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Abstract

The demand for realistic, low energy consumption communication protocols
continuously increases in the era of IoT. IoT deployments are expected to expand
even more in year to come, in order to serve multiple diverse field applications.
Reliability and longevity (long autonomy) are two, undeniably, important factors.
Problems arising due to the lack of the later, are among the most difficult to
address.

In order to increase the reliability and lifespan of IoT devices many research
teams have proposed protocols and architectures especially designed for IoT ap-
plications.

Recently, a novel theoretical communication paradigm was proposed, called
BitSurfing, which can simplify significantly the IoT transceiver hardware, with
potential for major benefits in energy-efficiency and security.

The present work demonstrates a proof-of-concept implementation of the Bit-
Surfing logic using low cost Raspberry Pi hardware. BitSurfing nodes take ad-
vantage of packets broadcasted in their network and utilize them to enable intra-
network communications. Every node maintains a FIFO buffer, in which it stores
broadcasted packets. If a node wants to send a message, it waits until the message
appears in the buffer and then it sends a low energy 1-bit pulse to inform neigh-
boring nodes. BitSurfing cuts down the required IoT device energy consumption
and thus it has a potential use in battery-less systems. In this study, a proof-of-
concept deployment on real hardware is presented and the results of BitSurfing
evaluation suggest that the proposed logic can be feasibly used for data transfer
among network nodes. This study shows that BitSurfing is implementable even
with very common hardware and defines an empirical model for its operation.

Furthermore, a multi-threaded BitSurfing simulator is created and tested for
larger network sizes and congestion levels. The results derived from the various
simulations also suggest that BitSurfing can deliver messages among network de-
vices without using any MAC layer functionality, a characteristic reducing the
energy consumption requirements even more.

In conclusion, two specific BitSurfing use cases are presented and promising
research directions are highlighted.





Περίληψη

Η ανάγκη για ρεαλιστικά και με μειωμένες απαιτήσεις σε ενεργειακούς πόρους

πρωτόκολλα επικοινωνίας ολοένα και αυξάνεται στην εποχή του ΙοΤ. Η σχεδίαση και

υλοποίηση νέων εγκαταστάσεων ΙοΤ αναμένεται να αυξηθεί ακόμα περισσότερο στο

ερχόμενα έτη ούτως ώστε να εξυπηρετηθούν πολλαπλές εφαρμογές ποικίλων πεδίων.

Η αξιοπιστία και η μεγάλη ενεργειακή αυτονομία είναι δύο από τους σημαντι-

κότερους παράγοντες που λαμβάνονται υπόψη κατά τη σχεδίαση και υλοποίηση μια

εφαρμογής ΙοΤ. Τα προβλήματα που δημιουργούνται λόγω αδυναμίας παροχής του

δεύτερου από αυτά είναι ανάμεσα στα πιο δύσκολα προς επίλυση.

΄Εχοντας ως στόχο την αύξηση της αξιοπιστίας και της μακροζωίας (μεγάλης αυ-

τονομίας) των ΙοΤ συσκευών, πολλές ερευνητικές ομάδες έχουν προτείνει πρωτόκολλα

και αρχιτεκτονικές επικοινωνίας ειδικά σχεδιασμένα για εφαρμογές ΙοΤ.

Πρόσφατα, προτάθηκε ένα νέο θεωρητικό πρωτόκολλο επικοινωνίας − το Bit-
Surfing − το οποίο υπόσχεται να απλοποιήσει σημαντικά το σχεδιασμό του υλικού
ενός ΙοΤ πομποδέκτη, με προοπτική ακόμα και για βελτίωση της ασφάλειας και της

ενεργειακής απόδοσης ολόκληρης της συσκευής.

Στην παρούσα εργασία αποδεικνύεται η υλοποιησιμότητα της λογικής στην οποία

βασίζεται το BitSurfing, χρησιμοποιώντας απλό υλικό όπως είναι οι συσκευές Rasp-
berry Pi. Βάση της λογικής ΒιτΣυρφινγ που μελετάται, οι κόμβοι εκμεταλλεύονται
πακέτα που εκπέμπονται στο δίκτυο τους και τα αξιοποιούν για να επιτύχουν επικοι-

νωνία μεταξύ των κόμβων του δικτύου τους. Κάθε κόμβος διατηρεί ένα καταχωρητή

τύπου FIFO, στον οποίο αποθηκεύονται τα ληφθέντα πακέτα. Αν ένας κόμβος θέλει
να στείλει μήνυμα, περιμένει ώσπου να εμφανιστεί το μήνυμα στον καταχωρητή του και

έπειτα στέλνει ένα παλμό χαμηλής ενέργειας και διάρκειας ενός bit στους γειτονικούς
του κόμβους.

Το BitSurfing μειώνει σημαντικά την κατανάλωση ενέργειας σε ΙοΤ συσκευές
και συνεπώς έχει προοπτική χρήσης ακόμη και σε συσκευές χωρίς μπαταρίες. Σε

αυτή την εργασία μελετάται η υλοποίηση της λογικής ΒιτΣυρφινγ σε πραγματικές ΙοΤ

συσκευές με τα αποτελέσματα να δείχνουν ότι η προτεινόμενη λογική μπορεί πράγματι

να χρησιμοποιηθεί για τη μεταφορά δεδομένων μεταξύ των κόμβων ενός δικτύου.

Η μελέτη δείχνει ότι η λογική BitSurfing είναι υλοποιήσιμη ακόμη και με πολύ
συνηθισμένο υλικό, ενώ ορίζεται ένα εμπειρικό μοντέλο για τη λειτουργία του Bit-
Surfing.
Με στόχο να καλυφθούν τυχόν προβηματισμοί σχετικά με το μέγεθος του δι-

κτύου στο οποίο μπορεί να χρησιμοποιηθεί η συγκεκριμένη λογική, δημιουργήθηκε

ένας προσομοιωτής σε λογική πολυνηματικής υλοποίησης, ώστε να επιτυγχάνεται η

κατά το δυνατό ανεξαρτησία μεταξύ των προσομοιωμένων κόμβους BitSurfing. Ο
προσομοιωτής δοκιμάστηκε για διάφορα μεγέθη δικτύου και επίπεδα συμφώρησης, με

τα αποτελέσματα να συμφωνούν με αυτά της υλοποίησης σε πραγματικές συσκευές

και να δείχνουν ότι η λογική επικοινωνίας BitSurfing δύναται να εφαρμοστεί.
Τέλος επισυμένονται ενδιαφέρουσες ερευνητικές κατευθύνσεις αφού πρώτα πε-

ριγραφούν δύο συγκεκριμένα παραδείγματα στα οποία μπορεί να χρησιμοποιηθεί η

εξεταζόμενη λογική επικοινωνίας.
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Chapter 1

Introduction

1.1 Motivation

IoT applications emerge more and more as technological improvements are intro-
duced and components cost drops [15]. Previously visionary applications, such
as Smart Cities and connected Health, are nowadays not only feasible, but also
deployed at large scales, providing huge amounts of useful data, used to improve
quality of life. The deployment of IoT networks for Tsunami Alert and detection
[16] as well as Smart Water Management [17] are only a couple of many remarkable
applications indicating the perspective of Internet of Things.

Number of Connected 
Devices 
=

Word Population

Number of Connected 
Devices 
=

~2 x Word Population

2008-2009 2010

Figure 1.1: Internet of Things Birth [8]

Cisco’s 2011 white paper on Internet of Things claims that sometime between
2008 and 2009 was the first time that more devices were connected to the internet
than humans. In the same paper, it was stated that by 2020 it is expected around
50 billion devices to be connected. [8] It seems that the forecast overestimated the
reality, as another more recent report claims that the number of connected devices
will be around 31 billion in 2023. [9]

Most of those IoT connected devices is expected to be short and long range
IoT, rather than smart phones, tablets or laptops as shown in Figure 1.2.
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Figure 1.2: Number of connected devices by type (in billion) [9]

According to Ericsson’s Mobility report, released in June 2019 [10], two tech-
nologies focusing on Low Power Networks, NB-IoT and Cat-M, are expected to
account for approximately 45% of cellular IoT connections in 2024.

Figure 1.3: Cellular IoT connections (in billion) [10]

Figure 1.3 provides a forecast for Cellular IoT connections by segments and
technology. As the bar plot suggests there is expected to be a continuous raise in
the number of connected IoT devices in the years to come. The segment defined as
Massive IoT refers to applications requiring the connection of massive numbers of
low-complexity, low-cost, high durability, small data volume and low throughput
devices. [10]

Given the high percentage of IoT devices being part of the Massive IoT seg-
ment, research on the improvement of any of the segment requirements, would
greatly enhance any application supported by Massive IoT deployments.

This thesis studies an IoT communication logic, while also it provides proof-
of-concept of the proposed logic, using real IoT hardware devices.
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1.2 BitSurfing

IoT communication employs the regular norm: a transmitter creates electromag-
netic waves that encode its intended message, and a receiver attempts to convert
the waves into useful information. The transmission hardware is one of the most
complex and energy-hungry hardware parts for any IoT device, especially if one
accounts for the Medium Access Control problem in massive networks [18], [19],
[20].

BitSurfing is a novel communication paradigm that breaks this norm, allowing
for greatly simplified transmission hardware and miniaturization even at nano-
levels [21]. According to it, nodes depend on outsourced generated bit streams to
exchange data throughout the network. Each node repeatedly updates a buffer
by adding incoming bits, while it waits for a message of interest to appear in
its buffer. Once such a message appears, the node sends a simple 1-bit pulse
notifying neighbor nodes to view in their buffer and extract the message. The use of
simple pulses simplifies the transmission hardware since there is no packet creation.
Additionally, the pulse collisions are extremely rare, meaning that Medium Access
Control is not necessary even in dense and congested networks [21]. Asynchronous
implementation potential is another major advantage of the BitSurfing approach
[21].

While the theoretical prospects of BitSurfing have been outlined, its practical
realization remained an open question. In this work we provide a proof-of-concept
implementation with very common hardware (Raspberry Pi nodes), and outline a
practical operation model, challenges and future implementation prospects.

1.3 Challenges

Applications deployed on top of IoT connected devices have certain expectations
regarding network characteristics. The network should provide scalability, dura-
bility (longevity) and security for the supported application [22]. While scalability
is not an issue for most existing communication protocols as it is a major design
aspect [23], security and even more durability are two very important character-
istics bugging the research community in this field. There are in particular quite
a lot of studies concerning security, but in most of them the proposed solutions
sacrifice energy efficiency, while all of them require the MAC layer to operate [24].
In other studies, authors present energy efficient communication protocols, but
even in such proposals the system cannot operate battery-less.

Bitsurfing adapters main goal is to enable communication at very low energy
consumption levels by utilizing an outer bit stream source. In order to achieve this
goal the design of the adapter has to be carefully drafted, containing only crucial
to the functionality components. The adapter has to be simple enough in order to
consume the least amount of energy during its data reception/transmission cycles.
To that end the implementation deviates from the traditional OSI model by using



4 CHAPTER 1. INTRODUCTION

outsourced packet creation and excluding the MAC layer from the adapter’s design
logic. Another limitation of the adapter made to improve energy efficiency is the
lack of any kind of inter-adapter synchronization mechanism.

