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Περίληψη

Σκοπός αυτής της εργασίας είναι να αναλύσουμε και να δείξουμε αριθμητικά τί είναι επίπεδη ζώνη ενός
φωτονικού πλέγματος. Οι διαφορικές εξισώσεις που μελετάμε εξάγονται απο την θεωρία συζευγμένων
ρυθμών ( Coupled Mode eory ) για οπτικούς πυρήνες και περιγράφουν την μεταβολή του πλάτους του
πεδίου του πυρήνα ( ή γενικότερα των κυματοδηγών) κατα την διεύθυνση διάδοσης του ηλεκτρομαγνητικού
πεδίου. Το ηλεκτρομαγνητικό πεδίο κάθε πυρήνα επηρεάζεται απο την ύπαρξη ηλεκτρομαγνητικού πεδίου
στους γειτονικούς πυρήνες και αυτή η μεταβολή εκφράζεται μέσω του πλάτους.

Αρχικά εισάγουμε κάποιες βασικές έννοιες οδεύοντων κυμάτων όπως ταχύτητα φάσης, ταχύτητα
ομάδας, σχέση διασποράς και τέλος την έννοια της επίπεδης ζώνης η οποία είναι μια επέκταση της σχέσης
διασποράς. Σε επόμενο στάδιο βλέπουμε κάποια πλέγματα τα οποία δεν έχουν επίπεδες ζώνες και στα
οποία μέσω της ταχύτητας ομάδας και άλλων μεγεθών ελέγχουμε την κατεύθυνση της δέσμης.

Αργότερα θεωρούμε τα πλέγματα Kagome και Lieb στα οποία εάν θεωρήσουμε αλληλεπίδραση μεταξύ
των πρώτων γειτόνων των κυματοδηγών υπάρχουν επίπεδες ζώνες και οι οποίες παύουν να υφίστανται
με την θεώρηση επόμενων (δεύτερων) γειτόνων. Βλέπουμε επίσης και διάφορα αριθμητικα αποτελέσματα
για κάθε περίπτωση.

Κλείνοντας παρουσιάζουμε την ιδέα του πώς μπορεί κανείς να φτιάξει πλέγματα με επίπεδες ζώνες
απο την ομώνυμη δημοσίευση. Ξεκινώντας απο ένα θεμελιώδες σύστημα κυματοδηγών βρίσκουμε τις
λύσεις που υποστηρίζει. Έπειτα επεκτείνουμε με έναν συγκεκριμένο τρόπο το θεμελιώδες αυτό σύστημα
και ψάχνουμε τι σχέσεις πρέπει να ισχύουν ούτως ώστε οι λύσεις που υποστηρίζονται απο το θεμελιώδες
σύστημα σε απομόνωση να συνεχίσουν να υπάρχουν και στα θεμελιώδη συστήματα που υπάρχουν στο
επεκταμένο. Τέλος φτιάχνουμε τα περιοδικά πλέγματα, που προκύπτουν απο τα επεκταμένα συστήματα,
και βρίσκουμε τις ζώνες που εμφανίζονται σε αυτά.
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Abstract

In this work our aim is to describe analytically and show numerically what is the flat band of a photonic
laice consisted of waveguides. e differential equations that we shall see later are derived from the
CoupledMode Equations which describe the variation of the amplitude of the electromagnetic field between
fiber cores or ”waveguides” as are called. e propagation of the electromagnetic fields are affected of the
neighbouring fields of the waveguides so we consider various laices of the waveguides and therefore
various differential equations which describes them.

Initially we provide basic concepts of travelling waves such as phase velocity, group velocity and dis-
persion relation. Band and therefore the flat band, which is a specific type of band, is an extension of the
dispersion relation for periodic systems. Aer that we consider some laices 1d or 2d which have no flat
bands and we observe various excitations of the fields for each of them.

Later we examine the Kagome and the Lieb laice which possess flat bands and we see some excita-
tions of them. We examine the excitations of these laices considering interaction between only nearest
neighbours at the first time and at the next stage we consider interaction between nearest and next near-
est neighbours. At both of the laices the flat bands vanishing with the consideration of the next nearest
neighbours .

Finally we present an idea of how to construct flat band laices based on the corresponding paper which
is referred. We start from an initial (fundamental) system and we find the supported solution of this system.
Next we are extend the fundamental system in a specific way and we look for relations in order to remain
as solution to the extended system, the solution of the fundamental system in isolation. Aer that we
construct the full periodic laice which is constructed by extend infinitely many times the fundamental
system as previous.
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Chapter 1

Introduction

In this chapter we will introduce some basic concepts of this work. At the beginning we will present the
fundamental ideas of waves phenomena, the phase velocity which express the speed of a single ”particle”
of a wave when we have only one wave. Later we consider a wave which is consisted of superposition
of waves ( i.e sum of cosines ) and we make clear what is the meaning of the group velocity which is the
velocity of the ”particles” moving as a group. Aer that the basic notion that governs this work is presented,
the dispersion relation, from which the flatness of a band can be resulted. Finally we are going to speak
about the equations describing the propagation of each of the field that we shall see later, the coupled mode
equations.

1.1 Phase velocity, Group velocity and Dispersion Relation
Linearity
e vast majority of equations we will meet so far at this work are linear. is means that if u1 and u2 are
solutions of a linear differential equation then any function of the form c1u1 + c2u2 (c1, c2 constants) is
also a solution. Let us see an example.
Assume that we have the so-called wave equation in one space dimension :

∂2u

∂t2
= c2

∂2u

∂x2
(1.1)

It is easily verified that, if u1 and u2 are solutions of the (1.1), then also will be the sum of them.

∂2(c1u1 + c2u2)

∂t2
= c2

∂2(c1u1 + c2u2)

∂x2

c1
∂2u1
∂t2

+ c2
∂2u2
∂t2

= c2c1
∂2u1
∂x2

+ c2c2
∂2u2
∂x2

c1

(
∂2u1
∂t2

− c2 ∂
2u1
∂x2

)
= c2

(
∂2u2
∂t2

− c2 ∂
2u2
∂x2

)
Hence if we have uk, k = 1, ..., n solutions , then

u(x, t) =
n∑

k=1

ckuk(x, t)

is also a solution which is called a superposition of solutions uk, k = 1, ...n .

Superposition of plane waves, dispersion relation
Suppose we have a wave with period T and a wavelength λ. Recall that the wavelength is the distance
between two consecutively peaks of a wave, and T (period) is the time needed for a peak to displaced by λ.
e phase velocity (vp), is given from

vp =
λ

T
(1.2)
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e last expression tells us the rate of a point of the wave that propagates along the propagation direction.
Now if we introduce the wavenumber k as k = 2π

λ and the angular frequency ω = 2πf , equivalently one
can define as the phase velocity the below quantity

vp =
ω

k
(1.3)

To understand this intuitively we have to observe the displacement of a single point of a wave. Let’s suppose
that we have the wave cos (k1x− ω1t), at t = 0 the first peak is located at k1x = 0 ⇒ x = 0, at the time
t = t′ the point which previous were located at x = 0 is now located at k1x − ω1t

′ = 0 ⇒ x = ω1

k1
t′. So

the quantity k1x− ω1t must remains unaltered over time. In a more general way :

k1x− ω1t = con.⇒ d (k1x− ω1t)

dt
= 0⇒ k1

dx

dt
− ω1 = 0⇒ dx

dt
=
ω1

k1

So it’s reasonable to define the phase velocity as in eq. (1.3). Of course the idea of phase velocity is gener-
alised to the complex wave function of the form :

A exp(ikx− iωt) = A
(
cos(kx− ωt) + i sin(kx− ωt)

)
(1.4)

where it is obvious that again the real and imaginary part are oscillating with the phase velocity we have
defined at (1.3).

Group Velocity
To figure it out what is the group velocity we should see what is the result of two waves with equal am-
plitude superposed. Suppose we have two waves of the form of (1.4) with k2 = k1 + ∆k and ω(k2)

dk ≈
ω(k1) +

dω(k1)
dk ∆k ,

exp
(
i(k1x− ω(k1)t)

)
+ exp

(
i
(
k2x− ω(k2)t

))
=

exp

(
i

(
k1 + k2

2
x− ω(k1) + ω(k2)

2
t

))
exp

(
i

(
k1 − k2

2
x− ω(k1)− ω(k2)

2
t

))

+exp

(
i

(
k1 + k2

2
x− ω(k1) + ω(k2)

2
t

))
exp

(
−i
(
k1 − k2

2
x− ω(k1)− ω(k2)

2
t

))
=

= exp

(
i

(
k1 + k2

2
x− ω(k1) + ω(k2)

2
t

))(
exp(...) + exp(...)

)
=

= exp

(
i

(
k1 + k2

2
x− ω(k1) + ω(k2)

2
t

))
2 cos

(
k1 − k2

2
x− ω(k1)− ω(k2)

2
t

)

≈ exp

(
ik1

(
x− ω(k1)

k1
t

))
2 cos

(
−∆k

2

(
x− dω(k1))

dk
t

))

efirst term oscillates with the phase velocity vp = ω(k1)
k1

, and the second term, which forms the behaviour
of every point of the wave, oscillates with speed

dω(k1)

dk
(1.5)

Generally speaking the waves have an angular frequency ω that depends on the wavenumber k (and vice
versa), in order to exist as a solution of differential equation that admits wave solutions. So we have used
the notation ω = ω(k). It would be explicated further and in more general way below why the last quantity
is called group velocity.

Any wave of the form (1.4) can be wrien in the following form

Ψ(x, t) =
1

2π

∫ +∞

−∞
Ψ̃(k) exp

(
i(kx− ωt)

)
dk (1.6)
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where ω = ω(k) as will be explained below (see dispersion relation). [2] Expanding the ω(k) as follows

ω(k) ≈ ω(k0) + ω′(k0)(k − k0)

and replacing the last into eq. (1.6) we obtain

Ψ(x, t) ≈
1

2π

∫ +∞

−∞
Ψ̃(k) exp

[
i
(
k0x− ω(k0)t

)
+ i
(
(k − k0)x− ω′(k0) (k − k0) t

)]
dk

or equivalently

Ψ(x, t) ≈
exp

[
i(k0x− ω(k0)t)

]
2π

∫ +∞

−∞
Ψ̃(k) exp

[
i(k − k0)

(
x− ω′(k0)t

)]
dk

(1.7)

e last integral consists of a superposition of infinitely many waves that each of which are oscillating with
velocity ω′(k0) which is called group velocity. Of course the first term oscillates with the phase velocity
ω(k0)
k0

. e term group velocity coined from the fact that we have infinitely many waves with the same
speed and the superposition of all of these forms the behaviour of the one, which moves with the phase
velocity.

Dispersion Relation
e relationship between the angular frequency ω and the wavenumber k (or reverse) is called dispersion
relation and characterize every equation admits solution of the aforementioned wave form. Consider the
following equation

ut = iuxx

and suppose there is a solution u(x, t) = exp
(
i (kx− ωt)

)
where k and ω are real. Replacing the last one

into the equation , we get :

−iω exp
(
i (kx− ωt)

)
= i3k2 exp

(
i (kx− ωt)

)
⇒

ω = −k2

e last relation is the dispersion relation of the equation ut = iuxx. Of course there are many dispersion
relations, for example utt = uxx where now ω2 = k2 therefore ω = ±k so we have two relations in this
dispersion relation. e concept of ”band” is the extension of the dispersion relation for periodic systems
and we introduce it at the end of the next section.

1.2 Coupled Mode Equations and Waveguides
In this section we will derive the basic equations governing the majority of phenomena that exist in

this work, the so-called Coupled Mode Equations. Before that, we have to say that the with the word
”mode” we mean an electromagnetic field whose intensity remains constant in the direction of propagation
(z axis). Moreover with the term ”transverse field of the mode” we technically speak about the first eigen-
function of the 2d helmholtz equation (see eq. (1.10)) where we have a discrete spectrum of eigenvalues. e
”transverse” is referred to the fact that we have oscillations of the electromagnetic field perpendicular to its
propagation direction (z axis). In this derivation for simplicity we base the analysis on the scalar theory and
we suppose that we have p cores, generally different, that run parallel into the direction of propagation (z
axis). In addition we assume that the cores are oriented in the z-direction and are described by the refractive
index nm(x, y), m = 1, ..., p. So nm is equal to n0 everywhere, except the region occupied by the m−th
core, where it is equal to ngm , as we can see at the Fig. 1.1 .

