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Abstract

The main subject of this thesis is the use of cross-correlations of noise recordings for esti-
mating the velocity and the velocity variations in a medium. The cross-correlation function
of the noise recordings at two sensor locations is related to the Green’s function between
these two sensors. This relation largely depends on the spatial distribution and the frequency
content of the noise sources.

In part [l we investigate how seasonal variations in the spatial distribution and the fre-
quency content of the noise affect the measurement of the velocity variation in a medium
and we suggest a possible treatment to that problem which works under some assumptions
on the seasonal variations.

In part [[If we study the problem of velocity tomography using noise recordings. In par-
ticular we study the Eikonal Tomography and more specifically the impact that different
interpolation schemes have on the estimation obtained by Eikonal tomography. We also
introduce the Kriging interpolation method as an alternative approach to the classical de-
terministic methods.

In part [I[IIf we use noise recordings (Structural Vibrations) from sensors positioned at a
historic masonry bell-tower in Perugia for Structural Health Monitoring (SHM). We intro-
duce a new method to detect changes in the natural frequencies of the structure which are
associated with structural damage.

[Tepuypoupt

To xuplwe Véua avtAc g dtateBhc elvon 1 yeromn Tng cuoyETiong xotaypapmy Yopufou
yioo TNV extiunon g ToyUTNTaS xou PETOBOADY TNg TayUTnTag ot éva péow. H ouvdptnon
ouoyETiong xatorypapey Yoplfou ce 800 aoinTrpes €yl oyéon ue T ouvdetnon Green petald
TV 600 acINTACKY. AuTH 1 oyéomn eCopTATAL OO TNV XUTOVOUY GTOV YWEO XUl GTO GUYVOTIXO
TEPLEYOUEVO, TV TNYKY VYopUfou.

Y10 TPWTO PEPOG PEAETIUE TS ETOYLOXEG PETUPBOAES OTNY XUTAVOUTR GTO YWEO XAl GTO
oLy VoTIxd TEpEYOUEVO Tou YopUfou emneedlouy TG METENOES TwV UETAB0A®Y TG Tay0Tn-
Tog EVOC pEGoL xon TpoTelvoupe midoavd TEOTo Yo vor e€akelPoule auTO TNV EMNEOT| XATW oo
OpIoPEVES TPOUTOVETELS Yol TIC ETOYLAXES HETUPONES.

2270 0e0TEPO YEPOS UEAETHUE TO TROBANUA TNG ATEWOVNONG TNG Tay OTNTAS EVOG UECOL YPNOL-
HomotwvTag xatorypagés Yoplfou. Xuyxexpwéva uehetdue to TedfBAnua Eikonal Tomography.
Emuniéov eiodyouvue tnyv pédodo mapeuorrc Kriging w¢ evahaxtixh mpoceyylon oTic Topado-
OLOXEC VTIETEPUIVIO TIXES UEVOOOUC TOREUBOAYC.

X1 Tpeito Yépoc téhoc ypenoiponolotue xotaypapéc YoplBou (SOW']GaQ xonocoxeur']g) and
atcUntAees Tomodetnuévol oe Iotopnd xaunavapld otnv Ilepoltlior yior mapaxorolinoy tne
XUTAOTAONG TNS XoTaoxeLNS. Eiodyouue md véa pédodo mou evtomilel ahhayéc OTIC QUOLKES
OLYVOTNTES TG XATACKELNC oL ontoleg cuoyeTilovton Ue {NUESC GTNY XUTUOXEUT).
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Chapter 1

Introduction

Getting information about key properties of the interior of a medium without placing sensors
inside the medium is very useful and practical. Technological achievements from the simple
X-ray (invented back in late 1800s) to the medical MRI (invented by Paul C. Lauterbur
in 1971) are brilliant examples of the necessity to be able to ”see” inside the human body
without having to perform any kind of surgery. Back in the 1970s we were projecting that
soon we will run out of oil, nowadays we have more fossil fuel than we really need and
the reason for that is that we have developed new technologies for extracting these natural
resources and most importantly we have radically improved the imaging techniques.

In the context of geophysics, imaging techniques have been developed which are used
to monitor volcanoes and study the major earthquakes post-seismic effects in the velocity
of the earth around the epicentre. Also, non-destructive testing of materials and structural
health monitoring are areas where the scientific community has put a lot of effort. In all
these examples the common denominator is the need to "see” inside a medium.

1.1 Imaging the subsurface of the Earth

In this thesis we consider the problem of imaging the subsurface velocity of the Earth. Up
until the mid 1990s the basic configuration had two main components, the source and the
receiver (see Figure . The source was usually an earthquake or a small explosion in the
case of active imaging. A detailed image of the subsurface can be obtained as the different
layers of the earth reflect the seismic wave that had been generated at the position of the
source. The travel-time can be extracted and used to obtain a velocity estimation. This
process usually requires a large number of sources and receivers.

In this thesis we are also interested to estimate velocity changes in a medium. Back
in 1984 [52] introduces the ’doublet’ method for comparing recordings of two earthquake
events of similar magnitude and similar location, as recorded by a distant seismic station.
The earthquakes had happened in different times and with the ’doublet’” method it was
possible to detect small changes in the velocity of seismic waves that happened in the time
interval between the two earthquakes.



Figure 1.1: Active configuration: The basic configuration requires an array sources-receivers.
The source can be an manmade seismic explosion or an earthquake.

In order to use the 'doublet’” method to systematically monitor faults and volcanoes we
would need earthquakes to occur quite often and at the same locations, which is not realistic.
At mid 1990s an alternative approach to this problem resurfaced where seismic noise was
being used.

1.1.1 Usage of noise data.

”Noise” in general isn’t a good thing to have in your data and numerous studies and research
has been carried out so as noise can be removed from the data. Seismic noise is generated
mainly by ocean waves (frequencies below 1Hz) and by human activities such as road traffic
(above 1Hz). The idea to use seismic noise to study ground properties is actually very old,
dated back to 1950s [2] but the implementation of those ideas wasn’t possible due to the low
precision of the seismic stations at the time. Improvements in instrumentation in the mid
1990s led to the resurrection of those old ideas in the late 1990s.

In the configuration of Figure the signal recorded at the receiver characterizes the
propagation from the source to the receiver (this points to the Green’s function from the
source to the receiver). So the question is: can we reconstruct the Green’s function in a
"passive” configuration such as in Figure where we no longer have source but we only
have pairs of receivers that record the noise field?

The answer is positive, yes we can reconstruct the Green’s function and this is achieved
using the cross correlation function. Assuming noise recordings at receiver locations x; and
x5 and given a uniform distribution of noise sources and long enough recording time, it has
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been shown that

—COp(7,%x1,%2) ~ G(7,%x1,X2) — G(—T7,X1,X2),

or
where T is the length of the recordings and C7 is the cross correlation function between the
sensors at x; and Xs.

Figure 1.2: Passive configuration: This configuration requires the present of a seismic noise
field.

The relation above is not an equality and requires a large recording time 7', corresponding
to several days or even sometimes months, in order for the cross correlation to converge to the
symmetrized Green’s function. However in order to obtain information about the travel-time
or the velocity change, just a few days of recordings are usually enough.

The estimation of the velocity change in the medium is performed using two methods, the
Stretching method (SM) and a modification of the 'doublet” method which is called Moving
window cross spectral (MWCS) method. The methods are applied not on the recordings
of the stations but in specially constructed cross correlation functions. These methods are
introduced in detail at chapter

The travel-time between the two receivers can be obtained by estimating the time at
which the cross correlation function (or its envelop) has a peak. Given a network of sensors
this will eventually produce all the pair-wise travel times which can be used for constructing
a velocity map of the medium.

In part [ we investigate how we can estimate velocity changes in a medium using cross
correlations of noise recordings and the quality of that estimation regarding the spatial and
frequency distribution of noise sources.

In part [l we study the problem of velocity tomography using correlations of noise record-
ings between pairs of sensors in a network of sensors.

11



1.2 Noise signals in Structural Health Monitoring

The efficient management of aging infrastructure network, as well as the preventive conserva-
tion of civil structures and, in particular, of heritage ones, that are exposed to various natural
and anthropogenic hazards, are stimulating scientific research towards the development of
automated structural condition assessment strategies. Similar strategies are commonly re-
ferred to as Structural Health Monitoring (SHM) systems, whose main goal is using field
observations of the response of a structure in operational conditions for damage diagnosis
and health prognosis [2§].

Several strategic bridges worldwide are equipped with SHM systems [10, [44], while in
application to historic structures, challenges related to invasiveness and architectural respect,
as well as to the choice of the proper sensing hardware and signal processing strategies still
need to be addressed. Several authors worldwide are working to overcome these challenges
by developing appropriate tools for SHM of monumental buildings. Among the most relevant
applications, one can mention historic bridges [7], monumental buildings [13, 55] and masonry
towers [40, [34].

Among the various approaches available for SHM, vibration-based strategies are espe-
cially popular, owing to their fully non-destructive and global nature. Many vibration-based
SHM tools look for anomalies in modal parameters, typically natural frequencies, whose
estimates are continuously extracted from monitoring data using automated output only
modal analysis techniques [3, 21 [45]. Similar approaches can benefit of reliable output
only modal identification techniques currently available in the literature |46l 57, [67], modal
tracking procedures [57] and statistical methods able to remove the effects of changing en-
vironmental conditions from identified modal frequencies [74] [75, 4] and to automatically
detect anomalies in the frequency time series, possibly related to some structural damage
[73), (74, 27, [45], 48, 19, 22, [I7]. These techniques, however, can result in heavy computations
that require a de-centralized computer that further complicates the real time early warning
task. Therefore, the development of SHM tools that are less expensive in terms of computa-
tional cost is much needed at present, which can also allow implementation in smart sensors
with embedded electronics.

In part [[TI] we proposes a novel vibration-based SHM method which is inspired by the
Stretching method used in parts [[] and [[I] and uses continuous recordings of monitoring data
ensuing from a small number of sensors installed on site, and provides a direct measurement
of changes in natural frequencies of the structure.

12



Chapter 2

The Wave Equation and the
Cross-Correlation Function

In this chapter, we first briefly recall some material about the wave equation and the Green’s
function. We also introduce the cross-correlation function of noisy recordings at two points
and review the basic results that establish its relation with the Green’s function between the
two points. In this Thesis what we call "noise” is typically a seismic wave that travels through
the medium which we desire to study. We call it noise because it is due to microseismic
activity caused by natural phenomena, such as the interaction of water waves with the coast
and it is of small amplitude.

2.1 The Wave Equation and its Green’s function

To model the propagation of seismic waves we consider the wave equation in an inhomoge-

neous medium:
1 0%u(x,t)

c(x) Ot?

where u(x,t) denotes the pressure at point x in time ¢, ¢(x) is the propagations speed in the
medium and n(x,t) is the noise source function. To precisely model the wave propagation
of seismic waves in the Earth we should use the three dimensional elastic wave equation, we
however use the simplified acoustic wave equation.

— Ayu(x,t)) =n(x,t), xecR? (2.1)

The noise sources are modelled by n(x,t), which is a zero mean, stationary random
process with correlation function:

E{n(xy,t1)n(xg, ta)} = F(t1 — to) K(x1)0(x1 — X2), (2.2)

where K (x) characterizes the spatial support of the sources, which are very often considered
to be point sources (K(x1) = §(x1)). The time distribution of the noise is characterized by
the correlation function F.
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In the case of a homogeneous medium (¢(x) = ¢y) we can express the solution of ([2.1)
using the Green’s function, which in two dimensions is given (in the frequency domain) by

Glw,x,y) = LD WE=Y), (23)

4 Co

where H(()l) is the Hankel function of first type and zero order and ~ denotes the Fourier
transform. In three dimensions the Green’s function is given by

. 1 e
Glw,x,y) = PP — P, (2.4)

The solution of (2.1]) can be now written as

u(x,t) = //n(y,t —35)G(s,x,y)dsdy, (2.5)

where G(t,x,y) is the Green’s function in the time domain or else the inverse Fourier trans-

form of (2.3) or (2.4).

2.2 The cross correlation function

In the case of an inhomogeneous medium we can’t have the Green’s function in an explicit
form. Instead we can retrieve information about the Green’s function using the cross corre-
lation function. Considering u(x;,?) and u(xs,t) to be the solution of as recorded by
two sensors at positions x; and X, then the empirical cross correlation function is given by

T
Cr(71,%1,Xg) = / u(xy, t)u(xe, t + 7)dt, (2.6)
0

where T is the length in time of the two solutions. The empirical cross correlation function
is a statistical stable quantity meaning that for large T' it is independent of the realization
of the noise sources with respect to the distribution of the sources. In particular in [29] it is
proved the following proposition (Proposition 4.1 in [29]).

Proposition 2.2.1 1. The ezpectation of Cy (with respect to the distribution of the sources)
15 independent of T':
E{Cr(7,%x1,%3)} = CO (1, %1, %3), (2.7)

where CY is given by

COrxix) = [dy [ doGlox,Gwx ) FEe Ry, (29
2. The empirical cross correlation Cr is a self-averaging quantity:

CT(7—7 X17X2) T_>—OO> C(l)(T, X17X2)7 (2-9)
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wn probability with respect to the distribution of the sources. More precisely, the fluctuations of
Cr around its mean value CV are of the order T2 for T large compared to the decoherence
time of the sources.

The implications of this proposition are crucial. First implies that for large T
the empirical cross correlation converges to the statistical cross correlation C". Also ({2.8)
suggests that there is a connection between the cross correlation Cp and the Green’s function
which we will study in section [2.3] In geophysics there is a priori no information about the
Green’s function since we regard the earth as a complex inhomogeneous medium. The only
information we usually have is the solution of in a limited number of points and using
the cross correlation function we can extract information about the Green’s function between
the given points. We will also investigate how the information we extract is useful in order
to make estimations about the velocity or changes in the velocity of the medium.

2.3 The relation between the Green’s function and the
cross correlation function

To investigate the relation between the cross correlation and the Green’s function of the
wave equation we begin with the simpler case, which is the homogeneous medium case with
the most generous conditions about the noise sources: We assume that the sources are a
space-time stationary random field that is delta correlated in space and time (more general
cases have been considered in [29]). Then it has been shown that

aQCT(T, Xl,Xz) = G(T, Xl,X2) - G(—T, X17X2)7 (2-10)
-

where T is sufficient large. That means that the derivative of the cross correlation function
will converge, for large enough 7T, to the symmetrized Green’s function given a uniform
distribution of sources.

To illustrate this, let us set up the following experiment: we distribute the sources on a
circle of radius of 25Km and we locate two sensors 10 Km apart as we can see at Figure [2.1

15



Sources

Figure 2.1: Location of the noise sources on a circle, C, of radius 25Km and the two receivers
at x; and x9. The distance between the two receivers is 10Km.

In addition we assume that the background medium is homogeneous with velocity 1Km/s.
The cross correlation function of the recordings at x; and x5 is expected to have two peaks,
one at the time that corresponds to the travel-time between the two sensors and another
peak at negative the travel-time between the two sensors. In the case of a an inhomoge-
neous medium we expect the same behaviour with a more noisy time series due to multiple
scattering. In Figure we can see a comparison of these two cases.