Considering all the adapter’s limitations someone can understand that the
only functionalities left on the adapter requiring energy are the incoming data
processing and the pulse creation, which is created to inform neighboring nodes of
incoming packet. In the proper environment combined with an optimized design
of the communication logic, running on ASIC, it is possible to produce a carrier
only fed adapter.

This work focuses on the reliability and feasibility of the logic running on
top of the adapter, rather than the adapter itself. However, implementation and
experimentation on real and of diverse specification hardware devices shows that
adapters’ buffer may be less similar to one another, as observed in the initially
proposed algorithm.

Since there is no clock to use for synchronization among adapters the algorithm
needs to be tuned so that any adapter entering the Bitsurfing network, no matter
its hardware specifications, will be able to communicate successfully.

1.4 Thesis Contributions

This work offers several contributions to the networking and telecommunications
community.

• It provides a thorough analysis of the design, the implementation and the
evaluation of BitSurfing’s adapter software and hardware components. Con-
sidering that Bitsurfing is an energy efficiency centric adapter the major
components which enable the adapter’s functionalities are : Rx and Tx com-
munication blocks, a buffer to store - potential messages - bits , an (IR) pulse
transceiver and a microprocessor running the software logic. The adapter
could potentially require no power supply since it can be carrier fed. The
proposed software component of the adapter is responsible for handling inter-
rupts and message arrivals as well as sending pulses to other neighbor nodes
and thus optimization of this component may greatly impact the adapter as
a whole.

• It presents the first BitSurfing proof-of-concept deployment on real hardware
IoT devices. The results of BitSurfing evaluation suggest that the proposed
logic can be utilized for data transfer among IoT network nodes.

• It provides the adapter’s software logic implementation both in a rapid pro-
totyping and flexible programming language − Python − and a highly opti-
mized programming language − C (Kernel) −, which can be compiled even
on FPGA devices without much tuning.
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• A BitSurfing multi-threaded Simulator is created to support further inves-
tigation of the communication logic in various network sizes and congestion
levels or even change the functionality of each adapter in order to enhance
the tested model.

1.5 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents the necessary
background on IoT technologies and refers to related literature. Chapter 3 de-
scribes the studied communication logic by analyzing its building blocks, provid-
ing also an abstract diagram and an algorithm view of the model. Details of the
Testbed Setup and the hardware in use, as well as analysis of the testing scenarios
and their results are provided in Chapter 4. Various simulation schemes of Bit-
Surfing are tested in chapter 5, in which the scalability and survivability of the
communication logic are evaluated. Finally, potential Research Directions along
with conclusions of this study are presented in Chapter 6.
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Chapter 2

Background and Related Work

2.1 Background on IoT

Internet of Things refers to a network of “intelligent” objects, which have the
ability to communicate with each other and take decisions based on certain criteria.
In fact ENISA, the European Union Agency for Cybersecurity, defines IoT as :

a cyber-physical ecosystem of interconnected sensors and actuators,
which enable intelligent decision making.[25]

There are those who claim that IoT is around for quite some time already and
other factors such as component cost and new technologies helped it to become a
research and commercial trend lately. A couple of famous examples are those of
the Internet (ARPAnet) enabled vending machine and the internet toaster. The
vending machine remote communication was introduced in 1982 by researchers
in Carnegie-Mellon University who wanted to remotely check for cold soda. The
second example, the internet controlled toaster was an idea and implementation
of John Romkey back in 1990.

Both ideas appeared well before the official IoT term came up. According to
Goldman Sachs’ authors [15], IoT as a term was originally introduced by Kevin
Ashton in 1999. The later stated :

I could be wrong, but I’m fairly sure the phrase “Internet of Things”
started life as the title of a presentation I made at Procter & Gamble
(P & G) in 1999. [26]

IoT is one of the main components enabling Industry 4.0, one stage of the
industrial evolution. [11] IoT is not to be confused with Industry 4.0. The later
refers to the automation, data acquisition, self decision making and machine to
machine communication in manufacturing. Figure 2.1 represents all the stages of
industrial evolution and the most important technologies for each one of them.

Without IoT industry 4.0 and the upcoming industry 5.0 wouldn’t be feasi-
ble. All the data gathered from hundreds of devices wouldn’t exist and Artificial
Intelligence wouldn’t improve that much in the later years without IoT.

7
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Figure 2.1: Milestones of Industrial Evolution [11]

2.2 IoT Applications

There are numerous segments disrupted by IoT. In fact we can safely say that
there is no segment which is not directly or indirectly supported by IoT.

A rather interesting chart, released on January 2018, presents the top ten IoT
segments based on 1600 projects globally (Fig. 2.2).

Figure 2.2: Most in demand IoT Applications [11], [12]

Data suggest that most projects are focused on Smart Cities IoT solutions,
while the interest in this segment still increases. One of the reasons Smart City
applications gather that much attention is the number of people directly influ-
enced and the wideness of possible applications aiming to the same goal, improve
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the Quality of Life. Among others, some Smart City applications are Traffic con-
trol, street lighting, environmental monitoring and public safety. IoT can greatly
enhance City Utilities monitoring.

Connected Industry is the runner up in the race of applied IoT projects.
Indoors and Outdoors manufacturing can be fully automated, while the infras-
tructure can be monitored and controlled in real time fully remotely. PLCs in a
production line can be reprogrammed on demand any time from any place. Qual-
ity controls can be scheduled automatically requiring neither the specialist to be
there in person nor the production line to stop. Wearable sensors can help em-
ployees to look after their personal safety by informing them for potential hazards.
A combination of sensors and actuators can be utilized to prevent the destruction
of company assets from a number of factors (e.g. high levels of heat or humidity).

Following, the building sector has the highest trend among the segments in
this chart. Energy costs can be cut down by installing building automation systems
(BAS) or other IoT enabled solutions. Heating, ventilation, and air conditioning
(HVAC) are power hungry appliances which can be remotely controlled or even
better be fully self or system controlled thanks to IoT. This kind of building
automation increases energy efficiency and as a result cuts down energy cost. The
personal financial interest is likely a main reason why connected building IoT
solutions are trending.

In the automotive and energy industries, IoT has also made a dynamic
introduction. New vehicles contain a network of interconnected sensors and ac-
tuators monitoring many useful data, from tire’s pressure all the way up to rain
sensing system, and taking decisions based on them. Other sensor groups, such
as parking or obstacle detection or even road detection sensors, provide a better
driving experience. There is also another group of sensors related to cabin comfort.
For companies possessing large fleets, there are fleet management solutions avail-
able, which provide the ability to remotely check vehicles and run diagnostics. As
for the energy sector, the concept of Smart Grids is very popular these days. The
grid, through IoT devices, becomes safer. IoT along with artificial intelligence are
presented as a promising solution for the prevention of power outages and more
importantly wide area black outs. Those technologies can also enhance power flow
control over the grid in order to decrease power loses.

Connected Health couldn’t be excluded from the segments which can take
advantage of IoT. Potential applications vary from Telehealth to Robotic and
nano-robotic surgeries. Telehealth refers to the distribution of health services via
online systems. Remote patient to doctor contact and care, advice and monitoring
are some examples of telehealth. On the other hand Robotic and nano-robotic
surgeries can utilize IoT devices or nano-devices respectively to accurately and
precisely conduct in vivo surgeries.

Regarding Smart Agriculture, IoT can help farmers to better manage their
fields. IoT can continuously provide data about the environmental conditions along
with other more specific measurements, such as pH and soil humidity. Moreover,
gathered data can be uploaded on a platform where the user along with the help of
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agronomists will analyze the data and take decisions leading to less product waste
and higher production rates.

A very interesting domain which can greatly benefit from IoT, is that of Sup-
ply chain and logistics. A combination of IoT and Blockchain technologies can
provide security, transparency and accessibility. There are such solutions even
for tanker and container ships and what they promise aside from those already
mentioned are cost reduction and better tracking systems.

As we can see there are numerous applications based on IoT. Take into con-
sideration that this is only a short list of possible applications which are greatly
enhanced by this new technology and its advantages. One thing is for sure, the
possible applications will only get wider.

2.3 IoT Building Components

IoT has itself a number of important building blocks and although there is a big
variety of possible applications, diverse to each other, the backbone of each and
every IoT application remains more or less the same.

The architecture is simple yet it is capable of handling information from hun-
dreds of sources quite efficiently.

Things Gateway Internet

Figure 2.3: IoT Building Components Architecture [13]

As Figure 2.3 represents, the most important components upon which an IoT
application operates are:

• Sensors : Components of this type were already used many years before IoT
was introduced as a term. Sensors allow devices to gather information from
their environment. Each sensor is specifically designed to convert measure-
ments of a specific form to another, e.g. environment humidity to voltage,
most of the times measurements are converted to an electric pulse being
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voltage or current. Accuracy and precision are two extremely important
characteristics of any sensor, since devices will later make decisions based
on sensed data. Thus the cost of a sensor may widely vary depending the
standard error provided by the manufacturer. Some typical sensor examples
are: light, temperature, humidity, pressure, accelerometer, touch, proximity
and gas sensors.

• Actuators : Those devices operate in the opposite way of a sensor. Instead
of monitoring the environment and forwarding data to the controller, actu-
ators take action based on signals arriving from the controller. From a pure
technical side of view, actuators are transducers, converting energy from one
form to another, just like sensors, but they are differentiated because they
don’t feed in data to the controller like sensors.

• Controller : This component represent the brain of an IoT device. It is most
likely the most important component, as data would be useless if we couldn’t
process them somehow. A controller is responsible for data collection from
sensors, taking decisions based on certain criteria (environmental, provided
by the user or critical cases) and passing commands to its actuators in order
to achieve the application goals.

• Gateways : Just on the edge of the backbone network, is the place where
gateways are installed. They are responsible for receiving and sending data
from and to sensors and actuators respectively. Those devices are crucial to
IoT as a whole. Depending the application, gateways may operate just as a
bridge connecting the cloud to sensors/actuators, or they can be utilized as
local data senders and controllers. A gateway may be used to encrypt data
and messages before they are forwarded to the cloud platform for further
analysis and decrypt them before they are forwarded to the controller and
the actuator. Gateways can be used for local data analytics, sanitization and
compression. Such operations are extremely helpful when trying to reduce
the size of data streaming to the cloud for a specific application from thou-
sands or millions of devices, making the data more manageable. Gateways
are also unique in terms of communication protocols support. They have to
support both IoT low power specific communication protocols in order to
receive and send messages to IoT devices, as well as they need to support
other, more energy hungry, protocols to communication with the backbone
of the network.

• Platform : In the core of every IoT application stands the supportive plat-
form. It is the entity which has access to extensive resources, in terms of
power, computing and storage, while being also responsible for the front
end (most of the times) to the end user. IoT platforms collect data from
all over their network and processes them. There are though platforms of
many variations mostly based on the specific application they support. So,
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there are monitoring and logging centric platform which doesn’t provide any
data analytics capabilities, while others support many functionalities such
as : IoT devices remote control, big data analytics and end user to “things”
interaction. We could argue that a good IoT platform is a hybrid solution
capable of delivering services upon request. Such a hybrid platform could
easily adapt on more than one IoT applications.

• Connectivity : Sensor, Actuators, Gateways and Platforms require a com-
munication mechanism in order to exchange data from the edge of the net-
work to the core and vise versa. There is a wide variety of communica-
tion protocols strongly dependant on the IoT application specifications, the
network requirements and the environmental and resource constrains. Uti-
lization of more than one protocols is a common practice towards ensuring
interoperability among network layers. Apart from the more established
protocols, like Wi-Fi, Bluetooth, GSM, UMTS and LTE, there is a sufficient
number of protocols specifically designed for highly constrained − in terms
of power − IoT applications (LPNs), such as : Nb-IoT, Sigfox, LoRa and
NWave.

