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Abstract 
 

In the context of non-Hermitian Photonics, we examine the effect of coupling to loss in multimode 
lasing systems. More specifically, we consider one-dimensional coupled ring and ridge cavities. Both 
cavities are intrinsically lossy and because of the partial pumping scheme the whole system's behavior 
resembles that of parity-time (PT)-symmetric systems. The nonlinear time dynamics is based on a 
modal expansion method (using as bi-orthogonal basis the constant-flux states) of Maxwell-Bloch 
semiclassical laser equations. A direct outcome of the underlying PT-symmetric behavior of the system 
is the suppression of higher order lasing modes. In particular, the coupled cavities operate in the single 
lasing regime for a considerable range of values of the pump, before the higher order modes start to 
lase. We investigate this range of pump values for two coupled ridge cavities for various design 
parameters. Two-mode, four and six mode lasing are computationally studied. 
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Chapter 1 – Introduction 
 

Laser Principles 

The word LASER is an acronym for “Light Amplification by Stimulated Emission of Radiation”. As this 

acronym says laser emits light through a process of optical amplification based on the stimulated 

emission of electromagnetic radiation and has many specific characteristics which differentiate it from 

other sources of light. 

The laser has a far-reaching influence in various fields of science and technology, getting started from 

the spectroscopy and reaching until atmospheric physics, including medical applications. 

A laser differs from other sources of light, in that it emits light coherently, spatially and temporally. This 

is a very important characteristic of laser light, because due to the spatial coherence it is possible to 

focus the emitted light to a tight spot, which gives rise to applications such as laser cutting and 

lithography. In addition, spatial coherence allows a laser beam to stay narrow, over great distances, 

which enables applications such as laser pointers. Regarding the temporal coherence, this allows to 

laser light to have a very narrow spectrum, i.e. the laser light is almost monochromatic. Temporal 

coherence enables the creation of ultrashort laser pulses, which reach the femtosecond scale. 

Each laser system has two essential components: a laser cavity which traps light and supplies the 

needed optical feedback, and a gain medium that amplifies light in the presence of an external pump. 

The most common and primary laser cavities, are of Fabry-Perot type, (see fig. (1)). In these type of 

laser cavities, the light undergoes multiple reflections between two mirrors, which have reflectivity. 

One of them reaches the 100% and the other (from which light goes out of the cavity) is about 99%. 

Such laser cavities provide very good light confinement and for this reason we can neglect the 

openness of the cavity. These modes are known, as “cold cavity modes” and can be obtained by solving 

the Helmholtz equation (derived from Maxwell’s equations), 

[𝛁𝟐 +
𝜀𝑐(𝒓)𝜔

2

𝑐2
] 𝜑(𝒓, 𝜔) = 0   (1.1) 

Where, ω is the lasing frequency of individual modes, c is the speed of light in vacuum and 𝜀𝑐(𝒓) is the 

dielectric function of the passive cavity i.e. without taking into account the gain medium. 

 

Figure 1- Representation of a Fabry-Perot laser cavity [4]. 

 

One of the theoretical challenges of modelling novel laser systems (micro-rings, micro-disk and micro 
sphere lasers) [5], [6], [7], [8] is the correct treatment of the openness of the cavity. There are several 
methods one can apply in order to describe the openness of a laser system. One way is to apply the 
concept of quasi-bound modes (QB) which can be defined in terms of the scattering matrix of the 
cavity. This scattering matrix relates incoming waves at a specific wavevector k, to all outgoing 
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channels [8], [9], [10]. Although QB modes have been extensively used in the standard open cavities 
analysis, they have two basic disadvantages. The first one is that the QB modes are not orthogonal to 
each other and the second one is that they don’t conserve the photon flux outside the cavity. This 
difficulty has been recently overcome by the introduction of the Constant Flux (CF) states by T𝑢̈reci, 
Stone et al [11]. Constant flux states, are the eigenfunctions, of the Helmholtz equation (eq. 1.1) with 
open boundary conditions, i.e. we make the specific hypothesis that modes outside the cavity region 
are plane waves with constant wavenumber.  As the name suggests, the CF states conserve the photon 
flux outside the gain region, and it was shown that the CF state satisfy a bi-orthogonality relation with 
their adjoint eigenfunctions and they form a complete basis for the lasing modes, as we’ll see in 
Chapter 5. 

 
Light-matter interaction  
Besides the correct treatment of the openness of the passive cavity, a successful laser theory also 

needs to take into our consideration the interaction between the light (radiation) and the active 

medium (matter).  Each active medium is a collection of atoms (in a gas laser or in a semiconductor 

laser where the atoms exist in the heterostructure), of molecules (in dye lasers) etc. The common, 

lineament of the above laser systems, is that in order to have a laser action the gain medium needs to 

be inverted, meaning we should have more atoms in the excited state than in the ground state. The 

simplest and more widespread theory of laser is using the rate equations [1], [3]. In this approach the 

crucial quantities are the light intensity in the cavity (light rate equation) and the temporal change of 

inversion of the gain media (atomic rate equation). Under this approach it is possible to investigate the 

global properties of the laser such as modal intensities and lasing thresholds. Some of the important 

aspects such as the spatial variation of the electric field is not considered.  Also, one assumes that each 

lasing mode corresponds to a cavity mode, which it isn’t valid in general. As a result, coherent effects 

such as modal instabilities cannot be explained by the rate equations [12]. However, coherent transient 

effects are useful in studying the dynamic properties in any laser system. Most of the coherent 

transient phenomena, can be analyzed by using the density matrix formalism where the relaxation of 

the medium of two-level atoms is treated phenomenologically.  In the treatment of coherent transient 

effects, it must be noted that both the electric field strength and the polarization of the active medium 

are rapidly changing functions, of both space and time. The spatial and temporal variation of the 

electric field E, in the presence of induced polarization P, must be expressed according to Maxwell’s 

equation, while the polarization of the two-level medium induced by the electric field must be 

expressed via the equations of motion based on the density matrix. By combining these two different 

equations, we can obtain the electric field and the polarization at all instants of time and everywhere in 

space. The aforementioned combination, of Maxwell’s classical equations of the light and the quantum 

mechanical equations of motion of the density matrix, are the so called semiclassical laser equations, 

which developed independently by Haken [1] and Lamb [14] in the 1960s. The basic equations of the 

semiclassical laser theory known as Maxwell-Bloch equations (MB), are coupled and nonlinear partial 

differential equations for the electric field, the induced polarization and population inversion in the 

gain medium. The derivation of these equations is shown in Chapter 2 of the present letter.  

It should be noted that spontaneous emission (SE) is not included in the semiclassical laser theory, and 

as a result the semiclassical laser theory predicts zero electric field and the polarization below the 

lasing threshold, and above it the lasing peaks are infinitely sharp (zero linewidth). The zero linewidth 

of lasing peaks it means that is not possible to calculate the linewidth of each spectra line from the 

semiclassical MB equations. We note here, the origin of the width in a spectral line is the quantum 

noise due to the spontaneous emission, which aren’t included in these equations. If one wants to 

calculate the linewidth of a spectral line theoretically there are two different paths. The first one is to 
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include a classical noise in MB equations, due to the spontaneous emission [15], and the second is to 

solve the full quantum mechanical problem.  

Semiclassical laser equations, can’t be solved analytically due to the nonlinear coupling terms. The 

numerical solution of these equations, can be obtained with two different ways. The first approach is 

to directly study the steady state solutions [13] while the second approach is based on the expansion of 

the electric field and of the polarization on the cavity modes (closed or open). This thesis follows the 

second method.  
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Chapter 2 - Semiclassical laser theory 
 

The purpose of this chapter is to derive the semiclassical laser equations, known as Maxwell-Bloch 

equations as also presented in [1] and [2]. We consider the interaction between a two-level atom and a 

coherent electromagnetic field. To describe this, we will begin by treating the atom quantum 

mechanically and the coherent electric field classically from Maxwell’s equations. A diagram that gives 

the physical model of a laser system is given below:  

 

Figure 2- Model of a laser system [2]. 

 

2.1- Wave equation for the electric field strength 
 

We start our analysis from Maxwell’s equations, which are: 

∇ × 𝓔 = −
𝜕𝑩

𝜕𝑡
             (𝟐. 𝟏. 𝟏) 

∇ × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
         (𝟐. 𝟏. 𝟐) 

∇ ∙ 𝓔 = 0                       (𝟐. 𝟏. 𝟑) 

∇ ∙ 𝜝 = 0                       (𝟐. 𝟏. 𝟒) 

where, 𝓔 is the electric field, B is the magnetic field, H is the magnetized field, J is the current density 

which is expressed through Ohm’s law, 𝑱 = 𝜎 ∙ 𝓔, with σ to be the electric conductivity and D is the 

dielectric displacement which depends on the electric field strength 𝓔 and from the induced 

polarization 𝒫 of the medium of two-level atoms. The expression which connects these observables is,  

𝑫 = 𝜀𝓔 +𝓟           (𝟐. 𝟏. 𝟓) 

where ε is the dielectric function of the material. The first term in (2.1.5) describes the polarization due 

to the transitions between levels other than the two-levels in resonance with the electric field as well 

as the polarization in atoms with more than two levels, which may exist. We consider non-magnetic 

materials, 𝜝 = 𝜇0𝑯 and we assume that the electric field is transversal which is equivalent to the 

assumption, ∇ ∙ 𝓔 = 0. Furthermore, we will consider only the electric field strength 𝓔, because it 

contains all the relevant information necessary for the laser theory.  
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We’ll begin our derivation, with the differentiation of equation (2.1.2) with respect to time,  

∇ ×
𝜕𝑯

𝜕𝑡
= 𝑱̇ + 𝑫̈      (𝟐. 𝟏. 𝟔)   

Equation (2.1.1) with 𝜝 = 𝜇0𝑯 becomes: ∇ × 𝓔 = −𝜇0
𝜕𝑯

𝜕𝑡
 and we take the "∇ × " of the last equation,  

∇ × (∇ × 𝓔) = −𝜇0∇ × (
𝜕𝑯

𝜕𝑡
)  (𝟐. 𝟏. 𝟕) 

By taking into account the identity,  ∇ × (∇ × 𝑨)=∇(∇ ∙ 𝑨) − ∇2𝑨, of a vector function A and with ∇ ∙

𝑨 = 0,  from (2.1.6) we take, 

1

𝜇0
∇2𝓔 = 𝜎𝓔̇ + 𝜀𝓔̈ + 𝑷̈      

⇒  ∇2𝓔 − 𝜇0𝜀𝓔̈ − 𝜇0𝜎𝓔̇ = 𝜇0𝑷̈   (𝟐. 𝟏. 𝟖)  

But  𝜀(𝒓) = 𝑛2(𝒓)𝜀0 , where n(r) is the refractive index distribution inside the cavity. Because, 𝜀 0𝜇0 =

1/𝑐2 it follows that:  

𝜀𝜇0 = 𝑛
2(𝒓)/ 𝑐2 

Therefore, we have: 

  ∇2𝓔 −
𝑛2(𝒓)

𝑐2
𝓔̈ − 𝜇0𝜎𝓔̇ = 𝜇0𝑷̈   (𝟐. 𝟏. 𝟗) 

 

2.2- Interaction Between a Two- Level Atom and a Coherent Field 
 

We consider an atom that has only two eigenstates, which are described through the eigenfunctions: 

ψ1(r,t) and ψ2(r,t), with eigenenergies E1 and E2 (>E1). Such an atom is described through an 

unperturbed Hamiltonian H0 and the time dependent Schrödinger equation is written as 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝑯𝟎𝜓    (𝟐. 𝟐. 𝟏)                        

The solutions of (2.2.1) can be expressed as a product of a function that has only spatial dependence 

and a function which has only temporal dependence as, 

𝜓𝑛(𝒓, 𝑡) = 𝜑𝑛(𝒓) ∙ exp (−𝑖
𝐸𝑛

ℏ
∙ 𝑡) , 𝑤𝑖𝑡ℎ 𝑛 = 1 𝑜𝑟 2    (𝟐. 𝟐. 𝟐)    

Furthermore, we consider a linear polarized light along the z-axis, with electric dipole moment 𝜇𝑧, and 

the Hamiltonian which describes the interaction between the two-level atom and the electric field in 

the frame of electric dipole approximation is, 

𝐻′(𝑡) = −𝝁𝒛 ∙ 𝓔(𝑡)     (𝟐. 𝟐. 𝟑)  

It is, general possible to expand the wave function 𝜓(𝒓, 𝑡) of a certain atom in terms of the 

eigenfunctions 𝜓𝑛(𝒓, 𝑡), because they consist a complete basis,  

𝜓(𝒓, 𝑡) =∑𝑎𝑛(𝑡) ∙ 𝜓𝑛(𝒓, 𝑡)

𝑛

   (𝟐. 𝟐. 𝟒)  
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But in the case of our problem where we have only to eigenstates, this sum has only two terms, and 

the expansion coefficients, 𝑎1(𝑡) and 𝑎2(𝑡) represents the probability amplitudes of the eigenstates 1 

and 2 respectively.  

By writing the Schrödinger equation of the full Hamiltonian 𝐻 = 𝐻0 +𝐻
′ we obtain, 

𝑖ℏ (
𝑑𝑎1
𝑑𝑡
𝜓1 +

𝑑𝜓1
𝑑𝑡

𝑎1 +
𝑑𝑎2
𝑑𝑡
𝜓2 +

𝑑𝜓2
𝑑𝑡

𝑎2) = (𝐻0 +𝐻
′)(𝑎1𝜓1 + 𝑎2𝜓2)   (𝟐. 𝟐. 𝟓) 

𝑑enoting that the stationary states have zero dipole moment, only the off-diagonal matrix elements of 

the  𝐻′ have non-zero values, which are defined as 𝐻𝑛𝑚
′ = ∫𝜑𝑛

∗𝛨′𝜑𝑚𝑑𝑟. So, the perturbation part of 

the Hamiltonian is a two by two matrix of the form,  

𝐻′ = [
0 𝐻12

′

𝐻21
′ 0

]. 

Also, the eigenstates of the unperturbed Hamiltonian (𝐻0) 𝜓𝑛(𝒓, 𝑡), are evolve over time via the 

exponential function ~𝑒−𝑖𝐸1,2𝑡/ℏ. By multiplying successively with 𝜓1
∗ 𝑎𝑛𝑑 𝜓2

∗  on (2.2.5) and 

integrating, by using the orthogonality of the eigenfunctions we get the relations 

𝑎̇1(𝑡) =
1

𝑖ℏ
𝑎2(𝑡)𝐻12

′ 𝑒−𝑖𝜔𝑎𝑡   (𝟐. 𝟐. 𝟔𝒂) 

𝑎̇2(𝑡) =
1

𝑖ℏ
𝑎1(𝑡)𝐻21

′ 𝑒𝑖𝜔𝑎𝑡   (𝟐. 𝟐. 𝟔𝒃) 

where 𝜔𝑎 =
𝛦2−𝛦1

ℏ
, is the transition frequency of the two-level atom.  

2.3- Induced Dipole Moment  
 

As previously stated the stationary states of an unperturbed Hamiltonian for a two-level atom do not 

have dipole moment. Nevertheless, when the atom interacts with the light, a dipole moment is 

induced. Its expectation value is defined quantum-mechanically as, 

𝑝(𝑡) = ∫𝜓∗(𝒓, 𝑡) (−𝑒)𝑧𝜓(𝒓, 𝑡)𝑑𝑟    (𝟐. 𝟑. 𝟏)      

Therefore, for a two-level atom it becomes, 

−𝑝(𝑡) = 𝑎1𝑎2
∗𝜇21𝑒

𝑖𝜔𝑎𝑡 + 𝑎2𝑎1
∗𝜇12𝑒

−𝑖𝜔𝑎𝑡    (𝟐. 𝟑. 𝟐) 

𝜇21 and 𝜇12are the off-diagonal elements of dipole matrix. The non-zero value of the induced dipole 

moment is responsible for the interaction between the light and the atoms of the active material in a 

laser system.  

2.4- Density Matrix formalism  
 

In order to make a complete description of the laser action we must take into our consideration the 

interaction between the light and an ensemble of atoms (or molecules). It is necessary to know the 

behavior of each atom and to find the ensemble average. Because of the difficulties of such calculation, 

we will use the density matrix formalism which simplifies the calculations.  
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Useful quantities for the description of the interaction between light and the ensemble of atoms are, 

the induced dipole moment, the transition probability, and the populations of the atoms. From, the 

expansion (2.2.4), we can remove the temporal dependence by rewriting (2.2.4) as 

𝜓(𝒓, 𝑡) = ∑ 𝑐𝑛(𝑡) ∙ 𝜑𝑛(𝒓, 𝑡)𝑛     (𝟐. 𝟒. 𝟏)      

𝑐𝑛(𝑡) = 𝑎𝑛(𝑡)𝑒
−𝑖(

𝐸𝑛
ℏ
)𝑡
      (𝟐. 𝟒. 𝟐)             

The density matrix elements are given from,  

𝜌𝑛𝑚 = 𝑎𝑛𝑎𝑚
∗ exp (𝑖

𝐸𝑚 − 𝐸𝑛
ℏ

𝑡)   (𝟐. 𝟒. 𝟑) 

Therefore, for a two-level atom the density matrix is expressed as 

𝜌 = [
|𝑎1|

2 𝑎1𝑎2
∗𝑒𝑖𝜔𝑎𝑡

𝑎2𝑎1
∗𝑒−𝑖𝜔𝑎𝑡 |𝑎2|

2
]  (𝟐. 𝟒. 𝟒) 

It is easy to see that the off-diagonal elements of the density matrix are connected with the dipole 

moment (equation 2.3.2), and the diagonal elements provide the population of the individual energy 

levels.   

2.5- Equations of Motion of the Density Matrix  
 

In this section, we describe the temporal dynamics of the density matrix which can be obtained from 

the time dependent Schrödinger equation. By substituting (2.4.1) into Schrödinger equation for the 

total Hamiltonian we have: 

𝑖ℏ
𝜕𝑐𝑛(𝑡)

𝜕𝑡
= ∑ 𝑐𝑘(𝑡)𝐻𝑛𝑘𝑘    (𝟐. 𝟓. 𝟏)   

where 𝐻𝑛𝑘,is the matrix elements of the total Hamiltonian. From the definition of the density matrix 

elements, 𝜌𝑛𝑚 = 𝑐𝑛𝑐𝑚
∗  and by differentiation we get:  

𝑑𝜌𝑛𝑚

𝑑𝑡
=
𝑑𝑐𝑛

𝑑𝑡
𝑐𝑚
∗ + 𝑐𝑛

𝑑𝑐𝑚
∗

𝑑𝑡
    (𝟐. 𝟓. 𝟐)   

Equation (2.5.2) due to (2.5.1) and (2.5.1) conjugate becomes, 

𝑖ℏ
𝑑𝜌𝑛𝑚

𝑑𝑡
= ∑ 𝑐𝑘𝐻𝑛𝑘𝑐𝑚

∗ − 𝑐𝑛 ∑ 𝑐𝑘
∗𝐻𝑘𝑚𝑘 = ∑ (𝐻𝑛𝑘𝜌𝑘𝑚 − 𝜌𝑛𝑘𝐻𝑘𝑚)𝑘𝑘   (𝟐. 𝟓. 𝟑)     

where it is considered that 𝐻𝑛𝑘
∗ = 𝐻𝑛𝑘. At this point, due to commutation relation, [𝐻, 𝜌] = 𝛨𝜌 − 𝜌𝛨, 

the above equation takes the form, 

𝑖ℏ
𝑑𝜌

𝑑𝑡
= [𝐻, 𝜌]    (𝟐. 𝟓. 𝟒)    

Equation (2.5.4) is the so-called equation of motion of the density matrix. If we call the eigenvalues of 

the energy, of the unperturbed Hamiltonian by 𝐸𝑛, the eq. (2.5.3) gives, 

𝑖ℏ
𝑑𝜌𝑛𝑚
𝑑𝑡

= 𝐸𝑛𝜌𝑛𝑚 − 𝐸𝑚𝜌𝑛𝑚 +∑(𝐻𝑛𝑘
′ 𝜌𝑘𝑚 − 𝜌𝑛𝑘𝐻𝑘𝑚

′ )

𝑘

 

 

⇒ 
𝑑𝜌𝑛𝑚

𝑑𝑡
= −𝑖𝜔𝑛𝑚𝜌𝑛𝑚 −

𝑖

ℏ
∑ (𝐻𝑛𝑘

′ 𝜌𝑘𝑚 − 𝜌𝑛𝑘𝐻𝑘𝑚
′ )𝑘    (𝟐. 𝟓. 𝟓)       
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Eq. (2.5.5) for the density matrix elements, 𝜌11, 𝜌21 gives: 

𝑑𝜌11
𝑑𝑡

=
𝑖

ℏ
(𝜌12𝛨21

′ − 𝑐. 𝑐)  (𝟐. 𝟓. 𝟔𝒂) 

𝑑𝜌21
𝑑𝑡

= −𝑖𝜔𝑎𝜌21 +
𝑖

ℏ
(𝜌22 − 𝜌11)𝛨21

′   (𝟐. 𝟓. 𝟔𝒃)  

The temporal derivative of matrix elements 𝜌11and 𝜌21 is enough to describe the laser system via 

density matrix formalism. This is why, the other matrix elements are connected with 𝜌11and 𝜌21. The 

relations that make the connection are, 𝜌21 = 𝜌12
∗  and 𝜌22 = 1 − 𝜌11 as shown in [2]. We recall that, 

the diagonal matrix elements, represents the populations of the individual levels of the atom, so we 

can define the population inversion as 𝑑 = 𝜌22 − 𝜌11. The off-diagonal matrix elements are connected 

with the dipole moment of the atom as we can see in the equation (2.3.2), and from this we’ll obtain 

an equation for the temporal variation of the induced polarization in the active medium. 

