
Machine Learning Techniques For
The Estimation of The Operating

Parameters of Solar Cells

Papadomichelakis Georgios

A thesis presented for the

Master of Sciences

degree

Committee

Theodoros Katsaounis(Advisor)

Michael Plexousakis

Vangelis Harmandaris

Department of Mathematics and Applied Mathematics

University Of Crete

Greece

1

Abstract

We consider the problem of predicting the internal temperature in photo-
voltaic cells depending on ambient and/or internal factors. In this thesis,
we use machine learning techniques, specifically deep learning and neural
networks to accurately forecast the temperature, using methods we devel-
oped. We present an introduction to the mathematical background of neural
networks and build some using the Python3 programming language and Ten-
sorFlow. Lastly, we present the numerical results comparing what our neural
networks managed to predict to the actual temperatures measured.

2

Acknowledgements

The completion of this project could not have been possible without the
support and encouragement of my professor and mentor Theodoros D. Kat-
saounis. I deeply feel the need to express my sincere appreciation for guiding
me in my knowledge journey and opening up a new path to a very interesting
aspect of science.

To my professor, Michael Plexousakis, who was there since my very first
day until today in my academic years, offering answers and advice whenever
I had questions, I feel sincerely thankful.

I also want to thank Dr. Vangelis Harmandaris for his contribution as
part of the committee and for being an excellent professor.

Lastly, I would like to thank also Dr. Konstantinos Kotsovos of Saudi
Aramco RD Center - Carbon Management Division at KAUST Saudi Arabia,
for providing the solar cell data used in this present thesis. This work was also
partially supported by grant KAUST-OSR–2020-4433.02 of KAUST Saudi
Arabia.

3

List of Figures

3.1 Santiago’s Drawing . 14
3.2 A Brain’s Network . 14
3.3 A cartoon representation of a human-brain neuron 15
3.4 An artificial neuron . 16
3.5 one neuron with m inputs . 17
3.6 An ANN with two hidden layers 18
3.7 Visualization of the relation between matrices and axons . . . 19
3.8 . 22
3.9 Sigmoid function . 23
3.10 Sigmoid functions with various steepnesses 24
3.11 Sigmoid functions with different displacement and steepness . 25
3.12 ReLU(x) . 26
3.13 tanh vs sigmoid . 26
3.14 Visualization of the cost function 30
3.15 Illustration of GD algorithm’s step converging to a local min-

imum . 31

4.1 Different formulas compared to real data 46

5.1 Left: ”in house” code - Right: TensorFlow 49
5.2 Left: 2 hidden-5 neurons - Right: 5 hidden-40 neurons 51
5.3 Errors for various learning rates and epochs 54
5.4 A loss function . 55
5.5 Loss function with learning rates 0.001(left) and 0.05(right) . 56

4

List of Tables

4.1 Representation of data used in Method 1 as matrices 44
4.2 Representation of data used in Method 2 as matrices 45
4.3 Representation of data used in Method 3 as matrices 47

5.1 MAEs (◦C) Method 1 . 50
5.2 MAEs (◦C) Method 2 . 52
5.3 MAEs (◦C) Method 3 . 52
5.4 comparison of MAEs (◦C) . 53
5.5 MAEs (◦C) for various learning rates and epochs 54
5.6 MAEs 2 hidden layers . 57
5.7 MAEs 5 hidden layers . 57
5.8 Execution times of code for threshold MSE of 5× 10−4 57

5

Contents

1 Introduction 8

2 Problem Description 10

3 Artificial Neural Networks 13
3.1 Biological and Artificial Neural Networks 13
3.2 Structure of ANNs . 16

3.2.1 Neurons and Layers . 16
3.2.2 Weights, Biases and Activation Functions 18

3.3 Learning Process . 27
3.3.1 Cost Function . 28
3.3.2 Minimizing the Cost Function 29
3.3.3 Backpropagation . 34

3.4 Gradient Descent Optimization Algorithms 37
3.4.1 Gradient Descent with Momentum 38
3.4.2 Adagrad (Adaptive Gradient Algorithm) 38
3.4.3 Adam (Adaptive Moment Estimation) 39
3.4.4 AdaMax . 39
3.4.5 RMSProp (Root Mean Square Propagation) 40

4 Implementation/Methodology 41
4.1 Train Set, Validation Set and Test Set 42
4.2 Method 1 . 43
4.3 Method 2 . 45
4.4 Method 3 . 46

5 Numerical Results 48
5.1 Number Of Hidden Layers and Neurons 50
5.2 Dependency on Learning Rates 53
5.3 Sampling Percentage . 56

6

6 Conclusions 59

7

Chapter 1

Introduction

During the recent years, there has been an ever-growing research interest
in Artificial Intelligence (AI). Another term we hear about, more and more
often, is Machine Learning (ML) which can be seen as a subset to AI. Neural
Networks (NNs) and Deep Learning (DL) are both included in that subset
of Machine Learning. This thesis is about using Artificial Neural Networks
(ANNs) and deep learning methods, in order to deal with a problem coming
from the photovoltaic cells’ industry. In particular, we are interested in de-
veloping supervised machine learning techniques for estimating the operating
temperature of photovoltaic cells using various parameters.

In chapter 2 we describe the general problem in detail. The main prin-
cipals behind how photovoltaic cells work, how ambient or internal factors
may interfere with their energy production and how these factors are related
with the leading cause of the energy loses we observe in practice -which is the
cell’s temperature- are discussed. We discuss why cooler cells yield higher
energy and vice versa.

In chapter 3, we give a brief introduction to Artificial Neural Networks
with their properties and characteristics. We compare them with the bio-
logical networks of our brains and seek to understand the motivation behind
the creation of the ANNs. We examine the learning process, how someone
can represent a neuron or a whole network in a computer and what are the
algorithms available we use to ”teach” that network.

Chapter 4 is about the three different methods we developed in order to
address with our case study, the implementation of the ANNs, the data used
in order to train the networks and their representation on a computer. First
method is about examining how only external factor related to the climate
can affect the temperature of the photovoltaic cells, using different deep neu-
ral networks. We hope that they will be able to recognize, to what extent,
those ambient features play a role in heating up or cooling down the cells.

8

Lastly, for this method, we talk about how even if we use only a posteriori
data, meaning that we need to gather the data in the first place using sen-
sors, before starting training our network, we can surpass this problem, using
typical meteorological years. The next method is about neglecting two am-
bient factors and replace them with characteristics of the photovoltaic cells
themselves. Lastly, for the third method, we use different formulas developed
and found in the literature that approximate the operating temperature of
the cells. Since those formulas rarely give accurate results, we train different
ANNs to find combinations of those formula outputs to better approximate
the temperature.

Finally, in chapter 5, we present the numerical results obtained for every
different method we developed. We study the performance of the ANNs, and
their dependency on some key factors that affect them. We conclude that
all methods give excellent results with the right parameters and structure of
the DNNs, however, the first method that considers more ambient factors
produces the most accurate results out of the three. We discuss how those
structures and parameters affect the accuracy of the models.

9

Chapter 2

Problem Description

Photovoltaic solar cells (PV cells) are semiconductor devices constructed to
convert sunlight to electricity. PV cells absorb energy only with wavelengths
from a specific window of the solar spectrum, not the sun’s heat. Silicon
based solar cells absorb light of wavelength λ ∈ [280, 1100] nm. Like all
other semiconductors, PV cells are sensitive to temperature. Increased tem-
perature of the solar cells leads to reduction of the energy yield efficiency. It
is a misconception that solar cells work better in extremely hot climates and
not in the cold ones. Even in cold weather days, solar panels can convert
sunlight into electricity as long as solar irradiance hits the panel. In fact,
cool climates are optimal for solar panel efficiency. To understand this we
need to understand how PV systems work.

The sun emits energy (light) in the form of waves. The active part of a
solar cell is a wafer made of a semi-conductive material, typically silicon. A
semiconductor is a type of material that normally does not conduct electric-
ity well, but it can be more conductive under certain conditions. When the
photons hit the PV cells, electrons in the silicon are put into motion. This
creates an electric current, which is sent to the power grid, batteries, etc.
Electrons are at rest (low energy) in cooler temperatures. When these elec-
trons are activated by increasing sunlight (high energy), a greater difference
in voltage is attained in the solar panel, which creates more energy. That’s
why solar cells produce electricity more efficiently when it’s colder.

