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(A) INTRODUCTION 
 

In recent decades, control over spin and, more generally, over quantum 

angular momentum has led to many technological advances, such as NMR and 

medical imaging [1,2], and has allowed the study of many spin-dependent 

phenomena, such as nuclear, atomic, molecular and surface scattering [3,4,5]. 

Angular momentum polarization also plays a very important role in chemical 

dynamics, as the spatial direction of the angular momentum of the different species 

involved in a chemical reaction plays a fundamental role in the way the interaction 

takes place [6,7].  

There exist several methods for the preparation of spin polarized gases (atomic 

or molecular). These methods include Stern-Gerlach separation[8,9], optical pumping 

and spin-exchange optical pumping[10,12,13] and lately molecular photodissociation 

with circularly polarized light[14,17,18,19]. Each of these techniques has specific 

limits concerning the maximum degree of polarization and the density of the polarized 

gas that can be achieved and the repetition rate in which they can operate. As the 

utilities of spin polarized gasses move from scientific research towards technological 

application, the need to reach higher densities and higher preparation repetition rates 

becomes evident. We will outline these methods in the following, in order to point out 

the fundamental reasons for which, application of these techniques to several 

technological areas is restricted. This review will be also helpful to point out the 

initiative for developing the technique described here, which is preparing polarized 

gases via polarization transfer from molecular rotation to the nuclear spin.  
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1 Existing methods for the preparation of spin polarized molecules 

and atoms. 
 

a) Stern-Gerlach separation. 

 

Spin-polarized atoms were first produced using the Stern-Gerlach separation 

technique [8,9]. This technique, exploits the fact that a charged particle’s angular 

momentum interacts directly with the gradient of the magnetic field. Thus, when an 

atomic beam is passed through a magnetic field which has non zero gradient in one 

specific direction z the force acting in the charged particle is proportional to the 

particle’s angular momentum projection in that direction.  

 

Figure 1: The basic elements of the Stern-Gerlach separation 
technique.   

 The basic elements of the Stern-Gerlach experiment are used for the 

preparation of spin polarized gases via the technique known as Stern-Gerlach 

separation. This technique remains the most general method for producing polarized 

atoms, as long as an appropriate atomic beam can be produced. Drawbacks include 

the complexity of the experimental setup, the limited atomic beam density (of about 

1014 atoms/s in favorable cases), and the poor time-resolution.  
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b) Optical pumping and Spin Exchange Optical pumping (SEOP). 

 

Optical pumping [10] is a very powerful technique, and variants of optical 

pumping are used in various fields of modern atomic physics, such as laser cooling, 

Bose-Einstein condensation, and the production of spin polarized atoms.  A typical 

optical pumping scheme is shown in Figure 1.  Circular polarized light (σ(+) 

excitation shown here) pumps the m=-1/2 ground state of Rubidium to the m=+1/2 

excited state, whereas the m=+1/2 ground state cannot be pumped as there is no 

m=+3/2 excited state.  Collisional quenching transfers population back to both ground 

spin states.  The m=+1/2 state has no significant losses, whereas it has significant 

gains from excited state quenching; therefore, after several absorption cycles, nearly 

100% of the population is transferred to the m=+1/2 state.  The hyperfine interaction 

transfers polarization to the nuclear spin, so that, after additional pumping, the nuclear 

spin is also polarized.  

 
 

 

 

 

 

Figure 2: Optical pumping scheme for Rb for σ(+) excitation, showing population 

transfer from the m=-1/2 ground state to the m=+1/2 state via optical excitation and 

collisional quenching. 
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The success of optical pumping hinges on a large pumping rate (compared to 

the depolarization rate).  Optical pumping has proved extremely successful for the 

alkali atoms, which have very strong appropriate transitions (with absorption cross 

sections σabs≈10-10 cm2) in the visible where powerful cw laser sources are readily 

available.  However, most other atoms do not have strong ground-state absorptions 

where powerful cw sources are currently available, and thus optical pumping has been 

limited to mostly the alkali atoms.  Recently, a very weak cw source at Lyman-α was 

produced which may allow laser cooling of hydrogen atoms [11].  Improvements in 

this direction may make optical pumping applicable to other atoms.  A further 

extension of the optical pumping technique is spin-exchange optical pumping (SEOP) 

[ 312,13].  Noble gases with non-zero nuclear spin (e.g. He and 129Xe) are mixed with 

alkali atoms as they are optically pumped. For example, Rubidium electronic spin-

polarization is transferred to the 3He nuclear spin via collisions: 

 Rb(↑e) + 3He (↓n)→ Rb(↓e) + 3He (↑n) (1) 

Using this technique, several atmospheres of 3He can be polarized to P=70% over 

several hours of SEOP.  

 Polarized noble gasses find direct application in medical imaging. Those 

gasses can be inhaled and since their polarization can be remotely detected (with 

superconducting or any other type of magnetometer), the lung airways can be 

visualized. 

 
 Figure 3: Imaging the lung with helium polarized via SEOP. 
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c) Preparation of polarized atoms from molecular photodissociation.  

 

A method for producing high-density polarized atoms from the 

photodissociation of diatomic molecules was proposed by van Brunt and Zare in 1968 

[14], which exploits the fact that the projection of electronic angular momentum, for 

prompt photodissociation, is conserved within the atomic photofragments.  In fact, the 

electronic states of diatomic molecules correlate adiabatically, at large internuclear 

separation, to atoms in specific |JM> states: 

R→∞⎯⎯⎯→ AB(Ω ) A(Ji A,MA) + B(J ,M )  (2) B B

where AB is a diatomic molecule, Ωi is the projection of the total electronic angular 

momentum of electronic state i along the AB bond axis, and (JA,MA) and (J ,MB B) are 

the atomic states of atoms A and B, respectively.  Conservation of angular momentum 

projection along the recoil direction yields the important constraint: 

 Ω  = Mi A + M   (3) B

For optical excitation of a particular Ωi state, prompt adiabatic dissociation will 

produce atoms in particular m states. 

 As an example let us consider the prompt photodissociation of HCl molecules 

with circularly polarized light. 

 

  
 

 

 
Figure 4: a) photoexcitation and  b) dissociation of HCl with circularly 

polarized light. 
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The absorption of left circularly polarized light (s=-1) (propagating parallel to the HCl 

bond) by ground state HCl (Ω=0) produces excited state HCl with Ω=-1. In the 

dissociation step, the conservation of Ω between the atomic photofragment angular 

momentum projections mΗ and mCl produces polarized atoms. 

The strength of the idea is that the mechanism of production of the polarized 

atoms is a natural physical process (photodissociation) and does not require a 

complicated experimental preparation, such as Stern-Gerlach separation.  In addition, 

the density of the polarized atoms can be extremely high, approximately as high as the 

parent molecule density, which is much higher than that possible with most other 

techniques. Possible disadvantages include: a) exclusive optical excitation of 

particular Ωi states is not always possible, b) dissociation is not necessarily adiabatic, 

c) even for adiabatic dissociation the photofragment atomic polarization is not 

necessarily 100% and is often less, d) maximum polarization (in the case of atomic 

orientation) is achieved only for recoil directions parallel to the quantization axis of 

the photolysis laser (i.e. the propagation direction), whereas the polarization of 

photofragments recoiling at an angle θ will be reduced by cosθ and e) the electronic 

polarization of the atoms will be reduced by any nonzero nuclear spins due to 

hyperfine depolarization [15]. Experimental studies show that even in the presence of 

disadvantages a) b) and c) large degree of polarization can be achieved for many 

atoms in densities higher than the previous techniques, and experimental velocity 

resolution solves point d). The technique presented here can be used to overcome 

point e) while it can be used also as an independent technique for the preparation of 

polarized atoms. 

 The electronic polarization reduction due to the presence of unpolarized nuclear 

spin is caused by a quantum beating phenomena that is responsible for polarization 

exchange between the electron and the nuclear spin in a sub-nanosecond timescale. 

The nature of this quantum beating phenomena can be explored with the use of a 

simple model of a double, symmetric quantum well.  
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Figure 5: A symmetric double quantum well, with the two eigenfunctions that 

are solutions of the Schrödinger equation for this system: the symmetric and 

the anti-symmetric solution. 

  

The Schrödinger equation for this system yields two eigenstates of  slightly 

different energy, the symmetric and the anti-symmetric one. If now we consider a 

particle confined in the one side of the double well, it’s wavefunction has to be 

written as a superposition of these two eigenstates and in particularly addition for the 

right side and difference for the left. 

 

 

 

 

( )

( )ASL

ASR

−=

+=

2
1
2

1

Since these quantum states are a superposition of eigenstates with different energy 

they exhibit time dependence. For example for the right state the time-dependence is 

such that if we extract a phase the superposition now contains a harmonic term in 

front of the anti-symmetric component. 
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Et Δ= /hπAfter the time equal to , this harmonic term will change the sign in the 

superposition changing the state from right to left. After twice that time the state is 

again right and this flipping continues harmonically. Thus if we confine the particle in 

one side of the quantum well, it will be bouncing form right to left in a periodic 

fashion. 
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 The same situation occurs if we prepare an atom with it’s electron spin S 

polarized and it’s nuclear spin I unpolarized. Those two angular momentum entities 

are coupled to form the total angular momentum state F which is the “good” quantum 

number of the system. The following picture shows the situation for S = I = ½. 

S + I  F 

                  
 

 
As we see in the figure, the co-oriented spins are eigenstates of the system while the 

counter – oriented are superpositions of them. Thus if the system is found in one of 

the counter – oriented spin states, it will be found in the other at later times and this 

situation will continue in a harmonic way.  

When a technique can produce a collection of atoms with their electron spin 

totally oriented but with the nuclear spin unpolarized, it actually puts half of the 

atomic population in one of the co-oriented, time-independent spin states and the 

other half in one of the two counter-oriented, time-dependent spin states. Changing 

from one counter-oriented spin states to the other causes the total polarization to 

bounce from the electronic to the nuclear spin in sub-nanosecond timescales.  

The method proposed here aims in overcoming this problem by making use of a 

similar depolarization effect observed when optical methods are employed to polarize 

a molecule’s rotational angular momentum. The molecular rotation is similarly 

11+11− 01

00

( )0001
2

1
+=

( )0001
2

1
−=

Figure 6: Total angular momentum states for an atom with S = I = ½. The co-

oriented spins correspond to eigenstates of the system while the counter – 

oriented to superposition of total angular momentum states.  
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coupled to the nuclear spin and polarization is transferred from the molecular rotation 

to the nuclear spin and back, only in much shorter timescales (in the order of μs). 

Photodissociation of the molecule in appropriate times leads to the production of 

atoms with their nuclear spin polarized.    

 

 

 

 

2 Preparation of polarized atoms via polarization transfer from 

molecular rotation to the nuclear spin.  
 

The use of optical methods for the preparation of aligned or oriented reagents 

in physical chemistry led to the observation of polarization transfer from the 

molecular rotation to the nuclear spin[16,17,18]. In experiments where optically 

prepared reagents where used for studies of reaction dynamics, the depolarization 

exhibited in microsecond timescales had to be explained, so that its effect in the 

experimental results is quantified. This depolarization was attributed to the presence 

of the nuclear spin [19] an explanation that led to predictions verified by the 

experimental measurements for many molecular systems [15,20]. 

