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Abstract

Service-Oriented Architecture (SOA) has emerged as a prominent design style
that enables an IT infrastructure to allow different applications to participate
in business processes, regardless of their underlying features, by encapsulating
them as platform-independent entities that become available via a certain net-
work, primarily the Internet. In order to effectively discover and use the most
suitable services, service description should provide a complete behavior model,
describing the inputs and preconditions that are required before execution, as
well as the outputs and effects of a successful execution. Such service specifica-
tions are indispensable in a variety of activities, such as conformance and verifi-
cation checks, adaptation evaluation and deducing composability of services.

Service specifications rely on the expression of conditions that should hold
before and after service execution. Such specifications are prone to a family of
problems, known in the AI literature as the frame, ramification and qualification
problems. These problems deal with the succinct and flexible representation of
non-effects, indirect effects and preconditions, respectively. Research in services
has largely ignored these problems, at the same time ignoring their effects, such
as compromising the integrity and correctness of services and service composi-
tions and the inability to provide justification for unexpected execution results.

To address these issues, this thesis proposes the Web Service Specification
Language (WSSL), a novel, semantics-aware language for the specification and
composition of services, independent of service design models. WSSL’s founda-
tion is the fluent calculus, a specification language for robots that offers solutions
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to the frame, ramification and qualification problems. Further language exten-
sions achieve threemajor goals: realize service composition via planning, support-
ing non-deterministic constructs, such as conditionals and loops; include specifi-
cation of QoS profiles; and support partially observable service states.

To investigate WSSL’s applicability and demonstrate its benefits, we analyze
correctness of the composition extension, decidability and complexity of the un-
derlying theory, as well as compatibility with other related languages in service
science. Moreover, an innovative service composition and verification framework
is implemented, that advances state-of-the-art by satisfying several desirable re-
quirements simultaneously: ramifications and partial observability in service and
goal modeling; non-determinism in composition schemas; dynamic binding of
tasks to concrete services; explanations for unexpected behavior; QoS-awareness
through pruning and ranking techniques based on heuristics and task-specific
goals and an all-encompassing QoS aggregation method for global goals.

Experimental evaluation is performed using synthetically generated specifi-
cations and composition goals, investigating performance scalability in terms of
execution time, as well as optimality with regard to the produced composite pro-
cess. The results show that, even in the presence of ramifications in some speci-
fications, functional planning is efficient for repositories up to 500 specifications.
Also, the cost of functional discovery per single service is insignificant, hence
achieving good performance even when executed for multiple candidate plans.
Finally, optimality relies mainly on defining suitable problem-specific heuristics;
thus, its success depends mostly on the expertise of the composition designer.

Keywords: ServiceDescription, Formal Specification, Service Composition, Frame
Problem, Ramification Problem, Qualification Problem, Service Verification
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Περίληψη

H Υπηρεσιοστρεφής Αρχιτεκτονική έχει αναδειχθεί σε εξέχοντα τρόπο σχεδία-
σης που καθιστά τις υποδομές Πληροφοριακής Τεχνολογίας ικανές να παρέχουν
σε εφαρμογές τη δυνατότητα ανταλλαγής δεδομένων και συμμετοχής σε επιχει-
ρησιακές διεργασίες, ανεξάρτητα από τα υποκείμενα χαρακτηριστικά τους, όπως
την επακριβή υλοποίηση ή τα λειτουργικά συστήματα και τις γλώσσες προγραμ-
ματισμού που χρησιμοποιήθηκαν για την ανάπτυξή τους. Με αυτό τον τρόπο οι
υπηρεσίες χρησιμοποιούνται ως οντότητες ανεξάρτητες από πλατφόρμες, που πα-
ρέχουν πρόσβαση σε σύνολα λειτουργικότητας μέσω προκαθορισμένων διεπαφών
και διατίθενται μέσω δικτύων, πρωτίστως μέσω Διαδικτύου.

Για την αποτελεσματική εύρεση και χρήση των πιο κατάλληλων υπηρεσιών (ή
συνθέσεων υπηρεσιών) αναφορικά με τις ανάγκες ενός καταναλωτή, ο πάροχος
θα πρέπει να προσφέρει πλήρεις προδιαγραφές για τις υπηρεσίες, που δεν περιο-
ρίζονται στις παρεχόμενες διεπαφές (υπό τη μορφή συνόλων από εισόδους και
εξόδους). Αντίθετα, είναι αναγκαίο ένα πλήρες μοντέλο συμπεριφοράς που θα πε-
ριγράφει τις εισόδους και συνθήκες που απαιτούνται πριν την εκτέλεση, καθώς
επίσης και τις εξόδους και αποτελέσματα που προκύπτουν από μια επιτυχή εκτέ-
λεση. Τέτοιες προδιαγραφές υπηρεσιών είναι απαραίτητες σε μια πληθώρα από
δραστηριότητες όπως την κατασκευή μιας υπηρεσίας βάσει προδιαγραφών, ελέγ-
χους συμμόρφωσης και επαλήθευσης σωστής λειτουργίας, αξιολόγηση αποτελε-
σμάτων της διαδικασίας προσαρμογής υπηρεσιών και τον προσδιορισμό της δυνα-
τότητας σύνθεσης ενός συνόλου υπηρεσιών.

Οι προδιαγραφές υπηρεσιών βασίζονται στην έκφραση συνθηκών που πρέπει

vii



να ισχύουν πριν και μετά την εκτέλεση της υπηρεσίας. Τέτοιες προδιαγραφές εί-
ναι επιρρεπείς σε μια οικογένεια προβλημάτων, που είναι γνωστά στο πεδίο της
Τεχνητής Νοημοσύνης ως το πρόβλημα πλαισίου, το πρόβλημα επιπτώσεων και
το πρόβλημα προϋποθέσεων. Το πρόβλημα πλαισίου αφορά την έκφραση των μη-
αποτελεσμάτων μιας ενέργειας, δηλαδή την περιγραφή του τι παραμένει αμετά-
βλητο μετά την εκτέλεση. Το πρόβλημα επιπτώσεων ασχολείται με τη μοντελοποί-
ηση των έμμεσων αποτελεσμάτων ή δευτερευουσών συνεπειών, δηλαδή των συ-
νεπειών που ακολουθούν ένα πρωταρχικό αποτέλεσμα. Τέλος, το πρόβλημα προϋ-
ποθέσεων, σε αντίθεση με τα άλλα δύο, σχετίζεται με την αναπαράσταση των προ-
ϋποθέσεων εκτέλεσης και την αδυναμία του να ληφθούν υπόψη όλες οι δυνατές
συνθήκες κάτω από οποιαδήποτε περίσταση.

Ενώ η έρευνα σε άλλα πεδία όπως οι προγραμματιστικές προδιαγραφές ή η
συλλογιστική ενεργειών και αλλαγής έχει οδηγήσει σε ικανοποιητικές λύσεις στα
προαναφερθέντα προβλήματα, η έρευνα στις υπηρεσίες τα έχει αγνοήσει σε με-
γάλο βαθμό, αγνοώντας ταυτόχρονα και τις συνέπειές τους. Πιο συγκεκριμένα, η
αποτυχία επίλυσης του προβλήματος πλαισίου οδηγεί σε περιγραφές υπηρεσιών
που δε μπορούν να εγγυηθούν στους καταναλωτές υπηρεσιών ότι τα καθορισμένα
αποτελέσματα είναι τα μόνα που απορρέουν από μια εκτέλεση. Το γεγονός αυτό
εγείρει σημαντικά ζητήματα όπως η ακεραιότητα της παρεχόμενης υπηρεσίας και
η αξιοπιστία του παρόχου, ασφάλεια και ιδιωτικότητα των εμπλεκόμενων χρη-
στών και δεδομένων, ενώ ταυτόχρονα διακινδυνεύεται η δυνατότητα επαναχρησι-
μοποίησης σε συνθέσεις υπηρεσιών. Επιπλέον, η παράβλεψη των δευτερευουσών
συνεπειών οδηγεί σε ελλιπή μοντέλα συμπεριφοράς που μπορεί να οδηγήσουν σε
εσφαλμένες συνθέσεις υπηρεσιών, ενώ η απουσία λύσης στο πρόβλημα προϋποθέ-
σεων σημαίνει ταυτόχρονα και την αδυναμία αιτιολόγησης στην περίπτωση που
η υπηρεσία δεν παράγει τα αναμενόμενα αποτελέσματα ενώ έχει δοθεί η απαιτού-
μενη πληροφορία εισόδου και έχουν ικανοποιηθεί οι προϋποθέσεις εκτέλεσης.

Για την αντιμετώπιση όλων των ζητημάτων που αναφέρθηκαν προηγουμέ-
νως, η παρούσα διατριβή προτείνει τη Γλώσσα Προδιαγραφών Υπηρεσιών (WSSL),
μια νέα γλώσσα για προδιαγραφές και σύνθεση υπηρεσιών. Η θεμελίωση της γλώσ-
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σας βασίζεται στο λογισμό των μεταβλητών ιδιοτήτων (fluent calculus) , που συνι-
στά μια γλώσσα προδιαγραφών και ένα σύστημα ελέγχου αυτόνομων ρομποτικών
πρακτόρων που παρέχει λύσεις στα προβλήματα πλαισίου, επιπτώσεων και προ-
ϋποθέσεων. Η WSSL είναι ανεξάρτητη από μοντέλα σχεδίασης υπηρεσιών ενώ
παρέχει και τη δυνατότητα σημασιολογικού σχολιασμού. Η υποστήριξη των λύ-
σεων στα προαναφερθέντα προβλήματα γίνεται με φυσικό και άμεσο τρόπο, με
δομές που είναι ενσωματωμένες στη γλώσσα. Επιπλέον, η θεμελίωση της γλώσ-
σας παρέχει τη δυνατότητα μετατροπής των προδιαγραφών σε προτάσεις λογικού
προγραμματισμού.

Εκτός από το βασικό συντακτικό και τη σημασιολογία της γλώσσας, παρέχον-
ται επεκτάσεις σε τρεις κατευθύνσεις για την επίτευξη τριών μείζονων στόχων.
Πρώτον, υποστηρίζεται προδιαγραφή και υλοποίηση σύνθεσης υπηρεσιών, λαμ-
βάνοντας υπόψη όλα τα θεμελιώδη πρότυπα ροής εργασίας, συμπεριλαμβανομέ-
νων μη-ντετερμινιστικών προτύπων, όπως η εκτέλεση υπό συνθήκη και η επανα-
ληπτική εκτέλεση. Δεύτερον, δίνεται η δυνατότητα προδιαγραφής προφίλ Ποιό-
τητας Υπηρεσιών (ΠΥ) σύμφωνα με διαθέσιμα μοντέλα και μεταμοντέλα περιγρα-
φής ιδιοτήτων ποιότητας όπως χρόνος εκτέλεσης ή κόστος. Τρίτον, υποστηρίζεται
αβεβαιότητα στην περιγραφή των καταστάσεων που συνθέτουν το μοντέλο συμ-
περιφοράς της υπηρεσίας, όπως για παράδειγμα, η υποστήριξη μερικώς παρατηρή-
σιμων αρχικών καταστάσεων στη διαδικασία σύνθεσης.

Για να διαπιστωθεί η χρησιμότητα της γλώσσας, διεξήχθη ενδελεχής ανάλυση
μιας σειράς από ενδιαφέρουσες ιδιότητες. Αρχικά μελετήθηκε η ορθότητα της επέ-
κτασης που αφορά τη σύνθεση υπηρεσιώνώστε να διαπιστωθεί ότι είναι σύμφωνη
με τη θεμελίωση της γλώσσας. Στη συνέχεια, αναλύθηκε η πολυπλοκότητα και
αποκρισιμότητα της υποκείμενης θεωρίας λογισμού μεταβλητών ιδιοτήτων. Επί-
σης, εξετάστηκε η δυνατότητα εφαρμογής της γλώσσας όσον αφορά τη συμβατό-
τητα και τη σύνδεση της με εναλλακτικές, σχετιζόμενες ή συμπληρωματικές γλώσ-
σες στην επιστήμη υπηρεσιών, όπως οι WSDL, OWL-S, WSMO, USDL και BPMN.

Εξάλλου, για να αποδειχθούν τα σημαντικά οφέλη τηςWSSL, σχεδιάστηκε και
υλοποιήθηκε ένα καινοτόμο σύστημα σύνθεσης και επαλήθευσης υπηρεσιών βά-
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σει προδιαγραφών. Το σύστημα προάγει την έρευνα στο πεδίο της σύνθεσης υπηρε-
σιών ικανοποιώντας ταυτόχρονα μια σειρά από σημαντικές απαιτήσεις, χάρη στις
δυνατότητες της WSSL. Ειδικότερα, υποστηρίζεται η περιγραφή δευτερευουσών
συνεπειών τόσο στις υπηρεσίες όσο και στους στόχους σύνθεσης, ενώ η διαδικασία
επαλήθευσης βάσει προδιαγραφών μπορεί να παρέχει επεξηγήσεις σε περίπτωση
μη αναμενόμενης συμπεριφοράς, χάρη στις λύσεις στα προβλήματα επιπτώσεων
και προϋποθέσεων. Επιπλέον, η διαδικασία σύνθεσης είναι αυτοματοποιημένη και
παράγει σύνθετες υπηρεσίες υπό τη μορφή εργασιών ομαδοποιημένων σε ροές ερ-
γασίας, με προδιαγραφές για κάθε εργασία, επιτρέποντας τη δυναμική αντιστοί-
χιση συγκεκριμένων υπηρεσιών για κάθε εργασία.

Επιπλέον απαιτήσεις ικανοποιούνται χάρη στις επεκτάσεις της WSSL. Συγκε-
κριμένα, η σύνθεση υποστηρίζει μη-ντετερμινιστικές δομές ελέγχου, όπως η εκτέ-
λεση βάσει συνθήκης και η επαναληπτική εκτέλεση. Επίσης, υποστηρίζεται η πε-
ριγραφή καταστάσεων που είναι μερικώς παρατηρήσιμες (είτε πριν είτε μετά την
εκτέλεση μιας υπηρεσίας που συμμετέχει σε μια σύνθεση), όπως για παράδειγμα η
εύρεση σύνθεσης που ικανοποιεί ένα στόχο βάσει ελλιπούς αρχικής κατάστασης.
Ακόμα, υποστηρίζονται τόσο λειτουργικοί στόχοι όσο και στόχοι που αφορούν ΠΥ.
Για την επιλογή βέλτιστων πλάνων εκτέλεσης και την ιεράρχηση τους βάσει ιδιο-
τήτων ποιότητας, χρησιμοποιούνται ευρετικοί κανόνες που αφορούν το εκάστοτε
πρόβλημα σύνθεσης και στόχοι που αναφέρονται σε ποιοτικά χαρακτηριστικά με-
μονωμένων εργασιών στο πλάνο. Για την επίτευξη στόχων που αφορούν χαρα-
κτηριστικά ποιότητας ολόκληρης της σύνθεσης, παρέχεται μια καθολική μέθοδος
συνάθροισης ΠΥ, βάσει μιας ολοκληρωμένης ταξινόμησης ιδιοτήτων ΠΥ με γνώ-
μονα τη φύση και τους τύπους τιμών κάθε ιδιότητας.

Τέλος, σχεδιάστηκε και εκτελέστηκε μια εκτενής πειραματική αξιολόγηση του
συστήματος, εστιάζοντας σε κάθε ξεχωριστή υπομονάδα που περιέχεται, καθώς
επίσης και μια αξιολόγηση του συστήματος συνολικά. Τα πειράματα βασίζονται σε
συνθετικά παραγόμενες προδιαγραφές και προβλήματα σύνθεσης που καλύπτουν
ένα ευρύ φάσμα πολυπλοκότητας. Η βασικότερη μεταβλητή αξιολόγησης είναι ο
χρόνος εκτέλεσης ώστε να διαπιστωθεί η δυνατότητα κλιμακωτής απόδοσης. Σε
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ορισμένες περιπτώσεις αξιολογήθηκε και η κατανάλωση μνήμης, ενώ για την πε-
ρίπτωση της υπομονάδας που επιλέγει και ιεραρχεί τα διάφορα πλάνα εκτέλεσης
κρίθηκε και το κατά πόσο το τελικό αποτέλεσμα είναι βέλτιστο.

Τα αποτελέσματα της αξιολόγησης δείχνουν ότι, ακόμα και υπό την παρου-
σία δευτερευουσών συνεπειών σε ένα υποσύνολο των προδιαγραφών που λαμβά-
νονται υπόψη, η διαδικασία εύρεσης συνθέσεων βάσει λειτουργικών στόχων είναι
αποδοτική για αποθετήρια που περιέχουν μέχρι 500 διαφορετικά έγγραφα προδια-
γραφών. Επιπλέον, το κόστος της διαδικασίας εύρεσης υπηρεσιών βάσει προδια-
γραφών λειτουργικότητας είναι ασήμαντο όταν πρόκειται για μία εκτέλεση (δη-
λαδή την εύρεση όλων των προδιαγραφών και κατ’ επέκταση όλων των υπηρε-
σιών που ταιριάζουν με την προδιαγραφή μιας υπηρεσίας). Το γεγονός αυτό επι-
τρέπει τη διατήρηση της αποδοτικότητας του συστήματος, ακόμα και όταν η δια-
δικασία εύρεσης εκτελείται για όλες τις υπηρεσίες που περιέχονται σε πολλαπλές
υποψήφιες συνθέσεις. Τέλος, η εύρεση του βέλτιστου πλάνου εκτέλεσης σχετίζε-
ται σε μεγάλο βαθμό από τους ευρετικούς κανόνες που ορίζονται για το εκάστοτε
πρόβλημα σύνθεσης και άρα εξαρτάται κυρίως από την πραγματογνωμοσύνη του
σχεδιαστή συνθέσεων υπηρεσιών.

Λέξεις-κλειδιά: Περιγραφή Υπηρεσιών, Τυπικές Προδιαγραφές, Σύνθεση Υπηρε-
σιών, Πρόβλημα Πλαισίου, Πρόβλημα Επιπτώσεων, Πρόβλημα Προϋποθέσεων
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The beginning of the 21st century has been marked by two intimately con-
nectedparadigmshifts in Computer Science, as regards theway resources become
available to end users. The primary paradigm of Service-Oriented Computing (SOC)
is based on abstracting away from traditional software delivery models and con-
sidering software and related data as services available on-demand [Papazoglou
et al. 2007]. The service deploymentmodel can be applied to any application com-
ponent or preexisting code so that they can be transformed into an on-demand,
network-available service. The general model of providers licensing applications
to customers for a contractually-bound use as a service has been known as Soft-
ware as a Service (SaaS) [Bennett et al. 2000]. A generalization of SaaS to involve any
resource, including but not limited to communication, infrastructure and plat-
forms, has led to the advent of Cloud Computing [Vaquero et al. 2009], which follows
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the principles of distributed computing.

As [Wei and Blake 2010] points out, the two paradigms have a reciprocal rela-
tionship: cloud computing provides the computing of services, and SOC provides
the services of computing. In both paradigms, services are defined as platform-
independent entities that enable access to one or more capabilities, using a pre-
scribed interface and in conformance to constraints and policies [OASIS 2008]; ser-
vices become available via a certain network, primarily the Internet. Amidst this
multitude of available services, the need for a set of design guidelines and princi-
ples in SOC endeavors is apparent. This need is satisfied through Service-Oriented
Architecture (SOA). SOA is a style of design that guides all aspects of creating and
using services throughout their lifecycle. SOA enables an IT infrastructure to al-
low different applications to exchange data and participate in business processes,
regardless of the underlying complexity of applications, such as the exact imple-
mentation or the operating systems and programming languages used to develop
them.

A SOA can be implemented using several different technologies, the most
prominent of which are SOAP [Box et al. 2000], CORBA [ObjectManagement Group
2012a], REST [Fielding and Taylor 2002] andWeb services [Booth et al. 2004]. SOAs
have been the focus of several standardization efforts by global consortiums such
as W3C and OASIS. Web services, in particular, have arguably been the most suc-
cessful SOA implementation, embraced by software corporations such as IBM and
Microsoft which led to them being popular with traditional enterprise.

Worldwide academia has also been a driving force behind service research. Re-
search on services covers a multitude of issues throughout the life-cycle of a ser-
vice or a Service-Based Application (SBA), typically including service description,
discovery, verification, composition, deployment, execution,monitoring and adap-
tation. This document focuses on research issues related primarily to service de-
scription and composition, as well as verification and discovery.
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1.1 Motivation

1.1.1 Service Specifications

Service description deals with specifying all the information needed in order
to understand the behavior of a service, as well as access it. Such descriptions
should be rich, containing not only functional but also non-functional aspects of
the service while they may also contain information on the internal processes of
the service, depending on whether the service provider or owner decides to ex-
pose such information or not. Service descriptions should also be written in a for-
mal, well-defined language, allowing for automated processing and verification of
the produced documents. Service descriptions that capture the aforementioned
requirements are referred to as service specifications, to distinguish them from
descriptions that are limited to service interfaces.

Formal specifications are indispensable in a variety of service-related activi-
ties. Similarly to the case of programming language specifications, service specifi-
cations can be used as a basis in order to construct a service. The involved parties
(e.g., providers and consumers) can agree on a set of properties about the service
and the provider then can implement a service code that satisfies them. On the
other hand, if a specification for an implemented service is already available, it
can be used to check if it conforms to the specifications agreed upon by the par-
ties involved or if it satisfies a property (such as termination or temporal ordering
of actions), realizing so-called service verification [Baryannis et al. 2008]. Confor-
mance and verification checks are an essential part of service auditing processes,
which are usually applied to third party or legacy code services in order to deter-
mine whether they are suitable for the task at hand.

Moreover, specifications are important when evaluating the results of service
adaptation or service evolution. Service adaptation [Benbernou et al. 2008] refers
to the process of modifying services in order to satisfy new requirements and to
fit new situations dictated by the environment. Service evolution is a more gen-
eral term that denotes a long-term history of continuousmodification of services
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after their deployment in order to correct faults, improve performance or other
attributes, or to perform adaptation. An example of evaluation for service adap-
tation and evolution is to ensure that a new version of a service still adheres to
the original specification or an evolved specification that has the same or fewer
requirements (equal or weaker preconditions) and produces the same or more re-
sults (equal or stronger postconditions). In any other case, the adapted or evolved
service would be of no use.

Specifications are equally important in the case of composite services, which
provide functionality otherwise unattainable by atomic services. Composite ser-
vices should be made available to consumers in the same way as atomic services,
abstracting away complex details of the way participating services are orches-
trated to achieve the required functionality. This allows service consumers to in-
voke services regardless of theway they are implemented (i.e. as an atomic service
or as a composition of services). This can be accomplished by providing formal
specifications of composite services which present to the end user the minimum
information required to understand the functionality offered, often by describing
the inputs, outputs, preconditions and effects (collectively known as IOPEs) of the
composite service.

Composite specifications also offer great assistance when one attempts to de-
duce whether a set of services can actually be composed in a meaningful way.
During the process of creating composite specifications, inconsistencies may be
detected between preconditions and/or postconditions of the participating ser-
vices, rendering that particular set of services not composable. Thus, such prob-
lems can be prevented before the composite service is delivered to the end user,
so that they may be resolved by replacing the service or services that cause the
inconsistencies.

The need for service specifications instead of simple service descriptions has
also been recognized in service literature, most notably and recently in [Terlouw
and Albani 2013] where the authors define a generic framework for service speci-
fications based on modeling organizations as social systems and services as activ-



1.1. Motivation 5

ities that support the actors of these systems. While [Terlouw and Albani 2013]
deals primarily with deciding what should be specified for a service, the present
thesis offers a solution to the problem of how to specify a service, taking into ac-
count a series of important representation problems that are defined in the se-
quel.

1.1.2 Representation Problems

Service specifications rely on the expression of conditions that should hold be-
fore and after service execution. Such specifications are prone to a family of prob-
lems, which are known in the AI literature as the frame problem, the ramification
problem and the qualification problem. The frame problem concerns itself with
expressing the non-effects of an action, i.e. what remains unchanged afterwards.
The ramification problem deals with the modeling of knock-on and indirect ef-
fects, collectively known as ramifications. Finally, the qualification problem, in
contrast to the other ones, deals with the representation of preconditions and
the inability to take into account any possible condition under any circumstance.

While research in other fields such as programming specifications or reason-
ing about action and change has come up with satisfying solutions to these prob-
lems, research in services has largely ignored them, at the same time ignoring
their effects. Specifically, failing to address the frame problem results in service
descriptions that cannot guarantee service consumers that the specified effects
are the only ones produced after a service execution. This essentially compro-
mises service reusability in composite applications, while also raising several im-
portant issues such as integrity of the provided service, provider trustworthiness,
as well as safety and privacy of the users and data involved.

Moreover, disregarding ramifications of a service results in an incomplete ser-
vice behavior model where side effects are not taken into account, resulting in
similar pitfalls as the ones caused by the frame problem. Especially in the case
of service composition, ignoring the ramification problem can lead to incorrect
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composite services, since a ramification of one service can violate a precondition
of a subsequent service in the composite process.

Moving on from consequences related to the effects of a service execution,
the qualification problem introduces issues with regard to the ability to explain
service executions that are abnormal and unexpected. Without a solution, there
is no way to justify that a service has not produced the expected results, even
though all preconditions included in the specification are satisfied at execution
time. All the aforementioned issues caused by the frame, ramification and qual-
ification problems substantiate the imperative need for a service specification
language that offers ways to address them.

1.1.3 Service Composition

Service composition involves combining and coordinating a set of services
with the purpose of achieving added-value functionality that cannot be realized
through existing services. The process of creating a composition schema in order
to satisfy a series of goals set by a requester is a really complex and multifaceted
problem, since one has to deal with many different issues, such as searching in
ever-growing service repositories, resolving any conflicts and inconsistencies be-
tween chosen services and adapting to the dynamic characteristics of service-
based systems, with services going offline, new services coming online, and ex-
isting services changing their characteristics.

Attempting to overcome all these problemsmanually leadsmost certainly to a
composition schema that is not fault-proof while the whole procedure consumes
a lot of time and resources and is effectively rendered unscalable. This had led to
the consensus that a certain degree of automation is necessary in the composi-
tion procedure. Automated service composition has attracted a great deal of re-
search effort worldwide. In spite of this, several research challenges are yet to be
addressed by any of the proposed service composition approaches in literature.

First and foremost, the frame, ramification and qualification problems affect
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service composition as well, as it was analyzed earlier, since the composition pro-
cess relies on complete behavioral specifications of services in order to be able to
decide whether services can be composed without resulting in conflicts and cor-
rectness violation, as well as whether the resulting composition satisfies a given
goal. Hence, a service specification language that addresses these representation
problems is also of great use and importance to service composition approaches.

Furthermore, it is common for service composition research approaches to
focus on a specific subset of requirements that is pertinent to the research line
followed and satisfy these, while at the same time ignoring any other require-
ments of equal importance and the correlation among them. For instance, there
are composition approaches that support multiple composition patterns includ-
ing complex ones such as conditional and iterative execution, but take into ac-
count only functional goals, resulting in composite services that may not satisfy
quality constraints. Thus, it is challenging to realize a service composition pro-
cess that is able to satisfy a maximal set of those requirements that have been
deemed research-worthy in literature.

1.2 Thesis Contribution and Impact

To address the aforementioned issues in service description, we propose a
novel language for the specification and composition of services, named the Web
Service Specification Language (WSSL, pronounced /’wi:zəl/). The language is
designed with the explicit purpose of describing service behavior by means of
complete specifications that take into account the representation problems men-
tioned previously. WSSL’s foundation is the fluent calculus [Thielscher 2005b], a
specification language and system for robots that offers solutions to these prob-
lems. More specifically, WSSL is designed so that it:

• relies on a description model that is independent of service design models,

• provides solutions to the frame, ramification and qualification problems
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that are directly connected to the foundations of the language,

• realizes semantic awareness, linking specification elements to ontology con-
cepts through IRIs,

• supports the specification of service compositions, taking into account fun-
damental workflowpatterns, including non-deterministic ones such as con-
ditionals and loops,

• realizes service composition through planning in the fluent calculus with
FLUX,

• includes specification of QoS aspects,

• supports partial observability of states as well as the more generalized no-
tion of knowledge states,

• offers grounding and translation mechanisms to existing service descrip-
tion languages (WSDL, OWL-S, WSMO) as well as USDL integration,

• facilitates specification document parsing and exchange via the definition
of an XML-based syntax.

To demonstrate the power ofWSSL and the significant benefits it provides, we
also propose an integrated composition and verification framework, WSSL/CVF,
that relies onWSSL specifications. The proposed framework possesses the follow-
ing innovative characteristics:

• The composition process takes advantage of complete behavioral specifi-
cations of services expressed in WSSL, allowing for services and goals that
include ramifications.

• The verification process also benefits from the solutions to the frame, ram-
ification and qualification problems in two ways:

– Behavioral properties that refer to preconditions, effects and ramifi-
cations, and not only to inputs and outputs, can be verified.
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– Verification also takes into account abnormal and unexpected cases,
apart from the normal service behaviour, providing the ability to ex-
plain such cases, rather than consider them incompatible with the
specification.

• A novel functional discovery approach for services specified using WSSL is
included with the following distinctive features:

– Due to WSSL’s solutions to the frame, ramification and qualification
problems, discovery relies on complete service behaviourmodels that
include, for instance, ramifications andnon-effects, safeguarding from
inconsistent or inaccurate discovery solutions.

– Due to the unified nature of WSSL specifications, taking into account
all aspects of service behaviour during discovery does not require a
different approach for each aspect, resulting in improvedperformance.

– Discovery is applied on specification repositories, grouping implemen-
tations of the same functionality under a single behaviour specifica-
tion, further boosting performance.

• The WSSL foundations of the framework allow for the simultaneous satis-
faction of several important requirements, namely automation, dynamic-
ity, correctness and support for semantics, non-determinism and partial
observability.

• QoS-awareness is realized through the definition of pruning and ranking
techniques that combine heuristics and task-specific QoS goals and are ap-
plied to plans that result from functional composition and discovery.

• An all-encompassing QoS aggregation approach is included, based on a clas-
sification of QoS attributes depending on their value types and nature that
is derived from the analysis of QoS aspects in [Kritikos and Plexousakis
2009b].
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An extensive experimental evaluation of the framework is performed, in or-
der to investigate performance scalability in terms of execution time andmemory
consumption, as well as optimality with regard to the produced composite pro-
cess. Evaluation relies on synthetically generated WSSL specifications and com-
position problems, in order to cover a wide spectrum of specification complexity.
Results show that good performance is guaranteed even for problems that exceed
real-world requirements.

WSSL and the accompanying composition and verification framework can
have a substantial impact to SOA stakeholders. With WSSL, service providers are
able to provide complete specifications of what they are offering, which enables
them to more effectively advertise their service products to potential clients. In
this way, service providers are more likely to be trusted, since they offer more de-
tails about what they provide instead of a simple input/output service interface.
Of course, the possibility of providing false specifications cannot be ruled out.

Service consumers, on the other hand, are informed of the exact way inwhich
a service is expected to perform, as well as the produced results, which enables
them to make knowledgeable choices and select the service that is the most suit-
able match for their requirements. In safety-critical systems, this is of utmost
importance since choosing a service that fails to achieve the complete set of spec-
ification requirements may potentially have serious repercussions. If a suitable
service does not exist, then a new one can possibly be composed according to the
requirements. The nature ofWSSL specifications facilitates automation, speeding
up the process and at the same time lowering costs, making SBAs more attractive
to industry stakeholders.

The proposed composition and verification framework can be of great assis-
tance to stakeholders in service engineering, especially SBA designers and com-
position architects. At the cost of an increased effort in creating service specifica-
tions, the composition design andmodeling effort can be significantly reduced, at
the same timemitigating the effects of human error. Nonetheless, the framework
relies on input from designers in defining suitable heuristics, for both functional
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composition and plan pruning processes. Hence, it does not replace the service
designer but rather automates the process of obtaining optimal service composi-
tions for a suitably defined composition problem.

1.3 Dissertation Outline

The rest of this document is organized as follows. Chapter 2 provides an in-
dicative scenario that is used as a running example throughout the dissertation,
followed by an extensive analysis of the necessary background knowledge. This
includes a definition of the frame, ramification and qualification problems and an
overview of solutions that have been proposed in literature, an overview of the
most outstanding service description efforts, a definition of requirements for ser-
vice composition and a comparative analysis of the state-of-the-art in automated
service composition, as well as the most prominent works in service discovery
and verification.

In Chapter 3 the main contribution of this thesis, the Web Service Specifica-
tion Language, is presented. First, the fluent calculus foundations of the language
are briefly described, followed by a formal definition of the abstract syntax and
semantics. Afterwards, a surface syntax, as well as an XML syntax are provided.
Chapter 4 introduces a series of extensions to the initial language definition. The
extensions cover three distinct directions: specification of composite services and
support for service composition; specification of QoS profiles; and handling par-
tially observable states.

Chapter 5 proposes an implementation of WSSL using the logic programming
language FLUXwhich acts as the basis for the definition and analysis of a complete
QoS-aware service composition and verification framework, named WSSL/CVF.
Chapter 6 performs an examination of a series of properties of WSSL and the ac-
companying framework, focusing on correctness, decidability and complexity, as
well as language applicability in terms of WSSL’s connection to other efforts in
service science. A thorough evaluation of WSSL/CVF as a whole, as well as the



12 Chapter 1. Introduction

individual components it comprises, is conducted and presented in Chapter 7. Fi-
nally, Chapter 8 summarizes the main contributions of this thesis and points out
future research directions.

Research related to this thesis has resulted in the following publications:

• An initial version of the background analysis in service description and
the state-of-the-art in automated service composition in Chapter 2 appears
in [Baryannis and Plexousakis 2010a] and [Baryannis et al. 2010].

• Apreliminary analysis of someof the research challenges that are addressed
in this thesis appears in [Baryannis and Plexousakis 2010b].

• The theoretical foundations of WSSL’s extension to support composite pat-
terns in Section 4.1 is based on the method for deriving composite service
specifications that is presented in [Baryannis et al. 2012].

• The initial definition of WSSL in terms of its syntax and semantics in Chap-
ter 3 and parts of the implementation in Section 5.1 appear in [Baryannis
and Plexousakis 2013].

• The extension ofWSSL to support composition in Section 4.1 and the imple-
mentation of a WSSL-based composition planner in Section 5.1 have been
published in [Baryannis and Plexousakis 2014].

• The extensions for quality and uncertainty in Chapter 4 as well as the im-
plementation and evaluation of the proposed composition and verification
framework in Section 5.2 and Chapter 7 are included in [Baryannis et al.
2014], under review at the time of writing the dissertation.
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This chapter provides the necessary background knowledge as well as an ex-
tended literature review pertaining to the topics examined in this thesis. First, a
service composition scenario is presented with the purpose of using it as a run-
ning example throughout the dissertation. Then, the main objective of the the-
sis is analyzed, through the definition of the frame, ramification and qualifica-
tion problems, as well as the various solutions that have been proposed in liter-
ature. An overview of the most outstanding service description efforts follows.
Afterwards, a set of requirements for automated service composition is defined
and used as a basis for the comparative analysis of the state-of-the-art in service
composition that follows. The comparison yields a series of research challenges
that drive the rest of this thesis. Finally, a concise review of research related to
specification-based service discovery and verification of service behavior is of-
fered, since both topics are highly relevant to the language and framework pre-
sented in this dissertation.
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2.1 Running Example

In this section, we present an indicative scenario that illustrates the motiva-
tion behind this thesis in general andmore specifically the need for an expressive
specification language, such as WSSL, to realize and facilitate service description,
composition and verification. The scenario is inspired by HelpMeOut, a process
for vehicle drivers to get assistance in case of an emergency, presented in [Ali et al.
2011] and involves designing andverifying a composite process that covers all nec-
essary steps relative to vehicle road assistance. In our scenario, vehicle drivers in
need of assistance communicate with a call center, which collects all pertinent in-
formation in order to find and dispatch the most suitable repair center employee.
Payment and reporting steps follow after the issue has been resolved.

We assume that we have access to a service specification repository contain-
ing multiple service specifications that realize the individual required function-
alities, each one with varying QoS features. The composite service must satisfy a
series of requirements, involving both functional and non-functional aspects:

• Requests for assistance canbe received either througha call center or through
SMS but each process is associated with only one of these methods of com-
munication. Information about the driver location aswell as the vehicle sta-
tus is processed in combination in order to drive a separate procedure that
determines the nearest mechanic able to assist in the current situation.

• The payment process that follows the on-site actions should support credit
card payment as well as trigger card deactivation in case a daily spending
limit has been reached.

• An incident report must be generated and delivered to the driver, through
electronic or traditional mail, depending on the driver’s choice.

• The results of the executed composite process should be specified and ex-
plained, even under incomplete information (e.g., the driver’s choice for re-
port delivery is not known beforehand) or unforeseen circumstances (e.g.,
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no report is delivered by e-mail, as per the driver’s wishes, even though all
tasks in the process have completed successfully)

Apart from functionality, the resulting composite service should also achieve
a QoS level defined by the following requirements:

• Availability of the services implementing the tasks of receiving calls and
SMS for assistance should be at least 0.99.

• The service implementing the search for a suitable mechanic should com-
plete in less than 60 seconds.

• The payment process must support integrity and security features.

• The overall cost for the composite process should not exceed 10€, while
overall throughput must be at least 50 requests/min.

Given a service specification repository containing specifications for services
that implement the separate tasks described above, as well as a specification of
the initial state, we would like to automatically create a composite process that
satisfies all the aforementioned requirements and realizes the complete HelpMe-
Out road assistance scenario. An example process is shown in Fig. 2.1.

Satisfying all requirements depends upon a service composition framework
that supports rich service descriptions, in the form of specifications that take into
account the frame, ramification and qualification problems, so that non-effects,
ramifications and explanations for unexpected behavior of services can be ex-
pressed and considered during composition. The discussion in the rest of this
chapter centers around the claim that current service description and compo-
sition efforts are not adequate enough to realize the goals of the road assistance
scenario we defined.
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2.2 The Frame, Ramification and Qualification Problems

As already mentioned in the introductory chapter, service specifications are
affected by a family of problems that includes the frame, ramification and qualifi-
cation problems. In this section, we define all three problems and offer a compara-
tive analysis of the solutions that have been proposed in literature. We focus only
on solution schemas that target all three problems rather than a subset of them.
Based on this analysis, we plant the seeds for the selection of the fluent calculus
as a basis for the service specification language that we propose in Chapter 3.

2.2.1 Definitions

The Frame Problem

As it was first identified in [Borgida et al. 1995], formal specifications that
employ the precondition/postcondition notation are prone to the frame prob-
lem [McCarthy and Hayes 1969], a long-standing problem in the field of Artifi-
cial Intelligence. The frame problem stems from the fact that including clauses
that state only what is changed when preparing formal specifications is inade-
quate since it may lead to inconsistencies and compromise the capacity of for-
mally proving certain properties of specifications. One should include additional
clauses, called frame axioms, explicitly stating that apart from the changes de-
clared in the rest of the specification, nothing else changes. Solving the frame
problemmeans expressing frame axioms without resulting in extremely lengthy,
complex, possibly inconsistent, obscure specifications and at the same time re-
taining the ability of proving formal properties of the specifications.

To illustrate the effects of the frameproblem, consider the payment process of
the running example. According to the requirements, credit card payment should
be supported. Hence, any service execution that implements the payment process
should be associated with a credit card and withdrawmoney from the account as-
sociated with that credit card. Due to the sensitive nature of this procedure, we
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need not only a guarantee that the service executes the payment process success-
fully but also that no other accounts are affected by it. In other words, we need a
specification language that guarantees that the specified effects are the only ones
that result after a successful execution.

The Ramification Problem

The frame problem is closely related to the ramification problem, defined
in [Miller 2006] as the problem of adequately representing and inferring informa-
tion about the knock-on and indirect effects (also known as ramifications) that
might accompany the direct effects of an action or event. The relation of the
frame and ramification problems is somewhat contradicting: if one deals with the
frame problem by expressing that no other effects are allowed except the ones ex-
plicitly stated, then any indirect effects are disallowed by definition, hence any
solution to the ramification problem is precluded.