The importance of the density matrix, is that it can be used for the description of pure, as well as, 

mixed states. In many body problems the statistical average of the density matrix is known, although 

the wavefunctions of the individual atoms are unknown. In section (2.1) we examined the interaction 

between a coherent field and an atom without other perturbations. In general, in an ensemble of two- 

level atoms are present and incoherent perturbations like, interactions between other atoms of the 

active material and with the walls of the container as well as and the spontaneous emission which is 

also present in any quantum-mechanical system. In density matrix formalism it’s possible to treat these 

effects phenomenologically by introduce relaxation constants. One of the most important relaxation 

constants which are included in the semiclassical laser equations is, the relaxation rate of the induced 

polarization, 𝛾⊥ (transverse relaxation rate). With that in mind, equation (2.5.6b) becomes, 

𝑑𝜌21
𝑑𝑡

= (−𝑖𝜔𝑎 − 𝛾⊥)𝜌21 −
𝑖

ℏ
𝜇21𝑑 ∙ ℰ(𝑡)  (𝟐. 𝟓. 𝟕) 

As regards the population inversion we have: 𝛥𝛮 = (𝜌22 − 𝜌11)𝑁 = 𝛮𝛥𝜌, where the temporal 

variation of the 𝛥𝜌 is obtained from (2.5.6a) and N is the number of atoms per unit volume (N=n/V) so 

we get,  

𝑑𝛥𝜌

𝑑𝑡
= −

2𝑖

ℏ
(𝜌12𝛨21

′ − 𝑐. 𝑐)      (𝟐. 𝟓. 𝟖) 

This equation describes how the inversion changes due to the interaction of the electron and the 

electric field. When we wish to treat the laser processes we must not ignore the interaction of the 

atom with its surrounding as well as any incoherent perturbation which occur such as the non-radiative 

transitions. The pump process must also to taken into account. All these processes will lead to the 

relaxation of the inversion towards its stationary value which is denoted as  𝛥𝜌(0), with a relaxation 

rate, 𝛾‖ as described from the equation below:  

𝑑

𝑑𝑡
𝛥𝜌 = 𝛾‖(𝛥𝜌

(0) − 𝛥𝜌) +
2𝑖

ℏ
ℰ(𝑡) ∙ (𝜌12𝜇21 − 𝑐. 𝑐. )     (𝟐. 𝟓. 𝟗) 

Do not forget that until now, we have derived expressions about the dipole moment and the 

population inversion of a single atom. But, we have to remind ourselves that we are not dealing with a 

single atom but with an ensemble of N atoms in the laser’s active medium. Therefore, we have to 

examine how the macroscopic polarization is connected with the individual dipole moments. The 

expression which makes the connection is, 



15 
 

𝒫(𝒓, 𝑡) = ∑ 𝛿(𝒓 − 𝒓𝒂)𝑝𝑎
𝑒𝑛𝑠𝑒𝑚𝑙𝑒 
𝑎𝑡𝑜𝑚𝑠

 

where 𝑟𝑎 and 𝑝𝑎 is the position and the dipole moment of the individual atoms respectively and “δ” is 

the Dirac function. The dipole moment of the individual atoms can be expressed through the density 

matrix elements as, −< 𝑝(𝑡) >𝑎𝑣= 𝜌12𝜇21 + 𝜌21𝜇12. Also, for later purposes we introduce the 

abbreviations: 𝑝(+) = −𝜌21𝜇12 and 𝑝(−) = −𝜌12𝜇21, so that the dipole moment of the atoms can be 

represented in the form: 𝑝 = 𝑝(+) + 𝑝(−) where 𝑝(+) is the positive frequency part while 𝑝(−) is the 

negative frequency part as one can see in (2.3.2). If we decompose the polarization into a positive 

frequency part (𝒫(+)) and a negative frequency part (𝒫(−)) we have, 

𝒫(+)(𝒓, 𝑡) = − ∑ 𝛿(𝒓 − 𝒓𝒂)𝜇12 ∙ 𝜌21
𝑒𝑛𝑠𝑒𝑚𝑙𝑒 
𝑎𝑡𝑜𝑚𝑠

 

and it is true that, 𝒫(+)
∗
= 𝒫(−). Similarly, we can express the inversion density as, 

𝒟(𝒓, 𝑡) = ∑ 𝛿(𝒓 − 𝒓𝑎)𝑑𝑎
𝑒𝑛𝑠𝑒𝑚𝑙𝑒 
𝑎𝑡𝑜𝑚𝑠

 

where 𝑑𝑎 are the inversion density of the individual atoms.  

In order to derive an equation for the macroscopic quantity P, we multiply equation (2.5.7) on both 

sides by 𝛿(𝒓 − 𝒓𝒂)𝜇12 and take the sum over all the ensemble of atoms. The term 𝛿(𝒓 − 𝒓𝒂)ℰ(𝒓𝒂,t) 

which is appeared in the following derivation is equal to 𝛿(𝒓 − 𝒓𝒂)ℰ(𝒓,t) so the final equation for the 

macroscopic quantity of the polarization is,  

𝑑𝒫(+)(𝒓, 𝑡)

𝑑𝑡
= (−𝑖𝜔𝑎 − 𝛾⊥)𝒫

(+)(𝒓, 𝑡) −
𝑖𝜇12
2

ℏ
ℰ ∙ 𝒟(𝒓, 𝑡)      (𝟐. 𝟓. 𝟏𝟎) 

in a similar way we can obtain the differential equation which describes the change of 𝒫(−). By 

proceeding in a similar way with equation (2.5.9) we obtain the following equation for the macroscopic 

quantity of the inversion density, 

𝑑𝒟(𝒓,𝑡)

𝑑𝑡
= 𝛾‖(𝒟0 −𝒟(𝒓, 𝑡)) +

2𝑖

ℏ
ℰ(𝒓, 𝑡) ∙ [ 𝒫(+)(𝒓, 𝑡)∗ −𝒫(+)(𝒓, 𝑡)]   (𝟐. 𝟓. 𝟏𝟏)  

In where, 𝒟0 is the inversion density if only pump and relaxation processes occur but not laser action. It 

is also called unsaturated inversion. 

2.6- Equations of Semiclassical laser theory 
 

In this section we summarize the basic equations we have derived in the preceding sections. The 

following three equations are the so-called Maxwell-Bloch equations of the Semiclassical laser theory.  

The first equation is the differential equation of the electric field strength (2.1.9): 

∇2𝓔 −
𝑛2(𝒓)

𝑐2
𝓔̈ − 𝜇0𝜎𝓔̇ = 𝜇0𝒫̈    (𝟐. 𝟔. 𝟏) 

The second equation is the (2.5.10), for the positive frequency part of the polarization: 
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𝒫̇(+)(𝒓, 𝑡) = (−𝑖𝜔𝑎 − 𝛾⊥)𝒫
(+)(𝒓, 𝑡) −

𝑖𝜇12
2

ℏ
ℰ ∙ 𝒟(𝒓, 𝑡) (𝟐. 𝟔. 𝟐) 

And the last equation gives the inversion density (2.5.11): 

𝒟̇(𝒓, 𝑡) = 𝛾‖(𝒟0 −𝒟(𝒓, 𝑡)) +
2𝑖

ℏ
ℰ(𝒓, 𝑡) ∙ [ 𝒫(+)(𝒓, 𝑡)∗ −𝒫(+)(𝒓, 𝑡)]   (𝟐. 𝟔. 𝟑)  

 

2.7- Rotating wave approximation (RWA)  
 

In the preceding section we decomposed the polarization into a positive and negative frequency part. 

The same decomposition can be applied to the electric field strength. We decompose the electric field 

as follows, 

ℰ(𝑡) = ℰ(+)(𝑡) + ℰ(−)(𝑡)    (𝟐. 𝟕. 𝟏) 

where, ℰ(+)(𝑡) = 𝐴 ∙ 𝑒−𝑖𝜔𝑡 and ℰ(−)(𝑡) = 𝐴∗ ∙ 𝑒𝑖𝜔𝑡, with 𝐴, 𝐴∗ to be time dependent complex 

amplitudes which are referred as envelope functions of the electric field, and ω is the oscillation 

frequency of the individual modes of the laser. The time dependency of the envelope function A (or 

A*), is much slower from the exponential functions, which multiply them. We turn our attention to the 

temporal part of the right-hand side (r.h.s.) of the equation (2.6.3),  

ℰ[𝒫(+)
∗
− 𝒫(+)] =

(2.7.1)
ℰ(+)𝒫(−) − ℰ(+)𝒫(+) + ℰ(−)𝒫(−) − ℰ(−)𝒫(+) (𝟐. 𝟕. 𝟐) 

Where, for reasons of brevity we neglect the notation of time dependency. Also, we note that the 

temporal variation of the polarization is of the form: 𝒫(+)~𝑒−𝑖𝜔𝑎𝑡  𝒫(−)~𝑒𝑖𝜔𝑎𝑡 , where 𝜔𝑎 is the 

transition frequency of the two-level atoms. The terms which arise are,  

• ℰ(+)𝒫(−)~𝑒−𝑖(𝜔−𝜔𝑎)𝑡  

• ℰ(−)𝒫(−)~𝑒𝑖(𝜔−𝜔𝑎)𝑡 

• ℰ(+)𝒫(+)~𝑒−𝑖(𝜔+𝜔𝑎)𝑡 

• ℰ(−)𝒫(−)~𝑒𝑖(𝜔+𝜔𝑎)𝑡 

As one can see in the above expressions, there are terms that oscillate with frequency "𝜔 − 𝜔𝑎", and 

terms which oscillates with frequency "𝜔 + 𝜔𝑎". But in order to solve equation (2.6.3) we must 

integrate over the time, with the time interval to be long compared to the time of a single oscillation. 

So during the integration the contribution of the fast oscillating terms (with frequency "𝜔 + 𝜔𝑎") 

vanishes. As a consequence, we can ignore these terms and consider only the slowly oscillating terms 

(with frequency "𝜔 − 𝜔𝑎") which significantly contribute. We can write equation (2.6.3) as,  

                      
𝑑𝒟(𝒓,𝑡)

𝑑𝑡
= 𝛾‖(𝒟0 −𝒟(𝒓, 𝑡) +

2𝑖

ℏ
[ ℰ(+)𝒫(+)

∗
− ℰ(+)

∗
𝒫(+)]    (𝟐. 𝟕. 𝟑) 

We apply the same approximation for the polarization (2.6.2) [1] and we get,  

𝑑𝒫(+)(𝒓, 𝑡)

𝑑𝑡
= (−𝑖𝜔𝑎 − 𝛾⊥)𝒫

(+)(𝒓, 𝑡) −
𝑖𝜇12
2

ℏ
ℰ(+) ∙ 𝒟(𝒓, 𝑡)   (𝟐. 𝟕. 𝟒) 

So, from the above equations we can see that only the positive frequency part of the electric field is 

needed, therefore we can write the differential equation (2.6.1) for 𝐸(+), 
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∇2ℰ(+) −
𝑛2(𝒓)

𝑐2
ℰ̈(+) − 𝜇0𝜎ℰ̇

(+) = 𝜇0𝒫̈
(+)   (𝟐. 𝟕. 𝟓) 

 

 

2.8- Modal expansion method 
 

In this section we will begin from equations presenting above, namely (2.7.3)-(2.7.5), in order to obtain 

the simpler form which will be suitable for computational analysis. We will begin by expanding the 

electric field ℰ(𝐫, t) and the polarization 𝒫(𝐫, t) of a laser medium in a complete basis which consists of 

the eigenstates (modes) of a closed resonator or of an open resonator [1]. These modes are the 

solutions of the Helmholtz differential equation, 

𝛁𝟐𝜑𝑚(𝒓) +
𝜔𝑚
2

𝑐2
𝑛2(𝒓)𝜑𝑚(𝒓) = 0    (𝟐. 𝟖. 𝟏) 

Where, 𝜑𝑚(𝒓) is the m-eigenfunction of the closed (or open) resonator, 𝜔𝑚 is the frequency of the 

mth-mode of the resonator, c is the speed of the light in vacuum and n(r) is the refractive index of the 

laser material and its be in general a complex function of the position. In the present thesis we will 

consider one dimensional cavity, because we are interested only about the longitudinal modes of the 

resonator. So, the Laplacian operator has only the term represents the derivative of the x-coordinate. 

This implies that (2.8.1) will be,  

𝜑𝑚
′′ (𝑥)+ 

𝜔𝑚
2

𝑐2
𝑛2(𝑥)𝜑𝑚(𝑥) = 0   (𝟐. 𝟖. 𝟐) 

Equation (2.8.2) is solved with appropriate boundary conditions (open, closed or periodic). The 

aforementioned expansions into the complete basis are,  

ℰ(+)(𝑥, 𝑡) =∑𝑒𝑚(𝑡)𝜑𝑚(𝑥)

𝑚

    (𝟐. 𝟖. 𝟑) 

𝒫(+)(𝑥, 𝑡) =∑𝑝𝑚(𝑡)𝜑𝑚(𝑥)

𝑚

    (𝟐. 𝟖. 𝟒) 

If we replace the above expansions in equation (2.7.5), 

∇2ℰ(+) −
𝑛2(𝑥)

𝑐2
ℰ̈(+) − 𝜇0𝜎ℰ̇

(+) = 𝜇0𝒫̈
(+) 

we take,  

−∑
𝜔𝑚
2

𝑐2
𝑒𝑚(𝑡)𝑛

2(𝑥)𝜑𝑚(𝑥)

𝑚

−
𝑛2(𝑥)

𝑐2
∑𝜑𝑚(𝑥)

𝑚

𝑒̈𝑚(𝑡) − 𝜇0𝜎∑𝜑𝑚(𝑥)

𝑚

𝑒̇𝑚(𝑡)

= 𝜇0∑𝜑𝑛(𝑥)𝑝̈𝑛(𝑡)

𝑛

  (𝟐. 𝟖. 𝟓) 

we multiply with 𝜑𝑞(𝑥) and integrating over the cavity length both parts of (2.8.5), 
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−∑
𝜔𝑚
2

𝑐2
𝑒𝑚(𝑡)∫ 𝑛2(𝑥)𝜑𝑚(𝑥)𝜑𝑞(𝑥)

𝑙

−𝑙𝑚

−
1

𝑐2
∑∫ 𝑛2(𝑥)𝜑𝑚(𝑥)𝜑𝑞(𝑥)

𝑙

−𝑙

𝑑𝑥

𝑚

𝑒̈𝑚(𝑡)

− 𝜇0𝜎∑∫ 𝜑𝑚(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙𝑚

𝑒̇𝑚(𝑡) = 𝜇0∑∫ 𝜑𝑛(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙

𝑝̈𝑛(𝑡)

𝑛

 

Making use of the biorthogonality condition: ∫ 𝜀(𝑥)𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥
𝑙

−𝑙
= 0, which is valid for both sets 

of boundary conditions (Appendix [A]) lead us to: 

−
𝜔𝑚
2

𝑐2
𝑒𝑚(𝑡) −

1

𝑐2
𝑒̈𝑚(𝑡) − 𝜇0𝜎∑∫ 𝜑𝑚(𝑥)𝜑𝑞(𝑥)𝑑𝑥

𝑙

−𝑙𝑚

𝑒̇𝑚(𝑡)

= 𝜇0∑∫ 𝜑𝑛(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙

𝑝̈𝑛(𝑡)

𝑛

 (𝟐. 𝟖. 𝟔) 

We define:  

𝐵𝑚𝑛 = ∫ 𝜑𝑚(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙

 

Also, we can to pull out from the functions, 𝑒𝑚(𝑡) 𝑎𝑛𝑑 𝑝𝑚(𝑡) the fast oscillating term ~𝑒−𝑖𝜔𝑎𝑡, i.e.   

𝑒𝑚(𝑡) = 𝑒𝑚,0(𝑡)𝑒
−𝑖𝜔𝑎𝑡 and 𝑝𝑚(𝑡) = 𝑝𝑚,0(𝑡)𝑒

−𝑖𝜔𝑎𝑡.  

