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Kwdikomoinon Awtuou
NikoAaog Noammnag
Metamntuyltakog dottntng

TuAua EmotApng YrnoAoylotwy, Mavemnotripio KpAtng

Enomntng KaBnyntng Met. Epyaciag: Antéotolog Tpayavitng

NepiAnyn

H kwdwormoinon Siktiou eival £€vag VEOC €PEUVNTIKOC TOUEONC TOU TtapouaoLlalel
evbladépouvoeg edapuoyeG OxL povo otn Bewpla mMAnpodoplwv kal kwdikomoinong,
OAAQ KoL OE TIPAKTIKA cuoTApoTa SIKTUwV. H Kwdlkomoinon SIKTUoU EMEKTELVEL TN
AewtoupylkoTnNTa TwWV SIKTUWV TEpa amd tnv mapadoolakry SpopoAdynon f TIG
TEXVIKEG amoBnkeuong Kal mpowdnong, €L0AywvTag TNV Habnuatiky eneepyaoia
Twv debopévwy (kwdikomoinon) péoa ota diktua. O Ahlswede k.d. peAétnoav tnv
TLOAUEKTIOUTH) OF €va SIKTUO XWPLG amWAELEG oUVOESUWV Kal £6el€av OTL N emiteuén
NG XWPNTIKOTNTOG TNC TIOAUEKTIOUMNG QTALTEL YEVIKA TN XPnon &voc Kwdika
Swktuou. Mepatépw epyacieg €6el§av tpomoug oxediaong kwdikwv Slktuou Kot

ETLONG LEAETNOAV OPKETEC LOLOTNTEG TOUG OTIWG N KaTaveEUNUEVN oxedilaon Toug.

Ita mAaiola autng tng epyaciog e€etalouvpe Sladopa BewpnTKA Kol TPOKTKA
nTApaTa TG Kwdlkomoinong SIKTUOU. ZeKWVAUE TN HEAETN Mg HE TNV £€€taon
HEPKWVY SIKTOWV amd TNV amodn Tou KEPSOUC TIOU EXOUME HE TN XPNHON TNG
KwdLkomoinong SIKTUOU. & PEPLKEG TIEPUTTWOELG, N Kwdlkomoinon Sdiktuou pmopet
va SUTAQOLACEL TNV XWPNTIKOTNTA KOL €V YEVEL €EOLKOVOUEL EVEPYElA OE €va
oolppato  Oiktuo AOoyw Twv  AlyotEpwV  UETOOOOEWV TIOU  ATALTOUVTAL.
MNapouotaloupe €vav amAd aAAd ETMOPKHA OCUYKEVIPWTIKO OAyoplOpo ylo tnv
KaTtaokeun Kwdwka S8ktuou, o omolo¢ edapudletal o €va AKUKALKO Siktuo
TLOAUEKTIOUTTN G HLOG TINYAG. 2TN CUVEXELX UEAETAUE TO TPOPBANUA Tou peyEBoug Tou
oApapntou evog kwdika Siktvou. H  pvAun KabBwg KAl N UTTOAOYLOTLKA

TLOAUTIAOKOTNTA TTOU amattouvtat e§aptwvtal o€ peyaio Babuod amno to péyebog tou






oAdaPrTou Tou KWK ToU xpnotpomnoloVe. Eniong, mapouoialouvpe pa péBodo
yla TNV eUpeon tou peyEBoug tou aldaBnTou XpNOLLOTIOLWVTOG HOVO Ta EEEPYXOUEVA
KavaAla amo tnv mnyn. TéAog, mapouaoialoupe pla PEBodo yla va PELWOOUUE TO

uéyebog tou aAdapntou yia ta diktua cuvduacpou.






Network Coding

Abstract:

Network coding is a new research area that is showing promise for interesting
applications not only in information and coding theory, but in practical networking
systems too. Network Coding generalizes network operation beyond traditional
routing or store and forward approaches allowing for mathematical operations
(coding) within networks. Ahlswede et al. studied the multicast in a network of
lossless links and showed that achieving the multicast capacity requires in general
the use of network coding. Further work by various authors showed how to design
network codes and also demonstrated new properties of these codes such as

distributed design etc.

This thesis considers a number of theoretical and practical issues from the network
coding perspective. We begin our study with the examination of some networks and
the gain we may have by using network coding techniques. In some cases network
coding can double our capacity and saves energy in wireless network due to reduced
transmissions. We present a simple but efficient algorithm for network coding, which
is centralized and can be easily applied to a single source acyclic multicast network.
Next we study the problem of finding the alphabet size for a network code. The size
of the alphabet plays an important role because the memory requirements and the
computational complexity depend on it. We present a method for determining the
alphabet size by using only the outgoing channels from the source. Finally, we

present a method to reduce the alphabet size for combination networks.

Thesis Supervisor: Apostolos Traganitis

Title: Professor
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EYXAPIZTIEZ

Katapxnv 6a nBsha va ekppdow TLg BEPUEG LOU EVXAPLOTIEG TIPOG TOV K. ATIOOTOAO
Tpayavitn, coav akadnuaikd cUUBouAo oTnV apxn KalL cav €nOmTn Kabnynti g
HETATITUXLOKNG LOU gpyaoiog otn cuvéxela. H BonBela kal n umootnplEn mou pou
TapEixe, OMWC eMiONG KAl 0 XpOVOC TTOU apLEPWOE yLa OAEC TIG oUINTNOELG KABWCE Kal
KATA TNV SL0pBWON TOU KELHEVOU ATV CNUAVTLIKA yla TNV OAOKANPWON QUTAG TNG

epyaoiag.

2tn ouvéxela Ba BeAa va euxapLoTHow OAa Ta maLdLd Tou epyactnpiou ThA/Viwy &
AtOwV Tou lvotitoutou MAnpodoplkng Kal €8LKA autd Mou eipactav poll oto
«KAouBi», Tov BayyeAn Ayyelakn, Ztépavo Namadakn, Xapitwv MeAloodpn, Nwpyo
Itapatakn Kat Pon ®Aoupn).

210 onuelo auto Ba NBela va w Eva PeYAAO EUXOPLOTW OTOUG YOVELG Hou AnUATEN
Kol ApoAla yla TV miotn mou pou €xouv deiel oe kaBe mpoomabeld pou. Xwpig

autol¢ dev Ba BpLOKOUOUV TTOTE OTO ONUEL0 AUTO.

OAokAnpwvovtag Ba nBela va suxaplotiow tnv Mapia, mou eival dimAa pou oAa
QUTA T XPOVLA, QVEXETAL T TAPAEEVIEG LOU Kol UE otnpilel ota SUoKoAa. e

geuxaplotw Mapia.
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Chapter 1 Introduction

1.1 Historical perspective

Like many fundamental concepts, Network coding is based on a simple but powerful
idea, which was first stated in the seminal paper by R. Ahlswede, N. Cai, S.-Y. R. Li,
and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information
Theory, IT-46, pp. 1204-1216, 2000). The core notion of network coding is to allow
and encourage mixing of data at intermediate network nodes. Network coding is a
generalization of traditional store and forward technique. In existing computer
networks, each node functions as a switch in the sense that it either relays
information from an input link to an output link, or it replicates information received
from an input link and sends it to a certain set of output links. From the information-
theoretic point of view, there is no reason to restrict the function of a node to that of
a switch. Rather, a node can function as an encoder in the sense that it receives
information from all the input links, encodes and sends information to all the output
links. The main advantage of using network coding can be seen in multicast scenarios
where, given a network with specific capacities on links, we have to compute the
maximum multicast throughput possible for communication between a source node
and a set of receivers.

The main idea behind network coding was to design networks capable of achieving
the maximum flow bound on the information transmission rate in a multicast
scenario. The major finding in [1] was that it is in general not optimal to consider

information to be multicast in a network as a “fluid” which can simply be routed or
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replicated at the intermediate nodes but as a mathematical entity that can be
operated upon. It allows interior network nodes to perform arbitrary operations on
information from different incoming links.

In the following we list some of applications of network coding.

P2P file distribution

Probably the most widely known application using network coding is Avalanche [2].
Generally, in a peer-to peer content distribution network, a server splits a large file
into a number of blocks. Peer nodes try to retrieve the original file by downloading
blocks from the server but also distributing downloaded blocks among them. Peers
maintain connections to a limited number of neighboring peers (randomly selected
among the set of peers) with which they exchange blocks. In Avalanche, the blocks
sent out by the server are random linear combinations of all original blocks.
Similarly, peers send out random linear combinations of all the blocks available to
them (idea of Random Network Coding presented by Ho [3]). A node can either
determine how many innovative blocks it can transmit to a neighbor by comparing
its own and the neighbor’s matrix of decoding coefficients, or it can simply transmit
coded blocks until the neighbor receives the first non-innovative block. The node
then stops transmitting to this neighbor until it receives further innovative blocks
from other nodes. Coding coefficients are transmitted together with the blocks, but

since blocks usually have a size of hundreds of kilobytes, this overhead is negligible.

Wireless Networks

Network coding can improve throughput when two wireless nodes communicate via
a common base-station. In a wireless environment, network coding can be used to
offer benefits in terms of battery lifetime because it saves energy in wireless
network because of less transmissions needed. Network coding offer benefits to

wireless bandwidth and delay too.

