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Abstract

The exposure of location data constitutes a significant privacy risk to users
as it can lead to de-anonymization, the inference of sensitive information, and
even physical threats. In this work we present LPAuditor, a tool that conducts
a comprehensive evaluation of the privacy loss caused by publicly available loca-
tion metadata. First, we demonstrate how our system can pinpoint users’ key
locations at an unprecedented granularity by identifying their actual postal ad-
dresses. Our experimental evaluation on Twitter data highlights the effectiveness
of our techniques which outperform prior approaches by 18.9%-91.6% for homes
and 8.7%-21.8% for workplaces. Next we present a novel exploration of automated
private information inference that uncovers “sensitive” locations that users have
visited (pertaining to health, religion, and sex/nightlife). We find that location
metadata can provide additional context to tweets and thus lead to the exposure
of private information that might not match the users’ intentions.

We further explore the mismatch between user actions and information expo-
sure and find that older versions of the official Twitter apps follow a privacy-invasive
policy of including precise GPS coordinates in the metadata of tweets that users
have geotagged at a coarse-grained level (e.g., city). The implications of this ex-
posure are further exacerbated by our finding that users are considerably privacy-
cautious in regards to exposing precise location data. When users can explicitly
select what location data is published, there is a 94.6% reduction in tweets with
GPS coordinates. As part of current efforts to give users more control over their
data, LPAuditor can be adopted by major services and offered as an auditing tool
that informs users about sensitive information they (indirectly) expose through
location metadata.

Thesis Supervisor: Prof. Evangelos Markatos
Thesis Co-Supervisor: Dr. Sotiris Ioannidis





Περίληψη

Η δημοσιοποίηση δεδομένων που αφορούν την γεωγραφική τοποθεσία των χρηστών

αποτελεί σημαντικό κίνδυνο κατά της ιδιωτικότητάς τους, καθώς αυτά τα δεδομένα

μπορούν να οδηγήσουν στην κατάργηση της ανωνυμίας των χρηστών, στην αποκάλυψη

ευαίσθητων προσωπικών πληροφοριών, και σε κάποιες περιπτώσεις, ακόμη και σε α-

πειλές κατά της ζωής και της σωματικής τους ακεραιότητας. Στην παρούσα διπλω-

ματική εργασία παρουσιάζουμε τον LPAuditor , ένα εργαλείο σχεδιασμένο ώστε να
διεξάγει ενδελεχή αξιολόγηση των κινδύνων κατά της ιδιωτικότητας που προκαλούνται

από την ευρεία διάθεση μεταδεδομένων προσδιορισμού γεωγραφικής τοποθεσίας. Αρ-

χικά παρουσιάζουμε με ποιον τρόπο το σύστημά μας μπορεί να προσδιορίσει τις δύο

πιο κύριες τοποθεσίες των χρηστών, συγκεκριμένα αυτές του χώρου κατοικίας και ερ-

γασίας τους, με μια άνευ προηγουμένου ακρίβεια, σε επίπεδο ταχυδρομικής διεύθυνσης.

Με την χρήση δεδομένων από το Twitter δείχνουμε ότι οι τεχνικές μας ξεπερνούν
σε αποτελεσματικότητα όλες τις προηγούμενες προσεγγίσεις κατά 18,9% - 91,6%

για τον προσδιορισμό κατοικίας και κατά 8,7% -21,8% για προσδιορισμό του χώρου

εργασίας. Στη συνέχεια, παρουσιάζουμε μία πρωτότυπη προσέγγιση για τον αυτομα-

τοποιημένο προσδιορισμό γεωγραφικών τοποθεσιών που έχει προηγουμένως επισκε-

φτεί ο χρήστης, οι οποίες αποκαλύπτουν περαιτέρω ευαίσθητες πληροφορίες που δεν

γνωστοποίησε ο χρήστης εκ προθέσεως (συγκεκριμένα τοποθεσίες σχετικές με θρη-

σκεία, ζητήματα υγείας και σεξουαλικού προσανατολισμού). Γενικά, δείχνουμε ότι τα

μεταδεδομένα που αφορούν γεωγραφικές τοποθεσίες στο Twitter , μπορούν να προ-
σφέρουν επιπλέον πληροφορία που σε συνδυασμό με το περιεχόμενο του tweet οδηγεί
στην αποκάλυψη ευαίσθητων πληροφοριών που δεν αποσκοπούσε να αποκαλύψει ο

χρήστης.

Ακόμη, εξετάζουμε την αναντιστοιχία που υπάρχει μεταξύ των ενεργειών των

χρηστών και της έκθεσης πληροφοριών και διαπιστώνουμε ότι παλαιότερες εκδόσεις

των επίσημων εφαρμογών του Twitter για κινητές συσκευές εφάρμοζαν μία πολιτική
μη σχεδιασμένη για την προστασία της ιδιωτικότητας των χρηστών. Συγκεκριμένα,

οι εφαρμογές αυτές εφάρμοζαν ακριβή μεταδεδομένα τοποθεσίας σε tweets που οι
χρήστες είχαν χαρακτηρίσει με τοποθεσίες χαμηλότερης ακρίβειας (π.χ. πόλη). Τα

αποτελέσματα της μελέτης μας δείχνουν ότι οι χρήστες είναι ιδιαίτερα προσεκτικοί σε

ό,τι αφορά την ιδιωτικότητά τους και την αποκάλυψη δεδομένων ακριβής γεωγραφικής

τοποθεσίας, το οποίο τονίζει ακόμη περισσότερο τις επιπλοκές της εν λόγω πολιτικής.

Κατ΄ ακρίβειαν, όταν οι χρήστες έχουν την δυνατότητα να επιλέξουν συγκεκριμένα το

επίπεδο ακρίβειας των δεδομένων γεωγραφικής τοποθεσίας που διαμοιράζονται, παρα-

τηρούμε μια μείωση της τάξης του 94.6% στα tweets που περιέχουν συντεταγμένες
GPS. Συμβαδίζοντας με τρέχουσες προσπάθειες ώστε να δοθεί περισσότερος έλεγχος
στους χρήστες σε ό,τι αφορά τα προσωπικά τους δεδομένα, ο LPAuditor μπορεί να
αξιοποιηθεί από μεγάλες υπηρεσίες και να προσφερθεί σαν ένα εργαλείο που θα ενη-

μερώνει τους χρήστες για ευαίσθητες πληροφορίες που έμμεσα αποκαλύπτονται από

μεταδεδομένα γεωγραφικής τοποθεσίας τους.

Επόπτης: Καθηγητής Ευάγγελος Μαρκάτος

Συνεπιβλέπων: Διδάκτωρ Σωτήρης Ιωαννίδης
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Chapter 1

Introduction

The capability of modern smartphones to provide fine-grained location informa-
tion in real time has enabled the deployment of a wide range of novel functionality
by online services. In Twitter users can incorporate location information in their
tweets to provide more context and enrich their communications [49], or even en-
hance situational awareness during critical events [66]. Nonetheless, the presence
of location metadata in a by-default-public data stream like Twitter constitutes a
significant privacy risk. Apart from potentially enabling physical threats like stalk-
ing [31, 53] and “cybercasing” [27], location information could lead to the inference
of very sensitive data [48, 14]. Previous work has demonstrated how to identify
users’ key locations (i.e., home and work) at a postcode [22] or very coarse-grained
(∼10,000m2) level [34, 17]. However, this coarse granularity fails to highlight the
true extent of the privacy risks introduced by the public availability of geograph-
ical information in users’ tweets. Furthermore, these studies have not explored
what sensitive information can be inferred from users geotagging tweets at other
locations.

In this work we develop LPAuditor, a system that examines the privacy risks
users face due to publicly accessible location information, and conduct a large scale
study leveraging Twitter data and public APIs. Initially we present techniques for
identifying a user’s home and work at a postal address granularity. Through an
arduous manual process we create a ground truth dataset for 2,047 users, which
enables us to experimentally evaluate our auditing tool. Our system is able to
identify the home and workplace for 92.5% and 55.6% of the users respectively.
When compared to state-of-the-art results, we find that our techniques outperform
previous approaches by 18.9%-91.6% for homes and 8.7%-21.8% for workplaces.

Apart from the increased effectiveness of our techniques, our work demonstrates
that by leveraging widely available geolocation databases attackers can pinpoint
users’ key locations at a granularity that is orders of magnitude more precise than
previously demonstrated. Without doubt, this level of accuracy renders the iden-
tification of users a trivial task. The privacy implications of our findings are even
more alarming when considering the prominent role that platforms like Twitter play
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2 CHAPTER 1. INTRODUCTION

in protests and other forms of social activism [35]. Indeed, a substantial number
of users choose to not reveal their actual identity on Twitter, and prior work has
found a correlation between the choice of anonymity and the sensitivity of topics
in tweets [51]1 and other online posts [50].