(2.8.6)⇒ −
𝜔𝑚
2

𝑐2
𝑒𝑚,0(𝑡)𝑒

−𝑖𝜔𝑎𝑡 −
1

𝑐2
{𝑒̈𝑚,0(𝑡) − 2𝑖𝜔𝑎𝑒̇𝑚,0(𝑡) − 𝜔𝑎

2𝑒𝑚,0(𝑡)}𝑒
−𝑖𝜔𝑎𝑡 −

𝜇0𝜎∑ 𝐵𝑚𝑛(𝑒̇𝑚,0(𝑡) − 𝑖𝜔𝑎𝑒𝑚,0(𝑡))𝑒
−𝑖𝜔𝑎𝑡

𝑚 = 𝜇0∑ 𝐵𝑚𝑛{𝑝̈𝑛,0(𝑡) − 2𝑖𝜔𝑎𝑝̇𝑛,0(𝑡) −𝑛

𝜔𝑎
2𝑝𝑛,0(𝑡)}𝑒

−𝑖𝜔𝑎𝑡         (𝟐. 𝟖. 𝟕) 

To simplify the above equation, we use the slowly varying envelope approximation (SVEA) [2]. This 

means that we can ignore the term of the second derivative of the electric field and polarization, as 

well as the first derivative of the polarization. In addition, in the first summation to the r.h.s. the first 

derivative of the electric field strength (envelope function) is much less than the magnitude of the 

second term in the same summation. So, we can ignore, the first one compared with the last one: 

(2.8.7) ⇒ 𝑒̇𝑚,0(𝑡) =
𝑖

2𝜔𝑎
[𝜔𝑎
2 −𝜔𝑚

2 ] −
𝜎

2𝜀0
∑ 𝐵𝑚𝑛𝑒𝑚,0(𝑡)𝑚 +

𝑖𝜔𝑎

2𝜀0
∑ 𝐵𝑚𝑛𝑒𝑛,0(𝑡)𝑛  

With the definition of, 𝐾𝑚 =
𝜎

2𝜀0
∑ 𝐵𝑚𝑛𝑚 , the above equation becomes: 

𝑒̇𝑚,0(𝑡) =
𝑖

2𝜔0
[𝜔𝑎
2 −𝜔𝑚

2 ] − 𝐾𝑚𝑒𝑚,0(𝑡) +
𝑖𝜔𝑎
2𝜀0

∑𝐵𝑚𝑛𝑒𝑛,0(𝑡)

𝑛

        (𝟐. 𝟖. 𝟖) 

 

Regarding the polarization of the laser material, we have to begin from equation (2.7.4): 

𝑑𝒫(+)(𝑥, 𝑡)

𝑑𝑡
= (−𝑖𝜔𝑎 − 𝛾⊥)𝒫

(+)(𝑥, 𝑡) −
𝑖𝜇12
2

ℏ
ℰ(+) ∙ 𝒟(𝑥, 𝑡)    

By the substitution of the expansions (2.8.3) and (2.8.4) in the above equation, 

∑𝑝̇𝑛,0(𝑡)

𝑛

𝜑𝑛(𝑥) = −𝛾⊥∑𝑝𝑛,0(𝑡)

𝑛

𝜑𝑛(𝑥) −
𝑖𝜇12
2

ℏ
∑𝑒𝑞,0(𝑡)

𝑞

𝒟(𝑥, 𝑡)𝜑𝑞(𝑥) 
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Then by multiplying both parts of the above equation with 𝜀(𝑥)𝜑𝑚(𝑥) and integrating along the cavity, 

∑𝑝̇𝑛,0(𝑡)

𝑛

∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛(𝑥)
𝑙

−𝑙

𝑑𝑥

= −𝛾⊥∑𝑝𝑛,0(𝑡)

𝑛

∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛(𝑥)
𝑙

−𝑙

𝑑𝑥

−
𝑖𝜇12
2

ℏ
∑𝑒𝑞,0(𝑡)

𝑞

∫ 𝜀(𝑥)𝒟(𝑥, 𝑡)𝜑𝑞(𝑥)𝜑𝑚(𝑥)
𝑙

−𝑙

𝑑𝑥 

⇒     𝑝̇𝑚,0(𝑡) = −𝛾⊥𝑝𝑚,0(𝑡) −
𝑖𝜇12
2

ℏ
∑ 𝑒𝑛,0(𝑡)𝒟𝑚𝑛(𝑥, 𝑡)𝑛 ,  where, 

𝒟𝑚𝑛(𝑥, 𝑡) = ∫ 𝜀(𝑥)𝒟(𝑥, 𝑡)𝜑𝑞(𝑥)𝜑𝑚(𝑥)
𝑙

−𝑙

𝑑𝑥 

𝑝̇𝑚,0(𝑡) = −𝛾⊥𝑝𝑚,0(𝑡) −
𝑖𝜇12
2

ℏ
∑𝑒𝑛,0(𝑡)𝒟𝑚𝑛(𝑥, 𝑡)

𝑛

   (𝟐. 𝟖. 𝟗) 

As a final step of our analysis we begin from the equation (2.7.3), describes the inversion density as 

presented below, 

𝑑𝒟(𝑥,𝑡)

𝑑𝑡
= 𝛾‖(𝒟0 −𝒟(𝑥, 𝑡) +

2𝑖

ℏ
[ℰ(+)𝒫(+)

∗
− ℰ(+)

∗
𝒫(+)]  

As we done before, we use the above expansions (2.8.3) and (2.8.4), and we get,  

𝒟̇(𝑥, 𝑡) = 𝛾‖(𝒟0 − 𝒟(𝑥, 𝑡)) + 
2𝑖

ℏ
∑∑[𝑒𝑟,0(𝑡)𝜑𝑟(𝑥)

𝑞𝑟

𝑝𝑞,0
∗ (𝑡)𝜑𝑞

∗(𝑥) − 𝑝𝑞,0(𝑡)𝜑𝑞(𝑥)𝑒𝑟,0
∗ (𝑡)𝜑𝑟

∗(𝑥)] 

Then we multiply both parts of the above equation, with 𝜀(𝑥)𝜑𝑛(𝑥)𝜑𝑚(𝑥) and take the integral along 

the cavity length,  

𝑑

𝑑𝑡
∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝒟(𝑥, 𝑡)𝑑𝑥
𝑙

−𝑙

= 𝛾‖ (∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝒟0(𝑥)𝑑𝑥
𝑙

−𝑙

−∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝒟(𝑥, 𝑡)𝑑𝑥
𝑙

−𝑙

)

+ 
2𝑖

ℏ
∑∑[𝑒𝑟,0(𝑡)

𝑞𝑟

𝑝𝑞,0
∗ (𝑡)∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟(𝑥)𝜑𝑞

∗(𝑥)𝑑𝑥
𝑙

−𝑙

− 𝑝𝑞,0(𝑡)𝑒𝑟,0
∗ (𝑡)∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟

∗(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙

] 

By setting, 𝒟0,𝑚𝑛 = ∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝒟0(𝑥)𝑑𝑥
𝑙

−𝑙
, 𝒟𝑚𝑛 = ∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝒟(𝑥, 𝑡)𝑑𝑥

𝑙

−𝑙
, 𝐴𝑚𝑛,𝑟𝑞 =

∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟(𝑥)𝜑𝑞
∗(𝑥)𝑑𝑥

𝑙

−𝑙
, 𝐴𝑚𝑛,𝑟𝑞
′ = ∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟

∗(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙
 we take,  

𝒟̇𝑚𝑛 = 𝛾‖(𝒟0,𝑚𝑛 −𝒟𝑚𝑛) +
2𝑖

ℏ
∑[𝑒𝑟,0(𝑡)𝑝𝑞,0

∗ (𝑡)𝐴𝑚𝑛,𝑟𝑞 − 𝑒𝑟,0
∗ (𝑡)𝑝𝑞,0(𝑡)𝐴𝑚𝑛,𝑟𝑞

′ ]

𝑟,𝑞

   (𝟐. 𝟖. 𝟏𝟎) 
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2.9- Normalized Equations 
 

For computational reasons we have to normalize our equations. We’ll begin with the normalization of 

Helmholtz equation, by introducing the dimensionless distance 𝑥̅ = 𝑥/𝐿, where x is the distance in 

physical units and L (=2l+d), is the total system’s length.  

𝜕2𝜑(𝑥̅)

𝐿2𝜕𝑥̅2
+ 𝜀(𝑥̅)𝑘𝑚

2 𝜑(𝑥̅) = 0 

⇒
𝜕2𝜑(𝑥̅)

𝜕𝑥̅2
+ 𝜀(𝑥̅)𝐿2𝑘𝑚

2 𝜑(𝑥̅) = 0  

So, the dimensionless eigenvalues of the Helmholtz equation are, 𝒌̅𝒎
𝟐 = 𝑳𝟐𝒌𝒎

𝟐 . As regards the 

eigenfrequencies of the cold resonator, arises that: 𝑘̅𝑚 = 𝑘𝑚𝐿 =
𝜔𝑚

𝑐/𝑛
𝐿 = (

𝑛𝐿

𝑐
)𝜔𝑚 ≡ 𝑡𝑅𝑇𝜔𝑚 ≡ 𝜔̅𝑚, 

where we have normalized the time and the frequency as respect to roundtrip time 𝑡𝑅𝑇, inside the 

cavity, as shown below.   

All the variables, presented above, are rendered dimensionless through, 𝐸𝑚 = 𝑒𝑚,0/𝐸𝑐, 𝑃𝑚 = 𝑝𝑚,0/𝐸𝑐, 

𝐷𝑚𝑛 = 𝒟𝑚𝑛/𝐷𝑐, 𝜔̅𝑚 = 𝜔𝑚𝑡𝑅𝑇, 𝜔̅𝑎 = 𝜔𝑎𝑡𝑅𝑇, 𝐾̅ = 𝐾𝑡𝑅𝑇 and 𝛾̅⊥,‖ = 𝛾⊥,‖𝑡𝑅𝑇 as it arises from the 

aforementioned change of variables where, 𝐸𝑐 =
ℏ√𝛾⊥𝛾‖𝐿

2𝜇12
, 𝑃𝑐 =

𝐸𝑐

𝜇0𝑐2
, 𝐷𝑐 =

𝛾⊥ℏ

𝜇0𝑐2𝜇12
2 , 𝑡𝑅𝑇 =

𝑛𝐿

𝑐
. 

Therefore, the final normalized equations are:  

𝐸̇𝑚 =
𝑖

2𝜔̅𝑎
[𝜔̅𝑎
2 − 𝜔̅𝑚

2 ]𝐸𝑚 − 𝐾̅𝐸𝑚 +
𝑖𝜔̅𝑎
2
∑𝐵𝑚𝑛
𝑛

𝐸𝑛    (𝟐. 𝟗. 𝟏) 

𝑃̇𝑚 = −𝛾̅⊥𝑃𝑚 − 𝑖𝛾̅⊥∑𝐷𝑚𝑛
𝑛

𝐸𝑛   (𝟐. 𝟗. 𝟐) 

𝐷̇𝑚𝑛 = 𝛾̅‖[𝐷0,𝑚𝑛 − 𝐷𝑚𝑛] +
𝑖𝛾̅‖

2
∑[

𝑟,𝑞

𝐸𝑟𝑃𝑞
∗𝐴̃𝑚𝑛,𝑟𝑞 − 𝐸𝑟

∗𝑃𝑞𝐴̃′𝑚𝑛,𝑟𝑞]   (𝟐. 𝟗. 𝟑) 

This step produces the following dimensionless complex-valued parameters appearing in the above 

equations: 𝐵𝑚𝑛 = ∫ 𝜑𝑚(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙
 , 𝐷0,𝑚𝑛 = ∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝑑̅0(𝑥)𝑑𝑥

𝑙

−𝑙
,  

𝐴̃𝑚𝑛,𝑟𝑞 = 𝐿∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟(𝑥)𝜑𝑞
∗(𝑥)𝑑𝑥

𝑙

−𝑙
, 𝐴̃′𝑚𝑛,𝑟𝑞 = 𝐿 ∫ 𝜀(𝑥)𝜑𝑚(𝑥)𝜑𝑛𝜑𝑟

∗(𝑥)𝜑𝑞(𝑥)𝑑𝑥
𝑙

−𝑙
 which are 

in general complex valued and they are calculated prior to numerically solving the time dependent 

equations. 

2.10- Physical units 
 

The physical units of the parameter values used in our numerical simulations are obtained starting 

from the transverse relaxation rate 𝛾⊥~10
13𝑠−1 as referred in [36]. From the normalization 𝛾̅⊥ =

𝛾⊥𝑡𝑅𝑇 and for 𝛾̅⊥ = 1 we get that 𝑡𝑅𝑇~10
−13𝑠, also arises that for 𝛾̅‖ = 10

−3,  𝛾‖ = 𝛾̅‖/𝑡𝑅𝑇~10
10𝑠−1. 

But, 𝑡𝑅𝑇 =
𝑛𝑎𝑣𝐿

𝑐
 and as an average refractive index we set, 𝑛𝑎𝑣~3 so we get the total system’s length, 

𝐿~10𝜇𝑚. As regards the resonant frequencies of our resonator we have that, 𝜔̅𝑚 ≈ 20 (normalized 

units) therefore in physical units we get 𝜔𝑚 = 𝜔̅𝑚/𝑡𝑅𝑇~10
14𝑠−1 and the corresponding wavelengths 

are, 𝜆𝑚~1 𝜇𝑚. 
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Regarding the electric fields, the induced polarizations and the density of inversion of populations we 

have the following expressions: 𝐸𝑐 =
ℏ√𝛾⊥𝛾‖

2𝜇12
, 𝑃𝑐 =

𝐸𝑐

𝜇0𝑐2
, 𝐷𝑐 =

𝛾⊥ℏ

𝜇0𝑐2𝜇12
2 . Their physical units are, [𝐸] =

𝑉/𝑚, [𝑃] = 𝐶𝑏/𝑚2, [𝐷] = #𝑎𝑡𝑜𝑚𝑠/𝑚3 .  Therefore, the critical parameters through which we make 

the normalization of Maxwell-Bloch equations have the following values: 𝐸𝑐~10
8 𝑉/𝑚, 𝑃𝑐~10

−3𝐶𝑏/

𝑚2 and 𝐷𝑐~10
28𝑚−3~1046𝜇𝑚−3, for 𝜇12~10

−30𝐶𝑚~1 𝐷𝑒𝑏𝑦𝑒. 

2.11-  Single mode Class A laser 
 

When both relaxation rates, 𝛾̅⊥ and 𝛾̅‖ are much larger than the outcoupling decay of the electric field, 

we can assume that the induced polarization 𝑝̅𝑚,0 and the matrix elements 𝑑̅𝑚𝑛 have reached the 

steady state and therefore do not depend on time. In this case we consider the derivatives of equations 

(2.9.2) and (2.9.3) equal to zero. For the derivation purposes we consider real and constant dielectric 

function in the cavity region a single mode resonator. The semiclassical equations (2.9.1)-(2.9.3) can be 

written as,  

𝐸̇ =
𝑖

2𝜔̅𝑎
[𝜔̅𝑎
2 − 𝜔̅2]𝐸 − 𝛾̅𝐸 +

𝑖𝜔̅𝑎
2
𝐵11𝑃              (𝟐. 𝟏𝟎. 𝟏) 

𝑃̇ = −𝛾̅⊥𝑃 − 𝑖𝛾̅⊥𝐷 ∙ 𝐸                                             (𝟐. 𝟏𝟎. 𝟐) 

𝐷̇ = 𝛾̅‖[𝐷0 −𝐷] +
𝑖𝛾̅‖

2
𝐴̃11,11[𝐸 ∙ 𝑃

∗ − 𝐸∗ ∙ 𝑃]     (𝟐. 𝟏𝟎. 𝟑) 

By taking 𝑃̇ = 0 we get,  

(2) ⇒ −𝛾̅⊥𝑃 − 𝑖𝛾̅⊥𝐷 ∙ 𝐸 = 0 ⇒ 

𝑷 = −𝒊𝑫 ∙ 𝑬    (𝟐. 𝟏𝟎. 𝟒) 

Also, for 𝐷̇ = 0,  

(2.10.3) ⇒ 𝐷 = 𝐷0 +
𝑖

2
𝐴̃11,11[𝐸 ∙ 𝑃

∗ − 𝐸∗ ∙ 𝑃], which by using (2.10.4) takes the form, 

𝑫 =
𝑫𝟎

𝟏 + 𝑨̃𝟏𝟏,𝟏𝟏|𝑬|
𝟐
   (𝟐. 𝟏𝟎. 𝟓) 

By substituting into the above expressions, the polarization and inversion, in (2.10.1), we obtain the 

final equation (which is a nonlinear Schrödinger equation with saturable nonlinearity): 

𝑬̇ =
𝒊

𝟐𝝎̅𝒂
[𝝎̅𝒂

𝟐 − 𝝎̅𝟐]𝑬 − 𝜸̅𝑬 +
𝝎̅𝒂𝑩𝟏𝟏
𝟐

𝑫𝟎

𝟏 + 𝑨̃𝟏𝟏,𝟏𝟏|𝑬|
𝟐
𝑬  (𝟐. 𝟏𝟎. 𝟔) 

As we can see in equation (2.10.6), the final term in the right-hand side, represents the gain saturation.  
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Chapter 3 -Parity-Time (PT) symmetry  
 

In 1998 Bender and Boettcher [16] showed that quantum systems of non-Hermitian Hamiltonians may 

have a real spectrum if they commute with the 𝑃̂𝑇̂ operator, i.e. when they exhibit PT-symmetry. The 

experimental verification of the predictions of PT symmetry in quantum mechanical systems, has posed 

serious challenges due to decoherence effects, many body interactions and the difficulty of 

implementing non-Hermiticity in a PT-symmetry fashion [17]. A decade later, the experimental 

verification, of the predictions arises from the PT-symmetric Hamiltonians, came from an entirely 

unexpected brunch of physics, namely optics and photonics [18, 19, 20, 21, 22, 23, 24, 25] and which is 

presented in a section below.  

Subsequently we’ll discuss the quantum mechanical properties of spatial inversion and time reversal 

operators 𝑃̂ and 𝑇̂ respectively, and the necessary and sufficient conditions which must be fulfilled in 

order to be a system PT-symmetric, i.e. the existence of real eigenvalues (spectra) of a non-Hermitian 

Hamiltonian. 

3.1-  PT symmetry-Basic concepts and definitions 
 

In 1998, Bender and Boettcher [16] showed that quantum systems of non-Hermitian Hamiltonians can 

have a real spectrum (i.e. a real set of eigenvalues) if they commute with the 𝑃̂𝑇̂ operator. This 

counterintuitive result goes against the commonly held view that real eigenvalues are only associated 

with Hermitian observables. The necessary (but not sufficient) condition for a system to be PT-

symmetric is that the complex potential involved should satisfy the condition 𝑉(𝑟) = 𝑉∗(−𝑟) [26] as 

one can understand from the action of the 𝑃̂𝑇̂ operator on a Hamiltonian of a complex potential 𝑉(𝑟).   

The action of the Parity operator 𝑃̂, amounts to the spatial reflection, namely: 𝑟 → − 𝑟 and 𝑝 → − 𝑝, 

where 𝑝 is the momentum.  The action of this operator on each quantum state described as,  

𝑃̂𝜓(𝑟, 𝑡) = 𝜓(−𝑟, 𝑡)     (𝟑. 𝟏. 𝟏) 

while the action of the time reversal operator 𝑇̂ means the change 𝑡 → −𝑡 [27] and its action has as a 

following the changes, 𝑝 → − 𝑝, 𝑟 →  𝑟 and 𝑖 → − 𝑖. So, the action of the 𝑇̂ operator on the above 

mentioned, quantum state is described:  

𝑇̂𝜓(𝑟, 𝑡) = 𝜓∗(𝑟, −𝑡)   (𝟑. 𝟏. 𝟐) 

The symbol “*” means the complex conjugate, of the wavefunction, and arises from the fact that 𝑇̂, is 

an antilinear and antiunitary operator [27]. Because the classical momentum and coordinate change 

their signs under spatial inversion, the operators which describe these observables are transformed 

under spatial inversion as, 

𝑃̂+𝑟̂𝑃̂ = −𝑟̂     (𝟑. 𝟏. 𝟑) 

𝑃̂+𝑝̂𝑃̂ = −𝑝̂   (𝟑. 𝟏. 𝟒) 

Furthermore, the coordinate and the momentum are transformed under time reversal as, 

𝑇̂+𝑟̂𝑇̂ = 𝑟̂      (𝟑. 𝟏. 𝟓) 
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𝑇̂+𝑝̂𝑇̂ = −𝑝̂    (𝟑. 𝟏. 𝟔) 

If the Hamiltonian of a system can be represented in the form of the polynomial in momentum and 

coordinate operators, 𝐻̂ = 𝐻̂(𝑝̂, 𝑟̂, 𝑡), then the action of the above two operators on the Hamiltonian is 

described as follows. For the 𝑃 ̂operator, 

𝑃̂+𝐻̂𝑃̂ = 𝐻̂(𝑃̂+𝑝̂𝑃̂, 𝑃̂+𝑟̂𝑃̂, 𝑡) = 𝐻̂(−𝑝̂,−𝑟̂, 𝑡)       (𝟑. 𝟏. 𝟕) 

and the system is 𝑃̂- invariant if its Hamiltonian does not change after the inversion of coordinates, i.e.,  

𝐻̂(𝑝̂, 𝑟̂, 𝑡) = 𝐻̂(−𝑝̂, −𝑟̂, 𝑡)       (𝟑. 𝟏. 𝟖) 

Respectively for 𝑇̂operator, 

𝑇+𝐻̂𝑇̂ = 𝐻̂∗(𝑇̂+𝑝̂𝑇̂, 𝑇̂+𝑟̂𝑇̂, 𝑡) = 𝐻̂∗(−𝑝̂, 𝑟̂, −𝑡)     (𝟑. 𝟏. 𝟗) 

And a system is 𝑇̂- invariant if its Hamiltonian does not change under time reversal, i.e. [27], 

𝐻̂(𝑝̂, 𝑟̂, 𝑡) = 𝐻̂(−𝑝̂, 𝑟̂, −𝑡)      (𝟑. 𝟏. 𝟏𝟎) 

By combining the expressions (3.1.8) and (3.1.10), we can obtain the transformation of the Hamiltonian 

under the action of the 𝑃̂𝑇̂ operator,  

𝑃̂+𝑇̂+𝐻̂(𝑝̂, 𝑟̂, 𝑡)𝑃̂𝑇̂ = 𝐻̂(𝑃̂+𝑇+𝑝̂𝑃̂𝑇̂, 𝑃̂+𝑇+𝑟̂𝑃̂𝑇̂ , 𝑡) = 𝐻̂∗(𝑝̂, −𝑟̂ , −𝑡)    (𝟑. 𝟏. 𝟏𝟏) 

If we consider a Hamiltonian of the form 𝐻̂ =
𝒑̂2

2𝑚
+ 𝑉(𝑟), where m is the mass and V is the complex 

potential function of a particle, and it’s of the form, 𝑉(𝑟) = 𝑉𝑅(𝑟) + 𝑖𝑉𝐼(𝑟), the system is PT- 

symmetric if  𝑉(𝑟) = 𝑉∗(−𝑟) which gives 𝑉𝑅(𝑟) = 𝑉𝑅(−𝑟) and 𝑉𝐼(𝑟) = −𝑉𝐼(−𝑟). Namely, the real part 

of the potential is an even function of  𝑟, and the imaginary part is an odd function of  𝑟.  

