
Computer Science Department
University of Crete

Design and Implementation of a Coherent Memory Sub-System for Shared
Memory Multiprocessors

Master’s Thesis

Evaggelos Vlachos

July 2006
Heraklion, Greece

Panepist mio Kr thSqol Jetik¸n kai Teqnologik¸n Episthm¸nTm ma Epist mh Upologist¸n
Design and Implementation of a Coherent Memory Sub-System for Shared Memory

MultiprocessorsErgas�a pou upobl jhke apì ton Bl�qo Eu�ggelow merik ekpl rwsh twn apait sewn gia thn apìkthshMetaptuqiakoÔ Dipl¸mato Eid�keushSuggrafèa: ���������������-Eu�ggelo Bl�qo, Tm ma Epist mh Upologist¸nEishghtik Epitrop : ���������������-Manìlh Kateba�nh, Kajhght , Epìpth���������������-'Aggelo Mp�la, Anaplhrwt Kajhght , Mèlo���������������-DionÔsh Pneumatik�to, Anaplhrwt Kajhght , MèloTm ma Hlektronik¸n Mhqanik¸n & Mhqanik¸n Upologist¸n, Poluteqne�o Kr thDekt : ���������������-Dhm trh Plexous�kh, Anaplhrwt Kajhght Prìedro Epitrop Metaptuqiak¸n Spoud¸nHr�kleio, IoÔlio 2006

Design and Implementation of a Coherent Memory Sub-System for Shared

Memory Multiprocessors

by

Evaggelos Vlachos

Master’s Thesis

Department of Computer Science

University of Crete

Abstract

Recent technology advances in integrated electronics offer the ability to add more and more tran-

sistors into modern chips. Chip Multiprocessors (CMPs) are architecturesthat feature multiple pro-

cessing cores on a single chip. They result in higher processing power, easier design scalability, and

greater performance/power ratio. CMPs appear to be one of the dominatingarchitectural approaches

for the years to come in the area of high performance architectures.

The purpose of this work is to design and implement a shared memory multi-core system that

matches the needs of future CMPs. Specifically, an FPGA-based prototypehas been implemented,

which constitutes a two-node processing system. The design takes advantage of the two PowerPC

cores that are embedded in the FPGA fabric. We have implemented external coherent caches equipped

with a MESI protocol, and a bus-based coherent memory interconnect to connect the two processors.

Shared memory resides in external DDR memory accessible through the interconnect and the DDR

controller.

We find that the area overhead of our coherent memory system is 33.4% ofa medium-size FPGA.

We evaluate the performance of the system by using both simulations and custom software bench-

marks running on the two processors. Our simulations show that the system implemented is more

efficient than systems based exclusively by Xilinx soft-cores that offerthe same type of memory co-

herence. Our custom benchmarks simulate basic operations found commonlyin parallel programs.

Our results show that our design scales well with respect to a single processor, for the Merge-Sort al-

gorithm and the Producer-Consumer benchmark that don”t require a great amount of synchronization

traffic. The speedup measured ranges between 1.89 to 1.92 and 1.89 to 3.45, respectively. On the other

hand, the Shared-Counter benchmark slows down by 3 to 10 times due to excessive synchronization

traffic.

Thesis Supervisor:Manolis Katevenis, Professor

ii

Sqed�ash kai Ulopo�hsh enì Uposust mato Mn mh Sunoq Dedomènwn gia Poluepexergastè Diamoirazìmenh Mn mhBl�qo Eu�ggeloMetaptuqiak Ergas�aTm ma Epist mh Upologist¸nPanepist mio Kr thPer�lhyhPrìsfata teqnologik� epiteÔgmata ston tomèa twn oloklhrwmènwn kuklwm�twn prosfè-roun thn dunatìthta prìsjesh perissotèrwn tranz�stor sta shmerin� oloklhrwmèna kukl¸ma-ta. Ta {Oloklhrwmèna Poluepexergastik¸n Susthm�twn}apoteloÔn arqitektonikè oi opo�ediajètoun pollaploÔ pur ne epexergas�a sto �dio oloklhrwmèno. Autì èqei san apotèlesmathn aÔxhsh epexergastik isqÔ, thn eukolìterh klim�kwsh th sqed�ash kai thn aÔxhsh toulìgou apìdosh an� mon�da katan�lwsh. Autì to e�do sqed�ash anamènetai na epikrat seisto mèllon ston tomèa th arqitektonik upologist¸n.O skopì aut th ergas�a e�nai h sqed�ash kai ulopo�hsh enì sust mato pollapl¸npur nwn diamoirazìmenh mn mh, to opo�o prosegg�zei ti idiìthte enì mellontikoÔ polue-pexergastikoÔ sust mato. Prwtìtupo tou sust mato autoÔ ulopoi jhke se mia FPGA kaiapotele� èna sÔsthma me duo epexergastikoÔ pur ne. To sÔsthma axiopoie� tou dÔo en-swmatwmènou epexergastè PowerPC, oi opo�oi kai apoteloÔn mèro tou ìlou sust mato.Ulopoi same exwterikè krufè mn me efodiasmène me prwtìkollo sunoq diamoirazìmenhmn mh kai èna d�ktuo tÔpou arthr�a gia na sundèsoume tou dÔo epexergastè. H diamoirazìme-nh mn mh br�sketai sthn exwterik DDRmn mh kai e�nai prospel�simh mèsw tou upo-sust matomn mh.To epiprìsjeto kìsto se embadìn pou eis�getai apì to sÔsthm� ma e�nai 33,4% se mia
FPGA mesa�ou megèjou. Apotim same thn ep�dosh tou sust matì ma qrhsimopoi¸ntaprosomoi¸sei kai dokimastik� progr�mmata pou trèqoun kai stou dÔo epexergastè. Oi pro-somoi¸sei ma èdeixan ìti to sÔsthma pou ulopoi jhke e�nai pio apodotikì apì k�je �llo

iii

pou prosfèrei sunep diamoirazìmenh mn mh kai bas�zetai apokleistik� se komm�tia apì thnbiblioj kh th Xilinx . Ta dokimastik� progr�mmata pou qrhsimopoioÔme prosomoi¸noun basi-kè leitourg�e pou emfan�zontai suqn� se par�llhla progr�mmata. Ta apotelèsmata de�qnounìti h apìdosh tou sÔsthm� ma klimak¸netai omal� se sqèsh me ton èna epexergast , gia tonalgìrijmo taxinìmhsh kai to prìgramma ParagwgoÔ-Katanalwt , ta opo�a den dhmiourgoÔnmeg�le posìthte k�nhsh sugqronismoÔ. H epit�qunsh pou metr jhke kuma�netai apì 1,89 èw1,92 kai apì 1,89 èw 3,45, ant�stoiqa. Antijètw, to prìgramma tou diamoirazìmenou metrht epibradÔnjhke apì 3 èw 10 forè lìgw uperbolik k�nhsh sugqronismoÔ.Epìpth Metaptuqiak Ergas�a: Manìlh Kateba�nh, Kajhght

iv

Acknowledgments

First of all I would like to thank my family (Kostas, Marditsa, Apostolis and Anda) for their love

and support they have offered all these years. They have sacrificed everything in order to help me

reach my goals. Without their help I would certainly have not made it to here.

I would also like to thank my advisor Prof. Manolis Katevenis as also Prof. Angelos Bilas

and Prof. Dionysios Pnevmatikatos, for their guidance and their supportthroughout this work. Their

constructive remarks and the time they devoted to me constitute a significant amount of help.

Finally, I would like to thank all my fellow students and/or co-workers at FORTH for their

help and their support in all the good and bad times. Working in the same environment with you my

friends has been a pleasant and an honor.

(Dr. Manolis Marazakis, Vasilis Papaefstathiou, George Kalokairinos, Mixalis Ligerakis, Stamatis

Kavadias, Mixalis Papamicheal, George Mihelogiannakis, Aggelos Ioannou, Nikos Andrikos, George

Passas, Kostas Kapelonis, Evriklis Kounalakis, George Panagiotakis, Dimitris Antoniadis, Manolis

Athanatos and many other....)

This work was carried out with the financial and technical support fromFORTH - ICS and in the

framework of the European FP6-IST program through the SIVSS (STREP 002075), UNIsIX (MC

EXT 509595), SARC(FET 027648) projects, and the HiPEAC Network ofExcellence (NoE 004408).

v

vi

To my family

vii

viii

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Shared Memory Multirocessors . 3

1.1.2 Chip Multiprocessors . 9

1.2 Releated Work . 11

2 Design and Implementation 13

2.1 General Description .. 13

2.2 PowerPC 405 . 15

2.3 PLB Bus Interconnect .. . 17

2.4 PLB BRAM Controller, BRAM blocks and PLB2IPIF Controller 18

2.5 PLB2Cache module . 18

2.5.1 PLB2Cache Module Architecture . 20

2.6 Coherent Cache .. 21

2.6.1 Cache Characteristics . 22

2.6.2 Tags and Data Memory Organization . 23

2.6.3 Coherency Protocol . 24

2.6.4 Part A: Cache’s Processor side .. . 26

2.6.5 Part B: Cache’s Bus side . 31

2.7 Coherent Memory Interconnect 34

2.8 DDR Multiplexer . 39

2.9 DDR Controller . 40

ix

3 Evaluation and Verification 41

3.1 Hardware Resources .. . 41

3.1.1 Target FPGA . 41

3.1.2 Hardware Resources . 42

3.1.3 Timing Conciderations . 43

3.2 Performance Evaluation .. 45

3.2.1 Comparison with other Coherent Shared Memory Organizations 51

3.3 Correctness verification .. . 52

3.3.1 Software primitives . 52

3.3.2 Shared Memory Programs . 53

4 Conclusion and Future Work 65

References 66

A DSPLB & PLB2Cache module 71

A.1 DSPLB Behavior . 71

A.2 DSPLB Signal Summary . 73

A.3 PLB2Cache module FSMs . 75

A.4 Returning Data . 77

B Details about the Coherent Cache 79

B.1 Part A FSMs . 79

B.1.1 FSMCPU ACCESS . 79

B.1.2 WB FSM . 80

B.2 Completing Requests and Cache Status .83

B.3 Part B FSMs . 84

B.3.1 BUSFSM . 84

B.3.2 FSMREQ IN . 86

B.4 Communication with the dependency check module88

C Coherent Bus Module FSMs 89

C.1 FSMArb . 89

x

C.2 FSMBUS WB . 91

D Detailed Reports 93

D.1 Waveforms for Halted IPIF Burst Accesses 93

D.2 Detailed Timing Reports for Critical Paths .93

xi

xii

List of Figures

1.1 The Cache Coherence Problem 3

1.2 State diagram for the MSI write-invalidate cache coherece protocol 7

1.3 State diagram for the write-update cache coherece protocol 9

2.1 Architecture of the System .14

2.2 PowerPC 405 Organization .. 16

2.3 3-cycle PLB Arbitration . 17

2.4 Connection between the PowerPC, the PLB2Cache module, and the Bus 19

2.5 PLB2Cache Architecture .. 20

2.6 Coherent Cache General Description 22

2.7 Coherency Protocol State Diagram 24

2.8 Part A block diagram .27

2.9 Two First Cycles of a Processor Access 28

2.10 Cache2Bus Block Diagram .. . 32

2.11 Bus2Cache Block Diagram .. . 34

2.12 Coherent Memory Interconnect Block Diagram 35

2.13 IPIF Accesses .. . 38

3.1 Floorplanned view of the system .. 42

3.2 Write hit and Read hit Scenarios .. 46

3.3 Invalidate Scenario .47

3.4 BusRd Remote Cache hit Scenario .. 48

3.5 BusRd Remote miss. Fetching cache block from external memory. Block eviction at

the same time . 49

3.6 Non-Cacheable Write & Read Accesses 50

xiii

3.7 Locking Algorithms . 54

3.8 Competing for Access to Shared Memory .. 58

3.9 Producer - Consumer Program 59

A.1 Data-Side PLB Interface Block Symbol .. . 73

A.2 PLB Accesses .74

A.3 PLB2Cache module FSMs . 76

A.4 DSPLB Three Consecutive Word Reads 78

B.1 FSM CPU ACCESS State Diagram . 80

B.2 WB FSM State Diagram . 81

B.3 BUS FSM State Diagram . 85

B.4 FSM REQ IN State Diagram . 87

C.1 FSMArb State Diagram . 90

D.1 IPIF Burst Accesses Halted 93

xiv

List of Tables

2.1 Generation of Coherent Requests 25

2.2 Combinations of Accesses .29

3.1 Virtex II Pro Resource Summary .. 41

3.2 Hardware Utilization . 43

3.3 Delay of Critical Paths . 44

3.4 Access Latency (measured in PLB cycles - 100MHz clock freq.) 51

3.5 Additional penalties imposed to Shared Memory Requests (measured in PLBcycles -

100MHz clock freq.) . 51

3.6 System Parameters . 54

3.7 Duration of “Shared-Counter” program for different arcitectures in processor cycles

(clk. freq. 100 MHz) . 55

3.8 Duration of “Producer-Consumer” in processor cycles (clk. freq. 100 MHz) 60

3.9 Duration of “Merge-Sort” program in processor cycles (clk. freq. 100 MHz) 63

A.1 DSPLB PLB Interface Signal Summary .. 72

D.1 Time Consumption at the Read Hit Path . 94

D.2 Time Consumption at the end of the Read Miss Path95

D.3 Time Consumption when requesting the Bus .95

xv

xvi

Chapter 1

Introduction

Recent technology advances in integrated electronics offer to computer engineers the ability of adding

more and more transistors into modern chips. The logic being added is becomingmore and more com-

plex, describing and implementing more powerful designs. This effect hasresulted in the occurrence

of Chip Multiprocessors (CMPs). This approach suggests that high-performance processor architec-

tures should move towards designs that feature multiple processing cores on a single chip. These

designs have the potential to provide higher peak throughput, easier design scalability, and greater

performance/power ration than nowadays uniprocessor ones. This trend appears to be one of the dom-

inating architectural approaches for the years to come in the area of high performance architecture.

Specifically, there are already some multi-core architectures on the market [1, 2, 3] that dispose a

small number of processing cores. In the near future CMPs are expected to have a larger number

of processors, since global wire delays will limit the area of the chip that is useful for a single con-

ventional processing core. It is following that this area will be dedicated todeploy additional cores

[4, 5, 6].

Having so many units on a single chip, it certainly alters the architectural decisions that have been

considered safe until now. Processing power no longer constitutes the bottleneck of these designs. The

vast amount of transistors available on chip has transferred the bottleneck to the need of making all

the processing cores cooperate efficiently. Thus, one of the most important characteristics, on which

a great amount of consideration will be focused, will deal with communicationissues between the

multiple processors, either on-chip or even off-chip. The on-chip communication is usually carried

out by on-chip interconnection networks that connect the on-chip processing elements. The off-chip

communication is usually the responsibility of a Network Interface, which make feasible the commu-

1

2 CHAPTER 1. INTRODUCTION

nication with other multinode systems. However, efficiency in communication has aclose relation

with the proximity of computation to communication. This tight coupling between computation and

communication is usually expressed as customizing the features of Network Interfaces in order to

meet particular application domain demands. This, however, influence the design of the interconnect

network. Thus, an integrated design of the network interface and the interconnection network will

provide the desired features to the whole system.

An approach that offers tight coupling between communication and computation suggests the use

of Coherent Network Interfaces (CNI) [7, 8]. According to this approach, the multiple nodes (CPUs)

use a coherency protocol to share the available memory. The Network Interface is connected to the

memory bus and uses the underlying coherency protocol to transfer datato the memory and/or the

cache hierarchies. In this way, low-latency communication is provided, as opposed to the currently

long-latency coupling through the I/O bus.

The purpose of this study is to design and implement a system that comes closerto the future

architecture that described above. Specifically, an FPGA-based prototype has been implemented,

which constitutes a two-node processing system. A Xilinx Virtex-II Pro FPGAhas been used to

host the whole system. The design takes advantage of the two PowerPC cores that are embedded in

the FPGA fabric [9, 10, 11]. External coherent caches and a coherent memory interconnect have

been implemented to connect properly the two processors. Shared memory resides in external DDR

memory accessible through the interconnect and the Xilinx DDR controller. Each processor is also

connected to a PLB bus in order to have access to instructions and privatedata. Finally, the coherent

memory interconnect has been designed to accept also a third participant, which can be a coherent

network interface. However, this entity remains a future objective.

The rest of the thesis is organized as follows: Background information and related work are dis-

cussed in the rest of this chapter. In Chapter 2 the design and the implementation of the whole system

is presented. Experimental results and comments from the evaluation of the system are shown in

Chapter 3. Finally, the conclusion of this study and future work directivescan be found in Chapter 4.

1.1 Background

This section of the chapter presents some background information about Shared Memory Multiproces-

sors and Chip Multiprocessors. Specifically, the Cache Coherence property will be described in detail,

and some Cache Coherence protocols will be presented. Finally, the CMP architectural organization

1.1. BACKGROUND 3

Y = 10

$ $

Y = 10 5 Y = 10

P1 P2

1
2

3 4

Figure 1.1: The Cache Coherence Problem

will be presented and analyzed.

1.1.1 Shared Memory Multirocessors

The Cache Coherence Problem

Figure 1.1 depicts the problem that arises when multiple processors have access to a shared region

of memory. Processors P1 and P2 are connected through an interconnection network to the main

memory, while both of them have one private write-back cache. In this example P1 and P2 share

variable Y, which both use it in the normal flow of their parallel program. At some point in time

processor P1 reads (arc no. 1) variable Y from main memory and places acopy of Y into its cache.

Let’s say that at that time Y has the value of ‘10’. Then, processor P2 reads (arc no. 2) variable Y from

main memory, placing a copy of Y into its cache, too. The value of Y is still ‘10’ and at that point both

processors have an up-to-date copy of Y. The problem arises when processor P1 attempts to modify

(arc no. 3) the value of Y. The action of writing to Y the value of ‘5’ updatesonly the local copy that

P1 retains in its cache. However, the copy of Y that P2 has remains intact maintaining an older value

of Y. When processor P2 attempts to read Y (arc no. 4), it reads a stale value of that variable. At

this point processor P2 has an out-of-date view of the specific memory location, resulting to wrong

execution of the parallel program. This is usually referred to as the cachecoherence problem.

A naive solution to this problem would be to prevent caching of shared memory by the proces-

sors. However, this would have a tremendous negative impact on the performance of the parallel

program. Furthermore, in shared memory multiprocessor architectures, reading from and writing to

4 CHAPTER 1. INTRODUCTION

shared memory regions by different processors is expected to happenfrequently. This frequent event

is used by processes of a parallel program to communicate with each other.This concludes to the fact

that addressing shared memory in these architectures must be addressedin different way than con-

venient uniprocessors do. The answer to this problem is given by hardware techniques that provide

coherency among shared data.

Cache Coherence

In the previous example the problem appeared when the last read operation issued by processor P2

didn’t return the up-to-date value of variable Y. This happened because the last write access to this

variable was made by processor P1, and P2 was never informed about that. This problem is attributed

to the memory interconnect, part of which are also the processors’ caches. In [12] a strict definition

of cache coherence is given and is apposed below for completeness. According to it,

A memory system is coherent if:

1. A read by a processor P, to a location X that follows a write by P to X, with no writes
of X by another processor occurring between the write and the read by P, always
return the value written by P.

2. A read by a processor to location X that follows a write by another processor to
X returns the written value if the read and write are sufficiently separated and no
other writes to X occur between the two accesses.

3. Writes to the same location are serialized: that is, two writes to the same location
by any two processors are seen in the same order by all processors.For example, if
the values 1 and 2 are written to a location, processors can never read thevalue of
the location as 2 and then later read it as 1.

The first property indicates that operations issued by any processor occur in the order which they

are issued to the memory system by that processor. That means that the memory system doesn’t

change the relevant ordering between memory operations from the same processor. The order, which

is preserved in this way, is the same order that the memory operations appearin the program, since

the processor does not issue memory operations in a way that will violate the program semantics. The

second property indicates that the value returned by each read operation is the value written by the

last write operation to that location. If that couldn’t hold then the whole system wouldn’t be able to

become in any way coherent. The violation of this rule was presented in the above example. Finally,

the third property indicates the serialization of memory operations from all the processors. Every

memory operation accesses a physical location at main memory. Since the physical memory module

1.1. BACKGROUND 5

can serve one request at a time, it would impose a serial order on all the read and write operations

from all the processors to any location.

In order to enforce coherency among multiple processors, hardware protocols embedded in the

cache hierarchy of each processor manage all the generated accesses [13, 14]. They use the coherent

memory interconnect to exchange messages with the other caches to impose synchronization among

them. The objectives that they serve are: upon a write request the local cache must ensure that it holds

the only copy of the data accessed. Also, all the other caches of the system must be informed about

this action and must either invalidate or update their specific copy of the data, ifthey have one. Upon

a read request the local cache must notify all the other caches of the system that a new copy of the

data accessed has been generated. In this way a cache that had until now a unique copy is informed

that this situation has changed.

Hardware Schemes for Enforcing Coherence

An important property of coherency protocols is the way they track the stateof each data block ac-

cessed by a processor. There are two dominant approaches that have been proposed (found in [15]).

The first one, namedDirectory based, suggests that the state of every block is kept in a single location.

This location is responsible for administering the specific block of memory, by making it available to

other processors in a manner that preserves data coherency. The second approach, namedSnooping

basedsuggests that no centralized state is kept. On the contrary, every cache that maintains a copy

of a block also maintains a copy of the sharing status of the same block. Everytime a memory block

is requested all the caches must search themselves to see if they hold a copyof this block. If a cache

does have a copy, then it follows the steps imposed by the coherency protocol.

Shared memory systems that follow the first approach separates the whole memory to n parts,

wheren the number of available processors. Each part is assigned to one processor, which is called

the host-processor and is responsible to administer it properly. The host-processor maintains the status

of every block memory assigned to it, and also a list of all the other processors that have access to

memory blocks, for every memory block to its jurisdiction. This hardware structure is calleddirectory

and is maintained within the cache hierarchy of each processor. Every time aprocessor wants to

access a block that doesn’t resides in its local cache, it sends a request to thedirectoryof the owner

processor. Depending on the type of the action requested, thedirectory is responsible to notify all the

other caches that already hold a copy, and also provide the requested data, if needed. The interconnect

connecting the processors of the systems is not required to have any specific properties, and affects

6 CHAPTER 1. INTRODUCTION

only the form of the messages exchanged. Thedirectory basedschemes have appeared later in the

bibliography and as has been proved they have a very good performance. The key characteristic of

this architecture is that it scales well when the number of processors available in a system increases.

However, its major drawback is its complexity. Specifically, each directory structures constitutes a

hot-spot of the system, since they receive requests by all the processors, including the local one, that

require access to the range of memory assigned to it. Due to its complexity the implementation of

such a scheme was rejected, and thus there will be no longer reference toit in the rest of the thesis.

On the other hand, shared memory systems that follow the second approachno parts of memory

are assigned to any processor. At any given time, a processor that requests to access a memory block,

which doesn’t resides in its local cache, it sends a message to all the othercaches. All the caches

snoopthe traffic on the interconnection network to identify a new message. If no cache has a copy

of the requested block then the block is loaded from main memory. If, however, one or more caches

maintain a valid copy, one of them sends the requested block back to the cache that requested it.

Messages are used not only to facilitate data transferring. Every message is assigned a type, which has

a specific meaning for the coherency protocol. Based on this type cachesthat receive such messages

are becoming familiar about the intention of the requesting processor. Having this knowledge they are

able to follow the steps imposed by the coherency protocol. This kind of coherency protocols adds

an additional requirement from the interconnection network, which constitutes the basic property of

the protocol. This requirement refer to the ability that must be offered to anycache to broadcast

messages and also tosnoopthe bus activity. Otherwise, it is impossible for the distributed protocol to

synchronize the processors’ requests.

Snooping Based Coherency Protocols

There are two types of snooping based coherency protocols that havebeen proposed until now. Each

one of them has been presented in many versions; however the basic steps remain identical. This

separation of protocols is based on the action taken by the protocol in order to preserve coherency.

Coherency is usually threatened by write actions, as was also presented inFigure 1.1. There are two

ways to maintain the coherence requirement. The first one is to ensure that aprocessor has exclusive

access to a data item before it writes that item. Protocols that follow this approach are usually called

write invalidateprotocol because of the action taken. The second way is to update all the other caches

that hold a copy of the item addressed, with the new value that is about to be written. This type of

protocol is calledwrite updateprotocol. These two types of coherency protocols are described below.