Figure 2.2: In the left we can see the cross correlation function in a homogeneous medium
and in the right we can see the cross correlation function obtained in an inhomogeneous
medium.

Now we consider the inhomogeneous medium and we will use sources located at prese-
lected locations of the circle as it is showed in Figure [2.3

16



Figure 2.3: Case 1 (Up Left): The sources are located at all directions on the circle. Case 2
(Up Right): The sources are located on a 30 degree arc at the right side of the circle. Case 3
(Down Left): The sources are located on a 30 degree arc at the left side of the circle. Case 4
(Down Right): The sources are located on a 30 degree arc at the bottom part of the circle.

We study four cases and we want to investigate when we can retrieve information about
the Green’s function between the two receivers depending on the direction from where the
noisy field is emanating (sources location). A stationary phase analysis [29] suggests that
the we can recover some information about the Green’s function only when the ray that
connects that two receivers extends into the source region. As we can see in Figure if
the distribution of sources is uniform then we observe both peaks. Only one of the peaks
can be recovered when the sources are located at the same direction as the orientation of
the receivers (Case 2 and 3). As it is expected in the last case (Case 4) we are unable to
retrieve any of the two peaks.

17



Figure 2.4: The
Figure [2.3

cross correlation functions that corresponds to the distribution of sources of

2.3.1 Cross correlations from real data.

We will use now real data from two seismic stations to see how a cross correlation behaves.
The two stations (see Figure [2.5)) are located on two Aegean islands, Naxos and Santorini,
the inter station distance is about 78Km.

Figure 2.5: The stations in Naxos and Santorini. The inter station path pass over the
underwater volcano Columbo.

18



After we filtered the data on the band [0.2 0.4] Hz we compute the daily cross correlations
for several periods and then average. In Figure [2.6|we can see the cross correlation computed
for three different periods. We observe that the cross correlation is different depending on
the season. That phenomenon could be the result of different distribution of sources due to
weather conditions and we will investigate in depth this phenomenon in Section [4.1]

0.01 1-Jan-2012 to 31-Mar-2012. SNR=26.3629
: T T T T T

-0.01 ] ] ] ] ]
-3

o
3
z
E3
3

-0.01 1 1 1 1 1
-300 -200 -100 0 100 200 300
0.01 1-Sep-2012 to 31-Nov-2012. SNR=30.1720
. T T T T T
-0.01 1 1 1 1 1
-300 -200 -100 0 100 200 300

Figure 2.6: Cross-correlation function between the two stations. From top to bottom the
season changes from winter to summer and fall. .

19



20



Part 1

Estimating Velocity changes
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Chapter 3

The MWCS and the Stretching
method

Two methods have been predominately used for estimating velocity variations in the earth’s
crust: the Stretching Method (SM) and the Moving Window Cross-Spectral (MWCS) method
[15]. In both methods, relative changes in the velocity of the medium are estimated by com-
paring two waveforms: the reference and the current cross-correlation functions which are
obtained by cross-correlating the signals recorded at two different receivers over a certain
period of time. The reference cross-correlation is usually the average of the daily cross-
correlations over a long period of time of the order of a year. The current cross-correlation
is a local average of the daily cross-correlation over a few days.

50 T T T T T T T
——reference CC
40 + ——currentCC | |

30

20 -

-40 1 1 1 1 1 1 1
-40 -30 -20 -10 0 10 20 30 40

Figure 3.1: Reference cross correlation function in blue and an artificially stretched (—1%)
version of it in red, so called current cross correlation function.
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3.1 Stretching Method

The Stretching method (SM) has recently gained a lot of popularity as a method for measur-
ing dv/v changes using cross correlation functions of seismic noise recordings. SM computes
the stretching parameter that maximizes the correlation coefficient between two waveforms
in a pre-selected time window [t1, t5],

[ CC, (H)CC,(t)dt

t1

€0 = —= : _
VI CC. )/ fE ooy

(3.1)

Here CC,.(t) denotes the reference quantity and C'C.(t) the current one, while CC..(t) =
CC.(t(1+ €)) is the stretched version of CC.(t). The time window [t1, t5] is usually selected
so as to contain the coda part of the cross-correlation function and not the first arrival.

T
Correlation Coefficient]

-0.4 : : -
-0.1 -0.05 0 0.05 0.1

Figure 3.2: The correlation coefficient (C(€)) of the cross correlation functions of Figure [3.1]
We observe that the correlation coefficient admits its maximum at 0.01 which corresponds
to the 1% artificial inserted dv/v. NOTE: The maximum in practice is attained at a single
point but usually corresponds to a value less than one.

We search the stretching parameter € in an interval [e, €], with a rough initial discretisa-
tion, after finding ¢y that maximizes we refine our search in a smaller region around ¢,
with a smaller discretisation. We repeat the refinement process until we archieve the desired
accuracy, i.e., until the discretisation is sufficiently small.
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3.2 MWCS Method

The MWCS is widely used in signal processing in order to compute the time shift dt be-
tween a signal and a delayed version of the same signal. The MWCS method operates in
the frequency domain. The idea is very simple, as the velocity of the medium changes any
signal that propagates through the medium will appear to have a slightly different phase.
The MWCS method can detect and use this small change in phase to extract the velocity
variation in the propagation medium. The MWCS method is described in detail in [15] and
basically consists in computing time delays (dt;) in different time windows and then esti-
mating dt/t using a linear regression model. The relative velocity change in the medium is
deduced by the relationship dv/v = —dt/t. The estimation of the time delays dt; between
the reference and the current cross-correlation is performed by computing phase differences
in the frequency domain.

We divide each cross-correlation function into N, windows, with each window centered
around time t;, 7 =1,..., N,,. For each central time ¢; we get a measurement dt; using the
corresponding windowed segments of C'C,. and C'C,.. Those segments after being window ta-
pered, they are being fourier transformed and called F,.(v) = F (CC,) and F.(v) = F (CC.)
respectively. The Fourier transform is defined as,

(Ff) (v) = / f(H)e .

—— reference CC
sl ——ocurrent CC__ | |

Figure 3.3: The windowed, sections of the cross-correlations at Figure (3.1}

Then the cross-spectrum is calculated as

X(v) = F.(v) FZ(v), (3.2)

C
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and the cross-coherence as

SO ()
VIE@)PEW)?

Here * denotes complex conjugate and overline denotes that the signal have passed from

a Hanning window. Then we confine the frequency in the bandwidth of interest and we
estimate the time delay of the two signals from the phase of the cross-spectrum ¢;(v),

C(

(3.3)

¢i(yj) =27 (Stz l/j, (34)

with 6¢; the time shift corresponding to the central time ¢; of the i*" window and where v;
are the frequencies of interest, j = 1,..., N,.

Figure 3.4: The phase of the cross spectrum at the frequency range of interest.

The time shift d¢; is estimated using a weighted least squares inversion,

5p L 22 Wi0ilv)

Con > WiV

(3.5)

with the weights w; defined by,

_ | _C)?
wj = \/TW [ X ()] (3.6)

The error ey, associated with the measurement for d¢; can be calculated by,

€st; = ) (37)

1 wiv; \° 2 (0i(vy) — 2mdtiv;)?
2 Z(lelyf) N, —1

J
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where N, is the length of the frequency vector for the frequencies of interest. After we repeat
the calculation for all the windows we gain N,, (t;,t;) couples. To calculate the slope 0t /t
we apply another weighted linear regression using the weights: p; = 1/ egti. The resulting

estimate 1s
ot it — (1)t

t Yt —(1)?

< t> _ EZ piti
> i Di
Finally the velocity variation is just dv/v = —dt/t.
As we already said the data we used above are synthetic in the sense that the change

in dv/v is artificially inserted. An example of the MWCS estimation for a measurement
contacted in real data is presented at Figure [3.5]

(3.8)

with

+dt
db/b=0, 00552

Figure 3.5: An example of the MWCS estimation for a real measurement.

3.3 Comparison of the two methods

The Stretching method and the MWCS method are fundamentally different in the way they
produce the result of dv/v, the Stretching method operates in the time domain and so it
is affected both by amplitude and phase changes, while the MWCS method operates in the
frequency domain (measuring phase shifts and associates the change to §t measurement).
Except from that the two methods have their advantages and their disadvantages.

The Stretching method is very simple, has an easy implementation, uses the whole coda
part and it is more stable than MWCS. The disadvantage of the Stretching method is first of
all that it assumes a homogeneous velocity change and by design can’t resolve inhomogeneous

27



changes. In addition, if implemented poorly, it can become very slow. The bigger problem
as we will see in the next chapter is the fact that since it operates in the time domain, it can
be affected by variations at the amplitude of the noise sources.

On the other hand the MWCS method is very flexible, can potentially detect inhomo-
geneous velocity changes and since it operates in the frequency domain it is not affected by
variations in the amplitude (at least not as much as the Stretching method). However the
MWCS is more unstable than Stretching method, it requires more days of average for the
current quantity and it is more difficult to operate for very low frequencies.

In practice the Stretching method used more often in studies with long inter-station
distances and studies on earthquakes, while the MWCS is dominantly used in volcano mon-
itoring studies.
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Chapter 4

Estimating velocity changes in a
medium

A version of this chapter has been published to Geophysics Journal International, entitled
as "Robust seismic velocity change estimation using ambient noise recordings ”.

We are interested in monitoring volcanic structures from temporal changes of the velocity
of seismic waves. When magma pressure increases inside a volcano, the added pressure results
into its inflation, and small cracks around the magma chamber will decrease the velocity of
seismic waves. That small decrease in velocity can be detected using travel-time tomography
of seismic waves and up until very recently only the seismic waves generated by natural events
like earthquakes could be used [52 56, B7]. There are however limitations that make the use
of such seismic events not suitable for monitoring, such as the repeat rate or the unknown
source position. More recently ambient seismic noise recordings have been successfully used
instead of seismic events [9] 24].

The idea exploited is that information about the Green’s function, or the travel-time,
between two seismic stations can be obtained from cross-correlations (CC) of ambient noise
recordings [I8] 59, 29 68, 69]. A number of passive imaging studies based on this idea are
now used in volcano monitoring [9, 24], in seismic fault studies [8, [I] and more generally
in studying the structure of the crust [I], [I4]. In the case of volcano monitoring, there are
several studies concerning Piton de la Fournaise, which is a shield volcano on the eastern
side of Reunion island in the Indian Ocean. The goal in this setting is to measure relative
velocity changes (dv/v) of surface waves, which are precursors to specific events (volcanic
eruptions). Two techniques have been used for dv/v measurements, the moving window
cross spectral (MWCS) method [15] and the Stretching Method (SM).

Both MWCS and SM use two waveforms, the reference and the current (C functions
which are obtained by averaging daily (C functions over a large, respectively a small, period
of time. Changes in the velocity of the medium are estimated from differences in these two
(C functions. In MWCS, dv/v is obtained by estimating the time delays d¢; in different time
windows. The time delay estimation is performed in the frequency domain using the cross
spectrum of the windowed wavefront segments. Then dv/v(= —dt/t) is computed using

29



a linear regression approach. SM operates in the time domain by solving an optimization
problem which determines the stretching parameter that maximizes the correlation between
the two waveforms.

A comparison between the SM and MWCS was carried out in [39] where SM was found
to be more stable with respect to additive d-correlated noise in the data. A more detailed
study of the accuracy of SM with respect to noise was presented in [70] where the authors
derived an expression for the root mean square (rms) error of the apparent velocity variation
due to noise. The noise in [70] is assumed stationary and the rms value can be used to
distinguish between physical and erroneous velocity variations. In this paper we study the
effect that the non-stationarity, i.e., the seasonal variations, of the noise sources may have
on the stretching method’s estimation.

There are some factors such as the quality and the distribution of the noise sources that
can affect the temporal resolution of the measurements. The volcano of Piton de la Fournaise
is a very well instrumented area with lots of high quality stations. Moreover the type of the
volcano (shield volcano), which is erupting very frequently, makes it an ideal case for study.
That is not so for many other volcanoes, especially for volcanic islands and "ring of fire
volcanoes” which are often poorly instrumented and which erupt rarely. Another difficulty
is that in some cases, and especially in the case we will consider in this paper, the evolution
of the volcano is very slow and therefore long term fluctuations such as seasonal variations
[76], [47) can hide velocity variations that are actually related to volcanic activity.

4.1 Seasonal variations and the effectiveness of spec-
tral whitening

In [76] it is argued that the seasonal variations in the cross-correlations and the estimated
velocity as observed in [47] are caused by seasonal variations of the amplitude spectra of the
ambient noise sources. Since SM operates directly in the time domain it is much more likely
to be affected by those seasonal variations than the MWCS method which only relies on the
phase spectra of the cross-correlations. The stability of MWCS to spatio-temporal varia-
tions of the noise sources is studied in [16]. It is shown that in scattering media azimuthal
variations in the intensity distribution of the noise sources does not affect the MWCS mea-
surement when the coda part of the cross-correlation is used. This is because the anisotropy
of the noise sources is reduced by the multiple scattering of the waves by the medium inho-
mogeneities.

We present here a set of numerical simulations suggesting that indeed the stretching
method can produce apparent velocity variations caused by seasonal spatio-temporal fluc-
tuations of the amplitude spectra of the noise sources. These variations are reduced by
considering the coda part of the cross-correlations but they still persist. When the seasonal
fluctuations are uniform with respect to the noise source locations, an hypothesis that is
reasonable when the measurements are from the same area, the apparent velocity varia-
tions can be effectively removed by an adequate normalization (spectral whitening) of the
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cross-correlated signals. Our approach significantly improves the signal to noise ratio of the
stretching method as illustrated by numerical simulations and real measurements.

By measuring velocity variations for a long enough period using the stretching method
in [47], small seasonal variations were observed, which were attributed to hydrological and
thermoelastic variations. In contrast, [76] suggest that such variations are not necessarily
due to changes in the medium and could be caused by seasonal fluctuations in the amplitude
spectra of the noise sources. We investigate here this question using numerically simulated
data, as well as seismic noise recordings. Let us first briefly review the MWCS and the SM
methods.

4.1.1 The numerical model

We carry out a set of numerical simulations that are based on a mathematical model of wave
propagation. In our numerical model we consider the acoustic wave equation:
1 0%u

)2 w(t, x) — Axu(t,x) = n(t, x), (4.1)

where n(t,x) models the noise sources which are located on a circle, C, of radius 25km
as illustrated in Figure We assume that the wave field is recorded at two receivers
x; = (—5,0)km and xy = (5, 0)km.

