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Abstract

Recent technology advances in integrated electronics offer the abilitydtmace and more tran-
sistors into modern chips. Chip Multiprocessors (CMPs) are architedhme$eature multiple pro-
cessing cores on a single chip. They result in higher processing peasser design scalability, and
greater performance/power ratio. CMPs appear to be one of the dominatimitectural approaches
for the years to come in the area of high performance architectures.

The purpose of this work is to design and implement a shared memory multiystersthat
matches the needs of future CMPs. Specifically, an FPGA-based protmgpecen implemented,
which constitutes a two-node processing system. The design takes apvahthe two PowerPC
cores that are embedded in the FPGA fabric. We have implemented exteneatot caches equipped
with a MESI protocol, and a bus-based coherent memory interconneghi@ct the two processors.
Shared memory resides in external DDR memory accessible through themieot and the DDR
controller.

We find that the area overhead of our coherent memory system is 33 d%edium-size FPGA.
We evaluate the performance of the system by using both simulations andhcssfiovare bench-
marks running on the two processors. Our simulations show that the systdememted is more
efficient than systems based exclusively by Xilinx soft-cores that tfiesame type of memory co-

herence. Our custom benchmarks simulate basic operations found commg@alsallel programs.



Our results show that our design scales well with respect to a singlegsacéor the Merge-Sort al-
gorithm and the Producer-Consumer benchmark that don”t requisa gimount of synchronization
traffic. The speedup measured ranges between 1.89 to 1.92 and 1.88 teSpéctively. On the other
hand, the Shared-Counter benchmark slows down by 3 to 10 times duesss®&ecsynchronization

traffic.

Thesis Supervisor:Manolis Katevenis, Professor



Yyedtaon xou Thomoinomn evoe Troouotiwatoc MvAunc Xuvoyrc
Acdopévov vy [Tohvenelepyaotéc Aloporoalopevne Mvhunc

BAdyoc Evdyyehog
Mertantuytoxr Epyaoia

Turua Entetiung Trohoyiotov
[avemo thuo Kertng

[epthndm

[Mpbogata teyVOLOYIXd EMTEGYUATI GTOV TOUEN TWV OAOXATPWUEVWY XUXAOUATWY TEOCQE-
EOLY TNV duVATHTNTA TEOGVEOTC TERIOTOTERGY Tpav IO TOP 0 TA ONUERIVE ONOXANEWUEVA XUXADUO-
ta. Ta «Ohoxinpwyéva ITohvuenelepyas Tix®V XUo TNUATWV»ATOTEAODY APYITEXTOVIXES Ol OTOLES
dralétouv mohhaniolg nuphveg enelepyaciog 61o (Blo ohoxAnpwuévo. Autd €yel cav anotéeoua
™y abinon enelepyao Tixnig Loy Uc, TNV EUXONOTERT XAAX WG NG oyedlaong xou Ty adEnom Tou
AOYoL anbdoome avd Hovdda xatavdAwonc. Autd To eidog oyedlaong avauéveTal Vo ETLXPAUTHOEL
070 UENAOV GTOV TOUEN TNG APYLTEXTOVIXTC UTOAOYLIO TMV.

O oxonde avth g epyooiag eivar 1 oyedlaon xo UAomoINoN EVOC GUG TAUATOC TOAAJTAGY
TuprveVv dlouotpalbUevng uvAung, to onolo npooeyyilel tig W1dTNTE EVOC YehhovTixol moAue-
negepyaotixol cuothuatog. Ilpwtétuno Tou ocusThuatog autol ulonotiinxe oe wo FPGA xou
anotehel éva ovotnua pe duo enedepyactixolc mupnvee. To clotnua alomoel toug 800 ev-
owpatepévous encgepyactéc PowerPC, ou onolot xat anotelolv yépog tou GAOU GUG TAUATOC.
Thonohouue eEWTEPIXES XPUPES UVIUES EQODLOUCUEVES UE TEWTOXOMNO GuvoyTC SlapolpalGUEVng
uvAung xat éva 8ixtuo Tomou apTneiag Yo va ouvdEcoupe Toug dlo enelepyactéc. H dapolpaldpe-
v uviun Beloxetor oty e€wtepue DDR uvAun xou ebvar npoonehdoiun péow Tou UTo-GUG THUATOG
g,

To emnpboieto xdotoc oe eufaddv nou ewodyeton and 10 obotud pac eivar 33,4% oe pa

FPGA peoaiou peyédouc. Amotfoaue tnv enidooy, Tou GUOTAUNTOS UAS YPNOILOTOUIVTAS
TPOCOUOLOOELC XU DOXIUAC TN TPOYRIUPATA TOU TEEYOUV Xat 6Toug dlo enelepyactéc. Ot mpo-

7, 4 4 7. 4 Z N /4 /4 7 ’
copolwoElg Pog €deillay 6Tt To oloTtnua mou vhomoifinxe elvar mo anodotixd and xdde dhho



mou Tpoo@épel GUVETY| dapolpalouevy uvhAun xou Bocileton anoxAeloTIXd O XOUUdTIo A THY
BiBhodxen tne Xilink . To Soxiuao 1ixd npoypduato ToU YeNotLOTOLOUUE TPOCOUOLWOVOUY Poot-
xéc hertoupyiec mou eppaviCovtar ouyvd oe nopdAinha npoypedupata. To anotehéopata delyvouv
OTL 7 an6dooT) ToU GG TNUY LIS XAUOXWVETOL OUUAd OE OYEDT) UE TOV €Val ETECEPYAOTY, Yol TOV
alyderipo talvounong xat 1o npdypopua Hapaywyol-Katavalonts, ta onola dev dnpouvpyoly
ueydhec toodTnTEC Xivnone ouyypoviopol. H emtdyuvorn nou petpriinxe xupaiveton and 1,89 éwc
1,92 xon and 1,89 éwe 3,45, avtiotorya. Avidétwe, 10 npdYpauud Tou dlagolpaldUeVou UETENTH

emiPpadtvinxe and 3 €ng 10 gopéc Adyw unepBohixric xivnomng ouyyeoviouoy.

Enéntne Metantuytoxrc Epyaotag: Mavéine Katefaivng, Kadnyntic
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Chapter 1

Introduction

Recent technology advances in integrated electronics offer to compgiieeers the ability of adding
more and more transistors into modern chips. The logic being added is beamimiegnd more com-
plex, describing and implementing more powerful designs. This effeatdsasted in the occurrence
of Chip Multiprocessors (CMPs). This approach suggests that highrpgance processor architec-
tures should move towards designs that feature multiple processing co@single chip. These
designs have the potential to provide higher peak throughput, easign deslability, and greater
performance/power ration than nowadays uniprocessor ones. Tiisappears to be one of the dom-
inating architectural approaches for the years to come in the area of @ifgrrpance architecture.
Specifically, there are already some multi-core architectures on the matké, 3] that dispose a
small number of processing cores. In the near future CMPs are egptecteave a larger number
of processors, since global wire delays will limit the area of the chip thasefulifor a single con-
ventional processing core. It is following that this area will be dedicatetepdoy additional cores
[4, 5, 6].

Having so many units on a single chip, it certainly alters the architecturalidesighat have been
considered safe until now. Processing power no longer constitutesttitenieck of these designs. The
vast amount of transistors available on chip has transferred the boklem#dee need of making all
the processing cores cooperate efficiently. Thus, one of the most impohracteristics, on which
a great amount of consideration will be focused, will deal with communicasismes between the
multiple processors, either on-chip or even off-chip. The on-chip conwatian is usually carried
out by on-chip interconnection networks that connect the on-chipegsitg elements. The off-chip

communication is usually the responsibility of a Network Interface, which meésilile the commu-
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nication with other multinode systems. However, efficiency in communication leéssa relation
with the proximity of computation to communication. This tight coupling between cortipaotand

communication is usually expressed as customizing the features of Netwerkates in order to
meet particular application domain demands. This, however, influence signa# the interconnect
network. Thus, an integrated design of the network interface and thedntegction network will

provide the desired features to the whole system.

An approach that offers tight coupling between communication and compugatggests the use
of Coherent Network Interfaces (CNI) [7, 8]. According to this aygmh, the multiple nodes (CPUS)
use a coherency protocol to share the available memory. The Networfat@es connected to the
memory bus and uses the underlying coherency protocol to transfetodéite memory and/or the
cache hierarchies. In this way, low-latency communication is providedppssed to the currently

long-latency coupling through the 1/O bus.

The purpose of this study is to design and implement a system that comestoldlserfuture
architecture that described above. Specifically, an FPGA-basedymwetbas been implemented,
which constitutes a two-node processing system. A Xilinx Virtex-1l Pro FRA been used to
host the whole system. The design takes advantage of the two Power@titatlrare embedded in
the FPGA fabric [9, 10, 11]. External coherent caches and a enhememory interconnect have
been implemented to connect properly the two processors. Shared masiolgsrin external DDR
memory accessible through the interconnect and the Xilinx DDR controllesh Beocessor is also
connected to a PLB bus in order to have access to instructions and glatateFinally, the coherent
memory interconnect has been designed to accept also a third participect, san be a coherent

network interface. However, this entity remains a future objective.

The rest of the thesis is organized as follows: Background informatidrrelated work are dis-
cussed in the rest of this chapter. In Chapter 2 the design and the implemenfdtie whole system
is presented. Experimental results and comments from the evaluation ofdfieensgtre shown in

Chapter 3. Finally, the conclusion of this study and future work directia@sbe found in Chapter 4.

1.1 Background

This section of the chapter presents some background information atemedSMemory Multiproces-
sors and Chip Multiprocessors. Specifically, the Cache Coherenpenpyavill be described in detail,

and some Cache Coherence protocols will be presented. Finally, the @;iReatural organization
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Figure 1.1: The Cache Coherence Problem

will be presented and analyzed.
1.1.1 Shared Memory Multirocessors

The Cache Coherence Problem

Figure 1.1 depicts the problem that arises when multiple processors haeg&sdo a shared region
of memory. Processors P1 and P2 are connected through an intertonrmestwork to the main
memory, while both of them have one private write-back cache. In this deaRfpand P2 share
variable Y, which both use it in the normal flow of their parallel program. @&nhe point in time
processor P1 reads (arc no. 1) variable Y from main memory and plazmgsyaof Y into its cache.
Let’s say that at that time Y has the value of ‘10’. Then, processor&sré@rc no. 2) variable Y from
main memory, placing a copy of Y into its cache, too. The value of Y is still ‘1@ ainthat point both
processors have an up-to-date copy of Y. The problem arises wheagsor P1 attempts to modify
(arc no. 3) the value of Y. The action of writing to Y the value of ‘5’ updaialy the local copy that
P1 retains in its cache. However, the copy of Y that P2 has remains intadainaig an older value
of Y. When processor P2 attempts to read Y (arc no. 4), it reads a slake ofathat variable. At
this point processor P2 has an out-of-date view of the specific memorydogceesulting to wrong
execution of the parallel program. This is usually referred to as the atterence problem.

A naive solution to this problem would be to prevent caching of shared mehyothe proces-
sors. However, this would have a tremendous negative impact on th&rmparfce of the parallel

program. Furthermore, in shared memory multiprocessor architectuaglingefrom and writing to
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shared memory regions by different processors is expected to h&pperntly. This frequent event
is used by processes of a parallel program to communicate with eachThigeconcludes to the fact
that addressing shared memory in these architectures must be addreddgkntent way than con-

venient uniprocessors do. The answer to this problem is given byasedechniques that provide

coherency among shared data.
Cache Coherence

In the previous example the problem appeared when the last read opésatied by processor P2
didn’t return the up-to-date value of variable Y. This happened bectugslast write access to this
variable was made by processor P1, and P2 was never informed ahb(Rhrs problem is attributed
to the memory interconnect, part of which are also the processors’salchg12] a strict definition

of cache coherence is given and is apposed below for completenassdiag to it,

A memory system is coherent if:

1. Aread by a processor P, to a location X that follows a write by P to X, withnitesv
of X by another processor occurring between the write and the read binwBys
return the value written by P.

2. A read by a processor to location X that follows a write by another psme®
X returns the written value if the read and write are sufficiently separatetran
other writes to X occur between the two accesses.

3. Writes to the same location are serialized: that is, two writes to the same Incatio
by any two processors are seen in the same order by all processmrexample, if
the values 1 and 2 are written to a location, processors can never reachthe of
the location as 2 and then later read it as 1.

The first property indicates that operations issued by any processor io the order which they
are issued to the memory system by that processor. That means that theynsgstem doesn'’t
change the relevant ordering between memory operations from the sacesgor. The order, which
is preserved in this way, is the same order that the memory operations appeaiprogram, since
the processor does not issue memory operations in a way that will violatedtpeam semantics. The
second property indicates that the value returned by each read opésatie value written by the
last write operation to that location. If that couldn’t hold then the whole systeuldn’t be able to
become in any way coherent. The violation of this rule was presented in tive alzample. Finally,
the third property indicates the serialization of memory operations from all ibeepsors. Every

memory operation accesses a physical location at main memory. Since tl@aphmeamory module
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can serve one request at a time, it would impose a serial order on allatieanel write operations
from all the processors to any location.

In order to enforce coherency among multiple processors, hardweat@cpls embedded in the
cache hierarchy of each processor manage all the generatedesc¢&3s14]. They use the coherent
memory interconnect to exchange messages with the other caches to impads@sization among
them. The objectives that they serve are: upon a write request the émted must ensure that it holds
the only copy of the data accessed. Also, all the other caches of thensysist be informed about
this action and must either invalidate or update their specific copy of the ddtayihave one. Upon
a read request the local cache must notify all the other caches of teersiisat a new copy of the
data accessed has been generated. In this way a cache that hadwistiinmue copy is informed

that this situation has changed.
Hardware Schemes for Enforcing Coherence

An important property of coherency protocols is the way they track the statach data block ac-
cessed by a processor. There are two dominant approaches tadideavproposed (found in [15]).
The first one, nameDirectory basedsuggests that the state of every block is kept in a single location.
This location is responsible for administering the specific block of memory, Iiyngdt available to
other processors in a manner that preserves data coherency. cbmel sgproach, nameshooping
basedsuggests that no centralized state is kept. On the contrary, every cattmedintains a copy
of a block also maintains a copy of the sharing status of the same block. tiwerg memory block
is requested all the caches must search themselves to see if they holdd ttapyblock. If a cache
does have a copy, then it follows the steps imposed by the coherencgairoto

Shared memory systems that follow the first approach separates the whuoleryne n parts,
wheren the number of available processors. Each part is assigned to onesgwgoghich is called
the host-processor and is responsible to administer it properly. The@hms#ssor maintains the status
of every block memory assigned to it, and also a list of all the other proeetsat have access to
memory blocks, for every memory block to its jurisdiction. This hardware sirads calleddirectory
and is maintained within the cache hierarchy of each processor. Every tprecassor wants to
access a block that doesn't resides in its local cache, it sends astegukedirectory of the owner
processor. Depending on the type of the action requestedirdatoryis responsible to notify all the
other caches that already hold a copy, and also provide the requaséed deeded. The interconnect

connecting the processors of the systems is not required to have asiffcspmperties, and affects
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only the form of the messages exchanged. dimectory basedschemes have appeared later in the
bibliography and as has been proved they have a very good perfoemahe key characteristic of
this architecture is that it scales well when the number of processorskdgaiiea system increases.
However, its major drawback is its complexity. Specifically, each directoncstres constitutes a
hot-spot of the system, since they receive requests by all the proseismduding the local one, that
require access to the range of memory assigned to it. Due to its complexity the imjsadiore of
such a scheme was rejected, and thus there will be no longer referenicette rest of the thesis.

On the other hand, shared memory systems that follow the second appmpahts of memory
are assigned to any processor. At any given time, a processor djo&stse to access a memory block,
which doesn't resides in its local cache, it sends a message to all thecatttes. All the caches
snoopthe traffic on the interconnection network to identify a new message. If cloechas a copy
of the requested block then the block is loaded from main memory. If, hoywewe or more caches
maintain a valid copy, one of them sends the requested block back to the tethrequested it.
Messages are used not only to facilitate data transferring. Every nedssagsigned a type, which has
a specific meaning for the coherency protocol. Based on this type ctmdtgsceive such messages
are becoming familiar about the intention of the requesting processor. gdwsknowledge they are
able to follow the steps imposed by the coherency protocol. This kind ofrenby protocols adds
an additional requirement from the interconnection network, which cotestithe basic property of
the protocol. This requirement refer to the ability that must be offered tocaniie to broadcast
messages and alsognoopthe bus activity. Otherwise, it is impossible for the distributed protocol to

synchronize the processors’ requests.
Snooping Based Coherency Protocols

There are two types of snooping based coherency protocols thabbamegproposed until now. Each
one of them has been presented in many versions; however the basicestegin identical. This
separation of protocols is based on the action taken by the protocol intorgeeserve coherency.
Coherency is usually threatened by write actions, as was also presefrigdia 1.1. There are two
ways to maintain the coherence requirement. The first one is to ensureptttatessor has exclusive
access to a data item before it writes that item. Protocols that follow this agpave usually called
write invalidateprotocol because of the action taken. The second way is to update ahtrecaches
that hold a copy of the item addressed, with the new value that is about toitbenw This type of

protocol is calledvrite updateprotocol. These two types of coherency protocols are described.below
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Write Invalidate Protocol A basic invalidate protocol is the three-state MSI write-back invalidation
protocol. The protocol uses three states to encode the state of a cadhthblaesides in a processor’s
cache. These three states arelthalid, the Sharedand theModified Thelnvalid state corresponds

to the absence of the requested block from the cache Shhe=dstate means the block is present in
an unmodified state in the cache, the main memory is up-to-date, and zero arap@® of the block

can be found in other caches. Finally, tedifiedstate means that only this cache has a valid copy of
the block, and the copy in main memory is stall. Figure 1.2 depicts the state diafjthenpwotocol.
Actions inducing transitions between states are shown next to the arcesBoos issue two types of
accesses, readBrRd) and writes Prwr). Next to these accesses the corresponding bus messages,
which will be generated upon a cache miss, are showBugRdmessage is generated wheRi&Rd
misses in the cache. The cache sen@asRdmessage to request a copy of the specific block that
doesn’t intent to modify. A memory system participant, either some other @ache main memory,

will reply. A BusRdXmessage is generated when the processor wants to write a cache bldsk that
either not present in the cache or is in the cache but not ifMib@ified state. The message is sent
to all the other caches, which invalidate their copies, if they have one. Wecacthe main memory
supplies an exclusive copy of the block. The write action completes whecoihe arrives in the

cache.

PrRd/-

Prwr/BusRdX ! :

Prwr/BusRdX

BusRd/-

Figure 1.2: State diagram for the MSI write-invalidate cache coheret¢eqmio

Observing the state of blocks from the processor’s sidRal always causes the requested block
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to transit toSharedstate (transitions | to S and S to S). Furthermord&r@/r always causes the
requested block to transit fdodified state (transitions | to M, S to M, and M to M). Observing the
state of the block from the bus’s side then the following transitions can take.pdBusRdXmessage
always causes the requested block to tranditvalid state (transitions M to | and S to |). If the block

is initially found in theModified state, then the cache may have to reply with the cache block (flush
action). Furthermore, BusRdmessage always causes the requested block to transit ghtred
state (transitions M to S and S to S). Again, if the block was initially found inMbelifiedstate, the

cache may have to reply with the cache block (flush action).

Write Update Protocol A basic update protocol is the three-state MSmSc write-back update pro-
tocol. The protocol uses three states to encode the state of a cache bloasities in a processor’s
cache. These three states are $tmredCleanthe SharedModifiecand theModified The Shared-
Cleanstate means the block is present in an unmodified state in the cache, the main meayory
or may not be up-to-date, and zero or more copies of the block can be fowther caches. The
SharedModifiedstate means that one or more caches have a copy of this block, main membry isn’
up-to-date, and it's this cache responsibility to update the main memory. Onlgamhe can be in
SharedModifiedstate for a specific block at each time. Finally, tedified state means that only
this cache has a valid copy of the block, and the copy in main memory is stall eFigdidepicts the
state diagram of the protocol. Actions inducing transitions between statsh@ma next to the arcs.
Processors issue two types of accesses, réa@(r PrRdMisg and writes PrwWr or PrWr).Next

to these accesses the corresponding bus messages, which will batggnare shown. ABusRd
message is generated wheRr&Rd misses in the cache. The cache senBsisRdmessage to request

a copy of the specific block that doesn’t intent to modify. A memory systenticgzant, either some
other cache or the main memory, will reply. BusUpdatemessage is generated when the processor
writes to a cache block. The bytes written by the processor are braaddasll the other processors

so that they can update their copies, if they have one.