Returning to the running example and the associated payment process, re-
call that one of the stated requirements is that credit card deactivation must be
triggered in case a daily spending limit has been reached. Thus, we need a specifi-
cation language that can express not only effects but also side-effects that result
from them. Note that if the solution to the frame problem precludes any other
effects other than the direct ones, then any solution to the ramification problem
is, by definition, impossible. It is apparent that any solution to the ramification
problem in service specifications should be examined in correlation to the frame
problem.

Ramificationsmust be included in a service specification since a potential ser-
vice consumer needs to be aware of all (direct and indirect) effects of executing
the service. This is particularly important in service compositions, as the lack of
knowledge of an indirect effect may lead to the assumption that a composition
is valid and correct while that particular effect may contradict a precondition of
another participating service, leading to an inconsistent composite service. For
instance, in the running example, if we are unaware of the ramifications of the
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payment service, then we can assume that, under any circumstance, we can ex-
ecute the payment service consecutively (possibly for different composite ser-
vices) without violating correctness. This is not the case, however, if the first exe-
cution leads to the credit card being deactivated because the daily limit has been
reached.

The Qualification Problem

While the ramification problem deals with the effects of an action, the quali-
fication problem deals with circumstances and conditions that must be met prior
to the execution of an action. In [Miller 2006], two major aspects are defined sep-
arately, the endogenous and the exogenous qualification problem. The endoge-
nous qualification problem is the problem (and sometimes the impossibility) of
listing all preconditions (also known as qualifications) that must be satisfied for
an action to have the desired effect and at the same time updating these quali-
fications as new statements become part of our knowledge, without resulting in
inconsistencies. On the other hand, the exogenous qualification problem deals
with qualifications that are outside the scope of our theory and result in contra-
dicting some effects of an action due to inconsistencies.

In the context of services, it can be argued that even if one considers a ser-
vice specification as complete, there might always be some conditions that have
not been explicitly declared. Trying to declare more andmore preconditions may
then lead to a service that is not executable, or to specifications that are rendered
inconsistent once a new statement becomes part of our knowledge. As far as the
exogenous aspect is concerned, service execution can be affected by numerous
external factors (as opposed to ”internal” ones, i.e. related to service functional-
ity), such as failures at the underlying infrastructure or authentication issues in
data access, to name but two. In this thesis, we deal with the exogenous qualifi-
cation problem only, since the endogenous aspect is closer to the philosophical
aspect of qualifications rather than the practical one that is more related to the
service world.



2.2. The Frame, Ramification and Qualification Problems 21

Going back to the running example, suppose that in an execution of the road
assistance composite service, we have established that all preconditions for the
report delivery sub-process hold; we are also aware that the driver has chosen to
receive the report via e-mail. Thus, we expect that, at the end of the process, a
report is delivered electronically to the user. If, however, due to some unforeseen
circumstance, we find out that no report has been delivered, we result in an incon-
sistency between the service specification and the actual observed behavior. To
address this issue, service specificationsmust be able to account for qualifications
that are outside the scope of normal service execution and represent deviations
to the normal case, in order to describe service behavior in a consistent and com-
plete manner.

2.2.2 The Temporal Action Logic case

In [Doherty 1994], [Gustafsson and Doherty 1996] and [Kvarnström and Do-
herty 2000], the authors propose extensions to Temporal Action Logic (TAL) to
deal with the frame, ramification and qualification problems, respectively. TAL
and its variants use the notion of preferential entailment for reasoning about ac-
tion and change, which essentially applies a strict partial order to logical inter-
pretations to decide whichmodels to keep. TAL uses narrative scenarios based on
states and has an explicit notion of time.

The solution to the frameproblem is basedon thenotionof occlusion:whether
a feature may change value or not is defined by special Occlude predicates which
explicitly express the so-called “permission to change value”. The Occlude pred-
icate also provides the insight for a solution to the ramification problem, since
the authors realize that it could also be used to express causal rules between ef-
fects. These specialized fluent dependency constraints led to an extension called
TAL-RC which successfully expresses ramifications that refer to any part of the
domain that is modeled, for both boolean and non-boolean fluents.

A further extension, called TAL-Q, was designed in order to deal with the qual-
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ification problem. For each action in the theory, a strong qualification is included,
which represents all qualifications that are true in normal situations, and can only
be made explicitly false if an associated dependency constraint becomes valid.
They also allow for the expression of weak qualifications, defined by the authors
as conditions that could lead to an action but only if they are considered in corre-
lationwith other domain anddependency constraints. Thus, strong qualifications
are necessary for an action to be successful, while weak ones need to be examined
in correlation with other constraints.

2.2.3 Modular-E: The Event Calculus case

In [Kakas et al. 2011], the authors presentModular-E(ME), a specialized
logic closely related to the event calculus, for reasoning about actions with the ex-
plicit requirement that it addresses both the endogenous and exogenous aspects
of the qualification problem. Due to the inextricable link among all three prob-
lems,Modular-E offers a robust and complete solution to the frame and ramifi-
cation problems too, based on the notion of elaboration tolerance as expressed
in [McCarthy 1999] and its particular characteristic that is labeled as “free will”.

ME deals with ramifications by considering chains of instantaneous, tem-
porary transition states, implied by causal laws and propositions of the form C

causes F , where C and F are fluents. Within these causal chains, processes are
introduced to describe initiation and termination of fluents. This allows to treat
all possible micro-orderings of effects, as well as competing and looping effects.
Inconsistencies are allowed during such processes, but they must be resolved un-
til the end of the process. In addition,ME carries over the event calculus notion
of default persistence, allowing change only when action laws or ramifications
justify it, thus offering a solution to the frame problem.

As far as the qualification problem is concerned, the endogenous aspect is
realized by the modular and elaboration tolerant features ofME . Propositions
of the form always A allow for the expression of global qualifications, without
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having to explicitly add them as local qualifications to the actions they affect.
All global and local qualifications are assimilated in the theory in order to assess
whether an action is successful or not. Note that due toME ’s notion of “free
will”, an action occurrence is synonymous to an action attempt: any action can
be attempted at any time, without any guarantee of success.

Finally, the exogenous qualification problem is dealt with by extending the
theory even further with propositions of the form normally N with the seman-
tics that the fluent N is true under normal circumstances. Exogenous qualifica-
tions for an action are expressed using a fluent of the form NormExo(LawId),
where LawId is the identifier of the causes proposition related to the action. To
express that all exogenous qualifications are assumed to be true by default, one
simply states that normally NormExo(LawId).

2.2.4 The Fluent Calculus case

Research in the fluent calculus ([Thielscher 1997; 1999; 2001b], presented in
a complete form in [Thielscher 2005b]) attempted to first solve the ramification
problem, followed up with solutions to the frame problem and the qualification
problem. All solutions involve augmenting the initial definition of the fluent cal-
culus with constructs specifically designed to address the issues caused by each
problem, namely state update axioms for the frame problem, causal propagation
of indirect effects for the ramification problem and abnormal qualifications as
well as default reasoning for the qualification problem.

Thielscher defines causal relationships in the fluent calculus as expressions of
the form (∀)(Γ→ Causes(z, p, n, z′, p′, n′, s)where z, p, n, z′, p′ andn′ are state
variables and Γ is a first-order formula. The semantics is that, under conditions
expressed byΓ, the positive and negative effects p andn that have occurred cause
an automatic update from state z to state z′, with positive and negative effects p′

andn′. Such a production of effects can be done repeatedly, producing new effects
from already acquired indirect effects.
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Thielscher then focused on improving an existing solution to the frame prob-
lem in the fluent calculus that is equivalent in its expressive power to the solution
of successor state axioms in the situation calculus [Reiter 1991] but also solves the
inferential facet of the frame problem as well, providing a robust, systematic way
of producing these axioms. State update axioms, as they are named, are of the gen-
eral form∆(s) ⊃ State(Do(A, s))◦ θ− = State(s)◦ θ+ and have the semantics
that the execution of action A at state s under condition∆(s) results in only the
specified positive (θ+) and negative (θ−) changes (a positive change makes a flu-
ent true, while a negative one makes it false). Provided that the effects are finite,
the author provides a systematic procedure of deriving state update axioms from
given effect axioms in the situation calculus.

Finally, the qualification problem is dealt with by first explaining how the
straightforward solution of simply assuming away all abnormal qualifications by
default may lead to anomalous models when an action itself causes abnormal cir-
cumstances. The proposed solution is to treat the qualification problem while re-
specting causality: abnormal qualifications are assumed not to hold initially and
not to arise in later situations unless they are caused. In order to realize that, a so-
lution to the frame and ramification problems is a prerequisite, hence the fluent
calculus is a suitable candidate. Special fluents for expressing abnormal qualifi-
cations are employed, explicitly indicating the cause as a specific action or an
exogenous factor. Default theory is employed to express that, by default, abnor-
mal qualifications do not hold in the initial state and exogenous ones do not hold
in any state.

2.2.5 Comparison

ME is the most recent work that claims to address all three problems and, as
such, is advantageous to the bodies of work in the fluent calculus and Temporal
Action Logic, since the authors specifically addressed the weaknesses of previous
work. In comparison to the fluent calculus approach,ME has the advantage of
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covering the case of failed actions or action attempts due to the notion of “free
will”. Finally, although a comparison betweenME and TAL-Q is deemed difficult
by the authors, they nevertheless point the fact that TAL-Q is only able to handle
off-line planning and prediction problems and at the same time does not handle
the exogenous qualification problem.

However, with respect to the domain of Web services (and services in gen-
eral), the solutions offered in the fluent and event calculi are somewhat equiv-
alent, since the advantage of expressing failed actions or action attempts is not
vital: in the service world we only need to express the results of a successful ex-
ecution, the conditions under which they are achieved and explanations for any
unforeseen execution based on abnormal qualifications. Based on this, the fluent
calculus seems a more suitable candidate for the purposes of this thesis, as we
justify in more detail at the beginning of Chapter 3.

2.3 Service Description and Specification

We continue the analysis of related literature with a concise overview of the
most important efforts to handle the issue of describing and specifying services
and service compositions. These includeWSDL, SAWSDL, USDL, OWL-S, WSMO, as
well as the more recent SAVVY-WS framework. The focus of this presentation is
to evaluate if and to what extent these efforts address the problems analyzed in
the previous section.

2.3.1 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) [Chinnici et al. 2007] is aW3C Rec-
ommendation, now in its second version, that has been established as the de facto
description language for Web services. The four fundamental elements of WSDL
are the following:



26 Chapter 2. Background and Literature Review

• types: describes the kinds of messages that the service sends and receives.

• interface: offers an abstract description of the provided functionality.

• binding: describes how to access the service.

• service: describes where to access the service.

WSDL interfaces offer an abstract way of describing the service functional-
ity, in contrast to the concrete representation offered by the binding and service
elements. A WSDL interface consists of a set of operations, each one of them de-
scribing a simple interaction between the service and the client, producing a set
of outputs given a set of inputs. The description is realized through a message ex-
change pattern that is followed when the particular operation is invoked. WSDL
2.0 contains eight predefined message patterns but new ones can easily be de-
fined.

AWSDL binding specifies concretemessage format and transmission protocol
details for an interface. Each operation in a WSDL description must be associated
with a binding. Several typical binding extensions are defined in WSDL 2.0, such
as SOAP binding or HTML binding; the service provider is free to use others, pro-
vided that they are supported by potential clients and service toolkits. Finally, a
WSDL service element specifies a single interface as well as an associated binding
that the service supports, along with one or more endpoint locations where that
service can be accessed.

From this brief description, it should be obvious that, even in its second ver-
sion, WSDL remains solely a language for the syntactic description of Web ser-
vices. For WSDL, a service is merely a construct that produces a specific set of
outputs, given a specific set of inputs. Without doubt, this does not allow service
consumers to understand what a service does and under which conditions, mak-
ing it difficult to decide whether a particular service is suitable for their purposes
or not. Moreover, the lack of semantic capabilities and composite service support
rendersWSDL incapable of assisting in any automated service discovery and com-
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position framework. The fact that WSDL does not even consider preconditions
and postconditions renders the discussion on the three problems described in
the previous chapter inapplicable.

2.3.2 Semantic Annotations for WSDL (SAWSDL)

SAWSDL [Farrell and Lausen 2007] is based on and shares the same design prin-
ciples of previouswork published as aW3CMember Submissionwith the titleWeb
Service Semantics (WSDL-S) [Akkiraju et al. 2005], headlined by IBMand the LSDIS
Lab of the University of Georgia. SAWSDL defines a way to semantically annotate
WSDL interfaces and operations as well as XML Schema types, linking them to
concepts in an ontology or a mapping document. The annotation mechanism is
independent of ontology or mapping languages and can be applied to both WSDL
1.1 and WSDL 2.0 documents, although the latter case is more seamless than the
former.

SAWSDL offers two basic semantic annotation constructs, through the exten-
sion attributesmodelReference and schemaMapping. ThemodelReference attribute
allowsmultiple annotations to be associated with aWSDL or XML Schema compo-
nent via a set of URIs. These URIs may identify concepts expressed in different se-
mantic representation languages.modelReference attributes can be used inWSDL
interfaces and operations, or XML Schema elements, types and attributes.

As far as the second annotation mechanism is concerned, two attributes are
provided: liftingSchemaMapping and loweringSchemaMapping. These are used to ad-
dress post-discovery issues, since mismatches may still exist between the seman-
tic model and the structure of inputs and outputs. Schema mapping relates the
instance data defined by an XML Schema document with some semantic data de-
fined by a semantic model (e.g., an ontology). While liftingSchemaMapping de-
fines how an XML instance document is transformed to data that conforms to
some semantic model, loweringSchemaMapping follows the opposite direction,
defining how data in a semantic model is transformed to XML instance data.
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SAWSDL attempts to provide semantic capabilities to existing WSDL descrip-
tions, electing to keep the semantic model outside WSDL, making the approach
independent from any ontology language. However, without describing how the
use of annotations in different languages relate to one another, it is rather diffi-
cult, if not impossible to formally define requests, queries or matching between
service requests and service descriptions. As a result, SAWSDL may be successful
in annotating WSDL with semantic information, but does not offer any support
for automated service discovery and composition. Moreover, due to the fact that
it uses the description model of WSDL as-is, SAWSDL inherits the limitations of
input-output descriptions and the fact that it cannot be employed to address the
issues raised in this thesis.

2.3.3 OWL-S: Semantic Markup for Web Services

OWL-S [Martin et al. 2004] was the first attempt to establish a framework
within which Web service descriptions are created and shared, employing a stan-
dard ontology, consisting of a set of basic classes and properties for declaring and
describing services. The ontology structuring mechanisms of OWL provided an
appropriate, Web-compatible representation language to create the standard on-
tology of OWL-S.

In Fig. 2.2, the structuring of OWL-S in sub-ontologies is shown. Service Pro-
file allows service providers to advertise the services they offer, in such away that
service requesters can easily find what they are looking for. Service providers are
free to include whatever information they deem necessary, but the OWL-S stan-
dard offers a predefined subclass that should contain information on the service
provider, the service functionality and a set of service characteristics. The func-
tional description of a Web service in OWL-S contains the full set of IOPEs, in con-
trast to WSDL.

The ServiceModel sub-ontology in OWL-S describes service functionality and
specifies the manner in which a client may interact with the service in order to
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Figure 2.2: Top level of the OWL-S ontology [Martin et al. 2004]

consume its functionality. It is usually a superset of the information contained in
a Service Profile, since a profile contains only the information that is necessary
in order to advertise the Web service. Again in contrast to WSDL, OWL-S provides
a means to specify a Web service as a business process or a workflow. This pro-
cess can represent a single Web service (called atomic process) or a composite
one. A composite process is specified using control constructs such as Sequence,
Split-Join or If-Then-Else, representing sequential, parallel and conditional com-
position schemas respectively.

OWL-S provides a backward compatibility mechanism through the Service
Grounding sub-ontology, which allows service designers to map an OWL-S de-
scription to existing service description languages, such as the most prominent
one,WSDL. Thismechanism is intended to allow existingWSDL descriptions to be
reused and augmented using OWL-S, at the same time delegating actual service
access to the existing mechanisms offered by WSDL.

OWL-S made strides in the correct direction regarding service specifications,
since it was the first service description framework to employ IOPEs, offer seman-
tic capabilities and support composite service description. Thus, it is the first ef-
fort that is directly related to the issues raised in the previous section but, unfor-
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tunately, it fails to offer effective solutions to the frame, ramification and qual-
ification problems. While it supports preconditions and postconditions, it does
not provide any way to specify non-effects or indirect effects, while there is no
mention of explaining abnormal executions.

2.3.4 Web Service Modeling Ontology (WSMO)

WSMO [Roman et al. 2005] is a conceptual model for describing various as-
pects related to services in the SemanticWeb, initially producedby the ESSIWSMO
working group, with further research conducted by the European project SOA4All.
The objective of WSMO and its accompanying efforts is to solve the application
integration problem for Web services by defining a coherent technology for Se-
mantic Web services. As illustrated in Fig. 2.3, four main components are defined
in WSMO and are outlined in the rest of this section.

Figure 2.3: The four main WSMO components [Roman et al. 2005]

WSMO Ontologies provide domain specific terminologies for describing the
other elements. The basic blocks of an ontology are concepts, relations, functions,
instances, and axioms.Web services description inWSMO is realized using twodif-
ferent viewpoints: interface and capabilities.WSMO capabilities are similar to the
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IOPEmodel used inOWL-S. A capability should contain preconditions and assump-
tions that must be true before the execution of the service, postconditions that
are true if the service has executed successfully, and effects that illustrate how ser-
vice execution changes the world state. WSMOMediators connect heterogeneous
components of aWSMO description when one encounters structural, semantic or
conceptual incompatibilities. Mismatches can arise at the data or process level.

A WSMO interface describes how service functionality can be achieved. Two
complementary views of the operational competence of a Web service are pro-
vided, namely orchestration and choreography. Orchestration offers a descrip-
tion of how the overall functionality is achieved by means of cooperation of dif-
ferent Web service providers, while choreography is essentially a description of
the communication pattern that allows one to consume the service functionality.

WSMOGoals define exactly what a service requester demands from aWeb ser-
vice to offer. The requester (whether it is a human or an agent) defines a set of
goals and the corresponding system tries to find services or combinations of ser-
vices that can realize all of them. In order to produce a complete goal description,
one needs to describe both the interface and the capabilities of aWeb service that,
if it existed, it would completely satisfy the request at hand. In this way, requests
and services are strongly decoupled, since requests are based directly on goal de-
scriptions.

WSMO presents an alternative way to model Semantic Web services and sup-
port automated service composition. Like OWL-S, it employs IOPEs and supports
composition description. Unlike OWL-S, it supports both orchestration and chore-
ography views of a composite service. The WSMO working group also goes one
step further and acknowledges the existence of the frame problem inWSMO spec-
ifications. However, the proposed solution essentially avoids the frame problem
by applying restrictive update formalisms. Also, in a document prepared by the
WSMOworking group [Keller and Lausen 2006], the authors propose to label post-
conditions as incomplete, when no action has been taken to address the frame
problem; again, this is a circumvention of the frame problem, rather than a solu-
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tion to it. Moreover, the ramification and qualification problems are not consid-
ered at all.

2.3.5 Semantic Web Services Framework (SWSF)

SWSF [Battle et al. 2005] is another effort to realize the SemanticWeb services
vision and is influenced by both OWL-S and WSMO. SWSF comprises two major
components, the Semantic Web Services Ontology (SWSO) and the Semantic Web
Services Language (SWSL). SWSL is used to specify formal characterizations of
Web service concepts and descriptions of individual services. It includes two sub-
languages, thefirst ofwhich is namedSWSL-Rules, is based on logic-programming
and rule-based reasoning and is used to support the use of service ontologies in
reasoning and execution environments, providing a variety of tasks that range
from service profile specification to service discovery, contracting, policy specifi-
cation and so on. The second sub-language of SWSL, SWSL-FOL, is based on first-
order logic and is used primarily to express the formal characterization of Web
service concepts.

SWSO presents a conceptual model by which Web services can be described
and which, for the most part, is really similar to OWL-S. It is divided into three
major components: Service Descriptors, Process Model and Grounding. Service
Descriptors are the equivalent to OWL-S Service Profile while Grounding is equiv-
alent to OWL-S Service Grounding.

The SWSO Process Model provides an abstract representation for Web ser-
vices, their impact on the state of the world and message transmission among
them. It is based on the Process Specification Language [Grüninger and Menzel
2003], a formally axiomatized ontology that was originally developed to enable
sharing of descriptions of manufacturing processes. Service composition is mod-
eled by complex activities using a set of control constraints (similar to OWL-S
control constructs), ordering constraints (specifying just the order of execution),
occurrence constraints (linking constraints with a specific activity occurrence)
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and state constraints (associating triggered activities with states).
SWSO is based on the situation calculus, which was initially defined with the

explicit purpose of solving the frame problem. Hence, Reiter’s solution to the
frame problem [Reiter 1991] could be applied to SWSF service descriptions. How-
ever, the same does not apply to the ramification and qualification problems,
which should still be considered unsolved for SWSF descriptions.

2.3.6 The SAVVY-WS Framework

SAVVY-WS (Service Analysis, Verification and Validation methodologY for
Web Services) [Bianculli et al. 2008] is a framework developed by University of
Lugano in collaboration with Politecnico di Milano, providing an integrated ap-
proach for design-time and run-time validation. The feature that is most inter-
esting to the discussion in this document is the fact that SAVVY-WS relies on the
existence of rich specifications for services participating in a composition, and
assumes that services are only known through such specifications.

The language use for service specifications in SAVVY-WS is ALBERT [Baresi
et al. 2007]. ALBERT is defined over a timed state world, an infinite sequence of
states which include some variables and a timestamp, representing a snapshot
of a service process. ALBERT assertions are implicitly assumed to be invariants,
holding in all states, although we can express the fact that assertions must hold
when an event happens using a special predicate. Apart from traditional logical
connectives (including universal and existential quantifiers), the timed aspects
require the additional definition of temporal operators. Both functional and non-
functional properties of services can be expressed using ALBERT.

While SAVVY-WS represents one of the few frameworks that acknowledge the
indispensable value of specifications in service-related activities, it still does not
explore any of the issues raised in this chapter. No mention is made concerning
the existence of the frame, ramification and qualification problems. Moreover,
while ALBERT assertions can be expressed to describe what is expected from a
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composite service (using so-called guaranteed assertions), actual composite ser-
vice specification is not provided.

2.3.7 Unified Service Description Language (USDL)

USDL [Kadner et al. 2011, Oberle et al. 2013] is the most recent W3C-endorsed
effort at defining a service description language and is based on the concept that
all aspects of a service, be it business, operational or technical information, need
to be expressed in a uniform way. To that end, USDL is defined as a collection of
modules, defining specific service aspects on top of a unifying foundation. The
modules share a common vocabulary, which is expressed as Linked Data in the
most recent version, Linked-USDL. A brief analysis of the USDL modules follows.

Service Focuses on the essential structure of a service, describing manual, semi-
automated and fully automated services using dependency models.

Participants Models the organizational actors that are involved in the provision-
ing, delivery and consumption of a service.

Functional Captures the service functionality at an abstract level, essentially
containing IOPE sets as well as exception modeling similar to WSDL faults.

Interaction Specifies the external behavioral aspects of the service in the form
of protocols and roles.

Technical Describes service access mechanisms, via either operation-based or
resource-based interfaces.

Pricing Defines price plans and models that are used to charge consumption of
service functionality.

Service Level Provides a way to model Service Level Agreements by incorporat-
ing arbitrary attribute and expression languages.
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Legal Specifies the terms of usage of the service in terms of legal certainty and
compliance.

Foundation Contains all general elements that are common throughout all other
modules.

USDL is successful at providing a unified model for specifying all aspects that
may be related to any kind of service, whether it is a Web service, a RESTful ser-
vice, a business service or even a completely manual service (a human task). How-
ever, the Functional and Technical modules, which are the ones more closely re-
lated to the goals of this dissertation, make no mention of the representational
issues in relation to the frame, ramification and qualification problems. Neverthe-
less, themodularized and all-encompassing nature of USDL favors the integration
of any service description effort, meaning that the language defined in Chapter 3
could be integrated under the USDL umbrella (see also Section 6.3.4).

2.3.8 Conclusion

Before completing the review on service description and specification, we of-
fer a comparative summary of the languages presented, focusing on their relation
to the frame, ramification and qualification problems. The common conclusion is
that noneof these languages is capable to express service specifications in theway
we have envisioned them. WSDL and SAWSDL, in particular, offer interface-only
descriptions, disregarding any information about preconditions and postcondi-
tions.

From the rest of the languages presented in this section, OWL-S is the most
mature one and the most commonly used in service discovery and composition
research approaches. OWL-S, however, does not come without its drawbacks, as it
is pointed out in [Balzer et al. 2004], which prevent it from being used in practical
real-world scenarios, such as the lack of support for asynchronous services. With
regard to the representation problems we examine, there is no mention of them
on any research line associated with OWL-S.
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WSMO has also been used in many research approaches, even though it has
not been around as long as OWL-S. Research by the WSMO group was the first to
acknowledge the existence of the frame problem in service description, without,
however, proposing any effective solutions. SWSF took things one step further
and relied on a formalism, the situation calculus, forwhich a solution to the frame
problem has already been presented and proven. Neither WSMO nor SWSF deal
with any other representation problem.

While SAVVY-WS also does notmove things forwardwith regard to the frame,
ramification and qualification problems, it is one of very few service research ef-
forts that makes a distinction between simple service descriptions and complete
service specifications as well as pointing out the benefits of the latter in compar-
ison to the former. Finally, as the most recent effort, USDL attempts to borrow
inspiration from all past research lines in service description; unfortunately, it
also inherits their common flaw of disregarding the frame, ramification and qual-
ification problems and their effects in any service-related activity, including, but
not limited to service description, discovery, composition and verification.

2.4 Automated Service Composition

We continue the literature review on topics related to this thesis by present-
ing a comparative analysis of the most representative efforts in automated ser-
vice composition. We first identify a series of requirements that need to be met,
followed by a complete state-of-the-art of automated service composition, orga-
nized in four major categories of approaches. At the end of the section, a compar-
ison of the approaches is attempted, based on the extent each approach satisfies
the requirements we have identified.

Approaches to the automated service composition problem have been excep-
tionally diverse and offer different interpretations of what should be addressed
in a composition approach. They also differ on the degree of automation that
is involved in the process, ranging from semi-automated to fully automated ap-



2.4. Automated Service Composition 37

proaches. Since our survey focuses on automated service composition, any purely
manual approaches are omitted.

Due to the multitude and diversity of existing research approaches, it is im-
perative that we perform some kind of grouping in order to make presentation
of the approaches easier. Composition approaches are organized in the following
categories:

1. Workflow-based: approaches that exploit knowledge from workflow re-
search

2. Model-based: approaches that use modeling languages (Petri-nets, UML,
FSMs) to represent service compositions

3. Logic-based: approaches that use various forms of logic, calculi and alge-
bras

4. AI planning: approaches that handle service composition as anAI planning
problem

Note thatmany approaches fit intomore than one groups, such as approaches
that realize planning using logic-based techniques. In such cases, they are in-
cluded in the category that represents their primary characteristics; for instance,
all planning techniques are placed in the fourth category.

2.4.1 Requirements

A considerable number of surveys on service composition (automated or not)
have been conducted and published by various researchers all over the world, the
most important of which are the following: [Koehler and Srivastava 2003], [Mi-
lanovic and Malek 2004], [Rao and Su 2004], [Hull and Su 2005], [Dustdar and
Schreiner 2005], [Küster et al. 2005], [Agarwal et al. 2008] and [Marconi and Pi-
store 2009]. Most of these surveys do not state clearly what requirements need
to be met for an approach to successfully solve the problem of automated service
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composition and none of them contains a comprehensive comparison based on
said requirements. In this section, we present and briefly analyze a set of require-
ments that must be satisfied in order for a composition process to be considered
successful, accurate and complete.

Representation completeness

The first requirement refers to the discussion so far in this chapter. The com-
position processmust rely on specifications that are representationally complete,
in the sense that they take into account the frame, ramification and qualification
problems and act as a safeguard against the effects of these problems. Service
compositions can benefit from such specifications in three complementary ways.
First, since participating specifications are free of the frame problem, the result-
ing composition shares the same characteristic, meaning that non-effects are ef-
fectively modeled. Second, the resulting composition takes into account ramifi-
cations of effects of the contained services, which may also affect composability
results, and protects from inconsistent compositions where a service ramifica-
tion contradicts a precondition or postcondition of another service in the same
process. Third, through a solution to the exogenous qualification problem, expla-
nations can be provided for any unexpected execution result of the composite
process.

Automation

Since the focus of this analysis is automated service composition, an obvi-
ous requirement is that the generation of the composition schema must be at
least partially (if not fully) automated. The main purpose behind designing an
approach to handle service composition is to decrease user intervention and ac-
celerate the process of producing a composite service that satisfies preset require-
ments. Automation reduces the time spent in order to create a composition schema
compared to the time required in a manual composition approach, eliminates hu-
man errors and reduces the overall cost of the process. Thus, one should expect
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that a successful service composition approachprovides the highest possible level
of automation.

Dynamicity

A defining characteristic of a service composition approach is whether it pro-
duces a static or a dynamic composition schema. A static composition approach
involves selecting the component services to be used, linking them together to
form a composite process, which is then deployed. On the other hand, dynamic
composition approaches produce an abstract composition schema, that is essen-
tially a composite process without actual service bindings. The abstract composi-
tion schema canbe concretized afterwards,when each abstract task in the schema
is bound to an actual service endpoint.

Dynamicity ensures that a produced composition schema is consistent and
executable long after its initial design. A dynamic composition schema is able
to overcome issues such as services no longer being provided and services be-
ing replaced by new ones by providers, which would render a static composition
schema invalid, inconsistent and impossible to execute. Relying on services de-
scribed by specifications instead of implementation-specific interfaces facilitates
dynamicity, since compositions are essentially collections of specifications and
not actually implemented services.

Note that, usually, abstract compositions are produced at design time, with
concretization either also taking place at design time or performed at runtime,
after execution has begun. This does not necessarilymean that only runtime com-
position approaches are dynamic; if the result of a design time composition ap-
proach is an abstract process not linked to any actual service implementations,
then it is also considered dynamic.

Semantic capabilities

As it was argued in Section 2.3, semantic capabilities are fundamental for the
realization of SOAs. Semantically rich descriptions of services and composition



40 Chapter 2. Background and Literature Review

goals can be utilized by applications or other services without human assistance,
facilitating automated composition. Moreover, they allow for more efficient ser-
vice matchmaking based not only on service inputs and outputs and, as a result,
produced composite services are more close to what the user requests. Thus, ef-
fective service composition approaches should exploit semantic descriptions to
realize their goals.

QoS-Awareness

QoS-aware approaches take into account not only functional characteristics
of services but also non-functional ones, dealing with quality aspects such as re-
sponse time, price, availability and so on. Considering QoS aspects when decid-
ing which services to include in a service composition schema is important when
functional requirements are satisfied by more than one service. As a result, com-
posite services produced by QoS-aware approaches not only offer the capabilities
requested by the user but also guarantee the best possible quality. The composi-
tion problem of the running example requires QoS-awareness, since it contains
non-functional goals both for parts of the process as well as the overall composi-
tion.

Non-determinism

Non-determinism involves cases where an action may lead to more than one
different states depending on the values of some parameters. For the case of ser-
vice composition, non-determinism is observed when the composition schema
includes choice constructs (such as if-then-else) or loops (such as repeat-while).
Non-determinismmay lead to an increase in the number of possible choice points
throughout a composition problem solution and needs to be taken into account
in order to allow for more elaborate composition schemas. For instance, the com-
position problem in the running example depends on the existence of conditional
constructs in order to realize the report delivery sub-process.
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Partial Observability

Real-world applications bring several requirements to the table that are not
obvious when examining the composition problem from a theoretical point of
view. One of these requirements is partial observability, which involves dealing
with incomplete information of world states (initial or otherwise). This require-
ment is strongly linked to approaches that are based on AI planning techniques,
since most of these techniques rely on states and transitions to model service be-
havior. An effective composition approachmust deal with incomplete (or in some
caseswrong) information andmanage to produce composite services despite that
fact. For instance, in the running example, we would like to be able to generate
composite processes, even if we do not know the exact state of the world at the
beginning of the process.

Scalability

Another requirement brought by real-world applications is scalability. The
fact that a composition approachworkswell given a set of services is no guarantee
that it will work as effectively with a different, larger or more complex set of ser-
vices. Composition approaches must be tested against increasingly large service
registries or increasingly complex composition problems to examine how their
performance is affected. The common trade-off of scalability versus performance
often arises in this context. It is important to identify parts of the approach that
may pose limitations and try to work them out in order to ensure maximum scal-
ability for a given performance or vice-versa.

Correctness

Composition correctness is required when wewant to check if certain proper-
ties of the produced composite service hold, such as the fact that it is guaranteed
to produce a certain set of outputs given a certain set of inputs and conditions.
Correctness is established through verification techniques, which have also been
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well researched in service science. Employing service specifications is again a fa-
cilitator in this case, because the service itself is associated with the specification
against which correctness is checked.

Domain independence

A composition approach should not be limited to a specific domain (unless
of course, the focus of the research is exclusive to that domain from the start).
One should be able to apply the same approach to different domains, allowing for
the solution of a broad range of problems. This requirement may be difficult to
achieve while at the same time achieving the requirement of semantic capabili-
ties, since, in some cases, semantic knowledge is domain-dependent.

Adaptivity

The last requirement that we examine has attracted considerable interest
from research communities and involves the ability of a service (atomic or com-
posite) to adapt itself. Adaptation is the process of modifying SBAs in order to sat-
isfy new requirements and to fit new situations dictated by the environment on
the basis of predefined adaptation strategies. Adaptation goes one step further
from dynamic composition approaches, in the sense that the former also deals
with changes in the requirements set by the requester which the latter cannot
handle.

Adaptation can be proactive, aiming to modify an application before a devia-
tion occurs during the actual operation and before such a deviation can lead to
problems; in contrast, reactive adaptation handles faults and recovery from prob-
lems reported during execution. While we include adaptivity as a requirement
for automated service composition, this does not imply that it should be set as a
research goal for such an approach. Instead, research results from the adaptation
domain can be employed, so that the resulting composite services have the ability
to adapt themselves.
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2.4.2 Workflow-based Approaches

Business processes and workflowmanagement systems have been a major re-
search topic since the early 1990s. As a result, there has been a lot of research
effort on how to represent a sequence of actions. Drawing mainly from the fact
that a composite service is conceptually similar to a workflow, it is possible to
exploit the accumulated knowledge in the workflow/business process commu-
nity in order to facilitate service composition. Composition frameworks based
on workflow techniques are chronologically one of the initial solutions proposed
for automated service composition. Initially, most works focused on static and
manual compositions. More recent efforts, however, have attempted to realize
automation and dynamicity. Most approaches in this category employ the Busi-
ness Process Execution Language (WS-BPEL) [OASIS 2007].

[Majithia et al. 2004] presents a framework that automatically constructs a
Web service composition schema from a high-level objective. The input objective
is fed to an abstract workflow generator that attempts to create an abstract work-
flow (written in BPEL) that satisfies the objective on one of two ways: either by
using already generated workflows or subsets of them that are stored in a repos-
itory, or by performing backtracking to find a chain of services that satisfies the
objective. The abstract workflow is then concretized, either by finding existing
services through a matchmaking algorithm that matches inputs and outputs and
binding them to the workflow, or by recursively calling the abstract workflow
generator if no service can be found for an activity.

PAWS [Ardagna et al. 2007] is a framework developed by Politecnico di Mi-
lano focusing on the adaptation and flexibility of service compositions modeled
as business processes. As illustrated in Fig. 2.4, designers create a BPEL process
which is then annotated with global and local constraints that usually refer to
QoS aspects. The constraints are expressed as Service-Level Agreements (SLAs).
For each task in the created process, an advanced service retrieval module at-
tempts to find services that have the required interface (expressed in WSDL or
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SAWSDL) and do not violate any constraints, by performing SLA negotiation. If
no exact interface matches are found, a mediator is used to reconcile the inter-
face discrepancies. For each task, more than one candidate services are selected.
When the process is eventually executed by the BPEL engine, one candidate ser-
vice is invoked for each task. PAWS also supports self-healing, allowing for faulty
services to be substituted by other candidate services and at the same time en-
abling recovery actions to undo the results of the faulty services.

Figure 2.4: The PAWS framework [Ardagna et al. 2007]

[Zisman et al. 2007] approaches the workflow composition problem from a
datatype matching perspective, attempting to form sequences of services given a
set of inputs, a desired output and amaximumsequence length. Candidate service
operations are matched based on linguistic similarity, while inputs and outputs
are matched by creating datatype graphs and determining isomorphic relation-
ships between the graphs. The result of this process is one or more sequences of
services that achieve the goal output and which are then examined by the service
designer in order to determine the most suitable one. This approach is limited
to sequences and interface matching, thus not supporting any other control con-
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struct (e.g., parallel or conditional composition) or behavioural characteristics
such as preconditions and effects.

[Fujii and Suda 2006; 2009] propose an architecture that realizes semantics-
based, context-aware, dynamic service composition based on CoSMoS, a seman-
tic abstract model for both service components and users. Their composition ap-
proach, named SeGSeC, involves receiving a natural language request from the
user which is parsed using preexisting natural language analysis technologies
into a CoSMoSmodel instance. This is fed to theworkflow synthesismodulewhich
creates an executable workflow by discovering and interconnecting components
based on the request and functional descriptions of available components. The
workflow synthesis module is apparently limited to sequential and parallel com-
position schemas. Then, a semantic matching module ensures that the selected
components are semantically equivalent to the user request. If more than one
components satisfy both functional and semantic properties for a given task, con-
text information is exploited, based on user-defined rules or a history of previous
decisions, in order to select the most suitable component. The final workflow is
then executed and monitored. When a service failure is detected or a change in
context is perceived, the workflow can be dynamically modified to adapt to these
changes.

[Pino and Spanoudakis 2012] focuses on the security aspects of workflow com-
position, augmenting known workflow patterns with security properties and de-
pendencies between inputs and outputs,modeled using situation calculus axioms.
Workflow patterns are expressed using the OWL-S process model, although focus-
ing only on its interface subset (inputs and outputs). The composition process is
realized in a stepwise manner, identifying the patterns that are applicable and
attempting to build a workflow by instantiating the activities in the selected pat-
terns. During instantiation, candidate services are discarded if they fail to satisfy
the predefined security properties.

In general,we can conclude thatwhileworkflow-based composition approaches
have evolved from offering only manual and static composition methods to sup-
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porting automation and dynamicity, the resulting workflows are limited to sim-
ple schemas such as sequential and parallel execution, or in other cases, such as
PAWS, automation is only supported during the execution and adaptation of the
workflow, while the workflow design process is manual. This deficiency has been
addressed by combining workflow-based methods with AI planning techniques.
We examine such works in Section 2.4.5.

2.4.3 Model-based Approaches

Model-based or model-driven composition follows the suggestion of system
theory to raise the level of abstraction in order to deal with the increasing com-
plexity of systems. Approaches in this category use already explored and well-
established models to represent services and service composition, thus using a
higher description level on top of the traditional service description in WSDL,
OWL-S or similar description frameworks.

E-Service Composition (ESC) [Berardi et al. 2005b] is a prototype tool that
implements a model-based technique for automated service composition using
Finite State Machines (FSMs). Service behavior is modeled using two schemata
expressed as FSMs, an external schema that specifies its exported (externally-
visible) behavior and an internal schema that contains information on which ser-
vice instance executes each given action that is part of the overall service pro-
cess. When attempting to synthesize a composition, the external FSM models of
the available services and the target service are transformed to modal logic for-
mulas in Deterministic Propositional Dynamic Logic (DPDL). If the resulting set
of formulas is satisfiable, then a FSM for the target service is produced and con-
verted to an executable BPEL process. In parallel, [Berardi et al. 2005a] presents
Colombo, an alternative framework to ESC that is based on transition systems
instead of FSMs and focuses on supporting non-determinism and Semantic Web
services expressed in OWL-S, as well as introducing the so-called conversation
model, where any communication between services is in the form of message
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passing. Finally, [Giacomo et al. 2013] revisits this line ofwork in order to extend it
to support partial descriptions of service behaviors and also employs simulation
techniques to virtually compute all possible compositions.