Necessary and sufficient condition for real eigenvalues of a PT- symmetric Hamiltonian, is that the 

eigenvectors to be PT- symmetric [27].  

3.2-  Phase transition in PT- symmetric systems  
 

We consider a Hamiltonian of the form, 𝐻̂ = 𝐻̂(𝑝̂, 𝑟̂, 𝑡, 𝜇), where μ, is a critical parameter that defines 

the phase of the system i.e. if it’s in PT- symmetric phase (real spectrum) or in a broken PT- phase 

(partially complex spectrum).  

We will begin with the description of a two-level system, which described by the two by two 

Hamiltonian, 

𝛨̂ = [
𝑖𝛾 𝜅
𝜅 −𝑖𝛾

]     (𝟑. 𝟐. 𝟏) 

This Hamiltonian is PT-symmetric since it has the general form, of a PT matrix which is, 𝐴 = [
𝑥 𝑦
𝑦∗ 𝑥∗] 

[28], with star (*) symbol we mean the complex conjugate. The diagonalization of (3.2.1) gives the 
eigenvalues and the corresponding eigenvectors of this system, 

𝐸1,2 = ±√𝜅
2 − 𝛾2 , 𝜓1,2 = (

𝑖𝛾

𝜅
± √1 −

𝛾2

𝜅2
    1)𝛵   (𝟑. 𝟐. 𝟐) 
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As one can see from expressions (3.2.2) the PT-symmetry is unbroken, so it has an entire real spectrum 
if, 𝜅 ≥ 𝛾. Otherwise, if 𝜅 <γ, the spectrum becomes complex, with both eigenvalues to form a complex 
conjugate pair. At the point κ=γ in the parameter space, PT-symmetry is spontaneously broken, the two 
eigenvalues coalesce and the eigenvectors becomes linearly dependent. These are, the so-called 
exceptional points (EP), which arises in non-Hermitian physics [29]. 
  
Finally, it’s crucial to make a distinction between the eigenvalue coalescence and the well known 

degeneracy. At the EP, both eigenvalues and eigenvectors are the same. In contrary, in the degeneracy 

case two eigenvalues are the same but the eigenvectors remain linearly independent.  

3.3-  Parity-time symmetry in Optics and Photonics 
 

Despite the distinct physical origins of the Schrödinger equations for electrons and Maxwell’s theory of 

light, it can be shown that, under certain conditions they exhibit a similar mathematical form, as we 

present below. Due to this analogy, it is possible to investigate PT symmetry in optics and photonics, 

where the many body interactions, which is present in quantum mechanical systems, are equivalent to 

nonlinear optical interactions. Thereby, its attainable the correspondence of these distinct branches of 

physics [17]. For making insight in the correspondence of quantum mechanics and photonics, we’ll 

begin by consider the one-dimensional (1D) Schrödinger equation of a single particle of mass m,  

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓, 𝐻̂ = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)     (𝟑. 𝟑. 𝟏)  

where ψ, in the wavefunction, ℏ is the reduced Planck’s constant and V(x) is the potential. For an 

isolated system potential V(x) is a real function and is related with the conservative force acting on a 

particle. However, open quantum systems are described through non-Hermitian Hamiltonians which 

accounts the coupling between system and its environment. In such cases, the potential becomes a 

complex function and the system follows to described through Schrödinger equation, and the 

orthogonality relations, must then be modified.  On the other side, the paraxial equation of 

electromagnetic wave propagation under the slowly varying envelope approximation is [17],  

𝑖
𝜕𝐸(𝑥, 𝑧)

𝜕𝑧
= [−

1

2𝑘0𝑛0

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)] 𝐸(𝑥, 𝑧) ≡ 𝐻̂𝐸(𝑥, 𝑧)    (𝟑. 𝟑. 𝟐) 

where the propagation distance z along the optical axis, plays the role of time, in Schrödinger equation. 

In the above equation, 𝑘0 is the free space wavevector, 𝑛0 is the refractive index of the background 

space and 𝑉(𝑥) = 𝑘0[𝑛𝑅(𝑥) + 𝑖𝑛𝐼(𝑥)] is the complex optical potential, in which is due the non 

Hermiticity. 𝑛𝑅(𝑥), and 𝑛𝐼(𝑥)  are the spatial distribution of the real and imaginary part of the 

refractive index respectively. It is now clear the way which the quantum mechanics is related with 

optics, the refractive index profile plays the role of the complex potential. This is how the non-

Hermiticity is realized in Photonics structures by the complex value of dielectric permittivity. Following 

this correspondence, and keeping in mind that the PT quantum mechanical formalism dictates that 

𝑉(𝑟) = 𝑉∗(−𝑟),  we can define as Parity-Time (PT) symmetry in optical systems the condition 𝜀(𝑟) =

𝜀∗(−𝑟), where 𝜀(𝑟) is the permittivity of the medium, which is related to the material refractive index, 

by the relation: 𝜀2(𝑟) = 𝑛(𝑟), when we are dealing with non-magnetic materials.  
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Chapter 4 -  Single mode coupled ring cavities 

(class A lasers) 
 

The purpose of this chapter is to examine a system of two coupled micro-ring cavities (photonic 

molecule) with balanced gain and loss that exhibit single mode lasing operation at pump powers well 

above threshold. It’s is of our interest to study the behavior of this system around its exceptional 

point, in two different ways. The first one, is linear in order to verify the existence of exceptional 

points by making analytical computations. In the second approach we’ll consider, the nonlinear 

interactions, and we’ll assume class A laser, which means that, radiation loss is much smaller than the 

transverse and longitudinal relaxation rates. This system is described by equation (2.10.6) and the 

coupling strength between two resonators, is introducing phenomenologically, in the equations of 

modal fields in the two cavities.  

In our analysis, we assume dual micro-ring resonators as it shown in fig. (3), and for demonstration 

purposes we assume that each cavity supports only one transverse mode, due to their very small 

width. Notice also, that we consider here the cold modes of the cavity and not the ones described by 

the CF-states. 

 

Figure 3- PT symmetric arrangement of two coupled micro-ring cavities [30]. 

 

For convenience we rewrite, the differential equation of the electric field, equation (2.10.6), for both 

resonators where one has a net gain while the other has loss. In the case of a single mode laser and by taking 

into account the coupling between the envelopes of the electric fields we get [30]: 

𝑬̇𝟏 =
𝒊

𝟐𝝎̅𝒂
[𝝎̅𝒂

𝟐 − 𝝎̅𝟐]𝑬𝟏 − 𝜸̅𝑬𝟏 +
𝝎̅𝒂𝑩𝟏𝟏
𝟐

𝑫𝟎

𝟏 + 𝑨̃𝟏𝟏,𝟏𝟏|𝑬𝟏|𝟐
𝑬𝟏 + 𝒊𝜿𝑬𝟐    (𝟒.𝟏)   

𝑬̇𝟐 =
𝒊

𝟐𝝎̅𝒂
[𝝎̅𝒂

𝟐 − 𝝎̅𝟐]𝑬𝟐 − 𝜸̅𝑬𝟐 −
𝝎̅𝒂𝑩𝟏𝟏
𝟐

𝒇
𝟎

𝟏 + 𝑨̃𝟏𝟏,𝟏𝟏|𝑬𝟐|𝟐
𝑬𝟐 + 𝒊𝜿𝑬𝟏   (𝟒.𝟐)   

 

where, 𝜸̅ is the linear loss which is present in both cavities, D0 is the unsaturated gain in the active cavity, 

and f0 is the unsaturated loss in the passive cavity. The last term in both equations describes the temporal 

coupling between two modes (one in each cavity), with coupling strength 𝜿.  Also, it is assumed that in 

each cavity the mode frequency (𝝎̅) is the same since they are identical. 
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4.1- Linear Analysis 
 

In order to analyze the response of this system under linear conditions, we assume that the modal field 

amplitudes are small, i.e. |E1|,|E2|~0  [30]. This assumption, allow us to write the above equations in the 

linear form, 

𝑬̇𝟏 = −𝜸̃𝑬𝟏 + 𝑫̃𝟎𝑬𝟏 + 𝒊𝜿𝑬𝟐        (4.1.3) 

𝑬̇𝟐 = −𝜸̃𝑬𝟐 − 𝒇̃𝟎𝑬𝟐 + 𝒊𝜿𝑬𝟏         (4.1.4) 

where we set  −𝛾̃ =
𝑖

2𝜔̅𝑎
[𝜔̅𝑎
2 − 𝜔̅2]− 𝛾̅,  𝐷̃0 =

𝜔̅𝑎𝐵11
2
𝐷0 and 𝑓0 =

𝜔̅𝑎𝐵11
2
𝑓0. 

The eigenvalues of this system can be directly obtained, by assuming the form:  

(𝐸1 𝐸2)
𝑇 = (𝑒01 𝑒02)

𝑇𝑒−𝑖𝜆𝑡 

by the symbol T we mean the transpose eigenvector, λ is the eigenvalues of this system and 𝑒01 , 𝑒02 are the 

modal amplitudes of the modes in the active and passive cavity respectively and they are complex constants. 

So, the linear system of equation (4.1.3), (4.1.4) in matrix form is,  

𝑑

𝑑𝑡
(
𝛦1 

𝛦2
) = (

−𝛾̃ + 𝐷̃0 𝑖𝜅

𝑖𝜅 −𝛾̃ − 𝑓0
)(
𝛦1 

𝛦2
) 

 

⇒ −𝑖𝜆𝑒−𝑖𝜆𝑡 (𝑒01 
𝑒02
) = (

−𝛾̃ + 𝐷̃0 𝑖𝜅

𝑖𝜅 −𝛾̃ − 𝑓0
)(𝑒01 

𝑒02
) 𝑒−𝑖𝜆𝑡 

 

⇒ (
−𝛾̃ + 𝐷̃0 + 𝜆𝑖 𝑖𝜅

𝑖𝜅 −𝛾̃ − 𝑓0 + 𝜆𝑖
) (𝑒01 

𝑒02
) = (0

0
)          (𝟒. 𝟏. 𝟓) 

 

 

The solution of this eigenvalue problem, is possible if we set the determinant of the matrix in the left-hand 

side equal to zero. By making this, we find the eigenvalues to be, 

𝜆1,2 =
−𝑖(2𝛾̃ + 𝑓0 − 𝐷̃0) ± √4𝜅

2 − (𝑓0 + 𝐷̃0)
2

2
    (𝟒. 𝟏. 𝟔) 

From eq. (4.1.6) we can see that the two eigenvalues coalesce when (𝑓0 + 𝐷̃0) = ±2𝜅. In addition, we can 

make a distinction of two cases. The first case is when (𝑓0 + 𝐷̃0) < 2𝜅 and the second one when (𝑓0 +

𝐷̃0) > 2𝜅.  

 

I. Unbroken phase: (𝒇̃𝟎 + 𝑫̃𝟎) < 𝟐𝜿 

In this first case, the eigenvalues of the system are,  

𝜆1,2 =
−𝑖(2𝛾̃ + 𝑓0 − 𝐷̃0)

2
± √𝜅2 − (

𝑓0 + 𝐷̃0
2

)2   (𝟒. 𝟏. 𝟕) 
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we set 𝑐𝑜𝑠𝜃 = √𝜅2 − (
𝑓̃0+𝐷̃0

2
)2, and we substitute the eigenvalues (eq. (4.1.7)) in (4.1.5), in order to find the 

corresponding eigenvalues,  

(

 
 −𝛾̃ + 𝐷̃0 + 𝑖(

−𝑖(2𝛾̃ + 𝑓0 − 𝐷̃0)

2
± 𝑐𝑜𝑠𝜃) 𝑖𝜅

𝑖𝜅 −𝛾̃ − 𝑓0 + 𝑖(
−𝑖(2𝛾̃ + 𝑓0 − 𝐷̃0)

2
± 𝑐𝑜𝑠𝜃)

)

 
 
(
𝑒01 

𝑒02
) = (

0

0
) 

which for 𝑒01=1, gives 𝑒02 = 𝑖𝑠𝑖𝑛𝜃 ± 𝑐𝑜𝑠𝜃 = ±𝑒
±𝑖𝜃. Finally, the eigenvectors are,  

(
𝛦1
𝛦2
) = (

1

±𝑒±𝑖𝜃
) 𝑒(

𝐷̃0−𝑓̃0
2

−𝛾̃)𝑡𝑒±𝑖𝑐𝑜𝑠𝜃∙𝑡    (𝟒. 𝟏. 𝟖) 

As one can see the two eigenvectors are nonorthogonal with a phase factor θ, depends on coupling, and on 

the gain-loss contrast and a PT-like bifurcation is present for cosθ=0.  

 

II. Broken phase: (𝒇̃𝟎 + 𝑫̃𝟎) > 𝟐𝜿 

In this case, the eigenvalues of the system are,  

𝜆1,2 =
−𝑖(2𝛾̃ + 𝑓0 − 𝐷̃0)

2
± 𝑖√(

𝑓0 + 𝐷̃0
2

)2 − 𝜅2    (𝟒. 𝟏. 𝟗) 

By the definition 𝑠𝑖𝑛ℎ𝜃=√(
𝑓̃0+𝐷̃0

2
)2 − 𝜅2, the eigenvalue problem gives,  

(

 
 −𝛾̃ + D0 + 𝑖(

−𝑖(2𝛾̃ + 𝑓̃0 − 𝐷̃0)

2
± 𝑖𝑠𝑖𝑛ℎ𝜃) 𝑖𝜅

𝑖𝜅 −𝛾̃ − 𝑓0 + 𝑖(
−𝑖(2𝛾̃ + 𝑓̃0 − 𝐷̃0)

2
± 𝑖𝑠𝑖𝑛ℎ𝜃)

)

 
 
(
𝑒01 

𝑒02
) = (

0

0
) 

As in the first case, so here we set 𝑒01=1 and for the second component of the eigenvector arises that,  

𝑒02 = 𝑖[𝑐𝑜𝑠ℎ𝜃 ∓ 𝑠𝑖𝑛ℎ𝜃] = 𝑖𝑒
±𝜃. Consequently, the corresponding eigenvectors are,  

(
𝛦1
𝛦2
) = (

1

𝑖𝑒±𝜃
) 𝑒(

𝐷̃0−𝑓̃0
2

−𝛾̃)𝑡𝑒∓𝑠𝑖𝑛ℎ𝜃∙𝑡    (𝟒. 𝟏. 𝟏𝟎) 

From equation (4.1.10) it’s clear that the phase difference between the modal field amplitudes is 𝛥𝜑 = 𝜋/2 

and moreover, they are unequal.  

4.1-1  Weak coupling coefficient: Linear analysis 
The parameter values which were used in our simulation are, 𝜔̅𝛼 = 20, 𝜔̅ = 20.919, 𝛾̅ = 0.02 (𝛾̃ =

0.02 + 0.94𝑖) and κ=0.17 (
𝜅

𝑅𝑒{𝛾̃}
= 8.5). We’ll examine the regimes, of lasing in the PT-symmetric phase 

or in the broken PT-phase as mentioned in the above section. 

• Lasing in the unbroken phase 
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For the loss in the passive cavity to has the value, 𝒇̃𝟎 = 𝟎. 𝟏 we take the behavior presented in fig. (4), where 

exists an Exceptional Point at pump value, 𝑫̃𝟎
(𝑬𝑷)

= 𝟎.𝟐𝟒 and the system is lasing in the PT-phase, where the 

threshold value of the gain is, 𝑫̃𝟎
(𝒕𝒉,𝑷𝑻)

= 𝟎. 𝟏𝟒. 

 

Figure 4 - Imaginary part of the eigenvalues as a function of the applied gain. The two eigenvalues of the system are shown 
with blue and red. Amplification occurs if Im{λ}>0, so the system lases in the PT-phase.  

 

• Lasing in the broken phase 
 

When the loss in the passive cavity has the value, 𝒇̃𝟎 = 𝟎. 𝟑 we have similar behavior with that presented in 

fig. (4), where exists an Exceptional Point at the pump value, 𝑫̃𝟎
(𝑬𝑷)

= 𝟎. 𝟎𝟒. This system lases in the broken 

PT-phase where the threshold value is, 𝑫̃𝟎
(𝒕𝒉,𝑩𝑷𝑻)

= 𝟎. 𝟏𝟏. 

 

Figure 5- Imaginary part of the eigenvalues as a function of the applied gain. The two eigenvalues of the system are shown 
with blue and red. Amplification occurs if Im{λ}>0, so the system lases in the broken PT-phase. 
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In figs. (4,5) we observe that the existence of an Exceptional Point (EP) when a bifurcation occurs, 

signifies the lasing in the PT and in the broken-PT phase, respectively. We can define the 𝐼𝑚{𝜆} as 

modal gain, which is negative for gain values below the threshold, zero on the threshold and positive 

for pump values greater than the lasing threshold. 

If the system is operating in the first regime (PT-phase), the fields experience linear amplification as long as 

the gain is greater than the total loss of the system.  The net gain/loss of the system is described from the 

factor, 
𝐷̃0−𝑓̃0

2
− 𝑅𝑒{𝛾̃}. When 

𝐷̃0−𝑓̃0

2
− 𝑅𝑒{𝛾̃} > 0 the modal fields exhibit linear amplification, so the 

threshold value of the gain in the unbroken phase is, 𝐷̃𝑡ℎ
(𝑈)
= 𝑓0 + 2𝑅𝑒{𝛾̃}. 

On the other hand, if the system operates in the second regime (Broken PT-phase), the net gain/loss in the 

system, is 
𝐷̃0−𝑓̃0

2
− 𝑅𝑒{𝛾̃} + √(

𝑓̃0+𝐷̃0

2
)2 − 𝜅2.  Growth will occur if  

𝐷̃0−𝑓̃0

2
− 𝑅𝑒{𝛾̃} + √(

𝑓̃0+𝐷̃0

2
)
2

− 𝜅2 > 0 

which gives the threshold value of the gain in the broken PT-phase, 𝐷̃𝑡ℎ
(𝐵)
=
𝑅𝑒{𝛾̃}2+𝑓̃0𝑅𝑒{𝛾̃}+𝜅

2

𝑅𝑒{𝛾̃}+𝑓̃0
. 

From the above results, we see that the thresholds are uniquely determined from the parameters  𝛾̃, 𝑓0, 𝜅.  

We can summarize the two lasing thresholds by the following inequality,  

𝐷̃0 > min [
𝑅𝑒{𝛾̃}2+𝑓̃0𝑅𝑒{𝛾̃}+𝜅

2

𝑅𝑒{𝛾̃}+𝑓̃0
, 𝑓0 + 2𝑅𝑒{𝛾̃}]. 

which indicates that the pump value in the active cavity must be higher than one of the above thresholds in 

order to have lase either in the Broken PT-phase or in the PT-phase.  

4.1-2   Strong coupling coefficient: Linear analysis 
 

In this section we consider the case of strong coupling between the modes of two cavities. The 

coupling strength is increased from κ=0.17 (section 4.1.1) to κ=0.4 (
𝜿

𝑹𝒆{𝜸̃}
= 𝟐𝟎) with the loss value to 

be the same with that of the above section (𝑓0 = 0.3)1. Notice that a PT-like bifurcation (EP) doesn’t 

happen here and the system is frozen in the PT-symmetric regime, as described from fig. (6). 