Security
In [4], the authors investigate the problem of designing secure network codes for

wiretap networks, where certain links can be accessed by attackers. They assume
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that it is known which links are tapped. The source combines the original data with
random information and designs a network code in a way that only the authorize
receivers are able to decode the original packets. Furthermore, the mutual
information between the packets obtained by the eavesdroppers and the original
packets is zero (security in the information theoretic sense). The fact that with
network coding, nodes can only decode packets if they have received a sufficient
number of linearly independent information vectors allows for a weaker form of
security [5]. Such codes are more efficient, but an attacker who has n-1 out of n
linear combinations, only has to guess the content of a single packet to be able to
decode all n packets (hence the name “weak security”). Finally, network coding
simplifies the protection against modified packets in a network [6]. At a normal
network (and no additional protection), an intermediate attacker may make
arbitrary modifications to a packet to achieve a certain reaction at the attacked
destination. However, in the case of network coding, an attacker cannot control the
outcome of the decoding process at the destination, without knowing all other
coded packets the destination will receive. Given that packets are routed along many

different paths, this makes controlled man-in-the-middle-attacks more difficult.

Integration with existing infrastructure

As communication networks evolving, a challenging task is to incorporate the
emerging technologies such as network coding, into the existing network
architecture. Ideally, we would like to be able to profit from the functionalities that
network coding can offer, without incurring important changes in the existing
equipment and software. A related open question is, how could we integrate
network coding in current networking protocols. Making this possible is also an area

of current research.
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1.2 Some examples

Example 1.1 [1]

The first example highlighting the utility of network coding was given by Ahlswede et
al. [1]. Figure below shows their famous example of a network called butterfly
network for which coding in the interior of the network is necessary in order to

achieve the maximum possible multicast transmission rate.

! b
T u
by @b
B ! 5,
b @b, b ©b,
A 4 h 4
Y Z

Fig. 1.1 Butterfly network

In this network we multicast two bits from the source node S to Y and Z. Node W

derives from the received bland bzthe exclusive-OR bit bl@bz The channel from
W to X transmits bl @bz, which is then replicated at X for passing on to Y and Z. Then
the node Y receives bland bl @bz, from which the bit bz can be decoded. Similarly,

the node Z decodes the bit blfrom the received bits bzand bl@bz In this way, all

the nine channels in the network are used exactly once. The derivation of the
exclusive-OR bit is a simple form of coding. If the same communication objective is
to be achieved simply by bit replication at the intermediate nodes without coding, at
least one channel in the network must be used twice, so that the total number of

channel usage will be at least ten. Thus, coding offers the potential advantage of
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minimizing both latency and energy consumption, and at the same time maximizing

the bit rate.

Example 1.2 [7]
Figure 1.2 depicts two neighboring base stations labeled ST and ST/, of a

communication network at a distance twice the wireless transmission range.

Fig. 1.2 Operation of the relay transceiver between two wireless base stations

Installed at the middle is a relay transceiver labeled by UV, which in unit time either
receives or transmits one bit. Through UV and using network coding, the two base
stations transmit one bit of data to each other in three unit times: In the first two
unit times, the relay transceiver receives one bit from each side. In the third unit
time it broadcasts the exclusive-OR bit to both base stations, which then can decode
the bit from each other.

This model can also be applied to satellite communications, with the nodes ST and
S'T’ representing two ground stations communicating with each other through a
satellite represented by the node UV as you can see in figure 1.3. By employing very
simple coding at the satellite as prescribed, the downlink bandwidth can be reduced

by 50%.
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Fig. 1.3 A satellite with two earth stations.

1.3 Thesis outline
The remainder of this thesis is divided into four chapters (ch2-6).

In chapter two, we present background theory that is necessary for the better
understanding of network coding theory. In the first part of chapter two we give
some definitions from graph theory and after that we focus on some relevant
theorems. In the second part of the chapter two we continue with the mathematical
formulation of Network Coding Theory. In that chapter we limit our study to one

source directed acyclic multicast networks and linear network codes only.

In chapter three, we examine the benefits from network coding in specific networks
and some generalizations of them. We study some networks using transmissions in

time slots and, after that we calculate the gain, applying network coding techniques.

In chapter four we present our algorithm for the construction of a network code for

a multicast network. We restrict our study to acyclic directed graphs as models of
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our network. The algorithm depends on the knowledge of the topology of the

network.

Chapter five presents a new way to find the size of the alphabet of a network code
using only outgoing channels from source. At the end of the chapter we show a

method to reduce the size to two for some networks.

Finally Chapter 6 outlines our conclusions and presents ideas for future work.
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Chapter 2 Background

In this chapter we present some background theory that is necessary for an

introduction to the network coding theory.

In the first part of this chapter we give some definitions from graph theory and after

that we focus on some interesting theorems.

In the second part of this chapter we continue with mathematical formulations for
Network Coding Theory. For the material of this part we used “Network Coding
Theory”, a tutorial from Yeung, Li, Cai and Zhang [7], as well as the monograph by

Christina Fragouli “Network Coding Fundamentals” [8] which is under publication.

For a more detailed study, a good reference is the Tutorial of Yeung etc[7] which
focuses on the information theoretic aspects of network coding. Another reference
is the monograph by Christina Fragouli [8] which is an excellent book to start with. A
rich source of references is the homepage of network coding
[www.networkcoding.info], that has an exhaustive list of literature in the

bibliography section.

In the present chapter we will limit our study to one source directed acyclic

multicast networks and linear network codes only.
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2.1 Graph Theory

In mathematics and computer science, graph theory is the study of graphs, which are
mathematical structures used to model pair wise relations between objects from a
certain collection. A "graph" in this context refers to a collection of vertices and a
collection of edges that connect pairs of vertices. A graph may be undirected,
meaning that there is no distinction between the two vertices associated with each
edge, or its edges may be directed from one vertex to another. We denote a graph

as G = (V,E) where Vis the vertex set and E is the edge set. An edge e € E where

e =(x,y)iff x,yeV . In an undirected graph, edges 8=(XY) and &=(V,X) are
identical, but they are not in a directed graph. A directed graph or digraph G is an
ordered pair G = (V,E) where V is a set, whose elements are called vertices or
nodes, and E is a set of ordered pairs of vertices, called directed edges. An edge
e = (x, y) is considered to be directed from x to y; y is called the head and x is called
the tail of the arc; y is said to be a direct successor of x, and x is said to be a direct

predecessor of y.

Two edges of a graph are called adjacent, if they share a common vertex. Similarly,
two vertices are called adjacent if they share a common edge, in which case the
common edge is said to join the two vertices. An edge and a vertex on that edge are

called incident.

In graph theory, a flow network is an assignment of flow to the edges of a directed
graph, where each edge has a capacity, such that the amount of flow along an edge
does not exceed its capacity. A directed graph with edge capacities is called a
network. A flow must satisfy the restriction that the amount of flow into a node
equals the amount of flow out of it, except when it is a source, which has more
outgoing flow, or sink, which has more incoming flow. A network can be used to
model traffic in a road system, fluids in pipes, currents in an electrical circuit, or

anything similar in which something travels through a network of nodes.
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Suppose G = (V, E) is a finite directed graph in which every edge (u,v) e E has a
non-negative, real-valued capacity c(u,v) . If (u,v) ¢ E then we assume that
c(u,v) = 0 . We distinguish two vertices: a source s and a sink t. A flow network is a

real function f :vV xV — Rwith the following three properties for all nodes u and v:

1) Capacity constraints: f (u,v) <c(u,v) V(u,v) e E .The flow along an edge
cannot exceed its capacity.
2) Skew symmetry: f (u,v)=-f(v,u).The net flow from u to v must be the

opposite of the net flow from v to u.

3) Flow conservation: Zf(U,W)=O unless u = s or u=t. The net flow to a
uev

node is zero, except for the source, which "produces" flow, and the sink,

which "consumes" flow.
If a value of a flow is as large as possible then the flow is called a maximum flow.

A cut of a graph G = (v, E) is a partition of the vertices V into two sets S and T. Any
edge (u,v)e EwithueS and veT issaid to be crossing the cut and is a cut edge.

The size of a cut is the total number of edges crossing the cut. In weighted graphs,
the size of the cut is defined to be sum of weights of the edges crossing the cut. In
network flow, the size of a cut is defined to be the sum of weights of the edges
crossing the cut from the source side to the sink side (but not the ones that go the
other way). A cut is minimal if the size of the cut is not larger than the size of any

other cut.

For unit capacity edges, the value of a cut equals the number of edges in the cut, and
it is sometimes referred to as the size of the cut. There exist a unique minimum cut
value and possibly several minimum cuts. One can think minimum cut as a

bottleneck for information transmission between source S and receiver T.

The maximum flow minimum cut theorem states that the maximum information

rate we can send from S to T is equal to the minimum cut value.
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Maximum flow minimum cut theorem:

Consider a graph G = (v, E) with unit capacity edges, a source vertex s and a

receiver vertex t. If the minimum cut between s and t equals h, then the information
can be send from s to t at a maximum rate equal to h. Equivalently there exist

exactly h edge-disjoint paths between S and R (Menger’s Theorem).

For a detailed study there are several books, a good one to start is “Graph theory
with Applications” by Bondy and Murty [9]. For an advanced reader Diestel [10] is
recommended, which is available online. You can also find useful the books by

Bollobas like[11].