Service Aggregation Matchmaking (SAM) [Brogi and Corfini 2008] is a service
discovery and composition systembased on Consume-Produce-Read (CPR) Nets, a
simple variant of the standard Condition/Event Petri Nets defined by the authors
to properlymodel control flow and data flowof a service. The SAM framework can
handle both functional and behavioral requests: functional analysis relies on a set
of requested functionalities, while behavioral analysis can generate a composite
service based on a CPR Net that describes the requested behavior. SAM supports
OWL-S services and a translator to CPR Nets is provided. Service composition is
realized based on CPRNets composition, which is formally defined by the authors.

[Tang et al. 2011] proposes a composition approach that combines logic-based
and model-based characteristics. Service input/output schemas and behavioral
constraints are represented as Horn clauses and service composition is realized
through logical inference of these clauses. Composite services are determined
through structural analysis of Petri nets that model the Horn clause set and the
composition goal. The resulting compositions, however, seem to be restricted at
best to sequences of parallel executions.

2.4.4 Logic-based Approaches

This category encompasses all approaches that are based on mathematical
foundations such as various logics, calculi or algebras but do not fit in any other
category. One example is the use of the pi-calculus [Milner 2004] in [Milanovic and
Malek 2004] to describe and compose Web services. Processes in the pi-calculus
can be sequences of other processes, parallel compositions, recursive executions,
or choices between operations, thus it is possible to express all basic composition
schemas. Receiving and sending information between processes is formalized as
input and output artifacts exchanged on channels. One can also introduce types
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to inputs and outputs. The abstract descriptions that are offered by pi-calculus
can be exploited to verify correctness and other properties of compositions.

[Rao et al. 2004] proposes the use of Linear Logic for automated service com-
position. Linear Logic is an extension of classical logic tomodel the notion of state
evolution by keeping track of resources. The authors propose an automatic trans-
lation of OWL-S descriptions to sets of Linear Logic axioms. Then, they use the-
orem proving to produce the composite service. The target service is expressed
as a sequent in Linear Logic and the prover generates all possible compositions
which are then translated to process models using a process language inspired
by pi-calculus constructs. It is possible to further translate such models to BPEL
workflows. However, the authors themselves acknowledge that using a proposi-
tional subset of Linear Logic limits the presentation of Web service properties.

[Lécué et al. 2008b] exploits the fact that OWL-S is based on Description Log-
ics and attempts to use DL reasoning to realize service composition. In previous
works, the authors defined causal links as semantic links between inputs and out-
puts of services, ranging from exact matches to disjoint sets (when input and out-
put sets are incompatible). Given a set of services, a causal link matrix (CLM) can
be constructed, containing all possible causal links. The composition approach
employs CLM+, an extended matrix that also supports non-functional properties.
Service discovery is performed to find a set of candidate services based on a re-
quest, by calculating the CLM+ for these services and attempting to incrementally
achieve the requested output, starting from the given input. At each step, the deci-
sion is based on matches inferred from CLM+ matrices between the output of the
last service selected and the inputs of all candidate services. The flow diagram
of the composition algorithm is shown in Fig. 2.5. [Lécué et al. 2008a] advances
the previous work by integrating CLM+ into an extended Golog interpreter (also
used in approaches included in the AI planning category in Section 2.4.5) that can
compute conditional Web service compositions and can elaborate a strategy for
automated branching by means of causal links and laws.
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Figure 2.5: Composition algorithm of [Lécué et al. 2008b]

2.4.5 AI Planning Approaches

The final category of automated service composition approaches comprises
all research efforts that use AI planning techniques in order to generate a compo-
sition schema. AI planning techniques involve generating a plan containing the
series of actions required to reach the goal state set by the service requester, be-
ginning from an initial state. All approaches in this family rely on one of themany
planning techniques that the AI community has proposed and incorporates it in
the process model creation phase of the composition framework.

An AI planning problem (in the classical sense) can be described as a quintu-
ple {S, s0, G,A,Γ} [Carman et al. 2003], whereS is the set of all possible states of
the world, s0 ⊂ S denotes the initial state of the planner,G ⊂ S denotes the set
of goal states the planning system attempts to reach, A is the set of actions that
can be performed in order to reach a goal state and Γ ⊆ S × A × S is a transi-
tion relation that describes the resulting state or states when a particular action
is executed in a given world state. If we consider A to be the available services,
G to be the goal set by the requester, and a state model related to S, s0 and Γ
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and applied to the available services, then we can use existing solutions to the AI
planning problem in order to solve the service composition problem. It should be
noted that this correlation is not followed to the letter by all approaches in this
category.

Due to the large amount of approaches that fall into the AI Planning category,
we use a further categorization, based on the type of AI planning technique used.
The classification is inspired by the works of [Chan et al. 2006] and [Ghallab et al.
2004]. Three categories of planning techniques are examined:

1. Classical planning: state-space or plan-space planning

2. Neoclassical and HTN planning: graph-based planning, Hierarchical Task
Network planning and constraint satisfaction

3. Other planning techniques: planning based on the situation and fluent
calculi and model checking

Classical planning

Classical planning approaches are based on the definition given at the begin-
ning of this section and involve searching a state-space in order to find a series of
state transitions from an initial state to a goal state. Classical planning sometimes
involves decomposing a goal to sub-goals and generating a separate plan for each
sub-goal, a technique known as plan-space planning.

[Akkiraju et al. 2004] is one of the first efforts to introduce planning in tradi-
tional workflow-based service compositions. Given an abstract BPEL flow (with
no concrete services bound to the tasks), the goal is to use planning techniques
to concretize the workflow. To that end, OWL-S service descriptions are trans-
lated to the Planning Domain Definition Language (PDDL) [Ghallab et al. 1998], an
effort to standardize planning domain and problem description languages. Then,
the PDDL descriptions are fed to IBM’s Planner4J planning framework, which con-
tainsmany planning algorithms, including classical planning ones. At run-time, a
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concrete service is requested for each abstract task. If no concrete service found,
the planner attempts to solve a planning problem with the available services as
input. This approach is semi-automatic, since the creation of the abstract flow is
manual.

[Zeng et al. 2008] proposes the formulation of service composition as a goal-
directed planning problem that takes three inputs: a set of domain specific service
composition rules (which aremanually defined), a description of a business objec-
tive or goal, and a description of business assumptions (organizational rules and
structures). To that end, they devise an ontology to represent these concepts, as
well as a three-step composition schemagenerationprocess. First, in theBackward-
Chaining phase, the composition rules are exploited trying to create a chain start-
ing from the business objective and moving backwards, until there are no more
rules or the initial state is reached. Forward-Chaining then attempts to complete
the composition schema produced in the first phase by adding services that may
be required by the results of some tasks. The final phase, Data-Flow-Inference,
adds data flow to the composition schema, since the previous steps only con-
tribute to the control flow aspects of the composition.

[Hatzi et al. 2012] adopts the common method of translating OWL-S descrip-
tions to the PDDL domain, but offers enhanced semantic capabilities through the
PORSCE II framework that computes hierarchy relationship and semantic distances
in order to determine semantic similarity between OWL-S concepts. Planning is
realized throughVLEPPO, an integrated system that visualizes planning problems
and integrates several different planning algorithms, allowing the user to exper-
imentally explore various solutions. The architectures of PORSCE II and VLEPPO
are shown in Fig. 2.6.

Neoclassical and HTN planning

Neoclassical planning comprises techniques that extend the classical notion
of planning. These include graph-based planning, where a plan graph of all pos-
sible states and transitions (or a subset of those) is constructed and constraint
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Figure 2.6: Composition architecture of [Hatzi et al. 2012]

satisfaction, where the planning problem is translated to a set of constraints and
a solver attempts to find a model that satisfies all constraints. This category also
includes Hierarchical Task Network (HTN) planning which involves decomposing
the desired task into sub-tasks in a recursivemanner, until the resulting sub-tasks
can be satisfied.

Graph-based planning is employed by [Wu et al. 2007] in order to realize ser-
vice composition. The authors propose their own abstract model for service de-
scription which is essentially an extension of SAWSDL to more resemble OWL-S
and WSMO. In addition, they model service requests and service compositions
with similar semantic artifacts. Then, they extend the GraphPlan algorithm so
that it can work with the models they defined. Morever, they add limited support
for non-determinism, by detecting patterns that correspond to loops but only in
case they are identified beforehand. The final system takes a user request defined
using the same model as services and extracts an executable BPEL flow, as shown
in the architecture in Fig. 2.7.

[Beauche andPoizat 2008] proposes theuse of GraphHTN,which extendsGraph-
Plan with HTN task decomposition in a composition framework focusing on adap-
tation capabilities. They introduce original semantic structures to describe the ca-
pabilities and data that are involved in a service. These structures enable not only
vertical adaptation by exploiting semantic relations between capabilities and re-
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Figure 2.7: Composition architecture of [Wu et al. 2007]

placing one service with an equivalent one, but also horizontal adaptation, substi-
tuting missing data with semantically equivalent ones. The final generated plan
is transformed to a YAWL [van der Aalst and ter Hofstede 2003] workflow.

[Sohrabi and McIlraith 2009] introduces preferences and regulations to HTN
planning. The authors extend PDDL to support preferences over how to decom-
pose tasks as well as expressing preferences over the preferred parametrization
of a task. They also include regulations (verification-geared constraints such as
safety constraints) that should be followed by any generated plan. They introduce
amodifiedHTNplanning algorithm,HTNWSC,which takes into account bothpref-
erences and regulations in the plan generation procedure.

[Mabrouk et al. 2009] addresses QoS-aware service selection and composition
by applying clustering and constraint-based techniques eventually producingmul-
tiple solutions to support dynamic environments. The framework collects func-
tional and QoS requirements, then discovers all service candidates that satisfy
functional requirements, as well as local (task-specific) QoS constraints. Then, a
second filtering phase follows, based on global QoS constraints, essentially maxi-
mizing a utility function. At runtime, a unique service out of the ones not filtered
out is selected for each task in the composition. As pointed out in Section 2.4.6,
this work is one of themost successful with regard to satisfying the requirements
in Section 2.4.1, only failing to support partial observability as well as not con-
cerning itself with correctness methods.
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[Rosenberg et al. 2009] presents a novel composition language called VCL that
is the foundation of a framework that realizes composition using graph-based
techniques and QoS-aware optimization using constraint and mixed-integer pro-
gramming techniques. Requirements are expressed in VCL in the form of con-
straints and candidate services are selected from a registry. A structured com-
position is produced based on a dependency graph that analyzes the required
data flow. The most suitable services are selected from the candidate ones by
either solving a constraint satisfaction problem for both local and global QoS re-
quirements or applying integer programming techniques. [Bartalos and Bieliková
2012] also employs directed acyclic graphs in order to find all possible composi-
tions of services; then, a forward and backward chaining composition algorithm
is applied, that takes into account IOPE-based service descriptions and relies on
service space restriction to achieve efficiency in case of large repositories and
continuous composition requests.

[Barakat et al. 2011] presents ahierarchy-baseddynamic composition approach
that relies on planning knowledge organized as task hierarchies and decompo-
sitions. In contrast to HTN planning, a task at any level of granularity can be
mapped to a concrete service. Pruning is performed on both task and plan lev-
els based on QoS constraints to reduce search space and increase performance.
Then, to find the global optimal plan, candidate plans are modeled as directed
graphs and a multi-constrained optimal path selection problem is solved.

Other planning techniques

[McIlraith and Son 2002] first explored planning using Golog, a logic program-
ming language based on the situation calculus. They extended and customized
Golog to support personalized constraints and non-determinism in sequential ex-
ecutions and modified ConGolog, a Golog interpreter to realize these enhance-
ments. This work was developed concurrently with the definition of OWL-S (then
calledDAML-S) andwas one of thefirst to consider SemanticWeb services as an in-
put to planners via translation to PDDL. In amore recentwork [Sohrabi et al. 2009]
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the introduction of preferences to planning with Golog is proposed, in the same
way that [Sohrabi and McIlraith 2009] introduced preferences to HTN planning.
Preferences are expressed using a first-order language defined by the authors and
used in a modified version of a Golog interpreter. Evaluation results illustrate the
effectiveness of introducing preferences to find optimal compositions.

[Chifu et al. 2009] and [Bhuvaneswari and Karpagam 2010] follow a similar ap-
proach but are based on the fluent calculus instead. OWL-S service descriptions
are translated to fluent calculus theories and service composition is realized via
planning with FLUX, a fluent calculus logic programming language. These works
are directly related to this thesis, since both WSSL and the composition and veri-
fication framework we propose are based on the fluent calculus. However, in con-
trast to our work, the simple fluent calculus is used by [Chifu et al. 2009] and [Bhu-
vaneswari and Karpagam 2010], without the extensions that solve the ramifica-
tion and qualification problems, resulting in frameworks that ignore their effects
and at the same time fail to capitalize on the benefits of their solutions. More-
over, both works do not support control constructs other than sequential and
parallel execution. Finally, their choice to represent inputs and outputs using the
extension of the fluent calculus to support knowledge and sensing is invalid since
these constructs represent knowledge states and handle partial observability. In
our work, inputs and outputs are represented in a natural way by special fluents.

The final planning paradigm that we examine is planning as model checking,
which has been extensively explored in correlation with service composition by
the ASTRO team in Fondazione Bruno Kessler. The original works in [Pistore et al.
2004, Traverso and Pistore 2004] attempt to exploit planning by model checking
in order to deal effectively with non-determinism, partial observability, and com-
plex goals. OWL-S process models are translated to state transition systems while
goals are expressed using EAGLE, a requirements specification language. State
transition systems and goal descriptions are fed to the MBP planner (which uses
model checking) and evaluation shows that, while correct plans are produced, the
procedure does not scale well, mainly due to the way goals were expressed.
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Subsequent research ([Bertoli et al. 2010, Pistore et al. 2005a;b]) attempts to
address scalability issues by defining an appropriatemodel for providing a knowl-
edge level description of the component services. In these works, BPELworkflows
are used as input, instead of OWL-S process models, and are translated to knowl-
edge level models (essentially a set of propositions). Given a composition goal,
they automatically generate its knowledge level representation that declareswhat
the composite service must know and how goal variables and functions must be
related with the variables and functions of the component services. This new rep-
resentation of goals causes an increase in scalability.

These research results havebeen incorporated in theASTRO framework [Train-
otti et al. 2005], allowing it to realize automated service composition. ASTRO takes
BPEL processes as input, feeds them into a planner that implements the planning
as model checking technique and exports resulting plans in the form of BPEL pro-
cesses. ASTRO also includes an execution and monitoring component, based on
the ActiveBPEL engine.

Other research efforts from the ASTRO team have focused on devising new
models for the specification of data flow [Marconi et al. 2006] as well as control
flow [Bertoli et al. 2009] requirements. Data flow requirements specify howoutput
messages (messages sent to component services) are obtained from input mes-
sages (messages received from component services). Control flow requirements
involve termination conditions and transactional issues. Data flow requirements
are translated to state transition systems while control flow requirements are
translated to the EAGLE language, although previous work has indicated that this
caused some scalability issues. [Marconi et al. 2008] shows how these research
results are incorporated in the ASTRO framework.

2.4.6 Comparison and Research Challenges

In this section, we present comparison tables for all approaches analyzed in
the literature review. The comparison is based on the requirements that were out-
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lined in Section 2.4.1. Publications that form a single line of work are represented
by a single entry in the comparison tables.

Tables 2.1 and 2.2 present a comprehensive comparison that details how each
approach manages to meet the automated composition requirements that we de-
fined. A  denotes that the corresponding approach satisfies that particular re-
quirement. A G# denotes that the corresponding approach only partially satis-
fies that particular requirement (e.g., in the case of scalability, evaluation is con-
ducted and shows that scalability is not always achieved). No symbol denotes that
the corresponding approach does not satisfy that particular requirement (or the
authors do not deal with the requirement at all). We exclude the requirement of
adaptivity, since it is themain objective of a multitude of research works focusing
primarily on service adaptation rather than composition and thus, is considered
out of scope.

Table 2.3 contains a condensed comparison which lists only categories of ap-
proaches instead of individual approaches, with the purpose of determining re-
search gaps for each category aswell as in general. A denotes that the particular
requirement has been addressed by the majority of approaches in the category.
A G# denotes that the particular requirement has been addressed by a single ap-
proach in the category. No symbol denotes that no approaches in this category
have addressed that particular requirement.

By studying Tables 2.1, 2.2 and 2.3, we infer a series of research topics that
still pose a challenge and drive the research that constitutes this thesis. First and
foremost, since no service description language solves the frame, ramification
and qualification problems, no composition approach achieves the requirement
of representation completeness. Hence, no composition approach takes ramifica-
tions into account, composition correctness disregards the exogenous qualifica-
tion problem and the produced composition descriptions do not include specifi-
cation of non-effects. Tomake sure that none of the issues analyzed in Section 2.2
comeup at any stage before, during or after the compositionprocess, composition
approaches must rely on service specifications that take into account the frame,
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Table 2.3: Comparison of Automated Service Composition approaches - by cate-
gory

ramification and qualification problems. We present WSSL, a language designed
with the explicit purpose of addressing these problems in Chapter 3.

Non-determinismandpartial observability are the two requirements addressed
by the least number of approaches: only [Brogi and Corfini 2008] and [Bertoli
et al. 2010] propose composition approaches that satisfy them both simultane-
ously. However, both of them are indispensable for an approach to be considered
useful in real-world applications. Composition schemas, may consist mostly of se-
quential and parallel executions but conditional execution is also a very common
behavior that needs to be modeled, as is iteration. Also, assuming that we have
complete knowledge of the state before executing a service composition may be
suitable for theoretical approaches, but in actual scenarios it is crucial to be able
to work with states that are only partially observable. In Chapter 4, we extend
WSSL in order to support both deterministic and non-deterministic composition
constructs, as well as modelling partially observable states.

While earlier approaches to service composition addressed almost exclusively
functional composition, laterworks beganmaking efforts to realizeQoS-awareness
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by introducing or reusing existing quality models, quality aggregation methods
and satisfaction of both functional and non-functional goals. Since QoS-aware
composition is not as widely researched as its functional counterpart, there are
several aspects that are yet to be fully achieved. First, the QoS models employed
are usually incomplete. As a result, the proposed QoS aggregationmethods either
do not take into account some QoS attributes or they focus exclusively on spe-
cific ones, resulting in a specialization of the aggregation process, as is the case
of [Rosenberg et al. 2009], which contains the most complete aggregation model
in terms of supported composition patterns.

Apart from the aggregation process, QoS-aware composition usually relies
on planners that produce a single abstract plan (in almost all cases sequential)
that is then concretized based on QoS constraints (as in [Mabrouk et al. 2009]
and [Rosenberg et al. 2009]); in other cases more than one plans are produced
and concretization is performed for all of them (as in [Barakat et al. 2011]). In
the first case, there may be possible plans that produce more optimal solutions
after concretization but are ignored, while in the second case, efficiency is com-
promised, especially if the number of plans rises significantly. In Chapters 4 and 5,
we address all these deficiencies, by first extendingWSSL to support quality spec-
ification based on [Kritikos and Plexousakis 2009b], which contains arguably the
most complete analysis of quality attributes; then, we design and implementWSS-
L/CVF, a complete QoS-aware service composition and verification framework re-
lying on WSSL. The primary objective for the proposed framework is not only to
achieve QoS-awareness and support non-determinism and partial observability,
but to satisfy all automated composition requirements that are included in Sec-
tion 2.4.1.

2.5 Specification-based Service Discovery

The proposed framework relies on WSSL not only to realize service compo-
sition but also to implement specification-based service discovery and verifica-
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tion. This and the following section provide a brief analysis of the most related
approaches in these fields. In both cases, we mainly focus on works that rely on
rich service specifications, containing conditions before and after execution and
possibly supporting semantics.

In [Rao et al. 2006], the authors argue that full automation for service dis-
covery and composition is unrealistic and propose a mixed initiative approach,
combining human decision making and partial automation. Services are speci-
fied using OWL ontologies, relying on a simplified version of OWL-S [Martin et al.
2004], supporting IOPE representations and also allowing for the inclusion of non-
functional properties (although this is not actually realized in this work). Discov-
ery is realized via reasoning based on semantic rule engines. Evaluation shows a
significant overhead in loading service description ontologies.

Service Aggregation Matchmaking (SAM) [Brogi and Corfini 2008] relies on
translating OWL-S services to Consume-Produce-Read (CPR) Nets, a simple vari-
ant of the standard Condition/Event Petri Nets defined by the authors to prop-
erly model control flow and data flow of a service. Discovery can be both func-
tional, i.e. simple input/output matching based on the notion of subsumption,
and behavioral, also including the behavior of services based on OWL-S control
flow constructs, not including, however, preconditions and effects. In both cases,
discovery is realized via CPR Nets analysis.

In [Klusch et al. 2009] and [Klusch and Kaufer 2009] present two Semantic
Web service matchmakers, OWLS-MX and WSMO-MX, with the former relying
on OWL-S service descriptions and the latter exploitingWSMO services. Both sys-
tems offer a hybrid approach in discovering services, supporting both logic-based
filtering based on ontology reasoning and non-logic-based actions, namely syn-
tactic similarity. Logic-based filtering in OWLS-MX yields exact, subsumption and
plug-in matches while hybrid filtering also delivers the inverse of subsumption
(subsumed-by) and nearest neighbor relations. In all cases, OWLS-MX takes into
account only inputs and outputs. WSMO-MX, on the other hand, relies on the
complete IOPE specification of a WSMO service and yields more detailed matches
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that take into account preconditions and effects expressed using F-Logic. Evalua-
tion results show good performance in terms of precision and recall, but overall
computation time is high, around 10 seconds per query for repositories of 500
services.

[Paliwal et al. 2012] proposes an unconventional approach to semantic service
discovery, due to the fact that Semantic Web service standards such as SAWSDL,
OWL-S and WSMO have not been widely adopted. Instead of relying on them,
semantics are derived by parsing WSDL documents in the UDDI registry and at-
tempting to find ontology concepts for each operation, input and output term
included in them. Based on these semantics, services are clustered in order to
reduce the search space and discovery is performed using semantic similarity
matching. On the other hand, [Lemos et al. 2012] propose to extend semantic sim-
ilarity with quality-based preferences while also supporting both hard and soft
constraints. While both of these works possess innovative characteristics, neither
goes beyond input/output matchmaking.

[Spanoudakis and Zisman 2010] presents a UML-based discovery framework
that aims to assist designers in creating service-based systems. Discovery queries
consist of a structural model (UML class diagram), describing the required inter-
face, behavioral models (UML sequence diagram), describing the required busi-
ness process (similarly to BPEL, not taking into account preconditions and effects)
and additional constraints, both hard and soft, e.g., quality-based constraints, de-
fined using ConstraintSQL, an XML-based language defined by the authors. The
discovery process consists of the filtering phase, where hard constraints are taken
into account and the optimization phase, where an overall distance is calculated
based on the structural and behavioral models and soft constraints. Evaluation re-
sults show that highest precision and recall is achievedwhen discovery queries in-
volve both structural and behavioral parts as well as additional constraints; how-
ever, computation time is significantly higher when combining all these features,
ranging from 26 to 134 seconds for exact matching.

Finally, the more recent work of [Zisman et al. 2013] proposes a proactive
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and reactive runtime service discovery framework, called RSDF, that adopts the
characteristics of discovery queries presented in the UML-based framework but
extends its capabilities beyond service-based system design to runtime discov-
ery. Queries are defined using SerDiQueL, an XML-based language that allows
for structural criteria (required interface), behavioral criteria (preconditions, or-
dering and dependencies between service operations) and additional constraints,
referring to quality aspects or non-structural interface characteristics, further
characterized as contextual or non-contextual. The discovery process in RSDF is
executed in pull or push modes, with the former addressing initial bindings and
discovery requests and the latter addressing requests for service replacement. In
both cases, evaluation consists of filtering and optimization phases similar to the
previous framework. Evaluation shows that computation time is much shorter in
push mode, hence it can be used for runtime discovery; this is in contrast to pull
mode, which increases linearly with the repository size but requires, 1 second per
service on average, when taking into account all aspects of a SerDiQueL query.

2.5.1 Discussion

In general,while there exist several approaches that gobeyond simple syntactic-
based discovery, the majority of them exploit only the semantic aspects of lan-
guages such asOWL-S orWSMO, viewing themmerely as ontologies for the seman-
tic annotation of service interfaces. Such works are fundamentally inadequate
with regard to the goals of this thesis, since they view service description as a
simple collection of inputs and outputs, rather than adopt the approach of speci-
fying the complete behavior of a service.

The few works that address these deficiencies ([Klusch and Kaufer 2009, Rao
et al. 2006, Zisman et al. 2013]) achieve a more complete approach to the discov-
ery problem, allowing for solutions that take simultaneously into account service
interfaces, behaviour and quality. However, they still are unable to address the
following issues:
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• All approaches disregard the existence of the frame, ramification and qual-
ification problems even though they include conditions in service and dis-
covery query descriptions, resulting in incomplete service behaviour mod-
els thatmay lead to inconsistent or inaccurate discovery solutions, e.g., due
to ignoring a ramification of a candidate service or by failing to specify non-
effects.

• Computation time seems to be affected by the inclusion of multiple mea-
surements for each facet of a discovery query, due to the fact that there is
no unified approach to the specification of all aspects of service behaviour.

• The discovery process is applied on service repositories, assuming each
service implementation as a unique entity, further affecting performance,
even though multiple implementations of the same functionality can be
grouped under a single behaviour specification.

2.6 Verification of Service Behavior

The work of [Foster et al. 2003] proposes a model-based approach for service
verification, using Finite State Processes (FSP). Service specifications are assumed
to be expressed using UML Message Sequence Charts and are translated to FSPs
using a preexisting tool. Concrete service implementations are expressed using
BPEL and a mapping from BPEL to FSPs is provided. Verification then amounts
to creating joint labeled transition systems (LTS) based on the two FSP specifica-
tions and checking trace equivalence. The LTSs are restricted to input and output
message exchanges between services participating in a composition. Foster et al.
[2004] follows up on the previouswork by focusing on service choreographies and
specifically addresses verification of interface compatibility, safety and liveness
properties.

[Fisteus et al. 2004] also focuses on verification of services modeled as BPEL
processes using Finite State Machines (FSM); it differs, however, in that FSMs
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are, in turn, translated to verification-specific models so that pre-existing model
checking verification systems, such as SPIN [Holzmann 2004], can be reused. Veri-
fication properties are expressed using boolean predicates and include invariants,
goals (i.e. effects), preconditions and postconditions, essentially offeringmore de-
tailed verification actions, rather than focus on inputs and outputs only.

[Kazhamiakin et al. 2006] proposes a holistic approach that takes into account
both synchronous and asynchronous service execution models. Transition sys-
tems are again used in order tomodel service behavior, augmentedwith channels
thatmodelmessage exchange queues; every communicationmodel, synchronous
or asynchronous, is represented by a different channel configuration. State-of-
the-art model checkers, such as SPIN [Holzmann 2004], are then used to verify
properties expressed in Linear-time Temporal Logic (LTL), specifically termina-
tion of individual services and of the composition as a whole.

[Dranidis et al. 2009] proposes the use of StreamX-machines (SXM) as amodel
for service verification due to their ability to represent both control and data flow.
Service behaviour is essentiallymodeled as a state transition diagram, supporting
inputs, outputs, preconditions and effects for each operation. Verification is per-
formed at run-time bymonitoring service execution and simulating it at the same
time using the corresponding SXM in order to compare actual and simulated re-
sults. Although SXM modeling supports preconditions and effects in theory, in
practice the authors do not include them in their approach. Also, the process of
deriving the SXM model of a Web service is manual.

Similarly to [Foster et al. 2003], labeled transition systems (LTS) are also used
by [Sheng et al. 2014] as a way to model service behavior for verification pur-
poses. The authors assume that operational and control behaviors of a service
(represented by LTSs) are separated, while a link between them is kept via con-
versational messages. Verification first involves making sure that both behaviors
are synchronized by checking the message sequences. Then, properties are ex-
tracted from the control behavior model and are verified against the operational
behavior one. Behavior modeling is again limited to input and output messages.
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2.6.1 Discussion

The vast majority of verification approaches for service behavior, regardless
of the models and representations used, focuses on properties that are related
to inputs and outputs of services and service compositions, as well as message
exchanges and conversations. Given that, modeling service behavior essentially
amounts to determining the input and outputmessages involved and the order in
which they are exchanged, disregarding any knowledge about whether an actual
message exchange can happen (through precondition modeling) or whether the
exchange completed successfully (effectmodeling), even though themodels used
may support such expressions. As was the case with service discovery, suchworks
differ in principle from the foundations and goals of this thesis, which requires, at
a bareminimum, for service behavior to include a representation of preconditions
and effects.

[Fisteus et al. 2004] is the only notable service verification effort, to the best
of our knowledge, that allows for the specification of verification properties that
include preconditions and effects. However, such properties are only included ex-
plicitly as verification goals and are not part of the service specification language
employed. Moreover, the frame, ramification and qualification problems are not
taken into account; hence, verification is unable to take into account the complete
behavior of a service, including possible knock-on or indirect effects or abnormal
and unexpected cases that deviate from the default service behavior.

From thebrief literature reviewon service discovery andverification it should
become apparent that the frame, ramification and qualification problems are not
solely associated with the description and specification of services, but permeate
the full lifecycle of a service or SBA. Hence, creating a service specification lan-
guage that addresses these problems effectively benefits all tasks that are based
on specifications, namely description, composition, discovery and verification.
Thiswill become apparent in the design and implementation of the proposed com-
position and verification framework, WSSL/CVF, in Chapter 5.
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In this chapter, themain contribution of this thesis, theWeb Service Specifica-
tion Language, is presented. Beginning with a detailed analysis of the language’s
fluent calculus foundations, we thenmove on to a formal definition of WSSL (pro-
nounced /’wi:zəl/) in terms of its abstract syntax and semantics, focusing on the
way the language addresses the frame, ramification and qualification problems.
Afterwards, a surface syntax as well as an XML syntax are presented, aiming at
increasing human readability and machine interpretability, respectively.

Employing a formalism designed for the domain of Reasoning about Action
and Change (RAC) allows us to more accurately specify the effects of a service
execution and the state of the world before and after each execution. The ratio-
nale behind choosing the fluent calculus over other RAC formalisms such as the
situation and event calculi is briefly summarized as follows:

• Service specification requires a non-narrative-based formalism, since there
is no need for an explicit notion of time: we only need to recognize the
state before and the state after execution. Hence, the event calculus is not
a suitable formalism, while the situation and fluent calculi are.

• In terms of complete solutions to the frame, ramification and qualification
problems, the fluent and event calculi are the best candidates, due to the
work in [Thielscher 2005b] and [Kakas et al. 2011], respectively, as presented
in Section 2.2. While the situation calculus was designed specifically to ad-
dress the frame problem, no adequate solution to the ramification and qual-
ification problems exists, to the best of our knowledge.

• In terms of tool support, all three calculi can be expressed and reasoned
with in the form of a logic program. While event calculus reasoning has
received more attention in recent years, an implementation of the fluent
calculus is offered, in the form of FLUX, and has already been applied in
programming autonomous agents, a field closely related to service science.

It is important to stress the fact that WSSL is independent of service design
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models. The language design was driven by traditional WSDL-based Web services
as well as Semantic Web services, but WSSL specifications can describe the be-
havior of any service-based system or application, including RESTful Web ser-
vices [Richardson and Ruby 2007], and can be exposed in a straightforwardway as
Linked Services, provided that their design principles [Pedrinaci and Domingue
2010] are followed.

3.1 The Fluent Calculus

3.1.1 General Notational Conventions

Throughout the dissertation document, predicate and function symbols start
with a capital letter, while variables start with a lowercase letter. For the sake of
simplicity, in definitions, a term xmay also denote a sequence of terms x1, ..., xn,
unless stated otherwise. Fluent variables are written by the letters f or g, state
variables by the letter z and situation variables by the letter s, possibly followed
by subscripts. Finally, within all formulas, variables outside the range of quanti-
fiers are implicitly universally quantified.

3.1.2 Basic Definitions

The fluent calculus [Thielscher 2005b] is a specification language and system
for reasoning about action and change, designed for autonomous robotic agents
with the purpose of supporting non-determinismandpartial observability, knowl-
edge and sensing actions, ramifications and concurrency. Following an initial def-
inition in [Thielscher 1997], a set of extensions were proposed in [Thielscher 1999;
2001b], resulting in a language that addresses both representational and inferen-
tial aspects of the frame problem, as well as the ramification and qualification
problems. The fluent calculus, as it is used for the purposes of this thesis, uses
standard many-sorted first-order predicate logic, combined with a few custom-
ary conventions regarding sorts and equality.
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The fundamental entity of the fluent calculus is the fluent, a single atomic
property of the physical world whichmay change in the course of time. In the ini-
tial definition of the fluent calculus as a specification language for robotic agents,
this change is the result of manipulation by the robot. In the case of services, a
fluent changes value as a result of a service execution; for instance, the execution
of the RetrieveLocation service in the running example results, among others, in
the addition of the fluentRetrieved(location, user) to the current state, denot-
ing that the location of the particular user is now retrieved by the system. Note
that fluents are represented by functions that take zero or more variables as ar-
guments.

A state is a snapshot of the environment at a certainmoment. A fluent is equiv-
alent to a state where only this particular fluent holds. An empty state, denoted
by ∅, is a state where no fluent holds. Two states can be combined in order to
form a new one using state composition, denoted by the function ◦. Actions rep-
resent executions of service operations. Finally, a situation is a history of action
performances. The initial situation, where no actions have taken place, is denoted
by S0. Predefined function Statemaps a situation to the state of the environment
in that situation.

A fluent f is said to hold in a state z, if z can be decomposed into two states,
one of which is f . The macro Holds(f, z) is introduced for notational conve-
nience:

Holds(f, z)
def
= (∃z′) · z = z′ ◦ f

State composition is governed by the following foundational axioms:

1. Associativity: (z1 ◦ z2) ◦ z3 = z1 ◦ (z2 ◦ z3)

2. Commutativity: z1 ◦ z2 = z2 ◦ z1

3. Empty state axiom: ¬Holds(f,∅)

4. Irreducibility:Holds(f, g)⇒ f = g
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5. Decomposition:Holds(f, z1 ◦ z2)⇒ Holds(f, z1) ∨Holds(f, z2)

6. State equality: (∀f)(Holds(f, z1) ≡ Holds(f, z2))⇒ z1 = z2

Holds expressions can be combined to create more complex state description
formulas. Such a first-order formula∆(z) is called a state formula, if z is the only
free state variable, with states occurring exclusively inHolds expressions, with-
out any actions or situations. Accordingly, a situation formula ∆(s) is produced
given a state formula∆(z) and a situation s such that z = State(s).

3.1.3 Actions, State Change and the Frame Problem

In order to formalize preconditions of actions, a predefined predicate Poss is
introduced, taking an action and a situation (or an action and a state) as argu-
ments. Also, predefined function Do takes an action and a situation as input and
produces the situation that results after performing the action on the input situ-
ation. Preconditions are expressed using the following definition:

Definition 3.1.1 An action precondition axiom for an actionA(x) is a formula

Poss(A(x), s) ≡ ΠA(x, s)

where ΠA(x, s) is a situation formula with free variables among x, s, with the
semantics that actionA is possible at situation s if and only ifΠA is true.

If z = State(s), then the action precondition formula can bewritten equivalently
asPoss(A(x), z) ≡ ΠA(x, z). For instance, the actionprecondition axiom for the
RetrieveLocation service of the running example is defined as:

Poss(RetrieveLocation, z) ≡ Holds(GPSActive(user), z)

The fluent calculus bases its solution to both the representational and infer-
ential aspects of the frame problem on the notion of states. Change is modeled
as the difference between two states. Actions are deterministic and result in a
bounded number of direct effects. Change can be positive (a fluent is added to a
state) or negative (a fluent is removed from a state). Formally:
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z − f = z′
def
= ¬Holds(f, z′) ∧ (z′ ◦ f = z ∨ z′ = z) and

z + f = z′
def
= Holds(f, z′) ∧ (z ◦ f = z′ ∨ z′ = z).

Change can be generalized to include finite states, which are defined as either the
empty state, or a composition of a finite number of state terms expressed by func-
tion symbols representing fluents.

Given this state changemodeling, effects are expressed based on the following
definition:

Definition 3.1.2 A state update axiom for an actionA(x) is a formula

Poss(A(x), s)→ (∃y)(∆(s) ∧ State(Do(A(x), s)) = State(s) + θ+ − θ−)

with∆(s) a situation formula with free variables among x, y, s and θ+, θ− finite
states with variables among x, y. The semantics is the following: provided that
an action A is possible at a situation s, then the action execution at situation s re-
sults in a successor state which is defined as a modification of the previous state
(State(s)), resulting after adding fluents that have beenmade true (θ+, called pos-
itive effects) and subtracting fluents that have been made false (θ−, called negative
effects), under possible additional conditions expressed by formula∆(s).

In the simplest case, ∆(s) ≡ ⊤. For instance, the state update axiom for the
RetrieveLocation service is expressed as:

Poss(RetrieveLocation, s)→

(∃location, request)(State(Do(RetrieveLocation, s)) =

State(s) +Retrieved(location, user)−HasInput(request)

Note that Definition 3.1.2 is a simplified version of a state update axiom, allowing
a single possible state update, given an action and a set of additional conditions.
The general form of a state update axiom allows a finite number of possible sets
of additional conditions for the same action, each resulting in a different state
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update as seen below:

Poss(A(x), s)→ (∃y1)(∆1(s) ∧ State(Do(A(x), s)) = State(s) + θ+1 − θ
−
1 )

∨ ... ∨ (∃yn)(∆n(s) ∧ State(Do(A(x), s)) = State(s) + θ+n − θ−n ) (3.1)

In the case of services, it is farmore common to include all required conditions for
a successful execution as service preconditions, without separating them in pre-
conditions and additional conditions. Hence, the simplified state update axiom
is deemed more appropriate. Under the assumption that θ+ and θ− are disjoint,
state update axioms are a provably correct solution to the representational as-
pect of the frame problem (see Theorem 7 in [Thielscher 2000] and Theorem 1.14
in [Thielscher 2005b]).

Definitions 3.1.1 and 3.1.2 also allow the implicit specification of invariants,
i.e. conditions that should hold both before and after service execution. Invariant
semantics can be realized by including the invariant condition in the action pre-
condition axiomandmaking sure that the corresponding state update axiomdoes
not include a negative effect that refers to the same condition. For instance, one
precondition of the ReceivePay service is that the mechanical problem has been
solved. Due to the nature of state change in the fluent calculus, not including the
same condition in the negative effects of the ReceivePay state update axiom can
replicate invariant semantics.

States follow the principle of inertia, meaning that the values of the fluents
they comprise tend to persist. In the running example, this is manifested as the
fact that a credit card remains deactivated after having reached the daily spend-
ing limit. A change in the activation state of the credit card occurs either explic-
itly, as an effect included in another service specification or implicitly, by requir-
ing that the credit card is active as a precondition for other services. In general,
there is a limit to what one can observe and specify and it is usually expected to
include a parsimonious analysis of change in each service specification.

WSSL follows the SOA design principle of service statelessness: state manage-
ment is delegated and deferred to other services. Hence, modeling stateful infor-
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mation that needs to be kept among executions of a single service is out of the
language scope. Concerning internal states of a service, WSSL considers atomic
services as black boxes, only recognizing the states before and after execution. In
the case of composite services, however, internal states can be modeled, based
on the before and after states of each participating service. Section 4.1 details a
WSSL extension to support specification of composite services.

3.1.4 Representing Inputs and Outputs

While action precondition axioms and state update axioms of the fluent cal-
culus correspond directly to service preconditions and postconditions, the trans-
lation is not as direct in the case of inputs and outputs. In related literature ( [Bhu-
vaneswari and Karpagam 2010, Chifu et al. 2009]) inputs and outputs are modeled
using the extension of the fluent calculus to support knowledge and sensing. This
is fundamentally wrong, since the intent of these extensions is to represent par-
tially observable states (more on that in Section 5.1.4). Inputs and outputs can
be represented in a natural way by fluents as well. Requiring an input or pro-
ducing an output can be expressed using the Holds macro, as is the case with
preconditions and postconditions. For notational convenience, we define two re-
served unary fluent functions, namely HasInput and HasOutput. HasInput
denotes that the associated variable is available to the service as an input while
HasOutput denotes that the associated value is produced as a service output.