1.1. BACKGROUND 7

Write Invalidate Protocol A basic invalidate protocol is the three-state MSI write-back invalidation

protocol. The protocol uses three states to encode the state of a cache block that resides in a processor’s

cache. These three states are theInvalid, theSharedand theModified. TheInvalid state corresponds

to the absence of the requested block from the cache. TheSharedstate means the block is present in

an unmodified state in the cache, the main memory is up-to-date, and zero or morecopies of the block

can be found in other caches. Finally, theModifiedstate means that only this cache has a valid copy of

the block, and the copy in main memory is stall. Figure 1.2 depicts the state diagram of the protocol.

Actions inducing transitions between states are shown next to the arcs. Processors issue two types of

accesses, reads (PrRd) and writes (PrWr). Next to these accesses the corresponding bus messages,

which will be generated upon a cache miss, are shown. ABusRdmessage is generated when aPrRd

misses in the cache. The cache sends aBusRdmessage to request a copy of the specific block that

doesn’t intent to modify. A memory system participant, either some other cacheor the main memory,

will reply. A BusRdXmessage is generated when the processor wants to write a cache block thatis

either not present in the cache or is in the cache but not in theModifiedstate. The message is sent

to all the other caches, which invalidate their copies, if they have one. A cache or the main memory

supplies an exclusive copy of the block. The write action completes when thecopy arrives in the

cache.

S
PrWr/BusRdX

PrRd/BusRd

PrWr/BusRdX
BusRd/Flush

BusRdX/Flush

BusRdX/−

PrRd/−
BusRd/−

PrWr/−
PrRd/−

M

I

Figure 1.2: State diagram for the MSI write-invalidate cache coherece protocol

Observing the state of blocks from the processor’s side, aPrRdalways causes the requested block

8 CHAPTER 1. INTRODUCTION

to transit toSharedstate (transitions I to S and S to S). Furthermore, aPrWr always causes the

requested block to transit toModifiedstate (transitions I to M , S to M, and M to M). Observing the

state of the block from the bus’s side then the following transitions can take place. ABusRdXmessage

always causes the requested block to transit toInvalid state (transitions M to I and S to I). If the block

is initially found in theModifiedstate, then the cache may have to reply with the cache block (flush

action). Furthermore, aBusRdmessage always causes the requested block to transit to theShared

state (transitions M to S and S to S). Again, if the block was initially found in theModifiedstate, the

cache may have to reply with the cache block (flush action).

Write Update Protocol A basic update protocol is the three-state MSmSc write-back update pro-

tocol. The protocol uses three states to encode the state of a cache block that resides in a processor’s

cache. These three states are theSharedClean, theSharedModifiedand theModified. TheShared-

Cleanstate means the block is present in an unmodified state in the cache, the main memorymay

or may not be up-to-date, and zero or more copies of the block can be found in other caches. The

SharedModifiedstate means that one or more caches have a copy of this block, main memory isn’t

up-to-date, and it’s this cache responsibility to update the main memory. Only onecache can be in

SharedModifiedstate for a specific block at each time. Finally, theModifiedstate means that only

this cache has a valid copy of the block, and the copy in main memory is stall. Figure 1.3 depicts the

state diagram of the protocol. Actions inducing transitions between states areshown next to the arcs.

Processors issue two types of accesses, reads (PrRd or PrRdMiss) and writes (PrWr or PrWr).Next

to these accesses the corresponding bus messages, which will be generated, are shown. ABusRd

message is generated when aPrRdmisses in the cache. The cache sends aBusRdmessage to request

a copy of the specific block that doesn’t intent to modify. A memory system participant, either some

other cache or the main memory, will reply. ABusUpdatemessage is generated when the processor

writes to a cache block. The bytes written by the processor are broadcasted to all the other processors

so that they can update their copies, if they have one.

Observing the state of blocks from the processor’s side, aPrRdalways causes the requested block

to enters the cache in theSharedCleanstate, or maintain itself in this state. On the other hand, aPrWr

message can cause the block to transit either toSharedModifiedor to Modified. The final transition

depends on the state of the block in the other caches. If the block is sharedthen the Sc to Sm transition

takes place, otherwise the block transits toModifiedstate. If the block is initially absent from the cache

aPrWrMissis translated to aPrRdMissfollowed by aPrWr scenario. Observing the state of the block

1.1. BACKGROUND 9

PrWr/−

Sm

Sc

M

PrRdMiss/BusRd

PrRd/−
BusUpdate/−

BusUpdate/−

PrWr/BusUpdate(S)

PrRd/−
PrWr/BusUpd(S)
BusRd/Flush

BusRd/Flush

PrWr/BusUpd(S’)

PrWr/BusUpd(S’)

PrRd/−

Figure 1.3: State diagram for the write-update cache coherece protocol

from the bus’s side then the following actions are taken. ABusRdmessage causes a modified block

to enter one of theScor Smstates. It depends on the initial state of the block which one will be the

resulting state. If the block was found in theM state then it transits toSmstate. Otherwise, if the

block was found in either two states then it remains in that states. Whatever the transition might be

the cache may be forced to transmit a copy of the block. On the other hand, aBusUpdatemessage

can find a block only in theScor Smstate. In this case the block transits toScstate, updating its part

that is modified. Both of these two types of coherency protocols that resented above have been used

the past years. Patterns of memory accesses may be presented that are served more efficiently by an

invalidate or an update protocol. However, throughout the years the scientific community has shown a

preference for invalidate protocols over the update ones. The main reason for this comes from the fact

that the update protocols generate great amounts of traffic on the memory interconnect. For this study,

an invalidate coherency protocol was chosen to be implemented. The protocol, which is presented in

the next chapter, constitutes an extension of MSI protocol presented above.

1.1.2 Chip Multiprocessors

While CMOS manufacturing technology continues to improve, reducing the sizeof single gates, phys-

ical limits of semiconductor-based microelectronics become a major design concern. Some effects of

these physical limitations can cause significant heat dissipation and data synchronization problems.

10 CHAPTER 1. INTRODUCTION

The demand for more complex and capable microprocessors causes CPU designers to utilize various

methods of increasing performance. Some Instruction Level Parallelism (ILP) methods like super-

scalar pipelining are suitable for many applications, but are inefficient forothers that tend to contain

difficult-to-predict code. Many applications are better suited to Thread Level Parallelism (TLP) meth-

ods, which suggest the parallel execution of multiple threads in one or more processors. Multiple

independent CPUs is one common method used to increase a system’s overallTLP. A combination

of increased available space due to refined manufacturing processes and the demand for increased

TLP led to the logical creation of Chip MultiProcessors (CMPs). CMP organizations combine two or

more independent processors, often called cores, into a single integrated circuit. The cores are usually

connected together using a Network-on-Chip (NoC) type interconnectionnetwork.

In general, the existence of multiple processors on a single chip provides excessive computational

power. This can be translated by parallel applications as opportunity to exhibit thread-level parallelism

(TLP) to a higher extend. Furthermore, communication between different CPUs is carried out faster

as opposed to parallel computers. In a CMP system the end points of communication are found in the

same chip. The messages exchanged between them don”t experience thelatency of traveling off-chip.

As far as the hardware perspective is concerned, a CMP design disposes greater performance/power

ratio than monolithic designs. Ann-node CMP system consumes less power thann single processors.

This comes from the fact that a CMP system has fewer pins, which also means that less power is

consumed to drive signals external to the chip. Furthermore, the smaller silicon process geometry

allows the cores to operate at lower voltages; while a part of significant size of the circuitry (part

of the cache hierarchy) is usually shared among the processors. Finally, CMP designs are based on

duplicates of the same core, which eases design scalability, and producesa product with lower risk of

design error.

The major disadvantage of the CMP designs is the great power dissipation that results in increas-

ing chip temperatures. A CMP chip may consume less power thann equivalent uniprocessor chips,

however the total amount of power consumption remains prohibitive. Not allthe cores are able to

function at the same time for a long period of time, due to the fact that the circuitrywill melt down.

A solution to this problem suggests to dynamically switching on and off some of theavailable cores,

in order to lower the consumption level. From an architectural point of view,ultimately, single CPU

designs may make better use of the silicon surface area than multiprocessing cores.

1.2. RELEATED WORK 11

1.2 Releated Work

Many projects have undertaken the task of designing and implementing multiprocessor designs, in

order to evaluate new architectures and ideas. Some of them [16, 17] comefrom the early 90s, when

the proof by constructionapproach was very popular. In recent years, however, high financial cost and

human effort of fabricating chips in modern process technologies have made building more daunting,

and as a result fewer projects [18, 19, 20] have endeavored to build afull implementation.

The J-Machine [16] and the MIT Alewife multiprocessor [17] come from theparallel computers

family, the predecessor architecture of the CMP organization. They are both organized as multi-

node systems, using a mesh network to connect all the components. The J-Machine uses messages

to communicate data between the processors, while the Alewife multiprocessor follows the shared

memory approach, using directory based coherence. However, thereis also a hardware-software co-

operation to support some sort of messaging among the processors.

The architecture of the Hydra Chip Multiprocessor [18] comes closer to theone studied here. The

Hydra chip features four MIPS-based processors and their primary caches on a single chip together

with a shared secondary cache. Each processor incorporates separate instruction and data caches, con-

nected on a bus-based interconnect. An invalidation snooping coherency protocol is used to maintain

coherency among shared data. To simplify parallel programming, the HydraCMP supports thread-

level speculation and memory renaming.

The Piranha architecture [19] follows the same approach with the Hydra CMP, however there

are a number of differences. The Piranha has eight cores, each oneof them having private first level

cache. The second level cache, which does not maintain inclusion, is shared among processors, while

the cache controllers use a more complex protocol to maintain coherence. A high-speed switch is

used to connect the on-chip cores, instead of the bus that Hydra uses.Finally, the Piranha architecture

is designed to provide scalability past a single chip by integrating the requiredon-chip functionality

to support glueless multiprocessing.

The Raw CMP [20] is the first chip to organize its processors in a mesh. Specifically, it comprises

of sixteentiles; each one incorporating a compute processor, routers, network wires, and instruc-

tion and data memories. Raw distinguishes itself from others by being a modelessarchitecture and

supporting all forms of parallelism, including ILP, DLP, TLP and streams. Ituses messages to com-

municate data among the processors, while the on-chip interconnects belongto the class of scalar

operand networks.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Design and Implementation

In this chapter a detailed description about the design and the implementation of the whole system is

given. Steps followed and choices made, concerning the different kinds of alternative solutions that

could be followed, are presented and discussed.

2.1 General Description

The architectural organization of the system can be seen in Figure 2.1. The whole system is organized

based on the two IBM-PowerPC processors [9]. Each one of them is connected to a private bus,

the architecture of which follows the “Processor Local Bus” specification given by the IBM [21].

The connection is established through the two PLB-master interfaces, Instruction-Side PLB (ISPLB)

and Data-Side PLB (DSPLB). ISPLB is responsible for fetching instructions into the PowerPC’s In-

struction Cache Unit (ICU) and the DSPLB for fetching the required data into the Data Cache Unit

(DCU). Physical memory is provided to the processors by internal BRAM blocks and external DDR

memory. Instructions and private data can be stored in either the external or internal memory, while

shared data can be stored only in the external DDR memory. BRAM blocks are directly connected

to the corresponding PLB bus using an appropriate PLB-slave controller. The external DDR memory

can be addressed in two different ways, regarding the kind of memory being accessed. If a processor

accesses shared memory the only way to reach it is through the coherent memory system, otherwise

private data and instructions located in the external memory are being accessed through the PLB2IPIF

bridge, bypassing the coherent memory hierarchy. Requests for the external DDR memory are be-

ing multiplexed before reaching the DDR controller. DDRMUX is responsible for this operation,

selecting and forwarding one request at a time to the DDR controller.

13

14 CHAPTER 2. DESIGN AND IMPLEMENTATION

PPC_0

ICU DCU

PPC_1

DCU ICU

PLB_0

BRAM_0

PLB2Cache

Cache_0 Cache_1

PLB_1

BRAM_1
DDR controller

R
A
M 256MB DDR SDRAM

PLB2Cache

NIC

PLB_IPIF PLB_IPIFDDR_MUX

Figure 2.1: Architecture of the System

PowerPC’s accesses, upon their initiation, are being separated to shared and private. The disjunc-

tion is performed based on the address provided by the processor. Thisoperation is performed by

the PLB2Cache module, which filters memory accesses considered to be shared and redirecting them

towards the coherent memory system. In order this to become feasible the PLB2Cache module is

inserted between the DCU pins of the PowerPC and the PLB bus.

The next step on the coherent path are the coherent caches. Both of them are equipped with a

MESI-like cache coherent protocol in order to enforce cache coherency. The size of each cache is

fully parameterized in order to try different organizations, while their associativity and the size of

the cache lines are fixed and configured to 2-way and 8 words per cache line, respectively (as the

internal caches of the PowerPC are). Regarding to the write policy, both caches handle “dirty” blocks

following the write-back approach; every cache block that has been modified is written back to main

memory when evicted by the cache and not when it is modified. Finally, evictionsare handled in an

LRU fashion.

When an access is forwarded to the cache there are two possibilities, eitherit can be handled by

2.2. POWERPC 405 15

the cache or the request should be forwarded to the next level of the memory hierarchy. There are three

reasons why an access cannot be handled by the cache. The first one is that the address requested lies in

a non-cacheable shared address space and thus the request shouldbe forwarded to the DDR controller.

The second reason is that the requested block is not present in the cache and thus it should be requested

by the next level of the memory hierarchy, and finally, the third reason is that the specific cache may

have the requested data, but it doesn’t hold the appropriate privilegesto access them. In any of the

above cases the coherency protocol must decide the set of actions required to satisfy the processor”s

request while preserving coherency. Simultaneously with processor’srequests, the coherent cache is

designed to receive requests issued by the adjacent processor, too.The coherency protocol is again

responsible to detect any conflict that will result in loss of coherence and enforce a sequence of actions

that will preserve coherency. Local and remote accesses to the cachecan be handled in parallel,

provided that there is no conflict, since tag information is stored in BRAM memory, which disposes

two write ports and two read ports.

Finally, the two coherent caches and the DDR controller are connected to amemory interconnect,

which is used to transfer requests and shared data to and from the participants. The interconnect has

been designed to have the properties of a bus. Every memory access thatdoesn’t hit in the local cache

is being broadcasted. The remote cache snoops the bus activity in order torespond to requests issued

by the local cache. If the requested data are found in the remote cache, which is called a remote-hit,

they are sent back to the local cache. Otherwise, a negative respond isissued and the bus then forwards

the request to the DDR controller. When the data become available are eventually sent to the local

cache. During this whole procedure, the bus has been acquired by onecache only and no other cache

is able to send another request. This means that the bus doesn’t supportinterleaved accesses and it

starts to serve the next request only after having finished serving the previous one.

The rest of the chapter presents all the entities involved one by one. The behavior and the details of

all the functional blocks designed and implemented are presented. Furthermore, basic blocks, which

are part of the Xilinx EDK library, are also presented and their behavior isanalyzed.

2.2 PowerPC 405

The PowerPC 405 is a 32-bit implementation of the PowerPC embedded-environment architecture that

is derived from the PowerPC architecture [9, 10, 11]. Xilinx Virtex-II Pro FPGA family is equipped

with two embedded PowerPC 405 processors, as hard blocks within the circuitry of the FPGA.

16 CHAPTER 2. DESIGN AND IMPLEMENTATION

Figure 2.2 shows the internal structure and organization of the PowerPC 405. The central-

processing unit (CPU) implements a 5-stage instruction pipeline consisting of fetch, decode, execute,

write-back, and load write-back stages. The fetch and decode logic sends a steady flow of instructions

to the execute unit, which are executed in-order.

I-Cache
Array

I-Cache
Controller

Instruction-Cache
Unit

D-Cache
Array

D-Cache
Controller

Data-Cache
Unit

Instruction
Shadow-TLB

(4-Entry)

Unified TLB
(64-Entry)

Data
Shadow-TLB

(8-Entry)

Execute Unit

32x32
GPR

ALU MAC

3-Element
Fetch Queue

Fetch
and

Decode
Logic

Timers

Debug
Logic

PLB Master
Read Interface

PLB Master
Read Interface

PLB Master
Write Interface

Data
OCM

Instruction
OCM

JTAG
Instruction

Trace

CPUMMU

Timers
and

Debug
Cache Units

External-Interrupt
Controller Interface

Figure 2.2: PowerPC 405 Organization

Memory accesses initiated by the pipeline pass through the Memory Management Unit (MMU)

before they reach the caches. Two modes of address translation, realand virtual, are supported.

When operating in real mode the addresses generated by the program (logical address space) running

on the processor is used directly by the hardware to access the data. In virtual mode, there is an

intermediate step, where the logical address is translated (mapped) to a physical address, according to

the translation found in the Translation Look-aside Buffer (TLB) table.

An instruction-cache unit and a data-cache unit are found next to the MMU. Each cache unit

contains a 16 KB, 2-way set-associative cache array, plus control logic for managing cache accesses.

The caches contain copies of the most frequently used instructions and data and can typically be

accessed much faster than system memory. Each cache line stores 32 bytesof continuous and aligned

memory, a tag used to identify the line within the set, a dirty bit that indicates whetherthe cacheline

has been modified since the time that was loaded into the cache and an LRU bit, which specifies if

2.3. PLB BUS INTERCONNECT 17

the specific line was (or not) the one least-recently used in the set. This information is used by the

cache-line replacement algorithm when it is necessary to evict a cache line inorder to fetch a new

one. In that case, the least recently used cacheline is evicted.

2.3 PLB Bus Interconnect

The Xilinx PLB [21] is an IBM CoreConnect compliant interconnect which allows multiple masters

and multiple slaves to be connected to the bus. It consists of a central bus arbiter, the necessary bus

control and gating logic, and all the necessary bus OR/MUX structures. The entire Xilinx PLB bus

structure is provided as soft-core and allows for direct connection forup to 16 masters and 16 slaves.

It supports both 64-bit and 32-bit peripherals to be connected at the same time. Each access requires

3-cycles for bus arbitration before the corresponding peripheral becomes aware of the request. At the

end of the third cycle, the request can be safely latched by the peripheral. Figure 2.3 depicts a 3-cycle

arbitration scenario.

CYCLES

SYS_PLBCLK

MN_REQUEST[N]

MN_PRIORITY(0:1)/M_RNW

MN_ABUS(0:31)/MN_TYPE(0:2)/MN

SSIZE(0:1)/MN_SIZE(0:3)/M_BE(0:3)

MN_BURST/MN_BUSLOCK

MN_ABORT

PLB_PAVALID

PLB_REQPRIO(0:1)/PLB_RNW

PLB_ABUS(0:31)/PLB_TYPE(0:2)/PLB
SSIZE(0:1)/PLB_SIZE(0:3)/PLB_BE(0:3)

PLN_MNWRBURST/PLB_BUSLOCK

PLB_ABORT

SI_ADDRACK/SI_WRACK/SI_WRCOMP

PLB_MNADDRACK/PLB_MNWRDACK

MN_WRDBUS(0:64)

PLB_WRDBUS(0:64)

1 (A1) 2 (A2) 3 (A3)

valid

valid

inital value next value

valid

valid

valid

initial value next value

valid

initial data next data

initial data next data

0 54

DS400_02_081103

Figure 2.3: 3-cycle PLB Arbitration

Except for the multiple masters, the PLB implementation also supports pipelining of the requests,

permitting the existence of more than one pending requests. This capability maximizes PLB-transfer

throughput by reducing dead cycles between multiple requests. Finally, in order to differentiate the

importance of each of the multiple masters, four levels of dynamic master request priority are avail-

able.

18 CHAPTER 2. DESIGN AND IMPLEMENTATION

2.4 PLB BRAM Controller, BRAM blocks and PLB2IPIF Controller

The PLB BRAM controller provides the opportunity of connecting some of theavailable BRAM

memory to the PLB bus, and thus provides to the processors an easy way to access the embedded

memory. It is attached to the PLB bus as a slave peripheral and translates thePLB protocol to a

simpler form, which is recognizable by the BRAM block module.

The BRAM block is a reconfigurable memory module that provides the abstraction of the dis-

tributed memory available in the FPGA. Each block of memory has a size of 18432bits, and can be

available in different organizations, e.g. 512 lines x 36 bits per line. The Virtex-II Pro FPGA family

has the physical block memory placed in columns equally distributed in the area of the FPGA. The

total amount of BRAM memory available in an FPGA is relevant to the size of the FPGA. The bigger

the FPGA the more available block ram embedded.

The PLB IPIF controller is a Xilinx soft-core [22], which targets to make the connection between

User IPs and the PLB bus easier. It provides a bi-directional interfacebetween a User IP core and

the PLB 64-bit bus standard. For the purpose of this study two PLB2IPIFcontrollers were used, each

one attached to a PLB bus. Both of them are connected as slave peripherals to the PLB. They were

used as an additional way for the processor to access the external DRAM memory, through the DDR

MUX block. The memory accessed this way is supposed to be private for each processor. However,

for debugging purposes only, the PLB2IPIF controllers can be programmed to have a full view of the

DRAM memory.

2.5 PLB2Cache module

PLB2Cache module is one of the two modules that connect the PowerPC with therest of the units

available on the system. Figure 2.4 presents the connection between the PowerPC, the PLB bus, and

the PLB2Cache module. As it can be seen, the PLB2Cache module stands between the processor and

the PLB bus. Its purpose is to examine all the requests generated by the DCUand filter out those that

access shared memory. Filtered requests are forwarded towards the coherent memory system, while

requests that access private memory are served by the PLB bus. Filteringof the accesses is based on

the same signals that are used to connect the DCU to the PLB.

As it is shown in the figure the signals leaving the DCU C405PLBDCUABUS,

C405PLBDCUBE, C405PLBDCURNW, C405PLBDCUABORT, C405PLBDCUWRDBUS, and

C405PLBDCUCACHEABLE are connected to both the PLB and the PLB2Cache module. Sig-

2.5. PLB2CACHE MODULE 19

PowerPC

Data Cache

Unit

PLB2Cache wrapper

Processor Local Bus

(PLB)

C405PLBDCUREQUEST Request2PLB

C405PLBDCUABUS[31:0]

C405PLBDCUBE[7:0]

C405PLBDCURNW

C405PLBDCUWRDBUS[63:0]

C405PLBDCUCACHEABLE

PLBC405DCUADDRACK

PLBC405DCUBUSY

PLBC405DCURDDACK

PLBC405DCURDDBUS[63:0]

PLBC405DCUWRDACK

T
o
 C
o
h
e
re
n
t

C
a
c
h
e

Figure 2.4: Connection between the PowerPC, the PLB2Cache module, and the Bus

nal C405PLBDCUREQUEST, which was until now connected directly to the PLB bus, it passes

through the PLB2Cache module. Every time the DCU generates a new PLB request, the

PLB2Cache module examines the address. If the address accessed lies inprivate memory the

request propagates through the PLB2Cache module reaching the PLB. Otherwise, the propaga-

tion of the request is stopped in the PLB2Cache module, the PLB never becomes aware of

the request, which is forwarded and served by the coherent memory system. In the other

way around signals PLBC405DCUADDRACK, PLBC405DCUBUSY, PLBC405DCURDDACK,

PLBC405DCURDDBUS, PLBC405DCUWRDACK, and PLBC405DCUSBUSYS that were con-

necting the PLB to the DCU are now routed through the PLB2Cache module. They are driven by

the PLB when a read PLB access returns data or by the PLB2Cache modulewhen a shared memory

read returns data.

Placing the PLB2Cache module between the processor and the bus offersmany advantages. Ac-

cesses to shared memory are not served by the PLB bus. This means that they don’t sustain the timing

costs of the arbitration and the sharing of the bus with the ICU, which is also connected to the PLB.

For these accesses, the DCU transfers data at its fastest speed, sincethe custom design (PLB2Cache,

Cache) is aware of the potentials of the DCU and tries to take advantage of them every time an ex-

ternal cache hit occurs. Furthermore, when the DCU operates in maximum speed, many accesses are

acknowledged as soon as possible, which favours pipelined requests totake place. Finally, filtering

out some memory accesses favours the rest of the instructions and private data requests to be served

20 CHAPTER 2. DESIGN AND IMPLEMENTATION

faster, since less traffic passes through the PLB bus.