                                                           
1For greater values of the loss f0 the system undergoes a transition from a PT phase to a broken PT phase. 
But we are interested in what happened when we hold all other parameters the same and changing only 
the coupling between two cavities. 
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Figure 6- Both eigenvalues follow the same trajectory as the applied gain increases. With red are represented the 
values of the 1st eigenvalue and with dashed blue the values of the 2nd eigenvalue, as a function of the applied gain.  

 

As one can see both modes lase simultaneously (for the same value of pump), as verified from the 

crossing between eigenvalues trajectories and the zero line, which represents the threshold modal 

gain.  

4.2- Non-linear dynamical analysis 
 

As the field in the PT-coupled cavity configuration starts to lase, nonlinear effects make their 

appearance.  To analyze the response of the system under non-linear conditions we’ll solve the full 

system of equations (4.1), (4.2). The parameters values where used in the simulation are presented in 

table 1, and they are the same for the parameters used in the above section for the linear analysis. 

 
Table 1- Parameter values 

 

𝒇̃𝟎(loss in  
passive  
cavity) 

 
κ (coupling) 

 
𝝎̅𝜶(center  
frequency) 

 
𝝎̅ (mode’s  
frequency) 

 
n (refractive  

index) 

 
K (radiation  

loss) 

 
𝜸̃ 

𝜸̅⊥ 
(transverse  
relaxation 

 rate) 

𝜸̅‖ 

(longitudinal 
relaxation 

 rate) 

        0.1 or 0.3   0.17 or 0.4         20       20.919         3      0.02 0.02 + 
0.94𝑖 

      10        1 

 

In the non-linear regime, we obtain the numerical solution of coupled differential equations (4.1) and 

(4.2) by applying a fourth order Runge-Kutta integration algorithm.  The spatial profile of the mode, in 

each cold cavity is depicted in fig. (7): 
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Figure 7- Mode profile in the cold resonator, for periodic boundary conditions, with refractive index n=3. 

 

4.2-1 Weak coupling coefficient  
 

• Lasing in the PT-phase 

For the parameter values presented in table 1 (for 𝑓0 = 0.1), we obtain the modal intensity in each ring 

as well as the intensity ratio 𝝆 =
|𝜠𝟐|

𝟐

|𝜠𝟏|
𝟐⁄  as a function of the applied gain as shown in fig. (8.a,b) 

respectively. Both modes (in each cavity) lase on the threshold pump value, 𝑫̃𝟎
(𝒕𝒉)

= 𝟎. 𝟏𝟒 (which is 

equal to the threshold pump value which was obtained in the linear analysis of the previous section) 

and the system lases in the PT-symmetric phase as one can understand from the fact that ρ=1 for each 

pump value.  

 

Figure 8- (a) Modal intensities as a function of the applied gain in the active cavity. (b) Intensities ratio as a function of the 
applied gain in one cavity. The system appears to be frozen in the PT-phase.  

 

Therefore, for the parameter values we use, we don’t observe the existence of an exceptional point. 

The time dynamics of the modal intensities, for the pump value 𝐷̃0 = 0.378 is shown in fig. (9): 
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Figure 9- Time dynamics of modal intensities for the pump value, 𝑫̃𝟎 = 𝟎. 𝟑𝟕𝟖. 

 

• Lasing in the broken PT-phase 

For the parameter values presented in table 1 (for 𝑓0 = 0.3), we obtain the modal intensity in each ring 

as a function of the applied gain as one can see in fig. (10.a). Both modes (in each cavity) lase on the 

threshold pump value, 𝑫̃𝟎
(𝒕𝒉)

= 𝟎. 𝟏𝟏 (which is equal to the threshold pump value which was obtained 

in the linear analysis of the previous section). A PT-bifurcation takes place, for 𝑫̃𝟎 = 𝑫̃𝟎
(𝑬𝑷)

= 𝟎. 𝟑𝟗𝟕, 

and the system undergoes a transition from a broken-PT into PT-symmetric phase. Regarding the 

modal intensities, they are unequal and their difference is decreased as the gain value approaches the 

EP. If we continue to increase the applied gain the modal intensities become equal. This behavior is 

depicted in fig. (10).  
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Figure 10-Its shown, in (a) the intensity of each mode in (b) mode’s intensity in the active cavity and the intensity ratio 𝝆 =

|𝜠𝟐|
𝟐

|𝜠𝟏|
𝟐⁄  in (c)difference of modal intensities and (d) phase difference between modal fields, as a function of the applied 

gain. κ= 0.17, the radiation loss is 𝜸̅=0.02 and the phenomenological loss in passive cavity is 𝒇̃𝟎 =0.3. 

 

In fig. (10.b), its shown that mode’s intensity in the active cavity, as well as, the intensity ratio 𝝆 =

|𝜠𝟐|
𝟐

|𝜠𝟏|
𝟐⁄ , are increased with the increase of the applied gain in the active cavity. Up to the pump 

value 𝐷̃0
(𝐸𝑃)

= 0.397, the intensity ratio becomes unity, which identifies the equal distribution of the 

energy in to cavities. In the above section it’s shown that in the broken-PT phase the two fields have a 

phase difference 𝛥𝜑 = 90° (eq. (4.1.10)), as is verified from fig. (8.d). Until a certain value of 𝐷̃0 the 

phase difference is 𝛥𝜑 = 𝜑2 − 𝜑1 = 270° = −90°  and then its locked in +90° until the EP. The 

above results are similar with that of [30]. 
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Figure 11- (a) Modal intensities for 𝑫̃𝟎=0.3, the system is in the broken PT-phase (b) Modal intensities for 𝑫̃𝟎=0.46, the 
system is in the PT-phase. In both cases the coupling strength is κ= 0.17, the radiation loss is 𝜸̅=0.02 and the 

phenomenological loss in the passive cavity is 𝒇̃𝟎 =0.3. 

 

The time dynamics of modal intensities in the broken PT-phase (fig. 11.a) and in the PT-phase (fig. 11.b) 

are shown for pump values 𝐷̃0 = 0.3 and 𝐷̃0 = 0.46 respectively. In the first case the modal intensities 

have different steady state values, while in the second case they coalesce. 

 

4.2-2  Strong coupling regime  
 

In this section we consider a strong coupling between the two cavities. The coupling strength is 

increased from κ=0.17 (section 4.2.1) to κ=0.4 and the loss in the passive cavity is 𝑓0 = 0.3.  

 

Figure 12- (α) Modal intensities as a function of the applied gain in one cavity. With red crosses is represented the intensity 
in the active cavity while with blue circles represent the intensity in the passive cavity. (b) Intensities ratio, as defined in the 

text as a function of the applied gain. In both figures it’s confirmed that the system is frozen in the PT symmetric phase.  
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Figure 13- Modal intensities as a function of time for 𝑫̃𝟎=0.47. Both modes have equal steady state values, and identify the 
PT-symmetric phase of the system. 

 

As shown in the above figures the system is frozen in the PT-symmetric phase, and in this case we 

didn't observe an EP. This is due to the fact that the two coupled cavities, strongly interact and for each 

value of the applied gain they follow each other.  
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Chapter 5 –Steady State ab initio Laser theory 

(SALT) 
 

One of the main goals of this chapter is to treat the openness of the laser system with the Constant Flux (CF) 

states [11], which are the eigenstates of Helmholtz equation (1.1) with open boundary conditions. The laser 

system we are interested to examine, consists of two cavities which are at distance d, from each other. So, the 

eigenfunctions which we are going to find are eigenfunctions of the composite system.  Then, we continue 

with the approximate calculation of lasing thresholds, for several modes from the linearized SALT analysis 

(Steady State Ab-initio Laser Theory) [13]. Finally, we present the relation between the time domain solutions 

of MB equations with CF-boundary conditions (Constant-Flux Time Domain solutions (CFTD)) and the SALT 

solutions for the same boundary conditions.   

5.1- Computation of Constant-Flux states  
 

The standard modal approach for time dynamics, expands the electric field and the polarization into a 

superposition of the modes of the closed resonator. That way the “modes” of the cavity form an orthogonal 

basis and the decay (optical losses) due to the openness of the problem are added to the final equations 

phenomenologically. This means that the open nature of any laser system is not treated properly and such an 

approach lead to serious problems particularly in the bad cavity limit (random lasers). In order to avoid the 

aforementioned problems, we will expand the electric field and the polarization into a series of the proper 

“open modes” of the problem. These are the so-called constant flux states (CF-states). These modes (CF) 

correspond to the eigenstates of the passive scattering problem with radiating boundary conditions that 

conserve the flux outside the cavity, because outside the cavity the lasing frequency is real. In addition, we 

mention that CF-states are parametric eigenmodes of the Helmholtz equation, and the related parameter is 

the laser frequency k, (real number).  Below is presented the generalized eigenvalue problem, which gives the 

eigenmodes and the eigenfrequencies of the system, 

𝜑𝑛
′′ + 𝑘𝑛

2𝜀𝑐(𝑥)𝜑𝑛 = 0    (𝟓. 𝟏. 𝟏) 

𝜑𝑛
′ (±𝑙) = ±𝑖𝑘𝜑𝑛(±𝑙)  (𝟓. 𝟏. 𝟐) 

The non-hermiticity of the 𝜑𝑛 eigenmodes is a direct outcome of the non-Hermitian open boundary 

conditions (CF boundary conditions) at the endpoints of the system of two coupled cavities (−𝑙 = 𝐿 +
𝑑

2
 and 

𝑙 = 𝐿 +
𝑑

2
). In fig. (14), one can see the representation of our system, 

 

Figure 14- Representation of the system composites of two ridge cavities.  

 

The 𝜑𝑛(𝑥, 𝑘) eigenmodes constitute a basis with the following biorthogonality condition,  

∫ 𝜀𝑐(𝑥)𝜑𝑛(𝑥, 𝑘)𝜑𝑚(𝑥, 𝑘)
𝑙

−𝑙
𝑑𝑥 = 𝛿𝑛,𝑚, as we prove in appendix [A].  
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In our analysis we follow the ansatz, which proposed in [31] and assumes that we can choose as 

parameter k, in the CF- states calculation, the atomic frequency center, which we refer as ωα (c=1). The 

numerical calculation of the CF-states is achieved by making space discretization and by using the finite 

difference method for the solution of the generalized Helmholtz differential equation, as presented in 

appendix [Β]. The Helmholtz equation at the grid point pn, is written as: 

 
𝜑𝑛+1 + 𝜑𝑛−1 − 2𝜑𝑛

𝛥2
= −𝑛𝑛

2𝑘𝑚
2 𝜑𝑛   (𝟓. 𝟏. 𝟑)     

where Δ is the distance between two successive grid points and 𝑛𝑛
2  is the dielectric permittivity is each 

position on the x-axis, characterized by the n-index. At point p1 with the outgoing boundary condition, 
𝜑1−𝜑0

𝛥
= −

𝑖𝑛𝑙𝑘(𝜑1+𝜑0)

2
 we obtain an expression for 𝜑0, 

 

𝜑0 =
2 + 𝑖𝑛𝑙𝑘𝛥

2 − 𝑖𝑛𝑙𝑘𝛥
𝜑1 ≡ 𝛽𝑙𝜑1   (𝟓. 𝟏. 𝟒) 

 

using this expression together with the Helmholtz equation yields,  

 
𝛽𝑙 − 2

𝛥2
𝜑1 +

1

𝛥2
𝜑2 = −𝑛1

2𝑘𝑚
2 𝜑1  (𝟓. 𝟏. 𝟓) 

 

Similar expression can be obtained analogously for the right side of the cavity, 

 
𝛽𝑟 − 2

𝛥2
𝜑𝛮 +

1

𝛥2
𝜑𝑁−1 = −𝑛𝑁

2𝑘𝑚
2 𝜑𝑁, 

 

where 𝛽𝑟 =
2+𝑖𝑛𝑙𝑘𝛥

2−𝑖𝑛𝑙𝑘𝛥
 , while 𝑛𝑙 and 𝑛𝑟 are the refractive indices out of the cavity region, on the left and 

the right side respectively and we have considered that they are equal to unity. By combining the 

equations for all grid points we take the matrix form for the generalized eigenvalue problem,  

 

(

 
 
 
 

𝛽𝑙 − 2

𝛥2
1/𝛥2 0 ⋯ 0

1/𝛥2 −2/𝛥2 1/𝛥2 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 1/𝛥2 −2/𝛥2 1/𝛥2

0 … 0 1/𝛥2
𝛽𝑟 − 2

𝛥2 )

 
 
 
 

(

𝜑1
𝜑2
⋯
𝜑𝛮−1
𝜑𝛮

) = −𝑘𝑚
2

(

  
 

𝑛1
2

𝑛2
2

⋯
𝑛𝛮−1
2

𝑛𝛮
2)

  
 
(

𝜑1
𝜑2
⋯
𝜑𝛮−1
𝜑𝛮

)   (𝟓. 𝟏. 𝟔)  

 

The solution of this eigenvalue problem (5.1.6) gives us the open cavity frequencies and the 

corresponding eigenvectors.  

5.2-  Linear calculation of lasing thresholds  
  

Based on what we mentioned in chapter 2, the fundamental equations of semiclassical laser theory, 

known as Maxwell-Bloch equations, are coupled nonlinear equations of the electric field E, the 

polarization P, and the inversion D. In this section we will talk about the steady-state ab-initio laser 

theory (SALT), which gives a set of self-consistent time-independent equations for the steady state 

solutions of the Maxwell-Bloch equations. The fundamental equation of SALT as it’s presented in [11] 

is, 
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[𝛁2 + (𝜀𝑐(𝒓) +
𝛾⊥

(𝜔𝜇 −𝜔𝛼) + 𝑖𝛾⊥

𝐷0(𝒓)

1 + ∑ 𝛤𝑛|𝛹𝑛(𝒓)|
2

𝑛
)𝑘𝜇

2]𝛹𝜇(𝒓) = 0     (𝟓. 𝟐. 𝟏) 

where 𝜀𝑐(𝒓) is the dielectric function of the active medium, 𝛾⊥ is the transverse relaxation constant, 

𝜔𝛼 is the center frequency of the Lorentzian gain curve, 𝐷0(𝒓) is the pump parameter (expressed as 

inversion of populations), 𝜔𝜇 and 𝑘𝜇 are the eigenfrequencies and the corresponding wavenumbers, 

𝛹𝜇(𝒓) are the eigenfunctions which corresponds to 𝜔𝜇,  and 𝛤𝑛(𝜔𝑛) = 𝛾⊥
2/(𝛾⊥

2 + (𝜔𝑛 −𝜔𝑎)
2)), is 

the homogeneous broadened Lorentzian gain curve.  

In the equation (5.2.1) the effect of the gain medium is incorporated in the term,  

𝜀𝑔(𝒓, 𝜔) =
𝛾⊥

(𝜔 − 𝜔𝛼) + 𝑖𝛾⊥

𝐷0(𝒓)

1 + ∑ 𝛤𝑛|𝛹𝑛(𝒓)|
2

𝑛
       (𝟓. 𝟐. 𝟐) 

The additional dielectric function 𝜀𝑔(𝒓, 𝜔) is in general complex; its imaginary part is negative 

(amplifying) when the gain medium is inverted and its value depends on the pump strength. At lasing 

threshold value of 𝐷0(𝒓), the gain compensates the outcoupling loss as well as any cavity loss from the 

cavity dielectric function. For lasing to occur to the i-th mode, D0 must overcome the corresponding 

threshold value 𝐷0
(𝑖)

 for this mode. A new mode appears once, D0 surpasses its threshold. When D0, 

reaches the threshold value for each lasing mode, it interacts with itself through the nonlinear term in 

denominator of (5.2.2), which express the spatial hole burning effect. At the same time, the lasing 

modes interacts with other modes. In addition, another factor which also determines the order of the 

lasing mode is the position of this under the homogeneously broadened gain curve Γ(ω). We consider a 

Lorentzian shape of Γ(ω), and modes in the vicinity of ωα usually overcomes first their threshold value, 

so they make lase first.   

Despite the crucial role playing by nonlinear modal interactions, we can solve the linear eigenvalue 

problem and find the threshold lasing modes and the corresponding lasing frequencies. Subsequently, 

we will present the way in which we find the aforementioned parameters. We are interested about the 

one-dimensional problem, and we ignore the nonlinear term in (5.2.1), 

[
𝑑2

𝑑𝑥
+ (𝜀𝑐(𝑥) +

𝛾⊥𝐷0(𝑥)

(𝜔 − 𝜔𝛼) + 𝑖𝛾⊥
)𝜔2]𝛹(𝑥) = 0         (𝟓. 𝟐. 𝟑) 

The solution of (5.2.3) is obtained by consider the non-Hermitian CF boundary conditions, as we show 

in the above section. We can rewrite the above eigenvalue problem as an eigenvalue problem where 

the eigenvalue is the pump value D0, 

𝐿̂(𝜔)𝛹(𝑥) = −𝐷0(𝑥)𝛹(𝑥)         (𝟓. 𝟐. 𝟒) 

where, 

𝐿̂(𝜔) =
(𝜔 − 𝜔𝛼) + 𝑖𝛾⊥

𝛾⊥𝜔
2 (

𝑑2

𝑑𝑥
+ 𝜀𝑐(𝑥)𝜔

2)       (𝟓. 𝟐. 𝟓) 

By scanning the free normalized parameter 𝜔̅ (unknown lasing frequency in normalized units) to the 

physically relevant interval 𝜔̅  = [𝜔̅ 𝛼 − 3, 𝜔̅ 𝛼 + 3] and keep tracking the path of the eigenvalues of 

the non-Hermitian operator 𝐿̂(𝜔) in the complex plane, we can easily find the value of 𝜔̅, for which the 

eigenvalues of 𝐿̂, becomes real. That way we can find the lasing frequencies (in ascending order) and 

the linear lasing thresholds. The solution of the linear problem provides an estimate for the nonlinear.  
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For the case of two coupled ridge cavities at a distance d/L=0.025 with dielectric permittivity in both 

cavities 𝜀𝑐 = (3 + 0.001𝑖)
2, and with 𝜀𝑐 = 1.2

2 in the space between them, the linear threshold 

calculation for 𝛾̅⊥ = 1 𝜔̅ 𝛼 = 20 (the bar means that the parameters are in normalized units), gives the 

eigenvalues trajectories presented in fig. (15. a, b) for the cases of uniform and non-uniform pump 

distribution respectively:  

 

Figure 15- Eigenvalues trajectories in the complex plane for 𝜸̅⊥ = 𝟏 and for the regimes of: (a) Uniform pump (b) 
nonuniform pump. The lasing frequencies arises from the claim that, 𝑰𝒎{𝑫𝟎} = 𝟎. 

 

The corresponding figures are presented in fig. (16. a, b), for the case of 𝛾̅⊥ = 10: 

 

Figure 16 -Eigenvalues trajectories in the complex plane for 𝜸̅⊥ = 𝟏𝟎 and for the regimes of: (a) Uniform pump (b) 
nonuniform pump. The lasing frequencies arises from the claim, 𝑰𝒎{𝑫𝟎} = 𝟎. 

 
 

Similar results are obtained for the case of 𝛾̅⊥ = 1, with the only differences to be the intracavity 

distance which is four time greater i.e. it becomes d/L=0.1, and the permittivity of both cavities which 

becomes 𝜀𝑐 = (3 + 0.008𝑖)
2. The corresponding results are presented below:  
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Figure 17- Eigenvalues trajectories in the complex plane for 𝜸̅⊥ = 𝟏 and for the regimes of: (a) Uniform pump (b) 
nonuniform pump. The lasing frequencies arises from the claim, 𝑰𝒎{𝑫𝟎} = 𝟎. 

 

 

As one can see from the linear threshold analysis, fig. (15), (16), (17) the modes which makes lasing and 

the corresponding lasing thresholds are different for the cases of uniform and non-uniform pumping. 

This fact is also verified from the solution of the full nonlinear problem through Maxwell-Bloch 

equations (Chapters 6, 7, 8).  

In this thesis, we’ll refer three different cases which are:  

1. 𝛄̅⊥ = 𝟏, distance between cavities d/L=0.025 and the cavities refractive index to be 𝒏 = 𝟑 +

𝟎. 𝟎𝟎𝟏𝒊:  Case Ia  

2. 𝛄̅⊥ = 𝟏𝟎, distance between cavities d/L=0.025 and the cavities refractive index to be 𝒏 = 𝟑 +

𝟎. 𝟎𝟎𝟏𝒊:  Case Ib. 