Inputs and outputs are formalized based on the following definition:

Definition 3.1.3 An input formula in z is a first-order formula I(z) with just one
free state variable z, which is composed of Holds formulas on z, consisting exclu-
sively of HasInput fluents. Equivalently, an output formula in z as a first-order
formula O(z) with just one free state variable z, which is composed of Holds for-
mulas on z, consisting exclusively ofHasOutput fluents.

For instance, the input and output formulas for RetrieveLocation are, respectively,
Holds(HasInput(request), z) andHolds(HasOutput(location), z).
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3.2 Abstract Syntax

In this section, the abstract syntax of WSSL is defined. WSSL is founded upon
the fluent calculus theory thatwas analyzed in the previous section. Resource and
data representation is inspired by the corresponding definitions in Web Service
Modeling Language (WSML) [WSML Working Group 2008a], an outline of which
can be found in Section 2.3.4. A complete BNF grammar for WSSL can be found in
Appendix A.

3.2.1 Identifiers and Namespaces

Identifiers in WSSL are either IRIs or data values. An IRI can be any Unicode
character sequence provided that it represents a valid and absolute IRI [Duerst
and Suignard 2005]. IRIs allow anyWSSL element to be linked to a concept defined
in an ontology, providing the required semantics. A full IRI sequence is expected
to be delimited by double quotes (””). For convenience, IRIs can be abbreviated
to compact URIs, formed by a namespace prefix and a local part separated by
a hash symbol (#). Also, the namespace prefix can be omitted, assuming the de-
fault namespace http://example.org/#. Namespaces used in a specification need
to be declared at the beginning, as pairs of prefixes and full namespaces. Note that
an IRI can be replaced by the symbol nil, if the corresponding information is not
known.

WSSL data values can be one of the following:

• elementary data value, corresponding to the three primitive datatypes in-
teger, decimal or string, as defined in XML Schema [Biron and Malhotra
2004]

• constructed data value, created using a datatype wrapper.

As in WSML, a datatype wrapper consists of an IRI corresponding to an XML
Schema datatype (apart from the ones used in elementary data values) and a
set of arguments, which can be elementary data values or variables. For example,
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the datatypewrapper for the date type is xsd#time(integer_hour, integer_minute,
decimal_second). WSSL variables must start with a question mark (?) to differen-
tiate them from other symbol sequences, such as constants.

3.2.2 Service Specifications

AWSSL specification is a 7-tuple

S = ⟨service, input, output,pre,post, causal,default⟩

where:

• service is a set of identifiers offering general information about the service,

• input is a set of WSSL logical expressions defining input formulas that rep-
resent the required input of the service,

• output is a set of WSSL logical expressions defining output formulas that
describe the expected output of the service,

• pre is a set of WSSL logical expressions defining action precondition axioms
that detail the service preconditions, taking into account default qualifica-
tions,

• post is a set of WSSL logical expressions defining state update axioms that
describe the service postconditions, including ramifications and taking into
account default qualifications,

• causal: is a set of WSSL logical expressions defining causal relationships link-
ing direct effects with their ramifications (analyzed in Section 3.2.3),

• default: is a default theory formalizing default qualifications for service
execution (analyzed in Section 3.2.4).

Information contained in the service tuple can indicatively include a service
name, a service operation name or information for invoking the service (see Sec-
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tion 6.3.1 formore details). Note that, by default, we assume that aWSSL specifica-
tion is associated with a single atomic service operation, or a black box view of a
composite service. Hence, concrete services that offer more than one operations
are represented by multiple WSSL specification documents. Each one of the log-
ical expressions representing inputs, outputs, preconditions, postconditions and
causal relationships is associated with an IRI that acts as an identifier.

If a service is associated withmultiple state update axioms, then they are con-
sidered as alternativemodels of effects for the same service, similarly to using dis-
junctive state update axioms. Due to state updates representing a complete view
of the effects of a service, outputs need to be included as positive effects, while
inputs that behave like tokens (i.e. consumed during execution) are also included
as negative ones. Although this may be deemed a repetition of information, the
reason for additionally representing inputs and outputs separately is to be able
to offer interface-only subsets, in cases where complete behavior models are not
required.

An especially desirable feature in the service world is taking into account
asynchronous execution, i.e. services that do not wait for a response after invo-
cation. Asynchronous services can be easily modeled as a pair of distinct WSSL
services, similarly to the invoke/receive combination of WS-BPEL [OASIS 2007],
thanks to the definition of states in WSSL: the first service has no postconditions,
since it simply invokes the operation, while the second has no preconditions,
since they have already been checked on invocation. In this manner, the state
after invoking the service is decoupled from the state after receiving the reply.

WSSL Logical Expressions

AWSSL logical expression is defined using a first-order fragment of the fluent
calculus. The alphabet consists of the following sets of symbols:

• A countable setSSS of sorts. S = {FLUENT, STATE,ACTION,SIT,

ACCIDENT,BOOL}withFLUENT < STATE. SortBOOLdenotes
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symbols that refer to boolean values, while the rest represent the four fun-
damental entities of the fluent calculus, fluents, states, actions and situa-
tions, as well as the notion of accidents, required for the solution to the
qualification problem (see Section 3.2.4).

• Logical connectives: ¬ (negation),∧ (conjunction),∨ (disjunction),→ (impli-
cation) and≡ (equivalence).

• Truth constants:⊤ (true) and⊥ (false).

• Quantifiers: For every sort s ∈ S, ∀s (for all), ∃s (there exists).

• Equality symbol: For every sort s ∈ S,=s.

• Auxiliary symbols: Comma ”,” and parentheses ”(” ”)”.

• Variables: For every sort s ∈ S, a countably infinite set of variables VsVsVs. The
family of sets Vs is denoted by VVV .

• Nonlogical symbols: A setLLL forming the WSSL signature, consisting of:

– Function symbols: A countable, nonempty setFSFSFS of symbols and a rank
function r: FS → S+ × S, assigning a pair r(f) = (u, s) called
rank to each function symbol f , with u denoting the arity (u > 0)
and s the function sort. The predefined function symbols Do, State,
HasInput and HasOutput are contained at minimum. Depending
on the sort of each function symbol, FS contains at least three sub-
sets: FSA, containing function symbols of the sort ACTION , FSF ,
containing function symbols of the sort FLUENT and FSACC , con-
taining function symbols of the sortACCIDENT .

– Constants: For every sort s ∈ S, a countable, possibly empty set of
constants CsCsCs. The family of sets Cs is denoted by CCC . In particular,
the sets of state constants CSTATE and situation constants CSIT are
nonempty since the former contains at least the empty state constant
∅ and the latter contains at least the initial situation constant S0.
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– Predicate symbols: A countable, nonempty setPSPSPS of symbols and a rank
function r: PS → S+×BOOL, assigning a pair r(P ) = (u,BOOL)

called rank to each predicate symbol P , with u denoting the arity of
the predicate. If arity is 0, thenP is a propositional letter.PS contains
the predefined predicate symbols Poss, Causes andAcc.

Note that the explicit mention of the sort in symbols such as existential and
universal quantifiers can be omitted if the particular sort can be otherwise de-
rived. All elements of setsFS, PS are IRIs. Variables, as alreadymentioned, need
to start with a question mark (?). It is assumed that sets V, FS, PS andC are dis-
joint. Finally, the macros Holds and Ramify (defined later on), as well as addition
and substraction of fluents from states can also be used in WSSL logical expres-
sions.

Terms and atomic formulas are defined as follows:

1. Every constant and every variable of sort s is a term of sort s.

2. If t1, ...tn are terms, each ti of sort si and f is a function symbol of sort s
and arity s1, ...sn, then f(t1, ...tn) is a term of sort s.

3. Every propositional letter is an atomic formula, and so are⊤ and⊥.

4. If t1, ...tn are terms, each ti of sort si and P is a predicate symbol of arity
s1, ...sn, then P (t1, ...tn) is an atomic formula.

5. If t1 and t2 are terms of sort s, then t1 =s t2 is an atomic formula.

Formulas are defined as follows:

1. Every atomic formula is a formula.

2. For any two atomic formulasA andB,A ∧B,A ∨B,A→ B,A ≡ B and
¬A are also formulas.

3. For any variable xi of sort s and any formula A, ∀s(xi)A and ∃s(xi)A are
also formulas.
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3.2.3 Addressing the Ramification Problem

The ramification problem poses a fundamental challenge with relation to the
frame problem (and its solution in the fluent calculus): state update axioms allow
only for explicit effects to be admitted as a state change, assuming everything else
to be inert. Hence, accounting for ramifications (implicit, knock-on, or indirect
effects) leads to the need for a modification of the format of state update axioms.
As Thielscher points out (see Chapter 9 in [Thielscher 2005b]), the naive solution
of treating all ramifications as direct effects leads to two major deficiencies:

• all local dependencies between effects turn into global ones, failing to cap-
ture the actual semantics of how the effects are linked

• recursive effects cannot be expressed

At the heart of the solution to the ramification problem in the fluent calculus
lie causal relationships. A ramification is always linked to the direct effect (or
another ramification) that brings it about; that particular relationship needs to
bemodeled. This is achieved by the predefined predicate Causes and the following
definition:

Definition 3.2.1 A causal relationship is a formula

(∀)(Γ→ Causes(z, p, n, z′, p′, n′, s)

where z, p, n, z′, p′ and n′ are state variables and Γ is a first-order formula with-
out any appearance of Causes and with s being the only situation variable con-
tained. The semantics is the following: in situation s, under possible conditions
expressed byΓ, the positive and negative effects p andn that have occurred cause
an automatic update from state z to state z′, with positive and negative effects p′

and n′.

Essentially, the Causes predicate is a relation between two state-effect triples with
respect to a situation. Modeling of causal relationships provides the basis for in-
ferring the ramifications of an action. In the original solution to the ramification
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problem, as defined in [Thielscher 2005b], causal relationships are generalized
to include the transitive closure of Causes, in order to express the notion of arbi-
trary chains of ramifications, representing causal relationships as edges in a graph
and ramification inference as traversing the graph until a node with no outgoing
edges is reached (a so-called sink). However, in the case of services and WSSL,
specification requirements are much simpler: since causal relationships are not
always expected to be expressed by providers, some relationships can be derived
given a set of services that participate in a service composition, in order to de-
termine the consistency of the composition. Hence, there is no need to express
arbitrary chains, since the derivation will, at best, yield concrete direct causal re-
lationships between condition pairs.

Taking the above into account, inferring ramifications is expressed by a sim-
plified version of the macro Ramify (compared to its original form in [Thielscher
2005b]), defined as follows:

Ramify(z, p, n, z′, s)
def
= (∃p′, n′)(Causes(z − n+ p, p, n, z′, p′, n′, s).

The semantics is that in situation s, state z gets updated by positive effects p and
negative effects n as well as the application of the causal relationship expressed
by Causes, leading to the final state z′. The final step for solving the ramification
problem is integrating ramifications into state update axioms, so that they offer a
complete view of what is caused after the execution of an action. The state update
axioms with ramifications are defined as follows:

Poss(A(x), s)→ (∃y)(∆(z) ∧Ramify(z, θ+, θ−, z′, Do(A(x), s))

with ∆(z) a state formula with free variables among x, y, z and θ+, θ− finite
states with variables among x, y. The semantics is slightly modified as follows:
provided that an action A is possible at a situation s, then the action execution
at situation s results in a successor state z′ which is the result of positive effects
θ+ and negative effects θ− occurring at state z, in turn causing ramifications that
lead to z′, under possible additional conditions expressed by formula∆(z) (again,
in the simplest case,∆(z) ≡ ⊤).



84 Chapter 3. Web Service Specification Language (WSSL)

To illustrate how the solution to the ramification problem can be applied to
the running example, let us consider again the case of the RetrieveLocation task. A
successful executionmeans that the vehicle status has been received; in turn, this
means that a mechanic log is generated, based on the gathered information. This
causal relationship is expressed as follows:

?p = HasOutput(status) +Retrieved(status, vehicle)∧

?n = HasInput(request)⇒ Causes(?z, ?p, ?n, ?z +

Generated(mechlog), ?p+Generated(mechlog), ?n, ?s)

In order for this causal relationship to be taken into account when determining
the effects of executing RetrieveLocation, the state update axiom associated with
the task must be slightly modified based on the Ramifymacro definition:

Poss(RetrieveLocation, s)⇒ (∃location, request)

Ramify(z,Retrieved(location, user),HasInput(request), z′,

Do(RetrieveLocation, s))

3.2.4 Addressing the Qualification Problem

While the ramification problem deals with presenting a complete account of
the effects of an action, the qualification problem tackles the dual issue of ac-
counting for all possible preconditions that are necessary for an action. This in-
volves taking into account expectations that are otherwise assumed to be always
satisfied, but which can explain unsuccessful executions when all normal precon-
ditions hold. This is realized through the inclusion in the fluent calculus of sort
ACCIDENT, along with FSACC , a finite set of function symbols of that sort and
an additional predefined predicate, Acc. Acc is of arity 2, taking as input one ar-
gument of sort ACCIDENT and one of sort SIT. Acc(c, s) carries the meaning that
accident c happened in situation s.

In order to assume away accidents (we assume they do not happen except if
we cannot do otherwise), default logic formalisms [Reiter 1980]must be employed.
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A default theory is a pair ⟨∆, O⟩ where O is a possibly empty set of observations,
situation formulas that are known to be true and ∆ is a set of default rules of
the form: Prerequisite:Justification(s)

Conclusion . [Thielscher 2005b] proposes the following
default theory:

∆ = ({ :¬Acc(c,s)
¬Acc(c,s) },Σ ∪O)

where O is a set of observations, situation formulas that are true and Σ is the
domain axiomatization. The rule is essentially a single universal default on the
non-occurrence of all accidents, an application of the closed world assumption
on accidents happening. As long as the observations are in line with the expected
effects of an action, then no accident needs to be considered as having taken place.

Accidents are then integrated into state update and precondition axioms. To
express the default case of the effects of an action where no accident has taken
place,we just include the conjunct (∀c)¬Acc(c, s) in the state update axiom. Equiv-
alently, precondition axioms are rewritten in the following form:

Poss(A(x), s) ≡ [(∀c)¬Acc(c, s)→ ΠA(x, s)]

meaning that an action is possible at a situation provided that no accidents have
happened and the preconditions are true.

Apart from these defaultmodifications, where no accident has happened, one
can think of other clauses to include in a state update or precondition axiom. For
instance, we may want to express what effects are brought upon by a particular
accident happening. This can be accomplished by adding a disjunct to the state
update axiom of the action that expresses that connection. Similarly, if we want
to express new preconditions for an action to account for an accident happening
then a conjunct can be added containing an implication with an accident clause
on one side and the associated preconditions on the other. However, such detailed
modeling of accidents may not be suitable for the service case, since one can ex-
pect a service designer or provider to provide minimum details concerning acci-
dents, such as accidental effects, but not further information concerning condi-
tions for these accidents happening.
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An application of the solution to the qualification problem in the running
example involves the postconditions of the EReport task. Under normal circum-
stances, a successful execution leads to a report being delivered via e-mail to the
user. However, in case no report is delivered, even though all preconditions were
known to hold before execution, then this can be explained by the occurrence of
a delivery failure. This behavior can be expressed in the right-hand side of the
action precondition axiom as follows:
(∀?c)¬Acc(?c, ?s) ∧ (State(Do(EReport, ?s)) = State(?s)+

HasOutput(report) + Emailed(report) − HasInput(invoice)) ∨ (∃?deliv)

(Acc(Failure(?deliv, ?s)) ∧ State(Do(EReport, ?s)) = State(?s))

3.2.5 WSSL specification of the running example

Having defined the complete abstract syntax for WSSL, we turn our focus to
the running example, defined in Section 2.1, in order to express WSSL specifica-
tions for the service tasks that are described in it. Tables 3.1 and 3.2 offer indica-
tive specifications for these tasks. To achieve a more condensed representation,
the following simplifications are adopted:

• Poss predicates are omitted; only the right-hand side of action precondition
axioms is included.

• The left-hand side of state update axioms, as well as the existential quan-
tification at the beginning of the right-hand side are omitted.

• No-accident clauses of the form (∀?c)¬Acc(?c, ?s) are included only in the
case where there is also an accident clause.

• In each state update axiom, existential quantification is implied. Addition-
ally, ?z_in ≡ State(?s_in) and ?z_out ≡ State(Do(A(?x), ?s_in)).
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3.3 Surface Syntax

The abstract syntax defined in the previous section is not easily interpreted
by humans. In order to increase human readability, we define a surface syntax.
Similarly to WSML [WSML Working Group 2008b], we define a mapping function
tr that takes as input a WSSL specification written using the abstract syntax and
returns the equivalent specification using the surface syntax. The application of
the mapping function to all elements of a WSSL specification follows. Underlined
words represent reserved keywords for theWSSL surface syntax,while boldwords
represents WSSL specification parts. We assume that an indicative subset of what
can be included as service-related information in the service tuple, namely ser-
vice name and service grounding.

tr(⟨name, input, output,pre,post, causal,default⟩) =

service tr(name) tr(grounding)

input tr(input)

output tr(output)

precondition tr(pre)

postcondition tr(post)

causalrelation tr(causal)

defaulttheory tr(default)

IRIs and data values are unaffected by the translation process, staying the
same in both abstract and surface syntaxes. Namespace declarations are preceded
by a namespace keyword, followed by a list in braces, separated by commas. Ta-
ble 3.3 details the mapping process from abstract to surface syntax for WSSL logi-
cal expressions, through a translation function tr(). The equality symbol, as well
as predicate and function symbols and variable names stay the same in the sur-
face syntax. Observations in a default theory are translated in the same way as
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Abstract Syntax Surface Syntax

tr(¬ϕ) not tr(ϕ)

tr(ϕ ∧ ψ) tr(ϕ) and tr(ψ)

tr(ϕ ∨ ψ) tr(ϕ) or tr(ψ)

tr(ϕ→ ψ) tr(ϕ) implies tr(ψ)

tr(ϕ ≡ ψ) tr(ϕ) equivalent tr(ψ)

tr(⊤) true

tr(⊥) false

tr(∀?x(ϕ)) forall ?x (tr(ϕ))

tr(∃?x(ϕ)) exists ?x (tr(ϕ))

Table 3.3: Surface syntax for WSSL logical expressions

WSSL logical expressions. Default rules are translated as follows:

tr(
Prerequisite : Justification(s)

Conclusion
) =

if tr(Prerequisite) assuming tr(Justification(s)) then tr(Conclusion)

Prerequisites, justifications and conclusions are translated asWSSL logical expres-
sions.

3.4 Semantics

The semantics for WSSL is defined based on the standard model theory for
classical first-order logic [Galton 1990], augmented by the semantics for IRIs as
defined in WSML [WSML Working Group 2008b]. Also, the associated default the-
ory follows the semantics first presented in [Reiter 1980]. The main additional
aspect brought on by the need to interpret IRIs is the notion of abstract and con-
crete domains. An abstract domain gives us flexibility in interpreting IRIs as any
kind of abstract object, while a concrete domain allows for the interpretation of
elementary data values. A concrete domain needs to support all three elemen-
tary data types used by WSSL (integer, decimal and string). For instance, it can
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be equal to the union of the sets of integer numbers, finite-length sequences of
decimal digits (preceded or not by theminus symbol) and finite-length sequences
of Unicode characters.

AWSSL interpretation is a 6-tuple I = ⟨U,D, IC , IF , IP , B⟩ where:

• U is the abstract domain of interpretation, a non-empty countable set used
to interpret IRIs. Note that the symbol nil, which may substitute an IRI,
needs to be replaced by a unique IRI before interpretation.

• D is the concrete domain of interpretation, a non-empty set disjoint from
U , used to interpret elementary data values.

• IC is a mapping from individual constants to elements of U andD.

• IF is a mapping from function symbols to functions over U andD.

• IP is a mapping from predicate symbols to predicates over U andD.

• B is an assignment from a variable to an element of U ∪D

The interpretation of constants depends on whether the constant is an IRI or
an elementary data value. In the former case, IC(c) = u ∈ U , while in the latter
case IC(c) = d ∈ D. A similar distinction applies to function symbols. If the
function symbol represents a data wrapper function (that creates a constructed
data value), it is interpreted as a function over the concrete domain: IF (f)i =

Di → D, with i denoting the arity. Otherwise, we work on the abstract domain
and IF (f)i = U i → U . Predicate symbols are interpreted as a subset of both
domains: IP(p) ⊆ D ∪ U .

In order to define interpretation of terms, we first need to handle variables.
For each variable, there can be a number of variable assignments B, assigning
each variable v to an individual vB ∈ U ∪ D. A variable assignment in the con-
crete domain vB ∈ D is called a concrete variable while a variable assignment in
the union of the domains vB ∈ U ∪ D is called an abstract variable. Given that
definition, terms are interpreted as follows:
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• If a term is a variable with assignment B, then tI,B = tB

• If a term is a function f(t1, ..., tn), then tI,B = IF (f)(tI,B1 , ..., tI,Bn )

3.4.1 Satisfaction and Entailment

Having interpreted terms, we nowmove on to formula interpretation. We de-
fine the notion of satisfaction for a WSSL formula, given an interpretation I and
under a variable assignment B (e.g., for formulas with free variables). If a for-
mulaϕ is satisfied by an interpretation I under a variable assignmentB, wewrite
(I, B) � ϕ. If ϕ is satisfied by I under any possible variable assignment, we write
I � ϕ, which can also be read as I is a model of ϕ or ϕ is true in I . The opposite (I
is not a model of ϕ) is denoted by I 2 ϕ. The satisfaction relation, for a formula
ϕ under variable assignmentB is defined as follows:

• (I, B) � ⊤ (and equivalently I � ⊤)

• (I, B) 2 ⊥ (and equivalently I 2 ⊥)

• (I, B) � t1 = t2 iff tI,B1 = tI,B2

• (I, B) � p(t1, ..., tn) iff (tI,B1 , ..., tI,Bn ) ∈ IP(p)

• (I, B) � ¬ϕ iff (I, B) 2 ϕ

For any formulas ϕ1, ϕ2:

• (I, B) � ϕ1 ∧ ϕ2 iff (I, B) � ϕ1 and (I, B) � ϕ2

• (I, B) � ϕ1 ∨ ϕ2 iff (I, B) � ϕ1 or (I, B) � ϕ2

• (I, B) � ϕ1 → ϕ2 iff (I, B) 2 ϕ1 or (I, B) � ϕ2

• (I, B) � ϕ1 ≡ ϕ2 iff (I, B) � ϕ1 → ϕ2 and (I, B) � ϕ2 → ϕ1

Given a concrete variable x (xB ∈ D) or an abstract variable x, (xB ∈ D∪U )
(I, B) � ∀x · ϕ(x) iff I � ϕ and (I, B) � ∃x · ϕ(x) iff for someB, (I, B) � ϕ

Other definitions from classical logic apply:
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• A formula ϕ is satisfiable if there is an interpretation I that is a model of ϕ
(I � ϕ).

• A formula ϕ is valid if every possible interpretation I is a model of ϕ

• An interpretation I is a model of a theory Φ if for every ϕ ∈ Φ, I � ϕ

• A theory Φ is satisfiable iff it has a model.

For two schemas A and B, A entails B, denoted by A � B, iff the set of all
models of A is a subset of the set of all models of B, written asM(A) ⊂M(B).A
andB are equivalent, denoted byA ≡ B iffM(A) =M(B).

3.5 WSSL/XML

The abstract and surface syntaxes presented in the preceding sections are in-
tended for human consumption. In order to providemachine readability and facil-
itate exchange ofWSSL documents on theWeb, an XML syntax is proposed in this
section, named WSSL/XML. As a basic namespace for all elements in this syntax,
we use http://www.example.org/wssl#. A WSSL/XML specification is enclosed in
a wssl tag of the following form:
<wssl xmlns="http://www.example.org/wssl#"

variant="http://www.example.org/wssl#WSSL">

</wssl>

Listing 3.1: WSSL/XML root element

The default assumed value for the variant attribute is ”WSSL”. If the document
contains a simplified WSSL specification, where, for instance, ramifications and
qualifications are not supported, then the variant attribute should be set differ-
ently. General information about the service (service name and invocation) are
enclosed in a service tag.

Each one of the inputs contained in the specification is translated to an input
tag, with a name attribute containing the name (in the form of an IRI of the input).



94 Chapter 3. Web Service Specification Language (WSSL)

Similarly, outputs correspond to output tags, preconditions correspond to precon-
dition tags, postconditions correspond to postcondition tags and default theories
correspond to default tags. Full IRIs remain as they are in the XML syntax, while
abbreviated IRIs need to be expanded. Note that any other occurrence of inputs
or outputs in the form of HasInput or HasOutput fluents is omitted for the sake
of readability.

The left-hand side of preconditions (containing poss) is omitted; the XML code
that corresponds to the logical expression of the right-hand side is placed directly
under the precondition tag. Similarly, only the right-hand side of postconditions
is included. Also, instead of directly translating State(Do(A(?x), ?s_in)) and
State(?s_in), we replace them with two simple state terms, zout and zin, respec-
tively. Finally, the conjunct (∀c)¬Acc(c, s) for non-accident cases is optional.

Data values are translated to term tags containing their type as an attribute.
If the data value is produced by a datatype wrapper, then an inner argument tag
is added for each one of the arguments. Arbitrary functions are translated in the
same way, with the type attribute corresponding to the function name.

AWSSL default theory is represented by observation and rule tags, correspond-
ing to the observations and rules that constitute the theory, respectively. Follow-
ing the format of a default rule, a rule tag contains one optional prerequisite tag,
one conclusion tag and one or more prerequisite tags. Finally, causal relationships
are represented by causal tags.

Translation of WSSL logical expressions is based on the XML syntaxes for
WSML and RuleML [Boley et al. 2012] and is analyzed in Table 3.4. expri stands for
any arbitrary logical expression, while tr() represents again the translation func-
tion. Simple terms are translated to term tags with a type attribute denoting their
type (xs:integer, xs:decimal, xs:string, or variable). If the term type is a variable,
then the term tag contains a var tag. Predefined functions, such asDo and State
are translated as any arbitrary function. A complete XML schema for WSSL/XML,
as well as some example WSSL/XML specifications can be found in Appendix B.
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Abstract Syntax XML Syntax

True ⊤ <true/>

False ⊥ <false/>

Empty State ∅ <empty/>

Negation tr(¬expr1) <neg> tr(expr1) </neg>

Conjunction tr(expr1 ∧ expr2) <and> tr(expr1) tr(expr2) </and>

Disjunction tr(expr1 ∨ expr2) <or> tr(expr1) tr(expr2) </or>

Implication tr(expr1 → expr2) <implies> tr(expr1) tr(expr2)

</implies>

Equivalence tr(expr1 ≡ expr2) <equivalent> tr(expr1) tr(expr2)

</equivalent>

Variable tr(?varname) <var name="varname"/>

Universal tr(∀(?varname) · expr1) <forall> <var name="varname"/>

Quantification tr(expr1) </forall>

Existential tr(∃(?varname) · expr1) <exists> <var name="varname"/>

Quantification tr(expr1) </exists>

Function tr(f(term1, ..., termn)) <term name="func">

tr(term1)...tr(term2)</term>

Equality tr(term1 = term2) <equal> tr(term1)

tr(term2)</equal>

Predicate tr(p(term1, ..., termn)) <predicate name="pred">

tr(term1)...tr(termn)</predicate>

Holds tr(Holds(f, z)) <holds state="z"> tr(f) </holds>

Ramify tr(Ramify(z, p, n, z′)) <ramify> tr(z)tr(p)tr(n)tr(z′)

</ramify>

Minus tr(z − f) <minus> tr(z)tr(f) </minus>

Plus tr(z + f) <plus> tr(z)tr(f) </plus>

Composition tr(f1 ◦ ... ◦ fn) <circ> tr(f1)...tr(fn) </circ>

Table 3.4: XML syntax for WSSL logical expressions
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The present chapter proposes a series of extensions to the initial definition of
WSSL that was presented in the previous chapter. The extensions target three in-
teresting directions in service science. The first extension covers specification of
composite services and enablesWSSL to be employed as a service composition lan-
guage aswell. The second extension covered in this chapter imbuesWSSLwith the
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ability to express QoS profiles, aiming to achieve QoS-awareness in service speci-
fication. Finally, a way to handle partial observability in service specifications is
proposed, by extending WSSL with incomplete state and knowledge modeling.

4.1 Composition

The definition of WSSL in Chapter 3 allows for black-box specifications of ser-
vices where only IOPEs are considered, disregarding any knowledge about its con-
trol and data flow. In order to be able to employ WSSL for composition, we need
to extend the language definition to include themodeling of fundamental control
constructs. Composite services can then bemodeled as complex actions using one
ormore of these constructs, depending on the control flow of the composition. To
achieve that, we first need to express preconditions and postconditions of funda-
mental compositions that use a single control construct.

4.1.1 Calculating composite preconditions and postconditions

The following control constructs are examined: sequence, AND-Split/AND-
Join, AND-Split/DISC-Join, OR-Split/OR-Join, OR-Split/DISC-Join, XOR-Split/XOR-
Join, conditional execution and loops. DISC-Join is a m-out-of-n join, also called
a discriminator. These constructs correspond to the list of abstract composition
patterns that is defined in [Jaeger et al. 2004] based on the list of workflow pat-
terns in [van der Aalst et al. 2003], since after analyzing the updated list in [Russell
et al. 2006], no additional relevant composition patterns could be yielded. Hence,
this set of patterns (and the equivalent set of control constructs) is considered
complete.

The results that follow are based on composite specification derivation, as
defined it in [Baryannis et al. 2012]. In all cases, and without loss of generality,
we consider compositions of two services represented by actions a1 and a2, with
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Figure 4.1: Fundamental control constructs for service composition

state update axioms expressed in the following simplified form:

Poss(a1, s1)→ (State(Do(a1, s1)) = State(s1) + θ+1 − θ
−
1 )

Poss(a2, s2)→ (State(Do(a2, s2)) = State(s2) + θ+2 − θ
−
2 ) (4.1)

Sequence

In the case of sequential execution, denoted by a1; a2 and following the pat-
tern shown in Fig. 4.1a, the situation inwhich service a2 is executed is the same as
the one that results after executing service a1; this fact is expressed formally as
s2 = Do(a1, s1). Based on this, as well as the fact that we want both state update
axioms of Axiom 4.1 to hold, we result in Axiom 4.2:

Poss(a1, s1) ∧ Poss(a2, Do(a1, s1))→

State(Do(a2, Do(a1, s1))) = State(s1) + θ+1 − θ
−
1 + θ+2 − θ

−
2 (4.2)
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AND-Split/AND-Join

Parallel composition, shown in Fig. 4.1b comes in many different variations.
AND-Split/AND-Join, denoted by a1 · a2, is one of them; there are two diverging
branches of activities that are executed concurrently, which eventually converge
after activities in both branches have completed successfully. In this case, the sit-
uation in which both services are executed is the same (s1 ≡ s2 ≡ s) and the
situation afterwards is again the same (Do(a1, s1) ≡ Do(a2, s2) ≡ Do(a∗, s)),
since both services need to complete execution for the composition to be consid-
ered complete. This knowledge leads to Axiom 4.3:

Poss(a1, s) ∧ Poss(a2, s)→

State(Do(a1 · a2, s)) = State(s) + θ+1 − θ
−
1 + θ+2 − θ

−
2 (4.3)

OR-Split/OR-Join, AND-Split/DISC-Join, OR-Split/DISC-Join

OR-Split/OR-Join, denoted bya1+a2, differs fromAND-Split/AND-Join in that
not all of the diverging branches are necessarily activated. Instead, a mechanism
selects one or more of them to be executed each time. Also, at the merging stage
there is no need for synchronization between the converging branches. This be-
havior is reflected in Axiom 4.4:

Poss(a1, s) ∧ Poss(a2, s)→

(State(Do(a1 + a2, s)) = State(s) + θ+1 − θ
−
1 ) ∨

(State(Do(a1 + a2, s)) = State(s) + θ+2 − θ
−
2 ) ∨

(State(Do(a1 + a2, s)) = State(s) + θ+1 − θ
−
1 + θ+2 − θ

−
2 ) (4.4)

The behavior of AND-Split/DISC-Join andOR-Split/DISC-Join is also expressed
withAxiom4.4, since the state update of a DISC-Join also translates to either of the
two, or both services completing execution. Hence, the remainder of this section
does not refer to them again, keeping only OR-Split/OR-Join as a representative
of such behavior.



4.1. Composition 101

In order to make sure that the solution to the frame problem also holds for all
parallel compositions defined so far, we need to assume that (θ+1 + θ+2 ) and (θ−1 +

θ−2 ) are disjoint. This practically means that no effect of one service is negated by
the other. This does not go against the nature of AND/OR parallel compositions,
where it is almost always expected to execute independent services in parallel so
as to reduce execution time. The only casewhere a parallel executionmay involve
services that are related to eachother iswhenwewant tomodel racing conditions;
this case is more accurately modeled by the XOR-Split/XOR-Join case, examined
next.

XOR-Split/XOR-Join

The final variation of parallel composition is XOR-Split/XOR-Join, denoted by
a1 ⊕ a2. In this case, only one of the diverging branches is allowed to be exe-
cuted and is expected to provide results at the end. Note that this behavior is
quite similar to conditional execution (defined below), with one defining differ-
ence: we have no knowledge of the condition that causes one of the two services
to be selected; we just expect only one of them to provide results. In that sense,
XOR-Split/XOR-Join can also model behaviors of a racing nature, where the first
service to provide results is the one that is actually considered part of the com-
posite process. Axiom 4.5 encodes the behavior of XOR-Split/XOR-Join:

Poss(a1, s) ∧ Poss(a2, s)→

(State(Do(a1 ⊕ a2, s)) = State(s) + θ+1 − θ
−
1 )⊕

(State(Do(a1 ⊕ a2, s)) = State(s) + θ+2 − θ
−
2 ) (4.5)

Note that regardless of the particular type of parallel composition (AND, OR,
XOR), both preconditions of the services executed in parallel are required to be
true. This condition may appear too strong for OR and XOR cases, but it stems di-
rectly from the fact that, at design time, we do not knowwhich branch is going to
be executed; hence, we cannot disregard either precondition. If such knowledge
is available at runtime, then preconditions may be adapted accordingly.
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Conditional Execution

Conditional constructs, such as if-then-else or switch statements, evaluate a
condition in order to decide which branch will be executed. Similarly to the XOR-
Split/XOR-Join pattern, only one of the branches is selected, based on the truth
value of the condition. In an if-then-else composition of the form IF g THEN a1
ELSE a2, denoted by If(g, a1, a2) and illustrated in Fig. 4.1c, if condition g is true,
a1 is executed; if it is false, a2 is executed. The condition essentially determines
not only which precondition is to be checked, but also which postcondition will
be applied after a successful execution. This is expressed in Axiom 4.6:

[(Holds(f, s) ∧ Poss(a1, s)) ∨ (¬Holds(f, s) ∧ Poss(a2, s))]→

[(Holds(f, s) ∧ (State(Do(If(f, a1, a2), s)) = State(s) + θ+1 − θ
−
1 )) ∨

(¬Holds(f, s) ∧ (State(Do(If(f, a1, a2), s)) = State(s) + θ+2 − θ
−
2 ))] (4.6)

Loops

Loops allow for the repeated execution of a task or a process until a condition
(the loop guard) ceases to hold. This poses a significant challenge as there is no
a priori knowledge of how many iterations will be performed, which leads to pre-
condition and postcondition expressions that are interminable. They can only be
made finite if the number of iterations is known or limited beforehand. Attempt-
ing to encode such a behavior results in the incomplete Axiom 4.7 (where g is the
loop guard and a looped action is denoted as Loop(g, a1)):

(Holds(g, s)→ Poss(a1, s)) ∧

(Holds(g,Do(a1, s))→ Poss(a1, Do(a1, s))) ∧ ...→

¬Holds(g, s) ∧ State(Do(Loop(g, a1)) = State(s) ∧

Holds(g, s) ∧ ¬Holds(g,Do(a1, s) ∧

State(Do(Loop(g, a1)) = State(s) + θ+1 − θ
−
1 ... (4.7)



4.1. Composition 103

4.1.2 WSSL for Composition

Based on the calculated state update axioms for the different control con-
structs, we present a series of definitions that constitute the extension of WSSL
in the direction of supporting composite service specification and service compo-
sition. The first definition extends theWSSL signature in order to include control
constructs:

Definition 4.1.1 A tuple S ∪ SC is an extended WSSL signature for composition
if S is a WSSL signature (as defined in Section 3.2) and SC is a set of function
symbols, defined as follows:

• ϵ : ACTION (empty action)

• If: FLUENT × ACTION × ACTION → ACTION (conditional exe-
cution)

• Loop: FLUENT ×ACTION → ACTION (iterative execution)

• ; , ·,+,⊕ : ACTION × ACTION → ACTION (sequence, AND-Split/
AND-Join, OR-Split/OR-Join and XOR-Split/XOR-Join, respectively)

It follows that the foundational axioms that govern the fluent calculus and
WSSL, as expressed in Chapter 3, need to be extended in order to account for the
newly introduced function symbols; this is achieved by Definitions 4.1.2 and 4.1.3.
The extension is based on the analysis so far in this section, as well as themethod-
ology followed by [Thielscher 2001a] in the attempt to introduce concurrency in
the fluent calculus.

Definition 4.1.2 The foundational axioms for preconditions consist of:

1. Poss(ϵ, s) ≡ T

2. Poss(a1; a2, s) ≡ Poss(a1, s) ∧ Poss(a2, Do(a1, s))

3. Poss(If(f, a1, a2), s) ≡ [Holds(f, s) ∧ Poss(a1, s)] ∨ [¬Holds(f, s) ∧

Poss(a2, s)]
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4. Poss(a1 · a2, s) ≡ Poss(a1 + a2, s) ≡ Poss(a1 ⊕ a2, s) ≡ Poss(a1, s) ∧

Poss(a2, s)

5. Poss(Loop(f, a1), s) ≡ [Holds(f, s)→ Poss(a1, s)]∧

[Holds(f,Do(a1, s)→ Poss(a1, Do(a1, s))] ∧ ...

The foundational axioms in Definition 4.1.2 allow for calculating precondi-
tions for composite services, given the preconditions for the participating ser-
vices and the composition schema. For instance, the precondition of the RetrieveS-
tatus/RetrieveLocation composition included in the process of the running example
can be calculated using axiom 4 of Definition 4.1.2, as the conjunction of the pre-
conditions of the two services.

Definition 4.1.3 The foundational axioms for postconditions consist of:

1. State(Do(ϵ, s)) = State(s)

2. Poss(a1; a2, s)→ State(Do(a1; a2, s)) = State(Do(a2, Do(a1, s)))

3. Poss(If(f, a1, a2), s)→
[Holds(f, s) ∧ State(Do(If(f, a1, a2), s)) = State(Do(a1, s))]∨

¬[Holds(f, s) ∧ State(Do(If(f, a1, a2), s)) = State(Do(a2, s))]

4. Poss(a1 ·a2, s)→ State(Do(a1 ·a2, s)) = State(Do(a2, s))+θ
+
1 −θ

−
1 =

State(s) + θ+2 − θ
−
2 + θ+1 − θ

−
1

5. Poss(a1 + a2, s)→ [State(Do(a1 + a2, s)) = State(s) + θ+1 − θ
−
1 ]∨

[State(Do(a1 + a2, s)) = State(s) + θ+2 − θ
−
2 ]∨

[State(Do(a1 + a2, s)) = State(s) + θ+1 − θ
−
1 + θ+2 − θ

−
2 ]

6. Poss(a1 ⊕ a2, s)→ [State(Do(a1 ⊕ a2, s)) = State(s) + θ+1 − θ
−
1 ]⊕

[State(Do(a1 ⊕ a2, s)) = State(s) + θ+2 − θ
−
2 ]

7. Poss(Loop(f, a1), s)→ [¬Holds(f, s)→ (State(Do(Loop(f, a1))), s) =

State(s)] ∧ [Holds(f, s) ∧ ¬Holds(f,Do(a1, s))→

(State(Do(Loop(f, a1), s))) = State(s) + θ+1 − θ
−
1 ] ∧ ...
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The axioms included inDefinition 4.1.3 complement the ones inDefinition 4.1.2,
resulting in a whole view of a composite service execution. For instance, by com-
bining the third axioms in Definitions 4.1.2 and 4.1.3, we can express the fact that
conditional execution of EReport and MReport requires only one of the two ser-
vices’ preconditions to be true, depending on the truth value of the condition
fluent, while a successful execution leads to a state change as a result of either
EReport orMReport, again depending on the truth value of the condition.