2.4 IoT Connectivity Technologies

We could discriminate three main categories of connectivity technologies for IoT.
Those of short, medium, and long range protocols, each of which best supports
different applications.

Figure 2.4 provides a very good representation of a number of the most well
known IoT communication protocols. Each protocol is placed on the 2d-axis based
on its peak data rate in kbps and its maximum range in kilometers, given the data
rate. A quick observation of the figure is enough to see that there are many proto-
cols competing in each of the three categories. Each of these protocols has a strong
characteristic − e.g. power consumption, bit rate, range, network size (nodes), se-
curity, frequency − which makes it the best choice for certain applications.

Several of those protocols are briefly described after Table 2.1, which provides
a comprehensive overview of those IoT protocols.

2.4.1 Short Range Protocols

• BLE : Bluetooth Low Energy is a protocol member of the Bluetooth family.
The main characteristic defining BLE is the very low energy consumption,
compared to the classic Bluetooth. It is designed to support IoT applica-
tions demanding high autonomy, such as health monitoring wearable devices,
intra-automotive communications and home automation

• NFC : Near Field Communication refers to a set of communication pro-
tocols, designed to support near field applications. It provides support for
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Figure 2.4: IoT Communication Protocols in Categories. [14]

Table 2.1: IoT Communication Protocols basic characteristics [1],[2],[3],[4]

Protocol Frequency(MHz) Range(m) BitRate(Mbps) Consumption(mW) Security

BLE 2400 1-100 1 10–500 128-bit
AES

NFC 13.56 ≤0.2 0.424 2 N/A

ZigBee 2400(868 in Eu-
rope)

10-20 0.25 1 128-bit
SEK
CCM

Wi-
Fi(HaLow)

2400/5000 700 1 309.8 AES

Dash7 2400(868 in Eu-
rope)

1000 0.166 N/A AES-
CCM

Weightless 470-790 2000 0.1 N/A 128 bit
AES

NB-IoT 700-900 10000 0.25 716 3GPP(128-
256bit)

LoRa 1000 15000 0.05 297 AES

Lte-M 850 10000 1 N/A EEAx



14 CHAPTER 2. BACKGROUND AND RELATED WORK

point-to-point communications among enabled devices. Each NFC device
may function in one of three possible modes, as card emulator, reader/writer
device and peer-to-peer. Based on the application the device may require
a power supply or it may be RF energy fed. POS-to-Credit card communi-
cation is a well known NFC consumer application. NFC keycards and close
range file sharing among smartphones are two other applications. Although
NFC is widely used in our days, research has shown that there are consider-
able vulnerabilities of the protocol family [27].

• ZigBee : The protocol was proposed as an energy concerned and low cost
customizable alternative solution to Wi-Fi and Bluetooth for PANs and
LANs. The supported range can reach up to 100 meters based on the fre-
quency configuration and data rates up to 250kbps. It is an established
solution for industrial control systems, home and building automation.

2.4.2 Medium Range Protocols

• Wi-Fi(HaLow) : Or Wi-Fi 802.11ah as the IEEE standard specifies is a
802.11 communication protocol, specifically designed for IoT applications.
The protocol operates at 900 MHz frequency and provides high data rates
even at wide range requiring also lower power consumption. Moreover, be-
cause of the security offered by the protocol, along with the previously men-
tioned characteristics, HaLow is a very good candidate for security concerned
IoT applications with demand of high data rates, such as security cameras.

• DASH7 : DASH7 is a protocol initially designed for military logistics. It
has a simple, small protocol stack which allows devices to operate on the
same battery for several years, thanks to the low power consumption. With
data rates up to 167kbps, a functional range of 2km and the 128-bit AES
shared key encryption, DASH7 evolved in 2011 from a military protocol to
a more commercial supportive protocol. Smart City Logistics and Smart
Energy are two examples of IoT applications well suited for DASH7.

• Weightless : Weightless is a LPWAN set of standards to enable communi-
cation between a base station and thousands of devices around it. Weightless
originally had 3 variant but Weightless-P a technology offering bi-directional
and narrow band communication in licensed and unlicensed ISM frequencies.
The protocol provides adaptive data rates and has the benefit of being an
open standard. Scalability depends highly on the way the developer imple-
mented the application.

2.4.3 Long Range Protocols

• Lte-M : Long Term Evolution - Machine Type Communication is a low
power wide area cellular technology designed by 3GPP. The technology fo-
cuses on providing high data rates, mobility and power conservation on its
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enabled devices. The downside of those advantages is the increased require-
ments in bandwidth and the cost of implementation. Because of the years
of experience in Lte deployments, the infrastructure does already exist and
the protocol is quite secure and thus it is capable of supporting sensitive
applications, being inter-vehicle communication.

• LoRa : LoRa, which stand for Long Range was not introduced as a full stack
communication protocol, rather as a physical layer component. LoRaWAN
on the other hand is a data link-layer standard that enables bi-directional
communication. The technology is highly customizable and thus it is a very
good choice for various IoT applications. It operates on the unlicensed spec-
trum and it doesn’t require any cellular infrastructure, a parameter reducing
the overall deployment cost.

• NB-IoT : Narrow Band IoT is another (like Lte-M) low power radio tech-
nology developed and backed by 3GPP. NB-IoT is mostly suitable for highly
penetrating indoor applications. It does support communication at long
ranges (10-15km) at rates of 250kbps. Just like Lte-M, the protocol relies on
Lte and thus security is one of its advantages. NB-IoT and Lte-M are two
of the main competitors on the market supporting cellular IoT applications.

2.5 IoT Challenges

Just like many new concepts, IoT comes with a number of challenges which need to
be addressed, at least in some extend. Considering that IoT promises to connect
every device to the internet, someone may be thrilled and anxious at the same
time. Back in 2011 IPv4 address space was exhausted and at the same moment the
demand for such addresses raised exponentially with millions of devices requesting
to connect to the internet. With that mentioned the reader takes just a small taste
of the challenges arising on the road to delivering IoT applications to the world.
Several of those challenges are analyzed below.

• IPv6 large scale deployment : Besides IPv6 exists since December 1998,
it is far from being considered a mature solution. As already mentioned, IPv4
address space has been exhausted and thus authorities are more or less forced
to switch to IPv6, but it may be years before IPv4 is completely abandoned.
Right now both Internet Protocols are utilized, a situation adding extra com-
plexity in terms of monitoring and deployment of enabled networks. Given
the rate new deployments with hundreds or even thousands of IoT devices
show up, each of which requires a unique IP address to communicate, it is
easy to understand the difficulty of keeping track of such a network. Apart
from scalability concerns, IPv6 is widely used only for several years and thus
it hasn’t been thoroughly tested for potential security flaws. Last but not
least, operators will have to find a way to bind existing legacy systems and
devices to the new protocol. [28]
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• Energy Requirements : Sensor and Actuators as well as other IoT devices
require energy to operate. Supplying the required amount of energy for short
periods of time is not an issue, especially if devices are already plugged-
in somehow to the power supply (cases of indoors IoT devices). The real
challenge is to provide longevity to millions of outdoors IoT devices. Consider
for example a national wide deployment of IoT devices to monitor earthquake
signal for years. It is not feasible to track down each and every device to
change its batteries every now and then. Devices need to take advantage
of their surrounding environment and harvest energy on demand. Ideally,
outdoor IoT devices would be able to function batteryless. On the other
hand, the harvested energy will be likely not enough to power devices running
legacy, power hungry protocols. To that end, the protocol stack needs to be
redesigned with protocols especially implemented for IoT applications, which
tend to use minimum amount of resources. [28]

• Interoperability through Standards and Regulations : Although IoT
is a new technological concept, it has already raised the interest of many
industries. The possible application domains are numerous and thus manu-
facturers and vendors are already competing on a race to bring IoT enabled
devices and applications to the market. There are IoT protocols which are
developed as a result of joint research agreements or special interest groups
with a number of well known companies joining forces, but there are also
others introduced and backed only by one manufacturer. As a result there
is already a large variety of IoT protocols and architectures released in the
commercial market for various application domains. It is therefore very diffi-
cult to secure interoperability among IoT networks, devices and the Internet.
Such a state, in which IoT devices of different manufacturers won’t be able to
interconnect will eventually lead to a billion device communication problem.
[29]

International Authorities need to standardize IoT in terms of architecture
and protocol stack. Setting also minimum requirements for IoT devices along
with a device ranking would be beneficial for consumers. The release of
corresponding regulations would be the next step towards management of the
IoT industry. Vendors may be able to release their own standards, however
they will always have to follow the regulations released by Authorities.

A step to the correct direction has been made by the International Organi-
zation for Standardization in 2018, when they released ISO/IEC 30141:2018
standard [30], a Reference Architecture for IoT. Since international authori-
ties are showing interest in the technology, documentation will be expanded
and general rules will be set for interested parties to follow.

• Scalability : As mentioned before, IoT is a technological concept which
seems like a trend but there are many who claim that it will enable the inter-
net of Everything (IoE) and will be crucial towards developing Industry 4.0
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and the upcoming Industry 5.0 as stated in section 2.1. In the introductory
chapter is also stated that 31 billion devices are expected to be connected
by 2023 (section 1.1), many of which are going to be mobile. Thus the ex-
isting telecommunications infrastructure may not be capable of supporting
the growing system. There are two levels of scalability to consider, those of
network and data scalability.

In terms of network scalability, it is important to design and deploy new net-
works not considering the present requirements, but the needs of the network
in the upcoming future. IPv6 support is a must for new networks. Required
security varies based on the application, however designers shouldn’t trade
off security of some devices to keep the simplicity of others. Moreover, energy
requirements of network devices is a top priority since as the number of de-
vices raises from hundreds to thousands or even billions, power consumption
adds up to intractable numbers.

As of the data scalability side of view, there are continuous (probably stream-
ing data) flowing in the network. The system won’t be able to handle beyond
a certain amount of data. Thus data sanitization and maybe a couple of pre-
processing stages shall take place on the edge of the network, that can be
gateways or even IoT devices themselves. Securing the confidentiality and
integrity of the transferred data to the core database as well as assuring the
availability of the data are three factors crucial in priority. [1]

• Security and Privacy : Two of the most important factors when it comes
to IoT is Security and Privacy offered by the design of the underlying net-
work.

In a continuously increasing network of heterogeneous devices and protocols,
it is very difficult to ensure that the whole systems remains secure. The at-
tacking surface of the network widens each time a new technology is added to
the existing network. Taking also into account that IoT is mostly built upon
wireless communications, adds one more concern to the system designer.

Moreover, providing privacy to IoT users and the data they access through
IoT applications is of great importance, especially in cases of sensitive data
such as those related to health and user well being. [31]

Given the fact that IoT is not a mature technology, researchers are more
interested in creating energy efficient technologies than providing security
and privacy to the system. Considering that IoT applications are vulnerable
to DoS attacks supports this claim. Thus, IoT related technologies designed
with a security and privacy awareness are most likely to be preferred by the
end user. [1],[29]

In 2018 the European Union published a revised edition of the General Data
Protection Regulation (GDPR) which was enforced throughout the Union.
That is a factor preserving higher security and privacy standards for any new
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technology developed in the EU. Confidentiality, Integrity and Availability
(CIA) of data generated by IoT devices can be preserved at least at a certain
level, but such a choice usually comes at a cost, in terms of underlying com-
munication technologies and actual cost of components. The development of
lightweight security protocols and highly optimized IoT ASICs, in order to
minimize energy consumption while maximizing security awareness is very
important.