Suppose that the electric field is polarized in the y-direction, then the equation which describes the scalar
electric field Em(x, y, z) when them-th core is in isolation is given by :

∇2Em(x, y, z) + nm
2(x, y)k20Em(x, y, z) = 0 (1.8)
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Corem - th

n0 ngm n0

x

y

b z

Figure 1.1: Refractive index nm(x, y)

where nm is the refractive index which we described above, k0 = 2π
λ0

is the wavenumber and λ0 is the
vacuum wavelength. Notice that the product n2mk20 gives us the right wavenumber for every (x, y) ∈ R2

(inside or outside the fiber-core).
We seek solutions of the (1.8) of the form

Em = Fm(x, y) exp (iβmz) (1.9)

where Fm (m = 1, ..., p ) is the transverse field of the mode in them-th guide and βm is the mode propa-
gation constant. Replacing eq. (1.9) in the eq. (1.8) gives us the following:

∂2Em

∂x2
+
∂2Em

∂y2
+
∂2Em

∂z2
+ n2mk

2
0Em = 0

⇒ ∂2Fm

∂x2
exp (iβmz) +

∂2Fm

∂y2
exp (iβmz)− β2

mFm exp (iβmz)

+n2mk
2
0Fm exp (iβmz) = 0

or equivalently
∂2Fm

∂x2
+
∂2Fm

∂y2
+
[
n2mk

2
0 − β2

m

]
Fm = 0 (1.10)

e whole system consisted of p parallel cores is described by a refractive index n(x, y) resulted from
combining the refractive indices of each of the cores, i.e n(x, y) is equal to ngm in the region occupied by
them-th core and equals to n0 otherwise. e scalar wave equation for the whole system is :

∇2E(x, y, z) + n2k20E(x, y, z) = 0 (1.11)

An essential assumption of the coupled mode theory is that the solution of (1.11) can be wrien as a super-
position of modes of each of the cores, i.e sum of the form (1.12)

E(x, y, z) =

p∑
m=1

Am(z)Fm(x, y) exp (iβmz) (1.12)

whereAm(z) is called ”amplitude” and it tells us how the electromagnetic field travels from a core to another
core. us replacing (1.12) into (1.11) we get

p∑
m=1

∇2
[
FmAm exp (iβmz)

]
+

p∑
m=1

[
n2(x, y)k20AmFm exp (iβmz)

]
= 0

⇒
p∑

m=1

[
Fm

d2

dz2
[
Am exp (iβmz)

]]
+

p∑
m=1

(∂2Fm

∂x2
+
∂2Fm

∂y2

)
Am(z) exp (iβmz)


+

p∑
m=1

[
n2(x, y)k20AmFm exp (iβmz)

]
= 0
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⇒
p∑

m=1

(d2Am

dz2
+ 2iβm

dAm

dz
− β2

mAm(z)

)
Fm exp (iβmz)


+

p∑
m=1

(∂2Fm

∂x2
+
∂2Fm

∂y2

)
Am exp (iβmz)


+

p∑
m=1

[
n2(x, y)k20AmFm exp (iβmz)

]
= 0

using eq. (1.10)

⇒
p∑

m=1

(d2Am

dz2
+ 2iβm

dAm

dz
− β2

mAm

)
Fm exp (iβmz)


+

p∑
m=1

[(
β2
m − n2mk20

)
FmAm exp (iβmz)

]

+

p∑
m=1

[
n2(x, y)k20AmFm exp (iβmz)

]
= 0

or equivalently

p∑
m=1

(d2Am

dz2
+ 2iβm

dAm

dz

)
Fm exp (iβmz)

+

p∑
m=1

[
k20

(
n2 − n2m

)
AmFm exp (iβmz)

]
= 0

We can neglect the terms d2Am(z)
dz2 if we consider amplitudes that vary slowly along the propagation direc-

tion z. Due to the Kerr effect the refractive index n2 − n2m is affected by the intensity of the electric field
and so we introduce a perturbation as follows

n2 − n2m → nc
2 − n2m + γ

∣∣∣∣∣∣
p∑

m=1

AmFm exp (iβmz)

∣∣∣∣∣∣
2

where nc is the refractive index resulted from combining the refractive indices nm, m = 1, ..., p , i.e nc is
equal to nm in the region occupied by them-th core otherwise is equal to n0. Replace the last formula into
the equation we obtain

p∑
m=1

[(
2iβm

dAm

dz
+ k20

(
nc

2 − n2m
)
Am

)
Fm exp (iβmz)

]

+γk20

p∑
m=1


∣∣∣∣∣∣

p∑
m′=1

[
Am′Fm′ exp (iβm′z)

]∣∣∣∣∣∣
2

AmFm exp (iβmz)

 = 0

(1.13)

Our aim is to find how a specific amplitude Al(z) of the core l, changes along the propagation direction z,
i.e the term dAl(z)

dz . Multiplying the last equation by F ∗
l gives us

F ∗
l

p∑
m=1

[(
2iβm

dAm

dz
+ k20

(
nc

2 − n2m
)
Am

)
Fm exp (iβmz)

]

+k20γF
∗
l

p∑
m=1


∣∣∣∣∣∣

p∑
m′=1

[
Am′Fm′ exp (iβm′z)

]∣∣∣∣∣∣
2

AmFm exp (iβmz)

 = 0
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If we assume that there is no overlap between non-adjacent cores we can neglect the terms of the form
F ∗
l Fl′ for l′ < l − 1 and l′ > l + 1 because Fl and therefore F ∗

l is almost zero in the region where Fl′ is
large (its absolute value) and vice versa . So the last equation becomes

F ∗
l

l+1∑
m=l−1

[(
2iβm

dAm

dz
+ k20

(
nc

2 − n2m
)
Am(z)

)
Fm exp (iβmz)

]

+k20γF
∗
l

l+1∑
m=l−1


∣∣∣∣∣∣

l+1∑
m′=l−1

[
Am′Fm′ exp (iβm′z)

]∣∣∣∣∣∣
2

AmFm exp (iβmz)

 = 0

or equivalently

F ∗
l

l+1∑
m=l−1

[(
2iβm

dAm

dz
+ k20

(
nc

2 − n2m
)
Am

)
Fm exp (iβmz)

]

+γk20F
∗
l


∣∣∣∣∣∣

l+1∑
m′=l−1

[
Am′Fm′ exp (iβm′z)

]∣∣∣∣∣∣
2
 l+1∑

m=l−1

[
AmFm exp (iβmz)

]
= 0

but if we expand the sum :∣∣∣∣∣∣
l+1∑

m′=l−1

[
Am′Fm′ exp (iβm′z)

]∣∣∣∣∣∣
2

= |Al−1|2|Fl−1|2 +|Al|2|Fl|2 +|Al+1|2|Fl+1|2

+Al−1A
∗
l Fl−1F

∗
l exp

(
−∆bl,−1

)
+A∗

l−1AlF
∗
l−1Fl exp

(
∆bl,−1

)
+AlA

∗
l+1FlF

∗
l+1 exp

(
−∆bl,+1

)
+Al

∗Al+1Fl
∗Fl+1 exp

(
∆bl,+1

)
where∆bl,−1 = i (βl − βl−1) z and∆bl,+1 = i (βl+1 − βl) z. ere are 2 terms which are neglected and is
of the form Fl−1F

∗
l+1 and Fl+1F

∗
l−1 because they correspond to non adjacent cores. So now we can replace

the last sum into the equation to obtain :

F ∗
l

l+1∑
m=l−1

[(
2iβm

dAm

dz
+ k20

(
nc

2 − n2m
)
Am

)
Fm exp (iβmz)

]

+γk20F
∗
l

|Al−1|2|Fl−1|2 +|Al|2|Fl|2 +|Al+1|2|Fl+1|2 +Al−1A
∗
l Fl−1F

∗
l exp

(
−∆bl,−1

)
+A∗

l−1AlF
∗
l−1Fl exp

(
∆bl,−1

)
+AlA

∗
l+1FlF

∗
l+1 exp

(
−∆bl,+1

)
+A∗

lAl+1F
∗
l Fl+1 exp

(
∆bl,+1

) l+1∑
m=l−1

[
AmFm exp (iβmz)

]
= 0

So now if we represent the dAm

dz = A′
m and expand the sum, we take as a result

k20

(
n2c − n2l−1

)
F ∗
l Fl−1Al−1 exp (iβl−1z) + 2iβl|Fl|2A′

l exp (iβlz)

+k20

(
n2c − n2l

)
|Fl|2Al exp (iβlz)

+k20

(
n2c − n2l+1

)
F ∗
l Fl+1Al+1 exp (iβl+1z) + γk20|Fl|4Al|Al|2 exp(iβlz) = 0

where we have neglected terms which are very small due to the cubic or higher order of power and in
addition the corresponding cores have small overlapping modes, for example γFl−1|Fl−1|2 F ∗

l |Al−1|2Al−1
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exp(iβl−1z). Of course we’ve neglected terms of the form F ∗
mFm−1 due to the small overlapping of the

modes of the corresponding cores. Now if we integrate over the entire xy plane we get the following

k20

(∫
(n2c − n2l−1)F

∗
l Fl−1

)
Al−1 exp (iβl−1z) + 2iβl

(∫
|Fl|2

)
A′

l exp (iβlz)

+k20

(∫
(n2c − n2l )|Fl|2

)
Al exp (iβlz)

+k20

(∫
(n2c − n2l+1)F

∗
l Fl+1

)
Al+1 exp (iβl+1z) + γk20

(∫
|Fl|4

)
Al|Al|2 exp(iβlz)

= 0

Multiplying both sides by 1
2βl exp(iβlz)

∫
|Fl|2

we obtain

i
dAl

dz
+ κl,l−1Al−1 + κl,l+1Al+1 + γlAl|Al|2+δlAl = 0 (1.14)

where

κn,m =
k20
2βn

∫ (
n2c − n2m

)
F ∗
nFmdxdy∫

|Fn|2 dxdy
exp

(
i (βm − βn) z

)
, γl = γ

k20
2βl

∫
|Fl|4 dxdy∫
|Fl|2 dxdy

,

δl =
k20
2βl

∫ (
n2c − n2l

)
|Fl|2 dxdy∫

|Fl|2 dxdy
.

e κn,m are called coupling terms, γ is the Kerr effect constant and δl are called detuning terms. So the
last equations constitute the Coupled Mode eory Equations or Discrete Nonlinear Schrödinger
Equations and are valid form = 2, .., p− 1. Form = 1 the coupling coefficient to the le waveguide does
not exist, whereas form = p the coupling to the right waveguide is zero.
Waveguide in an abstract way in this work will be considered as something that can confine light as in
the case above of the cores. us with the ”waveguide array” or ”waveguide laice” or ”periodic laice”
or simple a ”laice”, is considered a number of waveguides ordered in a specific manner which is repeated
again and again (a periodic laice). With the orientation of the waveguide we mean the direction in which
the electromagnetic field will be propagated. Furthermore with the term ”unit cell of a laice” we mean the
minimum ”box” which if repeat it infinitely many times i will end up with the periodic laice.

Periodic laices are governed by equations similar to the (1.14) and with the ”similar” we mean that
at some cases the nonlinear terms ( e.g γ(k20/2βl) (

∫
|Fl|4 /|Fl|2) Al|Al|2 ) are neglected and other cases

we have to consider overlapping with non-adjacent waveguides. If we assume plane wave solution to the
last equations we obtain the dispersion relation which is consisted of the bands (as previous the dispersion
relation can have more than one relations) and if one band is constant then we say that we have a flat band.
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Chapter 2

Non Flat Band Lattices

In this chapter we present various laices, mono-atomic or diatomic and 1d or 2d. With the term ”mono-
atomic” is meant that we have one waveguide per unit cell and with ”diatomic” we have two waveguides
per unit cell. Of course these two terms are referred to a physical meaning which is not in the context of
this work. With the term 1d laice we referred to the dimension of the space the waveguides belong to, for
example if the waveguides are extending along a straight line then we put them mathematically at the real
line so the laice is 1d. In similar way 2ds waveguides are extending at a plane.