 Molecules and atoms in general, contain more than one angular momentum 

entity. These can be the angular momentum associated with molecular rotation or the, 

often symbolized as J, the electronic angular momentum L and intrinsic angular 

momentum (spin) S and finally the nuclear spin I. The angular momentum entities 

associated with the electron are usually weakly coupled to the ones associated to the 

nuclei via the hyperfine interaction, thus they are considered to be independent from 

each other in relatively short timescales. In optical excitation of molecules (where the 

process is done with no hyperfine resolution), the absorption process tends to align (or 

orient depending in the light being linearly or circularly polarized) the angular 

momentum J leaving unaffected the nuclear spin I that the molecule possesses. This is 

a consequence of the weak coupling of these spins and the short duration of the 

excitation process compared to the precision rates of the spins. These spins that have a 

random spatial distribution initially, couple to the molecular rotation J to produce a 

total angular momentum vector F, with a spatial alignment or orientation less than the 
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initial one[19]. Moreover, if the alignment or orientation of J can be repeatedly 

detected for different times form the optical excitation, a temporal beating is 

observed.  

 
 

 

 

Figure 7: Coupling of the molecular rotational angular momentum J with the 

nuclear spin I to give F. 

 

This behaviour obviously is a drawback in the use of pulsed laser excitation, 

especially when applied in the preparation of polarized reagents for the study of 

chemical reactivity, since the time that it takes for a macroscopic sample of gasses to 

react can be in the same order as these hyperfine beatings (typically in the order of μs 

due to the hyperfine coupling constants being in the order of hundreds of kHz). On the 

other hand, the fact that this behaviour is attributed to the nuclear spins, and the fact 

that angular momentum is a conservable magnitude give the unique opportunity to use 

this depolarization mechanism in order to polarize indirectly the nuclear spin. 

 Hyperfine beating cycles the nuclear polarization between zero and a 

maximum value, with the rotational polarization exhibiting the opposite behaviour.  

For some applications (such as gas-phase NMR of molecules), cycles of pumping, at a 

rate high enough to overcome the losses due to depolarizing collisions, can lead to the 

production of large steady-state nuclear polarizations in the parent molecules.  

Otherwise, photodissociating the molecule using a second laser pulse, carefully timed 

to coincide with a maximum in the nuclear polarization, allows the polarization at a 

given instant in time to be ‘frozen in’, producing highly polarized atomic nuclei.  This 
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is in addition to the highly polarized electronic angular momentum that can arise from 

the photodissociation process itself [21,22,23].  Together, molecular state preparation 

followed by appropriately time-delayed photodissociation allows the production of 

highly polarized atoms at very high densities, close to the density of the parent 

molecules.  

 The quantitative description of this phenomenon can be maid with the use of 

the Wigner symbols, and in general with the algebra used for the description of 

quantum angular momentum. An introduction to this theory is not going to be given 

here, as it can be easily found in any angular momentum textbooks, with [24] being 

probably the most appropriate. Nevertheless, we describe in brief the formalism used, 

and also we present a very important theorem of quantum angular momentum, the 

Wigner-Eckart theorem, as well as two theorems that emerge from it and are very 

useful for the development of the equations that describe polarization transfer from 

rotation to the nuclear spin.  

 The description of the molecular rotation depolarization is going to be 

presented first, as it existed for many years before was this mechanism was proposed 

as a method for the polarization of the nuclear spin. The theoretical and experimental 

studies of depolarization of optically prepared molecules, provided with useful 

conclusions that form a qualitive view of the phenomena. Such a view is important in 

the search for molecular excitation schemes that can be used as sources of polarized 

atoms, since it helps to confine the search into the most promising systems. Finally, 

the equations that describe the nuclear spin polarization through this interaction are 

presented as an extension of the previously existed formalism and several examples of 

how this theory can be applied for the preparation of polarized atoms are given. 
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(B) DEPOLARIZATION OF OPTICALLY PREPARED REAGENTS        
 

( ) ( )k
qA J4. The  multipole moments, the Wigner-Eckart theorem and two 

useful theorems. 

 
An angular momentum distribution may be described by the (2J+1)2 density 

matrix elements ρm’m, or equivalently, by the (2J+1)2 multipole moments , 

where k, which is limited to the integer values 0 ≤ k ≤ 2J, is the order of the multipole 

moment.  These two sets of parameters are related by the expressions  

( ) ( )k
qA J

/ 2
'

' ( ),

(2 1)[ ( 1)] ( 1) ( )
'( )

k
J q m k

m m qkk q

J k Jk J J A J
m q mc k J J J

ρ + − ⎛ ⎞+ +
= − ⎜ ⎟−⎝ ⎠

∑ ( ) , (1a) 

and 

( ) ( )
'22

, '

( )( ) '= ∑
J

k
q m mk

m m

c kA J Jm J Jm
Jm Jm

ρ k
q , (1b) 

(k)J J Jwhere the  are the reduced matrix elements of the rotational angular 

momentum J, and the  are the spherical tensor operators of the molecular rotation 

J [

( )k
qJ

25].  

 The reduced matrix elements are defined through the widely known Wigner-

Eckart theorem that can be stated as  

J,M T(k,q) J', M ' = kq,J', M ' J,M J Tk ,J'  (2a) 

or equivalently as 

J,M T(k,q) J', M ' = (−1) j '−m ' j ' k j
−m' q m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ J Tk J '  (2b) 

The Wigner-Eckart theorem states that the physical problem represented by the 

matrix element of a tensor operator in some basis, can be separated into two 

components, one associated with the geometry, embodied in the Clebsch-Gordon 
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coefficient, and one with the dynamics of the system embodied in the reduced matrix 

element [19].  

 The Wigner-Eckart theorem can be very useful in the case of composite tensor 

operators acting in coupled angular momentum spaces. For example let us consider a 

composite tensor operator X q
k = T k1 ⊗ T k2[ ]q

k
= k1 q1, k 2 q2 k q, Tq1

k1 Tq 2

k2

q1 ,q 2

∑ that consist 

of the tensor operators 1kT 2kT 11mj 22mj each of them acting in and states. The 

coupled basis in which the composite tensor operator acts can be constructed 

as j1, j2, j,m = j1 m1, j2 m2 | j m j1 m1
m1 ,m2

∑ j2 m2 . Using the W.E theorem we can 

write for the reduced matrix element of the composite operator 

 

j1 j2 j X k j1' j2 ' j ' =

(2 j +1)(2 j'+1)(2k +1)
j1 j1' k1

j2 j2 ' k2

j j' k

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 

⎬ 
⎪ 

⎭ ⎪ 
j1 T k1 j1' j2 T k2 j2 '

 (3) 

26This is a special case of the formula 14.66 derived in [ ] and we will refer to it as 

SM(14.66). 

 There are also cases where a composite tensor operator  is 

comprised out of two (or more) tensor operators, all acting in the same basis

[ ]q
kkk

q TTX 21 ⊗=
k

mj . The 

reduced matrix element of such a tensor can be written as  

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

+−=⊗ ∑++

''
'

'''''12)1('
12''

' 2121

jkk
kjj

jTjjTjkjTTj
j

kkkjjkkk  (4) 

27This is a special case of the theorem given in [ ] in equation 15.15 and will be 

referred to as FR(15.15).  

 An advantage in using the multipole moments to describe angular 

momentum distributions comes from the fact that they can be easily combined with the 

tensor operator representation of an interaction, since they can depend on the same k,q 

parameters. For some circumstances the  multipole moments correspond to 

( ) ( )k
qA J

( ) ( )k
qA J
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directly measured observables. For example, multiple moments with a rank of zero 

correspond to the population in the particular J state of a distribution, odd ranks 

correspond to the distribution’s orientation while even ranks to the distribution’s 

alignment. Also, the average value of the angular momentum projection distribution is 

directly proportional to the k=1 multipole moment. This can be seen if we write the 

average value of m in the density matrix representation  

J

mm
m J

m m
=−

= ρ∑ and we express the density matrix in terms of the  

multipole moments according to equation 1a. We note that since m=m', q is 

constrained to be 0.  Furthermore, the summation of the product of m, which is 

proportional to , with the 3-j symbol  , over the range –J 

to J , is zero for all k except k=1 (due to the orthogonality of 3-j symbols, as 

expressed by equation. (2.32) in [20]. Using c(1)=1 [21], 

( ) ( )k
qA J

1
0

⎛ ⎞
⎜ −⎝ ⎠

J J
m m⎟ ⎟0

⎛ ⎞
⎜ −⎝ ⎠

J k J
m m

1
( 1)

0 ( 1)(2 1)
−⎛ ⎞

= −⎜ ⎟− + +⎝ ⎠
J mJ J m

m m J J J
(1) J(J+1)(2J+1)=J J J , and  [20], 

we find that: 

 

2J
(1)
0

m J

3mm A
(2J 1) J(J 1)=−

=
+ +

∑ (J)  

The summation of m2, over the range –J to J, yields J(J+1)(2J+1)/3, which then gives 

the final result, that the expectation value of m is proportional to the dipole moment of 

J:  

(1)
0m J(J 1) A (= + J)  (5) 

This way, the conservation of angular momentum projection of a molecular system 

comprised of N nuclei can be written as 

.)()1()()1()()1( )1(
01

)1(
011

)1(
0 ConstIAIIIAIIJAJJ NNN =++++++ K   
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5. Calculation of the depolarization coefficient. ),( tJGk

 

 The time dependence of the molecule’s polarization is characterized by a time-

dependent polarization factor, ( ) ( )tJG ,k

( ) )k

, that was originally derived in [19]. As 

described previously, a molecule for which the rotational angular momentum has been 

polarized following prompt preparation such as pulsed-laser excitation or as a product 

of a chemical reaction or photodissociation, is characterized by a time-dependent 

polarization factor,  defined as  ( tJG ,

)0(

)(
),(

)(
)(

k
k

J

tJ
tJG =

)(k

)0,(
),(

),()(

JA
tJA

tJG k
q

k
qk = or .      (6) 

 

We will examine the general case of diatomic, heteroatom molecules that contain 

atoms with nuclear spins and . We can define the composite tensor operator 

 that consists of the nuclear spin operators  that act on 

the nuclear spin states 

1I 2I

)()( 12 tJIItT ⋅⋅= )()0()0()( kk )0(
2,1I

2,12,1 mI and the rotational angular momentum tensor operator 

 that acts in the rotational angular momentum state)(tJ )(k
JmJ . The composite 

tensor operator acts in the coupled basis )(tT )(k
Fi FMF defined as 

J

M
mmm

FFiFiJFi mJmImIMFMFmIMFmJmIFMFJII

iF

ii 2211
,,,

221112
321

,,,)( ∑= . 

In the above definition we consider the following coupling order: first couples to 

to produce the intermediate quantum number  which finally couples to  to 

produce the total angular momentum quantum number . The reason we choose this 

order is because it will suitable for the application of the hierarchical coupling 

approximation which is outlined as: For the general case of heteroatom molecules, 

one of the two nuclei, for example , is more strongly coupled to the molecular 

rotation than the other. In the case where the coupling strength is very different, we 

can assume that the rotational depolarization is mainly caused by (hierarchical 

coupling limit). In this case, it is this nuclei the one that acquires most of the 

1I

iF 2IJ

F

1I

1I
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molecule’s polarization, while nuclei  interacts with the averaged polarization of 

and . Note that choosing this particular coupling order, we do not yet impose the 

hierarchical coupling or any other approximation, but simply, out of all the possible 

choices we choose the one that will allow us to study the hierarchical coupling limit 

more easily.    