LPAuditor offers a comprehensive analysis of the privacy loss caused by location
metadata by also exploring whether the remaining locations can be used to infer
personal information that is typically considered sensitive. Our system examines
tweets that place the user at (or in close proximity of) locations that are associated
with such information. Currently we search for locations pertaining to three sen-
sitive topics: religion, medical issues, and sex/nightlife. We find that 71% of users
have tweeted from sensitive locations, 27.5% of which can be placed there with high
confidence based on the content of their tweets. Privacy loss is amplified by the
location metadata as it leaks additional contextual details to the tweet’s content;
e.g., the user may simply mention being at a doctor without giving more details,
while the location metadata places the user at an abortion clinic. We also explore
a spatiotemporal-based approach and find that 29.5% of the users can be placed at
a sensitive location regardless of the content of their tweets. As such, we envision
LPAuditor being offered as an auditing tool by social networks and location-based
services, providing users with an overview of the sensitive information that can be
inferred based on their publicly accessible location data. This can support recently
stated initiatives of giving users more control over their data [3].

Finally, our study reveals that older versions of the Twitter app implement a
privacy-invasive policy. Specifically, tweets that are geotagged by users at a coarse
level (e.g., city) include the user’s exact coordinates in the tweets’ metadata. This
privacy violation is invisible to users, as the GPS coordinates are only contained in
the metadata returned by the API and not visible through the Twitter website or
app. To make matters worse, this historical metadata currently remains publicly
accessible through the API. We quantify the impact of Twitter’s invasive policy,
and find that it results in an almost 15-fold increase in the number of users whose
key locations are successfully identified by our system. In an effort to remediate
this significant privacy threat we have disclosed our findings to Twitter.

1.1 Motivation and Threat Model

The sensitive nature of mobility data is well known to the research community,
which has proposed various techniques so far for limiting the granularity of the
location data that services can obtain (e.g., [32]). In practice, however, such de-
fenses have not seen wide deployment and a large number of mobile apps collect
precise locations [55]. While prior work has proposed approaches for identifying
key locations (home and work), the reported granularity is not sufficient for demon-
strating the true extent of the threat (e.g., [22, 34, 17, 18]). More importantly, the

1This study also reported that 5.9% of Twitter accounts are anonymous and another 20% do
not disclose their full name.
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risk of sensitive information being inferred from other location data points remains
unexplored.

Despite the privacy risk this data poses to users, services do not stringently
prohibit access to it and may expose it to third parties [38] or render it publicly
accessible. To demonstrate the extent and accuracy of sensitive information infer-
ence that an adversary can achieve, we develop and evaluate LPAuditor exclusively
using public and free data streams and APIs. Furthermore, we design our system
to be application-independent and applicable to other location datasets. We show
that location metadata enables the inference of sensitive information that could be
misused for a wide range of scenarios (e.g., from a repressive regime de-anonymizing
an activist’s account to an insurance company inferring a customer’s health issues,
or a potential employer conducting a background check). While we build a tool
that can be adopted by online services for better protecting users’ privacy, the
techniques employed by our system could be applied by a wide range of adver-
saries or invasive third parties. By demonstrating the severity and practicality of
such attacks, we aim to initiate a public discussion and incentivize the adoption of
privacy-preserving mechanisms.

1.2 Contributions

In summary, our main research contributions are:

• We conduct a comprehensive, IRB-approved, exploration of the privacy risks
that users face when location data is, either explicitly or inadvertently, shared
in a public data stream like Twitter’s API.

• We develop LPAuditor, a system that leverages location metadata for iden-
tifying key locations with high precision, outperforming state-of-the-art ap-
proaches. While our study focuses on Twitter, our techniques are generic and
can be applied to any service or dataset with location data.

• We introduce novel content-based and spatiotemporal techniques that demon-
strate the feasibility of inferring sensitive user information by leveraging lo-
cation data. This is, to our knowledge, the first automated demonstration of
this type of inference.

• We measure the impact of Twitter’s invasive policy for collecting and sharing
precise location data and quantify the lingering implications. Our study on
user geotagging behavior reveals that users are restrained when publishing
their location and avoid including exact coordinates when given control by
the underlying system, yet remain exposed due to the availability of this
historical data.
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1.3 Thesis Organization

Our work has been organized as follows. In Chapter 2 we discuss and analyze
our methodology and design decisions, ranging from location data clustering, to
the heuristics employed to infer users’ key locations and sensitive information, as
well as specific implementation details of our system. In Chapter 3, we explain in
detail our data collection process and the workflow we followed to establish our
groundtruth datasets. In Chapter 4, we present a comprehensive evaluation of
our system, analyze our results and compare to prior state-of-the-art approaches.
We also explore the impact of publicly available historical data and present a
performace evaluation of our system. In Chapter 5 we outline the various related
works and in Chapter 6 we discuss our findings, our plans for future work and
certain ethical considerations that arose during our work. Finally, we conclude in
Chapter 7.



Chapter 2

System Overview

In this chapter we provide an overview of our system. First we describe how
LPAuditor clusters location data and identifies key locations. Next we provide
details on our methodology for identifying sensitive locations that users may have
visited. Finally, we provide some implementation details.

2.1 Data Labeling and Clustering

In this section we describe in detail the steps that LPAuditor performs in order to
group location data in clusters, prior to employing our inference heuristics.

2.1.1 Labeling Tweets

The first step is to label each geotagged tweet with the corresponding postal ad-
dress. To highlight the extent of the risk that users face, we opt for publicly avail-
able API services that could be trivially employed by attackers for mapping each
tweet’s GPS coordinates to an address. To that end, we use the reverse geocoding
API by ArcGIS [13] for the majority of our labels, and the more accurate but rate-
limited Google Maps Geocoding API [30] for the subset of labels that are more
critical to our accuracy. While this allows us to improve our system’s performance,
in practice, if LPAuditor is adopted by a major service like Twitter, Google Maps
could be used for the entirety of the calls.

Since our dataset is large in size, we developed a form of caching that allows
avoiding unnecessary API calls. Instead of issuing a call for every pair of coordi-
nates we come across, we estimate the spatial position of the pair of coordinates
and search for nearby coordinates that have already been labeled. If the distance
to a labeled pair of coordinates is less than two meters, we assign the same address
label to the new pair of coordinates. Experimentally, we found that this approach
reduced the number of API calls our system issued by 42.5%.

It should be noted, however, that geocoding APIs do not always return an ad-
dress. We label those tweets with “unknown address”. After a manual investigation

5



6 CHAPTER 2. SYSTEM OVERVIEW

and verification of a random subset, we observed that they typically correspond
to places like university campuses, airports or remote rural areas that do not have
exact postal addresses. Nonetheless, while we don’t have a postal address in these
cases, the granularity of our process is unaffected as we still have the GPS coordi-
nates.

2.1.2 Initial Clustering

LPAuditor groups tweets assigned to the same postal address into a single cluster
(we refer to this as first-level clustering). Then, by taking into consideration the
coordinates of all the tweets of a cluster, we calculate the coordinates for the
cluster’s mid-point (geometric center). To verify that the label assigned to a cluster
indeed corresponds to the cluster’s actual address, we use the Google Maps API
for retrieving the address of the cluster’s mid-point coordinates. If the address
returned from Google’s API does not match the already assigned address label
for the cluster, due to incompatibilities between the two APIs or borderline cases
where our caching approach results in assigning a neighboring address, we opt for
the address returned from Google’s API. However, due to Google’s stricter API
rate limits, we only use this methodology for verifying the address of the 10 largest
clusters of each user, which we have empirically found to be the most prominent
and significant ones. This follows our threat model constraint of demonstrating
what attacks can be conducted using free and public APIs. In practice, attackers
with many resources could avoid rate limiting or use other proprietary geolocating
databases.

For tweets with the “unknown address” label we employ the DBSCAN algo-
rithm [23]. We empirically set our threshold to 30 meters, but due to its cascading
effect we may cluster together points that have a greater distance due to other
points laying in between them. We only use DBSCAN for clustering tweets that
have been marked with “unknown address” (∼16% of clusters); nearby tweets that
have been labeled with an actual address are not considered by DBSCAN.

2.1.3 Second-level Clustering

We have observed that the initial clustering approach can result in multiple neigh-
boring clusters for a specific place. The most common case involves one large
dominant cluster in the area and a few significantly smaller clusters next to it, in
close proximity. In general, it is difficult to distinguish which tweets belong to each
cluster, even by plotting the coordinates of these tweets on a map and visually
inspecting them. Through an empirical analysis, where we visually inspected clus-
ters and cross referenced the timing of their tweets, it became apparent that these
closely neighboring clusters typically correspond to a single user location but have
been mapped to a neighboring address. Various factors can lead to this, such as
inaccuracies in the user’s GPS readings [67], the precision of the geocoding APIs,
as well as differences in the actual tweeting position of the user (tweeting when
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Figure 2.1: Example of our second-level clustering.

leaving a place or arriving, being in the backyard or at a neighbor etc.).

As these nearby clusters most likely correspond to the same place, we imple-
ment a second-level clustering for grouping such neighboring clusters into a larger
one.1 First we identify which cluster in an area of multiple neighboring clusters is
dominant, i.e., has the most tweets, and then we employ a modified version of the
DBSCAN algorithm for estimating which clusters should be merged with the dom-
inant one. For this clustering we consider that the distance between the mid-point
of the larger central cluster and all the smaller ones should not exceed 50 meters.2

To eliminate DBSCAN’s cascading effect we check this distance before deciding
whether a cluster should be included in the new one. An example is shown in
Figure 2.1, where there are several clusters of significant size, with smaller clusters
around. All tweets in a cluster are depicted with a common color, and the dark
green pins denote the center of the various clusters, with the size of each cluster
pin being dependent on the number of tweets mapped to it.