Observing the state of blocks from the processor’s sidk¥Ral always causes the requested block
to enters the cache in ti8haredClearstate, or maintain itself in this state. On the other hariefVar
message can cause the block to transit eith&haredModifiedr to Modified The final transition
depends on the state of the block in the other caches. If the block is gharetthe Sc to Sm transition
takes place, otherwise the block transitdodifiedstate. If the block is initially absent from the cache

aPrWrMissis translated to @rRdMissfollowed by aPrWr scenario. Observing the state of the block
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PrRd/-
BusUpdate/-

PrRdMiss/BusRd
<~

PrWr/BusUpdate(S Prwr/BusUpd(S’)

BusRd/Flush
Prwr/BusUpd(S’

PrRd/-
PrRd/- Prwr/-
Prwi/BusUpd(S)

BusRd/Flush

Figure 1.3: State diagram for the write-update cache coherece protocol

from the bus’s side then the following actions are takerBusRdmessage causes a modified block
to enter one of th&cor Smstates. It depends on the initial state of the block which one will be the
resulting state. If the block was found in th state then it transits t8mstate. Otherwise, if the
block was found in either two states then it remains in that states. Whateveatisé&itm might be
the cache may be forced to transmit a copy of the block. On the other h&8wsUpdatemessage
can find a block only in th&cor Smstate. In this case the block transitsSostate, updating its part
that is modified. Both of these two types of coherency protocols that resebtwe have been used
the past years. Patterns of memory accesses may be presented teatederore efficiently by an
invalidate or an update protocol. However, throughout the years thatiicieommunity has shown a
preference for invalidate protocols over the update ones. The maonréashis comes from the fact
that the update protocols generate great amounts of traffic on the memaecpimiect. For this study,
an invalidate coherency protocol was chosen to be implemented. Thegrathdich is presented in

the next chapter, constitutes an extension of MSI protocol presented.ab

1.1.2 Chip Multiprocessors

While CMOS manufacturing technology continues to improve, reducing thetsegle gates, phys-
ical limits of semiconductor-based microelectronics become a major desigarooi@ome effects of

these physical limitations can cause significant heat dissipation and datar@yization problems.
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The demand for more complex and capable microprocessors causeseSigbleds to utilize various
methods of increasing performance. Some Instruction Level Parallelld®) thethods like super-
scalar pipelining are suitable for many applications, but are inefficiertdtfmrs that tend to contain
difficult-to-predict code. Many applications are better suited to Thread|Rarallelism (TLP) meth-
ods, which suggest the parallel execution of multiple threads in one or mocegsors. Multiple
independent CPUs is one common method used to increase a system’s DivBrall combination
of increased available space due to refined manufacturing processélseademand for increased
TLP led to the logical creation of Chip MultiProcessors (CMPs). CMP amgdiions combine two or
more independent processors, often called cores, into a single integiratgdt. The cores are usually

connected together using a Network-on-Chip (NoC) type interconneuagitwork.

In general, the existence of multiple processors on a single chip prowdesseve computational
power. This can be translated by parallel applications as opportunity foietkinead-level parallelism
(TLP) to a higher extend. Furthermore, communication between differeébis@s carried out faster
as opposed to parallel computers. In a CMP system the end points of conatmmere found in the
same chip. The messages exchanged between them don”t experielatertby of traveling off-chip.
As far as the hardware perspective is concerned, a CMP desigrsdsspeeater performance/power
ratio than monolithic designs. Amnode CMP system consumes less power thaimgle processors.
This comes from the fact that a CMP system has fewer pins, which alsosntieainless power is
consumed to drive signals external to the chip. Furthermore, the smallengiiocess geometry
allows the cores to operate at lower voltages; while a part of significaatagithe circuitry (part
of the cache hierarchy) is usually shared among the processors. FOEIB designs are based on
duplicates of the same core, which eases design scalability, and pradpicesuct with lower risk of

design error.

The major disadvantage of the CMP designs is the great power dissipatioadhls in increas-
ing chip temperatures. A CMP chip may consume less powerrtequivalent uniprocessor chips,
however the total amount of power consumption remains prohibitive. Naoheltores are able to
function at the same time for a long period of time, due to the fact that the cirauiitrgnelt down.

A solution to this problem suggests to dynamically switching on and off some @iviitable cores,
in order to lower the consumption level. From an architectural point of widvmately, single CPU

designs may make better use of the silicon surface area than multiprocessnag ¢
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1.2 Releated Work

Many projects have undertaken the task of designing and implementing mudtgsiarcdesigns, in
order to evaluate new architectures and ideas. Some of them [16, 17femthe early 90s, when
the proof by constructiompproach was very popular. In recent years, however, highdialazost and
human effort of fabricating chips in modern process technologies haste malding more daunting,
and as a result fewer projects [18, 19, 20] have endeavored to bwildraplementation.

The J-Machine [16] and the MIT Alewife multiprocessor [17] come fromgheallel computers
family, the predecessor architecture of the CMP organization. Theyathediganized as multi-
node systems, using a mesh network to connect all the components. TaehihMuses messages
to communicate data between the processors, while the Alewife multiprocedlsarsfthe shared
memory approach, using directory based coherence. However,shes® a hardware-software co-
operation to support some sort of messaging among the processors.

The architecture of the Hydra Chip Multiprocessor [18] comes closer torthestudied here. The
Hydra chip features four MIPS-based processors and their prinaafyes on a single chip together
with a shared secondary cache. Each processor incorporateateepstruction and data caches, con-
nected on a bus-based interconnect. An invalidation snooping colygyastocol is used to maintain
coherency among shared data. To simplify parallel programming, the KR supports thread-
level speculation and memory renaming.

The Piranha architecture [19] follows the same approach with the HydrR, @Mvever there
are a number of differences. The Piranha has eight cores, eadaf tivean having private first level
cache. The second level cache, which does not maintain inclusionye&dsdraong processors, while
the cache controllers use a more complex protocol to maintain coherenceghAgeed switch is
used to connect the on-chip cores, instead of the bus that HydraRisaby, the Piranha architecture
is designed to provide scalability past a single chip by integrating the requirethip functionality
to support glueless multiprocessing.

The Raw CMP [20] is the first chip to organize its processors in a meslaifigpdy, it comprises
of sixteentiles; each one incorporating a compute processor, routers, network, \aindsinstruc-
tion and data memories. Raw distinguishes itself from others by being a modetb#ecture and
supporting all forms of parallelism, including ILP, DLP, TLP and streamsiséts messages to com-
municate data among the processors, while the on-chip interconnects beltrgclass of scalar

operand networks.
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Chapter 2

Design and Implementation

In this chapter a detailed description about the design and the implementatiavafidhe system is
given. Steps followed and choices made, concerning the differens kihdlternative solutions that

could be followed, are presented and discussed.

2.1 General Description

The architectural organization of the system can be seen in Figure 2wfdle system is organized
based on the two IBM-PowerPC processors [9]. Each one of themnigzected to a private bus,
the architecture of which follows the “Processor Local Bus” specifioagiven by the IBM [21].
The connection is established through the two PLB-master interfacesidiistr-Side PLB (ISPLB)
and Data-Side PLB (DSPLB). ISPLB is responsible for fetching instrostiato the PowerPC’s In-
struction Cache Unit (ICU) and the DSPLB for fetching the required datatire Data Cache Unit
(DCU). Physical memory is provided to the processors by internal BRAddkis and external DDR
memory. Instructions and private data can be stored in either the extelinéimal memory, while
shared data can be stored only in the external DDR memory. BRAM bloekdim@ctly connected
to the corresponding PLB bus using an appropriate PLB-slave contrblierexternal DDR memory
can be addressed in two different ways, regarding the kind of memany becessed. If a processor
accesses shared memory the only way to reach it is through the coherantyrsystem, otherwise
private data and instructions located in the external memory are beingaddbsough the PLB2IPIF
bridge, bypassing the coherent memory hierarchy. Requests for thim&xDDR memory are be-
ing multiplexed before reaching the DDR controller. DIMRJX is responsible for this operation,

selecting and forwarding one request at a time to the DDR controller.

13
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Figure 2.1: Architecture of the System

PowerPC'’s accesses, upon their initiation, are being separated td sinarprivate. The disjunc-
tion is performed based on the address provided by the processorofériation is performed by
the PLB2Cache module, which filters memory accesses considered torbd ahd redirecting them
towards the coherent memory system. In order this to become feasible tHzCAtBe module is

inserted between the DCU pins of the PowerPC and the PLB bus.

The next step on the coherent path are the coherent caches. Bo#mnoate equipped with a
MESI-like cache coherent protocol in order to enforce cache eologr The size of each cache is
fully parameterized in order to try different organizations, while their eisswity and the size of
the cache lines are fixed and configured to 2-way and 8 words pee dia€h respectively (as the
internal caches of the PowerPC are). Regarding to the write policy, bottes handle “dirty” blocks
following the write-back approach; every cache block that has beeifigtbts written back to main
memory when evicted by the cache and not when it is modified. Finally, evicii@esandled in an

LRU fashion.

When an access is forwarded to the cache there are two possibilities,iedaerbe handled by
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the cache or the request should be forwarded to the next level of themphiearchy. There are three
reasons why an access cannot be handled by the cache. Thediistluat the address requested lies in
a non-cacheable shared address space and thus the requesbstfouldarded to the DDR controller.
The second reason is that the requested block is not present in tleeagaittihus it should be requested
by the next level of the memory hierarchy, and finally, the third reason ighibaspecific cache may
have the requested data, but it doesn't hold the appropriate privilegasxess them. In any of the
above cases the coherency protocol must decide the set of actioim®edep satisfy the processor’s
request while preserving coherency. Simultaneously with processoiests, the coherent cache is
designed to receive requests issued by the adjacent processorh®saoherency protocol is again
responsible to detect any conflict that will result in loss of coherenderforce a sequence of actions
that will preserve coherency. Local and remote accesses to the caohee handled in parallel,
provided that there is no conflict, since tag information is stored in BRAM memdrich disposes

two write ports and two read ports.

Finally, the two coherent caches and the DDR controller are connectadeonary interconnect,
which is used to transfer requests and shared data to and from the pautsciphe interconnect has
been designed to have the properties of a bus. Every memory accedsdbal hit in the local cache
is being broadcasted. The remote cache snoops the bus activity in ordeptmd to requests issued
by the local cache. If the requested data are found in the remote calioh, iw called a remote-hit,
they are sent back to the local cache. Otherwise, a negative respssukid and the bus then forwards
the request to the DDR controller. When the data become available are @lyesant to the local
cache. During this whole procedure, the bus has been acquired lmachne only and no other cache
is able to send another request. This means that the bus doesn’t sinpgrieaved accesses and it

starts to serve the next request only after having finished servingaki®ps one.

The rest of the chapter presents all the entities involved one by one.ehlagibr and the details of
all the functional blocks designed and implemented are presented. Footteebasic blocks, which

are part of the Xilinx EDK library, are also presented and their behaviamasyzed.

2.2 PowerPC 405

The PowerPC 405 is a 32-bit implementation of the PowerPC embeddedraneinbarchitecture that
is derived from the PowerPC architecture [9, 10, 11]. Xilinx Virtex-ibFFPGA family is equipped
with two embedded PowerPC 405 processors, as hard blocks within thérgiaf the FPGA.
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Figure 2.2 shows the internal structure and organization of the Powe®BC Zhe central-
processing unit (CPU) implements a 5-stage instruction pipeline consistietcbf flecode, execute,
write-back, and load write-back stages. The fetch and decode logis sesteady flow of instructions

to the execute unit, which are executed in-order.

PLB Master Instruction
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MMU CPU
I-Cache ' I-Cache Fetch
Array . Controller Instruction and . 3-Element
R R Shadow-TLB Decode | Fetch Queue Timers
Instruction-Cache (4-Entry) Logic
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Cache Units Unified TLB and
(64-Entry)
Debug
Data-Cache I e te Unit
Unit Data xecute Uni
i Shadow-TLB f«——f -~ R Debug
D-Cache | D-Cache (8-Entry) 32x32 | | 9
Array  Controller GPR ! ALU '
PLB Master PLB Master Data External-Interrupt Instruction
Read Interface Write Interface OCM Controller Interface JTAG Trace

Figure 2.2: PowerPC 405 Organization

Memory accesses initiated by the pipeline pass through the Memory Managemie{MMU)
before they reach the caches. Two modes of address translatiogneairtual, are supported.
When operating in real mode the addresses generated by the proggical @aldress space) running
on the processor is used directly by the hardware to access the datatuad mode, there is an
intermediate step, where the logical address is translated (mapped) td@phgdress, according to
the translation found in the Translation Look-aside Buffer (TLB) table.

An instruction-cache unit and a data-cache unit are found next to th& MBAch cache unit
contains a 16 KB, 2-way set-associative cache array, plus contiolfmgnanaging cache accesses.
The caches contain copies of the most frequently used instructions &ndrmth can typically be
accessed much faster than system memory. Each cache line stores 3# bgtagsuous and aligned
memory, a tag used to identify the line within the set, a dirty bit that indicates whistheacheline

has been modified since the time that was loaded into the cache and an LRUIbit,sphcifies if
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the specific line was (or not) the one least-recently used in the set. Thisniation is used by the
cache-line replacement algorithm when it is necessary to evict a cache kmdanto fetch a new

one. In that case, the least recently used cacheline is evicted.

2.3 PLB Bus Interconnect

The Xilinx PLB [21] is an IBM CoreConnect compliant interconnect whitbhvas multiple masters
and multiple slaves to be connected to the bus. It consists of a centralliigs,ahe necessary bus
control and gating logic, and all the necessary bus OR/MUX structures.eitire Xilinx PLB bus
structure is provided as soft-core and allows for direct connectiongddo 16 masters and 16 slaves.
It supports both 64-bit and 32-bit peripherals to be connected at the S@e. Each access requires
3-cycles for bus arbitration before the corresponding periphecairbes aware of the request. At the
end of the third cycle, the request can be safely latched by the peripRignare 2.3 depicts a 3-cycle

arbitration scenario.
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Figure 2.3: 3-cycle PLB Arbitration

Except for the multiple masters, the PLB implementation also supports pipelining cédlaests,
permitting the existence of more than one pending requests. This capability mesiRiiB-transfer
throughput by reducing dead cycles between multiple requests. Finallylém to differentiate the
importance of each of the multiple masters, four levels of dynamic master tquicegty are avail-

able.
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2.4 PLB BRAM Controller, BRAM blocks and PLB2IPIF Controller

The PLB BRAM controller provides the opportunity of connecting some ofabailable BRAM
memory to the PLB bus, and thus provides to the processors an easy wegess dhe embedded
memory. It is attached to the PLB bus as a slave peripheral and translateésBhgrotocol to a
simpler form, which is recognizable by the BRAM block module.

The BRAM block is a reconfigurable memory module that provides the alistmaaf the dis-
tributed memory available in the FPGA. Each block of memory has a size of 18&3and can be
available in different organizations, e.g. 512 lines x 36 bits per line. Thex4it Pro FPGA family
has the physical block memory placed in columns equally distributed in the itea BPGA. The
total amount of BRAM memory available in an FPGA is relevant to the size of ti-Fhe bigger
the FPGA the more available block ram embedded.

The PLB IPIF controller is a Xilinx soft-core [22], which targets to make therection between
User IPs and the PLB bus easier. It provides a bi-directional intetiat@een a User IP core and
the PLB 64-bit bus standard. For the purpose of this study two PLB2i&tEollers were used, each
one attached to a PLB bus. Both of them are connected as slave pdgpbeie PLB. They were
used as an additional way for the processor to access the externafiDiéMory, through the DDR
MUX block. The memory accessed this way is supposed to be private ¢brpgracessor. However,
for debugging purposes only, the PLB2IPIF controllers can be progred to have a full view of the

DRAM memory.

2.5 PLB2Cache module

PLB2Cache module is one of the two modules that connect the PowerPC witbsthef the units
available on the system. Figure 2.4 presents the connection between th&Eotire PLB bus, and
the PLB2Cache module. As it can be seen, the PLB2Cache module stawdgiéhe processor and
the PLB bus. Its purpose is to examine all the requests generated by thamfilter out those that
access shared memory. Filtered requests are forwarded towardh#rer@omemory system, while
requests that access private memory are served by the PLB bus. FitiEtingaccesses is based on
the same signals that are used to connect the DCU to the PLB.

As it is shown in the figure the signals leaving the DCU C405PLBDCUABUS,
C405PLBDCUBE, C405PLBDCURNW, C405PLBDCUABORT, C405PLBDWRDBUS, and
C405PLBDCUCACHEABLE are connected to both the PLB and the PLBB€anodule. Sig-
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Figure 2.4: Connection between the PowerPC, the PLB2Cache module eaddgh

nal C405PLBDCUREQUEST, which was until now connected directly to thB Bus, it passes
through the PLB2Cache module. Every time the DCU generates a new PLRsteqgthe
PLB2Cache module examines the address. If the address accessed grégia memory the
request propagates through the PLB2Cache module reaching the Rh&w&e, the propaga-
tion of the request is stopped in the PLB2Cache module, the PLB nevembscaware of
the request, which is forwarded and served by the coherent memotgnsys In the other
way around signals PLBC405DCUADDRACK, PLBC405DCUBUSY, PIEBDCURDDACK,
PLBC405DCURDDBUS, PLBC405DCUWRDACK, and PLBC405DCUSBISsthat were con-
necting the PLB to the DCU are now routed through the PLB2Cache module; araadriven by
the PLB when a read PLB access returns data or by the PLB2Cache mdukriea shared memory
read returns data.

Placing the PLB2Cache module between the processor and the bushadieysadvantages. Ac-
cesses to shared memory are not served by the PLB bus. This meansytaurth sustain the timing
costs of the arbitration and the sharing of the bus with the ICU, which is alsoected to the PLB.
For these accesses, the DCU transfers data at its fastest speedhsiogstom design (PLB2Cache,
Cache) is aware of the potentials of the DCU and tries to take advantagenoktrezy time an ex-
ternal cache hit occurs. Furthermore, when the DCU operates in maxipesd,smany accesses are
acknowledged as soon as possible, which favours pipelined requdatetplace. Finally, filtering

out some memory accesses favours the rest of the instructions ant pl@ta requests to be served
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faster, since less traffic passes through the PLB bus.
2.5.1 PLB2Cache Module Architecture

Figure 2.5 depicts the internal organization of the PLB2Cache module.rghaination of the whole
module is based on the two FSMs that co-operate in order to make the DCU carateumith the
coherent cache. The left one, FSRLB, is responsible for listening and filtering requests whose
addresses lie in the shared memory region. It simulates the behaviour @& al&lte peripheral in
order to give the illusion to the DCU that is still directly connected to the PLB bhs.logic generated
for FSM_PLB also contains the signals from PLB to DCU. When a request is seyb@ LB, these
signals are forwarded to the DCU. When a request is served by theetlcache, equivalent signals
driven by custom logic are forwarded to the DCU. The right one FSNM/ESCCESS, is responsible
for translating the PLB protocol to a simpler format. This format is used frenfPttB2Cache module
in order to communicate with the coherent cache. The need of having twe KSparallel comes
from the intention to operate the DCU in its maximum speed for the shared menueysas. In
order this to become feasible, both read and write accesses must comjitletee$pect to the DCU)
as soon as possible. Read requests cannot complete before thaeeglaa become available,
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Figure 2.5: PLB2Cache Architecture

however, write requests can complete in two cycles time. Additionally, in anydimdquest (read
or write) the first phase, which has to do with the acknowledgement of tiress] can also complete
very fast, specifically in the first cycle of the request. Following this tactichii®J will operate
in its maximum speed and the number of overlapping data accesses will Bcsaa® requests are
acknowledged immediately.

No matter how fast requests are acknowledged, they cannot be aeuswEmpleted until the
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action is considered to have finished for the rest of the coherent mey=igng too. Acknowledging
requests that fast requires storing them in a queue in order to be semedfuture. This is accom-
plished by the use of a FIFO, in which pending requests are stored.|Fetas a depth of 16 words.
Every time the FSMPLB identifies a new access to shared memory and REMLESS is busy with
a previous request, the new request is pushed into the FIFO. If it islaegaest it will occupy only
one word, otherwise a write request occupies two. During the cycle thadtress of the request
is acknowledged, it is also pushed into the FIFO. In the following cycle tie idaalso written, in
case of a write access. When the F@CESS becomes available it will serve the first request in
the queue. Since write requests are able to complete (with respect to theiD @) cycles time,
the FIFO will usually contain some write requests that will have been gatlavill be waiting
to be served. At some point in time the program will eventually generate aregaést, which will
be pushed at the end of the queue. The execution of the program wibhdleed waiting for the read
to complete. As it can be seen, acknowledging and queueing requestséntipeoperformance in a
short-term period. However, in a longer-term period a read accesfaedlthe cumulative delay of

all the previous accesses, balancing the progress of the executianprbtram.

Finally, within the range of shared addresses there is a sub-rangeh wadniesponds to non-
cacheable shared data. The addition of this feature was considerecttwiad, since many processors
use non-cacheable accesses to read or write device registers apabial /O components. The size
of that space is parameterized and must be defined before the implementatiensystem. The
PLB2Cache module is designed to check some most significant bits of thesadahovided by the
processor in order to identify a non-cacheable access to shared dmthappens in parallel with the

examination of the address that recognizes a shared memory access.

