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Abstract

Context: ΛCDM is currently recognized as the standard model in cosmology, but recent

tensions between different types of high-accuracy data indicate potential inconsistencies.

This generates an urgent need for a new examination of this model using novel observables.

Pavlidou et al. have recently illustrated that the turnaround density, the average density

within the turnaround radius of galaxy clusters, can be utilized as a probe for this purpose.

Aims: We search for an efficient way of measuring the turnaround radius of galaxy clusters

on the plane of the sky.

Methods: We use the MultiDark Planck 2 and Virgo simulations to acquire projections of

galaxy clusters and calculate their turnaround radius based on their velocity profiles. We

use these data to train (and test) a Convolutional Neural Network (CNN), involving several

layers of filters, normalization and regularization techniques.

Results: We find that: (a) the turnaround radius is correlated to the central mass of a

galaxy cluster and that the mass distribution around the cluster is almost an irrelevant

feature to the model’s prediction. (b) The velocity dispersion of the galaxies also contains

information related to the turnaround radius. The model’s accuracy is not significantly

affected by the absence of information inside the R200 of the central overdensity in each

cluster.
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Chapter 1

Introduction

Detailed cosmological observations of the large scale structure in the Universe validate the

ΛCDMmodel, with the exception of some apparent contradictions, referred to as ”tensions”,

particularly in relation to observations of the Hubble Constant and the clumpiness factor

[see e.g.,(Bernal, Verde, & Riess, 2016; Zhao et al., 2017; Joudaki et al., 2017; Hildebrandt

et al., 2017; Riess et al., 2018; Riess, Casertano, Yuan, Macri, & Scolnic, 2019; Motloch

& Hu, 2018; Miville-Deschênes et al., 2020; Raveri & Hu, 2019; Adhikari & Huterer, 2019;

Handley, 2021; Di Valentino, Melchiorri, & Silk, 2020, 2021; Shah, Lemos, & Lahav, 2021)].

Furthermore, current evidence for the existence of a cosmological constant is based on the

relation between the present-day values of the cosmological density parameters of matter,

Ωm and dark energy, ΩΛ, probed either by the cosmic microwave background or by observa-

tions of distant supernovae. While some cosmological datasets (cluster abundances, baryon

acoustic oscillations) also induce constrains that are sensitive to Ωm, this is not true for

ΩΛ, leading to several revisions of the evidence that ΩΛ ̸= 0. Pavlidou, Korkidis, Tomaras,

& Tanoglidis, 2020; Pavlidou & Tomaras, 2014; Korkidis et al., 2020 and Tanoglidis, Pavli-

dou, & Tomaras, 2015 have demonstrated how the turnaround density (ρta) and hence, the

turnaround radius (Rta) can be used as a novel way to probe cosmology. If a measurement

of ρta is made in a sufficient number of clusters at a range of low redshifts, constraints very

sensitive to ΩΛ can be obtained.

The concept of the turnaround radius appears naturally in the context of the spherical

collapse model (Gunn & Gott III, 1972; Fillmore & Goldreich, 1984; Bertschinger, 1985).

If we assume the structures in the Universe emerged from spherical perturbations in an

otherwise homogeneous and isotropic early Universe (ΛCDM), according to General rela-

tivity, we can evolve these inhomogeneities in time as an isolated closed Universe. These

sub-Universes obey the Friedmann equation, thus their collapse is isotropic. Here, the

turnaround radius is defined as the boundary where the expansion of the structure is halted

and the structure starts to collapse, detaching from the Hubble Flow. To avoid any confu-

sion, turnaround is not an event that appears once in the history of a structure. Rather,

it can be found around all structures at all times. Around a virialized galaxy cluster, for

instance, there is an accretion region of infalling material, but at sufficiently large distance,

other structures are carried away by the expansion of the Universe. Hence, there is some

point in space where the accretion meets the Hubble flow, a zero-shell velocity, which is

1



located at the turnaround radius. Therefore, turnaround radius is a well defined boundary

in analytic calculations, simulations and observations.