Overall, implementing our second-level of clustering allows us to introduce a
(configurable) radius for effectively mapping these “runaway” data points to the
main cluster. Nonetheless, it is important to note that the initial clustering step
(using the geocoding API) is actually necessary; solely applying DBSCAN’s radius-
based clustering to the dataset leads to oversized clusters and eliminates the finer
granularity that is achieved by the two-level clustering approach.

1For the remainder of this work, referring to clusters will imply second-level clusters unless
stated otherwise.

2We set this threshold based on the value in the FCC mandate for 911 caller location accu-
racy [25], as it can account for GPS errors but is not prohibitively large so as to lead to false
positives. We also experimentally verified its suitability.
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2.2 Identifying Key User Locations

Here we describe how LPAuditor selects the clusters that represent two key user lo-
cations (home and workplace) in an automated fashion. Our system does not take
into consideration the content and semantics of the tweets posted, but only the
temporal characteristics and distribution of the tweets in each cluster. It should be
emphasized that our work focuses on location metadata and not the tweet content
as this allows us to quantify the true extent of the privacy risks introduced by loca-
tion metadata: even cautious users that do not explicitly disclose information about
their key locations face this privacy loss. However, LPAuditor leverages the content
for increasing confidence in placing users in other sensitive locations, as discussed
in Section 2.3. It is imperative to note that our system incorporates heuristics
that are built upon intuitive assumptions regarding common human behavior and
legislative norms (e.g., 8-hour shifts) in the US (location of our study’s users) and
many other countries as well (e.g., in the European Union). While highly effec-
tive, these heuristics may require tweaking for countries with vastly different social
norms or legislature; such cases are out of the scope of this work.

First we obtain the local timezone corresponding to each cluster from its mid-
point coordinates, and then convert the timestamp of each tweet to the local time.
This allows us to identify tweets that have been posted within specific hours, and
understand the user’s daily routine and behavior in depth. For capturing the
temporal characteristics of each cluster and understanding the user’s activity and
tweeting patterns, our system identifies active time windows, i.e., time windows
with at least one geotagged tweet for a particular cluster. Apart from days or
weeks, time windows can be set to represent weekdays, weekends, or even specific
time frames at a granularity of hours (e.g., afternoon, late night).

2.2.1 Home Inference

Homes exhibit distinct characteristics compared to other places users regularly
visit, as that is where people typically return at the end of the day and also spend
a considerable amount of time. Due to the non-ephemeral relationship people have
with their home, the temporal characteristics of a user’s tweeting behavior can
sufficiently distinguish this location from other visited locations. One exception
could be users that are considerably privacy-cautious and refrain from posting
geotagged tweets from their home or surrounding areas.

Our approach for identifying a user’s home cluster is based on the following
intuitions: (i) as the user spends some time at home every day, we expect to
repeatedly observe some activity from this cluster (i.e., multiple active windows
in this cluster’s timespan), and (ii) the tweets of this cluster will not occur solely
within a specific time frame, but we expect tweets that correspond to almost all
hours in the day. In other words, while other clusters of a user may follow a
specific well-defined temporal pattern, we expect the home cluster to exhibit a more
“chaotic” behavior in the long term, having tweets that were posted at different
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Figure 2.2: An example diagram representing the tweeting activity of two users in
our dataset from their home and work clusters. User1 exhibits a more “traditional”
activity pattern, while User2 exhibits erratic patterns with different work-shifts.

times throughout the day, from early in the morning to very late at night.
While experimenting with two approaches for specifying the time windows (i.e.,

only weekends vs entire weeks), we observed that a week-based time window may
introduce uncertainty for users that exhibit considerable activity from multiple
clusters. As such, we design a robust home-inferring algorithm by only considering
weekends. We determine which are the user’s five most active clusters “horizon-
tally”, i.e., those with the highest number of active weekends, and estimate the
time frame and active hours of each of these clusters. Following our intuition
that the home will exhibit more widespread temporal activity from a macroscopic
viewpoint, we choose the cluster with the broadest time frame as the user’s home.

2.2.2 Work Inference

We expect that, for most users, tweets posted from work will follow a well-defined
time frame that corresponds to the user’s working hours. We set the time window
to the entire week and identify the five most active clusters, i.e., those with the
highest number of active weeks (in the horizontal dimension). We ignore the home
cluster when assembling this set. For each of the remaining candidate clusters we
try to identify the cluster’s most dominant time frame. To that end, we identify
all the distinct days in which the user has posted more than one tweet, and use
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the day’s earliest and latest tweet for calculating the time frame of that day. After
estimating the time frame of each active day, we superimpose all these time frames
and consider as the dominant time frame the set of hours that appears in more than
half of the active days of the cluster. This allows us to avoid including insignificant
hours, e.g., for days where the user happened to go to work a little earlier or later
than usual. At the same time this also allows us to handle users that have a more
lax schedule or may work in shifts. We also account for users that work night shifts,
which span two consecutive dates; specifically, we consider instances of active time
windows that span two days, have a duration of up to eight hours [5] and terminate
by 07:00,3 and are followed by a period of inactivity of at least eight hours.4

Next, we exclude all tweets not belonging to the dominant time frame. We
also exclude clusters that repeatedly have daily activity of more than ten hours,
as they most likely do not correspond to the user’s work (since we assume that
most jobs have eight-hour shifts). However, as sometimes people are required to
work overtime, or stay at work longer than usual, we are flexible and only exclude
clusters with more than 20% of their daily time frames exceeding the ten-hour
threshold (i.e., one workday per week) based on reported average overtime hours
in the US [1] and the European Union’s limit for 48 hours per week. Finally, we
select the cluster with the largest number of active weeks as the user’s workplace.
It is important to note that our approach provides the first adaptive approach that
dynamically identifies shifts or common working hours for each individual user,
contrarily to previous approaches that followed a simplistic approach of considering
fixed working hours for all users (e.g., “09:00-17:00”).

An example of the tweeting activity of two users from both home and work is
given in Figure 2.2. Both users’ locations were correctly identified by LPAuditor.
For the top user, tweets from work fall in a well-defined time frame (08:00-16:00),
in contrast to tweets posted from home, which cover almost all times of day. The
bottom user exhibits a more erratic behavior with different work shifts within a
week, highlighting the need for our dynamic approach that adapts to different
patterns.

2.3 Identifying Highly-Sensitive Places

While identification of a user’s home and workplace is a significant privacy risk, our
goal is to also explore the feasibility of uncovering personal user information that
may be considered even more sensitive. As such, we want to identify other places a
user has visited that could be used to infer such sensitive information. LPAuditor
identifies a user’s Potentially Sensitive Clusters (PSCs) which are in close proximity
to highly-sensitive venues, and determines whether the user actually visited these

3In the United States the night shift is typically 23:00-07:00 while the European Union identifies
it as including the 00:00-05:00 period [2].

4The US Department of Labor considers that a normal shift is followed by “at least an eight-
hour rest” [5] while the European Union’s 2003/88/EC directive establishes a “minimum rest
period of 11 consecutive hours.”
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venues. To label a cluster as potentially sensitive, we estimate the cluster’s mid-
point coordinates and use Foursquare’s [26] venue API for retrieving information
about the nearest venues.

We consider venues that are within a 25 meter radius from the cluster’s mid-
point coordinates; we set a more restrictive threshold compared to the key location
clustering process to avoid potential false positives due to the small number of
tweets per cluster and density of PSCs. In practice, if LPAuditor is offered as
an auditing tool to users, these thresholds can be user-configurable to allow for
flexibility for areas of different venue density (e.g., downtown metropolitan areas
vs rural areas). The Foursquare API returns the name of each venue as well as
its type, selected from an extensive list of predefined categories. As such, we have
identified which of the venues returned by the API are associated with sensitive
categories or subcategories (the categories we consider as sensitive in this study
can be seen in Figure 4.6).

2.3.1 Content-based Corroboration

Proximity to a sensitive venue does not necessitate that the user visited it (at least
on that occasion). It could quite possibly be a case of simply passing by or visiting
a different (potentially non-sensitive) nearby venue. To determine if the user is
associated with the sensitive venue, we analyze the content of the cluster’s tweets
in an effort to capture terms that indicate the user’s presence at that venue. It
is important to note that despite the user including some relevant keyword in the
tweet, location metadata allows attackers to obtain more context and infer sensitive
information that the user did not intend to disclose.

LPAuditor uses three manually-curated wordlists of related terms based on
numerous online domain-specific corpora that contain keywords related to our sen-
sitive categories. Specifically, our wordlists contain medical- and health-related
terms, terms associated with various religions, and sex/nightlife. We remove rel-
evant keywords that are overtly ambiguous in context, as they can lead to false
positives (e.g., “joint” may refer to a part of the body, some type of establishment,
or may be drug-related). Our wordlists are available online [6, 7, 8]. These lists
can be easily modified, or expanded to include terms from other categories (e.g.,
political).