Definitions 4.1.2 and 4.1.3 can be extended in a straightforward way for com-
positions ofmore than two services. As discussed later on in Chapter 5, the incom-
plete axioms that refer to loops are avoided thanks to the FLUX representation of
WSSL, the recursive capabilities of Prolog, as well as imposing an upper bound on
the number of iterations to guarantee termination.

Apart from defining control flow for service composition, WSSL needs to ac-
count for data flow as well. The following axiommodels the simplest case of rout-
ing between outputs and inputs of services:

Definition 4.1.4 The foundational axiom for data flow expresses the fact that
any produced output can potentially be consumed as an input from that state on-
ward and is written asHolds(HasOutput(f), z)→ Holds(HasInput(f), z).

Note that composition goals can be expressed using the logical expression
syntax. The WSSL extension for composition that was presented in this section is
the cornerstone of the composition and verification framework that is analyzed
in Chapter 5.

4.2 Quality of Service

By definition, any WSSL term can be associated with concepts defined in a
knowledge representationmodel, using IRI [Duerst and Suignard 2005] sequences.
These IRIs can refer to concepts of any origin, including ontology-based QoSmod-
els. In this section, we define an extension forWSSL in the direction of supporting
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QoS profiles. This extension presupposes the existence of an ontology-based QoS
model, defined using languages such as OWL-Q [Kritikos and Plexousakis 2009b],
from which the required QoS concepts are obtained. OWL-Q is an OWL-S [Martin
et al. 2004] extension that provides a semantic, rich and extensible meta-model
for describing QoS aspects of service specifications, which can be used by service
providers to model QoS attributes. Apart from defining the WSSL extension for
QoS profiles, we also formalize correctness for such profiles as well as local and
global goal matching based on them.

4.2.1 WSSL QoS Profiles

In order to support QoS-aware specifications, the WSSL definition listed in
Section 3.2.2 is extended to an 8-tuple by including a quality tuple, which rep-
resents a set of QoS profiles. Each service specification may be linked with one
or more concrete service realizations. Each one of these concrete services has at
least one QoS profile, and possibly more, in order to be able to model classes of ser-
vice [Tosic et al. 2003], i.e. different QoS levels provided to consumers according
to their needs and/or what they can afford. Each QoS profile is itself a set of WSSL
logical expressions, expressing QoS offerings as constraints, following the form
<QoS term> <comp-operator> <value>, where a QoS term may be an attribute or a
metric. Since they follow the WSSL logical expression syntax, constraints can be
combined using any of the supported logical connectives (e.g., ¬,∧ and ∨).

To be able to effectively express constraints, the alphabet of WSSL logical
expressions is extended in two ways. First, a new sort named DECIMAL is intro-
duced in order to represent decimal QoS values, since they cannot be expressed
by the already included sorts. Second, a set of comparison operators is included
for the new sort, in addition to equality which is already included for all sorts
in the initial alphabet. The comparison operators are {<,≤, ̸=,≥, >}. These op-
erators are essentially binary predicates, mapping term pairs to truth values. As
far as attributes are concerned, they are represented by constants. Based on this
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modeling, the global constraints of the running example would, for instance, be
expressed as owlqmodel#cost ≤ 10 ∧ owlqmodel#throughput ≥ 50, where
owlqmodel is a namespace prefix referring to a namespace that links to a QoS
model where the concepts of cost and throughput are defined.

QoS attributes can be distinguished into measurable and unmeasurable ones.
The former can be measured using one or more QoS metrics, i.e. concepts that
analyze measurement details, while the latter cannot be measured and model
static information that is qualitative in nature. Values for measurable attribute
constraints are expressed using constants of the DECIMAL sort. Accordingly, val-
ues for unmeasurable attribute constraints are represented by IRIs. For instance,
robustness/flexibility, as defined in [Ran 2003] can have the value set {inflexible,
flexible, very-flexible}, which is modeled using three IRIs that represent the possi-
ble values. Optionally, unmeasurable attribute value sets can be mapped to deci-
mals, provided that a suitable mapping to decimal (or integer) values exists. For
instance, the aforementioned value set can be mapped to set {0, 1, 2}.

In the same way constraints are used to express QoS offerings in WSSL speci-
fications, they are used to express QoS goals for WSSL-based service composition.
Goals can be global, referring to the entire composite process as a whole, or local,
pertaining to a specific task in the process. The overall cost threshold imposed in
the running example is an example of a global QoS goal. In a WSSL goal specifica-
tion, local goals are explicitly associated with the name of the task to which they
refer. The XML schema for WSSL/XML that is included in Appendix B takes into
account specification of local and global QoS goals.

The resulting extended version of WSSL allows the specification of both func-
tional and non-functional aspects. Achieving such levels of completeness in spec-
ifications requires a significant modeling effort from parties involved in creating
and delivering an SBA, such as service designers, developers and providers. This
effort can be reduced through the use of appropriate modeling tools that assist
designers in completing specifications by automatically detecting missing infor-
mation (e.g., produce QoS descriptions through service monitoring or testing).
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It should be stressed that specification correctness is of paramount importance:
composition and verification processes rely on them, hence incorrect specifica-
tions would either lead to unsolvable problems or solving a different problem.

4.2.2 Correctness of QoS Profiles

The responsibility for ensuring correctness of QoS profiles (and service spec-
ifications, in general) lies with service providers. However, since one cannot as-
sume that such profiles will always be correct, it is of practical use to detect obvi-
ous cases where correctness is violated. Violation detection depends primarily on
the operators of the constraints included in the profile, as well as the associated
values. The following definition formalizes QoS profile correctness violation.

Definition 4.2.1 Given a QoS profile P containing a setC of N constraints of the
form <term> <op> <value>, the profile is incorrect if for any constraint i, j, with
0 ≤ i ≤ N, 0 ≤ j ≤ N it holds that i ̸= j, termi = termj and one of the
following:

1. opi ≡ opj ≡= and valuei ̸= valuej

2. opi ≡=, opj ≡ ̸= and valuei = valuej

3. opi ≡=, opj ≡< and valuei ≥ valuej

4. opi ≡=, opj ≡> and valuei ≤ valuej

5. opi ≡=, opj ≡≤ and valuei > valuej

6. opi ≡=, opj ≡≥ and valuei < valuej

7. opi ≡<, opj ≡> and valuei ≤ valuej

8. opi ≡≤, opj ≡> and valuei ≤ valuej

9. opi ≡≥, opj ≡< and valuei ≥ valuej

10. opi ≡≤, opj ≡≥ and valuei < valuej
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Note that the complete set of cases presented in Definition 4.2.1 is relevant
only for measurable attributes or unmeasurable attributes whose values consti-
tute an ordered set. For all other types of constraints, only cases 1 and 2 make
sense.

4.2.3 Local QoS Goal Matching

In the same manner that a QoS profile is considered incorrect, we can deduce
whether a constraint contained in a QoS profile violates a local QoS goal of a com-
position problem. The next definition formalizes local QoS goal violation. Note
that by positivelymonotonic we refer tometrics where a greater value represents
a better QoS (such as availability), while the opposite holds for negatively mono-
tonic metrics (such as cost).

Definition 4.2.2 Given aQoSprofile containing a constraintS of the form<termS>
<opS> <valueS>, and a local QoS goal of the form <termT > <opT > <valueT >, the
goal is not achieved if termS = termT and one of the following holds:

1. valueS ̸= valueT and opS ≡ opT ≡=

2. valueS = valueT and

(a) opS ≡= and opT ≡ ̸=

(b) opS ≡ ̸= and opT ≡=

3. valueS < valueT , terms refer to positively monotonic metrics and

(a) opS ≡= and opT ∈ {>,≥}

(b) opS ≡> and opT ∈ {=, ̸=, >,≥}

(c) opS ≡≥ and opT ∈ {=, >,≥}

4. valueS > valueT , terms refer to negatively monotonic metrics and

(a) opS ≡= and opT ∈ {<,≤}
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(b) opS ≡< and opT ∈ {=, ̸=, <,≤}
(c) opS ≡≤ and opT ∈ {=, <,≤}

5. valueS ≤ valueT and opS ≡≥, opT ≡ ̸=

6. valueS ≥ valueT and opS ≡≤, opT ≡ ̸=

7. The following combinations result in failure, regardless of values:

(a) opS ≡ ̸= and opT ∈ {<,≤, >,≥}
(b) opS ∈ {<,≤} and opT ∈ {>,≥}
(c) opS ∈ {>,≥} and opT ∈ {<,≤}

4.2.4 QoS Metrics Analysis and Aggregation

Global QoS goal matching is a bit more complicated than the local case, since
the value achieved by the composite service as a whole must be aggregated be-
fore comparing it to the targeted one. In this subsection, we present a series of
aggregation functions based on a thorough analysis of QoSmetrics that have been
referenced in literature.

The aggregation process depends on two dimensions: the composition pat-
tern linking the services whose QoS values are aggregated, and the nature of the
QoS attribute. Concerning composition patterns, we focus again on the set of
patterns that was analyzed in Section 4.1: sequence, (deterministic) loop, AND-
Split/AND-Join, AND-Split/DISC-Join, OR-Split/OR-Join, OR-Split/DISC-Join and
XOR-Split/XOR-Join. Note that aggregation functions cannot be defined for any
loop; aggregating a value depends on the knowledge of an upper bound on the
number of iterations, the so-called loop variant. Also, we assume that no knowl-
edge about the probability of executionpaths is available; eachpossible choice in a
composite process is considered equally probable. The aggregation functions that
result from the analysis are essentially a generalization of the approach in [Rosen-
berg et al. 2009] in order to refer to attribute categories instead of specific at-
tributes.
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Although there is a great multitude of attributes, they can be classified in
a way that drives the aggregation process. We considered QoS attributes that
are included in the detailed analysis of domain-independent attributes presented
in [Kritikos and Plexousakis 2009b]. We expect that any additional attributes, in-
cluding domain-dependent ones, will also fall into one of the groups we define.
We examine measurable and unmeasurable QoS attributes separately.

Unmeasurable attributes represent quality information that is static and can
be grouped into the following three categories:

Boolean All attributes in this category represent properties that are either sup-
ported or not by a service. Examples of attributes presented in [Kritikos
and Plexousakis 2009b] that fall in this category are: integrity (if defined as
support, or lack thereof, of the ACID properties), exception handling, two-
phase commit, supported standards, guaranteed messaging requirements,
authentication, authorization, confidentiality, accountability, traceability
and auditability, non-repudiation and safety.

Ordered Set This category includes attributes whose possible values form an or-
dered set, such as robustness/flexibility, as defined in [Ran 2003]

Unordered Set The third category is formed from attributes that take values
from an unordered set, such as failuremasking, operation semantics, server
failure, data encryption, security level and service level.

For all of these groups, aggregation is pattern-independent, since it involves
finding whether all services share certain characteristics (or finding the lowest-
ordered one, in the case of ordered sets). Note that for unordered sets, the more
features a service offers, the more likely it is to find common ones across ser-
vices participating in a composite process. In cases where intersection leads to
an empty set, a sub-process for which the attribute in question is more relevant
could be taken into account, e.g., determining whether data encryption is sup-
ported only in the precise part of a process that manages sensitive data.
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Measurable attributes can be measured using one or more QoS metrics and
are grouped into the following five categories:

Reputation-like Aggregation for attributes in this category involves calculating
the mean value, to provide an average value of what is offered. Note that
it is also possible, albeit less likely, that a min-man range for reputation is
demanded. Apart from reputation, which lends its name to the category,
the attribute of bandwidth shares that same nature.

Throughput-like This category contains attributes that are similar to through-
put, in the sense that aggregation corresponds to finding the process bot-
tleneck. Apart from throughput, mean time between failure is also in this
category.

Cost This is a single-attribute category, since cost is the only one that is addi-
tive in both sequential and AND-* patterns, due to the fact that aggregation
must consider the cost of all services thatmay begin execution. It should be
mentioned that cost aggregation is directly dependent to the cost model of
each service provider and may deviate from the general aggregation rules
thatwe define here, because of specific aspects of the associated costmodel.
For instance, there may be a monthly fee for using a service, regardless of
the number of executions.

Availability-like The fourth category contains probabilistic-valued attributes,
such as availability, the aggregation of which involves taking the product
of all values for sequences. Continuous availability and completeness also
fall into this category.

Time The fifth and final category groups attributes of temporal nature; aggre-
gation involves taking the sum for sequential and the maximum for paral-
lel execution, since these represent the worst case scenario. This category
contains the following attributes: response time, latency, execution time,
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transaction time, network delay, delay variation, queue delay time and ac-
cessibility.

Out of thesefive categories, thefirst twoare also pattern-independent:whether
services are executed in sequence or in parallel does not affect calculating aver-
ages or minimums. Aggregation functions are summarized in Table 4.1, with xa
denoting the aggregated value and xi denoting the advertized values for services
involved in a composition following a particular pattern.

Deterministic loops are essentially a sequence of length equal to the maxi-
mumnumber of iterations, defined by the loop variant. The type of join following
an AND-Split is also irrelevant to aggregation; considering only m out of n paths
at the end does not change the fact that the worst case scenario must be consid-
ered for aggregation. Finally, OR and XOR patterns generally yield amin-max pair
of values, since we cannot know, at design time, which of the branches are going
to be selected. Note that some cases, such as maximum availability or minimum
execution time, may not always be interesting but they can be useful when de-
pendencies exist between attributes (e.g., cost values that are dependent on the
range of execution times offered).

4.3 Partial Observability

The final WSSL extension that we propose involves the aspect of partial ob-
servability with regard to WSSL states. Partial observability arises due to execut-
ing actions that do not have a deterministic outcome. Such actions may be ones
that have a state update axiom with more than one alternatives, using the gener-
alized form of Eq. 3.1. Partial observability is also closely related to service com-
position, when composite services employ a conditional control construct or a
non-deterministic loop.

To deal with partial observability, we once again turn to the fluent calculus
foundations ofWSSL. There are two levels of handling this issue. The lower level is
based on the generalized notion of an incomplete fluent calculus state, as defined
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in Chapter 3 of [Thielscher 2005b] and requires a minimal set of modifications to
the language. The higher level of handling partial observability involves model-
ing what it means to know that a fluent holds, based on a simplified version of
knowledge modeling, as defined in Chapter 5 of [Thielscher 2005b].

4.3.1 Incomplete States

So far, states are specified as a composition of a finite number of fluents: z =
f1◦...◦fn. However, wemay not have complete knowledge of a state, especially in
the case of initial states with regard to service composition. In this case, the only
way to specify a state is through constraints, resulting in incomplete states. While
complete states are finite, incomplete states may correspond to an infinite set of
possible states.

Constraints that take part in an incomplete state definition can be of various
types. [Thielscher 2005b] defines the following four:

• Negation constraints of the form ¬Holds(f, z), expressing that a fluent
does not hold in a state.

• Universal quantification constraints of the form (∀y)¬Holds(f, z), denot-
ing that a fluent does not hold in a state for all values of a variable y, refer-
ring to one of the fluent’s arguments.

• Disjunction constraints of the formHolds(f1, z)∨ ...∨Holds(fn, z)with
n ≥ 1, expressing the knowledge that one or more of a set of fluents hold.

• Arithmetic constraints: in case any arguments of fluents are encoded using
numbers, then arithmetic constraints on the values of these arguments can
be expressed.

To take into account incomplete states, state update axioms are slightly mod-
ified, leading to the following form:

Poss(A(x), s)→ (∃y)(∆(s)∧(∃z)(State(Do(A(x), s)) = τ ◦z+θ+−θ−∧Φ))
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where τ ◦ z ∧ Φ is the general form of an incomplete state, with τ a set of flu-
ents and Φ a set of constraints. Essentially, we are certain that the fluents in τ
hold in state z; for any other fluent to hold in z, it must satisfy the set of con-
straints Φ. For instance, in the running example, we would like to express the
fact that a request for assistance can be received from the user either by sending
an SMS or by calling, or both. This can be accomplished by including the con-
straintHolds(HasInput(sms), ?z_in)∨Holds(HasInput(call), ?z_in) in the
definition of the initial state.

4.3.2 Knowledge States

Modeling of incomplete states allows for a way to handle partial observabil-
ity without any major adjustments to the existing language foundations. Essen-
tially, handling partial observability is delegated to handling constraints, which
is a matter of the way a fluent calculus language is implemented. A more formal
way of dealing with this issue is through the modeling of knowledge states, acting
as a generalization of incomplete state modeling, without contradicting it.

A knowledge state (or possible state) is any state of the world that may be true
according to our state knowledge. There is an inverse relationship between the
number of possible states and the amount of state knowledge. If we have complete
state knowledge, then there is only one knowledge state: the actual one. On the
other end of the spectrum, if we have no knowledge about the current state, then
all conceivable states are possible. An incomplete state knowledge yields several
possible states, based on a set of constraints.

In order to represent knowledge states, a new predefined predicate is intro-
duced,KState(s, z). Then, a knowledge state is defined as follows:

Definition 4.3.1 A knowledge state is a formula KState(s, z) ≡ Φ(z), defining
a possible state z in a situation s, under a set of constraints expressed in state
formula Φ.

Based on Definition 4.3.1, [Thielscher 2005b] defines a helpful macro for what it
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means to know a state property: all possible states entail it.

Definition 4.3.2 A knowledge expression ϕ is known in a situation s based on the
following:Knows(ϕ, s) def

= (∀z)(KState(s, z) → HOLDS(ϕ, z) where ϕmay
consist of fluents, stateless Poss predicates of the form Poss(a) and atoms with-
out state or situation terms, while HOLDS(ϕ, z) is obtained by replacing in ϕ
all fluents with a Holds expression of the formHolds(f, z) and adding state z to
all Poss predicates.

The simplest knowledge expression consists of a single fluent f . Based on Defini-
tion 4.3.2, knowing f in situation smeans that the following is true:

Knows(f, s)
def
= (∀z)(KState(s, z)→ Holds(f, z)

In other words, f holds in all possible states at situation s.
Knowledge states are then used to redefine state update axioms to take pos-

sible states into account. At this point, we diverge from the original fluent calcu-
lus knowledge modeling proposed in [Thielscher 2005b]. This is due to the fact
that this modeling is based on the differentiation between physical and cogni-
tive effects, which is relevant to autonomous robotic agents: they can act upon
the environment with physical actions or gain knowledge about it through sen-
sors. However, the service case is much simpler: knowledge acquisition is neither
a physical nor a cognitive effect, at least in the way defined for agents. Hence,
we choose to simplify state update with knowledge, by keeping the initial way of
modeling effects: an addition and/or subtraction of fluents.

Definition 4.3.3 A knowledge update axiom for an actionA(x) is a formula

Poss(A(x), s)→ (∃y)(∆(s) ∧KState(Do(A(x), s), z′) ≡

(∃z)(KState(s, z) ∧ z′ = z + θ+ − θ−))

A knowledge update axiom with ramifications for the same action is a formula

Poss(A(x), s)→ (∃y)(∆(z) ∧KState(Do(A(x), s), z′) ≡

(∃z)(KState(s, z) ∧Ramify(z, θ+, θ−, z′, Do(A(x), s)))
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Essentially, state update is applied as before but on knowledge states, expressed by
KState instead of complete states. The states which are possible after a service
execution are directly related to the possible states prior to execution, with the
addition or subtraction of fluents, including the application of any causal relation-
ship thatmay be relevant. Thus, handling partial observability amounts to replac-
ing state update axioms with their knowledge update counterparts, expressing
initial states as knowledge states instead of complete, ground states and includ-
ing any other domain knowledge as restrictions on knowledge states instead of
ground states.
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In this chapter,wedemonstrate howWSSL and its extensions can be employed
in order to realize service-related activities in addition to service specification,
namely automated service composition and verification. To that end, an imple-
mentation of WSSL is proposed, using the logic programming language FLUX and
based onfluent calculus foundations. Then,WSSL/CVF, a complete QoS-aware ser-
vice composition and verification framework is presented and analyzed in depth.
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The framework utilizes WSSL’s implementation in FLUX and exploits the unique
features of the language that allow for rich service specifications and support for
solutions to the frame, ramification and qualification problems.

5.1 Implementing WSSL in FLUX

FLUX (FLUent eXecutor), defined and analyzed in [Thielscher 2005a], is a pro-
gramming language and system that offers an implementation of the fluent calcu-
lus in logic programming with constraint handling. FLUX has a restricted expres-
siveness, employing Prologwith Constraint Handling Rules (CHR), that enables an
excellent computational behavior, offering reasoning in linear time with regard
to the size of state representation. It is expressive enough, however, to be able to
support any WSSL specification. As such, it is an excellent choice for implement-
ing WSSL as a logic programming language in order to use it as a basis for service
validation, verification and composition.

For our purposes, FLUX programs consist of two layers: a kernel program that
includes clauses that realize reasoning based on the fluent calculus semantics and,
on top of it, the encoding of the service domain, derived from theWSSL specifica-
tions for each service. We examine these two layers separately.

5.1.1 FLUX kernels

We define two different kernels which are customized versions of the com-
plete FLUX kernel1 that is defined and analyzed in [Thielscher 2005b]. The first
kernel is a basic version that supports state specification and update, as well as
the ramification and qualification problems; the second kernel is a modification
of the first in order to support incomplete and knowledge states, as defined in Sec-
tion 4.3. The complete Prolog code for both kernels, including all modifications
analyzed in this section, as well as the FLUX encoding for the running example,

1The Prolog code for this kernel is available online at http://www.fluxagent.org. Copyright
(c) 2000 by The Dresden University of Technology, Dresden, Saxony, Germany. All Rights Reserved.

http://www.fluxagent.org
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can be found in Appendix C.
The basic kernel contains the following definitions without any modification

from the original FLUX kernel:

holds(F,Z) Succeeds when fluent F is part of state Z. An auxiliary ternary vari-
ant is also included, with the third argument denoting the state minus the
fluent.

minus_(Z1, ThetaN, Z2) Defined using the ternary Holds; succeeds if Z2 is the
state that is derived if the list of fluents ThetaN is removed from Z1.

plus_(Z1, ThetaP, Z2) Succeeds if Z2 is the state that is derived if the list of flu-
ents ThetaP is added to Z1.

update(Z1, ThetaP, ThetaN, Z2) Succeeds if state Z2 equals to state Z1, after re-
moving fluents in list ThetaN (using minus_/3) and adding fluents in list
ThetaP (using plus_/3). This clause provides the solution to the inferential
aspect of the frame problem, as detailed in [Thielscher 2000].

Additionally, the following simplified clause for the ramifymacro is included:
1 ramify(Z1,ThetaP,ThetaN,Z2) :−
2 update(Z1,ThetaP,ThetaN,Z),
3 (causes(Z,ThetaP,ThetaN,Z2,_ , _) ; Z2=Z).

Listing 5.1: Simplified version of ramify/4

Essentially, following the application of state update using the update clause, ei-
ther a causal relationship is found and applied or no othermodifications aremade.
Causal relationships are expected to be expressed using a causes clause with the
above format, as defined later on. In the unlikely case that ramification chains of
length more than 1 are required to be modeled, then either a new version of ram-
ify must be defined, customized to the desired length, or the original version can
be reused, since it is defined assuming ramification chains of arbitrary length.

The full kernel handles incomplete states in two complementary ways, follow-
ing the original FLUX kernel. First, incomplete FLUX states are modeled as lists
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with a variable tail: [f_1, ..., f_n | z]. Then, constraint logic programming
is used in order to handle constraints. A set of rules is defined for each type of con-
straints (negation, disjunction and universal quantification constraints), while
arithmetic constraints are handled by the underlying system libraries (more on
the underlying system in Section 5.2).

The following definitions of the original kernel are also included:

cancel(F, Z1, Z2) Succeeds when state Z2 is state Z1 with all knowledge of fluent
F canceled

knows(F, Z) fluent F is known to hold in state Z

knows_not(F, Z) fluent F is known not to hold in state Z

Definitions for knowledge (or lack thereof) are realized in an elegant way us-
ing negation as failure. This allows them to have the same computation cost as
checking whether a fluent holds or not in a state.

5.1.2 Domain Encoding

While the aforementioned FLUX kernels are domain-independent, modeling
a specific set of services requires a domain-specific encoding based onWSSL speci-
fications. Table 5.1 offers amapping fromWSSL elements to FLUX clauses (written
in Prolog). Due to the declarative nature of FLUX, fluent calculus axioms become
program statements. Note that inputs and preconditions are combined to a sin-
gle poss clause and outputs and postconditions to a single state_update one to
preserve correct service execution semantics.

Theˆdenotes that the particular clause has been suitably translated in FLUX.
Note that for efficiency reasons, translation of postconditions omits the verifica-
tion of the precondition, assuming that services are executed only in states where
such an execution is possible. If the user wants to verify them, then they should
be included in the query expression. Also, the situation argument is suppressed
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Table 5.1: Mapping from WSSL to FLUX

WSSL FLUX

Holds(HasInput(x), z) poss(a(x),Z) :-
Poss(A(x), z) ≡ Π(z) holds(hasinput(x),Z), Π̂ (z).

Holds(HasOutput(x), z) state_update(Z_1,a(x),Z_2) :-
Poss(A(x), z1)→ ∆(z1)∧ ∆̂ (Z_1),

State(Do(A(x), z1)) = update(Z_1,[θ+,hasoutput(x)],

State(z1)− θ− + θ+ θ−,Z_2).

Ramify(z1, θ
+, θ−, z2, Do(A(x), s)) ramify(Z_1, θ+, θ−, Z_2)

Γ→ Causes(z1, p1, n1, z2, p2, n2, s) causes(Z_1,P_1,N_1,Z_2,P_2,N_2) :-Γ̂.
z0 = f1 ◦ ... ◦ fn init(Z_0) - Ζ_0 = [f_1, ..., f_n]:

in the translation of Ramify and Causes. As far as accidents are concerned, we de-
viate from the original FLUX kernel and simplify the representation of accidental
updates, modeling them as disjuncts of the state_update clause of the associated
service. Hence, the state_update clause contains not only thenormal case, but also
all accident cases, in the order they are expressed in the initial representation.

The init predicate allows for the specification of initial states. Note that
states are modeled as Prolog lists. This leads to a limitation of FLUX in relation
to the fluent calculus, since such lists are ordered, while in the fluent calculus
states are unordered sets of fluents. This means that a single fluent calculus state
corresponds tomultiple FLUX states (one for each possible ordering of the fluents
contained).

It should be noted that when translating a WSSL specification to a FLUX pro-
gram, fluent arguments are almost always translated to Prolog constants. For in-
stance,HasInput(request)ofRetrieveLocation translates tohasinput(request).
If it was translated to hasinput(REQUEST) (all capitals denote a Prolog variable),
then answering any query, for example poss(RetrieveLocation, Z) would
also involve attempting to bind REQUEST, which is not our intention: request

represents an input message that needs to be available to a service before exe-
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cution, hence the poss query should just make sure that hasinput(request) is
part of the binding of variable Z.

FLUX also offers the ability to express domain constraints that determine
whether a state is consistent or not. This is achieved by adding a clause with the
predicate consistent(Z) as its head and the FLUX encoding of constraints as its
body, with constraints referring to state variable Z. Whenever a state needs to be
checked for its consistency, the consistent predicate is called, with a variable
referring to the state in question as its argument.

The translationprocess fromWSSL to FLUXcanbe trivially proven to be sound
since it follows the soundness of the encoding of the fluent calculus in FLUX. For
instance, the FLUX clause B: holds(f,Z) is the translation of a WSSL expression
A: Holds(f, z) for a fluent f and a state variable z. B is indeed the FLUX encod-
ing of the fluent calculus macro Holds, hence the translation is sound and the
same applies to all WSSL element translations in Table 5.1. A detailed correctness
analysis for the FLUX encoding of the fluent calculus is carried out in Section 6.1.

5.1.3 WSSL Verification Tool

To exploit the expressive capabilities of WSSL, we implemented a verification
tool that takes a WSSL specification as input and allows the user to express goals
that are verified against the specification. The verification process involves 3 ba-
sic steps. First, a WSSL document (written in theWSSL/XML syntax) is translated
into a FLUX program. Afterwards, the tool expects a WSSL goal to be expressed
by the user, which is also translated in FLUX (the user can also express FLUX
queries directly). The final step involves automatically loading the program in
the ECLiPSe Constraint Programming System [Apt and Wallace 2007], verify-
ing the goal and returning the results to the user. ECLiPSe is an open-source
software system for developing and deploying constraint programming applica-
tions and includes support for CHR as well as several constraint solving libraries
and is also backwards-compatible with Prolog.
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Translating a WSSL/XML document to a FLUX program is a fairly straightfor-
ward process and is based on the mapping defined in the previous section. The
main issue to be tackled is the fact that information is contained in a slightly dif-
ferent order in the XML document than it is expected in a FLUX program. Thus,
informationmust be gathered from theXMLdocument and rearranged so that the
produced FLUXprogram is compilable using a Prolog interpreter. Algorithm1 cre-
ates a parser that takes a WSSL/XML document as input and produces the equiv-
alent FLUX program.

The verification tool, including the parser detailed in Algorithm 1, was imple-
mented as a Java programwith a Swing interface, employing the Java API for XML
Processing (JAXP), as well as the Java-ECLiPSe interface library. Evaluation re-
sults for the translation process can be found in Section 7.1.1. An example FLUX
query fed to the verification tool, given the service specification of ReceivePay in
Tables 3.1 and 3.2 is:

poss(receivepay, Z), state_update(Z, receivepay, Z1).

which would yield the result

Z=[hasinput(creditcard), solved(status, location)] and
Z1=[Z, hasoutput(invoice), paycompleted(payform)]

This query essentially requests the valid states before and after a successful exe-
cution of ReceivePay. If the query was posed in the form

poss(receivepay, Z), Z=[solved(status, location)]

then the answer would be no, since the required input for ReceivePay is not avail-
able at state Z.

5.1.4 Planning

Apart from service verification, the implementation of WSSL using FLUX can
also be used in service composition. In the series of definitions that follows, we
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Algorithm 1: Translating a WSSL/XML document to a FLUX program
input :A WSSL specification using the WSSL/XML syntax
output :The equivalent FLUX program

inpList← GetInpElems(), preList← GetPreElems();
foreach element i of inpList do get name of input i;
foreach element pr of preList do

if pr == 0 then

find input state variable name;
write action precondition head and the HasInput part of the body;

end

else

translate logical expressions and write rest of body;
end

end

outpList← GetOutpElems(), postList← GetPostElems();
foreach element o of outpList do get name of input o;
foreach element po of postList do

foreach disjunct d in po do
if d is an accident case then

translate logical expression and write accident disjuncts;
end

else

translate logical expression and write normal disjuncts;
end

end

end

write state_update axiom;
foreach element cr of crList do translate causal relationship;
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formalize WSSL service composition as planning, based on planning in the fluent
calculus with FLUX (see Chap. 6 in [Thielscher 2005b]).

Definition 5.1.1 AWSSL planning problem is defined as the problem of reaching
a goal state defined by a state formula Γ(z), starting from an initial state defined
by a state formula I(z). A WSSL plan is a sequence α1, ..., αn of service execu-
tions, with n ≥ 0. The plan is a solution to the problem iff the following holds:
Poss([α1, ..., αn],Φ(z)) ∧ Γ{z/State(Do([α1, ..., αn], I(z)))}

A planning problem is encoded in FLUX in a sound and complete way using
the following two clauses:

P (z, p, z)⇐ Goal(z), p = [] and
P (z, [a|p], zn ⇐ Poss(a, z), StateUpdate(z, a, z1, []), P (z1, p, zn)

These clauses state that if we are at the goal state, then the solution is the empty
plan, otherwise the plan is constructed recursively with a sequence of actions,
until the goal state is reached. For instance, a planning problem encoding for the
scenario of the running example is:

AssistP lan(z, p, z)⇐ Holds(Solved(status, location), z),

Holds(PayCompleted(payform), z),Holds(HasOutput(report), z), p = []

AssistP lan(z, [a|p], zn)⇐

Poss(a, z), StateUpdate(z, a, z1, []), AssistP lan(z1, p, zn).

Definition 5.1.1 and the accompanying planning problem encoding have two
major drawbacks. First, they do not take into account the issues of termination
and computational complexity, since they define an exhaustive systematic search
through all executable sequences of actions. The more actions are available at a
given state, the less computationally feasible it is to find a solution to the planning
problem. The second drawback is that they can produce only sequential compo-
sitions, disregarding any other control construct, such as conditional or parallel
composition. The first step towards handling both issues is introducing heuristics,
only considering plans that follow a more specific encoding.
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Definition 5.1.2 A heuristic encoding of a WSSL planning problem is defined as
a FLUX programPplan defining a predicateP (z, p, zn) that describes the problem
of reaching a goal state Γ(z), starting from an initial state Φ(z). The encoding is
sound iff the following holds: for every computed answer θ to the FLUX query
⇐ Φ(z) ∧ P (z, p, zn), pθ is a solution to the planning problem and
Poss(pθ,Φ(z)) ∧ Γ{z/State(Do(pθ,Φ(z)))}.

In order to consider plansmore complex than sequences of services, heuristic
encodingsneed to include control construct definitions. BasedonDefinitions 4.1.2
and 4.1.3, we extend the FLUX kernels that we defined with clauses that support
specification of fundamental control constructs:

1 poss_if (F , A, B, Z) :− holds(F,Z ), poss(A,Z) ; not_holds(F,Z ), poss(B,Z ), A\==B.
2 poss_and(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
3 poss_or(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
4 poss_xor(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
5 poss_loop(F,K,A,Z) :− K\==0, (holds(F, Z) −> poss(A, Z )),
6 update(Z, A, Z_PR), poss_loop(F, K−1, A, Z_PR).
7
8 state_update_if (Z, F , A, B, Z_PR) :− holds(F, Z ), state_update (Z, A, Z_PR) ;
9 not_holds(F, Z ), state_update (Z, B, Z_PR).

10 state_update_and(Z,A,B,Z_PR) :− state_update (Z,A,Z_1 ), state_update (Z_1,B,Z_PR).
11 state_update_or (Z,A,B,Z_PR) :− state_update (Z,A,Z_1 ), state_update (Z_1,B,Z_PR) ;
12 state_update (Z,A,Z_PR) ; state_update (Z,B,Z_PR).
13 state_update_xor (Z,A,B,Z_PR) :− state_update (Z,A,Z_PR),\+ state_update (Z,B,Z_PR);
14 state_update (Z,B,Z_PR), \+ state_update (Z,A,Z_PR).
15 state_update_loop (Z,F ,K,A,Z_PR) :− not_holds(F,Z) −> Z_PR=Z ; K\==0,
16 (holds(F,Z ), update(Z,A,Z_1 ), not_holds(F,Z_1 )) −>
17 state_update (Z,A,Z_1 ), state_update_loop (Z_1,F ,K−1,A,Z_PR).

Listing 5.2: Control flow clauses

Note that sequence needs no special foundational axioms, as it is simply mod-
eled using Prolog comma sequences. There are a number of notable differences
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between Definitions 4.1.2 and 4.1.3 and their implementation in FLUX/Prolog in
Listing 5.2:

• Lines 1-4: The poss clauses for conditional and parallel composition make
sure that services A and B are different (A\==B). This avoids meaningless
compositions of the same service, which are deemed valid in Prolog, pro-
vided their preconditions hold at Z.

• Lines 2-4: The poss clauses for parallel composition also include the clause
A@<Bwhich demands that the two services in parallel are encountered in an
alphabetical order. This is included in order to make sure that only one of
A <op> B, B <op> A succeeds, otherwise two identical composition schemas
are regarded as different by Prolog interpreters.

• Lines 5-6 and 15-17: In the case of loops, it is necessary to impose an upper
boundK on the number of iterations, to avoid non-terminating executions.
Both of these clauses employ recursion to implement loop semantics.

• Line 10: State update in AND-Split/Join is expressed as in the case of se-
quence, since the resulting state update is the same regardless of whether
the services were executed in sequence or in parallel. In accordance with
the discussion in Section 4.1.1, we assume that the two services are inde-
pendent, i.e. one does not negate an effect of the other. In case where the
two services are not independent, one needs to model both alternatives by
adding the disjunct state_update(Z,B,Z_1), state_update(Z_1,A,Z_PR).

• Lines 11-12: OR semantics are approximated, in the sense that we attempt
first to prove that both services have executed successfully and only if this
fails, do we consider the alternatives of only A succeeding and only B suc-
ceeding, in that order.

• Lines 13-14: XOR semantics are expressed by requiring that only one of the
two service state updates is provable. This means that racing behavior is
not modeled; only pure XOR semantics are.
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It should also be noted that the not_holds/2 predicate, used in the definition
of conditionals and loops, is implemented as a negative constraint. Listing 5.3
shows one possible heuristic encoding for the composition problem of the run-
ning example:

1 assist_plan (Z ,[ A|P ], Z_PR) :− A1=receivesms, A2= receivecall ,
2 A=xor(A1,A2), poss_xor(A1,A2,Z ), state_update_xor (Z,A1,A2, Z_1 ),
3 assist_plan1 (Z_1,P,Z_PR).
4 assist_plan1 (Z ,[ A|P ], Z_PR) :− A1= retrievelocation , A2= retrievediagnostics ,
5 A=and(A1, A2), poss_and(A1,A2,Z ), state_update_and(Z,A1,A2,Z_1 ),
6 assist_plan2 (Z_1,P,Z_PR).
7 assist_plan2 (Z ,[ A|P ], Z_PR) :− A=findmech, poss(A,Z ),
8 state_update (Z,A,Z_1 ), assist_plan3 (Z_1,P,Z_PR).
9 assist_plan3 (Z ,[ A|P ], Z_PR) :− A=receivepay, poss(A,Z ),

10 state_update (Z,A,Z_1 ), assist_plan4 (Z_1,P,Z_PR).
11 assist_plan4 (Z,A,Z_PR) :− F= req_deliv (report ), A1=ereport, A2=mreport,
12 A=if (F ,A1,A2), poss_if (F ,A1,A2,Z ), state_update_if (Z,F ,A1,A2,Z_PR).

Listing 5.3: Heuristic encoding for the running example

Executing the FLUXquery assist_plan([callcenterup, gpsactive(user1),

systemactive(vehicle1), req_deliv(report1)], P, Z_PR). will yield a plan
following the composite process of Fig. 2.1. Additionally, if we employ the full
FLUX kernel, defined earlier, queries with incomplete initial states can also be
handled. For instance, we may exclude req_deliv(report1) (which corresponds
to the user wanting the report delivered by traditional mail) from the definition
of the initial state and the planner will produce plans that assume either of the
two cases, with or without that fluent.

Data Flow

The implementation in FLUX of the data flow axiom defined in Section 4.1.4
requires a new version of the plus_/3 clause in both FLUX kernels. The new defi-
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nitions are shown in Listing 5.4. In both cases, if the fluent list that is given as the
second argument of plus_contains a HasOutput fluent, then the equivalent HasIn-
put is also added to the final state.

1 plus_ (Z, [], Z ).
2 plus_ (Z, [F|Fs ], Zp) :−
3 (\+ holds(F, Z) −> Z1=[F|Z ],( F=hasoutput(N) −> Z2=[hasinput(N)|Z1] ; Z2=Z1);
4 holds(F, Z ), Z2=Z), plus_ (Z2, Fs , Zp).
5
6 plus_ (Z, [], Z ).
7 plus_ (Z, [F|Fs ], Zp) :−
8 (\+ holds(F, Z) −> Z1=[F|Z ],( F=hasoutput(N) −> Z2=[hasinput(N)|Z1] ; Z2=Z1);
9 \+ not_holds(F, Z) −> Z2=Z

10 ; cancel (F , Z, Z3 ), not_holds(F, Z3 ), Z2=[F|Z3 ]), plus_ (Z2, Fs , Zp).