According to the spherical collapse model, the turnaround density (ρta) as a function of

cosmological parameters and redshift is given by (Pavlidou et al., 2020):

∫ 1

0

das√
Ωta(a

−1
s − 1) + ΩΛ,0(a2s − 1)

=

∫ ata

0

da√
Ωm,0a−1 +ΩΛ,0a2 + (1− Ωm,0 − ΩΛ,0)

(1.1)

where Ωta = ρta
ρcritical

, a and as are the scale factors of the background Universe and the

shell respectively, and the ”0” index represents the present cosmic epoch. Thus, spherical

collapse predicts that a single ρta can characterize all structures in the same redshift given

the cosmological parameters. This density is related to the turnaround radius, Rta and the

mass Mta of all matter (baryonic and dark) within a sphere of radius Rta through:

ρta =
Mta

(4/3)πR3
ta

(1.2)

In principle, then, observations of Rta and Mta can be combined to constrain Ωm and ΩΛ.

It has been shown by (Korkidis et al., 2020) that a single turnaround radius can in-

deed accurately describe simulated halos, even in the presence of significant asphericities

in their mass distribution. The value of the turnaround radius as measured from radial

velocity profiles is in good agreement with spherical collapse and all of the aforementioned

characteristics are persistent.

Presently there exists no method of measuring the turnaround radius of galaxy clusters

observationally from readily available information. We can only observe structures projected

on the plane of the sky and so, it is not possible to compute the turnaround radius by

considering the velocity profiles of the shells surrounding the perturbation. Even if a method

was available, we would still need to have projections of clusters on a 2D plane with known

turnaround radii to test the model’s accuracy.

Consequently, the aim of this work is to investigate what type of observational datasets

may encode information on the Rta of galaxy clusters. In particular, we wish to establish

whether there exists, in principle, a way of measuring the turnaround radius on the plane

of the sky, using information on the distribution of galaxies and their redshifts around

galaxy clusters. We used N-body dark matter simulations to simulate projections of dark

matter halo clusters (baryonic effects are negligible at these scales therefore we use the terms

halo and galaxy interchangeably) and measure their turnaround radii from their velocity

profiles. To this end, we implemented machine learning methods to find a relation between

these projections and the accurate, numerically computed turnaround radii from the 3D

information available in simulations.

The outline of this thesis is as follows. In Sect. 2 we describe the set of N-body

simulations used in this work and the characteristics of the resulting turnaround radii. In

Sect. 3 we describe the methods used for the creation of the model that tries to predict

the turnaround radius. In Sect. 4 we present the results of our analysis. We discuss these

findings in Sect. 5.
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Chapter 2

Data

2.1 N-body Simulations

In this work we use data from: (a) The MuldiDark Planck 2 (MDPL2) Simulation (Riebe et

al., 2013). The MDPL2 simulation was performed with (1 Gpc/h)3 box size, with about 57

billion particles in a cosmology consistent with the Planck data (2013). It was performed us-

ing the L-Gadget2 code. (b) The Virgo Intermediate Scale Simulations simulations (ΛCDM,

OCDM, SCDM) (Frenk et al., 2000). These simulations contain 2563 particles each in a

box of (239.5 Mpc/h)3 and represent different cosmological models. The calculations were

done using the external AP3M N-body code. For the data extraction we used the methods

presented on the respective project websites1,2. The basic properties of the simulations

can be seen in Table 2.1. Table 2.2 shows the cosmological parameters adopted in each

simulation.

For the halo catalog production MDPL2 uses the ROCKSTAR algorithm (Behroozi,

Wechsler, & Wu, 2012) while the Virgo simulations use the Friends-of-Friends slgorithm

(FOF; (Davis, Efstathiou, Frenk, & White, 1985; Knebe et al., 2011)). In the latter,

particles are linked together only if their distance is below a linking length and create

groups that do not interfere with one another. ROCKSTAR is based on FOF but uses six

phase-space dimensions and one time dimension for adaptive hierarchical refinement.

Table 2.1: Simulation box size in h−1 Mpc, number of particles, particle mass in h−1M⊙, and Force
resolution in units h−1kpc. All simulations are from dark-matter–only runs.