3. 𝛄̅⊥ = 𝟏, distance between cavities d/L=0.1 and the cavities refractive index to be 𝒏 = 𝟑 +

𝟎. 𝟎𝟎𝟖𝒊: Case II. 

5.3- Lasing modes for different gain curves 
 

The homogeneous broadened gain curves, 𝛤𝑛(𝜔𝑛) = 𝛾̅⊥
2/(𝛾̅⊥

2 + (𝜔̅𝑛 − 𝜔̅a)
2)), and the cold cavity 

modes as arising from the Helmholtz equation for CF-boundary conditions are presented in fig. (18) for 
the case of cavities with, 𝜀𝑐 = (3 + 0.001𝑖)

2 which are at distance d/L=0.025 (case I). In fig. (19) we 
present the corresponding gain curve, for the case of cavities with, 𝜀𝑐 = (3 + 0.008𝑖)

2 which are at 
distance d/L=0.1 (case II). 
 



41 
 

 
Figure 18 - Homogeneous broadened gain curves: Case I, for 𝜸̅⊥ = 𝟏 in (a) and  𝜸̅⊥ = 𝟏𝟎 in (b).  

 
 

 

 

Figure 19- Homogeneous broadened gain curve, Case II, for 𝜸̅⊥ = 𝟏.  
 

The CF-eigenvalues, are depicted in the complex plane in fig. (20) for both cases mentioned above.  

 

 
Figure 20- CF- eigenvalues in the complex plane for (a) Case I (b) Case II. 

 

Tables 2, 3 show the first six CF-frequencies of the open resonator, which lases as well as their Q-
factors for both cases I, II respectively, while in tables 4,5 are presented the corresponding linear lasing 
thresholds for the regimes of uniform and nonuniform pumps.  
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The quality factor (Q-factor) of a resonator is a measure of the outcoupling losses. Different cavity 
modes have different Q-factors, because each mode has its own relaxation rate. In this thesis we will 
adopt the definition as given in [34],  
 

    𝑄𝑚 =
𝑅𝑒{𝜔𝑚}

2𝐼𝑚{𝜔𝑚}
     (𝟓. 𝟐. 𝟏)   

 
where 𝜔𝑚 are the frequencies of the open resonator, which are complex due to the outcoupling 
losses2.   

 

Table 2- CF- frequencies and the corresponding Q-factors for cavities at distance d/L=0.025 

CF-frequencies d/L=0.025 Qm 

1 20.188-0.242i 41.649 

2 19.639-0.251i 39.094 

3 21.814- 0.225i 48.366 

4 18.033-0.272i 33.159 

5 22.349-0.219i 50.992 

6 17.463-0.284i 30.707 

 

Table 3 - CF- frequencies and the corresponding Q-factors for cavities at distance d/L=0.1 

CF-frequencies d/L=0.1 Qm 

1 20.537-0.309i 33.270 

2 21.145-0.311i 33.959 

3 18.694-0.334i 28.0195 

4 18.088-0.350i 25.829 

5 22.896-0.271i 42.262 

6 23.638-0.292i 40.518 

 
Table 4- Linear lasing thresholds for the regimes of uniform and non-uniform applied pump for the 

cases Ia and Ib. 

CF-frequencies Linear thresholds 
uniform pump 
𝜸̅⊥ = 𝟏 

Linear thresholds 
non-uniform pump 

𝜸̅⊥ = 𝟏 

Linear thresholds 
uniform pump 
𝜸̅⊥ = 𝟏𝟎 

Linear thresholds 
non-uniform pump 

𝜸̅⊥ = 𝟏𝟎 
1 0.225 0.456 0.219 0.444 

2 0.245 - 0.230 0.495 

3 0.665 0.884 0.216 0.368 

4 0.845 - 0.253 0.443 

5 - - 0.210 - 

6 - - 0.275 - 

 
 

 

                                                           
2 As one can see, the cavity’s modes has very small Q-factors, as compared with the laser cavities 
presented in [35]. Τhis approach was made intentionally, for computational reasons. High Q-cavities 
means that the radiation losses are small enough, so the system needs a long time to reach its steady 
state, which demands very long computational time. Nevertheless, system’s behavior does not change.  
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Table 5 -Linear lasing thresholds for the regimes of uniform and non-uniform applied gain for the 
case II. 

CF-frequencies Linear thresholds 
uniform pump 
𝜸̅⊥ = 𝟏 

Linear thresholds 
non-uniform pump 

𝜸̅⊥ = 𝟏 
1 0.357 0.550 

2 0.629 - 

3 0.510 0.880 

4 - - 

5 - - 

6 - - 

 

The spatial profiles of CF-modes are shown in fig. (21) for the case I and in fig. (22) for the case II. 
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Figure 21- Spatial profiles of the first six open (CF) cavity modes (a), (b), (c), (d), (e), (f) respectively.  
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Figure 22- Spatial profiles of the first six open (CF) cavity modes (a), (b), (c), (d), (e), (f) respectively. 

 

5.4- Expansion in the constant flux (CF) basis 
 

In the last section of chapter 2, we referred to the basic equations that constitute the semiclassical 

laser theory. For consistency reasons we repeat them here,  

𝐸̇𝑚 =
𝑖

2𝜔̅0
[𝜔̅𝑎
2 − 𝜔̅𝑚

2 ]𝐸𝑚 +
𝑖𝜔̅𝑎
2
∑𝐵𝑚𝑛
𝑛

𝑃𝑛       (𝟓. 𝟒. 𝟏)    
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𝑃̇𝑚 = −𝛾̅⊥𝑃𝑚 − 𝑖𝛾̅⊥∑𝐷𝑚𝑛
𝑛

𝐸𝑛       (𝟓. 𝟒. 𝟐) 

𝐷̇𝑚𝑛 = 𝛾̅‖[𝐷0,𝑚𝑛 −𝐷𝑚𝑛] +
𝑖𝛾̅‖

2
∑[

𝑟,𝑞

𝐸𝑟𝑃𝑞
∗𝐴̃𝑚𝑛,𝑟𝑞 − 𝐸𝑟

∗𝑃𝑞𝐴̃′𝑚𝑛,𝑟𝑞]        (𝟓. 𝟒. 𝟑) 

with the only difference that we don’t have the outcoupling loss terms anymore, because they are 

incorporated in the complex frequency 𝜔̅𝑚.  We extend the approach making in chapter 2, by 

expanding the electric field and the polarization, in terms of CF-states. As we refer in section 5.1, is in 

general good approximation to consider that 𝜑𝑚(𝑥, 𝑘) ≈ 𝜑𝑚(𝑥, 𝜔̅𝑎). Therefore, we have the following: 

ℰ(+)(𝑥, 𝑡) =∑𝑒𝑚,0(𝑡)𝑒
−𝑖𝜔𝑎𝑡𝜑𝑚(𝑥, 𝜔𝑎)

𝑚

     (𝟓. 𝟒. 𝟒) 

 𝒫(+)(𝑥, 𝑡) =∑𝑝𝑚,0(𝑡)𝑒
−𝑖𝜔𝑎𝑡𝜑𝑚(𝑥, 𝜔𝑎)

𝑚

   (𝟓. 𝟒. 𝟓) 

as we suppose in the derivation made in chapter 2, before we make the normalization.  

For the SALT analysis, we can make the more specific assumption [31] that the total electric field is a 

linear combination of the components of each individual mode, with the corresponding lasing 

frequencies arises from SALT analysis,  

ℰ(+)(𝑥, 𝑡) =∑𝛹𝑚(𝑟)𝑒
−𝑖𝜔𝑚𝑡

𝑚

      (𝟓. 𝟒. 𝟔) 

where 𝛹𝑚(𝑟) are the modes arises by solving SALT equation (5.2.1) for a specific D0, and 𝜔̅𝑚 are the 

corresponding lasing frequencies. Then each lasing mode is expanded into a complete basis of CF states 

as shown in [31],  

𝛹𝑚(𝑟) =∑𝑎𝑛
(𝜇)

𝑛

𝜑𝑛(𝑥, 𝜔𝑎)            (𝟓. 𝟒. 𝟕) 

By the substitution of (5.4.7) in (5.4.6) we take the total field as predicted from SALT and we equate 

this with the total electric field as we consider in our time domain analysis, (5.4.4).  This way we obtain 

the correspondence between time domain solutions and SALT in normalized units, 

𝐸𝑚(𝑡) = 𝑒
𝑖𝜔̅𝑎𝑡∑𝑎𝑛

(𝜇)

𝜇

𝑒−𝑖𝜔̅𝜇𝑡      (𝟓. 𝟒. 𝟖) 

where 𝜔̅𝜇 are lasing frequencies. From (5.4.8) is clear that each lasing mode is in general a linear 

combination of all CF states, as it is verified from the results presented in chapter 6, mainly when the 

cavity is exposed in the nonuniform pump.  
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Chapter 6 – Two mode lasing in ridge cavities 
 

The aim of this chapter is to understand the effect of inhomogeneous pump distribution, on the 

number of lasing frequencies which appear in the Fourier spectrum of the electric field, for a system of 

two coupled cavities at a distance d/L=0.025, as shown in fig. (14). We’ll examine two different cases 

of the Lorentzian gain curve’s width, the first one is for 𝜸̅⊥ = 𝟏 (case Ia) while the second one is for 

𝜸̅⊥ = 𝟏0 (case Ib). Here we present the simulation results related to a two-mode laser in a system of 

two coupled cavities for two different regimes. The first one refers to the homogeneous pump in both 

cavities while the second one refers to the case of pumping only one cavity, as shown in fig. (23): 

 

Figure 23- Two different pumping regimes: (a) Pump is applied uniformly (b) Pump is applied nonuniformly. 

 

6.1- Two mode lasing (Case Ia) 
 

The parameter values where used for the numerical solution of Maxwell-Bloch equations, are shown in 

table 6: 

Table 6- Parameter values used in the numerical simulation 
𝜸̅
⊥

 𝜸̅
‖
 𝝎̅𝒂 Cavities 

refractive index 
Intracavity 

refractive index 
1  10−3 20 3+0.001i 1.2 

 

From the linear SALT analysis described in section 5.2, for the case of uniform and non-uniform pump 
distribution in both cavities, arises the modes with the lowest linear lasing threshold. Their 
corresponding spatial profile of these modes are shown in fig. (21. a,b).  
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6.1-1. Uniform pump 

When gain is applied uniformly in both cavities, the first two CF-states which lase are these with open 

cavity frequencies, 𝛚𝟏 = 𝟐𝟎. 𝟏𝟖𝟖 − 𝟎. 𝟐𝟒𝟐𝐢 and 𝝎𝟐 = 𝟏𝟗. 𝟔𝟑𝟗 − 𝟎. 𝟐𝟓𝟏𝐢, as shown in section 5.3. 

The time dynamics of the square magnitude of electric field coefficients, the induced polarization 

coefficients and the inversion matrix coefficients for the pump value 𝐷0 = 0.337, as arises from the 

numerical solution of the Maxwell-Bloch equations are shown in fig. (24): 

 

Figure 24- Time dynamics of the square magnitude, of electric field coefficients in (a), of induced polarization 
coefficients in (b), of the diagonal inversion coefficients in (c) and of the off-diagonal inversion coefficients in (d). The 

applied pump value is D0=0.337. 

 

In fig. (25) it’s shown the Fourier spectra3 for pump values 𝐷0 = 0.233 in (a) and 𝐷0 = 0.337 in (b), 

while in fig. (26) are presented the intensity of each coefficient of the electric field and the 

corresponding lasing frequencies for different pump values: 

                                                           
3 The width of the Fourier spectra has numerical origin and is related to the time window which we 
choose, in order to truncate the oscillating electric field coefficients in time, as a result it doesn’t have a 
physical origin. As we mention, in chapter 1, we can’t make a linewidth computation with semiclassical 
laser theory if we don’t introduce the quantum noise. 
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Figure 25- Fourier spectra of the electric field coefficients for 𝑫𝟎 = 𝟎. 𝟐𝟑𝟑 in (a) and for 𝑫𝟎 = 𝟎. 𝟑𝟑𝟕in (b).  

 

 

Figure 26- (a) Square magnitude of the electric field coefficients as a function of the applied gain (b) Lasing frequencies as a 
function of the applied gain. 

 

As one can see from fig. (26), this laser system operates in a single frequency domain, only in the small 

pump interval 𝑫𝟎 = [𝟎. 𝟐𝟐𝟎, 𝟎. 𝟐𝟑𝟑], where the single laser frequency corresponds to the first CF-

state. The increase of the pump value in both cavities up to the value 𝑫𝟐
(𝒕𝒉)

= 𝟎. 𝟐𝟑𝟑 (which is the 

second mode’s threshold) gives rise to the appearance of one additional lasing frequency, which 

corresponds, to the second CF-state which we consider.  

6.1-2. Non-uniform pump 
 

When the system of the two coupled cavities operates in a PT-like phase, i.e. when gain is applied only 

to one cavity, we expect the existence of a single frequency phase, for a pump interval larger than the 

corresponding one, for the case of uniform pumping. The numerical solution of Maxwell-Bloch 

equations for the non-uniform pumping regime, gives the time dynamics of system’s observables as 

shown in fig. (27) for the pump value 𝐷0 = 0.543. The two CF-states, which considered in this regime, 

are the first two (which are referred in section 5.3), as we also used in the regime of uniform pumping 

(section 6.1.1). 
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Figure 27- Time dynamics of the square magnitude, of electric field coefficients in (a), of induced polarization coefficients in 
(b), of the diagonal inversion coefficients in (c) and of the off-diagonal inversion coefficients in (d). The applied pump value 

in one cavity is 𝑫𝟎 = 𝟎. 𝟓𝟒𝟑. 

 

Modal intensities as well as the lasing frequencies for several pump values, in one cavity are shown in 

fig. (28). As one can see we observe the presence of two distinct curves (Modal intensity vs Pump) with 

the same lasing threshold, 𝑫𝟏,𝟐
(𝒕𝒉)

= 𝟎. 𝟒𝟕𝟖 and with the same lasing frequency, 𝝎̅ = 𝝎̅𝜶 = 𝟐𝟎 (fig. 

(28.b)) for each pump value.  
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Figure 28- (a) Square magnitude of electric field coefficients as a function of the applied gain in one cavity. In the 
inset is shown the total intensity of both modes. (b) Lasing frequency as function of the applied gain. In the inset is 

shown the Fourier spectrum of both modes for the pump value 𝑫𝟎 = 𝟎. 𝟓𝟒𝟑.  

 

In the inset of fig. (28.a) is depicted the total intensity which corresponds to the dominant lasing 

frequency. Total intensity is calculated, as |𝐸𝑡𝑜𝑡|
2 = |𝐸1 + 𝐸2|

2, while in the inset of fig. (28.b) is shown 

the Fourier spectrum for the pump value, D0 = 0.543. 

6.2- Two mode lasing (Case Ib) 
 

The results presented below, are obtained by solving numerically the Maxwell-Bloch equations with the 

parameters shown in table 7. 

Table 7- Parameter values used in the numerical simulation.  
𝜸̅
⊥

 𝜸̅
‖
 𝝎̅𝒂 Cavities 

refractive index 
Intracavity 

refractive index 
10 10−3 20 3+0.001i 1.2 

 

From the linear SALT analysis described in section 5.2, for the case of homogeneous pump in both 
cavities, arises that the modes with the lowest threshold are they with CF frequencies, 𝝎𝟐 ≅
𝟏𝟗. 𝟔𝟑𝟗 − 𝟎. 𝟐𝟓𝟏𝐢 and 𝝎𝟑 ≅ 𝟐𝟏. 𝟖𝟏𝟒 − 𝟎. 𝟐𝟐𝟓𝐢 while for the case of non-uniform pump the first 
lasing modes are they with CF-frequencies:  𝝎𝟑 ≅ 𝟐𝟏. 𝟖𝟏𝟒 − 𝟎. 𝟐𝟐𝟓𝐢  and 𝝎𝟓 ≅ 𝟐𝟐. 𝟑𝟒𝟗 − 𝟎. 𝟐𝟏𝟗𝐢. 
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6.2-1   Uniform pumping 
 

As a first step of our analysis we study the time dynamics for the system’s observables, as depicted in 

fig. (29) for pump value D0=0.236 in both cavities (regime of the fig. (23.a)): 

 

Figure 29- Time dynamics of the square magnitude, of electric field coefficients in (a), of induced polarization 
coefficients in (b), of the diagonal inversion coefficients in (c) and of the off-diagonal inversion coefficients in (d). The 

applied pump value in both cavities is D0=0.236. 

 

The time dynamics of the observables depicted on the above figures, reach a steady state after a long 

time. For different pump values, we obtain the numerical solution of MB equations and we get the 

steady state values of modal intensities and the corresponding lasing frequencies, as a function of the 

applied gain in both cavities, as shown in fig. (30). It is important to note that the slope changes, which 

are observed in fig. (30. a), are due to the fact that we get the mean values for the magnitude of the 

electric field coefficients because due to the parameter we use they don’t reach a steady state but they 

make small oscillations.  
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Figure 30- (a) Characteristic curves of the square magnitude of the electric field coefficients and (b) modal 
frequencies as a function of the applied gain to both cavities  

 

In the regime, of homogeneous pump in both cavities, the system operates in a single frequency 

regime for pump values in the interval, D0 ∈ [0.208, 0.224], i.e. when the applied gain is between the 

two lasing thresholds. For pump values smaller than D0 =0.224, the observed lasing frequency is 𝝎̅𝟐 =

𝟏𝟗. 𝟔𝟐𝟎 (second CF-state). The increase of the pump up to the value 𝐷3
(𝑡ℎ)

= 0.224 (lasing threshold 

for the third CF-state), leads to the appearance of the second lasing mode, with its lasing frequency to 

be, 𝝎̅𝟑 = 𝟐𝟏. 𝟖𝟏  (third CF-state). 

On fig. (31) we can see the Fourier spectra of the electric field coefficients for the pump values 

D0=0.216 in (a) and for D0=0.236 in (b). The presence of two distinct frequencies is observed in the 

Fourier spectrum when the applied gain is greater of both lasing thresholds. Each peak corresponds to 

the respective CF-state. One additional result which comes from fig. (31) is that no mixing of CF states 

occurs in the corresponding electric fields when we pump uniformly the system of two cavities4.  

 

Figure 31- Fourier spectrum of the electric field coefficients, for: (a) D0=0.216 and for (b) D0=0.236. 

 

                                                           
4 One should not be create the impression that CF-states mixing is only associated with the heterogeneous 
pump distribution, in the cavities. Each mode is in general a superposition of CF states independently of 
the pump distribution.  
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6.2-2   Non-uniform pump 
 

If we apply gain only to cavity a while the cavity b remains unpumped (regime of the fig. (23. B)) the 

system operates in a PT-like phase. For the pump value D0=0.395, we obtain the time dynamics, as 

depicted in fig. (32), as well as the square magnitude of the electric field coefficients and the 

corresponding lasing frequencies for several pump values in fig (33). 

 

Figure 32- Time dynamics of modal intensities in (a) of induced polarizations due to modal fields in (b) of time 
dynamics of diagonal matrix elements of the inversion in (c) and the off-diagonal inversion elements in (d). The 

applied gain in one cavity is D0=0.395. 
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Figure 33- (a) Square magnitude of the electric field coefficients as a function of the applied gain in one cavity. In the inset is 
shown the total intensity of the lasing CF-state. (b) Lasing frequencies as a function of the applied gain in one cavity, in the 

inset is shown the Fourier spectrum for D0=0.395, and its shown the presence of a single frequency. 