Listing 5.4: Modified versions (basic and full) of plus to support data flow

Apart from this default, domain-independent data flow rule, one may also
want to express domain-dependent links between input andoutput variables. This
can be easily expressed using ramifications: the fact that a service produces a cer-
tain output triggers a ramification of having a certain, differently-labeled input
available. Such customized rules need to be part of service specifications in order
to be usable in composition scenarios. An evaluation of the WSSL planner using
ECLiPSe is presented in Section 7.1.2.

5.2 WSSL/CVF: Composition andVerification Framework

WSSL planning, as was defined in the previous section, can be used as a basis
for an integrated composition and verification framework that satisfies the com-
plete set of requirements for automated service composition that was defined in
Section 2.4.1, as well as exploiting the benefits of relying on WSSL service specifi-
cations. More specifically:

Representation completeness Employing WSSL specifications for all services
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considered by the framework allows for descriptions and composition goals
that do not suffer from the frame problem, take ramifications into account,
while also being able to verify the resulting compositions and provide expla-
nations for unexpected observed behavior. Also, WSSL specifications allow
for behavioral state-based matchmaking between service candidates and
functional goals. All these aspects are realized via the customized FLUX ker-
nels we defined to implement WSSL and its extensions.

Automation This requirement is realized via WSSL-based planning and discov-
ery; both processes are automated by applying logic programming tech-
niques on FLUX programs.

Dynamicity WSSL specifications may be linked to specific service endpoints (by
means of the grounding attribute in the service part), but this is not manda-
tory. Thus, aWSSL-based composition frameworkyields abstract planswhich
can then be concretized through suitable service discovery mechanisms.
Since the plans are essentially compositions of service specifications, con-
cretization can be altered in a dynamic way by discovering alternative ser-
vices that still conform to the specifications.

Semantic capabilities WSSL specifications are semantically rich, containing in-
puts, outputs, preconditions and postconditions, while all elements are as-
sociatedwith an IRI [Duerst and Suignard 2005], which can link them to any
available ontology. It should be noted that we use ontologies as shared vo-
cabularies and not to perform reasoning-based composition and discovery;
these tasks are realized using logic programming in FLUX.

QoS-Awareness The extension of WSSL to support QoS profiles, defined in Sec-
tion 4.2, assists in realizing QoS-awareness in service composition, in associ-
ationwith suitableQoS-aware service discovery algorithms such as the ones
defined in [Kritikos and Plexousakis 2009a;b, Mello Ferreira et al. 2009].

Non-determinism The extension of WSSL to support composition, defined in
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Section 4.1, is implemented in FLUXand includes non-deterministic control
constructs such as conditional execution and loops.

Partial Observability This requirement is addressed by the third and finalWSSL
extension, defined in Section 4.3 and also implemented in FLUX, allowing
for incomplete state specification, update and reasoning, as well as the def-
inition of knowledge (or lack thereof) with regard to a fluent.

Domain independence WSSL specifications are not dependent on any single do-
main; they can be used to specify any service.

Correctness The strong logic foundations ofWSSL in thefluent calculus allow for
the development of effective verification techniques, which are realized by
posing FLUX Prolog queries in relation to the property we are attempting
to prove.

Scalability The efficiency results of running FLUX queries in [Thielscher 2005a]
indicate a good starting point for scalability aspects. Scalability evaluation
is analyzed in Chapter 7.

The main functionality of WSSL/CVF is illustrated in Fig. 5.1 and analyzed in
the rest of this chapter. Functional composition is realized through WSSL plan-
ning and produces a set of abstract plans that achieve functional composition
goals. Verification queries can also be posed with regard to the resulting abstract
plans. Each task in the abstract plans produced by the planner is associated with
a set of services through functional discovery, yielding so-called extended plans.
Then, pruning and ranking is performed for these plans by attempting to satisfy
local QoS goals. Finally, QoS-based selection based on global QoS goals is executed
for the top-ranked plan; if no solution is found, selection is performed for the
second-ranked one and so on.

We adopt the two-phase approach for QoS-awareness that is more common
in the associated literature, performing functional and non-functional compo-
sition separately. The main reason behind this decision is to split the composi-
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Figure 5.1: Overview of WSSL/CVF

tion problem, allowing for a more focused approach on the functional and non-
functional cases; this also avoids the increase in complexity when all aspects are
considered simultaneously, since that would lead in more severe cases of back-
tracking in planning. Separating functional and non-functional composition also
allows the framework to produce abstract processes, where each task is only as-
sociated with a specification and not a concrete service, by only performing the
first two phases, up until functional discovery; this is useful when non-functional
requirements are not immediately available (e.g., they depend on Service Level
Agreements that are pending). Such a framework can be of assistance to stake-
holders in service engineering such as SBA designers or composition architects,
by reducing the modeling effort required in order to create a composite service
and also mitigating the effects of human error in the process.

5.2.1 Functional Composition and Verification

The first step in the proposed framework is to achieve functional composition
and verification, given a repository of WSSL specifications and a set of functional
goals, also expressed in WSSL. This is realized using WSSL planning and executed
in theECLiPSe constraint programming system. As defined in Section 5.1.4, for
theWSSL plan to be effective and actually deliver complex composition plans and
notmerely sequential ones, heuristic encodings of the composition problemmust
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be supplied. There is a direct relation between the detail of the heuristic encod-
ing and the effectiveness of the planner. The more effort is put by the designer
in defining heuristic encodings, the more effective WSSL planning will be. In the
typical case, we expect from the service composition designer to provide a rough
skeleton of the composition process, with alternative choices with regard to ac-
tions and control constructs used, so that the planner does not go through all pos-
sible choices which would almost certainly lead to non-terminating executions.

It should also be taken into account that the framework expects more than
one abstract plans to be produced in this step, otherwise the rest of the process
may fail to deliver a satisfactory solution, due to not having alternative plans to
fall back to if the single abstract plan never leads to a concrete process that sat-
isfies all composition goals. Returning all possible planning problem solutions
instead of only the first one found is expected to increase the time required to
complete the task; a detailed evaluation of the whole framework, including the
planning process, is provided in Chapter 7 and aims to shed light on scalability
aspects, among others, in relation to real-world scenarios.

Verification

Given a plan generated by the functional composition process, service veri-
fication aims to check that the composite service that corresponds to the plan
meets some properties. The verification process in our framework focusesmainly
on answering questions about the behavior of the composition and is conceptu-
ally identical to the verification tool presented in 5.1.3. Examples of the properties
that can be verified are the following:

• Composability of a set of services: given a composition goal, the nature of
the composition process yields results aboutwhether this particular set can
lead to a valid composition.

• Liveness and safety properties that check whether the composition plan re-
alizes the goal behavior.
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• Conformance of an observed composite service behavior to the correspond-
ing plan specification and, in case conformance fails, derivation of possible
explanations for the conflict in order to perform troubleshooting actions.

For example, a liveness property in ourmotivating scenario involves verifying
whether the composition plan leads to the final report being delivered (either by
mail or electronically), by provingEmailed(report)∨Delivered(report), where
z is the final state, while a safety property would be to make sure that payment
is performed for the correct payment form (Holds(HasInput(payform), zin)∧

¬Holds(PayCompleted(payform2), zout)). Verificationqueries of the third type
can be answered due toWSSL’s solution to the qualification problem. For instance,
after executing the composite process in Fig. 2.1, we observe its behavior in the
form ofWSSL state descriptions and pose the query: in the final state z, is the goal
holds(solved(status, location), z), holds(paycompleted(form), z),

holds(hasoutput(report), z) satisfied? If the answer is no and no accidental
qualifications have been expressed, then the observed behavior is deemed incon-
sistentwith the composition specification.However, given the specification shown
in Table 3.2, the framework deduces that an accidentmust have occurred, namely
failure(deliv). Such explanations are valuable for determining follow-up ac-
tions to unexpected situations, such as re-executing services that fail or adapting
the composite process in order to replace them.

5.2.2 Specification-based Functional Discovery

For each task in the abstract plans produced by the functional planner, func-
tional discovery is performed, which yields a set of extended plans, linking each
task with (possibly more than one) concrete executable services. In our frame-
work, we assume that all abstract tasks and concrete service candidates are as-
sociated with a WSSL specification. Hence, functional service matchmaking and
selection relies on and is driven by WSSL specifications. Essentially, we need to
check if there is any fluent that is included in the action precondition axiomof the
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abstract task specification but is missing from the concrete service specification;
the same must be done for state updates and causal relationships. The following
definition formally states what is required in order to determine whether a can-
didate service specification matches an abstract task specification.

Definition 5.2.1 Given twoWSSL specifications R (abstract task) and T (concrete
service), T matches R iff the following hold:

Action precondition axioms If Poss(R(x), z) ≡ ΠR(z) and Poss(T (x), z) ≡
ΠT (z), then ΠT (z) ⇒ ΠR(z) must hold. With ΠR(z) ≡ Holds(fR1, z) ∧

...∧Holds(fRn, z) andΠT (z) ≡ Holds(fT1, z)∧ ...∧Holds(fTn, z), then
ΠT (z)⇒ ΠR(z) ≡ {fRi, ..., fRn} ⊆ {fTi, ..., fTn}.

State update axioms IfPoss(R(x), s)⇒ (∃yR)(∆R(s)∧State(Do(R(x), s)) =

State(s)+θ+R−θ
−
R),Poss(T (x), s)⇒ (∃yT )(∆T (s)∧State(Do(T (x), s)) =

State(s) + θ+T − θ
−
T ), then ∆T (s) ⇒ ∆R(s) and State(Do(R(x), s)) =

State(Do(T (x), s)) ≡ (θ+R ⊆ θ
+
T ) ∧ (θ−R ⊆ θ

−
T )must hold.

State update axioms with ramifications If Poss(R(x), s) ⇒ (∃yR)(∆R(s) ∧

Ramify(z, θ+R , θ
−
R , z

′) and Poss(T (x), s)⇒ (∃yT )(∆T (s)∧

Ramify(z, θ+T , θ
−
T , z

′) then ∆T (s) ⇒ ∆R(s) and θ+T ⊆ θ+R ∧ θ
−
T ⊆ θ−R

must hold, in addition to the following equivalence of causal relationships:

Causal relationships If CRR and CRT are the two sets of causal relationships
contained in R and T, respectively, then CRR ⊆ CRT must hold.

For instance, a service equivalent toReceivePay, as defined in Tables 3.1 and 3.2,
should have an action precondition axiom containing at least inputs payform,
location, creditCard and precondition Solved, a state update that produces at
least output invoice andpostconditionPayCompleted and removes thepayform
fluent while the causal relationship thatmodels card deactivationmust also be in-
cluded. Note that in Definition 5.2.1, we assume both specifications refer to the
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same state variables z and z′. Also, this matchmaking process leads to either ex-
act or super matches. It can be generalized to include subsumption and plug-in
matches, if such relations are expressed between different fluents.

To realize functional matchmaking, we again rely on WSSL’s implementation
in FLUX and the ECLiPSe system (see Section 7.1.3 for a detailed evaluation of
the functional discovery process inECLiPSe). To determine whether the impli-
cation Holds(fTi, z) ⊂ Holds(fRi, z) is true, we state that holds(f_Si, z)

are true (as Prolog facts) and check whether holds(f_Ti, z) can be derived. Al-
ternatively, we can check whether poss(Ti, Z), Z=[f_Ri] succeeds. As far as
state update axioms are concerned,we set a before stateZ=[θ−R] and an after state
Z_PR=[θ+R] and check if update(Z, T, Z_PR) (or ramify(Z, T, Z_PR)) holds.
There is no reason to check if CRR ⊆ CRT holds for the causal relationships,
since if it does not, ramify(Z, T, Z_PR) will fail. Alternatively, we can check
whetherstate_update(Z, Ti, Z_PR), Z=[f_Ri], Z_PR=[Z-theta_minusR+

theta_plusR]. holds.

By employing specification-based discovery, we raise the problem to a higher
level, disregarding any implementation details concerning the underlying ser-
vices and relying only on the accompanying specifications. While this simplifies
the discovery process, it can only be realized if the same specification language
is used for all services, while specifications must refer to the same conceptual
models. If either prerequisite does not hold, an alignment phase must precede
matchmaking, based on translators from one specification language to another
and adapters that modify a specification in order to refer to a different concep-
tual model. This holds for both functional and QoS parts of the specification.

5.2.3 Extended Plan Pruning and Ranking

Functional discovery results in a set of extendedplans,whosenumber and size
depends on two factors: the size of the subset of abstract plans returned by the
planner that are actually realized (because at least a single implementation exists
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for each task) and the number of concrete services available per task. While the
latter depends primarily on the size of the service repository, the former depends
on several aspects, such as functional goal complexity, the amount of candidate
service specifications and the strictness of heuristic encodings employed by the
planner.

An attempt at decreasing the size and complexity of the extended plan set is
realized through the tasks of pruning and ranking. Pruning removes any concrete
services included in extended plans that do not satisfy a local QoS goal. Goal and
offering constraints should refer to the same attributes and use the same oper-
ators. An entire extended plan can be discarded if pruning removes all possible
concrete services for a single task. For instance, in the running example, there
is a constraint that requires the find mechanic task to complete in less than 60
seconds. Suppose that there exist two different specifications for this task, Find-
MechSlow and FindMechFast, but only FindMechFast is associated to concrete ser-
vices that achieve the execution time goal. Given that knowledge, each extended
plan that contains FindMechSlowmust be discarded.

The plans that survive the pruning process are then ranked in order to deter-
mine the order in which they will be examined in the QoS-based selection phase
that follows. Ranking is performed using three criteria. First, the maximum plan
length is considered, i.e. the number of tasks included in the longest execution
path in the plan. Second, the total number of tasks in the plan is taken into ac-
count. These first two criteria quantify plan complexity, so that plans achieving
goals in less steps are preferred. Note that loops must be unfolded before calcu-
lating either of these metrics, using the maximum number of iterations.

Finally, ranking also relies on features that are domain/problem-dependent.
For instance, plans that realize the payment process of the running example in
a single task may be preferable, so that sensitive payment-related information
is not accessed by more than one services. Such criteria are expected to be de-
fined either by the composition requester or by designers with experience on the
particular domain or problem. To check such problem-dependent criteria, each
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extended plan must be parsed from start to end in order to determine whether
the plan contains a task that goes against the defined criteria.

To produce a total rank score, the widely used Simple Additive Weighting
method [Tzeng and Huang 2011] is employed. Weights are attributed uniformly,
but expert knowledge can again come in handy here giving, for instance, more
importance to problem-dependent criteria rather than those involving plan com-
plexity. For evaluation purposes, we implemented a simple prototype pruning
and ranking system in Java, that takes into account only problem-dependent fea-
tures when calculating the rank score, while pruning assumes that values associ-
ated with local goals are already collected for all abstract tasks. The evaluation
results are detailed in Section 7.1.5.

5.2.4 QoS-based Selection

Following pruning and ranking, QoS-based selection is performed for the re-
maining plans, until one is found that satisfies all global QoS goals. Selection is
performed based on the QoS profiles included in the WSSL specifications of the
concrete services that remain for each task and each plan. In the best case sce-
nario, only the top-ranked extended plan will need to be examined, hence reduc-
ing the overall time required for this phase. To realize this task,we rely on existing
algorithms in literature and propose two different approaches.

If we have knowledge about execution path probabilities or have no issue as-
signing equal probabilities to each possible execution path, then we adopt the
QoS-based selection algorithm that is defined in [Mello Ferreira et al. 2009], since
it includes an aggregation process that relies on knowing such probabilities. Note
that this algorithm also exploits utility functions that allow violation of global
QoS goals in order to handle over-constrained QoS requirements; our framework
currently does not support such soft constraints, hence the functions are mod-
ified to make sure all global goals are satisfied. Also, [Mello Ferreira et al. 2009]
does not take into account all attribute categories that we have defined; In such
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cases, the aggregation functions in Table 5.2 may be applied; this collection is es-
sentially a simplification of Table 4.1, taking into account only sequence, which
is the pattern used to model execution paths.

Table 5.2: Aggregation of QoS attributes per Execution Path

QoS Attribute Aggregation Function

Categories (per Execution Path)

M
ea
su
ra
bl
e

Temporal xa =
∑n

i=1 xi

Probabilistic xa =
∏n

i=1 xi

Cost xa =
∑n

i=1 xi

Reputation xa = avg{x1, ..., xn}

Throughput xa = min{x1, ..., xn}

Un
m
ea
su
ra
bl
e

Boolean xa =

 false, ∃i · (xi = false)

true, otherwise

Ordered Set xa = min{x1, ..., xn}

Unordered Set xa =
∩n

i=1 xi

On the other hand, if we do not consider execution path probabilities at all,
we can perform aggregation based on the functions in Table 4.1, calculating val-
ues for all attributes related to global QoS goals, before using the QoS-based se-
lection algorithms defined in [Kritikos and Plexousakis 2009a]. We implemented
a prototype aggregator system in Java, based on processes that are modeled us-
ing BPMN [Object Management Group 2011], since it is the only process model-
ing language that supports all composition patterns we consider; BPEL is also an-
other suitable candidate, provided that parallel execution is limited to the AND-
AND and OR-OR cases. To implement BPMN-related functionality, the jBPM li-
braries [JBoss jBPM team 2013] were used. Algorithm 2 sketches the functional-
ity of the aggregator system. An evaluation of the prototype is conducted in Sec-
tion 7.1.6.
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Algorithm 2: Aggregating QoS values in BPMN processes
input :A BPMN2 process (in XML), WSSL/XML documents for all

participating services and the QoS attribute to be aggregated
output :The aggregated QoS value

if attribute is pattern-independent then
nodeList← GetNodes();
foreach node n in nodeList do

if node is a task then
GetQoSValue();

end

end

apply aggregation function on collected QoS values;
end

else

aggValue← AggregatePath(n);
end

AggregatePath(n)

firstNode← GetFirstNode(n);
if firstNode is SplitNode then

outC← GetOutgoing();
foreach node c in outC do

aggValue← AggregatePath(c);
end

end

else

GetQoSValue();
end

apply aggregation function on collected QoS values;
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5.2.5 Framework Use

WSSL/CVF is intended primarily for design time usage. We expect that SBA
designers and composition architects can employ the framework in order to ac-
celerate and facilitate the process of designing a composite SBA, given a specifica-
tion of the goals requested by the service consumer and a specification repository,
offering services from one or more providers.

The stakeholders associated with the exploitation and overall life-cycle of the
framework include service providers, SBA designers and developers, composition
architects, domain experts and service consumers/requesters. The typical use
case that we envision involves service consumers/requesters expressing a com-
plete specification of functional and non-functional requirements for the SBA
they need. Service providers are then tasked with satisfying the request, by re-
lying on SBA designers and composition architects that use WSSL/CVF.

In order for the framework to produce effective results, four prerequisites
need to be satisfied:

1. Request specification should be expressed using WSSL, with the assistance
of a service designer that has experience with the language.

2. Specifications for candidate services to participate in the composition pro-
cess need to be expressed in WSSL as well. This is an indirect responsibility
of service providers and can be fulfilled either by service developers or de-
signers, before or after designing or implementing a service. Such specifica-
tions need to be kept up-to-date, reflecting changes resulting from service
adaptation or service evolution processes.

3. Heuristic encodings need to be defined to guarantee termination and to
make sure that control constructs other than sequence are taken into ac-
count. This is a responsibility of SBA designers and composition architects,
who may also rely on experts on the particular domain/problem at hand.

4. Problem-dependent ranking criteria are also necessary to maximize opti-
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mality. Once again, the know-how of SBA designers and composition archi-
tects, as well as domain/problem experts is invaluable.

5.2.6 Limitations

The choices of implementation languages and systemsmentioned in this chap-
ter come with a number of limitations that need to be taken into account. First
of all, as already mentioned, implementing WSSL states in FLUX as Prolog lists
means that states automatically become ordered lists, instead of unordered ones.
This modification does not have any consequences on our framework since con-
sidering states as unordered lists is not required in any task included in the frame-
work.

Prolog as a logic programming language has a series of limitations. The fol-
lowing cannot be expressed in Prolog:

1. Disjunctive and negative facts or conclusions

2. Quantification for facts and conclusions is limited: existential quantifica-
tion is implicit for variables occurring only in the body of a rule while uni-
versal quantification is implicit for variables occurring in both the head and
the body of a rule.

3. Second-order logic is not allowed directly.

In defining WSSL, we have taken into account only the first-order part of flu-
ent calculus definitions; any second-order logic constructs were either simplified
or were irrelevant to the service case. As far as the first three limitations are con-
cerned, the rules that are defined in the FLUX kernels do not require such expres-
siveness; the same is true for clauses that encode a service domain.

The nature of FLUX planning also raises another interesting limitation. Sup-
pose that we have a service A requiring a single input and a single precondition.
If the fluents associated with the input and the precondition hold in a state Z, the
planner will attempt to ”execute” that service and the clause poss(A,Z),
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state_update(Z,A,Z1)will succeed, resulting in state Z1. If the postconditions
of the service donot remove either of the input andpreconditionfluents, the plan-
nerwill repeat theprocess and the clauseposs(A,Z1), state_update(Z1,A,Z2)

will succeed again. As it becomes apparent, this scenario eventually results in a
non-terminating execution. To address this, at least one of the associated inputs
or preconditions of a service must behave like a token that is consumed and re-
moved after a successful execution.

A related limitation involves planning using incomplete states in the form of
Z0 = [F1, ..., FN | Z], associated with a set of constraints on Z. Searching
for a solution to a planning problem starting from an incomplete initial state, the
planner will assume, at any given state, that the planning goal has been achieved,
provided that this does not violate the constraints. In cases where no heuristic
encoding is used, or when the heuristic encoding is not restrictive enough, at-
tempting to find all possible solutions will quickly result in non-terminating exe-
cutions; this is due to the fact that the planner can assume that the goal has been
reached, either by not executing any action, or by executing any possible combi-
nation of actions, since it can always assume that the required goal is achieved by
the incomplete (unknown) part of the current state.

Another limitation concerns the Java-ECLiPSe interface. When communi-
cating goals and results through the interface, all variables are replaced by the
null token. In the case of results, this poses a presentation problemwhen attempt-
ing to deliver the result to the user through the interface of theWSSL verification
tool. This problem is circumvented by keeping a table of variable names and using
it to translate the returned result.

Finally, the jBPM libraries currently do not support activity looping, since
there is noway to access loop characteristics of a node. In order to support looped
activities in aggregation, we adopt a naming convention: names of looped activi-
ties are prefixed with a sequence that starts with ”Loop_”, followed by the num-
ber of iterations and ending with an underscore, e.g., ”Loop_10_TaskName” rep-
resents a looped execution of TaskName for a maximum of 10 iterations.
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plexity of the underlying fluent calculus theory, as well as applicability of the lan-
guage in terms of its connection to other related or complementary languages in
service science. The discussion intends to reinforce the belief that WSSL is a lan-
guage of high usability despite the fact that, at first glance, its high expressivity
may indicate otherwise.

6.1 Correctness

WSSL/CVF, analyzed in Chapter 5, relies on two slightly modified FLUX ker-
nels in order to implement the fluent calculus foundations of WSSL. In this sec-
tion, we investigate correctness for these kernels with regard to their WSSL foun-
dations, based on the correctness results of the initial FLUX kernel, as reported
in [Thielscher 2005b]. Proving correctness aims at supporting the use of FLUX in
safety-critical service composition and verification tasks.

6.1.1 Holds

Beginning our investigation with clauses that constitute the Basic FLUX ker-
nel, Theorem 2.2 in Chapter 2 of [Thielscher 2005b] proves correctness for Holds
through the following:
COMP [Pkernel] � Holds(f, JzK) iff Σstate � Holds(f, z) and
COMP [Pkernel] � ¬Holds(f, JzK) iff Σstate � ¬Holds(f, z) where Pkernel is
a FLUX kernel, COMP [Pkernel] is its completion, giving its declarative seman-
tics, Σstate is a fluent calculus state signature, z is a ground fluent calculus state
(consisting of a finite set of fluents without variables) and JzK is a ground FLUX
state containing the same fluents as z. Since the proof makes no claim for f ,
other than it being ground, then the proof also holds when f = HasInput or
f = HasOutput.
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6.1.2 Minus, Plus and Update

Lemmas 2.4, 2.5 and Theorem 2.6 in [Thielscher 2005b] prove correctness for
Minus(z, θ−, z′), Plus(z, θ+, z′) and Update(z, θ+, θ−, z′), respectively. Since
our kernel includes a modified definition of Plus, we need to make sure that the
proof of correctness still holds.

Lemma 6.1.1 Consider the basic FLUX kernel Pkernel and the corresponding flu-
ent calculus signature. Let z, θ+, z′ be ground states; then for any JzK and Jθ+K,
there exists Jz′K such that COMP [Pkernel] � Plus(JzK, Jθ+K, Jz′K iff Σstate �

z′ = z ◦ θ+.

Proof COMP [Pkernel] entails the definition

Plus(z, θ+, z′) ≡(θ+ = [] ∧ z′ = z)∨

(∃f, θ+1 , z1, z2, v)(θ
+ = [f |θ+1 ]∧

¬Holds(f, z) ∧ z1 = [f |z]∧

(f = HasOutput(v) ∧ z2 = [HasInput(v)|z1]∨

f ̸= HasOutput(v) ∧ z2 = z1)∨

Holds(f, z) ∧ z2 = z ∧ Plus(z2, θ+1 , z
′)) (6.1)

Let Jθ+1 K = [f1, ..., fn]. We prove the claim by induction on n. If n = 0, thenJθ+1 K = [] and Plus(JzK, [], z′) ≡ z′ = JzK. Also θ+1 = ∅ and Σstate � z′ =

z ◦ θ+1 = z ◦ ∅ = z, which proves the claim.
If n = 1 and f1 = HasOutput(v) then from (6.1) we have

Plus(JzK,HasOutput(v), z′) ≡ (∃z1, z2, v)(¬Holds(f, JzK) ∧
z1 = [HasOutput(v)|JzK] ∧ z2 = [HasInput(v)|z1] ∧ Plus(z2, [], z′)) which
proves the claim according to the proof of correctness of Holds(f, z) and the
induction hypothesis.

If n = 1 and f1 ̸= HasOutput(v) then from (6.1) we have
Plus(JzK, f1, z′) ≡ (∃z1, z2, v)(¬Holds(f, JzK) ∧ z1 = [f1|JzK] ∧ z2 = z1 ∧
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Plus(z2, [], z
′)) which again proves the claim according to the proof of correct-

ness ofHolds(f, z) and the induction hypothesis.
The proof is achieved in the same way in case n > 0 and for any combination

of fluents (HasOutput or other).

6.1.3 Causes and Ramify

The introduction of Causes and Ramify in FLUX in order to translate the fluent
calculus solution to the ramification problem affects correctness of the update
process, since it requires that the application of a finite set of causal relationships
always reaches a final state; in any other case, total correctness is not guaranteed.
Hence, care must be taken in the encoding of causal relationships, so that no ap-
plication of them leads to an infinite cycle. In the case of service specifications,
however, as analyzed in Section 3.2.3, only direct causal relationships between
condition pairs are expected to be of interest, hence the probability of endanger-
ing correctness due to arbitrary chains of causal relationships is insignificant.

6.1.4 Control Flow

Correctness is not affected by the clauses that handle control flow for service
composition, since they consist of clauses, the correctness of which is already
proven: Holds clauses, Poss clauses that consist of Holds clauses and StateUpdate
clauses which consist of Update or Ramify clauses.

6.1.5 Complete FLUX Kernel

The complete FLUX kernel introduces several modifications, following those
introduced in the specification of General FLUX in [Thielscher 2005b]. Hence, any
existing correctness results for the newly added clauses are adopted as-is. Cor-
rectness of the constraint solver is proven in Chapter 4.3 of [Thielscher 2005b],
while Lemmas 4.9, 4.10 and 4.11 and Theorem 4.12 in [Thielscher 2005b] handle



6.2. Decidability and Complexity 151

correctness for incomplete state updates. It is worth mentioning that update is
proven to be sound but incomplete, since in some cases FLUX infers a weaker
state specification than the one derived from the fluent calculus foundations.

6.2 Decidability and Complexity

WSSL and its extensions were designed with high expressivity as a fundamen-
tal goal in order to be able to support solutions to the frame, ramification and
qualification problems. However, the tradeoff between expressivity and decidabil-
ity means that the more expressive a language gets, the more possible it is for the
decision problem to be unsolvable. Since WSSL is founded on the fluent calculus,
we need to review existing decidability results for the fluent calculus, as well as re-
sults for the complexity of the decision problem and determine how these results
adapt to WSSL.

6.2.1 Core WSSL

[Lehmann and Leuschel 2000] proves that entailment for the full proposi-
tional fluent calculus is undecidable. Entailment becomes decidable for the frag-
ment that restricts formulas to conjunctions of twoHolds formulas. Independently,
[Hölldobler and Kuske 2000] investigates decidability boundaries bymaking a dis-
tinction between afluent calculus formalism that supports resources and one that
only supports properties. The former requires that states are represented bymul-
tisets of fluents, possibly containingmore than one copies of the same fluent. The
latter restricts state representations to sets of fluents, where each fluent can ap-
pear at most once. Note that in the case of service specifications, this restriction
is in line with the concept of service behavior, since we are only interested in
fluents as properties that may or may not hold.

[Hölldobler andKuske 2000]’s investigationfirst focuses on amonadic second-
order fragment of the fluent calculus with resources: with the exception of situ-
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ations, all other variables participate only in first-order formulas, arbitrary func-
tion symbols and predicates are not allowed and fluents are represented by con-
stants. Entailment is decidable only formonadic queries (i.e. formulaswithout free
variables), for restricted state update axioms (i.e. ones that allowonly boolean com-
binations of formulas of the form ϕ(State(s)) and ϕ(State(Doa(s))), where ϕ
is a state formula with one free variable). However, it is not elementary decid-
able, since complexity for the monadic decision problem cannot be described by
a function using addition, multiplication and exponentiation. On the other hand,
entailment for the fluent calculus with properties is also decidable for monadic
queries but for the more expressive case of unrestricted state updated axioms.
Entailment becomes undecidable again if two unary function symbols are intro-
duced, mapping fluents to fluents.

Following a different path towards assessing decidability for the fluent calcu-
lus, [Schiffel and Thielscher 2006] presents a complete and correct bidirectional
translation process between the situation calculus and the fluent calculus. This
translation process guarantees equivalence of the entailment procedure for the
two calculi. Hence, it can be argued that any decidability results obtained in re-
search on the situation calculus can be applied for the fluent calculus as well.

One case of decidability results in the situation calculus is presented in [Gu
and Soutchanski 2007] and is of particular interest due to its direct relation to
service description. The authors restrict situation calculus to a two-variable frag-
ment with counting, C2, which has been proven to be decidable with NExpTime
complexity [Pacholski et al. 2000] and also addDescription Logic capabilities, such
as the expression of TBox and ABox statements. The authors examine the expres-
sivity of such an action language for the case of service domains, pointing out
the fact that if both atomic services and properties affected by them can be ex-
pressed using only two parameters, then they can be expressed using C2, with
decidable entailment. Additionally, [Milicic 2008] proves that the C2 fragment of
the situation calculus ismore expressive than any of the DL fragments considered
in literature in relation to action formalisms.
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Based on these results, we can deduce that entailment is decidable for the flu-
ent calculus fragment that is equivalent to the C2 fragment of the situation cal-
culus, obtained using the translation process defined in [Schiffel and Thielscher
2006]. This fragment allows for descriptions of services represented by actions
with at most 2 arguments and fluents with at most 3 arguments, one of which is a
situation variable. Moreover, this fragment is considerably more expressive than
the ones investigated by [Lehmann and Leuschel 2000] and [Hölldobler and Kuske
2000] and, based on the results of [Milicic 2008], is the most expressive one out of
all logic-based action formalisms that are not based on narrative and have been
considered for service specification.

6.2.2 WSSL Extensions

While decidability has been investigated in literature for the core fluent cal-
culus, no decidability results exist for the extensions that cover the ramification
and qualification problems, and incomplete and knowledge states. As far as the
solution to the ramification problem is concerned, it is obvious that the Causes
predicate cannot be defined in the aforementioned decidable fragment of the flu-
ent calculus. Hence, the onlyway ramifications can bemodeled in a decidableway
is if they are degenerated into direct effects of a state update.

The solution to the qualification problem requires the inclusion of accident-
based clauses in both action precondition and state update axioms as well as the
introduction of a default theory in order to assume away accidents. Decidability
is not affected by accident-based clauses, provided that they conform to the two-
variable restriction, which is achievable at least for expressing the no-accident
case (which follows the form (∀c)¬Acc(c, s)).

Default theories are shown to be decidable in [Besnard et al. 1983], provided
that they consist exclusively of free-defaults (i.e. defaults without prerequisites)
and consequences and axioms in the defaults are predefinite variable clauses (i.e.
they are function-free and all variables occurring in a positive literal also occur in
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a negative one). The default theory introduced in order to assume away accidents
(∆ = ({ :¬Acc(c,s)

¬Acc(c,s) }) satisfies these requirements, hence decidability results are
not affected by it.

Moving on to partial observability, it should be noted that the decidable frag-
ment of the fluent calculus can only express incomplete or knowledge states that
are definedusing constraints that conform to its restrictions. Thus, state formulas
that are associated with these definitions have to belong at most to the fragment
of the fluent calculus that is equivalent to C2; in other words, no more than two
variables are allowed and the signature must contain only predicate symbols.

6.3 Applicability and Practical Concerns

Figure 6.1: Placement of WSSL with regard to current and former service descrip-
tion efforts

WSSL is designed as a language at the level of OWL-S [Martin et al. 2004]
and WSML [WSML Working Group 2008a], focusing on representation complete-
ness with regard to the frame, ramification and qualification problems. As illus-
trated in Fig. 6.1, this characteristic places WSSL at a position below higher-level
languages such as SoaML [Object Management Group 2012b] or the more recent
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USDL [Kadner et al. 2011, Oberle et al. 2013], but above ground languages such as
WSDL [Chinnici et al. 2007]. This sectionmakes a case for the applicability ofWSSL
by concretizing its relation with most of the aforementioned service description
languages.

6.3.1 WSSL Grounding to WSDL

WSSL specifications provide a complete behavioral description of a service in
terms of IOPEs, effectively answering the question of what a particular service
does, or how it affects the state of the world. A behavioral description does not
concern itself with information about how to invoke a service or the format of
messages exchanged. WSDL1 is considered the current industry standard for pro-
viding such information, enabling a user to invoke a service and exchange infor-
mation, regardless of service implementation. Hence, it is important to establish
a connection between WSSL and WSDL, in order to bring WSSL closer to real-
world scenarios and maximize its usability. This connection is defined in terms
of a grounding mechanism, that maps a WSSL specification to an existing service
described in WSDL, following the equivalent mechanism employed by WSML.

Table 6.1 shows a basic correspondence between parts of aWSSL specification
that are relevant to service grounding and parts of a WSDL description. Note that
this correspondence assumes a similar level of granularity between the two de-
scriptions. However, there is also the possibility that one of them is more coarse-
grained (or more fine-grained) than the other. For instance, a WSSL service spec-
ification may match a set of operations instead of a single one, or a single WSDL
operation may correspond to more than one WSSL specifications. Similarly, a set
of WSSL inputs or outputs may correspond to a single input or output message
and vice-versa.

Each of theWSSL elements included in Table 6.1 is associated with a grounding
property that takes an IRI as value, mapping the particular element to the corre-

1A concise description of WSDL 2.0 can be found in Section 2.3.1
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Table 6.1: Mapping between WSDL and WSSL

WSSL WSDL

Service name Operation name
Input Input message

InFault message
Output Output message

OutFault message

sponding one in a WSDL description. These IRIs follow the format that is defined
in Appendices A.2 and C of [Chinnici et al. 2007] and are created by combining
the namespace URI with fragment identifiers that unambiguously identify com-
ponents on any level of granularity within a WSDL file. Note that in case we have
access to a semantically annotated WSDL description (expressed using SAWSDL,
summarized in Section 2.3.2), then we can use the modelReference attributes of
each input and output as names for the corresponding WSSL elements.

Grounding Example

Suppose that there is a WSDL description of a service that implements the
Login task of the running example. Part of this description is shown in Listing 6.1:

1 <binding>

2 name="SOAPLoginService"

3 interface="LoginInterface"

4 type="http://www.w3.org/2004/08/wsdl/soap12"

5 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

6 </binding>

7
8 <service

9 name="LoginService"

10 interface="LoginInterface">

11 <endpoint

12 name="normal"
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13 binding="SOAPLoginService"

14 address="http://www.example.org/login"/>

15 </service>

16
17 <interface name="LoginInterface">

18 <operation

19 name="login"

20 pattern="http://www.w3.org/ns/wsdl/in2-out">

21
22 <input element="ns:loginForm"/>

23 <input element="ns:user"/>

24 <output element="ns:loginConf"/>

25 </operation>

26 </interface>

Listing 6.1: WSDL description of Login service

Note that we assume that in2-out is a predefined message exchange pattern
that expects 2 inputmessages, labeled In1 and In2 and produces 1 outputmessage,
labeled Out. Part of a WSSL specification for the Login task that is grounded to the
WSDL description above would be expressed as shown in Listing 6.2 below:

1 <service

2 name="wssl#Login"

3 grounding="http://example.org/Login.wsdl#

4 wsdl.interfaceOperation(LoginInterface/login)"/>

5
6 <input

7 name="wssl#payForm"

8 grounding="http://example.org/Login.wsdl#

9 wsdl.interfaceMessageReference(LoginInterface/login/In1)"/>

10 <input

11 name="wssl#user"

12 grounding="http://example.org/Login.wsdl#

13 wsdl.interfaceMessageReference(LoginInterface/login/In2)"/>

14
15 <output
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16 name="wssl#payFConf"

17 grounding="http://example.org/Login.wsdl#

18 wsdl.interfaceMessageReference(LoginInterface/login/Out)"/>

19 </service>

Listing 6.2: WSSL specification of Login service

Generating WSDL from WSSL

The discussion so far assumes that WSSL specifications are created as an en-
hanced and complete description of already existing services that are associated
with WSDL descriptions and that the grounding mechanism associates specifica-
tions with WSDL endpoints. However, one can envision a different engineering
scenario where services are first designed at the specification level using WSSL,
and their implementation is performed separately based on such specifications.
In this scenario, a default WSDL description should be automatically generated
based on a WSSL specification, so that the associated service has the ability to re-
ceive and emitmessages. TheWSDL document is generated based on the template
shown in Listing 6.3:

1 <description xmlns="http://www.w3.org/2005/05/wsdl"

2 targetNamespace="namespace ID"

3 xmlns:xs="http://www.w3.org/2001/XMLSchema"

4 xmlns:wsoap="http://www.w3.org/2005/05/wsdl/soap"

5 xmlns:wssl="http://www.example.org/wssl">

6
7 <types>

8 Types declaration

9 </types>

10
11 <interface name="interface name">

12 <operation

13 name="service name"

14 pattern="pattern name"

15
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16 <input element="input name"/>

17 ...

18 <output element="output name"/>

19 </operation>

20 </interface>

21
22 <binding name="DefaultSOAPBinding" >

23 type="http://www.w3.org/2004/08/wsdl/soap12"

24 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/" >

25 </binding>

26
27 <service name="service name"

28 interface="interface name">

29 <endpoint name="endpoint name"

30 binding="DefaultSOAPBinding"

31 address="endpoint address"/>

32 </service>

33 </description>

Listing 6.3: WSDL template for WSSL-to-WSDL generation

The placeholders are filled in as follows:

namespace ID: The namespace, as defined in the WSSL document.

Types declaration: For each ontology concept used in the WSSL document, one
XML Schema type is defined.

service name: The value of the name attribute of the service element in the
WSSL document.

interface name: The service name, followed by the string ”Interface”.

endpoint name: The service name, followed by the string ”Endpoint”.

pattern name: Thenameof a previously definedmessage exchangepatternmatch-
ing the particular service (e.g., in-out).
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input name: The value of the name attribute of an input element in the WSSL
document.

output name: The value of the name attribute of an output element in theWSSL
document.

endpoint address: The value of the endpoint attribute of the service element
in the WSSL document. If it is empty, then an endpoint must be externally
specified for the service to be accessible.