2.2 Network Coding: A mathematical formulation

A Communication network is a finite directed graph, where multiple edges from one
node to another are allowed. The source node is a node without any incoming edges
depicted by a square, any other node is called non-source node and is depicted by a
circle. An edge is also called channel and represents a noiseless communication link
for the transmission of a data unit per unit time. A communication network is said to
be acyclic if it contains no directed cycles. On the other hand if a communication
network contains at least one directed cycle is said to be cyclic. There exists at least
one source node on every acyclic network. In our study we suppose that there is a
unique source node denoted by S. Fig 2.1 shows an acyclic and a cyclic

communication network respectively.
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Fig. 2.1 Acyclic and cyclic communication networks

The capacity of a direct transmission from a node to another is determined by the

multiplicity of the channels between them.

Network multicast refers to the simultaneous transmission of the same information
from a source node to multiple receivers (a subset of the nodes in the graph) in the
network. In a multicast network there is only one source node and multiple target
nodes, and all messages are available at the source, while they are demanded by all
the target nodes. Multicast information flow problems have been studied

extensively.

A network code can be formulated in various ways. In general, a source node
generates a set of messages to be multicast to certain destinations. When the
communication network is acyclic, operation at all nodes can be synchronized in
such a way that the message is individually encoded and propagated from the
upstream nodes to the downstream nodes. That is the processing of each message is
independent of the subsequent messages. In this way, the network coding problem
is independent of the propagation delay over the channels as well as processing
delay at nodes. When the network is cyclic, the propagation and encoding of

sequential messages could convolve together. In this case the amount of delay
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becomes part of the considerations in network coding; it’'s a different problem than
the one for an acyclic network. As we mentioned in the start of the chapter we will

study network coding for the case of a single message over an acyclic network.

For every node T, let 5(1-) denote the set of incoming channels to T and 3(1') the

set of outgoing channels from T. Similarly, let 5(3) denote a set of imaginary
channels, which terminate at the source node S but are without originating nodes.
The number of these imaginary channels is context dependent and always denoted
by w. Figure 2.2 below illustrates an acyclic network (the well known butterfly

network) with w = 2 imaginary channels terminating at the source node S.

Fig. 2.2 The butterfly network with w=2

An information symbol is represented by an element of a certain base of a Galois
Field F. For example if F is a GF(2) then the information symbol is a bit. A message
consists of w data units and is therefore represented by an w-dimensional row
vectorx e F° . The source node S generates a message x and sends it out by
transmitting a symbol over the outgoing channels. Message propagation through the

network is achieved by the transmission of a symbol over every channel e in the

network. A symbol that is transmitted over a channel e is denoted by fe(X)E F.

Obviously the symbol is a function of the message x. A non-source node may not
receive enough information to identify the value of the whole message x. Its

encoding function simply maps the incoming symbols from all the incoming channels
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to a symbol for each outgoing channel. A network code is specified by such an

encoding mechanism for every channel.

In the single-source, acyclic case, there are two equivalent ways to define the
network code, local encoding mapping and global encoding mapping. We give the

definitions below:

Local encoding mapping:
Let F be a finite field and w a positive integer. An w -dimensional F-valued network

code on an acyclic communication network consists of a local encoding mapping

IZe :F ™ 5 F for each node T in the network and each channel €€0'(T).

The acyclic topology of the network provides an upstream-to downstream procedure

for the local encoding mappings to build up the values fe(X) transmitted over all
channels e. The above definition of a network code does not explicitly give the
values of fe (X) . Therefore, we give an equivalent definition below, which describes
a network code by both the local encoding mappings as well as the recursively

derived values fNe (x).

Global encoding mapping:

Let F be a finite field and w a positive integer. An w -dimensional F-valued network
code on an acyclic communication network consists of a local encoding mapping
Ize 'F°T™ 5 F and a global encoding mapping fe :F” —F for each channel e in

the network such that:

1) ) For every node T and every channel e€a+(T), fe(X) is uniquely determined by

( fd (x),d € 67(T)), and IZE is the mapping via (fd (X),ded (T))—~ I:e(X)

2) For the w imaginary channels e, the mappings fe are the projections from the

space F “ tothe w different coordinates, respectively.
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A global encoding mapping fe is linear, iff fe(X) =X-f,.
The following examples illustrate the definitions above:
Example 2.1:

Consider the butterfly network of figure 2.3, where X=(0,b,) € F? EGF(Z)Z.

B b
T u
b @b
B ’ b,
b @b, b ®b,
¥ A 4
Y z

Fig. 2.3 Butterfly network

A two dimensional binary network code is shown, with the following global

encoding mappings:

b, for channels e =0S, ST, TW,TY
f (x)=1b,, for channels e=0S",SU,UW,UZ
b @b, , for channels e =WX, XY, XZ

Where 0S,0S’ denote the two imaginary channels.

The corresponding local encoding mappings are: { Ize il RN = }
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Ka (0,,0,) =, ®b, ()
w (0, ®b,)=b @b, b @b, 5 @b,

k
szz(b1@b2):b1®b2 C"D./ 3

Below we formulate a linear network code as a network code where all the local and
global encoding mappings are linear (that is IZe(y)=y-ke and lﬁze(X):X-fe
respectively). A linear network code was originally called a linear code multicast
(LCM) [12]. Physical implementation of message propagation with network coding
results in transmission delay over the channels as well as processing delay at the
nodes. Nowadays node processing is the dominant factor of the total delay in
message delivery through the network. It is therefore desirable that the coding
mechanism inside a network code be implemented by simple and fast circuitry. For
this reason, network codes that involve only linear mappings are of particular
interest.

Local encoding mapping for linear network code

Let F be a finite field and w a positive integer. An w-dimensional F-valued linear
network code on an acyclic communication network consists of a scalar kd,e, called

the local encoding kernel, for every adjacent pair (d,e). Meanwhile, the local

encoding kernel at the node T means the |0 (M) || 0" (T)| matrix Ky =[kg 100 0

eco™ (T)
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Global encoding mapping for linear network code

Let F be a finite field and w a positive integer. An w -dimensional F-valued linear
network code on an acyclic communication network consists of a scalar kd'e for
every adjacent pair (d,e) in the network as well as an w -dimensional column vector

fe for every channel e such that:

1) f, = z Ky Ty, where eeo (T).

deo (T)
2) The vectors fe for the w imaginary channels 965_(8) form the natural basis of
the vector space F “ .

The vector fe is called the global encoding kernel for the channel e.

Assume that the source generates a message x in the form of an w-dimensional row

vector. A node T receives the symbols fd(X)ZX-fd, deg(T), from which it

calculates the symbol fe(x):x- f, to send onto each channel e€d (T) via the

linear formula

fe(X):X-fe:X- Z kd,e'fd: Z kd,e(X'fd): Z kd,e'fd(x)

deo™ (T) deo (T) ded (T)
Given the local encoding kernels for all the channels in an acyclic network, the global
encoding kernels can be calculated recursively in any upstream-to-downstream

order.

The above expression of fe(X) can be considered in a more generic form:

We have a node T with |8_(T) |=n and |5+(T) |=k. That is, we have:
o () ={e, ,,1<m<n}and & (T) ={e,,,1<I <k}

Then we have:
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T

f, =| " | (K;-u) V 1<I<k where Uis the I-th unitary vector.

Thatis (Kr.u)) is the I-th row of matrix K.

The previous equation may help us to express a network code in one equation.

Note: A partial analogy can be drawn between the global encoding vectors fe for

the channels in a linear network code and the columns of a generator matrix of a

linear error-correcting code [7].

Example 2.2:

This example illustrates the construction of a linear network code for the butterfly
network of the previous example. Assume the alphabetical order among the
channels 0S,05,ST, . .. ,XZ. Then, the local encoding kernels at the nodes are the

1 Oj' K. =K, =Ky =(1 1) and KW:GJ'

following matrices: K = (O )

The corresponding global encoding vectors are:

f,= 1) for channels e = 0S, ST, TW, TY : bx
0 ) ()
f,= 2} for channels e =0S "', SU,UW ,UZ b
N 2 B
; Q)
f, = 1} for channels e = WX, XY, XZ AN
© (=)

The global encoding vectors and the local encoding kernels are summarized in the
figure below. These vectors and kernels remain the same for any choice of the base

field.
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f;1
K, = feO’, = (Ks-u)
fe-II-I'I
Ky :(1 1) T u
Ky :(1 1)

Fig. 2.4 Global & local encoding mappings for butterfly network

The figure below highlights the operation of the local encoding kernels:

Fig. 2.5 An inside view of local encoding mappings
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Example 2.3:

In this example we will see a general two dimensional network code for the butterfly

network. The local encoding kernels can be expressed as:

Ks 2(2 ?J, K. :(3 t)’ K, :(u v), K, :[\;Vjand Ky =(y Z) where p,q,r,...,z

1 0
are variables. Starting with fg =(Ojand fos: =(J we can compute the global

encoding vectors recursively as follows:
a=( e {o 36 DG
fos 0 1){p r)lo) \p
fos (1 0)(n q)(0) (q
(ng“ »—( J( ingy
w = () (Kru)=(n p) m S(nj ( j
p

0

TY_(fST) (K ul) p S t)(ij= [ j ( j
_(§TT 1 qu
fow = (fou) (Ky -uy) = ( ] (Oj (ruJ
T \T O
fuz:(fsu) (K 2) ( ] (]J ( j
. :[ fl ]T KW1=(ns qu](wjz(nsw+qux]
fow ps ru | x PSW + rux
€t kg [ meweaux 1) (nsw+qux) (nswy+quxy
x = Bt = PSW + rux (v 2) o)~ psw+ruxJ_(pswy+ruxyj

fo—f Kol = NSW+ qux (y 2) 0 _ [ MswHaux) _(nswz +quxz
2 = o = pow e rux ) 1) "\ psw+rux) | pswz+ruxz

The final solution is depicted in the figure below:
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G e

PSW+ rUX
‘ X :(y Z)
NSWY + quXY
PSWY 3 Fuxy WZ + QUXZ
Y PSWt FU
Y z

Fig. 2.6 Local/global encoding kernels of a general two-dimensional linear network code

Desirable properties of a Linear Network Code

Data flow with any conceivable coding schemes at an intermediate node abides with
the law of information conservation: the content of information sent out from any
group of non-source nodes must be derived from the accumulated information
received by the group from outside. In particular, the content of any information
coming out of a non-source node must be derived from the accumulated

information received by that node.