2.1 1d Mono-atomic Waveguide Lattice
Let’s suppose we have the following equation which describes the variation of the amplitude of the n-th

waveguide in a periodic laice [4].

i
dEn

dz
+ κ(En+1 + En−1) + γ|En|2En = 0 (2.1)

where En is the amplitude of the electromagnetic field of the n-th waveguide, κ is the coupling constant
between the neighbor waveguides and finally γ is the Kerr effect constant.
Assume that we have a plane wave solution, which is of the following form

En = Aei(qn−kz) (2.2)

where A is a real constant, q is the phase difference between adjacent waveguides and of course k = k(q)
is the dispersion relation. Substituting eq. (2.2) into eq.(2.1) we get

−i2k(q)En + Enκ(e
iq + e−iq) + γA2En = 0

k(q)En + En(2κ cos(q)) + γA2En = 0

En(k(q) + 2κ cos(q) + γA2) = 0

k(q) = −2κ cos(q)− γA2 (2.3)

e last relation is the band and is not constant, i.e k is not independent of q. For a given initial condition
the wave propagation is completely controlled by the dispersion relation k(q) [5]. At Fig. 2.1,2.2,2.3 we can
see the dispersion, the group velocity and the second derivative of dispersion relation. As we see from the
formula of the dispersion relation and the figures also, the dispersion relation is far from being flat.
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Figure 2.1: Dispersion relation (k) for κ =
0.1, γ = 0

Figure 2.2: Group velocity (dkdq ) for κ = 0.1, γ =
0

Figure 2.3: d2k
dq2 for κ = 0.1, γ = 0

2.1.1 Numerical Results
We will exciting some waveguides using a gaussian beam as initial condition. e ”beam” has the form :

En(z = 0) = e
−
(

n
n0

)2

eiq0n (2.4)

In fact every solution can be wrien in the form

En(z) =

∫ π

−π

A(q)ei(qn−kz)

e A(q) are the Fourier coefficients

A(q) =
+∞∑

n=−∞
En(0)e

−iqn

So in this case A(q) can be wrien

A(q) =
+∞∑

n=−∞
e
−
(

n
n0

)2

eiq0ne−iqn =
+∞∑

n=−∞
e
−
(

n
n0

)2

e−i(q−q0)n

e
∣∣A(q)∣∣ is a sharply peaked function around q0 so we can write the solution En(z) in the below form (as

in the group velocity)

En(z) ≈ exp
[
i(q0n− k(q0)z)

] ∫ +∞

−∞
A(q) exp

[
i(q − q0)

(
n− k′(q0)z

)]
dk
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So, as previous the group velocity told us at which direction and with what speed will the beam propagates,
the last form told us where the discrete wave propagates ( which direction ). Before we start to comment
the figures we have to say that for every numerical result we will see from now on at this work h is the step
at the z axis of the Runge-Kua (explicit) method we have used to make all the numerical schemes. If we
observe the Fig. 2.1-2.3 the positive maximum of the group velocity is at the π/2 and the negative minimum
is at the −π/2 so at the Fig. 2.4 and 2.5 we see the ”beam” propagates in the right and in the le direction
respectively with almost no diffraction due to the fact that the second order diffraction is vanishing for
q0 = −π/2, π/2 ( Fig. 2.3). At the Fig. 2.6 and 2.7 we see similar things, the ”beam” propagates at the right
direction and at the le respectively and in addition it presents a lot of diffraction since for q0 = −π/4, π/4
the diffraction term is not vanishing as we see at the Fig. 2.3. At the Fig. 2.8 the ”beam” propagates straight
but it has a lot of diffraction since at q0 = 0 the diffraction term have the positive maximum. Similar things
holds for the Fig. 2.9-2.13 but because the transport and the diffraction are much smaller due to the smaller
coupling term (κ = 0.1) we plot at the vertical axis the absolute value of the field and at the horizontal axis
the number of waveguide. So we can see the transport and the small diffraction.
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Figure 2.4: q0 = π/2, κ = 10, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.5: q0 = −π/2, κ = 10, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.6: q0 = π/4, κ = 10, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.7: q0 = −π/4, κ = 10, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.8: q0 = 0, κ = 10, γ = 0, , n0 = 5, h =
10−2, z = 4.5

Fig. 2.4-2.8 show the intensity of the field En (i.e |En| ) along the propagation length for every waveguide
for initial condition of the form (2.4)
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Figure 2.9: q0 = π/2, κ = 0.1, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.10: q0 = −π/2, κ = 0.1, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.11: q0 = π/4, κ = 0.1, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.12: q0 = −π/4, κ = 0.1, γ = 0, n0 =
5, h = 10−2, z = 4.5

Figure 2.13: q0 = 0, κ = 0.1, γ = 0, n0 =
5, h = 10−2z = 4.5

Fig. 2.9-2.13 show the intensity of the field En in y axis ( i.e |En| ) and the number of each waveguide in x
axis for initial condition of the form (2.4)
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2.2 1d Diatomic Waveguide Lattice
We have now two types of waveguides so we say that we have a diatomic laice. We assign a detuning

term to the waveguides, so waveguides of type u have a term +δun and the waveguides of type v have a
term −δvn as we can see at the eq. (2.5) and (2.6).

z

x

y un vn un+1 vn

Figure 2.14: waveguide laice

Below the equations describe the amplitudes of the electromagnetic fields of the waveguides:

i
dun
dz

+ κ(vn−1 + vn) + δun = 0 (2.5)

i
dvn
dz

+ κ(un + un+1)− δvn = 0 (2.6)

where δ it’s called detuning term. We will find the dispersion relation for the system of eq.(2.5)-(2.6). Sup-
pose the solution of the system is a planar wave of the form un = ueiqn−ikz , vn = veiqn−ikz,

kun + κvn(e
−iq + 1) + δun = 0

kvn + κun(1 + eiq)− δvn = 0

writing last two equation in matrix form :[
k + δ κ

(
e−iq + 1

)
κ(1 + eiq) k − δ

][
u
v

]
=

[
0
0

]
(2.7)

e only way to have non trivial solution is∣∣∣∣∣ k + δ κ
(
e−iq + 1

)
κ(1 + eiq) k − δ

∣∣∣∣∣ = 0⇔ k2 − δ2 − κ2(e−iq + 1)(1 + eiq) = 0

k2 = δ2 + κ2(cos(q)− i sin(q) + 1)(1 + cos(q) + i sin(q))

k2 = δ2 + κ2(cos(q) + cos2(q) + sin2(q) + 1 + cos(q))

k2 = δ2 + 2κ2(cos(q) + 1)

k(q) = ±
√
δ2 + 2κ2(1 + cos(q)) (2.8)

So now as we see at the (2.8) we have two non flat bands. ere are the dispersion relation, group velocity
and the second order diffraction at Fig. 2.15-2.17 for relatively big κ = 1 and at the next three Fig. ( 2.18 -
2.20 ) we see for good enough κ = 0.1 the same quantities.
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Figure 2.15: Dispersion relation (k) for κ =
1, δ = 1

Figure 2.16: Group velocity (dkdq ) for κ = 1, δ =
1

Figure 2.17: (d
2k
dq ) for κ = 1, δ = 1 Figure 2.18: Dispersion relation (k) for κ =

0.1, δ = 1

We are going to find the eigenvalues of the matrix (2.7)∣∣∣∣∣k + δ − λ κ
(
e−iq + 1

)
κ(1 + eiq) k − δ − λ

∣∣∣∣∣ = 0⇔ k2 − 2λk + λ2 − δ2 − 2κ2
(
1 + cos(q)

)
= 0

But k is given from eq. (2.8) so the remaining terms are

λ2 − 2λk = 0

thus we have two eigenvalues
λ1 = 0, λ2 = 2k

e corresponding eigenvector of eigenvalue λ1 = 0 is :(
k + δ κ

(
e−iq + 1

)
κ
(
1 + eiq

)
k − δ

)
←−

−
κ(1+eiq)

k+δ

+

, k + δ ̸= 0

⇒

k + δ κ
(
e−iq + 1

)
0 −2κ2(1+cos(q))+k2−δ2

k2−δ2 = 0


So the eigenvector corresponds to λ1 = 0 is[

−κ(e−iq+1)
k+δ

1

]
, cos(q) ̸= −1 or k ̸= −

√
δ2 + 2κ2(1 + cos(q))
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Figure 2.19: Group velocity (dkdq ) for κ =
0.1, δ = 1

Figure 2.20: (d
2k

dq2 ) for κ = 0.1, δ = 1

Similarly the second eigenvector is :(
−k + δ κ

(
e−iq + 1

)
κ
(
1 + eiq

)
−k − δ

)
←−

−
κ(1+eiq)

−k+δ

+

,−k + δ ̸= 0

⇒

−k + δ κ
(
e−iq + 1

)
0

−2κ2(1+cos(q))−δ2+k2

−k+δ = 0


So the eigenvector corresponds to λ2 = 2k is[

−−κ(e−iq+1)
−k+δ

1

]
, cos(q) ̸= −1 or k ̸=

√
δ2 + 2κ2(1 + cos(q))

Notice that last eigenvector doesn’t correspond to a solution since we are looking to solve the homogeneous
linear system as we see from the (2.7).
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2.3 2d Mono-atomic Waveguide Lattice
At this time we have placed the waveguides at the plane so we have a 2d waveguide laice as is depicted

in the following illustration. Furthermore we have one type of waveguide so we have a mono-atomic laice.

y
x

z

m,n

m, n+ 1

m− 1, n

m, n− 1

m+ 1, n

z

e laice is consisted of repeated squares over the whole xy plane. Each waveguide has as enumeration
two indices one for the vertical and one for the horizontal axis. e evolution of the field can be described
by the following coupled mode equation :

i
dum,n

dz
+ κ

(
um,n+1 + um−1,n + um+1,n + um,n−1

)
+ γ|um,n|2um,n = 0 (2.9)

If we assume that a solution of eq.(2.9) can be given by

um,n = Aei(qxm+qyn−k(q⃗)z) (2.10)

where q⃗ =
(
qx, qy

)
. Substituting eq.(2.10) into eq.(2.9) we get the following

−i2k(q⃗)um,n + κum,n

(
eiqx + e−iqx + eiqy + e−iqy

)
+ γA2um,n = 0

k(q⃗) + κ
(
2 cos(qx) + 2 cos(qy)

)
+ γA2 = 0

k(q⃗) = −2κ
(
cos(qx) + cos(qy)

)
− γA2 (2.11)

As we can see the dispersion relation (2.11) is no flat, i.e it depends on the vector q⃗ and is not constant. e
group velocity is given by

vg(q⃗) = 2κ
(
sin (qx) + sin

(
qy
))

the second order diffraction is the following

k′′(q⃗) = 2κ
(
cos (qx) + cos

(
qy
))

2.3.1 Numerical Results
At the Fig. 2.21-2.23 are illustrated the dispersion relation, group velocity and the second derivative

of dispersion relation. At the Fig. 2.24,2.25 we see the excitations for initial condition u10,10(z = 0) =
1, u10,11(z = 0) = −1, u11,10(z = 0) = −1, u11,11(z = 0) = 1 and u4,5(z = 0) = 1, u5,4(z = 0) =
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−1, u6,5(z = 0) = 1, u5,6(z = 0) = −1 respectively. As we observe there is much diffraction in both
cases. For every next numerical result, or ”excitation” as we called it, we have the numbers M,N . e
numberM shows us how many times the unit cell, over the the direction which shows the first primitive
cell, is repeated. Similarly the number N shows us how many times the unit cell, over the the direction
which shows the second primitive cell, is repeated. e primitive vectors here in this simple laice is
a⃗1 = (1, 0) and a⃗2 = (0, 1) these forms the unit cell. e unit cell here is a simple square which contains
only one waveguide.

Figure 2.21: Dispersion relation (k(q⃗)) for κ =
0.1, γ = 0

Figure 2.22: Group velocity for κ = 0.1, γ = 0

Figure 2.23: Second derivative of dispersion re-
lation for κ = 0.1, γ = 0

Figure 2.24: Excitation for κ = 0.1, γ = 0, h = 10−2,M = N = 20, at the le initial condition for z = 0
and at the right z = 5
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Figure 2.25: Excitation for κ = 0.1, γ = 0, h = 10−2,M = N = 9, at the le initial condition for z = 0
and at the right z = 4





19

Chapter 3

Kagome Lattice

At this chapter we will consider the so-called Kagome laice which is a 2d triatomic laice possesses a
flat band. Firstly we will see the first neighbour interactions between the waveguides where the flat band
exists and aer that we consider second neighbour interactions where the flat band is vanishing. Finally
we introduce a small random displacement at the position of the waveguides to examine numerically the
effect to the solutions corresponds to the flat band.

3.1 Coupled Mode Equations and Dispersion Relation
At the Fig. 3.1 we see the Kagome laice and its unit cell repeats 3 times (black parallelograms), the

hexagons which are formed is canonical hexagons.

b b b b b b b b b b

b b b b b

b b b b b b b b b b

b b b b b

b b b b b b b b b b

b b b b b

b b b b b b b b b b

b b b b b

Figure 3.1: Kagome laice and its unit cell

At the figure 3.2 below we see the geometry of the Kagome laice from different point of views and in
addition at the right part we see the enumeration of the waveguides. We have tree waveguides (or atoms)
in the unit cell so its a triatomic laice.