LPAuditor first pre-processes users’ tweets (i.e., tokenization, lemmatization,
removes punctuation, emojis, mentions, stop-words and URLs) using the NLTK
library. Then it uses term frequency - inverse document frequency (tf-idf) to
identify the most significant terms within the tweets of each PSC. For each cluster
we consider the cluster’s tweets as the document and the entirety of the user’s
tweets as the collection (with each cluster considered a document). As tf-idf
assigns a score to the terms of the cluster, we check the three terms with the
highest score against the respective wordlist, to determine if the context of these
terms can be associated with a nearby sensitive venue.
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2.3.2 Duration-based Corroboration

Due to the sensitive nature of these venues, users will not always include content
in their tweets that enables us to place them in a sensitive venue. For this reason,
we introduce another approach that does not depend on the content of tweets,
but on the repetitiveness and duration of user visits to a specific geographic area,
in order to identify places the user has likely visited. More specifically, with this
approach we identify PSCs that have consecutive tweets in the span of a few hours,
which indicate that the user has spent a considerable amount of time at that place.
In order to avoid cases where the users did not visit a sensitive place but posted
multiple tweets while passing by it, we exclude cases of consecutive tweets that have
been posted in short periods of time (within five minutes). We also identify tweets
posted from the same cluster on different days, which shows that the user tends
to repeatedly visit that place. Obviously this approach does not work for clusters
with a single tweet, and it lacks the additional confidence in placing the user at
the sensitive venue that we obtain with the content-based approach. Nonetheless,
it highlights a significant source of privacy leakage.

2.4 Implementation Details

LPAuditor has been designed as a completely modular framework, allowing for
each individual component to be trivially changed or extended (e.g., incorporating
a new data source, or implementing a different clustering method etc.). Our sys-
tem has been fully implemented in Python, and all collected data is stored into a
Mongo database. In more detail, we leverage the Tweepy package for interacting
with Twitter’s API and collecting users’ timelines. For the first-level clustering and
address validation we rely on the Geopy package (via which we interact with the
ArcGIS and Google APIs), while our second-level clustering is based on the default
implementation of DBSCAN as provided by the scikit-learn package. For col-
lecting venue information LPAuditor uses the Foursquare package, while the NLTK
package is used for all tweet preprocessing and procedures related to tf-idf. Given
the importance of scalability when processing large collections of users, we have
designed LPAuditor to be able to use multiple API keys in parallel. This allows
us to speed up the more inefficient parts of the process which rely on communicat-
ing with external, and often rate-limited, APIs. Finally, as each user is processed
completely independently from other users at all stages, multiple instances of our
framework can be executed in parallel for increasing efficiency.



Chapter 3

Data Collection

In this chapter we first describe our automatically-collected Twitter datasets, and
then outline our methodology for manually creating a ground truth dataset used
for the experimental evaluation of LPAuditor in Chapter 4.

3.1 Datasets

We used Twitter’s streaming API for collecting a set of tweets within a bounding
box that covers the mainland area of the United States. While LPAuditor can
be applied to any country with similar working norms (e.g., shift duration) we
opted for users in the US as our sensitive location inference also requires the tweet
content and we currently only support English. Furthermore, it is also the one
country common across the datasets of all the prior studies we compare to in
Section 4. Nonetheless, an interesting future direction is to explore these privacy
risks for users in other countries.

An initial set of tweets was collected in November 2016, through which we ob-
tained 308,593 unique user identifiers (UIDs). Then we collected each user’s profile
information and timeline (the 3,200 most recent tweets, according to Twitter’s pol-
icy). This dataset contains 456,856,444 tweets, which have been generated from
15,094 distinct sources (including unofficial Twitter client apps and websites.)

Apps may handle geolocation data differently as Twitter’s Geo Guidelines [65]
are neither mandatory nor enforceable. To avoid inconsistencies, we only consider
official Twitter apps and Foursquare in this study, which also account for the vast
majority of collected tweets. After this filtering, we end up with 290,162 users and
345,643,445 tweets. We break down our dataset in Table 3.1; users who posted
tweets from multiple apps are counted in all the respective categories. Figure 3.1
(left) shows the number of tweets in each user’s timeline. We find that only ∼0.5%
of the users have more than 3000 tweets, and less than 0.06% reached Twitter’s
API limit of 3,200.

As we are interested in the privacy implications that stem from geolocation

13
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Table 3.1: Breakdown of tweets’ sources in our dataset.

Application (source) Geoloc. Users Tweets
Twitter for Android 3 99,979 50,188,992
Twitter for iOS 3 328,320 291,820,742
Twitter for Web 7 253,616 39,655,850
Foursquare 3 13,192 3,633,711

metadata, we identify all users with at least one tweet containing GPS coordi-
nates in the metadata. We identified 87,114 such users, which have contributed
15,263,317 geotagged tweets in total. In Figure 3.1 (right) we present the number
of users’ geotagged tweets. Surprisingly we find that for 30.03% of the users the
Twitter API reveals some precise geolocation information, with 8.01% of the users
having less than 10 geotagged tweets. We also observe that 15.55% of the users
have between 10 and 250 geotagged tweets, and approximately 5% and 2% of the
users have more than 330 and 655 geotagged tweets, respectively.

Users with many geotagged tweets may have patterns that differ from those of
users with a significantly lower number. For this reason we conduct our analysis on
two different sets of users. The first set (Top-6K) consists of the top 6,010 users in
our dataset that have the most geotagged tweets (approximately top 2% of users
in Figure 3.1), while the second set (Low-10K) consists of 9,841 randomly selected
users that have between 10 and 250 geotagged tweets. We use these two sets of
users for our main analysis (instead of all collected users), due to the rate limits
imposed by the API providers that we use for our clustering process. Also, by
including users with as few as 10 geotagged tweets, we can explore the privacy risk
that users face even when very few location data points are available.

Geotag accuracy. It is important to note that while other types of location-
based services may add some form of noise or obfuscate the user’s location [53],
that is not the case with Twitter. As such, the GPS coordinates contained in the
tweet metadata we obtain through the API match those provided by the user’s
device.

3.2 Ground Truth Collection

As we aim to demonstrate the true extent of this privacy issue by identifying
key locations at a postal address granularity, a significant challenge is obtain-
ing the ground truth for evaluating the accuracy of our approach. While our
home/work identification algorithms focus on spatio-temporal characteristics, cre-
ating the ground truth mandates an analysis of the tweets’ content. Due to strict
requirements for veracity, we did not resort to an automated process but opted for
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Figure 3.1: Total number of tweets per user (left), and the number of tweets per
user that are geotagged (right).

an arduous and painstaking manual process that required over 6 weeks of continu-
ous effort. While we have explicitly limited our data collection to publicly available
data offered by the official Twitter API, we took extra precautions during our
manual data analysis phase for protecting users’ privacy. Specifically, the user’s
account information (name, username) was not included in the content that was
manually inspected, and references to other users (i.e., tokens starting with “@”)
were removed as well.

In a nutshell, we started with users that explicitly mentioned in their tweets that
they are at home, by matching phrases such as “Im home”, “I’m home”, “at home”
etc. After identifying users with clusters containing such tweets, we manually
reviewed all the tweets in these particular clusters. During the manual inspection
we took into account the context of a user’s tweets for ensuring that these clusters
indeed correspond to a user’s home. Instead of identifying work clusters for other
users, we decided to focus this task on the users for which we have already identified
their home location, as that would allow us to create a more complete dataset that
contains both home and work locations for each user. To that end, we followed a
similar approach and searched for phrases denoting work-related information, “at
work”, “at the office”, “my job”, “this job” etc., and manually inspected the tweets
of the returned clusters.

Below we outline the workflow of our manual inspection process for identifying
users’ home and work locations. Our goal was to establish a methodology that
allows us to have high confidence in the resulting labels. The content analysis and
location labeling was performed by two researchers independently; in cases where
the labels by the two researchers did not match the user was discarded. We avoided
potentially ambiguous instances or cases with uncertainty, and built our ground
truth with users where both labellers agreed. We discarded such instances as we set
a strict requirement for correct labels for our ground truth. However, discarding
users was a rare occurrence, as it is a fairly straightforward and intuitive process for
human annotators to identify home/work locations. In more detail, we established
the following workflow:

1. Apart from inspecting the tweets that contained one of the initial seed phrases,
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we also inspected all of the cluster’s remaining tweets. This allowed us to
further increase our confidence by identifying tweets where the user explicitly
or implicitly referred to being at home or work (e.g., “just took a shower”,
“my boss just said” etc.). If we only found implicit references, we required at
least two such tweets to increase our confidence.

2. To make our ground truth as complete as possible, we also manually inspected
all the tweets in users’ 10 largest clusters, for identifying cases where users
have multiple homes or work clusters that were not already identified during
the previous task. Again we followed the same approach as described in
the previous step. In cases where there were no other clusters with tweets
indicating a home or work location we were confident of our original labeling,
since there was only one cluster matching each label. In cases where other
clusters’ alluded to a potential key location, we continued with the following
process:

(a) Temporal analysis. We explicitly analyzed the timeline of clusters, and
identified the periods during which each cluster was active. This helped
us identify cases where users had changed residences, where multiple
locations had been labeled as homes but their active periods did not
overlap temporally. We also observed cases where the identified home
was not the user’s place of residence, but could be considered a secondary
home (i.e., country/summer house, parents’ house). During this step
we also searched specifically for references that allowed us to label the
cluster as a secondary home location (e.g., terms referring to parents).