PV modules are usually tested at a temperature of 25 degrees Celsius,
however, that refers to the temperature of the panel itself, not the ambient
temperature. On a sunny day, when the solar panels are the most useful, PV
modules are excepting to have a far higher temperature than the ambient
one, resulting in a constantly increase in efficiency loss as the temperature
rises. Thus, the ideal conditions for PV modules are sunny skies but cool

10

ambient temperatures, conditions that are not met at most of the earth’s
locations. However, the modules’ temperature depends not only on the am-
bient temperature or the sun’s irradiance but also on other external factors,
such as the wind speed. For example, strong winds can help to cool the
panels.

Considering this, in some parts of the world, PV cells’ energy yield drops
during the hottest hours of the day and rises during the cooler ones, while in
other areas the exact opposite is observed.

In practice, the importance of approximating the temperature in which
solar cells work the best, originate from the photovoltaic industry sector. We
can estimate with good enough precision what the energy yield will be given
at a specific temperature of the cell, but we do not know, to what extent,
external and/or internal factors combined affect their temperature. Hence,
we can not predict the temperature a priori and, thus, predict what the
energy production will be, given the climate conditions. Since we know that
the energy production depends heavily on the cells’ temperature, adjusting
or interfere, when possible, with the key factors which temperature depends
on, can lead to increased performance of the cells. Of course, increased or
even peak performance is something which is beneficial and profitable for the
owner of the PV systems and for the environment.

In addition, it is extremely important to have a general idea of the ap-
proximate energy production a PV system could yield, before installing it
on a specific spot. In this way, different and more suitable technologies of
PV cells could be used or even use techniques of active cooling. Reducing
the cells’ exposure to the sunlight during the hottest hours could be another
solution. For example, if increased exposure heats the panel so much that
the energy output yield highly drops, having a mechanism that could shade
part of the system when needed could be more cost effective. Consequently,
the practical application of estimating the temperature is an important task.

So the purpose of this work is to examine the correlation between the PV
modules’ temperature and other variables like solar irradiance, wind speed,
air temperature, open circuit voltage and short circuit current, so as to give
a fast and reliable way of predicting the expected PV modules’ operating
temperature.
We will use machine learning techniques to do so, specifically deep neural
networks (DNNs). After we give a brief overview of the way the DNNs func-
tion, we implement three different methods to approximate the temperature
of the cells. The first one, is by using the aforementioned data, the second
one, is by using part of those data and two characteristics provided by the
module’s manufacturer: the module’s rated efficiency and Nominal Operating
Cell Temperature (NOCT). The third method uses some empirical formulas

11

that have been developed in the literature to model the cell’s operating tem-
perature. However, these models are not very accurate, so the third method
is using those models to produce the expected results in temperature and try
to find a suitable combination of them in order to obtain an estimation that
fits better to the observed data.

12

Chapter 3

Artificial Neural Networks

Artificial Neural Networks (ANNs) are motivated by the modern concepts
of how the human brain functions and learns, where hundreds of billions of
interconnected neurons process data. Of course, recreation of human aware-
ness and thinking is still within the realm of science fiction, however, artificial
intelligence and as an extent deep learning and ANNs, have been booming
over the recent years. In this chapter, we will try to give the reader a brief in-
troduction of what ANNs are and what their correlation to the human brain
function is as well as the mathematical background, their representation in
a computer and the learning process.

3.1 Biological and Artificial Neural Networks

All the algorithms that are utilized in deep learning are inspired, to a great
extent, by the way biological neurons and neural networks function and pro-
cess data in the brain. Figure 3.1 depicts one of the very first drawings of
neurons, drawn by Santiago Ramon y Cajal back in 1899 [7], based on what
he saw after examining Purkinje cells (A) (also called Purkinje neurons) and
granule cells (B) from pigeon cerebellum with the microscope. Based on San-
tiago Ramon y Cajal’s drawings, who is currently considered the father of
modern neuroscience, the neurons, one of them labeled as “A” in the image,
have big bodies in the middle and long arms that stretch out and branch off
to connect with other neurons. Figure 3.2 [12], depicts a modern model of
what brain tissue looks like. This image gives us a sense of how firmly they
are packed together and how many of them are in a small piece of brain tissue.

13

Figure 3.1: Santiago’s Drawing Figure 3.2: A Brain’s Network

Rotating Santiago’s drawing by 90 degrees counterclockwise (Figure 3.1) we
observe that the rotated drawing looks like the ANNs we might have come
across (Figure 3.2).

Rotated drawing Sketched NN

In Figure 3.3 a sketched neuron is shown. The main body of the neuron is
called the soma, which contains the nucleus of the neuron, while the network
of arms sticking out of the body is called the dendrites. The arm that sticks
out of the soma is called the axon. Whiskers at the end of the axon are called
the terminal buttons or synapses. The dendrites receive electrical impulses
which carry information or data from sensors or synapses of other adjoining

14

neurons. The dendrites then carry the impulses or data to the soma. In
the nucleus, electrical impulses or data are processed by combining them to-
gether, and then they are passed on to the axon. The axon then carries the
processed information to the synapse and the output of this neuron becomes
the input to thousands of other neurons which are connected to the previous
neuron. Learning in the brain, occurs by repeatedly activating certain neural
connections over others when sensors are triggered and electrical impulses or
data are passed from neuron to neuron. This process reinforces those con-
nections that were activated, making them more likely to produce a desired
outcome given a specific input. Once the desired outcome occurs, the neural
connections causing that outcome becomes strengthened.

Figure 3.3: A cartoon representation of a human-brain neuron

The key idea we want to keep from this short overview of biological neu-
rons is that after a certain input is passed through the human sensors (for
example the eyes) to some neurons, some of them activate and pass the
processed data to other neurons, from which some of them in turn will be
activated and pass the information to other neurons and so on. For more
information we refer the reader to [6].

Learning process in ANNs, very much resembles the way learning occurs
in the brain. Our ANN consist of artificial neurons and those artificial neu-
rons behave in the same way as biological ones. They consist of a soma,
dendrites and an axon, so they can receive some input data and pass on the
output of each specific neuron to other adjoined neurons. Before they pass

15

the data to adjoined neurons, data are combined and processed inside the
soma just like it is done in the biological neurons. The end of the axon can
branch off, to connect to many other neurons, but for simplicity we’re just
showing one branch in Figure 3.4.

Figure 3.4: An artificial neuron

3.2 Structure of ANNs

3.2.1 Neurons and Layers

A feedforward neural network is an ANN which is described by an algorithm
working in layers where the connections between the neurons do not form a
cycle. The word ”feedforward” refers to the idea of passing data from the
input neurons to other neurons and so on, as previously described. An ANN
consists of an input layer of nodes (or neurons by analogy to the biological
brain, or perceptrons), one or more hidden layers of neurons and a final layer
of output neurons which can in turn consist also by one or more outputs.
Neurons are data-processing units, represented by numbers on a computer,
with whom the numeric data from the previous inputs will be processed.

In order to define a neuron we need a set of synapses (or connecting links),
each characterized by a weight which is also just a number. Specifically, a
piece of data xj at the input of synapse j, connected to the neuron k, is mul-
tiplied by the synaptic weight wkj. The first subscript refers to the neuron
currently taking into account while the other refers to the synapse to which
the weight refers. Those weights typically lie in a range of numbers, but we
will come to this point in the sequel. In the human brain, the neurons either
”fire” (activate) or not. In ANNs the neurons are not that limited. Firstly,
we need to define what an activation function is, because depending on that
activation function, the neurons can be activated or not, or even be activated
with different strengths. So an activation function is simply a mathematical
function that takes the input data and outputs them after being processed,
commonly between a permitted range e.g. [0, 1] or [−1, 1]. Typically, there is
also another set of numerical parameters, called biases, which are constants

16

added to the numeric data, before passing them through the activation func-
tion. This additional parameter in the Neural Network is used to adjust the
output along with the weighted sum of the inputs to the neuron. Bias values
allows us to shift the activation function to either right or left as well.

