets. These
fovea-directing mechanisms actually implement elaborate focus of attention mechanisms. The
control mechanisms that are used to change or maintain attention comprise the larger problem
of gaze control [52]. The problem of gaze control may be broken down functionally into the
subproblems of gaze holding on a visual target and gaze shifting between targets. Gaze shifts,
called saccades, transfer fixation rapidly from one visual target to another. Holding gaze (or
tracking [85, 195, 130, 12, 40, 97, 53, 5, 134, 119, 139]) involves maintaining fixation on a
moving visual target. Figure 1.2 (taken from Coombs [52]) presents a top view of binocular

gaze geometry. The selection of the fixation point requires the control of the gaze pan and tilt
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1.3 The role of attention in active vision

Target Object

“ Fixation

Point ;

Figure 1.2: Top view of binocular gaze geometry. The gaze vector consists of the gaze pan and

tilt angles, and the vergence angle (from [52]).

angles (baseline control) and the vergence angle. Biological organisms continuously change

their optical and mechanical parameters by exploiting their gaze control mechanisms.

In recent years, technological advances in the fields of optical sensors (CCD cameras), mi-
croprocessors, microcontrollers and motors has enabled the construction of artificial, binocular
head-eye systems [39, 131], that possess most of the degrees of freedom of biological systems.
Such systems, along with the design of special hardware for real time image processing, can
be employed to experimentally test and verify active vision methodologies. Figure 1.3 shows
the four independent degrees of freedom of a typical head-eye vision system: Vergence control
for each camera, pan and tilt control. The control of active vision heads is a topic of current
research interest. Coombs [52] and Coombs et al. [40] present mechanisms for real time gaze
holding. The basic assumption in this work is that the target object is initially fixated. That is,
attention may not be attracted by a moving object, but may be maintained on a moving object, if
this is initially fixated by the head-eye system. In [39], Brown presents several relevant efforts

at the University of Rochester and, in [131], Pahlavan and Eklundh describe issues related to the
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Figure 1.3: The geometry of a typical active vision head.

design and control of the KTH head eye system. Clark and Ferrier [49] deal with issues regarding
the control of the Harvard head system, and Weiman presents in [196] simple-target centering

algorithms in log-polar image representations.

1.4 Independent motion detection

Detection of motion is essential to survival. From animals at the lower end of the evolutionary
scale to man, moving objects are likely to be either dangerous enemies or potential food
and, therefore, appropriate rapid action is absolutely essential. Indeed, it is only the eyes of
the animals higher in the evolutionary scale which can signal to the brain in the absence of
movement. The peripheral vision system is sensitive only to movement [74]. This can be easily
verified by waving an object at the periphery of the visual field. In this case, movement is seen,
although it is impossible to identify the object. When the movement stops, the object becomes
invisible. The very extreme edge of the retina is even more primitive. When stimulated by
movement we perceive nothing, but a gaze shifting mechanism is initiated, which rotates the

eye to bring the moving object into central vision [74]. In a world in which changes of state
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1.5 Main theme of the dissertation

are more important than the states themselves, the perception of motion provides a rich input to

attention, informing the system about dynamic changes in the environment.

In terms of our previous discussion about attention, motion is a dynamic cue driving feature
based attention. Furthermore, in terms of Bajcsy’s decomposition [24], the motion cue may
drive attention to both the unexpected stimulus and the expected event. The former is the case
in which attention is shifted to a moving object, while the second is the case in which attention

is maintained on a moving object (e.g. through tracking).

1.5 Main theme of the dissertation

The problem of visual detection of moving objects comprises the main theme of this dissertation.
For the purpose of this dissertation, we will assume an observer moving relative to its static 3D
environment. In this environment, there may be some objects that may be moving independently
of the observer. The problem of independent motion detection amounts to segmenting the scene
viewed by the observer into its static and moving components. This problem takes a special form
if the observer does not move relative to the environment. In this case, all points of the static
environment are projected at the same locations of the image plane, while, points belonging
to moving objects are projected at different 2D coordinates as a function of time. Thus, in the
case of a still observer, the problem of detecting moving objects can be treated as a problem
of change detection [86, 157]. The situation is much more complicated when the observer is
moving relative to the environment. In such a case, the points of both the environment and the
moving objects project in different 2D locations on the image plane. If independent knowledge
on the observer’s motion parameters does not exist, change detection cannot anymore handle
the problem of detection of moving objects. This dissertation studies this second case. This case
is also the most interesting, because biological and man made visual systems are mobile. Even

if the body of an observer is still, the eyes are continuously moving [118].
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This dissertation provides an overview of the research done on the problem of independent
motion detection and contributes to the field with the proposal of a new framework for tackling
this problem. This framework is formed by the proper integration of four novel methods for
independent motion detection which follow the purposive vision paradigm. The advantage
that the proposed methods offer over existing ones is that they make fewer explicit or implicit
assumptions about the external world and the observer. Biological vision systems are always
a source of inspiration. However, the aim of this work is not to imitate biological vision, but
to provide an appropriate computational framework that will endow artificial robotic creatures

with similar capabilities.

1.6 Organization of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 reviews the reconstructionist
approach to motion perception with emphasis on the specific problem of independent motion
detection. In the same chapter, the new purposive approach is also presented and related attempts
at independent 3D motion detection are described. The chapter concludes with a brief description

of the proposed methods and the contribution of the dissertation.

Based on past and current work on independent 3D motion detection, chapter 3 is devoted to
the selection of an adequate motion representation for this problem. The geometry of a binocular
visual system is described. Additionally, we study how the measurements that can be taken from
a temporal sequence of 2D images relate to the 3D motion and structure of the environment. The
analysis reveals that normal flow encapsulates much of the information regarding 3D motion
and structure and, at the same time, can be accurately computed from a sequence of images.
This is contrasted with the computation of optical flow, which is more informative, but turns out

to be a poor selection for independent motion detection.

Having defined the basic motion representation, the following four chapters (chapters 4, 5,
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1.6 Organization of the dissertation

6 and 7) propose a repertoire of four methods for independent motion detection, each of which
produces information of added value to the results of the others. The methods are presented in
decreasing order of complexity and computational requirements. As we move from expensive
towards cheaper methods, the obtained results are of increasing qualitative nature. Each of
these chapters also contains information regarding implementation issues and performance

characteristics of the corresponding method.

In chapter 4, the problem of independent 3D motion detection is formulated as robust
estimation applied to the visual input acquired by a binocular, rigidly moving observer.
Measurements due to the stereoscopic configuration of the observer and due to his motion are
combined in a linear model. The parameters of this model are expressions that relate the 3D
motion parameters of the observer and the parameters of his stereo configuration. The use of
robust regression as a means to estimate the parameters of this model leads to a segmentation of

the scene based on the 3D motion parameters of its points.

For the method described in chapter 5, measurements obtained by the stereo configuration
at a certain moment in time provide qualitative information about the structure of the scene in
view. Based on this information, the scene is decomposed into layers of approximately constant
depth. For the points of a certain layer, motion segmentation is performed, based on robust
regression techniques. After having segmented each layer, the results from the various layers
are merged into the independent motion segmentation of the entire 3D scene. However, the
observer may use just the results of motion segmentation in a single depth layer, thus focusing
his attention at a specific depth. By considering the subset of the scene points that belong to a
specific depth layer, important performance gains may be obtained in comparison to the first of

the proposed methods.

Chapter 6 presents a computational approach to independent motion detection that is
even more qualitative and has even lower computational requirements. More specifically,

this method makes an indirect comparison between qualitative structure information that is
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computed from the stereo configuration and qualitative structure information computed from
motion information. This information is computed in image patches. If all the points of a
patch have the same 3D motion parameters, then the compared representations are the same
within a constant scale and shift factor. Inconsistencies in the compared representations signal
independent motion. It is noted that this comparison is able to determine whether in an image
patch there is one or more rigid motions. Therefore, it can effectively be used to delineate 3D

motion discontinuities.

In chapter 7, a different aspect of independent motion is recovered. A comparison of motion
representations acquired by a monocular moving observer is performed to detect changes in 3D
motion, rather than to detect independent motion itself. Besides being able to detect maneuvers
of rigidly moving objects, the method is also capable of detecting non-rigidly moving objects

and of deciding whether the observer has constant 3D motion parameters.

In chapter 8, experimental results from the application of the proposed independent motion
detection methods are presented. In order to facilitate experimentation, a simulation environment
has been built. This environment enables the definition of a virtual 3D space, where a binocular
observer and a number of objects move with 3D velocities defined by the user. Chapter 8 reports
experimental results for all the proposed methods for independent motion detection applied to
the data provided by the simulation environment. The proposed methods have also been tested
on real world stereoscopic image sequences acquired by TALOS, the binocular robotic platform

of ICS FORTH !.

In chapter 9, the proposed methods are compared and discussed. Furthermore, we present
some thoughts on an integration scheme that enables us to tackle the problem of independent
motion detection based on the goals and the computational resource limitations of a robot
equipped with visual sensors. This integration scheme follows closely the design principles

of purposive vision and it is shown that it has several beneficial characteristics regarding

'Institute of Computer Science, Foundation for Research and Technology - Hellas
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1.6 Organization of the dissertation

performance, efficiency, robustness and extensibility.

Finally, chapter 10 concludes the dissertation by summarizing its contributions and by
providing directions of further research towards building artificial systems possessing visual

capabilities.
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Chapter 2

Visual Perception of Motion

.. several groups of animals that move have evolved a variety of
visual mechanisms which prevent collisions, detect the direction of

a distant movement and pursue prey or mates... Motion detection

is the characteristic of those eyes, and it is this level of complexity
without a large brain behind the eye, where there is now scope for
copying the processing mechanisms of these eyes into artificial

systems with available technology. Human technology is evolving along
the same path, in that our cameras have excellent resolution but as

yet no brains at all

G. A. Horridge (1987)

2.1 Overview

Until recently, the majority of studies on visual perception of motion were highly influenced by

Marr’s vision paradigm. In this chapter, a brief overview of such approaches is provided with
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emphasis on studies of the visual perception of independent motion. Independent motion is also
examined from the point of view of the purposive vision paradigm. The chapter concludes with a

brief description of the methods proposed in this dissertation and a summary of its contributions.

2.2 The reconstructionist approach to motion perception

Studies of motion perception in the context of reconstructionist approach to vision consider the

following distinct subproblems:

e The problem of 2D motion computation. The relative motion of an observer with respect
to its 3D environment causes a point of the 3D space to project on different points of
the 2D image plane, in a temporal sequence of images. The problem of 2D motion
computation amounts to the problem of computing the displacements of the projections of
3D points between consecutive image frames. In many cases, the correspondence problem
[81, 47, 104] is solved, i.e. the exact position of individual pixels, lines, corners etc is
computed in successive frames and the differences in their positions constitute the exact
disparity maps. In other cases (especially when the displacements are not too large), the

dense optical flow field [83, 121,77, 15, 193, 75, 182, 184, 14, 155, 48], is computed.

e The structure from motion problem. The problem of structure from motion amounts to
extracting the 3D motion parameters of the observer and the structure of the environment

based on the 2D motion field already computed from the previous step.

The above two problems are discussed in more detail in the following sections.

2.2.1 2D motion computation

The relative motion between the 3D scene and the observer (eye or camera) gives rise to changes

of the intensity values in a sequence of images. The instantaneous 3D motion of any point
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2.2 The reconstructionist approach to motion perception

of an object results in a velocity vector which is assigned to the corresponding pixel on the
image plane'. The problem of 2D motion computation amounts to the computation of these
exact image velocities. To solve this problem, either corresponding features between successive
frames are identified, or a dense vector field is computed, when the motion between successive

frames is small.

The correspondence problem

Correspondence is usually addressed in two steps [104]. First, a type of image primitives is
selected and a similarity criterion between these primitives is defined. Primitives that have been
employed include raw pixels, lines and contours [202]. In an effort to select tokens that differ
from their surroundings, corners have also been employed [121] and points of high interest [117].
Then, for each primitive in one frame, a search is performed which tries to locate this primitive
in the other frame. To do this, a similarity criterion is chosen and the primitive is said to be

found at the position that gives the best match (in terms of the similarity criterion chosen).

For this search (or mapping), various smoothness assumptions have been made about the
spatial and temporal characteristics of motion, which basically restrict either the structure of
the scene in view or the motions of the objects in view [47, 103]. Finally, in order to reduce
the computational requirements of the search, heuristic rules have been employed. Such a

formulation constrains a feature to move in a way similar to neighboring features [29, 62].

There are inherent difficulties related to solving the correspondence problem, which is an
ill-posed problem? [31]. Unfortunately, the constraints imposed by the image acquisition process
are inadequate for ensuring a unique solution to the problem. A simple example is presented in

Fig. 2.1. Suppose that the two dots in the left image (1) have been moved to the configuration

"Note that we can only speak about or measure relative motion. Thus, a 3D motion vector can be assigned even to

the “‘static” points of the environment due to the motion of the observer.
%A problem is characterized as ill-posed [13] when (a) it has no solution, (b) it has many solutions, or (c) its

solution(s) do not continuously depend on the input.
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Figure 2.1: The problem of dot correspondence.

of the right image (2). In this case there are two, completely different motions that can give
rise to such a result. The dots may have been moved as the horizontal, solid arrows suggest,
or as the diagonal, dashed arrows suggest. In order to ensure a unique solution, additional
constraints should be imposed, which is achieved through making restrictive assumptions about
the environment. Such assumptions are valid in specific types of environments and, wherever
they are not valid, the performance of computing the correspondence between features is very

poor.

It should also be noted that correspondence techniques usually accept the best among a
number of matches, without being able to determine whether a match exists. For example, in
cases of a large motion, parts of the scene in view become invisible due to occlusion, or they
were previously occluded and become visible. Tokens residing in these areas do not have a
corresponding token in the other image and, therefore, any effort to solve the correspondence

problem will lead to wrong results.

Optical flow computation

The relative motion of the observer with respect to the scene gives rise to motion of brightness
patterns that are formed on the image plane. The instantaneous changes of the brightness patterns
are analyzed to derive the optical flow field, a dense, two dimensional vector field reflecting the

image displacements.
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2.2 The reconstructionist approach to motion perception

Similar to the case of the correspondence problem there are inherent difficulties in the
computation of optical flow. First of all, the optical flow is defined in terms of the changes of
intensity patterns in an image. However, changes in intensity, are not always due to physical
movement [82]. For example, consider a camera that acquires images of a stationary sphere
illuminated by a moving light source. The motion of the light source will result in changes in
the intensity patterns recorded by the camera. On the other hand, if a sphere with no texture is
rotating under fixed illumination, then no change in image intensity will be recorded. Thus, in
some cases, the computed optical flow field does not correspond to a physical motion and, in
other cases, no optical flow can be measured although there is motion in the imaged scene. Verri
and Poggio [184] have shown that the motion and optical flow fields are identical in specific

cases only.

Even in the cases that these two fields are identical, there are problems regarding the
computation of optical flow. The optical flow vector at each point is computed locally, based
on a small spatiotemporal neighborhood of that point. However, it can be shown that optical
flow cannot be recovered correctly based on local information only. More specifically, the
component of the optical flow that is parallel to the feature (i.e. parallel to the tangent of the
contour at that point) cannot be recovered (for a detailed, technical explanation see Chapter 3,
pp. 44). This is an inherent problem of optical flow and does not depend on the technique used
to estimate it. In an effort to overcome the problem, techniques for computing optical flow
involve two computational steps that exploit two different constraints that are needed for its
computation. In a first step, assuming the conservation of some type of information within the
image frames, the locally available velocity information is computed. Three different approaches
can be distinguished [155]: gradient based approaches which assume conservation of image
intensity [83, 121], correlation based techniques which assume conservation of the local intensity
distribution [203, 45, 15, 14] and spatiotemporal energy-based approaches [190, 1, 70, 75, 204]

which are analogous to gradient-based approaches in spatiotemporal frequency space.

In a second step, and in order to derive a second constraint, additional assumptions have to
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be made. Either some kind of smoothness is assumed, or the shape of the scene is geometrically
modeled to obtain constraints on the optical flow values. Employing additional smoothness
assumptions to recover an unknown function when the available constraints are not sufficient
is a general mathematical technique known as regularization which has been introduced to
computer vision by Poggio [137]. A regularization technique has been used by Horn [83] which
is based on the hypothesis that optical flow varies smoothly in most parts of the image. However,
regularization cannot, in principle, cope with multiple motions, depth discontinuities or violation
of the assumption regarding intensity conservation. Uras [182] requires that the gradient of the
image brightness does not change over time. In other cases [163, 120, 193, 192] assumptions
about scene geometry have been employed rather than smoothness of the optical flow field.

Such a typical assumption is that the world can be locally approximated by planar surfaces.

For a more detailed presentation of different approaches for optical flow estimation the
reader is referred to [155]. Furthermore, a comparative study of representative optical flow

techniques can be found in [30].

2.2.2 Structure from motion

Assuming that accurate information is available either in the form of correspondences or in the
form of a dense optical flow field, the 3D motion and structure of the scene can be computed

from equations that relate the measurements of 2D motion to the 3D motion parameters.

The problem of structure from motion has been extensively studied at a theoretical level.
A number of results concern the type of information about the motion of the observer and the
structure of the environment that can be extracted through a sequence of images [180, 181]. The
conditions which guarantee uniqueness of the solution [109, 177] and the behavior of structure
from motion methods in the presence of noise [177, 158, 3] have also been investigated. At a
practical level, a plethora of algorithms have been designed for the computation of the structure

of a scene [80, 191, 192, 198, 178, 159, 172, 151, 166, 197, 105, 136].
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2.2 The reconstructionist approach to motion perception

In general, the reconstruction of the 3D motion and the structure of a scene cannot be unique
because in principle, any arbitrary motion is possible. Therefore, a motion model is required.
Since many of the structures of the world are rigid, rigidity [181] or at least piecewise rigidity is

usually assumed as the basis for all studies.

The exact form of the equations relating the 2D motion with the 3D motion parameters and
structure is determined by the type of projection assumed. From the plethora of projective models,
the orthographic and the perspective models [122] are those most commonly encountered. The
orthographic model yields linear equations, but is a realistic approximation in a small area
around the camera optical axis, or in the whole visual field of cameras with large focal length.
Because of the relative simplicity of the orthographic projection model, it was the first that was
considered in attempts at solving the structure from motion problem [181, 80, 10, 80]. On the
contrary, the perspective projection model is more realistic, but it results in a non linear relation

between the 3D motion and structure and the 2D image motion.

2.2.3 Independent motion detection

Independent motion detection® has been often approached as a problem of segmentation of the
two dimensional motion representation that has been computed from a temporal sequence of

images. The general algorithmic framework that is applied by these methods is the following:

1. Extract some type of motion representation from a temporal sequence of images.
2. Assume that this information is described by some kind of 2D model.
3. Detect the discontinuities of this model and report them as 3D motion discontinuities.

Based on different alternatives regarding each of the above algorithmic steps, a great variety of

different methods has been proposed. Step (1) is implemented by any of the available optical

3In the remainder of this dissertation and, unless it is explicitly stated otherwise, we will refer to the problem of

independent motion detection for the case of a moving observer
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flow estimation methods or by employing the spatiotemporal derivatives of the image intensity
function. In step (2), an affine or a quadratic model [179] is assumed for the optical flow.
According to the affine model, the optical flow (u,v) at a point (z,y) of an image can be

modeled by the following equations:

U =ap+ a1r + ary
2.1)

v =by + bix + by

where ag, a1, as, by, by and b, are the six parameters of the model. The quadratic model (known

also as pseudo-projective), models (u, v) with eight parameters as:

u=a+ bz + cy + gz* + hxy
(2.2)

v=d+ex+ fy + gry + hy?

In [187], the parameters of an affine model are estimated locally in image patches. Patches
are then combined in larger motion segments based on a k-means clustering scheme that
merges two layers if the distance of their motion parameters is sufficiently small. Some
methods do not compute optical flow, but they are based on the spatiotemporal derivatives
of the image intensity function, the so called normal flow. For example Irani et al [93] and
Torr and Murray [174] perform independent motion detection based on normal flow rather on
optical flow. However, again two dimensional models are employed. Nordlund and Uhlin
[127] estimate the parameters of an affine model of 2D motion. By constraining the spatial
extent of the independently moving object, they assume that the estimation of the dominant 2D
motion will not be affected considerably by the presence of the independently moving object.
Therefore, independent motion can be achieved by determining the points where the residual
between the measured flow and the flow predicted by the estimated parameters is large. Major
emphasis is usually put on step (3), for which a variety of techniques have been proposed. For

example Bober and Kittler [34] combine robust statistics with the Hough transform to detect
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2.2 The reconstructionist approach to motion perception

independently moving objects. In [88], robust statistics and more specifically M-estimators* are
used to distinguish the dominant 2D motion from the secondary 2D motions. A similar idea is
exploited by Ayer et al [22], where two other robust estimators, namely Least Median of Squares
and Least Trimmed Squares are used to discriminate the dominant from the secondary 2D
motions. Bouthemy and Francois [35] view 2D motion segmentation as a problem of statistical
regularization using Markov Random Field models. Some other methods, approach independent
motion detection as a problem of change detection. Change detection [86] is usually applied
in the case of a still observer. In that case, there is no relative motion of the observer with
respect to the still background, while there is a relative motion of the observer with respect to
any independently moving objects. Change detection methods are used to detect exactly this
discriminating property. Paragios and Tziritas [135] also apply change detection in the case of
a moving observer. First, the dominant 2D motion is estimated and then compensated. After
compensating for the dominant (i.e. observer’s) motion, a change detection algorithm is applied
to isolate regions that move independently. Odobez and Bouthemy [128], also take the approach

of camera motion compensation by employing multiscale MRF models.