Simulation Box Particles Mp ϵ

MDPL2 1000 38403 1.51× 109 13-5
Virgo ΛCDM 239.5 2563 6.86× 1010

Virgo SCDM 239.5 2563 22.7× 1010

Virgo OCDM 239.5 2563 6.86× 1010

1https://www.cosmosim.org/metadata/mdpl2/
2https://wwwmpa.mpa-garching.mpg.de/galform/virgo/int sims/index.shtml
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Table 2.2: Cosmological parameters used in simulations

Simulation Ωm Ωb ΩΛ h100

MDPL2 0.307115 0.048206 0.692885 0.6777
Virgo ΛCDM 0.3 - 0.7 0.70
Virgo SCDM 1.0 - 0.0 0.50
Virgo OCDM 0.3 - 0.0 0.70

2.2 Acquired data

From the simulations we located the largest halos (3248 from MDPL2 and 328 from the

Virgo simulations) of the catalogues which provide us with the positions, virial masses3 and

velocities of the halos.

We derived the turnaround radius kinematically from the velocity profiles of the sur-

rounding halos by measuring the mean velocity of spherical shells as described by Korkidis

et al., 2020. The distribution of the turnaround radius values for each simulation can be

seen in Fig. 2.1.
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Figure 2.1: Histogram of Rta values from MDPL2 (left panel) and Virgo ΛCDM (right panel). Left panel:
MDPL2 Rta values from 9744 halos; min:1.08 ; max: 20.76 ; mean: 8.58; std: 2.15. Right panel: Virgo
ΛCDM Rta values from 962 halos; min:0.95 ; max: 13.20 ; mean: 5.32; std: 1.83.

We considered large enough regions (radius of 25Mpc) around the central halos so that

they contain the largest turnaround radius found. Subsequently, we acquired all of projec-

tions of these regions (9744 from MDPL2 and 984 from the Virgo simulations), along with

the virial masses, positions and line-of-sight velocities of the collapsed halos with respect to

the central one.

In this procedure we only considered the halos with masses > 1012M⊙. The reason why

we applied the limit is that we might not be able to distinguish small galaxies embedded

in halos less massive than 1012M⊙ observationally (especially if in the future we apply our

method to higher redshift observations) and so this makes our simulated data more aligned

with such a realistic scenario.

For the same reason, even though we can determine through redshift the distance of

3The mass within the radius R200 which encloses a mean density 200 times the background mass density
of the Universe
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such objects, there is always an error and it is dependent on the method used for this

determination e.g. spectroscopic or photometric techniques. Consequently, we considered

a velocity cut of 0.3 · 104km/s, meaning that in each cluster we added all of the halos that

were located in front or behind of the projections for which their line-of-sight velocities

(with respect to the central halo) lied below the designated limit. This simulates the

effect of redshift errors on the inclusion of individual galaxies in the analyzed sample. Our

approach simulates redshift errors one would get by spectroscopic techniques. All of the

aforementioned steps were carried out at z = 0.

For the MDPL2 data we additionally considered another 2 redshift snapshots, namely

z = 0.49 and z = 1.03. In Fig. 2.2 we can see the distribution of the Rta values from each

of the additional MDPL2 redshift snapshots (left panel) and from each of the non-ΛCDM

Virgo simulations (right panel). The different location of peaks in different redshifts and

different cosmologies is a direct indication that ρta is a function of the redshift and the

cosmological parameters as described by Equation 1.1.
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Figure 2.2: Histogram of Rta values from MDPL2 form z = 0.49 and z = 1.03 (left panel) and Virgo from
OCDM and ΛCDM cosmology (right panel). Left panel: MDPL2 (z = 0.49) Rta values from 3340 halos;
min: 1.35 ; max: 12.7 ; mean: 6.09; std: 1.56. MDPL2 (z = 1.03) Rta values from 3356 halos; min: 0.54 ;
max: 8.51 ; mean: 3.87; std: 0.99. Right panel: Virgo SCDM Rta values from 971 halos; min:4.85 ; max:
16.93 ; mean: 8.25; std: 1.96. Virgo OCDM Rta values from 958 halos; min:1.53 ; max: 13.89 ; mean: 5.20;
std: 1.73

For the MDPL2 data a velocity cut of 2 · 104 km/s was also considered, corresponding

to the accuracy of photometric redshifts. A projection of a region around a random cluster

from each velocity cut (upper and lower panel) is shown in Fig. 2.3. It is clear that the

high velocity cut data have more contamination due to the thicker redshift slice considered

in this case. As expected, the larger velocity cut includes more halos that will not be a part

of the initially considered region of 25Mpc.
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Vcut = 0.3 · 104 km/s