Mathematically speaking, we can describe the neuron k, illustrated in
Figure 3.5 as following:

zk =
m∑
j=1

wkjxj + bk, (3.1)

where wkj is the corresponding weight for the neuron k and synapse j and
bk is the bias term. The outputs of those neurons, after the data have been
processed and the activation functions have fired, are set as

yk = a(zk), (3.2)

where a(·) is the activation function. We will call the terms yk ”predictions”.
The motivation of this designation, is that the outputs of the activation func-
tions are what we consider as the final prediction of the model at the output
layer.

Figure 3.5: one neuron with m inputs

We can imagine layers to be simply columns of neurons stacked together.
A fully connected neural network describes a network where every single
neuron of a layer Li is connected to every single neuron in the next layer
Li+1. With this notation, we can set up layers of neurons for a multilayer
neural network. Conventionally, the input layer is not taken into account

17

whenever we want to number the layers. So we can think of it as ”Layer 0”
and the ”first” layer to be the layer of neurons that the data are passed right
after the input layer, also called the ”first hidden layer”. The term ”hidden”
has no special meaning. It simply implies that these neurons are performing
intermediate calculations. Consequently, the layer after the first one is called
the ”second hidden layer” and so on, until the last one which is labeled as
the ”output layer” in most of the literature.

Figure 3.6: An ANN with two hidden layers

The term ”depth” is regularly used to describe the number of hidden
layers, hence, the designations ”deep neural network” and ”deep learning”
simply refer to a network with many hidden layers. For example, the ANN in
Figure 3.6 has a depth of 2. Following the term ”depth”, the term ”width”,
refers to the number of neurons (or nodes) an ANN has, however, this term
is rarely used, due to the fact that this description is not well defined in case
the network has not a single fixed number of neurons in every layer, like in
Figure 3.7.

3.2.2 Weights, Biases and Activation Functions

Before moving on to the theory of how the ANNs work, a deeper analysis on
how the weights and biases are combined and fed into the activation function
will give a better intuition on the field of reference. We have already intro-
duced the terms weights, biases and activation functions, but we have not
seen how these terms are mathematically represented. As mentioned above,
the data from a layer are passed to another one using (3.1) to strengthen the
connection between two neurons. This connection strength is actually what
we call a weight, practically a number. We can represent all the synaptic
weights connecting all neurons of a given layer fully connected to its previ-
ous layer, by a matrix of weights. For the nth layer, the element wn

ij is the
weight that the ith neuron at the nth layer applies to the output from the
jth neuron at the (n− 1)th layer. This notation is in full agreement with the

18

notations we have used so far. Since the only layer with no previous layer
is the input one, we start counting layers from the first hidden layer up to
the output layer, so this representation of the weights is well defined for all
layers.

In particular a matrix W n =

w
n
1,1 · · · wn

1,k
...

. . .
...

wn
m,1 · · · wn

m,k

 ∈ Rm,k contains all the

weights needed to represent the connections between the layers n and (n−1),
with m being the number of neurons in the nth layer and k being the number
of neurons in the (n− 1)th layer.
The notation for the biases is simpler and can be expressed as a vector,
bn ∈ Rm for the nth layer, with each element bni corresponding to the unique
neuron i.

Figure 3.7: Visualization of the relation between matrices and axons

Figure 3.7 is a visualization of the notation we used above. As we can see
every connection between two neurons of adjoined layers is just a number
and all those connections can be expressed as a single matrix. Every indi-
vidual neuron, from the first hidden layer to the output layer, has its own
bias-number which are represented as one-dimensional arrays in a computer.

19

At this point, a question arises. How many hidden neurons/layers should
one use? Depending on who is asked the answer varies. There is no theory on
the number of hidden neurons. Most users rely on experimentation. There
are proposed a few rules of thumb, however many of them going again each
other. We mention some of them, which we will later follow in the imple-
mentation of the ANNs.
• If the data is linearly separable a single layer network (i.e no hidden layers)
can do the job.
• If data is less complex and is having fewer dimensions or features then
neural networks with 1 or 2 hidden layers would probably work.
• If data has large dimensions or features, then to get a better solution, 3 or
even more hidden layers can be utilized. [14]
It is extremely important to note that increasing hidden layers would also
increase the complexity of the model and choosing hidden layers such as 8, 9,
or more may lead to increased training time and overfitting, thus producing
unreliable results for unseen data.

Once the number of hidden layers has been decided the next task is to
choose the number of nodes in each hidden layer. For a neural network with
N input neurons and M output neurons, T. Masters suggested a number of√
MN hidden neurons [8]. The actual optimal number can still vary between

one half and two times the geometrical mean value of N and M.
D. Baily and D.M. Thompson (J.O. Katz) suggested the number of hidden
neurons be about 75% of the number of input neurons however sometimes
with more complex data, as many as 300% of the number of input neurons
can be used [8]. A common practice is to decrease the number of hidden
neurons in subsequent layers, however this idea can not be always used, de-
pending on the nature of the problem. For example, implementing this on a
classification problem would be useful, to get more and more close to pattern
and feature extraction and to identify the target class.

Mathematically speaking, an ANN aims to find a mapping f(x) that
maps the input(x) to the output(y). The function f(x) can be arbitrarily
complex. The Universal Approximation Theorem (UAT) states that no mat-
ter what f(x) is, there is a neural network with one single layer that can
approximate it, arbitrarily close. This result holds for any number of inputs
and outputs and seems to hold for any number of layers as well, however
there is no mathematical theory supporting that and it is an open question.
Hornik, Stinchombe, and White published a proof of the UAT for a single
layer network. The proof we present here, follows [2]. Next we state the

20

UAT. We begin with the necessary definitions.

Definition 1 Let In denote the n-dimensional unit cube [0, 1]n and M(In)
denote the space of finite, signed regular Borel measures on In. We say that
σ is discriminatory if for a measure µ ∈M(In)∫

In

σ(yTx+ θ)dµ(x) = 0, ∀y ∈ Rn, θ ∈ R,

implies that µ = 0.

Definition 2 We say that σ is sigmoidal if

σ(t)→

{
1 as t→ +∞
0 as t→ −∞

Theorem 1 Let σ be any continuous discriminatory function. Given any
function f ∈ C(In) and ε > 0, there is a sum G of the form

G(x) =
N∑
j=1

cjσ(wT
j x+ bj) (3.3)

for which
|G(x)− f(x)| < ε ∀x ∈ In

In other words, the finite sums of the above form are dense in C(In)

Proof. Let S ⊂ C(In) be the set of functions of the form G(x) as in (3.3).
S is a linear subspace of C(In). We claim that the closure of S is all in of
C(In).

Assume that the closure of S, say R is not all of C(In). Then R is a closed
proper subspace of C(In). Using the Hahn-Banach theorem [13], there is a
bounded linear functional on C(In), say L, with the property L 6= 0, but
L(R) = L(S) = 0. By the Riesz Representation Theorem [15], L is of the
form

L(f) =

∫
In

f(x)dµ(x)

for some µ ∈M(In), ∀f ∈ C(In). Since σ(yTx+ θ) ∈ R for all y ∈ Rn, θ ∈ R
we have that ∫

In

σ(yTx+ θ)dµ(x) = 0

However, we assumed that σ was discriminatory so this implies that µ =
0, contradicting our assumption. Hence, the subspace S must be dense in
C(In).�

21

Lemma 1 Any bounded, measurable sigmoidal function, σ, is discrimina-
tory. In particular, any continuous sigmoidal function is discriminatory.

The proof of lemma 2 can be found in [2]

Theorem 2 Let σ be any continuous sigmoidal function. Given any function
f ∈ C(In) and ε > 0, there is a sum

G(x) =
N∑
j=1

cjσ(wT
j x+ bj)

for which
|G(x)− f(x)| < ε ∀x ∈ In

In other words, the finite sums of the above form are dense in C(In)

Proof. Combine Theorem 1 and Lemma 2, noting that continuous sigmoidal
functions satisfy the conditions of that lemma.