The function n(t,x) in equation models the noise sources. We assume that it is a
zero-mean random process. We also assume that the process is stationary in time with a
covariance function that is delta correlated in space. Therefore, the covariance function of
the noise sources has the form

(n(t1,y1),n(t2,y2)) = L(te — t1,y1)0(y2 — y1)- (4.2)

Here (-) stands for statistical averaging. The function ¢ — T'(t,y) is the time correlation
function of the noise signals emitted by the noise sources at location y. The Fourier transform
w — f‘(w, y) is their power spectral density (by Wiener-Khintchine theorem). The function
y — ['(0,y) characterizes the spatial support of the sources. In our case we assume that the
sources are uniformly distributed on a circle C of radius Re = 25km as illustrated in Figure

4Tk

L(t,y) = R Lo(t, y)de(y)-

The solution of (4.1)) at a given point x can be written as,

u(t,x) = //Gj(t — 5,%x,y)n(s,y)dyds, (4.3)

or equivalently in the frequency domain,

(w,x) = /@j(w,x,y)ﬁ(w,y)dy. (4.4)
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Sources

Figure 4.1: Location of the noise sources on a circle, C, of radius 25Km and the two receivers
at x; and x9. The distance between the two receivers is 10Km.

Here j denotes the dependence on the day, hat denotes the Fourier transform and
G’ (w,x,y) is the Green’s function. For simplicity of the computation we consider first a
homogeneous medium in which case G’ (w, x,y) is given by

A 1

GIw,x,y) = Cland (4.5)

—e
Ar|x —y|

In (4.5), we use the 3d expression for the Green’s function of the wave equation instead of
the Hankel function. In our setup the distance between the receivers is relatively large with
respect to the wavelength so this does not affect the results since we are interested in the
phase of the Green’s function. In , the velocity is allowed to change as a function of time
on the scale of a day. We denote by ¢/ the homogeneous velocity of the medium on day j. To
illustrate the generality of our approach we also consider inhomogeneous scattering media for
which the Green’s function G (w, x,y) is computed by solving numerically the wave equation
in the time domain using the code Montjoie (http://montjoie.gforge.inria.fr/).

Obtaining the time-series data at x; and x..

To obtain data at x; and x5 we define the exact distribution and power spectral density of
the sources. From now on we assume that the statistics of the noise sources change from one
day to another and we denote by Fg) (t,y) its covariance function at day j. We take Ny = 180
point sources uniformly distributed on the circle C and then the equation becomes

W (w,X) = — Z G (w, x, y:)7d (w), (4.6)


http://montjoie.gforge.inria.fr/

where ﬁf (w) is the frequency content of the noise sources at y; during day j, which is random

such that <ﬁf(w)> =0 and

(Ad(w)il (@) = 27 T4 (w, y:)3(w — ).

At first we consider that the noise sources do not have any seasonal variations and therefore
their power spectral density does not depend on j. Later on that will be changed according
to the model of seasonal variations we want to study. In either case, the last step in order
to obtain the time series recorded at location x is to apply the inverse Fourier transform to

[6).

Reference and Current cross-correlation function

Our main tool, the daily cross-correlation function is given by
: 1 [T :
QO (r,x1,30) = o / Wt + 7, x1)0 (¢, %0 dt, (A7)
0

with T' = 24 hours.

For both SM and MWCS methods, variations in the velocity are estimated by comparing
two waveforms: the reference and the current cross-correlation functions. The reference
cross-correlation is the average of all the available daily cross-correlation functions,

1Nd

C,.(7,x1,X2) Z(BJ T,X1,X3), (4.8)

where Ny is the total number of days, while the current cross-correlation function that cor-
responds to the j-th day is the average of a small number of daily cross-correlation functions
around the j-th day,

J+s
eel
(1, %1, X2) = 9.1 1

k=j—

QCF (7, %1, 7). (4.9)

The total number of daily cross-correlations used for the current cross-correlation is N... =
2s 4+ 1. Usually a few days (N.. = 3 to 10) are used for the current cross-correlation while
the reference one is computed for a much longer period of the order of a year [15].

Velocity Model and selected bandwidth

We will work in the frequency bandwidth [0.15 — 0.65|Hz and with total number of days
Ny = 360 (a year). For our simulations we consider two different velocity models. In the
first case the velocity of the medium does not change with time and is equal to 1Km/s while
in the second case there is a small change in the velocity of the order of 1% that takes place
between days 80 to 110. The velocity increases linearly the first 15 days until it reaches the
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The first velocity model
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The second velocity model

Figure 4.2: The two velocity models. In the top plot the velocity does not change with time
and is equal to 1Km/s. In the bottom plot the velocity increases linearly between days 80
and 95 to reach the value of 1.01Km/s and then decreases linearly with the same rate to
reach its original value of 1Km/s at day 110.

maximal value of 1.01Km/s and then decreases linearly with the same rate to its original
value of 1Km/s as illustrated in Figure (bottom plot). These numbers are realistic and
similar to those in the seismic noise recordings of the Santorini volcano considered in section
We have chosen the numerical set up to be comparable to the experimental one so that
the numerical results may support the conclusions drawn from the seismic data.

Estimation of the relative change in the velocity

We have implemented both the SM and MWCS methods using as reference cross-correlation
the average of all daily cross-correlation (360 days) and as current cross-correlation a N, =
7-day average around the day we make the measurement.

i Velocity‘ model 1 i

dviv (%) R

5D, ayég’“

i Velocity‘ model 2 i

dviv (%)
v 1
>\ 1

Figure 4.3: Relative velocity change estimation using SM (blue) and MWCS (green) for the
constant (top) and the variable (bottom) velocity models of Figure

The results obtained by both methods for the two velocity models are shown in Figure

34



7 Days average Current CC-function
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Figure 4.4: In the top plot N, = 7 days are used in computation of the reference (C while
Neee = 13 days are used in the bottom plot. In red is the true velocity variation and in blue
the estimated one. Using N.. = 7 days gives a more precise estimation for the maximal
value of dv/v while with N,... = 13 days the fluctuations around zero are decreased.

[4.3] We can see that the results are comparable and both methods can recover the relative
velocity change up to a small error. We chose for the current cross-correlation a N... = 7-day
average because here is a direct relation between the number of days N... that are used in
the current (C function and the standard deviation of the measurement error. When there
is no velocity variations (dv/v = 0%), the obvious answer is that the standard deviation of
the error is reduced by increasing the number of days used in the computation of the current
(C. However, this results to a loss in precision in the estimation of dv/v # 0 as illustrated
by the results in Figure [4.4, An optimal value for the number of days to be used can be
obtained by studying how the error changes as we increase the number of days N... The
value we selected is 7 since for this value we have a minimum in the error as suggested by
the plots in Figure [4.5]

Figure 4.5: Left: The standard deviation of the error in the period where dv/v = 0 (days 1 to
80 and 110 to 360) as a function of number of days N,.. stacked for the Current (Cfunction.

Right: The error for the days 80 to 110 using the norm ||z|| = />_ |z;|?, where 2 € R™ as
i=1

a function of N,..
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4.1.2 Seasonal variations in the noise sources and their influence
to the relative velocity change measurements

Let us write equation (4.7)) in the frequency domain using equations (4.2)) and (4.4)),
(/I\JJ (w7 X1, XQ) =
— . (4.10)
[y Gt y)C w0 )P 0,3,

Here w — [ (w,y) is the power spectral density of the noise sources at location y during day
j. As a complex function, the cross-correlation can be written as a product of an amplitude
and a phase

A

QC;(w, X1, X2) = Aj(w, X1, X) e @x1x2) (4.11)

We will use a normalization (spectral whitening) of the cross-correlation functions which
consists in replacing the amplitude A;(w,xy,X3) by 1 in the frequency range where it is
above a threshold. Therefore we get,

~

@j(w,xl,XQ) = €i¢j(w’xl’x2). (412)

After this spectral whitening we expect that seasonal variations that affect only the amplitude
spectra of the cross-correlation function will not have an impact on the measurement of dv/v.

Uniform and non-uniform seasonal variations.

Our model for the power spectral density of the noise sources is

A .

I(w,y) = F(w)s (w,y),

Here the unperturbed noise source distribution is uniform over the circle C and has power
spectral density F'(w), and 8/ (w,y) is the daily perturbation of the power spectral density
at location y. We have two different representations for §:

1. The daily perturbation is uniform with respect to the locations of the sources:

A

§(w,y) = Fw)(y), (4.13)
2. The daily perturbation is not uniform and we cannot write it in a separable form.
In the first case equation (4.10]) becomes
@ (w, x1,%2) = F() fI (@)
- (4.14)
[ doty) Gy G 0 YY),
c
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and it is clear that after spectral whitening, any daily perturbation in the power spectral
density of the noise sources will be eliminated since the perturbation is contained into the
amplitude spectra of the cross-correlation function. In the second case we cannot separate
the terms due to the sources and take them out of the integral.

Instead of equation , we use,

! (w, x) Z w)G (w,x,y:) (4.15)
x(1—=0g(w )SIH(QWJ/Nd))

with = 0.4 and
{1 if w <w<w+7nB,

0 if wy+7B<w<w+ 2718,

to simulate uniform seasonal variations with

§(w,y) = (1 — dg(w)sin(2m5 /Ny))>. (4.16)

In the simulations we take F'(w) = i, wi+278](Jw|), B =0.5Hz and w; = 27 0.15rad.s~*. To
add anisotropy we multiply (4.15)) by a function that depends on the source azimuth, 6(y).
More precisely, we take

N,
. 1 LI Ny
Y _ 5 j .
W (w,x) = N Enl (W)G (w, X,¥:) (4.17)
X (1 —d0g(w)sin(2mj/Ny))(1 — 0.6 cos (20(y;))),
which results to a model for §/(w,y) in (4.14)) of the form
$(w,y) = (1= 69(w; 6(y) + 277 /Ng) sin(27j /No)2(1 — 0.6 cos (20(y)))?,  (4.18)

where 0(y) is the angle of y on the circle C. This is a quite extreme case of anisotropy
cf. [71], 16] which allows us to illustrate the robustness of the proposed filtering. For the
non-uniform case, we use,

N

(w,%) = 5 > a6 xy) (119)
X (1 — 83(w; 27 /N, + 2 /Na) sin(27j /Na)),
where
0=y i s o2 a2
with

w(#) = wy + 7B+ wBsin(). (4.21)
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This models non-uniform seasonal variations with

§(w,y) = (1 — 0g(w;0(y) + 275 /Ny) sin(2mj /Ng))*. (4.22)

As shown above, when the seasonal variations of the noise sources are spatially uniform,
then they affect only the amplitude spectra of the cross-correlations. Treating successfully
the uniform case is important since we expect this behavior to hold in most cases of interest
where the receivers are close together geographically so that the seasonal variations are
affecting in the same way, more or less, the ambient noise sources.

However, if the seasonal variations affect also the phase spectra of (C then the spectral
whitening will not ensure that the measurement of dv/v is free of apparent velocity changes
due to seasonal variations of the noise sources. Our numerical model can simulate the daily
perturbation of the power spectral density of the sources so as to be uniform or non-uniform
with respect to the locations of the sources.

4.1.3 Numerical simulations in a homogeneous medium

We use here our numerical model with two different types of seasonal variations (uniform
and non-uniform) and we study how these seasonal variations affect the estimations of the
relative change in velocity when we use the stretching and the MWCS methods. We add
first seasonal variations of a separable form as in equation (4.15). Then becomes

~

A (w, x1, %) :F(w)fj(w)/Cdg(y)éj(w,xl,y)éj(w,XQ,y)l(y), (4.23)

and we first take I(y) = 1.

In this case only the amplitude of the cross-correlation is affected by the seasonal varia-
tions of the noise sources and therefore we expect only the stretching method to be affected.
Indeed, as we observe in Figure 4.6/ only the stretching method reflects the seasonal variations
of the noise sources into seasonal variations on the measurement of dv/v. MWCS operates
in the frequency domain and measures the phase difference between the two waveforms.
Therefore, seasonal variations in the amplitude spectra of the cross-correlation do not affect
the MWCS estimation.
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Figure 4.6: Relative velocity change for the first (top) and the second (bottom) velocity
model using SM (blue) and MWCS (green) for the velocity models of Figure [1.2] Only the
stretching method is affected by the seasonal variations since those are uniform with respect
to the locations of the noise sources.

By using spectral whitening we correct for the seasonal variations in the amplitude of the
cross-correlation function and as a result we expect to no longer observe seasonal variations
in the measurements of dv/v when we use the stretching method. This is illustrated with
our numerical results in Figure [4.7]

‘ Velocitx Model 1 ‘

Figure 4.7: Comparison between the estimation obtained for the model without seasonal
variations in blue (equation (4.6])), the model with uniform seasonal variations in green
(equation (4.15)) and the effect of spectral whitening to the estimation in black for both
velocity models. All estimations here are produced using the stretching method.

We do not expect to get the same result when the seasonal variations are of non-separable

form as in equation (4.19)). In this case, (4.10)) becomes (for [(y) = 1)

~

A (w, %1, %) = F(w) /C do(y) G (w, x1,¥) G (w, X2, y))(1=6(w; 0(y) +2mj /Na) sin(27 /Na))?,
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. Velocity‘ModeH .

Figure 4.8: The estimation produced by the stretching method for the numerical model
without seasonal variations in blue (equation (4.6])), the model of uniform seasonal variations
in green (equation (4.19))) and the effect of spectral whitening to the estimation in black.

where 0(y) is the angle of y on the circle C, 6 = 0.4 and § is defined in equations (4.20}4.21)).

Indeed, we as we observe in Figure [1.8] spectral whitening cannot remove the seasonal
variations any longer since those variations affect both the amplitude and phase spectra of
the cross-correlation.

4.1.4 Simulations in a scattering medium

The results presented in the previous section are for a homogeneous medium and are obtained
using the direct waves in the cross-correlations. More precisely we used the time window
[10.5,20.5]s (this includes the direct arrival since the pulsewidth is 2s and the travel-time
between the sensors is 10s). To illustrate the generality of our approach we consider here
the case of a scattering medium. The Green’s function is computed now by solving the wave
equation in a square domain of 50Km x50Km (see Figure filled with a scattering medium
with an average velocity of 1Km/s and 10% fluctuations. The medium fluctuations here
may produce less scattering than the circular inclusions with a contrast of 50% considered
in [16] but our fluctuations model seems quite realistic in the geophysical context. The
wave equation is solved with the software Montjoie (http://montjoie.gforge.inria.fr/) using
seventh order finite elements for the discretization in space and fourth order finite differences

in time. The computational domain is surrounded by a perfectly matched absorbing layer
model (PML).

In Figure [£.10}Heft we compare the reference CC function with the Green’s function be-
tween the two receivers obtained by emitting a pulse from one receiver and recording it at
the other. We have very good agreement between the two signals up until ~ 42s. In Figure
[4.10}right we compare the reference CC function in the scattering medium with the one in
the homogeneous medium. The oscillations before and after the main peak of the pulse in
the homogeneous medium are due to the limited bandwidth of the noise sources. Note that
the two signals differ significantly after 12.5s.
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Figure 4.9: Highly scattering medium. The positions of the sources/receivers are the same
as in the homogeneous case (see Figure |4.1]).
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Figure 4.10: Left: The reference (T in the scattering medium compared with the Green’s
function between the two receivers filtered by the power spectral density of the noise sources.
Amplitudes are normalized. Right: The reference (C in the homogeneous and the scattering
medium. In both plots, the two red vertical lines indicate the window [15.5 — 25.5]s.