2I

1I J

( ) ( )tJG k , The time-dependence of the  factor can be obtained through the 

evaluation of the reduced matrix element I2(I1J)FiF T (k )(t) I2(I1J)Fi 'F ' . We can 

evaluate I2(I1J)FiF T (k )(t) I2(I1J)Fi 'F '  with applying twice equation S(14.66) and 

then invert, to take the reduced matrix element of interest  

J J(k )(t) J I1 I1
(0) I1 I2 I2

(0) I2 = I2(I1J)FiF T (k )(t) I2(I1J)Fi 'F '
Fi ,Fi '
F ,F '

∑

× ((I2I2)0(FiFi ')k | (I2Fi)F(I2Fi ')F ')(k )

× ((I1I1)0(JJ)k | (I1J)Fi(I1J)Fi ')
(k )

 

where the reducing 9j symbols produced with the application of S(14,66) have been 

collected to the more compact symbols  

((II)0(JJ)k | (IJ)F(IJ')F ')(k ) =
(2F +1)(2F '+1)

2I +1
(−1)I +J '+F +k J' F ' I

F J k
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

.  

(k) The operator Tq  can also be expressed in the Heisenberg picture as 

so that the time dependent matrix element can 

be evaluated after application of FR(15.15) 
  T

(k )(t) = exp(iHt /h)T (k )(0)exp(−iHt /h)

  

I2(I1J)FiF exp(iHt /h)T (k )(0)exp(−iHt /h) I2(I1J)Fi 'F ' =

I2(I1J)FiF exp(iHt /h) I2(I1J)Fi ' 'F
2F +1Fi '',Fi '''

∑

× I2(I1J)Fi ' 'F T (k )(0) I2(I1J)Fi ' ' 'F '

×
I2(I1J)Fi ' ' 'F ' exp(−iHt /h) I2(I1J)Fi 'F '

2F '+1

 

t
tiH

e
±

where the evolution operators have been treated as tensor operators of zero 

order, a fact that explains the absence of 6j symbols form the formula above. The 

reduced matrix elements of te
±

tiH

 are evaluated by finding the representation for 

which the Hamiltonian is diagonal. They become ordinary matrix elements according 
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to  which can be evaluated for any value 

of . In terms of the eigenvalues and the eigenvectors FM

FFiF FMJIIFMFJIIC
i

,)(|,)( 1212, αα =F )( obtained by the diagonalization of H we can 

write ∗∑=
+
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CeC

F

FFeFF

α
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I2(I1J)Fi ' 'F T (k )(0) I2(I1J)Fi ' ' 'F 'The time-independent term  again with applying 

equation S(14.66) 

I2(I1J)Fi ' 'F T (k )(0) I2(I1J)Fi ' ' 'F ' = J J(k )(0) J I1 I1
(0) I1 I2 I2

(0) I2

× ((I2I2)0(Fi ' 'Fi ' ' ')k | (I2Fi ' ')F(I2Fi ' ' ')F ')(k )

× ((I1I1)0(JJ)k | (I1J)Fi ' '(I1J)Fi ' ' ')
(k )

 

( ) ( )tJG k ,   Putting all terms together we take the expression for 

( )

i i

i i
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F,F' 1 2
, '

2
i 1 i 2F F ' (F) (F')*

i i F , F ',
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+ + ⎢ ⎥⎣ ⎦

⎛ ⎞⎧ ⎫⎧ ⎫
− + +⎜ ⎟⎨ ⎬⎨ ⎬

⎩ ⎭⎩ ⎭⎝ ⎠

∑

∑

h
 (7) 

'

 

   

 For many applications it is useful to calculate the average depolarization due 

to the nuclear spins. This is obtained by removing from equation 6 all the terms for 

which and results to ',', αα ii FF EE ≠

2
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 The Hierarchical approximation that we mentioned before can be imposed if 

we consider the coupled representation Fi FMFJII ,)( 12  to be the basis for which the 

Hamiltonian is diagonal. In this case we replace  and we obtain the 

hierarchical approximation formula for to be  

ii F
F

FC ,
)(

, αα δ→

),()( tJG k

( )
i i

i i

' '
(k ) i i

F,F' F ,F ' 1 2

2 2' ' '
F ,F F ',F'i 1 i 2

i i

(2F 1)(2F 1)(2F 1)(2F 1)G (J, t)
(2I 1)(2I 1)

E E tF J I F F I
cos

J F k F F k

+ + + +
=

+ +

⎡ ⎤−⎧ ⎫ ⎧ ⎫
⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎣ ⎦

∑ ∑

h

 (9) 

 

In the simplest case where the molecule possesses one or more 

indistinguishable nuclei, or only one of the nuclei has non zero spin (i.e. I2 = 0 and 

I1=I), Equation (7) is simplified and the molecular depolarization is described by:  

( )2
F F'(k)

F,F'

F ' F k E E t(2F 1)(2F' 1)G (J, t) cos
J J I(2I 1)

−⎡ ⎤⎧ ⎫+ +
= ⎨ ⎬ ⎢ ⎥+ ⎩ ⎭ ⎣ ⎦

∑
h

 (10) 
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6. Application to molecular depolarization 
  

 As discussed in the introduction, the use of optically aligned reagents in 

studies of chemical reactivity consisted one of the main initiatives for the observation 

and the detailed study of hyperfine depolarization in molecular systems. It has been 

explained qualitatively that the degree of anisotropy achieved via optical excitation 

will be limited by the randomly oriented nuclear spins. The quantitative analysis of 

depolarization in several systems, allows us to extract some more general conclusions 

that are important in the design of experiments that make use of optically prepared 

reagents and can guide us to choose the most appropriate systems, in which we can 

exploit this depolarization effect to prepare atomic gasses with polarized nuclear spin. 

 

a) Systems with one indistinguishable nuclear spin. 

 

 The less complicated situation where depolarization due to the hyperfine coupling 

can be observed is when the system contains one nuclei or one indistinguishable nuclear 

spin. Such a situation is described by equation 10 and perhaps the it’s most simple 

application is the description of the electron spin depolarization due to the nuclear spin as 

this occurs when the electron spin is polarized via photodissociation with circularly 

polarized light. In such an example the electron spin is depolarized thus it takes the role of 

rotational angular momentum. Since the only two angular momentum entities equal to ½ 

there is only one non-zero term and the resulting beating is a very simple cosine with a 

frequency of as expected (the frequency corresponds to the same transition that generates 

the 21cm background radiation). 
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 Figure 8: Depolarization of the electron spin to the nuclear spin due 

to the hyperfine interaction.   

 The same formula describes the molecular rotation depolarization in a system 

with two indistinguishable nuclei as H2. Of course now the hyperfine structure is more 

complicated since there are two angular momentum entities involved J that 

corresponds to the molecular rotation and IR that corresponds to the total nuclear spin, 

and they both equal to one. This treatment assumes that J interacting with the total 

nuclear spin which is 1 (orthonormal case) while the molecules where IR equals 0 

(paranormal case) exhibits no hyperfine structure and consequently no depolarization. 

The hyperfine structure for H  is  2

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −++−= 222

2
33 JIJIJIdJIc

h
H

RRRR   

( ) ( )( )
( ) ( )( )2212)32(12

141 11

1

32

+−+−
+++

=
−

JJII
IIII

hI

r
d

RR

RRHμ
where  and I is the nuclear spin of one 

nuclei while IR the total nuclear spin of the molecule. We note that the molecules with 

IR = 0 (paranormal state) couple only to even rotational angular momentum J, while 

the molecules with IR = 1 (orthonormal state) to the odd J. The value for c is c = 113.8 

kHz while 32 −rHμ  = 72.1 kHz [28].   
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Time (μs) 

Figure 9: Depolarization of molecular rotation orientation and alignment for J 
= 1(bold line), 3(dashed line), 5(dotted line) for orthonormal H

 
2 molecule.   

 

 

 

 

  

 23



 Another system that can also be described by equation 10 is acetylene C2H2. 

The hyperfine Hamiltonian is similar to the one of H2 and the coupling constants are c 

= 3.58 kHz and 32 −rHμ  = 0.8 kHz [31]. Again, for IR = 0 we have hyperfine 

coupling only to the J = 1 rotational states and for I  = 1 to the even J states.  R

 
 Figure 10: Depolarization of molecular rotation orientation and alignment for 

 J = 1(bold line), 3(dashed line), 5(dotted line) for orthonormal C H
 

  

 

 

2 2 molecule.  
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 Another system that contains one nuclear spin and thus is described by 

equation 10 is D2. The difference between the hyperfine structure of D  and H2 2 is that 

deuterium nuclei whose spin equals 1 exhibit quadrupolic coupling to the molecular 

rotation angular momentum. The hyperfine Hamiltonian will be  

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −++−= 222

2
33 JIJIJIdJIc

h
H

RRRR   

Where d now equals to 

( )

( ) ( )( )
( )( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+++
−

+
+

+−
+++

×

+−
=

−

)32)(12(
)12(4)12(1

)12(22212
141

)32(12
1

11

11

11

1

32

RR

RRRRH

RR

II
IIII

IhI
eqQ

JJ
IIII

hI

r

II
d

μ  

32 −rHμwhere c = 8.79 kHz, = 6.8 kHz and eqQ = 224.9 kHz. The quadrupolic 

coupling constants are usually much larger than the magnetic dipole coupling 

constants. The depolarization of D  would be 2
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Figure 11: Depolarization of molecular rotation orientation and alignment for 
 J = 1(bold line), 3(dashed line), 5(dotted line) for D .   

2
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c) Hydrogen-halides, deuterium-halides and the hierarchical  approximation. 

 

 Molecular systems were two distinguishable nuclei are present, such as the hydro-

halogen molecules are described by equations (7) or (9) depending on weather the 

hierarchical approximation can be applied or not. As an example we will consider the 

depolarization that follows the pulsed-infrared excitation of hydrogen fluoride. This is the 

same example considered in [16], while the hyperfine beating that results this situation 

have also been experimentally studied in [29].  

 Excitation of hydrogen fluoride through the transition 

HF(v=0,N’) HF(v=1,N) with linearly polarized light can produce various degrees of 

alignment that depended on the transitions chosen. For example, maximum degree of 

alignment can be achieved for N = 1 [16]. In generally, alignment can be described by 

the even order  multipole moments, and since k is limited to the integer 

values 0 ≤ k ≤ 2J we might as well describe the rotational alignment  through . 

Since the temporal evolution of is given by we 

can account for the hyperfine depolarization of the rotational alignment through 

evaluation of . 

( ) ( )k
qA J

)()2( JAq

( ) ( )k
qA J ),()0,(),( )()()( tJGJAtJA kk

q
k

q =

),()2( tJG

 For the evaluation of equation 6 the energies and eigenvectors have 

to be calculated. Their values depend on the structure of the hyperfine Hamiltonian 

which in the absence of electromagnetic fields is 

)(
,

F
Fi

C αα,iFE

)]1()(2)()(3)()(3][)12()32([ +⋅−⋅⋅+⋅⋅−+
+⋅+⋅+⋅=

JJIIJIJIJIJIJJS
IIJJICJICH

FHHFFHHF

FHHFHHFF

  

As we see, each nuclear spin couples to the magnetic field induced by the molecular 

rotation and also to each other, while there is also a more complex term that describes 

the coupling of one nuclear magnetic moment in the magnetic field of the other spin-

spin interaction [31].  