Remark 1 The activation functions ”sigmoid”, ”ReLU” and ”Tanh” which
will be discussed later in this paper, all belong in the class of sigmoidal func-
tions.

Let’s consider this simple network shown in Figure 3.8 with one hidden
layer.

Figure 3.8

Using the previous notation we have

h1 = w1x1 + w2x2 + b1 and h2 = w3x1 + w4x2 + b2 (3.4)

which are obviously linear functions. In literature, functions like h1, h2 are
called ”hypothesis”. Similarly, the prediction

y = w5h1 + w6h2 + b3 (3.5)

22

is also linear in terms of the inputs xi. Obviously, a linear function cannot
approximate any given function which is different to what was stated before
by the Universal Approximation Theorem. That is because the UAT, uses
a sigmoidal function before propagate the data from a layer to another. So
activation functions insert a non-linearity to the system.
As mentioned, activation functions are just mathematical functions, usually
restricting the output values in a certain range. Next we present some exam-
ples of activation functions commonly used, to get a better understanding of
them.

Sigmoid
Sigmoid function is usually the first activation function, someone comes
across when studying about deep learning and/or ANNs. Sigmoid outputs
values in (0, 1), so it can come pretty handy whenever the model aims to pre-
dict a probability. The sigmoid is a differentiable everywhere, monotonically
increasing function, with an interesting property regarding it’s derivative.

Figure 3.9: Sigmoid function

The sigmoid is defined as

σ(x) =
1

1 + e−x
. (3.6)

Figure 3.9 depicts the graph of σ(x) and we easily can observe that

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1, (3.7)

23

while its derivative satisfies

σ′(x) = σ(x)(1− σ(x)). (3.8)

Derivatives of activation functions will play an important role at the learning
process. We can vary the steepness or the location of the graph with simple
algebraic calculations.

Figure 3.10: Sigmoid functions with various steepnesses

24

Figure 3.11: Sigmoid functions with different displacement and steepness

For example, Figure 3.10 shows various sigmoid functions with different ex-
ponential factors while Figure 3.11 shows the unbiased sigmoid compared to
a sigmoid with shifted and scaled inputs.
Lastly, to keep our notation manageable we define the application of the sig-
moid function or any other activation function as:
for x ∈ Rm, σ : Rm → Rm is defined by applying the activation function on
every element of the vector i.e.

(σ(x))i = σ(xi).

ReLU (Rectified Linear Unit)
ReLU is another activation function widely used in Convolutional Neural
Networks (CNNs) [18] and deep learning. This is an activation function that
does not restrict the output in a certain range, since its output can range
from 0 to infinity. ReLU is defined as

ReLU(x) =

{
0 if x < 0
x if x ≥ 0

(3.9)

or simply put in a compact form, ReLU(x) = max(0, x), with its derivative
being a step function

ReLU ′(x) =

{
0 if x < 0
1 if x > 0

(3.10)

25

Figure 3.12: ReLU(x)

The derivative is not defined at x = 0, however this does not affetct its im-
plementation in practice. One can set the value of ReLU ′(0) to be either 1
or 0 without affecting the final results

Hyperbolic Tangent
A similar activation function to the sigmoid is the hyperbolic tangent (tanh)
which restricts the output in (-1,1). The advantage over sigmoid is that
the negative terms will be mapped to negative terms while positive will be
mapped to positive.

Figure 3.13: tanh vs sigmoid

26

The derivative of tanh is positive for all x ∈ R, being

(tanhx)′ = 1− tanh2 x, (3.11)

so the function is monotonically increasing.
There exists a wide variety of other activation functions, some of them

used in different applications. Reader can find more information about acti-
vation functions in [10].

3.3 Learning Process

Generally, the aim of the any ANN is to minimize the error between pre-
dictions and the observations, by adjusting the weights and biases between
the connected neurons. In order to do that, the neural network needs to be
trained so it will be able to minimize that metric. This process, will normally
ensure that the network has ”learned” and hopefully, will give ”good enough”
predictions. This may be better explained by an analogy. As children, we
typically learn what is ”good” behaviour by being was is right while ”bad”
behaviour leads to being punished for acting the wrong way. Suppose that
a young kid is sitting by the fireplace for the first time. Not knowing what
fire is and its effects the kid attempts to touch the fire, so he puts his hand
on it. This action will of course cause the kid to get burned. This negative
feedback in the language of NNs is getting a big error. So the next time
that the kid will attempt to approach the fire, he stands too far away, feeling
almost no heat from the fire and thus staying cold. This is also a negative
feeling or an error. So the kid will start repeatedly taking small steps towards
the fire, evaluating the heat/cold experiencing each time, trying to find the
perfect distance to stand. Feeling less cold each time is like getting smaller
and smaller errors and by the same reasoning if the kid overpass the ”perfect
spot”, feeling less and less overheat while taking small steps away from the
fire, is also like getting smaller errors. In other words, through experience
and feedback the kid learns the optimal distance to sit from the fire. The
heat from the fire in this example acts as a metric to evaluate the position he
is standing — it helps the learner to correct / change behaviour to minimize
mistakes.

ANNs ”learn” using this iterative process of trying and evaluate, but in
order to evaluate how ”bad” their attempt was, they need a mechanism to
do so. This mechanism is called cost function.
In order to understand what ”learned” means for an ANN we need to discuss
further what the cost function is and what that ”cost” of each error is.

27

3.3.1 Cost Function

A cost function is a mechanism utilized in supervised machine learning [19]
which returns the error between predicted outcomes compared with the ac-
tual observations. The aim of supervised machine learning is to minimize
the overall cost, thus optimizing the correlation of the model to the system
that it is attempting to represent. Simply put, cost function informs us of
how ”bad” our predictions are, so we can make them a bit better every time.
This is typically considered as a difference or distance between the predicted
value and the actual value. Cost functions vary, depending on the nature of
the problem most of the time. However, sometimes choosing one cost func-
tion over another is just a matter of taste. Mean error, mean absolute error,
mean squared error, multi-class classification error or cross entropy loss are
just some of the many alternatives someone has. At this point it is important
to stress that there’s no ”best” choice for every problem and that some of
those cost functions cannot even apply at specific types of problems.
We present now some of them, the most commonly used.

Mean Absolute Error (MAE)
This is a simple, self-explained cost function. It measures the average mag-
nitude of errors in a set of predictions,

MAE =
1

n

n∑
i=1

|yi − ŷi|, (3.12)

where i is the index of a given sample from the data set, yi is the prediction
for that given sample that the network outputs, ŷi is the corresponding ac-
tual value and n is the number of all the data samples in the data set.

Mean Squared Error (MSE)
The name of the cost function here is also self-explanatory. This one mea-
sures the average of the squared magnitude of the errors. MSE is the go-to
cost function most of the time in regression problems and the default metric
for evaluating the performance of most regression algorithms in R, Python
and other programming languages. The reason this specific cost function is
so popular is because it has all the good mathematical properties we need. It
is differentiable everywhere (while MEA is not for example) and it is a convex
function. Under loose restriction, requiring only continuity, convex functions
have one and only one minimum. While this is not an exclusive attribute
of MSE, it is one the reasons that MSE is used frequently. Of course, every
convex cost function, under the same restrictions, share the same property.

28

MSE is defined as

MSE =
1

n

n∑
i=1

|yi − ŷi|2, (3.13)

with the notations being the same as before. Often in literature, MSE is
shown as

MSE =
1

2n

n∑
i=1

|yi − ŷi|2. (3.14)

The factor 1
2

multiplying (3.13) is only used to make the calculations easier
at the gradient of the cost and it does not make any difference in our models
behavior.