As we saw in the first part of this chapter we denote the maximum flow from source
S to receiver T as maxflow(T). We know from the Max-flow Min-Cut theorem that
the information rate received by T cannot exceed maxflow(T). Whether this upper
bound is achievable depends on the network topology, the dimension w, and the
coding scheme. There are three special classes of linear network codes, namely
linear multicast, linear broadcast and linear dispersion. We will study only linear
multicast, but there is a complete study of all linear codes at the tutorial of network

coding [7].
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Linear Multicast

Let the vectors fe denote the global encoding kernels in an w-dimensional F-valued
linear network code on an acyclic network. Write V, = <{ f,iee 6'(T)}>,where <°>
denotes the linear span of a set of vectors. Then, the linear network code qualifies as

a linear multicast if the following statement holds true: dil’T‘(\/T) = for every non-

source node T with maxflow(T) 2w.

When the source node S transmits a message of w data units into the network, a

receiving node T obtains sufficient information to decode the message if and only if

dim(\/T) =, of which a necessary prerequisite is that maxflow(T)>w. Thus, an w -

dimensional linear multicast is useful in multicasting w data units of information to

all those non-source nodes T that meet this prerequisite.

Example 2.4:

The general linear network code in example 2.3 above meets the criterion of a linear

multicast for the cases where:

1) fw\, and fuvv are linearly independent
2) fTY and fxy are linearly independent

3) fuz and fxz are linearly independent

Equivalently, the criterion is met if s, t, u,v,y,z, nr — pg, NPsw + nrux — pnsw — pqux,
and rnsw + rqux — qpsw — grux are all nonzero. The example 2.2 is a special case with

n=r=s=t=u=v=w=x=y=z=1landp=q=0.

We will continue our study for the construction of a network code.
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The main theorem in network coding [1] :

Consider a directed acyclic graph G = (v, E) with unit capacity edges, h unit rate
sources (imaginary channels) located on the same vertex of the graph and N
receivers. Assume that the value of the min-cut to each receiver is h. Then there
exists a multicast transmission scheme, over a large enough finite field GF (q), in
which intermediate network nodes linearly combine their incoming information
symbols over GF (q), that delivers the information from the sources simultaneously

to each receiver at a rate equal to h.

From the min-cut max-flow theorem that we saw in the first part of this chapter, we

know that there exist h edge-disjoint paths between the source and each of the

receivers. Thus, if any of the receivers, say, Tj , is using the network by itself, the

information from h imaginary channels can be routed to Tj through a set of h edge

disjoint paths. When multiple receivers are using the network simultaneously, their
sets of paths may overlap. The receivers have to share the network resources, (e.g.,
share the overlapping edge capacity or share the access to the edge in time), which
leads to reduced rates. However, the main network coding theorem tells us that, if

we allow intermediate network nodes to not only forward but also combine their
incoming information flows, then each of the receivers Tj will be getting the

information at the same rate as if it had sole access to network resources. The
theorem additionally claims that it is sufficient for intermediate nodes to perform
linear operations, additions and multiplications over a finite field GF (q) . As we saw
before, such transmission schemes are called linear network coding. Thus the
theorem establishes the existence of linear network codes over some large enough
finite fieldGF (q). To reduce complexity, the field GF (q) should be chosen as
small as possible. In this chapter we don’t worry about the choice of order of Galois
Field used for network code alphabet, we just use for the size of our alphabet the

number of the receivers in our network [13].
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Network Code construction
The problem of network code design is to select what linear operations each node of
the network performs. A simple algorithm (random network coding) is to have each

node in the network select uniformly at random the coefficients over the field

GF(ZS), in a completely independent and decentralized manner [14]. With random

network coding there is a certain probability of selecting linearly dependent
combinations [14]. This probability is related to the field size 2°. Simulation results
indicate that even for small field sizes (for example, s = 8) this probability becomes
very small [15].

Random network coding is used by Avalanche [2]. Avalanche is the name of a
proposed peer-to-peer network created by Microsoft, which claims to offer
improved scalability and bandwidth efficiency compared to existing P2P systems.
Avalanche splits the file to be distributed into small blocks. However, instead of the
peers simply transmitting the blocks, they transmit random linear combinations of
the blocks along with the random coefficients of this linear combination. This
technique removes the need for each peer to have complex knowledge of block
distribution across the network.

Alternatively, we can use deterministic algorithms to design network codes. The
polynomial-time algorithm for multicasting in [13], sequentially examines each node
of the network, and decides what linear combinations each node performs. Since
each node uses fixed linear coefficients, the packets only need to carry the

information vector.

Linear Information flow algorithm (LIF) [13]

The LIF is a greedy algorithm based on the observation that the choice of coding
vectors should preserve the multicast property of the network. Every receiver keeps
an hxh matrix T;, where h is the maximum flow for each receiver constructed by the
following algorithm. Starting the algorithm every matrix is the identity. The
algorithm sequentially visits the coding points (edge e is a coding point or critical

edge, if there exist two or more paths that share e but contain distinct edges before
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e) in a topological order and assigns coding vectors to them. The assignment is made
in a way that all matrices T; have rank (the number of linearly independed columns)
h every time. The algorithm terminates when all critical edges have been processed.
After that we have to invert the matrices and multiply them with the incoming

information for every receiver.
The following example demonstrates the LIF algorithm:

Consider the classical butterfly network in figure 2.2,
In the beginning we have T, =T, Z(O J. In this network we have one critical edge

(or coding point) which is WX. We have to decide how to linearly combine the

1 g 0
vectors 0 and |, .

1 10
If we combine them to be (J, then the matrices become: Tl:(l J and

0

1
T, =[ J respectively. Now we must check the rank of the matrices. It is easy to

see that rank(Tl)=rank(T2)=2,that is they are full rank. This terminates the

algorithm.

The inverted matrices are:

, (10 L, (11
lellandT2=01.

As we saw from example 2.1 node Y receives b1 and tl'i‘bz Node Z receives Q+Q

and bz

The receivers have to decode the received information. This can be done as follows:

ReceiverY:

(om0 (o)
' b +b, b, +b, +b, b,

Receiver Z:
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.y b, +b, _ b, +b, +b, _ b, .
i b, b, b,

Real-world applications tend to use random network coding, because it does not use
the network topology (is decentralized) and it is easy to be implemented. But the
randomized coding approach may use a larger alphabet than necessary, and there is
a possibility that the random choice of coefficients will not meet the multicast
criterion. In the case where the choice of coefficients fails to meet the multicast
criterion, we have to make another choice and retransmit our information. Of

course, as the size of the alphabet increases the probability of failures decreases.

2.3 Summary
In this chapter we gave the minimum amount of theory needed for the basic

understanding of the subsequent chapters of the thesis. The interested reader may
consult the books that we recommended at the introduction of this chapter and visit

the network coding homepage.

45



46



Chapter 3 Benefits from Network Coding

3.1 Introduction

In this chapter we will determine the benefits from the application of network coding in
specific networks and some generalizations of them. We start our study with two nodes
connected to the same access point and continue with more complex topologies. First we
will consider networks transmitting in time slots (TDMA) and then we will calculate the gain
arising from the application of network coding techniques instead of traditional methods of

routing.
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3.2 The case of n nodes connected to the same access point
We begin our study with n=2, then we will see the example with n=3 nodes and finally we
will generalize our findings to n nodes connected to the same access point.

Each node contains one bit of information (or one information symbol) that wants to

transmit to the other nodes of the network through the access point.
n=2

In the figure below we can see our "network”

Fig. 3.1 Two nodes connected to an access point

Node N; contains info bit a, that wants to transmit to node N, and node N, has info bit b

that wants to transmit it to N;.

In the first two time slots node N; transmits bit a to AP; and node N, bit b to AP,

respectively, as it shown in Fig 3.2.

Fig. 3.2 Transmissions of nodes
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Now AP; has bits a and b and transmits to both N; and N, with multicast info bit a@® b

V2N

Fig. 3.3 Access points transmits xor info bit

Node N; already has bit a, now receives bit a® b, after that can compute b because b=
a® (a®b). In the same way N, obtains bit a, a=b @ (a ® b) . We see that with one
multicast transmission from AP; to nodes N; and N, we transmitted the needed information
for the two nodes. Our gain is one transmission less (50% gain to downlink bandwidth), in
the classical way we would use two transmissions from AP, to N, (bit b) and from AP; to N,

(bit @) instead of one (bit a® b ).