00 Measurement with seasonal variations 0.015 Measurement at [15.5 - 25.5]s window
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Figure 4.11: Scattering medium. Left: SM estimation of dv/v in the present of seasonal vari-

ations of a separable form using two different time windows. Right: The seasonal variations
are removed using spectral whitening ([15.5 — 25.5]s window).
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We consider now seasonal variations of separable form as in (4.23|) with /[(y) = 1 and
estimate dv/v with the stretching method using two different time windows: first the same
window as before [10.5 — 20.5]s, and second, the window [15.5 — 25.5]s. As we can see in
Figure left the apparent false variations in dv/v are reduced by using the coda part of
the (C but they still persist. The proposed spectral whitening of CC efficiently removes the
fluctuations as illustrated in Figure [f.11}right. Let us emphasize that spectral whitening
will be efficient for any spatio-temporal variation of the noise sources of separable form
since such variations affect only the amplitude of (C, regardless of the underlying medium
(homogeneous or scattering).

Simulations for anisotropic noise distributions
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Figure 4.12: Removing the seasonal variations using spectral whitening. The noise sources
have anisotropic spatio-temporal fluctuations as described by —. For the SM
method, the measurements in the homogeneous medium are performed using the [10.5—20.5]s
window while in the scattering medium the [15.5 — 25.5]s window is used.

To further illustrate the robustness of the proposed filtering we add now anisotropy to the
noise sources. Following [16] we consider a rather extreme case of anisotropy using (4.17))
which amounts to cross-correlations as in (4.23) with azimuthal intensity distributions of the
form,

I(y) = (1 —0.6c0s (20(y)))?,

with 6(y) the source azimuth, i.e., the angle of y on the circle C. The results obtained
with MWCS and SM in homogeneous and scattering media before and after spectral whiten-
ing are shown in Figure As expected the MWCS estimation is less affected by the
spatio-temporal variations of the noise sources since to the leading order the phase of the
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cross-correlation remains unchanged [71]. The amplitude of the cross-correlation however
is affected and this leads to erroneous estimates with SM. The results of both methods are
greatly improved with spectral whitening. In the scattering medium the anisotropy effect of
the noise sources is reduced through multiple scattering of the waves with the medium inho-
mogeneities. This corrects for the anisotropy effect on the phase of the cross-correlation but
not on the amplitude. Therefore SM estimation remains bad while the MWCS estimation
is better in the scattering medium. Again the results of both methods are improved with
spectral whitening.

In the results show in Figure 4.12| we have not included attenuation in the propagation
medium, however similar results have been obtained when attenuation is taken into account.
The main observation is that attenuation affects the amplitude of the recorded signals and
not the phases. Moreover, the one bit quantization treatment of the data [5] removes the
attenuation effect as suggested in [53], and thus the conclusions drawn above carry over when
attenuation is present.

4.1.5 Seasonal variations examined in the island of Milos

Using the developed methodology we investigate here relative velocity changes in the quiet
volcanic island of Milos, in Greece. Two broadband seismic stations (codes: MHLO and
MHLA) operate there in real time, monitoring seismicity in the Aegean volcanic arc for the
National Observatory of Athens, Institute of Geodynamics (NOAIG) (Figure[4.13). The two
stations are part of the Hellenic National Seismic Network (network code: HL) and they are
deployed 6km apart and above the Milos island geothermal reservoir.

a — —
2418 24724 24°30

Figure 4.13: The volcanic island of Milos and the locations of the two NOAIG broadband
seismic stations used in this study. The inset at the left hand side of the map shows the
location of Milos island (orange rectangle) within the Aegean sea.
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We gather seismic noise recordings for the last days of 2011 and the entire 2012 and 2013
(827 days in total). During the examined period there was no significant local earthquake
activity in the area. In Figure [£.14Heft we observe the seasonal variations on the Power
Spectral Density (PSD) of the station MHLA and we want to investigate if the stretching
method is affected by these variations. The seasonal variations can be attributed to local
sea—weather conditions within a range of a few hundred kilometers from the stations [26].

PSD - MHLA Station %1073 5

«107! MHLA Station frequency response

1.5

L L L ! N L L L
. . 0 0 0.1 02 03 04 05 06 07 08 09 1
0 0.2 0.4 0.6 0.8 Frequency in Hz

frequency (Hz)

Figure 4.14: Left: The Power Spectrum Density of the station MHLA at Milos. Right:
The frequency response of the MHLA station calculated by averaging the daily frequency
response of all available days.

The data are filtered from 0.1 — 1.0Hz a bandwidth for which we have microseismic
activity as suggested by Figure [f.14}right. This frequency bandwidth is used for Santorini
in the next section since the power spectral density of the recorded signals is more or less
the same.

As we see in Figure the proposed normalization (spectral whitening) has the de-
sirable effect on seasonal variations just as the numerical simulations suggest. Considering
the apparent velocity fluctuations induced by seasonal variations of the noise sources, as
measurement noise, we obtain a decrease in the noise level by a factor of 3, after using the
proposed normalization. Using the stretching method with spectral whitening, we observe
residual fluctuations in the estimated velocity of the order of £0.1%. We also plot in Figure
the results obtained using MWCS (green). As expected MWCS is not affected by the
seasonal variations and gives similar results, albeit more noisy, than the ones obtained with
SM after normalization.
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Figure 4.15: The estimation between the pair MHLO-MHLA located on the island of Milos
when we use spectral whitening (blue) and when we do not use it(red). Here N... = 21 Days.
We also plot with green the estimation of the MWCS method which is not affected by the
seasonal variations.

4.2 Investigation of the Santorini island seismic unrest
2011-2012

During the time period January 2011 to March 2012, high microseismic activity was observed
in the caldera of the Santorini island (Figure [4.18). This also coincided with a 10cm uplift
measured by GPS stations deployed in the area, monitoring continuously crustal deforma-
tion [50]. During the unrest period, several portable seismic stations were deployed in the
area by research institutions and universities. However, due to the urgency to capture the
ongoing unrest, the portable stations were deployed mainly to monitor seismicity in near
real time and thus, their data quality and/or availability was not suitable for ambient noise
monitoring. Prior to the unrest, only two digital broadband seismic stations were in oper-
ation (Figure . These two were found useful for investigating variations in dv/v with
the stretching method. Their inter-station path crosses the edge of the uplifted area within
the caldera which is also the source region of the majority of the observed seismic clusters [41].

The unrest was studied in [42] and [58] using GPS data and the results suggest elevation
at the volcano mainly at periods of high seismicity. More specifically the seismic activity was
high from January 2011 until August 2011 and then again from October 2011 to February
2012. Those two periods of high seismicity are the same periods during which GPS data
suggest that there is an elevation of the caldera.
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Figure 4.16: Network of seismic stations in Santorini and the inter-station paths. Stations
that were in operation prior to the unrest are marked in red. Stations that became oper-
ational during or after the unrest are marked in blue. Red circles indicate the relocated
seismicity according to [41] with their size being proportional to the event local magnitude
(M},) as measured by NOAIG. The orange cross marks the geographic location of the mod-
eled volumetric growth at 4 km depth [50] with their 95% confidence level (concentric circle).
The inset at the right hand side of the map shows the location of Santorini island (orange
rectangle) within the Aegean sea.

4.2.1 Data Treatment

For each pair of stations we follow these steps. First we separate the 24-hours long segment
of each station into eight 3-hours segments. If a 3-hours long segment has more than 10%
of gaps then it is rejected and is not used in the calculations of the cross-corellation (CC).
Otherwise, we filter the data in the band [0.1 — 1.0]Hz. Then we apply one-bit quantization
and we cross-correlate with the corresponding segment from the paired station. For each day
we expect at most eight Cross-Correlation functions. If a 3-hour segment is rejected then
we miss one cross-correlation and only if for one day we miss three or fewer cross-correlation
functions we proceed and average the 3-hours segments to get the daily cross-correlation
function. A final step that helps us to deal under some conditions with seasonal variations
in the power spectral density of the noise sources is to apply spectral whitening on the cross-
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correlations inside the bandwidth of interest, i.e., [0.1 — 1.0]Hz.
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Figure 4.17: The frequency response of the SANT station calculated by averaging the daily
frequency response of all available days.

For the reference cross-correlation function we use the mean of all available daily cross-
correlation functions. The current cross-correlation function on the other hand is the mean
of N... =21 days around the day where we want to make the measurement.

The data treatment that we follow is a procedure as described in [5] with an additional
post-whitening step on the cross-correlations inside the bandwidth of interest. The pre-
whitening step [5] is used on the recorded signal because ambient noise is not flat in the
frequency domain of interest and aims to broaden the band of micro-seismic noise and remove
the effect of any monochromatic source that may be dominant. The post-whitening step is
used on the cross-correlations and aims at removing any amplitude variations that they
may have so that only phase information remains to be used in the stretching method’s
estimation.

4.2.2 Results

Our implementation of the stretching method is configured to make two measurements of
dv/v using the positive and the negative time axis in a time window that is focused on the
coda part. ([15,35]s and [—35, —15] in our case). The final result is the average of the two
measurements as long as the correlation coefficient is higher than 0.7 otherwise the result is
rejected.

The drop of the dv/v is maximal in May 2011, associated with a considerable drop of the
CC coefficient (Fig. 4.18]). This implies a change in the scattering medium at least for these
days.
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Unfortunately we do not have data that cover the entire period of the unrest but as we

can see in Figure (4.18) we can compare the available data with GPS data (from the GPS
station NOMI, located roughly in the middle of the inter-station path between SANT and
CMBO).
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Figure 4.18: Top: Accumulated elevation of the GPS station NOMI in Santorini [58]. Middle:
The estimation of dv/v using the stretching method. Bottom: The correlation coefficient of
the stretching method.
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Figure 4.19: Results using the stretching method in two different years, for Julian dates
between 40 and 240.

The result shown in Figure [£.18 middle plot is quite close to the GPS measurements, at
least during the periods that we have available data and for the periods with high seismic
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activity (high seismic activity corresponds to the yellow background). We can also see that
the elevation increases mainly at the periods of high seismic activity according to the GPS
data (top plot at Figure .

Based on the data for Milos (Figure and for Santorini in 2013 (Figure [£.19] red),
the estimated velocity has random fluctuations of the order of +0.1%, resulting from resid-
ual seasonal variations and errors in the estimation. Therefore, any change of more than
+0.1% can be considered as significant, i.e., resulting from physical changes in the velocity
distribution. This is what happens in Santorini in 2011 (Figure , blue).

4.3 Conclusions

In this chapter we considered the problem of seismic velocity change estimation based on
passive noise recordings. Using simple but realistic numerical simulations as a tool, we study
how the estimation produced by the stretching method is affected by seasonal spatio-temporal
fluctuations of the amplitude spectra of the noise sources [76, 47]. Moreover, we show that
the use of the coda part of the cross-correlation may be not enough to compensate for the
seasonal fluctuations when scattering is moderate and an adequate normalization (spectral
whitening) of the cross-correlation functions reduces the effect of the seasonal fluctuations of
the noise sources. We also study the Santorini unrest event of 2011-2012, a slow event that
spans a period of several months, and for which it would have been extremely difficult to
follow the variations of dv/v without removing the seasonal fluctuations. Our results show a
decrease in the velocity of seismic waves in the caldera of Santorini which is correlated with
the accumulated elevation measured with GPS. This illustrates the potential of developing
monitoring tools which provide accurate results even with sparse seismic networks with
careful signal processing of passive noise recordings.
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Part 11

Velocity Tomography
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Chapter 5

Velocity tomography using seismic
noise

The procedure of producing an image of a cross-section (slice) of an object, without cutting
it, through the use of some penetrating wave is called tomography. There are numerous
applications of tomography such as X-ray tomography in medicine or seismic travel-time
tomography in geophysics. The type of the penetrating wave can vary, so positron emission
is used in Positron Emission Tomography (PET), X-rays are used in X-ray tomography
(CT,CATScan), seismic waves are used in seismic tomography, etc. In this chapter we focus
on seismic travel-time tomography where we want to estimate the velocity in the earth from
travel-time measurements.

5.1 Introduction

Travel-time tomography is a very hard, nonlinear problem and numerous methods have
been developed for dealing with this inverse problem. These methods not only produce the
“image” of the velocity, but also provide information about the validity of the reconstructed
image. The validity information is used to decide which method is more suitable for a
specific problem [6]. Seismic tomography uses seismic waves generated by earthquakes and
explosions to create maps of the velocity of the Earth’s interior. The last two decades it
became very popular the use of seismic noise instead, and we will follow that approach here.
More precisely, in this chapter following the work of [36, 43] we will use the eikonal
tomography approach. The term “eikonal” comes from the eikonal equation,
VQAZ'<T)

1 _ 2
C,L'(?")Q - IV’T(T“T” Ai(r>w27

which is the key ingredient of the method. The idea in eikonal tomography is to use travel-
time measurements 7(r;, ;) between pairs of points r;, r; to produce travel-time surfaces
7(r;, ). Then the local speed ¢;(r) at an arbitrary point r is estimated using the eikonal
equation. The second term that contains the amplitude, A;(r), in the eikonal equation is
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neglected in practice. This is justified only at high frequencies w or when A;(r) slowly varies
with respect to the position r. There are some intermediate steps in this methodology which
should be carefully addressed. For example to calculate the travel-time surfaces, from a set
of travel-time measurements, the use of an interpolation method is needed. The choice of
the interpolation method plays a significant role on the reliability of the final reconstructed
image. Eikonal tomography, despite its limitations, is a very simple method to implement
and computationally cheap.

The travel-time measurements is another concern for us. In this chapter we will use
travel-time measurements computed from ambient noise recordings. The tool in hand is the
cross-correlation function, defined in (£2.6)),

1 [T
Cr(7,21,12) = f/ u(t, z1)u(t + 7, 22)dt,
0

where u(t, 1) and u(t, z5) are the noise recordings at receivers x; and xs respectively and T
is the length of the recordings.

As we discussed in section [2.3] given a recording time T large enough and with some
requirements on the spatial distribution of the ambient noise sources, the cross-correlation
function converges to the symmetrized Green’s function between the two receivers [29] and
therefore travel-time information can be extracted from the cross-correlation function. For
the travel-time estimation we provide two alternative methods: The envelope function and
the stretching method.

5.2 Problem setup: the wave equation

To make this chapter to a certain extent self contained, we review in this section some mate-
rial on the wave equation, the Green’s function and the cross-correlation of noisy recordings.

To describe wave propagation in the earth, one should consider the elastic (or visco-
elastic) wave equation in three dimensions. We consider here instead the scalar wave equation
which is often used as a simplified model,

1 %
%g?(t, x) — Ayu(t,z) = n(t, x),
where u(z,t) is the acoustic pressure field, n(¢, ) is the source function and ¢(x) denotes the
propagation speed in the medium assumed to be constant outside a domain with compact
support.
The noise source n(x,t) will play an important role in our setup. Usually n(z,t) is
a deterministic source compactly supported in space (often a point source is used) which
emits a compactly supported pulse in time. Recently there has been a lot of interest in
the development of passive correlation based methods that rely on the use of ambient noise
recordings for extracting information about the medium in which the waves propagate. In
the previous chapters we've discussed most of the aspects and in this setting, the sources
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are randomly distributed in space and they emit long noisy signals. A reasonable model
for the source is therefore to assume that n(z,t) is a space-time stationary random field
which is delta correlated in space and time. The delta-correlated assumption is not very
realistic and can be relaxed. We refer the reader to the seminal work of Michel Campillo
and his collaborators on passive seismology ”a new way of imaging the earth’s interior using
only noise” [61, 60, 35, 25, 12] as well as to the work of George Papanicolaou et al on the
mathematical analysis of correlation based methods [29, [30] 31, [32].