In this work, we try to tackle 2 major challenges, energy consumption and
development complexity, while the proposed technology provides also a level of
privacy to the transferred data.

2.6 Related Work

Communication protocols with an energy efficiency awareness have been studied
earlier in other works focusing on IoT applications. Although there are numerous
studies suggesting improvements in the routing algorithmic and node architecture
sides, there are very few approaches challenging the classic packet creation/recep-
tion pattern.

2.6.1 Low Power IoT Communication Patterns

An alternative to the classic communication pattern in the category of low power
IoT protocols utilizes the time dimension to achieve communication among de-
vices.

Zhu and Sivakumar proposed a Communication through Silence (CtS) scheme
as an alternative communication approach, which by design requires far less en-
ergy than conventional protocols [32]. As stated in their paper, their protocol
introduces a time dimension as a parameter and relies on inter-node synchroniza-
tion for successful data transfer. More specifically, as shown in Fig. 2.5 if a node
wants to send a packet over the network, it emits a pulse notifying the receiving
node of incoming data. The receiving node has a High Resolution Clock which
has to be synchronized with that of the sending node, based on which a counter
is incremented. The sending node has to emit a second pulse to indicate end of
message with a high level of precision. Although the protocol conserves energy
compared to other IoT protocols, it also has important drawbacks, among which
are: collisions among messages and the need for very high resolution Clocks. In
addition, a potential lost pulse indicates directly to a lost or differentiated packet,
thus the protocol is very sensitive to environmental changes. Furthermore, due to
the time dependence the protocol cannot improve much more, since a reduction of
the sending/receiving time will most probably result in a different message delivery
to the receiving node.

The Authors in [32] use a very simple idea to derive their model energy con-
sumption. They consider only the energy required per transmitted bit, since data
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Figure 2.5: Communication Through Silence Logic

transmission is among the most power hungry operations. Thus, since their CtS
model requires one bit in the beginning of the packet and another in the end, they
claim that their model requires only Energy = 2 ∗ eb for each packet, where eb is
the energy required per transmitted bit. Their proposal improves the classic packet
transmission energy requirements, which requires Energy = (packetsize)∗eb. Fol-
lowing the same logic BitSurfing adapters conserve half the transmission energy of
CtS adapters since they only need Energy = 1∗ eb in order to send a packet. This
is a very good improvement considering also the fact that BitSurfing requires no
synchronization among adapters in contrast to CtS scheme.

Authors in [33] indicate CtS weaknesses and propose a variable-base tacit com-
munication (VarBaTaC) in contrast, in order to address CtS delay issues. This
pattern utilizes the CtS logic coupled with variable-base radix information coding
to achieve lower communication delay. The authors also propose three MAC layer
variations to be used along with VarBaTaC. The usage of medium access layer adds
extra energy overhead to the system and complicates the adapter architecture.

Very similar approaches relying on clock synchronization are presented in other
studies. In [34] the author proposes a redundant radix based number (RBN) encod-
ing and silent periods to achieve energy conservation, while also proposes enhance-
ments on the MAC layer. A timing channel-based MAC protocol, which encodes
data in the time dimension using pairs of bits is studied in [35] to reduce energy
needs in nanonetworks .

Another approach deviating from the typical pattern is this of Optical wire-
less communications (OWC) [36]. Nodes take advantage of the light speed and
the photon energy in order to achieve data transmission among devices. OWC is
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most likely the future of high speed wired and wireless communications. In OWC
the source embeds data in light beams by altering the electromagnetic wave. The
transmission energy is calculated by E = h ∗ f , where f is the frequency and h is
Planck’s constant. Consequently, the higher the frequency the higher the poten-
tial energy to be transmitted across the network or p2p. The transmission energy
might even be used to power all nano-devices of an Optical network (e.g. usage of
solar cells) [37].

Outsourcing device power hungry functionalities is yet another way towards
achieving energy conservation in IoT. Research teams have detected and analyzed
the benefits of outsourcing mostly cryptography related functionalities in their
works.

Authors in [38] propose an outsourced privacy preserving and verifiable decryp-
tion scheme which can be applied directly on IoT applications and enhance system
efficiency. Similar studies are conducted in [39] and [40].The first comprising the
outsourcing of decentralized multi-authority attribute based signature (ABS). As
described, a signing cloud server is utilized to perform the energy hungry signa-
ture creation on behalf of other devices. The later paper suggests the outsourcing
of computations regarding Public Key Cryptography without sacrificing device
privacy and security.

Moreover, researchers in [41] proposed and analyzed a privacy preserving semi
outsourced scheme for secure data transmission, named SOPP. The scheme pre-
sumes one way authentication from IoT devices and the public (untrusted) cloud,
while the energy consuming encryption/decryption hash is derived in the data
center side for all IoT devices. Experiments suggest that SOPP is a good choice
on small to medium scale deployments, where untrusted public cloud solutions are
preferred due to cost benefits.

The need of outsourcing IoT functionalities from limited resource devices to
more powerful is indicated multiple times in [42]. Authors presented a number of
IoT systems limitation and proposed solutions to overcome the problems. Sensor
function virtualization (SFV) is such a solution which distributes computational
requirements by utilizing modular functional blocks in any network device.

An interesting case in which multiple technologies were utilized to achieve the
application goal is that of Cricket localization system [43]. Researchers took ad-
vantage of both ultrasound and RF capabilities to develop a highly accurate and
precise localization system. The scheme requires wall and ceiling device deploy-
ment which transmit RF beacons and ultrasonic pulses subsequently. Once mobile
devices receive the RF beacon start a counter which is stopped upon ultrasonic
pulse arrival. After running the algorithm computations a wall-to-mobile device
distance is calculated.

As we can see, disruptive ideas such as outsourcing IoT device functionalities,
utilizing optical wireless communications and using multiple technologies to com-
municate have already been studied. Nevertheless, combining all those ideas to
take advantage of all their benefits hasn’t been studied, to the best of the author
knowledge, except BitSurfing.
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BitSurfing was initially introduced in [21] as a new nano-networks communica-
tion paradigm without any dependence on node clocks. Authors analyzed potential
benefits of employing an outer bit generator and supported their thesis by present-
ing simulation results. Results suggested that BitSurfing has low energy demand
(could potentially run on battery-less nodes) and almost perfect packet delivery
rates regardless the network congestion levels. However, in the present work, Bit-
Surfing is considered as a communication solution for IoT applications and it is
tested on real IoT hardware devices. A proof-of-concept is provided, showing the
feasibility of the logic on real systems, based on a tested model.

2.6.2 Energy Harvesting Sources

Considering that the goal is to create a battery-less adapter capable of commu-
nicating by utilizing the proposed communication logic, it is useful to show the
energy harvesting capabilities for such a device.

The idea of energy harvesting in order to reduce a device self-consuming re-
quirements is around for quite some time. Karl A. Faymon from NASA [44] re-
searched Mars airplane powering options in which was microwave beam energy
harvesting back in 1990. His study showed that utilization of microwave beams
was an efficient solution for the Mars airplane powering system. The downside of
the microwave beam powering solution is the demand for Line-of-Site between the
transmitter and the receiver (airplane).

Authors in [7] provide some very interesting insight in their study on wireless
power transfer systems. By comparing several EM based technologies they show
that wireless energy transfer is a feasible option.

Similar results are provided in [6], where an RF energy survey is conducted.
The authors comment on several other wireless energy transfer studies and com-
pact the results in a presentable manner. They take into consideration the Friis
equation,

Pr = Pt
GtGrλ

2

(4πd)2

, to theoretically calculate the transmitted power.
Authors also mention that using an isotropic RF transmitter with source power

of 4 Watts at 902-928MHz band and at a distance of 15 meters, we can harvest
efficiently 5.5 µW. Just for an indication of the sizes, consider that a simple arduino
uno needs 29 mWatts to operate. There are companies though promising to harvest
power up to mWatts [45].

Table 2.2 provides insightful data on several energy harvesting technologies.
Microwave energy beams and solar energy seem to be the most efficient solution
for longer distance applications.

As Cao and Li indicated in their study [46] solar energy harvesting has the
highest power density but is only available during daytime. RF energy is available
all day long but has lower efficiency. Especially RF signals of medium frequen-
cies (0.3-3MHz) are capable of transferring energy to long distances (up to few
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Table 2.2: Energy Harvesting Technologies [5],[6],[7]

Technology Efficiency Range Coverage Remarks

Wired 90-95% As desired limited to
wired deploy-
ment

Static deploy-
ment, Cost

Microwave
beam

30-80% >2Km Narrow beam Potential haz-
ards,Line of sight
required

Magnetic
Resonance

45-90% 1-2m Omni direc-
tional

Limited range

Reflected
Solar
Energy

>90% >1Km Narrow or
wide beam

Daytime only,
Line of sight
required

RF En-
ergy

70% 12-14 m Omni direc-
tional

Limited range

LASER
beam

10-18% 1Km Narrow beam Potential haz-
ards,Line of sight
required

kilometers) without requiring any line-of-sight.
New and enhanced energy harvesting techniques continuously appear in the

research community. An example is [47], in which researchers harvest energy from
water flow over Graphene, the 2D material. Authors claim that their Graphene
based solution is able to harvest up to approximately 175W/m2. With such den-
sities we could be able to continuously power IoT devices.
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BitSurfing Adapter
Architecture

3.1 BitSurfing Model Logic

BitSurfing is based on a simple yet powerful concept, thoroughly described in
[21]. No packet creation process takes place on any of the communicating nodes.
Rather, an outer bit-stream source is employed to create and broadcast packets to
the network.

Every BitSurfing enabled node contains Rx and Tx blocks, used to receive and
transmit data respectively. The Rx block is constantly enabled, receiving bit-
streams, which are stored into a FIFO buffer. As long as the packet interarrival
time ∆T is greater than the processing time PT required by each node, all network
nodes have identical buffers.

A Codebook, of predefined µbits long words, is utilized for the intra-network
communication. Any byte sequence can be translated, through a HashMap, to a
Codebook’s word sequence. The Codebook is created to discriminate valid and
invalid messages, according to a selected prefix. E.g., in the studied network of
[21] the prefix has a size of 4 bits.

That said, once a node has message to send over the network, it uses the
HashMap to convert the message to its corresponding Codebook’s word sequence.
Then, it searches the updating buffer for the first hashed word to appear. Once
the later happens, the Tx block is activated to send a low power pulse (1-bit), in
order to inform neighbor nodes of the incoming message as shown in upper part
of Fig. 3.1.

Upon signal detection, the receiving node drags the latest valid word observed
or searches its buffer for the next valid word (i.e. Codebook word) to appear.
The choice of the most appropriate word depends on node parameters as well as
BitSurfing Network configuration. Once found, the word is translated back to its
corresponding original bit sequence, using the same HashMap as the one used by
the sending node.

23
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Figure 3.1: Illustration of the proposed Communication Logic

The lower part of Fig. 3.1 illustrates the workflow logic running on each Bit-
Surfing enabled node. The proposed logic may slightly vary among network de-
ployments, but the underlying hardware will remain mostly the same.