The values for the various constants, (that we will call hyperfine constants) 

have been extracted experimentally with frequency stabilized colour centered laser 

studies in HF by Breant et al [39]. This study reveals that the hyperfine constants are 

significantly varied between different vibrational states, a fact that explains why in we 

kept track of the vibration quantum number above. For the lowest vibrational state v = 
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0, and the first excited rotational state J = 1 the values for the hyperfine structure 

constants are CF = 307.637 kHz, CH = -71.128 kHz, SHF = 28.675 kHz , and JHF = 

0.529 kHz while the corresponding values for higher vibrational and rotational states 

are calculated as: 

)1()0,0(),( ,,,, ++⋅+=== JJbvaJvCJvC FHFHFHFH  

kHzbkHzbkHzakHza HFHF 036.0,17.0,99.1,53 ==== .  with

 In the following figure we plot the coefficient for several values of J.  ),()2( tJG
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Fig12:  Evolution of the depolarization coefficient G  for rotational excitation J 1, 2, 3  and 10. 

The coefficient describes the time evolution of the alignment under the influence of the hyperfine 

interaction between the rotation and the nuclear spins. 
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In all the previous examples we notice one common characteristic. We see that 

for excitation to the lower rotational states the effect of hyperfine depolarization is 

strong while it is much less important for excitation to the higher states. This is a 

general characteristic for the hyperfine depolarization process and it can be 

qualitatively explained a “classical” argument: for excitation in the lower rotation 

states the rotational angular momentum vector size is comparable to the size of the 

vectors characterizing the nuclear spins, so the total angular momentum vector F and 

the rotation angular momentum number differ significantly. On the other hand, for 

higher rotation excitation, J ≈ F and the effect is much less important. 

This hyperfine depolarization effect produces a beating in a microsecond 

timescale, as expected by the values of the hyperfine constants which are in the order 

of some hundreds of kHz. The timescale that characterizes depolarization in this 

system is such that would not affect measurements that occur in nanosecond timescale 

which is the usual pulse duration for the commonly used for spectroscopy lasers. On 

the other hand, if the aligned molecules are to be used as reagents in reactions with 

duration in the order of microseconds, the depolarization effects are expected to be 

important and have to be considered. Usually this is done by calculating the average 

depolarization due to the nuclear spins. Using equation (8) we obtain the following 

averaged depolarization and average alignment coefficients for hydrogen fluoride. 

 

J A(2)
0(0) (Averaged )G(2) (2)(Averaged) A 0

1 -1 0.195 -0.195 

2 -0.7 0.574 -0.402 

3 -0.6 0.768 -0.461 

4 -0.55 0.857 -0.471 

5 -0.52 0.903 -0.470 

10 -0.46 0.973 -0.488 

 

In order to obtain the results presented in this paragraph we have used 

equation (7), which provides the general, non approximating solution. On the other 

hand, we notice that the hyperfine constant CF which characterizes the fluorine’s 

nuclear spin coupling to the molecular rotation is more than five times larger than CH 

that characterizes the proton spin coupling to rotation. It would be therefore useful to 
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compare the solution provided by equation (7) with the hierarchical approximation 

solution provided by equation (9). 

 

 

 

 
(2)

 Figure 13: The molecular depolarization factor G

 

 

 

(J,t) that determines the time-

dependence of the rotational alignment of HF, as calculated from the general non-

hierarchical expression of Eq. 7 (solid red line), and from the hierarchical 

approximation of Eq. 9 (dashed black line). 

  

 
(2)We see the time dependence of the G (J,t) factors, which describe the 

depolarization of the alignment of the HF (v = 1, J = 1 ,m=1) state. As we see, 

significant disagreement between the hierarchical (Eq. 7) and non-hierarchical 

expression (Eq. 9) appear only in very large times, where the hierarchical 

approximation’s solution appears somewhat slower. This is a natural consequence of 

the hierarchical approximation which implies that all the polarization exchange occurs 

through F  = J + Ii 1, which for HF is the dominant coupling, but not the only one. Of 

course, the differences shown here occur on time scales not interesting for most 

experimental purposes, nevertheless, it is useful to see how the two approaches 

perform in a real system.   
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The differences between the hierarchical approximation solution (equation 9) 

and the general non-hierarchical (equation 7) are more intense in the case of the 

pulsed excitation of the (v=0, J=1, m=1) state of DF. The hyperfine Hamiltonian for 

this system is almost the same as for HF, where we IH, CH, and S  by I , CHF D D, and SDF. 

The big difference though, between those two molecular systems, is that the value of 

one for the nuclear spin of deuterium though allows quadrupolic interaction to take 

place. Thus we have to embody this interaction in our description, and we do so by 

adding the following term for the interaction of the quadrupole moment of ID with J: 

( )
( )( )( ) ( ) ( )2 2 2D

Q D
D D

eqQ 3H 3 I J I J I J
2I 2I 1 2J 1 2J 3 2

⎡ ⎤
D D

⎡ ⎤= − ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦
  

 

The hyperfine energies are calculated by using the constants C  = 158.356 kHz, CF D = 

-5.755 kHz, S  = 4.434 kHz, JDF DF = 0 (no experimental measurement is given), and 

(eqQ)D = 354.238 kHz [30], and ID=1. We now expect that the validity of the 

hierarchical approximation solution will be limited since the quadrupole coupling 

constant of deuterium to rotation is only 2.3 times larges than the coupling constant of 

the fluorine nuclei.  

 
 Figure 14: The molecular depolarization factor G(2)
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(J,t) that determines the time-

dependence of the rotational alignment of DF, as calculated from the general non-

hierarchical expression of Eq. 7 (solid line), and from the hierarchical approximation 

of Eq. 9 (dashed line). 



As we see in the figure above, the approximate is now significantly slower 

than the exact solution, even in early times.  Note that the quadruple interaction has 

been taken into consideration in both cases, the differences occur form the 

“weighting” of the several cosine functions involved, which is generated by the 

eigenvectors , which are absent in the approximate solution. )(
,

F
Fi

C α

 It would be difficult to extract a general rule for the use of one solution or the 

other. The reason that the example of DF has been chosen is to illustrate that the 

presence of quadruple interaction, which is usually much larger than the dipole 

interaction, is not a sufficient reason to adopt the approximating solution. That is 

because in this case the quadruple interaction of the deuterium nuclei acts to 

“balance” the coupling between the fluorine nuclei and the molecular rotation, which 

is large due to the larger “overlap” between the electronic and nucleonic 

wavefunctions in this case. 

 Let us consider excitation of HCl and DCl to the first rotational state. The 

hyperfine Hamiltonian of HCl will be the same with the one of HF except that now 

we have to take into consideration the quadrupole coupling exhibited by the chlorine 

nuclei which has spin 3/2. Thus we have to add the term  

⎥⎦
⎤

⎢⎣
⎡ −+⎥

⎦

⎤
⎢
⎣

⎡
+−−

−= 222 )(
2
3)(3

)32)(12)(12(2
)(

JIJIJI
JJII

eqQ
H ClClCl

ClCl

Cl
Q  

where the hyperfine constants are CCl = 58.6 kHz, CH = 41 kHz, SHCl = 1.081 kHz and 

eqQCl = 69272 kHz [31]. Similarly the hyperfine structure of DCl will be the same 

with the one of HCl plus the term describing the quadrupole coupling exhibited by the 

deuterium nuclei whose spin is 1. Thus we add  

( )
( )( )( ) ( ) ( )2 2 2D

Q D
D D

eqQ 3H 3 I J I J I J
2I 2I 1 2J 1 2J 3 2

⎡ ⎤
D D

⎡ ⎤= − ⋅ + ⋅ −⎢ ⎥ ⎢ ⎥− − + ⎣ ⎦⎣ ⎦
  

And the corresponding hyperfine constants for this system are CCl = 27.24 kHz, CD = 

3.29 kHz, SDCl = 0.129 kHz, eqQCl = 67393 kHz and eqQD = 187.36 kHz also taken 

by [31]. We can see that for these systems the hierarchical approximation is 

reasonable, since the constants characterizing the chorine’s nucleus coupling to the 

rotation are much larger than the ones characterizing the proton’s coupling. In the 

case of HCl the quadrupolic coupling “favors” chlorine’s nucleus while the presence 

of quadrupolic coupling of deuterium nucleus in the case of DCl does not suffice to 

“balance” the system in a way that the hierarchical approximation is no longer valid. 
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Actually, the presence of quadrupolic coupling of deuterium nucleus hardy alters the 

depolarization time dependence. 

 (2)

 
Figure 15: The molecular depolarization factor G

 

(J,t) for HCl (solid line), and for 

DCl (dashed line). 

 

The approximate hierarchical formulas apply in the case where the coupling of 

one nuclear spin is much stronger than the others. All of the hydrogen halides except 

HF exhibit strong quadrupole coupling for the halogen nuclei so that the polarization 

dependence is very well described by the hierarchical expression. Even in the case of 

HF, where IF=1/2 and does not possess a quadrupole moment, we find that the 

hierarchical approximation is still quite accurate. On the other hand, the general, non 

approximating formalism will be necessary for molecules for which the coupling 

strengths of the two nuclei is closer than DF, for example for molecules consisting of 

two isotopes of the same nuclei such as 35 37Cl Cl, HD, HT etc. The simplest possible 

situation is when the molecule possesses one non-zero nuclear spin, or possesses two 

or more indistinguishable nuclei. In such cases, for example OH, H  or CH2 4, formula 

(10) applies. 
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(C) Polarizing the nuclear spin through the hyperfine interaction. 
 

3. Calculation of the  polarization coefficients (time-dependence 

of nuclear-spin polarization).  
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 We need to calculate the time-dependent factors  that characterize 

the nuclear spin polarization due to the polarization transfer from molecular rotation. 

These factors are similar to the depolarization factor and are similarly 

calculated. To do so though, we need to develop a more straightforward approach 

than the one developed in [19] since the factors are in general more 

complicated. The new approach lies in the observation that  
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The calculation of is now simply evaluation of the reduced matrix element 

ratio (1).Using FR(15.15), the reduced matrix element in the numerator can be written 

as  

),()( tJG k
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while the denominator can be similarly written as 
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Thus, the ratio in equation 5 takes the form  
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We multiply both the numerator and the denominator of this ratio with 
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and we sum over  to obtain the orthonormality relation of the 9j symbols. 

After rearranging the terms and adopting the notation we obtain 

for the depolarization coefficient 
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For many applications it is useful to calculate the average depolarization due to the 

nuclear spins. This is obtained by removing from equation 6 all the terms for which 
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The time dependence of the polarization of each nucleus is similarly governed 

by a time-dependent polarization factor, ( )(k )
[i]H I, t , which relates the spatial 

distribution of the nuclear spin, I, with the original molecular polarization of J: 
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where is a composite tensor operator of the form , 

where the tensorial quantity k and the temporal evolution are embodied in the tensor 
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operator , whose average value temporal evolution we are trying to describe. In 

obtaining equation 9 we have used the definition of equation 7in [
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1 tI k
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Thus the ratio of the reduced matrix elements in [A.1] equals to  
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We multiply both the numerator and the denominator of this ratio with: 
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and we sum over  to obtain the orthonormality relation of the 9j symbols. 

After rearranging the terms we obtain 
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thus 
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Reducing the 9-j symbols to the corresponding 6-j symbols, we obtain 
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1( ) ( )k kU I U Jwhere the leading constants have been collected into the ratio . Applying 

the conditions for hierarchical coupling ( ( )
αα δ ,, ii F

F
FC = ) gives the hierarchical coupling 

equation for ( )(k )
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In a similar manner, we obtain the following expression for the time-dependence of 

the polarization of nucleus I : 2
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Reducing the 9-j symbols with a vanishing element to 6-j symbols gives, in the 

general case 
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FC =whereas applying the conditions for hierarchical coupling ( ) first, and then 

reducing the 9-j symbols gives the hierarchical coupling description of  
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In the simplest case where the molecule possesses one or more indistinguishable 

nuclei, or only one of the nuclei has non zero spin (i.e. I =0 and I2 1=I), Equation (13) is 

simplified and the nuclear polarization is described by: 
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4. Preparation of highly spin-polarized atoms. 