2.5.1 PLB2Cache Module Architecture

Figure 2.5 depicts the internal organization of the PLB2Cache module. The organization of the whole

module is based on the two FSMs that co-operate in order to make the DCU communicate with the

coherent cache. The left one, FSMPLB, is responsible for listening and filtering requests whose

addresses lie in the shared memory region. It simulates the behaviour of a PLB slave peripheral in

order to give the illusion to the DCU that is still directly connected to the PLB bus.The logic generated

for FSM PLB also contains the signals from PLB to DCU. When a request is served by the PLB, these

signals are forwarded to the DCU. When a request is served by the coherent cache, equivalent signals

driven by custom logic are forwarded to the DCU. The right one FSM, FSM ACCESS, is responsible

for translating the PLB protocol to a simpler format. This format is used from the PLB2Cache module

in order to communicate with the coherent cache. The need of having two FSMs in parallel comes

from the intention to operate the DCU in its maximum speed for the shared memory accesses. In

order this to become feasible, both read and write accesses must complete (with respect to the DCU)

as soon as possible. Read requests cannot complete before the requested data become available,

FSM_PLB

Cacheable ?

FSM_ACCESS

FIFO

Address

Data

Address2Cache

Data2Cache

Request
RNW

PPC_Cacheable

Non_Cacheable

Read
Write

Cache_ack

DatafromCache

DatafromPLB

Data2PPC

PLB Cntrl
Signals

Ack & Cntrl Signals

Figure 2.5: PLB2Cache Architecture

however, write requests can complete in two cycles time. Additionally, in any kindof request (read

or write) the first phase, which has to do with the acknowledgement of the address, can also complete

very fast, specifically in the first cycle of the request. Following this tactic theDCU will operate

in its maximum speed and the number of overlapping data accesses will increase, since requests are

acknowledged immediately.

No matter how fast requests are acknowledged, they cannot be considered completed until the

2.6. COHERENT CACHE 21

action is considered to have finished for the rest of the coherent memory system, too. Acknowledging

requests that fast requires storing them in a queue in order to be servedin the future. This is accom-

plished by the use of a FIFO, in which pending requests are stored. The FIFO has a depth of 16 words.

Every time the FSMPLB identifies a new access to shared memory and FSMACCESS is busy with

a previous request, the new request is pushed into the FIFO. If it is a read request it will occupy only

one word, otherwise a write request occupies two. During the cycle that the address of the request

is acknowledged, it is also pushed into the FIFO. In the following cycle the data is also written, in

case of a write access. When the FSMACCESS becomes available it will serve the first request in

the queue. Since write requests are able to complete (with respect to the DCU)in two cycles time,

the FIFO will usually contain some write requests that will have been gatheredand will be waiting

to be served. At some point in time the program will eventually generate a readrequest, which will

be pushed at the end of the queue. The execution of the program will be blocked waiting for the read

to complete. As it can be seen, acknowledging and queueing requests improve the performance in a

short-term period. However, in a longer-term period a read access willface the cumulative delay of

all the previous accesses, balancing the progress of the execution of the program.

Finally, within the range of shared addresses there is a sub-range, which corresponds to non-

cacheable shared data. The addition of this feature was considered to becrucial, since many processors

use non-cacheable accesses to read or write device registers or otherspecial I/O components. The size

of that space is parameterized and must be defined before the implementation of the system. The

PLB2Cache module is designed to check some most significant bits of the address provided by the

processor in order to identify a non-cacheable access to shared data.This happens in parallel with the

examination of the address that recognizes a shared memory access.

2.6 Coherent Cache

The next step, after the PLB2Cache module, in the coherent memory systemis the coherent cache. As

explained in the previous chapter, the role of a coherent cache is twofold. It acts as a normal cache,

providing access to commonly used data, but it’s also responsible for maintaining the shared data

coherent with respect to other processors as well. For this study, a bus-based coherence scheme was

chosen to be implemented. Figure 2.6 depicts a coarse description of the coherent cache architecture.

As it can be seen, the whole module is organized around the BRAMs that store data and tag informa-

tion, and is divided in two parts. Part A is responsible for serving the processor’s requests that come

22 CHAPTER 2. DESIGN AND IMPLEMENTATION

from the PLB2Cache module. Part B is responsible for sending requestsgenerated by part A to the

bus, and serving requests that are received from the bus. Both partsare responsible for maintaining

coherency among data, thus, both of them must have access to tag information and run the coherency

protocol.

DATA & TAGS
MEMORY

Part A Part B

Processor Side
Communication

Snooping Activity &
Incoming Data

Request Generation
Path

Response Path

Bus Side
Communication

Figure 2.6: Coherent Cache General Description

Modern microprocessors achieve this by making a duplicate of the tags memory. In this study, the

two parts take advantage of the BRAM architecture. BRAMs can be configured to have two two-port

interfaces, without paying any area or hardware cost. Each interfaceprovides read and write ports,

and thus simultaneous access to data. However, care must be taken when both interfaces access the

same address. The architectural definition of the BRAMs doesn’t provide any guaranty of what can

happen in this case, except for the fact that the hardware will not be damaged. Solution to this problem

was given by clocking the two interfaces with clocks of the same frequencybut different phase. More

details about that will be given below.

2.6.1 Cache Characteristics

The coherent cache was designed to have similar characteristics with the internal caches of the Pow-

erPC, without losing the ability of making slight transformations in order to simulatedifferent oper-

ational parameters. The size of the coherent cache is fully parameterized, while its associativity is

2.6. COHERENT CACHE 23

programmed to be 2-way. The size of the cache line is fixed and set to 8 words per cache line. As far

as the write policy is concerned, the cache follows the write-back scheme. In order to resolve block

conflicts, the cache is equipped with an LRU algorithm. An LRU-bit corresponds to each set of cache

lines. Every time an access occurs, this bit stores the information of which associate of the set served

the corresponding access. Specifically, the bit is cleared if the access isserved by the associate ’0’, or

set to ’1’ if the access is served by the associate ’1’. In this way the leastrecently used line within the

set is unmarked. When a block conflict occurs, it is resolved by evicting the least recently used cache

line of the set. Finally, in order to decrease cache miss penalty, the cache is organized to return the

requested word within the line as soon as the word becomes available. The cache requests the miss-

ing cache line providing the address of the word that caused the miss. If theentity that responds to

the cache sends the requested cache line transmitting the “critical” word first,then the cache follows

the critical-word-first scheme. Otherwise, if the cache line is sent to the cache in a lowest-to-highest

address order then the cache follows the early-restart scheme.

2.6.2 Tags and Data Memory Organization

The internal distributed BRAM blocks are used to store tag and data information. The amount of

BRAM memory required is not fixed, since the size of the cache is parameterized. However, the

organization of the BRAMs is predefined. A set of BRAM blocks is assigned to each associate in

order to store data and tags information. The BRAM blocks that form the datapart are organized in

order to handle 32-bit wide words, while words that lie in the same cache line are stored in subsequent

addresses. On the other hand, the tag-word has not a fixed size. Its size depends on the whole size

of the cache, since the information stored contains a part of the address provided by the processor.

Addressing of the data and tag parts is similar. The tag memory is addressed using the ’index’ part of

the initial address, while the data part uses the ’index’ along with the ’block offset’. The index bits

are calculated by the formula:

2
index

=
Cache size

block size · set associativity
(2.1)

The block size and the associativity are constant, 32 bytes and 2-way, respectively. The size of the

address given by the processor is 32-bit wide. The two least significant bits are not used by the cache.

Bits 2 to 4 form the block offset, which is the address of each word in the cache line. Bits 5 to 5 +

index - 1 are the index bits, and the rest bits of the address are the tag bits.

24 CHAPTER 2. DESIGN AND IMPLEMENTATION

A tag-word includes the tag part of the address that corresponds to the specific cache line, 2 bits

for the coherency protocol and one ’dirty’ bit. Tag information for both the associates is being kept in

different BRAM blocks. This is justified by the fact that two tag-words don’t fit in 36 bits, which is

the actual width of a BRAM block. If tag information for both the associates was supposed to be kept

in a single word, then each tag-word should be at most 18-bits wide. This corresponds to 15 bits of

tag size, which is equivalent to cache size of at least 256KBytes.

2.6.3 Coherency Protocol

The coherency protocol used in this study is a typical four-state MESI protocol. The protocol uses 4

states to encode the status of a cache line. These are: Invalid, Shared, Exclusive and Modified. Cache

lines that don’t store any data are marked as invalid. Shared means that theblock is present in an

unmodified state in this cache, the main memory is up-to-date, and zero or more other caches may

also have an up-to-date copy. The exclusive state has the same meaning withthe Shared, however no

other cache has a copy of the block. Finally, Modified means that only this cache has a valid copy of

the block and main memory is out-of-date. Figure 2.7 depicts a state diagram of the protocol.

PrWr / −

Invalid

Shared

Exclusive

Modified

PrRd / BusRd & S

PrRd / BusRd & !S

PrWr / BusRdX

BusRdX
Invalidate

BusRd

BusRdX
Invalidate

BusRd

BusRdX
Invalidate

BusRd

PrRd

Figure 2.7: Coherency Protocol State Diagram

Actions that cause each transition to occur can be seen next to the vertices. Table 2.1 shows the

2.6. COHERENT CACHE 25

Block’s State
Processor’s Request

PrRd PrWr

I BusRd BusRdX

S - Invalidate

E - -

M - -

Table 2.1: Generation of Coherent Requests

bus messages that will be generated for each one possible situation. PrRdstands for processor’s read

actions and PrWr for write. BusRd, Invalidate and BusRdX are the messages that are generated in

order to maintain coherency. BusRd is generated every time a processor’s read misses in the cache.

Invalidate is generated when a processor’s write doesn’t have the privileges to complete, which means

that the block is found in shared state, and BusRdX when a processor’swrite misses in the cache.

The letter ’S’, in Figure 2.7, next to the actions denotes the status of the requested block in all

the other caches. ’S’ means that the block is found shared in at least onecache, while ’S’ that the

block is not shared at any cache. Transitions between states are caused by processor or bus accesses.

When the block is first read by a processor a BusRd message is broadcasted. If a valid copy exists

in another cache, then it enters the cache in the Shared state. However, ifno other cache has a

copy at that time, the block enters in the Exclusive state. When the block is written by the same

processor, it can directly transition from the Exclusive state to Modified state, without generating any

bus transaction. If another cache has obtained a copy in the meantime, the state of the block would

have been denoted from Exclusive to Shared. In that case an Invalidate message is broadcasted to

notify every other cache to invalidate the copy they hold. When a processor tries to write a cache

block but the block is absent from the cache a BusRDX message is broadcasted. The caches that hold

a copy of the requested block will invalidate it. One of these caches will transmit the cache block back

to the cache that requested the write privileges. The block enters the cache in Exclusive state and then

immediately transits to Modified (with the completion of the write access). From the side of the bus,

a BusRd message always results in a demotion of the block’s state to Shared,if the block is found in

the cache. A BusRdX message also demotes the block’s state, if the block is found in the cache, but

the resulting state is the Invalid state. Same things hold for the Invalidate bus message. BusRd and

26 CHAPTER 2. DESIGN AND IMPLEMENTATION

BusRdX messages always cause the transmission of a cache block. On theother hand, an Invalidate

message doesn’t create any other traffic, except for the message itself. That’s the difference between

the BusRdX and the Invalidate message. They both demotes the privileges ofthe cache block, when

the block is found in remote caches, but only a BusRdX message requires arespond to be generated.

An extra property has been given to the cache, which has to do with the capability of receiving

update messages. Any MESI-like protocol is based on invalidating copies of the same block when

exclusive access is required. Thus, the kind of update messages supported in this study doesn’t modify

the state of the block updated. When an update message is issued (by a coherent network interface

maybe, but not a cache) it is broadcasted to all the participants, including the main memory. The state

of the block, wherever it resides, doesn’t change. However, the data do change, resulting to everyone

having an up-to-date version of the block.

2.6.4 Part A: Cache’s Processor side

Figure 2.8 shows a block diagram for the processor’s side part of the coherent cache. Part A oper-

ates with the same clock that the processor uses to generate requests. Thesame clock is used by the

PLB2Cache module and the PLB bus. It receives the following signals from the PLB2Cache module:

ReadCmd, WriteCmd, Address, DataIn and Noncacheableaccess. It returns an acknowledge sig-

nal, CacheAck, and the DataOut signal. During a cache access all input signals are stable and valid,

and remain so until the cache asserts the CacheAck signal. This signal remains high for only one

positive edge in order to mark the completion of the access. If the access that finishes is a read access

(cacheable or non-cacheable), signal DataOut carries the requested data.

There are two FSMs that handle this part, FSMCPU ACCESS and WBFSM.

FSM CPU ACCESS manages every single request made by the processor and is alsoresponsi-

ble for maintaining coherence. It is one of the basic blocks of logic that runthe coherency protocol

to decide the next actions that should be followed. Every time a cache block doesn”t have the

appropriate sharing status for the processor”s access to complete FSMCPU ACCESS generates a

bus message. The message is forwarded to part B in order to be broadcasted on the interconnection

network. WBFSM is responsible for handling write back activity. Write back activity corresponds

to transferring modified blocks back to main memory. This transfer takes placewhen an access that

misses in the cache requires a new cache block to be loaded in. The new block that comes in conflicts

with the two blocks that are already present in the cache. These two blocksoccupy the whole specific

set, in which the new block is mapped. The replacement algorithm is called to resolve this conflict by

2.6. COHERENT CACHE 27

choosing a block to be evicted from the cache. The block that is least recently used is chosen to leave

the cache. If that block is ’clean’ then the incoming block just over-writes it.If, however, the chosen

block has been modified, it must be written back to main memory.

A write-back transfer is not considered to be a separate bus transaction. It is hidden behind the

block transfer that generated the eviction. That is feasible because the implementation of the bus offers

different sub-buses for transferring data from and to the cache. Immediately after the bus request has

been transferred, the write-back action is initiated. The address of the evicted block is first transferred

and then the data in a critical-word-first fashion.

Data_Out0

Data_Out1

Data2PPC

Address_In

Data_In

Address_Wb

Data Memory

LRU
bits

WB_FSM

Tags Memory
Equality

Check

Cache hit

Critical Word
First
&
Dependency
Check

Cache_Ack

Cancel Wb

Enqueue

Data2Bus

Stall

Word Received

ReturnData

FSM_CPU_ACCESS

Tag−line 1

Tag−line 0

PLB2Cache module
Control signals from

Figure 2.8: Part A block diagram

Apart from the two FSMs, other important entities in the figure are the equality check modules and

the dependency check logic. The purpose of the equality check module is tocompare (for equality)

the tag part of the incoming address with the tag stored in each of the two associates. The use of the

’==’ Verilog operator is interpreted by the Xilinx flow as the instantiation of a complete comparator,

from which only the equality operation is used. This adds extra area and timingcost. The solution

to this was the implementation of a simpler module, which is checking bit by bit the tag parts of the

28 CHAPTER 2. DESIGN AND IMPLEMENTATION

addresses. Finally, the purpose of the dependency check module is to compare the addresses that are

accessed by the processor and the bus. If both of them want to use the same cache block for conflicting

purposes (read and write, write and write) an order must be enforced and one of them to wait. In this

case the processor side is chosen to wait. The dependency check moduleblocks the processor’s access

until part B finishes its operation on the data. This module also implements the “critical-word-first”

feature of the cache.

Dependency Check module

As mentioned above, concurrent accesses by the processor and the bus must be checked in order to

verify that they touch different cache blocks. If not, ordering is imposed to them by making processor’s

access to wait for the completion of the bus access. Not all combinations of accesses require ordering

even if they access the same data.

No Conflict. Processor ends

Time 0 1 2 3 4 5 6

Processor Access Starts

Tag Memory Clocked

Cache hit ?
Part B sendsaccess inforamtion to Part A

Part performs bus request and updates the tag memory

available to Part A
Bus access information

Conflict Resolved ?

Conflict reseolved. Stall
processor

Figure 2.9: Two First Cycles of a Processor Access

Figure 2.9 presents the first two cycles of a processor’s access and the two crucial periods, the

periods that part B modifies the tag memory, of a bus access. The processor’s access is placed starting

at time 0 and finishing at time 4. Such an access is a cache hit. There would be no meaning to talk for

cache misses, since they never conflict with bus accesses. During the first cycle, from time 0 to time

2, address becomes stable on the address pins of the tag memories. The memories are clocked at time

2 by the positive edge of the clock and return data somewhere between time 2 and time 3 (actually, 1.5

ns after time 2). Then the tags are compared with the address accessed to check for cache hit. Cache

hit is resolved and at time 4 the access completes by either returning data to the processor, in case of a

read, or data written in cache, in case of a write. Part B doesn’t operatewith the same clock. It uses a

clock of the same frequency but different phase. Actually, it uses the negation of part A’s clock. Thus,

2.6. COHERENT CACHE 29

BusRd BusRdX Invalidate Update

Processor Read No No No Yes

Processor Write Yes Yes Yes Yes

Table 2.2: Combinations of Accesses

events as memory accesses in part B may take place in time 1 or time 3 etc. All of the bus requests

shown in Table 2.2 may modify the tag information of the cache block they access. BusRd, BusRdX

and Invalidate messages modify the tag and read the data, while Update messages modify both the

tag and the data. Thus, processor accesses compete with BusRd, BusRdX and Invalidate accesses

for accessing the tag memories, when both sides request the same cache block. On the other hand

processor accesses must wait the completion of an Update message if they access the block that is

being updated.

As far as the first scenario is concerned (BusRD, BusRDX and Invalidate messages), writing to tag

memory may occur at any of the odd times. If it occurs at time 1 then the accesses are not considered

to be concurrent. When part A accesses the tag memory in time 2 it reads the updated tags. No conflict

occurs. The same holds when part B updates the tag memory at time 5. By then the processor’s access

has finished. The conflict arises if part B wishes to update tag memory at time 3. There are two

possibilities in this case. If the processor performs a read request then itcan be safely assumed that

the request completes at time 2 when data and tags are read. Since nothing is going to change for

part A until time 4, when the request will officially be completed, then it can be said that there is no

conflict between the processor and the bus access. On the other hand,if the processor attempts to

write to the conflicting cache block then it is not safely to assume that the access completes at time

2. The data memory is updated at time 4. By then, however, part B will have already invalidate or

downgrade the privileges on the specific block. In this case the processor write access is blocked, and

a proper bus message is generated for the cache to request again access to the specific cache block.

As far as the second scenario is concerned (Update message), the update sequence starts writing

in parallel the tags and the first word of the cache block. It continues writing the rest of the words in

the next cycles. Again, if this sequence starts in time 5, then the processor’s access and the update

message cannot be considered to be concurrent conflicting events. The write action performed on the

tag information of the block changes only the dirty bit by clearing it. A requestthat accesses a block

that is being updated always hit, assuming the cache has the proper privileges for write accesses. The

30 CHAPTER 2. DESIGN AND IMPLEMENTATION

request, however, is blocked because the address accessed by the processor may not be available yet.

Blocking Mechanism and Critical-Word-First

The mechanism used to block processor accesses is rather simple. Everytime part B receives a

new bus message and is about to perform the requested operation it passes to part A the following

information:

• the address requested (AddrRefilled)

• the associate of the block to be modified (if this information is available, associate2Refill)

• a start/stop control signal (Refilling)

• a control signal to notify an incoming block (update or refill message, ReqStall)

• eight valid bits corresponding to the eight words of the cache block that is being modified

(ValidBits)

This information is passed one cycle before the tag or data memory gets updated. For example,

if a bus request is going to write to tag memory at time 3 (Figure 2.9) then all the above information

will be written to part B’s synchronization registers at time 1. It crosses domains at time 2, and

becomes available to the processor side. Within this period, from time 2 to time 4, part A may use

this information to resolve a conflict and stalls. For each one of the incoming messages the following

actions are taken:

• Invalidate message: In case of an Invalidate message part B puts the address to signal

Addr Refilled, sets signal Refilling high to notify a new incoming message, sets signalRe-

qStall low and puts a predefined number (8’b11110000) to signal ValidBits. Part A compares

the address given by the processor with the signal AddrRefilled. If they match and the proces-

sor attempts to write this address then the processor access is considered tohave missed. The

coherency protocol generates a BusRdX request and forwards it topart B.

• BusRd and BusRdX messages: In case of a BusRd or BusRdX message,part B puts the address

to signal AddrRefilled, sets signal Refilling high to notify a new incoming message and sets

signal ReqStall low. Also, it puts a predefined number (8’b00001111 for BusRdX or 8’b0 for

BusRd) to signal ValidBits, and finally, identifies the associate to which the block is stored, by

driving properly the signal associate2Refill. Part A compares the index part of the address given

2.6. COHERENT CACHE 31

by the processor with the AddrRefilled signal. At the same time comparison of the tag part of

the address with the outputs of tag memories take place. In order to conclude that the bus and the

processor wish to access the same address these two comparisons must come true. Specifically,

the tag-equality between the associate defined by the associate2Refill signal and the address

given by the processor must come true in order to be sure that all of the comparisons are related

with the same block. However, the processor access will considered to bea conflicting one

if it is a write access, as shown in Table 2.2. The coherency protocol will then initiate the

corresponding coherency request. This will be an Invalidate message ifthe cache had received

a BusRd request or a BusRsX message if the cache had received a BusRdX request.

• Update message and Refill Block: In case of an update message or a refilling block part B

puts the address to signal AddrRefilled, and sets signal Refilling high to notify the incoming

of a new cache block. It sets signal ReqStall high and sets the bits of signal ValidBits high

one by one, with regard the availability of each word. Part A understandsthat the processor’s

access conflicts with the bus access, but no coherency message is initiated. Part A waits for

the specific requested word to become available. When that happens the processor’s access

completes normally.

2.6.5 Part B: Cache’s Bus side

Part B is responsible for the communication of the cache with the bus. There are two sub-parts in it.

The one handles the outgoing communication and it is also the least complex of thetwo. The second

handles the incoming communication and the snooping traffic. It is also responsible of running a part

of the coherency protocol by responding to bus requests. Both of these parts create and exchange

messages with the adjacent cache or the DDR controller. The messages in thissystem are all designed

to follow a typical format. The first word of the message corresponds to theaddress on which the

operation will apply, while the op-code of the message is sent in parallel with the address from dif-

ferent control lines. If data accompany the request, as in the case of anUpdate message, then they

are transmitted back to back with the address. Usually, the address of sucha message corresponds to

the address of the first datum of the sequence. It isn’t necessary that a block should be transmitted in

a zero-offset-word first. The transmission may start at any offset andwrap-around to the start of the

block. Cache block refills and block evictions are also organized to be busmessages. However, they

are not broadcasted. A cache refill is a message that carries the requested cache block, which may

32 CHAPTER 2. DESIGN AND IMPLEMENTATION

reside either in another cache or in the main memory. The cache maintaining a copy of that block, or

the DDR controller, sends such a message directly to the cache that requested the block. Furthermore,

a block eviction is sent by the cache to the DDR controller. Finally, non-cacheable messages, which

are also not broadcasted, and the data returned to a cache from a non-cacheable read share the same

format. The uniformity given to the bus messages ease the design of the FSMs, which are responsible

for the bus traffic.

Outgoing Communication

Figure 2.10 depicts a block diagram of this part. As it can be seen the whole logic is organized around

the BUSFSM. Requests generated by part A and block evictions all pass througha synchronous

FIFO. Control signals and data from part A are synchronized as they cross clock domains. However,

in some cases where half of a period is enough for particular actions, signals from part A are directly

used.

EnqueueCancel Wb Data2Bus

Write Start / Stop

BusReq

Bus_Ack

Request
Conflict ?

Data Response

DataOut2Bus

BUS_FSM

Figure 2.10: Cache2Bus Block Diagram

The synchronous FIFO used doesn’t hold the properties of a Xilinx FIFO. Specifically, the first

write in an empty Xilinx FIFO doesn’t propagate to the exit. The module requiresan extra cycle,

during which the read enable signal is asserted, in order to output data. If this scenario was adopted a

dummy cycle would have been added to the latency imposed on any request moving towards the bus.

On the contrary a custom implementation of a synchronous FIFO was selected, which permits the first

2.6. COHERENT CACHE 33

written datum to flow through.

BUS FSM performs the required handshaking with the coherent bus. Two signals are used for this

purpose;BusReqandBusAck. The first one is driven by the BUSFSM and indicates the intention of

this part to send a new message. When the bus arbitrator decides to serve the specific cache it raises

theBusAcksignal to notify the availability of the bus. Bus messages and data are then dequeued from

the head of the FIFO and sent to the bus.

BUS FSM has also the responsibility to check any conflict between the incoming andthe outgoing

requests. The reason to do so is that there may be the need to change the type of the outgoing

request. This need comes from the fact that an Invalidate request doesn’t cause the transfer of a block.