Note that the choice of a message exchange pattern depends primarily on
the number of inputs and outputs included in the WSSL specification. The auto-
matically generated WSDL document should serve as a default starting point for
designers or developers that are tasked to create a service based on a WSSL spec-
ification.

6.3.2 Generating WSSL Specifications

Apart from associating WSSL specifications with existing WSDL descriptions
(or generating such descriptions), an additional way of extending applicability
of the language is to port existing service descriptions to WSSL. In order for a
language to qualify for this process, it should at least offer the ability to express
IOPEs, sinceWSSL specifications rely on such information. The languages that we
consider are WSML [WSMLWorking Group 2008a] and OWL-S [Martin et al. 2004].
Note that in both of these cases, service descriptions are associated with an on-
tology. Since WSSL is not an ontology language, any concept included in the re-
sulting specification is linked to the ontologies defined in the initial descriptions.
Therefore, parts of the initialWSML andOWL-S documents are eventually re-used
as service ontologies for the resulting WSSL specifications.
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From WSML

The translation process is based on the abstract syntax definition of WSML2.
The subset of this syntax that is relevant to WSSL is shown below:

⟨wsml⟩ ::= ⟨wsmlvariant⟩? ⟨namespace⟩? ⟨definition⟩*

⟨definition⟩ ::= ⟨goal⟩
| ⟨ontology⟩
| ⟨webservice⟩
| ⟨mediator⟩
| ⟨capability⟩
| ⟨interface⟩

⟨webservice⟩ ::= ’webService’ ⟨iri⟩? ⟨header⟩* ⟨nfp⟩* ⟨capability⟩? ⟨interface⟩*

⟨capability⟩ ::= ’capability’ ⟨iri⟩? ⟨header⟩* ⟨nfp⟩* ⟨pre_post_ass_or_eff ⟩*

⟨pre_post_ass_or_eff ⟩ ::= ’precondition’ ⟨axiomdefinition⟩
| ’postcondition’ ⟨axiomdefinition⟩
| ’assumption’ ⟨axiomdefinition⟩
| ’effect’ ⟨axiomdefinition⟩

⟨axiomdefinition⟩ ::= ⟨id⟩? ⟨annotations⟩?
| ⟨id⟩? ⟨annotations⟩? ⟨log_definition⟩

⟨log_definition⟩ ::= ’definedBy’ ⟨log_expr⟩+

⟨interface⟩ ::= ’interface’ ⟨iri⟩? ⟨header⟩* ⟨nfp⟩* ⟨choreography⟩? ⟨orchestration⟩?

⟨orchestration⟩ ::= ’orchestration’ ⟨iri⟩?

⟨nfp⟩ ::= ’nfp’ ⟨attributevaluenfp⟩ ⟨log_definition_nfp⟩?
| ’nonFunctionalProperty’ ⟨attributevaluenfp⟩ ⟨log_definition_nfp⟩?

⟨attributevaluenfp⟩ ::= id ’hasValue’ ⟨valuelistnfp⟩ ⟨annotations⟩?
2For a condensed description of WSML and WSMO, please refer to Section 2.3.4
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⟨valuenfp⟩ ::= ⟨basevalue⟩
| ⟨variable⟩

⟨valuelistnfp⟩ ::= ⟨valuenfp⟩
| ’{’ ⟨valuenfp⟩ ⟨morenfpvalues⟩* ’}’

⟨morenfpvalues⟩ ::= ’,’ ⟨valuenfp⟩

⟨log_definition_nfp⟩ ::= ’definedby’ ⟨log_expr⟩+

Based on this syntax, the generation of a WSSL specification from a WSML
description is realized according to the following steps:

1. The <iri> associated with the <webservice> definition is used as a service
identifier

2. WSSL inputs and outputs are derived from the <orchestration> definition.
Note that no orchestration syntax has been specified by the WSML group,
hence the derivation process cannot be specified in more detail.

3. WSSL preconditions are formed based on the precondition and assumption
axioms included in the <capability> definition, while WSSL postconditions
are based on the postcondition and effect axioms.

Axiom definitions for preconditions, postconditions, assumptions and effects
in WSML employ a set of logical connectives that is almost equivalent to the one
used inWSSL logical expressions. Most operators are shared between the two lan-
guages (=, ! =,∧,∨,¬, ∀, ∃,⊃,≡), with the single exception of the WSML con-
nective naf, which represents negation as failure. Since WSSL employs only clas-
sical negation, any occurrence of naf is replaced by ¬. WSML axioms may also
include auxiliary symbols that represent ontological concepts such as memberOf,
subConceptOf, ofType and impliesType. Such axioms do not belong in a WSSL speci-
fication and cannot be ported, since WSSL does not include any ontology defini-
tions.



6.3. Applicability and Practical Concerns 163

Table 6.2: Mapping between OWL-S and WSSL

OWL-S Service Profile WSSL

Service name serviceName property
Input Input instances (hasInput property)
Output Output instances (hasOutput property)

Precondition Precondition instances (hasPrecondition property)
Postcondition Result instances (hasResult property)

From OWL-S

Generating WSSL specifications from OWL-S3 ontologies is more straightfor-
ward than the case of WSML, since the ServiceProfile class of OWL-S contains all
the relevant information for specifying service behavior. Table 6.2 presents amap-
ping between OWL-S properties andWSSL concepts. OWL-S does not define a spe-
cific logic language for expressing preconditions and postconditions, although
several ones are mentioned as possible candidates, including SWRL. Thus, any
translation mechanism from OWL-S to WSSL depends on the choice of logic lan-
guage inOWL-S.Note thatOWL-SResults are essentially coupled outputs andpost-
conditions (effects), hence only the conditional part of them is ported to WSSL.

Since OWL-S and WSML do not take into account the ramification and qual-
ification problems, the resulting WSSL specifications cannot be considered com-
plete. For instance, theremay be some ramifications that result from service post-
conditions,while onemaywish to include accidental cases inpostconditions. Such
additional information can be added to the initially derived specifications by the
service designer or the service provider.

3For an overview of OWL-S, please refer to Section 2.3.3
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Table 6.3: Mapping between BPMN and WSSL for composition

WSSL BPMN

service Service Task
; (sequence) Sequence Flow

· (AND-Split/AND-Join) Parallel Gateway
+ (OR-Split/OR-Join) Inclusive Gateway
⊕ (XOR-Split/XOR-Join) Exclusive Gateway

If (conditional) Exclusive Gateway
Loop (iteration) Activity Looping

6.3.3 Generating BPMN from WSSL plans

The WSSL composition framework analyzed in Chapter 5.2 produces textual
descriptions of composite services that achieve the planning goals. In order for
such plans to become executable, two important tasks must be carried out: ser-
vice grounding and business process generation. The first task can be realized in
a straightforward way, based on the discussion earlier in this section. Generating
a composite business process requires a predefined mapping between compos-
ite constructs supported by WSSL planning and the ones supported by the busi-
ness process modeling language employed. For our purposes, we choose BPMN
2.0 [Object Management Group 2011] since it is the only business process model-
ing language that supports all WSSL composite constructs. Table 6.3 shows the
correspondence between the two sets of control constructs.

Note that exclusive gateways are used for both XOR-Split/XOR-Join and con-
ditional execution. The difference lies in the ConditionExpression that is associ-
ated with each Sequence Flow that is involved with the gateway: in the case of
conditionals, the expression is explicitly associated with the truth value of the if-
condition. The creation of the composite process can either be done manually by
the service designer, or semi-automatically, by parsing the textual plan specifica-
tion produced by the WSSL composition framework and applying the one-to-one
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Table 6.4: WSSL/USDL Integration

WSSL USDL

Service serviceName property
Input formula Interface (Technical module)
Output formula Interface (Technical module)

Precondition Axiom Function - precondition association
State Update Axiom Function - postcondition association
Causal Relationships N/A

Default Theory N/A

mapping rules of Table 6.3.

6.3.4 Integrating WSSL into USDL

USDL [Kadner et al. 2011] is designed with the requirements of conceptualiza-
tion andmodularity inmind,while care has been taken so that individualmodules
are not bound to existing service description efforts, to the extent possible. Thus,
from a theoretical viewpoint, WSSL specifications can be used as a basis for the
Functional and Technical modules of USDL. Table 6.4 offers a possible connection
betweenWSSL and concepts in the UML class diagram of the USDL Functional and
Technical modules that are included in [Oberle et al. 2013]. Note that there is no
direct equivalent for causal relationships or default theories. Including these as-
pects would require a modification of the Functional module class diagram. Also
note that in a similar manner, WSSL QoS profiles can be integrated in the USDL
Service Level module.

6.4 Conclusions

Through the analysis in this chapter, two significant conclusions canbedrawn.
First, the fluent calculus theory on which WSSL relies is, in general, undecidable.



166 Chapter 6. Property Analysis

It can be made decidable and even elementary decidable, at the cost of severely
limiting the ability to provide specifications for a wide range of service behav-
iors. However, as it is clarified in the following chapter, undecidability does not
affect the effectiveness and efficiency of WSSL/CVF, hence it does not hinder the
usability of the language in real-world scenarios.

The applicability discussion in the second part of the chapter supports the
conclusion that WSSL can be employed in practical applications, in cases where
highly expressive specifications of service behavior are required. The grounding
mechanisms and translation schemas that were presented pave the way for the
realization of aWSSL-based design framework on top of the existing composition
and verification framework that can assist a service designer in creating and an-
notating specifications for existing or newly-implemented services, in addition
to designing, verifying and executing composite service processes.
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This chapter is devoted to a thorough evaluation of the various components
of WSSL/CVF, the framework that was analyzed in Chapter 5. Two separate sets
of experiments were conducted and are presented in the following sections. The
first set examines each component of the framework individually and attempts to
investigate the effect of all parameters that are of interest in each case. The vast
majority of these experiments focuses on evaluating performance scalability, in
terms of computation time, by varying specific parameters; the only exception is
the experiment that concerns the extendedplan rankingprocess,which evaluates
optimality. The second set of experiments is essentially an overall evaluation of

167
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the complete framework, again in terms of computation time, for 5 increasingly
complex composition problems; in this set, a few parameters vary while the rest
stay fixed based on assumptions that ground the problems in real-world scenar-
ios.

Given the fact that the majority of available concrete services as well as ser-
vice test sets contain services described using WSDL, they are unsuitable for our
evaluation. On the other hand, the few test sets that contain Semantic Web ser-
vices are too simplistic for the purposes of our evaluation; for instance, in OWL-S
TC [Klusch et al. 2010] only 186 out of 1083 services have preconditions and post-
conditions (in most cases only one of each), with all other service descriptions
containing only inputs and outputs and ramifications are obviously not included.
Consequently, we generate synthetic WSSL specifications of different sizes, de-
pending on the needs of each experiment.

The complexity of the generated specifications matches or even surpasses
that of real service data. More concretely, specifications contain 1 to 5 IOPE quads,
alongwith 1-3 ramifications; in contrast, actual service specifications, such as the
ones contained in OWL-S TC [Klusch et al. 2010], havemultiple inputs and outputs
(up to 10 in total), but have at most 1-2 preconditions and effects while they con-
tain no ramifications. Experiments involve repositories that contain up to 500
different specifications, i.e. up to 500 distinct functionality sets. Given the fact
that each of these specifications may correspond to multiple implementations,
the complexity is equivalent to actual service repositories containing a few thou-
sands of concrete services. Concerning plan complexity, we evaluate the most
complex cases where 50% or 100% of all specifications in the repository are re-
quired to achieve the plan goal. Finally, QoS-based evaluation assumes that each
implementation is associated with 3 different quality profiles; actual service data
almost never contain more than 3 QoS profiles.

The generated specifications contain IOPEs with generic names, e.g., inputs
and outputs are namedwith the prefix ”io”, followed by a number,while precondi-
tions and postconditions have the prefix ”cond”, again followed by a number. The
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evaluationwas performed on aWindows® 8 systemwith an Intel® Core™ i7-740QM
processor running at 1.73GHz, with 6 GB RAM. The computation time values are
an average of 20 runs.

7.1 Evaluation of individual components

The evaluation process first focuses on the individual modules that were im-
plemented and analyzed in Chapter 5. Apart from evaluating computation time
scalability for each separate module, experiments are also carried out to investi-
gate optimality of the extended plan ranking mechanism. The rest of this section
presents these experiments organized by task, beginning with theWSSL-to-FLUX
translation process, followed by the individual tasks of WSSL/CVF that are im-
plemented as part of this thesis, namely functional composition through WSSL
planning, specification-based functional discovery, extended plan pruning and
ranking and QoS aggregation. Note that the cost of the verification process is triv-
ial since it essentially involves checking whether one or more fluents hold in a
state, hence there is no need to perform any verification-specific evaluation.

7.1.1 WSSL-to-FLUX Translation

Translating a WSSL/XML document to a FLUX program is a mandatory step
before attempting any process, whether it is a simple service verification pro-
cess, as defined in Section 5.1.3, or a complete composition process using WSS-
L/CVF. Hence, it is important to evaluate the overhead of the translation process
in terms of runtime and memory consumption and investigate whether scalabil-
ity is achieved, as specifications becomemore complex. SyntheticWSSL specifica-
tions are created, containing from 1 to 500 pairs of preconditions and postcondi-
tions using randomly generated, uniquely named fluents. Note that we choose an
unnaturally high number of pairs as an upper limit, in order to better understand
the behavior of the translation process, even for cases that are beyond real-world
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scenarios. The runtime values are an average of 20 runs, while memory consump-
tion is presented before and after garbage collection.

As we can see in Figs. 7.1 and 7.2, runtime stays less than 600ms even for spec-
ifications containing 500 pairs of preconditions and postconditions, and actual
memory consumption peaks at around 8000KB. Based on these results and the
fact that actual service specifications contain at most tens of pre/post pairs (even
in the case of service composition), we can safely assume that the overhead posed
by the translation process fromWSSL to FLUX is insignificant.

7.1.2 WSSL Planning

In order to evaluate functional composition via planning with WSSL, we run
a series of experiments, calculating the time needed for the planner to produce a
valid service composition plan, given a set of services, an initial state and a goal
state. The parameters that are of interest in this evaluation are the following:

1. Size of the specification repository. Note that we assume that different im-
plementations of the same functionality are represented by a single speci-
fication in the repository.

2. Size of specifications, i.e. total number of fluents representing IOPEs and
total number of causal relationships that are modeled.

3. Complexity of composition heuristics, in terms of control constructs that
are taken into account.

To investigate scalability in terms of these parameters, we vary the planning
problem complexity in four ways: by increasing the repository size, by modify-
ing the number of specifications that are actually considered by the planner, by
increasing the complexity of service specifications and by allowing for more elab-
orate plans. Service specifications are synthetically generated in FLUX, each one
consisting of one or two IOPE quads. We calculate separately the time required
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to produce a single planning solution and the time required to find all possible
solutions to the planning problem.

Specifications without Ramifications

In the first experiment, we examine scalability for composition problems that
involve only sequential execution, i.e. chains such as the one in Fig. 7.3a. We in-
crease linearly the number of repository specifications that need to be considered
in order to find an executable one at a given state, starting from 5 and peaking at
500. This corresponds to an increase from 10 to 2000 rules in FLUX. We examine
two different cases: either all services in the repository are required for the com-
position goal to be achieved, or half of them, with the rest discarded early based
on non-matching preconditions. Execution times are presented for both finding
a single solution to the planning problem and finding all of them.

As shown in Fig. 7.4, computation time is insignificant for repositories of up
to 200 specifications; for larger repositories we observe an exponential increase,
with runtime remaining at reasonable levels for 500 specifications. Keeping in
mind that we are dealing with repositories containing specifications and not con-
crete service descriptions (e.g., WSDL repositories), it is highly unlikely to en-
counter even more different functionalities, represented by separate specifica-
tions. Hence, the breaking point observed in this experiment is well above what
is expected in real-world scenarios.

Searching for all possible planning problem solutions, instead of a single one,
results in a 50% increase in computation time, on average,which is reasonable and
expected, given the cost of backtracking that is required tofind all solutions. As far
as the effect of requiring half of the available specifications in order to achieve the
composition goal, this leads to a 75% decrease, on average. This result reinforces
the fact that, in real-world scenarios, the planner exhibits excellent performance:
the task of finding all planning solutions for a sequential composition requiring
250 service specifications out of a repository containing 500 ones is completed in
only roughly 1 second.



7.1. Evaluation of individual components 173

..

a1

.

a2

(a) Experiment 1 and 4: Sequential chains
..

a1

.
a2

(b) Experiment 2 and 5: Chains of parallel ex-
ecutions of two services

..

a1

.

a2

.
a3

(c) Experiment 3 and 6: Alternating between atomic services and parallel pairs

Figure 7.3: Building blocks of the experiment plans

...
..

0

.

100

.

200

.

300

.

400

.

500

.0 .

1

.

2

.

3

.

4

.

5

.

Service Specifications

.

Ru
nt

im
e(

s)

.

. ..100% Repos. (Single Solution)

. ..100% Repos. (All Solutions)

. ..50% Repos. (Single Solution)

. ..50% Repos. (All Solutions)

Figure 7.4: Performance results for sequential compositions



174 Chapter 7. Evaluation

...
..

0

.

100

.

200

.

300

.

400

.

500

.0 .

2

.

4

.

6

.

8

.

Service Specifications

.

Ru
nt

im
e(

s)

.

. ..100% Repos. (Single Solution)

. ..100% Repos. (All Solutions)

. ..50% Repos. (Single Solution)

. ..50% Repos. (All Solutions)

Figure 7.5: Performance results for parallel compositions

In the second experiment, we consider only parallel composition (AND-Split/
Join), with consecutive copies of the composition shown in Fig. 7.3b. Again, we
increase the repository size and examine the cases of requiring all or half of the
contained specifications to achieve the composition goal, calculating the time re-
quired to find a single solution, as well as all possible ones. The results, shown in
Fig. 7.5, indicate a behavior similar to the case of sequential composition,with one
notable difference: the time for finding all solutions marks a 50% increase com-
pared to the equivalent cases in the first experiment. This is due to the fact that,
while sequence is supported without needing any special rule definition, AND
Split/ Join employs the special poss_and and state_update_and rules which
create more backtracking points when attempting to find all solutions.

Note that, according to the analysis in Section 5.1.4, we assume that, for all
AND-Split/Join pairs, no effect of a service is negated by the service executed in
parallel. If this assumption does not hold, then we need to use the disjunctive
form of the AND-Split/Join clause, which would lead to different experiment re-
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sults, but only with regard to execution time in the case of searching for all so-
lutions. The effect becomes more severe as we add more AND-Split/Join pairs in
the plan; indicatively, for 8 consecutive pairs the time required to find all possible
solutions is 0.14 seconds, while for 16 pairs, the time rises exponentially to 47.58
seconds. This is due to the fact that each new pair causes the number of possi-
ble plans to double. However, such scenarios are unrealistic, not only because the
number of AND-Split/Join pairs in a given plan will rarely reach such level, but,
more importantly, because it is unnatural to expect services with contradicting
effects to be executed using an AND-Split/Join construct. Thus, themost effective
way to approach this issue is to keep the simple non-disjunctive form of the AND-
Split/Join clause andmodel such special caseswith amore suitable construct (e.g.,
XOR-Split/Join or sequence).
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Figure 7.6: Performance results for plans with alternating sequential and parallel
execution

For the third experiment, we combine the first two, creating a composition
schemaof alternating sequential andparallel executions, such as the one in Fig. 7.3c.
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Fig. 7.6 shows that there is an almost twofold increase for the cases of 200 and 500
specifications but a much less significant increase (20% on average) when search-
ing for all solutions. This is explained by taking into account that the composition
plan ismore complex than in theprevious experiment, hence requiringmore time
to find a single solution; however the increase of backtracking points is not so se-
vere, since we just add sequential steps to the parallel executions of the second
experiment. Note that other composition schemas such as OR and XOR Split/Join,
conditionals and loops are not included in our experiments due to the synthetic
nature of the test sets: for any given pair of services that can be executed in a state
(i.e. their poss clauses succeed), any of the control constructs can be considered,
but only the first one defined in the heuristic will be chosen (in our case AND
Split/Join), as it is the first to evaluate to true. The use of such control constructs
is expected to be dictated explicitly in heuristic encodings of a planning problem,
as analyzed in Section 5.1.4.
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Fig. 7.7 illustrates the effect of increasingly complex control constructs in the
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planningproblem, by combining, in a single graph, themost costly case of thefirst
three experiments (finding all solutions for plans that require all service specifi-
cations in the repository). In this way, we can observe in a clearer way the effect
of introducing control flow in FLUX in the worst-case scenario: there is a 50%
increase in execution time for plans with sequences of parallel executions com-
pared to sequences of atomic services and a further 20% when plans are chains of
alternating sequential and parallel execution.

Specifications with Ramifications

In the following three experiments, we investigate the effect of including ram-
ifications in service specifications.We again assume a service specification reposi-
tory with a size increasing from 1 to 500 (except in the case of sequential composi-
tion where it reaches 1000), and also consider the case where 50% of the specifica-
tions are required to achieve the goal. Each postcondition in half of these service
specifications is associated with a ramification through the inclusion of a causal
rule (a 25% increase in the size of specifications). Such an experimental setting
is reasonable given the fact that, in real-world specifications, only some of them
are expected to be modeled in such detail. Once again, we increase linearly the
number of causal rules that are considered until a matching one is found.

As we can see in Fig. 7.8, in the worst cases there is a 30% increase in the time
required to find a single solution and an 85% increase in the time required to find
all possible solutions. Both increases are reasonable and are attributed to the ex-
tra effort required to find a matching causal relationship. Note that based on the
discussion in Section 3.2.3, the search is stopped when a single ramification is
found, since ramification chains are limited to a length of 1. Allowing larger rami-
fication chains would definitely result in an even bigger increase in computation
time.

The effect of adding ramifications to parallel composition plans is illustrated
in Fig. 7.9. The increase in the single solution case is the same, around 30%. On
the other hand, the increase when searching for all solutions is slightly less than
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the sequential case, around 60%, for the same reason as before: the special clauses
that are introduced to implement AND Split/Join have already causedmany back-
tracking points, even before introducing ramifications.

Finally, Fig. 7.10 depicts the evaluation results for the most complex case, the
combination of sequential and parallel composition, including ramifications. The
effect in this case is even less severe (an increase of around 15-30% in all cases),
which can be attributed to the already increased complexity, rendering the addi-
tion of ramifications less significant. This is also evident in Fig. 7.11, where the
results of the previous three experiments for the cost of finding all solutions are
combined.

Concerning knowledge states and planning, the fact that FLUX employs nega-
tion as failure to implement knowledge (or lack thereof) of a fluentmeans that the
cost of evaluating a knows or knows_not clause is equivalent to that of evaluating
a holds or not_holds one. Hence, there is no need to conduct experiments that
specifically employ knowledge clauses. The effect of arbitrary incomplete state
specification using constraints is discussed in 5.2.6.

7.1.3 Specification-based Functional Discovery

The experimental evaluation for the specification-based discovery process is
based on the following set of parameters:

1. Size of the specification repository. Again, we assume that different imple-
mentations of the same functionality are represented by a single specifica-
tion in the repository.

2. Size of specifications, i.e. total number of fluents representing IOPEs. We
opt not to include causal relationships, since their effect is equivalent to in-
cludingmore postconditionfluents, given the fact that ramifications chains
longer than 1 are not allowed.

3. Matching failure position: amatch fails immediately after one of the fluents
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Figure 7.10: Effect of adding ramifications to plans with alternating sequential
and parallel execution
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that is required to hold in the source precondition is found not to hold in
the target precondition. This parameter denotes the position, in the speci-
fication, of the fluent that causes failure.

In the experiment we conducted, repository size was fixed to 1000 specifica-
tions, the highest we have considered in all experiments, while we varied specifi-
cation complexity by increasing the number of IOPE quads from 5 to 20. As far as
failure position is concerned, we examine the two extreme cases of earliest failure
(the fluent to cause failure is the first one) and latest failure (the fluent to cause
failure is the last one), as well as two intermediate cases at 25% and 75% of the
specification.
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Figure 7.12: Performance evaluation for functional discovery

The results are presented in Fig. 7.12. In the case of 5 IOPE quads, which is the
closest to real-world specifications, computation time is less than the minimum
recordable time in ECLiPSe, which is 15 msec, hence we cannot obtain a more
detailed view of the increase in time. Since the discovery process is expected to
be executed many times, the total computation time will be a multiple of that



182 Chapter 7. Evaluation

minimum time (see Section 7.2). For larger specifications, the effect of pushing
the failure point further towards the end of the specification becomes more ev-
ident and, in the case of unnaturally large specifications of 20 IOPE quads, we
observe a tenfold increase between computation time in the earliest and latest
failures. This increase is justified by the fact that the complexity of the discovery
process is analogous to the number of fluents (representing IOPEs) that need to
be compared; the earliest the failure, the less fluents will need to be checked. Nev-
ertheless, even in this extreme and unrealistic scenario, computation time peaks
at 0.174 seconds.

7.1.4 Extended Plan Pruning

In the case of plan pruning and ranking, there are multiple evaluation param-
eters that can be taken into consideration:

1. Number of extended plans

2. Number of tasks per plan

3. Number of implementations per task

4. Number of local goals

5. Success rate of pruning

In the first experiment, we investigate the effect of the number of tasks per
plan. We considered 100 sequential plans with 20 available implementations for
each task in the plan and 5 local goals to examine, while we varied the number
of tasks included in each plan from 2 to 100. Note that these fixed values repre-
sent (or exceed) typical values in real-world composition design problems. We
considered a success rate of 10% for pruning. As illustrated in Fig. 7.13, there is an
expected moderate increase in the time required.

In the second experiment, to further increase complexity, we consider again
the case of 100 different plans and 5 local goals, but also fix the size of each plan
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Figure 7.13: Performance of pruning for increasingly complex plans
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to 100 tasks (the worst case of the first experiment), while we vary the number
of available implementations for each task from 1 to 50 and the success rate for
pruning from 10% to 100%, to determine the effect of these two parameters. The
results, shown in Fig. 7.14, indicate again an expected increase in runtime, in
a slower rate than the increase of available task implementations, while higher
pruning success rates decrease runtime due to the fact that whole plans may be
discarded early.

The next experiment focuses on evaluating the effect the number of extended
plans has on performance. To that end, we fix the number of tasks per plan to 50,
the number of implementation per task to 20, while we consider 5 local goals and
a success rate of 10%. We vary the number of extended plans from 100 (the maxi-
mum value in the experiments so far) to 1000. As we observe in Fig. 7.15, increas-
ing the number of plans from 100 to 1000 results in only a quadruple increase in
computation time, which is rather efficient.

The final experiment in relation to pruning involves the number of local goals
that are used in order to decide which plan to discard. Once again, we keep the
rest of the parameters fixed: 500 extendedplans, 50 tasks per plan, 20 implementa-
tions per task and 10%pruning success rate. Thenumber of local goals is increased
from 1 to 20. As illustrated in Fig. 7.16, the effect of considering more local goals
is somewhat less significant than in the previous experiment: we observe again a
quadruple increase in computation time, but in this case the number of goals has
increased 20 times. This is expected since multiple goals can be checked one by
one when examining the same task in a plan, while adding more plans essentially
increases the number of times the whole pruning process is executed.

7.1.5 Extended Plan Ranking

Since the extendedplan rankingprocess is not computationally complex, eval-
uation involves investigating optimality while adopting different heuristics of a
problem-dependent nature, in addition to the problem-independent ones. Opti-
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Figure 7.17: Optimality evaluation for different ranking heuristics

mality experiments require settings that refer to realistic specifications and not
automatically generated ones, in order to be able to express problem-dependent
criteria. To that end, we use the running example as a basis and examine the fol-
lowing three cases: no problem-dependent heuristics, preferring plans that sup-
port both report delivery methods, and additionally preferring that both ways of
receiving a user request are provided.

As shown in Fig. 7.17, the true optimal plan is ranked third in Case 1 (no
problem-dependentheuristics), deviating 12.5% fromthehighest value attributed
by the ranker. Perfect optimality is achieved in Case 3 where both heuristics we
define in relation to the composition problem are taken into account: we demand
that both report delivery methods are supported, as well as both methods of re-
ceiving user requests. These results show that the ranker achieves a high-enough
optimality levelwhen using only the problem-independent heuristics concerning
plan length and number of tasks; achieving perfect optimality is directly depen-
dent on defining extra ranking criteria relying on knowledge specific to the prob-
lem at hand, as well as the expertise of the composition designer. Also note that,
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given the detailed problem-dependent criteria that we have set, perfect optimal-
ity can be achieved even without taking into account problem-independent cri-
teria. Hence, examining plan length and number of tasks makes sense only when
we do not have any knowledge of problem-specific criteria.

7.1.6 QoS Aggregation

To evaluate the QoS aggregator, we choose to create BPMN processes synthet-
ically, since the ones produced for the running example are not complex enough
for our purposes. We evaluate the case of temporal attributes, since it is the most
difficult to deal with and choose to aggregate execution time values. Two differ-
ent scaling scenarios are examined. In the first, the BPMN process is a sequence
with an increasing length. The results are shown in Fig. 7.18, where execution
time is shown separately for the initial BPMN graph loading (using the jBPM li-
braries [JBoss jBPM team 2013]) and the aggregation process itself. Increase in
time is analogous to the increase in sequence length, with aggregation time peak-
ing at around 1 second and total time reaching 2.5 seconds. It should be noted
that the cost of jBPM graph loading is more or less independent of the size of the
plan, hence its impact in the total time is more significant in shorter plans.

The second experiment involves an AND-Split/AND-Join parallel processwith
an increasing number of parallel paths, each containing a single task. The results,
shown in Fig. 7.19, indicate again an increase in time analogous to the increase
in the number of parallel paths, with similar worst case times. Note that other
control constructs need not be evaluated separately, since deterministic loops
are essentially sequences of fixed length and aggregation for XOR and OR cases
involves the same calculation as the AND case.

7.1.7 Conclusion

The individual experiments for each separate process of WSSL/CVF show, in
general, a good behavior in terms of performance scalability (and optimality for
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Figure 7.18: Performance evaluation for QoS aggregation (sequential case)
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the case of plan ranking), even when taking into account extreme and unreal-
istic values for evaluation parameters, while performance is excellent when we
consider parameter values that are more close to what is expected in real-world
problems. More specifically:

• The WSSL planner can be considered efficient, since finding all possible
plans peaks around 5 seconds for moderate repository sizes, even in the
presence of ramifications (for a subset of the specifications). The breaking
point can be pinpointed around repositories of 500 specifications; for larger
repositories runtime exceeds 10 seconds and can be considered acceptable
only in case time is not a priority (and, obviously, only for design time pur-
poses). Such efficiency and termination are only guaranteed if heuristics
are defined for planning; in the general case where no heuristics are de-
fined, planning cannot be considered efficient.

• Specification-based functional discovery is inexpensive for a single task,
hence it can be executed for all tasks of large plans, containing tens to
hundreds of tasks, without observing a significant rise in total computation
time.

• The pruning process is the least expensive of all phases in the proposed
framework, since it peaks at around 20msec in the worst possible case.

• Optimality in the ranking process relies heavily on heuristics that are spe-
cific to each problem, hence its success depends mostly on the expertise of
the composition designer.

• More than half of the runtime for the aggregation process is spent on the
graph loading process by the jBPM libraries and the overall cost is around
2 seconds. In the following section, we also consider the alternative aggre-
gation mechanism, proposed in [Mello Ferreira et al. 2009].
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7.2 Overall Evaluation

In this section, we design and conduct a performance evaluation for the com-
pleteWSSL/CVF framework, again based on synthetic specifications.We designed
a service specification repository of a reasonable size and complexity, containing
200 distinct specifications, of which: 45% contain a single IOPE quad, 30% con-
tain 2 IOPE quads, 15% contain 3 IOPE quads, 7% contain 4 IOPE quads and 3%
contain 5 IOPE quads. 50% of all specifications in the repository contain a causal
relationship linking one postcondition with one ramification. The specifications
are produced in such a way that they lead to sequential chains (a service’s output
and postcondition are the next service’s input and precondition.

We select 5 increasingly complex composition goals that form the 5 different
cases that we examine in this evaluation. More specifically:

Case 1 3 plans of length 9 are returned by the planner in less than 0.0155sec

Case 2 5 plans of length 9-10 are returned by the planner in less than 0.0156sec

Case 3 20 plans of length 9-12 are returned by the planner in 0.0158sec

Case 4 112 plans of length 10-14 are returned by the planner in 0.0483sec

Case 5 2167 plans of length 10-17 are returned by the planner in 0.85105sec

Following the planning process, we evaluate the functional discovery process
for each of the 5 different cases. For the sake of simplification, we assume that
each one of the specifications contains 2 IOPE quads instead of ranging from 1 to
5. This is an average representation of the initial repository, since 45% of the rest
of the services are smaller and thus discovery for them is faster but 25% are larger
and lead to slower discovery times. We also assume the average case where the
failure point is halfway through the specification and consider a success rate of
90% for all functional discovery executions;we also distribute discovery failures in
such away that they result in discarding 10% of all abstract plans in each case, due
to the fact that a single task was not matched with any concrete implementation.
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Table 7.1: Performance of functional discovery for different cases of overall eval-
uation

Cases Discovery Cost # Extended Plans

Case 1 0.107694 3
Case 2 0.195316 5
Case 3 0.215388 18
Case 4 0.235331 101
Case 5 0.255274 1951

In order to obtain multiple concrete implementations for each task, we as-
sume that for each distinct specification in the repository, there are 1-4 other
identical ones. Given the fact that each composition is a chain of services that is
a subset of the repository and examining the different specifications of the plans
that form each category, we result in the following maximum number of runs for
the functional discovery process: 27 for Case 1, 49 for Case 2, 54 for Case 3, 59 for
Case 4 and 64 for Case 5. Table 7.1 contains the cost of the functional discovery
process for each of the five different cases as well as the number of the extended
plans produced (the values are rounded up). Note that we execute discovery for
groups of 3 specifications, so that we surpass the minimum recordable time in
ECLiPSe.

We assume that after discovery, each task is associated with 1 to 5 concrete
implementations with the following probabilities: 45% yields 1 implementation,
30% yields 2 implementations, 15% yields 3 implementations, 7% yields 4 imple-
mentations and 3% yields 5 implementations. Assuming 5 local goals, this results
in the following sets of extended plans, associated with the computation times
for pruning and ranking:

Case 1 3 plans with 9 tasks, of which 4 are linked with 1 implementation, 3 with
2, 1 with 3 and 1 with 4. Pruning and ranking costs 0.003sec.
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Case 2 5 plans with 10 tasks, of which 4 are linked with 1 implementation, 3 with
2, 1 with 3, 1 with 4 and 1 with 5. Pruning and ranking costs 0.0033sec.

Case 3 18 planswith 11 tasks, of which 5 are linkedwith 1 implementation, 3with
2, 1 with 3, 1 with 4 and 1 with 5. Pruning and ranking costs 0.0054sec.

Case 4 101 plans with 12 tasks, of which 5 are linked with 1 implementation, 4
with 2, 1 with 3, 1 with 4 and 1 with 5. Pruning and ranking costs 0.009sec.

Case 5 1951 plans with 14 tasks, of which 6 are linked with 1 implementation, 4
with 2, 2 with 3, 1 with 4 and 1 with 5. Pruning and ranking costs 0.0354sec.

Since the plans are synthetically created, the ranking process can only take
into account problem-independent criteria. Also, since all plans are sequences,
the only criterion that is relevant is the plan length. Hence, the ranking process is
trivial and there is no need to calculate any additional cost. The total computation
time values corresponding to the three first phases of the overall process, for the
5 different cases that we examine, are shown in Fig. 7.20.

The resulting optimal extended plans that are fed to the final phase of the
framework, the QoS-based selection process, are the following:

Cases 1-3 Sequential plan with 9 tasks, with 3 concrete implementations (on av-
erage) for each task, assuming 3 different QoS profiles for each implemen-
tation.

Cases 4-5 Sequential plan with 10 tasks, with 3 concrete implementations (on
average) for each task, assuming 3 different QoS profiles for each imple-
mentation.

For QoS-based selection, we employ the algorithms defined in [Mello Ferreira
et al. 2009]. We vary the QoS global goals from 1 to 20 and assume that each con-
crete service offers 3 different QoS profiles (representing low, medium and high
quality levels). The overall results for the complete composition process (all four
phases) of the proposed framework for all cases are shown in Fig. 7.21.
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Figure 7.20: Performance results for the first three phases of WSSL/CVF
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As we can deduce from Figs. 7.20 and 7.21, the vast majority of the computa-
tion time, with the exception of Case 5, is attributed to the functional discovery
process, while the pruning/ranking cost is almost non-existent in comparison.
This is due to the fact that discovery has to be run for each distinct abstract task
contained in the plans and we assume the worst case (the maximum number of
distinct tasks per plan). In Case 5, the complexity of the problem results in a 20-
time increase of the planning computation time. Nevertheless, the overall compu-
tation cost, at the worst case, peaks at 1.74 seconds, which is rather satisfactory,
strengthening the argument that WSSL/CVF can be of great assistance to com-
position designers by offering a semi-automatic way of navigating through the
numerous choices and decisions that a composition problem includes.

As analyzed in Section 5.2.5, there are several prerequisites, related to the ex-
pertise of SBA designers and composition architects, that need to be satisfied in
order for WSSL/CVF to produce the results that were shown in this Chapter. To
strengthen the validity of these results, a second set of evaluation experiments
needs to be carried out, focusing on usability and with the participation of actual
users with varying levels of expertise in service design. Due to the difficulty in
finding such candidates in either academic or industry partners, usability evalu-
ation is left as a topic for future work.
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8.1 Synopsis of Contributions

The primary objective of the research behind this thesis was to motivate the
need for service specifications that take into account the frame, ramification and
qualification problems, by illustrating the effects these problems have in service
science, especially when describing and composing services. This led to the def-
inition of the proposed language, WSSL, which advances service research by be-
ing the only specification and composition language that not only addresses the
aforementioned representation problems but manages to support many desired
features in service description and composition in a unified and integrated man-
ner.

WSSL allows service designers to accurately express the behavior of a service,
by defining conditions before and after execution, expressing or inferring causal
relationships among conditions and accounting for unexpected unsuccessful ex-
ecutions, resulting in an all-encompassing specification of the precise way a ser-

195
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vice behaves under any possible circumstance. Any information contained in a
WSSL specification can be linked to an ontology concept, resulting in semantics-
aware content. Further extensions of the language instill the ability to define QoS
profiles, to model service compositions using any fundamental composition pat-
tern and to handle partially observable states. WSSL essentially makes a clear dis-
tinction between service description in the traditional form that is offered by cur-
rent languages such as WSDL, OWL-S and WSMO and service specification, in the
sense of a complete model of service behavior.

Such rich behavior specifications can then be exploited to facilitate a multi-
tude of actions throughout the life-cycle of a service or an SBA, whether it is ver-
ifying a service against a WSSL specification, discovering a service that conforms
to a WSSL specification, composing services in order to achieve a set of require-
ments expressed in WSSL and verifying the resulting composition, or even using
WSSL to express the goals of service adaptation. The proposed framework acts as
proof of that claim, by presenting a service composition and verification approach
that simultaneously achieves a unique combination of desired requirements.

WSSL/CVF can be used as a powerful tool by service designers, providing
them with an automated way of creating composite processes that exhibit a be-
havior defined by a series of functional and non-functional (e.g., QoS-based) prop-
erties, solving any composition problem independent of a specific domain. Since
this behavior is expressed usingWSSL, it may take into account ramifications and
accidental qualifications while information may also be semantically annotated.
The resulting composite processes can either be abstract (i.e. specification-based),
in order to be dynamically bound to actual service endpoints at runtime, or can
be concretized based on the defined QoS properties. Moreover, the generated pro-
cesses can contain multiple composition patterns, including non-deterministic
ones, namely conditional and iterative execution. Also, due to the fact that WSSL
handles partial observability, the composition process can return results even un-
der partial knowledge of the initial state.

The applicability of the proposed framework in realistic settings is backed up
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by the experimental evaluation that we conducted. The experiments prove that
all phases of the composition process scale well and can solve composition prob-
lems of high complexity in an efficient manner. This lends credibility to the fact
that increased expressiveness does not always compromise efficiency, thus en-
abling WSSL and the accompanying framework to be useful in assisting service
designers to solve practical, real-world composition problems.