(b) Spatial analysis. In cases where more than one cluster exhibited home-
like patterns and had overlapping active periods, we considered the spa-
tial location of each cluster. If the two clusters were close geographically,
we further investigated them to decide which one was the user’s actual
home and which was not (e.g., a friend’s house that the user visits
frequently). For clusters that were far away from each other (e.g., in
different cities), we relied on the content for verification. A common
occurrence was clusters with home-related keywords that exhibited con-
tinuous activity for a few days: e.g., users tweeting that they were at
home, while visiting their parents’ house during the holidays.

Overall, in the Home-Top dataset we have 1,004 users with 1,307 home clusters;
718 of these users have only one home cluster, while 269 and 17 users have two and
three homes, respectively. This is not a surprising finding, as we collected all the
tweets in each user’s timeline (up to 3,200), and not only tweets posted in a specific
time period. Indicatively, we have observed cases of users that have relocated (e.g.,
after graduating), college students living in dorm rooms during their first year and
then moving to a house, and students that regularly visit their family home. We
also observed users with multiple home locations in the Home-Low ground truth
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dataset, but to a lower extent. Specifically, we identified 905 users that have one
home cluster, 137 users with two, and one user with three home clusters. For the
two work ground truth datasets, i.e., Work-Top and Work-Low, we identified 298
and 92 users, that have 363 and 98 work clusters respectively.

It is possible that our home/work ground truth datasets are not exhaustive
(i.e., we may have missed certain locations). However, due to the systematic and
stringent manual inspection process, we are certain that all the locations labeled
in our ground truth indeed correspond to users’ home and work locations. Our
manual inspection process has resulted in ground truth datasets significantly more
complete and fine-grained than those used in prior studies [22, 34, 17, 18, 43] (more
details can be found in Section 5).
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Chapter 4

Experimental Evaluation

In this chapter we first present an analysis of our datasets and discuss properties
of users’ behavior regarding key and sensitive locations. Subsequently, we use our
ground truth to experimentally evaluate LPAuditor and compare to prior work.

4.1 Analysis of Users’ Location Clusters

To investigate the location patterns in users’ tweeting behavior, we focus our anal-
ysis on understanding the characteristics of users’ location clusters. We perform
this analysis for both the most active (Top-6K) and less active (Low-10K) users.
Figure 4.1 depicts the number of clusters per user. As expected, highly active
users tend to have a large number of clusters. Specifically, only 4.45% of these
users have less than 40 location clusters, and around 28% less than 100 clusters.
In more detail, we observe that around 50% of the highly active users have more
than 140 clusters, and about 25% and 10% of them have more than 200 and 280
clusters respectively. If we only consider clusters that have more than five tweets,
we observe that about 50% of the users have more than 11 such clusters, and 10%
have more than 22 clusters.

When focusing our analysis on the Low-10K dataset, we observe that these
users have significantly less clusters than the highly active users but seem to follow
a similar pattern. As shown in Figure 4.1 (right), about 10.7% have five or less
clusters, and about 50%, 25% and 10% of the users have more than 21, 40 and 63
clusters respectively. Furthermore, similarly to the highly active users, the number
of clusters drops significantly when considering only those clusters that have more
than 5 tweets. For both sets of users we find that users tend to have a large number
of clusters, out of which the majority has a small number of tweets.

Figure 4.2 presents the percentage of users’ tweets in their five largest clusters.
We observe that for about 40% of the users, more than half of their tweets belong
to their top cluster, while 47.77% of the users have more than 70% of their tweets
in their top 5 clusters. This phenomenon is observed in both sets of users. In
Figure 4.3 we explore the cluster sizes of all users. Both datasets exhibit a power
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Figure 4.1: Number of clusters per user.
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Figure 4.2: User’s tweets from their top 1, 3, and 5 clusters.

law distribution, with the vast majority of clusters having only a few tweets and a
small number of clusters with a large number of tweets. These small clusters will
most likely not correspond to a user’s home and work locations, as they appear to be
visited rarely; however, these locations are important from a privacy perspective, as
they allow an adversary to reconstruct a semantically-rich location history, which
can reveal highly sensitive information. In fact, this is clearly demonstrated in
Figure 4.4, which presents the distribution of PSCs with regards to the number
of their tweets. We find that 67.10% of the PSCs in our datasets have one tweet,
while only 4.04% of them have 10 or more (the most being health-related).
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Figure 4.3: Tweets per cluster in the two datasets.
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Figure 4.4: Tweets from Potentially Sensitive Clusters (PSCs).

4.2 Home and Work Location Inference

To assess our methodology and measure the effectiveness of LPAuditor we aim to
pinpoint exact locations. Thus, we opt for a “strict” evaluation of accuracy where
a location is either correctly or incorrectly identified. We do not calculate distance
errors as they are more suitable for coarse-grained approaches that roughly estimate
locations.

LPAuditor correctly identifies the home of 926 and 969 users from the two
datasets, resulting in a precision of 92.23% and 92.9% respectively. Thus apart
from obtaining superior granularity, our system is considerably more effective than
previous approaches as we will show. As our work inference first excludes the home
cluster, the outcome also depends on the precision of the home inference. Our
precision is 55.03% and 57.6% for identifying workplaces in our ground truth. As
users typically tweet less when they are at work than when they are at home (in our
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Table 4.1: Performance of home/work inference for ground truth users, and ranks
of the respective clusters.

Inferred
clusters

Rank of clusters
Dataset Users Precis. 1 2 3 4 5-10

Home-Top 1004 926 92.2% 806 111 8 1 -
Home-Low 1043 969 92.9% 911 49 8 - 1

Work-Top 298 164 55% 7 79 47 16 15
Work-Low 92 53 57.6% 4 31 11 6 1

ground truth, home clusters contain an average of 45% of tweets while work clusters
contain 8%) our effectiveness at identifying work is lower since other locations
frequented by the user can exhibit similar characteristics (e.g., restaurants, coffee
shops, gyms). Table 4.1 presents the precision of our home and work inference,
as well as the rank of all the correctly identified clusters. The clusters’ ranks are
estimated according to their size, such that rank 1 is the largest cluster of the user,
rank 2 is the second largest cluster and so on. Also, we do not re-calculate cluster
ranks after excluding home clusters in the work identification phase, as we want to
make direct comparisons between the results of the two approaches. Finally home
clusters have, on average, a maximum radius of 59.55 meters and work clusters of
53.38, which drops to 19.25 meters for all clusters in our ground truth.

Having established the precision of LPAuditor on our ground truth datasets,
we run our system on the main datasets (Top-6K, Low-10K) after excluding the
ground truth users. As can be seen in Figure 4.5, the majority of home clusters
in both datasets are rank 1 clusters, which is consistent with the results from the
home ground truth. For the work clusters, only 3.26% and 7.69% are rank 1,
while most of them are rank 2 and a considerable number occupy lower ranks, in
both datasets. We find that the detected clusters follow a similar rank distribution
in the two datasets, supporting the representativeness of our ground truth. It
should be noted though that while our work ground truth explicitly contains users
for which we have identified their work, for the main datasets our system also
identifies locations that are not work in the strictest sense. Specifically, we are able
to identify locations for users that do not work but have a location that can be
considered a work “substitute”, e.g., a college student attending classes.

4.2.1 Selection Bias

The methodology that we employed to create our ground truth datasets could
potentially result in selection bias, as it relies on certain key phrases as a starting
point for the manual process. To examine whether the accuracy of our evaluation
is a byproduct of LPAuditor’s heuristics being “overfitted” to the ground truth,
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Figure 4.5: Ranks of home and work clusters for our main datasets (ground truth
users have been excluded).

we manually examine a random subset of users identified from the main datasets
(Top-6K, Low-10K). Specifically, we select 100 users and manually investigate their
tweets to verify whether the home and work labels assigned by our system are
correct. Following the manual methodology described in Chapter 2 we are able
to verify that 89 of the home labels indeed correspond to the user’s actual home
cluster. For the remaining 11 users we are unable to characterize the label as
correct or incorrect based on the users’ tweets. For the work labels, we find that
for 45 users the work cluster has been correctly identified while for 30 users the
label is incorrect. For the remaining 25 users we are not able to verify whether the
label is correct or not.

While this manually verified sample is relatively small, we find that the result-
ing accuracy is comparable to the accuracy achieved by our system when evaluated
against the ground truth. Furthermore, these users are from our main datasets,
which exhibit a wide range of geotagging behavior, demonstrating that our effec-
tiveness is not tied to a specific dataset. As LPAuditor’s underlying algorithms are
based on common user behaviors and legislative/societal norms, we believe that
this manual verification further validates the generalisability of our techniques and
the correctness of our ground truth.

4.2.2 De-anonymization

While demonstrating the feasibility of de-anonymizing Twitter users is not the focus
of our work, we conduct a small exploratory experiment. We aim to identify which,
if any, users in our ground truth datasets appear to be pseudonymous. Specifically
we want to identify users that do not provide their full name, i.e., do not provide
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Table 4.2: Comparison between the precision achieved by LPAuditor and previously
proposed approaches. We have implemented all prior heuristics and applied them
to our ground truth datasets to allow a direct comparison.