Binary Cross Entropy
Binary cross-entropy (also known as Log Loss or Logistic Loss) is a special
case of categorical cross-entropy when there is only one output that just as-
sumes a binary value, for example 0 or 1 (A or B , YES or NO, and so on)
to denote ”negative” and ”positive” class respectively. It measures how far
away from the true value the prediction is for each of the classes and then
averages these class-wise errors to obtain the final loss. This cost function is
defined as

Log Loss = − 1

N

N∑
i=1

[yi log p(yi) + (1− yi) log (1− p(yi))], (3.15)

where p(yi) is the probability of one of the classes and (1 − p(yi)) is the
probability of the other class. We can observe that this function is actually
a cohesive way of writing a two-branch function. When the output belongs
to the first class only the first part of the cost function is activated while the
other part becomes 0 and vice versa.
The same idea can be expanded for multiclass classification using the Softmax
cost function [4].

3.3.2 Minimizing the Cost Function

As stated before, the goal of any algorithm in deep learning (and machine
learning in general) is to minimize a cost function. We can view this cost
function as a mountain where high altitude means high cost and low altitude
means low cost. Starting at any random point on its surface, we want to
finally arrive at the deepest valley (the lowest point of the surface) taking
iteratively steps towards that point. Low cost or even better minimization

29

of the cost means low or minimum errors between our predictions and actual
data.

Figure 3.14: Visualization of the cost function

In literature J is commonly used to represent the cost function while θi are
the parameters of the variables in the cost function i.e. weights and biases.
In Figure 3.14 θ0 could be the weight and θ1 the bias of linear function
y(x) = θ0x+ θ1. In order to minimize the cost, machine learning algorithms
most often use the Gradient Descent (often referred as Steepest Descent) al-
gorithm, which is a standard method used in optimization problems, emerg-
ing from multivariable calculus, [5].
If the dimension of the problem becomes greater than 2 the geometrical rep-
resentation loses its meaning, however the idea remains the same at arbitrary
n dimensions. Therefore, it comes in handy to store the parameters as a sin-
gle vector p ∈ Rn.

Definition. The gradient of a differentiable function f : Rn → R at a
point x = (x1, . . . , xn) ∈ Rn is a vector in Rn of the form

∇f :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
. (3.16)

Given a function f and a point x ∈ Rn, the gradient at that point indicates
the direction of the steepest ascent of the function, therefore, −∇f(x) indi-
cates the direction of the steepest descent at that same point.
In order to find a minimum (local or global), gradient descent, indicates

30

where our next step should head for. We could summarize the process in the
following steps:

• Start with a random point/vector p of parameters θi.

• Repeatedly calculate the gradient ∇J(p), take small steps in that di-
rection and update the parameters using p := p − α∇J(p) until we
(hopefully) converge to a minimum. The parameter α is called the
learning rate i.e. the length of the step.

Converging somewhere doesn’t always mean that we found the best or even
a ”good” solution to our problem. For a function with multiple minima,
converging somewhere could simply mean that our algorithm got stuck at a
local minimum which outputs predictions with big errors and failed to locate
the global minimum which would produce the minimum error. This idea is
easily understood geometrically in one dimension.

Figure 3.15: Illustration of GD algorithm’s step converging to a local mini-
mum

As shown in Figure 3.15, gradient descent algorithm could repeatedly take
steps towards the local minimum and get trapped there, never managing to
escape, resulting in ”bad” predictions. Furthermore, since we perform calcu-
lations on an unknown function, we must take discrete steps, meaning this
does not even guarantee that the algorithm will converge to local minimum,
but it may oscillate near one, or even diverge if the learning rate is too large.
This problem occurs frequently, however we could overcome it, simply by

31

taking a different step size or using some modified method of gradient de-
scent. We will discuss them later in this thesis.
Despite that sometimes problems may occur, the gradient descent algorithm
works surprisingly well most of the time. For the record, it might be useful
to mention that the method of the discrete steps is motivated by the Taylor
series expansion of the cost function calculated at a point p+ ∆p near p.

Batch Gradient Descent (BGD)
Batch Gradient Descent refers to a different way of calculating the gradient
for the whole dataset and taking the mean of those to perform one step of
the algorithm. This is commonly named as epoch as well. This method
generally converges in fewer iterations and steadily to the minimum without
many oscillations however since we need to pass through the whole dataset
in each iteration and calculate all the gradients, this method becomes com-
putationally very expensive.
As many methods in computational mathematics, BGD has a trade-off be-
tween accuracy and time complexity of the algorithms. It’s not very practical
to have a big increase of the time complexity, with rather a small gain in ac-
curacy. That’s why in practice, the whole data set is rarely taken in every
iteration, especially when the number of examples is large. This problem can
be solved by the Stochastic Gradient Descent.

Stochastic Gradient Descent (SGD)
The word ”stochastic” means a system or a process that is linked with a ran-
dom process. SGD takes a random training sample of our dataset, computes
the gradient only for that sample and performs an iteration. This idea is used
to speed up the process of performing gradient descent, since calculating one
instead of thousands or millions of gradients, significantly reduces the time
complexity. Of course this will lead to much more noisy or random way to
the minima but speed is often more important than the path. After all, SGD
tends to work great, despite the randomness acting up in the process.

Mini-Batch Gradient Descent
This variation combines the best of both worlds. Mini-batch gradient descent
seeks to find a balance between the robustness of stochastic gradient descent
and the efficiency of batch gradient descent. That is why it is the most com-
mon implementation of gradient descent used in the field of deep learning.
Instead of taking the whole dataset or single piece of it, mini-batch takes just
a ”batch”, randomly and uniformly selected from the dataset and evaluates
the cost based on those examples. Common batch sizes are 32,64,128 and so
on, even though, technically someone could use any number of samples. This

32

method improves the accuracy a lot compared to the stochastic variation and
reduces the computational time considerably, compared to the Batch Gra-
dient Descent. The reason behind the speed improvement is the same as in
SGD. Fewer samples to evaluate the cost function, means less mathematical
operations. The accuracy improvement comes though the randomness the
batch is chosen.

Proposition: One can show that the expected value of a mini-batch in
SGD is equal to the true empirical gradient in the same way one can show
that the mean of any simple random sample is an unbiased estimator of the
population mean: linearity of expectation.

The following proof is suggested by the data scientist, Conner Davis, Mi-
crosoft [9].

Proof
Linearity of expectation simply means that E[X + Y] = E[X] + E[Y].
We have that

J(X) =
1

n

n∑
i=1

Loss(f(xi), yi).

Differentiate both sides, with regard to x and use the linearity of differentia-
tion to move the ∇ inside the summation ∇J(X) = 1

n

∑n
i=1∇Loss(f(xi), yi).

We want to evaluate

EA[
1

m

m∑
i=1

∇Loss(f(xi), yi)].

Applying linearity of expectation, this yields,

EA[
1

m

m∑
i=1

∇Loss(f(xi), yi)] =
1

m

m∑
I=1

EA[∇Loss(f(xi), yi)].

EA[∇Loss(f(xi), yi)] means E[X] =
∑

x x ∗ P (X = x).

Since the samples are chosen uniformly at random, all their probabilities
(P (X = x)) are equal to 1

n
, so it’s just the average value of the gradient over

all samples. That is:

EA[∇Loss(f(xi), yi)] =
n∑

j=1

P (i = j) ∗ ∇Loss(f(xj), yj),

33

where P (i = j) = 1
n
, so

EA[∇Loss(f(xi), yi)] =
1

n

n∑
j=1

∇Loss(f(xj), yj) = ∇J(X).