 
 We can now proceed to the main objective of this work, which is to explain how 

this formalism can be used for the preparation of aligned and oriented atoms. Nuclear spin 

can be highly polarized from the transfer of molecular rotational polarization via the 

hyperfine interaction, and on the other hand, large atomic electronic polarization can be 

produced via molecular photodissociation with polarized light. In combination, these two 

pulsed-laser techniques can be used to produce highly polarized atoms at densities close to 

the density of the parent molecules. 

 
d) Systems with one indistinguishable nuclear spin. 

 

 We can now proceed to the main objective of this work, which is to explain 

how this formalism can be used for the preparation of aligned and oriented atoms. 

Nuclear spin can be highly polarized from the transfer of molecular rotational 

polarization via the hyperfine interaction, and on the other hand, large atomic 

electronic polarization can be produced via molecular photodissociation with 

polarized light. In combination, these two pulsed-laser techniques can be used to 

produce highly polarized atoms at densities close to the density of the parent 

molecules. 

One of the main initiatives for the development of this method was the search 

for efficient sources of spin-polarized hydrogen and deuterium atoms where optical 

pumping is very difficult to be applied due to the lack of continuous ultraviolet laser 

sources. This method can be used in combination with photodissociation with 

circularly polarized light in order to surpass the problem of the electron spin 

depolarization to the nucleus. As explained in the introduction, the electron spin of 

hydrogen atoms can be polarized to a very large degree via photodissociation of 

hydrogen – halide molecules with circularly polarized light, but the initial electron 
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spin polarization is coupled to the proton spin in a sub-nanosecond timescale, 

decreasing the average electron spin polarization to ½. Thus polarization transfer from 

molecular rotation to the nuclear spin can be used to outcome this problem. 

Nevertheless, the method of polarization transfer from molecular rotation to the 

nuclear spin can be considered as an independent method for the preparation of 

polarized gasses, since the polarization transfer from the nuclear to the electronic spin 

is possible. 

 The easiest way to ensure total polarization transfer from molecular rotation to 

the proton spin is to choose a system where no other nuclear spins are present. As a 

first example, consider the H2 molecule, excited at t=0 to the rovibrational state (v, 

J=1, m=1) using stimulated Raman pumping.  The polarization of J may be described 

by =1/(1)
0 ( )A J 2  and =1/2, (see equation 1a) and detected with Raman 

scattering [

(2)
0 ( )A J

], whereas the nuclear spin (I=1) is initially unpolarized, =0.   ( )
0 ( )kA I33

We calculate the time-dependence of the m-state distribution (shown in Fig 

16) for I and J using equations 9 and 17 for excitation to the J=1 rotational angular 

momentum state.  We see that after about 8 or 10 μs, the initial situation has reversed 

and now the total nuclear spin I is nearly 100% polarized (and therefore so are both of 

the individual proton spins), with J now unpolarized.  Rapid molecular dissociation at 

this point (e.g. using VUV or multi-photon or intense laser field dissociation) would 

produce H atoms or protons that retain this proton polarization.  The pulsed optical 

detection of H atoms has been recently proposed [34].  Complete polarization transfer 

from J to I may only occur for J=I, with the extent of polarization transfer generally 

decreasing the more J and I differ in magnitude. 
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Figure 16: Time dependence of <m> for the proton nuclear spin I=1 (solid line) and the 

rotational angular momentum J=1 (dotted line) after pulsed preparation of the 

H (v=1,J=1,m=1) state.   2

   

 

HNext, consider C2 2, excited to the (v, J=1, m=1) state. The calculations show that 

that the proton spins become nearly 100% polarized ~300 μs after excitation.  In 

contrast to H , C H2 2 2 may be state-prepared via a one-photon transition, making it a 

better candidate for optical pumping, and it can be photodissociated readily at 193 nm 

[35].  
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Figure 17: Time dependence of <m> for the proton nuclear spin I=1 (solid line) and the 

rotational angular momentum J=1 (dotted line) after pulsed preparation of the 

C H (v =1,J=1,m=1) state.   2 2 i
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e) Hydrogen-halide systems. 

 

 Next we will consider hydrogen-halide systems. The reason why hydro-halide 

molecules are considered is because the previously studied systems suffer different 

problems, as H2 is difficult to be prepared and dissociated while the polarization 

transfer in C H2 2 is slow, a fact that can give rise to experimental difficulties.  

Additionally, the demonstration of large polarization exhibited in hydro-halide 

molecules photodissociation, indicates that in such a system those two polarization 

techniques can be combined if a convenient photodissociation wavelength can be 

found.   

 The first system to be examined is H35Cl and its transition from HCl(v=0,J=0) 

state to HCl(v=1,J=1) state. The electron spin of the chlorine atom can be highly 

polarized with photodissociation with circularly polarized light [17]. This initial 

polarization is significantly decreased due to the coupling to the nuclear spin. It is 

then useful to consider the polarization transfer to the nuclear spin from molecular 

rotation and to see how it can be useful to overcome the electron spin depolarization 

problem. 

 The spin-rotation coupling between J and ICl is more than two orders of 

magnitude stronger than that between J and IH, so the hierarchical coupling 

expressions may be used to excellent approximation with the hyperfine constants of 

Kaiser [36].  The time-dependence of has been measured by Orr-

Ewing et al. [15], and more recently by Lammer et al. [

1,2
(2) ( 1, )G J t=

37]for t ≤ 1 μs.  The time-

dependence of the m-state distributions for IH, ICl, and J is shown in figure 18, as well 

as their constant sum.  At ~145 ns after excitation, <mCl> has increased from 0 to 

nearly 1.2, and dissociation of the HCl at this time would yield highly polarized 35Cl 

nuclei. HCl photodissociation at 193nm yields highly electronically polarized 2P3/2 

and 2P1/2 Cl atoms.  Consequently, combined rovibrational excitation and 

photodissociation would yield Cl atoms with total projection <mCl> ≈ 1.45 for 2P 1/2 

and <mCl> ≈ 1.6 for 2P 3/2 when averaged over all recoil directions.    The extent of 

polarization could be increased further by photolyzing at shorter wavelengths, for 

which the electronic polarization is greater [38].  
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The time-dependence of the populations of the nuclear m states can be expressed in 

terms of the through equation (1). In the following figure we show how the 

m-state populations of |m|=3/2 and |m|=1/2 vary with time.  At t=0, these populations 

are each 0.5 (which is the case for unpolarized spins).  At about 150 ns, the |m|=1/2 

population increases to more than 90%, whereas the complementary |m|=3/2 

population decreases to less than 10%.  Prompt photodissociation at this point will 

yield highly aligned 

( )
0 ( , )kA I t

35Cl nuclei; typical photodissociation cross sections are on the 

order σabs≈10-18 cm2, so that these transitions can be saturated with commercial pulsed 

lasers.  A second, similar, example is the preparation of H35Cl(v,J=2,m=2) using 

Raman pumping.  In Figure 4b we show the time dependence of the population of the 

m=+3/2 35Cl spin state, and also the sum of the remaining 3 nuclear spin states 

(|m|=1/2 and m=-3/2).  At t=0, the 35Cl spin is unpolarized, so each of the 4 m states 

has a population of 1/4. We see that at about t=32 or 205 ns the populations of the 

m=+3/2 state has increased to about 90%.  Prompt photodissociation at this point will 

yield highly oriented 35Cl nuclei.  These polarized atoms can be used on short 

timescales, for which the collisional depolarization effects are not significant. On the 

other hand, the polarization transfer to the proton is predicted to be insignificant. This 
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Figure 18: Time dependence of <m> for a) the nuclear spin of 35Cl ICl=3/2 (solid line) and 

the rotational angular momentum J=1 (dotted line) after pulsed preparation of the 

H35Cl(v=1,J=1,m=1) state, and b) the nuclear spin of the proton IH=1/2 (solid line) and the 

sum of ICl and J (dotted line).  
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is a natural consequence of the system being hierarchical with respect to the chlorine 

nuclei coupling to the molecular rotation. If we are interested in producing highly spin 

polarized protons via rotational excitation we have to study systems that are not less 

accurately by the hierarchical approximation. 
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It should be noted that molecules such as HCl may be cooled in a molecular 

beam so that most of the population is in the (v=0,J=0) state.  Also, it is well within 

the capabilities of commercially available lasers to saturate both the infrared 

absorption step, in which HCl is excited to the (v=1,J=1,m=1) state, and the 

photodissociation step.   Furthermore, since the absorption spectrum of the (v=1,J=1) 

state is shifted significantly to the red with respect to the (v=0,J=0) state, this state 

may be photodissociated selectively.    

 Next we examine the well-studied system of HF. We plot the time-dependence 

of the polarization of J and the H and F nuclear spins (i.e. the  

and  factors) following the prompt preparation of the HF (v=1,J=1,m=1) 

state. The HF molecule seems to be one of the most promising systems to be used as a 

source of spin-polarized hydrogen. It is the “less hierarchical” hydrogen-halide 

system to our knowledge (meaning that the proton hyperfine constant is closer to the 

halogen constant than every other hydro-halide system), since it is the only one in 

which the halogen nuclei does not exhibit quadruple coupling to the molecular 

rotation. Another reason why we study extensively the hydrogen-halide systems is 

because it has been demonstrated that in these systems the electron spin can be 

sufficiently polarized via photodissociation with circularly polarized light.   

( ) ( )tJG k ,

( tIH k
i ,)(
][ )
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FIm
HIm

HFJmFigure 20:  The time-dependence of  (bold line),  (solid line) and  (dotted 

line) as well as their summation (which is always 1), for the prompt preparation of the HF 

(v=1, J=1, m=1) rovibrational state without hyperfine resolution.  Note that all three plots 

always sum to unity (the initial projection of m

 

 

 
). J

 
(1)The figure above shows that the values of H (I ,t) and H(1)(I1 2,t) almost reach their 

maximum values at about 1 and 4 μs. This temporal behavior can be explained by the 

different values of the hyperfine constants that couple each nuclear spin to the 

molecular rotation. In the HF molecule in particular the ratio of these constants is 

C /CF H ~ 5.3 (for v = J = 1), and this situation has an approximate correspondence to 

the relative frequencies of the nuclear polarization beatings. It should be noted here 

that if the time-averaged polarization of the nuclear spins is detected, instead of the 

maximum nuclear polarizations that can be obtained at specific times, the polarization 

obtained is going to be much smaller. For the situation presented here, the average 

molecular depolarization and corresponding nuclear polarization will be Jm  = 

0.596, 
FIm

HIm = 0.213, and  = 0.191. The average depolarization and 

polarization values satisfy conservation of angular momentum projection. Application 
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of the hierarchical approximation give slightly smoother plots for the polarization 

factor, and as explain previously fail at very large times. 

 

f)  Deuterium-halide systems. 