Many of these methods produce good results in certain classes of scenes, but have two
basic drawbacks that are related to some inherent problems of steps (1) and (2) of the general
algorithmic framework presented earlier. The methods that are based on the computation of
optical flow tend to eliminate the effect they are trying to detect, because the smoothness
assumptions that are employed in order to compute optical flow, tend to eliminate the existing
motion discontinuities. Another drawback stems from the simplified 2D motion models that
they employ. As it will be shown later in Chapter 3, the projection of 3D motion on the 2D image
plane depends on certain characteristics of the observer (e.g. focal length of the system), on the
parameters of the relative 3D motion between an object and the observer and, on the depth of the
scene. Therefore, discontinuities in the computed 2D motion field are not only due to 3D motion

discontinuities (i.e. independently moving objects), but also due to depth discontinuities. The

*For a brief introduction to robust estimators see Chapter 3.

31



simplified 2D models that are employed by all the previous methods do not take into account
the depth of the scene. This is equivalent to assuming that depth is constant which is in principle,
an unrealistic environmental assumption. For this reason, all the above methods perform well
in scenes where the depth variation is small compared to the distance from the observer. In
the case of scenes with large depth variations, these methods cannot provide reliable results.
For such scenes the segmentation of the 2D optical flow field is not equivalent to a 3D motion

segmentation.

In an effort to overcome the inherent problems of employing 2D models of motion, the
more accurate 3D models have been employed. By employing 3D models the problem becomes
much more complicated because extra variables are introduced regarding the depths of the
scene points. Thus, certain assumptions are made in order to provide additional constraints
for the problem. Common assumptions of existing methods are related to motion of the
observer, on the structure of the scene in view, or both. Most of these methods depend, again,
on the accurate computation of the optical flow field. Wang and Duncan [188] present an
iterative method for recovering the 3-D motion and structure of independently moving objects
from a sparse set of velocities obtained from a pair of calibrated, parallel cameras. Based on
stereo correspondences, the method extracts the structure of the viewed scene and identifies
independently moving objects by examining the consistency between the stereo disparities, the
left/right image flows and the estimated 3-D motion components. Jain [94] has considered the
problem of independent 3D motion detection by an observer pursuing translational motion. In
addition to imposing constraints on egomotion (the observer’s motion cannot have rotational
components), knowledge of the direction of translation is required. The method of Clarke and
Zisserman [50] is, again, applicable to the case of a purely translational egomotion. Adiv [2]
performs segmentation by assuming planar surfaces undergoing rigid motion, thus introducing
an environmental assumption. In order to determine the motion parameters of the moving plane
and to group the motion vectors, he employs a Hough transform. A very interesting method is

proposed by Lobo and Tsotsos [108] which is based on the Collinear Point Constraint (CPC).
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2.3 Purposive approaches to motion perception

The CPC defines a way of selecting projections of optical flow vectors so that the combined
motion for these vectors depends only on the translational motion the observer. Given this, the
Focus of Expansion and the parameters of rotational motion can be determined. The estimation
of egomotion will not be affected much by the presence of an independently moving object
that covers a small portion of the field of view. Therefore, such objects can easily be detected
because their flow will not be compatible with the one suggested by the estimated egomotion
parameters. Torr and Murray [173] approach the problem of independent motion detection by
exploiting the epipolar constraint. More specifically, the problem of motion segmentation is
transformed into one of finding a set of fundamental matrices which optimally describe the
observed temporal correspondences. Thompson and Pong [169] derive various principles for
detecting independent motion when certain aspects of the egomotion or of the scene structure are
known. Although it is an inspiring work, the practical exploitation of the underlying principles
is limited because of the assumptions they are based on and other open implementation issues.
Finally, Thompson et all [168] employ the rigidity constraint in order to detect independently
moving objects based on robust regression, applied to point correspondences that have been

established under an orthographic projection model.

2.3 Purposive approaches to motion perception

The principles of active vision presented in the previous chapter may serve as a starting point
for a new approach to visual perception of motion. Based on these principles, Fermiiller [64]
proposes the synthetic approach. According to this approach, a robotic system should initially
be equipped with very simple capabilities which should then be progressively enriched by new,
more complex ones. The capabilities are related to behaviors that the system should exhibit while
navigating, such as egomotion estimation, independent motion detection, obstacle avoidance,
motion programming in order to reach a desired destination, etc. Some initial efforts for tackling

the first two problems are given in [64]. Obstacle avoidance is treated in [125, 142, 28], while
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initial efforts towards motion programming are presented in [123, 54]. The synthetic approach

of Fermiiller resembles the hierarchical subsumption architecture proposed by Brooks [37].

The synthetic approach to vision problems conforms with the results of research in the field
of neurobiology [205] where experimental results have shown that biological vision systems
have sets of neurons that are responsible for specialized capabilities. This approach is also in
agreement with the theory of evolution. Species that at a certain stage of their evolution acquired
photo-sensitive sensors, probably did not obtained all their visual capabilities at once, but at
different times, based on their needs. Consequently, there may be different visual processes

implemented by different sets of neurons.

2.3.1 Purposive approaches to independent motion detection

Among the various behaviors that an active, purposive system should exhibit in order to navigate
successfully, that of independent motion detection is of primary interest in this work. According
to the purposive paradigm, qualitative capabilities should be developed, which may answer
simpler questions in a robust manner. From a technical point of view, these capabilities should
not rely on the computation of optical flow, which is provably ill-posed in the general case but

on simpler, more goal directed representations of the environment.

Methods for independent motion detection that fall within this context have already been
proposed. One method has been proposed by Sharma and Aloimonos [149, 150]. However, as in
the case of [94], known translational egomotion is assumed. For such an egomotion, it is known
that all optical flow vectors emanate from a specific point which is called Focus of Expansion
(FOE) if vectors diverge from that point (Fig. 2.2(a)), or Focus of Contraction (FOC), if vectors
have the opposite direction. The coordinates of the FOE are directly related to the translational
egomotion parameters. Thus, if egomotion parameters are known, then the FOE, and therefore
the direction of optical flow at each point is also known. The normal flow vectors due to an

optical flow vector are constrained to lie on a half-plane, as shown in Fig. 2.2(b). Since the

34



2.3 Purposive approaches to motion perception

FOE

(a) (b)

Figure 2.2: (a) Optical flow vectors are parallel to lines intersecting at the FOE, (b) An optical

flow vector can only produce normal flows that lie on the half plane that includes the circle.

direction of the optical flow vectors is known, the half plane on which a normal flow should lie
is also known. Normal flow vectors that violate this constraint can only be due to independent
motion. Nelson [124] presents two methods for independent motion detection, which are also
based on the normal flow field. The first of these methods requires a priori knowledge of
egomotion parameters and assumes upper bounds on the depth of the scene. Based on the above,
normal flow vectors are again constrained to lie on specific areas of the plane. Normal flow
vectors that do not meet this constraint are reported as due to independent motion. The second

method detects abrupt changes of independent motion rather than independent motion itself.

A distinctive feature of the methods presented in this section, which differentiates them
from other existing methods, is that they do not rely directly on the estimation of the motion
parameters in order to provide answers to the problem of independent motion detection, but
rather they rely on geometrical properties of the normal flow field. Thus, the solution of the
structure from motion problem is by-passed. However, these methods are based on the restrictive

assumption of either known or restricted egomotion.
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2.4 Contribution of this work

In order to overcome the limitations of existing methods that rely on restrictive assumptions
about the environment and/or the observer, this thesis proposes four new methods for inde-
pendent motion detection. Each of these methods has specific characteristics (effectiveness,
computational performance, representation of results) which favors its application under differ-
ent circumstances. The integration of these methods under a unified framework provides a very

good balance of effectiveness and performance.

The present work makes several contributions in the research area of independent 3D
motion detection. First of all, based on the principles of purposive vision, an effort is made
towards the definition of an adequate representation of visual motion, rather than trying to fully
recover motion information. Towards this goal, we develop algorithms for independent motion
detection which rely on the computation of normal flow rather than optical flow. It is considered
preferable to rely on qualitative information that can be computed without environmental
assumptions, instead of relying on general representations that can be robustly constructed in

very restrictive environments and situations.

In the rest of this dissertation, it is shown that normal flow, the component of motion in
the direction of the image gradient, although less informative than optical flow, may comprise
a stable basis for developing independent motion detection capabilities. Based on the specific
questions asked, different manipulations of normal flow give rise to proper representations of
the motion characteristics of a scene. The set of these methods and representations may be used
by a purposive system according to the aspects of the world that are of interest at a particular
moment in time, depending on the system’s goals. This repertoire of possible representations and
capabilities is subject to continuous improvement, as new representations and more capabilities

are added.

Based on the choice of normal flow to represent visual motion information, a repertoire of

36



2.4 Contribution of this work

four novel methods for independent motion detection is presented. Besides the fact that they all
employ normal flow, the proposed methods are differentiated from other existing ones in that

they achieve simultaneously the following:

They employ 3D motion models and assume an observer that may move with unrestricted

(i.e. both translational and rotational) 3D motion.

They exploit a stereoscopic configuration without requiring exact knowledge of the stereo

configuration parameters (i.e. baseline length, vergence angle).

They do not rely on knowledge of the observer’s motion parameters and do not require

independent motion to be rigid.

They assume perspective projection which is the most realistic projection model.

The proposed methods differ in terms of the information they generate about independent
motion and certain aspects of their performance. The first two methods give an accurate map
of independently moving objects. The third gives a coarse map of spatial discontinuities of 3D
motion, but is computationally less demanding than the first two methods. The fourth method
is computationally the most efficient but detects changes of 3D motion rather than independent

motion itself.

The first three methods for independent motion detection make use of a binocular vision
system. Through a stereoscopic configuration, a vision system is able to record information
about the environment which is not subject to dynamic events such as independent motion (both
left and right images of a stereo configuration are acquired at the same moment in time). The
actual parameters of the stereo configuration (baseline or vergence angle) are not used by any
of the proposed methods. The fourth method can be employed by a monocular observer since it

does not make any use of stereo information.

Regarding egomotion, no strict simplifying assumptions are made, as is the case with other

existing methods (e.g. [94, 149]). Simplifications usually encountered in the literature involve
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strict constraints on the type of motion of the observer, exploitation of independent knowledge
of egomotion or structure, or a combination of the above. Relying on independent knowledge of
the motion parameters is a restricting assumption for many reasons. First, sensors that provide
such information [61] are not sufficiently accurate. Second, they provide motion information
relative to a coordinate system different from the one of the camera. Thus, any effort to
exploit this information should rely on calibration of the system that will define the suitable
transformations between coordinate systems. On the contrary, the first two of the proposed
methods tackle the general problem of independent motion detection of an observer pursuing
unrestricted 3D motion. The third method makes certain assumptions about the egomotion of
the observer, which are of qualitative nature. Specifically, certain ordinal relations should hold

on some of the motion parameters.

In all four methods, the motion of the independently moving objects is not constrained to
be rigid. Thus, all the proposed methods can be used to signal independent non-rigid motion

which is very common in dynamic, real world environments.

Finally, an integration framework is proposed which couples the benefits of the four
proposed methods. Based on this framework, an artificial autonomous system can actively
choose a method for independent motion detection, based on the type of information it needs
in order to accomplish its goals, on past observations and on the computational resources that
is able to devote to this type of visual processing. This is actually a very basic outcome of
this work; the effective solution to vision problems can more readily be achieved through the
successful cooperation of loosely coupled processes that tackle certain aspects of the problem

rather than by single processes that try to solve general problems as a whole.
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Chapter 3

Preliminaries

But life is short and information endless... Abbreviation
is a necessary evil and the abbreviator’s business is to make
the best of a job which, although intrinsically bad, is

still better than nothing.

Aldous Huxley

Before proceeding with the description of the proposed independent motion detection
methods, issues related to motion representation are discussed. The rationale for the choice to
employ the normal flow field in all computations is given, using the 2D velocity equations of
the image points (cf. eq. (3.5)). Additionally, a discussion on robust regression is provided,
since robust estimation methods are statistical tools that are extensively used by the proposed

independent motion detection algorithms.
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Figure 3.1: The camera coordinate system.

3.1 Visual motion representation preliminaries

3.1.1 The coordinate system

Consider a coordinate system OXY Z adjusted to the optical center (nodal point) of a pinhole
camera, such that the axis OZ coincides with the optical axis. Suppose that the camera is
moving rigidly with respect to its 3D static environment with translational motion = (U, V, W)
and rotational motion & = («, f,7), as shown in Fig. 3.1. This situation is geometrically
equivalent with the case of a static camera and a scene that is moving relative to the camera with
translational motion —#'and rotational motion —d. The velocity V of a point P = (X,Y, Z) with
respect to coordinate system OXY Z can be computed as follows. Let L be the axis of rotation
defined by the vector —& and d the distance of P from this axis (see Fig. 3.2). Point P rotates
around L in a counterclockwise direction. The velocity V is the sum of the tangent velocity due
to rotation ¢ and the translational motion —¢. §'is perpendicular to the plane defined by L and P

and its magnitude is equal to the magnitude of rotational velocity times the distance from P to
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3.1 Visual motion representation preliminaries

Figure 3.2: Rotation of a point P around axis of rotation L.

L,thatis ||g]| = || — &|| d = || — &I|| || P||sinf = || — & x P||, where **x”* denotes cross product.
Thus, V is

V=-A-&gx7 (3.1)

where 7 is the column vector (X, Y, Z)". The above equation can be written in component form

as
X' = -U-pBZ+~Y
Y = - V—-yX+aZ (3.2)
Z' = —W—aY +8X

Under perspective projection, the 3D point P(X,Y, Z) projects at the point p(z,y) on the

image plane, according to the relations:

Xf

r = —
(3.3)

Y f

y = —
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where f represents the focal length of the imaging system. The projection (u,v) of the 3D

motion vector on the 2D image at point (x, ), is:

y &
dt
(3.4)
y o~ W
o dt

By differentiating eq. (3.4) after substitution from eq. (3.3) and eq. (3.2), it turns out that
the equations relating the 2D velocity (u,v) of an image point p(x,y) to the 3D velocity of the

projected 3D point P(X,Y, Z) are [110]:

(3.5)

3.1.2 Motion field - optical flow field

Equations (3.5) describe the 2D motion vector field, which relates the 3D motion of a point to
its 2D projected motion on the image plane. The motion field is a purely geometrical concept
and, unfortunately, it is not necessarily identical to the optical flow field [82], which describes
the motion of brightness patterns observed because of the relative motion between an imaging
system and its environment. Verri and Poggio [184] have shown that the motion and the
optical flow fields are identical in specific cases only. Even in the cases that these two fields
are identical, the computation of the optical flow field is an ill-posed problem since special
conditions (such as smoothness) should be satisfied for a unique solution to exist. This issue is

further clarified by the following discussion.

In many cases, a sequence of images can be modeled as a continuous function I(z,y, t) of
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3.1 Visual motion representation preliminaries

two spatial (x, y) and one temporal (¢) variables. I(z,y, t) actually expresses the image intensity
at point (z, y) at time ¢. Assuming that irradiance is conserved between two consecutive frames,
and that » and v are the z- and y-components of the optical flow, we expect that the irradiance

will be the same at point (z + dx,y + dy) at time ¢ + 0t, where dz = udt and dy = vdt. That is:
I(x + udt,y + vot, t + ot) = I(z,y,1) (3.6)

By expanding the left hand side of the above equation in a Taylor series, we obtain:

ol ol ol

where the term e corresponds to higher order terms and %, g—é, % are the partial derivatives of

I with respect to xz,y and ¢ respectively. Canceling out the term I(x,y,t), dividing by é¢ and

taking the limit as 6t — 0, we obtain

Oldr Oldy OI
Or dt Oydt Ot

Using the abbreviations

dx dy
Tae T a
and
I I I
Ix_%, Iy_g—, t_%a
we obtain
Lu+Iyo+1; =0 3.7

Equation (3.7), which has originally be developed by Horn and Schunk [83], is known as the
optical flow constraint equation because it gives one constraint for the components u and v of

optical flow. Equation (3.7) can be written in the form of a dot product
(L, Iy) - (u,0) = =1 (3.8)

which can be geometrically interpreted as permitting the computation of the projection of the

optical flow along the intensity gradient direction (i.e. the perpendicular to the edge at that point).
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Figure 3.3: A schematic view of the aperture problem. The solid line in the left image has
moved to a new position in the right image. Based on the information that is visible through
the aperture, it is not possible to decide which of the dashed vectors corresponds to the motion
vector of the line. However, whatever the motion vector may be, its projection to the direction

perpendicular to the line is unique and is represented by the solid vector.

This projection is also known as normal flow. Equation (3.8) can be viewed as the mathematical
expression of the aperture problem and Fig. 3.3 gives its schematic explanation. Equation (3.8)
also shows why extra assumptions should be made in order to compute optical flow. This
equation gives only one local constraint on the flow values while there are two unknowns to be
recovered for each optical flow vector. Due to this lack of information, all methods that aim
at recovering optical flow need to employ additional assumptions, such as smoothness of the
optical flow field. However, the optical flow field is not smooth for a number of reasons. First,
as eqs. (3.5) show, the smoothness of optic flow depends on the continuity of depth variable Z.
In most scenes depth discontinuities do exist and, therefore, the optical flow cannot be regarded
as smooth. Second, the smoothness of optical flow also depends on the constancy of 3D motion
parameters. Thus, independently moving objects cause discontinuities in the optical flow field.
Black and Anandan [33] provide a framework that can be applied to standard formulations of
optical flow estimation in order to reduce their sensitivity in the presence of transparancy, depth
discontinuities, independently moving objects, shadows and specular reflections. However,

in the general case, relying on optical flow for independent motion detection is equivalent to

44



3.1 Visual motion representation preliminaries

attenuating an effect that we are trying to detect (i.e. 3D motion discontinuities).

For the above reasons, the proposed methods for independent motion detection do not rely
on the computation of the optical flow field, rather on the normal flow field. The normal flow
field has also been used in the past for both egomotion estimation [64, 11, 154] and independent

motion detection [124, 149].

3.1.3 Normal flow field - normal motion field

The algebraic value of normal flow can be computed from eq. (3.8), by dividing both sides with

the gradient magnitude, and is equal to:

_ L (3.9)

The component of the optical flow along the image gradient is called normal flow given by:

I I, I,
JB+R\\B+ B+ 1;

( L1, Itly>
IVI]2" IV

where ||VI|| is the gradient magnitude. Figure 3.4(a) shows a typical synthetic translational

or

optical flow field and Fig. 3.4(b) shows one possible normal flow field related to that optical
flow. There are infinitely many normal flow fields that can result from a particular motion field,
because normal flow depends on the image gradient direction and therefore, is scene dependent.
The normal flow field of Fig. 3.4(b) corresponds to projections in random directions that are
uniformly distributed in the range [0..27). Similarly, Fig. 3.4(c) shows a typical rotational optical
flow field and Fig. 3.4(d) shows one possible normal flow field related to that optical flow. For

displaying purposes, all fields are subsampled.

The normal flow field is not necessarily identical to the normal motion field (the projection

of the motion field along the gradient), in the same way that the optical flow is not necessarily
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Figure 3.4: Examples of translational and rotational optical and normal flow fields.

identical to the motion field [184]. The algebraic value of normal motion field is equal to

(e, 4r), ()

dt’ dt
VIz+I2
(4o dy. VI
dt’dt) ||VI||
1 dx dy
— (L= 4+ I,—= 3.10
||v1||<”dt+ydt> (3.10)

The difference between the magnitudes of the normal flow vector and the corresponding normal

motion vector, is given by the difference of (3.9) and egs. (3.10) and is equal to [184]:

1 dI
—_— 3.11
1] dt G.11)

Equation (3.11) shows that normal flow is a good approximation of normal motion flow in points

where ||V || is large. Consequently, normal flow values are reliable in points where the image
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3.1 Visual motion representation preliminaries

gradient assumes large values. Normal flow vectors at such points can be used as a robust input

to 3D motion perception algorithms.