20 10 0 10 20
X (Mpc)

20

10

0

10

20

Y 
(M

pc
)

Line of sight velocities

101

0

101

V l
os

 (k
m

/h
)

20 10 0 10 20
X (Mpc)

20

10

0

10

20

Y 
(M

pc
)

Virial Mass

1013

1014

1015

M
vi

r (
M

)

Vcut = 2 · 104 km/s
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Figure 2.3: Random cluster projection on a 50× 50 Mpc area. The black circles represent the turnaround
radius. The upper and bottom panels show the 2 cases of the velocity cuts. We can see that the higher
velocity cut data include more halos and ergo have more contamination. In the left side the colors represent
the line of sight velocities of the halos with respect to the central. In the right side the colors represent the
virial masses of the halos. In every case the colorbars are logarithmically scaled. From the left side we can
see that there is not a preferable direction in the line of sight for the surrounding halos. The right column
seems to be containing only small masses (blue colored) with respect to the color bar but the central halo
has a higher mass by two orders of magnitude from almost all of the rest.
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Chapter 3

Methods

3.1 Artificial Neural Networks

Over the course of the last years machine learning has gained considerable attention in the

field of astrophysics and cosmology [see (Lahav, 2023; Baron, 2019; Carleo et al., 2019;

Huertas-Company & Lanusse, 2022)] with several discussions on the effectiveness of these

data driven methods (Lin et al., 2022). The subcategory of deep learning in particular,

has been proven to be a powerful tool, with feature extraction capabilities embedded in the

internal structure of its models.

In this paper we used Artificial Neural Networks (NNs) to find a relation between ob-

servables, such as virial masses of the line-of-sight velocities, and the turnaround radius.

NNs can be viewed as multi-variable functions, transforming inputs into target outputs via

a series of calculations related to a structure reminiscent of the biological neural networks.

This structure can be best resembled by the form of a flowchart with the neurons and the

weights forming its fundamental components. Neurons are variables appearing as nodes in

the flowchart, and are organized in groups which constitute the layers of a neural network.

These layers are successively connected and the strength of these connections is determined

by a set of synaptic weights. The procedure of training involves the iterative adjustment of

these weights until the system achieves its purpose as successfully as possible, in this case

predicting the Rta.

In conventional NNs, the layers are fully connected, designed primarily for one-dimensional

inputs. For this reason we use Convolutional Neural Networks (CNNs), which are best suited

for single and multi-channel images. CNNs use convolutional layers which connect the neu-

rons of one layer only to a small region of the neurons of the previous layer (e.g. pixels of

the image), allowing for the recognition of low level spacial features. The main structure of

our NN can be seen in Table A.1 . This structure was the best candidate in almost all of

the trials performed. The focus on point estimates is due to the restrictive computational

power.
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3.2 Metrics

To assess the quality of the predicted Rta, we adopted the following commonly used statis-

tics:

3.2.1 Coefficient of Determination (R2 score)

The coefficient of determination, also known as the R2 score, is a statistical metric that

is often used to quantify the quality of a regression model. Formally, it measures the

proportion of the variance in the dependent variable that is predictable from the independent

variables.

An R2 score of 1.0 indicates that the model perfectly predicts the dependent variable

using the independent variables. On the other hand, an R2 score of 0 indicates that the

model does not predict the dependent variable at all, i.e., the model is no better than simply

taking the mean of the dependent variable. The R2 score is defined as:

R2 = 1− SSres

SStot
(3.1)

where SSres is the residual sum of squares defined as
∑n

i=1(yi − f(xi))
2, yi are the actual

values, f(xi) are the predicted values, and SStot is the total sum of squares defined as∑n
i=1(yi − y)2, with y being the mean value of the dependent variable.

Note that the R2 score can become negative when the chosen model fits the data worse

than a horizontal hyperplane.

3.2.2 Shapley Values

Shapley values is a concept that originates from cooperative game theory. In the context

of machine learning, particularly in the field of interpretability, Shapley values provide a

method to allocate the contribution of each feature to the prediction for each individual

instance. Formally, the Shapley value of a feature i is defined as:

ϕi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)) (3.2)

where N is the set of all features, S is a subset of features, and v(S) is the value function

that assigns a value to a set of features S.