2.6 Coherent Cache

The next step, after the PLB2Cache module, in the coherent memory sgstesrcoherent cache. As
explained in the previous chapter, the role of a coherent cache is twdfa@dts as a normal cache,
providing access to commonly used data, but it's also responsible for maigtdire shared data
coherent with respect to other processors as well. For this study;laalsesl coherence scheme was
chosen to be implemented. Figure 2.6 depicts a coarse description of therttataehe architecture.
As it can be seen, the whole module is organized around the BRAMSs thatdsttar and tag informa-

tion, and is divided in two parts. Part A is responsible for serving thegasmr’'s requests that come
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from the PLB2Cache module. Part B is responsible for sending reqgesesated by part A to the
bus, and serving requests that are received from the bus. Bothapantssponsible for maintaining

coherency among data, thus, both of them must have access to tag inforaratiocun the coherency

protocol.
Part A Part B
Processor Side
Communication DATA & TAGS
<: MEMORY
AN
Response/Path

Request Generation

Path Snooping|Activity &
Incoming Data
& Bus Side

Communication

Figure 2.6: Coherent Cache General Description

Modern microprocessors achieve this by making a duplicate of the tags mdmtig study, the
two parts take advantage of the BRAM architecture. BRAMs can be coatigorhave two two-port
interfaces, without paying any area or hardware cost. Each intepfasides read and write ports,
and thus simultaneous access to data. However, care must be takenatin@mdrfaces access the
same address. The architectural definition of the BRAMs doesn’t peauig guaranty of what can
happen in this case, except for the fact that the hardware will notrhagied. Solution to this problem
was given by clocking the two interfaces with clocks of the same frequiamogifferent phase. More

details about that will be given below.
2.6.1 Cache Characteristics

The coherent cache was designed to have similar characteristics with tmalm@ches of the Pow-
erPC, without losing the ability of making slight transformations in order to simualéfierent oper-

ational parameters. The size of the coherent cache is fully parametesibié its associativity is
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programmed to be 2-way. The size of the cache line is fixed and set to 8 werd¢ache line. As far
as the write policy is concerned, the cache follows the write-back schanwrdér to resolve block
conflicts, the cache is equipped with an LRU algorithm. An LRU-bit corredpdo each set of cache
lines. Every time an access occurs, this bit stores the information of whsdgiate of the set served
the corresponding access. Specifically, the bit is cleared if the accemwégl by the associate '0’, or
setto 'l if the access is served by the associate '1’. In this way thereesitly used line within the
set is unmarked. When a block conflict occurs, it is resolved by evictim¢gtist recently used cache
line of the set. Finally, in order to decrease cache miss penalty, the caclyaiszed to return the
requested word within the line as soon as the word becomes available. direereguests the miss-
ing cache line providing the address of the word that caused the miss. dhtitg that responds to
the cache sends the requested cache line transmitting the “critical” wordHestthe cache follows
the critical-word-first scheme. Otherwise, if the cache line is sent to tHeedaa lowest-to-highest

address order then the cache follows the early-restart scheme.
2.6.2 Tags and Data Memory Organization

The internal distributed BRAM blocks are used to store tag and data informafibe amount of
BRAM memory required is not fixed, since the size of the cache is paramexterizowever, the
organization of the BRAMs is predefined. A set of BRAM blocks is assigiseeach associate in
order to store data and tags information. The BRAM blocks that form thepdatare organized in
order to handle 32-bit wide words, while words that lie in the same cache Bret@ed in subsequent
addresses. On the other hand, the tag-word has not a fixed size.eltdepiends on the whole size
of the cache, since the information stored contains a part of the addmsdea by the processor.
Addressing of the data and tag parts is similar. The tag memory is addregsgthesindex’ part of
the initial address, while the data part uses the ’index’ along with the 'blffskth The index bits

are calculated by the formula:

gindez _ Cache size

 block size - set associativity

(2.1)

The block size and the associativity are constant, 32 bytes and 2-wgpgctevely. The size of the
address given by the processor is 32-bit wide. The two least sigrtibi¢arare not used by the cache.
Bits 2 to 4 form the block offset, which is the address of each word in theechie. Bits 5to 5 +

index - 1 are the index bits, and the rest bits of the address are the tag bits.
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A tag-word includes the tag part of the address that corresponds tpehbiis cache line, 2 bits
for the coherency protocol and one 'dirty’ bit. Tag information for both éissociates is being kept in
different BRAM blocks. This is justified by the fact that two tag-words 'téihin 36 bits, which is
the actual width of a BRAM block. If tag information for both the associates sugpposed to be kept
in a single word, then each tag-word should be at most 18-bits wide. Thissponds to 15 bits of

tag size, which is equivalent to cache size of at least 256KBytes.

2.6.3 Coherency Protocol

The coherency protocol used in this study is a typical four-state ME&bpol. The protocol uses 4
states to encode the status of a cache line. These are: Invalid, Sheckdi\le and Modified. Cache
lines that don’t store any data are marked as invalid. Shared means thdbotkds present in an
unmodified state in this cache, the main memory is up-to-date, and zero or mereatines may
also have an up-to-date copy. The exclusive state has the same meanitigev@8tiared, however no

other cache has a copy of the block. Finally, Modified means that only tbisedaas a valid copy of

the block and main memory is out-of-date. Figure 2.7 depicts a state diagramptiocol.

Modified
BusRdX
Invalidate

Prwr/ -

@ BusRd
BusRd
Prwr |/ BusRdX PrRd BusRdX
’ Invalidate
PrRd /BusRd & IS
BusRdX
‘ Invalidate

PrRd A BusRd & s BUsRd

Figure 2.7: Coherency Protocol State Diagram

Actions that cause each transition to occur can be seen next to the vefad®s 2.1 shows the
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Processor’'s Request

PrRd PrWwr

Block’s State

I BusRd BusRdX

- Invalidate

= |m|w

Table 2.1: Generation of Coherent Requests

bus messages that will be generated for each one possible situationstBridd for processor’s read
actions and PrWr for write. BusRd, Invalidate and BusRdX are the mesgshgt are generated in
order to maintain coherency. BusRd is generated every time a processat’ misses in the cache.
Invalidate is generated when a processor’s write doesn't have thikeges to complete, which means

that the block is found in shared state, and BusRdX when a processtigsnisses in the cache.

The letter ’S’, in Figure 2.7, next to the actions denotes the status of thegtgublock in all
the other caches. 'S’ means that the block is found shared in at leastache, while 'S’ that the
block is not shared at any cache. Transitions between states are tguys@cessor or bus accesses.
When the block is first read by a processor a BusRd message is bstedicH a valid copy exists
in another cache, then it enters the cache in the Shared state. Howewerpifier cache has a
copy at that time, the block enters in the Exclusive state. When the block ismwbigtehe same
processor, it can directly transition from the Exclusive state to Modified,stathout generating any
bus transaction. If another cache has obtained a copy in the meantime t¢hef ke block would
have been denoted from Exclusive to Shared. In that case an Irtealidsssage is broadcasted to
notify every other cache to invalidate the copy they hold. When a procésse to write a cache
block but the block is absent from the cache a BusRDX message is lbsiadc The caches that hold
a copy of the requested block will invalidate it. One of these caches willnrdtise cache block back
to the cache that requested the write privileges. The block enters the icd€kclusive state and then
immediately transits to Modified (with the completion of the write access). From tkeeo§ithe bus,

a BusRd message always results in a demotion of the block’s state to Shéredlock is found in
the cache. A BusRdX message also demotes the block’s state, if the blockasifothe cache, but

the resulting state is the Invalid state. Same things hold for the Invalidate buagee€3usRd and
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BusRdX messages always cause the transmission of a cache block. @hdahband, an Invalidate
message doesn't create any other traffic, except for the messageTitsatt the difference between
the BusRdX and the Invalidate message. They both demotes the priviletiesazfche block, when
the block is found in remote caches, but only a BusRdX message requasgand to be generated.
An extra property has been given to the cache, which has to do with tlabitgpof receiving
update messages. Any MESI-like protocol is based on invalidating coptbe same block when
exclusive access is required. Thus, the kind of update messagestedidp this study doesn’'t modify
the state of the block updated. When an update message is issued (byentoleévork interface
maybe, but not a cache) it is broadcasted to all the participants, inclugimgaim memory. The state
of the block, wherever it resides, doesn’t change. However, tteedtachange, resulting to everyone

having an up-to-date version of the block.
2.6.4 Part A: Cache’s Processor side

Figure 2.8 shows a block diagram for the processor’s side part ofdiherent cache. Part A oper-
ates with the same clock that the processor uses to generate requessamEehelock is used by the
PLB2Cache module and the PLB bus. It receives the following signats tihe PLB2Cache module:
ReadCmd, WriteCmd, Address, Datén and Noncacheableaccess. It returns an acknowledge sig-
nal, CacheAck, and the DataDut signal. During a cache access all input signals are stable and valid,
and remain so until the cache asserts the Cadtesignal. This signal remains high for only one
positive edge in order to mark the completion of the access. If the acce$inistzes is a read access
(cacheable or non-cacheable), signal D@tz carries the requested data.

There are two FSMs that handle this part, FEUACCESS and WBFSM.
FSM_.CPUACCESS manages every single request made by the processor and resgsasi-
ble for maintaining coherence. It is one of the basic blocks of logic thathrercoherency protocol
to decide the next actions that should be followed. Every time a cache blmesnt have the
appropriate sharing status for the processor’s access to completeCIPEMACCESS generates a
bus message. The message is forwarded to part B in order to be Istoa the interconnection
network. WBFSM is responsible for handling write back activity. Write back activity esponds
to transferring modified blocks back to main memory. This transfer takes plaee an access that
misses in the cache requires a new cache block to be loaded in. The né&thalbcomes in conflicts
with the two blocks that are already present in the cache. These two ldockpy the whole specific

set, in which the new block is mapped. The replacement algorithm is calledbigedkis conflict by
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choosing a block to be evicted from the cache. The block that is leastthgosed is chosen to leave
the cache. If that block is 'clean’ then the incoming block just over-writel§,ihowever, the chosen
block has been modified, it must be written back to main memory.

A write-back transfer is not considered to be a separate bus transalttierhidden behind the
block transfer that generated the eviction. That is feasible because tleerigmgation of the bus offers
different sub-buses for transferring data from and to the cache. diiatedy after the bus request has
been transferred, the write-back action is initiated. The address ofitttedblock is first transferred

and then the data in a critical-word-first fashion.
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Figure 2.8: Part A block diagram

Apart from the two FSMs, other important entities in the figure are the equakigicmodules and
the dependency check logic. The purpose of the equality check moduledsnioare (for equality)
the tag part of the incoming address with the tag stored in each of the twaaesod he use of the
'==" Vferilog operator is interpreted by the Xilinx flow as the instantiation of enptete comparator,
from which only the equality operation is used. This adds extra area and tousig The solution

to this was the implementation of a simpler module, which is checking bit by bit the té&gqiahe
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addresses. Finally, the purpose of the dependency check module mpaiethe addresses that are
accessed by the processor and the bus. If both of them want to usertbeache block for conflicting
purposes (read and write, write and write) an order must be enforzkedrae of them to wait. In this
case the processor side is chosen to wait. The dependency check tmlodkgethe processor’s access
until part B finishes its operation on the data. This module also implements thedkvitord-first”

feature of the cache.
Dependency Check module

As mentioned above, concurrent accesses by the processor anasthaubt be checked in order to
verify that they touch different cache blocks. If not, ordering is impdeghem by making processor’s
access to wait for the completion of the bus access. Not all combinatiogsegses require ordering

even if they access the same data.

Time 0 1 2 3 4 5 6

Processor Access Starts—
Tag Memory Clocked———————=
Cache hit ? ‘ ‘

Part B sendsaccess inforamtion to Part A

X . Part performs bus request and updates the tag mema
Bus access information . .
available to Part A

Conflict Resolved ?

Conflict reseolved. Stall—
processor :

No Conflict. Processor ends

Figure 2.9: Two First Cycles of a Processor Access

Figure 2.9 presents the first two cycles of a processor’s access euntadlcrucial periods, the
periods that part B modifies the tag memory, of a bus access. The prosessess is placed starting
at time 0 and finishing at time 4. Such an access is a cache hit. There wowdieaning to talk for
cache misses, since they never conflict with bus accesses. Duringstheyéile, from time 0 to time
2, address becomes stable on the address pins of the tag memories. Théeesyamariocked at time
2 by the positive edge of the clock and return data somewhere between timdditha 3 (actually, 1.5
ns after time 2). Then the tags are compared with the address accessedkdocttache hit. Cache
hit is resolved and at time 4 the access completes by either returning data todbsgor, in case of a
read, or data written in cache, in case of a write. Part B doesn’t opsititéhe same clock. It uses a

clock of the same frequency but different phase. Actually, it usesdabation of part A's clock. Thus,
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BusRd| BusRdX | Invalidate | Update

Processor Rea No No No Yes

Processor Write| Yes Yes Yes Yes

Table 2.2: Combinations of Accesses

events as memory accesses in part B may take place in time 1 or time 3 etc. All efstheduests
shown in Table 2.2 may modify the tag information of the cache block they adBas&d, BusRdX
and Invalidate messages modify the tag and read the data, while Update esesssdify both the
tag and the data. Thus, processor accesses compete with BusRd XBaisRthvalidate accesses
for accessing the tag memories, when both sides request the same catheQuothe other hand
processor accesses must wait the completion of an Update message i€¢hsy the block that is
being updated.

As far as the first scenario is concerned (BusRD, BusRDX and lratalitiessages), writing to tag
memory may occur at any of the odd times. If it occurs at time 1 then the asca®seot considered
to be concurrent. When part A accesses the tag memory in time 2 it readsititedipags. No conflict
occurs. The same holds when part B updates the tag memory at time 5. Bydlm@ndRssor’'s access
has finished. The conflict arises if part B wishes to update tag memory at tiniéheére are two
possibilities in this case. If the processor performs a read request tbam fite safely assumed that
the request completes at time 2 when data and tags are read. Since notloimgisogchange for
part A until time 4, when the request will officially be completed, then it candie that there is no
conflict between the processor and the bus access. On the otherifiduedprocessor attempts to
write to the conflicting cache block then it is not safely to assume that thesacoewpletes at time
2. The data memory is updated at time 4. By then, however, part B will hazadglinvalidate or
downgrade the privileges on the specific block. In this case the prossse access is blocked, and
a proper bus message is generated for the cache to request agasitadbe specific cache block.

As far as the second scenario is concerned (Update message), #te s@guence starts writing
in parallel the tags and the first word of the cache block. It continues wtitia rest of the words in
the next cycles. Again, if this sequence starts in time 5, then the processcgss and the update
message cannot be considered to be concurrent conflicting eveetsuritd action performed on the
tag information of the block changes only the dirty bit by clearing it. A reqtledtaccesses a block

that is being updated always hit, assuming the cache has the propeigesvite write accesses. The
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request, however, is blocked because the address accessed ycdsspr may not be available yet.
Blocking Mechanism and Critical-Word-First

The mechanism used to block processor accesses is rather simple. tiBveryart B receives a
new bus message and is about to perform the requested operatione pagsart A the following

information:
e the address requested (Addefilled)

the associate of the block to be modified (if this information is available, assPRiatiH)

a start/stop control signal (Refilling)

a control signal to notify an incoming block (update or refill message, RdyS

eight valid bits corresponding to the eight words of the cache block thagirgybmodified
(ValidBits)

This information is passed one cycle before the tag or data memory gets dipBateexample,
if a bus request is going to write to tag memory at time 3 (Figure 2.9) then all thes ati@rmation
will be written to part B’s synchronization registers at time 1. It crossegsaioes at time 2, and
becomes available to the processor side. Within this period, from time 2 to timet4A paay use
this information to resolve a conflict and stalls. For each one of the incomingages the following

actions are taken:

e Invalidate message: In case of an Invalidate message part B puts thessaddr signal
Addr_Refilled, sets signal Refilling high to notify a new incoming message, sets d®gial
gStall low and puts a predefined number (8’b11110000) to signal ValidBest A compares
the address given by the processor with the signal Aiefilled. If they match and the proces-
sor attempts to write this address then the processor access is consideagd toissed. The

coherency protocol generates a BusRdX request and forwardgatt®.

e BusRd and BusRdX messages: In case of a BusRd or BusRdX megadde puts the address
to signal AddrRefilled, sets signal Refilling high to notify a new incoming message and sets
signal ReqStall low. Also, it puts a predefined number (8'b0000114 BésRdX or 8'b0 for
BusRd) to signal ValidBits, and finally, identifies the associate to which the&lidostored, by

driving properly the signal associate2Refill. Part A compares the ingiopthe address given
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by the processor with the AddRefilled signal. At the same time comparison of the tag part of
the address with the outputs of tag memories take place. In order to concititiestbus and the
processor wish to access the same address these two comparisonsmaustieo Specifically,
the tag-equality between the associate defined by the associate2Refillasignthe address
given by the processor must come true in order to be sure that all of thgacsons are related
with the same block. However, the processor access will considereddacbeflicting one

if it is a write access, as shown in Table 2.2. The coherency protocol eifl thitiate the
corresponding coherency request. This will be an Invalidate messtgedéche had received

a BusRd request or a BusRsX message if the cache had receive®éBrequest.

e Update message and Refill Block: In case of an update message or agdfitick part B
puts the address to signal AdBefilled, and sets signal Refilling high to notify the incoming
of a new cache block. It sets signal ReqStall high and sets the bits of SigldBits high
one by one, with regard the availability of each word. Part A understdradshe processor’s
access conflicts with the bus access, but no coherency message is iniRated\ waits for
the specific requested word to become available. When that happenstessor's access

completes normally.

2.6.5 PartB: Cache’s Bus side

Part B is responsible for the communication of the cache with the bus. Trete@sub-parts in it.
The one handles the outgoing communication and it is also the least complextwbthEhe second
handles the incoming communication and the snooping traffic. It is also reigpeof running a part
of the coherency protocol by responding to bus requests. Both of theass create and exchange
messages with the adjacent cache or the DDR controller. The messagesystéins are all designed
to follow a typical format. The first word of the message corresponds taddeess on which the
operation will apply, while the op-code of the message is sent in parallel vataddress from dif-
ferent control lines. If data accompany the request, as in the caseldfidate message, then they
are transmitted back to back with the address. Usually, the address ad suessage corresponds to
the address of the first datum of the sequence. It isn’t necessa®y ihack should be transmitted in
a zero-offset-word first. The transmission may start at any offsetaiag-around to the start of the
block. Cache block refills and block evictions are also organized to benbgsages. However, they

are not broadcasted. A cache refill is a message that carries thestextjgache block, which may
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reside either in another cache or in the main memory. The cache maintaining af¢bpt block, or
the DDR controller, sends such a message directly to the cache thattesbtinesblock. Furthermore,
a block eviction is sent by the cache to the DDR controller. Finally, nonezgtle messages, which
are also not broadcasted, and the data returned to a cache fromcactwable read share the same
format. The uniformity given to the bus messages ease the design of the w8Ids are responsible

for the bus traffic.
Outgoing Communication

Figure 2.10 depicts a block diagram of this part. As it can be seen the wigidddamrganized around
the BUSFSM. Requests generated by part A and block evictions all pass thesghchronous

FIFO. Control signals and data from part A are synchronized as tlosg clock domains. However,
in some cases where half of a period is enough for particular actiong|sigom part A are directly

used.
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Figure 2.10: Cache2Bus Block Diagram

The synchronous FIFO used doesn't hold the properties of a XilinOFBpecifically, the first
write in an empty Xilinx FIFO doesn't propagate to the exit. The module reqainesxtra cycle,
during which the read enable signal is asserted, in order to output fitites. $cenario was adopted a
dummy cycle would have been added to the latency imposed on any requesgrwovards the bus.

On the contrary a custom implementation of a synchronous FIFO was selbiel permits the first
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written datum to flow through.

BUS_FSM performs the required handshaking with the coherent bus. Twalsigre used for this
purposeBusRemndBus Ack The first one is driven by the BUBSM and indicates the intention of
this part to send a new message. When the bus arbitrator decides to sespedific cache it raises
theBus Acksignal to notify the availability of the bus. Bus messages and data are theeusbebfrom
the head of the FIFO and sent to the bus.

BUS_FSM has also the responsibility to check any conflict between the incomintpawditgoing
requests. The reason to do so is that there may be the need to changeetlod typ outgoing
request. This need comes from the fact that an Invalidate requestidussse the transfer of a block.
The scenario that threatens the coherency of the data is the case wh&reallprocessor sends an
Invalidate message for a certain block, which is shared and wishes to wititeAiothe same time a
message broadcasted on the bus invalidates (Invalidate or BusRdX)ettiBcsplock. The message
from the remote cache has come before the local message, and thus thepeonessor will use the
up-to-date copy of the block. If the local Invalidate message is not @thitggBusRdX message then

the local processor will operate upon the old copy of the block.
Incoming communication

Figure 2.11 depicts a block diagram of the part of the cache that handlgetiming communication
and the snooping activity. The logic of FSRIEQ.IN is responsible for: accepting messages from
the bus, delivering incoming data to the data cache, and also respondemuists by transmitting
the requested cache lines. Furthermore, it passes data and contnolatiém to part A through the
dependency check module, as described above.