3.1.4 Normal flow field due to motion

Let (ng,ny) be the unit vector in the gradient direction. The magnitude u* of the normal flow

vector is given by
U = ung +vny (3.12)

which, by substitution from eq. (3.5), yields:

M= nap)

+  (yng —xny)y (3.13)

Equation (3.13) highlights some of the difficulties of the problem of independent motion
detection. Each image point (in fact, each point at which the intensity gradient has a significant
magnitude and, therefore, a reliable normal flow vector can be computed) provides one constraint
on the 3D motion parameters. In the case of an observer moving in a static environment, the
above equation holds for each point and for one specific unknown set of 3D egomotion
parameters (Ug, Vg, Wg), (g, Be,vE). In the case of rigid independent motion, there is at least
one more set of motion parameters (U, V7, Wr), (ar, Br,r) that is valid for some of the image
points. Furthermore, if no assumption is made regarding the depth Z, each point provides at
least one independent depth variable. Evidently, the problem cannot be solved if no additional

information is available regarding depth.
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Figure 3.5: The geometry of a fixating stereo configuration.

Equation (3.13) also shows why the problems of egomotion estimation and independent
motion detection are considered as chicken-and-egg problems. If egomotion is known, then it
can be canceled-out and, therefore, independent motion detection is greatly facilitated. On the
other hand, if independently moving objects have not been previously detected, the set of points
on which egomotion estimation should rely is unknown. For this reason, most of the proposed
techniques for estimating egomotion [64, 11, 154, 44] assume the absence of independently

moving objects.

3.1.5 Normal flow field due to stereo

Consider the geometry of a typical stereo configuration of a fixating pair of cameras, as shown
in Fig. 3.5. This type of configuration may easily be achieved by existing mechanical heads

[131] and is very common in biological organisms, including humans.

A pair of images captured with such a configuration encapsulates information relevant to
depth, that manifests itself in the form of disparities defined by the displacements of points
between images. In [58], Dhond and Aggarwal provide a review of techniques for establishing
stereo correspondence. Since the stereoscopic images can be acquired simultaneously, there is
no dynamic change in the world that can be recorded by them. It can easily be observed that a

stereo image pair is identical to the sequence that would result from a hypothetical (ego)motion
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3.1 Visual motion representation preliminaries

N

+ o’

Figure 3.6: The parameters of the motion that transforms the position of the left camera to the

position of the right camera. The figure shows a top view of the stereo configuration.

that brings the one camera to the position of the other. This remark enables the analysis of a
stereo pair employing motion analysis techniques!. The hypothetical motion that transforms
the position of one camera to the other is simpler than the one described by the general motion
model of eq. (3.5). Fig. 3.6 shows the motion that maps the position of the left camera to the
position of the right camera. Evidently, there is no rotation around the X and Z axes, and no
translation along the Y axis. Consequently, if (U, 0, W) and (0, §s, 0) are the translational and
rotational parameters of the imaginary motion, then at each point, a normal flow value «° due

to stereo may be computed, which is equal to

U

s _ s

U = (=ngf) 7
Wy

z? xYy
(5 o)

In practical situations, the computation of normal flow from a pair of stereo images needs

'Regardless if a pair of images is due to a stereo configuration or due to a moving camera, these images can be

considered as views of the same scene from different viewpoints.
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further consideration. The computation of normal flow is based on the optical flow constraint
equation, which does not hold if the two images differ too much. Moreover, normal flow is
computed from discrete images through spatial and temporal differentiation with small masks.
In the case that 5 x 5 masks are used, every normal flow that is more than 2 - 3 pixels is not
reliable. For the successful computation of normal flow from stereo, two alternative solutions

can be proposed:

1. Use of suitable stereo configurations which ensure that normal flow can be robustly

computed over the image.

2. Computation of normal flow in lower spatial resolutions.

In the remainder of this section, we will examine each of the above solutions in more detail.

Use of suitable stereo configurations

Equation (3.14) gives the algebraic value of normal flow which depends on the stereo config-
uration parameters, or equivalently, on the stereo-equivalent motion parameters. Additionally,
since the normal flow is the projection of optical flow in a certain direction, the value of
normal flow at a certain point, is bounded by the value of optical flow. Thus, we may select
suitable stereo configurations for which the maximum obtained optical flow (and consequently
the maximum normal flow) does not exceed a certain upper bound. As an example, consider
a stereo configuration with a baseline? of 7cm. This distance is approximately equal to the
distance between the eyes of an adult human. By substituting in eq. (3.5) a typical vergence
angle, focal length and image size, we get values of optical flow that do not exceed a number of

few pixels, if the minimum depth at the scene exceeds a lower bound.

An interesting special case is the one in which the 3D point at which the optical axes of

the cameras intersect (fixation point [66, 42, 52]), lies on the surface of a physical object. In

*Refer to Fig. 1.2 for a definition of the parameters of a stereo configuration

50



3.1 Visual motion representation preliminaries

such a case, optical flow is zero in a small region around the fixation point and becomes larger
as the distance from the center of the image increases. Thus, since the optical flow at a point
provides a bound on the algebraic value of the normal flow at the same point, we may restrict

the estimation of normal flow in a region around the fixation point.

Lower spatial resolutions

The algebraic value of the optical flow and, consequently, of the normal flow too does not only
depend on the motion between the two images and the depth of the scene, but also on the spatial
resolution of the images. Therefore, a proper selection of image resolution can be made, so that
the magnitude of the optical flow vectors (and therefore the algebraic values of normal flows)
is within valid limits. The use of lower spatial resolutions may be useful, if coarse information

is to be extracted from stereo for a certain scene.

Lower image resolutions can be used in conjunction with suitable stereo configurations
for computing stereo normal flow. Thus, for the case of a fixating stereo, by decreasing the
resolution, coarser information can be computed for a larger image area. For the case of a
fixating stereo configuration the reduction of resolution can be done in a non-uniform fashion by
employing the log-polar image transform [185]. The log-polar transform preserves the original
image resolution close to the image center, and reduces it towards image periphery. Thus, it is
particularly suitable for computing normal flow in fixated stereo pairs, where optical flow is
close to zero near the image center and becomes larger towards the periphery. This idea has also

been used by others in order to compute normal flow from a stereo configuration [111].

Another interesting case is the case of a parallel stereo configuration, for which the stereo-
equivalent motion is a simple translation along the X-axis. Therefore, according to eq. (3.5), the

optical flow has just a horizontal component which is given by:

w - _7Uf (3.15)
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which, for normal flow yields
U.
S _ o S
u = (=naf)— (3.16)

From eq. (3.16) it can be seen that the magnitude of the normal flow at a point depends on
the stereo baseline length (directly related to U,) and the scene structure (Z), but not on the
coordinates of the point on the image plane. Thus, if a lower bound for the scene structure and
an upper bound for the baseline length can be established, an upper bound for the magnitude of
normal flow can be guaranteed?. If this upper bound is less or equal to the maximum computable
normal flow value, then normal flow can be reliably computed for all image points. If a stereo
configuration with larger baseline length than the allowable ones is to be used, then again, a
proper selection of image resolution can be made, so that the magnitude of normal flow vectors

is within valid limits.

3.2 Robust regression

Regression analysis (fitting a model to noisy data) is a very important statistical tool. In the

general case of a linear model [144], given by the relation
¥ = b +...+ :Eipop + e;, (3.17)

the problem is to estimate the parameters 6;, k = 1,. .., p, from the observations y;,i = 1,...,n,
and the explanatory variables z;;. The term e; represents the error in each of the observations.
In classical applications of regression, e; is assumed to be normally distributed with zero mean
and unknown standard deviation. Let f be the vector of estimated parameters 6, ..., 0},. Given

these estimates, predictions can be made for the observations:

9i = zali+ ...+ 20, (3.18)

*n. does not violate this assumption since it is a normalized value in the range [0, 1].

52



3.2 Robust regression

Thus, a residual between the observation and the value predicted by the model may be defined

as:

ri = Yi— Ui (3.19)

Traditionally, 4 is estimated by the least squares (LS) method, which is popular due to its
low computational complexity. LS involves the solution of a minimization problem, namely:
n
Mz'm'mizez i (3.20)
i=1
and achieves optimal results if the underlying noise distribution is Gaussian with zero mean.
However, in cases where the noise is not Gaussian, the LS estimator becomes unreliable. The
LS estimator becomes highly unreliable also in the presence of outliers, that is observations that
deviate considerably from the model representing the rest of the observations. One criterion for
measuring the tolerance of an estimator with respect to outliers is its breakdown point, which
may be defined as the smallest amount of outlier contamination that may force the value of the
estimate outside an arbitrary range. As an example, LS has a breakdown point of 0%, because a

single outlier may have a substantial impact on the estimated parameters.

In order to be able to handle data sets containing large portions of outliers, a variety of
robust estimation techniques have been proposed. Many of them have been used in computer
vision and have been proposed within the vision field [36, 69, 92, 96, 116, 207, 161]. From
those, the RANSCAC method [69] is probably the most popular one. Other methods have been
borrowed from statistics [32, 102, 115, 144, 156, 160]. Meer et al [115] and Zhang [206] provide

excellent reviews of the use of robust regression methods in computer vision.

Probably, the most popular robust estimators are the M-estimators [90]. M-estimators are
based on the idea of replacing the squared residuals ;> by another function of the residuals,
yielding

MinimizeY _ p(ri), (3.21)
i=1
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where p is a symmetric function (i.e. p(—t) = p(¢) for all ¢) with a unique minimum at zero. It

can be shown that minimizing (3.21) is equivalent to solving

> ¢(ri) =0, (3.22)
i=1
where ¢ is the first derivative of p. Huber’s M-estimator [90], uses an influence function defined

as:
Ty lf |’I“l| S k

¢(ri) =1 &k, ifr,>k (3.23)

—k, ifr; < —k
where £ is a predefined constant. Since ¢ is a non-linear function, (3.21) needs to be solved by
iterative numerical methods. It can be verified that solving (3.22) by using the influence function

(3.23) is equivalent to the following weighted least-squares minimization:

n
Mmz w;iri?, (3.24)
i=1
where the weights are given as:
1, if |r| <k
wi=13 kjri,  ifr; >k (3.25)

—k/r;, ifr; < -k

The Tukey’s biweight estimator [144] is another type of M-estimator, which is equivalent

to reweighted least squares estimation using the weights:

(1-r2)?2, if|r| <1
w; = (3.26)
0, if rs] > 1

The aim of these influence functions is to protect the estimate from strongly outlying
observations. However, M-estimators have two major drawbacks. First, it can be shown that
although they behave better that least squares in practical situations, their breakdown point is

equal to 1/n [144], where n is the number of observations. This approaches zero as n increases®.

“Note that the least squares method is in fact an M-estimator.
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3.2 Robust regression

Second, it can be shown that they require a reliable initial estimate of the model parameters

because otherwise, they can be trapped in local minima.

In an effort to provide robust estimators with a higher breakdown point, Rousseeuw [144]
introduced the so-called S-estimators which are defined by minimizing a robust measure of the

scatter of the residuals. In general, S-estimators correspond to

Minimize;S(6) (3.27)

where S() is a certain type of robust M-estimate of the scale of the residuals 7;(#). One special

case of S-estimators is the Least Trimmed Squares(LTS) estimator, given by

h
Minimize@z:(rz)n;n, (3.28)
i=1
where (12) 1, < (1%)2m < --+ < (1), are the ordered squared residuals. The best robustness

properties of LTS are achieved when & is approximately equal to n/2, in which case LTS attains

a breakdown point of 50%.

Another S-estimator is the Least Median of Squares(LMedS) estimator which is described
in detail in the next section. LMedS has a breakdown point of 50%, and forms a basic tool
for developing the independent motion detection capabilities described in Chapters 4, 5 and
6. It can be demonstrated that 50% is the highest possible breakdown point of an estimator,
because for larger outlier contaminations it is impossible to distinguish the ‘‘good” from the
‘‘bad” data. Recently, a new robust regression method, namely MINPRAN, has been proposed
[161] which reports a breakdown point that is higher than 50%. However, MINPRAN makes
extra assumptions regarding the distribution of the outliers. More specifically, it assumes a
random distribution of the outliers and tries to group data according to a linear model so that the
probability of randomness of the grouped data is minimized. Although the concept of MINPRAN

is very interesting, it has the disadvantage of a very high computational complexity.
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3.2.1 Least Median of Squares (LMedS)

The LMedS method, which was originally proposed by Rousseeuw [143], involves the solution

of a non-linear minimization problem, namely:
Minimize{medianizl7“,7,1772} (3.29)

Qualitatively, LMedsS tries to estimate a set of model parameters that best fit the majority of
the observations, while LS tries to estimate a set of model parameters that best fit all the
observations. The above statement gives an idea of the difference in the behavior of the two
estimators. The presence of some outliers in a set of observations will not influence LMedS
estimation, as long as the majority of the data fit into the particular model. More formally,
LMedS has a breakdown point of 50%. Two very characteristic examples of the performance of
LMedsS relative to LS are shown in Fig. 3.7 (taken from [144]). Figures 3.7(a) and 3.7(b), show
two original data sets (five points on the plane) which constitute noisy observations of a straight
line. The line fitted in these observations is the line estimated by the least squares method
(noted as LS). Figures 3.7(c) and 3.7(d) show the same data sets, but with one of the observations
(indicated by a circle) corrupted with high levels of noise. This is actually the outlier of the
model. It can be seen (Fig. 3.7(c)) that a single corrupted observation had a substantial impact in
the estimation of the least squares method. This deviation is even more profound in Fig. 3.7(d)
where the LS estimator completely failed to capture the characteristics of the observations. On
the contrary, the LMedS estimation which is shown in Figs. 3.7(e) and 3.7(f) is not influenced by

the presence of the outlier.

Once LMedS has been applied to a set of observations, a standard deviation estimate may

be derived:

& = Cy/medr;® (3.30)

where C'is an application dependent constant. Rousseeuw and Leroy [144] suggest a value of

C = 1.4826 <1 + i) 3.31)
n—p
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3.2 Robust regression

Based on the standard deviation estimate, a weight w; may be assigned to each observation

1, ifl <THR
w; = (3.32)

0, ifZl>THR

G

All points with weight w; = 1 correspond to model inliers, while points with weight w; = 0
correspond to outliers. The threshold THR controls the sensitivity to outliers. Typically, a value
of 2.5 is used. This value reflects the fact that in a Gaussian distribution, very few residuals
should be larger than 2.56. Note that the criterion according to which the labels of inlier and
outlier are assigned to data is itself robust, since it involves calculations over the median of
residuals. Moreover, the method adapts automatically to the noise levels of the observations.
The better the estimated model fits to the observations, the smaller the median residual is and,

therefore, the finer the outlier detection becomes.

The computational requirements of LMedS are reported as high [144, 115]. This is because
LMedS involves a non linear minimization problem which must be solved by a search in the
space of possible estimates generated by the data. However, in Section 4.4, some modifications

are proposed, which improve the computational performance of LMedS.
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Figure 3.7: Example of least squares (LS) versus least median of squares (LMS) estimation (from

[144]).
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Chapter 4

Independent Motion Detection Based on

Depth Elimination

If among these errors are some which appear too large to be
admissible, then those observations which produced these
errors will be rejected, as coming from too faulty experiments
and the unknown will be determined by means of the other

observations which will then give much smaller errors.

Legendre in 1805, in the first

publication on least squares

4.1 Method description

Consider a stereoscopic observer that is moving with unrestricted 3D motion in the 3D space.

Due to this motion, a reliable normal flow vector can be computed at each point where the image
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intensity gradient is large (see eq. (3.11)). The magnitude of this vector is given by eq. (3.13)

which is repeated here for convenience:

U 1%
UM = (—ngzf) E + (_nyf) 2 + (xnx + yny)

N| =

4.1

2 2
e (i e () s

Additionally, as it was shown in Chapter 3, a reliable normal flow value due to the stereo
configuration can also be computed, with magnitude given by eq. (3.14), which is again repeated
here:

Us W
u? = (—ngf) 7 + ($nm + yny) 7

2
+ {(% +f>nm+%ny}ﬂs

By solving eq. (4.2) for Z, we obtain:

4.2)

g _ _nafUs+ (@ne +yny)W, (4.3)

(G ) el

In most practical situations, the contribution of the term involving Wy in the above expression
is very small! compared to the rest of the terms. W, is usually two orders of magnitude smaller
than U,. Additionally, for specific stereo configurations which are described in Appendix A,
eq. (4.3) holds for W, = 0. Thus, this term can be eliminated, giving rise to a simpler expression

regarding the depth Z:

—ny fU;

S (RN P

4.4)

The computation of normal flow involves the computation of the partial image derivatives
I, and I, which define the normalized vector (n;,n,) at the gradient direction. If, for the
computation of both stereo and motion normal flow fields, these derivatives are computed on

the same reference frame, then n, and n, are the same for both egs. (4.1) and (4.4). The reference

"This is shown in more detail in Appendix A.
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4.1 Method description

frame can be the same if normal flow due to stereo is computed by assuming a left to right
transition, and normal flow due to motion is computed in the right image of the stereo pair, from
time instant ¢ to time instant ¢ — 1. Therefore, the substitution of eq. (4.4) to eq. (4.1) results in

the following equation:

WM = us%—{(%qt )nm+ }(UUﬂ—@

n SV n T xy V Bs
f T ‘n—”{(7+f> Pl

- == J 4 4,
N f Us (43)
(zng + yny){(T + fine ny} W B
+
N f Us
2
+ {%mD + (y_ + f)ny} a+ (yng — zny)y
f f
Equation (4.5) is linear on the variables ¢; = U%, ¢y = us - B, ¢35 = Uls, s = VT%,

¢5 = %, de = Wﬁs , »7 = «a, and ¢g = 7. These variables are expressions involving the 3D
motion parameters and the stereo configuration parameters. LMedS estimation can be applied
to a set of observations of the model of eq. (4.5) as a means to estimate the parameters ¢;,
1 < i < 8. LMedS will produce a vector of estimated parameters ¢;, and a segmentation of the
image points into model inliers and model outliers. Model inliers, which are compatible with
the estimated parameters ¢;, correspond to image points that move with a dominant set of 3D
motion parameters. A point may belong to the set of outliers if one (or both) of the following

holds:
1. The quantities «° and/or v for this point have been computed erroneously.
2. The 3D motion parameters for this point are different compared to the 3D motion

parameters describing the majority of points.

The points of the first class will, in principle, be few and sparsely distributed over the image

plane. This is because only reliable normal flow values are considered. The second class of

61



points is essentially the class of points that are not compatible with the dominant 3D motion
parameters. Thus, in the case of two rigid motions in a scene, the inlier/outlier characterization
of points achieved by LMedS is equivalent to a dominant/secondary 3D motion segmentation
of the scene. In the case that more than two rigid motions are present in a scene, the correctness
of 3D motion segmentation depends on the spatial extent of the 3D motions. If there is one
dominant 3D motion (in the sense that at least 50% of the total number of points move according
to this motion), LMedS will be able to handle the situation successfully. This is because of
the high breakdown point of LMedS, which tolerates an outlier percentage of up to 50% of
the total number of points. The inlier set will correspond to the dominant motion and the set
of outliers will contain all secondary motions. A recursive application of LMedS to the set of
outliers may further discriminate the rest of the motions. The recursive application of LMedS
should terminate when the remaining points become fewer than a certain threshold. There
are two reasons for this. First, if the number of points becomes too small, then the number
of constraints provided by eq. (4.5) becomes small and the discrimination between inliers and
outliers is subject to errors. Second, at each recursive application of LMedS, the set of outliers
does not contain only points that correspond to a motion different than the dominant one, but

also points where normal flow values have not been computed accurately.