The Shapley value of a feature can be interpreted as its average marginal contribution

to the prediction, across all possible combinations of features. This property, along with

others such as efficiency (the sum of the Shapley values equals the total effect of all features)

and symmetry (identical features receive the same Shapley value), makes Shapley values a

powerful tool for our model interpretation.
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3.3 Preprocessing

As mentioned in Sect. 2 our data consists of projected regions around dark matter halo

clusters, incorporating the details of each halo’s virial mass and line-of-sight velocity. In

order to feed the data to the algorithm we converted them into images as 2D histograms.

For the histograms we used the appropriate weights to create 3 types of images: mass

density, number density and mean line-of-sight velocity in each bin, in our case pixel1.

This transformation does not affect the outcome since by dividing by the area of each

pixel (constant) to acquire the densities we don’t change the relation between the images.

Additionally, by taking the mean velocity some of the pixels values may change relative to

one another but we discovered through several tests that this does not affect the outcome

and sometimes improves it.

Different resolution of the images were tested but for more accurate results and due to

computational restrictions 25 × 25 images were chosen as the best candidate for the best

results. Surprisingly, it seems that the binning of the halos with the histogram technique

improves the algorithm’s performance. This is partially due to the fact that with a higher

resolution there are too many 0-valued pixels in the image which seems to confuse the

algorithm even with all the regularizations (l1 and l2 regularizations were considered).

Images of 11, 21, 25, 31, 41 and 51 side pixel length were tested for this purpose. The

number of the pixels is odd in order for the central halo to be located exactly in the center.

For each case, 80% of the simulation data were used for the training and validation and

20% was used for testing the trained model.

We can see from Fig. 2.1 that the turnaround radius data are not uniform but rather

they present a Gaussian distribution-like form. This could potentially result in the algo-

rithm only predicting values close to the peak, resulting in a problem usually referred to

as heteroscedasticity (Andreon & Hurn, 2013; Feigelson, De Souza, Ishida, & Babu, 2021)

or class dependent residuals in classification problems (Lin et al., 2022). Several normal-

izations were tested at this point like a uniform transformation but the original data were

more successful.

1We have not considered observational errors in each ”observed” quantity, although binning simulates
to some extent observational uncertainties. The reason for not adding noise is that we want to provide the
model with the most favorable conditions possible
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Chapter 4

Results

4.1 General

In this section we only consider the MDPL2 data in redshift z = 0, in both the low and the

high velocity cuts, to get a general idea of the potential of our methods. We investigated

all of the possible combinations of the mass, number, and velocity data in a 2D or 3D data

cube. The resulting R2 scores can be seen in Fig. 4.1.
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Figure 4.1: Comparison between low and high velocity models performance. This bar plot shows the
different R2 values for each combination of the 3 features that we considered: the mass density, number
density and mean line of sight velocity (indicated as ”mass”, ”num”, and ”vel” respectively). The blue bars
represent the scores on the low velocity cut while the red ones on the high velocity cut data. We can see
that the best model is for the low velocity cut (after all, there is lower contamination) and for all of the data
containing the mass.

The highest accuracy was achieved with the low velocity cut data containing the mass

information. This is a quite logical result since the gravitational strength of the mass of

the cluster should correlate to how far from the center of mass the Hubble flow becomes
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dominant. Surprisingly, the velocity data show no such strong correlation. We proceed to

investigate these 2 cases in more detail in Sect. 4.2 and 4.3. We note in passing, that the

results of a Gaussian prediction around the mean of the true Rta values produced similar

results to our unsuccessful candidates. We continue with only considering the low velocity

cut data as an attempt to study the best possible case.

4.2 Mass distribution

The significantly better performance of the models based on data containing the mass,

lead us to investigate what would this model’s performance be without information on the

central, more massive, halo (i.e. without information on the mass of the actual central

collapsed galaxy cluster). Consequently, we removed it completely from all of the regions

and re-trained our model. The results can be seen in the Fig. 4.2 that were acquired from

the low velocity cut data that performed better in the previous section. We can see that

without the central halo the models’ performances containing the mass drop significantly.

This implies that their better performance was due to the central halo’s mass information.