It is useful at this point to reintroduce the following quantities from chapter [2, beginning
with the time-dependent Green’s Function G(t,x,y) for the wave equation which is the
solution of | 20

%W(t Z, y) - AIG(tv z, y) = (5<t)(5<£lj' - y)
Assuming that G(t,z,y) =0, Vt < 0, we get a unique solution which is the causal Green’s
function. The Green’s function is therefore the response at point x and time ¢ due to a delta
function pulse emitted at time 0 from a point source located at .
If the medium is homogeneous ¢(z) = ¢y, then

1 [z~ 9|
o(t — t>0.
A7)z — y| ( Co )

G(t,z,y) =

The time-harmonic Green’s function, defined as the Fourier transform of G(t, x,y),

N

Gw,z,y) = /G(t,x,y)ei“tdt,
is the solution of the Helmholtz equation,
2

w ~
A G(w, w,y) + 02<x)G(w, z,y) = —d0(z —y),

with the Sommerfeld radiation condition (¢(x) = ¢o at infinity),

lim |z|(—

V. — iﬂ)é(w, z,y) = 0.
Co
If the medium is homogeneous ¢(x) = ¢y, then

. 1 e
G(W;l‘,y) - 47T|—ZL' — y|€ CO‘ y\'

We can express now the solution of the wave equation with a source n(t,z) in terms of the
Green’s function through the convolution,

u(t,z) = //G(t— s, x,y)n(s,y)dyds,
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or, in the frequency domain,

i) = [ Gl )i, )y,
where 4(w, x) is
U(w,z) = /u(t,x)ei‘”tdt.
Let us also recall the following two properties of the Green’s function [29],

i. Reciprocity:
Glw,z,y) = G(w,y, x).

ii. The Helmholtz-Kirchhoff identity:

If the medium is homogeneous with velocity ¢q outside B(0, D), then Va1, 25 € B(0, D)
we have for L > D,
29w

é(&),l‘l,ZEQ) - é(waxbe) = _/ dS(y)GA(w7x17y>é(w7x27y)' (51)
0B(0,L)

Co

More precisely, (ii) is an approximate identity with an error O(1/L) (cf. [29]).

Using the Helmholtz-Kirchhoff identity one can show that the Green’s function can be
recovered from cross correlations of ambient noise recordings. The proof relies on the as-
sumption that the noise sources are isotropically distributed on a sphere that surrounds the
region of interest [29]. The precise mathematical result is that the time-derivative of the
Green’s function between two points can be obtained from the cross-correlations of ambient
noise recordings at these two points. Specifically, let u(t,z1) and u(t, x9) denote the time-
dependent wave fields recorded by two sensors at x; and x5 . Their cross correlation function
over the time interval [0, 7] with time lag 7 is given by,

1 /7
Cr (1,21, 22) = ZF/ u(t, z1)u(t + 7, z2)dt, (5.2)
0
we then have that
0
E(IJTCT-? Jfl,l‘g) ~ G(Taxth) - G<_7-7 1'1,1'2), (53)

where G is the Green’s function.

This result is obtained given that the integration time 7T in is large enough to
guarantee the statistical stability of the cross-correlation function. It was first observed
experimentally in [72] where the authors measured the Green’s function in a closed cavity
using only passive noise recordings due to thermal noise. Their theoretical analysis is based
on a normal mode expansion of the displacement and therefore is limited to closed systems.
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Another theoretical explanation can be obtained in open systems using stationary phase
analysis [62].

We illustrate with a numerical example in Figure the cross-correlation of noisy record-
ings at two sensors located at x; and x5 . We observe that a symmetric function is obtained
that has two peaks at the positive and negative lag time that corresponds to the travel-time
between the two receivers 7(xy, x5).

Figure 5.1: An example of the a cross correlation function. The two peaks are located at
—7(x1,x2) and 7(xq, z3).

These results are very important in applications as they suggest that we can recover the
Green’s function by computing cross correlations of noise recordings. Most importantly we
can recover the travel-time 7(x1,x2) from the peaks of the cross-correlations as illustrated
at Figure [5.1}

5.3 Eikonal Tomography

Eikonal tomography is a method proposed in [43] that uses the eikonal equation in order to
estimate the velocity in the propagation medium from travel-time measurements. To explain
the method, let us assume that we have a network of N seismic stations on which we record
noise. Let us call r; one of the sensors that will play at this step the role of the source and
call all other sensors r. We compute the cross correlations (C,., between sensor r; and all
sensors 7, r = 1,..., N and estimate from the cross-correlations the travel-time surfaces,
7(r;, ), for positions r relative to the effective source located at r;. Eikonal tomography is

based on the equation
1 V2A;(r)

- v iy 2 < ) 5.4
e AU e (54)
where w is the frequency and A is the amplitude of the wave at position r. Equation (/5.4])
can be further simplified by assuming that we are in a high frequency regime or that the
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spatial variation of the amplitude field is small compared with the gradient of the travel-time
surface. We then by dropping the second term of the right side of ([5.4)), obtain

= N7 (ry, ), (5.5)

where ¢; is the phase speed for travel-time surface ¢ at position r and k; is the unit wave
number vector for the travel-time surface i at position r.
From (5.5 the local slowness can be computed by,

si(r) = |V71(r,r)|, i=1,...,N. (5.6)

Since we have as many measurements for the slowness as effective sources r;, i = 1,..., N,
we can then calculate the mean slowness,

and finally the velocity ¢y is,
1
o(r) = : 5.7
(1) = 3 (57)

To evaluate the uncertainty of the ¢y, we first define the standard deviation of the mean
slowness

oL = =y )~ el

and thus )

O, (1) = %Oso (r)

Our objective is to use this method on seismic noise recordings. To do so we first need
to estimate travel-times between pairs of sensors and then compute the local slowness using
(5.6). This requires the computation of the gradient of the travel times. The final step is to
estimate the velocity from . In the next sections we explain how we implemented these
steps.

5.4 Travel-time estimation

In this section our goal is to estimate the travel-time between pairs of sensors and we will
present two techniques for achieving this. The first technique and the most intuitive is to
compute the cross correlation for each pair of sensors and estimate the travel-time as the
time at which the envelope function of the cross-correlation admits its maximal value. The
second one is a bit more evolved and uses the stretching method. In that case, we first
estimate travel-time differences between cross-correlations of multiple pairs of sensors and
then by inverting the difference operator we obtain the travel-times.
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5.4.1 Envelope Function

The cross correlation function is a symmetric function assuming a uniform distribution
of noise sources and for a large enough 7. In geophysics however a uniform distribution of
noise sources is usually the exception so we often define the symmetrized cross correlation
function which is the average of (Cr over the positive and negative lag times:

Crp(7) + ACp(—7)
2

@T,sym(T) = ) 0 S T S T

We then use the envelope function:
env(1) = |H(CCr sym ()] (5.8)

where H is the Hilbert transform. Travel-time is estimated as the time ¢ at which the
envelope function admits its maximal value. The envelope function is non-negative and has
less oscillations than the original signal, therefore it is more convenient for estimating the
travel time.
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Figure 5.2: An example of the envelope function. The red line represents the envelope
function and the travel-time is the time ¢ at which it admits its maximal value. The blue
line is OCr gym (7).

5.4.2 Stretching method for travel-time estimation

An alternative method for estimating the travel-times is based on the stretching method (see
chapter . The idea is to recover travel-times between all available sensors from travel
time differences estimated using the stretching method.

Let us consider a random sensor s which will play the role of the source and two other
sensors, r and r’ which will be the receivers. We compute the cross correlations (C,, between
sensor s and r and (C,,» between sensor s and r’ respectively. We obtain two waveforms
(C,, and (C,,,, whose travel time difference is denoted Atf,yr,. We want to estimate this
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travel-time difference At;,, using the stretching method which consists in seeking for ¢ that
maximizes the following quantity:

[ QC(t + ) CC4 (1) dt

1

= \/ftQOC2 e dt\/ e (

The next step is to estimate the travel-times from travel-time differences. For each source s,
the relationship between the travel-time differences between the receivers and the effective
source s and the travel-times from s to the receivers can be written as,

C

t* = At* (5.9)

where D is a differentiation matrix of size N x N(N —1)/2 (N being the number of sensors),
t* = (t7);=1..n is the vector of the travel-times for each sensor and At® = (Atfj =t —
t9)i=1.Nj=1..n is the vector of estimated travel-time differences between receivers.

System ([5.9)) can be solved with the quasi-Newton method,

t*~ DAL,
where D! is the pseudo-inverse of the differentiation matrix D, that can be written as,
D' = (DTCy'D + O3 tDTCp.

For C'p we use a diagonal matrix whose elements are proportional to the measurement error
in At;; and we choose a second order differentiation matrix for Cy/) 36).

5.4.3 Travel time computations: The fast marching method

When we deal with real measurements, the travel-times between all the available sensors
can be estimated using one of the methods suggested in the previous subsections (envelope
function or stretching method). However we first consider numerical data and compute the
travel-times between pairs of sensors using the fast marching method (FMM). In particular
we use an implementation of the multi-stencil FMM (MSFM) [23].

Our computational domain is a square 2-D medium 40km x 40km. The wave speed is
defined by,

1 1 T
1 ) 5.10
25 CO( +ou(7) (5.10)
where ¢g = 1Km/s is the mean speed of propagation and p is a random variable with

a Gaussian correlation function, mean zero and standard deviation 1. The strength of the
medium variations is determined by ¢ and [ denotes the correlation length which corresponds
to the length scale at which the medium fluctuates.

The receivers are random uniformly spread points over our square domain. Using the
MSFM method we compute the matrix of travel-times whose 7, j element correspond to the
travel time from sensor ¢ to sensor j. Note that the travel time matrix is symmetric and has
zero on its diagonal.
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5.4.4 Interpolation and final calculations

We discussed previously that the sensors are located randomly in the computational domain
and so the travel times are estimated on an irregular grid and we want to estimate the
velocity using the eikonal equation on a regular grid. In this process we need to compute the
gradient of the travel times (see eq.(5.6) )and to do so efficiently the approach in [43] proposes
the use of a finite difference stencil which requires the interpolation of the travel-times on a
regular grid.

Although the interpolation step is systematically overlooked, it is an important source
of error in this process. We will test here three interpolation schemes, a triangulation based
linear interpolation, a triangulation based cubic interpolation and a spline interpolation.
After the interpolation, we can compute the gradient of the travel-times. We implemented
a classical finite difference stencil.

Internal nodes:
_ F(wip1,y5) — F(xio1,95)

2Ax ’

F<xi7y' 1) - F(%‘yy‘—l)

Fy(xlayj) = ias 2Ay . .
Boundary nodes:

F(xo,y;) — F(xy,y;
Fx(l'byj) _ (2 ])AI (1 J),

F(i,y2) — Fx;,y
FZl(xi)yl) = ( 2)Ay ( 1)7

F(:Envy) _F(xn—lay')
F$(In7y]) = : Az ! )

F($z7yn) _F('I’iayn—l)
Fy<mi7yn) - Ay .

It is now useful to recap the process described above into the following algorithm:
Algorithm 5.4.1 Eikonal tomography implementation steps:
1. Travel-time generation (using MSFM).

2. Interpolation: from travel-times on the sensors we estimate travel-times on a reqular
grid.

3. Compute the mean slowness from the gradient of travel-times using the finite difference
scheme to compute the gradient.

4. Compute the velocity estimation using equation .

5.5 Results and discussion

We compare the three different interpolation schemes in Figure We show the results
obtained on a 200 x 200 grid using linear, cubic and spline interpolation. These are the final
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estimation results after applying all the steps of the algorithm. The strength of the medium
variations is ¢ = 0.05, the correlation length of the medium is | = 8km and we used 400
sensors. As we can see the interpolation error plays a significant role in the reconstruction
of the velocity.
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Figure 5.3: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained using the linear interpolation scheme, the second one with
the cubic and the third one with the spline interpolation.

The best results are obtained with the spline interpolation method. We fix now the
interpolation method to be the spline and we increase the number of sensors. As expected
the error decreases by increasing the number of sensors, step by step we increase the number
of sensors from 900 all the way to 3600 sensors.
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Figure 5.4: We use the spline interpolation for different number of sensors each time and we
test the difference between the original velocity and the estimated one for the medium with
8km correlation length and 5% variance (see equation ([5.10])). From the top to the bottom
the number of sensors is 900, 1600, 2500, 3600 respectively.

Furthermore, we want to better quantify the error between the maps of the original
velocity and the estimated one. We have a grid with dimensions 200 x 200. We do not
expect a good measurement in the areas that we do not have sufficient coverage so we create
a smaller square inside our grid with dimensions nd x nd. We start with nd = 50 and we
gradually increase it in order to quantify the error as a function of nd. We compute the error
in the L.-norm and the Ly-norm.

63



1.5 T T

——— 400 sensors
———900 sensors
1600 sensors
——— 2500 sensors
——— 3600 sensors

L_norm
0

05

——400 sensors
——900 sensors 4

1600 sensors
—— 2500 sensors
——— 3600 sensors 7

100 150

nd
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Figure 5.6: On the left picture we see the relative error for all the sensors using the L.,-norm
; while on the right one the error using the Lo-norm is displayed.

We observe in figures that the error is small for nd < 150 and increases for larger
nd. However by increasing the number of sensors we measure smaller error for larger nd up
to the edge of the domain where the coverage isn’t guaranteed even for bigger number of
SEnsors.

We want now to add smaller structures in the velocity profile. We consider the following
perturbation of ¢(x) previously used,

(1+ouD).



with 0 =0.01 and [ = 1Km.

Figure 5.7: We use the spline interpolation for different number of sensors each time to estimate
the perturbed velocity profile ¢,. From top to bottom the number of sensors is 400, 900, 1600,
2500, 3600 respectively and from left to right are the original velocity, the reconstructed velocity
and their difference (absolute value).

In eikonal tomography it is the sensor spacing that controls the accuracy of the method
and determines the size of the smaller scale features that can be reconstructed. This is
illustrated with the results obtained for the perturbed velocity profile. Indeed as can be
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seen by the results of Figure the small scale features in ¢,(z) cannot be reconstructed
with sparse networks of sensors (900 sensors for example). To better quantify the difference
between the reconstruction of ¢(x) and ¢,(x) we fix the number of stations to 900 and we
measure the error as a function of nd. We observe that the error is significantly larger for
the medium with the smaller structures.

——Medium 2 0.45 | | ——Medium 2

Figure 5.8: On the left picture we compare the error between the two mediums with the
Lo —norm. On the right we plot the error using the Ly — norm.

—— Medium 1 —— Medium 1
o045

T
50 100 150 200
nd

Figure 5.9: On the left picture we compare the relative error between the two mediums with
the Lo, — norm. On the right, it is the relative error using the Ly — norm.