As we can see the laice is a 2d since the waveguides are extended in the xy plane and the field that
we will describe below propagate along the z axis. e enumeration of the waveguides is based on the two
primitive vectors considered here, a⃗1 and a⃗2, and are displayed at the right part of the figure with blue color.
Every waveguide of the laice has its own position vector and it is different for the different types of atoms
so the position vector of an arbitrary waveguide of type u say the waveguide um,n is R⃗m,n, for vm,n is the
R⃗m,n+R⃗v and similarly forwm,n is the R⃗m,n+R⃗w , where R⃗m,n = ma⃗1+na⃗2. It is clear that the position
vector describes the location of the respective waveguide if we start from the origin so for example if we
set at the origin the waveguide u0,0 then the position vector of the v0,0 is R⃗0,0 + R⃗v = R⃗v . Notice that
because of the symmetry of the laice the triangle consisted of the vertices um,n, vm,n, wm,n is equilateral
thus the vectors R⃗v and R⃗w have equal magnitude and in addition R⃗v = a⃗1/2 , R⃗w = (a⃗1 + a⃗2) /2. At the
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Figure 3.2: Kagome laice

b

b b b

b

wm,n

vm−1,n um,n vm,n

wm−1,n−1

b

b b b

b

wm,n

um,n vm,n um+1,n

wm,n−1

b b

b

b b

vm,n+1 um+1,n+1

wm,n

um,n vm,n

Figure 3.3: e first neighbours of each of the atoms

Fig. 3.3 are displayed the first neighbours of each of the atoms um,n, vm,n, wm,n, indicatively um,n has first
neighbours wm,n, vm,n, vm−1,n, wm−1,n−1 and all the distances from the central waveguide um,n to these
waveguides are equal.

Below we see the eq. (3.1)-(3.3) which have resulted from the coupled mode equations considering only
the coupling term κ between the first neighbour waveguides. As we can see all the neighbours have equal
coupling term because of the symmetry of the laice, i.e all the distances from any waveguide of any atom
to any first neighbour waveguide are equal.

i
dum,n

dz
+ κ

(
vm,n + vm−1,n + wm,n + wm−1,n−1

)
= 0 (3.1)

i
dvm,n

dz
+ κ

(
um,n + um+1,n + wm,n + wm,n−1

)
= 0 (3.2)

i
dwm,n

dz
+ κ

(
um,n + um+1,n+1 + vm,n + vm,n+1

)
= 0 (3.3)

Suppose we have the solution of the form :

um,n = ue−ikz+iR⃗m,n·q⃗ (3.4)

vm,n = ve−ikz+i(R⃗m,n+R⃗v)·q⃗ (3.5)

wm,n = we−ikz+i(R⃗m,n+R⃗w)·q⃗ (3.6)

Substituting eq. (3.4),(3.5),(3.6) into eq. (3.1) we get the following :

kum,n + κ
(
vm,n + ve−ikz+i(R⃗m,n+R⃗v)·q⃗ + wm,n + we−ikz+i(R⃗m−1,n−1+R⃗w)·q⃗

)
= 0

multiplying both sides by eikze−iR⃗m,n·q⃗

ku+ κ
(
veiR⃗v·q⃗ + vei(−a⃗1+R⃗v)·q⃗ + weiR⃗w·q⃗ + wei(−a⃗1−a⃗2+R⃗w)·q⃗

)
= 0
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or equivalently
ku+ κ

(
veiR⃗v·q⃗ + ve−iR⃗v·q⃗ + weiR⃗w·q⃗ + we−iR⃗w·q⃗

)
= 0

ku+ κ
(
2v cos(R⃗v · q⃗) + 2w cos(R⃗w · q⃗)

)
= 0 (3.7)

Similarly from eq. (3.2) we get :

kvm,n + κ
(
um,n + ue−ikz+iR⃗m+1,n·q⃗ + wm,n + we−ikz+iR⃗m,n−1·q⃗

)
= 0

multiplying by eikz+i(−R⃗m,n−R⃗v)·q⃗

kv + κ
(
ue−iR⃗v·q⃗ + ueiR⃗v·q⃗ + wei

1
2 a⃗2·q⃗ + we−i 1

2 a⃗2·q⃗
)
= 0

kv + κ

(
2u cos(R⃗v · q⃗) + 2w cos

( a⃗2
2
· q⃗
))

= 0 (3.8)

And finally, from eq. (3.3), aer multiplying with ei(−R⃗m,n−R⃗w)·q⃗ , we obtain the following

kw + κ
(
ue−iR⃗w·q⃗ + ueiR⃗w·q⃗ + ve−i 1

2 a⃗2·q⃗ + vei
1
2 a⃗2·q⃗

)
= 0

kw + κ

(
2u cos(R⃗w · q⃗) + 2v cos

(
a⃗2
2
· q⃗
))

= 0 (3.9)

We can write as a linear system eq.(3.7),(3.8),(3.9)

2κ

 0 cos(R⃗v · q⃗) cos(R⃗w · q⃗)
cos(R⃗v · q⃗) 0 cos( a⃗2

2 · q⃗)
cos(R⃗w · q⃗) cos( a⃗2

2 · q⃗) 0


uv
w

 = −k

uv
w


Substituting for convenience cos( a⃗2

2 · q⃗) = c1 , cos(R⃗v · q⃗) = c2, cos(R⃗w · q⃗) = c3 and looking for
eigenvectors : ∣∣∣∣∣∣

−λ c2 c3
c2 −λ c1
c3 c1 −λ

∣∣∣∣∣∣ = 0

⇔ −λ
∣∣∣∣−λ c1
c1 −λ

∣∣∣∣− c2 ∣∣∣∣c2 c1
c3 −λ

∣∣∣∣+ c3

∣∣∣∣c2 −λ
c3 c1

∣∣∣∣ = 0

⇔ −λ
(
λ2 − c21

)
− c2 (−λc2 − c1c3) + c3 (c1c2 + λc3) = 0

⇔ −λ3 + λ
(
c1

2 + c2
2 + c3

2
)
+ 2c1c2c3 = 0⇔

using that cos2(a) + cos2(b) + cos2(a+ b) = 2 cos(a) cos(b) cos(a+ b) + 1

⇔ −λ3 + λ (2c1c2c3 + 1) + 2c1c2c3 = 0

⇔ (λ+ 1)
(
2c1c2c3 + λ (1− λ)

)
= 0

⇔ (λ+ 1)
(
−λ2 + λ+ 2c1c2c3

)
= 0

So we have 3 eigenvalues (1 + 8c1c2c3 will certainly be non-negative, because the matrix is symmetric
therefore it has real eigenvalues )

λ1 = −1, λ2,3 =
−1±

√
1 + 8c1c2c3
−2

=
1

2
±
√
1 + 8c1c2c3

2
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Figure 3.4: Bands of the Kagome laice for qx, qy ∈ [−2π, 2π], a⃗1 = (1, 0), a⃗2 = (−1/2,
√
3/2) and

κ = 0.1, there are two different points of view

us there are two dispersive bands and one flat band

k1,2,3(q⃗) = 2κ, κ(1±
√
1 + 8c1c2c3)

Fig. 3.4 illustrates a 3D plot of the three bands k1,2,3(q⃗) = k1,2,3(qx, qy) . Finding the eigenvectors :

−λ c2 c3

c2 −λ c1

c3 c1 −λ

 ←−
c2
λ

+ λ ̸= 0⇒


−λ c2 c3

0 −λ2+c2
2

λ
λc1+c2c3

λ

c3 c1 −λ


←−

c3
λ

+

⇒


−λ c2 c3

0 −λ2+c2
2

λ
λc1+c2c3

λ

0 λc1+c2c3
λ

−λ2+c3
2

λ


←−

−λc1+c2c3
−λ2+c2

2

+

, λ ̸= ±c2

⇒


−λ c2 c3

0 −λ2+c2
2

λ
λc1+c2c3

λ

0 0
(1+λ)[−2c1c2c3+λ2−λ]

λ2−c22 = 0


Solving the linear system :

−λ2 + c2
2

λ
v +

λc1 + c2c3
λ

w = 0⇔ v =
−λc1 − c2c3
−λ2 + c22

w

and

−λu =

(
−c2
−λc1 − c2c3
−λ2 + c22

− c3
)
w =

(
λc1c2 + c3λ

2

−λ2 + c22

)
w ⇔ u =

−c1c2 − c3λ
−λ2 + c22

So, eigenvectors have the following form :−c1c2−c3λ
−λ2+c22

−λc1−c2c3
−λ2+c22

1

 , λ ̸= 0,±c2

where λ an eigenvalue .
Substituting λ = −1, which is the eigenvalue corresponding to the flat band, into the above eigenvector
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gives us −c1c2+c3
c22−1

c1−c2c3
c22−1

1

 =


− cos

(
a⃗2
2 ·q⃗

)
cos

(
a⃗1
2 ·q⃗

)
+cos

(
a⃗1+a⃗2

2 ·q⃗
)

c22−1

cos
(

a⃗2
2 ·q⃗

)
−cos

(
a⃗1
2 ·q⃗

)
cos

((
a⃗2
2 +

a⃗1
2

)
·q⃗
)

c22−1

1



=


− cos

(
a⃗2
2 ·q⃗

)
cos

(
a⃗1
2 ·q⃗

)
+cos

(
a⃗2
2 ·q⃗

)
cos

(
a⃗1
2 ·q⃗

)
−sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
c22−1

cos
(

a⃗2
2 ·q⃗

)
−cos

(
a⃗1
2 ·q⃗

)(
cos

(
a⃗2
2 ·q⃗

)
cos

(
a⃗1
2 ·q⃗

)
−sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

))
c22−1

1



=


− sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
− sin2

(
a⃗1
2 ·q⃗

)
cos

(
a⃗2
2 ·q⃗

)
−cos2

(
a⃗1
2 ·q⃗

)
cos

(
a⃗2
2 ·q⃗

)
+cos

(
a⃗1
2 ·q⃗

)
sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
cos2

(
a⃗1
2

)
−1

1



=


sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
− cos

(
a⃗2

2 · q⃗
)
+

cos
(

a⃗1
2 ·q⃗

)
sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
− sin2

(
a⃗1
2 ·q⃗

)
1



=


sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
− cos

(
a⃗2

2 · q⃗
)
−

cos
(

a⃗1
2 ·q⃗

)
sin

(
a⃗2
2 ·q⃗

)
sin

(
a⃗1
2 ·q⃗

)
1


Multiplying the last vector by sin

(
a⃗1

2 · q⃗
)
, the result remains an eigenvector so we have

sin
(

a⃗2

2 · q⃗
)

− cos
(

a⃗2

2 · q⃗
)
sin
(

a⃗1

2 · q⃗
)
− cos

(
a⃗1

2 · q⃗
)
sin
(

a⃗2

2 · q⃗
)

sin
(

a⃗1

2 · q⃗
)

 =


sin
(

a⃗2

2 · q⃗
)

sin
(

a⃗3

2 · q⃗
)

sin
(

a⃗1

2 · q⃗
)


where a⃗3 = −a⃗1 − a⃗2. A solution corresponds to the flat band is (a⃗3 = −a⃗2 − a⃗1):

um,n

vm,n

wm,n

 =


sin
(

a⃗2

2 · q⃗
)
e
i
(
R⃗m,n·q⃗−2κz

)

sin
(

a⃗3

2 · q⃗
)
e
i

((
R⃗m,n+R⃗v

)
·q⃗−2κz

)

sin
(

a⃗1

2 · q⃗
)
e
i

((
R⃗m,n+R⃗w

)
·q⃗−2κz

)

 = y⃗m,n(q⃗)e
−2iκz (3.10)

e following superposition is also a solution corresponds to the flat band∫ ∫
A(q⃗)y⃗m,n(q⃗)e

−2iκzdqxdqy = e−2iκz

∫ ∫
A(q⃗)y⃗m,n(q⃗)dqxdqy (3.11)

It is easy to understand that the absolute value of the field of each of the waveguides remains unchanged
along the direction z.
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3.1.1 Numerical Results
At this section we will see some numerical results for the Kagome laice for various initial conditions

and as a result of the existence of a flat band we will see excitations that remains unchanged along the prop-
agation direction. At the first excitation (Fig. 3.5) we see the initial condition : v2,2(z = 0) = −1, u3,2(z =
0) = 1, w3,2(z = 0) = −1, v3,3(z = 0) = 1, u3,3(z = 0) = −1, w2,2(z = 0) = 1 and the rest of the
waveguides equal to zero. e second excitation (Fig. 3.6) is similarly with the first in the sense that we
excite waveguides having in mind that the neighbouring waveguides must have opposite sign and equal ab-
solute value, for z = 0. e third excitation (Fig. 3.7) is an excitation with diffraction, the initial conditions
here are : u2,2(z = 0) = 1, v2,2(z = 0) = −1, w2,2(z = 0) = 1 and the other waveguides equal to zero.
e solutions correspond to the first two cases can be wrien in the form (3.11), it is easy to see why the
absolute value of the amplitude of the waveguides remain unchanged along the propagation direction. e
solution corresponds to the third excitation can also be wrien in a superposition form but not only of the
flat band. At the fourth excitation (Fig. 3.8) we see the excitation of the solution (3.1) where we have applied
periodic boundary condition. is solution corresponds to an excitation of infinite system of waveguides
but we can see it using periodic boundary conditions.