All of the other models predict the turnaround with about the same score.

mass mass
vel

mass
num

mass
num
vel

num
vel

vel num

Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
2

Sc
or

e

Including central halo
Excluding central halo

Figure 4.2: Comparison between 2 cases: including or excluding the central halo. This bar plot shows
the different R2 values for each combination of the 3 features that we considered, the mass density, number
density and mean line of sight velocity (indicated as ”mass”, ”num”, and ”vel” respectively). The blue bars
represent the models’ performance with the central halo while the red ones represent the scores of the models
without it. We can see that without the central halo the model’s performance drops significantly and all of
the models predict the turnaround with about the same score.

A more accurate representation of these results is shown in Fig. 4.3 with scatter plots

between the predicted values of the turnaround radii and their real values. If the model

was perfect then all the points (Rta,predicted, Rta,true) would be located on the y = x line. It

is evident that in the case where the central halo is missing (lower panel) there seems to be
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a little to no correlation whatsoever.
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Figure 4.3: Comparison between predicted and true values of the Rta for different CNN models using mass
information. Upper panel: The low velocity cut data were used with the model having an R2 Score of 0.62.
Middle panel: The high velocity cut data were used with the model having an R2 Score of 0.54. Bottom
column: For this model the low velocity cut data were used but this time exluding the central halo. R2

Score =0.18.While the other models show some correlation between the treu and the predicted values, this
one seems that its predictions are focused around the mean value of the Rta values distribution.

The results of the R2 score from different redshifts from MDPL2 and from different
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cosmologies from both MDPL2 and the Virgo Simulations can be seen in Fig. 4.4 (upper

and lower panel respectively). Best models seem to be the ones containing the data from the

MDPL2 possibly due to the fact of the larger number of training instances. Additionally,

it seems that a model trained at one redshift is not successful when tested at another one.

This is expected because of the relation between ρta and redshift discussed in Chap. 1.
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Figure 4.4: R2 scores of different combinations of training and testing data using mass information. 80% of
the simulation data were used for training-validation and 20% was used for the testing in each case. Upper
panel: Training and testing data from different MDPL2 redshifts (z=0,0.49,1.03). As expected, for each
training set the R2 score is the highest when evaluated on data from the same redshift. Since MDPL2 is a
ΛCDM concordance cosmological simulation, the ρta depends on redshift. Therefore, for different redshifts
the model cannot find an apparent correlation between Mvir and Rta because ρta varies with redshift. Bottom
panel: Training and testing data from different simulations and cosmological models (MDPL2, VirgoΛCDM,
VirgoOCDM, VirgoSCDM and the merged data from MDPL2 and VirgoΛCDM). Best models seem to be
the ones containing the data from the MDPL2 possibly due to the fact of the larger number of training
instances.
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4.3 Velocity distribution

The result that the velocity data were not containing any information is surprising. Since

the mass of the central halo is correlated with Rta one would assume that the velocity

dispersion of the halos surrounding it would be correlated to that mass and hence the

turnaround radius. Consequently, we attempt to do a manual feature extraction in this

case, since our models could be lacking complexity due to computational limitations or the

architectures tested could have lead us to a local minimum since we did not explore the

whole probability space.

We suppose that the velocity data are sparse to find a relation between them and the

Rta. If this is the case, we attempt to ”stack” our acquired projections based on their Rta

and therefore merge some data together in order to have more velocity information. This

”stacking” was performed by separating the available Rta into bins and merging the data

from the corresponding clusters. A new Rta was then considered as the mean of the Rta

values in each bin. In principle, similar mass, or similar Rta clusters should exhibit similar

characteristics. We then again transform these data into images but this time computing

the standard deviation of the velocities in each bin.

In the left panel of Fig. 4.5 we can see the True vs Predicted values of the model with

3000 Rta bins (resulting in about 1200 cluster images since some of the bins are empty): It

appears to be a small correlation since it performs slightly better that our previous attempt

(see Fig. 4.1) but not a very apparent one.
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Figure 4.5: Comparison between predicted and true values of of the Rta for models using velocity infor-
mation.”Stacked” images were used from 3000 bins of Rta taken from: the MDPL2 data (left panel) and
the merged MDPL2 with Virgo ΛCDM data (right panel). R2 scores are 0.36 and 0.53. The merging of the
data from the 2 simulations seems to prevent the predictions of the model focusing around the mean value
of the MDPL2 Rta values distribution.