 

 The previous examples show that preparation of spin polarized hydrogen 

atoms via polarization transfer although promising is not trivial. The 100% 

polarization transfer exhibited in systems where protons are the only nuclear spins 

present is difficult to be exploited since neither it occurs in very large times as in the 

case of C H2 2 or the photodissociation wavelengths are difficult to be found as in the 

case of H2. On the other hand, hydro-halide molecules are easily dissociated with 

current dye-lasers the polarization transfer though is usually dominated by the halide 

nucleus, especially when quadrupolic interaction is present. The fact that the fluorine 

nucleus has spin of only ½ makes it perhaps the best candidate among the hydro-

halide molecules. Even in this case though the polarization transfer is mostly 

dominated by the halogen nucleus and a significant amount of time has to pass until 

the proton is significantly polarized. 

 This situation is expected to be different when the proton is replaced by 

deuterium in the cases were the quadrupole coupling that deuterium exhibits suffices 

to inverse the situation and to make deuterium the strongly coupled nucleus. This of 

course is not the case for DCl, since as we discussed in the previous chapter, the 

presence of quadrupole term in the deuterium nucleus coupling hardly alters the 

depolarization time-dependence with respect to the one for HCl. Of course deuterium 

acquires higher degree of polarization than the proton in HCl, but again, the dominant 

polarization transfer occurs between J and the chlorine nucleus. 
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Figure 21:  The time-dependence of <m> for molecular rotation and chlorine nuclear spin 

(left) as well as the summation of these two shown with <m> of the deuterium nuclear spin for 

a larger time interval.  Note that all three plots always sum to unity (the initial projection of 

m ). J

 

 The situation is reversed in the case of DF, since now the nuclear spin of 

deuterium is the largest one in the system. The coupling between molecular rotation 

and the fluorine nucleus remains important so none of the two nuclei can be 

considered to couple preferentially to J so that the hierarchical approximation can 

used.   We plot the time dependence of the angular momentum projections for the 

case of the pulsed excitation of the (v=0, J=1, m=1) state of DF.  We note that D 

nuclei with <mD> ≈ 0.6 can be produced by exciting the (v=0, J=1, m=1) state of DF, 

and by photodissociating after about 4.5 μs, while an even bigger value of <mD> ≈ 0.7 

is achieved after 15 μs. The polarization transfer to the fluorine nucleus is small since 

<m > is always smaller than 0.3. F
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DIm
FIm

DFJm Figure 22:  The time-dependence of  (bold line),  (solid line) and 

 

 

 

 

(dotted line) as well as their summation (which is always 1), for the prompt 

preparation of the DF (v=0, J=1, m=1) rovibrational state without hyperfine 

resolution, for calculations using the nonhierarchical coupling expressions. 
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(D) Conclusions. 

 
 We have shown when optical excitation occurs in composite angular momentum 

systems such as molecules, and the bandwidth of the radiation used is such that the 

procedure occurs without hyperfine resolution, the interaction of the initially polarized 

molecular rotation with the randomly distributed nuclear spins results to a temporal beating 

of the alignment (or orientation) so that the orientation or alignment of the molecular 

rotation is decreased. A similar situation is observed when an atom’s electronic spin is 

polarized via photodissociation or any other prompt procedure and the polarization is 

reduced due to its coupling to the nuclear spin. 

 Although this situation is considered a drawback when optical excitation is 

considered for the preparation of polarized molecules, it provides with the unique 

possibility to polarize the indirectly an atom’s nuclear spin. Since the molecular 

depolarization coefficient  as well as the nuclear spin polarization coefficients 

can be calculated form angular momentum theory, the polarization transfer 

form the molecular rotation to the nuclear spin and back, can be predicted and thus the 

appropriate time can be found when by photodissociating the molecule the procedure is 

“frozen”, and the produced fragments are selectively polarized. This new polarization 

concept can be combined with the technique of polarizing atoms via molecular 

photodissociation with circularly polarized light [14,21], or it can be used as an 

independent technique. 

),( tJGk

),( 2,1
)(
]2,1[ tIH k

( ) ( )k
qA J The equations needed are developed in the framework of the multiple 

moment representation of an angular momentum distribution but it is easy to perform the 

transformation to the density matrix representation if necessary. In general these equations 

are obtained with the use of the Wigner-Eckart theorem and other useful theorems of 

quantum angular momentum. For systems where one nuclear spin is much more strongly 

coupled to the molecular rotation than the other (for example due to the presence of 

quadrupolic coupling to one of them), the hierarchical coupling approximation can be 

imposed and significantly simplified equations can be produced. The situation where the 

molecule contains one indistinguishable nuclear spin is treated though even more 

simplified expressions. 
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 There are many situations where such a procedure can be used for the preparation 

of highly polarized halide atoms, to be used for example in chemical dynamics studies as 

polarized reagents. In hydrogen-halide molecules the halide nucleus usually dominates the 

polarization transfer and significant polarization can be achieved within times in the order 

of microseconds. The preparation of polarized hydrogen atoms through this technique is 

less trivial, since we need to consider systems in which a high degree of polarization is 

transferred to the proton spin and the excitation and dissociation steps do not exhibit big 

difficulties. 

 The main initiative for the development of this technique was the search for 

polarized hydrogen atoms sources, since due to the large energetic distance between the 

first two levels of hydrogen atoms (10.2eV corresponding to 121nm excitation 

wavelength), is such that optical pumping cannot be applied. For systems with one 

indistinguishable nuclear spin such as H  or C H2 2 2, the proton spin can be found to be 100% 

polarized. Unfortunately both these choices turn to exhibit serious drawbacks since on the 

one hand H2 can be photodissociated only with XUV radiation or multiphoton dissociation 

while polarization transfer in C H2 2 on the other hand occurs in very large times, a fact that 

could impose big experimental difficulties.  

The hydro-halide molecules are much more promising as potential sources of 

polarized sources, especially since large degree of polarization is demonstrated to be 

obtained via photodissociation with circularly polarized light. Furthermore, in such a 

procedure the electronic spin is coupled to nuclear spin. Combination of these two 

techniques can lead to even higher degrees of polarization, since the electronic and the 

nuclear spin can be independently polarized. However, for this direction to be 

explored, appropriate optical excitation schemes must be found (such as vibrational or 

electronic excitation), and the photofragment polarization from the photodissociation 

of these excited states must be quantified. Here we analyze excitation of HF molecule 

and we show that significant polarization (~80%) can be produced within 

approximately 5 microseconds.    

The task of polarizing deuterium’s nuclear spin, which would exhibit more or 

less the same difficulty if optical pumping was considered, is proved here to be easier. 

This is especially due to the deuterium dominating the angular momentum transfer 

that follows excitation of DF to the v = 1, J = 1 rovibrational state. There deuterium 

spin can be polarized up to 60% in times smaller than 10 microseconds. 

The method of polarizing the nuclear spin via the hyperfine interaction along 
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with the method of polarizing the electron spin via photodissociation look both very 

good candidates for high density polarized gases preparation. The present technique 

seems to be dependent both on the photodissociation and the optical excitation cross-

sections. Furthermore, since the photodissociation step is, in many circumstances 

selective with respect to the rotational state, the population that “escaped” the 

excitation state is not observed. Furthermore, the density achievable is close to the 

density of the parent molecule, and can exceed 1016 atoms/cm3, which are orders of 

magnitude larger than existing techniques. 
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APPENDIX ( 1 ). Calculation of the eigenenergies and eigenvectors . )(
,

F
Fi

C αα,iFE

 

 The information available from experimental measurements such as [Breant, 

Kaiser,Muenter,etc] for the hyperfine Hamiltonian structure are not directly used in 

the description of the polarization transfer from molecular rotation to the nuclear spin, 

since a series of transformations is required in order to produce the 

eigenenergies and eigenvectors  needed. . In this appendix a simple method 

for producing and  is presented and an example of the code that generates 

the various plots presented in the document is given. 

)(
,

F
Fi

C αα,iFE

)(
,

F
Fi

C αα,iFE

 The energy dependence of the formulas produced here comes from the 

evaluation of the reduced matrix elements FFeFF i
t

tiH

i ' which are obtained after 

expressing the time dependence of the tensor operator  in the Heisenberg 

interaction picture. The substitution 

)()( tT k

∗∑=
+

)(
','

)(
,12

'
F

F

EtiF
F

i
t

tiH

i

ii
CeC

F

FFeFF

α
α

α
h  means that 

the time dependence of the reduced matrix element can be calculated in the 

appropriate basis .The hyperfine Hamiltonian is expressed initially in the uncoupled 

representation and its dimension is (2J+1)(2I 2+1)(2I1 2+1) . It can be directly evaluated 

in this representation, since the products of the form I I1 2 can be analyzed with the use 

of the ladder operators as since I  = ½( Ii i+ + Ii- ) + Iiz. On the other hand, our system is 

depended in the total angular momentum F and the intermediate coupling quantum 

number Fi, so the hyperfine Hamiltonian in the uncoupled representation is expected 

to exhibit degeneracy. 

 The way to express the Hamiltonian in the coupled representation is to 

evaluate it in the coupled basis. For the general case of a molecule consisted form two 

distinct nuclei is: 

J

M
mmm

FFiFiJFi mJmImIMFMFmIMFmJmIFMFJII

iF

ii 2211
,,,

221112
321

,,,)( ∑=

Thus the passage form the couple to the uncoupled representation is done simply by  
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, M , MIf we constrain here the values of MF Fi F’, MFi’ to the values allowed form the 

angular momentum transition rules (
21

, IFFIJF mmMmmM
ii

+=+=  ) the 

dimensionality is decreased to the point that there is no degeneracy in the coupled 

basis Hamiltonian matrix.  

 The final step is to diagonalize the Hamiltonian to obtain the 

eigenenergies and eigenvectors  needed. In the limit of the hierarchical 

approximation, the coupled Hamiltonian is already diagonal and this step is 

unnecessary, the eigenvectors  are either unity or one. Such a situation does not 

exist, since each of the nuclei is coupled to the rotational angular momentum 

independently. On the other hand, if we have already followed this procedure to 

produce the Hamiltonian matrix in the coupled basis, there’s no need in using the 

hierarchical formalism any more, since this is the only extra step required for the 

exact solution. Practically, when the hyperfine constants of the nuclei involved are 

very different, so that the hierarchical approximation is justified there are more easy 

ways in obtaining the necessary energies. One of them is to construct and evaluate the 

hyperfine Hamiltonian matrix and to evaluate it numerically. Diagonalization of this 

matrix will produce the desired energies with degeneracy, and we have only to 

include each of the energies once. One other way is to calculate the energies by 

considering the cross term I

)(
,

F
Fi

C αα,iFE

)(
,

F
Fi

C α

1*I2 ~ 0.In this case the energies terms proportional to I1J 

and I *J are substituted by I2 1J = ½(F (F +1)-Ii i 1(I1+1)-J(J+1)) and  

I2J = ½(F(F+1)-F (F +1)-Ii i 2(I2+1)), the nuclear spin operator are considered to 

conjugate with J and the Hamiltonian is calculated straightforwardly. We note here 

that in the plots where the hierarchical approximation is compared to the exact 

solution we do not make use of these options and the differences between the two 

solutions are generated by the eigenvectors . On the other hand, in systems where 

the hierarchical approximation is valid calculation of the energies with one of the 

approximating ways mentioned above does not alter the plots significantly. 