3.2 Adapter’s Hardware Components

A BitSurfing node requires at least the following components to function. A mi-
crocontroller or a microprocessor, a RF receiver, a RF transmitter or UltraSound
transceiver or InfraRed transceiver, or simple light sensor along with a led and a
small sized buffer.

Microcontroller : Due to the simplicity of the whole system logic, there is
no need to use a powerful and power hungry multi-core microprocessor along with
any peripheral components. Each incoming bit can be efficiently processed by a
microcontroller, which contains any needed components (read-write and read-only
memories).

RF Receiver : An RF receiver is required in order to feed in data to nodes.
The RF unit may also have a unique design for energy harvesting through RF
signals. Regarding the operating frequencies two cases shall be distinguished. The
first assuming that nodes will use “junk signals” to communicate, i.e. signals
sent among other devices in frequency bands which are widely used (e.g. 900-
1200MHz, 2.4GHz and 5GHz). In the second case the deployment shall also contain
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a BitStream Source, set in a specific frequency in order for the nodes to listen.

A ROM : In case a microcontroller is utilized in node design, there is no need
for a separate Read Only Memory, since it has an integrated one. In other case,
a ROM is required to store the executed binaries and other important application
predefined and generated data, such as the network map, the Codebook and any
log files.

An Optical Transceiver : Given the selected type of deployment, the inter-
node communication among network devices may be accomplished with a combi-
nation of RF and Optical chips. In that case, the optical transceiver is responsible
for sending light pulses to neighbor nodes (a led can also be used to send pulses),
while it is also responsible for sensing light pulses from other BitSurfing nodes.

Other components may also be installed on the adapter depending on the
requirements of each application. For example, if an application is created to
monitor temperature then the adapter will also carry a temperature sensor. A
Battery is not included in the most important components list since nodes might
operate batteryless, by harvesting energy from their environment.

3.3 Codebook Selection and HashMap Creation

As mentioned in the beginning of this chapter, the adapter utilizes a HashMap
to convert messages into Codebook words, which are later used for intra-network
communications.

A word of size µbits long needs 2µ

bitRate time to appear in buffer, using as source
a random bit generator. Thus, choosing a small to average value for word size µ is
preferred, since the experiments are not simulated, rather they are conducted on
real hardware systems.

For the selection of the word size and the optimal Prefix size, we can consult
Figs. 4 and 5 of [21]. The selection may vary based on the application. Besides, if
the supported application uses ASCII [48] characters, then there are 256 possible
characters, while the Codebook size may be far bigger. At this point, in order to
fully utilize the Codebook, we need to configure the mapping between Codebook
valid words and characters.

Considering that ASCII characters are used for the application − i.e. there
are 256 characters − and the Codebook may have a size 2,3 or even 10 times the
number of ASCII characters, there are too many Codebook words unassociated.

One way to fully utilize the Codebook is to associate each ASCII character
with more than one Codebook words. This way, every character will have multiple
chances of appearing in the buffer in less time.

Another idea − given that English language messages are sent − would be to
use combinations of frequent two character words in the mapping process with the
Codebook words. By doing that, there is a chance to send more data using just a
single pulse.
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3.4 Timing Constrains

For this communication protocol to operate efficiently, the total required processing
time (PT ) has to be less than the packet interarrival time (∆T ) for all nodes in
the network.

packet

time

packet

T1: Wait for full Packet
T2: Packet Processing
ΔT: Packet Interarrival

Figure 3.2: BitSurfing phase timings

Figure 3.2 demonstrates this requirement visually. T1 corresponds to the time
required by any network node to fully receive a packet, given that the packet is
already in the node’s network adapter queue. In addition, T2 corresponds to the
time required by each node to process in packet data and send or receive pulses
depending the case, as shown in the lower part of Fig. 3.2. T1 and T2 combined
provide the total required processing time PT as shown in equation (3.1).

PT = T1 + T2 (3.1)

PT is strongly bounded to node hardware and software specific parameters and
thus it can not be treated as a constant value. On the contrary, ∆T is not related
to any hardware specific parameters, rather it depends on the size of each packet
(differs among applications), the supported link data rate and the actual distance
from the source, among other parameters. ∆T is more or less constant for a specific
application, given that no network or spatial changes take place.

During T1 interval, no packet processing operation takes place in any node.
Any such operation is proceeded during T2 time interval. Packet processing de-
pends highly on the underlying hardware of each node and therefore is the most
important timing which needs to be adjusted in order for all network nodes’ buffers
to match.



Chapter 4

BitSurfing : Proof of Concept
on Real IoT Devices

4.1 Implementing The Logic on Real Hardware De-
vices

Based on the above theoretical description and the study conducted in [21], Bit-
Surfing is capable of supporting IoT applications with minimal energy require-
ments. What’s left to be confirmed before optimizing the design of the adapter by
creating a ASIC or an FPGA design is to actually prove that the logic is functional
on real and low cost IoT devices. To that end, a − Proof-Of-Concept − case study
which utilizes the technology is described in this chapter.

In the first section of the chapter, the specific logic implementation, hardware
setup and algorithmic logic are extensively analyzed, while in the second part of
this chapter the evaluation of the studied case is provided. The results of each
conducted experiment are analyzed and improvements considered during experi-
mentation are applied and tested on the logic.

4.1.1 TestBed Setup

For the needs of the analysis, a file transfer scenario is considered. More specifically
the objective is to successfully transfer an English text file between two different
IoT devices, always based on the BitSurfing logic. The file has a size of 100 bytes
and is always transferred from a platform (IoT device) of higher clocked processor
to a platform of lower clocked processor.

In order to further strengthen the supported paradigm, we used two pairs of
IoT devices, three of which are of different vendor and specifications.

Figure 4.1 illustrates the topology of the testbed, while Fig. 4.2 shows the
actual hardware in use. A separate device (laptop) operates as the network’s
bitStream source, running a live stream application for the data (bits) generation
which are transmitted through the Local Area Network. Packets follow the route

27



28CHAPTER 4. BITSURFING : PROOF OF CONCEPT ONREAL IOT DEVICES

Broadcast 
Stream Packets

BeagleBone BlackRaspberry Pi

GPIO 
Signal

Banana PiRaspberry Pi

GPIO 
Signal
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laptop→ Router → BitSurfing nodes, in a broadcast manner. The first part of
the connection, between the bitStream source (laptop) and the Router is wireless −
using a 54Mbps 802.11g wireless link −, whereas connections between the Router
and all BitSurfing enabled devices are wired, using 100 Mbps Ethernet links.

So to get everything straight, instead of the theoretical wireless BitStream
signals of Fig. 3.1 we use a combination of wireless and wired connections through
a Router to feed in the same data network wide. Subsequently, instead of the
simple and low energy light pulse we use simple GPIO pulses between devices.
Other than that there isn’t much difference between the theoretical and the actual
models.

In addition, the temporary FIFO buffer is configured to has a size of 32bits for
all nodes of the network. The size of 32bits is preferred due to word size, which
is 16bits. Since the buffer is 32bits, it is capable of fitting up to 2 whole words in
it. The size could be configured to fit many more words but such an arrangement
might cause technical issues to the implemented logic.

BitSurfing devices are connected in pairs through their GPIO interfaces. To en-
sure reliability among platforms, ground pins of paired devices are also connected,
apart from pins which operate as input and output respectively.

4.1.2 Hardware Specification

The studied network consists of two Raspberry Pis [49], a BeagleBone Black [50]
and a Banana Pi [51]. Table 4.1 provides information regarding each platform
specifications, as well as how access to GPIO pins is achieved. Several different
approaches were considered, among them: widely used libraries, access through
sysfs interface and direct register access. Tomaz Solc in [52] and Joonas Pihlajamaa
in [53] provide results after comparing several GPIO access approaches. In both
cases, experiments led to the conclusion that Direct Register Access (DRA) has the
highest response speed among all tested scenarios. GPIO interrupt-response time
can hugely impact the T2 timing and subsequently the required total processing
time, PT . Based on these results and considerations DRA is selected as the method
to access GPIO pins in this study.

4.1.3 The selected Codebook and Mapping Logic

As explained in section 3.3 there are many Codebooks, as well as Mapping tech-
niques to choose from.

In this case study the selected Codebook, uses “0b1110” as prefix which results
in a Codebook containing 2031 valid 16bit long words. Selection of this specific
prefix and Codebook is based on the intend to maximize word expected cover time
as calculated in Fig. 7 of [21]. Taking also into consideration that any message is a
sequence of characters and every extended ASCII [48], [54] character has a value in
the range [0, 255], it is clear that only 256 out of 2031 Codebook words are required
to map all the characters. In order to fully utilize the Codebook, a HashMap is also
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Table 4.1: Testing Hardware Specification

Platform Raspberry Pi
Model B, Rev2

Beagle Bone
Black Rev.A5C

Banana Pi M3

CPU 1core-700Mhz 1core-1Ghz 8core-1.2Ghz

Boot microSD (class10) eMMC microSD (class10)

GPIO Access Direct Register
Access

Direct Register
Access

Direct Register
Access

Architecture armv6l armv7l armv7l

OS Raspbian Arch Linux Arch Linux

created for the rest 1775 words in the Codebook, matched with 2byte sequences.
Since there are 65536 possible 2byte words and only 1775 available Codebook
words to match, a script is created to derive frequent 2byte words of English text
based on data collected from [55], [56], [57] and Linux “/usr/share/dict/words”
wordlist.

After the HashMap Table is created, any message can be mapped to a valid
Codebook word sequence. Message compression is also possible if the message
contains any of the 1775 2byte sequences. In such cases the overall transmitted
message size decreases without any loss of information.

Hash Function

es

t

Wz

W

z

Codebook Vector

0b1110000001100111

……...

……...

0b1110000010010101

……...

……...

Not valid word 

0b1110000010011011

0b1110000101100000

……...

Keys

Figure 4.3: Keys - Codebook’s word mapping

As illustrated in Fig. 4.3 the word “es” has a corresponding valid word in the
Codebook and thus it is successfully mapped. The same stand for characters “t”.
On the other hand, the word “Wz” is not associated with a valid word and it has
to be broken down further to its consisting characters “W” and “z”.

Since the valid word size is configured to 16bits, the packet format is adjusted
as shown in Fig. 4.5. A 4 bits prefix is utilized to distinguish valid from invalid
words. Following, the Sender and the Receiver IDs both requiring 5 bits each
for their unique identifiers. Finally, a 2 bits long block containing the actual
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application payload. This scheme has a downside though. The combination of
Prefix+Sender ID+Receiver ID+Payload may contain the Prefix more than
once and thus there will be a number of adapters with IDs which cannot send valid
messages to a number of adapters with a certain ID. The scheme issue is presented
in Fig. 4.4. As someone may observe there are nodes which can send valid messages
only to 1 or even no other nodes, so these nodes need to be configured as gateway
nodes. There are also other nodes (13 of them) which can send and receive valid
messages from all network nodes. The designer can overcome this issue by carefully
assigning the id for each node.

Figure 4.4: 4bit Prefix Valid Unique Ids Pairs

An alternative scheme can also be used − this one was indeed used in this
study −, for point to point communication between BitSurfing nodes. In this case
the nodes don’t look in their buffers for the valid Prefix and their ID, rather they
do accept as valid words any sequence starting with the predefined Prefix which
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has to be unique in the 16bit long message, as shown in Fig. 4.5 format (b).

