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ITepiinym

YKOMOG VTG TNG Epyaaiag elval vor avadhboovpe Ko var Set€ovpie aplBpntikd ti eivor eminedn {ovn evog
QwToviKoD mAéypatog. Ot Stopopikég e€loiaelg mov pedetape e€dyovtal oo tnyv Bewpia cvlevypévov
puBpcdVv ( Coupled Mode Theory ) yiar omTiko0g TUPTIVEG KO TLEPLYPAPOVV TNV HETAPOAT TOL TAKTOVG TOL
mediov Tov TUpHVa (1] YEVIKOTEPA TV KUHATOSNYOV) karTo TV StevBuveT) S1ddoong Tov NAEKTPOpAY VI TLKOD
nediov. To niektpopoyvntikod medio k&be mupriva emnpedletol oo Ty OiapEn NAEKTPOpAY VI TLKOD TTediov
OTOUG YELTOVIKOUG TTUPTIVEG KaiL aruTH] 1) peTofoAT] ex@paletol pHEGw TOL TAATOUG.

Apyikd elodyovpe kdmoleg Paoikég vvoleg 00e0OVTOV KUPATWV Omwg ToXVTNTO PAOTG, ToXVTNTO
opé&dag, oxéon Staomopdg Kat TéAog TNV évvola tng eninedng {ovng 1 omola elvart pia eéKTooT) TNG oXEGTIG
Swoomopdg. Xe endpevo otadlo PAémovpe kol TAEypaTa To omoio dev €xovv eminedeg {Oveg Ko GT
ormoia pEcw TNG ToXVTNTOG OpAdOG kot GAAWVY peyebmv eAéyyoupe Tnv katevBuvoT tng déopng.

Apyotepa Bewpoope ta TAéypoata Kagome kou Lieb ota omoia edv Bewpricovpe arAnienidpoaon petagd
TOV TPAOTOWV YELTOVOV TV KUHATOINY®OV LItdpyouv erimedeg {OVEG Kol OL 0T0ieg TAdOLY VA VPIGTOVTOL
pe v Becdpnon endpevov (SedTepwv) yertdvwv. BAémovpe emiong kot Sitdupopa aptbuntika amoteAécpaTo
ylo k&Be mepintwon.

Khieivovtag mapovoialovpe v 1déa Tov TG popel kavelc va gTiaEel mAéypata pe eminedeg {wveg
QIO TNV OHOVLUTN SNpocievoT). Eekvadvtag amo éva BepeAlddeg cOoTnpa KUpHaTodNydV Ppiokouvpe Tig
Moelg wov vrrootnpilel. Emelta emekteivovpe pe évov ouykekpipuévo tpomo to Oepeliddeg avtd coTnHA
Kot Yéoxvoupe TL oxéaELg TTPETEL VOL LOYVOLV 0UTWG (Mo Te oL ADoELg Tov vtoothpilovtot oo To BepeAtddeg
oVOTNHA 08 WTOPOVWOT) VA GLVEXICOLY VA LITAPXOLY Kal oTa BepeAlddn cvoTHPATA TOL VITAPXOLY GTO
enekTopéVo. TENOG QTIdYVOLpE Ta TEPLOOIKA TAEYHATAL, TTOV TTPOKVITTOUV QUITO TAL ETMEKTAPEVO GUOTHHATA,
kot Bpiokovpe Tig {OVeG TTOL EPPAVILOVTAL GE QVTA.
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Abstract

In this work our aim is to describe analytically and show numerically what is the flat band of a photonic
lattice consisted of waveguides. The differential equations that we shall see later are derived from the
Coupled Mode Equations which describe the variation of the amplitude of the electromagnetic field between
fiber cores or waveguides” as are called. The propagation of the electromagnetic fields are affected of the
neighbouring fields of the waveguides so we consider various lattices of the waveguides and therefore
various differential equations which describes them.

Initially we provide basic concepts of travelling waves such as phase velocity, group velocity and dis-
persion relation. Band and therefore the flat band, which is a specific type of band, is an extension of the
dispersion relation for periodic systems. After that we consider some lattices 1d or 2d which have no flat
bands and we observe various excitations of the fields for each of them.

Later we examine the Kagome and the Lieb lattice which possess flat bands and we see some excita-
tions of them. We examine the excitations of these lattices considering interaction between only nearest
neighbours at the first time and at the next stage we consider interaction between nearest and next near-
est neighbours. At both of the lattices the flat bands vanishing with the consideration of the next nearest
neighbours .

Finally we present an idea of how to construct flat band lattices based on the corresponding paper which
is referred. We start from an initial (fundamental) system and we find the supported solution of this system.
Next we are extend the fundamental system in a specific way and we look for relations in order to remain
as solution to the extended system, the solution of the fundamental system in isolation. After that we
construct the full periodic lattice which is constructed by extend infinitely many times the fundamental
system as previous.
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Chapter 1

Introduction

In this chapter we will introduce some basic concepts of this work. At the beginning we will present the
fundamental ideas of waves phenomena, the phase velocity which express the speed of a single “particle”
of a wave when we have only one wave. Later we consider a wave which is consisted of superposition
of waves ( i.e sum of cosines ) and we make clear what is the meaning of the group velocity which is the
velocity of the "particles” moving as a group. After that the basic notion that governs this work is presented,
the dispersion relation, from which the flatness of a band can be resulted. Finally we are going to speak
about the equations describing the propagation of each of the field that we shall see later, the coupled mode
equations.

1.1 Phase velocity, Group velocity and Dispersion Relation

Linearity
The vast majority of equations we will meet so far at this work are linear. This means that if u; and uy are
solutions of a linear differential equation then any function of the form cyu; + caus (c1, co constants) is
also a solution. Let us see an example.
Assume that we have the so-called wave equation in one space dimension :
2 2

gu _ ? Ou (1.1)

ot? Ox?

It is easily verified that, if u; and uy are solutions of the (1.1), then also will be the sum of them.
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Hence if we have ug, k = 1, ..., n solutions , then

u(z,t) = cpu(,t)
k=1

is also a solution which is called a superposition of solutions uy, k = 1,...n.

Superposition of plane waves, dispersion relation

Suppose we have a wave with period 7" and a wavelength \. Recall that the wavelength is the distance
between two consecutively peaks of a wave, and T" (period) is the time needed for a peak to displaced by A.
The phase velocity (v,), is given from

1.2)

’Up:

N >



1.1 Phase velocity, Group velocity and Dispersion Relation 2

The last expression tells us the rate of a point of the wave that propagates along the propagation direction.
Now if we introduce the wavenumber k as k = QT” and the angular frequency w = 27 f, equivalently one
can define as the phase velocity the below quantity

Vy = — 1.3
p =2 (13)
To understand this intuitively we have to observe the displacement of a single point of a wave. Let’s suppose
that we have the wave cos (k1x — w1t), at t = 0 the first peak is located at k12 = 0 = x = 0, at the time
t = t' the point which previous were located at z = 0 is now located at k1z — wit’ = 0 = z = $1¢". So
the quantity k12 — wt must remains unaltered over time. In a more general way :
d(kiz —wit dx dr w
dlw —wit) o, dv g & _w

dt dt dat Kk
So it’s reasonable to define the phase velocity as in eq. (1.3). Of course the idea of phase velocity is gener-
alised to the complex wave function of the form :

kix — wit = con. =

Aexp(ikz — iwt) = A (cos(kz — wt) + i sin(kz — wt)) (1.4)

where it is obvious that again the real and imaginary part are oscillating with the phase velocity we have
defined at (1.3).

Group Velocity
To figure it out what is the group velocity we should see what is the result of two waves with equal am-

plitude superposed. Suppose we have two waves of the form of (1.4) with k; = k1 + Ay and % ~
w(ky) + %Ak,

exp (i (kv — w (k1 )t) +exp( (ko — w (kg)t)):

oo (gt szt (( b, st
+exp<i(’ﬁ;’f2x_ w(ln t>exp< kam_w<kl>;w<kz>t)>_
exp<z<k1;k2 _ ik );“’( ))><exp(...)+exp(...)>

o (Bt ) ) (b, sttt

2 2

A exp (ik;l (x — wg?%)) 2 cos (‘?k <x _ dwﬂ(fil)%))

The first term oscillates with the phase velocity v, = “’gfll) , and the second term, which forms the behaviour

of every point of the wave, oscillates with speed

dw(kl)
dk

Generally speaking the waves have an angular frequency w that depends on the wavenumber £ (and vice
versa), in order to exist as a solution of differential equation that admits wave solutions. So we have used
the notation w = w(k). It would be explicated further and in more general way below why the last quantity
is called group velocity.

Any wave of the form (1.4) can be written in the following form

(1.5)

+oo
U(z,t) = %/_ U (k) exp (i(kz — wt)) dk (1.6)
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where w = w(k) as will be explained below (see dispersion relation). [2] Expanding the w(k) as follows
w(k) ~ w(ko) +w'(ko)(k — ko)
and replacing the last into eq. (1.6) we obtain

U(x,t) ~
1 [T

B(k) exp [z (ko — w(ko)t) +i ((k — ko) & — w (ko) (k — ko) t)} dk

2 J o
or equivalently
U(x,t) ~
(1.7)

+oo
/ B (k) exp [z‘(k — ko) (= — w/(ko)t)] dk

— 00

exp [i(kox — w(ko)t)]
27

The last integral consists of a superposition of infinitely many waves that each of which are oscillating with
velocity w’(ko) which is called group velocity. Of course the first term oscillates with the phase velocity
LIZO). The term group velocity coined from the fact that we have infinitely many waves with the same
speed and the superposition of all of these forms the behaviour of the one, which moves with the phase

velocity.

Dispersion Relation
The relationship between the angular frequency w and the wavenumber k (or reverse) is called dispersion
relation and characterize every equation admits solution of the aforementioned wave form. Consider the
following equation

Up = TUgy

and suppose there is a solution u(z,t) = exp (i (kx — wt)) where k and w are real. Replacing the last one
into the equation , we get :

—iwexp (i (kx — wt)) = i*k* exp (i (kx — wt)) =
w=—k?

The last relation is the dispersion relation of the equation u; = tu,;. Of course there are many dispersion
relations, for example u;; = u,, where now w? = k2 therefore w = 4k so we have two relations in this
dispersion relation. The concept of "band” is the extension of the dispersion relation for periodic systems
and we introduce it at the end of the next section.