Plugging that back in to,

EA[
1

m

m∑
I=1

∇Loss(f(xi), yi)] =
1

m

m∑
i=1

EA[∇Loss(f(xi), yi)],

we get

EA[
1

m

m∑
i=1

∇Loss(f(xi), yi)] =
1

m

m∑
i=1

∇J(X) = ∇J(X),

which completes the proof. �

3.3.3 Backpropagation

Backpropagation is one of the most important steps in the Gradient Descent
algorithm. We already discussed how gradient descent works to minimize the
cost function by updating the parameter vector p in each iteration (also called
epoch). This, as a matter of fact, comes downs to calculating the derivative of
the loss function with respect to the each parameter i.e. weights and biases.
We give a deeper intuition about that here, since that action of updating
the parameters occurs through the process called Backpropagation. For sim-
plicity, we suppose that the cost function is taken over a single data point.
This will make the idea easier to understand while in the general case of a
set with multiple data points is not much more complicated than this.
We recall that in order to minimize the loss function we first need to com-
pute the cost. This was achieved by passing the data from the input layer all
the way to the output layer and then compare the prediction of our model
with the actual known value using a metric. This is called forward pass, also
known as forward propagation.
Now that we know how inaccurate our prediction is, we need to go all the way
from the final level, inductively to the beginning of our network, modifying
the weights and biases since those are the ones that determine the prediction.
This process of transferring the information backwards in the network coins
the term backpropagation.
From now on, our aim is to compute the partial derivatives of the cost func-

34

tion with respect to weights wl
jk and biases blj. Consider the MSE cost func-

tion,

C =
1

N

N∑
i=1

||f(xi)− F (xi)||2, (3.17)

where || · || is the Euclidean norm in Rm , f(xi) is our model’s prediction at
the data point xi and F (xi) is the actual value of the function we want our
model to approximate at the same data point. Since MSE is differentiable
we have

∇C = ∇(
N∑
i=1

Cxi
) =

N∑
i=1

∇Cxi
, (3.18)

where Cxi
is the cost of a single data point xi. This property of calculating

the gradient of the cost first and summing them up later is extremely useful,
since gradients can be computationally demanding. SGD and mini-batch GD
take advantage of that and thus making the code much more efficient.
We now define A` = {ali} to be a vector containing all the outputs of the
activation functions of nodes in the lth layer. We recall that

zl :=

nl−1∑
k

wl
j,ka

l−1
k + blj ∈ Rn, for l = 2, 3, . . . , L. (3.19)

From the relation that propagates the information through the NN passed
through the activation function a, we obtain

al = a(zl) ∈ Rn, for l = 2, 3, . . . , L. (3.20)

Consider the quantity δl ∈ Rn
l defined as,

δlj =
∂C

∂zlj
, 1 ≤ j ≤ nl , 2 ≤ l ≤ L. (3.21)

This quantity is called error in the jth neuron of layer `. It is an intermediate
quantity, useful for analysis and computation, it is used for backprogation
of the network and is related to the derivatives of the weights and biases
∂C

∂wj,k
, ∂C
∂blj

by the chain rule.

Before showing some practical relations between cost and weights, we need
to define the Hadamard, i.e componentwise, product of two vectors. For
x, y ∈ Rn we define (x� y)i = xi ∗ yi, i = 1, . . . , n

35

Lemma 2 Let y be an actual value. Then the following relations hold true,

δL = a′(zL)� (aL − y), (3.22)

δl = a′(zL)� (W l+1)T δl+1, 2 ≤ l ≤ L− 1, (3.23)

∂C

∂blj
= δlj, 2 ≤ l ≤ L, (3.24)

∂C

∂wl
j,k

= δlja
l−1
k , 2 ≤ l ≤ L. (3.25)

Proof
To prove (3.22) we recall that δLj = ∂C

∂zLj
and aL = a(zL). Further we consider

the cost function to be the MSE C = 1
2
||y − aL||22. Then, we have

∂aLj
∂zLj

= a′(zL) and
∂C

∂aLj
=

∂

∂aLj

(
1

2

nL∑
k

(yk − aLk)2
)

=
∂

∂aLj

(
1

2
(yj − aLj)2

)
.

The second equality is derived from the fact that

∂

∂aLj

(
1

2

nL∑
k

(yk−aLk)2
)

=
1

2

∂(y1 − aL1)2

∂aLj
+

1

2

∂(y2 − aL2)2

∂aLj
+· · · · · ·+1

2

∂(ynL
− aLnL

)2

∂aLj

so when taking the derivative with respect to j only the jth term remains.
Hence

∂C

∂aLj
=

∂

∂aLj

(
1

2
(yj − aLj)2

)
= −(yj − aLj) = (aLj − yj).

Thus

δLj =
∂C

∂ZL
j

=
∂C

∂aLj

∂aLj
∂zj

= (aLj − yj)a′(zLj) = a′(zL)� (aLj − yj)

proving (3.22).

To prove (3.23) we recall that from (3.19) we have zl+1
k =

nl∑
s=1

wl+1
ks a(zls)+bl+1

k .

Hence

δlj =
∂C

∂zj
=

nl+1∑
k=1

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=

nl+1∑
k=1

δl+1
k

∂zl+1
k

∂zlj
.

36

By the definition of zl+1
k and by differentiating it with respect to zlj only the

jth term remains, hence, we have
∂zl+1

k

∂zlj
= wl+1

kj a
′(zLj). Substituting this to

the previous equality for δlj we have

δlj =

nl+1∑
k=1

δl+1
k wl+1

kj a
′(zlj) = a′(zlj)

(
(W l+1)T δl+1

)
j
,

which is the componentwise form of (3.23).

For (3.24), since zlj = (W la(zl−1))j + blj we obtain
∂zlj
∂blj

= 1. Notice that

zl−1 does not depend on blj. Using the chain rule

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

=
∂C

∂zlj
= δlj,

by definition, proving (3.24).

Finally, for (3.25) we will once more use the definition of zlj (3.19) and taking
the derivative with respect to wl

jk we have

∂zlj
∂wl

jk

= al−1k , ∀j, while
∂zls
∂wl

jk

= 0 for s 6= j.

Therefore by the chain rule, we obtain

∂C

∂wl
jk

=

nl∑
s=1

∂C

∂zls

∂zlj
∂wl

jk

=
∂C

∂zlj

∂zlj
∂wl

jk

=
∂C

∂zlj
al−1k = δlja

l−1
k ,

which completes the proof. �

3.4 Gradient Descent Optimization Algorithms

Beside the three variants of the gradient descent we studied earlier, which
differ on how much data used to compute the gradient of the cost function
J , there are other gradient descent-type optimization algorithms that aim
to overcome problems such as: a) choosing a proper learning rate, b) avoid
being trapped in a local minimum, c) accelerating the convergence of the al-
gorithm. Next we discuss some of the variations. The presentation follows, [1]

37

3.4.1 Gradient Descent with Momentum

Gradient descent, with momentum can be though as a ball rolling downhill,
where the ball will still roll to direction of the previous descent for a while,
even if the hill’s slope changes.
In areas where the surface of the cost function curves by a large amount in
one direction than on others or noisy gradients, something that may happen
near local optima, SGD will bounce around in the process of navigating
trough that space, resulting in making limited progress or even get stuck in
flat spots.
Momentum helps to accelerate SGD by an attempt to maintain a consistent
direction. We take a linear combination of the previous heading vector, and
the newly-computed gradient vector, and adjust in that direction.

ut = γut−1 + a∇pJ(p),

p = p− ut.
(3.26)

Here, γ is just a parameter, called momentum term, suggesting the fraction
of the previous time step we want to add to the current vector. A usual value
of γ is 0.9.

3.4.2 Adagrad (Adaptive Gradient Algorithm)

Adagrad is an adaptive-learning rate algorithm. This means that the learning
rate used is not fixed but it changes. Adagrad adapt the learning rate for the
parameters depending on their history. The method chooses large learning
rates for rare and small updates, while small rates are used for more frequent
parameters.
We set

gt,i = ∇ptJ(pt,i),

to be a vector of the gradient of the cost function with respect to the step t
and parameter pi. The Adagrad componentwise parameter update becomes

pi+1,j = pi,j −
a√

Gi,jj + ε
gi,j, (3.27)

where a is a fixed value of the learning rate and ε is a small quantity which is
added to prevent division by zero. In practice, ε takes small values (ε ∼ 10−8)
and does not affect the effectiveness of the algorithm.
Gi is a diagonal matrix with its (j, j) element given by the sum of the squares
of the gradients with respect to pj in the ith step,

Gi,jj =
i∑

k=1

g2k,j.

38

However, this process has a major drawback. Due to the accumulation of
the squared gradients, the denominator grows during training, resulting into
small values of the learning rate, to the point where the algorithm is unable
to learn anymore.
The issue is resolved by algorithms such as Adadelta or RMSprop. For a
deeper understanding of those algorithms we refer to [1].