Note that secondary motion does not necessarily imply independent motion. The problem
that can be solved through the processing of visual information is the problem of 3D motion
segmentation. This problem is closely related, but not equivalent to the problem of independent
motion detection, which, in its general formulation, involves the ability to decide whether a
set of 3D motion parameters characterizes the motion of the observer relative to his static
background. If the independently moving object moves rigidly and covers most of the visual
field of the observer, then LMedS will estimate the parameters of independent motion; inliers
will correspond to independent motion and outliers to egomotion. However, the human visual

system can also be deceived in similar circumstances?. In the context of this work, we assume

2An example of such an illusion refers to the case of a human observer, sitting in a train and looking out of his

window at another close-by train. If the train he is in starts moving smoothly (so that he has no independent evidence
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4.1 Method description

that egomotion is the motion that has the largest spatial extent, i.e. characterizes the majority of
the points in the scene. This is a valid assumption for all practical purposes because in the vast
majority of situations, independently moving objects cover a small portion of the visual field.
Therefore, the outliers of the linear model of eq. (4.5) correspond to points of independently
moving objects and the inliers of this model correspond to points of the static background which
appear to be moving due to the egomotion of the observer. In the cases that there is no dominant
motion (e.g. there are three motions, each covering 33% of the total number of points), then
LMedS cannot handle the situation. As an alternative, other, more complex robust estimators
can be used [161], which have higher breakdown points compared to LMedS. However, such
estimators rely on probabilistic assumptions regarding the observations of the model and have
extra computational overhead. Another possible solution is to apply LMedS in parts of the
whole scene, in an effort to change the ratios of the points covered by each motion. Such a
decomposition of the scene can be implemented in various ways such as spatial decomposition
(e.g. tessellation of the image in rectangular windows and application of LMedS to each of
them). However, the decomposition of the scene points can be based on any property. For
example, the independent motion detection method that is proposed in Chapter 5 applies LMedS

in sets of points that are characterized by an almost constant depth from the observer.

The method for independent motion detection based on depth elimination is presented
in pseudocode in Fig. 4.1. In this algorithm, procedure Discriminate_With_LMedS (step 2.1)
applies the LMedS estimation technique on the WorkingSet set of observations, and splits
it into the InlierSet and OutlierSet. The WorkingSet is initialized with the set S of all
points in the image where reliable normal flow vectors due to motion and stereo have been
computed. The InlierSet includes the points that have a dominant motion at each stage of
computations, while the OutlierSet contains the points that should be further processed. The
constant POINTS_LIMIT controls the termination of the iterative application of LMedS.

The points that are left unclassified after the last iteration (fewer than POINTS_LIMIT) are

regarding his own motion) he will perceive the other train as moving. Clearly, deciding which of the perceived

motions corresponds to egomotion does not rely on visual information only.
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0. WorkingSet := §
1. Current_Motion_Segment_ID := 1
2. While NumberOfPointsIn(WorkingSet) < POINTS_LIMIT do
2.1 Discriminate_With_LMedS(WorkingSet, InlierSet, OutlierSet)
2.2 MO Current _Motion_Segment_1p = InlierSet
2.3 WorkingSet := OutlierSet
2.4 Current_Motion_Segment_ID := Current_Motion_Segment_ID + 1

3. EndWhile

Figure 4.1: Algorithm for independent motion detection based on depth elimination.

attributed to noise and are discarded from further consideration. At the end of the algorithm,
each set variable? M?; holds the points belonging to one rigid, 3D motion, from now on referred

to as motion segment.

4.1.1 Postprocessing

According to the proposed method for independent motion detection based on depth elimination,
points are characterized as being independently moving or not based on their conformance to
a general rigid 3D motion model. The characterization is made at the point level, without
requiring any environmental assumptions, such as smoothness, to hold in the neighborhood of

each point. In order to further exploit information regarding independent motion, we would

3The superscript 0 in the set variable M°; denotes that these motion segments refer to the whole image. It is used
for notational compatibility with the next chapter, where motion segments will be defined over subsets of points in

the scene.
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4.1 Method description

like to refer to connected, independently moving areas rather than to isolated points. There
are several reasons why the points of a motion segments do not form connected regions in the

segmentation provided by LMedS:

e The normal flow field is usually a sparse field, because normal flow values are considered
unreliable in certain cases (e.g. in points with a small gradient value). Thus, there are

points in the scene for which no decision can be made regarding their motion.

e Despite the fact that normal flow can be robustly computed, there is always a possibility
for misclassifications because some points may become model inliers (or outliers) due
to errors in the measurement of normal flow values «° and «™ and not due to their 3D

motion parameters.

e Normal flow is a projection of the optical flow onto a certain direction. Infinitely many
other optical flow vectors have the same projection on this direction. Consequently there
may be the case that a normal flow is compatible with the parameters of two different 3D

motions, and therefore a number of point misclassifications may arise.

We overcome the problem of disconnected motion segments by exploiting the fact that, in
the above cases, misclassified points are sparsely distributed over the image plane. A simple
majority voting scheme is used. At a first step, the number of inliers and outliers is computed in
the neighborhood of each image point. The label of this point becomes the label of the majority
in its neighborhood. This allows isolated points to be removed. In the resulting map, the label of
the outliers is replicated in a small neighborhood in order to group points of the same category

into connected regions.

65



4.2 An interesting side effect: Egomotion estimation

What is of primary importance for the task of independent motion detection is the segmentation
of scene points into motion segments. However, besides the inlier/outlier characterization,
LMedS provides estimations ¢; for the parameters ¢; of the linear model of eq. (4.5). Each of
the model parameters ¢; corresponds to expressions involving the 3D motion parameters of the
observer [(U,V,W) and («, 3,7)] and the stereo configuration parameters (U, 35). Thus, the
observer is able to relate his own motion parameters to the parameters of his stereo configuration,
i.e. to parameters of his own body. This is in agreement with biological experiments [101]
according to which biological organisms perform measurements in units that are related to the
physiology of their body and to their own mechanical capabilities, rather in some absolute scale

that is conventionally defined.

Additionally, the estimated parameters ¢; can also be used to provide knowledge on the 3D

motion parameters of the observer. More specifically, the following relations hold:

BT,

¢s ®s

a=¢7,ﬁ=¢z—¢%m=¢g
5

where, zo and y are the coordinates of the FOE. Thus, the estimated parameters ¢; of the
model, provide knowledge on the observer’s motion parameters. Similarly, an estimation of the

vergence angle of the stereo configuration is possible:

_

Bs = ™

4.3 The case of purely rotational egomotion

Consider an observer performing a rigid rotational 3D motion only. Such cases can be detected

by using the Collinear Point Constraint (CPC) that has been proposed by Lobo and Tsotsos [108].
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4.4 Implementation and performance issues

The CPC depends only on the translational motion of the observer. Therefore, if it is equal to

zero, then the motion of the observer can only be due to a purely rotational motion.

From eq. (3.13) it can be verified that only the translational component of motion is
influenced by the depth of the scene. Therefore, in the case of purely rotational egomotion,
the part of the independent motion detection method which deals with stereo information
is redundant. Independent motion detection may be achieved by just applying the LMedS
estimation on the motion normal flow field, whatever the scene structure may be. This leads
to a much simpler model (three model parameters rather than eight) and lower computational
requirements. However, in practical applications, the case of pure rotational egomotion is very

rarc.

4.4 Implementation and performance issues

Figure 4.2 summarizes schematically the method for independent motion detection based on

depth elimination.

At time ¢, a pair of images L; (left) and R; (right) is acquired by the stereo configuration.
Both images are smoothed giving rise to images SL; and SR;, respectively. Smoothing is
achieved by convolving the input images with a 5 x 5 Gaussian kernel with standard deviation
oc = 1.4. The filter mask is shown in Fig. 4.3. Image smoothing is a characteristic example of
low level, data parallel algorithms [194, 167]. The parallelization of such algorithms has been
extensively studied [162], and efficient parallel algorithms have been developed for both SIMD

[57, 55, 106] and MIMD [60] parallel architectures.

The normal flow field due to the stereo configuration is then computed. To do so, the
spatiotemporal derivatives of the image intensity function are computed. Without loss of
generality, we compute the temporal derivatives assuming a left-to-right image transition. Based

on the interpretation of eq. (3.11), the image intensity gradient is thresholded; all points for
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Block diagram of the method
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Figure 4.2: A schematic presentation of the method for independent motion detection based on

depth elimination.

which the magnitude of intensity gradient is lower than a threshold are removed from further
consideration. In a way completely analogous to that of stereo, the motion normal flow field
is computed from smoothed images SR; | and SR;. The computation of normal flow (either
stereo normal flow or motion normal flow), also belongs to the class of low level, data parallel
algorithms. Normal flow computation can be decomposed into three independent stages which
correspond to the computation of the two spatial and the one temporal derivative of the image
intensity function. Each of these stages involves some local mask correlation, which has
the same general computational characteristics as image smoothing. In particular, the image
gradient is computed by convolving the image with the Sobel operators [73] (masks of Fig. 4.4).
The time derivative is computed by subtructing averaged (in 3 x 3 windows) intensities from the
successive frames. The spatial and temporal derivatives are combined through eq. (3.9) to give

the normal flow values (for both stereo and motion normal flow).

After normal flow computation, a significant data reduction takes place, because some

points are rejected from further consideration due to the low magnitude of intensity gradient.
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4.4 Implementation and performance issues
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Figure 4.3: The filter used for Gaussian smoothing of images.
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Figure 4.4: The filters for computing image gradient.

In N x N images, we may compute n reliable normal flow values (0 < n < N?). Motion
segmentation is now performed based on LMedS estimation over the model of eq. (4.5). LMedS
estimation, is the most computationally intensive part of the independent motion detection
scheme. LMedS minimization cannot be reduced to a least-squares based solution, but must
be solved by a search in the space of possible estimates generated by the data. Let p denote
the number of parameters to be estimated; then there are O(nP) possible p-tuples. Because this
search space may become prohibitively large, in practical situations, a Monte-Carlo type of
speedup technique is employed [115], in which a certain probability of error is tolerated. If e is
the fraction of data contaminated by outliers, then the probability @) that at least one out of m

p-tuples has only uncorrupted observations is equal to:

Q = 1-[1—(1-¢f" (4.6)

Thus, the solution of eq. (4.6) for m, gives a lower bound for the number of p-tuples that

should be tried. Note that eq. (4.6) is independent of n. Each of the m trials, requires the
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Figure 4.5: Number of iterations m for LMedS estimation (eq. (4.6)), as a function of Q and e.

The number of model parameters is kept equal to (a) p =6, and (b) p = 8.

selection of candidate parameter values and the computation of the squared residuals between
the observations and the predictions of the model. Figures 4.5(a) and 4.5(b) show a 3D plot
of the number of required iterations m (for p = 6 and p = 8, respectively) as a function
of the probability ) and the outliers probability e. In our case, p = 8, and if a confidence
level of 99% is required, then @ = 0.01. In the case that no more than 20% of the points
are expected to be independently moving, then e = 0.2 and solving eq. (4.6) for m gives a
value of m = 26 iterations. If, however, the ratio of outliers is raised to its maximum value
e = 0.5, then the number of minimum iterations required becomes 1177. These figures hold
for the case that in each iteration, p observations are randomly selected, a linear system is
solved and the median of the squared residuals is tested against the minimum of the squared
residuals computed so far. Alternatively, candidate solutions can be formed by the results of
least squares parameter estimation in rectangles of random dimensions and locations over the
input image. In this case, all points with reliable normal flow values contribute to the least

squares solution. Both approaches were tested. With the first approach (linear system solution)
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4.4 Implementation and performance issues

a number of computationally cheap iterations are required. The second approach (least squares
solution) requires fewer, but computationally more expensive iterations. Experimental results
demonstrated that the overall performance is better for the second approach because of the

significant reduction of the number of iterations required.

Another algorithmic improvement is achieved through avoiding the use of sorting to
compute the median in each of the m iterations. Instead, we use an algorithm that selects the kth
largest number out of n numbers, originally suggested in [138, 148]. This algorithm has a time
complexity of O(n), rather than the O(nlogn) complexity of the best serial sorting algorithm.

Thus, the overall computational complexity of LMedS becomes O(mn).

The performance of LMedS can be greatly improved by exploiting parallel processing
techniques. Each of the m iterations does not depend on the outcome of another iteration. All
candidate solutions could be evaluated in parallel. An extra stage for comparing the partial
results is needed, which amounts to the problem of finding in parallel the minimum in a set of
numbers. Going one step further, in each of the m iterations, the computation of the residual for
each observation does not depend on the computation of the residual for another observation.

Therefore, the n residuals could be computed in parallel.

The resulting motion segments are post-processed towards enhancing the usability of the
resulting 3D motion segmentation map. The post processing of the motion segments is again a

local operation for which efficient parallel algorithms can be developed.

One interesting computational characteristic of the overall method for independent motion
detection stems from the computational nature of LMedS. Through the various iterations over
possible parameter sets, LMedS keeps the best solution (the one that minimizes the median of
the residuals). Therefore, the whole algorithm can be viewed as an any time algorithm (i.e.
an algorithm that continuously improves the solution to a problem). This characteristic is very
important because the execution time of the algorithm can be appropriately adjusted, taking into

account the resource limitations of the system and the hard real time constraints that should be
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met.

Additional computational savings can be gained by considering a stereo configuration that
does not change over time. In such a case, after few time instances, a robust estimate of s can
be achieved. Given this estimate, the 8-parameter model of eq. (4.5) can be reduced to a simpler
model with fewer parameters. This simplification of the model, leads to lower computational
requirements. Similar simplifications can be achieved by considering simpler motion models
(e.g. purely translational or purely rotational motion) or a simpler stereo configuration (e.g. a

parallel one).

The presented method for independent motion detection owes much of its robustness
to the fact that, in all the intermediate stages, computations are applied on image content
representations that remain very close to the original image data. According to the recent
theories of active and purposive vision [13, 132, 27, 23], this is a very desirable characteristic.
Motion segmentation is achieved through a short chain of simple modules. No high level
symbolic processing is employed. In fact, the only symbols used are related to the final goal
(motion segmentation), and even these are assigned at the pixel level. The above characteristics
enhance robustness and make possible the exploitation of parallel processing techniques towards

achieving real time performance.
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Chapter 5

Independent 3D Motion Detection
Through Robust Regression in Depth

Layers

In whatever concrete theory, there exist as much science as its

mathematics

Immanuel Kant

5.1 Overview

In the previous chapter, a method for independent motion detection was proposed, which was
based on the elimination of the depth variable Z from the relation describing the motion normal
flow «™. This elimination has been achieved through the use of additional information in

the form of stereo normal flow measurements u°. The elimination of depth resulted in a
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linear system of eight parameters. The LMedS estimation of the model parameters leads to a
segmentation of the scene according to the 3D motion parameters of its points. The elimination
of depth enables the solution of the independent motion detection problem, without actually

computing the depth. This is very important because:

e The accurate computation of depth is very difficult [59].

e The computation of depth cannot be achieved without knowledge of the stereo configura-

tion parameters.

The method proposed in this chapter [18] also avoids the direct computation of depth.
However, stereoscopic information is exploited in a different way. In order to clarify the idea
exploited by the current method, consider eq. (3.13) which gives the algebraic value of motion
normal flow that has been computed from a pair of successive images in time. This equation
forms a linear model, when the depth Z and the motion parameters (U, V, W) and («, 3,) are
constant for all image points. In terms of LMedS estimation, outliers of the linear model will be

points for which one, or more, of the following holds:

1. Their depth Z deviates from a dominant depth.

2. Their 3D motion parameters are different from the dominant motion parameters.

3. Noise has been introduced in the computation of normal flow.

For the task of independent motion detection, the second case is of interest. If it is possible
to define subsets of observations that correspond to points with the same depth and restrict the
application of LMedS in each of these subsets, then outliers should be due to independent motion
only. Points where noise was introduced in the computation of normal flow are not of great
concern since few such points are expected (only reliable normal flow vectors are considered)

and, moreover, they are sparsely distributed over the whole image plane.
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5.2 Method description

5.2 Method description

It is now possible to delineate the following algorithm for independent motion detection, for the

case of unrestricted rigid 3D egomotion:

1. Segment the set of image points into depth layers, i.e. subsets with approximately constant

depth from the observer.

2. Apply the LMedS robust estimation technique to each depth layer in order to identify

motion outliers.

3. Combine the results from all depth layers in order to get a global 3D motion segmentation

of the scene.

In the remainder of this section, we are going to resolve issues related to each of the steps of the

algorithmic scheme described above.

5.2.1 Layering of a scene with respect to depth

Let S be the set of all points p;, 1 < i < n, of the image plane for which reliable normal flow
values can be computed. Each point p; of the image corresponds to a point P; of the 3D world,
whose distance from the observer is Z;. Each point p; belonging to S may define a depth layer
L;, i.e. a subset of S based on the following relation:

Zi— 7,
L’:{pj:‘ 7
(2

< e} 5.1)

Each of the layers L; can be interpreted as a “‘slice” of the 3D space, that contains 3D points
within a range of depths from the observer. The farthest from the observer, the thicker the depth
layers become, for the same value of parameter e. If the parameter ¢ is selected to be sufficiently

small, then the depth variations within a specific depth layer are small compared to the distance
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from the observer and, the depth variable can be considered as constant:
ij € L;, Zj ~ (. 5.2)

In eq. (5.2) C; is a constant dependent on the layer L;. The segmentation of a scene S in layers
L; according to the depths of the 3D points from the observer can be achieved either by the
application of LMedS on the normal flows computed from a stereo configuration [20, 21], or
by considering specific functions of normal flow values. Both approaches are described in the

following sections.

Depth layering through robust regression

Consider eq. (3.14) which gives the algebraic values of stereo normal flow vectors that can
be computed between two images that are acquired by a binocular imaging system. Since the
acquisition of the two stereo images is done at the same time, both images capture the static
characteristics of the environment, without any dynamic change (such as independent motion)
to be cast. Moreover, as it has been shown in Chapter 3, the stereo-equivalent motion parameters
Us, Wy and (3, are related to the parameters of the stereo configuration (baseline and vergence
angle) and therefore they are the same for all points where normal flow vectors have been

computed.

For the above reasons, a set of observations in the form of eq. (3.14) could be fed in a LMedS
module as a means to estimate the parameters of the stereo configuration. Equation (3.14) forms
a linear model if depth Z is constant over the image plane. Suppose that at least 50% of the
image points are at an almost constant depth from the observer. In terms of the depth layer
definition of the previous section, this means that at least 50% of the points belonging to S,
form one of the depth layers L;, denoted by L. In such a case, all points belonging to L, will
form the stereo inliers, while the rest of the points will be the stereo outliers. The estimation
of the stereo configuration parameters through robust regression leads, as a side effect, to the

estimation of the dominant depth layer L. It should be stressed that although LMedsS is applied
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5.2 Method description

to estimate the stereo configuration parameters, the estimated parameters are not used in any of
the remaining computational steps. What is actually used is the discrimination of the dominant

depth layer.

LMedsS can be recursively applied to the set of points L — L, in order to detect the second
largest depth layer. This is much alike the recursive application of LMedS in the case of
independent motion detection algorithm of Chapter 4. In that context, the recursive application

of LMedS was aiming at the detection of motion segments.

The algorithm for depth layering through robust regression is presented in pseudocode in

Fig.5.2.1.

0. WorkingSet := S
1. Current_Layer =1
2. While NumberOfPointsIn(WorkingSet) < POINTS_LIMIT do
2.1 Discriminate_With_LMedS(WorkingSet, InlierSet, OutlierSet)
2.2 Loyrrent_Layer = InlierSet
2.3 WorkingSet := OutlierSet
2.4 Current_Layer := Current_Layer + 1

3. EndWhile

Figure 5.1: Algorithm for depth layering based on robust regression.

In this algorithm, procedure Discriminate_With_LMedS (step 2.1) applies the LMedS estimation
technique to the WorkingSet set of observations, and splits this set into the InlierSet and
Outlier Set. The WorkingSet is initialized with the set S of all points at which reliable normal

flow vectors have been computed. The Inlier Set contains points of the dominant depth layer at
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each iteration while the Outlier Set contains points that should be further processed. The constant
POINTS_LIMIT controls the termination criterion of the iterative application of LMedS. The
points that are left unclassified after the last iteration (fewer than POINTS_LIMIT) are

attributed to noise and are discarded from further consideration.

Direct depth layering

In the previous section, it has been demonstrated how depth layers may be extracted through
robust regression. Under such a formulation of the problem, depth layering is achieved as a
side effect of the process of estimation of the stereo configuration parameters, although the
parameters computed are not directly used. In this section, we describe an alternative approach
to depth layering. This approach can be characterized as direct in the sense that it surpasses
the problem of solving for the stereo configuration parameters and tries to extract information
about depth based on specific functions of normal flow. Such functions can be acquired by
considering a parallel stereo configuration for which the stereo-equivalent motion is only a
translation parallel to the x-axis of the camera coordinate system. Consequently, the normal

flow that can be computed from the stereo pair is equal to:
U
S _ o S
u” = (—ngf) 7

which can be written equivalently as:

uS_Usf

Ty Z

(5.3)

Equation (5.3) expresses the fact that for all image points we may compute a function of the

form
A
7)==
1(2) =7
where f(Z) = —% is a quantity that can be estimated from the stereo pair at each point, and

A = U, f is a constant depending on the stereo configuration and the camera. Suppose now that

we want to check whether a point p; belongs to the layer of a point p;. According to eq. (5.1), it
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5.2 Method description

is required that:

<e (5.4)

Therefore, since f(Z;) and f(Z;) are computable quantities, we can decide whether two points
p; and p; belong to the same layer or not. The criterion of eq. (5.4) does not depend on the
parameter A, meaning that knowledge of the stereo baseline and the camera focal length is not

required.