1.2 Coupled Mode Equations and Waveguides

In this section we will derive the basic equations governing the majority of phenomena that exist in
this work, the so-called Coupled Mode Equations. Before that, we have to say that the with the word
“mode” we mean an electromagnetic field whose intensity remains constant in the direction of propagation
(z axis). Moreover with the term “transverse field of the mode” we technically speak about the first eigen-
function of the 2d helmholtz equation (see eq. (1.10)) where we have a discrete spectrum of eigenvalues. The
“transverse” is referred to the fact that we have oscillations of the electromagnetic field perpendicular to its
propagation direction (z axis). In this derivation for simplicity we base the analysis on the scalar theory and
we suppose that we have p cores, generally different, that run parallel into the direction of propagation (z
axis). In addition we assume that the cores are oriented in the z-direction and are described by the refractive
index 1, (z,y), m = 1,...,p. So n,, is equal to ng everywhere, except the region occupied by the m—th
core, where it is equal to ng,,, as we can see at the Fig. 1.1.

Suppose that the electric field is polarized in the y-direction, then the equation which describes the scalar
electric field E,, (z,y, z) when the m-th core is in isolation is given by :

V2E,(z,y,2) + nm2(x,y)k‘§Em(x,y, 2)=0 (1.8)
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Figure 1.1: Refractive index n., (2, y)
where n,, is the refractive index which we described above, kg = % is the wavenumber and ) is the

vacuum wavelength. Notice that the product n2 k2 gives us the right wavenumber for every (z,y) € R?
(inside or outside the fiber-core).
We seek solutions of the (1.8) of the form

where F,,, (m =1, ...,p) is the transverse field of the mode in the m-th guide and (3, is the mode propa-
gation constant. Replacing eq. (1.9) in the eq. (1.8) gives us the following:

9?E,, O*E,, O%E,,

220 _
Ox? + Oy? + 022 kg B = 0

O?Fy, _ *Fy, , 5 ,
= exp (iBmz) + oy exp (1Bmz) — B Fm exp (18mz)

+n2 k2 Fy, exp (iBmz) =0

or equivalently
0?F,, n 0*F,,
0x? oy?
The whole system consisted of p parallel cores is described by a refractive index n(x,y) resulted from

combining the refractive indices of each of the cores, i.e n(x,y) is equal to n,, in the region occupied by
the m-th core and equals to ng otherwise. The scalar wave equation for the whole system is :

+ [nfnko B2 ] =0 (1.10)

V2E(x,y,2) +n*kiE(z,y,2) =0 (1.11)

An essential assumption of the coupled mode theory is that the solution of (1.11) can be written as a super-
position of modes of each of the cores, i.e sum of the form (1.12)

p

E(2,y,2) = Y An(2)Fn(@,y) exp (iBn2) (1.12)

m=1

where A, (z) is called "amplitude” and it tells us how the electromagnetic field travels from a core to another
core. Thus replacing (1.12) into (1.11) we get

p P
Z V2 [Frn A exp (iBm2)] + Z [ z,y)kg A Fyy exp (i Bmz)] =0
m=1

m=1

P

=2 |\F

=1

Am €xp Zﬁmz

P
82 771 82F7Tl .
+ Z < 022 ayz > Am(z) exp (Zﬂmz)

=1

+i[ (2, YDk A Fon e (8102)| = 0

m=1
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p 2
d Am . dAnL 2 .
= mz::l ( 72 + QZﬁm? - ﬁmAm(z)> Fp,exp (i8mz)

0?F,, 82Fm _
( 8&02 3y2 ) Ay, exp (1 8mz)

+

M@

+

Mw

3
I

using eq. (1.10)

2
: (d Am + 92 Bm% _ 52 ) Fm exp (Zﬁmz)

=1

NE

+ [(52 _n kO>F Ay exp (zﬁmz)}
m=1
m=1

or equivalently

L d?A,, dA,, L
Z ( + 20 B —2 7 > Fexp(iBmz)| + Z [k:g (n2 - nfn) ApFrexp (iBmz)| =0

m=1 m=1

d2Am(z)
dz?

We can neglect the terms if we consider amplitudes that vary slowly along the propagation direc-
2

tion z. Due to the Kerr effect the refractive index n? — n?2, is affected by the intensity of the electric field
and so we introduce a perturbation as follows

P
n? —n? —n2—nZ +~ Z A Frexp (i 8m2)

m=1

where n. is the refractive index resulted from combining the refractive indices n,,,, m =1, ...,p, ie n. is
equal to n,, in the region occupied by the m-th core otherwise is equal to ny. Replace the last formula into
the equation we obtain

p
Z l(%ﬁm L. ko ( — nfn) Am> F,, exp (z’ﬁmz)]
=1
v v 2 (1.13)
+7kg Z Z [Am/Fm’ exp (Zﬁm’z)} AmFmexp (ifmz)| =0

m=1 |[{m’'=1

Our aim is to find how a specific amplitude A,;(z) of the core [, changes along the propagation direction z,
i.e the term %Z(Z). Multiplying the last equation by F}* gives us

Ey i l(mﬁm =+ kj (“c - n72n) Am> Fy, exp (iﬂmz)]
m=1

2
P

P
—|—I<:§'7FZ*Z Z [Am/Fm/exp(iﬂmfz)] A Frexp (iBmz)| =0
m/=1

m=1
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If we assume that there is no overlap between non-adjacent cores we can neglect the terms of the form
F}Fy forl" <l —1and! > [+ 1because F; and therefore F}" is almost zero in the region where Fy is
large (its absolute value) and vice versa . So the last equation becomes

41
Fr Z [(216,” -+ kK (nc - nfn) Am(z)> F,, exp (i,Bmz)]
m=I[—1
2
41 41
i3 E D> DD [Am Fo exp (iBnr2)]| AmFexp (iBmz)| =0
m=l—1 ||m/'=l-1
or equivalently
I+1 A
m=Il—1
2
I+1 I+1
AT || D] [Am Forexp (iBmr2)]| | D [AmFmexp (iBm2)] =0
m/=l—1 m=l—1

but if we expand the sum :

I+1
Z (A o exp (1B 2)] | = A1 P|F1 | + AP B +] A | Figa |

m/=l—-1
—|—Al_1A7Fl_1Fl* exp (—Abl,—l) + Azk_lAlFl*_lFl exp (Abl7_1)
+ AL AT B F exp (—Aby 1) + A A1 Fr* Fipq exp (Aby 1)

where Ab; 1 =i (8; — B1—1) zand Ab; 41 =i (8141 — (1) 2. There are 2 terms which are neglected and is
of the form F}_1 F", | and F};1 F}" | because they correspond to non adjacent cores. So now we can replace
the last sum into the equation to obtain :

I+1

Fy me dAm +k0( —ng) Am) Fmexp(iﬁmz)]

m=l—1
AYREFS || A1 P Fioa ) + AP F? | A [P Fr P + Aoy A Py FY exp (—Aby_q)

+A] JAF (Fexp (Abl,—l) + A1A7+1F}F'l11 exp (7Abl7+1)

+1
+ AT A1 F Fiiq exp (Abl’+1) Z [AmFm exp (zﬁmz)] =0

m=i—1
So now if we represent the d;‘—zm = A/ and expand the sum, we take as a result
k2 (nz - n?fl) FfFy 1 Ay exp (ifi12) + 2iBi| Fi|* A exp (i 82)
8 (n2 = n?) |Fif” Avexp (i02)
+kg (”i - n12+1) Ff Fy A exp (iBi412) + vkg By Ay Ayl exp(iBiz) = 0

where we have neglected terms which are very small due to the cubic or higher order of power and in
addition the corresponding cores have small overlapping modes, for example vF}_1 | F;_ 1| Fy |A;— 1\ A1
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exp(if;—12z). Of course we've neglected terms of the form F F,,_1 due to the small overlapping of the
modes of the corresponding cores. Now if we integrate over the entire xy plane we get the following

Ko (/(nf - nl2—1)Fl*Fl—1> Ai—vexp (iBi-12) + 2iB; </|Fl|2> Ajexp (ifi2)
+hj (/(”i - ”?)Fz|2) Ajexp (i812)
-l-k(% </(n3 - nl2+1)Fl*Fz+1) Apprexp (ifi112) + "/kg </|-Fl4> Al|Az\2 exp(if1z)
=0

Multiplying both sides by m we obtain

dA
ZT; + k-1 Ai—1 + K1 A + A AP +64 =0 (1.14)

where
kO [ (n2 —n?) F;Fdxdy
Rn,m =
’ 206y [1F)? dady
k3 J (n2 —n)|Fi[* dudy
261 [1F|? dzdy

K3 [IR dedy
261 [|R | dady’

exp (i (Bm — Bn) 2) s 1 =

1=

The Ky, are called coupling terms, vy is the Kerr effect constant and ¢; are called detuning terms. So the
last equations constitute the Coupled Mode Theory Equations or Discrete Nonlinear Schrodinger
Equations and are valid for m = 2,..,p — 1. For m = 1 the coupling coefficient to the left waveguide does
not exist, whereas for m = p the coupling to the right waveguide is zero.

Waveguide in an abstract way in this work will be considered as something that can confine light as in
the case above of the cores. Thus with the "waveguide array” or waveguide lattice” or “periodic lattice”
or simple a lattice”, is considered a number of waveguides ordered in a specific manner which is repeated
again and again (a periodic lattice). With the orientation of the waveguide we mean the direction in which
the electromagnetic field will be propagated. Furthermore with the term "unit cell of a lattice” we mean the
minimum “box” which if repeat it infinitely many times i will end up with the periodic lattice.

Periodic lattices are governed by equations similar to the (1 14) and Wlth the ”similar” we mean that
at some cases the nonlinear terms (e.g v(k2/23;) f|Fl| NE|?) Ai] Ay ) are neglected and other cases
we have to consider overlapping with non-adjacent waveguides. If we assume plane wave solution to the
last equations we obtain the dispersion relation which is consisted of the bands (as previous the dispersion
relation can have more than one relations) and if one band is constant then we say that we have a flat band.






Chapter 2

Non Flat Band Lattices

In this chapter we present various lattices, mono-atomic or diatomic and 1d or 2d. With the term mono-
atomic” is meant that we have one waveguide per unit cell and with “diatomic” we have two waveguides
per unit cell. Of course these two terms are referred to a physical meaning which is not in the context of
this work. With the term 1d lattice we referred to the dimension of the space the waveguides belong to, for
example if the waveguides are extending along a straight line then we put them mathematically at the real
line so the lattice is 1d. In similar way 2ds waveguides are extending at a plane.