We continue by merging the data from MDPL2 and VirgoΛCDM in an attempt to deal

with the issue of heteroscedasticity. Although the simulation parameters slightly differ, in

principle the turnaround should be probed independently of these minor differences. The

results can be seen in the right panel of Fig. 4.5. An R2 Score of 0.53 together with the visual

representation of the predicted vs true values is a strong indication that there is correlation.
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For reference, a Gaussian prediction around the mean value would give R2 ≈ −1.

In order to interpret these results we plotted the Shapley values of the pixels some of

the test images shown in Fig. 4.6. We can see that in the case where the central pixel has a

lower velocity standard deviation the algorithm interprets this as an indication to decrease

the value of the predicted Rta while the reverse holds true under inverse circumstances.

This seems to validate the assumption that the velocity dispersion is correlated with the

central halo’s mass. However, these are 2 specific examples and Shapley values can only

provide an indication. Nonetheless, the apparent focus in the central area of the cluster

seems to appear in ∼ 90% of the inspected test images.
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Figure 4.6: Shapley values of 2 random test clusters (upper and lower panel). Left panel: Standard
deviation of the halo velocity in each pixel. Right panel: Shapley values in each pixel. The black and red
circles correspond to the turnaround radius and the R200 respectively. In the first cluster, the center of the
structure seems to have low dispersion compared to the second one. The low dispersion seems to indicate
to the model that the turnaround radius should be lower while the higher dispersion indicates the opposite.

This observable emphasis of the CNN model in the central area of the structures needs

to be investigated. Consequently, we removed all of the halos located inside the R200 of the

central overdensity in each cluster and re-trained the model in order to probe the importance

of this information. The resulting model’s predicted vs true values plot can be seen in the

right panel of Fig. 4.7. The model had an R2 score of 0.60 which is surprisingly higher

than the one containing the information inside R200 (R2 = 0.53). This could be a result of
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the latter reaching a local minimum (during the gradient decent algorithm) that we could

not have escaped with the current architecture and network parameters. We argue that the

information of the halos projected to the central area of our images, confuses the model

due to the contamination we introduce with the consideration of velocity cuts. We deduce

that the information inside the R200 of the central overdensity does not have particular

importance.
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Figure 4.7: Comparison between predicted and true values of of the Rta for models using velocity informa-
tion including (left panel) or excluding (right panel) the information inside the central halo’s R200.”Stacked”
images were used from 3000 bins of Rta taken from the merged MDPL2 with Virgo ΛCDM data. R2 scores
are 0.53 and 0.60 respectively.

A number of training runs was again performed with different combinations of training

and test sets. The results of the R2 score from different redshifts from MDPL2 and from

different cosmologies from both MDPL2 and the Virgo Simulations can be seen in Fig. 4.8

(upper and lower panel respectively). It seems that the models containing the MDPL2 in

the training data were more successful, as expected, due to the larger amount of training

instances. The R2 scores from different redshifts follow the same pattern as the ones in

the upper panel of Fig. 4.4 resulting from the CNN trained with the mass information.

Additionally, there seems to be no successful prediction of a model trained on a specific

cosmology to when tested to another. All of the aforementioned features indicate that the

velocity dispersion information used by the CNN to predict the Rta correlates to the mass

of the central overdensity. Therefore, the model cannot predict the Rta successfully in other

redshifts and cosmologies for the same reason the mass is unable to do so mentioned in Sect

4.2.
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Figure 4.8: R2 scores of different combinations of training and testing data using velocity information. 80%
of the simulation data were used for training-validation and 20% was used for the testing in each case. Upper
panel: Training and testing data from different MDPL2 redshifts (z=0,0.49,1.03). For each training set the
R2 score is the highest when evaluated on data from the same redshift. Bottom panel: Training and testing
data from different simulations and cosmological models (MDPL2, VirgoΛCDM, VirgoOCDM, VirgoSCDM
and the merged data from MDPL2 and VirgoΛCDM). Best models seem to be the ones containing the data
from the MDPL2 possibly due to the fact of the larger number of training instances.
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Chapter 5

Conclusions

It is established by the work of Pavlidou & Tomaras, 2014; Pavlidou et al., 2020; Korkidis

et al., 2020 that the turnaround density of galaxy clusters can be used as a novel way to

probe cosmology and further test the current cosmological model that in the recent years is

faced with ’tensions’ regarding the observations of the Hubble Constant and the clumpiness

factor.