The scenario that threatens the coherency of the data is the case where the local processor sends an

Invalidate message for a certain block, which is shared and wishes to write toit. At the same time a

message broadcasted on the bus invalidates (Invalidate or BusRdX) the specific block. The message

from the remote cache has come before the local message, and thus the remote processor will use the

up-to-date copy of the block. If the local Invalidate message is not changed to BusRdX message then

the local processor will operate upon the old copy of the block.

Incoming communication

Figure 2.11 depicts a block diagram of the part of the cache that handles the incoming communication

and the snooping activity. The logic of FSMREQ IN is responsible for: accepting messages from

the bus, delivering incoming data to the data cache, and also responding to requests by transmitting

the requested cache lines. Furthermore, it passes data and control information to part A through the

dependency check module, as described above.

Upon the arrival of a new request FSMREQ IN tries to resolve if the requested block resides in

the local cache. It does so by comparing the incoming address with the tags stored in the tag-memory.

If a miss is resolved no actions are taken concerning the sharing status of any cache block stored

locally, and the request is ignored. In case of BusRd or BusRdX message FSMREQ IN also raises a

signal to notify that the requested has missed in this cache. If a hit is resolved the next actions to take

are decided by the coherency protocol. The sharing status of the requested block may be denoted or

even invalidated, while the data may be updated (Update message). In case of a BusRd or BusRdX

message FSMREQ IN undertakes also the responsibility to reply to the incoming request with the

requested block.

FSM REQ IN also receives incoming data that have been requested by the local processor. This

34 CHAPTER 2. DESIGN AND IMPLEMENTATION

MemoryData

Tags Memory

Critical Word
First
&
Dependency
Check

Data2Cache

ReturnData

Address2Cache

Tags2Cache

Tag−Line Equality
Check

RemoteHit

BusActivity

Enable Dependency Check

FSM_REQ_IN

Figure 2.11: Bus2Cache Block Diagram

may corresponds to a cache block coming in, if the address accessed resides in cacheable shared

memory, or to a single word, if the address accessed resides in non-cacheable shared memory. In the

first case the block is written in the data memory of the cache; one word at a time.The requested word

is also written in theReturnDataregister in order to be sent to part A. In the second case, the incoming

data must not be written in the data memory, as this will violate their non-cacheableproperty. The

path followed involves theReturnDataregister. The data are written only there in order to be sent to

part A.

2.7 Coherent Memory Interconnect

The next level of the coherent memory system is the memory interconnect. Figure 2.12 depicts the

architecture of the interconnect, which looks more like a switch than a bus. However, the logic

implementing the control units of the module makes sure to provide all the advantageous properties of

a bus. High performance systems have rejected the option of using a bus to connect multiple functional

units. The reason for doing so is that bus architectures don’t scale formany participants, as it has been

proven by different studies. In this study, however, the number of the participants is fixed and it is

predictable not to overcome the number three, the two processors and a coherent network interface (in

2.7. COHERENT MEMORY INTERCONNECT 35

the future). For so few participants, no scalability issues exist and the buscan manage to have a good

performance. Furthermore, a bus is usually easier to implement and occupies less area.

32

36

INTERFACE 1

INTERFACE 0

INTERFACE 2

DDR_CNTRL

Data Out

Data Out

Data Out
Data In

Data In

Data In

Control In & OutControl In & Out

Control In & Out

FSM_Arb

FSM_2_DDR

Data to DDR
Data from DDR

Address &
Control to DDR

Control from DDR

Figure 2.12: Coherent Memory Interconnect Block Diagram

The bus is designed to accept connections from up to three active participants plus a connection

to an IPIF DDR controller. A participant is characterized as active when ithas the ability to generate

and respond to requests. The DDR controller cannot be characterizedactive, since it only accepts

and responds to requests. The active participants are assumed to be entities that support snooping

bus-based coherency, as it was described earlier, such as coherent caches. The number of the caches

connected to the bus is parameterized and defined in implementation time.

Simultaneous requests from different interfaces are served in a round-robin fashion. Priority is

given to the one considered to be the next in the round-robin order, or the closest one to it, if the

next interface doesn’t request the bus. When a request is chosen tobe served it reserves the bus

until its completion, which means that interleaved accesses are not supported. The FIFO’s shown in

Figure 2.12 stand between the bus participants and the DDR controller. Theirpurpose is to convert the

32-bit wide datapath of the coherent memory system to 64-bit in order to matchthe width of the DDR

memory. Additionally, they are used to decouple the two points of scheduling. The first point is among

36 CHAPTER 2. DESIGN AND IMPLEMENTATION

the bus participants and the second is among the coherent memory interconnect and the two PLBIPIF

modules (in the DDRMUX module that follows). These two points need to be decoupled in order

to decrease the time required for some requests to complete. Otherwise, a non-cacheable write, for

example, would block access to the bus until the word was eventually written to the external memory.

The same hold for Update messages and also for requests that cause blocks to be evicted. The FIFOs

provide a temporary place for storing data towards the external memory, giving the impression to the

bus’ participants that the requests have been completed. All the cases mentioned above had in common

the fact that there were store requests. For all of these cases temporary storing decrease the required

time or equivalently provides some sort of interleaving-ness. A subsequent bus request that can be

served by a remote cache is executed in parallel with a part of the executionof the previous request.

However, a load request that must be served by the external memory will experience the accumulated

delay since pending requests residing in the FIFOs are served in order.The FIFO (Commandsfifo)

shown in the figure that receives data from the FSMArb logic is used to store and place in order

requests towards the DDR controller. All the other FIFOs are used to storedata of different kind of

accesses, such as block evictions (WB0 x and WB1 x), non-cacheable write (NCfifo) and update

messages. Finally, there is also a combination of FIFOs that deliver data to thecoherent bus module.

The FSM2 DDR logic uses them to enqueue data read from the external memory. The FSM Arb

receives these data and forwards them to the coherent cache that requested them.

FSM Arb and FSMBUS WB (not shown in the figure) are the two FSMs that handle the traffic

between the participants of the bus. FSMArb decides the next request to serve and sends an acknowl-

edge signal to the corresponding cache. Depending on the type of the request it either broadcasts it

to the adjacent caches (BusRd, BusRdX, Invalidate) or forwards it to the DDR controller enqueueing

it to the corresponding FIFO (Non-cacheable read and write accesses), or both (Update). BusRd and

BusRdX request that hit in the remote cache result in a block being transferred as response through

the bus. On the other hand, if these requests miss in all the remote caches the bus is notified and

forwards the request to the DDR controller enqueueing it in the corresponding FIFO. Data returning

to the . FSMBUS WB is much simpler and it is only responsible for the blocks that are evicted from

any cache. It enqueues the evicted block and the write-back request inthe corresponding FIFOs.

In order to decrease the loss of performance from the lack of interleaving-ness the messages on

the bus are programmed to last as less as possible. However, not all requests have a guaranteed time

of completion. Non-cacheable write requests and Invalidate requests always occupy two bus cycles

2.7. COHERENT MEMORY INTERCONNECT 37

before completion. Update requests take up 9 bus cycles, while BusRd andBusRdX requests that hit

in the remote cache 11 cycles. On the other hand, the time required for serving non-cacheable read,

BusRd and BusRdX requests varies, and depends on two factors. Thefirst one has to do with the avail-

ability of the DDR controller. The DDR multiplexer may be busy serving one or more private memory

requests by the time the coherent memory interconnect requests access to the external memory. The

total amount of time spent depends on the number and the type of the private memory requests. The

second factor that affects the duration of the above accesses is the occupancy of the FIFO on the DDR

path. Some preceding shared memory requests may have already been queued towards the external

memory but not sent to it. The new incoming request is blocked behind them, and is imposed the

accumulated delay from all requests that lie in front of it. A small analysis forthese two cases and the

amount of the time required is made in the next chapter.

The FIFOs constitutes the point in the data flow where a crossing back to the clock domain clocked

by the PLB clock is necessary. The type of the FIFO is similar to that used in thecache from part B to

receive requests generated by part A. It has the ability to let the first datum written flow through but

also synchronizes the two clock domains. The two PLBIPIF modules operate using the PLB clock,

while the bus and the rest of the coherent memory system use the negation ofit. The DDR controller

however can use only one clock. Thus, it is necessary all the three participants to operate with the

same clock.

The third and final FSM in the coherent memory interconnect module is the one responsible

for communicating with the DDRMUX and the DDR controller. The DDRMUX module doesn’t

change in any way the communication protocol, even though it stands in between the two entities. The

DDR MUX could also be omitted if there was no need of instructions and private datato reside in the

external memory. In that case none part of the logic should change, except for some output signals

that should be registered for ’place & route’ purposes. The communication protocol used by the DDR

controller is the IPIF. Xilinx provide some documentation about the details of theIPIF protocol and

timing diagrams that should be followed. Unfortunately, the available documentation doesn’t cover

all the cases. In fact it doesn’t cover some basic cases, which appear in this study. Thus, the precise

timing diagrams were pulled out of simulations. The behavior of the IPIF interface was monitored

by performing different kind of accesses. The timing diagrams acquired can be seen in Figure 2.13.

These timing diagrams are also followed by the FSM2 DDR which is responsible for this. There

are also two figures in the appendix that show the behavior of the IPIF signals when a burst access is

38 CHAPTER 2. DESIGN AND IMPLEMENTATION

halted by a refresh action of the DDR memory. This important detail is also missingfrom Xilinx’s

documentation.

0 1 2 3 0 1 2 3 0 1 0

0000000000000000 d000000002000000 ffffffffffffffff d000000002000000

ffffffffffffffff

/testbench/top/\top/sys_clk_s_n\

/testbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_CS\

/testbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_Burst\

...bench/top/\top/MemorySystem/Switched_Bus/Bus2IP_RdReq\

/testbench/top/\top/MemorySystem/Switched_Bus/Address_offset\ 0 1 2 3 0 1 2 3 0 1 0

...bench/top/\top/MemorySystem/Switched_Bus/Bus2IP_WrReq\

/testbench/top/\top/signal_mBus2IP_Data\ 0000000000000000 d000000002000000 ffffffffffffffff d000000002000000

/testbench/top/\top/signal_mIP2Bus_AddrAck\

/testbench/top/\top/signal_mIP2Bus_RdAck\

/testbench/top/\top/signal_mIP2Bus_Data\ ffffffffffffffff

/testbench/top/\top/signal_mIP2Bus_WrAck\

(a) IPIF Burst Accesses (1cache-block)

1 0 1 0 1 0

0000000000000000 8000000080000000 0000000000000000

/testbench/top/\top/sys_clk_s_n\

/testbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_CS\

/testbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_Burst\

...bench/top/\top/MemorySystem/Switched_Bus/Bus2IP_RdReq\

/testbench/top/\top/MemorySystem/Switched_Bus/Address_offset\ 1 0 1 0 1 0

...bench/top/\top/MemorySystem/Switched_Bus/Bus2IP_WrReq\

/testbench/top/\top/signal_mBus2IP_Data\ 0000000000000000 8000000080000000 0000000000000000

/testbench/top/\top/signal_mIP2Bus_AddrAck\

/testbench/top/\top/signal_mIP2Bus_RdAck\

/testbench/top/\top/signal_mIP2Bus_Data\

/testbench/top/\top/signal_mIP2Bus_WrAck\

(b) IPIF Single Word Accesses

Figure 2.13: IPIF Accesses

There is no need to describe in detail the FSM2 DDR as its behavior is shown by the figures

above. However, some things must be mentioned about the functionality of thelogic as a whole.

The FSM waits for a new request to be available by reading constantly the empty signal of the Com-

mandsfifo. As soon as the FIFO becomes non-empty the FSM starts functioning in order to generate

the proper signaling. In case of write accesses, it gets the data to be writtenfrom the FIFOs. Single

words for non-cacheable writes are read each time from the head of the NC fifo. Written back cache

blocks heading towards the main memory are read by the two pairs of WB0 x and WB1 x FIFOs.

WB 0 x and WB1 x are organized in pairs of sub-FIFOs in order to transform the 32-bit data path

of the coherent memory system to 64-bit data path in order to match the width of the DDR controller.

Each pair has the capacity to store a single cache line. The same holds for theFIFOs that store the

blocks to be updated before they reach the main memory. Update and write back commands generate

burst write accesses of 8 words, while non-cacheable write commands single word write accesses. On

the other hand, non-cacheable read accesses generate single word read accesses to the DDR controller,

while BusRd and BusRdX messages burst read accesses of 8 words. Data read from main memory

2.8. DDR MULTIPLEXER 39

are pushed into the pair of DataInfifo x. Upon arrival of the first word the other part of the bus is

notified to start the creation of the message that will be sent as response to the cache.

2.8 DDR Multiplexer

A step before the DDR controller is the DDR multiplexer module. The module of the DDR controller

is supposed to be connected to only one entity. It is not designed to acceptrequests by multiple

entities. The purpose of the DDR multiplexer module is to provide connectivity to multiple entities,

and specifically to the coherent interconnect and the two processors. It receives the IPIF signals from

the coherent bus and the two PLBIPIF modules and outputs a set of IPIF signals towards the DDR

controller. At each point in time the DDR multiplexer selects one of the three inputinterfaces that

requests access to the external memory and connects it to the output interface. If any other interface

requires access to the DDR memory at the same time, it waits until all the previous requests have

completed and also the controller to become available. In this way, to each one of the input interfaces

is given the illusion that it is connected point-to-point with the DDR controller. Additionally, the

controller has the impression that receives requests from only one source, the one that is connected to.

The DDR multiplexer module is in general a simple round-robin selection of the input requests.

The logic of the module identifies the interfaces that require access to the controller by the status

of the Bus2IPCS signal. The Bus2IPCS signal rises high to notify the start of a new IPIF request

and remains high until the end of the request. The only complexity in this module comes from the

single-word IPIF accesses. Observing again Figure 2.13, someone maynotice that in a single-word

read signal Bus2IPRdReq stays high for one cycle only, and then returns to ’0’ without the initiator

of the request to receive any kind of acknowledgement. If such a request occurs when the DDR

controller is busy serving a previous request from a different interface, then the type of the request,

which is the rise of the Bus2IPRdReq signal, will be lost. The scheduler will eventually choose

to serve the single-word access since the Bus2IPCS remains high until completion. The controller,

however, having lost the type of the request will remain inactive not knowing what kind of access to

perform. In this way the system is driven to deadlock. In order to resolvethis problem, each input

IPIF interface is monitored by an FSM, named FSMDDR ACCESS, similar to FSM2 DDR. Each

transition of the signals is identified making the corresponding FSM to move forward to some state.

If the signals transitioning are part of the input IPIF interface that has been selected to be served then

no problem exists. Otherwise, when the corresponding IPIF interface isgiven access to the DDR

40 CHAPTER 2. DESIGN AND IMPLEMENTATION

controller, the corresponding FSMDDR ACCESS will be responsible to generate the proper IPIF

waveforms towards to the controller but also backwards to the FSM that will be waiting for the proper

acknowledgement.

2.9 DDR Controller

The DDR controller used in this study is provided by Xilinx and is part of the EDK library. It is

fully parameterized in order to be able to communicate with different types of DDR DIMM modules.

The required parameters that must be declared in the instantiation of the modulecan be found in

the “.mhs” file of the EDK project. The data path of the controller is 64-bit wide and up to 32-bit

wide addresses is supported. Cache blocks are transmitted in 4-word burst accesses. Requesting a

part of the memory in critical-word-first fashion is also supported. A disadvantage of the controller

is that it doesn’t do any kind of specialized scheduling, to take advantageof the whole available

DDR bandwidth. The controller just receives the next request and serves it. Finally, it was observed

during the implementation of the system that the specific DDR controller doesn’twork properly when

operating in clock frequencies less than 100 MHz. This bug was also observed in [23].

Chapter 3

Evaluation and Verification

3.1 Hardware Resources

3.1.1 Target FPGA

The whole system has been designed for and implemented on a Virtex-II ProFPGA, embedded in a

Xilinx University Program board. The size of the FPGA is 30K and the speedgrade is -7C. The FPGA

is equipped with two embedded PowerPC processors, as mentioned earlier,which are implemented

as hard blocks within the circuitry. The resources available in each FPGA of the specific family can

be seen in Table 3.1. As it can be observed, the specific FPGA is rather a medium one. However, the

attractive element of all the system was the low price of the XUP board, whichenables a multimode

system, out of many XUP boards, to be built.

Device
RocketIO
Transceiver
Blocks

PowerPC
Processor
Blocks

Logic
Cells

CLB (= 4 slices) 18 X 18 Bit
Multiplier
Blocks

Block SelectRAM+
DCMs

Maximum
User I/O
Pads

Slices Max
Distr
RAM
(Kb)

18
Kb
Blocks

Max
Block
RAM
(Kb)

XC2VP2 4 0 3,168 1,408 44 12 12 216 4 204
XC2VP4 4 1 6,768 3,008 94 28 28 504 4 348
XC2VP7 8 1 11,088 4,928 154 44 44 792 4 396
XC2VP20 8 2 20,880 9,280 290 88 88 1,584 8 564

XC2VPX20 8 1 22,032 9,792 306 88 88 1,584 8 552
XC2VP30 8 2 30,816 13,696 428 136 136 2,448 8 644
XC2VP40 0, 8, or 12 2 43,632 19,392 606 192 192 3,456 8 804
XC2VP50 0 or 16 2 53,136 23,616 738 232 232 4,176 8 852
XC2VP70 16 or 20 2 74,448 33,088 1,034 328 328 5,904 8 996

XC2VPX70 20 2 74,448 33,088 1,034 308 308 5,544 8 992
XC2VP100 0 or 20 2 99,216 44,096 1,378 444 444 7,992 12 1,164

Table 3.1: Virtex II Pro Resource Summary

41

42 CHAPTER 3. EVALUATION AND VERIFICATION

3.1.2 Hardware Resources

Figure 3.1 depicts a floorplanned view of the whole design. Except for themodules presented in the

previous chapter, there is also an I/O device that has been added to it. Specifically, an RS232 module

is used to print data through the serial port of a host PC to a hyper-terminal-like program. The module

is connected to an On-board Peripheral Bus (OPB). The OPB bus is connected to one of the two PLB

busses using a PLB2OPB bridge.

Figure 3.1: Floorplanned view of the system

Table 3.2(a) presents the utilization of resources required for the systemdescribed above. The

numbers presented corresponds to the whole experimental system, including parts, such as the I/O

path, that are not relevant to the coherent system. The resources occupied by the coherent part of the

system are shown in Table 3.2(b). The numbers presented there are those reported after the “map”

procedure of the design.

3.1. HARDWARE RESOURCES 43

(a) Utilization summary for the whole system

Resources Occupied Available %

FFs 6,943 27,392 25
LUTs 9,876 27,392 36
Slices 7,051 13,696 51
BRAM 26 136 19
IOBs 113 556 20
PPC 2 2 100
GCLKs 7 16 43
DCMs 2 8 25

Equivalent Gate Count 1,910,012

(b) Utilization Summary for coherent system only

Block Type FFs LUTs Slices BRAM

2 x PLB2Cache 390 965 492 0
2 x CCache 1,959 2,533 1,830 10
Bus 2,247 2,914 2,048 0
DDR MUX 52 349 218 0

Total 4,648 6,761 4,588 10

Table 3.2: Hardware Utilization

As it can be seen, the whole system occupies half of the logic-related resources available in the

chip. Specifically, 51% of the available slices host logic of the system. The 33.4% is occupied

by the implemented coherent system, while the rest 17.6% by soft-cores provided by Xilinx. As

far as the memory resources of the system are concerned, only 26 out of the 136 available BRAM

blocks are used. 10 BRAM blocks are dedicated to the coherent system for the implementation of

the 2 4Kbytes coherent caches. The rest of the 16 blocks form the private memory available to the

processors, 16Kbytes to each one of them. Finally, only 20% of the available IOBs are used, mainly

for communicating with the external DDR memory. The rest of them can be easilyused by a network

module, which will provide connectivity with the rest of the world.

3.1.3 Timing Conciderations

The clock frequency of the system is constrained by two factors that constitute the upper and the lower

ceiling. The first factor comes from the inability of the Xilinx DDR controller to operate in clock

frequencies lower than 100 MHz. This behavior is a documented bug and has also been reported in

[23]. Even the most recent version of the controller, which comes along with the latest version of

EDK 8.2 software, has this disadvantage. Other possible frequencies that are not turned down by this

factor are these above 100MHz, which are also supported by the external DIMM module. On the

44 CHAPTER 3. EVALUATION AND VERIFICATION

Action Combinational Delay Routing Delay Total Available

Read hit 3.526ns (35.9%) 6.294ns (64.1%) 9.820ns 10ns
Read miss ending 1.459ns (29.4%) 3.511ns (70.6%) 4.970ns 5ns
Bus request 0.541ns (24.3%) 1.689ns (75.7%) 2.230ns 5ns
Bus transaction 2.956ns (29.9%) 6.915ns (70.1%) 9.871ns 10ns

Table 3.3: Delay of Critical Paths

other hand, the complexity of the system implemented restricts the use of high frequencies. As it will

also be shown below, the system is not able to operate above 100 or 105 MHz. Thus, the cut of these

two sets of possible frequencies (100MHz), which meets all the criteria, is chosen to be the frequency

of the whole system.

Critical Paths

Some of the critical paths of the system are presented below in order to identify which functionality

requires the biggest part of a clock period. Table 3.3 presents these paths and their required time.

The first conclusion that it can be drawn is about the cost of the routing delay. In any of the cases

presented, routing delay corresponds at least to the two thirds of the totaldelay, apart from the first

case where it possesses the 64%.

The specific case corresponds to the read cache hit scenario. The tagmemory has just been

clocked and output the corresponding tag lines. Address and tags are checked for equality. Cache hit

is resolved and data are returned to the processor. A detailed report ofhow the delay is split for this and

the rest of the cases can be found in . As it can be seen, almost three ns are paid in order to move from

hard blocks to and from the FPGA fabric. This time corresponds to tag memory’s clock-to-output

delay plus the time required to drive PowerPC’s pins. The second case corresponds to the read miss

scenario, when data are returned to the processor over the ReturnDataregister. Data cross between

domains without being synchronized. Half of the period is given for this function. Here again, a great

amount of time is required for the PowerPC’s pins to be driven. The third case corresponds to the bus

request action. In this case, too, data cross domains without applying anysynchronization technique

on them. Half period is devoted for the part B to receive a new message generated by part A and to

raise the request signal towards the bus. Finally, the last case corresponds to a word moving from one

cache to another. The bus is consulted its scheduling algorithm to choose thenext participant that will

be granted the bus. A word coming from the sender flows through the bus fabric and arrives in the

remote cache.

3.2. PERFORMANCE EVALUATION 45

3.2 Performance Evaluation

The next step of the evaluation procedure inspects the performance exploited by the system. As men-

tioned earlier, requests generated by a processor are separated to twogroups. The first group includes

requests that access private memory, and the second group requests that access shared memory. The

former type of requests is not imposed to any type of additional delay. Theyspend the same amount

of time as if there was no coherent memory system present. On the other hand, requests that access

shared memory differ. The hardware that serves them is designed to takeadvantage of the full poten-

tials the DCU is equipped with. As described in the previous chapter, too, accesses to shared memory,

which hit in the coherent cache, make the DCU to operate in its maximum bandwidth. A write re-

quest to shared memory that hits in the coherent cache occupies the DCU logic for two cycles, before

the processor become able to issue another request. A read request ofthe same type can occupy the

DCU logic for five cycles, as Figure A.4 suggests. However, this number of cycles can be reduced to

three, if the processor operates three times faster that the logic attached to the DCU pins. Specifically,

the DCU is designed to wait for the current single-word read request to be satisfied before making

a subsequent request. This requirement results in the delay of the three cycles between requests, as

shown in that figure. During these three cycles the newly received datumis forwarded to the pipeline

of the processor, in order the execution of the program to continue. Thehardware that is responsible

for this functionality is hidden within the processor’s block. This means that itcan also operate in

the maximum frequency that the whole processor can. Thus, clocking the core of the processor three

times faster (e.g. processor 300MHz - memory system 100MHz) than the rest of the outer system, it

results in fitting that three processor’s cycles in a single PLB cycle. As a result of that, the duration of

a read access can be reduced to three PLB cycles. Both read and write requests that hit in the coherent

cache complete within the first two PLB cycles. This means that the coherent memory system doesn’t

add any excessive delay to these accesses. Figure 3.2 depicts a write-hit and a read-hit scenario. Given

that the processor operates in the frequency of 300MHz and the rest of the system in the frequency of

100MHz, then the write hit costs 20ns and the read hit 30ns.