Comparison of the two depth layering schemes

The main advantage of depth layering based on robust regression is that it can be used regardless
of the parameters of the stereo configuration. However, due to the nature of LMedS, a certain
relation should hold among the populations of the depth layers. The direct method for depth
layering does not impose any assumptions regarding the number of points in each layer but
can only be used in the case of a parallel stereo configuration. Consequently, the selection
between these two methods should be done based on a detailed analysis of the requirements
of an application. As a general remark, the direct approach to depth layering is considered
preferable, in the sense that it is related to assumptions regarding the body of the observer (i.e.
the parameters of its stereo configuration) and not related to assumptions about the environment

(i.e. constraints on the populations of the depth layers).

5.2.2 Motion segmentation of a depth layer

Having already segmented a scene into depth layers, the goal is now to segment each of these
layers based on its 3D motion characteristics. From the process of depth layering, it is known

that depth variations within a layer are very small compared to the depth from the observer.
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Thus, eq. (3.13) is linear with respect to the motion parameters (U, V, W) and («, 3, ), for the
points of a layer and LMedS can be used in order to estimate the dominant 3D motion parameters
in this layer. LMedS is actually applied in order to estimate the parameters (&, &, &) and
(a, B,7), where C; is the average depth of each depth layer (see eq. (5.2)). Model inliers will
correspond to points of a dominant 3D motion. Model outliers will correspond to points where
either normal flow values have been erroneously calculated or to points where the underlying
3D motion parameters are not equal to the ones of the dominant motion. As in the case of the
independent motion detection method of Chapter 4, we use the term motion segments to refer
to sets of points that are characterized by common 3D motion parameters. Theoretically, up to
50% of outliers can be tolerated in each depth layer. In the case of depth layers with at most
two rigid motions, motion segmentation can be successfully achieved, since the one or the other
motion will dominate and will be estimated by LMedS estimation. In the case of more than
two rigid motions in a depth layer, the segmentation may be recursively applied to distinguish

all different motions. However, at each level of estimation, at least 50% of the total number of

points should have a common motion parameter set.

5.2.3 Integration of results from the various layers

The motion segmentation of a layer L; produces  motion segments M;’, My’ ..., M,", each
of which is characterized by a set of parameters (&, &, ¢) and (a, §,7). In some cases, this
type of information is enough to serve the goals of the observer. For example, the observer
may be interested to focus his attention to the different 3D motions at a specific depth. If,
however, a 3D motion segmentation of the whole scene is required, it should be examined
whether two motion segments belonging to different depth layers correspond to the same 3D
motion. Unfortunately, the estimated parameters are not pure 3D motion parameters because the
translational components of the estimated vectors include also information about depth. Any

direct comparison of the estimated parameter vectors across different depth layers is invalid

unless additional, quantitative information on depth is available. Moreover, the combination
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5.2 Method description

of results cannot be achieved on the basis of the inlier or outlier characterization of the scene
points, because the dominant motion in one layer may appear as a secondary motion in another
layer or because one depth layer may contain just one motion segment and no model outliers

can be found.

The task of parameter comparison is tackled by reducing the dimensionality of the
problem. From each 6-tuple of estimated parameters (&, ¢-, ¢, a, 3,7) we get a 5-tuple
(m1,ma,m3,m4,ms) = (3, 3, @, B,7) by dividing the first two coordinates of the 6-tuple with
the third one. This 5-tuple depends only on the 3D motion parameters. Therefore, it forms a
basis for deciding whether to merge motion segments in different depth layers. Consider the two

motion 5-tuples (m %, my®, m3%, m4® ms®) and (m1°, my®, m3®, m4®, ms®) of motion segments a

and b, respectively. These motions are considered identical if:

< Om, Vi, 1 <i<5, (5.5)

‘ mi“ — mib

maz{m;*, m;’}

where 6, is a threshold controlling the sensitivity to motion discrimination. According to the
criterion of eq. (5.5), two 3D motions are considered identical if they have the same rotational
components and the same FOEs. This is not always correct, because in principle, different
translational motions can have the same FOE (i.e. all motions of the form (kU, kV, kW), Vk € R
have the same FOE). However, such cases are rare in practice and, moreover, cannot be tackled

without using metric depth information.

In practical situations, the motion 5-tuples compared are not the estimates provided by
LMedS. LMedsS is recursively applied until all motion segments are identified. Then the 5-tuple of
each motion segment is computed by least squares estimation over the whole set of points of this
segment. This is because in the absence of outliers, least squares gives more accurate estimates
of the model parameters compared to LMedS estimation. It should be stressed, however, that
having already segmented a layer with respect to its motion parameters, all algorithms that can
solve the egomotion problem would suffice to estimate the motion parameters of a specific

segment and subsequently aid towards motion parameter comparison.
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The integration of results can be viewed as a problem of connected components labeling
[133]. Consider an undirected graph G = (V, E), where the set V' of vertices contains all motion
segments of all depth layers. Each vertex v; € V is characterized by the motion quintuple of
the corresponding motion segment. An undirected edge e(vy,v;) € E connects two vertices if
the motion quintuples of the vertices satisfy the criterion (5.5). Connected components of graph
G correspond to regions of the scene that have common three dimensional motion parameters,
independent of depth. Note that two motion segments are not compared if they belong to the
same layer and, therefore the corresponding vertices in V' cannot be connected. Note also that a

connected component of G' does not necessarily correspond to connected regions in the image.

5.3 Ordering the depth layers

In the context of the purposive vision paradigm, there is an increasing interest on ordinal (as
opposed to metric) representations of depth. Researchers [95, 171, 111] have argued that for a
number of tasks, ordering the scene points with respect to depth, is simpler than trying to provide
metric information and suffices for solving interesting problems. In this section we present how
the proposed method for independent motion can be used to provide such representations of the
scene structure. However, instead of providing an ordering of the scene points with respect to
depth, we provide an ordering of the depth layers. The ordering of the layers is more robust,
because it is achieved through the processing of groups of points rather than isolated points.
Additionally, interesting questions of qualitative nature about the depths of objects (e.g. which
object is closer to me?) may be answered through reasoning about the relation of the depth

layers in which the objects reside.

Suppose that after applying the independent motion detection method, two motion segments
a and b that reside in two different layers 7 and j, respectively, were assigned to the same 3D

motion'. Let (&, &, &, @, ,7) be the estimated sixtuple for the motion segment a. Since the

'"We ignore the case of two 3D motions with the same FOEs and rotational components at different layers
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5.4 Ambiguities in independent 3D motion detection

motion segment b has the same 3D motion parameters, its sixtuple should be (&, &, &, @, 8,7)

J J

<

By dividing the first three coordinates of the sixtuples one by one, we get (%, g—], %) Each of

the coordinates of this vector, gives the relative depth of the two layers. Even in the case that
due to errors, the relative depth is not accurate, the comparison of these ratios with unity can
provide information about the ordering of layers in space. Thus, by exploiting 3D motions that
are present in more than one depth layers, it is possible to get qualitative information about the

scene structure.

5.4 Ambiguities in independent 3D motion detection

A very interesting issue regarding any independent motion detection method, is related to
its capability to distinguish among different 3D motions. Two 3D motions can be defined
as ambiguous with respect to an independent motion detection method, if the method cannot
distinguish them, even in the case of perfect sensory input. One class of ambiguous motions for
the independent motion detection through depth layering is the set of motions that have the same
rotational parameters and the same direction of translation. This type of ambiguity stems from
the dimensionality reduction that aided integration of results across the depth layers. The simple
example of Fig. 5.2 clarifies this issue. The figure shows an optical flow field that consists of
two regions, A and B. Optical flow vectors in each of the regions have a constant direction and
magnitude. However, optical flow vectors in region B are larger than those in A. By observing

this scene, three different interpretations may be given:

1. Regions A and B have the same motion parameters but different depths. More specifically,

region A is at a larger depth than region B.

2. Regions A and B are at the same depth, but have different motion parameters. More

specifically, region B moves faster than region A.

3. Regions A and B have different motion parameters and correspond to different depths.
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Figure 5.2: An example of a motion field that is ambiguous in terms of motion segmentation.

The proposed method can tackle the second case, because in this case two different motion
segments will be part of the same depth layer. However, it cannot discriminate between the

cases 1 and 3, since it lacks any knowledge of the relative depths of the depth layers.

5.5 The case of purely rotational egomotion

Consider an observer performing a rigid rotational 3D motion only. Such cases can be detected
by using the Collinear Point Constraint (CPC) that has been proposed by Lobo and Tsotsos [108].
The CPC depends only on the translational motion of the observer. Therefore, if it is equal to

zero, then the motion of the observer can only be due to a purely rotational motion.

From eq. (3.13) it can be verified that only the translational component of the motion is
influenced by the scene structure. Therefore, in the case of purely rotational egomotion, the part
of the independent motion detection method which deals with stereo information is redundant.
Independent motion detection may be achieved by just applying the LMedS estimation on
the motion normal flow field, whatever the scene structure may be. However, in practical

applications, the case of pure rotational egomotion is very rare.
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5.6 Implementation and performance issues

5.6 Implementation and performance issues

Figure 5.3 summarizes schematically the method for independent motion detection through

depth layering. At time ¢, a pair of images L; and R; is acquired by the stereo configuration.

Block diagram of the method
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Figure 5.3: A schematic presentation of the method for independent motion detection based on

robust regression in depth layers.

Much alike the independent motion detection method based on depth elimination, images are
smoothed, the normal flow fields due to stereo and motion are computed and normal flow
values are thresholded; all points for which the magnitude of intensity gradient is lower than a
threshold, are removed from further consideration. Stereo normal flow is fed into one of the two
alternative depth layering modules described, giving rise to a number of depth layers. For each
of the depth layers already defined, motion segmentation is now performed based on LMedS
estimation. The resulting motion segments are compared based on a least squares estimation of
their motion parameters, and merged if the comparison reveals common 3D motion parameters.
As already discussed, ambiguities may arise but in restricted situations. The final 3D motion

segmentation is post-processed towards enhancing its usability.
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Depth layering is achieved either through robust regression or by direct depth comparison. In
the first case, the computational complexity of depth layering is determined by the computational
requirements of LMedS. In the case that a fixating stereo configuration is used, the number p
of the parameters to be estimated is equal to 3. In the case of parallel cameras there is only
one parameter to be estimated. In practice, direct depth layering is performed with an iterative
scheme. First, a histogram of the function f(Z) is computed. The highest peak of the histogram
is determined and the value of the function at this peak becomes the center for the definition of a
depth layer. All points which, according to criterion (5.4), belong to this layer are excluded from
subsequent consideration. These steps are repeated until all points of the image are assigned to

depth layers.

Motion segmentation in each layer has a complexity that is determined by the computational
requirements of LMedS. More specifically, motion segmentation involves [/ applications of
LMedS (one for each layer), each of which involves as many observations as the number of
points in the current layer. In the general case, the estimation is applied for the six motion
parameters of the unrestricted 3D motion, so p = 6 (see Fig. 4.5(a) for a 3D plot of the number of
required iterations as a function of the probability () and the outliers probability e, for the case

of p = 6).

Integration of results has the complexity of connected components labeling (O(|V|log |V])
where |V| is the number of graph vertices). In practical situations this number is rather small.
Finally, the post processing involves local operations for which efficient parallel algorithms can

be developed.

86



Chapter 6

Qualitative Detection of 3D Motion

Discontinuities

One of the most interesting aspects of the world is that it
can be considered to be made up of patterns. A pattern is
essentially an arrangement. It is characterized by the order
of the elements of which it is made, rather than by the intrinsic

nature of these elements

Norbert Wiener

6.1 Overview

In the two previous chapters, two independent motion detection methods were presented which
were based on the indirect comparison of depth information extracted from a stereo configuration

and a motion sequence. Both methods made use of robust regression as a means to perform 3D
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motion segmentation. Although LMedS is a method for estimating model parameters in a set of
noisy data, what was of central importance was not the estimated parameters, but the separation
between inliers and outliers which led to motion segmentation. Although the computational
cost of these methods is not prohibitively high, we would like to be able to use as fast methods
as possible, even if this has some negative impact to the detail with which independent motion
is detected. The method proposed in this chapter is towards this direction. Compared to the
previous two methods, the method presented in this chapter takes a more qualitative approach, in
the sense that solving for the motion or stereo configuration parameters is totally avoided. This
is in fact a very important issue in the purposive theory of vision: Problems should be solved
directly, by using suitable, specific representations instead of relying on general representations
that are difficult to extract accurately. For the specific problem of independent motion detection,
this methodological principle leads to an effort to detect independently moving objects through
the processing of normal flow and, if possible, without relying on estimations of the 3D motion

parameters of the moving objects which amounts to solving the structure from motion problem.

According to the method described in this chapter [19], the independent motion detection
problem is reduced to a problem of pattern matching and, more specifically, to a problem of line
fitting. The quantities compared are functions of depth, computed from a temporal sequence of
image stereo pairs. One qualitative depth function is computed from the stereo configuration
and another depth function is computed from motion. Both functions are defined and computed
over local image patches. It is shown that these two functions obey a linear relationship in the
case that there is only one 3D motion in the image patch under consideration. The violation
of this linear relationship in an image patch is attributed to the existence of more than one 3D
motions. Consequently, in the general case!, boundaries of independently moving objects are

detected.

"Later in this chapter it will be shown that in certain cases the whole image of an independently moving object

can be identified
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6.2 Method description

6.2 Method description

6.2.1 Qualitative depth information in image patches due to motion

The current method relies on the assumption that within a small image patch, the translational
and rotational components of the egomotion can be accurately approximated with constant

vectors. Based on this assumption, eq. (3.5) can be written as:

ur

u = 7+UR
6.1)
v o= %-{—UR

where (ur,vr) and (ug,vr) are the constant translational and rotational components of motion
for that image patch. This assumption, differs conceptually from the assumption of patchwise
constant optical flow. The constancy of the translational and rotational components of egomotion
depends only on the observer’s 3D motion parameters and poses restrictions on the body of
the observer. On the contrary, optical flow constancy implies constancy of depth, which is an
environmental assumption. Figure 6.1 clarifies the difference with a characteristic example.
Translational components (u, v7) and rotational components (up,vr) of motion are the same
at points (x1,y1) and (z,y») in Figs. 6.1(a) and 6.1(b), respectively. However, due to difference
in the depths Z; and Z, of these points (7, > Z,), the optical flow vectors (u1,v;) and (uz,v7)

differ considerably.

The hypothesis for constant translational and rotational components of motion is valid in
image areas which are far from the FOE. As demonstrated in Fig. 3.4.(a), in the case of pure
translational motion, optical flow vectors emanate from the FOE whose coordinates are (UWf, VWf).
In a small image patch far away from the FOE, translational optical flow vectors can be regarded
as parallel. The farther the FOE from the image patch, the more accurate the approximation. The

approximation becomes perfectly accurate if the W component of translational motion is zero,

which is equivalent with the FOE being at infinity. Thus, if the translational component of the
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Figure 6.1: An example where the translational and rotational components of motion are constant

while optical flow is not constant.

3D motion along the Z axis is very small relative to the 3D motion along the X and Y axes, the

approximation holds for all patches that can be defined on the field of view.

Similar arguments hold for the case of rotational motion. As can be verified from Fig. 3.4.(c),
the rotational optical flow vectors can be approximated by parallel vectors in a small patch
far from the AOR? The hypothesis of constant rotational component is even more realistic in
practical situations compared to the assumption regarding the translational component because
in the case of egomotion, the rotation -y around the Z-axis is usually close to zero and, therefore,

the AOR is far outside the field of view.

By substituting « and v of eq. (6.1) in eq. (3.12) we obtain:

UTNg + VTN
uM = w+uRnI+any (6.2)

Assuming that n, # 0 and dividing eq. (6.2) by n,, we obtain:

uM  (ur + nor)
— =——F——tur+nug
Ny A
>The AOR is the point where the rotation axis intersects the image plane. The coordinates of this point are given
by (2,2).
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6.2 Method description

where n = Z—Z, is the direction of the image gradient. Thus, for a selected normal flow direction

n in a certain image patch, we can compute a depth function of the form:

9(Z) =

K
4L :
Z (6.3)

where

K = ur + nop
(6.4)

L =up+ nvp

are unknown, constant quantities. Equation (6.3) constitutes the first of the two functions, the

comparison of which leads to conclusions about independent motion.

6.2.2 Qualitative depth information in image patches due to stereo

In a way similar to the case of motion, the translational and rotational components of the stereo
equivalent motion can be considered constant in image patches. As can easily be shown using
geometrical considerations, the translational part of the stereo equivalent motion for a fixating
stereo configuration, has only a Us; and a W component. In all practical situations, Uy is one or
two orders of magnitude greater than W,3. Therefore, the FOE for the stereo equivalent motion
is far from the image center. The hypothesis for a constant rotational component is also realistic.
The rotational component is due to a rotation /3, around the Y -axis, which produces an almost
horizontal flow field. By denoting the translational and rotational components of the stereo
equivalent motion with (urs, vrs) and (ugs, vrs), respectively, we can derive a depth function,

corresponding to each patch, of the form:

hz) =

A
S5 (6.5)

3See Appendix A for a further analysis.

91



where,

A = urs + nor,
(6.6)

B = ups + nupgs

are again unknown, constant quantities. It has also been shown [64] that eq. (6.5) holds with no

approximation, for all normal flow vectors for which zn, + yn, = 0.

6.2.3 Comparison of depth functions

Suppose that for an image point p; which corresponds to a scene point with depth Z;, the values
h(Z;) and g(Z;) of functions h and g are computed. By solving eq. (6.5) for Z and substituting in

(6.3) we obtain:

K KB

9(7) = h(Z)+ (L - 7) 6.7)

Let s = & and t = L — £B. Then the above equation can be written as:
9(2) = sh(Z)+1 6.8)

Equation (6.8) states that the functions of depth 4 and g, due to stereo and motion, respectively,
have a linear relation for all points with the same gradient direction within an image patch. The
scaling parameter s and the shift parameter ¢ depend on the motion parameters and the stereo
configuration parameters. Since the quantities A, B, K and L remain constant in an image patch,

the same is true for s and ¢.

Consider now an image patch, in which there are points that correspond to more than one
rigid 3D motions. If there are two such motions, eq. (6.3) will hold for some parameters K;
and L;, corresponding to points of one motion, and for some other parameters K, and L,,
corresponding to points of the other motion. Equation (6.8) will not hold for the same parameters
s and ¢ for all points in an image patch. The detection of such situations signals the presence of

more than one rigid motions and, therefore, the presence of independent motion.
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6.3 Ambiguities in independent 3D motion detection

Comparison through robust regression

A method for comparing the depth functions treats the problem as a problem of line fitting. Each
point in a patch, provides one equation of the form of eq. (6.8). h(Z;) and ¢g(Z;) are computable
quantities, and s and ¢ are unknown parameters. In fact, the set of egs. (6.8) for all points in
an image patch form an overdetermined set of equations over variables s and ¢, that can be
tackled with the LMedS robust estimator. In the presence of two rigid motions, robust regression
will estimate the parameters for the majority of the points (dominant motion within that patch).
Model inliers will correspond to the points of the dominant motion, while model outliers will
correspond to the points of the secondary motion. The absence or the presence of outliers signals
one or more 3D motions, respectively. Note that if there are two rigid motions, then the high
breakdown point of LMedsS suffices to handle correctly the segmentation of the scene. In case
that there are more than two rigid 3D motions within a patch, and none is dominant (in the
sense that 50% of the total number of points corresponds to that motion) the method will fail
to estimate a correct set of parameters s and . However, it is very likely that whatever the

estimated parameters are, outliers will exist and, therefore, discontinuities will be detected.

6.3 Ambiguities in independent 3D motion detection

For the motion discontinuities detection method, there are certain cases of ambiguous 3D
motions. According to the previously described method, if no set of parameters s and ¢ can
be found such that eq. (6.8) holds for all points of a certain gradient direction in a patch, then
there is a 3D motion discontinuity in that patch. However, the reverse does not always hold:
If eq. (6.8) holds for all image points of a certain gradient direction within a patch, then it is
not guaranteed that no 3D motion discontinuity exists. Assume that in a certain tile, the depth
function due to stereo is given by the relation h(Z) = % + B. Suppose also that there are two

different 3D motions m and m;, each of which gives a function of depth ¢,(Z) = % + L; and
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@ (Z) = % + L,, respectively. If, (see eq. (6.7)) the relations

_ KK
ST AT A
(6.9)
KB K,B
t = L, — — [, 227
1774 2774

hold simultaneously, then although m; and m, are different motions, eq. (6.8) holds for all points

of an image patch. Equations (6.9) after substitution from eqs. (6.4), yield:

(ur1 —ur2) = n(vra —vr1)
(6.10)

(upt —ur2) +n(vrr —vR2) = % {(ur1 —ur2) — n(vry —vr1)}

For both equations to hold, the gradient direction and the motions m; and m, should be such

that:

_ uT1 —UuT2  URI — UR2

U2 — UT1 VUR2 — VR1

This is a rather restricted case, because it requires the selected gradient direction to have a special
relation with both the translational and the rotational components of both motions. An easy
way to avoid these ambiguous situations is to test if eq. (6.8) holds for more than one gradient

directions.