5.5.1 Discussion.

In this chapter we had the opportunity to investigate numerically the effectiveness of the
eikonal tomography. We showed that in order to be able to reconstruct small scale features
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of the medium we have to consider a dense enough network of sensors. We should also
note the poor reconstruction of the velocity near the boundary of the domain where the
station coverage is not good enough even for an unrealistically large number of sensors. The
interpolation scheme played an important role in this process but none of the interpolation
schemes tested was efficient for the most realistic number of sensors (400 sensors) especially
near the boundary.

Driven from the conclusions of this chapter, we will investigate more advanced interpo-
lation techniques in the next chapter.
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Chapter 6

Velocity tomography using statistic
interpolation schemes.

In the previous chapter we investigated the velocity tomography problem using the Eikonal
Tomography approach as suggested by [43] and we encountered difficulties in reconstructing
the velocity near the boundary of the computational domain and more general in areas
without good sensor coverage. Also we needed a large number of sensors, at least 400, in
order to obtain an acceptable result.

In this chapter we will introduce a modification of the Eikonal Tomography using a
statistic interpolation scheme, called Kriging. Our preliminary results are very encouraging
and suggest that better reconstructions with a smaller number of sensors can be achieved.
This investigation is work in progress.

6.1 Introduction to Kriging

The statistic interpolation method we consider is called "Kriging Interpolation”. Kriging
is based on Gaussian regression against values of nearby scattered data points, weighted
according to statistical relationships among the measured points. One of the advantages of
Kriging is that it compensates for the effects of data clustering by assigning to individual
points within a cluster smaller weights than to isolated data points. This is expected to
improve the reconstruction results in areas with poor sensor coverage.

We will modify the methodology of the previous chapter by changing the steps 2 and
3 of the Algorithm [5.4.1] In step 2 we will use the Kriging interpolation instead of the
deterministic methods of the previous chapter and in step 3 we will use the equation
to calculate the gradient of each travel-time surface instead of the finite difference scheme.

Algorithm 6.1.1 Eikonal tomography with Kriging implementation steps:

1. Travel-time generation (using MSFM),

2. Interpolation: from travel-times on the sensors we estimate travel-times on a reqular
grid using Kriging interpolation,

69



3. Compute the mean slowness from the gradient of travel-times which is estimated using

63).
4. Compute the velocity estimate using equation .

For our computations of the Kriging interpolation, we used the UQlab MatLab package.
The first step to implement the Kriging Interpolation using this package is to determine
the dependancy rules, in other words, we need to built a model that determines the spatial
dependancy of the interpolation weights (using correlation fitting). We then use this model
to make predictions at any given point. We seek for predictions over a regular grid.

6.1.1 The model

Now it is necessary to adapt the Kriging interpolation into the Eikonal tomography problem.
In Eikonal tomography we are interested (as we did in section of the previous chapter)
in reconstructing travel-time surfaces from scattered data. For each sensor r;, also called
"effective source”, we have estimations of travel times to all the other sensors r;, j =
1,2,...,N, which are placed in N vectors 7(r;,7;), rj,m € R, j=1,...,N and N being
the number of sensors. We introduce the functions

filr) =

o) 1N, (6.1)
|ri — 7]

so this time we will interpolate these functions instead of the travel-time surfaces 7(r;, 7).
We also do not take into account the points that are closer than 5Km to the virtual source
r; in order to avoid singularities. The choice implies that the velocity will be isotropic and
that will eventually give better results. The model for f; is of the form:

F,(r) = Bi(r) + Zi(r), (6.2)

where Z is a random process with mean zero, variance o2, and the covariance selected between
a number of different correlation functions (fitting models). The selection of the correlation
function, the variance o and the trend §;(r) is very important. For the trent 3; we select

Bi(r) = fo(r),

where y(r) is a known constant (in this case the mean (over i) of the observations f;(r;), j =
1...., N), this selection of the trent is called ”Simple Kriging”.

Since we need the local slowness at point r we compute the derivative of the travel-
time surfaces at any point of the grid, avoiding the computational cost of applying a finite
difference stencil, using the following relationship:

r, —Tr

\Tz‘ - 7’|

The covariance of the random process Z; is given by

C(r,r") = o*R(r,r) (6.4)

V,7(r,r) =

F;(r) + |ri — r|V.Fi(r). (6.3)
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where o2 is the variance of the random process. The selection of the appropriate correlation
function R is an important decision, and we can choose from a wide spectrum of correlation
functions.

Linear correlation function

The most simple correlation function is the linear correlation function given by the formula:

o
R(r,r") = max {0,1 — Ir l "l }, (6.5)

where [, is the hypothetical correlation length of the medium.

Exponential correlation function

The next correlation function we consider is the exponential correlation function which is

defined by

v
I ) (6.6)

where again [, is the hypothetical correlation length of the medium.

R(r,r") = exp(—

Matérn family of correlation functions

Matérn is a family of correlation functions which depends on a shape parameter v > 1/2
and is defined by

1
)= 2v-1T(v)

r—r

vty eyl ), (6.7)

R(r,r";v

where again [. is the hypothetical correlation length of the medium, I' is the Euler Gamma
function and K, is the modified Bessel function of the second kind. We will see results for
two Matérn functions, for v = 3/2 and for v = 5/2.

6.2 Results and Discussion

Here we present results of Eikonal Tomography using Kriging interpolation with the corre-
lation functions mentioned above. In the previous chapter we used at least 400 sensors for
the deterministic interpolation schemes but in this case we will use only 40 sensors. Using
such a small number of sensors is actually a far more realistic scenario since building and
maintaining large seismic networks has a very high economic cost.

Another reason to use only 40 sensors in our computations is that any difference between
the correlation functions will be more obvious. The number of 40 sensors is a challenging
small number with respect to the results of the previous chapter and will be useful to observe
the effectiveness of Kriging Interpolation.
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6.2.1 Selection of Correlation function
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Figure 6.1: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained using the Spline interpolation scheme, the second one with the
linear correlation function, the third one with the exponential correlation function, the fourth
and the fifth are the Matérn-3/2 and Matérn-5/2 respectively. The pink dots represents the
location of the sensors. 3




The first task is to determine which is the appropriate correlation function to use for the
Eikonal Tomography problem. To do so we are using 40 sensors on a 40 K'm x 40 K'm domain,
the strength of the medium variations is ¢ = 0.05, the correlation length of the medium is
[ = 8km (see equation . In Figure we compare the results obtained with the four
Kriging correlation functions with the results obtained using the Spline interpolation. It
is clear that Kriging interpolation is far more successful than Spline interpolation for such
a small number of sensors. We also observe that the Matérn correlation functions have
surprising well reconstructed the velocity especially near the boundary of the domain.

As we can see at Figure the Matérn-5/2 provides better reconstruction near the
boundary than Spine while it uses 10 times less sensors.
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Figure 6.2: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained using the Spline interpolation scheme using 400 sensors, the
second one uses the Matérn-5/2 and only 40 sensors.

The results above (Figures and suggest that the appropriate correlation function
is the Matérn-5/2 while the Matérn-3/2 provides good results as well. The Kriging interpo-
lation with linear correlation function and the exponential correlation function, even though
they give better reconstructions than the Spline interpolation, they perform worse than the
Matérn correlation functions. From now on and until the end of this chapter we will continue
to investigate only the Matérn correlation functions given their superiority over the linear
and the exponential correlation functions.

Now we increase the number of sensors back to 400 sensors, this will determine if the
Matérn-5/2 will continue to give better results than the the Matérn-3/2. It will also also
be interesting to see if the Kriging interpolation will continue to perform better for larger
number of sensors as expected. In Figure [6.3] we compare the Spline interpolation with the
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Kriging interpolation using the Matérn correlation functions with v = 3/2 and v = 5/2 for
the same set of 400 sensors.
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Figure 6.3: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained using the Spline interpolation scheme, the second one uses
the Matérn correlation functions with v = 3/2 and the third uses the Matérn correlation
function with v = 5/2. All the results are for the same 400 sensors which are represented in
pink.

The results in Figure [6.3| confirm once again the superiority of the Kriging interpolation
over the deterministic Spline interpolation for the larger set of 400 sensors. We can also
observe that in the bottom-left corner of the domain, in which we have a poor sensor coverage

even for this number of sensors, we have a better reconstruction from the Matérn-5/2 than
the Matérn-3/2.

6.2.2 Reconstruction of small scale velocity details

In the previous sections we were able to show that the Kriging interpolation method with
the Matérn correlation function and v = 5/2 gives us the most successful reconstructions of
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the velocity model that we used. However that velocity profile lacks of small scale velocity
details and we will investigate how the Kriging interpolation performs when we add small
scale perturbations to the velocity profile. We use the same medium as the one used in the
previous chapter (it has 0 = 0.01 and [ = 1Km).

We do not expect to reconstruct such small scale details of the velocity profile with only
40 sensors or even with 400 sensors. In the previous chapter we discovered that the sensor
density must be at the order of the small scale variations in order to successfully reconstruct
them. However, it will be interesting to see how the accuracy of the reconstruction increases
with the number of sensors. In Figure[6.4| we can see the reconstruction for different numbers
of sensors.
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Figure 6.4: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained using 40 sensors, the second is for 100 sensors the third for
200 sensors and the fourth for 400 sensors. All the reconstructions use Kriging interpolation

with the Matérn-5/2 correlation function.

We observe in fact that the reconstruction fails to some degree to resolve the fine details
of the velocity profile. It gets better and better as the number increases which is expected.
Using 40 sensors we get a reconstruction which seems like a smoothed version of the desired
velocity profile. When using 400 sensors, we recover most of the details although we still
have a lot of error. In Figure [6.5] we compare the Spline interpolation with the Kriging

interpolation for 400 sensors.
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Figure 6.5: Here the first column is the original velocity profile, the second is the recon-
structed velocity and the third is the difference between the reconstructed and the original
velocity. First row is obtained Spline interpolation, the second uses Kriging interpolation
with the Matérn correlation function and the v = 5/2. Both reconstructions contacted on
the same set of 400 sensors.

We confirm again that the Kriging interpolation performs better near the boundary in
comparison with the Spline interpolation. Also, we observe that Kriging outperforms the
Spline interpolation in the interior of the domain as well, as Kriging resolves the small scale
details of the velocity profile with a smaller overall error.

6.3 Discussion

In this chapter we studied a modification of the Eikonal tomography method described in
the previous chapter. We where able to demonstrate the advantage of using the Kriging
interpolation in comparison to the deterministic interpolation methods. These results are
preliminary work, and though they are very encouraging, the investigation is still in process.

One of the aspects of the methodology of Eikonal tomography that haven’t been studied in
this thesis is the actual travel-time measurement. Whenever we process real data from seismic
stations we can filter the data in different frequency bands prior to the cross correlation
process. The different frequency bands correspond to different travel-paths, typically lower
frequencies penetrate deeper in the earth’s crust.

Another aspect which is work in process, is the correlation frequency band of the record-
ings and the detail of the velocity profile we can reconstruct. The common wisdom in this case
is, the higher the frequency the smaller the detail we can reconstruct. We are in the process
of investigating this claim using noise recordings computed by solving numerically the wave
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equation ({2.1)) in the time domain using the code Montjoie (http://montjoie.gforge.inria.fr/).

As future work we want to investigate the possibility of computing the velocity profile
of areas within Greece using data from the National Unified Seismic Network of Greece and
the methodology suggested in this chapter.
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Application in structural health
monitoring
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Chapter 7

The bell tower in Perugia

In this chapter we propose a computationally efficient method for vibration-based structural
health monitoring (SHM) of civil structures based on the continuous measurement of their
dynamic response in operational conditions. The method is inspired by the stretching tech-
nique used in geophysics (see Section for detecting variations in the velocity of the earth
from seismic noise recordings and follows the current trend of using a very limited number
of sensors permanently installed on site for the purpose of damage detection.

In the SHM setting, the proposed method allows to identify small permanent shifts in the
natural frequencies of the structure in a changing environment, which is achieved by max-
imizing the correlation coefficient between a reference waveform, computed in a training
reference period in which the structure is assumed to be undamaged, and a shifted ver-
sion of the same waveform evaluated at the current time. The comparison is performed in
the frequency domain and the waveform of interest is obtained from cross-correlations of
the ambient vibration measurements. More specifically, in the case of multiple sensors, the
waveform can be either the cross-power spectral density of the signals recorded by a pair of
sensors, or the largest singular value of the spectral matrix of the measurements. The effect
of the environmental fluctuations is mitigated by averaging the cross-correlations in the time
domain over a proper period of time, before taking their Fourier transform to estimate the
spectral densities. This time domain averaging is carried out in a relatively long period
of time for estimating the reference waveform, while it is carried out in a shorter time for
estimating the current waveform.

The main advantages of the proposed methodology compared to more traditional vibration-
based approaches, such as those based on automated operational modal analysis and multi-
variate statistical techniques to reduce the effects of changes in environmental and operational
conditions, are its lower sensitivity to environmental fluctuations, resulting in a quite shorter
training period length, and its lower computational cost, which could be compatible with a
direct integration within smart sensors with embedded electronics. The performance of the
method is illustrated in the case study of an Italian historical monumental bell-tower that
has been monitored for more than one year.
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7.1 Introduction

In this chapter we propose a novel vibration-based SHM method with low computational cost,
potentially suitable to be implemented without the need for large computational capacities.
The method is inspired by the stretching technique, popular in geophysics where it is used
to process seismic noise recordings with the purpose of detecting variations in the velocity of
the earth. In particular, the method has been used for volcano monitoring and seismic fault
monitoring [38, [I, 20]. The proposed Stretching Method (SM) uses continuous recordings
of monitoring data ensuing from a small number of sensors installed on site, and provides a
direct measurement of changes in natural frequencies of the structure with compensation for
environmental effects and without the need for addressing the task of modal identification.
This is achieved by searching for a maximum correlation coefficient between the reference
first singular value line of the spectral matrix of the measurements and a shifted version
of the same quantity evaluated at the current time. A key feature of the method is its
very low sensitivity to changes in environmental parameters, which is achieved by averaging
cross-correlations in time, before taking their Fourier transforms to estimate the spectral
densities.

After presenting the mathematical setting of the method, the paper also illustrates its
practical application in the case of a historic masonry bell-tower that has been monitored
by the authors for more than one year [66]. The results demonstrate that the stretching
method is competitive with other well-established techniques for SHM in terms of minimum
detectable frequency shift, while being superior in terms of reduction of computational cost,
as well as reduction of the length of the initial training period that is necessary for starting
the monitoring task.

The rest of the chapter is organized as follows. First of all, a review of an SHM method-
ology based on automated modal identification and multivariate statistical analysis is given.
Then, the newly proposed strectching method is presented and its main computational ad-
vantages in comparison with the reference method are discussed, as well. The second part of
the paper presents the application to the case study bell-tower. Finally, the paper is ended
with main conclusions.