Upon the arrival of a new request FSREQ IN tries to resolve if the requested block resides in
the local cache. It does so by comparing the incoming address with thedagd i the tag-memory.
If a miss is resolved no actions are taken concerning the sharing statny chehe block stored
locally, and the request is ignored. In case of BusRd or BusRdX me$salglREQ_IN also raises a
signal to notify that the requested has missed in this cache. If a hit is rdsble@ext actions to take
are decided by the coherency protocol. The sharing status of thestedudock may be denoted or
even invalidated, while the data may be updated (Update message). Inf eaBesRd or BusRdX
message FSMREQ.IN undertakes also the responsibility to reply to the incoming request with the
requested block.

FSM_REQ.IN also receives incoming data that have been requested by the locakpoo. This
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Figure 2.11: Bus2Cache Block Diagram

may corresponds to a cache block coming in, if the address access#k riescacheable shared
memory, or to a single word, if the address accessed resides in nosatdelshared memory. In the
first case the block is written in the data memory of the cache; one word at altiraeéequested word

is also written in théreturnDataregister in order to be sent to part A. In the second case, the incoming
data must not be written in the data memory, as this will violate their non-cachgwagerty. The
path followed involves th&®eturnDataregister. The data are written only there in order to be sent to

part A.

2.7 Coherent Memory Interconnect

The next level of the coherent memory system is the memory interconnecireFigl2 depicts the
architecture of the interconnect, which looks more like a switch than a busve¥dw, the logic
implementing the control units of the module makes sure to provide all the adeantagroperties of
a bus. High performance systems have rejected the option of using a et multiple functional
units. The reason for doing so is that bus architectures don’t scatedlioy participants, as it has been
proven by different studies. In this study, however, the number of #ntcjpants is fixed and it is

predictable not to overcome the number three, the two processors ahdramionetwork interface (in
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the future). For so few participants, no scalability issues exist and thedousianage to have a good

performance. Furthermore, a bus is usually easier to implement and cctegsarea.

INTERFACE 1

Data In DataOut  Control In & Out

,,,,,,,,,,, INTERFACE 2
INTERFACE 0

Data Out
Data In

Data Out Data In

Control In & Out Control In & Out

o)

l Address & l
Control to DDR

Data to DDR

Data from DDR
Control from DDR
DDR CNTRL

Figure 2.12: Coherent Memory Interconnect Block Diagram

The bus is designed to accept connections from up to three active pamtiiplus a connection
to an IPIF DDR controller. A participant is characterized as active whieastthe ability to generate
and respond to requests. The DDR controller cannot be charactacigd, since it only accepts
and responds to requests. The active participants are assumed to bs #mditisupport snooping
bus-based coherency, as it was described earlier, such asmoterbes. The number of the caches
connected to the bus is parameterized and defined in implementation time.

Simultaneous requests from different interfaces are served in a-robidfashion. Priority is
given to the one considered to be the next in the round-robin orderearldisest one to it, if the
next interface doesn’t request the bus. When a request is chosenderved it reserves the bus
until its completion, which means that interleaved accesses are not suppbinee FIFO’s shown in
Figure 2.12 stand between the bus participants and the DDR controller.plinpose is to convert the
32-bit wide datapath of the coherent memory system to 64-bit in order to riegetidth of the DDR

memory. Additionally, they are used to decouple the two points of schedulirgfirEhpoint is among



36 CHAPTER 2. DESIGN AND IMPLEMENTATION

the bus participants and the second is among the coherent memory intetcamhéhe two PLBPIF
modules (in the DDRMUX module that follows). These two points need to be decoupled in order
to decrease the time required for some requests to complete. Otherwisecadaheable write, for
example, would block access to the bus until the word was eventually writtea txtarnal memory.
The same hold for Update messages and also for requests that caksabloe evicted. The FIFOs
provide a temporary place for storing data towards the external memuwiryg ghe impression to the
bus’ participants that the requests have been completed. All the casesmadrimve had in common
the fact that there were store requests. For all of these cases teyngiorang decrease the required
time or equivalently provides some sort of interleaving-ness. A subsétpus request that can be
served by a remote cache is executed in parallel with a part of the exeofitios previous request.
However, a load request that must be served by the external memorypéllience the accumulated
delay since pending requests residing in the FIFOs are served in dfueIFO (Command§fo)
shown in the figure that receives data from the F8N logic is used to store and place in order
requests towards the DDR controller. All the other FIFOs are used to dataeof different kind of
accesses, such as block evictions \WR and WB 1 x), non-cacheable write (Nfifo) and update
messages. Finally, there is also a combination of FIFOs that deliver datadohtbeent bus module.
The FSM2_DDR logic uses them to enqueue data read from the external memory. TWeAHS

receives these data and forwards them to the coherent cache thestetjthem.

FSM_Arb and FSMBUS_WB (not shown in the figure) are the two FSMs that handle the traffic
between the participants of the bus. F&W¥b decides the next request to serve and sends an acknowl-
edge signal to the corresponding cache. Depending on the type ofgtestédt either broadcasts it
to the adjacent caches (BusRd, BusRdX, Invalidate) or forwards iet®mBR controller enqueueing
it to the corresponding FIFO (Non-cacheable read and write ac¢essé®th (Update). BusRd and
BusRdX request that hit in the remote cache result in a block being tregfas response through
the bus. On the other hand, if these requests miss in all the remote caches tisenbtified and
forwards the request to the DDR controller enqueueing it in the comelsipg FIFO. Data returning
to the . FSMBUS_WB is much simpler and it is only responsible for the blocks that are evicted fro

any cache. It enqueues the evicted block and the write-back requbstéorresponding FIFOs.

In order to decrease the loss of performance from the lack of interlgangss the messages on
the bus are programmed to last as less as possible. However, not al$tefhave a guaranteed time

of completion. Non-cacheable write requests and Invalidate requestgsatvecupy two bus cycles
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before completion. Update requests take up 9 bus cycles, while BusRBUaRtiX requests that hit
in the remote cache 11 cycles. On the other hand, the time required forgsaninrcacheable read,
BusRd and BusRdX requests varies, and depends on two factorfirstloae has to do with the avail-
ability of the DDR controller. The DDR multiplexer may be busy serving one oerparate memory
requests by the time the coherent memory interconnect requests accessxttethal memory. The
total amount of time spent depends on the number and the type of the privaterynequests. The
second factor that affects the duration of the above accesses is tipaacy of the FIFO on the DDR
path. Some preceding shared memory requests may have already baed tpveards the external
memory but not sent to it. The new incoming request is blocked behind thairisamposed the
accumulated delay from all requests that lie in front of it. A small analysithfese two cases and the

amount of the time required is made in the next chapter.

The FIFOs constitutes the point in the data flow where a crossing back tlotkedomain clocked
by the PLB clock is necessary. The type of the FIFO is similar to that used gattiee from part B to
receive requests generated by part A. It has the ability to let the fistndaritten flow through but
also synchronizes the two clock domains. The two BRBB- modules operate using the PLB clock,
while the bus and the rest of the coherent memory system use the negatiofhef DDR controller
however can use only one clock. Thus, it is necessary all the thréeijpants to operate with the

same clock.

The third and final FSM in the coherent memory interconnect module is the emp@nsible
for communicating with the DDRBMUX and the DDR controller. The DDRIUX module doesn'’t
change in any way the communication protocol, even though it stands in lvetinestvo entities. The
DDR_MUX could also be omitted if there was no need of instructions and privataaagagide in the
external memory. In that case none part of the logic should changeptefar some output signals
that should be registered for 'place & route’ purposes. The communicataiocol used by the DDR
controller is the IPIF. Xilinx provide some documentation about the details afPttkeprotocol and
timing diagrams that should be followed. Unfortunately, the available docutimntioesn’t cover
all the cases. In fact it doesn’t cover some basic cases, which ripgbiés study. Thus, the precise
timing diagrams were pulled out of simulations. The behavior of the IPIF irtenfgas monitored
by performing different kind of accesses. The timing diagrams acquaede seen in Figure 2.13.
These timing diagrams are also followed by the FBNMPDR which is responsible for this. There

are also two figures in the appendix that show the behavior of the IPIBIsiginen a burst access is
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halted by a refresh action of the DDR memory. This important detail is also migsimgXilinx’s

documentation.
festoenchitophvopisys_ctk_s_n | |1 [ L1 L L L LU L U L U U s
Jtestbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_CS\ L | [
[testbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_Burst\
...bench/top/\top/MemorySystem/Switched_Bus/Bus2IP_RdReq\
Itestbench/top/\top/MemorySystem/Switched_Bus/Address_offset\ 0 1 2 /3 0 {1 2 3 0o (1 0
...bench/topAtop/MemorySystem/Switched_Bus/Bus2IP_WrReq\
Itestbench/top/top/signal_mBus2IP_Data\ scosscomno d000g00002000000 d000000002000000
Jtestbench/top/\top/signal_mIP2Bus_AddrAck\ T 11 1
Jtestbench/top/\top/signal_mIP2Bus_RdAck\ 1 1
Itestbench/top/\top/signal_mIP2Bus_Data\ = ] =
Itestbench/top/top/signal_mIP2Bus_WrAck\ 1 1 |

(a) IPIF Burst Accesses (@ache-block)

Hestbenchttopftopisys_olk_s_nt [ 1 [ (11111 L L U L L L L L L L
Itestbench/top/top/MemorySystem/Switched_Bus/Bus2IP_CS\ __ | |
Itestbench/top/\top/MemorySystem/Switched_Bus/Bus2IP_Burst\
..bench/topAtop/MemorySystem/Switched_Bus/Bus2IP_RdReq\ [
Itestbench/top/\top/MemorySystem/Switched_Bus/Address_offset\
bench/top/top/MemorySystem/Switched_Bus/Bus2IP_WrReq\ 1 1

-
=)
-
=)
N
=)

Itestbench/top/top/signal_mBus2IP_Data\ 8000000080000000 0000000000000000
Jtestbench/top/top/signal_mIP2Bus_AddrAck\ [ [
Itestbench/top/top/signal_mIP2Bus_RdAck\ 1
Itestbench/top/top/signal_mIP2Bus_Data\
Itestbench/top/\top/signal_mIP2Bus_WrAck\ [

.
I

(b) IPIF Single Word Accesses

Figure 2.13: IPIF Accesses

There is no need to describe in detail the F8BNDDR as its behavior is shown by the figures
above. However, some things must be mentioned about the functionality ¢tdglteas a whole.
The FSM waits for a new request to be available by reading constantly thiy sigpal of the Com-
mandsfifo. As soon as the FIFO becomes non-empty the FSM starts functioningén tr generate
the proper signaling. In case of write accesses, it gets the data to be vinottethe FIFOs. Single
words for non-cacheable writes are read each time from the head ofalga\ Written back cache
blocks heading towards the main memory are read by the two pairs c0WBnd WB.1 x FIFOs.
WB_0.x and WB 1 x are organized in pairs of sub-FIFOs in order to transform the 32abét path
of the coherent memory system to 64-bit data path in order to match the width BDDIR controller.
Each pair has the capacity to store a single cache line. The same holds FdF@® that store the
blocks to be updated before they reach the main memory. Update and wiktedramands generate
burst write accesses of 8 words, while non-cacheable write commarmglks wiord write accesses. On
the other hand, non-cacheable read accesses generate singleatadcesses to the DDR controller,

while BusRd and BusRdX messages burst read accesses of 8 watdsre2d from main memory
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are pushed into the pair of Datafifio x. Upon arrival of the first word the other part of the bus is

notified to start the creation of the message that will be sent as responsectictie.

2.8 DDR Multiplexer

A step before the DDR controller is the DDR multiplexer module. The module of thie Bdntroller

is supposed to be connected to only one entity. It is not designed to aecpsts by multiple
entities. The purpose of the DDR multiplexer module is to provide connectivity topteuentities,
and specifically to the coherent interconnect and the two processogseives the IPIF signals from
the coherent bus and the two PLBIF modules and outputs a set of IPIF signals towards the DDR
controller. At each point in time the DDR multiplexer selects one of the three inrrfaces that
requests access to the external memory and connects it to the outputmtéffany other interface
requires access to the DDR memory at the same time, it waits until all the pregigussts have
completed and also the controller to become available. In this way, to eacti thesimput interfaces

is given the illusion that it is connected point-to-point with the DDR controlleddifionally, the

controller has the impression that receives requests from only onesstlie one that is connected to.

The DDR multiplexer module is in general a simple round-robin selection of the neguests.
The logic of the module identifies the interfaces that require access to thml@mby the status
of the Bus2IPCS signal. The Bus2IES signal rises high to notify the start of a new IPIF request
and remains high until the end of the request. The only complexity in this modolesérom the
single-word IPIF accesses. Observing again Figure 2.13, someonaatieg that in a single-word
read signal Bus2IlRdReq stays high for one cycle only, and then returns to '0’ without the tioitia
of the request to receive any kind of acknowledgement. If such aestqccurs when the DDR
controller is busy serving a previous request from a different interfthen the type of the request,
which is the rise of the Bus2IRdReq signal, will be lost. The scheduler will eventually choose
to serve the single-word access since the Bus28remains high until completion. The controller,
however, having lost the type of the request will remain inactive not kmpwhat kind of access to
perform. In this way the system is driven to deadlock. In order to redbigeproblem, each input
IPIF interface is monitored by an FSM, named FENDR_ACCESS, similar to FSM2_DDR. Each
transition of the signals is identified making the corresponding FSM to moveafdri® some state.
If the signals transitioning are part of the input IPIF interface that has belected to be served then

no problem exists. Otherwise, when the corresponding IPIF interfagvés access to the DDR
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controller, the corresponding FSRIDR_ACCESS will be responsible to generate the proper IPIF
waveforms towards to the controller but also backwards to the FSM thatewiliditing for the proper

acknowledgement.

2.9 DDR Controller

The DDR controller used in this study is provided by Xilinx and is part of thekBDrary. It is
fully parameterized in order to be able to communicate with different types & DIMM modules.
The required parameters that must be declared in the instantiation of the nvatube found in
the “.mhs” file of the EDK project. The data path of the controller is 64-bit wideé ap to 32-bit
wide addresses is supported. Cache blocks are transmitted in 4-waitdaboesses. Requesting a
part of the memory in critical-word-first fashion is also supported. A diaathge of the controller
is that it doesn’t do any kind of specialized scheduling, to take advartagee whole available
DDR bandwidth. The controller just receives the next request anvesdr Finally, it was observed
during the implementation of the system that the specific DDR controller dagsrktproperly when

operating in clock frequencies less than 100 MHz. This bug was alsovelosia [23].



Chapter 3

Evaluation and Verification

3.1 Hardware Resources

3.1.1 Target FPGA

The whole system has been designed for and implemented on a VirtexfF&3é, embedded in a
Xilinx University Program board. The size of the FPGA is 30K and thedgesle is -7C. The FPGA
is equipped with two embedded PowerPC processors, as mentioned edricdr,are implemented
as hard blocks within the circuitry. The resources available in each FR®@#e gpecific family can
be seen in Table 3.1. As it can be observed, the specific FPGA is rathetianmene. However, the
attractive element of all the system was the low price of the XUP board, vémables a multimode

system, out of many XUP boards, to be built.

Device RocketIQ PowerPC Logic CI__B (=4slices) | 18 X_ 13 Bit Block SelectRAM+ DCMs Maximum
Transceiver| Processor Cells Slices | Max Multiplier 18 Max User I/O
Blocks Blocks Distr Blocks Kb Block Pads
RAM Blocks| RAM
(Kb) (Kb)
XC2VP2 4 0 3,168 1,408 44 12 12 216 4 204
XC2VP4 4 1 6,768 3,008 94 28 28 504 4 348
XC2VP7 8 1 11,088 4,928 154 44 44 792 4 396
XC2VP20 8 2 20,880 | 9,280 | 290 88 88 1,584 8 564
XC2VPX20 8 1 22,032 9,792 306 88 88 1,584 8 552
XC2VP30 8 2 30,816 | 13,696| 428 136 136 2,448 8 644
XC2VP40 0,8, 0r12 2 43,632 | 19,392 606 192 192 3,456 8 804
XC2VP50 Oorl6 2 53,136 | 23,616] 738 232 232 4,176 8 852
XC2VP70 16 or 20 2 74,448 33,088| 1,034 328 328 5,904 8 996
XC2VPX70 20 2 74,448 | 33,088 1,034 308 308 5,544 8 992
XC2VP100 0 or 20 2 99,216 | 44,096| 1,378 444 444 7,992 12 1,164

Table 3.1: Virtex Il Pro Resource Summary
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3.1.2 Hardware Resources

Figure 3.1 depicts a floorplanned view of the whole design. Except fanthdules presented in the
previous chapter, there is also an I/O device that has been added todificatlg, an RS232 module

is used to print data through the serial port of a host PC to a hyper-tdflikimgrogram. The module

is connected to an On-board Peripheral Bus (OPB). The OPB busngcizu to one of the two PLB
busses using a PLB2OPB bridge.
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Figure 3.1: Floorplanned view of the system

Table 3.2(a) presents the utilization of resources required for the syi#eanibed above. The
numbers presented corresponds to the whole experimental system, igghadts, such as the 1/10
path, that are not relevant to the coherent system. The resouragsextby the coherent part of the
system are shown in Table 3.2(b). The numbers presented there agadposted after the “map”

procedure of the design.
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(a) Utilization summary for the whole system
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| Resources | Occupied| Available [ % |
FFs 6,943 27,392 | 25
LUTs 9,876 27,392 | 36
Slices 7,051 13,696 | 51
BRAM 26 136 19
IOBs 113 556 20
PPC 2 2 100
GCLKs 7 16 43
DCMs 2 8 25

| Equivalent Gate Count 1,910,012 \

(b) Utilization Summary for coherent system only

| Block Type | FFs [ LUTs | Slices| BRAM |
2xPLB2Cache| 390 | 965 | 492 0
2 x CCache 1,959 2,533] 1,830 10
Bus 2,247(2,914| 2,048 0
DDR_MUX 52 | 349 | 218 0

| Total | 4648 6,761| 4588| 10 |

Table 3.2: Hardware Utilization

As it can be seen, the whole system occupies half of the logic-relatedroesoavailable in the
chip. Specifically, 51% of the available slices host logic of the system. Th8% occupied
by the implemented coherent system, while the rest 17.6% by soft-coreslguidvy Xilinx. As
far as the memory resources of the system are concerned, only 26 that t136 available BRAM
blocks are used. 10 BRAM blocks are dedicated to the coherent systeimefimplementation of
the 2 4Kbytes coherent caches. The rest of the 16 blocks form theteoremory available to the
processors, 16Kbytes to each one of them. Finally, only 20% of the alalf@Bs are used, mainly
for communicating with the external DDR memory. The rest of them can be essityby a network

module, which will provide connectivity with the rest of the world.
3.1.3 Timing Conciderations

The clock frequency of the system is constrained by two factors thatitae the upper and the lower
ceiling. The first factor comes from the inability of the Xilinx DDR controller toeogte in clock
frequencies lower than 100 MHz. This behavior is a documented bugasdl$o been reported in
[23]. Even the most recent version of the controller, which comes aldtigtihe latest version of
EDK 8.2 software, has this disadvantage. Other possible frequenciesehzot turned down by this
factor are these above 100MHz, which are also supported by the aix2idM module. On the
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| Action | Combinational Delay] Routing Delay [ Total | Available |
Read hit 3.526ns (35.9%) | 6.294ns (64.1%) 9.820ns| 10ns
Read miss ending  1.459ns (29.4%) | 3.511ns (70.6%) 4.970ns 5ns
Bus request 0.541ns (24.3%) | 1.689ns (75.7%) 2.230ns 5ns
Bus transaction 2.956ns (29.9%) | 6.915ns (70.1%) 9.871ns| 10ns

Table 3.3: Delay of Critical Paths

other hand, the complexity of the system implemented restricts the use of higiefrdes. As it will
also be shown below, the system is not able to operate above 100 or 195MHs, the cut of these
two sets of possible frequencies (100MHz), which meets all the criteribpisen to be the frequency

of the whole system.
Critical Paths

Some of the critical paths of the system are presented below in order to ydehiith functionality
requires the biggest part of a clock period. Table 3.3 presents thése guad their required time.
The first conclusion that it can be drawn is about the cost of the routitaydIn any of the cases
presented, routing delay corresponds at least to the two thirds of thelédég] apart from the first
case where it possesses the 64%.