Figure 3.5: Excitation for κ = 0.1, h = 10−2,M = 5, N = 5, at the le initial condition for z = 0 and at
the right z = 10

Figure 3.6: Excitation for κ = 0.1, h = 10−2,M = 5, N = 5, at the le initial condition for z = 0 and at
the right z = 10
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Figure 3.7: Excitation for κ = 0.1, h = 10−2,M = 5, N = 5, at the le initial condition for z = 0 and at
the right z = 10

Figure 3.8: Excitation for κ = 0.1, h = 10−2,M = 5, N = 5, at the le initial condition for z = 0 and at
the right z = 10
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3.2 Next Nearest Neighbor
At the below figure is depicted the nearest and next nearest neighbours for each type of atom say u, v, w.

From le to right we have the neighbours of um,n, vm,n, wm,n respectively, at the center of each image we
have the aforementioned waveguides and we can see also the red lines which connect the central waveguide
with the next nearest neighbours. ere is no line connects the central waveguide of each image with the
nearest neighbors.

b b

b b b

b b

wm−1,n wm,n

vm−1,n um,n vm,n

wm−1,n−1 wm,n−1

b b

b b b

b b

wm,n wm+1,n

um,n vm,n um+1,n

wm−1,n−1
wm,n−1

b b b b

b

b b b b

um,n+1 vm,n+1 um+1,n+1 vm+1,n+1

wm,n

vm−1,n um,n vm,n um+1,n

Figure 3.9: Nearest and next nearest neighbours

e equations, with the consideration of the next nearest neighbours, become now

i
dum,n

dz
+ κ

(
vm,n + vm−1,n + wm,n + wm−1,n−1

)
+κ1

(
wm,n−1 + wm−1,n

)
= 0

(3.12)

i
dvm,n

dz
+ κ

(
um,n + um+1,n + wm,n + wm,n−1

)
+κ1

(
wm+1,n + wm−1,n−1

)
= 0

(3.13)

i
dwm,n

dz
+ κ

(
um,n + um+1,n+1 + vm,n + vm,n+1

)
+κ1

(
um,n+1 + um+1,n + vm−1,n + vm+1,n+1

)
= 0

(3.14)

Suppose we have the solution of the form :

um,n = ue−ikz+iR⃗m,n·q⃗ (3.15)

vm,n = ve−ikz+i(R⃗m,n+R⃗v)·q⃗ (3.16)

wm,n = we−ikz+i(R⃗m,n+R⃗w)·q⃗ (3.17)
Replacing the last three equations into equations (3.12),(3.13),(3.14) respectively :

ku+ κw(eiR⃗w·q⃗ + ei(−a⃗1−a⃗2+R⃗w)·q⃗) + κv(ei(−a⃗1+R⃗v)·q⃗ + eiR⃗v·q⃗)

+κ1w(e
i(−a⃗2+R⃗w)·q⃗ + ei(−a⃗1+R⃗w)·q⃗) = 0

kv + κw(ei(R⃗w−R⃗v)·q⃗ + ei(−a⃗2+R⃗w−R⃗v)·q⃗) + κu(ei(a⃗1−R⃗v)·q⃗ + ei(−R⃗v)·q⃗)

+κ1w(e
i(a⃗1+R⃗w−R⃗v)·q⃗ + ei(−a⃗1−a⃗2+R⃗w−R⃗v)·q⃗) = 0

kw + κu(ei(−R⃗w)·q⃗ + ei(a⃗1+a⃗2−R⃗w)·q⃗) + κv(ei(R⃗v−R⃗w)·q⃗ + ei(a⃗2+R⃗v−R⃗w)·q⃗)

+κ1u(e
i(a⃗2−R⃗w)·q⃗ei(a⃗1−R⃗w)·q⃗) + κ1v(e

i(−a⃗1+R⃗v−R⃗w)·q⃗ + ei(a⃗1+a⃗2+R⃗v−R⃗w)·q⃗) = 0

Recall that R⃗v = a⃗1/2, R⃗w = (a⃗1 + a⃗2)/2 we can write the last three equations in a more simple form :

ku+ 2κ cos
(
R⃗w · q⃗

)
w + 2κ cos

(
R⃗v · q⃗

)
v

+2κ1 cos

((
a⃗1 − a⃗2

2

)
· q⃗

)
w = 0

(3.18)
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kv + 2κ cos

(
a⃗2
2
· q⃗
)
w + 2κ cos

(
R⃗v · q⃗

)
u

+2κ1 cos

((
a⃗1 +

a⃗2
2

)
· q⃗

)
w = 0

(3.19)

kw + 2κ cos
(
R⃗w · q⃗

)
u+ 2κ cos

(
a⃗2
2
· q⃗
)
v + 2κ1 cos

(
a⃗1 − a⃗2

2
· q⃗
)
u

+2κ1 cos

((
a⃗1 +

a⃗2
2

)
· q⃗

)
v = 0

(3.20)

If we write again the linear system resulted from (3.18),(3.19),(3.20) 0 c2 c3
c2 0 c1
c3 c1 0

uv
w

 = −k

uv
w


where c2 = 2κ cos

(
R⃗v · q⃗

)
, c3 = 2κ cos

(
R⃗w · q⃗

)
+ 2κ1 cos

((
a⃗1−a⃗2

2

)
· q⃗
)
, and c1 = 2κ cos

(
a⃗2

2 · q⃗
)
+

2κ1 cos

((
a⃗1 +

a⃗2

2

)
· q⃗
)
.

It is not an easy task to find the analytical form of the eigenvalues, so we found it numerically. As we can

Figure 3.10: Eigenvalues for qx, qy ∈ [−π, π] for κ = 0.1 , κ1 = 0.02 and a⃗1 = (1, 0) , a⃗2 = (−1/2,
√
3/2),

two different points of view.

see in Fig. 3.10 there is much variation of the eigenvalues, so there is no flat band.

3.2.1 Numerical Results
Now we will show some excitations . e first excitation, at the Fig. 3.11, is for initial conditions for the

waveguides v2,2, u3,2, w3,2, v3,3, u3,3, w2,2 equal to −1, 1,−1, 1,−1, 1 respectively and the other waveg-
uides have 0, this excitation without the consideration of the next nearest neighbours is a zero diffraction
excitation but as we can see here, there is a diffraction due to the fact that the Kagome is not a flat band
laice if we consider next nearest neighbours. At the second excitation (Fig. 3.12) we have as initial condi-
tion v1,1(z = 0) = −1, u2,1(z = 0) = 1, w2,1(z = 0) = −1, u3,2(z = 0) = 1, w3,2(z = 0) = −1, v3,3(z =
0) = 1, w3,3(z = 0) = −1, v3,4(z = 0) = 1, u3,4(z = 0) = −1, w2,3(z = 0) = 1, v2,3(z = 0) =
−1, w2,2(z = 0) = 1, u2,2(z = 0) = −1, w1,1(z = 0) = 1.
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Figure 3.11: Excitation for κ = 0.1, κ1 = 0.02, z = 0, h = 10−2,M = 5, N = 5, at the le initial condition
for z = 0 and at the right z = 10

Figure 3.12: Excitation for κ = 0.1, κ1 = 0.02, z = 0, h = 10−2,M = 5, N = 5, at the le initial condition
for z = 0 and at the right z = 10

3.3 Disordering
At this section we consider the usual Kagome laice but we introduce a small random displacement

around the standard position of the waveguides at the Kagome laice. Each waveguide moves within a
square of side ϵ around its fixed position, as the Fig. 3.13 illustrates, and the probability of the waveguide to
be found at a certain point in the square is distributed uniformly. e random displacement of each of the

ϵ

Figure 3.13: A waveguide and the area in which it can be displaced randomly

waveguides holds for every z, hence we have a permanent displacement. We show some excitations at the
below figures where for each point on the xy plane we see a color, the more the color is close to blue the
smaller the absolute value at that point. e coupling term is not constant here and the reason for that is
that the distance between the waveguides is not constant, therefore we choose the coupling term to decrease
exponentially with the distance. Notice that only the nearest neighbours are considered here. At the first
couple of figures ( Fig. 3.14 ) we see the excitation corresponds to the flat band, we excite the waveguides
v0,0, u1,0, w1,0, v1,1, u1,1, w0,0 with initial conditions −1,+1,−1,+1,−1,+1 (le) respectively as we see
due to the small perturbation of the positions of the waveguides there is a difference between the coupling
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terms of the neighbours for each waveguide thus there is a small diffraction (right).

Figure 3.14: Excitation for ϵ = 0.1, h = 10−2,M = 2, N = 2 , at the le initial condition for z = 0 and at
the right z = 10
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Chapter 4

Lieb Lattice

At this chapter we examine the Lieb laice, it is a laice which is consisted of three simple laices as
we will see. It possesses one flat band at the first neighbour interaction consideration, which is vanishing
again with the second neighbours consideration. Finally we introduce a small random displacement of the
position of the waveguides to examine the effect to the flat band excitations.

4.1 Coupled Mode Equations and Dispersion Relation
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Figure 4.1: Lieb laice

At the Fig. 4.1 we see at the le the Lieb laice in the R3, the dots represent the waveguides which
are on the xy plane and the direction of propagation is the z axis. e laice is triatomic and this is the
reason we chose three different colors for the dots which represents the waveguides at the two images (right
and le). At the right image there are the laice enumeration and the primitive vectors, which are used
for the enumeration of the laice, in addition we also see the vectors R⃗v and R⃗w . e enumeration of
the waveguides following the same rule as the Kagome laice i.e the waveguide um,n has position vector
R⃗m,n the vm,n has position vector R⃗m,n+ R⃗v and the wm,n has position vector R⃗m,n+ R⃗w where R⃗m,n =

ma⃗1+na⃗2 and R⃗v = a⃗1/2 and R⃗w = a⃗2/2. At the Fig. 4.2 we have from le to right the nearest neighbours
of each of the atoms so every waveguide of u has 4 neighbours and every waveguide of v and w has 2, this
is because we consider nearest neighbouring between waveguides which have distance between them Vx
or Vy . us we are not considering as nearest neighbours for example vm,n and wm,n which are distant by√
V 2
x + V 2

y .
Now we are going to write down the equations which describe the variation of the amplitude of the

waveguides in the laice. Waveguides which are spaced by Vx and Vy are associated with the coupling
term κx and κy respectively.
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Figure 4.2: Next nearest neighbours of each of the atoms

Below the eq. (4.1)-(4.3) desribe the propagation of the field along the propagation direction.

i
dum,n

dz
+ κx

(
vm,n + vm−1,n

)
+ κy

(
wm,n + wm,n−1

)
= 0 (4.1)

i
dvm,n

dz
+ κx

(
um,n + um+1,n

)
= 0 (4.2)

i
dwm,n

dz
+ κy

(
um,n + um,n+1

)
= 0 (4.3)

Suppose we have the solution of the form :

um,n = ue−ikz+iR⃗m,n·q⃗ (4.4)

vm,n = ve−ikz+i(R⃗m,n+R⃗v)·q⃗ (4.5)

wm,n = we−ikz+i(R⃗m,n+R⃗w)·q⃗ (4.6)

Substituting eq. (4.4)-(4.6) into the equation (4.1) gives us :

kum,n + κx

(
vm,n + vm,ne

−ia⃗1·q⃗
)
+ κy

(
wm,n + wm,ne

−ia⃗2·q⃗
)
= 0

multiplying both sides by eikze−iR⃗m,n·q⃗

ku+ κx

(
veiR⃗v·q⃗ + vei(−a⃗1+R⃗v)·q⃗

)
+ κy

(
weiR⃗w·q⃗ + wei(−a⃗2+R⃗w)·q⃗

)
= 0

or equivalently
ku+ κx

(
veiR⃗v·q⃗ + ve−iR⃗v·q⃗

)
+ κy

(
weiR⃗w·q⃗ + we−iR⃗w·q⃗

)
= 0

ku+ 2κx cos(R⃗v · q⃗)v + 2κy cos(R⃗w · q⃗)w = 0 (4.7)