Heuristic Description Dataset Proposed
byTop Low

Home

1 Cluster with the highest number of tweets 72.3% 67.8% [17, 18, 34, 39]
2 Most tweets between 20:00-8:00 72.1% 66.4% [45]
3 Most tweets between 24:00-7:00 69.3% 54.7% [34]
4 Last destination of the day (before 3am) 73.3% 64.8% [34, 39]
5 Last destination of the day (w/o days with tweets between 24:00-7:00) 71.4% 64.4% [34]
6 Weighted PageRank for destinations 44.1% 26.4% [34]
7 Weighted PageRank for origins 37.5% 20.9% [34]

8 Most popular cluster in terms of unique days, during the
Rest (2:00-7:59) and Leisure (19:00-01:59) time frames 73.1% 64.9% [22]

9 WMFV (best reported time frame: 24:00-5:59) 65% 50.9% [43]
10 W-MEAN (best reported time frame: 24:00-5:59) 0.6% 14.7% [43]
11 W-MEDIAN (best reported time frame: 23:00-5:59) 15.6% 24.5% [43]
12 LPAuditor’s Home detection 92.2% 92.9% this work

Work
13 Most popular cluster in terms of unique days, during the

Active time frame (e.g., working hours, 08:00-18:59) 33.2% 48.9% [22]

14 Cluster with the second highest number of tweets 18.5% 22.8% -
15 LPAuditor’s Work detection 55% 57.6% this work

their last name (we do not consider first names to be conclusive for identity). We
use the list provided by the US Census Bureau with the most frequent surnames
to filter out users that include their last name in the full name section of their
account.

After filtering 282 users remain, which we manually examine and exclude the
ones that actually disclose a last name that is not included in the Census list,
or include their last name in their username. We end up with 183 users that do
not explicitly reveal their identity on their Twitter accounts, which constitutes a
lower bound of the pseudonymous users in our ground truth, due to potential false
positives in our automated filtering. Out of these users, LPAuditor was able to
correctly identify the home location of 171 users and the workplace of 23 users (to
ensure privacy, the manual inspection of users’ names was conducted in “isolation”
and not combined with or mapped to any ground truth locations or other location
clusters). While these users might not be truly pseudonymous in reality (e.g., users
with a pseudonym whose actual identity is well known within certain communities)
or could also be de-anonymized through other techniques [28], this experiment
highlights another potential threat posed by location metadata.

4.2.3 Comparison to Prior Work

Apart from pinpointing locations with a granularity that is orders of magnitude
more fine-grained than prior work, it is important to also quantify the accuracy
improvements of our techniques. We implement the heuristics proposed in prior
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work for identifying home and work locations that leverage spatiotemporal patterns
and apply them to our ground truth; we do not compare to techniques that require
other types of data, like social ties [37, 36], as we do not collect such data and those
techniques are inherently very coarse-grained. By running these heuristics on the
same data, we are able to conduct a direct comparison to previous techniques
and avoid the inaccuracy of simply comparing to their reported numbers. It is
important to note that we map tweets to postal addresses before applying these
previously-proposed heuristics, i.e., we only apply our initial first-level clustering
so as to remain as faithful as possible to their original design.

As Table 4.2 shows, LPAuditor outperforms all heuristics proposed in prior work
for both home and work locations. The simplistic approach of selecting the largest
cluster as the home (1) performs surprisingly well, and even outperforms some of
the other more complex heuristics. We also extended this logic and evaluated the
precision of considering the second largest cluster as the workplace (14); this results
in a precision of 18.45% and 22.82% in the Work-Top and Work-Low datasets
respectively. Heuristics (4) and (8) perform better than other prior heuristics. The
approaches proposed in [43] rely on weights obtained from their data; to remain
faithful to their design, we replicate their approach and randomly select 22% of our
users as the sample dataset to calculate the weights and the rest as the evaluation
dataset. The significant difference between their reported accuracy and our findings
can be attributed to their experiments being conducted on a dataset from a very
limited time frame and geographic area.

Overall, our techniques present an improvement of 18.9%-91.6% when inferring
homes and 8.7%-21.8% for workplaces. An interesting observation is that in multi-
ple cases LPAuditor presents a larger improvement over prior approaches for users
that are not prolific geotaggers (i.e., from the Low datasets), indicating the benefit
of our techniques when there is sparser availability of data.

4.3 Inference of Sensitive Places

LPAuditor detected 6,483 potentially sensitive clusters (PSCs) across our ground
truth. Specifically, it identified 938 (93.42%) Home-Top users with a total of 5,393
PSCs, and 516 (49.47%) users in Home-Low with 1,090 PSCs. This difference
between datasets is expected as users in the latter have fewer geotagged tweets and
considerably less clusters. Figure 4.6 breaks down the detected PSCs according to
the category of the associated venues. For PSCs that have more than one sensitive
venue in close proximity, we first assign that PSC to the category of the closest
venue. We also present how the distribution changes if each PSC is mapped to
all sensitive venues in proximity (denoted as “Multiple attribution”). When only
considering the sensitive venue with the shortest distance to the PSC’s coordinates,
we identify 5,094 health-related clusters, and 918 and 471 venues related to religion
and sex/nightlife respectively. Interestingly, if we intersect these clusters with users’
ground truth work locations we find 10 common instances in the Work-Low and
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Figure 4.6: Potentially sensitive clusters, i.e., in close proximity to venues belonging
to a sensitive category.

15 in the Work-Top sets; out of those only 3 from the latter set were identified by
our system through tf-idf. As such, we believe that the vast majority of cases
are users visiting these sensitive venues, as opposed to working there.

4.3.1 Content-based Corroboration

When using tf-idf and our wordlists, we increase our confidence in placing users
at 545 of the detected PSCs. To assess these results we identified the clusters that
contain at least one keyword from the respective wordlists and manually inspected
the clusters’ tweets, to assert whether the user was actually referring to a sensitive
place. This manual inspection showed that our approach had an overall precision
of 80.36% and a 93.79% recall, as presented in Table 4.3. Out of the 438 verified
sensitive venues, 375 were related to health, 51 and 12 to religion and sex respec-
tively. We observed a small number of false positives due to ambiguous keywords
that remained in our wordlists (e.g., “shot”); however, we kept these terms as the
true positives significantly outweighed the false positives. On the other hand, in
some cases our approach missed certain sensitive clusters due to users that post
sensitive content repeatedly from many clusters (e.g., a religious user that tweeted
religious content from multiple locations), which resulted in these keywords not
being deemed significant by tf-idf. Furthermore, it is important to stress that
we obtain a lower bound on the number of sensitive venues that a user has visited,
as the user may simply post tweets that do not contain the appropriate context.

Depending on the attacker’s end goal, there might not be a need for absolute
certainty of whether the user visited the sensitive place. Even low confidence
levels may be considered a sufficient indicator; for instance, an insurance company
looking at a user’s social media profile to decide on adjusting the user’s premium
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Table 4.3: Results of content-based (CB) identification of users visiting sensitive
places, for our ground truth.

Home-Top Home-Low Total

Users in Dataset 1,004 1,043 2,047
PSCs 5,393 1,090 6,483
Users w/ PSCs 938 516 1,454

Guessed Clusters (CB) 464 81 545
Users w/ CB Clusters 328 72 400
True Positive (TP) 368 70 438
False Positive (FP) 96 11 107
False Negative (FN) 25 4 29

Precision (TP/TP+FP) 79.31% 86.41% 80.36%
Recall (TP/TP+FN) 93.63% 94.59% 93.79%
F-Score 85.87% 90.31% 86.55%

or purchasing their policy [4]. Nonetheless, as an extra source of ground truth,
we identified these users’ tweets that were generated by the Foursquare app and
followed the typical format of a check-in; we then compared the venues of these
check-ins to the clusters of sensitive nearby venues. This allowed us to verify certain
detected sensitive places irrespective of the content posted from these clusters. This
returned 105 sensitive clusters for our ground truth users, 20 of which were also
detected by tf-idf. While this source of ground truth is considerably small, it
offers an interesting indication of user behavior; users are extremely reserved when
it comes to explicitly publishing that they are at a sensitive location. This further
exemplifies the implications of the location metadata being exposed, as it directly
undermines privacy-conscious user behavior.

To further investigate the tweeting behavior of users from sensitive venues, we
used LPAuditor to infer sensitive places visited by the remaining users from the
Top-6K and Low-10K datasets. Our system identified 21,863 PSCs for 4,418 users
from the Top-6K dataset and through content-based corroboration identified 1,512
of them as sensitive clusters that have been visited. Of those, 1,282 are health
related, 196 pertain to religion and 34 are related to sex. Similarly for the users
from the Low-10K dataset, we identified 6,918 PSCs, with 474 being flagged by
our system, with 341 related to health, 115 to religion, and 18 to sex.

4.3.2 Duration-based Corroboration

When using the duration-based approach (DB), as can be seen in Table 4.4, we
identified 691 users from the Home-Top and 205 from the Home-Low dataset that
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Table 4.4: Results of duration-based (DB) identification of users visiting sensitive
places, for all datasets.

Home-Top Home-Low Top-6K Low-10K

Visited Clusters (DB) 1,699 276 7,020 2,337
• Medical 1,307 194 5,193 1,626
• Religion 245 56 1,176 493
• Sex/nightlife 147 26 651 218

Users w/ DB Clusters 691 205 3,012 1,672

Common CB/DB Clusters 53.44% 44.44% 53.9% 47.25%
Users w/ CB/DB Clusters 86.89% 59.72% 86.26% 65.88%

have repeatedly visited or spent a considerable amount of time at 1,699 and 276
PSCs respectively. Similarly, in the Top-6K and Low-10K datasets, we identified
3,012 and 1,672 users that have visited 7,020 and 2,337 such places. It should
be noted though that these numbers constitute a lower-bound estimation, as the
duration-based approach does not take into consideration PSCs that only contain
a single tweet.