7.2 Classical method based on changes in natural fre-
quencies

A classical vibration-based SHM methodology is described in this section and used, in the
second part of the paper, as a benchmark to demonstrate the effectiveness of the proposed
stretching method. The method, here referred to as the "reference SHM method”, consists
of the continuous modal identification of the structure in operational conditions and on a
multivariate statistical analysis of identified natural frequencies, using the tools of Principal
Component Analysis (PCA), in order to remove the effects of changes in environmental and
operational conditions, and of Novelty Analysis (NA), in order to detect anomalies in the
structural behavior possibly related to developing damage pattern. Documented applications
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demonstrating the effectiveness of this method can be found, for instance, in [17].

The reference SHM method comprises four different steps, as sketched in Figure [7.1} (i)
permanent acquisition of the dynamic response of the structure in operational conditions,
(ii) continuous identification and tracking of natural frequencies, (iii) cleansing procedure for
removing environmental and operational effects from identified natural frequencies and for
the extraction of damage-sensitive features and (iv) novelty analysis for damage detection.
The first step consists in the permanent acquisition of structural vibration signals, typically
using accelerometers, and in their remote transmission and storage. The proper choice of
sensing hardware and sensors’ layout, considering the peculiarities of the monitored structure,
are crucial in this stage.

The second step consists of the continuous estimation of the natural frequencies of vibration
from acquired vibration signals and on tracking their evolution in time. The adopted output
only modal identification technique and its calibration on the basis of the specific case study
are essential for the effectiveness of the SHM system.

The third stage aims at processing the identified natural frequencies in such a way to extract
quantities that are insensitive to changes in environmental and operational conditions. To
this aim, an unsupervised learning technique based on the tool of PCA is adopted. This
method consists of the linear remapping of the original natural frequency data into the
space defined by the orthonormal basis of the Principal Compontents (PCs) and to the
backward transformation to the original space by retaining only some of these PCs. From a
mathematical point of view, natural frequencies are first collected in matrix Y, where the row
number denotes the order of the mode, while the column number denotes the observation.
Then, the following transformation is carried out:

X=T'Y (7.1)

where T € R™" is termed the ”loading matrix”, n being the number of identified natural
frequencies of the structure. Matrix T is computed through the singular value decomposi-
tion of the covariance matrix of the natural frequencies identified in the so-called "training
period”, to. This last is a reference period during which the structure can be considered
undamaged and experiences the normal environmental and operational conditions. After
application of Eq. , the backward transformation is carried out using a dimensionally
reduced loading matrix, T € R*", where only the first [ PCs are retained. The following
residual error matrix, E, is then computed as

E=Y -T/'TY (7.2)

Considering that the PCs provide ordered contributions to the variance of the natural fre-
quencies, if [ is sufficiently large, the backward transformation retains most of such variance,
which is typically associated to changes in environmental and operational conditions. It
follows that matrix E contains quantities that are almost insensitive to environmental and
operational factors, thus being suitable to be used for detecting anomalies in the dynamic be-
havior of the structure. The crucial aspects in the third stage of the reference SHM method
are the choice of the length of the training period, ty, needed for a proper estimation of
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matrix T, and the number of retained PCs, [. Literature results suggest that, in the case of
significant environmental effects, ¢y should be equal to about one year, which is a practical
limit of the SHM method. The number of retained PCs can be roughly chosen as the number
of external factors, e.g., temperature, humidity, wind speed, traffic intensity, and more, that
are expected to mostly affect the tracked natural frequencies, but its choice is not unique
and generally nothing but trivial.

The fourth step of the procedure consists of the novelty index analysis, finalized at detecting
anomalies in the form of statistical outliers in the observed values of the residual errors, Eq.
(7.2]). This task is pursued by using some proper statistical distance measuring the deviation
of the actual value of the residuals with respect to their distribution observed during the
training period. In the adopted reference SHM method, the popular T?-statistical distance
is considered and employed as defined in Eq. [49):

=r (E-E? ="' (E-E) (7.3)

where E is the mean of the residuals computed in the subgroup of the last r observations, r

being an integer parameter, named group averaging size, while E and ¥ are the mean values
and the covariance matrix of the residuals, respectively, which are statistically estimated in
the reference training period, 5. Under the assumption that a damage produces a change
in the distribution of E, it is detected as a stable cloud of values of T? greater than a fixed
Upper Control Limit (UCL), here statistically defined as the value of T2 corresponding to a
cumulative frequency of 95% in the training period.

11
(1 (Iv)
Data acquisition Novelty Index Analysis
t<toﬂ ﬂt>to T
1 PCA analysis for environmental
(in effects removal
Automated modal PN
identification and frequency 1l
tracking )

| ——————)| Estimation of PCA parameters

Figure 7.1: Conceptual scheme of the reference SHM method for damage detection high-
lighting tasks carried out before and after the training period, t;.

7.3 The new proposed method

As recalled in the Introduction, the SM is widely used in geophysics to detect velocity
variations in the earth from seismic noise recordings. In the geophysical context, relative
velocity changes, dv/v, are sought in the propagation medium using cross-correlations of
noise, recorded at seismic stations. The noise in this context is microseismic activity caused
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by natural phenomena, such as the interaction of water waves with the coast. The cross-
correlations are time-dependent waveforms, homologous to waves travelling from one station
to the other. To be more precise, the key idea that is exploited in SM and, more generally,
in passive correlation based techniques [63], [32], is that the impulse response corresponding
to the signal received at one point when a delta-pulse is emitted from another point can
be obtained from the cross-correlations of ambient noise recordings at the two points. This
important result has been observed experimentally in [72] and shown theoretically using
different techniques such as stationary phase [62] or the Kirchhoff Helmholtz identity [29].
The main assumption needed is stationarity and uniform distribution for the noise sources,
while the propagation medium can be open (unbounded), or finite (bounded), in which case
a modal based approach is followed. A nice review is presented in [I1] where recent advances
in ambient noise seismology are summarized. In the context of SHM, the impulse response
function (IRF) of a civil structure (the Factor building in the University of California, Los
Angeles) was obtained from cross-correlations of ambient noise recordings in [54]. The ob-
tained IRF was used to compute resonance frequencies and attenuation values which agree
with previous obtained estimates for the building. In [54] the authors studied the stability
of the IRF and obtained stable results using 14 days of data.

From the mathematical point of view, the following results have been obtained (see
chapter 2 in [33] and references therein and Section of this Thesis): Let us denote
u(t,z1) and wu(t,z9) the solution of the scalar wave equation (for a generalization to vector
wave equations see [64]) at the locations of two sensors x; and x5 due to a random excitation
that is stationary in time and uniformly distribute in space. The quantity of interest is the
empirical cross correlation of these two signals over a time interval [0, 7] with time lag 7,

T
Cr(r,x1,29) = %/ u(t, z)u(t + 7, xq)dt. (7.4)
0

What is important is that the empirical cross correlation C7 is a statistically stable quantity,
in the sense that for a large integration time 7' it is independent of the realization of the
noise sources. More precisely, the empirical cross correlation C7 is a self-averaging quantity

T—x

Cr(1,z1,29) — C(7, 21, 72), (7.5)

in probability with respect to the distribution of the sources where C*¥ is the expectation of
the empirical cross correlation Cp (with respect to the distribution of the sources) which is
independent of T’

C¥(1, 21, 29) = (Cp(T, 21, 22)) . (7.6)

Assuming Gaussian statistics for the noise sources the covariance of the empirical cross-
correlation can be shown to tend to zero with rate 1/7", which implies that the signal to
noise ratio of the cross-correlation, defined as the mean divided by the square root of the
variance, is proportional to v/T. The time interval T that controls the quality of the measured
cross-correlation is application dependent and has to be chosen appropriately.

87



In the application of the SM, it is necessary to compute a reference waveform, which
characterizes the medium with no variations and is usually obtained by averaging the cross-
correlations over a long period of time, of the order of months. The monitored quantity is the
current waveform, computed by averaging the cross-correlations of the measurements over a
relatively small interval of time, of the order of days. Averaging the cross-correlations of the
noise recordings over time is what controls in practice the statistical stability of the method
as explained above. The idea in the stretching method is to estimate the optimal stretch
dt/t = —dv/v which maximizes the correlation coefficient between the current waveform and
the reference one. The correlation coefficient is actually employed in the stretching method
as a measure of similarity between the two waveforms.

This paper proposes to exploit the idea of maximizing the similarity between two wave-
forms in the quite different setting of SHM. The quantities of interest here are also obtained
from cross-correlations of the recorded signals in time. The time-interval over which the
cross-correlations need to be averaged to obtain the reference waveform can be considered
as the training period of the method. On the contrary, the time interval used for averaging
cross-correlations in computing the current waveform is related to the time needed for a
proper early warning of the damage. As it will be shown later on in the application example,
7-9 days represent a sufficiently long training period to obtain the reference quantity and
12-24 hours are typically enough for building the current waveform.

In application to SHM, it is proposed not to use directly cross-correlation waveforms,
but, instead, to take their Fourier transforms after time averaging to obtain the waveforms.
Under the assumption that the structure behaves as a linear time invariant system subjected
to a multiple input white noise process loading, that is random in space and time, this
allows to work with power spectral densities, thereby giving to the shift that is estimated
by maximizing the correlation coefficient between the current and reference waveforms, the
physical interpretation of a permanent shift in the natural frequency of vibration of the
structure. More specifically, potential changes in the natural frequencies of a structure are
sought by looking for a shift Av, in the frequency domain, that maximizes the correlation
coefficient C defined as,

2 A% (v + Av) AT (v)dv
\/ 72 (Ae(v + Av))2dv [ (Ar(v))dv

(7.7)

where the frequency dependent functions A"(v) and A¢(v) are the absolute values of the
Fourier transforms of the reference and current time-averaged cross-correlations, respectively,
thereby representing cross power spectral densities of two signals. When more than two
sensors are available, it is proposed to define A"(v) and A°(v) as the absolute values of the
Fourier transforms of the largest singular values of the cross-correlation matrix averaged in
the reference or current period, respectively. In Eq. , it is assumed that the current
quantity is a shifted version of the reference one. By operating in this way and by restricting
the integration in the frequency range [vi, 5] containing a single degree of freedom bell
function on the first singular value, the estimate of Av essentially represents the estimate
of a permanent shift in the natural frequency of the structure that is contained in such an
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interval. Because different natural frequencies undergo different shifts as a consequence of
the occurrence of a damage, different computations are carried out by restricting the integral
in Eq. in different frequency intervals. It should also be noted that, if the structure
has two closely spaced modes, the shifts of the two closely spaced natural frequencies can
be computed by separately looking at the first and second singular values. Assuming that
the dependence of Av on v is slow, we approximate it by a constant value in each frequency
range of interest [vy, 1.

To summarize, the proposed method is fully output only. The computation of the refer-
ence cross-correlations requires a few days of measurements and during that period the struc-
ture is assumed to be in undamaged conditions. This is analogous to the training period of
the classical SHM method described in the previous section. The reference cross-correlations
are used for the identification of the natural frequencies of the structure. The monitoring
quantity, i.e., the current one, is also computed by averaging the cross-correlations of the
measurements but over a smaller period of time. This "local in time” averaging reduces the
effect of environmental conditions on the data and increases the sensitivity of the method.
Finally, permanent variations in the natural frequencies are monitored by computing Av
that maximizes Eq. . Different quantities, A", A¢, as well as different frequency ranges
of interest [v, 5], can be defined depending on the natural frequency of the structure that
has to be identified and monitored. This is application dependent and will be specified for
the particular case considered in this chapter in the next section.

Figure 7.2: The bell-tower of the Basilica of San Pietro and the vibration-based monitoring
system (dimensions in m): photography of the tower (a); sectional view with main geomet-
rical information (b); position of the three accelerometers (A1, A2 and A3) and of the data
acquisizion system (Da(Q)) at the base of the cusp at a height of 40.8 m (c).
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7.4 Application to a historic bell-tower

7.4.1 The tower

The case study considered in this paper to illustrate the performance of the SM for vibration-
based SHM is the bell-tower of the Benedictine Abbey of San Pietro, shown in the photograph
of Figure (a), that can be considered one of the major monuments of the city of Perugia,
Italy. It was built in the 13th century, but was subjected to various interventions in later
times, including a total rebuilt at the end of the 14th century and the final restoration in
the 15th century. Besides other interventions along the centuries, mostly to repair damages
caused by lightnings, those made in the 20th century are especially noteworthy. In particular,
in 1932 the metallic structure supporting the four bells at about the three quarters of the shaft
was constructed, while in 2002 the damages provoked by the Umbria-Marche Earthquake of
1997, mostly affecting the belfry and the cusp, were repaired.

As shown in the sectional view of Figure (b), the total height of the tower is 61.4 m,
but the slenderness of the structure is reduced by the surrounding buildings, that restrain
the tower up to about 17 m. Four major structural parts can be identified in the structure,
namely basement, shaft, belfry and cusp, as depicted in Figure (b). The external and
internal surfaces of the walls are made of regular stone masonry blocks with some brick
replacements, while the internal core of the walls is made of heterogeneous material. The
internal surface of the belfry and the external cover of the cusp are made of brick masonry.

7.4.2 The vibration-based monitoring system

A simple vibration-based monitoring system was recently installed on the tower by the au-
thors and continuous monitoring data started to be acquired on December 9th, 2014. The
system simply comprises three high sensitivity piezoelectric uni-axial accelerometers model
PCB 393B12 (10 V/g sensitivity) and two temperature sensors (thermocouples type K).
The accelerometers have been placed at the base of the cusp, with the configuration shown
in Figure (c), allowing to detect bending vibration modes in the two reference orthogonal
directions, = and y, as well as torsional modes. One of the two thermocouples is placed
inside the cusp and the other in the belfry, to provide useful data for removing the effects
of changing temperature on identified modal properties. However, considering that the SM
does not need any information on environmental conditions and so does the reference SHM
method, temperature measurements are not used in this work.

Acceleration monitoring data are continuously recorded by means of a data acquisition sys-
tem composed of a carrier, model cDAQ-9184, and by a NI 9234 data acquisition module
having 24-bit resolution, 102 dB dynamic range and anti-aliasing filters. Data are sampled
at 40 Hz and stored in separate files in a host computer located inside the tower every 30
minutes. Data processing is carried out remotely, by downloading the data from the host
PC located inside the tower using the INTERNET.

The dynamic response of the tower is typically produced by micro-tremors and by wind
loading. The tower is also occasionally excited by the four swinging bells that play with a
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daily regularity in the early morning.
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Figure 7.3: Modal values at different quantities. From left to right: (top): 1.46
Hz at the first singular value and |CCy;(v)|, 1.561 Hz at the first singular value and
|(Cas(v)],|C33(v)|,|Cas(v)|. (bottom): 4.33 Hz at the first singular value and |(Cos(v)|,
|(Co3(v)|, |(C33(v)| and the 7.3 Hz at the third singular value and the |(Cs3(r)|. NOTE: all
the quantities at this figure are normalized by their maximum.