In this case network coding looks promising and let’s see what happens in cases with more

than two nodes connected to the same access point.
Let’s examine the case with three nodes.

The structure is the following

Fig. 3.4 Three nodes connected to access point
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In the first three time slots each node uploads its information bit to the access point a, b and
c respectively, after that AP, encodes bits a, b to a@® b and sends it to the nodes. Now
nodes N; and N, have information bits a, b after decoding, but node N3 has not enough
information to decode bits a and b, so stores bit a® b for future use. Access point AP,
encodes bits b, c to b @ ¢ and transmits it. After that transmission, nodes N; and N, have
information bits a, b and c. Let’s see what happens to node Nj: after receiving b@®c it
calculates bit c and using the storeda @ b ,it calculates a and so it has all the information

bits now. The above are summarized in the images below.

e . p .
I{ Y\ 4 \I ..’
AP1 | [ ap1 ) '
\ J \ /
\*-\-._,_ _./" \\H_ ~
".-"J | -\\‘:\\‘( - \_\a
' b 5 - adb .,
~ I . ~ . S
TN i N TN /"} = N 7N
i 3 i Y Fi f f .
Ne) (om0 o ) (N2 ) N3 ( N3 )
N / \ /! A AN ,‘l l\ / l'\ \ J
~— R N _ —~— — \ A
a b c a,b b,a ¢, adb c,b,a

Fig. 3.5 Transmissions for the network of three nodes to an access point

In this case our gain is one transmission less (33% gain to downlink bandwidth). AP,

transmits two times instead of three.

As the number of nodes increases the gain decreases. We can see that network coding in
this case is useful for small number of nodes (two or three). But if the above structure is
combined with others to form more complex networks, we will see next that network coding

is beneficial.

In the next example we will study a class of networks called tandem networks.
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3.3 Tandem networks

Imagine a tandem network with n nodes and n-1 access points.

APn-1

n)
N

()

Fig. 3.6 A tandem network

A tandem network with two nodes connected with an access point, is the same network of

the previous example with n=2.

In the case of n=3 it is easy to see the transmissions that will take place. Nodes N;,N, and N3

have bits a, b and c respectively. We have two access points AP, and AP,. In the next figure

we summarize the actions and the time slots in which they happen. We assume that some

transmissions can be occur simultaneously because there is enough separation between the

receiving nodes.

t

()

v

A

b®c

A

a®c

v

A

adc

A

adc

v

v

Fig. 3.7 Actions for a tandem network with three nodes and two access points
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N AP, N, AP, N
a b C
t; a a b b c
t, a a,b b b,c c
t3 a,a+b a,b b,a+b b,c c,c+b
t, a,a+b a,b b,a+b,b+c b,c c,c+b
ts a,a+b a,b,a+c b,a+b,b+c b,c,a+c c,c+b
ts a,a+b,a+c a,b,a+c b,a+b,b+c b,c,a+c c,c+b,a+c

From the previous figure we can see that in time slots t3, t; and t; we have one transmission

instead of two for each time slot. Without network coding, we need three more time slots to

complete our task. So in the case of a tandem network with three nodes and two access

points, we avoid three transmissions.

3.4 A case with two access points and two nodes connected to each

one

In the figure below we can see the structure. We have four nodes and two access points that

are connected. Each access point has two nodes connected to it. Nodes N;and N, are

connected to access point AP, and nodes N3, N4 to AP, respectively.

AP1

AP2

Fig. 3.8 A case with two access points and two nodes connected to each one
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In the next table we summarize the actions that take place in our scenario and the bits that

each node and access point have in a given time slot

Time Action AP, AP, N, N, N; N,

to a b c d
N1>AP; a

t; N;—>AP, ¢ a c a b c d
N,2>AP; b

t, N,~>AP, d a,b c,d a b C d
AP;>Ny,N; a+b

t; AP,~> Nj,N, b+d a,b c,d a,b a,b c,d cd

t, AP,2>AP; a a,b a,cd a,b a,b c,d c,d
AP, AP; c

ts AP,>N3, N, a a,b,c a,cd a,b a,b a,cd a,c,d
AP,>AP, b

te AP;>N;,N,c a,b,c a,b,c,d a,b,c a,b,c a,cd a,c,d
AP,>AP; d

t; AP,>N3,N, b a,b,c,d a,b,c,d a,b,c a,b,c a,b,c,d | ab,cd

ts AP;>N,N, d a,b,c,d a,b,c,d a,b,c,d a,b,c,d a,b,c,d | ab,cd

Discussion:

Nodes N;, N, N3 and N4 have information bits a, b, c and d respectively. We want each node

in the network to have all information bits. In the first time slot node N; sends to access

point AP, info-bit a, concurrently node N; sends to AP, info-bit c. In the next time slot nodes
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N, and N4 send to AP; and AP, info-bits b and d respectively. Now, access points AP, AP,
have collected info-bits a, b and ¢, d respectively. In the next time slot AP, transmits to N,
N, info-bit a @ b and concurrently AP, to N3, N, info-bit b@ d . Node N; decodes b from
a®band N, a respectively (same for N3, N,). All the other actions are summarized in the
table above. In that example we see that network coding doesn’t have great advantage over
classical method, we gain only two transmission overall at time slot t; one for each access

point.

Fig. 3.9 Actions for the case 3.4

3.5 A case with two access points with two nodes each, connected to a

server
In the figure below we can see the structure of the network

Fig. 3.10 A case with two access points with two nodes each, connected to a server
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Nodes N;, N,, N3 and N4 have information bits a, b, c and d respectively. We want each node

in the network to have all information bits.

In the next two tables we summarize the actions that take place and the bits that are stored

in each node, access point and server respectively.

Time | Action

t

t; N19APla N39AP2 C

t N,2AP; b N;2>AP,d

t3 AP19N1,N2 a+b AP29N3,N4 c+d

t4 AP19$ a

ts APz%S C

ts S%APLAPZ a+c

t7 AP]_%N]_,NZ a+C AP29N3,N4 a+cC AP19$ b

ts AP,>Sd

ty S—>AP,AP, b+d

tio AP;>Ny,N, b+d AP,>N3,N4 b+d
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Time | AP AP, S N, N, N; N,
to a b c d

t; a c a b c d

t, a,b c,d a b o d

t; a,b c,d a,b a,b c,d c,d
t, a,b c,d a a,b a,b c,d c,d
t5 a,b c,d a,c a,b a,b c,d c,d
ts a,b,c a,cd a,c a,b a,b c,d c,d
t; a,b,c a,c,d a,b,c a,b,c a,b,c a,c,d a,c,d
ts a,b,c a,cd a,b,c,d | a,b,c a,b,c a,c,d a,c,d
to a,b,c,d a,b,c,d | ab,cd |ab,c a,b,c a,c,d a,cd
tio a,b,c,d a,b,c,d |ab,cd |ab,cd |abcd |ab,cd |ab,cd

The figures below illustrate the transmissions that take place.

From time slot t; to time slot ts: From time slot t, to time slot ty:
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The other actions are the same but with transmissions of different information bits

as we can see from the tables.

3.6 Conclusion

In this chapter we saw the benefits of applying network coding in some network

topologies. This is not of course an exhaustive study but just a beginning.

For further research it is interesting to try to formulate the gain from network coding
for some networks (primitive ones) using the parameters of the network (such as
access points, connected nodes etc.). After that we could identify sub-networks with
known gain properties in larger networks and then, by using them, try to calculate
the gain for the whole network. It may be of interest to study the connection of the

gains of small networks with the total gain of the network.

Dina Katabi from MIT presented (WiOpt 07 that took place in Lemessos, Cyprus)
analog network coding [17], in a way to take advantage of the interference from
transmissions in wireless networks. It is known that interference is harmful in
general. Wireless networks strive to avoid scheduling multiple transmissions at the
same time from nodes that are near, in order to prevent interference. The paper of
Katabi [17] adopts the opposite approach. It encourages strategically picked senders
to interfere. Instead of forwarding packets, routers forward the interfering signals.
The destination leverages network-level information to cancel the interference and
recover the signal destined to it. The result is analog network coding because it

codes signals not bits. More details for analog network coding are given in the

paper.
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Chapter 4 A new approach for Network Code generation

In this chapter we present a new algorithm for the construction of a network code
for a multicast network. We restrict our study to acyclic directed graphs as models of
our network. The algorithm is centralized and assumes knowledge of the topology

of our network.

4.1 The algorithm

Before giving the pseudo-code we briefly describe the algorithm.

Consider a directed acyclic graph G =(V, E) where V is the vertex set and E is the
edge set, every edge having unitary weight. Graph G has one source Se€V and n

sinks 1: eVi=1.n.

The maximum flow from S to i-th sink is hi. If we want to transmit h information
symbols simultaneously to all sink nodes, then h<minh [1]. Also, it is known from
1

Menger’s Theorem [9,10,11] that from source S to each sink node there are h edge-

disjoint paths and therefore we have in total nh paths.