6.4 Implementation and performance issues

Figure 6.2 summarizes schematically the method for the detection of discontinuities of 3D
motion. As in the case of the previously described methods, two normal flow fields (from
stereo and motion) are computed from the smoothed images SR; 1, SL; | and SR; and SL;.
The image is then partitioned into tiles. For each tile, a histogram of normal flow directions is
computed. The dominant normal flow directions are determined and for these directions, the

functions h and ¢ are computed. Functions 4 and g are then compared by LMedS estimation.
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6.4 Implementation and performance issues
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Figure 6.2: A schematic presentation of the method for 3D motion discontinuities detection.

Independent motion detection is reported in an image patch if, for at least one gradient direction,
the depth functions due to motion and stereo do not have a linear relationship. As it has been
demonstrated in Chapter 4, the time complexity of LMedS estimation is O(nm), where n is the
number of observations of the model and m the number of required iterations. In this case, n
is small because robust regression is applied to a small image patch as opposed to the whole
of an image. Additionally, only vectors at a specific direction are considered. The number of
iterations depends on the number of parameters p to be estimated. In this case, p = 2. Figure 6.3
shows a 3D plot of the number of required iterations m as a function of the error probability @

(the confidence level to be reached is equal to 1 — @) and the outliers probability e.

Regarding the exploitation of parallel processing techniques, it should be emphasized that
the processing of one image patch does not depend on the processing of another, and therefore
each could be assigned to a different processor of a parallel architecture reducing considerably

the execution time of this method.
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Number of ifterations for LMedS (p=2)
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Figure 6.3: Number of iterations m for LMedS estimation (eq. (4.6)), as a function of Q and e.

The number of model parameters is kept equal to p = 2.
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Chapter 7

Detection of Maneuvering Objects

The unavoidable price of reliability is simplicity

C. Hoare

7.1 Overview

The methods presented in the previous three chapters detect independent motion by exploiting
information acquired by a moving binocular observer. The method described in this chapter [17]
relies on motion information only, i.e. it does not employ stereoscopic information. Processing
is applied over the two normal flow fields that are computed from three successive images
in time, in order to detect changes in the 3D motion parameters of the image points. This
is important in many applications. For example in certain cases, the observer is expected to
maintain a constant 3D motion, while some objects are expected to continuously change their
own 3D motion parameters, i.e. they maneuver. More specifically, the proposed method decides
whether the 3D motion of a certain point in the first pair of images (images acquired at time

instances ¢ — 2 and ¢ — 1), remains the same in the second pair of images (images acquired at
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Change detection in intensities Change detection in normal flow
Goal: Detecting changes in position Detecting changes in 3D motion
Assumption: | Constant position of the observer Constant 3D motion of the observer
Input: Two image frames Two normal flow fields (from three frames)
Approach: Difference of image frames Difference of normal flow fields

Table 7.1: Change detection in image intensities vs. change detection in normal flow fields.

instances ¢ — 1 and ¢).

There are a number of analogies that can be drawn between change detection methods that
are used to detect moving objects in the field of view of a static observer and the method for the
detection of changes in 3D motion. Table 7.1 summarizes these analogies. Most of the existing
methods for change detection aim at detecting changes in the position of an object in the field
of view of an observer. The basic underlying assumption is that the observer is static. However,
these methods are able to recognize the case of a previously static observer that starts moving,
because in that case a change will be detected over the full image plane. In most cases, change
detection methods work by taking (weighted) differences in the intensities of two image frames

that are acquired at successive time instances.

By complete analogy, the proposed method for the detection of maneuvering objects, aims
at detecting changes in the 3D motion parameters of independently moving objects. The basic
underlying assumption is that the eye of the observer moves rigidly with constant 3D motion
parameters. However, the method is capable of detecting changes in the 3D motion parameters

of the observer, because again in that case, a change will occur over the whole image plane.

The proposed method relies on the processing of two normal flow fields that are computed
from three successive images in time. The basic problem involved is that, since the observer

moves with constant but unknown 3D motion parameters, the spatial registration of the
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7.2 Method description

information to be compared is unknown. In the remainder of this chapter we present a technique
that makes this comparison possible, without resorting to the solution of the correspondence

problem.

7.2 Method description

Suppose that the motion of the observer remains constant for three frames that are acquired at
time instances ¢ — 2, ¢ — 1 and ¢. Suppose also that we compute a normal flow field, from frame
t — 1 to frame ¢. According to eq. (3.13), the normal flow that can be computed at point (zx,y)

with gradient direction (n,n,), is equal to

M1t %
u ( nxf)Z

+ (ynm - $ny)'7

where (U,V,W) are the translational motion parameters, («,3,7) are the rotational motion
parameters and f is the focal length of the imaging system. Suppose also that we compute the
normal flow from frame ¢ — 1 to frame ¢ — 2. Due to the hypothesis of constant egomotion,
it turns out that the observer is moving from time ¢ — 2 to time ¢ — 1 with motion parameters
(U,V,W) and (a, 3, 7). Therefore, his motion from time ¢t — 1 to t — 2 is described with parameters

(—=U,—V,—W) and (—«, — 3, —7). According to eq. (3.13), the normal flow is equal to:
Mt-1-t-2) U
u - nh ()
-V
W
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Therefore,

uM(tflﬁt) _ —UM(tilﬁtiz) (71)

Note that (n,,n,) is determined by the spatial derivatives of the image intensity function.
Therefore, for a given point (z,y), the gradient direction (n,n,) is the same for both fields,
because for both fields the reference frame for the calculation of normal flow is the same (frame
t — 1), as shown in Fig. 7.1. Equation (7.1) provides a simple, yet effective criterion to check
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Figure 7.1: A schematic presentation of the method for the detection of maneuvering objects.
Comparison of normal flow fields is enabled without solving the correspondence problem,

because of the time-reversed computation of normal flow between frames ¢ — 2 and ¢ — 1.

whether the 3D motion parameters of a point remain constant over three frames in time. Once
the two normal flow fields are computed, then for each point the sum of the normal flow values
should be equal to zero. A non-zero value signals a change in the 3D motion parameters of the

corresponding point. In practical situations, the sum of normal flow values will not be zero due
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7.2 Method description

to errors in the computation of the time derivative. We may however require the absolute value
of the sum to be small with respect to the maximum of the absolute normal flow values:

_ _2 _
|’U,M(t 1—t )—|-UM(t 1—>t)|

ma${|uM(t—1—>t—2) |’ |uM(t—1—>t) |} < &u‘n (7.2)

where §,,, is a threshold controlling the sensitivity to changes in motion in the three frames.

The satisfaction of criterion (7.2) over subsets of scene points, leads to four interesting
cases; they are summarized below, where it is assumed that the majority of the scene points
correspond to the static world. Let Ip be the set of image points for which reliable normal flow

values have been computed; then:

1. The criterion holds for all image points in /p. This is the case where neither the observer,
nor any object(s) changed their motion parameters. Note that the change of motion
parameters includes the interesting case of previously static objects that have now started

moving.

2. The criterion holds for the majority of image points in /p. This is the case where the
motion of the observer remained constant. Points where the criterion does not hold, are

points of objects that changed their motion.

3. The criterion holds for the minority of image points in /p. This is a special case where
both the observer and the independently moving object(s) changed their motion in exactly

the same way, so that no relative change can be detected.

4. The criterion does not hold for any point in /p. The motion of the observer has changed.

It cannot be decided, however, whether the motion of some objects has also changed.

A label may be assigned to each point with a reliable normal flow value, based on whether
criterion (7.2) is satisfied. This label describes whether the 3D motion parameters of this point
have changed or not. Thus, despite its simplicity, the method can provide useful information

about the motion characteristics of both the observer and its environment. Additionally, as it is
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shown in Chapter 9, the provided information can be effectively coupled with other independent

motion detection methods.

It is noted that by employing normal flows, only incomplete information about motion is
used. A normal flow value is the projection of an optical flow vector at a certain direction. Infinite
many other optical flow vectors may have the same projection at this direction. Consequently,
there are certain changes in the 3D motion parameters of a point that cannot be recovered
through summations of normal flow values. However, in a region where 3D motion changed,
it is expected that many different gradient directions exist and, therefore, the concentration of
points that do not satisfy criterion (7.2) will be high. This observation leads to the conclusion
that some type of post processing is needed on the resulting labeling of points. The type of
postprocessing applied is the same as it was in the case of the previous methods for independent
motion detection. Again, isolated points are removed. The labels of the resulting maps are
repeated in small neighborhoods in order to come up with connected regions containing the

maneuvering objects.

7.3 Implementation and performance issues

Figure 7.2 summarizes schematically the method for the detection of maneuvering objects.
The computational requirements of the method for the detection of maneuvering objects are
extremely low. Practically, the most computationally intensive part of the method is the
computation of the two normal flow fields (see Chapter 4 for an analysis of the complexity of
normal flow computation). The normal flow comparison is equivalent to one scan of the two
normal flow fields in order to test for the satisfaction of criterion (7.2). The extremely low
requirements of this method can be exploited in two ways. First, it can be decided very quickly if
there are maneuvering objects in front of a moving observer and if the observer has changed his
motion parameters. Second, the outcome of the method can be used to control the activation of

other independent motion detection algorithms. This is actually the approach taken in Chapter 9,
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7.3 Implementation and performance issues

Block diagram of the method
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Figure 7.2: A schematic presentation of the method for the detection of maneuvering objects.

where all the proposed methods for independent motion detection are integrated in one unified

framework.
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Chapter 8

Experimental Results

Well done is better than well said

Anonymous

8.1 Overview

In this chapter, a number of performance issues regarding the proposed independent motion
detection methods are studied experimentally. The experimental evaluation of these methods
has been based on both simulated data and real image sequences. For notational convenience,

we will refer to the proposed methods with the following abbreviations:

IMDE: Independent Motion detection based on Depth Elimination (chapter 4).

IMDL: Independent Motion detection through Depth Layering (chapter 5).

MDD: 3D Motion Discontinuities Detection (chapter 6).
e DMO: Detection of Maneuvering Objects (chapter 7).
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8.2 Experiments with simulated normal flow fields

8.2.1 Simulation environment

In order to facilitate the experimental evaluation of the proposed methods a simulation envi-
ronment has been built. This environment enables the creation of synthetic normal flow fields
(both stereo and motion) for a certain scene. The characteristics of the observer and of the

hypothesized scene are controlled by a series of parameters:

Image dimensions.

e The coordinates of the point where the optical axis of the hypothesized camera intersects

the photosensitive surface (usually close to the image center).
e The focal length of the cameras.

e The parameters of the stereo configuration. These are actually the parameters of the
hypothetical 3D motion that transforms the position of the left camera to the position of

the right camera.

e The noise level of the resulting normal flow fields. Gaussian noise is assumed, which is

modeled by its mean and standard deviation.
e The number of rigidly moving regions.
e For each rigidly moving region, the following parameters are defined:

-- Its dimensions on the image (rectangular regions are assumed).

-- The mean and the variance of the Gaussian distribution that models the depths of
the points in that region. For each point, its depth is a random sample of such a

distribution, without making any assumption regarding surface continuity.

-- The density of the normal flow field in the region, which is the percentage of the

points in the region for which reliable motion and stereo normal flow values are
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8.2 Experiments with simulated normal flow fields

assumed. This simulates the fact that in a scene, a portion of normal flow vectors will

be rejected due to low image gradient.

-- The 3D translational motion parameters of the region relative to a coordinate system

that is positioned on the observer.

-- The 3D rotational motion parameters of the region relative to the same coordinate

system.

Given the above parameters, a very large variety of scenarios can be effectively simulated. The
output of a simulation is one possible normal flow field that can be due to the scene structure and
the motion parameters. At each image point, the simulator assumes a random gradient direction

which is selected from a uniform distribution in the range [0.0, .., 27).

8.2.2 LMaedS estimation of motion parameters in a depth layer

One issue that has been experimentally evaluated using simulated data, is the capability of
LMedsS to estimate the motion parameters in a scene, in combination with the depth variations

in that scene. This is an important issue because of two reasons:

1. If the estimation accuracy does not depend largely on depth variations, then depth
variations can be neglected and two dimensional motion models can be effectively used.
If, on the contrary, depth variation influences the estimated motion parameters, this favors

the use of the 3D motion models as it has been proposed in this thesis.

2. For the IMDL method, the combination of motion information through the various layers
depends on the accuracy of the estimated motion parameters in each layer. Thus, studying
the motion parameter estimation accuracy of LMedS as a function of the depth variations
in a scene, provides experimental evidence that can be exploited for the definition of a

depth layer.
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The experimental setup assumes images of dimensions 256 x 256. The focal length of the
camera has been set equal to 600 pixels, which roughly corresponds to a focal length of 50mm.
The simulation involved only one motion (egomotion) with instantaneous 3D translational
parameters (U, V, W) = (20.0,20.0,40.0) and instantaneous 3D rotational parameters («, 3,7y) =
(0.001,0.0015,0.0005). It has been assumed that reliable normal flow values have been computed
in 50% of the total number of points. In order to isolate the effect of depth variations in the
estimation of motion parameters, no noise has been added to the normal flow fields. Three
different sets of experiments have been conducted. In each of these sets, it has been assumed
that the mean of the Gaussian distribution of depth was at 3, 5.5, and 8 meters from the observer,
respectively. For each of these mean depths, 11 different runs were conducted, one for each of

the different standard deviations of the Gaussian distribution of depth.

Figures 8.1(a) to 8.1(e) summarize the results of the LMedS estimation for the model of
eqs. (6.3). Each figure, (Figs. (a), (b), (c), (d), (e) and (f)) corresponds to one of the motion
parameters (U, V, W, «, 5 and ). Note that the estimation for the three translational parameters
is scaled by a depth factor. The horizontal axis corresponds to the variation of depth in a specific
experiment. For example, a value of 100, means that 67% of the scene points are in the range -100
to 100 millimeters around the mean depth for that experiment. The vertical axis corresponds to

the relative error E,..; in the computation of a parameter, namely:

, (8.1)

where p is the real value of this parameter and p is the estimated value for that parameter. The

three curves in each plot correspond to the three different mean values for depth (3, 5.5 and 8m).

Figures 8.1(a) to 8.1(f) show that:

e The relative error of LMedS estimation of the motion parameters increases considerably

as the depth variation in a layer increases.
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8.2 Experiments with simulated normal flow fields
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Figure 8.1: Results of motion parameter estimation for various depths and depth variations.
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e The relative error of LMedS estimation of the motion parameters increases considerably

as the absolute mean depth of a layer decreases.

Regarding the first of questions raised in the beginning of this section, the above results express
the need for realistic 3D motion models that exploit independent information on depth, as
opposed to the 2D motion models that ignore the scene structure. This is particularly true in
cases that the observer is close to the scene in view. Regarding the second of the questions
raised, the experimental results favor the depth layer definition of eq. (5.1) that has already been
used by the IMDL method. According to this definition, depth layers become thicker as the depth
from the observer increases, because the loss of accuracy due to the increased depth variation

can be balanced with the accuracy gains due to the higher absolute depth.

8.2.3 Relative performance of the proposed methods

For the purpose of comparing the performance of the proposed methods for independent motion
detection, a quantitative performance measure should be defined. In the following section we

define such a performance index.

Performance index

Whatever the 3D motion characteristics of a scene may be, each point of its image belongs to

one of the following three disjoint sets:

e The set D,, which contains the points where normal flow has been rejected as unreliable.

e The set E,, which contains the points of the static background (i.e. appear to be moving

due to egomotion).

e The set I,, which contains the points of the independently moving objects.
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8.2 Experiments with simulated normal flow fields

The points of set D, are not considered by the proposed independent motion detection methods
because at these points there is no reliable information regarding their motion. Depending on
the results of an independent motion detection method and the real motion characteristics of a

scene, four different classes of points are defined:

e Class F,: Points that belong to E, and the independent motion detection method detects

them as such.

e Class I;: Points that belong to I, and the independent motion detection method detects

them as such.

e Class E;: Points that belong to E, but the independent motion detection method employed

assigns them to I,.

e Class I.: Points that belong to I, but the independent motion detection method employed

assigns them to E,.

Ideally, an independent motion detection method produces empty E; and I, sets, i.e. no
misclassifications. We define the performance index IT of an independent motion detection

method as
#T,

4E,
= 1 —A\)t
A+ ( /\)#Ia’

#E,

(8.2)

#E.
#E,

that were correctly assigned to egomotion while the term zﬁ is the ratio of points that were

where #A denotes the cardinality of the set A. The term

in eq. (8.2) is the ratio of points

correctly assigned to independent motion. The factor A takes values in the range [0..1] and can be
interpreted as a significance factor that, depending on its value, shifts the emphasis to the correct
detection of the points belonging to I, (A = 0) or to the correct detection of points belonging to
E, (A =1). In classical detection theory [175], the factor A depends on the a priori probability of
a point to belong to a certain class. In the context of this work, A has the additional meaning of a
bias that favors the correct detection of the points that correspond to egomotion or independent

motion. The choice of a specific value for A\ depends on the application. In certain applications
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(e.g. surveillance) it may be crucial to guarantee the detection of independently moving objects.
In this case, a method with better performance index for small values of A must be selected.
In other applications (e.g. egomotion estimation) it is crucial to ensure that points identified as
moving due to egomotion are really such; in these cases a method with high performance index
for large values of )\ is preferable. For the purposes of our evaluation, we have chosen a value

of A\ =0.5.

Description of the experiments

A set of experiments have been carried out in order to evaluate the relative performance of
the proposed independent motion detection methods, as a function of the noise in the motion
and stereo normal flow fields. The DMO method has not been evaluated in these experiments
because, as has been shown in Chapter 7, it is sensitive to motion changes rather to independent
motion itself. However, the rest of the proposed methods (IMDE, IMDL, MDD) are not only
compared relative to each other, but also relative to a motion segmentation method that employs
a 2D motion model. This method has very close resemblances to the one proposed by Ayer et al
[22], and tries to estimate the parameters of a 2D affine model by employing robust regression
on a motion normal flow field. Note that none of the existing 3D motion detection methods can
be directly compared to the results of the proposed methods for independent motion because all
these methods rely on partial knowledge of the egomotion parameters or of the structure of the

environment, which is assumed unavailable by the proposed methods.

In order to evaluate the performance of the independent motion detection methods, a
synthetic motion and stereo normal flow field has been constructed by using the simulation
environment. The synthetic flow fields refer to 256 x 256 images. A focal length of 600 pixels
has been assumed for both cameras of the simulated stereoscopic observer. The cameras have
been arranged in a parallel stereo configuration, with a 7cm baseline. The normal flow values

in 50% of the points have been rejected, simulating the rejection of normal flows due to small
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8.2 Experiments with simulated normal flow fields

1

image gradient. The simulated scene contains three areas of interest. The layout of the scene' can

be seen in Fig. 8.2. The black and the gray regions correspond to areas of the static environment,

Figure 8.2: The layout of the scene used for the comparative evaluation of independent motion

detection methods.

but differ in their average depth. The black area is located at approximately 6m from the
observer, while the gray area is at approximately 3m from the observer. The white region
corresponds to an independently moving object, which is at the same depth with the black area.
Thus, an independent motion detection algorithm should produce a common label for the points
of the black and gray regions (egomotion) and another label for the points of the white region
(independent motion). The independently moving object covers 32% of the total area of the scene
and the close-to-the-observer object covers 29% of the scene. Note also that the independently
moving object covers 45% of the scene points that are at a depth around 6m. The observer
has been assumed to perform a complex translational and rotational motion with parameters
(Ue, Ve, W) = (60.0,60.0,6.0) and (cve, Be,ve) = (0.001,0.0,0.0001), while the relative motion
between the observer and the independently moving object is (U;, V;, W;) = (4.0,40.0, 80.0) and

(ci, B, i) = (0.002,0.0002,0.0001).