7.4.3 Data processing for SHM: reference method

In the reference SHM method, automated modal identification is carried out by a Stochastic
Subspace Identification (SSI) procedure [51], 67], ad hoc implemented in a MatLab [65] code
and applied to each file containing 30-minutes of structural response sampled at 40 Hz. In
SSI calculations, models of order ranging from 40 to 60 with step increments of 2 are identi-
fied in each data set, by varying the number of output block rows of the block Henkel matrix
of the output acceleration data from 140 to 200 with step increments of 10. A procedure for
noise modes elimination and clustering of the modes is then applied to extract the mean val-
ues and confidence intervals of the identified modal properties. A modal tracking procedure
is finally applied to identified modal properties, in such a way to track their evolution in
time on the basis of their similarities. For the details on the modal identification procedure,
the interested reader is referred to [67].

7.4.4 Data processing for SHM: stretching method

The data of each measurement file containing 30-minutes of structural response sampled at
40 Hz are filtered using a bandpass filter in the frequency range [0.1 — 12.0] Hz. From the

filtered data we compute the cross-correlation matrix whose elements CC, ;, 4,7 = 1,...,3
are,
1 /7
C,,(7) = ?/ At + T)dy(0)dt, ij=1,....3. (7.8)
0
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Here d;, i =1,...,3 are the data recorded at the three accelerometers and T is the length
of the recordings. We only store the central 200s long part of the cross-correlations which
corresponds to a frequency sampling rate of 0.005Hz.

Building the reference quantities

The SM requires two quantities: the reference and the current one. Using the cross-
correlations computed above we first build the reference quantity using all the available
data which correspond to a period of six months. Remark that in practice we do not need
such a long period to compute the reference quantity. As we will see in the following, aver-
aging over one week of data is sufficient for the purposes of SHM. The averaging process is
done in the time domain. Then, using the fast Fourier transform (FFT) algorithm we obtain
the reference spectral matrix (C"(v) whose i, j element [(C"(v)];; = OC};(v) is the Fourier
transform of the cross correlation function between the signals recorded by sensors ¢ and j
at frequency v. To identify the modal frequencies we apply the simple Frequency Domain
Decomposition (FDD) technique, performing the singular value decomposition of the 3 x 3
matrix CC"(v) frequency by frequency. Since CC"(v) is symmetric, it admits a symmetric
SVD (which is the same as the eigenvalue decomposition)

aCr(v) = Uw)S(v)UT (v) (7.9)

where by U (v) we denote the transpose of U(v). The matrix ¥(v) is a real diagonal matrix
with the singular values (eigenvalues) placed on the diagonal. Assuming that the eigenvalues
are ordered from largest to smallest, we denote them as o1(v) > o9(v) > o3(v).

Modal identification

By inspection of the singular values of the (OC" matrix, as well as amplitudes of the matrix
elements (C};, it was possible to identify five natural frequencies, that are in good agreement
with the mean values of those identified by SSI during monitoring, as described in [66] and
as reported in Table[7.I] In Figure we can see that all the natural frequencies are present
in more than one quantity. Moreover, the first two natural frequencies, which are closely
spaced, both appear in the largest singular value, oy (v), which makes their monitoring more
difficult if one selects oq(v) as the quantity of interest. Instead, we propose to monitor the
first natural frequency using |(Cy;(v)| and the second one using |(Cay(v)|. We also observe
that the third natural frequency can be monitored using |(Cas(v)| or |(Cs3(v)| since these
are the quantities in which the third natural frequency is observed with higher signal to noise
ratio (SNR). The fifth natural frequency can be monitored using either |(Cs3(v)| or oy (v).
The natural frequency of 4.9Hz is present in |(Cy5(v)| but with a lower SNR than the other
ones.
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Mode number  f,, by SSI [Hz] f,, by SM [Hz] Mode Type

1 1.47 1.46 Fx1
2 1.53 1.51 Fyl
3 4.34 4.33 T1
4 4.96 4.90 Fy2
5 7.28 7.30 Fy3

Table 7.1: Mean natural frequencies of the bell-tower, f,,, identified by SSI during the
monitoring period from December 10-th 2014 to February 29-th 2016 and compared to those
obtained by the SM building the reference quantities by time averaging in the period from 28
Oct 2014 to 1 April 2015 (in mode type F and T stand for flexural and torsional, respectively,
the number of the modal order and = and y are the reference axes in Figure .

7.5 Results and discussion

7.5.1 Frequency tracking by the stretching method

In order to illustrate the performance of the SM, it is demonstrated, at first, that it allows
tracking the time evolution of the natural frequencies of a structure and, in particular, to
closely identify frequency shifts due to changes in environmental conditions. To this aim,
the first natural frequency of the bell tower, at 1.46Hz, is considered. The reference quan-
tity |CCT, (v)| is used for tracking this natural frequency and built as described above using
five months of monitoring data. The current quantity, |CC{,(v)|, is instead computed using
consecutive data windows corresponding to a 30 minute long file.
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Figure 7.4: The comparison between the results of the reference SHM method and the
stretching method. We monitored the natural frequency at 1.46 Hz using |OCq(v)].

The frequency range used for the SM, Eq. (7.7)), has been chosen as [v1, vo] = [1.3 , 1.7|Hz.
The result of the SM is the value of Av that, at the current time, maximizes the correlation
between the reference and the current waveforms. Such Av can be interpreted as the shift
between the current natural frequency of the structure and its average value in the reference
period, f,,, obtained from the peak of the reference waveform. It follows that the current
natural frequency can be estimated as f,,, + Av. Figure [7.4] shows a typical comparison be-
tween the current natural frequency of mode Fx1 estimated by the SM in a few consecutive
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days and the same natural frequency independently estimated by the automated output only
SSI-based modal identification procedure presented above. The results highlight a very good
match between the two estimates and confirm that the SM is a convenient alternative to SSI
for frequency tracking. It should be noted that the relatively large daily oscillations exhibited
by natural frequency time series are associated with the effects of changing environmental
conditions and, primarily, of ambient temperature.

7.5.2 Statistical properties of Stretching Method

Having demonstrated that the SM can be used for frequency tracking, where no reduction
of environmental variations is carried out, the statistical properties of the method are now
investigated in order to obtain compensation of such environmental effects. To do so, the
first quantity of interest is the correlation coefficient, C;, defined by Eq. , which is a
measure of similarity between the current and the reference waveforms. The current quantity
used to produce the results in Figure [7.4] was obtained by cross-correlating data recorded
over 30min (one data window). Instead, if the number of data windows used to compute the
current cross-correlation is increased, changes in the estimated quantity, Av, are reduced,
which means that the effects of changes in environmental conditions are mitigated. With
the purpose of achieving a proper compensation of such environmental effects, it is therefore
of interest to investigate how the estimate of Av is affected by the number of data windows
(30min data sets) used for computing the current quantity.
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Figure 7.5: The mean and the standard deviation of the correlation coefficient between the
reference |OCT;(v)| and the current |OCY,(v)| obtained using an increasing number of data
windows. The frequency interval is [1.3 — 1.7] Hz.

To this aim, the mean and the standard deviation of the correlation coefficient between the
reference |(C7, ()| and the current |CCY, (v)| waveform are computed, at first, by increasing
the number of data windows used for the computation of |CC{,(v)|. The plot in Figure
is obtained using 100 realizations of the current quantity for each value of randomly (not
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serially) selected data windows. As shown in Figurethe mean of the correlation coefficient
increases with the number of data windows, while its standard deviation decreases. This
implies that the similarity between the two waveforms improves as more data sets are used
for estimating the current quantity and that, in other words, the quality of the measured
variation, Av, improves.

The second quantity of interest in the investigation of the statistical properties of the SM
is the actual measurement, Av, of the frequency shift. In this regards, the results presented
in Figure [7.6] show that the standard deviation of Av decreases as the number of data sets
used to compute the current cross-correlation is increased and so does the mean value of
Av. These results, obtained by using |(Cy;(v)| and the band [1.3 , 1.7]Hz in Eq. (7.7),
demonstrate that increasing the number of data sets results in Ar being less sensitive to
variations in environmental conditions. In order to further illustrate this result, Figure [7.7]
shows a comparison of f,, + Av as obtained by the SM measurement using single data sets
and 48 data sets (1 day) to build the current quantity. These results show that the estimate
of Av is much more stable and relatively insensitive to environmental conditions as the
number of data sets is increased.
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Figure 7.6: The mean and the standard deviation of the measurement Av for the first modal
value, with the stretching method, using a different number of data windows to obtain
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Figure 7.7: The measurement of the 1.46 Hz modal value using 48 data windows (1-day) to
build the current quantity of |CC{,(v)| and comparison with the single 30 minute long file.
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One of the main advantages of the SM is the small amount of time required to build
a reliable reference quantity, that is, the relatively short length of the training period of
the method. Indeed, the results of Figure show that 7 to 9 days (336 to 432 data
windows) represent a sufficiently long training period to build a reference quantity that is
quite similar to the one that has been built using the entire six month period of data. In
order to further illustrate the stability of the current quantity when appropriately averaged,
Figure shows a plot of the current largest singular value line of the spectral matrix,
computed using one week of data in winter and one in summer for the purpose of time
averaging of cross-correlations. These results show that the plots are quite similar and that
the actual value of the 1.46Hz modal frequency remains the same.

—o— reference (6 months)
—k— winter week (cc=0.9876)
—*— summer week (cc=0.9865)

. . . . . . . . .
1.4 1.41 142 143 1.44 1.45 146 147 148 1.49 15
Frequnecy in Hz

Figure 7.8: The reference cross-correlation compared to two current ones obtained using
one week of data during summer and winter. The value of cc is the correlation coefficient
between the reference and the current quantities.

7.5.3 Detection of permanent natural frequency shifts.

The final purpose of the SM proposed in this paper is allowing detection of small permanent
natural frequency shifts that could be associated with a change in the structural behavior,
such as a developing damage pattern. To this aim, analyses are carried out in this section
by artificially inserting permanent frequency shifts in the monitoring data and then checking
for their detectability by the SM.

For each 30 minute long file that belongs in the period we want to add the artificial
shift we perform the following steps: First we compute the singular value decomposition (see
equation (7.9)). We then define the modified singular values ;() by introducing a shift jv
as:

oi(v)=oi(v+ov), 1=1,2,3, (7.10)

for all frequencies in the interval [v,15] = [1.3 , 1.7]Hz. The last step is to recompose
the correlation matrix using again the equation ([7.9)) with the modified singular values, i.e.,
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using 2(v) instead of $(v). The elements of this modified correlation matrix are used for
estimating the artificially introduced shift.

The SM reveals to be very powerful in terms of its sensitivity, i.e., its ability to allow
detection of very small permanent changes in Av. The sensitivity of the SM actually depends
on the current quantity and the number of data windows used to build it. This is shown
in the results of Figure (left plot), which contains plots of the relative error in the
estimation of permanent frequency shifts of increasing magnitude by varying the number of
data sets used for building the reference quantity. The relative errors are computed over 150
measurements and for 4 different values of Av. The results of Figure demonstrate that
the accuracy in the estimation of Av increases as the number of data windows used for the
computation of the current quantity is increased. Here we used 5 months of data for the
reference quantity.

To further illustrate this we plot in Figure the time history of the raw, modified and
estimated value of the first natural frequency for a period of 25 days. The modified data
are obtained by introducing a shift from day 75 and on. For the plot on the left we inserted
a shift of 1% in the first natural frequency and we estimated it using one day of data for
the current quantity. For the right plot we decreased the shift to 0.1% and increased the
number of days to 4 for the computation of the current quantity. In both cases we used 5
months of data for the computation of the reference quantity. We observe that by increasing
to 4 the number of days used for the computation of the current quantity, the oscillations
in the value of the first natural frequency decrease significantly and we can estimate very
accurately a permanent shift of 0.1%.

70 75 80 85 90 70 75 80 85 90

Figure 7.9: Time history of the raw, modified and estimated value of the first natural
frequency for a period of 25 days where we introduce a shift from day 75 and on. We use
5 months of data for the computation of the reference quantity. For the plot on the left we
insert a shift of 1% in the first natural frequency and we estimate it using one day of data
for the current quantity while for the right plot we decrease the shift to 0.1% and increase
the number of days to 4 for the computation of the current quantity. In both cases the
estimation of the frequency shift is very good.

More quantitively, the results of Figure (right plot) demonstrate that, for the con-
sidered case study, a shift Av = 0.0625Hz of the first natural frequency can be detected
with a relative error of less then 1% using 5 months for computing the reference quantity,
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2 weeks for computing the current quantity and using one single acceleration sensor. The
smallest permanent perturbation that can be detected using two weeks of data for computing
the current quantity is Arv = 0.0156Hz, which is limited by the frequency sampling rate of
0.005Hz adopted in the presented case study. This can be further reduced to detect even
smaller frequency variations if deemed necessary.

N

02 08
Shift as percentage of the 1.46Hz natural frequency (%) Shift as porcentage of the 1.46 natural frequency (%)

Figure 7.10: Statistically measured relative error on the measured shift, Av, for four values
of added shift, computed using an average over 150 measurements. The current quantity,
|OCY; (v)], is computed using one (blue), 24 (red), 48 (orange) data windows, 1 week (purple),
2 weeks (green) and 4 weeks (light blue)of data. We observe that the accuracy of the method
increases as we increase the number of data windows used in the computation of |CC{;(v)].
The relative error of the method also decreases as the value of the actual variation that we
are seeking for increases. On the right we plot only the results using 2 and 4 weeks of data
for smaller values of shifts. The relative error remains below 1% for all the considered values
of shifts.

7.6 Conclusions

We have proposed a novel method for vibration-based SHM of civil structures, which has been
inspired by the stretching technique that is commonly adopted in geophysics for revealing
variations in the velocity of the earth using seismic noise recordings.

The proposed method is based on continuous measurements of the dynamic response
of a structure, typically using a small number of sensors installed in the field, and allows
to track the evolution in time of the natural frequencies of vibration of the same structure
with proper compensation for environmental effects. This is achieved by maximizing the
correlation coefficient between a reference quantity, expressed in the frequency domain, and
a shifted version of the same quantity evaluated at the current time. This results into a
single-parameter maximization problem, where the parameter is the frequency shift that is
introduced in the current quantity. By a proper choice of the quantity of interest, this shift
results to be an estimate of the deviation of a natural frequency with respect to normal
conditions, and can thus be used as a damage sensitive feature. To this aim, we propose to
use the first singular value of the spectral matrix of the measurements as the quantity of
interest.

In order to illustrate its performance, the proposed method has been applied to the case
study of a continuously monitored historic masonry bell-tower in Italy. The results have
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shown that the stretching method is able to allow detection of frequency shifts of the order
of 0.1%, which are comparable with frequency shifts that can be detected by well-known
multivariate statistical analysis techniques applied to time series of automatically identified
modal frequencies. However, the stretching method has demonstrated superior performance
in terms of length of the training period, as a few days were seen to be sufficient to prop-
erly estimate the reference singular value line and to compensate for environmental effects.
Furthermore, the stretching method is far less computationally demanding in comparison
to approaches based on automated modal identification, as it basically skips the task of
modal identification and modal tracking. This circumstance would allow an easy imple-
mentation of the method within smart sensors with embedded electronics for on-board and
online computations, in a general framework of real time structural health monitoring.

In conclusions, the proposed stretching method is seen to be a convenient alternative to
existing signal processing techniques for vibration-based structural health monitoring, with
advantages in terms of drastic reduction of the training period length and of computational
burden.
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