Apart from the hit scenario examined above there is also the possibility of therequest to miss in

the cache. A miss can occur either if the requested data are absent, or the specific cache doesn’t hold

the proper privileges to apply the request. In the latter case, the cache issues an Invalidate request,

which is broadcasted to all the bus participants. In this way the cache requires to be granted exclusive

access to a block that wants to modify it. Figure 3.3 depicts such a scenario. It takes three additional

46 CHAPTER 3. EVALUATION AND VERIFICATION

Acknowledged

hit
read cache

hit
write cache PLB2BRAM read access

ffffca18 0000004c ffffca18 0000004c

0000000c0000000c 0000000cxxxxxxxx

0000000000000000 ffffffffffffffff 0000000000000000 0000004000000000 0000000000000000 0000000000000000

00000000 ffffffff 0000000c 00000000 0000000c

000000 e00000 000000 e00000

/testbench/top/sys_clk_pin

C405PLBDCUREQUEST

C405PLBDCUABUS ffffca18 0000004c ffffca18 0000004c

C405PLBDCUWRDBUS 0000000c0000000c 0000000cxxxxxxxx

C405PLBDCUADDRACK

C405PLBDCURDDACK

C405PLBDCURDDBUS 0000000000000000 ffffffffffffffff 0000000000000000 0000004000000000 0000000000000000 0000000000000000

C405PLBDCUWRDACK

Read_Cmd

Write_cmd_1

Cache_hit

DataOut32_0 00000000 ffffffff 0000000c 00000000 0000000c

DataOut0_tags 000000 e00000 000000 e00000

at the same cycle

Address & Data

Data Acknowledged

Data written in the cache
at the next cycle

Address Ack

and returned to PPC

Figure 3.2: Write hit and Read hit Scenarios

cycles for the system to resolve this kind of miss, provided that the bus is notbusy when the cache

tries to send the Invalidate request. After the two initial cycles, the FSM of the cache recognizes

that the write request doesn’t have the privileges to complete. The Invalidate message is generated

and crosses clock domains in the next negative edge of the processor clock, 2.5 cycles away from its

initiation time. At this point the arbitration and the transfer of the message start. The bus is acquired

by the cache, and one period later, in the next negative edge of the clockthe message arrives at the

remote caches. In parallel with this, part B of the local cache updates the tag-line of the block. The tag

memory is written in the negative edge of the processor clock, 3.5 cycles away from the initiation of

the request. Part A reads the tag memory, starting at the next positive edge. During the fifth period the

cache hit is resolved and the data are written at the end of the cycle. Finally,there is also the possibility

of spending one more cycle before sending the request, in order to check for possible address conflict

between the outgoing message and an incoming one, which has just finished.In that case the total of

five cycles is increased to six.

In the former case, where the block is absent a BusRd or BusRdX message is generated, depending

on the kind of access the processor has initiated. A read request causes the generation of a BusRd

message and a write request of a BusRdX message. Both of these messages induce a cache block to

be transmitted over the bus towards the local cache. This block transfer mayoriginate either from

a remote cache or the external DDR memory. Depending on the entity of origination the status on

which the block will be loaded into the cache changes.

The remote cache hit scenario, as shown in Figure 3.4, will be examined first. As also happens with

the Invalidate message, the cache requests to be granted the bus 2.5 cyclesaway from the initiation

3.2. PERFORMANCE EVALUATION 47

ffffca18 0000004c ffffca14

0000004000000040 00000040xxxxxxxx

Network Interconnect

000000000 10000004c 000000000

4 3

Remote Cache

000000 200000 000000

/testbench/top/sys_clk_pin

C405PLBDCUABUS ffffca18 0000004c ffffca14

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUADDRACK

C405PLBDCUWRDACK

C405PLBDCUWRDBUS 0000004000000040 00000040xxxxxxxx

cache_1/Write_cmd

cache_1/Cache_hit

cache_1/cache_miss_coherence

cache_1/ValidCommand2Bus

Network Interconnect

/testbench/top/sys_clk_pin

cache_1/B_Data2Bus 000000000 10000004c 000000000

cache_1/B_Commands2Bus 4 3

cache_1/Bus_Ack

Remote Cache

cache_0/REQfromBus

cache_0/B_Wen2tags

cache_0/B_DataOut0_tags 000000 200000 000000

Invalidate Action

Write Access

Address & Data
Acknowledged
at the same cycle

Invalidate Message Sent
Bus Acknowledges the action

Remote Cache
Receives the Message

shared
in the cache but it is
The block is found
Cache miss

Invalidates the block
Remote Cache

in local cache
Write AccessCompletes

Figure 3.3: Invalidate Scenario

of the processor’s request. During this cycle the message is being sent, which results in driving the

address pins of the remote tag memory. The memory is clocked in the next negative edge of the clock

(negative edge 3). It outputs the indexed tag-lines and the check equalityprocess starts. By the end

of this period (negative edge 4) the remote cache hit is resolved. The response message is generated

and its transmission starts in the next cycle (period 4.5 - 5.5). The cache always responses to a BusRd

(or BusRdX) request in a critical-word-first fashion. The first wordtransmitted is the address of the

message, while the second one is the word requested by the processor. This word arrives at the local

cache at the next negative edge of the clock, 6.5 cycles away from the initiation of the processor’s

request, and it is being written in the ReturnData register. During the half period remaining until the

next positive edge of the clock part A identifies the arrival of the requested word. In the meantime the

tag-line of the block has been updated, giving to the processors the required privileges to perform the

access. At that positive clock edge, 7 clock cycles after the initiation of theprocessor’s request, the

cache acknowledges its completion. The transmission of the whole responsemessage completes 13.5

cycles after the initiation of the processor’s request.

When the requested block doesn’t reside in the remote cache then a copy of it is retrieved by the

external memory. Figure 3.5 depicts a BusRd request that misses in the remotecache. The initial

steps taken are similar to those of a remote hit request. The flow of actions changes when the remote

48 CHAPTER 3. EVALUATION AND VERIFICATION

ffffc998 0000004c ffffc990

0000000000000000 9009000038600000 0000000000000000 4800000481610000 0000000000000000

Local Cache - Part B

00000001 0000004c 00000040 ffffffff 0000000b 00000001

00000001 0000004c 00000040 ffffffff 0000000b 00000001

Bus

00000000 0000004c 00000000

0 1 0

Remote Cache

00000000 00000040 ffffffff 0000000b 00000040 00000000

000000 e00000 a00000 000000

/testbench/top/sys_clk_pin

C405PLBDCUABUS ffffc998 0000004c ffffc990

C405PLBDCUREQUEST

C405PLBDCURDDACK

C405PLBDCURDDBUS 0000000000000000 9009000038600000 0000000000000000 4800000481610000 0000000000000000

C405PLBDCUADDRACK

cache_0/cache_miss_block

Local Cache - Part B

/testbench/top/sys_clk_pin

cache_0/B_Wen2Mem

cache_0/B_DataIn2Mem 00000001 0000004c 00000040 ffffffff 0000000b 00000001

cache_0/B_Wen2tags

cache_0/Data_Valid

cache_0/ReturnData 00000001 0000004c 00000040 ffffffff 0000000b 00000001

Bus

/testbench/top/sys_clk_pin

Bus/B_Ack_0

Bus/Sender 00000000 0000004c 00000000

Bus/Cmd_In 0 1 0

Bus/B_REQfromBUS_0

Bus/B_REQfromBUS_1

Remote Cache

cache_1/B_DataOut32_0 00000000 00000040 ffffffff 0000000b 00000040 00000000

cache_1/B_Wen2tags

cache_1/B_DataOut0_tags 000000 e00000 a00000 000000

Last Word In

Critical Word Received

Address Acknoledged
during first cycle

Cache miss resolved
Block is missing

BusRd command sent
Bus acknowledges

BusRd command received
by remote cache

Block found in remote cache
Response sent

State of the block is degraded
in remote cache

Response sent by remote cache
has just received

Critical word arrived

Critical word sent to PPC
The ReturnData path is used

block arrives
Last word of the

Figure 3.4: BusRd Remote Cache hit Scenario

cache resolves the miss, during the period of negative edges 3.5 and 4.5.At the end of this period

the remote cache rises BRequestmiss signal, notifying the bus logic to forward the request towards

the DDR controller. The request is written in the Commandsfifo at the negative edge. It becomes

available for processing by the FSM2 DDR at the start of the fifth cycle, provided that there were no

other requests in the FIFO. The request is initiated towards the DDR controller and the data become

available at the end of the 20th cycle. Specifically, the first double word from the read burst is written

in the DataInfifo at the 18th positive edge. It becomes available to the bus logic starting thenext

negative edge. The requested word, which is the half part of the doubleword that has just crossed

back to the bus clock domain, is immediately delivered to the cache. At the 20th negative edge it is

written at the ReturnData register and at the next positive edge the processor’s request completes.

In the same figure a write back action takes place. The write back message is sent back-to-back

with the BusRd message. Its address is temporarily stored in the bus logic, whilethe first words of

the block are written in the proper write-back FIFO (negative edges 6 - 14). When half of the block is

stored, which means that the write back is sure to complete, the address of theblock is written in the

Commandsfifo as a request for a write burst. The burst is initiated at the start of the 22nd cycle and

3.2. PERFORMANCE EVALUATION 49

ffffca18 0700004c ffffca10

0000000000000000 0000000000000000

Local Cache - Part B

ffffffff 0700004c ffffffff

ffffffff ffffffff

Bus

00000000 00000048 0000000b 00000040 ffffffff 0000004c 00000000

DDR Controller

0000000000000000 d000000002000000 ffffffffffffffff ffffffffffffffff d000000002000000

ffffffffffffffff

/testbench/top/sys_clk_pin

C405PLBDCUABUS ffffca18 0700004c ffffca10

C405PLBDCUREQUEST

C405PLBDCUADDRACK

C405PLBDCURDDACK

C405PLBDCURDDBUS 0000000000000000 0000000000000000

cache_1/cache_miss_block

Local Cache - Part B

cache_1/Data_Valid

cache_1/Return_Data ffffffff 0700004c ffffffff

cache_1/B_Wen2mem

cache_1/B_DataIn2mem ffffffff ffffffff

cache_1/B_Wen2tags

Bus

Bus/Ack_1

Bus/Sender 00000000 00000048 0000000b 00000040 ffffffff 0000004c 00000000

Bus/B_REQfromBUS_0

Bus/B_REQfromBUS_1

Bus/B_Request_miss

Bus/Commands_fifo_wr_en

Bus/Commands_fifo_rd_en

DDR Controller

Bus2IP_CS

Bus2IP_Burst

Bus2IP_RdReq

Bus2IP_WrReq

Bus2IP_Data 0000000000000000 d000000002000000 ffffffffffffffff ffffffffffffffff d000000002000000

IP2Bus_AddrAck

IP2Bus_RdAck

IP2Bus_Data ffffffffffffffff

IP2Bus_WrAck

Critical Word Returned

Last Word Received

DDR Write BurstDDR Read Burst

Evicted Block Sent to Bus FIFOs

Address Acknowledged
at the first cycle

Cache miss resolved
at the end of the second
cycle

BusRd request sent
Bus acknolwdges transmission

Remote cache receives request

back−to−back
Evicted Block sent

Requested block not found
in the remote cache

Forward request to
DDR controller

Write Back Confirmed
Sent Request to DDR
controller

Requested block ready
to be sent to cache

First word written
in cache

‘‘ReturnData’’ path is used
to return the requested word

Data Acknowledged

Figure 3.5: BusRd Remote miss. Fetching cache block from external memory.Block eviction at the

same time

ends at cycle 30.

The two final accesses to evaluate are the non-cacheable ones. Figure3.6 shows one non-

cacheable write and one non-cacheable read. Both of them require onecycle less to reach the bus

logic. Specifically, the cache is granted the bus and sends the non-cacheable access between the two

negative edges 1 and 2. The corresponding command is written in the Commands fifo. In case of a

non-cacheable write the data that is sent back-to-back with the address are written in the NCfifo at

the next clock cycle. At this point a non-cacheable write can be considered completed and the pro-

cessor to continue the execution of the program. The address of the request becomes available to the

FSM 2 DDR logic after the 3rd positive edge. A single-word access is initiated. Thenon-cacheable

write completes at the 8th cycle. On the other hand, the non-cacheable readreturns data at the 14th

50 CHAPTER 3. EVALUATION AND VERIFICATION

cycle. The word is written at the DataInfifo during this cycle. It then becomes available at the next

negative edge and is delivered to the cache immediately. The access completes at the 17th positive

edge when the data are sent back to the processor.

ffffca14 00000000 ffffca14 00000000

0000000000000000 0000000000000000 0000000000000000

ffffffff 00000000 00000001 ffffffff

Bus

00000000 00000001 00000000

00000000 00000001 00000000

DDR controller

0000000000000000 8000000080000000 0000000000000000

/testbench/top/sys_clk_pin

C405PLBDCUABUS ffffca14 00000000 ffffca14 00000000

C405PLBDCUREQUEST

C405PLBDCUADDRACK

C405PLBDCURNW

C405PLBDCUWRDBUS

C405PLBDCUDCURDDACK

C405PLBDCURDDBUS 0000000000000000 0000000000000000 0000000000000000

C405PLBDCUWRDACK

Non_Cacheable_access

Data_Valid

Return_Data ffffffff 00000000 00000001 ffffffff

Bus

/testbench/top/sys_clk_pin

Bus/Ack_1

Bus/Sender 00000000 00000001 00000000

Bus/Commands_fifo_rd_en

Bus/Commands_fifo_wr_en

Bus/NC_fifo_empty

Bus/NC_fifo_dout 00000000 00000001 00000000

Bus/REQfromBUS_1

DDR controller

/testbench/top/sys_clk_pin

Bus2IP_CS

Bus2IP_Burst

Bus2IP_RdReq

Bus2IP_WrReq

Bus2IP_Data 0000000000000000 8000000080000000 0000000000000000

IP2Bus_AddrAck

IP2Bus_RdAck

IP2Bus_Data

IP2Bus_WrAck

PLB Read Access
Processor side end

Bus side end

Word delivered toDDR Controller

Non−Cacheable Write

Non−Cacheable Read

Single−Word Write Access Single−Word Read Access

Address & Data acknowledged
at the first cycle

First the address and then
the data

Request Sent to the Bus

Request written to
Commands_fifo

Data written to NC_fifo
in the next cycle

Address acknoledged at
the first cycle

At the same cycle is
forwarded to the DDR
controller

Request sent to the Bus

Data Ready. Sent to the Cache

to return the requested word
‘‘Return_Data’’ path is used

Data Acknowledged

Figure 3.6: Non-Cacheable Write & Read Accesses

In all the above examples the request examined wasn’t blocked at any point in the system. Possible

blocking points are the FIFOs from the bus to the DDR controller and the sharing of the DDR con-

troller. An access that finds previous requests to wait in the FIFOs is delayed for additional time. As it

is observed by the figures above, this time equals to 6 cycles for each non-cacheable write request and

9 cycles for each burst-write request. These delays correspond to theduration of each type of access

at the DDR controller increased by one cycle. The increment is required by the IPIF interface, which

requests that the Bus2IPCS signal to be driven low for at least one cycle between any subsequent

accesses. No other types of actions (word read - burst read) can befound to wait in the FIFOs when a

new request is added. This comes from the fact that read accesses block the coherent memory system

3.2. PERFORMANCE EVALUATION 51

until data reception. Additionally, between accesses to shared memory, the DDR MUX module may

decide to serve any pending private memory requests. This will further increase the delay by 6 cycles

for non-cacheable writes, 12 cycles for non-cacheable reads, 15 cycles for burst reads and 9 cycles for

burst writes. Table 3.4 and Table 3.5 summarize the above results.

Type of Access Access Latency

Read Hit 3
Write Hit 2
Invalidation 5
Remote Hit 7 (critical word) / 13.5 (block transfer)
Block fetch from DDR 21 (critical word) / 27.5 (block transfer)
Block sent to DDR delay hidden by the block fetch action
Non-cacheable write 2 (processor side) / 4 (cache side) / 8 (word delivered to DDR ctrl)
Non-cacheable read 17

Table 3.4: Access Latency (measured in PLB cycles - 100MHz clock freq.)

Type of Delay Maximum penalty

Preceding Single-Word Write 6
Preceding Burst Write 9
Single-Word Write to Privatre Memory 6
Burst Write to Private Memory 9
Single-Word Read from Private Memory 12
Burst Read from Private Memory 15

Table 3.5: Additional penalties imposed to Shared Memory Requests (measured in PLB cycles -
100MHz clock freq.)

3.2.1 Comparison with other Coherent Shared Memory Organizations

As it has already been mentioned, PowerPC doesn’t provide any hardware mechanism to maintain

coherency between shared data. However, it provides the opportunityto manage coherency issues by

using proper software. As it is proposed in PowerPC’s manual [reference] only one processor is able

to access shared memory at any given time. The processors agree on who will be the next one to

acquire access to shared data. After having performed the required operations the specific processor

flushes the internal data cache. It is obvious that while this approach may maintain data coherency,

it isn’t performance aware. Not only does it take many cycles to flush the cache, but also this action

degrades the performance of the running process. It is clear that the approach presented in this study

is more efficient than the one just mentioned.

52 CHAPTER 3. EVALUATION AND VERIFICATION

There is also an alternative hardware solution to provide coherent shared memory to the two

embedded processors. The DCU of both processors can be connected to the same PLB bus and use

single-word requests to access any available memory connected to that shared PLB. If the shared

memory lies in BRAM blocks then accessing it over the PLB costs 7 PLB cycles for single-word

write requests and 8 for single-word read requests. However, BRAM resources are limited and it is

more likely for shared memory to be held in external DDR memory. In that case,a single-word read

takes 23 PLB cycles to return data to the processor. On the other hand, a single-word write occupies

the processor for 10 PLB cycles before it is acknowledged by the PLB.After 10 cycles the processor is

free to continue the execution of the rest of the program. However, the ongoing write access requires

6 mores cycles to be handled by the DDR control, for a total of 16 PLB cycles.

The conclusion that can be reached from this comparison is that the implementedsystem studied

here is certainly faster than the above when external DDR memory is used. On the other hand, when

BRAM is used to host shared memory then the comparison of these two systems must take into

consideration the behavior of the program executed. The percentage of accesses that are served locally

or remotely (but not from the main memory) in the implemented system is the most crucial factor that

specify the outcome.

3.3 Correctness verification

A large part of the verification procedure was carried out in the implementation phase of the system.

Each part was intensively simulated to check as many cases as possible. Furthermore, parts were put

together and simulated in order to check their in-between communication. However, deeper inves-

tigation of the system is required in order to verify the correctness of the system. Larger programs

were written to produce large amounts of coherent traffic. In this way the system’s functionality was

stretched out to cover all the various cases that it is supposed to support.

3.3.1 Software primitives

The implementation of any “useful” shared memory program requires the existence of the proper soft-

ware primitives. Such primitives offer the ability to the programmer to manage the shared memory,

to instantiate multiple execution threads and to protect shared data by locking mechanisms. Some

of these primitives were implemented for the purposes of this study, while others were described in-

directly. As far as the existence of multiple threads is concerned, EDK software is supplied with a

library that provides the thread abstraction. The library provides memory management and locking

3.3. CORRECTNESS VERIFICATION 53

mechanisms between the threads. Unfortunately, this library assumes that thecreated threads are able

to run only on theoneof the two PowerPC. Parts of the library are able to run simultaneously on the

two processors, provided that each part doesn’t interfere with the jobcarried out by the other. This

results in two uniprocessor systems that are independent to each other, rather than a single multipro-

cessor one. Furthermore, a shared memory program is usually parameterized according to the number

of processors available in the system. In this particular study, the number ofprocessor is constant.

Having multiple threads running on both processors doesn’t provide the illusion of having multiple

processors, since only one thread will be able to run on each processor at any specific moment. Thus,

the approach of providing the ability to run multiple threads on both processors was rejected, without

any loss of generality. Each test program was written for the specific number of processors, dividing

the amount of work carried out in two parts.

On the other hand, the locking mechanism was considered to be crucial forthe evaluation of the

system, since most kinds of shared memory programs require some kind of synchronization between

the processors. Two versions of spin-locks were developed. The first one is a simple implementa-

tion of the Peterson algorithm, which imposes strict alternation between the processors that request

the lock. In order to provide a little more randomization to the behavior of the program, the second

version of locks doesn’t follow the strict alternation pattern. In that case, when a processor is trying

to acquire an already granted lock it backs off for some time and tries again some time later. The

implementation of these two releases can be seen in Figure 3.7. Finally, no barriers primitives were

implemented. Any time one of the processors has to wait for the other to complete,it is constantly

reading a predefined address to take a specific value. Using this handshake the semantics of a barrier

are described indirectly. Finally, the shared memory of the system is managed“hardwired” by each

application. This means that the needs of the program are well known a priori, when the program is

being written. The programmer distributes the memory according to these needs. Again, the correct-

ness and the performance of the program are not harmed, since the resulting behavior is equivalent to

the case where software manages the memory.

3.3.2 Shared Memory Programs

Testing Environment

The parameters of the systems (uniprocessor - multiprocessor) are shown in Table 3.6. The processors

and all the remaining parts of the system operate in the same frequency (100MHz). The internal

54 CHAPTER 3. EVALUATION AND VERIFICATION

struct lock_st{ int ppc_0; int ppc_1; int turn; }

void mutex_lock(struct lock_st *lock, int processor){ void mutex_lock(struct lock_st *lock, int processor){

if(processor == 0){ int delay;
lock->ppc_0 = 1;
lock->turn = 1; if(processor == 0){

while(1){
while((lock->ppc_1 == 1) && (lock->turn != 0)); delay = 3;

} lock->ppc_0 = 1;
else { if(lock->ppc_1){

lock->ppc_1 = 1; lock->ppc_0 = 0;
lock->turn = 0; while(delay--);

}
while((lock->ppc_0 == 1) && (lock->turn != 1)); else break;

} }
}
else {

while(1){
void mutex_unlock(struct lock_st *lock, int processor){ delay = 1;

lock->ppc_1 = 1;
if(processor == 0) if(lock->ppc_0){

lock->ppc_0 = 0; lock->ppc_1 = 0;
else while(delay--);

lock->ppc_1 = 0; }
} else break;

}
}

}

Figure 3.7: Locking Algorithms

instruction cache of the PowerPC is enabled in all the experiments, while the internal data cache is

used only once for a specific organization running the “shared counter” program. The processors are

operating standalone; no operating system is present. As a result these isalso no memory translation.

The addresses generated by the programs are physical. Finally, the sizeof each coherent cache is 4

KBytes.

Processors

Clock freq. = 100 MHz

Internal Instruction Cache enabled (16KB)

Internal Data Cache disabled

No O/S. Processors operate standalone

No Memory Translation- Physical addressing used

Coherent System -

PLB - Peripherals

Clock freq. = 100 MHz

Coherent Data Cache 4KBytes

Table 3.6: System Parameters

Shared Counter

The first program written for the system is the increment of a shared counter. The two processors

using a lock structure try to gain access to the shared variable that corresponds to the counter. Once

the lock has been acquired by a processor the variable is increased by one and then the lock is released.

3.3. CORRECTNESS VERIFICATION 55

Once the lock is released the other processor can acquire it to perform the same action. Using the first

type of locks presented above, the system behavior results to an alternation of the two processors on

having access to the shared variable.

The traffic generated by the two processors when running this programcorresponds to the transfer

of the lock structure and the shared variable from one coherent cacheto another. The first action taken

by the processor (processor A) to get the lock is a write access to its variable in the lock-structure.

This corresponds to a BusRdX message to be broadcasted and the corresponding cache block to enter

the cache. The same processor reads constantly the variable within the lockthat corresponds to the

other processor (processor B), in order to be notified for the its release. No traffic generated, since all

the read accesses hit in the cache. Processor B eventually releases thelock by clearing its variable.

A BusRdX message is generated and the lock travels back to processor B’s cache. The next time

processor A reads the lock a BusRd message is generated and the block returns to cache A. At that

time processor A has access to its critical section. Its actions are to read the shared counter (generation

of a BusRd message) and to write to it the new value (generation of an Invalidation message). Finally,

it releases the lock by clearing its value in the lock structure. This set of actions is continuously

repeated until the end of the program.

In order to measure the performance of the program, its length of executionis measured in pro-

cessor cycles. The result is also compared against to the same time requiredby a uniprocessor system

to perform the same kind of counter manipulation. Such a program is rather meaningless as far as

its functionality is concerned, however, it provides a good insight of the cost of the shared mem-

ory synchronization. Table 3.7 reports the time taken for four different architectures to execute that

program.