2.1 1d Mono-atomic Waveguide Lattice

Let’s suppose we have the following equation which describes the variation of the amplitude of the n-th
waveguide in a periodic lattice [4].

dE,

i + K(Ent1 + Enc1) + B’ E, = 0 (2.1)

where E,, is the amplitude of the electromagnetic field of the n-th waveguide, & is the coupling constant
between the neighbor waveguides and finally -y is the Kerr effect constant.
Assume that we have a plane wave solution, which is of the following form

E, = Aetlan—k2) (2.2)

where A is a real constant, ¢ is the phase difference between adjacent waveguides and of course k = k(q)
is the dispersion relation. Substituting eq. (2.2) into eq.(2.1) we get
—i%k(q)Ep + Epk(e'? + e ") + yA?E,, = 0
k(q)E, + E,(2rcos(q)) + yA’E, =0
E,(k(q) + 2k cos(q) + vA%) =0

k(q) = —2kcos(q) — yA? (2.3)

The last relation is the band and is not constant, i.e k is not independent of g. For a given initial condition
the wave propagation is completely controlled by the dispersion relation k(q) [5]. At Fig. 2.1,2.2,2.3 we can
see the dispersion, the group velocity and the second derivative of dispersion relation. As we see from the
formula of the dispersion relation and the figures also, the dispersion relation is far from being flat.
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q q

Figure 2.1: Dispersion relation (k) for k = Figure 2.2: Group velocity (%) fork =0.1,7 =
0.1,y=0 0

z

i

q
Figure 2.3: % fork =0.1,y=0
2.1.1 Numerical Results
We will exciting some waveguides using a gaussian beam as initial condition. The "beam” has the form :
E,(2=0)= e_(ﬁ) etdon (2.4)

In fact every solution can be written in the form

B = [ Ao

—Tr

The A(q) are the Fourier coefficients

+oo
Alg) = Y En(0)e '
So in this case A(q) can be written
+oo )2 +oo n )2
Ag = Y e () gamemian — 5™ ¢~ (%) mitaaom
n=—oo n=—oo

The|A(qg)| s a sharply peaked function around gg so we can write the solution E,, () in the below form (as

in the group velocity)

+oo

Eo(2) ~ exp [i (qon — k(q0)2)] /

—0o0

Aq)exp [i(a - a0) (n — K (a0)>)]
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So, as previous the group velocity told us at which direction and with what speed will the beam propagates,
the last form told us where the discrete wave propagates ( which direction ). Before we start to comment
the figures we have to say that for every numerical result we will see from now on at this work / is the step
at the z axis of the Runge-Kutta (explicit) method we have used to make all the numerical schemes. If we
observe the Fig. 2.1-2.3 the positive maximum of the group velocity is at the 77/2 and the negative minimum
is at the —7/2 so at the Fig. 2.4 and 2.5 we see the "beam” propagates in the right and in the left direction
respectively with almost no diffraction due to the fact that the second order diffraction is vanishing for
go = —7/2, /2 (Fig. 2.3). At the Fig. 2.6 and 2.7 we see similar things, the "beam” propagates at the right
direction and at the left respectively and in addition it presents a lot of diffraction since for g = —7/4,7/4
the diffraction term is not vanishing as we see at the Fig. 2.3. At the Fig. 2.8 the "beam” propagates straight
but it has a lot of diffraction since at gy = 0 the diffraction term have the positive maximum. Similar things
holds for the Fig. 2.9-2.13 but because the transport and the diffraction are much smaller due to the smaller
coupling term (x = 0.1) we plot at the vertical axis the absolute value of the field and at the horizontal axis
the number of waveguide. So we can see the transport and the small diffraction.
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Figure 2.8: g9 = 0,k = 10,y =10,,n9 =5,h =
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Fig. 2.4-2.8 show the intensity of the field F,, (i.e |E,| ) along the propagation length for every waveguide
for initial condition of the form (2.4)
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Figure 2.12: qo = —7 /4,5 = 0.1,7 = 0,np =
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Figure 2.13: g9 =
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Fig. 2.9-2.13 show the intensity of the field F,, in y axis (i.e | F;,| ) and the number of each waveguide in

axis for initial condition of the form (2.4)
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2.2 1d Diatomic Waveguide Lattice

We have now two types of waveguides so we say that we have a diatomic lattice. We assign a detuning
term to the waveguides, so waveguides of type u have a term +du,, and the waveguides of type v have a
term —dv,, as we can see at the eq. (2.5) and (2.6).

0000

Yy l Un+1 Un,
z

T

Figure 2.14: waveguide lattice

Below the equations describe the amplitudes of the electromagnetic fields of the waveguides:

Zdu—n + K(Vp—1 +vp) + 0u, =0 (2.5)
dz

duy,

z% + K(tn + Upy1) — 0, =0 (2.6)

where ¢ it’s called detuning term. We will find the dispersion relation for the system of eq.(2.5)-(2.6). Sup-
pose the solution of the system is a planar wave of the form u,, = ue’d" =% ¢, = peldn—ikz,

kw, + kvp (e 4+ 1) + du, =0

kv, + kup (14 ¢€“) — v, =0

- o

writing last two equation in matrix form :

k+6 n(e’iq+1)
k(1 + €i?) k-9

The only way to have non trivial solution is

k+46 m(e‘iq—&—l)

K(1+e) k=0 =0& k=6 — k(e + 1)(1+€') =0

k* = 62 + K*(cos(q) — i sin(q) + 1)(1 + cos(q) + i sin(q))
k% = 62 + K?(cos(q) + cos?(q) + sin®(q) + 1 + cos(q))
k* = 62 + 2k*(cos(q) + 1)

k(q) = £/02 + 2k2(1 + cos(q)) (2.8)

So now as we see at the (2.8) we have two non flat bands. There are the dispersion relation, group velocity
and the second order diffraction at Fig. 2.15-2.17 for relatively big x = 1 and at the next three Fig. ( 2.18 -
2.20 ) we see for good enough x = 0.1 the same quantities.
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kiq)
Kia)

q q
Figure 2.15: Dispersion relation (k) for k = Figure 2.16: Group velocity (Z—’;) fork =1,6 =
1,6 =1 1
2 1
0.8
1
z, K
x a5 = -0z
. S04
i u
2 -1
=2 3 2 1 0 1 2 3 3 2 1 0 1 2 3
q q
Figure 2.17: (ddik) fork=1,0=1 Figure 2.18: Dispersion relation (k) for k =
a
01,6 =1

We are going to find the eigenvalues of the matrix (2.7)

k+6—X k(e1+41)

- 2 _ 22 o2 _
K(1+e)  h—5— A\ =0& k> =2k + A* — 0% — 2k* (1 + cos(q)) =0

But k is given from eq. (2.8) so the remaining terms are
A =20k =0

thus we have two eigenvalues
A =0, =2k
The corresponding eigenvector of eigenvalue A\; = 0 is :
k+4 k(e7+1 _r(axet)
. ( ) oo E+6#£0
k(14 €') k—9§ +

k+4 K (e‘iq + 1)
— K,2 COS ,2— 2
0 2 (1+k2 (gg)—o—k 2 _

=

So the eigenvector corresponds to Ay = 0 is

[_W] ,c08(q) # —1ork # —+/02 + 2k2(1 + cos(q))

1
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0.05 :x 0.05
015 015
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q q
Figure 2.19: Group velocity (‘é—’;) for k = Figure 2.20: (%) fork =0.1,6=1
0.1,6 =1

Similarly the second eigenvector is :

(—k+6 fc(e”“rl)) e ,—k+6#0
K

(1+€') k-9 +
—k+0 k(e 4+ 1)
= —2k2(14cos(q))—62+k>
0 ( —k-fé) =0

So the eigenvector corresponds to A\ = 2k is

7n(e_“1+1)
l_—lk—iré] ,cos(q) # —1or k # /62 + 2k2(1 + cos(q))

Notice that last eigenvector doesn’t correspond to a solution since we are looking to solve the homogeneous
linear system as we see from the (2.7).
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2.3 2d Mono-atomic Waveguide Lattice

At this time we have placed the waveguides at the plane so we have a 2d waveguide lattice as is depicted
in the following illustration. Furthermore we have one type of waveguide so we have a mono-atomic lattice.

z

. @ m,n+1
. . . .

. . m,n
. . m—1n . e m+1ln
° . . m,n — 1
L] L] L] L] L] L]
L] L]
. . . . .
L]
L]
Y
T
z

The lattice is consisted of repeated squares over the whole xy plane. Each waveguide has as enumeration
two indices one for the vertical and one for the horizontal axis. The evolution of the field can be described
by the following coupled mode equation :

du
1 dﬂ:n + K (um,n+1 + Um—1,n + Um+1,n + um,nfl) + 7|um,n 2uﬂ%,n =0 (29)
If we assume that a solution of eq.(2.9) can be given by
umﬂ’L — Aei(QEm+Qyn_k(®Z) (210)

where ¢ = (qx, qy). Substituting eq.(2.10) into eq.(2.9) we get the following
_i2k(®um,n + RUm,n (eiqm + e—iqx + eiqy + e—iqy) + 7A2um,n =0
k() + k (2cos(gz) 4+ 2cos(qy)) + 7A* =0

k(q) = —2k (cos(gs) + cos(qy)) — yA? (2.11)

As we can see the dispersion relation (2.11) is no flat, i.e it depends on the vector ¢'and is not constant. The
group velocity is given by

vg(q) =2k (sin (gz) + sin (qy))

the second order diffraction is the following
K'(q) =2k (cos (qs) + cos (qy))

2.3.1 Numerical Results

At the Fig. 2.21-2.23 are illustrated the dispersion relation, group velocity and the second derivative
of dispersion relation. At the Fig. 2.24,2.25 we see the excitations for initial condition u19,10(z = 0) =
1,u10711(z = 0) = —1,U11,10(Z = O) = —1,’[1,11,11(2’ = 0) = land U475(Z = 0) = 1,U5,4(Z = O) =
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—l,ugs(z = 0) = 1,us (2 = 0) = —1 respectively. As we observe there is much diffraction in both
cases. For every next numerical result, or “excitation” as we called it, we have the numbers M, N. The
number M shows us how many times the unit cell, over the the direction which shows the first primitive
cell, is repeated. Similarly the number N shows us how many times the unit cell, over the the direction
which shows the second primitive cell, is repeated. The primitive vectors here in this simple lattice is
d, = (1,0) and dz = (0, 1) these forms the unit cell. The unit cell here is a simple square which contains
only one waveguide.

o Eh
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Figure 2.21: Dispersion relation (k(§)) for k = Figure 2.22: Group velocity for k = 0.1,7 =0
0.1,y=0
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Figure 2.23: Second derivative of dispersion re-
lation for k = 0.1,7y =0

Figure 2.24: Excitation for k = 0.1, = 0,h = 1072, M = N = 20, at the left initial condition for z = 0
and at the right z = 5



2.3 2d Mono-atomic Waveguide Lattice 18

Figure 2.25: Excitation for k = 0.1,y = 0,h = 1072, M = N = 9, at the left initial condition for z = 0
and at the right z =4
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Chapter 3

Kagome Lattice

At this chapter we will consider the so-called Kagome lattice which is a 2d triatomic lattice possesses a
flat band. Firstly we will see the first neighbour interactions between the waveguides where the flat band
exists and after that we consider second neighbour interactions where the flat band is vanishing. Finally
we introduce a small random displacement at the position of the waveguides to examine numerically the
effect to the solutions corresponds to the flat band.