The specific case corresponds to the read cache hit scenario. Theetagry has just been
clocked and output the corresponding tag lines. Address and tagseieed for equality. Cache hit
is resolved and data are returned to the processor. A detailed repow dtie delay is split for this and
the rest of the cases can be found in . As it can be seen, almost thneepasdiin order to move from
hard blocks to and from the FPGA fabric. This time corresponds to tag mé&rabogk-to-output
delay plus the time required to drive PowerPC’s pins. The second cassponds to the read miss
scenario, when data are returned to the processor over the RetuneDistar. Data cross between
domains without being synchronized. Half of the period is given for thistion. Here again, a great
amount of time is required for the PowerPC'’s pins to be driven. The thse carresponds to the bus
request action. In this case, too, data cross domains without applyingyaokironization technique
on them. Half period is devoted for the part B to receive a new messageaged by part A and to
raise the request signal towards the bus. Finally, the last case amdssjp a word moving from one
cache to another. The bus is consulted its scheduling algorithm to choasexthmarticipant that will
be granted the bus. A word coming from the sender flows through theabus find arrives in the

remote cache.
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3.2 Performance Evaluation

The next step of the evaluation procedure inspects the performaniogect by the system. As men-
tioned earlier, requests generated by a processor are separatedjtotyws. The first group includes
requests that access private memory, and the second group reqaeatctss shared memory. The
former type of requests is not imposed to any type of additional delay. 3eyd the same amount
of time as if there was no coherent memory system present. On the otheréguests that access
shared memory differ. The hardware that serves them is designed tadedetage of the full poten-
tials the DCU is equipped with. As described in the previous chapter, toesses to shared memory,
which hit in the coherent cache, make the DCU to operate in its maximum bandvAdihite re-
quest to shared memory that hits in the coherent cache occupies the DiClfblagvo cycles, before
the processor become able to issue another request. A read regtiessame type can occupy the
DCU logic for five cycles, as Figure A.4 suggests. However, this numberabes can be reduced to
three, if the processor operates three times faster that the logic attached@lthpins. Specifically,
the DCU is designed to wait for the current single-word read request &atisfied before making
a subsequent request. This requirement results in the delay of the ylotes between requests, as
shown in that figure. During these three cycles the newly received datforwarded to the pipeline
of the processor, in order the execution of the program to continuehdittevare that is responsible
for this functionality is hidden within the processor’s block. This means thedntalso operate in
the maximum frequency that the whole processor can. Thus, clockingtaetthe processor three
times faster (e.g. processor 300MHz - memory system 100MHz) than thef tbe outer system, it
results in fitting that three processor’s cycles in a single PLB cycle. Asudtraf that, the duration of
aread access can be reduced to three PLB cycles. Both read ancegpuigsts that hit in the coherent
cache complete within the first two PLB cycles. This means that the coherentrsneystem doesn’t
add any excessive delay to these accesses. Figure 3.2 depicts aveniteé-dread-hit scenario. Given
that the processor operates in the frequency of 300MHz and thef thst ®ystem in the frequency of
100MHz, then the write hit costs 20ns and the read hit 30ns.

Apart from the hit scenario examined above there is also the possibility oéthust to miss in
the cache. A miss can occur either if the requested data are absent, petifee cache doesn’t hold
the proper privileges to apply the request. In the latter case, the cacies s Invalidate request,
which is broadcasted to all the bus participants. In this way the cacheesdaibe granted exclusive

access to a block that wants to modify it. Figure 3.3 depicts such a scerndéked three additional
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write cache p|B2BRAM read access read cache
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Figure 3.2: Write hit and Read hit Scenarios

cycles for the system to resolve this kind of miss, provided that the bus isusgtwhen the cache
tries to send the Invalidate request. After the two initial cycles, the FSM of dbbhecrecognizes
that the write request doesn’t have the privileges to complete. The latalidessage is generated
and crosses clock domains in the next negative edge of the procésdqra5 cycles away from its
initiation time. At this point the arbitration and the transfer of the message statbushis acquired
by the cache, and one period later, in the next negative edge of thethlockessage arrives at the
remote caches. In parallel with this, part B of the local cache updateghie¢sof the block. The tag
memory is written in the negative edge of the processor clock, 3.5 cyclesfeava the initiation of
the request. Part A reads the tag memory, starting at the next positivel@dgeg the fifth period the
cache hitis resolved and the data are written at the end of the cycle. Fihatly,is also the possibility
of spending one more cycle before sending the request, in order tk fdrgaossible address conflict
between the outgoing message and an incoming one, which has just firlishieat case the total of

five cycles is increased to six.

In the former case, where the block is absent a BusRd or BusRdX nedssgnerated, depending
on the kind of access the processor has initiated. A read requestdaesgeneration of a BusRd
message and a write request of a BusRdX message. Both of these rsesdage a cache block to
be transmitted over the bus towards the local cache. This block transfeomgayate either from
a remote cache or the external DDR memory. Depending on the entity of didgirthe status on

which the block will be loaded into the cache changes.

The remote cache hit scenario, as shown in Figure 3.4, will be examinedgralso happens with

the Invalidate message, the cache requests to be granted the bus 2.5wyggldsom the initiation
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Figure 3.3: Invalidate Scenario

of the processor’s request. During this cycle the message is being $eci, rgsults in driving the
address pins of the remote tag memory. The memory is clocked in the nexieesgde of the clock
(negative edge 3). It outputs the indexed tag-lines and the check equalitgss starts. By the end
of this period (negative edge 4) the remote cache hit is resolved. Tpenss message is generated
and its transmission starts in the next cycle (period 4.5 - 5.5). The cachgsatesponses to a BusRd
(or BusRdX) request in a critical-word-first fashion. The first woahsmitted is the address of the
message, while the second one is the word requested by the procdisaroid arrives at the local
cache at the next negative edge of the clock, 6.5 cycles away fromittagiom of the processor’s
request, and it is being written in the ReturnData register. During the hatfidoezmaining until the
next positive edge of the clock part A identifies the arrival of the retpeeword. In the meantime the
tag-line of the block has been updated, giving to the processors thee@guivileges to perform the
access. At that positive clock edge, 7 clock cycles after the initiation gbrtbeessor’s request, the
cache acknowledges its completion. The transmission of the whole respessage completes 13.5

cycles after the initiation of the processor’s request.

When the requested block doesn't reside in the remote cache then afdbgyretrieved by the
external memory. Figure 3.5 depicts a BusRd request that misses in the aobee The initial

steps taken are similar to those of a remote hit request. The flow of actiongeshahen the remote
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Figure 3.4: BusRd Remote Cache hit Scenario

cache resolves the miss, during the period of negative edges 3.5 andt4tte end of this period
the remote cache rises Bequesimiss signal, notifying the bus logic to forward the request towards
the DDR controller. The request is written in the Commafifitsat the negative edge. It becomes
available for processing by the FSRIDDR at the start of the fifth cycle, provided that there were no
other requests in the FIFO. The request is initiated towards the DDR contialiethe data become
available at the end of the 20th cycle. Specifically, the first double word the read burst is written

in the Datalnfifo at the 18th positive edge. It becomes available to the bus logic startingettie
negative edge. The requested word, which is the half part of the dewdstk that has just crossed
back to the bus clock domain, is immediately delivered to the cache. At the 2@dhivesedge it is

written at the ReturnData register and at the next positive edge the poosegquest completes.

In the same figure a write back action takes place. The write back messam sk-to-back
with the BusRd message. Its address is temporarily stored in the bus logic,tinfiest words of
the block are written in the proper write-back FIFO (negative edges § V¥Hen half of the block is
stored, which means that the write back is sure to complete, the addresdtidickés written in the

Commanddifo as a request for a write burst. The burst is initiated at the start of2hd 2ycle and
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Figure 3.5: BusRd Remote miss. Fetching cache block from external meBlogk eviction at the

same time

ends at cycle 30.

The two final accesses to evaluate are the non-cacheable ones. Bi§ushows one non-
cacheable write and one non-cacheable read. Both of them requireycleeless to reach the bus
logic. Specifically, the cache is granted the bus and sends the norabéehecess between the two
negative edges 1 and 2. The corresponding command is written in the Comfifandn case of a
non-cacheable write the data that is sent back-to-back with the addeeasiten in the NCfifo at
the next clock cycle. At this point a non-cacheable write can be comsld®mpleted and the pro-
cessor to continue the execution of the program. The address of thestdspcomes available to the
FSM_2_DDR logic after the 3rd positive edge. A single-word access is initiated.nbinecacheable

write completes at the 8th cycle. On the other hand, the non-cacheablesteats data at the 14th
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cycle. The word is written at the Datafifo during this cycle. It then becomes available at the next

negative edge and is delivered to the cache immediately. The access cenaplitte 17th positive

edge when the data are sent back to the processor.
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B =
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Figure 3.6: Non-Cacheable Write & Read Accesses

In all the above examples the request examined wasn't blocked at amtyrpihie system. Possible

blocking points are the F

IFOs from the bus to the DDR controller and thénghaf the DDR con-

troller. An access that finds previous requests to wait in the FIFOs isatbfay additional time. As it

is observed by the figures above, this time equals to 6 cycles for eactacbeable write request and

9 cycles for each burst-w

rite request. These delays correspond dothiion of each type of access

at the DDR controller increased by one cycle. The increment is requirdlted PIF interface, which

requests that the Bus2i@

S signal to be driven low for at least one cycle between any subseque

accesses. No other types of actions (word read - burst read) daorméto wait in the FIFOs when a

new request is added. This comes from the fact that read accessks$i@@oherent memory system
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until data reception. Additionally, between accesses to shared memoryDIReMWX module may
decide to serve any pending private memory requests. This will furthexdee the delay by 6 cycles
for non-cacheable writes, 12 cycles for non-cacheable readyclésdor burst reads and 9 cycles for

burst writes. Table 3.4 and Table 3.5 summarize the above results.

| Type of Access | Access Latency \

Read Hit 3

Write Hit 2

Invalidation 5

Remote Hit 7 (critical word) / 13.5 (block transfer)

Block fetch from DDR 21 (critical word) / 27.5 (block transfer)

Block sent to DDR delay hidden by the block fetch action
Non-cacheable write || 2 (processor side) / 4 (cache side) / 8 (word delivered to DDR ctrl)
Non-cacheable read 17

Table 3.4: Access Latency (measured in PLB cycles - 100MHz clocK)freq

| Type of Delay | Maximum penalty|
Preceding Single-Word Write 6
Preceding Burst Write 9
Single-Word Write to Privatre Memory 6
Burst Write to Private Memory 9
Single-Word Read from Private Memory 12
Burst Read from Private Memory 15

Table 3.5: Additional penalties imposed to Shared Memory Requests (measuPeB cycles -
100MHz clock freq.)

3.2.1 Comparison with other Coherent Shared Memory Organiz&ons

As it has already been mentioned, PowerPC doesn’t provide any asrdnechanism to maintain
coherency between shared data. However, it provides the opportomitgnage coherency issues by
using proper software. As it is proposed in PowerPC’s manual prée] only one processor is able
to access shared memory at any given time. The processors agreeoanilivbe the next one to
acquire access to shared data. After having performed the requieeatiops the specific processor
flushes the internal data cache. It is obvious that while this approach mayainalata coherency,
it isn’t performance aware. Not only does it take many cycles to flushahbke; but also this action
degrades the performance of the running process. It is clear thabpheaeh presented in this study

is more efficient than the one just mentioned.
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There is also an alternative hardware solution to provide coherergdsimaemory to the two
embedded processors. The DCU of both processors can be cahtethe same PLB bus and use
single-word requests to access any available memory connected to thed $ha. If the shared
memory lies in BRAM blocks then accessing it over the PLB costs 7 PLB cyolesilfigle-word
write requests and 8 for single-word read requests. However, BR&durces are limited and it is
more likely for shared memory to be held in external DDR memory. In that easiagle-word read
takes 23 PLB cycles to return data to the processor. On the other handlea\sord write occupies
the processor for 10 PLB cycles before it is acknowledged by the RftBr. 10 cycles the processor is
free to continue the execution of the rest of the program. However, tha@mmpwrite access requires
6 mores cycles to be handled by the DDR control, for a total of 16 PLB cycles

The conclusion that can be reached from this comparison is that the implensgatech studied
here is certainly faster than the above when external DDR memory is usetthe@ther hand, when
BRAM is used to host shared memory then the comparison of these two systeshsak®iinto
consideration the behavior of the program executed. The percerftageesses that are served locally
or remotely (but not from the main memory) in the implemented system is the mogtldaator that

specify the outcome.

3.3 Correctness verification

A large part of the verification procedure was carried out in the implementgtiase of the system.
Each part was intensively simulated to check as many cases as possitheriaore, parts were put
together and simulated in order to check their in-between communication. ldgvemeper inves-
tigation of the system is required in order to verify the correctness of thiersy Larger programs
were written to produce large amounts of coherent traffic. In this wayysters’s functionality was

stretched out to cover all the various cases that it is supposed to suppor
3.3.1 Software primitives

The implementation of any “useful” shared memory program requires thieegesof the proper soft-
ware primitives. Such primitives offer the ability to the programmer to managehdred memory,
to instantiate multiple execution threads and to protect shared data by lockitamsos. Some
of these primitives were implemented for the purposes of this study, whilesotfeze described in-
directly. As far as the existence of multiple threads is concerned, EDK atis supplied with a

library that provides the thread abstraction. The library provides memonagement and locking
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mechanisms between the threads. Unfortunately, this library assumes tbiagdtesl threads are able

to run only on theoneof the two PowerPC. Parts of the library are able to run simultaneously on the
two processors, provided that each part doesn't interfere with thegoied out by the other. This
results in two uniprocessor systems that are independent to each ather,than a single multipro-
cessor one. Furthermore, a shared memory program is usually parizetktarcording to the number

of processors available in the system. In this particular study, the numipgocdéssor is constant.
Having multiple threads running on both processors doesn’t provide tts@oitiwf having multiple
processors, since only one thread will be able to run on each pro@ssty specific moment. Thus,
the approach of providing the ability to run multiple threads on both processs rejected, without
any loss of generality. Each test program was written for the specific nuohipeocessors, dividing

the amount of work carried out in two parts.

On the other hand, the locking mechanism was considered to be cruciaéfevaluation of the
system, since most kinds of shared memory programs require some kinglcbfsgization between
the processors. Two versions of spin-locks were developed. TWieofie is a simple implementa-
tion of the Peterson algorithm, which imposes strict alternation between thesgs that request
the lock. In order to provide a little more randomization to the behavior of thgrano, the second
version of locks doesn't follow the strict alternation pattern. In that caten a processor is trying
to acquire an already granted lock it backs off for some time and tries agaia 8me later. The
implementation of these two releases can be seen in Figure 3.7. Finally, rerdarimitives were
implemented. Any time one of the processors has to wait for the other to complstepnstantly
reading a predefined address to take a specific value. Using this lakedbkle semantics of a barrier
are described indirectly. Finally, the shared memory of the system is matfagehivired” by each
application. This means that the needs of the program are well knownrg pifi@n the program is
being written. The programmer distributes the memory according to these rfegaln, the correct-
ness and the performance of the program are not harmed, sinceulimgelsehavior is equivalent to

the case where software manages the memory.

3.3.2 Shared Memory Programs
Testing Environment

The parameters of the systems (uniprocessor - multiprocessor) are sho&ble 3.6. The processors

and all the remaining parts of the system operate in the same frequencM{g0 The internal
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struct lock_st{ int ppc_0O; int ppc_1; int turn; }

voi d mutex_|l ock(struct |ock_st *lock, int processor){ voi d nutex_| ock(struct |ock_st *lock, int processor){
i f(processor == 0){ int delay;
| ock->ppc_0 = 1;
lock->turn = 1; i f(processor == 0){
whi l e(1){
whil e((lock->ppc_1 == 1) && (lock->turn !=0)); delay = 3;
| ock->ppc_0 = 1;
el se { if(lock->ppc_1){
| ock->ppc_1 = 1; I ock->ppc_0 = 0;
I ock->turn = 0; whi | e(del ay--);
whil e((lock->ppc_0 == 1) && (lock->turn = 1)); el se break;
}
}
el se {
whi | e(1){
voi d nutex_unl ock(struct |ock_st *lock, int processor){ delay = 1;
I ock->ppc_1 = 1;
if(processor == 0) if(lock->ppc_0){
| ock->ppc_0 = 0; | ock->ppc_1 = 0;
el se whi | e(del ay--);
| ock->ppc_1 = 0; }
} el se break;

Figure 3.7: Locking Algorithms

instruction cache of the PowerPC is enabled in all the experiments, while theahtata cache is

used only once for a specific organization running the “shared cdyregram. The processors are
operating standalone; no operating system is present. As a result tiaés®m® memory translation.
The addresses generated by the programs are physical. Finally, thef eaeh coherent cache is 4

KBytes.

Clock freq. = 100 MHz
Internal Instruction Cache enabled (16KB)

Processors Internal Data Cache disabled

No O/S. Processors operate standalone

No Memory Translation Physical addressing used

Coherent System - | Clock freq. = 100 MHz

PLB - Peripherals Coherent Data Cache 4KBytes

Table 3.6: System Parameters

Shared Counter

The first program written for the system is the increment of a sharedi@oufhe two processors
using a lock structure try to gain access to the shared variable thatmamdssto the counter. Once

the lock has been acquired by a processor the variable is increasad bypdthen the lock is released.
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Once the lock is released the other processor can acquire it to perfesarte action. Using the first
type of locks presented above, the system behavior results to an alteroftie two processors on
having access to the shared variable.

The traffic generated by the two processors when running this pragperesponds to the transfer
of the lock structure and the shared variable from one coherent taehether. The first action taken
by the processor (processor A) to get the lock is a write access to itbheaimathe lock-structure.
This corresponds to a BusRdX message to be broadcasted and tlepondiaeg cache block to enter
the cache. The same processor reads constantly the variable within thteadbclorresponds to the
other processor (processor B), in order to be notified for the its elé&straffic generated, since all
the read accesses hit in the cache. Processor B eventually releakeskthg clearing its variable.
A BusRdX message is generated and the lock travels back to processoaddie. The next time
processor A reads the lock a BusRd message is generated and thedblook to cache A. At that
time processor A has access to its critical section. Its actions are to redmtked sounter (generation
of a BusRd message) and to write to it the new value (generation of an latfrafidnessage). Finally,
it releases the lock by clearing its value in the lock structure. This set ofnactsocontinuously
repeated until the end of the program.

In order to measure the performance of the program, its length of exedsitneasured in pro-
cessor cycles. The result is also compared against to the same time réxyarediprocessor system
to perform the same kind of counter manipulation. Such a program is ratreimgéess as far as
its functionality is concerned, however, it provides a good insight of thet of the shared mem-
ory synchronization. Table 3.7 reports the time taken for four differesttigectures to execute that

program.

200.000 iterations 2.000.000 iterations

Architecture inti; | registerinti; inti; | registerinti;
Uniprocessor - Internal Cache Enabled| 3,600,028, 2,600,030 36,000,028 26,000,030
Uniprocessor - External Cache Used 9,400,044, 3,400,023 94,000,044 34,000,023
Uniprocessor - Access to BRAM 11,400,041 4,600,023| 114,000,041 46,000,023
Multiprocessor - Coherent Cache Used| 33,200,308 29,500,275| 332,000,308 295,000,276
Multiprocessor - Non-Cacheable Memory33,449,129| 30,516,658 334,489,656 305,149,990

Table 3.7: Duration of “Shared-Counter” program for differenttatures in processor cycles (clk.
freq. 100 MHz)

Specifically, there are three different uniprocessor architecturdgegtand one multiprocessor.
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The uniprocessor architectures are differentiated by the place wheevatiables of the program are
stored. The first one uses the internal data cache of the PowerP(ole gonick access to frequently
used data, such as the counter variable and the iteration variabiehe second one, the internal
data cache is disabled. The counter variable of the program is foundiedsimemory cached by
the external cache, while the stack resides in PLB BRAM memory. Finally, itagteiniprocessor
organization data are not cached anywhere and they are loaded ricdbstaed directly to private
memory located in the PLB BRAM block. The multiprocessor organization usibé isne described
in the previous chapter. Two cases have been tested. In the first oloekhariables and the shared
counter variable reside in cacheable shared memory, while in the secosltktteel counter variable
has been moved to non-cacheable shared memory. For all the abowezatigas the instruction

cache of the PowerPC was enebled.

The numbers shown above corresponds to two different executiadhe gfogram. The left one
refers to execution length of 200.000 counter iterations, while the righta2¢)00.000 iterations.
For each execution and for each organization, two lengths are repoitesitwo sub-columns. Each
one of them corresponds to the declaration of the iteration varialded for thor-loop. In the left
column it has been declared as a simple variable, while in the right one the comageadvised
to maintain the iteration variable to a register throughout the execution of tigegono This is the
only hint given to the compiler, and the rest of the program is compiled witluritbdr optimizations
(for all the architectures to ensure fairness). Eliminating optimizations frentémpiling process
is required for the proper built of the multiprocessor program. In the sfahat program there are
several shared memory accesses that are used for the proper initinlaatie system and the initial
synchronization between the processors. These accesses seeimgiasario the compiler, which
expects as input a uniprocessor program, and eliminates these instru&miiss expected to be,
the organization using the internal cache is the fastest one, for bothdf/pesgrams. Following it,
the organization using the external cache is the second fastest. As ibdrasnentioned before, the
external cache takes advantage of the full bandwidth of the DCU inggrfelcen accesses hit in it.
The specific program is supposed to experience high hit ratio sincewhededs are always found
in the cache. On the other hand, an access to the PLB BRAM private merkesyrtare cycles to

complete, resulting to lower performance.