200.000 iterations 2.000.000 iterations
Architecture int i; register int i; int i; register int i;
Uniprocessor - Internal Cache Enabled 3,600,028 2,600,030 36,000,028 26,000,030
Uniprocessor - External Cache Used 9,400,044 3,400,023 94,000,044 34,000,023
Uniprocessor - Access to BRAM 11,400,041 4,600,023 114,000,041 46,000,023
Multiprocessor - Coherent Cache Used 33,200,308 29,500,275 332,000,308 295,000,276
Multiprocessor - Non-Cacheable Memory33,449,129 30,516,658 334,489,656 305,149,990

Table 3.7: Duration of “Shared-Counter” program for different arcitectures in processor cycles (clk.
freq. 100 MHz)

Specifically, there are three different uniprocessor architectures studied and one multiprocessor.

56 CHAPTER 3. EVALUATION AND VERIFICATION

The uniprocessor architectures are differentiated by the place where the variables of the program are

stored. The first one uses the internal data cache of the PowerPC to enable quick access to frequently

used data, such as the counter variable and the iteration variablei. In the second one, the internal

data cache is disabled. The counter variable of the program is found in shared memory cached by

the external cache, while the stack resides in PLB BRAM memory. Finally, in thelast uniprocessor

organization data are not cached anywhere and they are loaded from and stored directly to private

memory located in the PLB BRAM block. The multiprocessor organization used isthe one described

in the previous chapter. Two cases have been tested. In the first one thelock variables and the shared

counter variable reside in cacheable shared memory, while in the second theshared counter variable

has been moved to non-cacheable shared memory. For all the above organizations the instruction

cache of the PowerPC was enebled.

The numbers shown above corresponds to two different executions ofthe program. The left one

refers to execution length of 200.000 counter iterations, while the right oneto 2.000.000 iterations.

For each execution and for each organization, two lengths are reportedin the two sub-columns. Each

one of them corresponds to the declaration of the iteration variablei used for thefor-loop. In the left

column it has been declared as a simple variable, while in the right one the compiler was advised

to maintain the iteration variable to a register throughout the execution of the program. This is the

only hint given to the compiler, and the rest of the program is compiled with no further optimizations

(for all the architectures to ensure fairness). Eliminating optimizations from the compiling process

is required for the proper built of the multiprocessor program. In the startof that program there are

several shared memory accesses that are used for the proper initialization of the system and the initial

synchronization between the processors. These accesses seem meaningless to the compiler, which

expects as input a uniprocessor program, and eliminates these instructions. As it is expected to be,

the organization using the internal cache is the fastest one, for both typesof programs. Following it,

the organization using the external cache is the second fastest. As it has been mentioned before, the

external cache takes advantage of the full bandwidth of the DCU interface, when accesses hit in it.

The specific program is supposed to experience high hit ratio since the few words are always found

in the cache. On the other hand, an access to the PLB BRAM private memory takes more cycles to

complete, resulting to lower performance.

Moving to the multiprocessors organizations the number of cycles required for the execution of

the program is multiplied by a factor of 3.6 to 10.0. The main reason for this has todo with the

3.3. CORRECTNESS VERIFICATION 57

synchronization between the two processors. It can be estimated that fora bad scenario where both

processors try to acquire the lock at the same time, only the messaging may costup to 11.000.000

cycles. In a scenario like this, every access to shared memory initiated by thelocal processor, competes

with the corresponding one initiated by the remote processor. Let assume, for example, the set of

actions shown in Figure 3.8 in the sequence they appear. The total cost required for exchanging the

corresponding messages generated by the processors come up to 110 cycles, while the whole execution

increases the shared counter twice only. Actions 1, 7 and 11 cost 13.5 cycles since they cause a cache

block to be sent from the one cache to the other, and also the start of the message is placed in sequence

with the previous action. On the other hand, actions 2, 3, 4, 5 and 10 cost 11 cycles. They cause a

cache block to be transmitted; however the start of the message comes in parallel with the previous

action. This means that the message is ready to be sent but the bus cannot be granted, yet. The cycles

of initiation of this message overlap with a request from the remote processor, and thus don’t count

in the total cost. Finally, actions 8 and 12 cost 5 cycles, while actions 9 and 132 cycles. If this set

of actions was supposed to be repeated 100.000 times then 11.000.000 cycles would be spent, which

corresponds to at least the 1/3 of the total execution time. However, this scenario is not likely to appear

so many times in this specific program. Actually, it is expected, due to locking activity, that the two

processors to balance program execution in a state where at each pointin time one of them has access

to the shared counter, while the other one waits the lock to be released.

The last entry of the table corresponds to the placement of the shared counter in non-cacheable

shared memory. The synchronization lock structure still resides in cacheable memory. The only things

that changes in this case are accesses of the type of 7 and 8. The non-cacheable read request takes

the place of the BusRd message and the invalidation message gives its place to anon-cacheable write

request. The former exchange adds 4 cycles to the total amount of cycles, while the second 0 cycles.

The additional cost when repeated 200,000 times corresponds to additional 800,000 cycles, which

estimates the difference between the two last entries of Table 3.7.

Finally, it is easy to observe the relationship of the size of the workload with theexecution length.

Using a workload ten times larger results in multiplying the execution length by a factor of ten. This

means that the behavior of the system is “locked” to a specific set of actionswhen this program is

executed. The results measured are representative to that behavior, and as it should be expected they

change linearly as the size of the workload changes.

58 CHAPTER 3. EVALUATION AND VERIFICATION

Processor 0 Processor 1

1) lock->ppc_0 = 1;(BusRdX)
2) lock->ppc_1 = 1;(BusRdX)

3) lock->turn = 1;(BusRdX)
4) lock->turn = 0;(BusRdX)

5) while((lock->ppc_1 == 1)(BusRd)
&& (lock->turn != 0)); 6) while((lock->ppc_0 == 1) (cache hit)

&& (lock->turn != 1));

7+8) shared_counter += 1;(BusRd
& Invalidate)

9) lock->ppc_1 = 0;(Invalidate)
10) while((lock->ppc_1 == 1)(BusRd)

&& (lock->turn != 0));

11+12) shared_counter +=1;(BusRd & Invalidate)

13) lock->ppc_0 = 0;(Invalidate)

Figure 3.8: Competing for Access to Shared Memory

Producer - Consumer

The second program implemented simulates a producer-consumer relationship between the two pro-

cessors. Processor A is responsible for generating new data and placing them in the shared buffer.

Processor B consumes these data by reading them from the buffer. Thebuffer lies in shared address

space and is organized as a FIFO. It is equipped with a head and a tail pointer, which point at the start

and the end of the queue, respectively. The producer processor appends new data at the end of the

queue by updating the tail pointer properly. The consumer processor retrieves new data from the head

of the queue. Access to head and tail pointer is not protected by a sharedlock, since these two words

lie in subsequent cache blocks. Each time the producer processor wantsto add a new word to the

queue, it first writes the data to the memory location pointed by the tail pointer andthen increments

the tail pointer. On the other side, the consumer, which constantly reads the tail pointer, identifies

the availability of shared data, by comparing head and tail pointer. In orderto provide the illusion of

processing the data, the consumer doesn’t immediately consume the available data, and also it isn’t

necessary to consume them all at once. It decides, by calling therand() function, how many words

will be consumed. If this amount of data is present in the shared buffer, then it will also be dequeued.

If not, the current iteration will end, and the consumer will start over. On every de-queue of a single

3.3. CORRECTNESS VERIFICATION 59

Consumer Producer

for(i=0; i< ITEMS;){ end = 0;

if(*head_pointer == *tail_pointer){

items = (rand() % 32) +1; XTime_GetTime(&cycles_before);

j = 0;

for(i=0;i<ITEMS;++i){

while((j<items) && *(*tail_pointer) = i;

(*head_pointer!= *tail_pointer)){ *tail_pointer += 1;

k = *(*head_pointer); }

*head_pointer += 1;

++j; while(end == 0);

}

i += j XTime_GetTime(&cycles_after);

}

}

end = 1;

Figure 3.9: Producer - Consumer Program

word, the head pointer is updated. The first assumption made is that the FIFOhas infinite space. The

producer isnot required to check if there is available space in the FIFO. It just appends new data.

This property is translated to less traffic in the shared medium and also less competition for shared

variables, and thus must be taken into account when studying the results. Finally, shared data, either

for the uniprocessor or the multiprocessor program, are stored in the external DDR memory, and thus

they are cached by the coherent cache. Local data, such as the stack, are stored in PLB BRAM. The

programs of the producer and consumer is shown in Figure 3.9.

The performance of the system is compared against an equivalent uni-processor one. In such a

system two threads are simultaneously executed on a single processor. One thread produces data and

the other consumes. The scheduling policy between two threads is preemptive. Each thread is given a

quantum of time to use the processor before the scheduler switches execution to the other thread. The

same conventions as before are followed in this case, too. The memory of theshared buffer is infinite

and the consumer program has the same behavior.

60 CHAPTER 3. EVALUATION AND VERIFICATION

(a) No Compiler Optimizations

4-byte Words Uniprocessor Multiprocessor Speedup

1,000 249,366 110,899 2.24
2,000 493,536 225,411 2.18

10,000 2,436,055 1,132,676 2.15
100,000 24,492,985 11,255,403 2.17
200,000 48,985,374 22,488,258 2.17

1,000,000 225,962,156 112,553,299 2.00
10,000,000 2,135,603,374 1,125,367,379 1.89

(b) Compiler Optimization Level -O2 (rand()used)

4-byte Words Uniprocessor Multiprocessor Speedup

1,000 183,353 54,118 3.38
2,000 361,659 110,284 3.28
5,000 890,717 276,798 3.22

10,000 1,776,651 560,760 3.17
100,000 17,731,506 5,609,254 3.16
200,000 35,432,192 11,204,784 3.16

1,000,000 177,212,319 56,103,330 3.15
5,000,000 885,975,684 280,489,649 3.15

10,000,000 1,771,887,494 560,924,941 3.15

(c) Compiler Optimization Level -O2 (rand()not used)

4-byte Words Uniprocessor Multiprocessor Speedup

1,000 152,236 44,084 3.45
2,000 297,417 88,173 3.37
5,000 733,501 221,458 3.31

10,000 1,460,060 443,593 3.29
100,000 14,567,150 4,442,037 3.27
200,000 29,127,419 8,884,761 3.27

1,000,000 145,619,237 44,426,176 3.27
5,000,000 728,070,541 222,133,438 3.27

10,000,000 1,456,136,058 444,267,532 3.27

Table 3.8: Duration of “Producer-Consumer” in processor cycles (clk. freq. 100 MHz)

Table 3.8 shows the length of the execution of the two programs. Three reports are given for

this program, each one referring to a different type of optimization applied during compile time.

Table 3.8(a) reports the length of the execution of the program for one and two processors, when

no optimizations are made in the compilation phase. The only hints given to the compiler are the

declaration of some crucial variables as registers. The first conclusionthat can be drawn is that the

length of the execution of the program for each organization of the systemis proportional to the size

of the workload. Increment of the workload by a factor ofx entails the increment of the execution time

3.3. CORRECTNESS VERIFICATION 61

by the same factor. As it can be seen the multiprocessor system is always faster than the uniprocessor

one. There are several reasons why this happens. First of all, the uniprocessor system has to pay the

penalty of using threads in a single processor. Every time the producer thread runs, useful work is

carried out. However, the quantum given to the consumer thread is not always used at its entirety.

Every time the consumer empties the FIFO it then spins constantly reading the tail pointer, waiting

for new data. Unfortunately, the producer is not able to enqueue new data since it isn’t running. The

rest of the quantum is wasted doing useless work. Furthermore, the actual switching between threads,

and the interrupt handler running at the end of every quantum, have alsoan impact on the execution

length of the program, and also constitute penalties not paid by the multiprocessor program. Finally,

one thing that favors the multiprocessor organization is the existence of actual parallelism that can

be derived by the two processors. Both of them can carry out usefulwork, since the producer thread

produces data unstoppable and the consumer is able to withdraw them from the FIFO.

In order to reveal the penalty imposed to the uniprocessor system by the switching procedure the

program is compiled again with optimization flags set on. Table 3.8(b) shows theperformance of both

systems for the same (optimized) program. The performance of the uniprocessor system has improved,

since the compiler has managed to evict useless functionality (or has described it more efficiently).

The same holds for the performance of the multiprocessor system. However, the relevant speedup has

increased. The reason why this happens has to do with the amount of help each program receives

by the compiler’s optimizations. The uniprocessor version of the program takes some advantage of

the optimizations, and this result to the lower execution time as regards with the previous version.

However, a large amount of quantum of time will be lost again. Producer and consumer now work in

a higher rate, but both work in the same rate. Wasting time by the consumer is again inevitable, since

at some points in time the FIFO will become empty again. On the other hand, the multiprocessor

version of the program takes full advantage of the compiler’s optimizations.Thanks to them, the

whole work is described with fewer steps. The system is able to take these steps without interruption,

and finish earlier. This opposition is reflected to the relevant speedup of the system, which increases.

In order to understand the different kinds of costs in the uniprocessorprogram, therand() func-

tion call has been removed from the code of the consumer. Now, the iterations of the consumer are

much simpler. It first compares the head and the tail pointer. If it resolves availability of new data

it dequeues the word found at the head of the queue. It updates the head pointer and then tries to

execute this loop once more. The new performance of the uniprocessor system is presented in Ta-

62 CHAPTER 3. EVALUATION AND VERIFICATION

ble 3.8(c). As it can be seen, the execution time of the program has been further decreased, as result

to executing less code during each iteration loop.The same holds for the execution time of the multi-

processor program. It also decreases, however the multiprocessor system seems to be favored again.

Removing therand() function call from the consumer program results eventually in “optimizing” in

a way the whole application. As before, optimizing the program results in growing the performance

gap between the two architectures. The multiprocessor organization is able totake full advantage of

the optimizations and decrease the execution time at the lowest possible level. Onthe other hand, the

uniprocessor architecture will be affected by this change; however, the execution time will decrease

only by a fraction, due to wasted time when consumer finds the FIFO empty and also when switching

between threads. This effect is reflected on the relative speedup between the two architectures, which

increases with regard the results of Table 3.8(b).

A final comment that should be made here concerns the effect of doublingthe available cache of

the system when using the two processors. Due to the nature of the program, none processor can take

advantage of the increased cache capacity when both processors operate. The consumer program uses

only a single cache block from its available cache, either this is the one and only cache of the system or

is the private coherent cache of the processor. This cache block keeps the next words to be consumed

by the application. If the system disposes only one processor then this block will already be in the

cache, because the producer program will have already touched it. Onthe other hand, if the system

disposes two caches, the processor running the consumer program mayhave to pay the penalty of

fetching it from the remote cache, where will certainly be. After the block has been consumed then it

has no more meaning of existence, since none will request it. Furthermore,the performance of these

two system is identical also when the producer program has gone ahead inexecution and touches

addresses “one cache size away”. In this case, both organizations willhave to visit the external DDR

in order to retrieve the next block to be consumed.

Sorting Algorithm

The third and final program implemented uses the two processors to sort anarray of integers. Two

versions of the program have been written. The first one sorts the given array in a manner that results to

excessive computation to be carried out, and excessive communication to begenerated. The purpose

for doing so is to push the system to its limits, having to perform many tasks. The sort program was

chosen to be implemented in these two forms, since it’s the most complex of all the three used. As far

as its behavior is concerned, it follows the divide-&-conquer approachand the merge-sort algorithm

3.3. CORRECTNESS VERIFICATION 63

to achieve its purpose. Both programs follow the three same steps. Each halfof the table with the

numbers to be sorted is assigned to a processor. At the first step of the execution each processor works

on every cache block in separate. This corresponds to the base of the recursion in the merge-sort

algorithm. The sorting of this basic element is done by a bubble-sort algorithm.The cost of this is

considered to be a constant number in the total cost of the whole procedure. The two processors do

this for all the cache blocks, and the first step ends with having tablesize / cacheblock size different

sorted subtables. The second step constitutes the merge process. Each processor takes 2, 4, 8 ...

sequential cache blocks to form two already sorted subtables and use them to merge them in a bigger

sorted one subtable. In order to do so it uses a temporal buffer, which then copies it back to the initial

one. The second step ends with having the whole table of numbers split into twosorted subtables. In

the third and last step, only one of the two processors works. With the same process it sorts the two

remaining subtables, merging them in one, which brings the desirable result. The complexity of this

algorithm is O(nlogn).

The two versions of the program differentiate in the way the initial separationof the table is

made. The first version, which costs a lot, suggests that each processor to take on the odd subtables

and the other processor the even. At any point in time each processor has cache blocks required by

the other processor. This results to excessive communication and lower performance. The second

version, which is the one usually followed around the world, suggests each processor to undertake an

independent part of the table to sort. In this case, where two processors are available, each processor

is assigned one half of the table, either the first or the second. The two processors follow the steps

described above to end up with the whole table separated into two sorted subtables. Finally, one

processor undertakes the third step to produce the final form of the initialtable. The performance of

these two programs was compared against the equivalent uniprocessormerge-sort program.

4-byte words uniprocessor multiprocessor 1 Speedup 1 multiprocessor 2 Speedup 2

8,192 4,685,431 4,132,038 1.13 2,473,063 1.89
16,384 10,158,520 9,070,199 1.11 5,345,342 1.90
32,768 21,867,901 19,785,706 1.10 11,526,511 1.89
65,536 46,968,166 42,768,827 1.10 24,577,065 1.91

131,072 100,256,519 91,915,826 1.09 52,318,443 1.91
262,144 213,236,539 195,714,795 1.08 110,977,051 1.92
524,288 451,039,058 416,539,343 1.08 234,495,627 1.92

1,048,576 952,872,819 884,714,939 1.07 494,437,564 1.92

Table 3.9: Duration of “Merge-Sort” program in processor cycles (clk. freq. 100 MHz)

64 CHAPTER 3. EVALUATION AND VERIFICATION

As it was expected the second multiprocessor algorithm has the best performance. The first mul-

tiprocessor algorithm has a very small speedup, due to the extra cost of the excessive communication.

It is almost as fast as the uniprocessor algorithm. On the other hand, the second multiprocessor algo-

rithm presents a very good and stable speedup throughout the experiments. Concerning this algorithm,

the only part that interprocessor communication arises is at the last step of the algorithm, where the

final result must be composed out of the two subtables. This corresponds to the minor penalty paid by

the system.

Chapter 4

Conclusion and Future Work

Due to technology advances future high performance computer architectures will employ multiple

processing cores on a single chip. This alters the whole setting of the uniprocessor system that stands

true until now, and takes up the biggest part of the processors market. In order to acquire a greater

understanding of future architectures an attempt to come closer to a real multiprocessor system is

being done in this study. A multinode FPGA-based prototype has been designed and implemented.

The system is equipped with two PowerPC cores, which are embedded in the Xilinx Virtex-II Pro

FPGA. External caches equipped with a MESI cache coherence protocol are implemented. The two

caches are connected by a custom interconnect, which has been giventhe properties of a bus, to the

DDR controller. Through this path the two processors are able to access shared coherent memory. The

opportunity of addressing private memory has also be given to the processors by sending requests over

the PLB bus. Simulations carried out has shown that the system implemented is more efficient than

any other composed exclusively by Xilinx soft-cores and offers the sametype of hardware coherency.

Additionally, the system offers lower latency accesses to data stored outside of the boundaries of

the processors, when these accesses hit in the coherent caches. Furthermore, custom benchmarks

have been written, simulating basic program behaviors found in parallel programs. Specifically, the

first program describes the increment of a shared counter between thetwo processors. The second

program implements a producer-consumer relationship, while the third uses the processors to sort

an array of random integers. Software primitives, such as locks, havebeen implemented in order

to achieve processor synchronization. The performance of the systemmeasured by these programs

was compared against the performance of an equivalent uniprocessor system. The comparison from

the first program has revealed the negative impact of synchronizing theprocessors before accessing

65

66 CHAPTER 4. CONCLUSION AND FUTURE WORK

shared data. The shared program was found to be 3 to 10 times slower thanthe best uniprocessor

one. The main reason for that constitutes the additional instructions that the shared program has to

execute and the software primitives used for synchronization. Furthermore, the nature of the program

creates a vast amount of bus traffic in order to synchronize the accesses. As far as the second program

is concerned, the multiprocessor system is 2 to 3.5 times faster than the equivalent uniprocessor one.

The main reason for that comes from the fact that the uniprocessor one has to pay the penalty of using

threads on a single processor. Switching between threads, and wasted quantum of time due to lack of

data to be consumed cause this extraordinary speedup. Finally, the sortingprogram that implements

the merge-sortalgorithm, is run from 1.8 to 1.95 times faster in the multiprocessor system than in

the uniprocessor. The speedup measured is considered to be the prospective one, since the specific

algorithm can be well divided in two parts.

One of the future objectives of this work is to design and implement a coherent network interface

that will be attached in the coherent network interconnect. By doing so, wewill be able to build sys-

tems with more than two processors and also measure the effectiveness of attaching the network inter-

face to the memory bus. Furthermore, a more efficient way of implementing locksmust be designed.

Software locks have turned out to be expensive. The PowerPC doesn”t dispose atomic instructions,

however, atomic instructions can be generated by the coherent cache if they can be properly identified

by the rest of the coherent memory system.

Bibliography

[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction

to the Cell multiprocessor.IBM Journal for Research and Development, 49(4/5):589–604, 2005.

[2] IBM. Power4:http://www.research.ibm.com/power4.

[3] IBM. Power5:presentation at microprocessor forum. 2003.

[4] Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. Exploring the Design Space of Future

CMPs. InPACT ’01: Proceedings of the 2001 International Conference on Parallel Architec-

tures and Compilation Techniques, pages 199–210, Washington, DC, USA, 2001. IEEE Com-

puter Society.

[5] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in Multi-Core Architec-

tures: Understanding Mechanisms, Overheads and Scaling. InISCA ’05: Proceedings of the

32nd Annual International Symposium on Computer Architecture, pages 408–419, Washington,

DC, USA, 2005. IEEE Computer Society.

[6] Lawrence Spracklen and Santosh G. Abraham. Chip Multithreading: Opportunities and Chal-

lenges. InHPCA ’05: Proceedings of the 11th International Symposium on High-Performance

Computer Architecture, pages 248–252, Washington, DC, USA, 2005. IEEE Computer Society.

[7] S. Mukherjee, B. Falsafi, M. Hill, and D. Wood. Coherent Network Interfaces for Fine-Grain

Communication. InProceedings of 23rd ACM Int. Symposium on Computer Architecture (ISCA

1996), pages 247–258, Philadelphia, PA USA, May 1996.

[8] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct Cache Access for High Bandwidth Network

I/O. SIGARCH Comput. Archit. News, 33(2):50–59, 2005.

[9] Xilinx Inc. PowerPC 405 Processor Block Reference Guide, August 2004.

67

68 BIBLIOGRAPHY

[10] Xilinx Inc. PowerPC Processor Reference Guide, September 2003.

[11] Xilinx Inc. Processor IP Reference Guide, December 2004.

[12] J. L. Hennessy and D. Patterson.Computer Architecture: a Quantitative Approach. Morgan

Kaufmann Publisher Inc., 1990.

[13] C. Scheurich and M. Dubois. Correct Memory Operation of Cached-Based Multiprocessors. In

Proceedings of the 14th International Symposium on Computer Architecture (ISCA 1987), pages

234–243, June 1987.

[14] David Mosberger. Memory consistency models.SIGOPS Oper. Syst. Rev., 27(1):18–26, 1993.

[15] David Culler, J.P. Singh, and with Anoop Gupta.Parallel Computer Architecture: A Hard-

ware/Software Approach. Morgan Kaufmann Publishing Co., Menlo Park, CA, 1998.

[16] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-machine multicomputer:

an architectural evaluation. InISCA ’93: Proceedings of the 20th annual international sympo-

sium on Computer architecture, pages 224–235, New York, NY, USA, 1993. ACM Press.

[17] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz, J. Kubia-

towicz, B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife machine: architecture and

performance. InISCA ’98: 25 years of the international symposia on Computer architecture

(selected papers), pages 509–520, New York, NY, USA, 1998. ACM Press.

[18] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu, Michael Chen, and

Kunle Olukotun. The Stanford Hydra CMP.IEEE Micro, 20(2):71–84, 2000.

[19] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz Qadeer,

Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: a scalable architecture

based on single-chip multiprocessing. InISCA ’00: Proceedings of the 27th annual international

symposium on Computer architecture, pages 282–293, New York, NY, USA, 2000. ACM Press.

[20] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Green-

wald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnid-

man, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. Evaluation of

the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams. InISCA

BIBLIOGRAPHY 69

’04: Proceedings of the 31st annual international symposium on Computer architecture, page 2,

Washington, DC, USA, 2004. IEEE Computer Society.