3.1 Coupled Mode Equations and Dispersion Relation

At the Fig. 3.1 we see the Kagome lattice and its unit cell repeats 3 times (black parallelograms), the
hexagons which are formed is canonical hexagons.

R VS NV N 4 <

Figure 3.1: Kagome lattice and its unit cell

At the figure 3.2 below we see the geometry of the Kagome lattice from different point of views and in
addition at the right part we see the enumeration of the waveguides. We have tree waveguides (or atoms)
in the unit cell so its a triatomic lattice.

As we can see the lattice is a 2d since the waveguides are extended in the xy plane and the field that
we will describe below propagate along the z axis. The enumeration of the waveguides is based on the two
primitive vectors considered here, i and a3, and are displayed at the right part of the figure with blue color.
Every waveguide of the lattice has its own position vector and it is different for the different types of atoms
so the position vector of an arbitrary waveguide of type u say the waveguide u,, » is Em,na for vy, p, is the
ﬁm n+ ﬁ and similarly for w,,, j, is the ﬁm n+ ﬁw, where ﬁm n = maj +nay. Itis clear that the position
vector describes the location of the respective waveguide if we start from the orlgm so for example if we
set at the origin the waveguide ug ¢ then the position vector of the vg g is Ro o+ RU = R Notice that
because of the symmetry of the lattice the triangle consisted of the vertices tm n, Vm,n, Wm,n is equilateral
thus the vectors Ev and féw have equal magnitude and in addition R, = d; /2, Ew = (a1 + a3) /2. At the
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Figure 3.2: Kagome lattice
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Figure 3.3: The first neighbours of each of the atoms

Fig. 3.3 are displayed the first neighbours of each of the atoms s, 1, Vi, n, Wi, n, indicatively u,, , has first
neighbours W, n, Vm,n, Um—1,n, Wm—1,n—1 and all the distances from the central waveguide u,, ,, to these

waveguides are equal.

Below we see the eq. (3.1)-(3.3) which have resulted from the coupled mode equations considering only
the coupling term x between the first neighbour waveguides. As we can see all the neighbours have equal
coupling term because of the symmetry of the lattice, i.e all the distances from any waveguide of any atom

to any first neighbour waveguide are equal.

A, p
1 d27 + K (vm,n + Un—1,n + Wmn + wm—l,n—l) =0
v
TZ) +K (um,n + Umt1,n + Wmn + wm,nfl) =0
AWy,
1 d27 + K (um,n + Um+1,n+1 + Um,n + Um,n+l) =0

Suppose we have the solution of the form :

Upm = ue—zkz+sz,n~q

Vpm = Ue—zkz+Z(Rm,,n,+Rv)-q

Wiy = we—kz+i(Rm n+Ru)-q
Substituting eq. (3.4),(3.5),(3.6) into eq. (3.1) we get the following :

Ktm,n + K (vm n + v WA Rt R)T gy we_““z”(R”"*l’"*ﬁﬁw)"i) =0

multiplying both sides by eikze=iRm.nd

ku+ K (veiﬁu-(f_i_ Uei(—aﬁ+l§1;)-§'+ weiﬁw'@_}_ wei(—a’i—a"2+}_%‘w)<q‘) -0

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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or equivalently
ku -+ K (vem“"7+ ve T 4 eiBud 4 we‘mw"f) -0
ku+ K (21} cos(R, - §) + 2w cos(R,, - (j')) =0 (3.7)
Similarly from eq. (3.2) we get :
KUpn + K (um,n n ue*ikZ*FiR’rer{»l,’rL"T_’_ Winn + weﬁkzﬂé,,n,n,l-@) —0

multlplylng by eikz+i ( - R?n,vr _Ru ) -q

_._‘ s .*._‘ l - _l g
Iw+/<a(ue o T g qetod 4 el 2% T 4 e 2”) =0

kv+ kK <2u cos(]:fv ) + 2w cos (% . (j’)) =0 (3.8)

And finally, from eq. (3.3), after multiplying with ei(=Fm.n=Ru)7 e obtain the following

kw+ Kk (ue‘ié“"‘j + et @ + e iz®d 4 vei%@‘@) =0

kw+ kK <2u cos(ﬁw - @) + 2v cos (a; . (j’)) =0 (3.9)
We can write as a linear system eq.(3.7),(3.8),(3.9)
0 cos(Ry - @) cos(Ry- )| [u u
2k | cos(R, - §) 0 cos(Z-q) | |v]| =—k|v
cos(Ry, - §) COS(% -q) 0 w w

— — —

Substituting for convenience cos(% - ¢) = c¢1 , cos(R, - §) = ca, cos(Ry, - §) = c3 and looking for
eigenvectors :

-2 C2 C3
[65) - C1 | = 0
C3 C1 —A
—A C1 Co C1 C2 —A
S = —c c =0
C1 —A 2 C3 —A T C3 C1

S =\ ()\2 — cf) —ca(—Aca —c1e3) + ez (crea + Aez) =0
= 7)\3 —+ A <612 —+ 622 —+ 032) —+ 2016263 =0
using that cos?(a) + cos?(b) + cos?(a + b) = 2 cos(a) cos(b) cos(a + b) + 1
= —)\3 + A (2016203 + ].) + 2c1coe3 =0
& (A+1) (2c1c0e5+A(1—=X)) =0
& (A1) (<22 4+ A+ 2610003) =0

So we have 3 eigenvalues (1 + 8cjcacs will certainly be non-negative, because the matrix is symmetric
therefore it has real eigenvalues )

-+
2 2

—1x£v1+8 1 V1438
)\1 = 717)\2,3 = _; 1020 = s 10265



3.1 Coupled Mode Equations and Dispersion Relation 22

Figure 3.4: Bands of the Kagome lattice for q,,q, € [—2m,27], a1 = (1,0),d» = (—1/2,v/3/2) and
K = 0.1, there are two different points of view

Thus there are two dispersive bands and one flat band

k123(q) = 2k, k(1 £ /1 + 8cieacs)

Fig. 3.4 illustrates a 3D plot of the three bands k1 2 3(¢) = k1.2,3(¢x, gy) - Finding the eigenvectors :

-\ C3 2 - C2 C3 5y
2 2
2 —A ¢ 3+ AA0=| 0 = :\i'Cz /\cng\cfch
c3 ¢ —A c3 ) - +
—A Co C3
242 A e Aeqtege
=10 oot Acrdeacs —mEE N £t
Aci+cacs —A%4cy?
0 S 3 +
—A Co C3
0 A% 4eo? Acitcacs
= A A
(1+)\)[72616263+A27)\] o
0 0 3T g2 =0
Solving the linear system :
-2 4+ 022 Ac1 + cacs —Acp — cacs
v w=0v=""F—"->
A A A2 4y
and
\ —)\61 — C2C3 )\0102 + C3/\2 o —C1C2 — 63)\
“u=|—-c—F g luv=|—TFF- v u=———
—A2 + 2 —A2 + 2 —A2 + 2
So, eigenvectors have the following form :
—0102—03)\
7)\)\2+c 2
ZHT2s | A #£ 0, £
1

where A an eigenvalue .
Substituting A = —1, which is the eigenvalue corresponding to the flat band, into the above eigenvector
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gives us
—co@(% :j) co%(%@' +cos(a-11;‘f2 q)
—cicatcs 71
(‘CQQ(T} B N P 3
| = | (R ) eon(F0) con(($49) 9)
1 c22—1
1
an ay - ah aj - an o al -
—COG(T q) cos(T q)+cos<7~q) COS(T q) —blIl(T q) 5111(7 q)
c22—1
= cos(i q’)fcos(i q’) <cos(—2-tf> cos(i q’) 751n(£ tj’) :am(i é‘))
2 2 2 2 2 2
c22—1

= 7COS(Q.§)+COS
2

—

Multiplying the last vector by sin (% : (j') the result remains an eigenvector so we have

sin(%-@) sin %cj’
—cos(%-d’)sin(%@') —cos(%@’)sin(%-(j') = |sin %-cj’
sin(%-@) sin %wf
where a3 = —dj — d3. A solution corresponds to the flat band is (@3 = —d> — di):
. e EANY) R‘m’n-q”—Zﬁz
sin (“72 - q) e ( )
u'fﬂ n < = = — )
’ N i (Bt Ry) G262 . Py
Umn | = |sin (%3 -q) e ( ) = Ym.n(Q)e imz (3.10)
w _ _
. a0 i((Rm,n+Rw)-<772m>
sin (% . q) e

The following superposition is also a solution corresponds to the flat band

[ [ A@inn@edguda, =+ [ [ @i ddaea, (3.11)

It is easy to understand that the absolute value of the field of each of the waveguides remains unchanged
along the direction z.
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3.1.1 Numerical Results

At this section we will see some numerical results for the Kagome lattice for various initial conditions
and as a result of the existence of a flat band we will see excitations that remains unchanged along the prop-
agation direction. At the first excitation (Fig. 3.5) we see the initial condition : v 2(z = 0) = —1,uz2(z =
0) = L,wsa(z =0) = —1,v33(z = 0) = 1,uz3(z = 0) = —1,wy2(2 = 0) = 1 and the rest of the
waveguides equal to zero. The second excitation (Fig. 3.6) is similarly with the first in the sense that we
excite waveguides having in mind that the neighbouring waveguides must have opposite sign and equal ab-
solute value, for z = 0. The third excitation (Fig. 3.7) is an excitation with diffraction, the initial conditions
here are : ug2(2z = 0) = 1,v22(2 = 0) = —1, w2 2(2 = 0) = 1 and the other waveguides equal to zero.
The solutions correspond to the first two cases can be written in the form (3.11), it is easy to see why the
absolute value of the amplitude of the waveguides remain unchanged along the propagation direction. The
solution corresponds to the third excitation can also be written in a superposition form but not only of the
flat band. At the fourth excitation (Fig. 3.8) we see the excitation of the solution (3.1) where we have applied
periodic boundary condition. This solution corresponds to an excitation of infinite system of waveguides
but we can see it using periodic boundary conditions.