Various simulations were performed, each with different noise added to both motion and

'Note that the simulation does not create synthetic images, but synthetic normal flow fields. Thus, Fig. 8.2 is given

to illustrate the layout of the regions in the hypothesized scene and it is not relevant to the image intensities.
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stereo normal flow fields. In all cases, Gaussian noise with zero mean has been hypothesized.
The standard deviation o,, varied in different runs from 0.0 (no noise) to 0.24. This simulates a
wide variety of scenarios for noise contamination (from perfect to highly contaminated data). In
each experiment, both the motion and the stereo normal flow fields were affected by the same

type of Gaussian noise.

Figures 8.3(a) to 8.3(i) illustrate the results of the method for 2D motion segmentation for
the noise distributions tested. Each of the images of Fig. 8.3, is a map with dimensions equal to
the dimensions of the input images. Each point in this map corresponds to a point in the image
and takes one of three possible values: Black, white and dark gray, corresponding to egomotion,
independent motion and points with unreliable normal flows, respectively. The results of Fig. 8.3
are characteristic of the inherent weakness of the 2D motion models when applied to scenes
with large depth variations. Even in the case of no noise ((,,0,) = (0.0,0.0), Fig. 8.3(a)), the
method fails to capture the real 3D motion characteristics of the scene. More precisely, the
method perceives the independently moving object as part of the static background, and the
static object that is close to the observer (white region in Fig. 8.2) as independently moving. This
is because the observed motion of the independently moving object is (in terms of the affine
model) more similar to the observed motion of the distant background than it is to the static
foreground object. This behavior does not change too much as a function of the noise added to

the normal flow field.

The results of the application of the IMDE method to the same data set are shown in
Figs. 8.4(a) through 8.4(i). It can be seen that the correct 3D motion characteristics of the scene
are captured by this method. The method recognizes the independent motion of the distant object
and, at the same time, can interpret the foreground object as a part of the static background. The
method fails to capture these characteristics of the scene only when the noise of the normal flow
fields (for both stereo and motion) becomes very high (o,, > 0.21). In these cases, the method is

unable to clearly identify the independently moving object.
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8.2 Experiments with simulated normal flow fields

(e) o, =0.12 f) 0, =0.15

() 0, =0.18 (h) o, = 0.21 (i) o, = 0.24

Figure 8.3: Results of 2D independent motion detection for different levels of noise.
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(e) o, =0.12

() 0, =0.18 (h) o, = 0.21 (i) o, = 0.24

Figure 8.4: Results of IMDE for different levels of noise.
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8.2 Experiments with simulated normal flow fields

The results of the IMDL method are presented in Fig. 8.5. Again, for most of the noise

(c) o = 0.06

(€) o, =0.12
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() 0, =0.18 (h) o, = 0.21 (i) o, = 0.24

Figure 8.5: Results of IMDL for different levels of noise.

levels, the IMDL method gives the correct labeling of the scene points. However, when the
noise increases considerably, the performance of the method degrades. This is because at high
noise levels, the estimation of the motion parameters in each layer is subject to errors and the
combination of motion information across different depth layers is not robust. This happens

despite the fact that the depth layers are correctly identified, and that the motion segmentation in
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each depth layer is successful. This is in agreement with results reported by Ayer [22], according
to which LMedS succeeds in detecting the outliers of a model even if it fails to accurately
estimate its parameters. Therefore, what fails in IMDL at high levels of noise is the stage of
integration of results across layers and not the processing of each depth layer. Figure 8.6 presents

the results of depth layering for each experiment. It can be seen, that for all levels of noise depth

i
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K iy

(€) o, =0.12
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(2) 0 =0.18 (h) o, = 0.21 @) o, = 0.24

Figure 8.6: Depth layers for the IMDL method, for different levels of noise.

layering is able to detect the two different layers of the scene (white color corresponds to the
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8.2 Experiments with simulated normal flow fields

closer layer and black color corresponds to the farther layer).

Finally, Fig. 8.7 shows the results of the MDD method. These results demonstrate that for

(b) o, =0.03

(d) 7, =0.09 (e) o, =0.12

(2) 0 =0.18 (h) o, =0.21 (i) o, = 0.24

Figure 8.7: Results of MDD for different levels of noise.

all experiments, the MDD method detects the image tiles containing 3D motion discontinuities.
The method is robust in the sense that the same results are produced for most of the different

noise levels. However, the result is crude in all cases. Recall that in the MDD method, the

119



20

linear relationship of the depth functions due to motion and stereo is valid only for specific
directions of normal flow vectors. In this experiment the full range of directions [0.0, .., 27) has
been divided into 36 bins. This is equivalent to assuming that two normal flow vectors have the
same direction if the absolute difference in their directions is at most 10°. Assuming a uniform
distribution of the directions of normal flow vectors, a 50% covering of a region with normal
flows and a minimum of 50 points for robust regression, the above figures result in a minimum
of a 60 x 60 region for robust regression. In the conducted experiments, the size of a tile was
kept equal to 64 x 64, which is a quite large portion of 256 x 256 images. This explains why the

detection of motion discontinuities is so coarse in this example.

Figure 8.8 provides comparative results for the 2D, IMDE, IMDL and MDD independent
motion detection methods in the form of plots of their performance index I1T. The horizontal axis
corresponds to the noise level in each experiment and the vertical axis plots the performance
index I1. The four different curves correspond to the IMDE, IMDL and MDD and 2D methods.
Each point on each curve corresponds to only one experiment. It can be observed that the
IMDE and the IMDL methods have high performance index which gracefully degrades as a
function of noise. The IMDE method has in general higher resistance to noise that IMDL. The
performance index of MDD method is almost constant with respect to noise, as a consequence
of its more qualitative properties. It should be stressed that the use of the performance index
IT is not a very ‘‘fair’” measure of the performance of the MDD method. This is because IT is,
by construction, an index for evaluating independent motion detection methods rather than 3D
motion discontinuities detection methods. Even under these circumstances, MDD outperforms

the 2D method, while both are substantially outperformed by the IMDE and IMDL methods.

8.3 Experiments with off-line processing of image sequences

The independent motion detection methods have been also tested using image sequences that (a)

have been created synthetically using the RAYSHADE [100] ray tracing tool and (b) have been
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Figure 8.8: Performance index for the independent motion detection methods.
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acquired by specialized equipment available at the Computer Vision and Robotics Laboratory

(CVRL) of ICS-FORTH. This equipment includes:

e TALOS?, an RWI B21 mobile robotic platform (equipped with a 486 and a PENTIUM

processors running Linux, wireless communications, sonar, infrared and tactile sensors).

e A TRC BiSight active vision head (independent control of pan, tilt and vergence).

Figure 8.9(a) shows a picture of TALOS with the active vision head mounted on it and Fig. 8.9(b)

shows the platform geometry. TALOS consists of two parts: the base and the enclosure. Base

0|0 © ojo

ENCLOISURE

|
oo o---8-0O

(a) (b)
Figure 8.9: (a) TALOS, the multisensor mobile robot of ICS FORTH and, (b) its geometry.

contains four stepping motors, a rotation motor and four batteries that power the whole system
with an autonomy of 4 hours. The enclosure is put on the base and contains the electronic parts
of the robot. Besides the two main computers, the enclosure contains the controllers for the

sonar, infrared and tactile sensors of the robot.

2According to Greek mythology, TALOS (TAAQY) has been a mechanical giant constructed by the god of fire
Hephaestus. TALOS has been assigned the task of patroling and guarding the island of Crete. Therefore TALOS has

been the first greek robot
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8.3 Experiments with off-line processing of image sequences

Several experiments have been conducted to test the proposed independent motion detection
methods. It should be stressed that during the course of all the experiments the exact values of

the camera focal length and image origin were unknown.

As atestbed for evaluating the performance of the proposed algorithms two image sequences
have mainly been employed, namely the ‘‘toy-car” sequence and the ‘‘cart” sequence. One
frame of the ‘‘toy-car” sequence (right image of the stereo pair at time ¢) is shown in Fig. 8.10.
The scene captured consists of a background wall covered with paper and a toy-car together
with some other objects of similar size in the foreground. The toy-car and the various objects
are closer to the observer, compared to the background wall which is farther (at a larger depth).
The observer (a parallel stereoscopic system) performs translational motion with a right to left
direction. Apart from the toy-car, the rest of the scene is stationary. The toy-car is moving across

the scene in a left to right direction, with unrestricted 3D motion.

One frame of the ‘“‘cart” sequence (right image of the stereo pair at time ¢) is shown in
Fig. 8.11. In this sequence of images, the observer performs a translational motion with U and W
components as well as with a rotational 3 component. The horizontal translation is the motion
that dominates. The observer is again a parallel stereoscopic system. The field of view contains
a distant background and a close to the observer foreground. The background contains two
independently moving objects: A cart that translates in the opposite direction of the observer
(middle of the scene) and a small box (to the right of the scene) that translates at the same
direction with the observer, but with different velocity. The foreground of the scene contains a

table on which there is a toy car. Both objects are stationary relative to the static environment.

In the following sections, sample results for each of the proposed methods are presented.

Results from additional image sequences are presented as the need arises.
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Figure 8.10: One frame of the ‘‘toy-car” sequence.

Figure 8.11: One frame of the ‘‘cart” sequence.
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8.3 Experiments with off-line processing of image sequences

8.3.1 Experiments with independent motion detection based on depth elimination

Figure 8.12 illustrates the results of motion segmentation produced by the IMDE method for

the ‘‘toy-car”” sequence. In Fig. 8.12(a), black color corresponds to egomotion and white color

(a) (b)

Figure 8.12: Motion segmentation (IMDE method) for the ‘‘toy-car” sequence. (a) before and,

(b) after postprocessing.

corresponds to independent motion. Gray color corresponds to points where no decision can
be made due to low image gradient and, therefore, lack of normal flow vectors. It can be
verified that the largest concentration of white (i.e. independently moving) points is over the
regions of the independently moving points. Figure 8.12(b) presents the results of Fig. 8.12(a)
after postprocessing, which eliminates isolated outliers (inliers) in large populations of inliers
(outliers) and, in the resulting map, dilates the labels of independently moving points. In
Fig. 8.12(b) areas that are detected as independently moving appear with the intensities that they
have in the original image, while all other areas are masked out. It can be seen that after this type
of postprocessing the body of the car has been successfully identified as independently moving

by the IMDE method.

Figure 8.13 illustrates the results of motion segmentation of the ‘‘cart” sequence by the
IMDE method. It can be seen that the points that are not identified as independently moving,

although they belong to an independent motion, are those belonging in horizontal edges. This is
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() (b)

Figure 8.13: Motion segmentation (IMDE method) for the ‘‘cart” sequence (a) before and, (b)

after postprocessing.

because the model of eq. (4.5) does not hold for n, = 0, which is the case of vertical gradients
or, equivalently, horizontal edges ((n;,n,) = (0,1)). Figure 8.13(b) presents the results of
Fig. 8.13(a) after postprocessing which eliminates isolated outliers (inliers) in large populations

of inliers (outliers).

8.3.2 Experiments with independent motion detection through depth layering

A first result refers to synthetically generated images. Figure 8.14 shows one frame of the
“buildings” sequence. The composed scene contains 4 artificial ‘‘buildings” on a checkered
ground. All buildings have the same physical dimensions. The leftmost and rightmost buildings
are at the same depth from the observer. The left-middle building is at a larger depth from
the observer (compared to the depths of the leftmost and rightmost buildings); the right-middle
building is at an even larger depth from the observer. The observer performs a translational
motion along the Z axis approaching the scene in view. At the same time, the two buildings in
the right half of the image perform independent motions on their own. The rightmost building
performs an independent translational motion along the Y axis and the right-middle building

performs a composite translational and rotational motion. Figures 8.14(a),(b),(c) show the results
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ahgf\’;
L.\}‘&“:f”’

Figure 8.14: One frame from the ‘‘buildings” synthetic, stereoscopic sequence.

of depth layering. As can be verified from this figure, the three different depth layers have
been successfully detected and outlined. The points corresponding to each layer have a black
color. The first layer corresponds to the two closer objects (leftmost and rightmost buildings),
the second to the object in intermediate depth (left-middle building) and the third to the object
furthest from the observer (right-middle building). Figures 8.14(d),(e),(f) show the results of
3D motion segmentation. Two independent motions have been revealed (Figs. 8.14(e),(f)).
Egomotion is shown in Fig. 8.14(d). It can be observed that successful discrimination of all
different 3D motions in the scene has been accomplished, although they appear at different
depths. Moreover, the 3D motion of the middle-left building has been successfully characterized

as being identical to that of the leftmost building.

A second result refers to the ‘‘toy-car” sequence (Fig. 8.10). The process of depth layering
resulted in two depth layers, that are shown in Fig. 8.16(a). Black color corresponds to points
of the distant layer and white color corresponds to the layer close to the observer. The outliers
of motion segmentation in the second layer appear in Fig. 8.16(b). These outliers correspond
to the motion of the toy-car. The 3D motion segmentation of the whole scene is the result of

combination of motion information through the various depth layers. The motion segmentation
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(b)

) () ®

Figure 8.15: IMDL results for the ‘‘buildings” sequence (a), (b), (c) depth layers, (d), (e), (f),

motion segmentation.

(@) (b)

Figure 8.16: (a) Depth layers detected by IMDL for the ‘‘toy-car”” sequence and (b) the outliers

of motion segmentation in the second (closer to the observer) depth layer.
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() (b)

Figure 8.17: IMDL motion segmentation (a) before and, (b) after postprocessing for the ‘‘toy-car”

sequence.

is shown in Figs. 8.17(a) and (b), before and after postprocessing, respectively. Again, it can
be observed that correct discrimination of the two different depth layers, as well as of the

independent motion of the toy-car, has been achieved.

IMDL has also been applied to the data set of the ‘‘cart” sequence (Fig. 8.11). The method

defined two depth layers, that are shown in Fig. 8.18(a). Robust regression within each of

() (b)

Figure 8.18: (a) Depth layers detected by IMDL for the ‘‘cart” sequence and (b) the outliers of

motion segmentation within the first (distant) depth layer.

these layers gives rise to an estimation of the parameters of the dominant motion and to a set
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() (b)

Figure 8.19: IMDL motion segmentation (a) before and, (b) after postprocessing for the ‘‘cart”

sequence.

of outliers. The combination of maps that are acquired in each depth layer give the integrated
3D motion segmentation map that is shown in Fig. 8.19. As it can be verified from Fig. 8.19,
the IMDL method is capable of detecting the independent motion that is present in the scene,

without misinterpreting the observed motion due to depth variation as independent motion.

Figures 8.20, 8.21 and 8.22 provide additional results from applying the IMDE and IMDL

methods in three more scenes.

(@) (b) (©

Figure 8.20: (a) One frame of the ‘‘moving-car” image sequence: Egomotion has translational
(U) and rotational (y) components and the toy car is independently moving (U-, W -translation).

(b) IMDE results and, (¢) IMDL results.
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() (b) (©

Figure 8.21: (a) One frame of the ‘‘moving tableau™ image sequence: Egomotion has translational

(U) and rotational () components and the tableau is independently moving (V -translation). (b)

IMDE results and, (¢) IMDL results.

() (b) ©

Figure 8.22: (a) One frame of the ‘‘multiple motions” sequence: Egomotion has translational
(V, U) and rotational (8) components. Three objects are independently moving, the tableau

(V-translation), the toy-car (U-, W -translation) and the flowers (U-translation). (b) IMDE results

and, (¢c) IMDL results.
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8.3.3 Experiments with motion discontinuities detection

The MDD method has been applied to the ‘‘toy-car”” image sequence. The 3D motion segmenta-
tion results are presented in Fig. 8.23. The results demonstrate that correct discrimination of the

independent motion of the toy-car has been achieved. The results of the motion segmentation
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Figure 8.23: Motion discontinuities detection for the ‘‘toy-car”” image sequence.

Figure 8.24: Motion discontinuities detection for the ‘‘cart”” image sequence.

of the ‘‘cart” sequence are shown in Fig. 8.24. It can be seen that the method has correctly
identified most of the tiles where more than one 3D motions are present. Although the results
are complete for the case of the moving box, the method fails to detect the elongated (upper)
part of the cart because there are not enough normal flows (in terms of the requirements of the

method) to support the existence of independent motion.
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8.3 Experiments with off-line processing of image sequences

8.3.4 Experiments with independent motion detection based on a 2D method

At this point, we present the results of the 2D method when applied to the ‘‘toy-car”” and ‘‘cart”
sequences. Figure 8.25 illustrates the results of motion segmentation produced by the 2D method

for the ‘‘toy-car” sequence. It can be seen that the 2D method detects the independent motion

(a) (b)

Figure 8.25: Motion segmentation (2D method) for the ‘‘toy-car” sequence, (a) before and, (b)

after postprocessing.

of the toy-car, but also detects all the static points of the image foreground as independently
moving. This is because, due to the depth variation, the observed motion of the static objects of

the foreground ‘‘outlies” compared to the dominant motion of the distant background.

Figure 8.26 illustrates the results of motion segmentation produced by the 2D method for
the ‘‘cart” sequence. The method is able to detect the independent motion that is present in the
distant background. However, it also detects the toy car and the table as independently moving,
although they belong to the static background. This is because the 2D method does not exploit
any information regarding depth. It actually assumes that all points in the scene are at an equal
distance from the observer. Thus, the observed motion of the toy-car which is due to its relatively

small distance from the observer, is erroneously interpreted as being independent.
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() (b)

Figure 8.26: Motion segmentation (2D method) for the ‘‘cart” sequence, (a) before and, (b) after

postprocessing.

8.3.5 Experiments with detection of maneuvering objects

A set of experiments have been conducted in order to test the performance of the DMO method.
Representative results from these experiments are given in this section. In a first experiment, a
real image sequence ( the ‘‘coca-cola’ image sequence) has been employed. Figure 8.27 shows

one frame of this sequence, at time instance ¢. The camera moves with translational motion

Figure 8.27: One frame of the ‘‘coca-cola” sequence.
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8.3 Experiments with off-line processing of image sequences

approaching the scene. A rotational motion has been added in the area of the coca-cola can in
order to simulate a static object that started moving in the field of view of the observer. More
specifically, in the third frame (frame at time ¢), the coca-cola can has been moved relative to the
second frame by synthetically adding rotational motion. Rotational motion has been employed

because it does not depend on the (unknown) scene structure.

After smoothing the images, the two normal flow fields were obtained and the left part of
criterion (7.2) was computed for all image points with a reliable normal flow value. Figure 8.28

shows a three dimensional plot of the values of the left part of criterion (7.2). x and y dimensions
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Figure 8.28: 3D plot of the image points with respect to criterion for changes in 3D motion.

of the plot correspond to the z and y dimensions of the image while the third dimension
corresponds to the values of the left part of criterion (7.2). It is evident that in the points of
the coca-cola can where a motion change occurs, criterion (7.2) gives distinguishably different
values compared to the rest of the image points which move due to the constant egomotion.
Figure 8.29 shows the final labeling of the image points. White pixels correspond to points

where the 3D motion has changed, black pixels correspond to points which kept the same 3D
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Figure 8.29: Characterization of points with respect to the constancy of their 3D motion

parameters (see text for explanation).

motion parameters and gray pixels correspond to points where no reliable normal flow vectors

could be computed.

In a second experiment, the ‘‘interview”” sequence has been employed. In order to simulate
a change in the motion parameters of the observer, four consecutive frames were selected and the
third one was dropped. Thus, the frames used correspond to time instances ¢ — 3, ¢ — 2 and ¢. The
omission of a frame is equivalent to a change in the observer’s 3D motion parameters, since in
the original sequence his motion is a constant one. Fig. 8.30(a) shows the frame at time instance
t — 2 (the middle of the three frames used) and the results after the application of criterion (7.1)
are illustrated in Fig. 8.30(b). Assuming the same coloring scheme as in Fig. 8.29(b), all points
where normal flow has been reliably computed appear in white, signaling the change of the 3D

motion parameters of the observer.

A third experiment employs the ‘‘calendar” sequence. In this sequence, the calendar
appearing on the top-right of the images is moving upwards and, subsequently, its motion is
modified and oriented down and to the right with respect to the image frame. All other objects
are moving with constant motion parameters. Fig. 8.31(a) shows the middle of the three frames

used from this sequence and the results regarding motion changes are presented in Fig. 8.31(b).
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8.3 Experiments with off-line processing of image sequences

(@) (b)

Figure 8.30: (a) A frame of the ‘‘interview” sequence (b) characterization of points with respect

to the constancy of their 3D motion parameters (see text for explanation).
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Figure 8.31: (a) A frame of the ‘‘calendar” sequence (b) characterization of points with respect

to the constancy of their 3D motion parameters (see text for explanation).
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As can be verified, the points of the calendar that contribute to the normal flow field have been

successfully detected as points where 3D motion parameters change.