Interestingly, we observe that 53.44% and 53.9% of the sensitive clusters de-
tected by the content-based approach (i.e., CB clusters) for the Home-Top and Top-
6K datasets respectively, are among the visited clusters returned by the duration-
based approach (DB clusters). For the Home-Low and Low-10K datasets, 44.44%
and 47.25% of the clusters detected with the content-based approach have been
also detected by the duration-based approach. Employing both approaches can
increase confidence in identifying sensitive places the users have visited. Thus, for
scenarios requiring higher levels of confidence, an attacker can select the intersec-
tion of the sets returned by the two approaches. Another noteworthy observation
is that the DB approach results in a higher ratio of sex-related clusters compared
to CB, which indicates that users are reluctant to explicitly mention such venues
while further highlighting the risk of geotagged tweets.

4.3.3 Contextual Privacy Loss

A significant implication of this inference is that location metadata can amplify
the loss of privacy by revealing sensitive details or additional context about the
tweet’s content that might not match the user’s intended level of disclosure. While
we found this to be common across most cases of sensitive clusters we identified, it
is not our goal to quantify or exhaustively enumerate this phenomenon. Instead,
we anecdotally refer to a few representative examples that highlight this dimension
of privacy leakage. In one case, the user expressed negative feelings about his/her
doctor, while the GPS coordinates place the user in the office of a mental health
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Figure 4.7: Granularity of location for all geotagged tweets between 2014-2016 in
our entire dataset.

professional. In another example, the user complained about some blood tests,
while being geo-located at a rehab center. Also, geotagged religion-based tweets
can reveal the type of that place of worship (e.g., mosque, synagogue) and may
even point to a specific denomination. However, even if users are cautious and
nothing sensitive is disclosed in the tweets, the location information obtainable
with our duration-based approach can result in significant privacy loss.

4.4 Impact of Historical Data

During our analysis we found that Twitter app versions released prior to April 2015
automatically include GPS coordinates in tweets tagged with a coarse location. The
resulting tweets have both a coarse-grained label (e.g., city) and GPS coordinates
in their metadata. Furthermore, that information is not visible in the app or the
web version. Thus, users are completely oblivious to the public availability of this
sensitive information. In newer versions users have to explicitly opt to include
GPS information on a per-tweet basis. The apps with a more privacy-respecting
behavior were released on April 15th for iOS and the 20th for Android. Nonetheless,
the historical metadata collected from the prior versions remains publicly accessible
through Twitter’s API.

4.4.1 Unavoidable Privacy Leakage

As shown in Figure 4.7 user behavior changes after April 2015, with far fewer tweets
with precise location, and users tagging tweets with the newly introduced point-
of-interest (POI) that denotes locations of varying granularity. Table 4.5 shows
that there is significant change, with a 35-fold reduction in the ratio of tweets
that contain GPS coordinates after the release dates of the apps with the privacy-
respecting approach. Since we do not have the ability to detect each user’s app
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Table 4.5: Tweets with GPS coordinates depending on Twitter’s policy on including
precise location metadata.

Dataset Before 4/2015 After 4/2015

All tweets 24.98% 1.35%
Coarse-grained tweets 99.9% 2.85%

version, we first separate the data on the official release date for each platform (i.e.,
we take into account if the user is on Android or iOS). While some users may have
delayed updating their app, that would only increase the ratio of tweets with GPS;
thus, the actual reduction of tweets with GPS is even higher, further highlighting
the unavoidable privacy violation that users faced due to Twitter’s poor handling
of location data. While we expected that all coarse-grained tweets from before
04/2015 would contain GPS coordinates, we found that ∼0.1% do not. These
were all from before 08/2010 indicating the point in time when Twitter started
the practice of appending GPS data to coarse-grained tweets. Consequently this
privacy-invasive policy persisted for almost 5 years until Twitter gave users greater
control over the location information they exposed. Nonetheless, users with older
devices or versions of the app are still exposing this type of data, while all users’
data remains accessible online.

4.4.2 Historical Data

We explored the impact of Twitter maintaining and publicly sharing historical
location metadata, by calculating how many users would remain vulnerable if GPS
coordinates were not included in coarse-grained tweets. In Figure 4.8 we first look
at the number of days that have passed since the last tweet from a home/work
location. We find that 56.57% and 68.45% of the users posted their last tweet from
home right before the release of the newer app version, a large percentage around
the dates of the app release, and only a small number after that. As we do not
have information regarding the date each user installed the newer app version on
their device, we cannot know the exact numbers. However, it is evident that the
majority of users stopped posting tweets with precise location information from
their home and work locations.

To further investigate how users’ behavior changed since Twitter changed its
policy, we identified the users that have posted tweets with coordinates after the
app release date (and the following weeks) and ran LPAuditor only on the tweets
posted after those dates. As can be seen in Table 4.6, as users started updating
their apps, the number of users posting tweets with precise location drops rapidly.
Indicatively, only 15.43% and 11.12% of the users in the two datasets continued
posting such tweets four weeks after the release of the new app. When using only
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Table 4.6: Home inference using geotagged tweets posted after the new geolocation
policy of Twitter.

Dataset Date Users Homes Coverage

Home-Top Release 602 333 35.96%
Home-Top +4 Weeks 155 68 7.34%

Home-Low Release 394 239 24.66%
Home-Low +4 Weeks 116 62 6.39%

tweets posted at least four weeks after the app release we were able to correctly
identify the home of 7.34% and 6.39% of the users that are identified when all data
is used.

Regarding the “freshness” of historical data, it is important to note that even
if some of the users’ key locations have changed (e.g., a user has since moved to a
different home), users can still be identified by that data, and the inferred sensitive
information does not “expire”. The sensitive user traits, actions or beliefs that can
be inferred by the three categories that we explore will still characterize the users
regardless of the current location of their home or workplace. Even for ephemeral
characteristics that no longer hold true, exposure of that sensitive information can
still affect users (e.g., certain cured medical issues remain social taboos). As such,
given the adage that “the Web never forgets”, Twitter’s invasive privacy policy
cannot be dismissed as a case of a vulnerability that has been fixed. As long as
this historical data persists online, users will continue to face the significant privacy
risks that we have highlighted in this work.
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Figure 4.9: Time required by LPAuditor for each phase of the process. The reported
numbers are for a subset of 1,000 users randomly selected from all the users with
geotagged tweets.

4.5 Performance Evaluation

To evaluate the performance of our system we selected 1000 users randomly from all
the users with geotagged tweets and measured the time required by each module
of LPAuditor, as well as the total time, for completing the entire process. As
expected, this time depends on the number of tweets and clusters each user has; as
such we randomly chose the users to reflect a representative distribution. As shown
in Figure 4.9, the most time demanding operations are those of collecting a user’s
tweets, collecting PSCs, and the first-level clustering all of which rely on the use of
third-party APIs (i.e., communication over the network, rate limits, etc.). On the
other hand, the time required for the other steps are in the order of milliseconds,
which can be considered as negligible.

Using a commodity desktop, LPAuditor requires less that 12 seconds for col-
lecting all the tweets of roughly half the users, and less than 20 seconds for around
98% of the users. Furthermore, for the collection of PSCs it takes up to six seconds
for half of the users, and more than 29 and 66 seconds for 15% and 5% of the users
respectively. For the process of clustering, our system takes up to 35 seconds for
about 50% of the users, and more than 164 and 305 seconds for 15% and 5% of
the users. To that end, when considering the total time spent, LPAuditor takes
less than 52 seconds for half of the users, and more than 207 and 385 for 15% and
5% of them (users with a very large number of tweets and clusters). Our system
can complete the whole process in less than a minute for half the users, while
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approximately 95% of them can be processed within six minutes. This highlights
the severity and scale of the privacy threat we have explored, as adversaries could
trivially run such attacks for a massive number of users.
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Chapter 5

Related Work

Prior work has proposed approaches for identifying home and work locations that
range from inspecting social graphs, to studying check-ins and precise geoloca-
tion data (a survey can be found in [68]). As certain users do not geotag their
tweets, previous work has also tried to infer home locations based on tweet con-
tent [16, 46, 58] or other information like social ties [33, 15] or check-in behavior [40].
However, these studies can only infer key locations with a very coarse granularity.
Furthermore, the inference of sensitive information from other location data points
has not been explored.

5.1 Location Inference

In a study that investigated mobility patterns, Cho et al. [18] considered geographic
cells of 625km2, and considered a home location to be the average position of the
cell with the most check-ins. Pontes et al. [54] used Foursquare check-ins and
correctly inferred the home city of ∼78% of users. By considering that users are
located at their home at night and near their office during working hours, Liu
et al. [44] identified the key locations of 68% of the users within a distance of
2.5 km. Efstathiades et al. [22] followed a similar approach for detecting users’
home and work at a postcode granularity, using three Twitter datasets from the
Netherlands, London, and the Los Angeles county. Given that the average size of a
postal code area in LA is approximately 14.66km2 and includes over 37K residents
(our calculations are based on data from [19]), it is evident that postcode-level
granularity is still very coarse. Also, our techniques result in significantly higher
precision as shown by our experimental comparison.