Figure 3.5: Excitation for k = 0.1,h = 1072, M = 5, N = 5, at the left initial condition for z = 0 and at
the right z = 10

Figure 3.6: Excitation for K = 0.1,h = 1072, M = 5, N = 5, at the left initial condition for z = 0 and at
the right z = 10
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Figure 3.7: Excitation for k = 0.1,h = 1072, M = 5, N = 5, at the left initial condition for z = 0 and at
the right z = 10
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Figure 3.8: Excitation for k = 0.1,h = 1072, M = 5, N = 5, at the left initial condition for z = 0 and at
the right z = 10
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3.2 Next Nearest Neighbor

At the below figure is depicted the nearest and next nearest neighbours for each type of atom say u, v, w.
From left to right we have the neighbours of wy, , Um,n, Wm,n respectively, at the center of each image we
have the aforementioned waveguides and we can see also the red lines which connect the central waveguide
with the next nearest neighbours. There is no line connects the central waveguide of each image with the
nearest neighbors.

Um,n+1 Umn+l  Um+ln+l Umn+1,n+1
W, n Wn+1,n ° °

Figure 3.9: Nearest and next nearest neighbours

The equations, with the consideration of the next nearest neighbours, become now

du
Z% + K (Um,n + Um—1,n + Wmn + wm—l,n—l) (3.12)
+K1 (wm,nfl + wmfl,n) =0
dv
Z% + K (um,n + Um+1,n + Wm,n + wm,n—l) (3 13)
+K1 (wm—i-l,n + wm—l,n—l) =0
cdw
1 dz,n + K (um,n + Um+1,n+1 + Um,n + Um,nJrl) (3 14)
+K1 (um,7z+1 + Um+1,n + Um—1,n + Um+1,n+1) =0
Suppose we have the solution of the form :
Uy p = ue ki m n-q (3.15)
Oy = ve—thEHi(Bmn+Ro)-q (3.16)
T— we_ikz+i(ém,,n+éqlx)'§ (3'17)

Replacing the last three equations into equations (3.12),(3.13),(3.14) respectively :

ku + mw(e’ﬁ“f"7+ ei(fai—a3+ﬁw)-¢7) + m(ei(*‘ﬁ*ﬁ“)"7+ ez‘ﬁtu-ti)

+H1w(ei(*‘f?+ﬁw'q+ ei(*‘ﬁ*éw"f) =0

=y
+

kv + /@w(ei(ﬁw_é”)'

€
Frjw(ef @ TRu—R)q g pi(—di—dbtRu—Ru)qy -

kw+&u(ei(—éw)'d’_i_ei(aﬁ+a§—§w)-tf) +Kv(ei(ﬁu—éw)'tf_’_ei(a3+ﬁv—ﬁw)-§)

+H1u(ei(a3—éw)«iei(ai—éw)@) i mv(ei(—(fﬁﬁtu—ﬁw)q_F ei(aq+,;2+ﬁv_3w).,;) -0
Recall that Ffv =a1/2, Ew = (a1 + d3)/2 we can write the last three equations in a more simple form :

—

ku + 2k cos (Rw (j’) w + 2K cos (Ev : 17) v

L (3.18)
+2kK1 cos <<a12a2> -J) w=0
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kv + 2k cos <a,22 (f) w + 2K cos (E;‘f) u

o (3.19)
- az o
+2K1 cos << 1+2> ~q> w=20

kw + 2k cos (ﬁu, c]) U + 2K cos (ajfj) v + 2K1 CcOS (ij) U

. (3.20)
+2k1 cos <<‘i+a22> q") v=20

If we write again the linear system resulted from (3.18),(3.19),(3.20)

0 ¢ c3 u U
e 0 ¢ v| =—-k|v
c3 ¢ 0 w w

where ¢y = 2k cos (Ev (j’) , C3 = 2K COS (Ew (j’) + 2kK1 cos ((‘%"3) (j’) and ¢; = 2k cos (% (j’) +

2k1 COS ((a} + %) q’)

It is not an easy task to find the analytical form of the eigenvalues, so we found it numerically. As we can

03 T G
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B

09,
S o)
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o

Figure 3.10: Eigenvalues for q,, g, € [, 7] for k = 0.1, k1 = 0.02 and a1 = (1,0) , a3 = (—1/2,/3/2),
two different points of view.

see in Fig. 3.10 there is much variation of the eigenvalues, so there is no flat band.

3.2.1 Numerical Results

Now we will show some excitations . The first excitation, at the Fig. 3.11, is for initial conditions for the
waveguides vz 2, U3 2, W3 2, Vs 3, U3,3, W2 2 equal to —1,1, —1,1, —1,1 respectively and the other waveg-
uides have 0, this excitation without the consideration of the next nearest neighbours is a zero diffraction
excitation but as we can see here, there is a diffraction due to the fact that the Kagome is not a flat band
lattice if we consider next nearest neighbours. At the second excitation (Fig. 3.12) we have as initial condi-
tion 1)171(2 = O) = 7].,’(1,2,1(2 = 0) = ].,'UJ271(Z = 0) = 71,11,372(2’ = O) = l,wg,g(z = O) = 71,1)373(2 =
0) = Lwss(z = 0) = —1L,v4(z = 0) = Liugu(z = 0) = —1,wa3(z = 0) = 1l,u33(z = 0) =
—1Liwao(z=0)=1uz2(z=0)=-1,w1(2=0) =1
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Figure 3.11: Excitation for k = 0.1, k1 = 0.02,z = 0,h = 1072, M = 5, N = 5, at the left initial condition
for z = 0 and at the right z = 10

Figure 3.12: Excitation for k = 0.1, k1 = 0.02,2 = 0,h = 1072, M = 5, N = 5, at the left initial condition
for z = 0 and at the right z = 10

3.3 Disordering

At this section we consider the usual Kagome lattice but we introduce a small random displacement
around the standard position of the waveguides at the Kagome lattice. Each waveguide moves within a
square of side € around its fixed position, as the Fig. 3.13 illustrates, and the probability of the waveguide to
be found at a certain point in the square is distributed uniformly. The random displacement of each of the

€

Figure 3.13: A waveguide and the area in which it can be displaced randomly

waveguides holds for every z, hence we have a permanent displacement. We show some excitations at the
below figures where for each point on the xy plane we see a color, the more the color is close to blue the
smaller the absolute value at that point. The coupling term is not constant here and the reason for that is
that the distance between the waveguides is not constant, therefore we choose the coupling term to decrease
exponentially with the distance. Notice that only the nearest neighbours are considered here. At the first
couple of figures ( Fig. 3.14 ) we see the excitation corresponds to the flat band, we excite the waveguides
V0,0, 1,0, W1,0, V1,1, U1,1, Wo,0 With initial conditions —1, +1, —1,+1, —1, +1 (left) respectively as we see
due to the small perturbation of the positions of the waveguides there is a difference between the coupling
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terms of the neighbours for each waveguide thus there is a small diffraction (right).

Figure 3.14: Excitation for ¢ = 0.1,h = 1072, M = 2, N = 2, at the left initial condition for z = 0 and at
the right z = 10






30

Chapter 4

Lieb Lattice

At this chapter we examine the Lieb lattice, it is a lattice which is consisted of three simple lattices as
we will see. It possesses one flat band at the first neighbour interaction consideration, which is vanishing
again with the second neighbours consideration. Finally we introduce a small random displacement of the
position of the waveguides to examine the effect to the flat band excitations.

4.1 Coupled Mode Equations and Dispersion Relation

o o . ® Wmn+tl ° o
d ° Uil Umail Ve
. . ° ° . ° .
;
° v,
° ° ° ow ® Wm+ln
° ° v Um+1n  Umtln
. . ° ° ¢ e ? . .
. Um,n
. . ° . °
.
y . ° e ? . . .

p o

z z

Figure 4.1: Lieb lattice

At the Fig. 4.1 we see at the left the Lieb lattice in the R?, the dots represent the waveguides which
are on the xy plane and the direction of propagation is the z axis. The lattice is triatomic and this is the
reason we chose three different colors for the dots which represents the waveguides at the two images (right
and left). At the right image there are the lattice enumeration and the primitive vectors, which are used
for the enumeration of the lattice, in addition we also see the vectors R, and R,, . The enumeration of
the waveguides following the same rule as the Kagome lattice i.e the wavegulde U, has posmon vector
Rm n the v,, ,, has position vector Rm nt+ R and the wy, ,, has position vector Rm nt+ R where Rm n=
maj +nas and Rq, =aj/2and Rw = a3 /2. At the Fig. 4.2 we have from left to right the nearest neighbours
of each of the atoms so every waveguide of « has 4 neighbours and every waveguide of v and w has 2, this
is because we consider nearest neighbouring between waveguides which have distance between them V,
or V,,. Thus we are not considering as nearest neighbours for example vy, ,, and w,;,, which are distant by

\VE+VZ.
Now we are going to write down the equations which describe the variation of the amplitude of the

waveguides in the lattice. Waveguides which are spaced by V,, and V,, are associated with the coupling
term x, and k, respectively.
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1

Figure 4.2: Next nearest neighbours of each of the atoms

Below the eq. (4.1)-(4.3) desribe the propagation of the field along the propagation direction.

d m.,n
) UC/ZZY + Ky ('Um,n + 'Umfl,n) + Ky (wm,n + wm,nfl) =0 (41)
i iiz + Ko (Umon + Umg1,n) =0 (4.2)
. dwm,n
ity (Umon + Umont1) =0 (4.3)

Suppose we have the solution of the form :

um;n, — ue_lkz+1R7rL.7L'q (44)

— pe—ikzti(BmntBo)-q (4.5)

Um,n

Wy = we " tkzti(Bm ntRw)-q (4.6)

Substituting eq. (4.4)-(4.6) into the equation (4.1) gives us :
Kt n + Ky (vm’n + vm’ne_i“}‘j) + Ky (wm’n + wm,ne_i‘f?“f) =0

multiplying both sides by eikze=iBmn-d

ku + kg (Ueiﬁv"f+ Uez‘(—aﬂév)@) +ky (weiﬁw-lf_’_ wel (— 3 +ﬁw).§) —0
or equivalently
ke + oy (Uez'Rv@Jr Ue—iRU.rI) + 1y (weiRw~c7+ ,we—iR“,'q) ~0