We use the following notation: P;; is the path j of receiver i, P; is the set of h edge

disjoint paths of receiver i and we denote as: B, ; = {ef:t?“,...,eﬁ”jd}

Recall that ﬁ(V) Z{EEE|e=(U,V)} is the set of the incoming channels to node v

and 6+(V) ={ecE|e=(V,W} is the set of outgoing channels

end

It is easy to see that eisyt?n €0'(S) and Oy €0 (T)vi<isnvi<j<h
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Pp2{Pl<j<hjvi<i<n

In every path P; ; we assign a global encoding vector v; ;. We have to assign in total h
linearly independent vectors (h = dim((vi,j: 1<) < h)) ) to the paths P;; € P;.
This ensures that every sink can reconstruct the vector space. Assignment of a
vector to a path means that we assign this vector to every edge that belongs to the

path.

We will process the outgoing edges from source S, to help us find the vectors that
we will assign to the paths. After that, we will assign the same vector to the rest of

the edges for each path.

It is important to assign the vectors in a way that all paths of the same receiver have

h linearly independent vectors and that this condition applies to all receivers.

The above apply to the edge-disjoint paths belonging to the same receiver. For the
paths belonging to different receivers we have two cases; those who overlap and
those who do not. An interesting situation arises when we consider paths of two or
more receivers that have common edges. In this case we have to decide what vector

to assign to the common edge. Edges that belong to more than one path and do not
belong to 5+(S) (outgoing links from the source) are called critical edges. As we

will see below the main problem is to find the global encoding vector that we will

assign to these critical edges.

An important step is the discovery of the critical edges. If our network does not have

any critical edges then network coding does not offer any benefit to it.

In the following figure we see part of network (graph). The dotted edge is a critical

edge because it belongs to paths k and m of the i and j receivers respectively.
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Edges belong to Edges belong to
path of receiver i path of receiver j

Fig. 4.1 Acritical edge

There are two cases for the global encoding vectors V;  (belonging to T;) and Vj,m

(belonging to T;) that are assigned to the paths P;x and P;n sharing a critical edge :

e Viy=Vim, in this case the assigned vector to the critical edge is
Voritical = i,k(:Vj,m)

e Viy #Vjn ,inthis case we have to somehow combine them linearly

After that, the edges following the critical edge ( which belong to the overlapping

paths) replace their vector with the new encoded vector.
At the end chapter we apply the algorithm to some networks.

Recapitulating the previous description we present the following pseudo code:

We have n sinks Ti and one source S
For every sink Ti

Compute hi =maxflow(s, Ti )
EndFor

h=minh

61




For every sink Ti

Find h edge-disjoint paths for Ti

EndFor

Use edgesin 0" (S) to initialize the vectors in paths

a) Choose linearly independent vectors for the edge-disjoint paths of the
same receiver.

b) Find critical edges and encode the vectors of overlapping paths

c) Replace assigned vectors to edges following critical edges of overlapping
paths.

d) If for some sink the incoming edges are not assigned with h linearly
independent vectors, then go to a) (with a different choice of vectors for the

0" (S) edges).

Note: We did not mention anything about the local encoding kernels, because if we

have the global encoding vectors it is easy to find them. This is explained as follows:

Suppose that we have a node with two incoming and two outgoing edges. We know
both the global encoding vectors for the incoming and outgoing edges as depicted

below:

Fig. 4.2 a node with two incoming and two outgoing channels
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Node v has a local encoding kernel with matrix K, with dimension |0 (V)|><|8+ (V)|

€i1:€1 €i1:€2

here K,is a 2x2 matrix KV:( J . As we know [Chapter 2],

€ 2:€1 € 2,62

feo,i - Z()kd,eo,i fd Vieo® (V) . Thus we can solve the system and compute Kjin
ded (v

11
our example K, = 10l

In the following examples we demonstrate the application of our algorithm

4.2 Examples

Example 4.1: Butterfly network

In our first example, we use the well known butterfly network that is in depicted the

figure below.

Fig. 4.3 Butterfly network
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For this network the maximum flow for each sink is two, h:h Ihz =2.1tis easy to

find two edge-disjoint paths for each receiver. In the next two figures we see the

paths of receivers Tl and T2 respectively.

T
€y 2

Fig. 4.4 The edge-disjoint paths for the two receivers for butterfly network

The paths for the first receiver are P, 11 {el e }, 12 {82 €.,¢, eg} and for the second
are B, = {el €€, eg} 2{31,66} respectively. It is obvious that we have only one
critical edge €,. Edge €, belongs to P, , and p,,- Next we proceed with edges

belonging to oM (S) . The vectors that we assign belong to GF (2)2 (see chapter 2).

In the next chapter we discuss a new approach for the computation of the order of

the Galois Field for a given network.

2

An orthogonal basis of GF(Z)2 is <[(l)j£(l)j> There are three vectors in GF(Z) ,

1)(0) (1
namely : [(J,(J,[J. We have two edges in 0" (S) ={€,8&}.

In this case it is easy to assign the vectors for both paths, because we want the

vector in § to be linear independent to the vector in €,. Thus, we assign vectors
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1 0
Vlz(oj, V2=[J to the edges §and €, respectively, and initialize the paths’

vectors as follows:

for path (Pl,l' szl ) V1,1 = V2,1 =V, and
for path ( P, szz) Vi, =V,, =V,

Next we find the critical edges. As we mentioned before in this network there is only
one critical edge which can be easily found. The overlapping paths are:
p,,P,, - Inorderto transmit all the information through channel e; it is necessary

to encode information in node W.

We have to combine vectors Mand V,, assign the result to edge €;and to the edges

following € that belong to the overlapping paths. The encoding here might be a

simple XOR operation, in which case the “encoded” or “combined” vector is

1
v, ®Vv, = 1)

The solution is depicted in the figure below:
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Fig. 4.5 Global encoding kernels for the butterfly network

Finally, sinks -Ii and T2 receive the information symbols {a,a ® b} , {b,a ® b}

respectively.

Example 4.2 (a multicast network with three receivers)

In the figure below we can see the graph for this example (it consists of two

butterfly networks connected in parallel)
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Fig. 4.6 A multicast network with three receivers

We have three receivers, maximum flow from S to each receiver is three,

h=hz=h3=3_ So h=3, and we need to find three edge-disjoint paths for each

receiver.

In the images below we see the three edge-disjoint paths for the receivers-E, T2 and

T3 respectively:

The set of paths for the receivers are:

P1 = {P1,17 P1,2r Pl,s}r Pz = {P2,1’ Pz,z* Pz‘a}v Ps = {P3,1’ P3‘27 P3,3}
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P1,1 = {eU 94}7 Pl,z = {ewee*eu* els}v P1,3 = {esﬁ 27 el27elﬁ} P2,1 ={e1| 85,611,614}, Pz,z ={e27e7}v Pl,z ={e3ﬁeeﬁelzve17}

P3,1 = {el,es,e“,els}, Ps‘z = {ez 1€g1 €154 e1s}r P3,3 = {93,310}

Fig. 4.7 The paths for the receivers

Now we proceed with the initialization process and we assign vectors to 5+(S)

edges.

The outgoing edges and the paths they belong to are :
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We want the paths to the same receiver to carry linearly independent vectors.

The vectors that we assign belong to GF (2)3

1\(0) (0
Thus we assign the vectors | 0|,/ 1 |,| O |to edges €,€,,€; respectively.
0)l0){1

So, all edges of the paths take the vector that is assigned to the first edge of their

path. Now we have to find the critical edges of our graph. There are four critical
edges &,6,6,,65.

But after a more careful examination we can see that only two of them are of

interest, because edges €5, €4 belong to paths with the same vectors. The

“combined” vector will be the common one.

The edges €;,6,belong to paths with different vectors. Here we have to encode the

different vectors to a new encoded one. So in order to keep the linear independence

among the paths, we sum (XOR) the vectors. The new vectors for edges €;,6,are

1 0 1) (0 0 0
O|+{1|=|1|,|]0|+|1|=|1 respectively.
0 0 0)\1 0 1

After that we have to replace the vectors of the edges that are following €;,€,and

belong to the same paths with them.
As you can see, in this network only two nodes need to use network coding.

The final solution is depicted in the figure below:
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Fig. 4.8 The global encoding vectors

Note: It is easy to see that the same approach can be applied to a n-1 parallel

connected butterfly network with n receivers. This network has n-1 critical edges.

Fig. 4.9 A multicast network with n receivers and n-1 critical edges
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Example 4.3 Combination network (4/2)

In the figure below we see the network of this example:

Fig. 4.10 A combination network with six receivers

In this example we have six receivers. The maximum flow from S to each receiver is
two, so h=h,=h=h,=h,=h =2,
Thus we can transmit simultaneously to all receivers two information symbols.

As we will see in the next chapter, for this network we need a GF (3) in order to

construct our network code. Note that:

o (00RO

In the figures below we can see the two edge-disjoint paths to each receiver

respectively.
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Fig. 4.11 The edge-disjoint paths for the receivers

The paths are:
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Pl,l :{el’es}’ Pl,z :{ezves}
I32,1 ={e;. &}, Pz,z ={e;.e,}
P3,1 ={e, &}, P3,2 ={e;.e,}
F)4,1 :{ez’eg}’ F)4,2 :{e4’el4}
Ps,l ={e,.e}, P5,2 ={e, . &5}
P6,1 ={es'913}’ Pe,z ={e4’elﬁ}

Now we proceed with the initialization process and assign vectors to 0" (S) edges.