Similarly from eq. (4.2) we get :

kvm,n + κx

(
um,n + um,ne

ia⃗1·q⃗
)
= 0

multiplying by eikz+i(−R⃗m,n−R⃗v)·q⃗

kv + κx

(
ue−iR⃗v·q⃗ + ueiR⃗v·q⃗

)
= 0

kv + 2κx cos(R⃗v · q⃗)u = 0 (4.8)

And finally, from eq. (4.3) aer multiplying with ei(−R⃗m,n−R⃗w)·q⃗ , we get :

kw + κy

(
ue−iR⃗w·q⃗ + ueiR⃗w·q⃗

)
= 0
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kw + 2κy cos(R⃗w · q⃗)u = 0 (4.9)

We can write as a linear system eq.(4.7),(4.8),(4.9)

2

 0 κxcos(R⃗v · q⃗) κy cos(R⃗w · q⃗)
κx cos(R⃗v · q⃗) 0 0

κy cos(R⃗w · q⃗) 0 0


uv
w

 = −k

uv
w


Replace cos(R⃗v · q⃗) = c2

′ and cos(R⃗w · q⃗) = c3
′∣∣∣∣∣∣

−λ κxc2
′ κyc3

′

κxc2
′ −λ 0

κyc3
′ 0 −λ

∣∣∣∣∣∣ = 0

⇔ −λ
∣∣∣∣−λ 0
0 −λ

∣∣∣∣− κxc2′ ∣∣∣∣κxc2′ 0
κyc3

′ −λ

∣∣∣∣+ κyc3
′
∣∣∣∣κxc2′ −λκyc3

′ 0

∣∣∣∣ = 0

⇔ −λ3 + λκ2xc2
′2 + λκ2yc3

′2 = 0

⇔ λ(−λ2 + κ2xc2
′2 + κ2yc3

′2) = 0

⇔ λ = 0 or λ = ±
√
κ2x cos

2(R⃗v · q⃗) + κ2y cos
2(R⃗w · q⃗)

So the bands of the system of equations are :

k1,2,3(q⃗) = 0,±2
√
κ2x cos

2(R⃗v · q⃗) + κ2y cos
2(R⃗w · q⃗)

At the Fig. 4.3 we see the bands for different q⃗.

Figure 4.3: Bands of the Lieb laice for qx, qy ∈ [0, 2π] , a⃗1 = (1, 0), a⃗2 = (0, 1) and κx = κy = 0.1 (
Vx = Vy), there are two different points of view.
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Eigenvectors for λ ̸= 0 are :
−λ κxc2

′ κyc3
′

κxc2
′ −λ 0

κyc3
′ 0 −λ

 ←−
κxc2

′
λ

+ λ ̸= 0⇒


−λ κxc2

′ κyc3
′

0
κ2
xc2

′2−λ2

λ
κxκyc2

′c3
′

λ

κyc3
′ 0 −λ


←−

κyc3
′

λ

+

⇒


−λ κxc2

′ κyc3
′

0
κ2
xc2

′2−λ2

λ
κxκyc2

′c3
′

λ

0
κxκyc2

′c3
′

λ

κ2
yc3

′2−λ2

λ


←−

−κxκyc2
′c3

′

κ2
xc2

′2−λ2

+

, c3
′ ̸= 0

⇒


−λ κxc2

′ κyc3
′

0
κ2
xc2

′2−λ2

λ
κxκyc2

′c3
′

λ

0 0
−κ2

xκ
2
yc2

′2c3
′2+(κ2

yc3
′2−λ2)(κ2

xc2
′2−λ2)

(κ2
xc2

′2−λ2)λ
= 0


Hence we have

κ2xc2
′2 − λ2

λ
v +

κxκyc2
′c3

′

λ
w = 0, (λ2 = κ2xc2

′2 + κ2yc3
′2)

⇔ −κ2yc3′
2
v + κxκyc2

′c3
′w = 0

⇔ v =
κxc2

′

κyc3′
w, c3

′ ̸= 0

−λu+
κ2xc2

′2 + κ2yc3
′2

κyc3′
w = 0⇔ u = ±

√
κ2xc2

′2 + κ2yc3
′2

κyc3′
, c3

′ ̸= 0

As a result eigenvectors for λ ̸= 0 and c3′ ̸= 0 have the following form±
√

κ2
xc2

′2+κ2
yc3

′2

κyc3′

κxc2
′

κyc3′w

1

 , λ = ±
√
κ2xc2

′2 + κ2yc3
′2, c3

′ ̸= 0

if λ ̸= 0 and c3′ = 0 ±sign(c2′)1
0

 , λ = ±
√
κ2xc2

′2, c3
′ ̸= 0

where sign(c2′) = 1 if c2′ ≥ 0 otherwise sign(c2′) = −1.
In the case that λ = 0 

0 κxc2
′ κyc3

′

κxc2
′ 0 0

κyc3
′ 0 0


So if c2′ ̸= 0 and c3′ ∈ R  0

−κyc3
′

κxc2′

1


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c2
′ = 0 and c3′ ̸= 0 01

0


e solution which corresponds to the flat band is

um,n

vm,n

wm,n

 =


0

−κyc3
′

κxc2′ e
i
(
R⃗m,n+R⃗v

)
q⃗

e
i
(
R⃗m,n+R⃗w

)
q⃗

 = y⃗m,n(q⃗) for c′2 ̸= 0 (4.10)

or

um,n

vm,n

wm,n

 =

 0

e
i
(
R⃗m,n+R⃗v

)
q⃗

0

 = y⃗′m,n(q⃗) for c′2 = 0 (4.11)

Again the superposition of solutions correspond to the flat band, is also a solution that corresponds to the
flat band. is superposition is the following∫ ∫

A(q⃗)y⃗m,n(q⃗)dqxdqy or
∫ ∫

A(q⃗)y⃗′m,n(q⃗)dqxdqy (4.12)

4.1.1 Numerical Results
At the first excitation we have as initial condition v2,2(z = 0) = 1, v2,3(z = 0) = 1, w2,2(z = 0) =

−1, w3,2(z = 0) = −1. is excitation correspond to the flat band as we see at the Fig. 4.4. At the second
excitation (Fig. 4.5) we again excite the flat band using as initial condition v2,2(z = 0) = κy/κx, v2,3(z =
0) = κy/κx, w2,2(z = 0) = −1, w3,2(z = 0) = −1 as the eigenvector correspond to the flat band implies.
e first two excitation can be wrien as a linear combination of the two forms we see at the (4.12). At the
third excitation (Fig. 4.6) the initial condition is v3,2(z = 0) = 1, v2,3(z = 0) = 1, w2,2(z = 0) = −1 and
there is a lot of diffraction.

Figure 4.4: Excitation for κx = κy = 0.1 ( Vx = Vy = 0.5 ), h = 10−2, M = N = 5, at the le initial
condition for z = 0 and at the right z = 10
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Figure 4.5: Excitation for κx = 0.1,κy = 0.03, ( Vx = 0.5, Vy = 0.7 ), h = 10−2,M = N = 5, at the le
initial condition for z = 0 and at the right z = 10

Figure 4.6: Excitation for κx = κy = 0.1 ( Vx = Vy = 0.5 ), h = 10−2, M = N = 5, at the le initial
condition for z = 0 and at the right z = 10
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4.2 Next Nearest Neighbor
e Fig. 4.7 shows us the nearest and next nearest waveguides of each type of waveguide, as is seen for

the waveguides of type u there is no difference in neighbouring, with or without considering next neareast
neighbours. ere are 4 extra neighbours at the other two types of waveguides with the consideration
of next nearest neighbours. is occur because waveguides of v, w have neighbour waveguides that are
spaced by

√
V 2
x + V 2

y but u has not such a neighbours. If we again associate as previous the distances

b

b b b

b

wm,n

vm−1,n um,n vm,n

wm,n−1

Vy

Vx

b b

b b b

b b

wm,n wm+1,n

um,n

vm,n

um+1,n

wm,n−1 wm+1,n−1

Vx

Vy

b b b

b

b b b

vm−1,n+1
um,n+1 vm,n+1

wm,n

vm−1,n um,n vm,n

Vx Vy

Figure 4.7: Nearest and next nearest neighbours

Vx,Vy and
√
V 2
x + V 2

y with coupling terms κx,κy ,κxy respectively then we can conclude to the following
coupled mode equations.

i
dum,n

dz
+ κx

(
vm,n + vm−1,n

)
+ κy

(
wm,n + wm,n−1

)
= 0 (4.13)

i
dvm,n

dz
+ κx

(
um,n + um+1,n

)
+κxy

(
wm,n + wm+1,n + wm,n−1 + wm+1,n−1

)
= 0

(4.14)

i
dwm,n

dz
+ κy

(
um,n + um,n+1

)
+κxy

(
vm,n + vm,n+1 + vm−1,n+1 + vm−1,n

)
= 0

(4.15)

In order to find the bands of this system of equations we have to suppose wave solution of the following
form :

um,n = ue−ikz+iR⃗m,n·q⃗ (4.16)

vm,n = ve−ikz+i(R⃗m,n+R⃗v)·q⃗ (4.17)

wm,n = we−ikz+i(R⃗m,n+R⃗w)·q⃗ (4.18)
Replacing the last three equations into eq. (4.13),(4.14),(4.15) respectively and factoring out mutual terms
we obtain the following:

ku+ 2κx cos
(
R⃗v · q⃗

)
v + 2κy cos

(
R⃗w · q⃗

)
w = 0

kv + 2κx cos
(
R⃗v · q⃗

)
u

+2κxy

[
cos

((
R⃗v − R⃗w

)
· q⃗
)
+ cos

((
R⃗v + R⃗w

)
· q⃗
)]

w = 0

kw + 2κy cos
(
R⃗w · q⃗

)
u

+2κxy

[
cos

((
R⃗v − R⃗w

)
· q⃗
)
+ cos

((
R⃗v + R⃗w

)
· q⃗
)]

v = 0



4.2 Next Nearest Neighbor 37

Recall that cos (a± b) = cos (a) cos (b) ∓ sin (a) sin (b) we can write the last three equation in a more
simple form :

ku+ 2κx cos
(
R⃗v · q⃗

)
v + 2κy cos

(
R⃗w · q⃗

)
w = 0 (4.19)

kv + 2κx cos
(
R⃗v · q⃗

)
u+ 4κxy

(
cos
(
R⃗v · q⃗

)
cos
(
R⃗w · q⃗

))
w = 0 (4.20)

kw + 2κy cos
(
R⃗w · q⃗

)
u+ 4κxy

(
cos
(
R⃗v · q⃗

)
cos
(
R⃗w · q⃗

))
v = 0 (4.21)

If we write again (4.19),(4.20),(4.21) as a linear system 0 c2 c3
c2 0 c1
c3 c1 0

uv
w

 = −k

uv
w


where c2 = 2κx cos

(
R⃗v · q⃗

)
, c3 = 2κy cos

(
R⃗w · q⃗

)
, and c1 = 4κxy cos

(
R⃗v · q⃗

)
· cos

(
R⃗w · q⃗

)
. e

roots of the determinant of the above matrix, as we have already seen, given from :

−λ3 + λ
(
c1

2 + c2
2 + c3

2
)
+ 2c1c2c3 = 0 (4.22)

e analytical form of these bands is not an easy task to be found, so we found it numerically. e Fig. 4.8

Figure 4.8: Eigenvalues for qx, qy ∈ [−π, π] , κx = 0.1 , κy = 0.1 (Vx = Vy = 0.5) , κxy = 0.04 and
a⃗1 = (1, 0) , a⃗2 = (0, 1)

illustrates for different q⃗ = {qx, qy} the different bands that are created. We see 3 non flat bands, 2 with
extremely much curvature and 1 with much less curvature. e conclusion is that there is no flat band with
the consideration of interaction, between the waveguides, of the next nearest neighbours.