4bits 5bits 5bits 2bits

Prefix Sender ID Receiver ID Payload

4bits

Valid Word

12bits

a) ID aware 
Network

b) ID oblivious 
Network

Figure 4.5: BitSurfing Packet Format

4.1.4 Description of the underlying Algorithm

In the “heart” of each BitSurfing node lies the adapter’s logic. This logic is pro-
vided in the process denoted as Algorithm 1, which shows the code execution flow
of a BitSurfing enabled node.

Algorithm 1 Node executed PseudoCode

Inputs: Codebook, HashWords, [Data to be sent]

1: Initialize GPIO, open UDP socket, create HashMap, [load Data to be sent]
2:

3: while terminate==false do
4: receiveNextPacket();
5: for byte in pakcet do
6: for bit in byte do
7: if validMessageFound then
8: store Message to Valid Message Buffer;
9: if validMsg == TerminationMsg then

10: terminate = true;

11: if GpioEventDetected then
12: store latest valid message;

13: if message to Send in Buffer then
14: sendGPIOPulse();
15: getNextMessageToSend;

16: Use HashMap to convert Codebook messages to original Messages

Mandatory input parameters are: the Codebook containing all valid − based
on the selected prefix − predefined words and a HashWords file which contains all
of the words or characters to which Codebook words correspond to. The size of
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the Hashwords file should be at least the same to that of the Codebook, otherwise
predefined words of the later are not associated to any real word and thus they
are ignored by the protocol every time they appear in buffer. An optional input
parameter is the Data file to be sent over the network. If no Data file is provided
the node will operate only as receiver.

During the initialization stage, the platform’s GPIO pins are configured as
inputs and outputs, a UDP socket is created to be able to receive the bitStream
later, while HashMap is created between words in the Codebook and the Hash-
Words file. As a final step of this phase, Data files, if any, are loaded and translated
in Codebook words using the HashMap created previously.

As soon as the initialization phase is complete, the actual communication be-
gins, inside the loop. In the beginning of each iteration the node halts until the
next packet is fully received − T1 timing −. If an iteration takes more than time
∆T to complete, then there will be a packet fully received in the queue and ready
to be processed. In such cases the node does not need to halt, rather it starts the
actual packet processing phase immediately.

Once the packet is available the node starts to process it in a per bit basis. For
each bit added to the FIFO buffer the last µbits long word is checked for validity,
i.e. if the word is a valid Codebook’s word. If so, the word is stored in a separate
FIFO Valid Message buffer for latter usage.

Afterwords, the node checks if an incoming pulse is received and if that is true,
it stores the latest valid message in a dynamic array. A final flag is evaluated
before the nodes starts processing the next bit. This flag evaluates to true only if
the node has outgoing message and the next word of the message appears in the
node’s buffer. If both conditions are true, then a 1-bit low energy pulse is sent to
inform other nodes of incoming message, while the node gets the next word of the
message which needs to be sent.

The loop terminates once a special predefined termination message is sent or a
certain amount of time have passed. During the final phase of the algorithm, the
HashMap is once more utilized to convert words stored in the dynamic array to
the actual message.

PT

∆T
≤ 1 (4.1)

Lines 5 to 15 are those mostly affecting inter-node successful communication.
For convenience, this time interval is the one previously denoted as T2. As long as
inequality 4.1 holds, no inconsistencies emerge, since processing time is less than
the time required for the next packet to be fully received by the node.

Apparently, for the network to be able to operate efficiently at higher data
rates, based on diverse nodes’ underlying hardware, inequality 4.1 needs to be
ported in system’s logic. As long as PT is less than ∆T , no matter how much
a node’s processing speed deviates from another, the difference is reseted back
to zero. Although, if inequality 4.1 does not hold, deviation among nodes will
increase after each iteration.
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Taking into consideration inequality 4.1, we come to understand that highly
optimized code is mandatory in order to achieve very fast Processing Time on
every node. To that end, a user space C code implementation was drafted which
was further enhanced and finally implemented in Kernel Space C code for even
better results. The kernel space implementation allowed us to execute the logic
at maximum priority and access to resources. The downside is the lack of user
space libraries, even basic functionalities such as float division, but the benefits are
much more important in the studied case and thus it does worth the extra effort
required for the Kernel implementation.

The actual code is more or less identical on all three platforms of Table 4.1,
but there are though some parts which need to be especially coded for each IoT
device. Such a case is the way we achieve GPIO Direct Register Access. Each
IoT device has a different architecture and peripheral register address mapping.
Specific code snippets for each one of the three IoT platforms, showing how the
GPIO registers are accessed is provided in Appendix A.

Listing 4.1 shows the GPIO initialization phase for Raspberry Pi nodes.

1 int init_gpio(void){

2 map_base = (volatile unsigned long*) ioremap(GPIO_BASE ,

GPIO_BLOCK_SIZE);

3

4 if((( void*) map_base) == NULL){

5 printk( KERN_ERR "ioremap failed .\n Are you root?\n");

6 return (-1);

7 }

8

9 if(! gpio_is_valid(INPIN) || !gpio_is_valid(OUTPIN) || gpio_request

(INPIN , "INPIN") || gpio_request(OUTPIN , "OUTPIN")){

10 printk(KERN_CRIT "GPIO initialization failed .\n"); // /sys/class

/gpio/export

11 return (-1);

12 }

13

14 INP_GPIO(INPIN);

15 INP_GPIO(OUTPIN); /* must use INP_GPIO before we can use OUT_GPIO

*/

16 OUT_GPIO(OUTPIN);

17

18 return (0);

19 }

Listing 4.1: RPi GPIO Initialization

The initialization could be also achieved using the SYSFS export functionality
for the GPIO pins without any loss in performance since this procedure takes place
only once in the beginning of the experiment. DRA is extremely important during
the experiment for pulse sending and sensing between nodes towards speed and
logic enhancement.

1 /* Send GPIO Pulse */

2 void raiseFlag(void){
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3 static size_t raiseCounter = 0;

4

5 if(raiseCounter %2==0)

6 GPIO_SET = 1<<OUTPIN; /* set output to HIGH */

7 else

8 GPIO_CLR = 1<<OUTPIN; /* set output to LOW */

9 raiseCounter ++;

10 }

11

12 /* Sense GPIO Pulse */

13 bool gpioEventDetected_v2(void){

14 static unsigned long previous_state = 0;

15 unsigned long cur_state;

16 if(( cur_state=GET_GPIO(INPIN))!= previous_state){

17 previous_state = cur_state;

18 return(true);

19 }

20 return(false);

21 }

Listing 4.2: RPi GPIO Send and sense Pulse

Listing 4.2 provides two functions raiseFlag() & gpioEventDetected v2() which
are responsible for sending and sensing GPIO pulses respectively for the Raspberry
Pi IoT device. The functions are mostly the same for the other two IoT devices
as well.

Another functionality which required optimization is the one presented in List-
ing 4.3. The function searchValidMsgInBuffer() is specifically implemented for
16bits long words and 4bits long Prefix scenarios. Knowing those two details is
enough to create a fast Mask-test for words acceptance or rejection.

1 unsigned short searchValidMsgInBuffer(unsigned int buff){

2 static bool foundPrefix = false;

3 static short bitsAfterPrefix = 0;

4 unsigned char buffTail = buff;

5 buffTail <<=4; // keep only last 4 bits

6 buffTail >>=4; // reset last 4 bits to their initial positions

7

8 if(PREFIX == buffTail){

9 foundPrefix=true;

10 bitsAfterPrefix =0;

11 return (0);

12 }

13 else if(foundPrefix){

14 bitsAfterPrefix ++;

15 if(bitsAfterPrefix ==12){

16 foundPrefix=false;

17 return (( unsigned short)buff);

18 }

19 }

20 return (0);

21 }

Listing 4.3: Valid Word Inspection
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A few more implementation elements worth mentioning are the custom division,
the data collection and the hashing functions.

A long long int division function couldn’t be avoided since the functionality is
necessary for many important calculations during the experiments.

Apart from logging various vectors of useful data during the experiments a spe-
cial rolling average function is coded to dynamically calculate the average value of
certain measurements and the total number of samples. The benefit of this func-
tion is the minimum requirements in memory space, since the only data required
to calculate the rolling average are the previous value and the number of samples.

Regarding the hash function utilized for the Hashmap creation, it is a simple
modulo operation between a hashed key (word) and the total number of words in
the Codebook.

4.2 Evaluation

In this Section we validate at a proof-of-concept level the functionality of the
outlined BitSurfing process, on real IoT devices.

To verify that the system qualifies the criteria of section 4.1, time intervals
and message delivery error rates are measured on various platform combinations,
described previously. There are no assumptions considered for the experiments.
The model is evaluated in a controlled environment.

4.2.1 Experiments and Results

In this case study, the goal is to transfer a 100 byte long file between nodes. Two
distinct cases were considered. One of file transfer from BeagleBone Black (BBB)
to RaspberryPi (RPi) and another file transfer from BananaPi (BPi) to a second
RPi device, as shown in Figs. 4.1 and 4.2. The node connectivity and the network
wide deployment are those described in the previous section.

The measured quantities are the Message Error Rate (MER) and data process-
ing Time (T2) as well as the packet interarrival time (∆T ) for various bit rates.
The later of the measurements is conducted in order to be able to verify that its
value is close to − if not exactly the same − the one which is set on the bitStream
source side.

Since a lot of experiments take place, it is important to ensure all system-
wide parameters remain unchanged among tests. To that end, a live stream mp3
audio file is selected to be broadcasted over the network during all tests. Another
approach could be to use a random packet generator as bitStream source, but
there would be no assurance of equal network parameters among tests.

The live stream Packet interarrival time, ∆T , was measured in the bitStream
source using Wireshark network analyzer. The average value of ∆T is 41.8msec.
This value applies network wide and has to be, on average, the same on all network
nodes.
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Apart from Wireshark on the bitStream source side, ∆T is also verified on
bitStream nodes side. To achieve this, nodes were configured to operate as UDP
clients reading packets from a specific port to which the source was sending data.
After sufficient number of samples were collected, it was possible to create a his-
togram to verify Wireshark results on client side also. Histogram of Fig. 4.6 shows
that packet interarrival time does indeed fluctuate around 41.8msec.

Figure 4.6: ∆T Interarrival Time as measured on client side

In addition, packet interarrival time is measured for several different data rates,
during actual testing period. The observation of Fig. 4.7 indicates that data rate
is irrelevant to ∆T , as expected.

Figure 4.8 illustrates the Message Delivery Error Rate for a range of different
data rates, for both tested platform pairs. As someone may observe, the examined
communication logic can be successfully employed in applications with limited
energy supply capabilities and low bitStream generator supported bit rates. In
particular, there is no error for bit rates below 191bps and thus the whole 100byte
file is successfully transferred to the destination intact. Although, as data rate
increases the error rate does also increase.

Considering a maximum threshold of 50% in file transfer error rate, it is clear
that data rate should be limited up to 1.2kbps. Above that data rate threshold
the deviation in processing speed between the tested platforms starts to play a
major role. A temporary workaround could be the usage of similar characteristics
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Figure 4.7: ∆T Interarrival Time for various data rates

nodes in the network, i.e. clock difference between nodes of 100MHz instead of
300MHz in the case of BBB (1GHz) and RPi (0.7GHz) and 500MHz in the case
of BPi (1.2GHz) and RPi. This is also visible in Fig. 4.8, in which Error Rate
increases slightly slower for BBB-RPi pair compared to BPi-RPi.