The outgoing edges and the paths they belong to are:

@ @d® @D (@D
N w N Ll
.0 JO0 U .U
ooy T
91-0 5»-0 E:U S-U
N N L -
= - N
g_U S‘U '@U @

We want the paths of the same receiver to carry linearly independent vectors. As

you can see edge €must carry a vector linearly independent to the vector assigned
to €, and to the vector assigned to €;. Respectively the vector assigned to edge €,

must be linearly independent with the vectors of edges Gand €,, and so on for the

other edges. This is feasible with the following vector assignment:

SRR

All edges in the paths take the vector that is assigned to the first edge of their path.
Now we have to find the critical edges of our graph. But in this network there are not
any critical edges. Thus in the figure below we can see the final solution of network
code for this graph. It is clear that in this case there is no benefit in using network

coding
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Fig. 4.12 The global encoding vectors for the combination network

In the following example, we will study a network that has more than one set of
edge-disjoint paths for the same receiver. We will see how the choice of paths can
affect the network code and that in some cases we will not need any coding for our

network.

Example 4.4

In the figure below we see the graph of our example:
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Fig. 4.13 Network of example 4.4

We have two receivers with maximum flow h =2 and |'E =3, soh=2.

From the theorem of Menger we can find two edge disjoint paths for each receiver.

For the receiver T2 there exist three edge-disjoint paths and thus at least (2) =3,
sets of two edge-disjoint paths for T2- In this network we can find four sets of two

edge-disjointed paths to T2 . The paths for receiver -Eare:

{ I:)1,1 = {61,64} }
F)1,2 = ez’ee’eg’elo}
As mentioned before, there are four sets of two edge-disjointed paths for T2 :

{PZJ :{e21e7}}or {PZ,l = {elvesiegieu}} or{PZ,l = {eves!eg’eu}}or{Pz,l = {eZ’esiegien}}

Pz,z :{GS’QB} P2,1 = {62’67} Pz,z = {63,68} P2,2 = {es’ es}

So we have to check four schemes of paths.
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First case:

We consider the following paths:

{ I:)1,1 :{e11e4} } and {PZ,I 2{62,67}}
F)1,2: ez’eeleg’elo} Pz,zz{es’es}

Fig. 4.14 The edge-disjoint paths for the receivers

Now we proceed with the initialization process and we assign vectors to 8+(S)

edges.

The outgoing edges and the paths they belong to are:

el : Pl,l
e2 : I:):L,Z’ P2,1
e;: PZ,2

We want the paths of the same receiver to carry linearly independent vectors. So we

have the following assignment:

SN

So, all edges in the paths take the vector that is assigned to the first edge of their

path. Now we have to find the critical edges of our graph. But in this network with
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the previous configuration of paths, there are not any critical edges (that means no

coding needed). In the figure below we can see the solution:

Fig. 4.15 Global encoding vectors for the first case

Second case:

We consider the following paths:

Pl,lz{el’e4} and P2,1:{e1'e5’e9’e11}
J

P2 =166, 8 P2,1:{e2’e7}

Fig. 4.16 The edge-disjoint paths for the receivers
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Now we proceed with the initialization process and we assign vectors to 8+(S)

edges.

The outgoing edges and the paths they belong to are:

(¢}

P,l’ P2,l
I:>1,2’ I:)2,2

[

1.

D D
N

3 -

We want the paths of the same receiver to carry linearly independent vectors. So we

have the following assignment:

S

So, all edges in the paths take the vector that is assigned to the first edge of their

path. Now we have to find the critical edges of our graph. In this case we have one

critical edge €;and we need coding because the incoming vectors are different. The

1 0 1
new vector assigned to edge €yis [OJ @[J = [:J After that we have to change the

vectors of edges that are after € and belong to the same path.

The final vector assignment is depicted in the figure below:
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Fig. 4.17 Global encoding vectors for the second case

Third case:

We have the following paths:

Pl,lz{el’e4} and Pz,lz{elies’eg’ell}
J

Pl,zz{ezieeiegielo Pz,zz{ea’es}

Fig. 4.18 The edge disjoint paths for the receivers
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Now we proceed with the initialization process, we assign vectors to 0" (S) edges.

The outgoing edges and the paths they belong to are:

We want the paths of the same receiver to carry linearly independent vectors. So we

have the following assignment:

Dl

So, all edges in the paths take the vector that is assigned to the first edge of their

path. Now we have to find the critical edges of our graph. In this case we have one

critical edge €y, we need coding because incoming vectors are different. The new

1 0 1
vector assigned to edge €yis (OJGB(J = (J After that we have to change the

vectors of edges that are below €;and belong to the same path.
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The final solution is depicted in the figure below:

Fig. 4.19 Global encoding vectors for the third case

Fourth case:

We have the following paths:

Pl,l:{el’e4} and Pz,lz{ez’eﬁiewell}
J

P2 =182:€5:€5, 8 Pz,zz{esies}

Fig. 4.20 The edge-disjoint paths for the receivers

Now we proceed with the initialization process, we assign vectors to 0" (S) edges.
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The outgoing edges and the paths they belong to are:

D

1

' P2,1

D @D
N
~J O ~0
N

w

2

We want the paths of the same receiver to carry linearly independent vectors. So we

have the following assignment:

SN

So, all edges in the paths take the vector that is assigned to the first edge of their

path. Now we have to find the critical edges of our graph. We have €;but the

vectors are the same, so we do not need coding in this configuration. The solution is

depicted below:

T4

Fig. 4.21 Global encoding vectors for the fourth case
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Note: In the network before we checked four configurations of paths. As we saw

only two of them need coding.

4.3 Conclusion

From the above analysis we see that only few nodes in a network need to perform
network coding, especially the nodes at the start of the critical edges. Knowing the
topology of our network (the graph) we are able to decide which nodes need to
encode and decode the received information. It is therefore important to explore
the selection of paths in order to decrease the complexity and the amount of

network coding.

In a multicast network with k receivers, let hto be the max flow for receiver i. We

know from the theorem of Menger that we can find exactly h edge-disjoint paths for

receiver i. But in a multicast network the total max flow is h= T’igh' That means,
<i<

that in order to apply any deterministic algorithm for network coding we need

exactly h edge-disjoint paths for every receiver. So, we have at least

h h!
' |=——"—— sets of hedge-disjoint paths for receiver i. Therefore there are at
h h!(hi —h)!

k (h
least H( hlj schemes of paths. This is a large number.

i=1
It is interesting to compare this algorithm with random linear network coding, the
most commonly used algorithm for network coding. Our algorithm as we stated in

the beginning is centralized (uses the network topology). On the other hand random

linear network coding is decentralized.
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Chapter 5 Computing the alphabet size

5.1 Introduction
In this chapter we present a technique to find the size of the alphabet of a network

code using only 6+(S) channels. It is known [13] that for a given multicast acyclic
network it is sufficient to choose the size of the alphabet to be equal to the number
of the receiving nodes. At the end of this chapter we present a “dirty trick” to

reduce the size to two for a class of networks.

The size of the alphabet plays an important role because the memory and the
computational complexity needed depend on it. The complexity of the operations
over finite fields, such as Galois Fields, grows with the field size. For example
algorithms over a field of size g=2" require O(n?) binary operations. Karatsuba’s
method [16] requires o(n**) binary operations. The required storage capabilities at

intermediate nodes also depend on the alphabet size.

5.2 Algorithm for alphabet size calculation
From Menger’s theorem [9,10,11] it is known that there are h edge-disjoint paths

from the source to each receiver. Overall, we have n h paths from source to all

receivers (n= number of receivers).

All these paths originate from 3(8) channels.

The i-th path for Tireceiver is denoted as Py, . The vector assigned to Py is .

In every path of the same receiver we have to assign linearly independent vectors,
thus we have to assign h linearly independent vectors to the h paths of every
receiver [chapters 2,4]. In this way, we assure that every sink receives the upper

bound of information [12,1]

We present the algorithm for the channels that are outgoing from source s
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We consider the following two cases for the | ol (S) | :

1) |5+(S) |=h, in this case every channel belongs to exactly n paths, one for

each receiver. Each channel carries one vector that is linearly independent to
the rest h-1 vectors of the 6+(S) channels.

2) |5+(S) |>h, in this case every channel belongs to at most n paths, one or
zero for each receiver. Necessarily |5+(S)|—h channels carry linearly

dependent vectors.

We do not consider the case of |8+(S) |<h (does not exist), because then we

would have h<h which is not valid.

Every channel belongs to a number of paths (at most one for each receiver, because

of the theorem of Menger).

The constraint of our algorithm is that the channels that belong to paths of the same

receiver must carry linear independent vectors.

Summarizing our algorithm:
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Begin with GF(q),q=2. Dimension of our vector space is h

Find all paths Py;

Find for every edge e€5+(5) the Pe (the set of paths beginning with e)

For every edge €€0 (S)

Choose a vector Ve which is linearly independent to the vectors assigned

to the other paths of the receivers with path belonging to Pe .

If you cannot assign such a vector increase the order of Galois Field (the
next integer that is a power of prime) and start again.