— —

ku + 2k, cos(R, - §)v + 2k, cos(Ry, - Hw =0 (4.7)
Similarly from eq. (4.2) we get :
kU n + K (um,n + um’nei 7‘5> =0

multiplying by eikz+i(=Rmn—R.)-q

kv + Ky (ue*iﬁ”"i—}— ueiﬁ““"f) =0

—

kv + 2k, cos(Ry, - )u =0 (4.8)

i(—Rm,n—Ru

And finally, from eq. (4.3) after multiplying with e )4, we get :

kw + Ky (uefiéw'qﬁqL ueiéW"7> =0
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kw + 2k, cos(Ry - u =0 (4.9)
We can write as a linear system eq.(4.7),(4.8),(4.9)

kiwcos(Ry - @) Ky cos(Ry - @)

U u
2 | kg cos(Ry - Q) 0 0 v| =—k|v
Ky cos(Ry, - §) 0 0 w w
Replace cos(R,, - §) = 2’ and cos(R,, - §) = ¢35’
-\ Kl Kycs
KgCa'  —A 0 |=0
kycs' 0 -A
-2 0 s |kzce’ 0 Kz’ =X
< _)\‘ 0 —)\' ~ RaC2 Kycs'  —A TRy kycs' 0| 0

& N4 ak2e’” + kel =0
S A=A+ K20+ /4:203’2) =

SA=0o0rA= :i:\/m2cos2 (j’)+/<;20052( w Q)

So the bands of the system of equations are :

k123(4) =0 :|:2\/I<;2 cos?(Ry - @) + K2 cos2(Ry - )

At the Fig. 4.3 we see the bands for different ¢

Figure 4.3: Bands of the Lieb lattice for ¢,,q, € [0,27], a1 = (1,0),ad2 = (0,1) and Kk, = K, = 0.1 (
Ve =V,), there are two different points of view.
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Eigenvectors for A # 0 are :

Kycs'

o
KgRyC2 C3

/
—X\ Kged  Kyes! meca’ -A KgCo
2,12 2
KgpCa' =) 0 J+ A#£0= 0 "z°2>\ —A
/
Ky C3 0 -2 :‘in3/ 0
- KpCo' Kycs'
0 P _ kagrycscg’ ,
= x X 2z 03 #0
0 IiwliyczchD,/ Nf,CS/z—)\z +
A A
- KgCo' KyCs'
0 5302/2_)\2 K$Hy02/03/
= X X
2 .2 12 12 2 12 2 2 12 2
0 0 —kgkyc2' “eg’ T+ (kyes T =N )(kpe2' =A%) —0

Hence we have

(K2c2’2=X2)\

X
-

2., 12 2 ’o
KZco'" — A KgkyCa'Cs 2 2
x Y _ 2 _ 2 1 2 ./
3 v 3 w=0, (\*=rzea” +ryes’”)
2 .12 "exlw = 0
& —kKyC3 v + KgkyCo' Cc3 W =
/
Ry C2 ’
Sov= w, cg #0
KyC3'
yC3
2 2 212 2,12
Koo' 4 Kies' \/ a2+ Kyc3
-+ —F—w=0su==%

Kyc3'

Kyc3'

As a result eigenvectors for A # 0 and ¢3’ # 0 have the following form

2 12 2n,72
:l: \/ K5 C2 +HyC3

ifA\#0andc3’ =0

where sign(cy’) = 1if e’ >
In the case that A = 0

Soifcy’ #0and c3’ € R

)1.?,523’ A=+ 2.2 2.2 /
koo’ A= Kzco'” + Kics'" c3’ #0
Kyc3’

1

+sign(ca’)

1 A =+1/K2c'? c3’ A0
0
0 otherwise sign(cy’) = —1.
0 KgpCo'  Kycs'
KyCo' 0 0
Kycs' 0 0
0
_ Hy(}@,/

Kz ca'

’ 03/#0

’
Kycg
A

+
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co’ =0and c3’ #0

0
1
0
The solution which corresponds to the flat band is
[ 0
um.n = —
) 1 " i(Rmant+Re)q —
v | = |- et BT _ g (@) or ¢, £ 0 (4.10)
Wm,n ei (E'm,,n +Rrw)5
1 0
um,n - . .
or | Umpn | = & (Rm,n+Ru)q — y/m;n(q—*) for 0/2 =0 (4.11)
Wm | 0

Again the superposition of solutions correspond to the flat band, is also a solution that corresponds to the
flat band. This superposition is the following

[ [ 4@ @icda, or [ [ 4@ @d0.da, (412)

4.1.1 Numerical Results

At the first excitation we have as initial condition ve 2(z = 0) = 1,v93(2 = 0) = 1,we2(z = 0) =

—1, w3 2(z = 0) = —1. This excitation correspond to the flat band as we see at the Fig. 4.4. At the second
excitation (Fig. 4.5) we again excite the flat band using as initial condition vs 2(2 = 0) = Ky /Ks, v2,3(2 =
0) = Ky/Kz, wa2(2 =0) = —1, w3 2(2 = 0) = —1 as the eigenvector correspond to the flat band implies.

The first two excitation can be written as a linear combination of the two forms we see at the (4.12). At the
third excitation (Fig. 4.6) the initial condition is v 2(z = 0) = 1,v23(2 = 0) = L, we2(2 = 0) = —1 and
there is a lot of diffraction.

Figure 4.4: Excitation for k, = ky = 0.1 (V, =V, =0.5), h = 1072, M = N = 5, at the left initial
condition for z = 0 and at the right z = 10
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Figure 4.5: Excitation for k, = 0.1,k, = 0.03, (V, =0.5,V,, =0.7), h = 1072, M = N = 5, at the left
initial condition for z = 0 and at the right z = 10

Figure 4.6: Excitation for k; = ky, = 0.1 (V, =V, =05), h = 1072, M = N = 5, at the left initial
condition for z = 0 and at the right z = 10
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4.2 Next Nearest Neighbor

The Fig. 4.7 shows us the nearest and next nearest waveguides of each type of waveguide, as is seen for
the waveguides of type u there is no difference in neighbouring, with or without considering next neareast
neighbours. There are 4 extra neighbours at the other two types of waveguides with the consideration
of next nearest neighbours. This occur because waveguides of v, w have neighbour waveguides that are

spaced by |/V;2 + V2 but u has not such a neighbours. If we again associate as previous the distances

Figure 4.7: Nearest and next nearest neighbours

Vi,V and | /V;2 + V2 with coupling terms k,ky k4, respectively then we can conclude to the following

coupled mode equations.

~du
i dn;’n + Kz (Vmn + Vm—1,n) + Ky (W + Winp-1) =0 (4.13)
AV n
1——— + Kz (U +u
dz + Ky ( m,n m+1,n) (414)
+"$xy (wm,n + Wm+1,n + Wmn—1 + merl,nfl) =0
.dwm,n
17 + Ky (um,n + Um,n+1) (4.15)

Ky (Um,n + Umnt1 + Um—1,n+1 + ’Umfl,n> =0

In order to find the bands of this system of equations we have to suppose wave solution of the following
form :

Uy p = ue ket n-q (4.16)
Um,n — Ue_ikz+i(R7rl,7l+Rv)'(j (4.17)
Winm = we_ikz"l‘i(Rm,n"FRw)'(I (4.18)

Replacing the last three equations into eq. (4.13),(4.14),(4.15) respectively and factoring out mutual terms
we obtain the following:

ku + 2k, cos (ﬁv cj’) v + 2k, cos (Ew§> w=20
kv + 2k, cos (Ev . (j’) U
+264y [cos ((E@ — Ew> -J) + cos <(R'U + ﬁw> : (])] w=0
kw + 2k, cos (ﬁw . cj’) u

+264y lcos ((év — éw) : cf) + cos ((ﬁv + ﬁw) q")] v=0
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Recall that cos (a == b) = cos (a) cos (b) F sin (a) sin (b) we can write the last three equation in a more
simple form :

ku + 2k, cos (EU . (f) v + 2k, cos (Ew . (j) w=20 (4.19)
kv + 2k, cos (ﬁv . J) U+ Ak gy (cos (I%U . (j) cos (Ew . J)) w=20 (4.20)
kw + 2k, cos (ﬁw . (j') U+ 4Kgy (cos (ﬁv . (j’) cos (ﬁw . (j')) v=20 (4.21)

If we write again (4.19),(4.20),(4.21) as a linear system

0 ¢ c3 u U
c 0 ¢ v| =—-k|v
c3 ¢ 0 w w

—

where ¢y = 2k, cOS (]%v . (j’) , €3 = 2Ky COS (Rw . cj’) ,and ¢; = 4k, cos (ﬁv . (j’) - COS (ﬁw . (j’) The
roots of the determinant of the above matrix, as we have already seen, given from :

7)\3 —+ )\ <612 —+ 622 —+ 632) + 2016203 = 0 (4.22)

The analytical form of these bands is not an easy task to be found, so we found it numerically. The Fig. 4.8

Figure 4.8: Eigenvalues for ¢,,q, € [-7, 7|, Ky, = 0.1, Ky = 0.1 (V; =V, = 0.5), kzy = 0.04 and
a1 = (1,0),a3 = (0,1)

illustrates for different ¢ = {g,, ¢, } the different bands that are created. We see 3 non flat bands, 2 with
extremely much curvature and 1 with much less curvature. The conclusion is that there is no flat band with
the consideration of interaction, between the waveguides, of the next nearest neighbours.