[21] Xilinx Inc. Processor Local Bus (PLB) v3.4, September 2004.

[22] Xilinx Inc. PLB-to-IPIF Controller v2.01.a, May 2004.

[23] Njuguna Njoroge, Sewook Wee, Jared Casper, Justin Burdick, Yuriy Teslyar, Christos Kozyrakis,

and Kunle Olukotun. Building and Using the ATLAS Transactional Memory System. InWork-

shop on Architecture Research using FPGA Platforms (WARFP’05) at HPCA-11, February

2005.

70 BIBLIOGRAPHY

Appendix A

DSPLB & PLB2Cache module

A.1 DSPLB Behavior

The data-side processor local bus (DSPLB) interface enables the PowerPC 405 data cache unit (DCU)

to load and store data from any memory device connected to the processor local bus (PLB). This

interface has a dedicated 32-bit address bus output, a dedicated 64-bitread-data bus input, and a

dedicated 64-bit write-data bus output. The interface is designed to attach as a master to a 64-bit PLB,

but it also supports attachment to a 32-bit PLB. It is capable of one data transfer (64 or 32 bits) every

PLB cycle.

The same things hold for the instruction cache unit. It is also designed to connect as a master to a

64-bit or 32-bit PLB bus, and is capable of transferring one datum word every PLB cycle. Since PLB

specification supports multiple masters, DSPLB and ISPLB can be connectedto a single PLB bus.

This approach is also followed in this study. Each processor is connectedto one PLB bus to retrieve

data and instructions. The arbiter of the bus is responsible to schedule the generated requests properly.

In the case were both masters require to be granted the bus, the arbiter gives priority to the DSPLB

interface. This generally results in better processor performance.

Data (read and write) requests are produced by the DCU and communicatedover the PLB inter-

face. A request occurs when an access misses in the data cache or the memory location that is accessed

is non-cacheable. The signals used for the PowerPC 405 and the PLB to communicate can be seen in

Figure A.1. Also, a short description of the signals can be found in Table A.1.

71

72 APPENDIX A. DSPLB & PLB2CACHE MODULE

Signal Function
C405PLBDCUREQUEST Indicates the DCU is making a data-access request.
C405PLBDCURNW Specifies whether the data-access request is a read or a write.
C405PLBDCUABUS[0:31] Specifies the memory address of the data-access request.
C405PLBDCUSIZE2 Specifies a single word or eight-word transfer size.
C405PLBDCUCACHEABLE Indicates the value of the cacheability storage attribute for the tar-

get address.
C405PLBDCUWRITETHRU Indicates the value of the write-through storage attribute for the

target address.
C405PLBDCUU0ATTR Indicates the value of the user-defined storage attribute for the tar-

get address.
C405PLBDCUGUARDED Indicates the value of the guarded storage attribute for the target

address.
C405PLBDCUBE[0:7] Specifies which bytes are transferred during singleword transfers.
C405PLBDCUPRIORITY[0:1] Indicates the priority of the data-access request.
C405PLBDCUABORT Indicates the DCU is aborting an unacknowledged data-access re-

quest.
C405PLBDCUWRDBUS[0:63] The DCU write-data bus used to transfer data from the DCU to the

PLB slave.

PLBC405DCUADDRACK Indicates a PLB slave acknowledges the current data access re-
quest.

PLBC405DCUSSIZE1 Specifies the bus width (size) of the PLB slave that accepted the
request.

PLBC405DCURDDACK Indicates the DCU read-data bus contains valid data for transfer to
the DCU.

PLBC405DCURDDBUS[0:63] The DCU read-data bus used to transfer data from the PLB slave
to the DCU.

PLBC405DCURDWDADDR[1:3] Indicates which word or doubleword of an eightword line transfer
is present on the DCU read-data bus.

PLBC405DCUWRDACK Indicates the data on the DCU write-data bus is being accepted by
the PLB slave.

PLBC405DCUBUSY Indicates the PLB slave is busy performing an operation requested
by the DCU.

PLBC405DCUERR Indicates an error was detected by the PLB slave during the trans-
fer of data to or from the DCU.

Table A.1: DSPLB PLB Interface Signal Summary

A.2. DSPLB SIGNAL SUMMARY 73

UG018_05_102001

PPC405
PLBC405DCUADDRACK

PLBC405DCUSSIZE1

PLBC405DCURDDACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCUWRDACK

PLBC405DCUBUSY

PLBC405DCUERR

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31]

C405PLBDCUSIZE2

C405PLBDCUCACHEABLE

C405PLBDCUWRITETHRU

C405PLBDCUU0ATTR

C405PLBDCUGUARDED

C405PLBDCUBE[0:7]

C405PLBDCUPRIORITY[0:1]

C405PLBDCUABORT

C405PLBDCUWRDBUS[0:63]

Figure A.1: Data-Side PLB Interface Block Symbol

A.2 DSPLB Signal Summary

Depending on the type of the address range accessed (cacheable & non-cacheable) the PLB interface

generates the appropriate request. Access to cacheable memory causesan entire cache line (8 words)

to be transferred over the PLB, while non-cacheable accesses usuallyrequest only one word to be

transferred. Cacheable data transferred as a cache line are eventually stored in the cache array, while

single non-cacheable words remain in the fill buffer. There is also the possibility that non-cacheable

reads be loaded using an eight-word line transfer, in order to take advantage of the PLB line-transfer

protocol to minimize PLB-arbitration delays and bus delays associated with multiple, single-word

transfers. The transferred data are placed in the DCU fill buffer, butnot in the data cache. Subsequent

data reads from the same non-cacheable line are read from the fill buffer instead of requiring a sep-

arate arbitration and transfer sequence across the PLB. Data in the fill buffer are read with the same

performance as a cache hit. The non-cacheable line remains in the fill buffer until the fill buffer is

needed by another line transfer.

From these three scenarios described above, the first and the third mustbe prohibited when ac-

cessing memory characterized as shared. In these two cases, subsequent memory accesses to the same

addresses are being served by the internal cache structure and not from the coherent cache. This threat-

ens memory coherency because these subsequent accesses are performed without taking into account

that the specific memory is probably used by another entity, too. The only wayto solve this problem is

by making each processor to generate accesses that are not influenced by the internal state of the data

cache in order to access shared memory. This is accomplished by addressing non-cacheable memory,

74 APPENDIX A. DSPLB & PLB2CACHE MODULE

transferring a single word per memory access. The rest of the private memory can be safely set as

cacheable.

A PLB access can be divided into two parts. The first part has to do with theaddress accessed

and the second part with the data returned (read access) or given (write access). Figure A.2 depicts

different kinds of PLB accesses.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2

val

adr3

fill1 fill3

C405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

rw2 rl3rl1

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY

rw2 rl3rl1

rl101 rl123 rl145 rl167 rw2 rl301 rl323 rl345 rl367

d101 d123 d145 d167 d2 d301 d323 d345 d367

0 2 4 6 0 2 4 6

(a) DSPLB Line Read/Word Read/Line Read

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

UG018_25_101701

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2 adr3

flush1 flush3

C405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

ww2 wl3wl1

d101 d123 d145 d167 d2 d301 d323 d345 d367

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY

ww2 wl3wl1

wl101wl123wl145wl167 ww2 wl301wl323wl345wl367

val

(b) DSPLB Line Write/Word Write/Line Write

Figure A.2: PLB Accesses

During the first part, the processor requests to be granted the bus, setting the

C405PLBDCUREQUEST high and driving the address signal (C405PLBDCUABUS). Also control

signals like C405PLBDCURNW and C405PLBDCUSIZE2 must be valid and stable until the bus

acknowledge the address. Depending on the state of the bus and the state of the slave peripheral,

the address can be acknowledged in the same cycle that the request is asserted. After this acknowl-

edgement, the request signal is driven low. In case of read access, when the datum (single word ac-

cess) or data (burst access) become available the slave peripheral willdrive PLBC405DCURDDACK

high. The number of cycles that the acknowledge signal will remain high depends on the access (1

cycle for single word access, multiple cycles for burst access). In case of a write access, the first

64-bit data word must be valid in the cycle the C405PLBDCUREQUEST is driven high. The slave

peripheral can acknowledge the data even in this cycle, by driving the PLBC405DCUWRDACK sig-

nal high. If the access writes only a single word then the access finishes inthe same cycle, and

PLBC405DCUWRDACK is driven low. A dummy cycle of no activity must pass before the DSPLB

sends the next request. If the access writes more than one word, PLBC405DCUWRDACK remains

high until all the words are acknowledged.

There are some issues that must be discussed about the accesses shown in the last figure. First

A.3. PLB2CACHE MODULE FSMS 75

of all someone can observe subsequent accesses to overlap in time. Thisis because the DCU can

overlap an on-going request with a previous one. This process, known as address pipelining, enables

a second address to be presented to a PLB slave while the slave is transferring data associated with the

first address. Address pipelining can occur if a data-access request is produced before all data from a

previous request are transferred by the slave. This capability maximizes PLB-transfer throughput by

reducing dead cycles between multiple requests. The DCU can pipeline up to two read requests and

one write request. (Multiple write requests cannot be pipelined.) A pipelined request is communicated

over the PLB two or more cycles after the prior request is acknowledged by the PLB slave.

Furthermore, there have been made some timing assumptions regarding the timing diagrams

shown.

• For example, requests are acknowledged in the same cycle they are presented by the DCU, if

the bus interface unit (BIU) is not busy. This doesn’t hold if the DCU is connected to a PLB bus.

The PLB requires 3 cycles of arbitration before the peripheral becomesaware of the request.

• The first read-data acknowledgement for a data read is asserted in the cycle immediately fol-

lowing the read-request acknowledgement. This represents the earliestcycle a bus interface

unit (BIU) can begin transferring data to the DCU in response to a read request. However, the

earliest the PLB begins transferring data is two cycles after the read request is acknowledged.

• The first write-data acknowledgement for a data write is asserted in the samecycle as the write-

request acknowledgement. This represents the earliest cycle a BIU canbegin accepting data

from the DCU in response to a write request. However, the earliest the FPGA PLB begins

accepting data is two cycles after the write request is acknowledged.

The timing diagrams of Figure A.2 show the fastest way the DCU can operate having been connected

to an ideal bus or directly (point-to-point) to an ideal peripheral. Constraints and limitations must be

taken into account in order to make a safe estimate of the performance of a system that disposes a

PLB bus and more than one PLB peripherals.

A.3 PLB2Cache module FSMs

Figure A.3 shows the state diagrams of the two FSMs. As it can be seen, both of them are very simple

and have very few states. The FSMPLB FSM has three states. The idle state is called PLBIDLE. It

remains in this state until a valid request for shared memory is generated. Depending on the type of the

76 APPENDIX A. DSPLB & PLB2CACHE MODULE

request it proceeds to state ACKEDADDR, in case of a read request, otherwise to state ACKEDWR.

When performing this transition the address of the request is acknowledged. Additionally, the address

is pushed into the FIFO if the FSMACCESS is busy serving a previous request. The FSM remains in

the ACKED ADDR state until the requested data arrive and the PLB has finished serving any previous

requests. Then it returns to PLBIDLE. When in state ACKEDWR it stays there for a cycle and then

returns to the idle state. The purpose of waiting for one cycle has to do with theconstraint the DCU

imposes of spending one cycle without activity after each completed write request. During this cycle

the C405PLBDCUREQUEST signal is low and the PLBC405DCUBUSY high.

DataAck

PLB_IDLE

ACKED_ADDR ACKED_WR

!C405PLBDCURNW
capture_access &

C405PLBDCURNW
capture_access &

Data not available

(a) FSMPLB State Diagram

Cache_ack &

NO_ACCESS

PLB_ACCESS

FIFO_ACCESS2

FIFO_ACCESS1

capture_access

Cache_ack & !pending_action

Cache_ack &
pending_action

!Cache_ack

!pending_action

(b) FSM ACCESS State Diagram

Figure A.3: PLB2Cache module FSMs

FSM ACCESS is also very simple, consisting of only four states. The idle state is called

NO ACCESS. It remains in this state until an access to shared memory is captured.When this

happens, the access is instantly passed to the coherent cache, and the FSM proceeds to state

PLB ACCESS. It stays in that state until the request that it serves has completed. Depending on

the occupancy of the FIFO, the FSMACCESS transitions either to FIFOACCESS1 in order to serve

requests that have been queued in the FIFO or back to the idle state, if thereare no available requests.

In FIFO ACCESS1 state stays for one cycle, in order to pop the address of the access from the head

of the queue, and then proceeds to state FIFOACCESS2. State FIFOACCESS2 is equivalent to state

PLB ACCESS with the difference that data are read by the FIFO and not by the FSM PLB. It remains

in that state until the request is completed. When this happens, it transitions back to FIFOACCESS1,

A.4. RETURNING DATA 77

if there are available requests in the FIFO or back to the idle state.

FSM ACCESS is responsible for communicating with the coherent cache, which is the next

step in the hierarchy. Each couple of states (NOACCESS PLBACCESS and FIFOACCESS1 -

FIFO ACCESS2) corresponds to serving one request. The minimum this can hold is2 cycles, which

corresponds to cache hit and completion of the request. In the first state of the couple the address of

the request is sent to the cache in order to read the tag memory. In the second state a decision on a

hit or a miss is taken. Until the cache signals the end of the request being served control, address and

data signals towards the cache must be valid and stable.

A.4 Returning Data

An issue that must be cleared has to do with the way the DCU receives data when load requests

are issued. As mentioned above, the DCU supports two reads and one writeaccesses to wait for

completion at the same time. This comes from the ability of the DCU to pipeline requests. There are

two entities that serve DCU requests, the PLB bus that responds to requests accessing private memory

and the coherent memory system that responds to requests accessing shared memory. The problem

arises, when the DCU overlaps subsequent load requests that accessshared and private memory. These

two requests will be served in parallel by two different entities. Thus, no assumptions can be made

about the time required for each request to complete. As a result, there is thelikelihood that these two

requests would not complete in program order. In systems, where the DCUis connected directly to

the PLB bus without any other entity standing in between, this problem was solved because the PLB

bus and the slave peripherals attached to it were serving requests in a first-come-first-served fashion.

Now, care must be taken in order to impose this kind of completion on the load requests. In order to

achieve this, all the possible combinations of load requests must be taken into account. Since there

must be a load request to shared address space, this request must be non-cacheable (with respect to

the DCU). Thus, the possible combinations are the following:

1. burst access to private memory followed by access to shared memory

2. non-cacheable access to private memory followed by access to shared memory

3. access to shared memory followed by burst access to private memory

4. access to shared memory followed by non-cacheable access to private memory

78 APPENDIX A. DSPLB & PLB2CACHE MODULE

Figure A.4 provides an example of the fastest speed at which the PowerPC405 DCU can request and

receive single words over the PLB. The DCU is designed to wait for the current single-word read

request to be satisfied before making a subsequent read request. Thisrequirement results in the delay

between requests shown in the figure.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PLBCLK and CPMC405CLK

PPC405 Outputs:

C405PLBDCUREQUEST

C405PLBDCURNW

C405PLBDCUABUS[0:31] adr1 adr2 adr3

d1 d2 d3

val valvalC405PLBDCUBE[0:7]

C405PLBDCUWRDBUS[0:63]

C405PLBDCUSIZE2

DCU

rw2 rw3rw1

rw2 rw3rw1

rw2 rw3rw1

PLB/BIU Outputs:

PLBC405DCUADDRACK

PLBC405DCURDDBUS[0:63]

PLBC405DCURDWDADDR[1:3]

PLBC405DCURDDACK

PLBC405DCUWRDACK

PLBC405DCUBUSY

Figure A.4: DSPLB Three Consecutive Word Reads

Thus, combinations 2, 3 and 4 can be considered safe, since there is no DCU activity until the first

request of the couple to complete (Figure A.2 doesn’t show an example forcombination 2, but same

thing happens in that case, too). The only combination that must be taken under consideration is com-

bination 1. Enforcing program order on load request completion for combination a is rather simple.

When PLB2Cache module is about to return data to the DCU, it checks signalsPLBC405DCUBUSY

and PLBC405DCURDDACK. If both of them are high, this means that a burst read access has pre-

ceded. The PLB2Cache module waits for PLBC405DCURDDACK to go low before it returns the

data.

Appendix B

Details about the Coherent Cache

B.1 Part A FSMs

B.1.1 FSM CPU ACCESS

Figure B.1 shows the state diagram for FSMCPU ACCESS. Six states constitute the FSM.

CPU READ TAGS is the idle state. The PLB2Cache module provides the address and drives the

control signals to initiate the access. Provided that part A is not busy evicting another block, the ac-

cess can proceed, otherwise the FSM is blocked in the initial state. When part A becomes available,

there are 3 possible states to which FSMCPU ACCESS may proceed. If the access is a non-cacheable

read it transits to NCRD state. It stays there until the data become available and then returns to the

idle state. If the access is a non-cacheable write then it transits to NCWR state. It stays there until the

bus acknowledges the transmission of the data to the external memory. Then itreturns to the initial

state. Finally, if the access is a cachable (read or write) access it transits toCHECK EQUALITY. The

transition from the idle state to CHECKEQUALITY incurs a read access to each of the tag memo-

ries. During the CHECKEQUALITY cycle the tags are compared for equality with the tag-part of

the address accessed. In case equality is found and the existence of theproper privileges for accessing

the specific cache block, the access is considered to be a cache hit. It completes by the end of the

second cycle. At the same time, data are returned to the processor, in caseof a read access, or data

are written in the cache, in cache of a write access. Additionally, tag memory is updated, in case of a

write, and also LRU information about the accessed set are stored. In thenext cycle, the FSM returns

to the idle state.

Apart from the “cache-hit” scenario, there is also the possibility of the absence of the required

79

80 APPENDIX B. DETAILS ABOUT THE COHERENT CACHE

Write

CPU_READ_TAGS

CHECK_EQUALITY MISS_COHERENCE

MISS_BLOCK

NC_RD

NC_WR

Cacheable access

Cache hit

Block Invalid

PrWr &

Block Shared

Request Pending

Request Pending

Data Available

Data Available

Data Available

Request Pending

Request Sent

Non−CacheableRead

Non−Cacheable

Figure B.1: FSMCPU ACCESS State Diagram

cache block or the absence of privileges to use it. In the former case, theFSM transits to the

MISS BLOCK state, issuing the appropriate BusRd or BusRdX message (depending on the type of

the access, read or write). It stays in that state until all the requirements are met for the access to

complete. When that happens the CacheAck signal goes high for one cycle and the FSM transits

back to the idle state. In the latter case the FSM transits to the MISSCOHERENCE state, issuing an

Invalidate message. The only possibility of not having the proper privileges to access a cache block is

when a write access is issued for a block that is shared. All the other write-cases fall in the case where

the required block is missing. The FSM stays in that state until all the requirements are met for the

access to complete. When that happens the CacheAck signal goes high for one cycle and the FSM

transits back to the idle state.

B.1.2 WB FSM

The second FSM, WBFSM as shown in Figure B.2, in part A is responsible for handling write back

activity. Write back activity corresponds to transferring modified blocks back to main memory. This

transfer takes place when an access that misses in the cache requires a new cache block to be loaded in.

The new block that comes in conflicts with two blocks that are already present in the cache. These two

blocks occupy the whole specific set, in which the new block is mapped. The replacement algorithm

is called to resolve this conflict by choosing a block to be evicted from the cache. The block that

is least recently used is chosen to leave the cache. If that block is ’clean’then the incoming block

B.1. PART A FSMS 81

just over-writes it. If, however, the chosen block has been modified, it must be written back to main

memory.

The logic identifies the need to evict a cache line, in order to make some space for the incom-

ing block, during the second cycle of the access. At that time FSMCPU ACCESS is in the state

CHECK EQUALITY and is going transit to MISSBLOCK, since the requested block is not present

in cache. The ’replacedirty’ signal rises to notify the start of the eviction process and unblock the

WB FSM to transit from WBIDLE to WB REQ. In the positive clock edge between these two states,

FSM CPU ACCESS generates a bus message to request the corresponding block.

Canceled

WB_IDLE

WB_EVICTWB_REQ

WB_EVICT_ACK WB_WAIT_ACK

Replace dirty

Cancel Write Back

Acknowledged
Write Back

Block Sent

Block Sent

Write Back Acknowledged
or

Figure B.2: WBFSM State Diagram

WB FSM cannot take advantage of this clock edge, since the path towards the bus is busy receiv-

ing the first of the two bus messages. Giving priority to loads over stores, that is sending first the bus

message that requests the missing block, is well known, and it’s proven to increase the performance

of the cache by reducing the miss penalty. Following this approach, WBFSM waits for one cycle,

moving to state WBREQ. In the next positive clock edge it sends the request to notify the initiation

of a write-back action and then moves to WBEVICT state. For each cycle WBFSM remains in the

WB EVICT state it sends a word that resides in the evicting block. The word is sent to the logic

within part B that is responsible for the communication with the bus. The FSM leaves this state if all

82 APPENDIX B. DETAILS ABOUT THE COHERENT CACHE

the words of the block have been sent, and transits to WBWAIT ACK. It can also leave from this

state if a write-back acknowledgement is received. In that case it transitsto WB EVICT ACK. The

purpose of acknowledging the write-back transmission is to assure that theaction can safely proceed.

There are two possible scenarios when a write-back should not complete.In the first one, a remote

cache invalidates the copy of the cache block that is about to be evicted. The remote cache intends

to write the specific block, which also means that it undertakes the responsibility of holding the most

up-to-date state of the block. Thus, the local cache doesn’t need to writeback the block to the main

memory. If the local cache wrote back the block then coherency of the datawould not be harmed.

However, a useless request would have been issued, wasting DDR bandwidth. The second scenario

involves receiving an update message for the block that is about to be evicted. In this case the write

back action must be canceled. An update message is designed to clear the dirty bit if the block is

found to be in a cache. Upon completion of the update message, all the caches and the main mem-

ory have an up-to-date copy of the block. Thus, no-one has the responsibility to flush it in case of a

conflict, since the block isn’t dirty in any cache. However, processor’s and bus’ accesses happen in

an asynchronous way. Part A may have already decided to evict a blockthat in the near future will

be updated. This conflict is recognized and the eviction process is canceled, notifying the bus to also

ignore any data that may have transferred. When WBFSM is found in WBWAIT ACK it waits for

a write-back acknowledge or write-back invalidation and then transits to WBIDLE state. When in

WB EVICT ACK the FSM is sure that the eviction will not fail. The rest of the words within the

block are sent to part B and then WBFSL transits to WBIDLE.

A write-back transfer is not considered to be a separate bus transaction. It is hidden behind the

block transfer that generated the eviction. That is feasible because the implementation of the bus offers

different sub-buses for transferring data from and to the cache. Immediately after the bus request has

been transferred, the write-back action is initiated. The address of the evicted block is first transferred

and then the data in a critical-word-first fashion. The first word out is either the one that has the same

offset with the address generated the miss, if the offset is even, or the previous word if the offset is odd.

Either way, the first word out must lie in even offset due to constraints imposed by the implementation

of the bus. It is crucial for the consistency of the memory the data to be transferred in this fashion.

When the access that missed in the local cache is served by the remote cache, the incoming block

arrives in the local cache before the end of the eviction process. If theprocess has started by writing

back offset 0 to offset 7 then there is the possibility some data to be overwritten by the incoming

B.2. COMPLETING REQUESTS AND CACHE STATUS 83

block.

B.2 Completing Requests and Cache Status

The sequence of actions taken to resolve the conflict between a processor’s access and an update bus

request are similar to those needed to implement the critical-word-first feature. The dependency check

module is used in this case, too. A processor’s access is blocked waiting for the requested block to

arrive. When that happens part B updates immediately the tag memory, but also forwards the proper

information to the dependency check module. In the following cycle, part A reads the updated tag

line, obtaining the belief that the requested block is available. However, the dependency check module

identifies that both parts of the cache access the same cache block, driving the EarlyRestartMiss signal

high. The FSMCPU ACCESS ignores the updated tag line and waits for the corresponding bit ofthe

signal ValidBits to be driven high. This happens by part B when the specific word is arrived by the

bus and is written in the cache.

Including the scenario just described, there are six possible ways for an access to be completed.

Some of them have been mentioned earlier, but it would be more clear for the reader to be presented

all together.

• Cache hit: An access may hit in the cache and complete in to cycles time. During thelast

cycle that acknowledge signal is driven high. If the processor access is a read access then the

requested data are read directly by the data memory of the cache.