)(
,

F
Fi

C α
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APPENDIX ( 2 ). An example of the code (in Mathematica), used in the evaluation 

of  and . ),( tJGk ),( 2,1
)(
]2,1[ tIH k

 
"In this file we construct the Hamiltonian matrix Ham by 

spanning our Hamiltonian [39] into ladder operators, expressed 

via the function HOP. To check our result we construct the 

matrix Ham and diagonalize it. The eigenvalues are degenerate 

as expected, and the values are the same of the ones obtained 

when one diagonalize the Hamiltonian of Weiss [40], thus the 

two Hamiltonians are equivalent.";

Clear@J, I1, I2, VD;
J= 1;

I1=
1
2

;

I2=
1
2

;

V= 1;  
"Give values for hyperfine coupling constants.Hexperimental Table 2LHkHz?L";
CF0= 308.1∗103; aF= 53∗103; bF = 0.17∗103;
CH0= −70.1∗103;aH = 1.99∗103; bH= 0.036∗103;
SHF0= 28.7∗103; aHF= −1∗103;
CHF= 0∗103;  
"Define each coupling term In∗Im to make the HOP function more transparent";
I1J@mj_, m1_, m2_, mjp_, m1p_, m2p_D :=

J1
2

∗
,HI1∗HI1+ 1L − m1p∗Hm1p+ 1LL∗ KroneckerDelta@m1, m1p+ 1D∗ KroneckerDelta@m2, m2pD∗

,HJ∗HJ+ 1L − mjp∗Hmjp− 1LL∗ KroneckerDelta@mj, mjp−1D

+
1
2

∗
,HI1∗HI1+ 1L − m1p∗Hm1p− 1LL∗ KroneckerDelta@m1, m1p− 1D∗ KroneckerDelta@m2, m2pD∗

,HJ∗HJ+ 1L − mjp∗Hmjp+ 1LL∗ KroneckerDelta@mj, mjp+1D
+ m1p∗ KroneckerDelta@m1, m1pD∗ KroneckerDelta@m2, m2pD∗ mjp∗ KroneckerDelta@mj, mjpDN;

I2J@mj_, m1_, m2_, mjp_, m1p_, m2p_D :=

J1
2

∗ KroneckerDelta@m1, m1pD∗
,HI2∗HI2+ 1L − m2p∗Hm2p+ 1LL∗ KroneckerDelta@m2, m2p+ 1D∗

,HJ∗HJ+ 1L − mjp∗Hmjp− 1LL∗ KroneckerDelta@mj, mjp−1D

+
1
2

∗ KroneckerDelta@m1, m1pD∗
,HI2∗HI2+ 1L− m2p∗Hm2p− 1LL∗ KroneckerDelta@m2, m2p− 1D∗

,HJ∗HJ+ 1L − mjp∗Hmjp+ 1LL∗ KroneckerDelta@mj, mjp+1D
+ KroneckerDelta@m1, m1pD∗ m2p∗ KroneckerDelta@m2, m2pD∗ mjp∗ KroneckerDelta@mj, mjpDN;  
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I2I1@mj_, m1_, m2_, mjp_, m1p_, m2p_D :=

J1
2

∗
,HI1∗HI1+ 1L − m1p∗Hm1p+ 1LL∗ KroneckerDelta@m1, m1p+ 1D

∗
,HI2∗HI2+ 1L − m2p∗Hm2p−1LL ∗ KroneckerDelta@m2, m2p−1D ∗ KroneckerDelta@mj, mjpD

+
1
2

∗
,HI1∗HI1+ 1L − m1p∗Hm1p− 1LL∗ KroneckerDelta@m1, m1p− 1D

∗
,HI2∗HI2+ 1L − m2p∗Hm2p+1LL ∗ KroneckerDelta@m2, m2p+1D ∗ KroneckerDelta@mj, mjpD

+ m1p∗ KroneckerDelta@m1, m1pD∗ m2p∗ KroneckerDelta@m2, m2pD ∗ KroneckerDelta@mj, mjpDN;  
I2JI1J@mj_, m1_, m2_, mjp_, m1p_, m2p_D :=

J1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L − m1p∗Hm1p+1L ∗ KroneckerDelta@m1, m1p+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p+ 1L ∗

KroneckerDelta@m2, m2p+1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp− 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L −Hmjp−1L∗Hmjp− 2L ∗

KroneckerDelta@mj, mjp−2D +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L − m1p∗Hm1p+1L ∗ KroneckerDelta@m1, m1p+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p− 1L ∗

KroneckerDelta@m2, m2p−1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp+ 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+ 1L ∗

KroneckerDelta@mj, mjpD +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L − m1p∗Hm1p−1L ∗ KroneckerDelta@m1, m1p−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p+ 1L ∗

KroneckerDelta@m2, m2p+1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp− 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp− 1L ∗

KroneckerDelta@mj, mjpD +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L − m1p∗Hm1p−1L ∗ KroneckerDelta@m1, m1p−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p− 1L ∗

KroneckerDelta@m2, m2p−1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp+ 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L −Hmjp+1L∗Hmjp+ 2L ∗

KroneckerDelta@mj, mjp+2D +
1
2

∗ mjp∗ m2p∗ KroneckerDelta@m2, m2pD∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp−1L ∗ KroneckerDelta@mj, mjp−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+1L − m1p∗Hm1p+ 1L ∗ KroneckerDelta@m1, m1p+ 1D +
1
2

∗ mjp∗ m2p∗ KroneckerDelta@m2, m2pD∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+1L ∗ KroneckerDelta@mj, mjp+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+1L − m1p∗Hm1p− 1L ∗ KroneckerDelta@m1, m1p− 1D +
1
2

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp−1L ∗ KroneckerDelta@mj, mjp−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p+ 1L ∗

KroneckerDelta@m2, m2p+1D∗Hmjp− 1L∗ m1p∗ KroneckerDelta@m1, m1pD +
1
2

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+1L ∗ KroneckerDelta@mj, mjp+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L− m2p∗Hm2p− 1L ∗

KroneckerDelta@m2, m2p−1D∗Hmjp+ 1L∗ m1p∗ KroneckerDelta@m1, m1pD +

mjp2∗ KroneckerDelta@mj, mjpD ∗ m1p∗ KroneckerDelta@m1, m1pD∗ m2p∗ KroneckerDelta@m2, m2pDN;  
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I1JI2J@mj_, m1_, m2_, mjp_, m1p_, m2p_D :=

J1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L − m2p∗Hm2p+1L ∗ KroneckerDelta@m2, m2p+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p+ 1L ∗

KroneckerDelta@m1, m1p+1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp− 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − Hmjp−1L∗ Hmjp− 2L ∗

KroneckerDelta@mj, mjp−2D +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L − m2p∗Hm2p+1L ∗ KroneckerDelta@m2, m2p+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p− 1L ∗

KroneckerDelta@m1, m1p−1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp+ 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+ 1L ∗

KroneckerDelta@mj, mjpD +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L − m2p∗Hm2p−1L ∗ KroneckerDelta@m2, m2p−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p+ 1L ∗

KroneckerDelta@m1, m1p+1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp− 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp− 1L ∗

KroneckerDelta@mj, mjpD +
1
4

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+ 1L − m2p∗Hm2p−1L ∗ KroneckerDelta@m2, m2p−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p− 1L ∗

KroneckerDelta@m1, m1p−1D∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+1L − mjp∗Hmjp+ 1L ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − Hmjp+1L∗ Hmjp+ 2L ∗

KroneckerDelta@mj, mjp+2D +
1
2

∗ mjp∗ m1p∗ KroneckerDelta@m1, m1pD∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp−1L ∗ KroneckerDelta@mj, mjp−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+1L − m2p∗Hm2p+ 1L ∗ KroneckerDelta@m2, m2p+ 1D +
1
2

∗ mjp∗ m1p∗ KroneckerDelta@m1, m1pD∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+1L ∗ KroneckerDelta@mj, mjp+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I2∗HI2+1L − m2p∗Hm2p− 1L ∗ KroneckerDelta@m2, m2p− 1D +
1
2

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp−1L ∗ KroneckerDelta@mj, mjp−1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p+ 1L ∗

KroneckerDelta@m1, m1p+1D∗ Hmjp− 1L∗ m2p∗ KroneckerDelta@m2, m2pD +
1
2

∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!J∗HJ+ 1L − mjp∗Hmjp+1L ∗ KroneckerDelta@mj, mjp+1D ∗

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I1∗HI1+ 1L− m1p∗Hm1p− 1L ∗

KroneckerDelta@m1, m1p−1D∗ Hmjp+ 1L∗ m2p∗ KroneckerDelta@m2, m2pD +

m1p∗ m2p∗ mjp2 ∗ KroneckerDelta@m1, m1pD∗ KroneckerDelta@m2, m2pD ∗ KroneckerDelta@mj, mjpDN;  
"Evaluate HOP function "; 

Clear[HOP]; 

 

HOP[mj_,m1_,m2_,mjp_,m1p_,m2p_]:= 

    CF*I1J[mj,m1,m2,mjp,m1p,m2p]+ 

      CH*I2J[mj,m1,m2,mjp,m1p,m2p]+ 

      CHF*I2I1[mj,m1,m2,mjp,m1p,m2p]+(SHF)/((2*J+3)*(2*J-

1))*(3*I1JI2J[mj,m1,m2,mjp,m1p,m2p]+3*I2JI1J[mj,m1,m2,mjp,m1p,m2p]-

2*J*(J+1)*I2I1[mj,m1,m2,mjp,m1p,m2p]); 

 

 

 

 

 

 

 

 

Clear[Ham,q];Ham={};q=0; 

Do[ 
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  Do[ 

    Do[AppendTo[Ham,{}];q++; 

      Do[ 

        Do[ 

          Do[AppendTo[Ham[[q]],HOP[mj,m1,m2,mjp,m1p,m2p]] 

            ,{m2p,I2,-I2,-1}] 

          ,{m1p,I1,-I1,-1}] 

        ,{mjp,J,-J,-1}] 

      ,{m2,I2,-I2,-1}] 

    ,{m1,I1,-I1,-1}] 

  ,{mj,J,-J,-1}] 

 
 

"That's our Hamiltonian in the uncoupled representation"; 

Ham//MatrixForm 
i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

149471. 0 0 0 0 0 0 0 0 0 0 0
0 211969. −2770. 0 −42234.1 0 0 0 0 0 0 0
0 −2770. −217509. 0 261453. 0 0 0 0 0 0 0
0 0 0 −143931. 0 249701. −53986.2 0 16620. 0 0 0
0 −42234.1 261453. 0 −5540. 0 0 0 0 0 0 0
0 0 0 249701. 0 5540. 5540. 0 −53986.2 0 0 0
0 0 0 −53986.2 0 5540. 5540. 0 249701. 0 0 0
0 0 0 0 0 0 0 −5540. 0 261453. −42234.1 0
0 0 0 16620. 0 −53986.2 249701. 0 −143931. 0 0 0
0 0 0 0 0 0 0 261453. 0 −217509. −2770. 0
0 0 0 0 0 0 0 −42234.1 0 −2770. 211969. 0
0 0 0 0 0 0 0 0 0 0 0 149471.

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
 

"This is to check Hermicity";
Clear@kD;k = 0;
Do@

Do@Clear@tD;t =H Ham@@iDD@@jDD − Ham@@jDD@@iDDL;
If@SetAccuracy@t, 6D 0, k++,
Print@iD;Print@" ", jD; Print@"∗∗∗ERROR∗∗∗", tDD, 8i, 1, Length@HamD<D, 8j, 1, Length@HamD<D;

If k Length Ham 2, Print "Everything is COOL! the matrix is hermitian"A @ D @ DE  
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"...and these are the eigenvalues, which should correspond to the hierarchical 

energies"; 

Eigenvalues[Ham]//MatrixForm 

 
i

k

 

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

−394393.
−394393.
−394393.
−265702.
233842.
233842.
233842.
149471.
149471.
149471.
149471.
149471.