Furthermore, the fact that both studied platform pairs provide very similar
results − mean error rate difference of 0.73% −, support the idea that BitSurfing
can operate regardless the underlying hardware of each platform-node.

The T2 Processing time is a value also measured during tests and its illustrated
average value for different data rates provides a logical explanation for the Error
rate threshold. As shown in Fig. 4.9 the average T2 processing time increases
almost linearly, in most parts, to the data rate. For values up to 1kbps − which
happens to be very close to the data rate for which 50% threshold is met in Fig.
4.8 − T2 barely increases, but once data rates increases above this threshold T2
increases almost linearly. That is an interesting observation which associates Error
rate and T2 processing time, also confirming inequality 4.1.

4.2.2 Applied Improvements and Results

As pointed out in subsection 4.2.1, the proposed communication logic can be indeed
used as a low energy consumption solution, without any need to take into account
nodes’ underlying hardware specifications.

The simplicity of the proposed logic, which is almost hardware agnostic, is
an advantage which makes it an easily ported communication solution for IoT
devices. Besides the demonstrated proof-of-concept regarding the functionality of
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Figure 4.8: File Transfer Error Rate (%)

BitSurfing communication logic on real hardware, we also propose an extension
which can decrease the experimental system’s Error Rate at higher data rates.

To that end, every node connected to the network has to complete a training
phase before starting its actual communication. During the training phase, which
is decided to last for 100 packet arrival cycles, the node adjusts a delay parameter
according to its needs. More specifically, each node measures the time required for
packets to arrive and after the training phase completion it extracts the average
interarrival time ∆T .

In the deployment phase, nodes keep on measuring timings, but they also in-
troduce delays in their communication process. This way nodes are able to dynam-
ically adopt changing application or network (change in topology) characteristics.
Nodes intra-measurements include : T1, T2 and T2byte times, where T2byte is the
time required to process each byte of a packet. As a result, the following equation
holds :

T2 = #(Bytes In the Packet) ∗ T2byte (4.2)

According to these measurements, a delay is added, forcing the node to wait a
certain amount of time after each byte is processed, based on T2byte, always with
respect to the inequality 4.1. So, ideally an order of µsec delay is added to T2byte
leading to modification of equation 4.2 to the following :

T2 = #(Bytes In the Packet) ∗ (T2byte + µdelay(byte)), (4.3)
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Figure 4.9: T2 Average Processing Time for various data rates

µdelay(byte) is not a constant value, rather a delay adjusted depending T2byte and
∆T measured during the training phase. Although this technique may seem to
slow down the whole network, it does improve the overall results even for much
higher data rates.

Figure 4.10 shows Message Delivery Error Rate for various data rates. It is
clear that there is a huge improvement compared to results in Fig. 4.8. The 50%
Error Rate threshold can be achieved for data rates below 55kbps. The improved
model raises the threshold more than 45 times higher regardless the underlying
hardware used.

Furthermore, similar to the observations made in Fig. 4.9 regarding the relation
of file transfer error rate and T2 processing time, Fig. 4.11 strengthens the idea
that File Transfer Error Rate depends highly on T2 processing time. A cubic
distribution is provided along with the resulted line. As shown the average T2
timings follow a cubic distribution. It is also interesting the fact that File Transfer
Error Rate increases above the 50% threshold around 55kbps, which happens to
be the threshold after which values of distribution in Fig. 4.11 increase once again.
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Figure 4.10: File Transfer Error Rate (%) using node delay parameter
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Chapter 5

Simulation of BitSurfing Logic

5.1 Simulation Setup

By fulfilling the real world proof of concept experimentation part successfully, a
question arising regarding the studied communication logic is whether the logic is
applicable on a larger network on the one hand and how does the logic cope with
heavy network congestion levels on the other hand. The objective of this chapter
is to examine the scalability and survivability ability of BitSurfing communication
logic.

For the needs of this part of the study, a BitSurfing Simulator is created. The
Simulator is implemented in Python using the threading module, in order to port
the idea of independent nodes in the simulated environment. Each node runs on a
separate thread, while all simulated nodes retrieve new data from a queue fed by
a BitStream Source running on the main (parent) thread.

Initially we did allow all threads to be totally free of sync considering that real
world adapters are also totally free of sync (as shown in chapter 4), but in the case
of data processing under the same unit (multi-core processor) the idea of free sync
doesn’t work very well.

Although during the experiments the logic abstraction seemed to work properly,
under the hood there were serious threading issues. To be more specific observa-
tion showed that a number of threads (BitSurfing adapters) were processing data
arriving to other threads-adapters much later, causing the whole simulation to fail.
Once more there was a need to port the rule of equation 4.1 in the simulation logic.
In order to do that a µsleep() delay was utilized in the main thread, in order to
ensure that all threads-adapters will be processing the same data more or less.

1 import resources as res

2

3 #%% Init Simulation

4 sim=res.Simulation(networkDimensions =[4,5], prefix="1110")

5 sim.setupNetworkGraph ()

6 sim.visualize_network ()

7
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8 sim.associate_Graph_to_Nodes ()

9 sim.startSimulation(

10 bits_from_codebook=False ,

11 num_of_msgs_to_send =50,

12 total_Bits_to_send =1000000

13 )

Listing 5.1: High Level Simulation View

Listing 5.1 provides an overview of the highest level of the simulation environ-
ment.

As shown in the code, the user can tune directly variables, such as the net-
work dimensionality, the Codebook Prefix, whether a specific file will be used for
streaming data or not, the total number of messages to be randomly created and
send over the network, as well as the duration of the simulation in terms of events.

In the first line of the code, the important custom module containing the Node,
Packet, BitSurfing Source and other classes of the simulation logic is imported.

Following, in lines 4, 5 and 8 the simulation is initialized, the network graph
is created and the several network and node level characteristics are configured.
Line 6 is purely optional since it does only provide a graphical visualization of the
created network. An example network visualization of a 4x5 topology is provided
in Figure 5.1. Graph creation and visualization processes were implemented based
on networkx Python package.

Figure 5.1: Simulated Network Visualization for a 4x5 topology example case.

As someone can see identification names are provided to all network nodes.
Gateway nodes are also explicitly defined during setup process, along with the
connectivity among nodes which is also predefined. The core logic is to reconfigure
the network in some extend in order to reduce any node level overhead which would
be required for neighborhood exploration.
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So, the network is created from a bottom up and left to right logic, and thus
each node will always randomly choose a right or upper neighbor to forward a
message in order to prevent infinite messaging loops, while the gateways will always
be positioned at the right end of the network.

The graph connectivity logic can be easily tuned to fit any other specific net-
work requirements.

In line 9 the simulation is started by providing specific simulation parameters,
such as: a codebook, the number of messages to be created for transmission over
the network as well as the total number of events the simulation will last, at most.
This last parameter is the one determining the simulator as an event based one,
regardless its multi-threading logic.

Going a level deeper, inside resources module someone can see the Bit Stream
Source, BitSurfing Adapter and Packet classes. A Packet class was created to help
better keep track of ongoing events, even though there is no packet actually trans-
ferred between nodes. As shown in Listing 5.2 the packet has many properties
most of which are utilized for the simulation monitoring process. Those proper-
ties help the user to examine the path of nodes each packet followed during the
simulation, as well as the number of events required for the packet to reach its
destination and the elapsed time in seconds for this event to happen.

1 class Packet(object):

2 def __init__(self ,sid ,payload):

3 self.senderId=sid

4 self.path = list()

5 self.payload=payload

6 self.marked_to_send = False

7 self.creationTime=time.time()

8 self.creationBit = 0

9 self.arrivalBit = int

10 self.BitDifference = int

11 self.arrivalTime=float

12 self.TimeDifference = float

13 self.arrived_to_gateway=False

14 def log_packet(self):

15 logging.info("########### New Packet ###########")

16 logging.info(f"

17 Packet Path={self.path}

18 \nBitDifference ={self.BitDifference}

19 \nTimeDifference ={self.TimeDifference}

20 ")

Listing 5.2: High Level Simulation View

5.2 Simulation Results

Having explained the abstract simulator logic we can continue to the objective of
this part of the study, i.e. conducting the actual simulations and retrieving the
results.
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For the needs of this study 2 different sets of simulations were implemented.
The first set consisted of 10 distinct simulations in which the total number of
messages created and sent over the network is constant and the network size varied.
The purpose of this set of simulations is to understand how BitSurfing logic cope
with multiple hopping messages inside a network.

The simulator is configured to use a Codebook containing only valid words,
the Prefix is set to the value “1110”, the constant number of messages sent over
the network is set to 10 and the total number of events which will at most take
place before each simulation comes to an end is 1 million. The network was also
configured to have a number of nodes from 2 up to 32, different in each simulation.
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Figure 5.2: Successful Message Delivery Rate for Variant Network Sizes

Figure 5.2 shows the ability of the network running BitSurfing communication
logic to successfully transfer messages network wide. As someone may observe
the message delivery rate is almost perfect for smaller network sizes, while as the
network size grows the rate decreases. Those results suggest that BitSurfing can
be employed in small as well as bigger communication networks in some extend.

Another insightful representation is provided in Figure 5.3. This Figure shows
the average number of kbits required for a message to reach a gateway node. The
values are collected for various network sizes. Data suggest that a message requires
on average more bits to be delivered as the network size increases. This observation
seems logical since a random packet needs to follow a longer path in the case of a
larger network and thus hop between more nodes.

For the second set of simulations the goal is to identify the ability of BitSurfing
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Figure 5.3: Average number of kbits (events) required for each message transmis-
sion for various network sizes

logic to support multiple messages over the same network. To that end, the net-
work size (number of network nodes) remained constant while the total number of
messages issued for creation and transmission over the network varied.

In this case study the simulator is configured to use a Codebook containing
only valid words all starting with the prefix “1110”, the network has a size of
32 nodes in a 4x8 topology − the largest possible network for a Prefix of 4bits
length −, while the total number of events before each simulation completion is
set to 1 million. The total number of messages which are created changes in every
simulation and has a value in the interval [1,100] using a step of 10 messages each
time.

The fulfilment of all the simulations in the set supplies enough data to create the
plot of Figure 5.4. This Figure provides a representation of the message delivery
rate with respect to the total number of messages sent over the network. Results
do not provide a clear view of whether BitSurfing is capable of handling high
network congestion. Although for low congestion the logic performs well, the
performance reduces for higher congestion level but somewhat stabilizes for even
higher congestion.

An important fact worth mentioning is the system upon which all simulations
took place. The system is a Lenovo ThinkPad T420 equipped with a 2-core Intel
2520m CPU and 8GB of RAM.

The results shown in Figure 5.4 might seem abnormal, but we might be able to
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Figure 5.4: Successful Message Delivery Rate for Variant Network Congestion
Levels

explain why this is happening if we consider the system on top of which all simu-
lation are taking place. Running the simulations on top of a 2-core system doesn’t
provide true independence among nodes. Those pseudo-independent threads in-
crease in number as the network size increases, causing the logic to deviate from
its pseudo-parallel execution.