4.2.1 Numerical Results

The first excitation we see at the Fig. 4.9 corresponded at the flat band without the next nearest
neighbour consideration. We have for initial condition : vo2(2 = 0) = 1,v23(2 = 0) = 1,wa2(2 =
0) = —1,ws2(z = 0) = —1. At the second excitation (Fig. 4.10) we see an excitation which cor-
responded again to the flat band if we don’t consider next nearest neighbouring, the initial condition is
va2(z = 0) = Ky/Kg,v23(2 = 0) = Ky/Kg,w22(2 =0) = =1, w3 2(2 = 0) = —1. As we see there is a
small diffraction due to the presence of the next nearest neighbour interaction. At the third excitation (Fig.
4.11) we see the excitation with initial conditions v3 2(z = 0) = 1,v23(2 = 0) = 1, wa 2 = —1, thereisa
lot of diffraction here.
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Figure 4.9: Excitation for k; = Ky = 0.1 (V; =V, =0.5), kyy = 0.04, h = 1072, M = N = 5, at the
left initial condition for z = 0 and at the right z = 10

Figure 4.10: Excitation for x; = 0.1, 5, = 0.03, Ky = 0.01 (V, =0.5,V, =0.7),h = 1072, M = N =5,
at the left initial condition for z = 0 and at the right z = 10

Figure 4.11: Excitation for k, = ky = 0.1 (V, =V, =0.5), kyy = 0.04, h = 1072, M = N =5, at the
left initial condition for z = 0 and at the right z = 10
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4.3 Disordering

We consider the Lieb lattice but instead of the fixed positions of the waveguides we assume a random
displacement within a square of side € around the fixed positions as previous to the Kagome lattice. The
probability of the waveguide to be found in a certain point is distributed uniformly. Fig. 4.12 show us the
excitation corresponds to the flat band as we previous saw at the previous section, notice that there exist a
small diffraction due to the unequal coupling terms.

Figure 4.12: Excitation for e = 0.1,h = 1072, M = 4,N =4,V, = 0.5 = Vy , at the left initial condition
for z = 0 and at the right z = 10
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Chapter 5

How to Construct Flat Band Lattices

At this chapter we examine in a more abstract way the coupled mode equations we have considered all
over this work. After that we present the basic idea of how to construct flat band lattices and we apply it to
construct 1d and 2d lattices.

5.1 General Model

A general equation which we’ve used till now, describes the variation of the amplitude, as have been
described at the derivation of Coupled Mode Equations is the following[9]

i
V5= Vit (5.1)
mMF#T

where 7, m describe the position vectors of the corresponding waveguides, z is the direction in which the
light propagates and V/,,, is the coupling term between the waveguide at the position 77 and the waveguide
at the position m, of course V,,,;, = Vi, due to the dependence of the coupling term from the distance
between the waveguides.

We are going to follow the same procedure as previous at every lattice we have studied in this work.
Assume that the solution of the eq. (5.1) is of the form

Yy = Ape TR (5.2)

where £ is as previous the spatial frequency, ¢'is the lattice wave vector and Az is the amplitude. Replacing
the eq. (5.2) into eq. (5.1) one gets the following :

dwn

Z Vnmwm = k¢n Z VnmAﬁLeiqtm
MFAT MFAT
= _kAﬁeicf-ﬁfikz _ Z VnmAmeiqﬁﬁifikz
s
multiplying both sides by e ~*77+?k* gives us
@A* = Z VamAge A ) (5.3)
MF#T

The last equation gives us the linear system such as these we’ve met at the Kagome and Lieb lattice. The
amplitude of each of the waveguides are given by Az and k(7) gives us the bands of the system. Notice
that the multitude of the distinct amplitudes A are equal to the number of the kinds of waveguides, i.e if
we speak about a triatomic lattice then we have three kinds of waveguides thus we have three distinct Aj.

Now we’ve set-up all the necessary ingredients which are necessary to describe as general as possible
the creation of a flat band lattice or FB lattice.
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5.1.1 From Dimer to Rhombic lattice

If we suppose that there are two waveguides which are spaced by a certain distance and there is an
interaction between them which is associated with the coupling term V' then we have in some sense a
trivial waveguide array named Coupler or Dimer. The Dimer shown at the Fig. 5.1 below

U1

(>

Figure 5.1: A Dimer, two waveguides associated with coupling term V'

The equations describes this simple system are the following

i%-‘r‘/?ﬁg =0
dz

i%-‘r‘/ﬂh =0
dz

If we suppose that we have solutions of the form

wl —_ Aleiqfik:z

1/}2 _ A2eiq7ikz

So we can conclude easily that the eigenvalue problem for this system is the below

0 Vv A1 -k Al

V 0| |Ay| Ay
the above matrix has eigenvalues \; » = £V, thus the dispersion relation is k1 2 = FV.
Eigenvectors corresponds to the eigenvalues

oo

So the modes of the Dimer are of the form [+a, +al,[—a, +a] and for simplicity from now on we will write
[+, +],[—, +]. We have to declare that from now on with the term mode we speak about the eigenvectors
of the system (for example the Dimer we saw). From now on in this chapter we will call the components
of the modes as amplitudes for our convenience. We often consider as a component of the mode the real
constant which multiply the sinusoidal at the eigenvectors. If we add a waveguide between two Dimers as
the Fig. 5.2 shows, we compose a more complicated system .

1 Py

() P

Figure 5.2: A system consists of two Dimer connected with a central waveguide and the coupling terms

It is easy to verify that the mode [—, +] of the Dimer continue to exist as a mode in the extended system if
we have zero amplitude at the central waveguide. Therefore the system has the mode [—, +, 0, —, +] where
the ordering of the mode corresponds to the ordering of the waveguides, i.e [)1, 2, 13,4, 15]. Often
the waveguides are called sites and the central waveguide of the last case called connector site and it is
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notated as .. We can see that the [—, +,0, —, 4] is a mode from eq. (5.3) and if we suppose that there is
no phase difference between the waveguides, i.e the term e*7(™~7) is neglected.

Y3:—k-0=V(e—a+a—a)=0
Y —k(—a)=V(+a)+0=k=V
Yo —k(+a)=V(-a)+0=k=V

the equations for ¢3, 14 are similar with the cases 11, 1. Notice that the mode [+, 4] of the Dimer is not
a mode of the eftenxed system because it will change the 0 (zero) amplitude of the central waveguide (13).
Now we can extend the system of the Fig. 5.2 to the full lattice which is known as Rhombic or Diamond
lattice. The equations which describes the Rhombic lattice are

Un

Wn,
Un

Figure 5.3: The Rhombic or Diamond lattice with its unit cell

du,, _
i% F Vo, 4V (Wt +wn) =0 (5.4)
.dvy, =
i +Vu, +V (wpo1 +wy) =0 (5.5)
2
dw, -
l% +V(un+un+1 +Un+vn+1) =0 (5.6)

and if we suppose solutions of the form u,, = ue*9="~"*= v, = vel@=n=tkz 4 = e’ (nH1/2)=ikz G here

q. is the wave number (it isn’t a vector because the lattice is repeated over one direction). Replacing the
three wave solutions into the eq. (5.4) - (5.6) gives us the following :

ku+ Vv + 2V cos (¢, /2) w =0
kv 4 Vu+ 2V cos (¢ /2) w =0
kw + 2V cos (gz/2) u+ 2V cos (¢ /2) v =10

or equivalently

0 1% 2V cos (g2/2) | [u u
|4 0 2V cos (qq /2 v|=—k|v
2V cos (¢z/2) 2V cos (¢z/2) 0 w w

The bands and the modes are associated with the eigenvalues and the eigenvectors of the above linear
system.

- v 2V cos (g4 /2)
v -2 2V cos (¢4/2)| =0
2V cos (¢u/2) 2V cos (q4/2) —A
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ol Y 2V cos (q2/2)| v 2V cos (2 /2)
2V cos (¢./2) = 2V cos (¢2/2) —A
+2V cos (qm/2) 2V cos (%/2) 2V cos (%/2) -

& 2 (W2 = 4V2cos? (4,/2) ) = V (-AV = 472 cos? (4,/2) )
+2V cos? (¢5/2) (ZVV cos® (¢z/2) + 2AV cos® (qz/Q)) =0
& =X+ 4AV2 cos? (g, /2) + AVZ + 4V V2 cos? (¢./2)
+4VV? cos? (g2 /2) 4+ 4AV? cos? (g2 /2) =0
e S (V2 + 8V2 cos? (qI/Z)) +8VV?cos® (¢,/2) =0

s A+V) (f)\z + AV + 8V cos? (qx/Q)) =0

S A =-V,\a3= <V:|: \/V2 + 32V2 cos (qz/Q)) /2

So there is one flat band. We are interested to find the corresponding mode of the band A = —V or k = V.

So we have the following

\%4 \%4 2V cos (q4/2) 1
|4 14 2V cos (g2/2) 1+
2V cos (¢z/2) 2V cos (qz/2) Vv
Vv 14 2V cos (q4/2) _ 2V cos(an/2)
= 0 0 0 1
2V cos (%:/2) 2V cos (qx/2) v N
vV Vv 2V cos (qw/2)
=10 0 0
0 o0 “Vietel2) |y

or equivalently

—4V?2cos? (¢z/2) + V2
Vv

w=0<« if V? #4V? cos? (qw/2),w:O
Vu+ V=0 u=—v

So the mode is [—, +, 0], therefore we have verified that we have easily said above.

The key for the construction of the Rhombic lattice are the symmetry of the position at which the

connector waveguide was placed.

5.1.2 From Trimer to Cross and Sawtooth Lattice

We consider a Trimer which is a reasonable extension, in some sense, of the Dimer which has just
examined. Let’s imagine three waveguides in a row as we observe at the Fig. 5.4, the waveguides are placed
in horizontal ordering with equal separation distances among them and therefore equal coupling terms
V. We will use the Trimer to construct two different lattices. The first step is to calculate the bands and
the modes of the Trimer and the procedure follows. Firstly, we consider the equations which describe the

system

i v, — 0
dz

(5.7)



5.1 General Model 44

1 o 3

O O
Vv Vv

Figure 5.4: A Trimer, three waveguides and the associated coupling terms

dip

ZE‘FV(?/H +13) =0 (5.8)
i3 L v =0 (5.9)
dz

We suppose that the solution is of the form 1); = Aje ™% | 1hy = Age?@= k2 )y = Aze?192—7k% So the
eq. (5.7)-(5.9) gives us

(5.7) = kA, 4+ VAgelts =0
(5.8) = kAy +V (Ale*iqz n Agez‘qz) —0
(5.9) = kA3 4+ VAge 9= =0

or equivalently

0 Veiqm 0 A1 A1
V@iiqz 0 Vei‘h A2 =k A2
0 V@iiqw 0 Ag A3

We are going to find the bands and the modes.

- C1 0
a1 A |=0
0 & —-X

where ¢; = Ve'? and 77 is the complex conjugate of ¢;.

- C1
A

& A ()\2 - cla) e (M) =0
S =X 42 e1er =0
So the bands are A} =0, Ay 3 = +V2V

S =)\ *Clcol El)\:()

The procedure for the modes follows.