 

As described in fig. (33), the laser system exhibits single frequency operation for the values of the 

applied gain in one cavity, we consider in our simulation. In the inset of the fig. (33.a) is shown the total 

intensity which is calculated as |𝐸𝑡𝑜𝑡|
2 = |𝐸3 + 𝐸5|

2, with 𝐸3,  𝐸5 to be the electric field coefficients 

which corresponds to the third and the fifth CF-states respectively while in the inset of fig. (33. b) is 

shown the Fourier spectrum for the pump value, D0 = 0.395. The observed lasing frequency in the 

phase of single frequency operation is 𝝎̅𝟑 = 𝟐𝟏. 𝟗𝟎𝟒, which corresponds to the third CF-state.  
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Chapter 7  -Four-mode lasing in ridge cavities 
 

In this section, we consider the same system as before, but we take into account four CF-states 

(instead of two in the previous chapter). The selection of these four modes among all others, based on 

the linear SALT analysis, as it was presented in chapter 5. Similar to the analysis of chapter 6, the 

simulations of this system were based on Maxwell- Bloch equations. 

Regarding the distribution of the gain in these cavities, we’ll examine both cases represented in fig. (34) 

as also me make in the chapter above. The first case deals with, the pumping of both cavities while the 

second one, refers to the regime of pumping only one of them.   

 

Figure 34- Pump distribution in the two cavities. The pumped regions are shown with red color. (a) Pump both cavities, (b) 
Pump only cavity a. 

 

The parameters, we use in our simulation are as depicted in tables 6,7 on the above chapter.  

7.1- Four-mode lasing (Case Ia) 
 

The frequencies of the first four modes corresponds to the first four CF-states, as they calculated from 

the finite difference solver, with CF-boundary conditions are shown in table 2.  

7.1-1 Uniform pump distribution 
 

In fig. (35), we can see the temporal behavior of the square magnitude of electric field coefficients, the 

polarization coefficients and the diagonal inversion matrix elements, for the regime of pumping 

homogeneously both cavities (fig. 34. a) with pump value D0=0.490. As we can see, after a long time, all 

the observables reach a steady state.  
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Figure 35- Time dynamics of the square magnitude of the electric field coefficients in (a) of the induced polarizations in (b) 
and for the diagonal inversion density elements. The applied pump value in both cavities in D0=0.491.  

 

The Fourier spectra of the electric field coefficients for D0=0.236 and for D0=0.491 are shown in fig. 

(36). For the first pump value, we observe the presence of only one frequency, while this pump value is 

lower than the second lasing threshold. For the second pump value which is higher of both thresholds 

pump values, in the Fourier spectrum there exist two distinct frequencies.   

 

Figure 36- Fourier spectrum of the electric field coefficients, for D0=0.236 in (a) and for D0=0.491 in (b). 

 

The square magnitude of the electric field coefficients and the corresponding lasing frequencies for 

several pump values are presented in fig. (37). With dashed lines in the inset of fig. (37. a), are depicted 
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the square magnitude of the electric field coefficients for the modes we consider in chapter 6, when we 

examine the two-mode lasing, for the same gain curve. Furthermore, for the pump interval we consider 

only two modes lase.  

 

Figure 37- Square magnitude of the electric field coefficients as a function of the applied gain in (a) and lasing frequencies 
as a function of the applied gain in (b). In (a) the dashed lines are the results obtained for two-mode lasing. 

 

The single frequency operation is observed in the pump interval, 𝑫𝟎 = [𝟎. 𝟐𝟐𝟎, 𝟎. 𝟐𝟑𝟑], i.e. between 

the two lasing thresholds.   

7.1-2  Non-uniform pump 
 

For the case of the non-uniform pump distribution in the cavities system we make the same analysis as 

before. The temporal behavior of system’s observables for 𝑫𝟎 = 𝟎. 𝟔𝟗𝟏 is shown in fig. (38): 
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Figure 38- Time dynamics of (a) the square magnitude of the electric field coefficients (b) Polarization coefficients (c) 
Diagonal matrix elements of the inversion. The simulation which give us these plots, became for D0=0.691. 

 

The square magnitude of the electric field coefficients and the corresponding lasing frequencies as a 

function of the applied gain are shown in fig. (39). Furthermore, in the inset of fig. (39.a) is shown the 

total intensity in the dominant lasing frequency, 𝝎̅ = 𝝎̅𝜶 = 𝟐𝟎, which is defined as: |𝐸𝑡𝑜𝑡|
2 =

|𝐸1 + 𝐸2|
2, with 𝐸1,  𝐸2 to be the electric field coefficients which corresponds to the first and the 

second CF-state respectively. The lasing frequency in the single frequency phase as calculated for the 

cases of two and four-mode lasing is absolutely the same. In the inset of fig. (39. b) is shown the 

Fourier spectrum of the electric field coefficients for the applied pump value, D0=0.691 in the one 

cavity.  
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Figure 39- (a) Square magnitude of the electric field coefficients as a function of the applied gain. In the inset is shown the 
total intensity in the dominant lasing frequency.  (b) Modes frequency as a function of the applied gain, for the regime of 
non-uniform pumping. In the inset is shown the Fourier spectrum of modal fields for the pump value D0=0.691. In (a) the 

dashed lines are the results obtained for two-mode lasing. 

 

Similar to the two-mode lasing describing in the section 6.1.2, only the first CF-state contributes to the 

mode’s profile, while both modal fields are expressed as a function only for this CF-state. More 

specifically, for the pump value D0=0.691, the mode’s profile (fig. 40) is defined from the expression:  

𝛹1(𝑥) =∑𝑎𝑛
(𝜇)

𝑛

𝜑𝑛(𝑥, 𝜔̅𝑎) = 𝑎1
(1)𝜑1(𝑥, 𝜔̅𝑎) + 𝑎2

(1)𝜑2(𝑥, 𝜔̅𝑎) + 𝑎3
(1)𝜑3(𝑥, 𝜔̅𝑎) + 𝑎4

(1)𝜑4(𝑥, 𝜔̅𝑎) 

with the expansion coefficients are given from the Fourier spectra of the electric field coefficients.  

 

Figure 40- Lasing mode’s profile for D0=0.691, with blue, while with red are represented the two cavities.  

We can calculate the intensity of the lasing mode in each cavity as, 𝐼𝑎,𝑏
(𝜇)
= ∫ |𝛹𝜇(𝑥)|

2𝑑𝑥 /𝐿𝑐𝑎𝑣, where 

the integral is calculated in each cavity of length 𝐿𝑐𝑎𝑣, the index μ refers to the lasing mode and the 

indices a,b are mentioned to the active and the passive cavity respectively. For the specific pump value 

referred above, we get that,  𝐼𝑎
(1)
= 0.278 and 𝐼𝑏

(1)
= 0.295, therefore the intensity ratio 𝐼𝑎

(1)
𝐼𝑏
(1)

⁄ =

0.942. The fact that the intensity ratio is very close to unity verifies that the system lases in the PT- 

phase, so in both cavities we have approximately the same intensity. This result corresponds to the 

lasing in the PT- phase as examined in chapter 4 for the two ring coupled cavities.  

7.2- Lorentzian gain curve with (Case Ib) 
 

We’ll follow the same procedure, with that of the previous section, with the frequencies of the first 

four CF- modes presented in table 2.  



61 
 

7.2-1. Uniform pump 
 

When the cavities are pumped uniformly, as shown in fig. (34. a), the time dynamics of system’s 

observables, for the applied pump D0=0.360 is depicted in fig. (41): 

 

Figure 41- Time dynamics of the (a) square magnitude of the electric field coefficients (b) induced polarization 
coefficients and (c) diagonal inversion elements. The applied pump value in bot cavities is D0=0.360. 

 

For several pump values, in fig. (43) are presented the square magnitude of the electric field 

coefficients as well as the corresponding lasing frequencies. In fig. (43. a) it is clear the very good 

agreement between the modal intensities of the first two modes as they calculated for the cases of 

two-mode lasing and the four-mode lasing. This shows the method’s consistency and convergence. In 

addition, in fig. (42) are presented the Fourier spectra for four different pump values: 
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Figure 42-Fourier spectra of the electric field coefficients for (a) D0=0.217 (b) D0=0.243 (c) D0=0.243 (d) D0=0.360. 

 

 

Figure 43- (a) Square magnitude of the electric field coefficients as a function of the applied gain in both cavities. With 
dashed lines are shown the intensities of the first two modes, as they calculated for the case of two-mode lasing. (b) Lasing 

frequencies as a function of the applied gain. In (a) the dashed lines are the results obtained for two-mode lasing. 

 

We refer the 1st, the 2nd, the 3rd and the 4th modes regarding to the order in which they lase and they 

corresponds to the 2nd, the 3rd, the 4th and the 1st CF-states respectively. In this pumping regime, single 

frequency operation is observed, only in a small pump interval: D0 ∈ [0.208, 0.217], with the lasing 

frequency to be, 𝝎̅𝟐 = 𝟏𝟗. 𝟔𝟐𝟏, which corresponds to the second CF-state of the open resonator. 

Further increase in the pump value gives rise to the appearance of additional lasing frequencies. Just 

after the second lasing threshold 𝐷3
(𝑡ℎ)

= 0.217, the second lasing frequency is appeared, 𝜔̅3 =

21.814, which correspond to the third CF-state. When the applied pump reaches the third lasing 

threshold, 𝐷4
(𝑡ℎ)

= 0.264, appears the third lasing frequency, 𝜔̅4 = 18.185 which corresponds to the 

forth CF-state. Finally, when the pump value takes values greater than the fourth lasing threshold, 
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𝐷1
(𝑡ℎ)

= 0.320 appears the fourth lasing frequency, 𝜔̅1 = 20.165 which corresponds to the first CF-

state.  

 

7.2-2.  Non-uniform pump 

When pump is applied on only one cavity, we obtain the time dynamics of square magnitude of the 

electric field coefficients, the polarization coefficients and the diagonal inversion elements for 

D0=0.487, as shown in fig. (44): 

 

Figure 44- Time dynamics of the (a) Square magnitude of the electric field coefficients (b) polarization coefficients and (c) 
diagonal inversion elements. The applied pump value is, D0=0.487. 

 

The first two modes (CF-states) has the same lasing thresholds, 𝐷3
(𝑡ℎ) = 𝐷5

(𝑡ℎ) = 0.370 (fig. (45. a)), and 

they correspond to the third and the fifth CF-state respectively. Single frequency operation with 𝝎̅𝟑 =

𝟐𝟏. 𝟗𝟑𝟔,  is observed for the pump values, D0 ∈ [0.370, 0.396] and this frequency corresponds to the 

third CF-state. The pump interval in which the system operates in a single frequency phase is greater 

than the corresponding one for the case of uniform pumping by 189%. In addition, the lasing frequency 

in the single frequency phase, differs from the corresponding one for the case of two-mode lasing by 

0.146%. The third and fourth lasing modes, which corresponds to the fourth and the sixth CF-states 

have the same lasing thresholds (𝐷4
(𝑡ℎ) = 𝐷6

(𝑡ℎ)). For the pump values up to this threshold, 𝐷4
(𝑡ℎ)

=

𝐷6
(𝑡ℎ) = 0.396 we observe the appearance of the second lasing frequency, 𝜔̅4 = 18.066 which 

corresponds to the fourth CF-state, as shown in fig. (45.c). In the fig. (43.c) are depicted the total 

intensities which corresponds to the lasing frequencies referred above for several pump values. They 
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are calculated as, |𝐸𝑛,𝑡𝑜𝑡|
2 = |𝐸𝑖 + 𝐸𝑗|

2, with 𝐸𝑖 ,  𝐸𝑗  to be the electric field coefficients which 

corresponds to the third and the fifth CF-states for the 1st lasing mode and to the 4th and 6th CF-states 

for the 2nd lasing mode respectively. 

 

Figure 45- (a) Square magnitude of the electric field coefficients as a function of the applied gain (b) lasing frequencies as a 
function of the applied gain. (c) total intensities of the two lasing modes as a function of the applied gain.  In (a) the dashed 

lines are the results obtained for two-mode lasing. 
 

The Fourier spectra for the pump values, D0=0.396 and D0=0.487 are shown in fig. (46): 
 

 

Figure 46- Fourier spectrum of the electric field coefficients for pump values: (a) D0=0.396, (b) D0=0.487. 
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For the pump value D0=0.396, in which we have singe frequency operation the mode’s profile (fig. (47)) 

is defined from the expression:  

𝛹1(𝑟) =∑𝑎𝑛
(𝜇)

𝑛

𝜑𝑛(𝑥, 𝜔̅𝑎) = 𝑎3
(3)𝜑3(𝑥, 𝜔̅𝑎) + 𝑎5

(3)𝜑5(𝑥, 𝜔̅𝑎) + 𝑎4
(3)𝜑4(𝑥, 𝜔̅𝑎) + 𝑎6

(3)𝜑6(𝑥, 𝜔̅𝑎) 

with the expansion coefficients given from the Fourier spectra of the electric field coefficients. 

 

Figure 47- First lasing mode’s profile for D0=0.396, with blue, while with red are represented the two cavities. 

 

We can calculate the intensity of the lasing mode in each cavity as, 𝐼𝑎,𝑏
(𝜇)
= ∫ |𝛹𝜇(𝑥)|

2𝑑𝑥/𝐿𝑐𝑎𝑣, where 

the integral is calculated in each cavity of length 𝐿𝑐𝑎𝑣, the index μ refers to the lasing mode and the 

indices a,b are mentioned to the active and the passive cavity respectively. For the specific pump value 

referred above, we get that,  𝐼𝑎
(1)
= 0.026 and 𝐼𝑏

(1)
= 0.018, therefore the intensity ratio 𝐼𝑎

(1)
𝐼𝑏
(1)

⁄ =

1.468. The fact that the intensity ratio is enough greater to unity verify that the system lases in the 

broken PT- phase, so the intensity in the active cavity (a) is greater than the intensity in the passive one 

(b). This result corresponds to the lasing in the broken PT- phase as examined in chapter 4 for the two 

ring coupled cavities.  
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Chapter 8 - Six mode lasing in ridge cavities 
 

For the case of the homogeneous broadened Lorentzian gain curve with 𝛾̅⊥ = 10 (Case Ib), we want to 

examine which CF-states are lasing in the regime of the non-uniform pumping. These modes, are 

different from the first four CF-states as we’ll see below. The reason for this is because the non-

uniform pumping enhances the mixing of the CF-states, therefore we have to consider more than the 

first four CF-states.  In the sections 8.1 and 8.2 we’ll examine the uniform and nonuniform pumping 

regimes, respectively, for cavities at a distance d/L=0.025 (Case Ib), while in section 8.3 we present the 

numerical simulations for two coupled cavities at a distance d/L=0.1 and with refractive index 

n=3+0.008i, referred as Case II.  

8.1- Uniform pump- Case Ib 
 

When both cavities are pumped uniformly, we get the time dynamics for the square magnitude of the 

electric field coefficients, the polarization coefficients and the diagonal inversion elements when the 

applied pump is D0=0.386 as shown in fig. (48): 

 

Figure 48- Time dynamics of the (a) Square magnitude of the electric field coefficients (c) polarization coefficients (d) 
diagonal inversion elements. The applied pump value is D0=0.386. 

 

The square magnitude of the electric field coefficients as well as the corresponding lasing frequencies 

for several pump values are depicted in fig. (49):  
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Figure 49- (a) Square magnitude of the electric field coefficients as a function of the applied gain.  
With dashed lines are shown the square magnitude of the electric field coefficients as they calculated in chapter 7 

for the four-mode lasing (b) lasing frequencies as a function of the applied gain. 

 

As mode 1, we refer the first lasing mode and it’s corresponds to the second CF-state, with the same 

manner we have defined all other lasing modes in fig. (49). The second lasing mode corresponds to the 

third CF-state, the third lasing mode corresponds to the fourth CF-state and the fourth lasing mode 

corresponds to the first CF-state. With dashed lines in fig. (49. a) are shown the square magnitude of 

the electric field coefficients as they calculated in chapter 7, for the case of the four-mode lasing. As 

one can see for the 3rd and the 4th mode we get very good agreement between the four and six mode 

lasing, while for the first two modes the convergence it isn’t very good, maybe because the 5th and the 

6th modes affects the first two even while there are not appears to lase, since the corresponding 

electric field coefficients have values of the order of 10-3 for the pump values presented on the above 

figure. Nevertheless, the lasing thresholds are close enough. 

Single mode operation exists, only between the first two lasing threshold, i.e. in the pump interval, 

𝑫𝟎 = [𝟎. 𝟐𝟎𝟎, 𝟎. 𝟐𝟐𝟔]. The lasing frequency in the single frequency domain, is 𝝎̅𝟐 = 𝟏𝟗. 𝟔𝟕𝟒, which 

corresponds to the second CF-frequency. The increase of the pump value up to the second lasing 

threshold, 𝐷3
𝑡ℎ = 0.226 has as a consequence the appearance a second lasing frequency, 𝜔̅3 = 21.872 

which corresponds to the third CF-state. Furthermore, when the pump overcomes the value, 𝐷4
𝑡ℎ =

0.266 the third lasing frequency makes its appearance, 𝜔̅4 = 18.209 and corresponds to the fourth CF-

state. Finally, for pump values up to the fourth lasing threshold, 𝐷1
𝑡ℎ = 0.306 we observe, the presence 

of the fourth lasing frequency, 𝜔̅1 = 20.163 which corresponds to the first CF-state.  

8.2- Non-uniform pump- Case Ib 
 

For the case of the non-uniform pumping, we get the time dynamics of the system’s observables for 

the pump value, D0=0.585 as shown in fig. (50): 
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Figure 50- Time dynamics of the (a) Square magnitude of the electric field coefficients (c) polarization coefficients (d) 
diagonal inversion elements. The applied pump value is D0=0.585. 

 

The square magnitude of the electric field coefficients, the corresponding lasing frequencies as well as 

the total intensity of the first two lasing modes for several pump values, are shown in fig. (51):  
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Figure 51 - (a) Square magnitude of the electric field coefficients as a function of the applied gain (b) lasing frequencies as a 
function of the applied gain (c) total intensity in each lasing frequency as a function of the applied gain. 

 

The lasing threshold of the third and fifth CF-states are, 𝐷3,5
𝑡ℎ = 0.375 while the fourth and sixth CF-

states lase at, 𝐷4,6
𝑡ℎ = 0.405.  The system exhibits single mode operation for the pump interval, 𝑫𝟎 ∈

[𝟎. 𝟑𝟕𝟓, 𝟎. 𝟒𝟎𝟓], and the corresponding lasing frequency is 𝜔̅3 = 21.933.This frequency corresponds 

to the third CF-state. The pump interval in which the system operates in a single frequency phase is 

greater than the corresponding one in the case of uniform pumping by 115%. In addition, the lasing 

frequency in the single frequency phase, differs from the corresponding one for the case of four-mode 

lasing by 0.014%.  The increase of the pump up to the value 𝐷4,6
𝑡ℎ , give rise to the appearance of one 

additional lasing frequency, which corresponds to the fourth CF-state, 𝜔̅4 = 18.066.  The 

corresponding Fourier spectra for the pump values, D0=0.390 and D0=0.585 are shown in fig. (52): 
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Figure 52- Fourier spectra of the electric field coefficients for: (a) D0=0.390 and (b) D0=0.385. 

 

8.3- Non-uniform pump- Case II 
 

Since we have verified the convergence of our computational method of the description of multimode 

laser effects, we will examine one additional regime, which corresponds to increased intracavity 

distance. As one can understand, the coupling between the modes in a system of two cavities depends 

on the distance between them. Therefore, if we want to make the laser system lase in the broken PT-

phase we must increase the intracavity distance, which has as a following the decrease of the modes 

coupling. This regime was also examined in chapter 4, where we make the description of the discrete 

cavities model. So, we’ll consider the normalized distance between cavities to be d/L=0.1 and their 

refractive index to be n=3+0.008i (Case II). The CF-frequencies of the first six modes closest to the gain 

curve’s center are presented in table 3 and their spatial profiles are shown in fig. (22). Also, the linear 

lasing thresholds of these modes are presented in table 5. 

Therefore, when the system of cavities is pumped nonuniformly, we obtain the time dynamics for the 

pump value, D0=0.490 as presented in fig. (53): 
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Figure 53- Time dynamics of the (a) square magnitude of the electric field coefficients (b) polarization coefficients (c) 
diagonal inversion elements, for the pump value D0=0.490. 