Nevertheless, specific simulation setups and associated results were presented
in this chapter, suggesting that BitSurfing can be a feasible communication solu-
tion worth further investigation, ideally on top of a system equipped with newer
generation hardware capable of providing more computing resources.



Chapter 6

Conclusions, Applications and
Research Directions

6.1 Conclusion

This work provides a proof-of-concept level implementation of BitSurfing, which
is a novel communication pattern for IoT devices. According to it, nodes wait for
the opportunistic production of their intended messages by other sources, reducing
inter-IoT node communication to the exchange of simple short pulses. The present
study compliments past theoretical studies and proves that BitSurfing is feasible
in practice, using common Raspberry Pi hardware. A simulator was created and
utilized to examine the logic scalability and survivability. Results collected from
simulations do also suggest that BitSurfing is a viable communication alternative
solution for low energy applications. A practical operational model was introduced,
and future directions that can impact the IoT research were outlined.

6.2 BitSurfing Applications

Although BitSurfing is a new idea which surely requires further investigation before
commercial field deployment, there is already a domain of possible applications
which could benefit from this technology.

• Band-Jamming Communications : By listening to band jamming the
first idea popping to someones mind might be the deliberate or not signal
alteration or loss in certain frequency bands.

Although that is indeed a problem buzzing the communications research
community, jamming or more appropriately put, the result which is the cre-
ated noise, can be utilized as a BitStream Source in the case BitSurfing
Adapters are installed in the area. This way energy free BitSurfing deploy-
ment is possible. Tests and measurements need to take place before the

49
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actual deployment in order to ensure that all adapters in the network receive
the same signal.

Such an application could be IoT enabled shoes, which monitor pressure.
Tiny BitSurfing adapters, RF powered, collect data and using the analyzed
logic send the data to a gateway node (which might have a battery) for
storage or further processing.

• Controlled Environment Communications : The idea of controlled en-
vironment communication has two main differences with the Band-Jamming
Idea. The environment or more specifically the frequency band has to be
silent (noise free) and the BitStream Source is deployed and controlled based
on the application requirements.

In that sense, if the deployment uses a Codebook with a number of words (bit
sequences) repeated, the BitStream Source can be optimized to only produce
those words instead of random bit sequences. This way, the expected elapsed
time until a valid word appears further reduces.

Forest Fire Detection

Such an environment could be reproduced in forests, where RF signals are
much more limited or almost absent. Low cost batteryless BitSurfing adapters
can be placed in several spots of the forest and be programmed to monitor
the environmental temperature. An isotropic antenna can be placed some-
where in the centre of the forest, which will operate as the Controlled Bit-
Stream Source. BitSurfing adapters will also be equipped with an ultrasonic
transceiver for intra-network communications.

Idle Adapters

Active Adapters

BitStream 
Source

Gateway

Base Station

Internet

FireFighting Department

Figure 6.1: The Forest Fire Detection Model

The decision to place the BitStream Source in the center of the forest is based
on the logic of minimizing propagation delay network wide. The Source can
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be programmed to transmit specific bit sequences, in order to reduce the
expected time until a valid word appears. Another characteristic to consider
is the operating frequency, which shall not be too high (not above 11GHz)
since there will not be necessarily any line-of-sight between the BitStream
Source and the adapters.

Figure 6.1 shows the Forest Fire detection application logic. The BitStream
Source is placed in the center of the forest and feeds all surrounding adapters
both with RF energy and data.

The BitSurfing adapters listen to the incoming stream and if one of them
senses a temperature above the acceptable limits it waits for the specific
emergency word to appear in buffer and sends an ultrasonic pulse to the
closest neighbor. The adapters keep on transmitting the information from
node to node until the gateway is reached.

Once the gateway is reached, another communication protocol is utilized to
alert the fire Department of the ongoing situation.

Agricultural Monitoring

Another potential application of the BitSurfing communication logic is in the
Agricultural domain. Similarly to the forest fire detection system, farmers are
able to utilize a controlled BitSurfing deployment to monitor their farming
field.

Idle Adapters

Active Adapters

BitStream 
Source

Gateway

Base Station

Internet

Farmer

Figure 6.2: Agricultural Monitoring Model

BitSurfing adapters can be installed in different point along the field and
be programmed to continuously listen on a BitStream Source which will be
located in the middle of the field. Bit sequences of 2 bits will carry the actual
information (e.g. low humidity levels, low pH levels).
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Whenever an adapter has data to send to the gateway, it raises a flag (led
blink or IR light) to inform neighboring nodes of the incoming data. The
process repeats from node to node until the gateway is reached.

As someone may observe in both BitSurfing applications the deployment is
more or less static, in the sense that the engineer knows how the nodes will
be distributed in the forest or farming field respectively and any potential
addition will require new adjustments to the network.

6.3 Research Directions

The successful proof-of-concept implementation analyzed in the present work opens
various research directions regarding BitSurfing communication logic and its ca-
pabilities.

Energy Efficiency. BitSurfing design indicates a low-energy consumption
scheme. Monitoring real hardware, in order to create an energy profile of the
proposed logic, can be highly valuable. Furthermore, a comparison of the proposed
communication logic against other established protocols, can provide sufficient
information on how the logic performs in terms of energy consumption needs.

Security. The utilization of a Codebook along with a corresponding Hash-
Words dictionary for the conversion and the actual transmission of messages be-
tween BitSurfing nodes can be thought as a security measurement. According to
Kerckhoffs’s principle: “A cryptosystem should be secure even if everything about
the system, except the key, is public knowledge”. Thinking of the Codebook and
the HashWords dictionary as the system’s key, it is safe to state that the logic
uses by default a symmetric key cryptography. Security of IoT devices is a huge
research topic and the exploration of possible and practical security schemes which
may be applied on BitSurfing nodes could be of great interest.

Hardware Optimization. For the proof-of-concept study we used generic
IoT (RasspberryPi) devices. Now that both simulations [21] and real hardware
implementation supports BitSurfing functionality, a hardware specific optimization
can take place. It is worth mentioning that for the experiments of this study
the logic was implemented as a C Loadable Kernel Module − almost optimal
implementation given the hardware −. Porting the logic to an FPGA can be an
action towards optimal hardware implementation (a step before ASIC).

Smart Logic. The simplicity of the proposed logic is a huge advantage over
other protocols. It can, however, be enhanced by porting in node level artificial
intelligence logic, while maintaining its effectively simple logic. As shown in section
4.2, completing a training stage before the actual communication can be beneficial,
resulting in higher supported data rates. A Reinforcement Learning model can be
derived, in order to provide nodes the ability to learn through observation and
dynamically adopt to changing network characteristics (E.g. mobility, SINR, data
rate).

Network congestion. As shown in [21] the packet delivery rate is high even
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for heavy network congestion. Conducting a survivability analysis on a relatively
large network of real BitSurfing enabled hardware devices can verify simulation
results. It would also be interesting to test the logic in a completely wireless en-
vironment. This would require all devices, BitSurfing adapters and the BitStream
Source to have a wireless communication interface. A combination of Raspberry
Pi Zero W devices and a handful of IR modules could be enough for the task,
along with a laptop or another device to operate as the BitStream Source.

A cluster Based Simulator The simulator presented in chapter 5 is based
on multi-threading logic to achieve independence among nodes. A very good al-
ternative would be to port the adapter’s logic as a containerized application in a
Kubernetes pod and populate-replicate the number of truly independent BitSurf-
ing nodes in a Kubernetes cluster.
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Appendix A

GPIO Direct Register Access

1 /* Valid only for Raspberry Pi with BCM2835 ARM Microprocessor */

2 #define GPIO_BASE (0 x20000000 + 0x200000)

3 #define GPIO_BLOCK_SIZE 4096

4 #define INP_GPIO(g) *( map_base +((g)/10)) &= ~(7<<(((g)%10) *3))

5 #define OUT_GPIO(g) *( map_base +((g)/10)) |= (1<<(((g)%10) *3))

6 #define GET_GPIO(g) (*( map_base +13)&(1<<g)) // 0 if LOW , (1<<g) if

HIGH

7 #define GPIO_SET *( map_base +7) // sets bits which are 1 ignores

bits which are 0

8 #define GPIO_CLR *( map_base +10) // clears bits which are 1 ignores

bits which are 0

9

10 #define INPIN 17 // board pin 11

11 #define OUTPIN 27 // board pin 13

12 /* ground is board pin 6 */

13 /* ---------------------------------------------------- */

Listing A.1: RPi GPIO Register Access

1 /* Valid only for BeagleBoneBlack with AM335x ARM Cortex -A8

Microprocessor */

2 #define GPIO2_BASE_ADDR 0x481AC000

3 #define GPIO2BANK_SIZEINBYTES 4096

4 #define OE_ADDR 0x134

5 #define GPIO_DATAOUT 0x13C

6 #define GPIO_DATAIN 0x138

7 #define OUTPIN 2 // board pin P8.7 66

8 #define OUTPINSYSFS 66 // board pin P8.7 66

9 #define INPIN 5 // board pin P8.9 69

10 #define INPINSYSFS 69 // board pin P8.9 69

11 /* ground is board pin P8.1 */

12 #define GET_GPIO(g) (map_base[GPIO_DATAIN /4]&(1<<g)) // 0 if LOW ,

(1<<g) if HIGH

13 /* ----------------------------------------------------*/

Listing A.2: BBB GPIO Register Access
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1 /* Valid only for BananaPi - M3 AND ONLY for Port C (PC) registers

with Allwinner A83T ARM Microprocessor */

2 #define CCU_MODULE_ADDRESS 0x01c20000 /* need this for mmap (since

we have to use a value multiple of page size , i.e. 4096) */

3 #define GPIO_BLOCK_SIZE 4096

4 #define GPIO_BASE_BP_RELATIVE_ADDR 0x800

5 #define PC_CFG0_REG_RELATIVE_ADDR 0x48 /* Port C GPIO address! The

code below is valid only for this port (PC) of BPi - M3 */

6 #define PC_DATA_REG_RELATIVE_ADDR 0x10

7 #define OUTPIN 4 /* PC4 or board pin 11 or gpio 68 or bcm 17 */

8 #define INPIN 7 /* PC7 or board pin 13 or gpio 71 or bcm 27 */

9 #define TURN_OFF_PC_PUD_0_15(pin) map_base [0x1c/4] &= (0 xFFFFFFFF ^

(1 << 2*pin)) /* 0x1c = 0x64 - 0x48 which is the relative

distance from map_base address -# default value is 0x5140 = 0

b101000101000000 */

10 #define SET_PC_INP_GPIO(pin) *( map_base) &= (0 xFFFFFFFF ^ (7 << 4*

pin)) /* default value 0x77777777 = 0b0 111 011101110 111

0111011101110111 */

11 #define SET_PC_OUT_GPIO(pin) *( map_base) |= (1 << 4*pin) /* default

value 0x77777777 = 0b0 111 011101110 111 0111011101110111 */

12 #define READ_PC_PIN_VALUE(pin) (map_base[PC_DATA_REG_RELATIVE_ADDR

/4]&(1<<pin)) /* 0x10 = 0x58 - 0x48 -# returns 0 if LOW , (1<<pin)

if HIGH */

13

14 #define INPINSYSFS 71 /* board pin 13 --> 71 */

15 #define OUTPINSYSFS 68 /* board pin 11 --> 68 */

16 /* ground is board pin 6 */

17 /* -------------------------------------------- */

Listing A.3: BPi GPIO Register Access
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