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
 

 

 
"this is the Base TRansformation function connecting »m1,m2,mj> states to »Fi,F,mF> states. ";
Clear@BTRD;
BTR@F_, Fi_, Fp_, Fip_D :=

SumA
SumA
SumA
SumA
SumA
SumA
Clear@mi, mip, mfp, mfD;
mi= m1+ mj;
mip= m1p+ mjp;
mf= mi+ m2;
mfp= mip+ m2p;
H−1LH2∗HI1+I2−JL−Fi−Fip+mf+mfp+mi+mipL ∗
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H2∗ F+1L ∗H2∗ Fp+ 1L∗H2∗ Fi+ 1L∗H2∗ Fip+ 1L ∗

ThreeJSymbol@8I1, m1p<, 8J, mjp<, 8Fip, −mip<D∗

ThreeJSymbol@8I2, m2p<, 8Fip, mip<, 8Fp, −mfp<D∗

ThreeJSymbol@8I2, m2<, 8Fi, mi<, 8F, −mf<D∗

ThreeJSymbol@8I1, m1<, 8J, mj<, 8Fi, −mi<D∗

HOP@mj, m1, m2, mjp, m1p, m2pD
, 8mjp, J, −J, −1<E

, 8m1p, I1, −I1, −1<E
, 8m2p, I2, −I2, −1<E

, 8mj, J, −J, −1<E
, 8m1, I1, −I1, −1<E

, 8m2, I2, −I2, −1<E;  
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"Here we generate the Matrix itself...Notice the use of chop to avoid problems when 

sorting the eigenvectors"; 

Clear[Ham2,q];q=0;Ham2={}; 

Do[ 

    Do[AppendTo[Ham2,{}];q++; 

      Do[ 

        Do[AppendTo[Ham2[[q]],Chop[BTR[F,Fi,Fp,Fip],8]] 

          ,{Fp,Abs[Fip+I2],Abs[Fip-I2],-1}],{Fip,Abs[J+I1],Abs[J-I1],-

1}],{F,Abs[Fi+I2],Abs[Fi-I2],-1}],{Fi,Abs[J+I1],Abs[J-I1],-1}]; 

 

"this is the matrix"; 

Ham2//MatrixForm  

 
i

k

jjjjjjjjj

747355. 0 0 0
0 698405. 76633.4 0
0 76633.4 −1.18006× 106 0
0 0 0 −265702.

y

{

zzzzzzzzz
 

 

"This matrix is constructed in the F,Fi bases. We are going to need those states so we are 

constructing them simply as the 'pure’ states of this system"; 

Clear[Fist,l]; 

Clear[flag];flag=0; 

Do[ 

    Do[++flag;l={}; 

      

Do[If[flag�i,AppendTo[l,1],AppendTo[l,0]],{i,1,Length[Ham2]}];Fist[F][Fi]=l;Clear[l] 

      ,{F,Abs[Fi+I2],Abs[Fi-I2],-1}] 

    ,{Fi,Abs[J+I1],Abs[J-I1],-1}]; 

Clear[FLIST];FLIST={}; 

Do[ 

  Do[ 

    AppendTo[FLIST,Fist[F][Fi]] 

    ,{F,Abs[Fi+I2],Abs[Fi-I2],-1}] 

  ,{Fi,Abs[J+I1],Abs[J-I1],-1}]  
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"These are the eigenvectors of Ham2"; 

Eigenvectors[Ham2]//MatrixForm  

 
i

k

jjjjjjjjj

0. −0.0406944 0.999172 0.
1. 0. 0. 0.
0. 0.999172 0.0406944 0.
0. 0. 0. 1.

y

{

zzzzzzzzz
 

 

"Here I construct the alpha states. They really are the eigenvectors of Ham2.The 

problem comes in assigning them with a quantum number F,Fi. Now I can 'guess', and 

that's what I am really doing, since the system is almost hierarchical so the energies are 

close to those of |F,Fi> states, but I don't know how to do it for a system that's purely 

non hierarchical. Unfortunately I cannot come up with a systematic method. Notice that 

for the program not to crush we have to define the non existing Alpha states as zeros."; 

 

Clear[Alpha]; 

Alpha[J +I1+I2][J +I1]=Sum[Eigenvectors[Ham2][[2]]*FLIST[[i]],{i,1,Length[Ham2]}]; 

Alpha[J +I1+I2][J -I1]={0,0,0,0}; 

Alpha[J -I1-I2][J +I1]={0,0,0,0}; 

Alpha[J +I1-I2][J +I1]=Sum[Eigenvectors[Ham2][[3]]*FLIST[[i]],{i,1,Length[Ham2]}]; 

Alpha[J -I1+I2][J -I1]=Sum[Eigenvectors[Ham2][[1]]*FLIST[[i]],{i,1,Length[Ham2]}]; 

Alpha[J -I1-I2][J -I1]=Sum[Eigenvectors[Ham2][[4]]*FLIST[[i]],{i,1,Length[Ham2]}];  

 

 
"This should rely diagonalize Ham2.Actually two very small Hin the order 10−16L off diagonal

ellements remain, thats why the use of chop.";
Clear@AlistD;Alist = 8<;
Do@Do@AppendTo@Alist, Alpha@FD@FiDD, 8F, Abs@Fi+ I2D, Abs@Fi− I2D, −1<D, 8Fi, Abs@J+I1D, Abs@J− I1D, −1<D
Chop Alist.Ham2.Transpose Alist , 8 MatrixForm N@ @ D D êê êê  
 
i

k

jjjjjjjjj

747355. 0. 0. 0.
0. 701526. 0. 0.
0. 0. −1.18318× 106 0.
0. 0. 0. −265702.

y

{

zzzzzzzzz
 

 

"Now we construct the function that returns the energy as a function of F,a"; 

Clear[En];En[F_,a_]:=Alpha[F][a].Ham2.Alpha[F][a] 
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"And now we construct the eigenvectors CFi,a
HFL as defined in the above mentioned article, but

labeled here as Eigenfunctions.";
Clear@EigenfunctionD;
Eigenfunction@ D @ D@ D @ D@ DF_, Fi_, a_ := Fist F Fi .Alpha F a ;

"And finally this is the depolarization function";
Clear@GD;
G@k_, t_D:=

SumA
H2∗ F+ 1L∗H2∗ Fp+ 1L
H2∗I1+ 1L∗H2∗ I2+ 1L ∗CosA2∗Pi∗

i
k
jj En@F, aD

2 F+ 1
−

En@Fp, apD
2∗ Fp+ 1

y
{
zz∗tE∗

ISumA
H−1LFi+Fip ∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fip, J, I1<, 8J, Fi, k<D ∗SixJSymbol@8Fip, Fp, I2<, 8F, Fi, k<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@Fp, Fip, apD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM2

, 8a, Abs@J+ I1D, Abs@J−I1D, −1<
, 8ap, Abs@J+ I1D, Abs@J−I1D, −1<
, 8F, Abs@a+ I2D, Abs@a−I2D, −1<
, Fp, Abs ap+ I2 , Abs ap−I2 , −18 @ D @ D <E  

 
"This is G averaged";
Clear@GavD;
Gav@k_D:=

SumA
H2∗ F+ 1L2

H2∗I1+ 1L∗H2∗ I2+ 1L ∗

ISumA
H−1LFi+Fip ∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fip, J, I1<, 8J, Fi, k<D ∗SixJSymbol@8Fip, F, I2<, 8F, Fi, k<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@F, Fip, aD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM2

, 8a, Abs@J+ I1D, Abs@J−I1D, −1<
, 8F, Abs@a+ I2D, Abs@a−I2D, −1<
E  

 

"Here we evaluate G average"; 

Gav[2]//N 

   

 0.195452 
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"And here we plot G vs t";
PlotAEvaluateAG@2, xD, 9x, 0, 50∗ 10−6=E, PlotRange → 8−0.3, 1<, AxesOrigin → 80, −0.3<, PlotPoints → 80E; 
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"And this is the polarization function";
Clear@Hf, HhD;
Hf@k_, t_D:=

SumA
H2∗ F+ 1L∗H2∗ Fp+ 1L

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H2∗I1+ 1L∗H2∗ J+ 1L ∗H2∗I2+ 1L
∗CosA2∗Pi∗i

k
jj En@F, aD

2 F+ 1
−

En@Fp, apD
2∗ Fp+1

y
{
zz∗tE ∗

ISumA
H−1L2∗Fip ∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fi, Fip, k<, 8Fp, F, I2<D ∗SixJSymbol@8Fi, Fip, k<, 8I1, I1, J<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@Fp, Fip, apD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM∗

ISumA
H−1LFi+Fip ∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fi, Fip, k<, 8Fp, F, I2<D ∗SixJSymbol@8Fi, Fip, k<, 8J, J, I1<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@Fp, Fip, apD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM

, 8a, Abs@J+ I1D, Abs@J−I1D, −1<
, 8ap, Abs@J+ I1D, Abs@J−I1D, −1<
, 8F, Abs@a+ I2D, Abs@a−I2D, −1<
, Fp, Abs ap+ I2 , Abs ap−I2 , −18 @ D @ D <E  
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"Hf averaged with similar agruments";
Clear@HfavD;
Hfav@k_D:=

SumA
H2∗ F+1L2

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H2∗I1+ 1L∗H2∗ J+ 1L ∗H2∗I2+ 1L
∗

ISumA
H−1L2∗Fip ∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fi, Fip, k<, 8F, F, I2<D ∗SixJSymbol@8Fi, Fip, k<, 8I1, I1, J<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@F, Fip, aD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM∗

ISumA
H−1LFi+Fip∗

è!!!!!!!!!!!!!!!!!!!!!H2∗ Fi+ 1L ∗
è!!!!!!!!!!!!!!!!!!!!!!!H2∗ Fip+ 1L ∗

SixJSymbol@8Fi, Fip, k<, 8F, F, I2<D ∗SixJSymbol@8Fi, Fip, k<, 8J, J, I1<D
Eigenfunction@F, Fi, aD∗ Eigenfunction@F, Fip, aD

, 8Fi, Abs@J+ I1D, Abs@J−I1D, −1<
, 8Fip, Abs@J+ I1D, Abs@J−I1D, −1<EM

, 8a, Abs@J+ I1D, Abs@J−I1D, −1<
, F, Abs a+ I2 , Abs a−I2 , −18 @ D @ D <E  

 

"All the evolutions ";

PlotAEvaluateA9G@1, xD,$%%%%%%%%%%%%%%%%%%%%%%%%%I1∗HI1+1L
J∗HJ+1L ∗ Hf@1, xD, $%%%%%%%%%%%%%%%%%%%%%%%%%I2∗HI2+ 1L

J∗HJ+ 1L ∗ Hh@1, xD,

G@1, xD +$%%%%%%%%%%%%%%%%%%%%%%%%%I1∗HI1+ 1L
J∗HJ+ 1L ∗ Hf@1, xD +$%%%%%%%%%%%%%%%%%%%%%%%%%I2∗HI2+ 1L

J∗HJ+ 1L ∗ Hh@1, xD=E,

9x, 0, 50∗10−6=, PlotRange→ 80, 1.1<, AxesOrigin → 80, 0<,

PlotStyle→ 8 @ D @ D @ DHue 0.1 , Hue 0.3 , Hue 0.5 , Hue@0.9D<, PlotPoints → 50E;  
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