3.4.3 Adam (Adaptive Moment Estimation)

The Adam optimization algorithm is an extension of the stochastic gradi-
ent descent we have presented. The method computes individual adaptive
learning rates for different parameters from estimates of first and second mo-
ments of the gradients and keeps an exponentially decaying average of past
gradients mt similar to momentum:

mt = β1mt−1 + (1− β1)gt,
ut = β2ut−1 + (1− β2)|gt|2,

(3.28)

where mt and ut are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of gradients respectively. The authors of
Adam propose β1 to be 0.9 and β2 to be 0.999.
The vectors mt and ut are initialized as zeros, hence, they are biased towards
it, especially when the learning rates are small, for example the case for the
proposed values of β1 and β2 and during the initial steps.
This bias can be overcomed by first calculating the biased estimates, and
then calculating bias-corrected estimates:

m̂t =
mt

1− βt
1

,

ût =
ut

1− βt
2

.
(3.29)

Finally, the update rule yields:

pt+1 = pt −
a√
ût + ε

m̂t. (3.30)

The proposed value for ε is 10−8, which serves the same purpose as we have
seen before.

3.4.4 AdaMax

There are two small variations on Adam, the first one called AdaMax and the
second one Nadam[1]. The formula ut = β2ut−1+(1−β2)|gt|2 from Adam will

39

scale the gradient inversely proportionally to the `2 norm of past gradient
(ut−1 term) and current gradient |gt|2 meaning as the scale factor goes up the
gradient magnitude will go down. The AdaMax uses the `∞-norm instead of
the `2-norm and reduces to

ut = β∞2 ut−1 + (1− β∞2)|gt|∞

= max(β2 · ut−1, |gt|)
(3.31)

Finally, we can plug this into the Adam update rule, replacing the
√
ût + ε

with the ut from (3.31), which yields the final update rule for AdaMax:

pt+1 = pt −
n

ut
m̂t. (3.32)

3.4.5 RMSProp (Root Mean Square Propagation)

RMSProp is another adaptive learning rate optimization technique that choses
a different learning rate for each parameter. It was proposed by the father of
back-propagation, Geoffrey Hinton in Lecture 6e of his Coursera Class [11].
Gradients of very complex functions like neural networks usually vanish or
explode as the data propagates through the function.
RMSprop addresses this issue by dividing the learning rate by an exponen-
tially decaying average of squared gradients. This normalization, results in
balancing the step size (momentum), decreasing the step for large gradients
and increasing the step for small gradients. RMSprop’s update rule is given
by:

E[g2]t = γE[g2]t−1 + (1− γ)g2t ,

Pt+1 = Pt −
n√

E[g2]t + ε
gt.

(3.33)

Hinton suggests γ to be set to 0.9, while a good default value for the learning
rate n is 0.001.

In the first equation, we compute an exponential average of the square of
the gradient. The name ”exponential” comes from the fact that the weight
of previous terms decays exponentially. Since it’s performed separately for
each parameter, gradient gt corresponds to the component of the gradient
along the direction represented by the parameter we are updating.

We multiply the hyperparameter γ with the exponential average E[g2]
computed till the last update. We then multiply the square of the current
gradient with (1 − γ) add those two terms together to get the exponential
average till the current step.

40

Chapter 4

Implementation/Methodology

We now move on to the case study scenario, where we implement deep neural
networks to a realistic problem. That is the prediction of the temperature
developed inside the PV cells using three different methods, that differ on the
inputs provided to the neural network. The DNNs implemented, vary in the
number of hidden layers and number of neurons used, as well as, the learning
rates and the optimization algorithms used. The key difference between the
first and the last two methods we examine, is that the first one is based on
a posteriori data, (latin for ”from the latter”), meaning that the data were
based upon actual observation, they were experimental data. Those are data
collected during the PV cells were operating.
The seconds and third method, in contrast with the first one, use a priori
data (latin for ”from the former”), meaning that those data were gathered
without examination or analysis and they are supported by past experience.

Since some of the variables used in methods 2 and 3 might seem that
they need to be collected during the specific time and date we examine and
that is of course, contradictory to the a priori definition, it is important
to mention that variables like solar irradiance, air temperature and wind
speed can be estimated using typical meteorological years (TMY). These are
collections of data, already existing, for a specific location, listing various
meteorological elements for one year period and predetermined time points
during the day, typically every hour. Those data are, of course, just estima-
tions using previous years (normally 10 previous years or more) to estimate
the next following year’s meteorological conditions. With that in mind, all
data in need to implement method 2 and 3 can be found through those TMY.

The neural networks we used were mostly built using TensorFlow 2.5.0[16]
running on a laptop with a low-end AMD APU (A12-9720P) without a ded-
icated cuda core GPU and 6GBs of DDR4 ram. This is extremely important

41

to mention since hardware makes a huge difference in time needed to com-
plete a run. A second setup was also used, building the neural network from
scratch using Python 3.9.5[17], both giving similar results.

4.1 Train Set, Validation Set and Test Set

A common practice before proceed to the learning process is splitting the
available data into 2 or 3 distinct data sets. These data sets will consist of
a training set, a test set and sometimes a validation set. For example one
can randomly choose 70% of the data to make up the train set and 30% to
make up the test set, or 60% for the train set, 10% for the validation set and
30% for the test set. Percentages can vary of course and there is no rule of
thumb for choosing them. Like many other things in machine learning, the
train-test-validation split ratio is quite specific to each individual use case
and it gets easier to make judgement with experience.

The training set is what it sounds like. It is the part of the data we
will use to train our model. During each epoch, our model will be trained
over and over again on those same data points and it will continue to learn
about the features of this data. We hope that this will eventually make our
model able to predict accurately on new previously unseen data. Learning
during the training process does not guarantee that our model has actually
learned to recognize patterns among features. Very small errors during the
training phase is sometimes a bad indicator, as this can mean that our model
has ”overfit” and it will perform purely on the new unseen data. We will
not discuss in detail about overfitting but the idea of it is that our model
becomes really good at being able to classify the data in the training set but
it’s unable to generalize and make accurate classifications on data that it
wasn’t trained on, [20].

The validation set (also called dev set or development set) is another
sample of the total data that is used to validate our model during the
training process. This validation process helps us by giving information that
may assist us with adjusting the hyperparameters. We know that during
training, the model will be classifying the output for each input in the training
set and after computing the loss, it will adjust the weights/biases. The data
in the validation set do not take part in the training process, but they are
only used to compute the loss function on unseen data, providing an unbiased
evaluation of the model. So when a validation set is used, the model will
provide us with two different losses. One of the training set and one of the
validation set.

42

The loss on the validation set is expected to be higher than the corre-
sponding loss on the train set but this is expected. Recall the samples of the
validation set is separate from those in the training set so when our model is
validating on the validation set, that part of data does not consists of sam-
ples the model is already familiar with from training. What we do not want
to see is huge differences between the two losses as this is commonly caused
when overfitting.

Another use of the validation set is early stopping. If our model’s error on
the validation set is smaller than a threshold we set for a certain number of
consecutive epochs, there might be no need to continue training. The model
might have learned to predict the outputs at an accepted level so the training
process can stop earlier than expected.

The test set is also self-explanatory. It is the sample of data used to
provide an unbiased evaluation of the final model fit on the training dataset.
This set is only used once, after a model is completely trained. Note that
many times there is no validation set used and validating of the model occurs
only after the training is complete. The loss on the test set is also expected
to be a bit higher than the training set, but again, big differences indicate
there is something wrong.

4.2 Method 1

The first method we implemented was based on data gathered by sensors
placed at panels. Samples were collected from around 6:50 to 18:20, every five
minutes for a 10 day period, from 28-Mar-2018 to 06-Apr-2018. The sample
data make up a total of 1379 samples for each one of the 4 parameters: solar
irradiance Girr(w/m

2), air temperature Tair(C), open circuit voltage Voc(V)
and short circuit current Isc(A). We can represent those data as a 1379× 4
matrix.