Moving to the multiprocessors organizations the number of cycles requrdtd execution of

the program is multiplied by a factor of 3.6 to 10.0. The main reason for this hde tith the
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synchronization between the two processors. It can be estimated tlaab&at scenario where both
processors try to acquire the lock at the same time, only the messaging maypdost1.000.000
cycles. Inascenario like this, every access to shared memory initiatedlog&hprocessor, competes
with the corresponding one initiated by the remote processor. Let assamexadmple, the set of
actions shown in Figure 3.8 in the sequence they appear. The total goserkfor exchanging the
corresponding messages generated by the processors come upyoléd0while the whole execution
increases the shared counter twice only. Actions 1, 7 and 11 cost X3€s gjnce they cause a cache
block to be sent from the one cache to the other, and also the start of tcagaés placed in sequence
with the previous action. On the other hand, actions 2, 3, 4, 5 and 10 tasficles. They cause a
cache block to be transmitted; however the start of the message comesliiel patla the previous
action. This means that the message is ready to be sent but the bus eaagrentted, yet. The cycles
of initiation of this message overlap with a request from the remote pro¢cessbthus don’t count
in the total cost. Finally, actions 8 and 12 cost 5 cycles, while actions 9 a@dcg8les. If this set
of actions was supposed to be repeated 100.000 times then 11.000.0@0nyale be spent, which
corresponds to at least the 1/3 of the total execution time. However, thiarszés not likely to appear
so0 many times in this specific program. Actually, it is expected, due to lockingtsicthat the two
processors to balance program execution in a state where at eachivire one of them has access

to the shared counter, while the other one waits the lock to be released.

The last entry of the table corresponds to the placement of the sharetécounon-cacheable
shared memory. The synchronization lock structure still resides in caleh@@mory. The only things
that changes in this case are accesses of the type of 7 and 8. Thacimalle read request takes
the place of the BusRd message and the invalidation message gives its placmtoacheable write
request. The former exchange adds 4 cycles to the total amount of ,aybiéssthe second 0 cycles.
The additional cost when repeated 200,000 times corresponds to add&(ha00 cycles, which

estimates the difference between the two last entries of Table 3.7.

Finally, it is easy to observe the relationship of the size of the workload witexbeution length.
Using a workload ten times larger results in multiplying the execution length byter fatcten. This
means that the behavior of the system is “locked” to a specific set of astibes this program is
executed. The results measured are representative to that behastiag & should be expected they

change linearly as the size of the workload changes.
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Processor O Processor 1
1) | ock->ppc_0 = 1; (BusRdX)
2) | ock->ppc_1 = 1; (BusRdX)
3) | ock->turn = 1; (BusRdX)
4) | ock->turn = 0; (BusRdX)

5) whi | e( (1 ock->ppc_1 == 1) (BusRd)
&& (lock->turn !'= 0)); 6) while((lock->ppc_0 == 1) (cache hit)
&% (lock->turn I'=1));

7+8) shared_counter += 1;(BusRd
& I nvalidate)

9) | ock->ppc_1 = 0; (I nvalidate)
10) whi | e( (1 ock->ppc_1 == 1) (BusRd)
&& (lock->turn !'= 0));

11+12) shared_counter +=1;(BusRd & | nvali date)

13) | ock->ppc_0 = 0; (lnvalidate)

Figure 3.8: Competing for Access to Shared Memory

Producer - Consumer

The second program implemented simulates a producer-consumer relgtibesieen the two pro-
cessors. Processor A is responsible for generating new data amagpiaem in the shared buffer.
Processor B consumes these data by reading them from the buffenuifeelies in shared address
space and is organized as a FIFO. Itis equipped with a head and a tadrpainich point at the start
and the end of the queue, respectively. The producer procegsend@pnew data at the end of the
queue by updating the tail pointer properly. The consumer procedseres new data from the head
of the queue. Access to head and tail pointer is not protected by a dhekedince these two words
lie in subsequent cache blocks. Each time the producer processortwatd a hew word to the
gueue, it first writes the data to the memory location pointed by the tail pointethendncrements
the tail pointer. On the other side, the consumer, which constantly readsitpeitaer, identifies
the availability of shared data, by comparing head and tail pointer. In togaovide the illusion of
processing the data, the consumer doesn’t immediately consume the avadiahlard! also it isn’t
necessary to consume them all at once. It decides, by callingattu€) function, how many words
will be consumed. If this amount of data is present in the shared buféar,ithvill also be dequeued.

If not, the current iteration will end, and the consumer will start over. @myede-queue of a single
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Consuner Producer
for(i=0; i< ITEMS;){ end = 0;
i f(*head_pointer == *xtail _pointer){
items = (rand() % 32) +1; XTi me_Cet Ti me(&cycl es_before);
i =0;
for(i=0;i<ITEM; ++i){
while((j<itens) && *(xtail _pointer) =1i;
(*head_pointer!= «tail _pointer)){ *tail _pointer += 1;
k = *(*head_pointer); }
*head _pointer += 1;
+4 whi |l e(end == 0);
}
i += XTi me_Cet Ti ne(&cycl es_after);
}
}
end = 1

Figure 3.9: Producer - Consumer Program

word, the head pointer is updated. The first assumption made is that thehBHEH@finite space. The
producer isnot required to check if there is available space in the FIFO. It just appemdsata.

This property is translated to less traffic in the shared medium and also legetition for shared
variables, and thus must be taken into account when studying the resolfly, shared data, either
for the uniprocessor or the multiprocessor program, are stored in theakBEDR memory, and thus
they are cached by the coherent cache. Local data, such as theastastored in PLB BRAM. The

programs of the producer and consumer is shown in Figure 3.9.

The performance of the system is compared against an equivalentaggisgor one. In such a
system two threads are simultaneously executed on a single procesedhr@ad produces data and
the other consumes. The scheduling policy between two threads is preenifzch thread is given a
quantum of time to use the processor before the scheduler switchesiendouhe other thread. The
same conventions as before are followed in this case, too. The memorysbfates buffer is infinite

and the consumer program has the same behavior.
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(a) No Compiler Optimizations

| 4-byte Words| Uniprocessorl Multiprocessor| Speedup|
1,000 249,366 110,899 2.24
2,000 493,536 225,411 2.18
10,000 2,436,055 1,132,676| 2.15
100,000 24,492,985 11,255,403 2.17
200,000 48,985,374 22,488,258 2.17
1,000,000/ 225,962,156 112,553,299 2.00
10,000,000/ 2,135,603,374 1,125,367,379 1.89

(b) Compiler Optimization Level -O2#nd() used)
| 4-byte Words| Uniprocessorl Multiprocessor| Speedup

1,000 183,353 54,118 3.38
2,000 361,659 110,284| 3.28
5,000 890,717 276,798 3.22
10,000 1,776,651 560,760, 3.17

100,000 17,731,506 5,609,254, 3.16
200,000 35,432,192 11,204,784, 3.16
1,000,000| 177,212,319 56,103,330 3.15
5,000,000 885,975,684 280,489,649 3.15
10,000,000| 1,771,887,494 560,924,941 3.15

(c) Compiler Optimization Level -O2#&nd() not used)
| 4-byte Words| Uniprocessor Multiprocessor| Speedup

1,000 152,236 44,084 3.45
2,000 297,417 88,173| 3.37
5,000 733,501 221,458 3.31
10,000 1,460,060 443,593| 3.29

100,000 14,567,150 4,442,037 3.27
200,000 29,127,419 8,884,761 3.27
1,000,000 145,619,237 44,426,176 3.27
5,000,000 728,070,541 222,133,438 3.27
10,000,000| 1,456,136,058 444,267,532 3.27

Table 3.8: Duration of “Producer-Consumer” in processor cycles {itk]. 100 MHZz)

Table 3.8 shows the length of the execution of the two programs. Threeisepe given for
this program, each one referring to a different type of optimization appligohgl compile time.
Table 3.8(a) reports the length of the execution of the program for odédvem processors, when
no optimizations are made in the compilation phase. The only hints given to the coamgiléhe
declaration of some crucial variables as registers. The first concltisbran be drawn is that the
length of the execution of the program for each organization of the syistproportional to the size

of the workload. Increment of the workload by a factox@htails the increment of the execution time
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by the same factor. As it can be seen the multiprocessor system is alwtgrstfean the uniprocessor
one. There are several reasons why this happens. First of all, iifc@ssor system has to pay the
penalty of using threads in a single processor. Every time the produeadthuns, useful work is
carried out. However, the quantum given to the consumer thread iswayslsed at its entirety.
Every time the consumer empties the FIFO it then spins constantly reading theita@rpwaiting
for new data. Unfortunately, the producer is not able to enqueue newsifee it isn’t running. The
rest of the quantum is wasted doing useless work. Furthermore, thé switching between threads,
and the interrupt handler running at the end of every quantum, havamlsopact on the execution
length of the program, and also constitute penalties not paid by the multippogeegram. Finally,
one thing that favors the multiprocessor organization is the existence @l @etrallelism that can
be derived by the two processors. Both of them can carry out uaefld, since the producer thread

produces data unstoppable and the consumer is able to withdraw them &&if-tD.

In order to reveal the penalty imposed to the uniprocessor system by itichisgy procedure the
program is compiled again with optimization flags set on. Table 3.8(b) shovpetf@mance of both
systems for the same (optimized) program. The performance of the urspoyaystem has improved,
since the compiler has managed to evict useless functionality (or has @ekitribore efficiently).
The same holds for the performance of the multiprocessor system. Howeyezlevant speedup has
increased. The reason why this happens has to do with the amount ofdeblprgram receives
by the compiler's optimizations. The uniprocessor version of the progrkes tsome advantage of
the optimizations, and this result to the lower execution time as regards with theywe/ersion.
However, a large amount of quantum of time will be lost again. Produakcansumer now work in
a higher rate, but both work in the same rate. Wasting time by the consumeirisragdtable, since
at some points in time the FIFO will become empty again. On the other hand, the nudspov
version of the program takes full advantage of the compiler’s optimizatidimanks to them, the
whole work is described with fewer steps. The system is able to take the@sengtbout interruption,

and finish earlier. This opposition is reflected to the relevant speedup sf/ttlem, which increases.

In order to understand the different kinds of costs in the uniprocgssgram, theand() func-
tion call has been removed from the code of the consumer. Now, the iteratidhe consumer are
much simpler. It first compares the head and the tail pointer. If it resolaahility of new data
it dequeues the word found at the head of the queue. It updates ttepbeder and then tries to

execute this loop once more. The new performance of the uniprocesgensis presented in Ta-
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ble 3.8(c). As it can be seen, the execution time of the program has heleerfdecreased, as result
to executing less code during each iteration loop.The same holds for th&tierettme of the multi-
processor program. It also decreases, however the multiprocgssemsseems to be favored again.
Removing thaand() function call from the consumer program results eventually in “optimizing” in
a way the whole application. As before, optimizing the program results iniggotlie performance
gap between the two architectures. The multiprocessor organization is dblettull advantage of
the optimizations and decrease the execution time at the lowest possible levke @her hand, the
uniprocessor architecture will be affected by this change; howeweexacution time will decrease
only by a fraction, due to wasted time when consumer finds the FIFO emptyssonallaen switching
between threads. This effect is reflected on the relative speedupdrethetwo architectures, which
increases with regard the results of Table 3.8(b).

A final comment that should be made here concerns the effect of doubérayailable cache of
the system when using the two processors. Due to the nature of theprograe processor can take
advantage of the increased cache capacity when both processteop@e consumer program uses
only a single cache block from its available cache, either this is the one &ndamhe of the system or
is the private coherent cache of the processor. This cache blopk ke next words to be consumed
by the application. If the system disposes only one processor then thiswibalready be in the
cache, because the producer program will have already touched theGnther hand, if the system
disposes two caches, the processor running the consumer prograimeneyo pay the penalty of
fetching it from the remote cache, where will certainly be. After the blocklie®en consumed then it
has no more meaning of existence, since none will request it. Furtherthengerformance of these
two system is identical also when the producer program has gone aheadduation and touches
addresses “one cache size away”. In this case, both organizatiorswélito visit the external DDR

in order to retrieve the next block to be consumed.
Sorting Algorithm

The third and final program implemented uses the two processors to samntagnof integers. Two
versions of the program have been written. The first one sorts the givay in a manner that results to
excessive computation to be carried out, and excessive communicatiogéméeted. The purpose
for doing so is to push the system to its limits, having to perform many tasks. orhpregram was
chosen to be implemented in these two forms, since it's the most complex of all #eeutbed. As far

as its behavior is concerned, it follows the divide-&-conquer appraachthe merge-sort algorithm
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to achieve its purpose. Both programs follow the three same steps. Eadif tfeftable with the
numbers to be sorted is assigned to a processor. At the first step okthéier each processor works
on every cache block in separate. This corresponds to the base @ctnsion in the merge-sort
algorithm. The sorting of this basic element is done by a bubble-sort algoritiw.cost of this is
considered to be a constant number in the total cost of the whole precethe two processors do
this for all the cache blocks, and the first step ends with having ibée/ cacheblock size different
sorted subtables. The second step constitutes the merge process. réedsqr takes 2, 4, 8 ...
sequential cache blocks to form two already sorted subtables and uséotheerge them in a bigger
sorted one subtable. In order to do so it uses a temporal buffer, whaatctipies it back to the initial
one. The second step ends with having the whole table of numbers split intmtteal subtables. In
the third and last step, only one of the two processors works. With the saioesg it sorts the two
remaining subtables, merging them in one, which brings the desirable rekalcomplexity of this
algorithm is O(nlogn).

The two versions of the program differentiate in the way the initial separatidhe table is
made. The first version, which costs a lot, suggests that each protesake on the odd subtables
and the other processor the even. At any point in time each processoatiae blocks required by
the other processor. This results to excessive communication and lorfempence. The second
version, which is the one usually followed around the world, suggesksgracessor to undertake an
independent part of the table to sort. In this case, where two prosesmspavailable, each processor
is assigned one half of the table, either the first or the second. The twegsars follow the steps
described above to end up with the whole table separated into two sortetblsabt&inally, one
processor undertakes the third step to produce the final form of the taitil. The performance of

these two programs was compared against the equivalent uniproossg@-sort program.

| 4-byte words]|| uniprocessor multiprocessor 1 Speedup 1 multiprocessor 2 Speedup 2

8,192 4,685,431 4,132,038 1.13 2,473,063 1.89
16,384 10,158,520 9,070,199 111 5,345,342 1.90
32,768| 21,867,901 19,785,706 1.10 11,526,511 1.89
65,536| 46,968,166 42,768,827 1.10 24,577,065 1.91

131,072| 100,256,519 91,915,826 1.09 52,318,443 1.91
262,144 | 213,236,539 195,714,795  1.08 110,977,051 1.92
524,288| 451,039,058 416,539,343  1.08 234,495,627,  1.92
1,048,576| 952,872,819 884,714,939  1.07 494,437,564  1.92

Table 3.9: Duration of “Merge-Sort” program in processor cycles. (itkg. 100 MHz)
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As it was expected the second multiprocessor algorithm has the begtpenfe. The first mul-
tiprocessor algorithm has a very small speedup, due to the extra costedbssive communication.
It is almost as fast as the uniprocessor algorithm. On the other hand cthedsaultiprocessor algo-
rithm presents a very good and stable speedup throughout the expsti@encerning this algorithm,
the only part that interprocessor communication arises is at the last step alythrithm, where the
final result must be composed out of the two subtables. This correspotite minor penalty paid by

the system.
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Conclusion and Future Work

Due to technology advances future high performance computer archégeatill employ multiple
processing cores on a single chip. This alters the whole setting of the cegsar system that stands
true until now, and takes up the biggest part of the processors marketdér to acquire a greater
understanding of future architectures an attempt to come closer to a realroud8por system is
being done in this study. A multinode FPGA-based prototype has been ddsagd implemented.
The system is equipped with two PowerPC cores, which are embedded inlitie Artex-1l Pro
FPGA. External caches equipped with a MESI cache coherence prat@cimplemented. The two
caches are connected by a custom interconnect, which has beerntgvamoperties of a bus, to the
DDR controller. Through this path the two processors are able to adt@®sissoherent memory. The
opportunity of addressing private memory has also be given to the grsdsy sending requests over
the PLB bus. Simulations carried out has shown that the system implementecei®fficient than
any other composed exclusively by Xilinx soft-cores and offers the $gpeeof hardware coherency.
Additionally, the system offers lower latency accesses to data stored euisitie boundaries of
the processors, when these accesses hit in the coherent cachif®errirare, custom benchmarks
have been written, simulating basic program behaviors found in paratigtgms. Specifically, the
first program describes the increment of a shared counter betweéndh@ocessors. The second
program implements a producer-consumer relationship, while the third usesdbessors to sort
an array of random integers. Software primitives, such as locks, lbese implemented in order
to achieve processor synchronization. The performance of the syséasured by these programs
was compared against the performance of an equivalent uniprosgssem. The comparison from

the first program has revealed the negative impact of synchronizingrtieessors before accessing
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shared data. The shared program was found to be 3 to 10 times slowehéhbast uniprocessor
one. The main reason for that constitutes the additional instructions thahdahedsprogram has to
execute and the software primitives used for synchronization. Furterith@ nature of the program
creates a vast amount of bus traffic in order to synchronize the ascessfar as the second program
is concerned, the multiprocessor system is 2 to 3.5 times faster than thelegjuivaprocessor one.
The main reason for that comes from the fact that the uniprocessomsrie pay the penalty of using
threads on a single processor. Switching between threads, and waatedm of time due to lack of
data to be consumed cause this extraordinary speedup. Finally, the godgrgm that implements
the merge-sortalgorithm, is run from 1.8 to 1.95 times faster in the multiprocessor system than in
the uniprocessor. The speedup measured is considered to be thegtikespne, since the specific
algorithm can be well divided in two parts.

One of the future objectives of this work is to design and implement a cotheeémork interface
that will be attached in the coherent network interconnect. By doing swillvee able to build sys-
tems with more than two processors and also measure the effectivenéssioing the network inter-
face to the memory bus. Furthermore, a more efficient way of implementing togksbe designed.
Software locks have turned out to be expensive. The PowerPC dlaégpose atomic instructions,
however, atomic instructions can be generated by the coherent caciy é&th be properly identified

by the rest of the coherent memory system.
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Appendix A

DSPLB & PLB2Cache module

A.1 DSPLB Behavior

The data-side processor local bus (DSPLB) interface enables therPGwW05 data cache unit (DCU)
to load and store data from any memory device connected to the procesabbis (PLB). This
interface has a dedicated 32-bit address bus output, a dedicated réédbitlata bus input, and a
dedicated 64-bit write-data bus output. The interface is designed to aaamaster to a 64-bit PLB,
but it also supports attachment to a 32-bit PLB. It is capable of one datsfdrg64 or 32 bits) every
PLB cycle.

The same things hold for the instruction cache unit. It is also designed tecoana master to a
64-bit or 32-bit PLB bus, and is capable of transferring one datundweery PLB cycle. Since PLB
specification supports multiple masters, DSPLB and ISPLB can be conrntectesingle PLB bus.
This approach is also followed in this study. Each processor is conntectete PLB bus to retrieve
data and instructions. The arbiter of the bus is responsible to schedulernrated requests properly.
In the case were both masters require to be granted the bus, the arltepgurity to the DSPLB

interface. This generally results in better processor performance.

Data (read and write) requests are produced by the DCU and communivatetthe PLB inter-
face. Arequest occurs when an access misses in the data cache ontbgy/doeation that is accessed
is non-cacheable. The signals used for the PowerPC 405 and the PbBitounicate can be seenin

Figure A.1. Also, a short description of the signals can be found in Taldle A
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APPENDIX A. DSPLB & PLB2CACHE MODULE

Signal Function

C405PLBDCUREQUEST Indicates the DCU is making a data-access request.

C405PLBDCURNW Specifies whether the data-access request is a read or a write.

C405PLBDCUABUS[0:31] Specifies the memory address of the data-access request.

C405PLBDCUSIZE?2 Specifies a single word or eight-word transfer size.

C405PLBDCUCACHEABLE Indicates the value of the cacheability storage attribute for the tar-
get address.

C405PLBDCUWRITETHRU Indicates the value of the write-through storage attribute for|the
target address.

C405PLBDCUUOATTR Indicates the value of the user-defined storage attribute for the tar-
get address.

C405PLBDCUGUARDED Indicates the value of the guarded storage attribute for the target

address.

C405PLBDCUBE[0:7]

Specifies which bytes are transferred during singleword transfers.