For \ =0
0 ¢ O
g 0 , exchange between the 1st row and the 2nd
0 @ 0
g 0 o g 0 o
=10 ¢ 0 -2 =0 ¢ 0
0 @ 0 J‘F 0 0 O
Therefore

61A2 =0¢& (61 7£ O)AQ =0
GlAL +cAs =0 A = —Z:lAg
1
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So the mode corresponds to A = 0 is [—, 0, +].

For A = /2V.
—\/§V C1 0 % —\/EV C1 0
3 V2V c1 3+ = 0 ~V/V?2 c1 LIy
0 o V2V 0 o1 —/2V 1+
—\/EV C1 0
= 0 —V/\/§ C1
0 0 0

Thus we have

A2 = \/ieiqug
C1 2iqy
Ap = — Ay = it A
1 \/§V 2 3

Thus the mode corresponds to A = v/2V is [+, +V/2, +].
Finally for A = -2V

V2V ¢ 0 Iy Vv c1 0
g V2V o J + = 0 V/IV2 o vz
0 o V2V 0 o V2V +

\/§V C1 0
=1 0 V/IV2 o
0 0 0

So

Ay = —\/§€in Asg
Al = 6%% As

Therefore the mode corresponds to A = —v/2V is [+, —/2, +].

Now we will look one by one the modes we have found. The mode [+, ++/2, +] can’t be the starting
point where we can connect a connector waveguide in order to create a more complicated system of waveg-
uides. The reason for this is that there is no change of sign between its components, consequently if one
connects a connector waveguide at the Trimer which is exciting the last mode and the connector waveg-
uide has zero amplitude then it is obvious from eq. (5.1), if we again neglect the terms etd(M=1) that the
amplitude of the connector waveguide will not remain unchanged :

dipe

—1
dz 1z=0

= Vo1 (+1) + Voo (+V2) + Vg (+1)

where the 1. describes the amplitude of the connector waveguide, V,;,i = 1,2, 3 describes the coupling
terms between the connector waveguide and the rest waveguides, which forms the Trimer.

Suitables modes which presents alteration of sign are the other two modes, i.e [—, 0, +] and [+, —v/2, +].
We consider firstly the first of the two modes and then the second, we are going to create two different
lattices.

5.1.2.1 Cross Lattice

The construction begins from the fact that we have two Trimer and between them we place a connec-
tor waveguide as the Fig. 5.5 shows. This system must have as mode the mode which is consisted of the
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Figure 5.5: Two Trimers connected with a central (connector) waveguide with one connection from each of
the Trimers to the central waveguide

[—, 0, +] at the two Trimers and zero to the connector waveguide. At the Fig. 5.6 we see the possible modes
! to which we have resulted without deep investigation but using the fact that we seek for cancellation of
the amplitudes at every waveguide and mainly at the connector waveguide.

Figure 5.6: The sign of the possible modes of the composed system

In order to find all the possible flat bands, one must construct the full lattice which is shown below at
the Fig. 5.7 and is named Cross lattice.
Un,
IU” . Zn T .

-

Figure 5.7: The Cross lattice and its unit cell

o
o—
£
e

As we can see there is 4 kind of waveguides and the lattice which extends in one direction. The basic
equations governing the propagation of the light along the waveguides are the following

z‘dﬂ +Vuv, =0 (5.10)
dz
dv, /
'LE“FV(Un—i—wn)‘FV (anl +Zn) =0 (5-11)

!'The meaning of the mode here is not the same with previous , we mean only the sign of each of the components of the composed
system. For example + at the figure might means ++/2 or +2 or something different. As long as the constant is unknown we called
it possible mode.
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dwy,
2 Ve, =0 (5.12)
dz
i E LV (0 + Uny) = 0 (5.13)
dZ n n+1) — .
and the form of the solution is assumed to be u, = wue!%="kz ¢ = pel®=n=ikz 4 = eiden—ikz
2y = 2€'% (n+1/2)=ikz Therefore we get the following
ku+Vu=0
kv +V(u+w) 42V’ cos (¢, /2) 2 =0
kEw+Vv=0
kz+ 2V cos (qz/2) v =0
or equivalently
0 Vv 0 0 U u
Vv 0 Vo 2V'cos(q/2)| |v g lY
0 Vv 0 0 w| w
0 2V'cos(qz/2) O 0 2 z
The eigenvalue are given
-A 14 0 0
Vv -A Vo 2V’cos (¢./2)| 0
0 14 - 0 -
0 2V'cos(qz/2) 0 -
-2 0 Vv 0 y Vv -
Rl ’ 0 )\’ V2V cos (go/2) —A| T2V 08 (9/2) |17 cos (¢z/2) 0
-A 0
-V (V‘ 0 _)\D =0
& \? ()\2 — 2V —4V"? cos® (q$/2)> =0
So the bands are
A2 =0, Aog = :I:\/QV2 +4V7? cos? (qz/2)
Modes for A = 0 are given from the following
0 1% 0 0
14 0 V2V’ cos (qu/2)
, exchange between the 1st row and the 2nd
0 Vv 0 0
0 2V’'cos(gz/2) 0 0
Vv 0 V2V’ cos (gz/2)
0 1% 0 0 ~1
=
0 v 0 0 3 +
0 2V'cos(q;/2) O 0
14 0 V2V’ cos (q4/2)
0 %4 0 0 —2V/ cos(qz /2)
- v
0 0 0 0
0 2V'cos(qz/2) O 0 +
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=v=0

V/
u=—w-— 27 cos (¢2/2) 2

So the modes are [—, 0, +,0] , [—VV/, 0,0, —I—} for cos (qI/Q) = 1/2, the first mode is that we are looking

for because this verify our hypothesis that the mode of Trimer [—, 0, +] with 0 to the connector waveguide
i.e the mode [—, 0, +, 0] exist as a mode of the periodic lattice (i.e Cross lattice).

5.1.2.2 Sawtooth Lattice

Returning back to the modes of Trimer this time we will use the third one which is [, /2, —]. At
this time we connect two waveguides of each of the Trimers to the central waveguide, of course it doesn’t
matter which one because as we can see the mode we mentioned is the same at the first and third component.
Therefore we do the connection as usual, taking two Trimers and connected with the central waveguide as
the Fig. 5.8 shows. Let’s see what must be held so that the mode of the Trimer exist as a mode of the

Figure 5.8: Two Trimers connected with a central waveguide with two waveguides of each of the Trimers
connected to central waveguide

new system. If we excite the connector waveguide with zero amplitude and the left Trimer as the mode
[—, V2, —] shows us, i.e [{1, V2, ¥3,0.] = [~a,4+V/2a, —a, 0], then from the relation (5.3) (neglect the
phase difference) we can export the below relation

k. = V'(V2a) — Va+ V(0) + V'(0)
s 0=a(V'V2-V)

e

Notice that the amplitudes of the second Trimer are considered as zero.

Now we have to show that for the full Sawtooth lattice there is a flat band for the ratio of the coupling
terms we told above. There is the Sawtooth lattice at the Fig. 5.9 which depicts the unit cell with continuous
line and a hypothetical with dashed line. Due to the symmetry of the distances and therefore of the coupling
terms we can reduce the system to just two waveguides, although the hypothetical unit cell ? is not exactly
a unit cell but it shows us how to make more easier the calculations.

- ="

Up :

|

Unp Wp, |
|

Zn |

—__J

Figure 5.9: Sawtooth lattice and its unit cell

2 The hypothetical unit cell is not that which if i repeated over the z axis i construct the full lattice.
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The equations describe the propagation of the light along the waveguides are the following.

du,
PV (00 00m) V(g 1) = 0 (5.14)
dvy,
i +V (up + tpy1) =0 (5.15)

We consider plane wave solutions, i.e. solutions of the form u, = ue’%@n="z y i (n+1/2)—ikz

Consequently the eq. (5.14),(5.15) become :

n = ve

ku + 2V cos (¢ /2) v+ 2V’ cos (gz) u =0
kv + 2V cos (¢5/2) u =0

St S ] R

The eigenvalues are given from the following.

2V'cos (qz) — A 2V cos (q4/2)

2V cos (qu/2) - =0

& A% —2X\V’ cos (g;) — 4V? cos® (g, /2) = 0

Ao = V'cos(q.) & \/V’2 cos? (qz) +4V2 cos? (5 /2)

2
=V’ | cos(qs) + \/1 +4 (“/{,2 — 1) cos? (qm/2) + 4 cos? (qz/Q)

where we have concluded using that the cos (¢;) = 2 cos? (¢z/2) — 1. Suppose that the 3 = /2 then we
get

Moo=V (cos (qz) + \/1 + 4 cos? (g /2) + 4 cos* (qx/Q))
=V (cos (gz) + (cos (gz) + 2))
So the flat band is for Ay = —2V" and % = /2. The relation between the amplitudes of the mode is

= \Cisc(ozw()qj-/i)v for cos (q,) # —1

u=0,v=0for cos(g,) +1=0and cos (g,/2) # 0
v =0 for cos(g;) + 1 =0and cos (¢q;/2) =0

5.2 Lieb Lattice

Let’s recall the Lieb lattice which is a FB lattice. At this section we will study how one can conclude
to this lattice starting from a smaller system in similar way with the things we have already seen at this
chapter. Suppose we have an array of waveguides as the illustration in Fig. 5.10 (left), it is understood that
this array is a part of the Lieb lattice. At the right we see an excitation which is exactly the excitation we
saw at the chapter of the Lieb lattice were we excited the waveguides of type v and w. The point here is
that at the corners of the waveguides excitation (right) we have zero amplitudes thus these waveguides can
be used as connector waveguides. This means that we can reconstruct the Lieb lattice from the mini array
presented here if we connect the mini array in the way that the Fig. 5.11 shows.
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Figure 5.10: A mini array (left) and one of its modes (right)

We can apply the same idea, i.e using the zero amplitudes waveguides of a mode of the mini array as
connector waveguides to produce other lattices. Another mode of the mini array is that depicted at the Fig.
5.12 (left) which can be the starting mini array from which we construct a new lattice, via connecting the
zero amplitude waveguides of the mode with a similar way as previous. Hence if we take two mini arrays
connected with a central waveguide as the Fig. 5.12 shows, then we have constructed the Lieb 2 lattice.
Notice that it is hard to find the bands of the new lattice because it has 10 waveguides into its unit cell in
contrary with the Lieb lattice has only 3, hence we can approximate the bands with numerical methods.

5y

Figure 5.11: A miniarray (left) and one of its modes (right)

Figure 5.12: A mode of the mini array (left) and the construction of Lieb 2 lattice and its unit cell (right)
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