4.2.1 Numerical Results
e first excitation we see at the Fig. 4.9 corresponded at the flat band without the next nearest

neighbour consideration. We have for initial condition : v2,2(z = 0) = 1, v2,3(z = 0) = 1, w2,2(z =
0) = −1, w3,2(z = 0) = −1. At the second excitation (Fig. 4.10) we see an excitation which cor-
responded again to the flat band if we don’t consider next nearest neighbouring, the initial condition is
v2,2(z = 0) = κy/κx, v2,3(z = 0) = κy/κx, w2,2(z = 0) = −1, w3,2(z = 0) = −1. As we see there is a
small diffraction due to the presence of the next nearest neighbour interaction. At the third excitation (Fig.
4.11) we see the excitation with initial conditions v3,2(z = 0) = 1, v2,3(z = 0) = 1, w2,2 = −1, there is a
lot of diffraction here.
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Figure 4.9: Excitation for κx = κy = 0.1 ( Vx = Vy = 0.5 ), κxy = 0.04, h = 10−2,M = N = 5 , at the
le initial condition for z = 0 and at the right z = 10

Figure 4.10: Excitation for κx = 0.1, κy = 0.03, κxy = 0.01 ( Vx = 0.5, Vy = 0.7 ), h = 10−2,M = N = 5,
at the le initial condition for z = 0 and at the right z = 10

Figure 4.11: Excitation for κx = κy = 0.1 ( Vx = Vy = 0.5 ) , κxy = 0.04, h = 10−2,M = N = 5 , at the
le initial condition for z = 0 and at the right z = 10
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4.3 Disordering
We consider the Lieb laice but instead of the fixed positions of the waveguides we assume a random

displacement within a square of side ϵ around the fixed positions as previous to the Kagome laice. e
probability of the waveguide to be found in a certain point is distributed uniformly. Fig. 4.12 show us the
excitation corresponds to the flat band as we previous saw at the previous section, notice that there exist a
small diffraction due to the unequal coupling terms.

Figure 4.12: Excitation for ϵ = 0.1, h = 10−2,M = 4, N = 4, Vx = 0.5 = Vy , at the le initial condition
for z = 0 and at the right z = 10
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Chapter 5

How to Construct Flat Band Lattices

At this chapter we examine in a more abstract way the coupled mode equations we have considered all
over this work. Aer that we present the basic idea of how to construct flat band laices and we apply it to
construct 1d and 2d laices.

5.1 General Model
A general equation which we’ve used till now, describes the variation of the amplitude, as have been

described at the derivation of Coupled Mode Equations is the following[9]

−i dψn⃗

dz
=
∑
m̸⃗=n⃗

Vnmψm⃗ (5.1)

where n⃗, m⃗ describe the position vectors of the corresponding waveguides, z is the direction in which the
light propagates and Vnm is the coupling term between the waveguide at the position n⃗ and the waveguide
at the position m⃗, of course Vnm = Vmn due to the dependence of the coupling term from the distance
between the waveguides.

We are going to follow the same procedure as previous at every laice we have studied in this work.
Assume that the solution of the eq. (5.1) is of the form

ψn⃗ = An⃗e
iq⃗·n⃗−ikz (5.2)

where k is as previous the spatial frequency, q⃗ is the laice wave vector andAn⃗ is the amplitude. Replacing
the eq. (5.2) into eq. (5.1) one gets the following :

−i dψn⃗

dz
=
∑
m⃗ ̸=n⃗

Vnmψm⃗ ⇒ kψn⃗ =
∑
m̸⃗=n⃗

VnmAm⃗e
iq⃗·m⃗

⇒ −kAn⃗e
iq⃗·n⃗−ikz =

∑
m⃗ ̸=n⃗

VnmAm⃗e
iq⃗·m⃗−ikz

multiplying both sides by e−iq⃗·n⃗+ikz gives us

−k(q⃗)An⃗ =
∑
m⃗ ̸=n⃗

VnmAm⃗e
iq⃗·(m⃗−n⃗) (5.3)

e last equation gives us the linear system such as these we’ve met at the Kagome and Lieb laice. e
amplitude of each of the waveguides are given by An⃗ and k(q⃗) gives us the bands of the system. Notice
that the multitude of the distinct amplitudes An⃗ are equal to the number of the kinds of waveguides, i.e if
we speak about a triatomic laice then we have three kinds of waveguides thus we have three distinct An⃗.

Now we’ve set-up all the necessary ingredients which are necessary to describe as general as possible
the creation of a flat band laice or FB laice.
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5.1.1 From Dimer to Rhombic lattice
If we suppose that there are two waveguides which are spaced by a certain distance and there is an

interaction between them which is associated with the coupling term V then we have in some sense a
trivial waveguide array named Coupler or Dimer. e Dimer shown at the Fig. 5.1 below

ψ1

ψ2

V

Figure 5.1: A Dimer, two waveguides associated with coupling term V

e equations describes this simple system are the following

i
dψ1

dz
+ V ψ2 = 0

i
dψ2

dz
+ V ψ1 = 0

If we suppose that we have solutions of the form

ψ1 = A1e
iq−ikz

ψ2 = A2e
iq−ikz

So we can conclude easily that the eigenvalue problem for this system is the below[
0 V
V 0

] [
A1

A2

]
= −k

[
A1

A2

]
the above matrix has eigenvalues λ1,2 = ±V , thus the dispersion relation is k1,2 = ∓V .
Eigenvectors corresponds to the eigenvalues

λ1 ↔
[
1
1

]
, λ2 ↔

[
−1
1

]
So the modes of the Dimer are of the form [+a,+a],[−a,+a] and for simplicity from now on we will write
[+,+],[−,+]. We have to declare that from now on with the term mode we speak about the eigenvectors
of the system (for example the Dimer we saw). From now on in this chapter we will call the components
of the modes as amplitudes for our convenience. We oen consider as a component of the mode the real
constant which multiply the sinusoidal at the eigenvectors. If we add a waveguide between two Dimers as
the Fig. 5.2 shows, we compose a more complicated system .

ψ3

ψ1

ψ2

V

ψ4

ψ5

V

V̄

V̄ V̄

V̄

Figure 5.2: A system consists of two Dimer connected with a central waveguide and the coupling terms

It is easy to verify that the mode [−,+] of the Dimer continue to exist as a mode in the extended system if
we have zero amplitude at the central waveguide. erefore the system has the mode [−,+, 0,−,+]where
the ordering of the mode corresponds to the ordering of the waveguides, i.e [ψ1, ψ2, ψ3, ψ4, ψ5]. Oen
the waveguides are called sites and the central waveguide of the last case called connector site and it is
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notated as ψcψcψc. We can see that the [−,+, 0,−,+] is a mode from eq. (5.3) and if we suppose that there is
no phase difference between the waveguides, i.e the term eiq⃗(m⃗−n⃗) is neglected.

ψ3 : −k · 0 = V̄ (a− a+ a− a) = 0

ψ1 : −k(−a) = V (+a) + 0⇒ k = V

ψ2 : −k(+a) = V (−a) + 0⇒ k = V

the equations for ψ3, ψ4 are similar with the cases ψ1, ψ2. Notice that the mode [+,+] of the Dimer is not
a mode of the eenxed system because it will change the 0 (zero) amplitude of the central waveguide (ψ3).
Now we can extend the system of the Fig. 5.2 to the full laice which is known as Rhombic or Diamond
laice. e equations which describes the Rhombic laice are

un

vn

wn

Figure 5.3: e Rhombic or Diamond laice with its unit cell

i
dun
dz

+ V vn + V̄ (wn−1 + wn) = 0 (5.4)

i
dvn
dz

+ V un + V̄ (wn−1 + wn) = 0 (5.5)

i
dwn

dz
+ V̄ (un + un+1 + vn + vn+1) = 0 (5.6)

and if we suppose solutions of the form un = ueiqxn−ikz , vn = veiqxn−ikz ,wn = weiqx(n+1/2)−ikz where
qx is the wave number (it isn’t a vector because the laice is repeated over one direction). Replacing the
three wave solutions into the eq. (5.4) - (5.6) gives us the following :

ku+ V v + 2V̄ cos
(
qx/2

)
w = 0

kv + V u+ 2V̄ cos
(
qx/2

)
w = 0

kw + 2V̄ cos
(
qx/2

)
u+ 2V̄ cos

(
qx/2

)
v = 0

or equivalently  0 V 2V̄ cos
(
qx/2

)
V 0 2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
0


uv
w

 = −k

uv
w


e bands and the modes are associated with the eigenvalues and the eigenvectors of the above linear
system. ∣∣∣∣∣∣∣

−λ V 2V̄ cos
(
qx/2

)
V −λ 2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
−λ

∣∣∣∣∣∣∣ = 0
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⇔ −λ

∣∣∣∣∣ −λ 2V̄ cos
(
qx/2

)
2V̄ cos

(
qx/2

)
−λ

∣∣∣∣∣− V
∣∣∣∣∣ V 2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
−λ

∣∣∣∣∣
+2V̄ cos

(
qx/2

) ∣∣∣∣∣ V −λ
2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)∣∣∣∣∣ = 0

⇔ −λ
(
λ2 − 4V̄ 2 cos2

(
qx/2

))
− V

(
−λV − 4V̄ 2 cos2

(
qx/2

))
+2V̄ cos2

(
qx/2

) (
2V V̄ cos2

(
qx/2

)
+ 2λV̄ cos2

(
qx/2

))
= 0

⇔ −λ3 + 4λV̄ 2 cos2
(
qx/2

)
+ λV 2 + 4V V̄ 2 cos2

(
qx/2

)
+4V V̄ 2 cos2

(
qx/2

)
+ 4λV̄ 2 cos2

(
qx/2

)
= 0

⇔ −λ3 + λ
(
V 2 + 8V̄ 2 cos2

(
qx/2

))
+ 8V V̄ 2 cos2

(
qx/2

)
= 0

⇔ (λ+ V )
(
−λ2 + λV + 8V̄ 2 cos2

(
qx/2

))
= 0

⇔ λ1 = −V, λ2,3 =

(
V ±

√
V 2 + 32V̄ 2 cos

(
qx/2

))
/2

So there is one flat band. We are interested to find the corresponding mode of the band λ = −V or k = V .
So we have the following


V V 2V̄ cos

(
qx/2

)
V V 2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
2V̄ cos

(
qx/2

)
V

 ←−
−1

+

⇒


V V 2V̄ cos

(
qx/2

)
0 0 0

2V̄ cos
(
qx/2

)
2V̄ cos

(
qx/2

)
V


←−

− 2V̄ cos(qx/2)
V

+

⇒


V V 2V̄ cos

(
qx/2

)
0 0 0

0 0
−4V̄ 2 cos2(qx/2)

V + V


or equivalently

−4V̄ 2 cos2
(
qx/2

)
+ V 2

V
w = 0⇔ if V 2 ̸= 4V̄ 2 cos2

(
qx/2

)
, w = 0

V u+ V v = 0⇔ u = −v

So the mode is [−,+, 0], therefore we have verified that we have easily said above.
e key for the construction of the Rhombic laice are the symmetry of the position at which the

connector waveguide was placed.

5.1.2 From Trimer to Cross and Sawtooth Lattice
We consider a Trimer which is a reasonable extension, in some sense, of the Dimer which has just

examined. Let’s imagine three waveguides in a row as we observe at the Fig. 5.4, the waveguides are placed
in horizontal ordering with equal separation distances among them and therefore equal coupling terms
V . We will use the Trimer to construct two different laices. e first step is to calculate the bands and
the modes of the Trimer and the procedure follows. Firstly, we consider the equations which describe the
system

i
dψ1

dz
+ V ψ2 = 0 (5.7)
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ψ2ψ1 ψ3

V V

Figure 5.4: A Trimer, three waveguides and the associated coupling terms

i
dψ2

dz
+ V (ψ1 + ψ3) = 0 (5.8)

i
dψ3

dz
+ V ψ2 = 0 (5.9)

We suppose that the solution is of the form ψ1 = A1e
−ikz , ψ2 = A2e

iqx−ikz , ψ3 = A3e
2iqx−ikz . So the

eq. (5.7)-(5.9) gives us

(5.7)⇒ kA1 + V A2e
iqx = 0

(5.8)⇒ kA2 + V
(
A1e

−iqx +A3e
iqx
)
= 0

(5.9)⇒ kA3 + V A2e
−iqx = 0

or equivalently  0 V eiqx 0
V e−iqx 0 V eiqx

0 V e−iqx 0

A1

A2

A3

 = −k

A1

A2

A3


We are going to find the bands and the modes.∣∣∣∣∣∣

−λ c1 0
c1 −λ c1
0 c1 −λ

∣∣∣∣∣∣ = 0

where c1 = V eiqx and c1 is the complex conjugate of c1.