8.2 Directions for Future Research

This dissertation paves the way for several possible directions for future re-
search, some of which are outlined in this section. With regard to usability, it
would be helpful to create a WSSL tool set that provides an interface for users
to create WSSL specifications either from scratch or by translating existing de-
scriptions in WSDL, OWL-S or WSMO and filling up information that is exclu-
sive toWSSL. Mechanisms to derive missing information, or information that the
providermaynot bewilling to provide can also be offered. Also, the user should be
able to select varying levels of information completeness, from simplified WSSL
specifications that offer only basic behavior description to specifications that sup-
port the full capabilities set of WSSL and its extensions.

Additionally, the existing framework can be extended with a visualization
component that allows service designers to view resulting compositions (e.g., in
the form of BPMN processes), modify them according to their expert knowledge
and execute them (e.g., on a BPMN engine). Finally, a user study can be conducted
in order to evaluate the modeling effort and usability of WSSL and the accompa-
nying tool set, as well as effectiveness and usability of WSSL/CVF. This study can
indicatively focus on the ability of users with varying levels of expertise in creat-
ing atomic WSSL specifications, with and without the envisioned tool set, as well
as the level of effort required in order to define suitable heuristic encodings and
ranking criteria for varying composition problems.

Concerning the existing functionality of WSSL/CVF, it is interesting to ex-
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plore alignment and normalization procedures for functional and non-functional
aspects. For instance, WSSL specifications may refer to the same concept but us-
ing different ontologies or WSSL quality profiles may refer to different QoS mod-
els, where different names or different metrics are used for the same QoS at-
tribute. Additionally, ways to optimize the functional discovery process can be
investigated, e.g., by keeping a result cache, so that discovery is not run multiple
times for the same service, while also exploring cases other than exact matching,
such as subsumption or plug-in matches. Also, the framework can be adapted to
support soft conditions and constraints [Meseguer et al. 2006] (either functional
or non-functional), i.e. constraintswhose violation does not lead to the associated
service (and, in turn, the overall plan) being discarded. Moreover, QoS decomposi-
tion approaches, such as the one in [Alrifai et al. 2012], can be considered in order
to reduce overall composition time. Finally, we can explore whether combining
functional and non-functional composition in a single step is effective and under
what circumstances.

A further research direction is to introduce adaptation features to the pro-
posed composition framework. Violations that trigger adaptation may occur due
to various events, from infrastructure failures to errors related to functionality
and can be detected using servicemonitoring techniques. These different sources
of violation bring about the demand for a cross-layer treatment of both monitor-
ing and adaptation. One suitable line of work that can be considered in order to
realize proactive cross-layer monitoring and adaptation is that of [Zeginis et al.
2012] and [Zeginis et al. 2013]. In cases where adaptation is not effective, the
framework can be extended to support re-planning in order to partially recreate
the plan based on a modified goal specification.

Finally, another significant research direction is to investigate whether the
proposed service specification and composition approaches canbe applied inCloud
environments and what are the prerequisites for this to be realized. This would
bring the ideas of behavior specification and formality in service description to
the Cloud Computing setting. For instance, WSSL can be extended in order to sup-
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port cloud service specifications that include deployment information. In turn,
the composition framework can be integrated into a Cloud deployment frame-
work where, based on a set of deployed requirements, the resulting composite
processes are deployed on Cloud providers, in Single-Cloud or Multi-Cloud set-
tings, following the initial exploration performed in [Baryannis et al. 2013].
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Appendix A

WSSL BNF grammar

⟨wssl⟩ ::= ⟨service⟩ ⟨input⟩* ⟨output⟩* ⟨pre⟩* ⟨post⟩* ⟨causal⟩* ⟨default⟩? ⟨quality⟩*
| ⟨goal⟩+

⟨service⟩ ::= ’service’ ⟨iri⟩+

⟨input⟩ ::= ’input’ ⟨iri⟩+

⟨output⟩ ::= ’output’ ⟨iri⟩+

⟨pre⟩ ::= ’precondition’ ⟨iri⟩ ⟨logexp⟩

⟨post⟩ ::= ’postcondition’ ⟨iri⟩ ⟨updateexp⟩

⟨causal⟩ ::= ’causalrelation’ ⟨iri⟩ ⟨updateexp⟩

⟨default⟩ ::= ’defaulttheory’ ⟨iri⟩ ⟨observation⟩* ⟨rule⟩+

⟨quality⟩ ::= ’qosprofile’ ⟨iri⟩ ⟨constraint⟩+

⟨goal⟩ ::= ’goal’ ⟨iri⟩ ⟨goalexp⟩

⟨observation⟩ ::= ’observation’ ⟨logexp⟩

⟨rule⟩ ::= (’prerequisite’ ⟨logexp⟩)? (’justification’ ⟨logexp⟩)+ ’conclusion’ ⟨logexp⟩

⟨constraint⟩ ::= ’constraint’ ⟨logexp⟩

⟨logexp⟩ ::= ⟨term⟩ ⟨comp_op⟩ ⟨term⟩
| ’not’ ⟨logexp⟩
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| ⟨logexp⟩ ’and’ ⟨logexp⟩
| ⟨logexp⟩ ’or’ ⟨logexp⟩
| ⟨logexp⟩ ’->’ ⟨logexp⟩
| ⟨logexp⟩ ’⟨-⟩’ ⟨logexp⟩
| ’forall’ ⟨var⟩+ ⟨logexp⟩
| ’exists’ ⟨var⟩+ ⟨logexp⟩
| ’ramify’ ⟨term⟩ ⟨term⟩ ⟨term⟩ ⟨term⟩
| ⟨holds⟩
| ⟨predicate⟩
| ’true’
| ’false’

⟨updateexp⟩ ::= ⟨logexp⟩ ’or’ ⟨logexp⟩
| ’exists’ ⟨var⟩+ ⟨logexp⟩

⟨goalexp⟩ ::= ⟨goalterm⟩ ⟨comp_op⟩ ⟨goalterm⟩
| ⟨goalexp⟩ ’and’ ⟨goalexp⟩
| ⟨goalexp⟩ ’or’ ⟨goalexp⟩
| ’ramify’ ⟨goalterm⟩ ⟨goalterm⟩ ⟨goalterm⟩ ⟨goalterm⟩
| ⟨goalholds⟩
| ⟨goalpredicate⟩
| ’true’
| ’false’

⟨holds⟩ ::= ⟨name⟩ ⟨term⟩

⟨goalholds⟩ ::= ⟨name⟩ ⟨goalterm⟩

⟨predicate⟩ ::= ⟨iri⟩ ⟨terms⟩

⟨goalpredicate⟩ ::= ⟨iri⟩ ⟨goalterm⟩*

⟨term⟩ ::= ⟨iri⟩ ⟨terms⟩
| ⟨var⟩
| ⟨term⟩ ’minus’ ⟨term⟩
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| ⟨term⟩ ’plus’ ⟨term⟩
| ⟨term⟩ ’o’ ⟨term⟩

⟨terms⟩ ::= ⟨term⟩
| ’(’ ⟨terms⟩ ’,’ ⟨term⟩ ’)’

⟨goalterm⟩ ::= ⟨iri⟩ ⟨terms⟩
| ⟨var⟩

⟨goalterms⟩ ::= ⟨goalterm⟩
| ’(’ ⟨goalterms⟩ ’,’ ⟨goalterm⟩ ’)’

⟨var⟩ ::= ⟨name⟩

⟨comp_op⟩ ::= ’>’
| ’>=’
| ’=’
| ’!=’

⟨iri⟩ ::= ⟨full_iri⟩
| ⟨compact_uri⟩

⟨full_iri⟩ ::= ”̈ ⟨iri_f ⟩ ”̈

⟨compact_uri⟩ ::= (⟨name⟩ ’#’)? ⟨name⟩

The definitions for <iri_f> and <name> can be found in the WSML language
reference [WSML Working Group 2008a].
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WSSL XML Schema

B.1 XML Schema

1 <?xml version="1.0"?>

2
3 <xs:schema version="1.0"

4 xmlns:xs="http://www.w3.org/2001/XMLSchema"

5 elementFormDefault="qualified">

6
7 <xs:simpleType name="wsslIRI">

8 <xs:union memberTypes="xs:anyURI"/>

9 </xs:simpleType>

10
11 <xs:element name="wssl">

12 <xs:complexType>

13 <xs:sequence>

14 <xs:choice>

15 <xs:element name="service" type="wsslInOut"/>

16 <xs:element name="goal" type="wsslGoalExp" minOccurs="1"

17 maxOccurs="unbounded"/>

18 </xs:choice>

19 <xs:choice minOccurs="0" maxOccurs="unbounded">

20 <xs:element name="input" type="wsslInOut"/>

21 <xs:element name="output" type="wsslInOut"/>
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22 <xs:element name="precondition" type="wsslLogExp"/>

23 <xs:element name="postcondition" type="wsslStateUpd"/>

24 <xs:element name="causal" type="wsslCausalRel"/>

25 </xs:choice>

26 <xs:element ref="defaultt" minOccurs="0" maxOccurs="1"/>

27 <xs:element ref="QoSProfile" minOccurs="0"

28 maxOccurs="unbounded"/>

29 </xs:sequence>

30 </xs:complexType>

31 </xs:element>

32
33 <xs:element name="defaultt">

34 <xs:complexType>

35 <xs:sequence>

36 <xs:element name="observation" type="wsslLogExp"

37 minOccurs="0" maxOccurs="unbounded"/>

38 <xs:element ref="rule" minOccurs="1" maxOccurs="unbounded"/>

39 </xs:sequence>

40 <xs:attribute name="name" type="wsslIRI" />

41 </xs:complexType>

42 </xs:element>

43
44 <xs:element name="QoSProfile">

45 <xs:complexType>

46 <xs:sequence>

47 <xs:element name="constraint" type="wsslLogExp"/>

48 </xs:sequence>

49 </xs:complexType>

50 </xs:element>

51
52 <xs:element name="rule">

53 <xs:complexType>

54 <xs:sequence>

55 <xs:element name="prerequisite" type="wsslLogExp"

56 minOccurs="0" maxOccurs="1"/>

57 <xs:element name="justification" type="wsslLogExp"

58 minOccurs="1" maxOccurs="unbounded"/>
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59 <xs:element name="conclusion" type="wsslLogExp"

60 minOccurs="1" maxOccurs="1"/>

61 </xs:sequence>

62 </xs:complexType>

63 </xs:element>

64
65 <xs:group name="formula">

66 <xs:choice>

67 <xs:element name="true" type="emptyType"/>

68 <xs:element name="false" type="emptyType"/>

69 <xs:element ref="predicate"/>

70 <xs:element name="greaterThan" type="binaryTerm"/>

71 <xs:element name="greaterEqual" type="binaryTerm"/>

72 <xs:element name="equal" type="binaryTerm"/>

73 <xs:element name="notEqual" type="binaryTerm"/>

74 <xs:element name="lessEqual" type="binaryTerm"/>

75 <xs:element name="lessThan" type="binaryTerm"/>

76 <xs:element name="not" type="wsslLogExp"/>

77 <xs:element name="and" type="anyLogExp"/>

78 <xs:element name="or" type="anyLogExp"/>

79 <xs:element name="implies" type="binaryLogExp"/>

80 <xs:element name="equivalent" type="binaryLogExp"/>

81 <xs:element name="forall" type="quantifiedLogExp"/>

82 <xs:element name="exists" type="quantifiedLogExp"/>

83 <xs:element name="holds" type="stateful"/>

84 <xs:element name="ramify" type="quadTerm"/>

85 </xs:choice>

86 </xs:group>

87
88 <xs:group name="terms">

89 <xs:choice>

90 <xs:element name="term" type="wsslTerm"/>

91 <xs:element ref="var"/>

92 <xs:element name="empty" type="emptyType"/>

93 <xs:element name="minus" type="binaryTerm"/>

94 <xs:element name="plus" type="binaryTerm"/>

95 <xs:element name="circ" type="anyTerm"/>
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96 </xs:choice>

97 </xs:group>

98
99 <xs:complexType name="wsslLogExp">

100 <xs:group ref="formula"/>

101 <xs:attribute name="name" type="wsslIRI"/>

102 </xs:complexType>

103
104 <xs:complexType name="wsslTerm" mixed="true">

105 <xs:group ref="terms" minOccurs="0" maxOccurs="unbounded"/>

106 <xs:attribute name="type" type="wsslIRI" use="required"/>

107 </xs:complexType>

108
109 <xs:complexType name="wsslInOut">

110 <xs:attribute name="name" type="wsslIRI"/>

111 <xs:attribute name="grounding" type="wsslIRI"/>

112 </xs:complexType>

113
114 <xs:complexType name="wsslStateUpd">

115 <xs:choice minOccurs="1" maxOccurs="1">

116 <xs:element name="exists" type="quantifiedLogExp"/>

117 <xs:element name="equal" type="binaryTerm"/>

118 <xs:element name="or" type="anyLogExp"/>

119 <xs:element name="ramify" type="quadTerm"/>

120 </xs:choice>

121 <xs:attribute name="name" type="wsslIRI"/>

122 </xs:complexType>

123
124 <xs:complexType name="wsslCausalRel">

125 <xs:choice minOccurs="1" maxOccurs="1">

126 <xs:element name="implies" type="binaryLogExp"/>

127 </xs:choice>

128 <xs:attribute name="name" type="wsslIRI"/>

129 </xs:complexType>

130
131 <xs:element name="predicate">

132 <xs:complexType>
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133 <xs:sequence minOccurs="0" maxOccurs="unbounded">

134 <xs:group ref="terms"/>

135 </xs:sequence>

136 <xs:attribute name="name" type="wsslIRI" use="required"/>

137 </xs:complexType>

138 </xs:element>

139
140 <xs:complexType name="binaryTerm">

141 <xs:sequence minOccurs="2" maxOccurs="2">

142 <xs:group ref="terms"/>

143 </xs:sequence>

144 </xs:complexType>

145
146 <xs:complexType name="quadTerm">

147 <xs:sequence minOccurs="4" maxOccurs="4">

148 <xs:group ref="terms"/>

149 </xs:sequence>

150 </xs:complexType>

151
152 <xs:complexType name="anyTerm">

153 <xs:sequence minOccurs="2" maxOccurs="unbounded">

154 <xs:group ref="terms"/>

155 </xs:sequence>

156 </xs:complexType>

157
158 <xs:complexType name="binaryLogExp">

159 <xs:sequence minOccurs="2" maxOccurs="2">

160 <xs:group ref="formula"/>

161 </xs:sequence>

162 </xs:complexType>

163
164 <xs:complexType name="anyLogExp">

165 <xs:sequence minOccurs="2" maxOccurs="unbounded">

166 <xs:group ref="formula"/>

167 </xs:sequence>

168 </xs:complexType>

169
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170 <xs:complexType name="quantifiedLogExp">

171 <xs:sequence>

172 <xs:element ref="var" minOccurs="1" maxOccurs="unbounded"/>

173 <xs:group ref="formula" minOccurs="1" maxOccurs="unbounded"/>

174 </xs:sequence>

175 </xs:complexType>

176
177 <xs:element name="var">

178 <xs:complexType>

179 <xs:attribute name="name" type="xs:string"/>

180 <xs:attribute name="value" type="xs:string"/>

181 </xs:complexType>

182 </xs:element>

183
184 <xs:complexType name="stateful">

185 <xs:sequence>

186 <xs:group ref="terms" minOccurs="1" maxOccurs="1"/>

187 </xs:sequence>

188 <xs:attribute name="state" type="xs:string" use="required"/>

189 </xs:complexType>

190
191 <xs:complexType name="emptyType">

192 <xs:complexContent>

193 <xs:restriction base="xs:anyType"/>

194 </xs:complexContent>

195 </xs:complexType>

196
197
198
199
200 <xs:complexType name="wsslGoalExp">

201 <xs:group ref="goalFormula"/>

202 <xs:attribute name="name" type="wsslIRI"/>

203 </xs:complexType>

204
205 <xs:group name="goalFormula">

206 <xs:choice>
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207 <xs:element name="true" type="emptyType"/>

208 <xs:element name="false" type="emptyType"/>

209 <xs:element name="predicate" type="predicateGoal"/>

210 <xs:element name="and" type="anyGoalExp"/>

211 <xs:element name="or" type="anyGoalExp"/>

212 <xs:element name="holds" type="statefulGoal"/>

213 <xs:element name="ramify" type="quadGoalTerm"/>

214 <xs:element name="greaterThan" type="binaryTerm"/>

215 <xs:element name="greaterEqual" type="binaryTerm"/>

216 <xs:element name="equal" type="binaryTerm"/>

217 <xs:element name="notEqual" type="binaryTerm"/>

218 <xs:element name="lessEqual" type="binaryTerm"/>

219 <xs:element name="lessThan" type="binaryTerm"/>

220 </xs:choice>

221 </xs:group>

222
223 <xs:group name="goalTerms">

224 <xs:choice>

225 <xs:element name="term" type="wsslTerm"/>

226 <xs:element ref="var"/>

227 </xs:choice>

228 </xs:group>

229
230 <xs:complexType name="predicateGoal">

231 <xs:sequence minOccurs="0" maxOccurs="unbounded">

232 <xs:group ref="goalTerms"/>

233 </xs:sequence>

234 <xs:attribute name="name" type="wsslIRI" use="required"/>

235 </xs:complexType>

236
237 <xs:complexType name="anyGoalExp">

238 <xs:sequence minOccurs="2" maxOccurs="unbounded">

239 <xs:group ref="goalFormula"/>

240 </xs:sequence>

241 </xs:complexType>

242
243 <xs:complexType name="statefulGoal">
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244 <xs:sequence>

245 <xs:group ref="goalTerms" minOccurs="1" maxOccurs="1"/>

246 </xs:sequence>

247 <xs:attribute name="state" type="xs:string" use="required"/>

248 </xs:complexType>

249
250 <xs:complexType name="quadGoalTerm">

251 <xs:sequence minOccurs="4" maxOccurs="4">

252 <xs:group ref="goalTerms"/>

253 </xs:sequence>

254 </xs:complexType>

255
256 </xs:schema>

B.2 XML Encoding of running example tasks

B.2.1 ReceiveCall

1 <?xml version="1.0" encoding="UTF-8"?>

2
3 <wssl

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xmlns:owlq="OWL-Q_Attribute.owl"

6 xsi:noNamespaceSchemaLocation="wssl4.xsd"

7 xmlns:wssl="http://www.example.org/wssl">

8
9 <service name="wssl#ReceiveCall"/>

10
11 <input name="wssl#call"/>

12
13 <output name="wssl#request"/>

14
15 <precondition name="wssl#PrecRC">

16 <holds state="?z_in">

17 <term type="wssl#CallCenterUp"/>
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18 </holds>

19 </precondition>

20
21 <postcondition name="wssl#PostRC">

22 <equal>

23 <var name="?z_out"/>

24 <plus>

25 <var name="?z_in"/>

26 <term type="wssl#Received">

27 <var name="request"/>

28 <var name="sms"/>

29 </term>

30 </plus>

31 </equal>

32 </postcondition>

33
34 <QoSProfile>

35 <constraint>

36 <greaterEqual>

37 <term type="owlq:Availability"/>

38 <term type="xs:decimal">0.99</term>

39 </greaterEqual>

40 </constraint>

41 </QoSProfile>

42
43 </wssl>

B.2.2 MReport

1 <?xml version="1.0" encoding="UTF-8"?>

2
3 <wssl

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:noNamespaceSchemaLocation="wssl4.xsd"

6 xmlns:wssl="http://www.example.org/wssl">

7
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8 <service name="wssl#RetrieveDiag"/>

9
10 <input name="wssl#request"/>

11
12 <output name="wssl#status"/>

13
14 <precondition name="wssl#PrecRD">

15 <holds state="?z_in">

16 <term type="wssl#SystemActive">

17 <var name="vehicle"/>

18 </term>

19 </holds>

20 </precondition>

21
22 <postcondition name="wssl#PostRD">

23 <ramify>

24 <var name="?z_in"/>

25 <term type="wssl#Retrieved">

26 <var name="status"/>

27 <var name="vehicle"/>

28 </term>

29 <empty/>

30 <var name="?z_out"/>

31 </ramify>

32 </postcondition>

33
34 <causal name="wssl#CausalRD">

35 <implies>

36 <holds state="?p">

37 <term type="wssl#Retrieved">

38 <var name="status"/>

39 <var name="vehicle"/>

40 </term>

41 </holds>

42 <predicate name="causes">

43 <var name="?z"/>

44 <var name="?p"/>
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45 <var name="?n"/>

46 <plus>

47 <var name="?z"/>

48 <term type="wssl#Generated">

49 <var name="mechlog"/>

50 </term>

51 </plus>

52 <plus>

53 <var name="?p"/>

54 <term type="wssl#Generated">

55 <var name="mechlog"/>

56 </term>

57 </plus>

58 <var name="?n"/>

59 <var name="?s"/>

60 </predicate>

61 </implies>

62 </causal>

63
64 </wssl>

B.2.3 RetrieveDiag

1 <?xml version="1.0" encoding="UTF-8"?>

2
3 <wssl

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:noNamespaceSchemaLocation="wssl4.xsd"

6 xmlns:wssl="http://www.example.org/wssl">

7
8 <service name="wssl#MReport">

9 </service>

10
11 <input name="wssl#invoice"/>

12
13 <output name="wssl#report"/>
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14
15 <precondition name="wssl#PrecMR">

16 <and>

17 <holds state="?z_in">

18 <term type="wssl#PayCompleted">

19 <var name="payform"/>

20 </term>

21 </holds>

22 <holds state="?z_in">

23 <term type="wssl#Generated">

24 <var name="mechlog"/>

25 </term>

26 </holds>

27 <not>

28 <holds state="?z_in">

29 <term type="wssl#Delivered">

30 <var name="report"/>

31 </term>

32 </holds>

33 </not>

34 </and>

35 </precondition>

36
37 <postcondition name="wssl#PostMR">

38 <or>

39 <equal>

40 <var name="?z_out"/>

41 <plus>

42 <var name="?z_in"/>

43 <term type="wssl#Delivered">

44 <var name="report"/>

45 </term>

46 </plus>

47 </equal>

48 <exists>

49 <var name="?deliv"/>

50 <predicate name="Acc">
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51 <term type="Failure">

52 <var name="?deliv"/>

53 </term>

54 <var name="?z_in"/>

55 </predicate>

56 <equal>

57 <var name="?z_out"/>

58 <var name="?z_in"/>

59 </equal>

60 </exists>

61 </or>

62 </postcondition>

63
64 <causal name="wssl#CausalRD">

65 <implies>

66 <term type="wssl#Retrieved">

67 <var name="status"/>

68 <var name="vehicle"/>

69 </term>

70 <term type="wssl#Generated">

71 <var name="mechlog"/>

72 </term>

73 </implies>

74 </causal>

75
76 <defaultt>

77 <rule>

78 <justification>

79 <not>

80 <predicate name="Acc">

81 <var name="?c"/>

82 <var name="?s_in"/>

83 </predicate>

84 </not>

85 </justification>

86 <conclusion>

87 <not>
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88 <predicate name="Acc">

89 <var name="?c"/>

90 <var name="?s_in"/>

91 </predicate>

92 </not>

93 </conclusion>

94 </rule>

95 </defaultt>

96
97 </wssl>
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FLUX Kernels

C.1 Copyright Notice

The code below is a modification of the original FLUX kernel, which can be
found online in the address http://www.flux-agent.org and is associated with the
following copyright and permission notice:

Copyright (c) 2000 by The Dresden University of Technology, Dresden, Saxony,
Germany. All Rights Reserved.

Permission to use, copy, and modify, this software and its documentation for
non-commercial research purpose is hereby granted without fee, provided that
the above copyright notice appears in all copies and that both the copyright no-
tice and this permission notice appear in supporting documentation, and that the
name of The Dresden University of Technology not be used in advertising or pub-
licity pertaining to distribution of the softwarewithout specific,written prior per-
mission. The Dresden University of Technology makes no representations about
the suitability of this software for any purpose. It is provided ”as is” without ex-
press or implied warranty.
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C.2 Basic Kernel

Note that CHR code is not included. The basic kernel only requires the def-
inition of not_holds, while the full kernel requires the complete CHR set of the
original FLUX kernel.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Libraries
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%
8 %% constraint handling rules ( Eclipse library )
9 %%

10 :− lib (ech ).
11
12 %%
13 %% FLUX constraint handling rule for not_holds
14 %%
15 :− chr (’ notholds.chr ’).
16
17
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 %%
20 %% State Specifications and Update
21 %%
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23
24 %%
25 %% holds(F,Z ): asserts that fluent F holds in state Z
26 %%
27 holds(F, [F| _ ]).
28 holds(F, Z) :− Z=[F1|Z1 ], F\==F1, holds(F, Z1 ).
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29
30
31 %%
32 %% holds(F,Z,Zp): asserts that fluent F holds in state Z
33 %% state Zp is Z without F.
34 %%
35 holds(F, [F|Z ], Z ).
36 holds(F, Z, [F1|Zp]) :− Z=[F1|Z1 ], F\==F1, holds(F, Z1, Zp).
37
38
39 %%
40 %% minus(Z1,ThetaN,Z2): state Z2 is state Z1 minus the fluents in list ThetaN
41 %%
42 minus_(Z, [], Z ).
43 minus_(Z, [F|Fs ], Zp) :−
44 (\+ holds(F, Z) −> Z1 = Z ;
45 holds(F, Z, Z1) ), minus_(Z1, Fs , Zp).
46
47
48 %%
49 %% plus(Z1,ThetaP,Z2 ): state Z2 is state Z1 plus the fluents in list ThetaP
50 %%
51 %% In case a fluent represents an output, the equivalent hasinput fluent
52 %% is added, in order to facilitate data flow routing for composition
53 %%
54 plus_ (Z, [], Z ).
55 plus_ (Z, [F|Fs ], Zp) :−
56 ( \+ holds(F, Z) −> Z1=[F|Z ],
57 (F=hasoutput(N) −> Z2=[hasinput(N)|Z1] ; Z2=Z1) ;
58 holds(F, Z ), Z2=Z), plus_ (Z2, Fs , Zp).
59
60
61 %%
62 %% update(Z1,ThetaP,ThetaN,Z2): state Z2 is state Z1 minus the fluents in
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63 %% list ThetaN plus the fluents in list ThetaP
64 %%
65 update(Z1, ThetaP, ThetaN, Z2) :−
66 minus_(Z1, ThetaN, Z ), plus_ (Z, ThetaP, Z2 ).
67
68
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 %%
71 %% Ramification Problem
72 %%
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74
75 %%
76 %% ramify(Z1,ThetaP,ThetaN,Z2)
77 %%
78 %% state Z2 is the result of applying causal relationships after
79 %% removing the negative direct effects ThetaN and adding the
80 %% positive direct effects ThetaP to state Z2
81 %%
82 %% It is assumed that the causal relationships of a domain are specified
83 %% by clauses for the predicate causes(Z1,P1,N1,Z2,P2,N2) such that an
84 %% indirect effect causes an automatic state transition from
85 %% state Z1 with positive effects P1 and negative effects N1 to
86 %% state Z2 with positive effects P2 and negative effects N2
87 %%
88 %% It is also assumed that ramification chains have a maximum length of one:
89 %% a state update may trigger a single causal relationship only .
90 ramify(Z1,ThetaP,ThetaN,Z2) :−
91 update(Z1,ThetaP,ThetaN,Z), (causes(Z,ThetaP,ThetaN,Z2,_ , _)
92 ; Z2=Z).
93
94
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 %%
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97 %% Service Composition
98 %%
99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

100
101 poss_if (F , A, B, Z) :− holds(F,Z ), poss(A, Z) ;
102 not_holds(F, Z ), poss(B, Z ), A \== B.
103 poss_and(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
104 poss_or(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
105 poss_xor(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
106 poss_loop(F,K,A,Z) :− K\==0, (holds(F,Z) −>
107 poss(A,Z )), update(Z,A,Z_PR), poss_loop(F,K−1,A,Z_PR).
108
109 state_update_if (Z, F , A, B, Z_PR) :−
110 holds(F, Z ), state_update (Z, A, Z_PR) ;
111 not_holds(F, Z ), state_update (Z, B, Z_PR).
112 state_update_and(Z, A, B, Z_PR) :− state_update (Z, A, Z_1 ),
113 state_update (Z_1, B, Z_PR).
114 state_update_or (Z,A,B,Z_PR) :− state_update (Z, A, Z_1 ),
115 state_update (Z_1, B, Z_PR) ;
116 state_update (Z,A,Z_PR) ;
117 state_update (Z,B,Z_PR).
118 state_update_xor (Z, A, B, Z_PR) :− state_update (Z, A, Z_PR),
119 \+ state_update (Z, B, Z_PR) ;
120 state_update (Z, B, Z_PR),
121 \+ state_update (Z, A, Z_PR).
122 state_update_loop (Z,F,K,A,Z_PR) :− not_holds(F,Z) −> Z_PR=Z ; K\==0,
123 (holds(F,Z ), update(Z,A,Z_1 ),
124 not_holds(F,Z_1 )) −>
125 state_update (Z,A,Z_1 ),
126 state_update_loop (Z_1,F ,K−1,A,Z_PR).
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C.3 Full Kernel

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% Libraries
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
7 %%
8 %% finite domain constraint solver ( Eclipse library )
9 %%

10 :− lib ( fd ).
11
12 %%
13 %% constraint handling rules ( Eclipse library )
14 %%
15 %:− lib (chr ).
16 :− lib (ech ).
17
18 %%
19 %% FLUX constraint handling rules
20 %%
21 :− chr (’ fluent .chr ’).
22
23
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 %%
26 %% State Specifications and Update
27 %%
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29
30 %%
31 %% holds(F,Z ): asserts that fluent F holds in state Z
32 %%
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33 holds(F, [F| _ ]).
34 holds(F, Z) :− nonvar(Z), Z=[F1|Z1 ], F\==F1, holds(F, Z1 ).
35
36
37 %%
38 %% holds(F,Z,Zp): asserts that fluent F holds in state Z
39 %% state Zp is Z without F.
40 %%
41 holds(F, [F|Z ], Z ).
42 holds(F, Z, [F1|Zp]) :− nonvar(Z), Z=[F1|Z1 ], F\==F1, holds(F, Z1, Zp).
43
44
45 %%
46 %% cancel(F,Z1,Z2 ): state Z2 is state Z1 with all
47 %% (positive , negative , disjunctive ) knowledge of fluent F canceled
48 %%
49 cancel (F ,Z1,Z2) :−
50 var(Z1) −> cancel(F ,Z1 ), cancelled (F,Z1 ), Z2=Z1 ;
51 Z1 = [G|Z] −> ( F\=G −> cancel(F ,Z,Z3 ), Z2=[G|Z3]
52 ; cancel (F ,Z,Z2) ) ;
53 Z1 = [] −> Z2 = [].
54
55
56 %%
57 %% minus(Z1,ThetaN,Z2): state Z2 is state Z1 minus the fluents in list ThetaN
58 %%
59 minus_(Z, [], Z ).
60 minus_(Z, [F|Fs ], Zp) :−
61 ( \+ not_holds(F, Z) −> holds(F, Z, Z1) ;
62 \+ holds(F, Z) −> Z1 = Z
63 ; cancel (F , Z, Z1 ), not_holds(F, Z1) ),
64 minus_(Z1, Fs , Zp).
65
66
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67 %%
68 %% plus(Z1,ThetaP,Z2 ): state Z2 is state Z1 plus the fluents in list ThetaP
69 %%
70 %% In case a fluent represents an output, the equivalent hasinput fluent
71 %% is added, in order to facilitate data flow routing for composition
72 %%
73 plus_ (Z, [], Z ).
74 plus_ (Z, [F|Fs ], Zp) :−
75 ( \+ holds(F, Z) −> Z1=[F|Z ],
76 (F=hasoutput(N) −> Z2=[hasinput(N)|Z1] ; Z2=Z1) ;
77 \+ not_holds(F, Z) −> Z2=Z
78 ; cancel (F , Z, Z3 ), not_holds(F, Z3 ), Z2=[F|Z3] ),
79 plus_ (Z2, Fs , Zp).
80
81
82 %%
83 %% update(Z1,ThetaP,ThetaN,Z2): state Z2 is state Z1 minus the fluents in
84 %% list ThetaN plus the fluents in list ThetaP
85 %%
86 update(Z1, ThetaP, ThetaN, Z2) :−
87 minus_(Z1, ThetaN, Z ), plus_ (Z, ThetaP, Z2 ).
88
89
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91 %%
92 %% State Knowledge
93 %%
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95
96 %%
97 %% knows(F,Z): ground fluent F is known to hold in state Z
98 %%
99 knows(F, Z) :− \+ not_holds(F, Z ).

100
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101 %%
102 %% knows_not(F,Z): ground fluent F is known not to hold in state Z
103 %%
104 knows_not(F, Z) :− \+ holds(F, Z ).
105
106
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %%
109 %% Ramification Problem
110 %%
111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112
113 %%
114 %% ramify(Z1,ThetaP,ThetaN,Z2)
115 %%
116 %% state Z2 is the result of applying causal relationships after
117 %% removing the negative direct effects ThetaN and adding the
118 %% positive direct effects ThetaP to state Z2
119 %%
120 %% It is assumed that the causal relationships of a domain are specified
121 %% by clauses for the predicate causes(Z1,P1,N1,Z2,P2,N2) such that an
122 %% indirect effect causes an automatic state transition from
123 %% state Z1 with positive effects P1 and negative effects N1 to
124 %% state Z2 with positive effects P2 and negative effects N2
125 %%
126 %% It is also assumed that ramification chains have a maximum length of one:
127 %% a state update may trigger a single causal relationship only .
128 ramify(Z1,ThetaP,ThetaN,Z2) :−
129 update(Z1,ThetaP,ThetaN,Z), (causes(Z,ThetaP,ThetaN,Z2,_ , _)
130 ; Z2=Z).
131
132
133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
134 %%
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135 %% Service Composition
136 %%
137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
138
139 poss_if (F , A, B, Z) :− holds(F,Z ), poss(A, Z) ;
140 not_holds(F, Z ), poss(B, Z ), A \== B.
141 poss_and(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
142 poss_or(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
143 poss_xor(A, B, Z) :− poss(A, Z ), poss(B, Z ), A \== B, A @< B.
144 poss_loop(F,K,A,Z) :− K\==0, (holds(F,Z) −>
145 poss(A,Z )), update(Z,A,Z_PR), poss_loop(F,K−1,A,Z_PR).
146
147 state_update_if (Z, F , A, B, Z_PR) :−
148 holds(F, Z ), state_update (Z, A, Z_PR) ;
149 not_holds(F, Z ), state_update (Z, B, Z_PR).
150 state_update_and(Z, A, B, Z_PR) :− state_update (Z, A, Z_1 ),
151 state_update (Z_1, B, Z_PR).
152 state_update_or (Z,A,B,Z_PR) :− state_update (Z, A, Z_1 ),
153 state_update (Z_1, B, Z_PR) ;
154 state_update (Z,A,Z_PR) ;
155 state_update (Z,B,Z_PR).
156 state_update_xor (Z, A, B, Z_PR) :− state_update (Z, A, Z_PR),
157 \+ state_update (Z, B, Z_PR) ;
158 state_update (Z, A, Z_PR),
159 \+ state_update (Z, B, Z_PR).
160 state_update_loop (Z,F ,K,A,Z_PR) :− not_holds(F,Z) −> Z_PR=Z ; K\==0,
161 (holds(F,Z ), update(Z,A,Z_1 ),
162 not_holds(F,Z_1 )) −>
163 state_update (Z,A,Z_1 ),
164 state_update_loop (Z_1,F ,K−1,A,Z_PR).
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C.4 FLUX code of the running example

1 init (Z0) :− Z0 = [ callcenterup , hasinput( call )].
2
3 poss(receivesms, Z) :− holds(hasinput(sms), Z ), holds( callcenterup , Z ).
4 poss( receivecall , Z) :− holds(hasinput( call ), Z ), holds( callcenterup , Z ).
5 poss( retrievelocation , Z) :− holds(hasinput(request ), Z ),
6 holds( gpsactive (user ), Z ).
7 poss( retrievediagnostics , Z) :− holds(hasinput(request ), Z ),
8 holds(systemactive( vehicle ), Z ).
9 poss(findmech, Z) :− holds(hasinput( status ), Z ), holds(hasinput( location ), Z ),

10 holds( retrieved ( location , user ), Z ), holds( retrieved ( status , vehicle ), Z ),
11 not_holds(solved( status , location ), Z ).
12 poss(receivepay(payform, invoice ), Z) :− holds(hasinput(payform), Z ),
13 holds(solved( status , location ), Z ).
14 poss(ereport( invoice , report ), Z) :− holds(hasinput( invoice ), Z ),
15 holds(paycompleted(payform), Z ), holds(generated(mechlog), Z ),
16 not_holds(emailed(report ), Z ).
17 poss(mreport(invoice , report ), Z) :− holds(hasinput( invoice ), Z ),
18 holds(paycompleted(payform), Z ), holds(generated(mechlog), Z ),
19 not_holds( delivered (report ), Z ).
20
21 state_update (Z, receivesms, Z_PR) :− update(Z, [hasoutput(request ),
22 received (request , sms )], [hasinput(sms )], Z_PR).
23 state_update (Z, receivecall , Z_PR) :− update(Z, [hasoutput(request ),
24 received (request , call )], [hasinput( call )], Z_PR).
25 state_update (Z, retrievelocation , Z_PR) :− update(Z, [hasoutput( location ),
26 received ( location , user )], [hasinput(request )], Z_PR).
27 state_update (Z, retrievediagnostics , Z_PR) :− ramify(Z, [hasoutput( status ),
28 received ( status , vehicle )], [hasinput(request )], Z_PR).
29 state_update (Z, findmech, Z_PR) :− update(Z, [hasoutput(payform),
30 solved( status , location )], [hasinput( status ), hasinput( location )], Z_PR).
31 state_update (Z, receivepay , Z_PR) :− ramify(Z, [hasoutput(invoice ),
32 paycompleted(payform)], [hasinput(payform)], Z_PR).
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33 state_update (Z, ereport , Z_PR) :− update(Z, [hasoutput(report ), emailed(report )],
34 [hasinput( invoice )], Z_PR).
35 state_update (Z, mreport, Z_PR) :− update(Z ,[ hasoutput(report ), delivered (report )],
36 [hasinput( invoice )], Z_PR)
37 ; update(Z, [ failure ( deliv )], [], Z_PR).
38
39 causes(Z, P, N, [generated(mechlog)|Z ], _ , _) :−
40 P = [hasoutput( status ), received ( status , vehicle )], N = [hasinput(request )].
41 causes(Z, P, N, [ deactivated ( creditcard )| Z ], _ , _) :−
42 holds( dailylimitreached (payform, creditcard ), Z ),
43 P = [hasoutput(invoice ), paycompleted(payform)], N = [hasinput(payform)].
44
45 assist_plan (Z, [A|P ], Z_PR) :− A_1 = receivesms, A_2 = receivecall ,
46 A = xor(A_1, A_2 ), poss_xor(A_1, A_2, Z ),
47 state_update_xor (Z, A_1,A_2, Z_1 ),
48 assist_plan1 (Z_1, P, Z_PR).
49 assist_plan1 (Z, [A|P ], Z_PR) :− A_1= retrievelocation , A_2= retrievediagnostics ,
50 A = and(A_1, A_2 ), poss_and(A_1, A_2, Z ),
51 state_update_and(Z, A_1,A_2, Z_1 ),
52 assist_plan2 (Z_1, P, Z_PR).
53 assist_plan2 (Z, [A|P ], Z_PR) :− A = findmech, poss(A, Z ),
54 state_update (Z, A, Z_1 ),
55 assist_plan3 (Z_1, P, Z_PR).
56 assist_plan3 (Z, [A|P ], Z_PR) :− A = receivepay , poss(A, Z ),
57 state_update (Z, A, Z_1 ),
58 assist_plan4 (Z_1, P, Z_PR).
59 assist_plan4 (Z, A, Z_PR) :− F = req_deliv (report ), A_1 = ereport , A_2 = mreport,
60 A = if (F , A_1, A_2 ), poss_if (F , A_1, A_2, Z ),
61 state_update_if (Z, F , A_1, A_2, Z_PR).
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