End for

Discussion:

We begin with GF(qg), g=2. The dimension of the vector space is h. Choose a vector in
order to have linearly independent vectors in different paths of the same receiver.
Probably other paths (let us call them P, the paths that start from edge e) from

different receivers traverse the edge e, so we have to choose properly the vector to

be linearly independent to vectors of the edges belonging to 5+(S) If we cannot

assign enough linear independent vectors, then we increase q to the next integer
that is a power of a prime number and start again. The following two examples

illustrate the algorithm:

Examples
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We apply our methodology in the following two networks shown in the figures
below; the first one is the well known butterfly network. Both networks have

maximum flow 2 for each receiver, so the dimension of our vector space is h=2.

€ €

eg .

Ty € € T2

Fig. 5.1 Butterfly and a combination network

For the butterfly network: casein this case |5+ (S) |= h=2. T, and T, have maximum

flow 2. By Menger’s Theorem we know that two edge-disjoint paths exist for each

receiver. We can reach T; by travelling across e;, es (let us call this path P1,1) or ey,

es, €7, eg (path Py, ). T, can be reached by path P2‘1={61,94,e7,eg} or Pzif{ez,es}. Let
us now apply our algorithm. We begin with GF(2) with dimension 2. We observe
that edge e; belongs to paths P1,1 and P2,1 and edge e, belongs to P1,2 and P2,2

Therefore the choice of the order of the Galois Field is trivial; we need to assign to

the edges e; and e, linearly independent vectors of the space GF(2)%. We choose the

1)(0
(Oj’(lj vectors for e; and e; respectively. In conclusion: a Galois Field of order 2 is

enough for constructing a network code for the butterfly network.

Combination Network: In this case |5+(S) |>h. T4,... Te have maximum flow 2, so

the dimension of vector space is 2.

The paths are:
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Pl,lz{el’eS}’ P, ={e,.en} PZ,l:{elfeG}’ P, ={e;.e,,}
P, ={e..e.} Po={e, .60} Pi={€,.6.}, P,,={e, 55}
P5,1:{ez’elo}’ Ps., ={e; ..}, P6,1:{63’e13}! Ps.2 ={€,.e56}

The outgoing channels from S are e;, e5, €3, e4.

Edge e; belongs to paths Pl,l ) P2,1 ) ngl, e, belongs to P3,21 P4,1, P5’1, es to P2,2 ) P5’2; F%,l
and finally e, belongs to P1,2 ,P4,2 ’Ps,z . We have to assign linearly independent

vectors among Pﬂ and Pi,z paths (i=1...6). We begin with GF(2). From the above, we

see that e; needs to carry a linearly independent vector to e, (for T, receiver) and e3
(for T, and Ts). Edge e, has to carry linearly independent vectors with edges e;, e,.
Similarly, we work for edges e; and e4 .Totally, we need more than two independent
vectors, so we increase the order from two to the next integer that is a power of

prime, therefore the order becomes three. We try again with GF(3); we solve the

1)(1)(1) (O
problem by assigning vectors (O],(J.[Zj,(l] (as we saw in the previous chapter)

to e1,e5,e3 and e4 respectively.

5.3 A “dirty trick”

In this part of the chapter, we present a technique to decrease the size of the
alphabet (=order of a Galois Field) for a network code. We will explain the technique
using the combination network we used in the previous chapter. As we saw in the
start of this chapter we have two cases for the number of outgoing from the source

channels:

. [8°(9)=h
|0°(S)[>h
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Recall that 6+(S) is the set that describes the outgoing channels from S, and

|5+(S) |denotes the number of g(s)channels.

Let us consider the second case. We put h sources (we call them meta-sources)
under the source S. Every meta-source “copies” the connectivity of S to the nodes

that in topological order are under S, as is shown in the figure below:

In the left side of the figure we see the 5+(S)channels and we are given that h=2,
and that the size of alphabet is three. Doing the transformation in the right we

decrease the size to two.

Example

We have the following network

90



While in the first case we need GF(3) to construct our network code, in the second

case we need GF(2). In both cases the dimension of coding vectors is 2.

In the paper of Jaggi etc “Polynomial time Algorithms for multicast network code

construction”, [13] the author states that we use as order|F| of Galois Field a

number satisfying the criterion %zlwhere IT| is the number of receiver nodes in
our network.

In the first network we need a GF(3) to construct the network code, while in the
second one, a GF(2) is enough to construct our network code. The gain from this, is
that in the first case our vector space has 8 vectors (excluding the zero vector)

whereas in the second case only 3.

Note:

Another point here is that the black nodes in the first network have one incoming
edge and in the second two. Doing the above transformation in our graph, we need
more transmissions from S to next level of nodes of our graph. This is the cost we

pay for decreasing the order of our alphabet.

Take into account that the above transformation is for networks that we can choose

the order of our alphabet using only 8+(S) channels.
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5.4 Conclusion

In this chapter we saw that the outgoing from the source channels play an important

role in network coding. All the information that flows into to the network traverses

firstly these channels. The number of |8*(S) | channels helps us to choose the order

of Galois field to be used for the alphabet of network code. In the end of the chapter

we saw a technique to decrease the size of alphabet for a combination network.

For further research it is interesting to see if we can reduce the size of the alphabet

to a number lower than the number of receivers for a given network.
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Chapter 6 Summary and future work

Closing this thesis, we would like to summarize our results.

In chapter three, we saw the benefits of applying network coding in some network
topologies. This is not of course an exhaustive study but a beginning. For further
research it is interesting to try to formulate the gain from network coding for some
networks using the parameters of the network (such as access points, connected
nodes etc.). After that we could identify sub-networks with known gain formulas in
larger networks and then, by using them, try to calculate the gain of the whole
network. It may be of interest to study the connection of the gains of small networks

with the total gain of the network.

In chapter four, we presented an algorithm for the construction of a network code
for an acyclic multicast network. The algorithm depends on the knowledge of the
topology of the network. We applied the algorithm to some examples. Finally, we
see that only few nodes in a network need the ability of network coding. Knowing
the topology of our network we are able to decide which nodes need to encode and
decode the received information. It is therefore important to explore the selection
of paths in order to decrease the complexity and the amount of network coding. It is
interesting to compare this algorithm with random linear network coding, the most

commonly used algorithm for network coding.

In the previous chapter, we presented a way to find the size of the alphabet of a
network code using only outgoing channels from source. In the end of the chapter
we saw a technique to decrease the size of alphabet for a combination network. For
further research it is interesting to see if we can find tighter bounds for the size of

the alphabet of a network code. This is a tough field of network coding.

By the time the present thesis was being written, about eight PhDs theses have been

published, the majority of them from Muriel’s Medard group at MIT. As well in the
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network coding webpage there are about 200 research papers that are related with

network coding.
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Appendix A: Galois Fields

The purpose of this appendix is to provide the reader with an elementary knowledge
of Galois Fields that will aid in the understanding of the material that is covered in
the present master’s thesis. There are many good textbooks on Galois Fields such as

“Finite Fields for Computer Scientists and Engineers” by Robert J. McEliece.

A Galois Field is a finite field with g=p” elements where p is a prime number and is
denoted by GF(q)={0,1,...,q-1}, q is called the order of the Galois Field. For example
GF(2)={0,1} and GF(3)={0,1,2}. More formally a Galois Field of order q is a set of q

elements with two binary modulo-p operations “+” and “x”.

In the next two tables we see the binary operations for GF(2) and GF(3) respectively:

GF(2):
+ 0 1 X 0 1
0 0 1 0 0 0
1 1 0 1 0 1
GF(3):
+ 0 1 2 X 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

Note that the operations are modulo-2 and modulo-3 respectively.

Vector Spaces

Let V, =GF(2)" be a n-dimensional vector space. The elements of V. are called

vectors and the elements of GF(2) are called scalars with values 0 and 1.
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Example:

Let n=5. The vector space Vs of all 5-tuples over GF(2) consists of 2° =32 vectors.

1y (1) (1Y) (1) (1) (1
O{|0f|O0]|2]|0]|1
Suchas |0 [,|Of(,|1|,/1[]0],1].
O{[2(]|0]|0]|0]|]|1
0)lo)j(1){0)\1) (1

1) (1 1 1 1+1 0

0|0 0 0 0 0

The vectorsumof |0 [,|0]is|O0[+| 0=l O |=|0

0|1 0 1 1 1

0)\0 0 0 0 0

A set of vectors Vv,,V,,...,V, in a vector space V over a Galois Field F is said to be
linearly dependent if and only if there exists k scalars a,,a,,...,8, from F, not all zero

such that:
aVv, +aVv, +..+a.Vv, =0

A set of vectors v,V,,...,V, is said to be linearly independent if it is not linearly

dependent. That is, if v,,V,,...,V, are linearly independent, then:
aVv, +aVv, +..+aV, #0unless a, =a, =...=a, =0.

A set of vectors is said to span a vector space V if every vector in V is a linear
combination of the vectors in the set. In any vector space or subspace there exists at
least one set B of linearly independent vectors that span the space. This set is called
a basis (or base) of the vector space. The number of vectors in a basis of a vector

space is called the dimension of the vector space.

Consider the vector space V, = GF(2)". Let form the following n-tuples:
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& =(10,0,...,0,0)
& =(0,10,..,0,0)

e, =(00,0,..,01)
Then every n-tuple (a,,a,,...,a, ,) in V,can be expressed as a linear combination of

€,,€,....,6,  as follows:
(ag,a,,...,a,,)=a,e, +ae +..+a, e ,

Therefore e,,€,,...,€, ; span the vector space V, of all n-tuples over GF(2).
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