C405PLBDCUPRIORITY[0:1]

Indicates the priority of the data-access request.

C405PLBDCUABORT

Indicates the DCU is aborting an unacknowledged data-access re-
quest.

C405PLBDCUWRDBUS[0:63]

The DCU write-data bus used to transfer data from the DCU tq the
PLB slave.

PLBC405DCUADDRACK Indicates a PLB slave acknowledges the current data access re-
quest.

PLBC405DCUSSIZE1 Specifies the bus width (size) of the PLB slave that accepted the
request.

PLBC405DCURDDACK Indicates the DCU read-data bus contains valid data for transfer to

the DCU.

PLBC405DCURDDBUS[0:63]

The DCU read-data bus used to transfer data from the PLB slave
to the DCU.

PLBC405DCURDWDADDR([1:3]

Indicates which word or doubleword of an eightword line transfer
is present on the DCU read-data bus.

PLBC405DCUWRDACK Indicates the data on the DCU write-data bus is being accepted by
the PLB slave.

PLBC405DCUBUSY Indicates the PLB slave is busy performing an operation requested
by the DCU.

PLBC405DCUERR Indicates an error was detected by the PLB slave during the trans-

fer of data to or from the DCU.

Table A.1: DSPLB PLB Interface Signal Summary
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PLBC405DCUADDRACK ————»
PLBC405DCUSSIZE1 ———»
PLBC405DCURDDACK ————»
PLBC405DCURDDBUS[0:63] -1
PLBC405DCURDWDADDR]1:3] s—f-
PLBC405DCUWRDACK ————»
PLBC405DCUBUSY

PLBC405DCUERR ———

PPC405

= C405PLBDCUREQUEST
= C405PLBDCURNW
- C405PLBDCUABUS[0:31]
= C405PLBDCUSIZE2
—» C405PLBDCUCACHEABLE
= C405PLBDCUWRITETHRU
C405PLBDCUUOATTR

|— C405PLBDCUGUARDED

=t C405PLBDCUBE[0:7]
et C405PLBDCUPRIORITY[0:1]
— C405PLBDCUABORT
i C405PLBDCUWRDBUSJ[0:63]

Figure A.1: Data-Side PLB Interface Block Symbol

A.2 DSPLB Signal Summary

Depending on the type of the address range accessed (cachealiec&caieable) the PLB interface
generates the appropriate request. Access to cacheable memoryaraaatise cache line (8 words)
to be transferred over the PLB, while non-cacheable accesses umgllgst only one word to be
transferred. Cacheable data transferred as a cache line are dyesiarad in the cache array, while
single non-cacheable words remain in the fill buffer. There is also th&lplity that non-cacheable
reads be loaded using an eight-word line transfer, in order to take @dyaaf the PLB line-transfer
protocol to minimize PLB-arbitration delays and bus delays associated with mukKipigle-word
transfers. The transferred data are placed in the DCU fill buffemdiuin the data cache. Subsequent
data reads from the same non-cacheable line are read from the filt mgffead of requiring a sep-
arate arbitration and transfer sequence across the PLB. Data in thdféH are read with the same
performance as a cache hit. The non-cacheable line remains in the fdl lowiftil the fill buffer is

needed by another line transfer.

From these three scenarios described above, the first and the thirdenpsthibited when ac-
cessing memory characterized as shared. In these two cases, suthseeonory accesses to the same
addresses are being served by the internal cache structure anahntté coherent cache. This threat-
ens memory coherency because these subsequent accessefareederithout taking into account
that the specific memory is probably used by another entity, too. The onlyorgmjve this problem is
by making each processor to generate accesses that are not inflbgrtbe internal state of the data

cache in order to access shared memory. This is accomplished by augiress-cacheable memory,
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transferring a single word per memory access. The rest of the privateomecan be safely set as
cacheable.

A PLB access can be divided into two parts. The first part has to do withdteess accessed
and the second part with the data returned (read access) or giviem §acess). Figure A.2 depicts

different kinds of PLB accesses.

cyee [1]2[3[a[s[6]7[s]o[w]1]r]a]14]1s]w]17[18]19]20] oyele [1[2 345678 [ofwo]1]r]1s]1]s]w6][18]19]20]

PLBCLK and CPMC405CLK PLBCLK and CPMC405CLK

bcu il [ pcu (st

PPC405 Outputs: PPC405 Outputs:
C405PLBDCUREQUEST " p C405PLBDCUREQUEST

w2 it w\_/ w3
C405PLBDCUABUS[0:31] C405PLBDCUABUS[0:31] XX

caospLeDCURNW __/ \_/ \ /7 \ C405PLBDCURNW
C405PLBDCUSIZE2 C405PLBDCUSIZE2
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PLBC40SDCURDWDADDR(13] X0 | 2 4 6 X Xo 2z 4 X PLBC405DCURDWDADDR[1:3]
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(a) DSPLB Line Read/Word Read/Line Read (b) DSPLB Line Write/Word Write/Line Write

Figure A.2: PLB Accesses

During the first part, the processor requests to be granted the bus, gsedtia
C405PLBDCUREQUEST high and driving the address signal (C402RLIBABUS). Also control
signals like C405PLBDCURNW and C405PLBDCUSIZE2 must be valid andlestantil the bus
acknowledge the address. Depending on the state of the bus and thef sketeslave peripheral,
the address can be acknowledged in the same cycle that the requesttisdasafter this acknowl-
edgement, the request signal is driven low. In case of read acclss,the datum (single word ac-
cess) or data (burst access) become available the slave periphedaiweilPLBC405DCURDDACK
high. The number of cycles that the acknowledge signal will remain higkrd&pon the access (1
cycle for single word access, multiple cycles for burst access). la cha write access, the first
64-bit data word must be valid in the cycle the C405PLBDCUREQUEST i®driigh. The slave
peripheral can acknowledge the data even in this cycle, by driving tBE€RQ5DCUWRDACK sig-
nal high. If the access writes only a single word then the access finishee isame cycle, and
PLBC405DCUWRDACK is driven low. A dummy cycle of no activity must pas$dre the DSPLB
sends the next request. If the access writes more than one word, BEBCUWRDACK remains
high until all the words are acknowledged.

There are some issues that must be discussed about the accessemsth@nast figure. First
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of all someone can observe subsequent accesses to overlap in timds Bacause the DCU can
overlap an on-going request with a previous one. This process,rkaswddress pipelining, enables
a second address to be presented to a PLB slave while the slave is tingsfata associated with the
first address. Address pipelining can occur if a data-access taguesduced before all data from a
previous request are transferred by the slave. This capability maximisér&nsfer throughput by
reducing dead cycles between multiple requests. The DCU can pipeline up tedd requests and
one write request. (Multiple write requests cannot be pipelined.) A pipelegpaest is communicated
over the PLB two or more cycles after the prior request is acknowledg#uetPLB slave.

Furthermore, there have been made some timing assumptions regarding the fiagregng

shown.

e For example, requests are acknowledged in the same cycle they aretedesg the DCU, if
the bus interface unit (BIU) is not busy. This doesn'’t hold if the DCU israxted to a PLB bus.

The PLB requires 3 cycles of arbitration before the peripheral becamase of the request.

e The first read-data acknowledgement for a data read is asserted ipctbdramediately fol-
lowing the read-request acknowledgement. This represents the eaylista bus interface
unit (BIU) can begin transferring data to the DCU in response to a repgst. However, the

earliest the PLB begins transferring data is two cycles after the readseigiacknowledged.

e The first write-data acknowledgement for a data write is asserted in thecyaieeas the write-
request acknowledgement. This represents the earliest cycle a Blbegamaccepting data
from the DCU in response to a write request. However, the earliest th& FR® begins

accepting data is two cycles after the write request is acknowledged.

The timing diagrams of Figure A.2 show the fastest way the DCU can opendtegtizeen connected
to an ideal bus or directly (point-to-point) to an ideal peripheral. Conggaind limitations must be
taken into account in order to make a safe estimate of the performance sfemsthat disposes a

PLB bus and more than one PLB peripherals.

A.3 PLB2Cache module FSMs

Figure A.3 shows the state diagrams of the two FSMs. As it can be seen flilogmoare very simple
and have very few states. The FIRMLB FSM has three states. The idle state is called FHRBE. It

remains in this state until a valid request for shared memory is generateeindieg on the type of the
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request it proceeds to state ACKEADDR, in case of a read request, otherwise to state ACRER.
When performing this transition the address of the request is acknovdeAdéditionally, the address

is pushed into the FIFO if the FSMCCESS is busy serving a previous request. The FSM remains in
the ACKED_ADDR state until the requested data arrive and the PLB has finished gamyrprevious
requests. Then it returns to PUBLE. When in state ACKEDWR it stays there for a cycle and then
returns to the idle state. The purpose of waiting for one cycle has to do witotistraint the DCU
imposes of spending one cycle without activity after each completed writeesegDuring this cycle

the C405PLBDCUREQUEST signal is low and the PLBC405DCUBUSY high.

PLB_IDLE

ACKED_ADDR

capture_access

Cache_ack & !pending_action

capture_access &
capture_access & IC405PLBDCURNW

C405PLBDCURNW,

Cache_ack &
pending_actio

PLB_ACCESS

Cache_ack &
Ipending_action'

ICache_ack

Data not available

(@) FSMPLB State Diagram (b) FSMLACCESS State Diagram

Figure A.3: PLB2Cache module FSMs

FSM_ACCESS is also very simple, consisting of only four states. The idle state iglcalle
NO_ACCESS. It remains in this state until an access to shared memory is captifiedn this
happens, the access is instantly passed to the coherent cache, an8Mhpréceeds to state
PLB_ACCESS. It stays in that state until the request that it serves has complggzending on
the occupancy of the FIFO, the FSMCCESS transitions either to FIF@CCESS1 in order to serve
requests that have been queued in the FIFO or back to the idle state, iithere available requests.
In FIFO_ACCESSLI state stays for one cycle, in order to pop the address of thesdoom the head
of the queue, and then proceeds to state FRCCESS2. State FIF@QCCESS?2 is equivalent to state
PLB_ACCESS with the difference that data are read by the FIFO and not bySileFELB. It remains
in that state until the request is completed. When this happens, it transitichisolddFO ACCESS1,
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if there are available requests in the FIFO or back to the idle state.

FSM_ACCESS is responsible for communicating with the coherent cache, whicle inetkt
step in the hierarchy. Each couple of states (NOCCESS PLBACCESS and FIFCACCESS1 -
FIFO_ACCESS2) corresponds to serving one request. The minimum this can f&ydses, which
corresponds to cache hit and completion of the request. In the first $tdwte couple the address of
the request is sent to the cache in order to read the tag memory. In thel stata decision on a
hit or a miss is taken. Until the cache signals the end of the request beuagl semtrol, address and

data signals towards the cache must be valid and stable.

A.4 Returning Data

An issue that must be cleared has to do with the way the DCU receives detalodd requests
are issued. As mentioned above, the DCU supports two reads and oneaga@sses to wait for
completion at the same time. This comes from the ability of the DCU to pipeline reqiéstie are
two entities that serve DCU requests, the PLB bus that responds to teguesssing private memory
and the coherent memory system that responds to requests accessatjraemory. The problem
arises, when the DCU overlaps subsequent load requests thatsitaessand private memory. These
two requests will be served in parallel by two different entities. Thus,sso@ptions can be made
about the time required for each request to complete. As a result, therdiletimod that these two
requests would not complete in program order. In systems, where thei®&innected directly to
the PLB bus without any other entity standing in between, this problem wasdbicause the PLB
bus and the slave peripherals attached to it were serving requests ircafirs-first-served fashion.
Now, care must be taken in order to impose this kind of completion on the loadstq In order to
achieve this, all the possible combinations of load requests must be takemraowna Since there
must be a load request to shared address space, this request mastdaeheable (with respect to

the DCU). Thus, the possible combinations are the following:
1. burst access to private memory followed by access to shared memory
2. non-cacheable access to private memory followed by access tal shangory
3. access to shared memory followed by burst access to private memory

4. access to shared memory followed by non-cacheable access te pneaory
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Figure A.4 provides an example of the fastest speed at which the Powl@8’0CU can request and
receive single words over the PLB. The DCU is designed to wait for theectisingle-word read
request to be satisfied before making a subsequent read requesedthisment results in the delay

between requests shown in the figure.
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Figure A.4: DSPLB Three Consecutive Word Reads

Thus, combinations 2, 3 and 4 can be considered safe, since there @uhaddvity until the first
request of the couple to complete (Figure A.2 doesn’t show an exampteffidoination 2, but same
thing happens in that case, too). The only combination that must be takenaonsideration is com-
bination 1. Enforcing program order on load request completion for auatibn a is rather simple.
When PLB2Cache module is about to return data to the DCU, it checks sRinR&{38405DCUBUSY
and PLBC405DCURDDACK. If both of them are high, this means that atlvaesl access has pre-
ceded. The PLB2Cache module waits for PLBC405DCURDDACK to go loferket returns the

data.
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Detalls about the Coherent Cache

B.1 Part AFSMs

B.1.1 FSMCPU_ACCESS

Figure B.1 shows the state diagram for FENPUACCESS. Six states constitute the FSM.
CPU.READ_TAGS is the idle state. The PLB2Cache module provides the address ard the
control signals to initiate the access. Provided that part A is not busy ey&tiather block, the ac-
cess can proceed, otherwise the FSM is blocked in the initial state. WhieA pacomes available,
there are 3 possible states to which FENMU ACCESS may proceed. If the access is a non-cacheable
read it transits to NORD state. It stays there until the data become available and then returns to the
idle state. If the access is a non-cacheable write then it transits td/RGtate. It stays there until the
bus acknowledges the transmission of the data to the external memory. Thturris to the initial
state. Finally, if the access is a cachable (read or write) access it tranSHEGK EQUALITY. The
transition from the idle state to CHECEQUALITY incurs a read access to each of the tag memo-
ries. During the CHECKEQUALITY cycle the tags are compared for equality with the tag-part of
the address accessed. In case equality is found and the existencemit@eprivileges for accessing
the specific cache block, the access is considered to be a cache himpketes by the end of the
second cycle. At the same time, data are returned to the processor, iof @asgad access, or data
are written in the cache, in cache of a write access. Additionally, tag memorgé&ad in case of a
write, and also LRU information about the accessed set are stored. hexheycle, the FSM returns

to the idle state.

Apart from the “cache-hit” scenario, there is also the possibility of theates of the required

79
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Non-CacheableRea

Non-Cacheablé/rite

Data Available

Cacheable access

Data Available

Request Pendin

Request Pending

Request Pending

Figure B.1: FSMCPU_ACCESS State Diagram

cache block or the absence of privileges to use it. In the former casd;3kktransits to the
MISS_ BLOCK state, issuing the appropriate BusRd or BusRdX message (dagesrdthe type of
the access, read or write). It stays in that state until all the requirementaeirfor the access to
complete. When that happens the Caélok signal goes high for one cycle and the FSM transits
back to the idle state. In the latter case the FSM transits to the MISHERENCE state, issuing an
Invalidate message. The only possibility of not having the proper privslegaccess a cache block is
when a write access is issued for a block that is shared. All the othereastes fall in the case where
the required block is missing. The FSM stays in that state until all the requitsraemnmet for the
access to complete. When that happens the Cackesignal goes high for one cycle and the FSM

transits back to the idle state.

B.1.2 WB.FSM

The second FSM, WB-SM as shown in Figure B.2, in part A is responsible for handling write back
activity. Write back activity corresponds to transferring modified blockskito main memory. This
transfer takes place when an access that misses in the cache reqeiresaehe block to be loaded in.
The new block that comes in conflicts with two blocks that are already prigséire cache. These two
blocks occupy the whole specific set, in which the new block is mapped. efi@cement algorithm

is called to resolve this conflict by choosing a block to be evicted from thieca€he block that

is least recently used is chosen to leave the cache. If that block is 'dieam’the incoming block
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just over-writes it. If, however, the chosen block has been modified, st fveiwritten back to main
memory.

The logic identifies the need to evict a cache line, in order to make some spaite fincom-
ing block, during the second cycle of the access. At that time ESNUACCESS is in the state
CHECK EQUALITY and is going transit to MIS8BLOCK, since the requested block is not present
in cache. The 'replacdirty’ signal rises to notify the start of the eviction process and unblock the
WB_FSM to transit from WBIDLE to WB_REQ. In the positive clock edge between these two states,
FSM_CPU ACCESS generates a bus message to request the corresponding block.

Write Back Acknowledged
or
Canceled

Cancel Write Back

WB_REQ

Block Sent

rite Back
Acknowledged

WB_WAIT_ACK

@)

Figure B.2: WBFSM State Diagram

WB_FSM cannot take advantage of this clock edge, since the path towardsstieehusy receiv-
ing the first of the two bus messages. Giving priority to loads over storasistsending first the bus
message that requests the missing block, is well known, and it's provenréasgecthe performance
of the cache by reducing the miss penalty. Following this approach,A&® waits for one cycle,
moving to state WBREQ. In the next positive clock edge it sends the request to notify the initiatio
of a write-back action and then moves to VB/ICT state. For each cycle WBSM remains in the
WB_EVICT state it sends a word that resides in the evicting block. The wordnistsehe logic

within part B that is responsible for the communication with the bus. The FSMéetins state if all
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the words of the block have been sent, and transits toaW¥BT _ACK. It can also leave from this
state if a write-back acknowledgement is received. In that case it trao38_EVICT_ACK. The
purpose of acknowledging the write-back transmission is to assure thettiba can safely proceed.
There are two possible scenarios when a write-back should not compietee first one, a remote
cache invalidates the copy of the cache block that is about to be evictedreilfote cache intends
to write the specific block, which also means that it undertakes the respibyisibholding the most
up-to-date state of the block. Thus, the local cache doesn’t need tobadtethe block to the main
memory. If the local cache wrote back the block then coherency of thewdatkl not be harmed.
However, a useless request would have been issued, wasting DRRid#En The second scenario
involves receiving an update message for the block that is about to lecevia this case the write
back action must be canceled. An update message is designed to cleanythmt dirthe block is
found to be in a cache. Upon completion of the update message, all thes @awhéhe main mem-
ory have an up-to-date copy of the block. Thus, no-one has thengigjlity to flush it in case of a
conflict, since the block isn’t dirty in any cache. However, processamd bus’ accesses happen in
an asynchronous way. Part A may have already decided to evict a thlatck the near future will
be updated. This conflict is recognized and the eviction process islednoetifying the bus to also
ignore any data that may have transferred. When ®@/ is found in WBWAIT _ACK it waits for

a write-back acknowledge or write-back invalidation and then transits tolBE state. When in
WB_EVICT_ACK the FSM is sure that the eviction will not fail. The rest of the words withia th
block are sent to part B and then WWESL transits to WBIDLE.

A write-back transfer is not considered to be a separate bus transalttierhidden behind the
block transfer that generated the eviction. That is feasible because tleeriergation of the bus offers
different sub-buses for transferring data from and to the cache. diiatedy after the bus request has
been transferred, the write-back action is initiated. The address ofitteeéblock is first transferred
and then the data in a critical-word-first fashion. The first word out i®eitie one that has the same
offset with the address generated the miss, if the offset is even, ordhieps word if the offset is odd.
Either way, the first word out must lie in even offset due to constraints ieghbyg the implementation
of the bus. It is crucial for the consistency of the memory the data to beferaad in this fashion.
When the access that missed in the local cache is served by the remotetbacineoming block
arrives in the local cache before the end of the eviction process. frttess has started by writing

back offset O to offset 7 then there is the possibility some data to be overwbitehe incoming
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block.

B.2 Completing Requests and Cache Status

The sequence of actions taken to resolve the conflict between a posessess and an update bus
request are similar to those needed to implement the critical-word-firstéedthe dependency check
module is used in this case, too. A processor’s access is blocked waititigefeequested block to
arrive. When that happens part B updates immediately the tag memory, bfib@isrds the proper
information to the dependency check module. In the following cycle, padgadls the updated tag
line, obtaining the belief that the requested block is available. Howevergftendency check module
identifies that both parts of the cache access the same cache bloclg theviBarlyRestartMiss signal
high. The FSMCPU_ACCESS ignores the updated tag line and waits for the correspondingthé of
signal ValidBits to be driven high. This happens by part B when the spewifid is arrived by the
bus and is written in the cache.