• In case of a read access which misses in the cache due to absence of the requested block, the

FSM blocks in the MISSBLOCK state. The dependency check module will signal the arrival

of the data, as described above. However the data are not read by the data memory of the cache.

When part B receives the word of the target address (regardless ofthe type of the request, read

or write), it writes it to the data memory and also to the ReturnData register. PartA gets the

requested data from this register and forwards them to the processor.

• In case of a write access which misses in the cache because of the absence of the requested

block, the FSM blocks in the MISSBLOCK state. The dependency check module will signal

the arrival of the block and specifically the arrival of the target address. When that happens the

request is considered to have been served. However, the data of the write access are not written

to data memory by part A. While part A is blocked waiting the cache block to arrive, the data

84 APPENDIX B. DETAILS ABOUT THE COHERENT CACHE

are forwarded to part B. When the word of the target address arrives it is ignored. Its place is

taken by the new data provided by the processor. This is done because part A, although blocked,

it might be busy evicting a cache block. In this case the data memory is busy andcannot handle

the write access.

• In case of a write access which misses in the cache because of absence of privileges on the

specific cache block, the FSM is blocked in the MISSCOHERENCE state. While blocked, it

constantly reads the tag memories (without luck). When the cache eventually acquires privi-

leges on the specific cache block part B updates the tag memory. The next read from part A

on the tag-line of the requested block will notify the existence of the proper privileges for the

access to complete.

• In case of a non-cacheable write, part A forwards to part B the address and the data to be written.

The access completes when part A gets notified that the request has beensent over the bus.

• In case of a non-cacheable read, part A is blocked in NCRD state. Part B signals the

availability of the non-cacheable word by placing it in ReturnData register and also setting

Non CacheableDataValid register high. This triggers the completion of the access. Data are

read by the ReturnData register and are forward to the processor.

B.3 Part B FSMs

B.3.1 BUSFSM

Figure B.3 depicts the state diagram of the FSM. BUSIDLE is the initial state. BUSFSM re-

mains in that state until a new request is forwarded by part A. When this happens it transits to ei-

ther BUSCHECK CMD or BUS SEND CMD. BUS CHECK CMD is chosen when there must be

a comparison between the address of the request to be sent and the address of a request that has just

been arrived. The reason to do so is that there may be the need to changethe type of the outgoing

request. This need comes from the fact that an Invalidate request doesn’t cause the transfer of a block.

The scenario that threatens the coherency of the data is the case where the local processor sends an

Invalidate message for a certain block, which is shared and wishes to write toit. At the same time a

message broadcasted on the bus invalidates (Invalidate or BusRdX) the specific block. The message

from the remote cache has come before the local message, and thus the remote processor will use the

B.3. PART B FSMS 85

up-to-date copy of the block. If the local Invalidate message is not changed to BusRdX message then

the local processor will operate upon the old copy of the block.

Write Back Finished or Canceled

BUS_IDLE

BUS_CHECK_CMD

BUS_SEND_CMD

BUS_SEND_WB_ADDR BUS_SEND_WB_DATA

ValidCommand &
!Comparison

ValidCommand & Comparison

NeedComparison

Bus Not Granted

Bus Granted SFIFO empty

Write Back In Progress
Sending Cache Block

Figure B.3: BUSFSM State Diagram

If a scenario like this doesn’t occur, then the FSM will transit from BUSIDLE to

BUS SEND CMD. However, there is also the possibility of changing the outgoing request while

in BUS SEND CMD, too. This may happen only if there are three participants on the bus, thelocal

cache is granted the bus last and the previous request served conflictswith the local request. In this

case, the FSM transits to BUSCHECK CMD for one cycle, and then returns to BUSSEND CMD.

While in BUS SEND CMD the FSM requests to be granted the bus. It stays there until it receives

an acknowledge signal, which means that the request has been broadcasted. Then it transits to

BUS SEND WB ADDR. The cycle dedicated to this transition corresponds to sending the address

of the block that is about to be written back or the data for a non-cacheablewrite. The FSM then

transits to BUSSEND WB DATA, if there is a cache block to be evicted or to BUSIDLE in all

other cases. The FSM stays in BUSSEND WB DATA state until all the words of the cache block

are transmitted or the decision to cancel the write back is taken. Then it returns to BUSIDLE. A

small improvement in the request procedure is that in the case where there isno need to transit from

BUS IDLE to BUS CHECK CMD, then the output signal BReq is set high before this transition.

86 APPENDIX B. DETAILS ABOUT THE COHERENT CACHE

The bus registers the request signals, and thus a cycle is saved in the common case.

Finally, this part of the logic is responsible to notify when an Invalidate message can be safely

considered to have completed. This is done when the FSM is in the BUSSEND CMD state trying to

send an Invalidate message and receives an acknowledge signal fromthe bus. Having taken control

over the shared medium can safely assume that the Invalidate message will betranslated by anyone

on the bus in the same manner (order). Thus, it is safe to assume its completion.At the next cycle the

privileges of the block in this cache are upgraded.

B.3.2 FSM REQ IN

Figure B.4 shows the state diagram of FSMREQ IN. BUS RD TAGS represents the idle state of

the FSM. The arrival of a request drives the address pins of the tag memories, and also makes the

FSM to transits to either BUSCHECK EQ or FETCH or NCREAD. If the request is one of the

BusRd, BusRdX, Invalidate and Update, the FSM goes to BUSCHECK EQ and uses the output of

the tag memories to check if the requested block is cached. If the request comes from an incoming

refill message or an incoming non-cacheable read then the FSM transits to FETCH state or NCREAD

state, respectively, and ignores the output of the tag memories. While in the FETCH state the incoming

block is written in the data memory and the tag information gets updated. The address that had come

before the block declares the sequence on which the block will be written in the memory. The word

corresponding to the target address is also written to the ReturnData register and forwarded to part A.

As far as the non-cacheable read requests are concerned, the FSM transits to NCREAD, signaling

that the requested word has become available. The transition is triggered bythe start of the response

message. The non-cacheable word follows back to back the start of the message, which is the address

of the datum. In this case the address has no use, but also doesn’t costanything. The implementation

of the bus is aware of this detail and makes sure to send the address one cycle before it becomes able

to send the datum.

While in BUS CHECK EQ it compares the tag-part of the incoming address with the outputs of

the tag memories. If equality occurs then it is said that the request had a remotehit (in the remote

cache). Depending on the type of the request a response, either positive or negative, must be sent back.

Both BusRd and BusRdX are required to notify the bus about the status of the request in the specific

cache. The bus then should know if it should forward the request to the DDR controller or data from

another cache will be sent to the initiator cache, instead. On the other hand,Update and Invalidate

messages don’t cause any additional flow of information to the bus. If the requested cache block is

B.3. PART B FSMS 87

Finished

Invalidate Message Served
or

Remote miss &
BusRd
BusRdX
Update

Remote hit &
BusRdX

BusRd

BUS_RD_TAGS

NC_READ

FETCH BUS_CHECK_EQ

POS_RESPONSE

UPDATE

Non−Cacheable Read Returning

Requested Block
Incoming

Writing Block to Cache

Incoming Bus Request
Invalidate − BusRd
BusRdX − Update

Sending Requested
Block

Finished

Finished

Remote hit &
Update

Writing Block to Cache

Figure B.4: FSMREQ IN State Diagram

found in the cache it gets either updated or invalidated. If the requested cache block isn’t cached the

message is just ignored. Any of the following messages, for which the remotecache doesn’t hold a

copy of the requested address, make the FSM to transit back to the idle state.During the transition the

Requestmiss signal is driven high, in order the bus to be notified for the miss. On the other hand, if

a BusRd or a BusRdX message hits in the remote cache the FSM transits to POSITIVE RESPONSE

and responds with the shared data. An Invalidate message that hits in the remote cache doesn’t need

more processing. It transits back to the idle state. During the transition it modifiesthe tag information

concerning the requested block. Finally, an Update message that hits in the cache moves to UPDATE

state.

While in POSITIVERESPONSE data from the cache are sent to the bus. During the transition

from BUS CHECK EQ to POSITIVERESPONSE the cache has already sent the address (or the head

of the response message) of the cache block. The data of the block followback to back. After the

transmission of the whole block the FSM returns to the idle state. While in the UPDATE state, data

coming in from the bus are placed into the data memory. After having receivedthe entire cache block

the FSM returns to the idle state.

88 APPENDIX B. DETAILS ABOUT THE COHERENT CACHE

B.4 Communication with the dependency check module

The behavior of the dependency check module and the communication between the two parts of the

cache has already been described. However, a small description follows regarding the specific timing

FSM REQ IN uses in order to serve the incoming requests. BusRd and BusRdX messages that hit in

the cache modify the tag memory during the first of the eight cycles of the POSITIVE RESPONSE

state. Thus, in order the dependency check module to receive in time the required information,

FSM REQ IN forwards it when transiting from BUSCHECK EQ to POSITIVERESPONSE. The

same holds for successive Update messages. The eight valid bits, though, are updated cycle by cycle.

An invalidate message that hits in the cache clears the tag line as soon as the hit isresolved. This is

done at the end of the BUSCHECK EQ cycle. Thus, proper information is being forwarded as soon

as the message is received. A refill message updates the tag-line upon reception (at the end of the

BUS RD TAGS before transition to FETCH). At the same time the proper information is forwarded

to part A and also the valid bits are updated cycle by cycle, while FSMREQ IN is in FETCH state.

Appendix C

Coherent Bus Module FSMs

C.1 FSM Arb

Figure C.1 depicts the state diagram of the FSMArb that handles the transmission of requests and

data through the bus. ARBITRATE corresponds to the idle state. The FSM remains in this state until

it receives a new request. The request signals that are sent by the participants are masked before

they reach the FSM’s logic. The FSM recognizes a new request only when it is capable of serving

it. The incapability of the FSM to serve a request comes from FIFO’s finite capacity. The amount

of memory dedicated to the FIFOs is statically partitioned between the different types of messages

(one different FIFO module for each type). Consequently, there is totallyenough memory to keep

pending 4 non-cacheable write accesses, 2 block evictions, and 2 Update messages. Whichever part

of the memory is full the bus stops accepting requests until a free position be created in that part. The

FIFO-memory was chosen to be partitioned statically in order to separate the memory dedicated to

storing evicted blocks, from all the other kinds. The need to do so arises from the fact that a write

back can be canceled. A part of the block that is supposed to be written back may reside in the FIFO’s

when the action is canceled. In order to clear these words the FIFO module isbeing reset. No other

kind of data must be present during this FIFO reset.

When, eventually one or more requests can be served by the bus, the FSMdecides which one to

serve (arbitration) sending an acknowledgement to the corresponding cache, and transits to the next

state. A BusRd or BusRdX message produces the transition towards the GATHER REPLIES state,

while a non-cacheable write the transition towards the NONCACHEABLE WR. An Update mes-

sage produces the transition towards the UPDATE state, and all the other requests the transition to

89

90 APPENDIX C. COHERENT BUS MODULE FSMS

Block Sent

NON_CACHEABLE_WR

ARBITRATE

NULL GATHER_REPLIES

POSITIVE_RESPONSE

UPDATE

NON_CACHEABLE_RD

Non−Cacheable Write

Update Message

BusRd or BusRdX
Message

Data Available

Invalidate

Invalidate
Sent

Message

Non−Cacheable Read
Response

Ready
Message

Block Request
Response Message Ready

Block Sent

Remote hit

Remote

miss

Transmiting Block

Transmiting Block

Figure C.1: FSMArb State Diagram

the NULL state. In parallel with transiting to one of these states, the head of themessage, which

is the address, is either broadcasted or written to the corresponding FIFO. A non-cacheable write

pushes the address to be accessed in the commands FIFO during the transition from the idle state to

NON CACHEABLE WR. While in NON CACHEABLE WR it pushes the data to be written into

the corresponding FIFO (Commandsfifo) and returns to idle state. An Invalidate message follows a

similar course. While in the idle state the address and the type of the request are being broadcasted

to all remote caches. The FSM transits to NULL state, where it stays there forone cycle only. Then

it returns to the idle state to serve the next request. The existence of that dummy cycle is necessary,

because during this period the remote caches are evaluating the equality check between the incoming

address and the accessed tag-line. If a hit occurs then Part B of eachcache that resolved equality, is

busy updating the tag memory and cannot accept another request. Updatemessages follow a straight-

forward course, too. While in the idle state, the address of the block to be updated is broadcasted,

along with the type of the message. Furthermore, the update command and the address are pushed into

the Commandsfifo, in order the request to reach the main memory. The FSM transits to UPDATE

state and stays there until all the words of the block are broadcasted to the participants. In parallel with

this, each word is also written to the Updatefifo. The FSM returns to the idle state after having sent the

entire block. The actions taken for BusRd and BusRdX messages are morecomplex. During the tran-

sition from the idle state to GATHERREPLIES state the address and the type of the request are being

C.2. FSMBUS WB 91

broadcasted. While in GATHERREPLIES the FSM waits for either one or more positive replies, or

a number of negative replies, which are enough to identify that the request failed in the remote caches

and should be served by the main memory. Assertion of signal BCoherenceDatax notifies a positive

response from cache ’x’, while assertion of signal BRequestmiss x notifies a negative response. If

one or more positive responses are found the FSM transits to POSITIVERESPONSE state, and stays

there until the whole cache block is transferred. Any cache that has a copy of the requested block will

try to transmit the cache block. Only one of them will be chosen to make the transmission, and this

will be the first cache, in relation to the one being served, in the round-robin order. Depending on the

type of the request, the block is loaded either in shared or exclusive state.In case of a BusRd message,

signal BSharedStatex is driven low if the requested block is not shared, otherwise it is drivenhigh.

In case of a BusRdX message, signal BSharedStatex is always driven low in order the block to be

loaded to Exclusive state. The signal is valid for one cycle only, when the head of the message arrives

at the cache that initiated the request. After the transmission of the whole blockthe FSM returns to

the idle state. As far as the negative responses are concerned, the FSMtransits to NULL state when

it resolves a total remote miss. During the transition, the address and the corresponding command

are written in the Commandsfifo. The DDR controller becomes aware of the request and some cy-

cles latter the cache block is available in the DataInfifo. The corresponding address is sent back to

the cache, as the head of the message that caries the requested block. The B SharedStatex signal

is driven to the proper value and the FSM transits to POSITIVERESPONSE state to send the data.

After the whole cache block is sent it returns to the idle state.

C.2 FSM BUS WB

In the same clock domain with the FSMArb there is also a less complex FSM, named FSMBUS WB

that handles the write back activity. BUSWB IDLE is the idle state, and the FSM stays in that state

until the initiation of a block eviction is signaled. If so the FSM transits to ACCUMULATE DATA,

where it receives the data sent by the cache and push them into one of thetwo available write back

FIFOs. If the write back is canceled the FSM returns to the idle state, otherwise when half the block

has been transferred to a FIFO the FSM transits to WBCONFIRMED. Having transferred half of

the block it is then certainly that the eviction process has no reason to be canceled. While in the

WB CONFIRMED state the rest of the block is received and written to the same FIFO. After the end

of the process the FSM returns to the idle state. The crucial part of the process is the time chosen

92 APPENDIX C. COHERENT BUS MODULE FSMS

to notify the DDR controller that there is a write back to be carried out. This is done only after

confirmation of the eviction process. Specifically, while transiting to WBCONFIRMED state, the

address of the block and the corresponding command are written in the Commands fifo. The DDR

controller will serve the write back request after having finished with the BusRd or BusRdX request

that came before.

Appendix D

Detailed Reports

D.1 Waveforms for Halted IPIF Burst Accesses

0000000 0100014 0100014 0000000 0100034 0500034 0000000

ff 00 ff 00

0000000000000000 ffffffffffffffff c400000026000000 0000000000000000

/testbench/top/\top/sys_clk_s_n\

/testbench/top/\top/signal_mBus2IP_CS\

/testbench/top/\top/signal_mBus2IP_Addr\ 0000000 0100014 0100014 0000000 0100034 0500034 0000000

/testbench/top/\top/signal_mBus2IP_WrReq\

/testbench/top/\top/signal_mBus2IP_RdReq\

/testbench/top/\top/signal_mBus2IP_BE\ ff 00 ff 00

/testbench/top/\top/signal_mBus2IP_Data\ 0000000000000000 ffffffffffffffff c400000026000000 0000000000000000

/testbench/top/\top/signal_mIP2Bus_AddrAck\

/testbench/top/\top/signal_mIP2Bus_WrAck\

/testbench/top/\top/signal_mIP2Bus_RdAck\

/testbench/top/\top/signal_mIP2Bus_Data\

/testbench/top/\top/signal_mIP2Bus_ToutSup\

/testbench/top/\top/signal_mIP2Bus_Busy\

(a) IPIF Burst Write Accesses Halted

0000000 0700034 0100034 0500034 0300034 0700034 0000000

ff 00

0000000000000000

ffffffffffffffff ffffffffffffffff

/testbench/top/\top/sys_clk_s_n\

/testbench/top/\top/signal_mBus2IP_CS\

/testbench/top/\top/signal_mBus2IP_Addr\ 0000000 0700034 0100034 0500034 0300034 0700034 0000000

/testbench/top/\top/signal_mBus2IP_WrReq\

/testbench/top/\top/signal_mBus2IP_RdReq\

/testbench/top/\top/signal_mBus2IP_BE\ ff 00

/testbench/top/\top/signal_mBus2IP_Data\ 0000000000000000

/testbench/top/\top/signal_mIP2Bus_AddrAck\

/testbench/top/\top/signal_mIP2Bus_WrAck\

/testbench/top/\top/signal_mIP2Bus_RdAck\

/testbench/top/\top/signal_mIP2Bus_Data\ ffffffffffffffff ffffffffffffffff

/testbench/top/\top/signal_mIP2Bus_ToutSup\

/testbench/top/\top/signal_mIP2Bus_Busy\

(b) IPIF Burst Read Accesses Halted

Figure D.1: IPIF Burst Accesses Halted

D.2 Detailed Timing Reports for Critical Paths

93

94 APPENDIX D. DETAILED REPORTS

Source: top/MemorySystem/cache0/tagsmem/tagsmem0/B6.A (MEM)
Destination: top/ppc4050/ppc4050/PPC405i (CPU)
Data Path Delay: 9.820ns (Levels of Logic = 8)
Clock Path Skew: 0.000ns
Source Clock: top/plbbram0 connectorBRAM Clk rising
Destination Clock: top/plbbram0 connectorBRAM Clk rising
Clock Uncertainty: 0.000ns
Delay type Delay(ns) Logical Resource(s)
Tbcko 1.401 top/MemorySystem/cache0/tagsmem/tagsmem0/B6.A
net (fanout=4) 0.932 top/MemorySystem/cache0/A DataOut0tags¡17¿
Tilo 0.274 top/MemorySystem/cache0/comp21A/Eq161
net (fanout=1) 0.551 top/MemorySystem/cache0/comp21A/Eq161/O
Tilo 0.254 top/MemorySystem/cache0/comp21A/Eq238
net (fanout=4) 0.575 CHOICE6949
Tilo 0.274 top/MemorySystem/cache0/Ker753521
net (fanout=3) 0.585 top/MemorySystem/cache0/Lru bits associatein
Tilo 0.254 top/MemorySystem/cache0/Cachehit33
net (fanout=4) 0.311 top/MemorySystem/cache0/CHOICE1663
Tilo 0.254 top/MemorySystem/cache0/Cachehit54
net (fanout=11) 0.272 top/MemorySystem/cache0/Cachehit
Tilo 0.274 top/MemorySystem/cache0/Cacheack252
net (fanout=33) 0.650 top/MemorySystem/cache0/Cacheack252
Tilo 0.254 top/vag0/Ker668951
net (fanout=64) 0.902 top/vag0/N66897
Tilo 0.254 top/vag0/PLBC405DCURDDBUSOUT¡51¿1
net (fanout=1) 1.516 top/PLBC405DCURDDBUSOUT 0¡51¿
Tpdck PLB 0.033 top/ppc4050/ppc4050/PPC405i
Total 9.820ns (3.526ns logic, 6.294ns route)

(35.9% logic, 64.1% route)

Table D.1: Time Consumption at the Read Hit Path

D.2. DETAILED TIMING REPORTS FOR CRITICAL PATHS 95

Source: top/MemorySystem/cache0/B Non CacheableDataValid (FF)
Destination: top/ppc4050/ppc4050/PPC405i (CPU)
Requirement: 5.000ns
Data Path Delay: 4.970ns (Levels of Logic = 4)
Clock Path Skew: 0.000ns
Source Clock: top/sysclk s n rising at 5.000ns
Destination Clock: top/plbbram0 connectorBRAM Clk rising at 10.000ns
Clock Uncertainty: 0.000ns
Delay type Delay(ns) Logical Resource(s)
Tcko 0.370 top/MemorySystem/cache0/B Non CacheableDataValid
net (fanout=5) 0.234 top/MemorySystem/cache0/B Non CacheableDataValid
Tilo 0.274 top/MemorySystem/cache0/Cacheack6
net (fanout=6) 0.209 top/MemorySystem/cache0/CHOICE1609
Tilo 0.274 top/MemorySystem/cache0/Cacheack252
net (fanout=33) 0.650 top/MemorySystem/cache0/Cacheack252
Tilo 0.254 top/vag0/Ker668951
net (fanout=64) 0.902 top/vag0/N66897
Tilo 0.254 top/vag0/PLBC405DCURDDBUSOUT¡51¿1
net (fanout=1) 1.516 top/PLBC405DCURDDBUSOUT 0¡51¿
Tpdck PLB 0.033 top/ppc4050/ppc4050/PPC405i
Total 4.970ns (1.459ns logic, 3.511ns route)

(29.4% logic, 70.6% route)

Table D.2: Time Consumption at the end of the Read Miss Path

Delay: 2.230ns (data path)
Source: top/MemorySystem/cache0/BUS FSM FFd4 (FF)
Destination: top/MemorySystem/SwitchedBus/REQreceivedR 0 (FF)
Data Path Delay: 2.230ns (Levels of Logic = 0)
Source Clock: top/sysclk s
Destination Clock: top/sysclk s n rising
Delay type Delay(ns) Logical Resource(s)
net (fanout=4) 1.689 top/MemorySystem/cache0/BUS FSM FFd4
Tsrck 0.541 top/MemorySystem/SwitchedBus/REQreceivedR 0
Total 2.230ns (0.541ns logic, 1.689ns route)

(24.3% logic, 75.7% route)

Table D.3: Time Consumption when requesting the Bus

96 APPENDIX D. DETAILED REPORTS

Source: top/MemorySystem/SwitchedBus/NextNextto Serve0 (FF)
Destination: top/MemorySystem/cache0/datamem/mem0/B6.B (RAM)
Requirement: 10.000ns
Data Path Delay: 9.871ns (Levels of Logic = 9)
Clock Path Skew: -0.095ns
Source Clock: top/sysclk s n rising at 5.000ns
Destination Clock: top/sysclk s n rising at 15.000ns
Clock Uncertainty: 0.000ns
Delay type Delay(ns) Logical Resource(s)
Tcko 0.370 top/MemorySystem/SwitchedBus/NextNextto Serve0
net (fanout=15) 0.479 top/MemorySystem/SwitchedBus/NextNextto Serve¡0¿
Tilo 0.274 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿28SW0 1
net (fanout=1) 0.777 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿28SW0 1
Tilo 0.254 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿28SW0
net (fanout=1) 0.540 N168349
Tilo 0.274 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿56
net (fanout=3) 0.080 CHOICE6301
Tilo 0.254 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿70
net (fanout=12) 0.494 top/MemorySystem/SwitchedBus/Arbitrateserving¡1¿
Tilo 0.274 top/MemorySystem/SwitchedBus/Ker89704SW0
net (fanout=4) 0.334 N147546
Tilo 0.254 top/MemorySystem/SwitchedBus/Ker897042
net (fanout=14) 0.297 top/MemorySystem/SwitchedBus/Ker897042
Tilo 0.274 top/MemorySystem/SwitchedBus/Sender¡23¿1
net (fanout=18) 1.543 top/MemorySystem/SwitchedBus/Sender¡23¿
Tilo 0.254 top/MemorySystem/SwitchedBus/MmuxB Data2Cache0 Result¡23¿1
net (fanout=5) 1.601 top/MemorySystem/BDataIn0¡23¿
Tilo 0.274 top/MemorySystem/cache0/Mmux B DataIn2memResult¡23¿1
net (fanout=2) 0.770 top/MemorySystem/cache0/B DataIn2mem¡23¿
Tbdck 0.200 top/MemorySystem/cache0/datamem/mem0/B6.B
Total 9.871ns (2.956ns logic, 6.915ns route)

(29.9% logic, 70.1% route)