⇔ −λ
∣∣∣∣−λ c1
c1 −λ

∣∣∣∣− c1 ∣∣∣∣c1 c1
0 −λ

∣∣∣∣ = 0

⇔ −λ
(
λ2 − c1c1

)
− c1 (−λc1) = 0

⇔ −λ3 + 2λc1c1 = 0

So the bands are λ1 = 0, λ2,3 = ±
√
2V

e procedure for the modes follows.
For λ = 0  0 c1 0

c1 0 c1

0 c1 0

 , exchange between the 1st row and the 2nd

⇒

c1 0 c1

0 c1 0

0 c1 0


←−

− c1
c1

+

⇒

c1 0 c1

0 c1 0

0 0 0


erefore

c1A2 = 0⇔ (c1 ̸= 0)A2 = 0

c1A1 + c1A3 = 0⇔ A1 = −c1
c1
A3
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So the mode corresponds to λ = 0 is [−, 0,+].
For λ =

√
2V .−
√
2V c1 0

c1 −
√
2V c1

0 c1 −
√
2V

 ←−
c1√
2V

+ ⇒

−
√
2V c1 0

0 −V/
√
2 c1

0 c1 −
√
2V


←−

√
2c1
V

+

⇒

−
√
2V c1 0

0 −V/
√
2 c1

0 0 0


us we have

A2 =
√
2eiqxA3

A1 =
c1√
2V

A2 = e2iqxA3

us the mode corresponds to λ =
√
2V is [+,+

√
2,+].

Finally for λ = −
√
2V
√
2V c1 0

c1
√
2V c1

0 c1
√
2V

 ←−
−c1√
2V

+ ⇒


√
2V c1 0

0 V/
√
2 c1

0 c1
√
2V


←−

−
√

2c1
V

+

⇒


√
2V c1 0

0 V/
√
2 c1

0 0 0


So

A2 = −
√
2eiqxA3

A1 = e2iqxA3

erefore the mode corresponds to λ = −
√
2V is [+,−

√
2,+].

Now we will look one by one the modes we have found. e mode [+,+
√
2,+] can’t be the starting

point where we can connect a connector waveguide in order to create a more complicated system of waveg-
uides. e reason for this is that there is no change of sign between its components, consequently if one
connects a connector waveguide at the Trimer which is exciting the last mode and the connector waveg-
uide has zero amplitude then it is obvious from eq. (5.1), if we again neglect the terms eiq⃗(m⃗−n⃗), that the
amplitude of the connector waveguide will not remain unchanged :

−i dψc

dz

∣∣∣
z=0

= Vc1(+1) + Vc2(+
√
2) + Vc3(+1)

where the ψc describes the amplitude of the connector waveguide, Vci, i = 1, 2, 3 describes the coupling
terms between the connector waveguide and the rest waveguides, which forms the Trimer.
Suitables modes which presents alteration of sign are the other two modes, i.e [−, 0,+] and [+,−

√
2,+].

We consider firstly the first of the two modes and then the second, we are going to create two different
laices.

5.1.2.1 Cross Lattice

e construction begins from the fact that we have two Trimer and between them we place a connec-
tor waveguide as the Fig. 5.5 shows. is system must have as mode the mode which is consisted of the
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V ′V ′
V

VV

V

Figure 5.5: Two Trimers connected with a central (connector) waveguide with one connection from each of
the Trimers to the central waveguide

[−, 0,+] at the two Trimers and zero to the connector waveguide. At the Fig. 5.6 we see the possible modes
1 to which we have resulted without deep investigation but using the fact that we seek for cancellation of
the amplitudes at every waveguide and mainly at the connector waveguide.

−0

0

+

0

0

+

−0

+

+

0

+

+

−0

+

0

0

+

0

00

+

−

0

0

0

Figure 5.6: e sign of the possible modes of the composed system

In order to find all the possible flat bands, one must construct the full laice which is shown below at
the Fig. 5.7 and is named Cross laice.

un

vn

wn

zn

Figure 5.7: e Cross laice and its unit cell

As we can see there is 4 kind of waveguides and the laice which extends in one direction. e basic
equations governing the propagation of the light along the waveguides are the following

i
dun
dz

+ V vn = 0 (5.10)

i
dvn
dz

+ V (un + wn) + V ′ (zn−1 + zn) = 0 (5.11)

1e meaning of the mode here is not the same with previous , we mean only the sign of each of the components of the composed
system. For example + at the figure might means +

√
2 or +2 or something different. As long as the constant is unknown we called

it possible mode.
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i
dwn

dz
+ V vn = 0 (5.12)

i
dzn
dz

+ V ′ (vn + vn+1) = 0 (5.13)

and the form of the solution is assumed to be un = ueiqxn−ikz , vn = veiqxn−ikz , wn = weiqxn−ikz ,
zn = zeiqx(n+1/2)−ikz . erefore we get the following

ku+ V v = 0

kv + V (u+ w) + 2V ′ cos
(
qx/2

)
z = 0

kw + V v = 0

kz + 2V ′ cos
(
qx/2

)
v = 0

or equivalently 
0 V 0 0
V 0 V 2V ′ cos

(
qx/2

)
0 V 0 0
0 2V ′ cos

(
qx/2

)
0 0



u
v
w
z

 = −k


u
v
w
z


e eigenvalue are given ∣∣∣∣∣∣∣∣∣

−λ V 0 0
V −λ V 2V ′ cos

(
qx/2

)
0 V −λ 0
0 2V ′ cos

(
qx/2

)
0 −λ

∣∣∣∣∣∣∣∣∣ = 0

⇔ −λ

−λ ∣∣∣∣−λ 0
0 −λ

∣∣∣∣− V
∣∣∣∣∣ V 0
2V ′ cos

(
qx/2

)
−λ

∣∣∣∣∣+ 2V ′ cos
(
qx/2

) ∣∣∣∣∣ V −λ
2V ′ cos

(
qx/2

)
0

∣∣∣∣∣


−V

(
V

∣∣∣∣−λ 0
0 −λ

∣∣∣∣
)

= 0

⇔ λ2
(
λ2 − 2V 2 − 4V ′2 cos2

(
qx/2

))
= 0

So the bands are
λ1,2 = 0, λ2,3 = ±

√
2V 2 + 4V ′2 cos2

(
qx/2

)
Modes for λ = 0 are given from the following

0 V 0 0

V 0 V 2V ′ cos
(
qx/2

)
0 V 0 0

0 2V ′ cos
(
qx/2

)
0 0

 , exchange between the 1st row and the 2nd

⇒


V 0 V 2V ′ cos

(
qx/2

)
0 V 0 0

0 V 0 0

0 2V ′ cos
(
qx/2

)
0 0

 ←−−1

+

⇒


V 0 V 2V ′ cos

(
qx/2

)
0 V 0 0

0 0 0 0

0 2V ′ cos
(
qx/2

)
0 0


←−

−2V ′ cos(qx/2)
V

+
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⇒ v = 0

u = −w − 2
V ′

V
cos
(
qx/2

)
z

So the modes are [−, 0,+, 0] ,
[
−V ′

V , 0, 0,+
]
for cos

(
qx/2

)
= 1/2, the first mode is that we are looking

for because this verify our hypothesis that the mode of Trimer [−, 0,+] with 0 to the connector waveguide
i.e the mode [−, 0,+, 0] exist as a mode of the periodic laice (i.e Cross laice).

5.1.2.2 Sawtooth Lattice

Returning back to the modes of Trimer this time we will use the third one which is [−,
√
2,−]. At

this time we connect two waveguides of each of the Trimers to the central waveguide, of course it doesn’t
maerwhich one because aswe can see themodewementioned is the same at the first and third component.
erefore we do the connection as usual, taking two Trimers and connected with the central waveguide as
the Fig. 5.8 shows. Let’s see what must be held so that the mode of the Trimer exist as a mode of the

ψ3

ψ2

ψc

ψ1

VV

V V ′

Figure 5.8: Two Trimers connected with a central waveguide with two waveguides of each of the Trimers
connected to central waveguide

new system. If we excite the connector waveguide with zero amplitude and the le Trimer as the mode
[−,
√
2,−] shows us, i.e [ψ1, ψ2, ψ3, ψc] = [−a,+

√
2a,−a, 0], then from the relation (5.3) (neglect the

phase difference) we can export the below relation

kψc = V ′(
√
2a)− V a+ V (0) + V ′(0)

⇔ 0 = a(V ′√2− V )

⇔ V

V ′ =
√
2

Notice that the amplitudes of the second Trimer are considered as zero.
Now we have to show that for the full Sawtooth laice there is a flat band for the ratio of the coupling

terms we told above. ere is the Sawtooth laice at the Fig. 5.9 which depicts the unit cell with continuous
line and a hypothetical with dashed line. Due to the symmetry of the distances and therefore of the coupling
terms we can reduce the system to just two waveguides, although the hypothetical unit cell 2 is not exactly
a unit cell but it shows us how to make more easier the calculations.

un

vn

wn

zn

Figure 5.9: Sawtooth laice and its unit cell
2 e hypothetical unit cell is not that which if i repeated over the x axis i construct the full laice.
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e equations describe the propagation of the light along the waveguides are the following.

i
dun
dz

+ V (vn + vn−1) + V ′ (un+1 + un−1) = 0 (5.14)

i
dvn
dz

+ V (un + un+1) = 0 (5.15)

We consider plane wave solutions, i.e. solutions of the form un = ueiqxn−ikz , vn = veiqx(n+1/2)−ikz .
Consequently the eq. (5.14),(5.15) become :

ku+ 2V cos
(
qx/2

)
v + 2V ′ cos (qx)u = 0

kv + 2V cos
(
qx/2

)
u = 0

⇔

[
2V ′ cos (qx) 2V cos

(
qx/2

)
2V cos

(
qx/2

)
0

] [
u
v

]
= −k

[
u
v

]
e eigenvalues are given from the following.∣∣∣∣∣2V ′ cos (qx)− λ 2V cos

(
qx/2

)
2V cos

(
qx/2

)
−λ

∣∣∣∣∣ = 0

⇔ λ2 − 2λV ′ cos (qx)− 4V 2 cos2
(
qx/2

)
= 0

λ1,2 = V ′ cos (qx)±
√
V ′2 cos2 (qx) + 4V 2 cos2

(
qx/2

)
= V ′

cos (qx)±

√
1 + 4

(
V 2

V ′2
− 1

)
cos2

(
qx/2

)
+ 4 cos4

(
qx/2

)
where we have concluded using that the cos (qx) = 2 cos2

(
qx/2

)
− 1. Suppose that the V

V ′ =
√
2 then we

get

λ1,2 = V ′
(
cos (qx)±

√
1 + 4 cos2

(
qx/2

)
+ 4 cos4

(
qx/2

))
= V ′

(
cos (qx)±

(
cos (qx) + 2

))
So the flat band is for λ2 = −2V ′ and V

V ′ =
√
2. e relation between the amplitudes of the mode is

u = −
√
2 cos

(
qx/2

)
cos (qx) + 1

v for cos (qx) ̸= −1

u = 0, v = 0 for cos (qx) + 1 = 0 and cos
(
qx/2

)
̸= 0

v = 0 for cos (qx) + 1 = 0 and cos
(
qx/2

)
= 0

5.2 Lieb Lattice
Let’s recall the Lieb laice which is a FB laice. At this section we will study how one can conclude

to this laice starting from a smaller system in similar way with the things we have already seen at this
chapter. Suppose we have an array of waveguides as the illustration in Fig. 5.10 (le), it is understood that
this array is a part of the Lieb laice. At the right we see an excitation which is exactly the excitation we
saw at the chapter of the Lieb laice were we excited the waveguides of type v and w. e point here is
that at the corners of the waveguides excitation (right) we have zero amplitudes thus these waveguides can
be used as connector waveguides. is means that we can reconstruct the Lieb laice from the mini array
presented here if we connect the mini array in the way that the Fig. 5.11 shows.
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0 − 0

+

0−0

+

Figure 5.10: A mini array (le) and one of its modes (right)

We can apply the same idea, i.e using the zero amplitudes waveguides of a mode of the mini array as
connector waveguides to produce other laices. Another mode of the mini array is that depicted at the Fig.
5.12 (le) which can be the starting mini array from which we construct a new laice, via connecting the
zero amplitude waveguides of the mode with a similar way as previous. Hence if we take two mini arrays
connected with a central waveguide as the Fig. 5.12 shows, then we have constructed the Lieb 2 laice.
Notice that it is hard to find the bands of the new laice because it has 10 waveguides into its unit cell in
contrary with the Lieb laice has only 3, hence we can approximate the bands with numerical methods.

0

Figure 5.11: A miniarray (le) and one of its modes (right)

− 0 +

0

−0+

0

0

0

0

0

0 0

Figure 5.12: A mode of the mini array (le) and the construction of Lieb 2 laice and its unit cell (right)
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