Including the scenario just described, there are six possible ways facaess to be completed.
Some of them have been mentioned earlier, but it would be more clear fazallerrto be presented

all together.

e Cache hit: An access may hit in the cache and complete in to cycles time. Duritasthe
cycle that acknowledge signal is driven high. If the processor adsesread access then the

requested data are read directly by the data memory of the cache.

e In case of a read access which misses in the cache due to absenceenfubsted block, the
FSM blocks in the MISBLOCK state. The dependency check module will signal the arrival
of the data, as described above. However the data are not read atdheemory of the cache.
When part B receives the word of the target address (regardléise tfpe of the request, read
or write), it writes it to the data memory and also to the ReturnData registerARgts the

requested data from this register and forwards them to the processor.

e In case of a write access which misses in the cache because of theeab$dine requested
block, the FSM blocks in the MISBLOCK state. The dependency check module will signal
the arrival of the block and specifically the arrival of the target asklrg&/hen that happens the
request is considered to have been served. However, the data aftinaecess are not written

to data memory by part A. While part A is blocked waiting the cache block teegrtine data
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are forwarded to part B. When the word of the target address aiitive ignored. Its place is
taken by the new data provided by the processor. This is done beaatige although blocked,
it might be busy evicting a cache block. In this case the data memory is bugaandt handle

the write access.

e In case of a write access which misses in the cache because of ab$gmséenyes on the
specific cache block, the FSM is blocked in the MISOHERENCE state. While blocked, it
constantly reads the tag memories (without luck). When the cache eventogllires privi-
leges on the specific cache block part B updates the tag memory. Thesaexfrom part A
on the tag-line of the requested block will notify the existence of the propétgges for the

access to complete.

¢ In case of a non-cacheable write, part A forwards to part B the ad@med the data to be written.

The access completes when part A gets notified that the request haselnéerer the bus.

e In case of a non-cacheable read, part A is blocked inRIT state. Part B signals the

availability of the non-cacheable word by placing it in ReturnData registdradso setting

Non_CacheabldData Valid register high. This triggers the completion of the access. Data are

read by the ReturnData register and are forward to the processor.

B.3 PartB FSMs

B.3.1 BUSFSM

Figure B.3 depicts the state diagram of the FSM. BID&E is the initial state. BUSSM re-
mains in that state until a new request is forwarded by part A. When thiselnapit transits to ei-
ther BUSCHECK CMD or BUS SEND.CMD. BUS CHECK_CMD is chosen when there must be
a comparison between the address of the request to be sent and teesaufda request that has just
been arrived. The reason to do so is that there may be the need to ¢hartgpe of the outgoing
request. This need comes from the fact that an Invalidate requestidmmsse the transfer of a block.
The scenario that threatens the coherency of the data is the case whereallprocessor sends an
Invalidate message for a certain block, which is shared and wishes to wititeAtothe same time a
message broadcasted on the bus invalidates (Invalidate or BusRdX)ettiBcsplock. The message

from the remote cache has come before the local message, and thus tteepesnessor will use the
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up-to-date copy of the block. If the local Invalidate message is not @thttgBusRdX message then

the local processor will operate upon the old copy of the block.

ValidCommand & Comparison

ValidCommand &
IComparison

NeedComparison

BUS_CHECK_CMD

BUS_SEND_CMD
Bus Not Granteo@

Bus Granted SFIFO emp

Write Back Finished or Canc

BUS_SEND_WB_ADDR BUS_SEND_WB_DATA

Write Back In Progress
Sending Cache Block

Figure B.3: BUSFSM State Diagram

If a scenario like this doesn’t occur, then the FSM will transit from BWD&E to
BUS_SEND.CMD. However, there is also the possibility of changing the outgoing regquieie
in BUS_SEND_CMD, too. This may happen only if there are three participants on the bukdale
cache is granted the bus last and the previous request served camiflictee local request. In this
case, the FSM transits to BUSHECK CMD for one cycle, and then returns to BUSEND_.CMD.
While in BUS. SEND.CMD the FSM requests to be granted the bus. It stays there until it receive
an acknowledge signal, which means that the request has been Istealdc&hen it transits to
BUS_SEND WB_ADDR. The cycle dedicated to this transition corresponds to sending thessddr
of the block that is about to be written back or the data for a non-cachealtee The FSM then
transits to BUSSEND.WB_DATA, if there is a cache block to be evicted or to BUSLE in all
other cases. The FSM stays in BIB3sND WB_DATA state until all the words of the cache block
are transmitted or the decision to cancel the write back is taken. Then itsetuBUSIDLE. A
small improvement in the request procedure is that in the case where timereegd to transit from

BUS.IDLE to BUS.CHECK CMD, then the output signal Req is set high before this transition.
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The bus registers the request signals, and thus a cycle is saved in the raasBO

Finally, this part of the logic is responsible to notify when an Invalidate messag be safely
considered to have completed. This is done when the FSM is in the END CMD state trying to
send an Invalidate message and receives an acknowledge signdh&dms. Having taken control
over the shared medium can safely assume that the Invalidate messagetvaiidiated by anyone
on the bus in the same manner (order). Thus, it is safe to assume its compietioa.next cycle the

privileges of the block in this cache are upgraded.
B.3.2 FSMREQ._IN

Figure B.4 shows the state diagram of FREQIN. BUS_ RD_TAGS represents the idle state of
the FSM. The arrival of a request drives the address pins of the tagpries, and also makes the
FSM to transits to either BUEHECK EQ or FETCH or NCREAD. If the request is one of the
BusRd, BusRdX, Invalidate and Update, the FSM goes to BIHECK EQ and uses the output of
the tag memories to check if the requested block is cached. If the requess diom an incoming
refill message or an incoming non-cacheable read then the FSM transit§@-H<tate or NCREAD
state, respectively, and ignores the output of the tag memories. While in Ti@HF&ate the incoming
block is written in the data memory and the tag information gets updated. Thesadida¢ had come
before the block declares the sequence on which the block will be writtere imémory. The word
corresponding to the target address is also written to the ReturnDataregidt®rwarded to part A.
As far as the non-cacheable read requests are concerned, the &&istto NCREAD, signaling
that the requested word has become available. The transition is triggetld &tart of the response
message. The non-cacheable word follows back to back the start of #sages which is the address
of the datum. In this case the address has no use, but also doeshgthshg. The implementation
of the bus is aware of this detail and makes sure to send the addressctnbefpre it becomes able
to send the datum.

While in BUS CHECK EQ it compares the tag-part of the incoming address with the outputs of
the tag memories. If equality occurs then it is said that the request had a reitnftethe remote
cache). Depending on the type of the request a response, eithergositiegative, must be sent back.
Both BusRd and BusRdX are required to notify the bus about the status oédlest in the specific
cache. The bus then should know if it should forward the request to B &ntroller or data from
another cache will be sent to the initiator cache, instead. On the other Upddie and Invalidate

messages don't cause any additional flow of information to the bus. letneested cache block is
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Figure B.4: FSMREQ.IN State Diagram

found in the cache it gets either updated or invalidated. If the requestbé téock isn’t cached the
message is just ignored. Any of the following messages, for which the rezaokee doesn’t hold a
copy of the requested address, make the FSM to transit back to the idlexsidatey the transition the
Requesimiss signal is driven high, in order the bus to be notified for the miss. On tlee b#nd, if
a BusRd or a BusRdX message hits in the remote cache the FSM transits tol PERESPONSE
and responds with the shared data. An Invalidate message that hits in the ramloe doesn’t need
more processing. It transits back to the idle state. During the transition it matiiééag information
concerning the requested block. Finally, an Update message that hits exctieemoves to UPDATE

state.

While in POSITIVERESPONSE data from the cache are sent to the bus. During the transition
from BUS.CHECK EQ to POSITIVERESPONSE the cache has already sent the address (or the head
of the response message) of the cache block. The data of the block fdidwto back. After the
transmission of the whole block the FSM returns to the idle state. While in the UBPB#dte, data
coming in from the bus are placed into the data memory. After having rectieeshtire cache block

the FSM returns to the idle state.
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B.4 Communication with the dependency check module

The behavior of the dependency check module and the communication betveevo parts of the
cache has already been described. However, a small descriptiondotigarding the specific timing
FSM_REQ.IN uses in order to serve the incoming requests. BusRd and BusRdXgesdbat hit in
the cache modify the tag memaory during the first of the eight cycles of the ROSIRESPONSE
state. Thus, in order the dependency check module to receive in time thieece@nformation,
FSM_REQ.IN forwards it when transiting from BUEHECK EQ to POSITIVERESPONSE. The
same holds for successive Update messages. The eight valid bits, thoeigipdated cycle by cycle.
An invalidate message that hits in the cache clears the tag line as soon as tlredotued. This is
done at the end of the BUSHECK EQ cycle. Thus, proper information is being forwarded as soon
as the message is received. A refill message updates the tag-line upptiaed¢at the end of the
BUS_RD_TAGS before transition to FETCH). At the same time the proper information vgdiated
to part A and also the valid bits are updated cycle by cycle, while FEMQ_IN is in FETCH state.
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Coherent Bus Module FSMs

C.1 FSMArb

Figure C.1 depicts the state diagram of the FBNb that handles the transmission of requests and
data through the bus. ARBITRATE corresponds to the idle state. The ES8Mins in this state until
it receives a new request. The request signals that are sent byrtiegppats are masked before
they reach the FSM’s logic. The FSM recognizes a new request only wie capable of serving
it. The incapability of the FSM to serve a request comes from FIFO’s finitagigp The amount
of memory dedicated to the FIFOs is statically partitioned between the diffenges tyf messages
(one different FIFO module for each type). Consequently, there is taalhyugh memory to keep
pending 4 non-cacheable write accesses, 2 block evictions, and 2ddpdasages. Whichever part
of the memory is full the bus stops accepting requests until a free positioesked in that part. The
FIFO-memory was chosen to be partitioned statically in order to separate therynéedicated to
storing evicted blocks, from all the other kinds. The need to do so arieesthe fact that a write
back can be canceled. A part of the block that is supposed to be writtknzy reside in the FIFO’s
when the action is canceled. In order to clear these words the FIFO modwdagsreset. No other
kind of data must be present during this FIFO reset.

When, eventually one or more requests can be served by the bus, thedegis which one to
serve (arbitration) sending an acknowledgement to the corresporaithg,cand transits to the next
state. A BusRd or BusRdX message produces the transition towards thdERAREPLIES state,
while a non-cacheable write the transition towards the NOACHEABLE _WR. An Update mes-
sage produces the transition towards the UPDATE state, and all the otjumste the transition to

89
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Figure C.1: FSMArb State Diagram

the NULL state. In parallel with transiting to one of these states, the head aohd¢ssage, which

is the address, is either broadcasted or written to the corresponding BlIROGn-cacheable write
pushes the address to be accessed in the commands FIFO during the trdimsitithe idle state to
NON_CACHEABLE_WR. While in NON.CACHEABLE_WR it pushes the data to be written into
the corresponding FIFO (Commantfif®) and returns to idle state. An Invalidate message follows a
similar course. While in the idle state the address and the type of the reqedstiag broadcasted
to all remote caches. The FSM transits to NULL state, where it stays theoméocycle only. Then

it returns to the idle state to serve the next request. The existence of thatydaycle is necessary,
because during this period the remote caches are evaluating the equatkybetween the incoming
address and the accessed tag-line. If a hit occurs then Part B otaecloh that resolved equality, is
busy updating the tag memory and cannot accept another request. Upts@ges follow a straight-
forward course, too. While in the idle state, the address of the block to detegbis broadcasted,
along with the type of the message. Furthermore, the update command andriesade pushed into
the Commandsifo, in order the request to reach the main memory. The FSM transits to UBDAT
state and stays there until all the words of the block are broadcasted t@rtioggants. In parallel with
this, each word is also written to the Upddif®. The FSM returns to the idle state after having sent the
entire block. The actions taken for BusRd and BusRdX messages areomopéex. During the tran-

sition from the idle state to GATHEREPLIES state the address and the type of the request are being
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broadcasted. While in GATHEREPLIES the FSM waits for either one or more positive replies, or
a number of negative replies, which are enough to identify that the refgiles in the remote caches
and should be served by the main memory. Assertion of sigi@ébBerenceDatax notifies a positive
response from cache 'x’, while assertion of signaRBquesimiss _x notifies a negative response. If
one or more positive responses are found the FSM transits to POSIRBE&EPONSE state, and stays
there until the whole cache block is transferred. Any cache that hgsyeofthe requested block will
try to transmit the cache block. Only one of them will be chosen to make thentissisn, and this
will be the first cache, in relation to the one being served, in the rounid-oster. Depending on the
type of the request, the block is loaded either in shared or exclusive lstatese of a BusRd message,
signal B SharedStatex is driven low if the requested block is not shared, otherwise it is diinveh.

In case of a BusRdX message, signabBaredStatex is always driven low in order the block to be
loaded to Exclusive state. The signal is valid for one cycle only, whendhd bf the message arrives
at the cache that initiated the request. After the transmission of the whole thie¢SM returns to
the idle state. As far as the negative responses are concerned, thedfSkt to NULL state when

it resolves a total remote miss. During the transition, the address and tlesmmnding command
are written in the Commandi#fo. The DDR controller becomes aware of the request and some cy-
cles latter the cache block is available in the Datfifim The corresponding address is sent back to
the cache, as the head of the message that caries the requested bledk SharedStatex signal

is driven to the proper value and the FSM transits to POSITREESPONSE state to send the data.

After the whole cache block is sent it returns to the idle state.

C.2 FSM BUSWB

In the same clock domain with the FSAtb there is also a less complex FSM, named EBMS_ WB
that handles the write back activity. BUSB_IDLE is the idle state, and the FSM stays in that state
until the initiation of a block eviction is signaled. If so the FSM transits to ACCUMIIE_DATA,
where it receives the data sent by the cache and push them into onetabthgailable write back
FIFOs. If the write back is canceled the FSM returns to the idle state, otleewtisn half the block
has been transferred to a FIFO the FSM transits to. @@\FIRMED. Having transferred half of
the block it is then certainly that the eviction process has no reason to beledn While in the
WB_CONFIRMED state the rest of the block is received and written to the sanf@. After the end

of the process the FSM returns to the idle state. The crucial part of tleeggds the time chosen
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to notify the DDR controller that there is a write back to be carried out. This medmly after
confirmation of the eviction process. Specifically, while transiting to BNFIRMED state, the
address of the block and the corresponding command are written in the Caisfifan The DDR
controller will serve the write back request after having finished with theR8luor BusRdX request

that came before.



Appendix D

Detailed Reports

D.1 Waveforms for Halted IPIF Burst Accesses
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Figure D.1: IPIF Burst Accesses Halted

D.2 Detailed Timing Reports for Critical Paths
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Source:
Destination:

top/MemorySystem/cachdagsmem/tagsmemO0/B6.A (MEM)
top/ppc408/ppcd050/PPC405 (CPU)

Data Path Delay: 9.820ns (Levels of Logic = 8)
Clock Path Skew:  0.000ns

Source Clock:

top/plibram 0_connectorBRAM _CIk rising

Destination Clock: top/pltbram0_connectorBRAM _CIk rising
Clock Uncertainty:  0.000ns

Delay type Delay(ns) Logical Resource(s)

Thcko 1.401 top/MemorySystem/cacB#agsmem/tagsmemO0/B6.A
net (fanout=4) 0.932 top/MemorySystem/cadiA_DataOutOtagsil7.,
Tilo 0.274 top/MemorySystem/cacltécomp21A/Eql61
net (fanout=1) 0.551 top/MemorySystem/cadiieomp21A/Eql161/0
Tilo 0.254 top/MemorySystem/caclt¥comp21A/Eq238
net (fanout=4) 0.575 CHOICE6949

Tilo 0.274 top/MemorySystem/cactiZKer753521

net (fanout=3) 0.585 top/MemorySystem/cadlieru_bits associaten
Tilo 0.254 top/MemorySystem/cacli¥Cachehit33

net (fanout=4) 0.311 top/MemorySystem/cacdi€HOICE1663

Tilo 0.254 top/MemorySystem/cacl@#Cachehit54

net (fanout=11) 0.272 top/MemorySystem/ca€ii€achehit

Tilo 0.274 top/MemorySystem/cacli¥Cacheack252

net (fanout=33) 0.650 top/MemorySystem/cacti€acheack252

Tilo 0.254 top/vag0/Ker668951

net (fanout=64) 0.902 top/valyN66897

Tilo 0.254 top/vag0/PLBC405DCURDDBUSOUT51¢,1
net (fanout=1) 1.516 top/PLBC405DCURDDBUUT 051,
Tpdck PLB 0.033 top/ppc40®/ppcd050/PPC405

Total 9.820ns (3.526ns logic, 6.294ns route)

(35.9% logic, 64.1% route)

Table D.1: Time Consumption at the Read Hit Path




D.2. DETAILED TIMING REPORTS FOR CRITICAL PATHS

Source:
Destination:
Requirement:

Source Clock:

top/MemorySystem/cachiB_Non_CacheableData Valid (FF)
top/ppc40B/ppc4050/PPC405 (CPU)
5.000ns

Data Path Delay: 4.970ns (Levels of Logic = 4)
Clock Path Skew:  0.000ns

top/syslk_s_n rising at 5.000ns

Destination Clock:  top/pltbram0_connectorBRAM _CIk rising at 10.000ns
Clock Uncertainty:  0.000ns

Delay type Delay(ns) Logical Resource(s)

Tcko 0.370 top/MemorySystem/cachéB_Non CacheabléData Valid
net (fanout=5) 0.234 top/MemorySystem/caciB_Non_CacheabléData Valid
Tilo 0.274 top/MemorySystem/caclt¥Cacheack6

net (fanout=6) 0.209 top/MemorySystem/cadi€HOICE1609

Tilo 0.274 top/MemorySystem/caclt¥Cacheack252

net (fanout=33) 0.650 top/MemorySystem/cacti€acheack252

Tilo 0.254 top/vag0/Ker668951

net (fanout=64) 0.902 top/valyN66897

Tilo 0.254 top/vagd/PLBC405DCURDDBUSOUT|51,1

net (fanout=1) 1.516 top/PLBC405DCURDDBU3UT 0j51¢,

Tpdck PLB 0.033 top/ppc40B/ppcd050/PPCA405

Total 4.970ns (1.459ns logic, 3.511ns route)

(29.4% logic, 70.6% route)

Table D.2: Time Consumption at the end of the Read Miss Path

Delay:
Source:
Destination:

2.230ns (data path)
top/MemorySystem/cacBEBUS FSM_FFd4 (FF)
top/MemorySystem/Switch@&iis/REQreceivedR_0 (FF)

Data Path Delay: 2.230ns (Levels of Logic = 0)
Source Clock: top/syslk_s
Destination Clock: top/syslk_s.n rising

Delay type Delay(ns) Logical Resource(s)

net (fanout=4) 1.689 top/MemorySystem/cadiBUS FSM_FFd4

Tsrck 0.541 top/MemorySystem/Switch8dis/REQreceivedR_0
Total 2.230ns (0.541ns logic, 1.689ns route)

(24.3% logic, 75.7% route)

Table D.3: Time Consumption when requesting the Bus
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Requirement:

Data Path Delay:
Clock Path Skew:

Source Clock:

Destination Clock:

96 APPENDIX D. DETAILED REPORTS
Source: top/MemorySystem/Switch@&iis/NextNextto_Serve0 (FF)
Destination: top/MemorySystem/cacBglatamem/mem0/B6.B (RAM)

10.000ns

9.871ns (Levels of Logic = 9)
-0.095ns

top/syslk_s_n rising at 5.000ns
top/syslk_s_n rising at 15.000ns

Clock Uncertainty:  0.000ns

Delay type Delay(ns) Logical Resource(s)

Tcko 0.370 top/MemorySystem/Switch@&iis/NextNextto_Serve0

net (fanout=15) 0.479 top/MemorySystem/Switctus/NextNexito_ServejO¢,

Tilo 0.274 top/MemorySystem/SwitchdBus/Arbitrateservingijl¢,28WO0.1
net (fanout=1) 0.777 top/MemorySystem/SwitcHeais/Arbitrateservingijl¢ 285W0_1
Tilo 0.254 top/MemorySystem/Switchegus/Arbitrateservingjl¢,288WO0
net (fanout=1) 0.540 N168349

Tilo 0.274 top/MemorySystem/Switchdguis/Arbitrateservingil¢,56

net (fanout=3) 0.080 CHOICEG6301

Tilo 0.254 top/MemorySystem/Switchegus/Arbitrateservingjl¢,70

net (fanout=12) 0.494 top/MemorySystem/Switchigak/Arbitrateservingjle,

Tilo 0.274 top/MemorySystem/SwitcheBlus/Ker89704SWO0

net (fanout=4) 0.334 N147546

Tilo 0.254 top/MemorySystem/Switchdgiis/Ker897042

net (fanout=14) 0.297 top/MemorySystem/Switchizas/Ker897042

Tilo 0.274 top/MemorySystem/SwitcheBus/Senderj23¢ 1

net (fanout=18) 1.543 top/MemorySystem/Switchigas/Senderj23¢,

Tilo 0.254 top/MemorySystem/SwitcheBus/Mmux B_Data2Cache0_Resultj23¢,1]
net (fanout=5) 1.601 top/MemorySystemiBataln 023,

Tilo 0.274 top/MemorySystem/caclt¥Mmux B_Dataln2mermResultj23¢,1
net (fanout=2) 0.770 top/MemorySystem/cadhiB_Dataln2mem;23¢,

Thdck 0.200 top/MemorySystem/cacBalatamem/mem0/B6.B

Total 9.871ns (2.956ns logic, 6.915ns route)

(29.9% logic, 70.1% route)