Apart from LPAuditor outperforming previously proposed techniques (as shown
in Chapter 4), our experimental evaluation and comparative study was conducted
on a ground truth dataset that is significantly more complete and fine-grained than
the datasets used in prior studies. In detail, the ground truth constructed in [22]
was at a postcode level, while Cheng et. al [17] did not actually verify their home
selection with some form of ground truth. Similarly, in [18] the authors constructed

35
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a ground truth using 25x25km cells and stated that “manual inspection shows that
this infers home locations with 85% accuracy” but did not include more details on
how that was done. Furthermore, the datasets in [39, 34, 43] all contained only
home locations, with the dataset by Lin et al. [43] being based solely on the visual
inspection of the GPS data points. While in [34] the authors also relied on manual
inspection of tweet content for identifying the home locations, that process was
conducted by Amazon Mechanical Turk workers who were only shown a subset of
five tweets from a cluster, whereas our manual inspection was conducted collectively
on the entirety of tweets assigned to each cluster.

5.2 Location and De-anonymization

The problem of identifying key locations has also been explored in different set-
tings, e.g., using continuous GPS data collected from receivers in cars [39] or wear-
ables [41]. Golle and Partridge built upon these findings and explored how users
can be identified from different granularities of anonymized census data [29]. De
Montjoye et al. [21] explored the uniqueness of user mobility patterns in a 15-month
dataset for 1.5M people, and found that four coarse-grained spatiotemporal points
can uniquely differentiate 95% of the individuals within the set. Previously, Chong
et al. [60] reported a 93% predictability in mobility by measuring the entropy of
users’ trajectories. Rossi et al. [57] demonstrated the feasibility of identifying users
within mobility traces by using movement data including speed, direction and dis-
tance of travel and found that as little as two location points may be sufficient to
uniquely identify users.

5.3 User Behavior

Prior work also explored how users interact with or disclose location data, and
the feasibility of social-tie inference. Liccardi et al. [42] explored how different
ways of visualizing data affected users in inferring the type of a location (home,
work, etc). Ahern et al. [11] investigated how users select the privacy settings for
uploaded photos, and found that users are more likely to set as private photos that
are taken at frequently photographed locations while tending to set photos from
less frequented locations public. Consolvo et al. [20] found that users were willing
to disclose exact locations, but that study focused on a different setting where
users were asked about sharing information with friends, family and colleagues.
Tang et al. [61] identified how users adapt their location sharing behavior and
explored the different ways and levels of granularity at which users decide to share
their location under different hypothetical scenarios. Cheng et al. [17] conducted a
large-scale study of location data and studied mobility patterns and the correlation
between check-ins and message content and sentiment. Sadilek et al. [59] proposed a
probabilistic human mobility model for predicting users’ social links and locations.
That model considers users who disclose GPS coordinates as noisy sensors for
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inferring the location of their friends.
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Chapter 6

Discussion and Future Work

6.1 Twitter Privacy Leakage Mitigation

The pitfalls of location-sharing have long troubled researchers. And while our work
demonstrates the extent of the risks users face, it also highlights an important as-
pect of the issue that, to our knowledge, has not been explored before. While
previous work has mainly focused on users knowingly or inadvertently sharing lo-
cation data in social platforms, we also identified an inconspicuous form of privacy
leakage that is invisible to users. Even though Twitter has since opted for a more
privacy-oriented policy where users have to explicitly choose to append GPS coor-
dinates in tweets, the availability of historical metadata severely undermines the
benefits of this more recent approach. Apart from the fact that after users are given
the choice they are 18.5 times less likely to include GPS coordinates, ∼93% of the
users identified by LPAuditor are due to the historical tweets geotagged by Twit-
ter. These findings underline the risks of web services publicly over-sharing data
through their APIs, which poses an alarming flip side to the common problematic
behavior of over-collecting data [56].

We found that Twitter mentions this behavior [63], and describes the process
for removing location data [62]. However, they explicitly warn users that “deleting
location information on Twitter does not guarantee the information will be removed
from all copies of the data on third-party applications or in external search results”.
As data brokers continuously collect and sell Twitter data, even if users do remove
all location metadata from their tweets, it is not necessary that those changes will
be reflected in the versions maintained by others.

Ideally, our study will motivate services and act as a deterrent against pub-
lishing sensitive metadata not explicitly broadcast by users (interestingly, a recent
study explored how other types of metadata can uniquely identify a user [52]).
While the availability of public Twitter data has facilitated innovative and im-
pactful research, the privacy threats that users face remains an important issue.
This is further exacerbated by the significant ramifications for users that rely on
the pseudonymous nature of Twitter [47]. Overall, while Twitter offers a partial
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solution for mitigating the privacy risks of this (historical) data, there exists no
foolproof course of action for completely eradicating this threat.

6.2 Applicability of LPAuditor

The techniques used by our system for inferring users’ home and work locations
are not tied to Twitter, but can be readily applied to any (sparse) location dataset
that contains periodic entries of GPS coordinates and timestamps. For datasets
that contain very frequent snapshots of a user’s location (e.g., continuously col-
lected every couple of seconds), a simple form of sampling should be sufficient for
reducing the computational overhead that can arise from a massive number of data
points. And while our content-based technique for inferring sensitive locations is
not applicable to every location-based service as it relies on the tweets’ content,
our duration-based technique can also be applied to any location dataset.

6.3 LPAuditor Adoption

Recent headlines regarding third parties harvesting personal user information in
services like Facebook [10] have reignited the public discourse over user privacy
and data protection. Facebook has announced plans for offering users more control
over their data [3] and Twitter is aiming for increased transparency due to the new
GDPR requirements [9]. As such, it is evident that there is need for tools and
techniques that can intuitively inform users about what data of theirs is exposed.
And while certain cases of data exposure can be self-evident, sensitive information
inference may be less obvious. To that end, LPAuditor can be incorporated by
any location-based service or social network for clearly notifying users of such
exposure. For services that do not obfuscate locations, users can also explore user-
side location-obfuscation tools like LP-Doctor [24].

6.4 POI

While we find a massive reduction in tweets with GPS coordinates after the release
of the less privacy-invasive Twitter apps, there is a considerable number of tweets
with a “point of interest” label. These labels cover areas from very coarse (e.g.,
“Central Park”) to fine-grained (e.g., “Starbucks”). However, without the GPS
coordinates it becomes much harder to place users at those locations, since the tweet
may be about that place instead of at that place [64]. We consider the exploration
of POI-based privacy leakage as future work.
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6.5 Ethical Considerations and Disclosure

As is the case with any study that explores user privacy, it is important to ad-
dress the ethical implications of our work. A precise description of our study and
experimental protocol were submitted to and approved for exemption by our uni-
versity’s Institutional Review Board (IRB). Moreover, apart from only collecting
publicly available data offered by the official Twitter API, all usernames were re-
moved during the manual annotation process. This ensured that the authors would
not be able to identify/deanonymize any users. At the same time, all collected data
and results from our analysis were stored on machines with up-to-date software,
encrypted hard drives, where access was strictly limited to the authors and only
possible from two white-listed internal IP addresses using authorized SSH keys.
We believe that our research presents minimal risk while having the potential for
significant benefits to users; we have submitted a report to Twitter outlining our
research and findings, and substantiating the need to purge this historical data.

By reporting the accuracy of our location identification techniques we can alert
users of the true extent of the privacy threats they face. Also, by educating users on
the risks of location sharing we hope to motivate even more privacy-conscious be-
havior. Finally, demonstrating the practicality and feasibility of impactful attacks
can incentivize services to incorporate privacy-preserving techniques for collecting
and sharing location data (e.g., [32, 12, 24]) and offer the functionality of LPAuditor
as an intuitive auditing tool for users to assess their level of privacy exposure.
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Chapter 7

Conclusions

In this work, we have investigated the privacy threats that arise from precise lo-
cation (meta)data being publicly accessible in Twitter’s API. By developing novel
techniques for identifying a user’s exact home and work location, and inferring
sensitive information through the reconstruction of a user’s location history, our
system, LPAuditor, highlights the true extent of the risk of exposing such infor-
mation. Through an exhaustive and comparative evaluation of these techniques
and our findings, we show that this extent remained unknown thus far. Another
interesting and quite alarming finding of our work is that Twitter used to include
precise GPS location information on tweets tagged with coarse-grained locations,
without informing the users in any obvious way. This covert exposure of location
data lasted for almsot five years before Twitter adopted a more privacy-respecting
policy.

Specifically, we show that LPAuditor can identify the home and workplace for
92.5% and 55.6% of our groundtruth users respectively, outperforming all prior
work and also at an unprecedented granularity: that of the location’s actual postal
address. LPAuditor also manages to place approximately 20% of our groundtruth
users at a sensitive location with high confidence, revealing sensitive user trains
that might not match the user’s intent of disclosure. To the best of our knowledge,
our work is the first to demonstrate this type of inference in an automated fashion.

To make matters worse, our experimental evaluation revealed how Twitter’s
invasive policy of including precise location data in previous app versions has sig-
nificant implications, as it results in an almost 15-fold increase in the number of
users whose key locations are successfully identified by our system. Given that
users are most likely oblivious to this privacy leakage, it is important to shed light
on this privacy-invasive practice.

To conclude, we hope that our work will serve as a cautionary tale, equipping
users with the means to manage their personal data and avoid the risks of public
exposure.
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