 

For different pump values we obtain the square magnitude of the electric field coefficients and the 

corresponding lasing frequencies as presented in fig. (54): 

 

Figure 54- (a) Square magnitude of the electric field coefficients as a function of the applied gain in one cavity. In the inset is 
shown the total intensity of all modes, in the single frequency presented in (b). (b) Lasing frequency for different pump 

values.  

 

The numbering of the modes on the above figures corresponds to the CF-states from the first to the 6th 

respectively. As we can see in the Fourier spectrum shown in the fig. (55) all the modes are expressed 

in terms of the first CF-state. In the inset of fig. (54. a) is depicted the total intensity which corresponds 
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to the lasing frequency referred above. This was calculated as, |𝐸𝑡𝑜𝑡|
2 = |𝐸1 + 𝐸2|

2, with 𝐸1,  𝐸2 to be 

the electric field coefficients which corresponds to the first and the second CF-states respectively.   

 

 

Figure 55- Fourier spectra of the electric field coefficients for D0=0.490. 

 

In addition, we can calculate the intensity of the lasing mode in each cavity as, 𝐼𝑎,𝑏
(𝜇)
= ∫ |𝛹𝜇(𝑥)|

2𝑑𝑥 /

𝐿𝑐𝑎𝑣, where the integral is calculated in each cavity of length 𝐿𝑐𝑎𝑣, the index μ refers to the lasing 

mode and the indices a, b are mentioned to the active and the passive cavity respectively. Therefore, 

for each pump value we obtain the mode’s intensity in each cavity, and in fig. (56) are shown the ratio 

𝐼𝑎 𝐼𝑏⁄  as a function of the applied pump:  

 

Figure 56- Intensity ratio, 𝑰𝒂 𝑰𝒃⁄  for different pump values. 

 

The intensity in the active cavity is approximately twice times the intensity in the passive one for each 

pump value.  Therefore, we can claim that for the specific set of parameters, the system lase in the 

broken PT- phase. For the pump value D0=0.490, in which we have singe frequency operation the 

mode’s profile (fig. (57)) is defined from the expression:  

𝛹1(𝑟) =∑𝑎𝑛
(𝜇)

𝑛

𝜑𝑛(𝑥, 𝜔̅𝑎)

= 𝑎1
(1)
𝜑1(𝑥, 𝜔̅𝑎) + 𝑎2

(1)
𝜑2(𝑥, 𝜔̅𝑎) + 𝑎3

(1)
𝜑3(𝑥, 𝜔̅𝑎) + 𝑎4

(1)
𝜑4(𝑥, 𝜔̅𝑎) + 𝑎5

(1)
𝜑5(𝑥, 𝜔̅𝑎)

+ 𝑎6
(1)𝜑6(𝑥, 𝜔̅𝑎) 
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with the expansion coefficients are given from the Fourier spectrum of the electric field coefficients. 

 

 

Figure 57- Lasing mode’s profile for D0=0.490, with blue, while with red are represented the two cavities 
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Chapter 9 – Conclusions and open questions 
 

In this thesis we have presented the application of the semiclassical laser theory on the system of 

coupled cavities.  

First of all, we discussed about single mode coupled ring cavities and we examined the system both 

linearly and nonlinearly (for the case of class A laser). This system has shown to present exceptional 

points, therefore a transition from the PT-symmetric phase to the broken PT-phase is observed upon 

varying the gain which is applied in one cavity. The order in which the transition occurs, was shown to 

change when we investigate the system nonlinearly.  

Secondly, we studied a system of two-coupled ridge cavities for the cases of a Lorentzian gain curve 

with width 𝛾̅⊥ = 1 and 𝛾̅⊥ = 10, for the cases of uniform and nonuniform pumping. The treatment of 

this system was done by consider successively two, four and six open cavity modes (CF-states). The 

modal expansion method’s consistency and convergence were verified. In addition, the pump interval 

in which single mode operation is observed appears to be much greater for the case of nonuniform 

pumping as compared to the case of uniform pumping. For the case of a Lorentzian gain curve with 

𝛾̅⊥ = 1, the system lase in the PT-phase while when the coupling between two cavities became smaller 

and the loss in the passive cavity (cavity without gain) became greater the system lase in the broken 

PT-phase. This behavior is similar with the case of coupled ring cavities. On the other hand, for the case 

of a Lorentzian gain curve with 𝛾̅⊥ = 10, the system lase in the broken PT-phase for the parameter 

values which were used.  

As a further study, we would like to extend our method in two spatial dimensions in order to compare 

the theoretical with the experimental results, obtain for the case of coupled ring cavities presented in 

[35]. So far, we haven’t considered the noise due to spontaneous emission. Within the framework of 

the semiclassical laser theory, a Langevin type of stochastic noise can be integrated in the Maxwell-

Bloch equations in order to incorporate the effect of the spontaneous emission in the laser dynamics. 

So, the computation of the laser linewidth can be numerically calculated.  
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Appendix A- Bi-orthogonality conditions 
 

The biorthogonality condition, of the modes arises from the Helmholtz one dimensional eigenvalue 

problem. Let the eigenfunctions be 𝜑𝑚(𝑥), 𝜑𝑛(𝑥) with different eigenvalues 𝑘𝑚, 𝑘𝑛 respectively, 

which satisfy the following equations:  

𝜑𝑚
′′ + 𝑘𝑚

2 𝜀(𝑥)𝜑𝑚 = 0   (𝑨. 𝟏)  

𝜑𝑛
′′ + 𝑘𝑛

2𝜀(𝑥)𝜑𝑛 = 0       (𝑨. 𝟐)    

In this thesis, we are dealing with two different kinds of boundary conditions, at the edges of the 

interval 𝑥 ∈ [−𝑙, 𝑙].  First of all, the periodic boundary conditions (ring cavities) are,  

𝜑𝑚,𝑛(𝑙) = 𝜑𝑚,𝑛(−𝑙) and 𝜑𝑚,𝑛
′ (𝑙) = 𝜑𝑚,𝑛

′ (−𝑙). 

and then with CF-boundary conditions (ridge cavities) which are,  

𝜑𝑚,𝑛
′ (±𝑙) = ±𝑖𝑘𝜑𝑚,𝑛(±𝑙). 

We begin by multiplying equation (A.1) with  𝜑𝑛(𝑥) and equation (A.2) with 𝜑𝑚(𝑥)  and by taking the 

integral along the cavity,  

∫𝜑𝑛𝜑𝑚
′′𝑑𝑥

𝑙

−𝑙

+ 𝑘𝑚
2 ∫𝜀(𝑥)𝜑𝑛𝜑𝑚𝑑𝑥

𝑙

−𝑙

= 0 (𝑨. 𝟑)   

∫𝜑𝑚𝜑𝑛
′′𝑑𝑥

𝑙

−𝑙

+ 𝑘𝑛
2 ∫𝜀(𝑥)𝜑𝑚𝜑𝑛𝑑𝑥

𝑙

−𝑙

= 0  (𝑨. 𝟒)  

If we subtract from (A.3) the (A.4),  

 ∫[𝜑𝑛𝜑𝑚
′′ − 𝜑𝑚𝜑𝑛

′′]𝑑𝑥

𝑙

−𝑙

+ (𝑘𝑚
2 − 𝑘𝑛

2) ∫ 𝜀(𝑥)𝜑𝑛𝜑𝑚𝑑𝑥

𝑙

−𝑙

= 0    (𝑨. 𝟓) 

For the first integral, we have: 

• ∫ [𝜑𝑛𝜑𝑚
′′ − 𝜑𝑚𝜑𝑛

′′]𝑑𝑥
𝑙

−𝑙
 = [𝜑𝑛𝜑𝑚

′ ]−𝑙
𝑙 -∫ 𝜑𝑛

′𝜑𝑚
′ 𝑑𝑥

𝑙

−𝑙
- [𝜑𝑚𝜑𝑛

′ ]−𝑙
𝑙 + ∫ 𝜑𝑛

′𝜑𝑚
′ 𝑑𝑥

𝑙

−𝑙
 =𝜑𝑛(𝑙)𝜑𝑚

′ (𝑙) −

𝜑𝑛(−𝑙)𝜑𝑚
′ (−𝑙) − 𝜑𝑚(𝑙)𝜑𝑛

′ (𝑙) + 𝜑𝑚(−𝑙)𝜑𝑛
′ (−𝑙) 

And this integral is equal to zero if we consider both the periodic boundary conditions and the 

open boundary conditions (CF-states),  

So, equation (A.5), gives:  

∫𝜀(𝑥)𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑑𝑥

𝑙

−𝑙

= 0  (𝑨. 𝟔) 

 

Equation (A.6) is the so called biorthogonality condition, and we use it in Chapter 2 for the   

derivation of Maxwell-Bloch laser equations. 
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Appendix B- Finite difference method 
 

In order to obtain the eigenvalues and eigenmodes of one-dimensional cavities, we have to solve the 

complex Helmholtz differential equation (the non-Hermiticity stems from the complex refractive index 

in the cavity region and the boundary conditions): 

𝜑𝑚
′′ (𝑥) + 𝑛2(𝑥)𝑘𝑚

2 𝜑𝑚(𝑥) = 0   (𝑩. 𝟏) 

 

 

Figure 58- Space discretization [13]. 

 

In the discretization method N equally spaced grid points are placed in the cavity. The distance 

between them is named Δ. The first point, which belongs inside the cavity region is p1 and the last one 

is pN-1. The two points p0 and pN outside the cavity are 
𝛥

2
, away from the edges of the cavity.   

By making the approximation,  

𝑑𝜑𝑛
𝑑𝑥

≅
𝜑𝑛 − 𝜑𝑛−1

𝛥
≅
𝜑𝑛+1 − 𝜑𝑛

𝛥
 

 the second derivative becomes, 

𝑑2𝜑𝑛
𝑑𝑥2

=
𝜑𝑛+1 + 𝜑𝑛−1 − 2𝜑𝑛

𝛥2
 

where the index n describes the nth grid point. Consequently, the discretized Helmholtz equation, takes 

the form,  

𝜑𝑛+1 + 𝜑𝑛−1 − 2𝜑𝑛
𝛥2

= −𝑛𝑛
2𝑘𝑚

2 𝜑𝑛    (𝑩. 𝟐) 

For n=1, the equation (B.2) takes the form, 
𝜑2+𝜑0−2𝜑1

𝛥2
= −𝑛1

2𝑘𝑚
2 𝜑1  and for n=N, 

𝜑𝑁+1+𝜑𝑁−1−2𝜑𝑁

𝛥2
=

−𝑛𝑁
2 𝑘𝑚

2 𝜑𝑁. In similar manner we can construct a system of N equations, which constitute a generalized 

eigenvalue problem, written in matrix form as, 

 

(

 
 

−2/𝛥2 1/𝛥2 0 ⋯ …

1/𝛥2 −2/𝛥2 1/𝛥2 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 1/𝛥2 −2/𝛥2 1/𝛥2

. . . 0 0 1/𝛥2 −2/𝛥2)

 
 
(

𝜑1
𝜑2
⋯
𝜑𝛮−1
𝜑𝛮

) = −𝑘𝑚
2

(

  
 

𝑛1
2

𝑛2
2

⋯
𝑛𝛮−1
2

𝑛𝛮
2)

  
 
(

𝜑1
𝜑2
⋯
𝜑𝛮−1
𝜑𝛮

)  (𝑩. 𝟑) 

where, (𝜑1 𝜑2 ⋯   𝜑𝑁−1 𝜑𝑁) is the eigenvector, and 𝑘𝑚
2  are the corresponding eigenvalues.  

The eigenvalue problem (B.3) can then be solved for each set of boundary conditions we want.  
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Appendix C- Runge-Kutta method 
 

The system of equations, which we solve in this thesis, are numerically solved with fourth order Runge-

Kutta integration algorithm.  

Runge-Kutta method, was developed around 1900 by the German mathematicians C. Runge and M.W. 

Kutta. It’s a numerical algorithm for the approximate solution of ordinary differential equations, via 

implicit and explicit iterations by using temporal discretization [32]. Before we proceed to the 

derivation of the formulas used in Runge-Kutta algorithm, needs to be mention the Taylor’s theorem in 

one variable.  

Consider, an one variable function g(x), as well as its derivatives of order n which are continuous in the 

domain  D. Let, 𝑥0 ∈ 𝐷, a point around which we will make the expansion of this function. So, we can 

write, 

𝑔(𝑥) ≅ 𝑃𝑛(𝑥) 

where for n=2, 

𝑃2(𝑥) = 𝑔(𝑥0) + (𝑥 − 𝑥0)
𝑑𝑔

𝑑𝑥
|𝑥0 +

(𝑥 − 𝑥0)
2

2

𝑑2𝑔

𝑑𝑥2
|𝑥0    (𝑪. 𝟏) 

The family of Runge-Kutta methods, consist of several order approximation algorithms, with the most 

common in use to be the fourth order one, which is generally referred as “RK4”. We set an initial value 

problem which consists, of several coupled ordinary differential equations referred as 𝑦𝑖,   

𝑦̇𝑖 = 𝑓𝑖(𝑡, 𝑦𝑖(𝑡)), 𝑦𝑖(𝑡0) = 𝑦𝑖,0   (𝑪. 𝟐) 

 𝑦𝑖’s, are  functions (scalar or vector) of time t. The dot represents the time derivative. First of all, we 

make a temporal discretization, through which we begin from a time 𝑡0, and with a small step h, we 

cover the time interval in which we want to solve the system of differential equations. The method we 

develop, has an explicit form, because we want to calculate the functions values at time 𝑡0 + ℎ 

knowing the functions value at 𝑡0. From formula (1) we obtain the expansion of a function y, around 𝑡0, 

𝑦(𝑡) = 𝑦(𝑡0) + 𝑦
′(𝑡0)(𝑡 − 𝑡0) + 𝑦

′′(𝑡0)
(𝑡 − 𝑡0)

2

2
+ 𝑂(ℎ3)  (𝑪. 𝟑) 

where  𝑂(ℎ3), includes the higher order terms. 

The first step of RK4 includes the approximation of  function’s slopes at 𝑡 = 𝑡0, knowing the initial 

values, 𝑦1(𝑡0) = 𝑦0
(1)
, 𝑦2(𝑡0) = 𝑦0

(2)
, … , 𝑦𝑁−1(𝑡0) = 𝑦0

(𝑁−1), 𝑦𝑁(𝑡0) = 𝑦0
(𝑁),  

𝑘𝑖
(1)
= 𝑓𝑖(𝑡, 𝑦𝑖)  (𝑪. 𝟒) 

Then we move on to the second step in which we use the above calculated slopes, to find the functions 

values at an intermediate point, 𝑡 =
ℎ

2
. By holding the first two terms from expression (C.3), we have, 

𝑦𝑖 (𝑡0 +
ℎ

2
) = 𝑦𝑖(𝑡0) + 𝑘𝑖

(1) ℎ

2
   (𝑪. 𝟓) 

Inserting equations (C.5), into (C.2), we take slopes, at time 𝑡 =
ℎ

2
, so we have, 
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𝑘𝑖
(2)
= 𝑓𝑖(𝑡0 +

ℎ

2
 , 𝑦𝑖(𝑡0) + 𝑘𝑖

(1) ℎ

2
)  (𝑪. 𝟔)   

In addition, we make use of slopes given by (C.6), and we calculate from scratch the functions values at 

𝑡 =
ℎ

2
. This is, the third step of the algorithm. 

𝑦𝑖 (𝑡0 +
ℎ

2
) = 𝑦𝑖(𝑡0) + 𝑘𝑖

(1) ℎ

2
   (𝑪. 𝟕) 

by the substitution of (C.7) into (C.2), we take a better approximation, of the slopes,  

𝑘𝑖
(3)
= 𝑓𝑖(𝑡0 +

ℎ

2
 , 𝑦𝑖(𝑡0) + 𝑘𝑖

(2) ℎ

2
)  (𝑪. 𝟖)   

The fourth and last step, is to approximate the functions at time t=h. From, relation (C.3) we take, 

𝑦𝑖(𝑡0 + ℎ) = 𝑦𝑖(𝑡0) + 𝑘𝑖
(3)
ℎ   (𝑪. 𝟗) 

Ultimately, the substitution of (C.9) into (C.2), gives the slopes, 

𝑘𝑖
(4)
= 𝑓𝑖(𝑡0 + ℎ , 𝑦𝑖(𝑡0) + 𝑘𝑖

(3)ℎ)  (𝑪. 𝟏𝟎)   

The final approximation, of functions values at t=h is given by the weighted average of the form,  

𝑦𝑖(𝑡0 + ℎ) = 𝑦𝑖(𝑡0) +
1

6
(𝑘𝑖
(1)
+ 2𝑘𝑖

(2)
+ 2𝑘𝑖

(3)
+ 𝑘𝑖

(4)
)  (𝑪. 𝟏𝟏)    

Fourth order Runge-Kutta numerical method, has a local truncation error 𝑂(ℎ4) (the error introduced 

in each successive stage of the iterated algorithm) [33].  
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Appendix D- Two dimensional Runge-Kutta 

method 
 

For the multimode lasing, we applied a Runge-Kutta integration algorithm, which solves N2+2N 

nonlinear, coupled ordinary differential equations, where N is the mode’s number. For these purposes, 

were crucial to rearrange the (𝑁 × 𝑁), 𝐷𝑚𝑛 inversion matrix into a vector with 2𝑁 elements by using 

the command “reshape” of MATLAB. Finally, we want to have a column vector containing N2+2N 

elements. The first  2𝑁 components are the inversion matrix elements, the next N elements are the 

modal fields and the final N elements are the corresponding polarizations. The reshape command 

works as follows:  

If we consider a (2 × 2) matrix: 𝐴 = [
𝑎11 𝑎12
𝑎21 𝑎22

]⇒𝐵 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐴, 1,4). This command creates a 

(1 × 4) matrix B, containing the elements of A as:   

𝐵 = [𝑎11 𝑎12 𝑎21 𝑎22] 

Therefore, for the case of N-modes, the inversion operator has the general form:  

𝐷𝑁×𝑁 = [

𝐷11
𝐷21

𝐷12 ⋯ 𝐷1𝑁
𝐷22 ⋯ 𝐷2𝑁

⋮
𝐷𝑁1

⋮ ⋯ ⋮
𝐷𝑁2 ⋯ 𝐷𝑁𝑁

] 

by applying the reshape command in the transpose-D matrix, we get:  

reshape(D, 1, 𝑁 ∙ 𝑁)

= [ 𝐷11 𝐷12  ⋯ 𝐷1𝑁 | 𝐷21 𝐷22  ⋯ 𝐷2𝑁 | 𝐷31 𝐷32  ⋯ 𝐷3𝑁 |⋯  ⋯ ⋯ | 𝐷𝑁1 𝐷𝑁2  ⋯ 𝐷𝑁𝑁 ] 

We can clearly see that the rule that connects, the 𝐷𝑛𝑚 elements of the 𝐷 (𝑁 × 𝑁) matrix, to the 

corresponding 𝐷̃ element of the 1-D array is the following:  

 

𝑫𝒏𝒎 → 𝑫̃[ (𝒏 − 𝟏)𝑵 +𝒎 ] 𝒘𝒉𝒆𝒓𝒆 𝒏,𝒎 = 𝟏, 𝟐,… ,𝑵  

Finally, if we consider far from D-elements and the modal fields and the polarizations, we get the 

vector:  

𝒈 = [ 𝑫𝟏𝟏 𝑫𝟏𝟐  ⋯ 𝑫𝟏𝑵 | 𝑫𝟐𝟏 𝑫𝟐𝟐  ⋯ 𝑫𝟐𝑵 | 𝑫𝟑𝟏 𝑫𝟑𝟐  ⋯ 𝑫𝟑𝑵 |⋯  ⋯ ⋯ | 𝑫𝑵𝟏 𝑫𝑵𝟐  ⋯ 𝑫𝑵𝑵 |  

 𝒆𝟏 𝒆𝟐  ⋯ 𝒆𝑵 | 𝒑𝟏 𝒑𝟐  ⋯ 𝒑𝑵]  

This g vector we use in the Runge-Kutta algorithm for many modes. As one can see the first N2 vector 

elements are related to the inversion, the next N elements concerns the electric field of each mode 

and the final N are the polarizations induced from each mode.  
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[9] J. U. Nöckel and A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 
385, 45 (1997). 
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