8.4 Experiments with on-line processing of image sequences

A set of experiments has also been conducted with to test the on-line performance of the
IMDL method when robust regression is used as a means for depth layering [21]. In all these
experiments the on-board PENTIUM processor of TALOS has been used; due to the limited
processing power and for reducing the overhead for image acquisition, processing and results
dumping on disk, the image size has been kept small, namely 144 x 106. Moreover, the number
m of iterations of LMedS for motion segmentation has been kept relatively small, namely
m = 100. However, this did not affect the motion segmentation results since the spatial extent

of the motion was rather small.

A sample result from these experiments is presented in Figs. 8.32 and 8.33. Fig. 8.32 shows
twelve frames of a sequence that correspond to the left frames of the stereo pairs. These frames
are not consecutive in time but show intermediate snapshots of the whole sequence. As can be
observed, in the scene in view there is a man who is initially sitting on a chair (right of the
scene). The man then stands up, moves to the cart, takes it to the leftmost part of the room and
then returns to his initial position. Meanwhile, TALOS is moving with W and U components (i.e.
approaches the scene and also moves to the left). Figure 8.33 shows the motion segmentation
(after post processing) that has been achieved by independent motion detection. This figure
demonstrates clearly the correct segmentation that has been achieved. It is also worth noting
that the small table in the foreground (bottom-left of the scene) has not been misinterpreted as

moving, although it is placed at substantially different depth from the rest of the scene.
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Figure 8.33: Results of independent motion detection for the ‘‘moving man” sequence.
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Chapter 9

Integrating the Proposed Methods

The whole is greater than the sum of its parts

Max Wertheimer

9.1 Overview

Through the presentation of the proposed methods for independent motion detection and through
the study of the experimental results obtained by their application in simulated and real situations,
the advantages and the disadvantages of each approach have been demonstrated. In this chapter,
a comparative overview of these methods is provided. Additionally, the study of this overview
reveals the possibility of integrating the independent motion detection methods in a unified

framework, in order to exploit the merits of each of them.
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9.2 Comparative study of independent motion detection methods

Table 9.1 summarizes the characteristics of each method with respect to a number of important
criteria. As Table 9.1 shows, all the proposed methods for independent motion detection assume
unknown, unrestricted (both translational and rotational) rigid motion. This is a valid assumption
because, even if the observer himself moves non-rigidly, all biological eyes and, especially,
man-made cameras have rigid structure and move rigidly. The only constraint is put by the
MDD method, for which the FOE and the AOR of the egomotion should meet some constraints.
Additionally, the DMO method assumes that the egomotion of the observer is constant for three
image frames. The generality of the egomotion model assumed by the proposed independent
motion capabilities should be contrasted with the strict assumptions of other approaches, where
the egomotion is either assumed to be known, or restricted (e.g. only translational or only

rotational components).

With respect to the independent motion that can be detected, the constraints put are even
looser. Independent motion is not even constrained to be rigid for IMDE, MDD and DMO. A
non-rigid motion will also be detected. Points are characterized as independently moving if
they do not conform to the rigid egomotion model. A point may outlie either because of an
independent rigid motion that differs from egomotion, or because of a non-rigid motion. For the
MDD method, the detection of non-rigid motion is not only possible but easier, too. For the case
of non-rigid motion, the hypothesis of eq. (6.8) does not hold. Therefore, for an image patch that
contains points of a non-rigid motion it is very likely that the criterion of eq. (6.8) will not hold
for the same parameters s and ¢ for all points n the patch. This should be contrasted to the case
of arigid independent motion: In this case only the 3D motion discontinuities can be effectively
detected. Finally, for the IMDL method, rigidity is assumed for the independent motion, as a

means to enable the integration of motion information through the various depth layers.

The four proposed methods differ considerably in the representation of their output. The

output of IMDE and IMDL is a 2D map of labels for the image points. Different labels correspond
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9.2 Comparative study of independent motion detection methods

Criterion IMDE IMDL MDD DMO
Egomotion Unrestricted Unrestricted | FOE and AOR far Constant 3D
implied: rigid rigid from the image egomotion for
3D motion 3D motion patch three frames
Independent motion | No constraint | Unrestricted No constraint Changes in
that can be (rigid or rigid (rigid or motion
detected: nonrigid) 3D motion nonrigid)
Representation of 3D motion 3D motion 3D motion 3D motion
output: segmentation | segmentation discontinuities changes
map map map map
Maximum number of | 50% of the 50% of the
independently normal flows | normal flows No constraint No constraint
moving points of a scene of a scene

Stereo config.

Fixating or

Fixating or

Fixating or

No stereo conf.

used: parallel parallel parallel used
Noise tolerance: Very high High Very high Moderate
Motions that can All rigid Rigid motions All rigid Maneuvering
be discriminated: motions with different motions objects, changes
FOEs in egomotion
Additional info Parameters of Changes of
provided: dominant Ordering of No observers’
3D motion depth layers 3D motion
(egomotion)
Dependence on (a) Unreliable | (a) Unreliable (a) Unreliable (a) Unreliable
parameter normal flow | normal flow normal flow normal flow
thresholds: rejection, rejection, rejection, rejection,
(b) Outlier (b) Outlier ) Tra (b) “‘change
char. thresh. char. thresh., threshold occurred”
(c) Width of threshold
each layer,
(d) 3D motion
distance
Computational
Requirements: High High Medium Very low

Table 9.1: Comparative overview of the proposed independent motion detection methods.

143




44

to different 3D motions. For MDD, the labels map is binary valued and coarse. Labels are
assigned to image patches (as opposed to image points). The two possible values represent the
two different cases that can be detected by the method: Either all points of a tile belong to the
same 3D motion, or there is a 3D motion discontinuity. For the DMO method the labels map is
binary valued and the labels are assigned at the pixel level. Each label represents constancy or

change of the 3D motion parameters of a point within 3 image frames.

The high breakdown point of LMedS, enables IMDE to detect an independent motion that
covers up to 50% of the total number of points with reliable normal flow vectors. This constraint
(which is already very loose in practical situations), is transferred, in the case of IMDL, to the
points of one depth layer. Thus, there are certain configurations of independently moving objects
that cannot be detected by IMDE but which can be detected by IMDL and vice versa. The local
operations that are performed by the MDD and DMO methods do not limit the spatial extent of

the detectable independent motions.

Besides the DMO method that exploits motion information only, all other methods use
some form of stereoscopic configurations. More specifically, the IMDE and MDD method can
work with both a fixating and a parallel stereo configuration. The IMDL method uses in principle
a parallel stereo configuration. In Chapter 4 it has been demonstrated that depth layering may
also be performed through robust regression in the normal flow field produced by a fixating
stereo configuration. However, the breakdown point of LMedS (50%), imposes certain relations
of the number of points per depth layer. This is, in fact, an environmental assumption which

should be avoided whenever possible.

The experimental results have shown that the IMDE algorithm performs best compared to
the rest of the methods. From the rest of the methods, IMDL has a very good performance at
each depth layer, but it encounters some problems in the phase of combination of results, if the
error levels in the normal flow fields become too high. The MDD method is fast and robust but

produces coarse maps of the 3D motion discontinuities.
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9.2 Comparative study of independent motion detection methods

For IMDE and MDD there are no ambiguous motions (according to the definition of motion
ambiguity in section 5.4). This is not the case with IMDL which cannot discriminate motions that
have the same rotational components and their translational components differ by a constant
factor. The DMO method reports on the constancy of 3D motion rather than on the existence of

independent motion.

Except from the task of independent motion detection, some of the proposed methods
provide additional useful information regarding the observer or the environment. Thus, IMDE
gives an estimation of the dominant 3D motion parameters (egomotion parameters) and an
estimation of the vergence angle of the stereoscopic system, IMDL gives an ordering of the

depth layers and DMO gives information on the changes of egomotion.

An important characteristic of the proposed methods, is that their performance does not
depend on the fine tuning of a large number of parameters. A prerequisite for all methods
is the computation of reliable normal flow fields, which is achieved through the rejection of
the normal flow vectors for which the temporal and spatial derivative do not meet certain
conditions. Besides this threshold, the IMDE method uses only one additional threshold that
is used to discriminate the outliers from the inliers. The criterion of eq. (3.32) performed very
well in all conducted experiments. Therefore, for all practical purposes, it can be treated as an
algorithmic constant rather an algorithmic parameter. The MDD method uses a threshold to
decide on the existence of more than one 3D motions within an image patch. The DMO method
uses one threshold in order to decide whether the 3D motion of a point has been changed within
three frames. The IMDL method depends on more parameters compared to the other methods.
Two extra thresholds need to be employed, one that determines the width of a depth layer and a

threshold on the distance measure between two motion segments (eq. (5.5)).

Finally, from a computational performance point of view, DMO method is extremely fast,
because it involves the computation and the pointwise comparison of two normal flow fields.

On the other side, IMDE is the method with the largest computational requirements because it
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employs robust regression over the full set of points with reliable normal flow vectors. However,
the execution time for the full method is shorter than the execution of many state of the art
algorithms that just compute optical flow. IMDL and MDD lie in the middle of this ordering,
since they employ robust estimation, but in subsets of the points with reliable normal flow
vectors. The computational performance of all methods depends on the number of reliable
normal flow vectors. IMDL also depends on the distribution of points in depth layers. In the
one extreme, all points lie in one depth layer and the performance is similar to the performance
of IMDE. If the scene points are distributed in a large range of depths, then the computational
performance of the algorithm is improved. This is because the overhead that is due to the
manipulation of more layers is small compared to the gain because of the application of LMedS

in smaller data sets.

Besides the independent interest in each of the proposed methods, what is extremely
important is the fact that they can be combined into a general framework for independent
motion detection. This combination leads to an integrated system that shares the merits of all

the proposed methods.

9.3 Putting pieces together

In Chapter 7 it has been demonstrated that by using DMO we are able to recover information on
the constancy of motion of the observer and/or of some independently moving objects. Suppose
that a robot equipped with visual sensors is able to use the four independent motion detection
schemes already described. Suppose also that the robot starts moving with constant 3D motion
parameters in a static environment. As long as the robot preserves its motion parameters and
nothing starts moving in the environment, the situation described in case (1) of the discussion in
Section 7.2 will be encountered. Therefore, there is no need for any other independent motion
detection algorithm to be invoked. If an object starts moving, then the change of its motion

parameters will be detected by the DMO mechanism. If the independently moving object moves
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9.3 Putting pieces together

non rigidly, or in a continuously changing manner, then again, DMO is able to detect it (case (2)
in Section 7.2) and no other independent motion detection mechanism is needed. If, however,
the independently moving object ends up moving at a constant set of 3D motion parameters,
then DMO will no more be able to detect it. Therefore, one of the three other independent
motion detection schemes must be invoked, depending on the information required for the goals
of system and on the available computational resources that can be devoted to this type of

processing.

Figure 9.1 illustrates the general layout of the scheme for independent motion detection. At
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Figure 9.1: A schematic view of the unified framework for independent motion detection.

each moment in time, the system computes the normal flow fields between the images of the

right camera, corresponding at time instances ¢ — 1 and ¢ — 2 and ¢ — 1 and ¢. From these normal
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flow fields, the DMO method extracts a map O; of maneuvering objects. This map can be further
used by other visual capabilities (i.e. methods for recognizing the maneuvering object) Another
important outcome of DMO, is the signal S, which codes the 4 different situations presented
in Section 7.2. Signal S is input to a simple decision process which implements the logic
described earlier. This process also takes account the systems’ goals and computational resource
limitations in order to decide which of the three independent motion detection algorithms should
be employed. The output of decision process is a combined signal D which actually controls the
activation of one off the IMDE, IMDL or MDD methods. For example, if the observer needs a full
map of independently moving objects then he can use the IMDE method. If he is only interested
in a specific depth layer, then he can use the IMDL method for independent motion detection
and exploit only the results concerning the depth layer of interest. Finally if just needs coarse
information about independent motion, then he can exploit the MDD method which results in

computational savings.

9.4 Characteristics of the unified framework

The proposed framework for integrating independent motion detection capabilities has a number
of advantages. A key characteristic of the integration is that it follows very closely the principles
of purposive vision. The different capabilities provide a number of alternative representations
for independent motion from which the system may choose, based on its goals and resource
limitations. The goals are in essence those which determine the problem to be solved: If simpler
representations suffice, those are provided; as a consequence, lower computational overhead
is paid. But the idea also works the other way around: If there are not enough computational
resources to be devoted for this task, then it may be desirable to get a coarse idea with a simpler

algorithm rather than having no information at all.

The integrated independent motion detection system, is a characteristic example of a

system that is built based on progressively more complicated competences. There is a horizontal
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9.4 Characteristics of the unified framework

organization of the system processes rather than a vertical organization. If, for example, one
of the four capabilities is excluded from the system, then the system will continue to operate,
probably with a reduced overall performance. This is completely different to systems with
vertically organized modules, where, eliminating a module is catalytic for the operation of
the whole system. Moreover, the activation of modules is not predetermined but dynamically

evolving and dependent on the systems’ goals and computational resources.

The system described treats the task of independent motion detection with considerable
computational gains over the IMDE, IMDL and MDD methods. Performance gains are achieved
by careful consideration of the problem at hand. Most of the time the system handles independent
motion detection with the solution of a computationally trivial problem, that of computing and
comparing normal flow fields in a pointwise manner. More elaborate and computationally
intensive methods are involved only when necessary. In many cases (which may well be the
majority of cases), independent motion detection will be handled by the DMO method which
has very low computational requirements. In these cases, even the computation of stereoscopic

information is avoided.

Last but not least, the presented integration framework is easily extensible. Capabilities that
are related with independent motion detection can easily be integrated to the existing scheme.
For example, a change detection algorithm could be easily incorporated into the system in order
to provide evidence on whether the observer is moving or not. In this case, simple change
detection over two consecutive image frames suffices to detect independent motion, without the

need to compute any motion related representation of the scene.
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Chapter 10

Conclusions

Success is never final

Winston Churchill

Every moving biological organism with the sense of vision has the ability to detect
independent 3D motion [74]. Robots, like animals, should operate in dynamic environments that
consist of both stationary as well as moving objects. The perception of independent motion is of
crucial importance because it provides useful information on where attention should be initially
focused and then maintained. A moving object may represent a target to be tracked or avoided.
In any case, independent motion is an interesting event for which an appropriate and possibly

immediate reaction of the observer is needed.

In this dissertation, independent 3D motion detection was based on precategorical visual
processing, i.e. the observer was not required to recognize the independently moving object(s).
This is actually in agreement with experiments according to which biological organisms are

capable to perceive motion before they understand what is really moving. Thus independent
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motion detection was based only on motion and depth information that the observer may acquire
as he moves in the 3D space. Four novel independent motion detection methods have been

proposed which share a number of very important characteristics:

e They employ 3D motion models rather 2D motion models. As such, they are able to
perform satisfactorily even in scenes with considerable depth variations. Moreover, they
do not make any assumptions regarding the external world in the form of restrictive

geometrical modeling.

e They are based on the computation of the normal flow field (which can be accurately
computed from sequences of images) and not on the computation of optical flow field or on
the solution of the correspondence problem, which are ill-posed problems. As it has been
discussed in Chapter 3, the computation of optical flow field is based on environmental
assumptions which do not hold in practice, especially when independently moving objects

are present in the scene.

e They do not make any assumptions about the motion of the observer', which can move

with unrestricted translational and rotational 3D motion.

e They do not rely on any knowledge regarding the baseline and the vergence angle of
the stereoscopic configuration. Moreover, they perform very well even in case that the

intrinsic camera parameters (image origin, focal length) are not precisely known.

e They are capable to detect rigid and non-rigid independent motion, being tolerant to high

levels of noise.

Besides the beneficial characteristics of each of the proposed methods, a scheme for
integrating these methods has been presented. This scheme tries to couple the computational
characteristics of the simpler methods with the rich information that is provided by the more

computationally intensive ones. This integration follows closely the principles of purposive

'Except the MDD method which places some qualitative constraints on egomotion.
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vision, because the methods are activated based on the goals of the system and its resource

limitations.

The limitations of the methods described should be clear. First, computing normal flow
from stereo can be achieved robustly with a parallel stereo configuration with a small baseline,
or by a fixated stereo configuration, in a portion of the scene around the fixation point. This
limits the choices of configurations that can be used in practice. Second, although the approach
taken by the proposed independent motion detection methods follows the purposive theory of
vision, none of the methods exploits action (in the form of controlled movement) in order to

simplify the problem that should be solved.

10.1 Future work

Future work in the area of independent motion detection could take several directions. Some
of them have already been stated implicitly, since they originate from the limitations of the

proposed methods.

Methods that will give rise to depth functions by using a broader class of stereo configura-
tions should be further investigated. Ongoing research tries to exploit multiresolution strategies
for the computation of normal flow. Certain efforts are focused towards non-uniform image
transformations (e.g. log-polar transformation) which is particularly suited for computing stereo

normal flow by a fixated stereo configuration.

Tracking of a moving object by means of gaze holding mechanisms, could lead to the
solution of simpler problems regarding independent motion detection. Tracking alone cannot
effectively handle the problem of independent motion detection. This is because it only enables
the maintenance of attention on an independently moving object, but cannot aid the initial
attraction of attention. The incorporation of such mechanisms in the unified framework could

prove beneficial for the successful solution of the overall independent motion detection problem.
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Change detection methods can also be incorporated in the proposed integration framework.
In the same way that the DMO method provided useful information on the constancy of the 3D
motion parameters of the observer and of some independently moving objects, change detection
algorithms applied to the image intensities can provide useful signals on the constancy of the

location of the observer and on the presence of independently moving objects.

A dual effect of the detection of independently moving objects is the isolation of image
areas that appear to be moving only due to egomotion. This enables the effective isolation
of points that can be used as robust input for the estimation of the egomotion. It should be
noted that the vast majority of methods for 3D egomotion estimation assume that there are
no independently moving objects in the field of view of the observer. Thus, having already
identified the independently moving objects of a scene, enables all these methods to become

operational under looser assumptions.

Another axis of future work is related to the exploitation of a larger time window. All the
proposed methods are able to extract information about independent motion from two successive
frames in time. The use of more frames provides redundant information that can be exploited in
several ways. One such way is the qualitative characterization of the motion of independently
moving objects. Certain higher level characteristics of the motion of independently moving
objects cannot be recovered by processing just two frames, but require a longer sequence of
images. For example, the movement of animals is characterized by specific periodical patterns of

motion [126]. The recognition of such patterns requires the processing of long image sequences.

Finally, in the more general context of building machines with space perception capabilities,
it is very interesting to investigate how other visual cues (e.g. color, texture e.t.c) are combined
with motion information in order to provide the rich perceptual information that enables the
interaction with a dynamic world and the achievement of the goals of the system. Towards
this direction, it should be studied whether the proposed integration framework can be support

the successful coordination and integration of many processes that will cooperate in order
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10.1 Future work

to solve specific problems. At this level of analysis, a number of important issues are
raised regarding memory organization, learning capabilities, action selection, control strategies,
resource allocation and many others. Each of these issues constitutes a broad area for research on
its own right. It is evident that despite the important results in understanding the various aspects
of perception and cognition, machines are far from competing with their simplest biological

counterparts.
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Appendix A

The significance of the term W for stereo

normal flow

Consider the stereo configuration of Fig. A.1(a). In this stereo configuration, the optical axes
of the two cameras form an equilateral triangle. One side of the formed triangle is the stereo
baseline and the other two sides are equal to the distance of each camera from the fixation point.
The stereo equivalent motion that transforms the position of the one camera to the position of the
other includes a rotation s, and two translations U and W. However, W is, in the general case,
very small compared to Us. This is because in practical situations the distance Z of each of the
cameras from the observed scene points is much larger compared to the length of the baseline.
This, causes the vergence angle [, to be a very small angle and the angles ¢ to be approximately
right angles. Assume for example a scene at a distance of A = 3m from the observer’s baseline
and a baseline b = 7c¢m (the typical baseline for an adult human). By using elementary geometry
(see Fig. A.1(a)) we get:

A 58033

tan(p) = b/2

Therefore, 5, = 180° — 2¢ = 1.34°. From Fig. A.1(a) it can also be verified that:

W,
tan(fs) = 7 = W, = 0.0234U,

S
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Figure A.1: (a) An equilateral and (b) a right-angled stereo configuration.

which means that Wy is two orders of magnitude smaller than U,. Note also that in eq. (3.14),
U, is multiplied by Ty, = ”—gf and W; is multiplied by Ty, = % Given that in practical
situations, f is a few times larger than the maximum x or y coordinate of a point in the image,
it is evident that the term that contains W, is negligible compared to the remaining terms of

eq. (3.14).

In the case of the right angled stereo configuration of Fig. A.1(b), Wy is exactly equal to
zero. A rotation (3, and a translation U = b suffice to transform the coordinate system of the
right camera to the coordinate system of the left camera. Such a right angled stereo configuration

has also been used by others [152].
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