Here, we searched for a way to probe the turnaround radius of galaxy clusters based

on their projections on the plane of the sky. We use cosmological N-body simulations

to acquire idealized observational data (containing mass and velocity information, free of

uncertainties) inside 2 ”slices” with thickness corresponding to what would be achievable

in spectroscopic and in photometric surveys. We infer the ”true” values of the turnaround

radii from the velocity profiles surrounding the central overdensities of the galaxy clusters

in the simulations. We use Convolutional Neural Networks to train a model that predicts

the turnaround radius using different combinations of training and test data from different

simulations, redshifts and cosmologies.

We find that the mass is the most important information we have for the prediction

of the turnaround radius. This at first may appear counter-intuitive as the turnaround

is defined and computed by the velocity profiles of the dark matter particles around the

central halo. However, it is quite logical that the mass of the cluster contributes to the

gravitational dynamics defining the turnaround radius. Furthermore, we find that the mass

of the central, more massive halo, is almost entirely contributing to this prediction.

The velocity dispersion of the galaxies around the cluster also can be used as an impor-

tant feature since it is correlated with the mass of the central overdensity. However, the

small number of halos large enough to be observed inside a single region around a cluster

is not enough to accurately and easily describe this dispersion, since we used ”stacked”

images to find the aforementioned correlation combining several projections. Potentially,

the velocity dispersion of the halos around a cluster hides additional information.

As expected, the contamination of the photometric redshifts is fairly significant, espe-

cially regarding the velocity information but also in the case of the mass information since

by possibly including halos as massive as the central one in the final projection, the model

is affected negatively. Consequently potential spectroscopic observations, that are related

to the low velocity cut, would result in a more accurate prediction of the turnaround radius.
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All of the models, when tested on data that were acquired from different redshifts and

different cosmologies were not successful in their predictions. For the models trained with

the mass information this is expected since the turnaround radius scales with the mass for

a specific redshift and cosmology. For the velocity trained models, unfortunately, the same

pattern appears, indicating that the model, indeed, simply correlates the mass of the cluster

with the velocity dispersion of the halos around it.

Several improvements can be made in future investigations for this matter. Perhaps more

”stacked” images with higher resolution may be able to reveal information independent of

the redshift and cosmological model. The use of bayesian deep learning or bias-reducing

techniques such as the one described in Lin et al., 2022 could become particularly useful.

Furthermore, more complex models e.g. with the use of inception layers in the architecture

of the neural network might be able to unravel additional information hidden in the mass

and velocity information of galaxy clusters.
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Appendix A

Neural Network architecture

The NN architecture used can be seen in Table. A.1. During training, the Mean Absolute

Error was used to evaluate the model’s performance on the validation set. In addition to this

basic architecture, the hyperparameters were tuned in each case to obtain the best result. In

most of the cases the following additional elements were used: Activation function: ReLU,

Padding: same, Kernel initializer: He initialization, Learning rate: 10−3. In some of the

cases l1 and l2 regularizations were also implemented.

Table A.1: Characteristics of each layer of the CNN architecture. Columns are: name of the layer, input
layer, size of the convolution kernel (in pixels), size (height × width in pixels) and number of the resulting
feature maps.

Layer Inputs Kernel size h× w #feature maps

Convolution (C1) Input image 5× 5 25× 25 32
Activation (A1) C1 - 25× 25 32

Batch Normalization (BN1) A1 - 25× 25 32
Pooling (P1) BN1 2× 2 (stride 1 pix) 12× 12 32
Dropout (D1) P1 - 12× 12 32

Convolution (C2) D1 5× 5 25× 25 64
Activation (A2) C2 - 25× 25 64

Batch Normalization (BN2) A2 - 25× 25 64
Pooling (P2) BN2 2× 2 (stride 1 pix) 12× 12 64
Dropout (D2) P2 - 12× 12 64
Flatten (F1) D2 - 2304 -

Fully Connected (FC1) F1 - 32 -
Activation (A3) FC1 - 32 -

Batch Normalization (BN3) A3 - 32 -
Dropout (D3) BN3 - 32 -

Fully Connected (FC2) D3 - 16 -
Activation (A4) FC2 - 16 -
Dropout (D4) A4 - 16 -

Fully Connected (FC3) D4 - 1 -
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