An extra sensor was also placed to record the wind speed, represented by
W (m/s), from 28-Mar-2018 00:00:00 (UTC) to 06-Apr-2018 23:00:00 (UTC),
however those samples were taken once every hour. Due to lack of information
of the interior time nodes we used linear interpolation to estimate the wind
speed in those points. We can think of those data as an extra column,
expanding the matrix dimensions to 1379× 5, see Table 4.1.

Of course, date and time play no role in the cell’s temperature so we
will not feed them in the NN, but we present them here for a complete
understanding of the data form. The useful variables used in the networks
will be the five ones mentioned above.

43

Lastly since our aim is to estimate the PV modules’ temperature Tmod,
we also tracked it in the same five-minute nodes, so the neural network can
compare the predictions with those values and ”learn” to forecast the tem-
perature. This gives us an array of 1379× 1.

Date Time Tair Girr Voc Isc W Tmod

28-03-2018 06:50:00 24.3 38.41 31.31 0.306 4.22 23.32
28-03-2018 06:55:00 24.6 55.53 31.64 0.386 4.25 23.51
28-03-2018 07:00:00 24.8 69.14 32.01 0.492 4.29 23.92

...
...

...
...

...
...

...
...

06-04-2018 18:20:00 28.7 33.42 30.32 0.227 6.53 27.15

Table 4.1: Representation of data used in Method 1 as matrices

We can think every row of the matrix as a single vector of R5. Those
five variables will be the data we feed to the neural network at the input
layer. Before feeding the data to the network, we normalize them. There
are various normalization strategics, depending on the data themselves while
sometimes it is just a matter of preference, for example changing the variance
of the data, or scaling to a range, or a combination of those. Normalization
is one the most important actions one can perform to speed up the algorithm
and help the convergence. Of course, normalization is a whole other chapter
in machine learning science which is beyond the scope of this thesis, so we
will not dive into details. However, normalizing the data hardly ever does
any harm so it is a very standard practice to normalize the dataset before
proceed to feed them in the network.

The normalization method we performed was simply scaling our data,
since the raw data gathered from the sensors had very different ranges. For
example short circuit voltage was between 0.22 to 8.61, while solar irradiance
values were ranging from 29.72 to 957.0.
Tair was divided by 40, Girr was divided by 1000, Voc by 35, while Isc and W
were both divided by 10. Lastly Tmod was divided by 65. All those numbers
were chosen to be slightly higher than the maximum value in the dataset for
each variable and since all the values were positive all data were scaled to
reside in [0, 1]

So our network begins with five nodes and propagates the processed data
to first hidden layer. Various combinations of hidden layers and number of
neurons have been implemented, with hidden layers starting from just 2, up

44

to 5 and with number of neurons in every hidden layer being 5, 10, 20, 30, 40.
All networks output a single value which is the temperature forecast. This
gives us a total of 20 different structures tested. In every case the neural
networks were fully connected.

4.3 Method 2

The second method we implemented was a lot like the first one with two dif-
ferences. This method is focused more on the PV modules characteristics per
se, rather than the external factors that may affect the internal temperature.
Open-circuit voltage and short-circuit current are electrical characteristics
of the PV module that are not available under operating conditions. Thus
instead of using the open-circuit voltage Voc we used the module’s efficiency
nref in percentage which is 14.5% for the monofacial solar panels we studied.
So just like in the first method we have a the same 1379× 5 matrix but now
the column of Voc has been replaced by 0.145 (14.5%) for every element of
that column. Since the panels we examine are all the same this number does
not change.

Secondly, we replaced the short-circuit current Isc by the Normal Oper-
ating Cell Temperature (NOCT, symb: TNOCT) which for the modules we
examined is 45.7 ◦C. These are the PV module specifications based on man-
ufacturer’s datasheets. Thus the forth column of the matrix will be changed
to 45.7 for every element instead of the Voc.

The normalization for every variable remains the same as before except
the two new variables we inserted. Since the module’s efficiency is between
0 and 1 there is no need to make any change to that so we leave it as it is.
However since TNOCT is way bigger than 1 it needs to be normalized. We
divide the column of TNOCT by 65 which is the number we used to normalize
the Tmod as well.

Date Time Tair Girr nref TNOCT W Tmod

28-03-2018 06:50:00 24.3 38.41 0.145 45.7 4.22 23.32
28-03-2018 06:55:00 24.6 55.53 0.145 45.7 4.25 23.51
28-03-2018 07:00:00 24.8 69.14 0.145 45.7 4.29 23.92

...
...

...
...

...
...

...
...

06-04-2018 18:20:00 28.7 33.42 0.145 45.7 6.53 27.15

Table 4.2: Representation of data used in Method 2 as matrices

45

All setups deployed were also fully connected and various runs for each
of 2 to 5 hidden layers and 5, 10, 20, 30, 40 number of neurons in the hidden
layers were tested giving a total of 20 structures as before.

4.4 Method 3

In this method we use some of the models we find in literature to forecast the
module’s temperature [21]. However most of those models assume that the
solar cells operates under nominal (STC) conditions (25◦C) which is hardly
ever happening in reality. We use five of those models, some of them using
electrical characteristics of the module such as Isc and Voc while others use
parameters like the air temperature, wind velocity, solar irrandiance and
module’s efficiency. Those parameters have the advantage that they can be
available a priori.
The five models we use provide us with an estimation of the module operating
temperature in Celsius degrees:

T t
c = Tair +

Girr

800
(TNOCT − 20)(1− nref)

(
9.5

5.7 + 3.8W

)
(4.1)

T S
c = Tair + 0.0138Girr(1 + 0.031Tair)(1− 0.042W)(1− 1.053nref) (4.2)

TC
c = 0.943Tair + 0.028Girr − 1.528W + 4.3 (4.3)

TL
c = 30.006 + 0.0175(Girr − 300) + 1.14(Tair − 25) (4.4)

TK
c = Tair +Girre

−3.473−0.0594W (4.5)

In the beginning of this thesis (2), we mentioned that those formulas are not
very accurate. In Figure4.1 we can see all those formulas compared to the
experimental temperature measured.

Figure 4.1: Different formulas compared to real data

46

We feed those equations with the data available and they provide us with
estimations of the operating temperature of the solar cells. This leads to a
new 1379× 5 matrix with every row having 5 different temperature estima-
tions.

Date Time T t
c T S

c TC
c TL

c TK
c Tmod

28-03-2018 06:50:00 24.76 24.94 21.83 24.63 24.64 23.32
28-03-2018 06:55:00 25.26 25.53 22.54 25.27 25.09 23.51
28-03-2018 07:00:00 25.61 25.97 23.06 25.73 25.41 23.92

...
...

...
...

...
...

...
...

06-04-2018 18:20:00 28.98 29.23 22.32 29.55 28.95 27.15

Table 4.3: Representation of data used in Method 3 as matrices

Every row of this matrix consists of a vector in R5 that will be fed into
the neural network. Since every element of the matrix is a temperature
estimation we normalize them by dividing with 65 just like the measured
temperature. The same structures of ANNs as in the two previous methods
were tested.

47

Chapter 5

Numerical Results

We begin by comparing the results obtained using TensorFlow and the code
we build from scratch. It is important to mention that Stochastic Gradient
Descent was chosen as the optimizer for the ”in house code” due to it’s
simplicity and the low computational complexity. It is also important to
note, that despite the fact that we allowed the ”in house” code performed
a lot more iterations than the TensorFlow, the time required for the first to
finish compiling was still lower. This happens as a result of the difference
in computing the updates of the weights and biases. In the ”in house” code
we used equations (3.22)-(3.25) of Lemma 2 to compute the cost gradients.
This way there was no need to compute the cost of the training set in every
single iteration, something which is very computational demanding. We only
computed the cost every 10.000 iterations -just to have some data for plotting-
thus reducing the time the code needed to finish extensively.

As an example of this, below are shown two images, comparing the results
in temperature forecasting, one produced using the TensorFlow and one using
the code we developed.

48

Figure 5.1: Left: ”in house” code - Right: TensorFlow

Both of the NNs we used to predict the temperature of the PV module
shown in Figure 5.1 used the first method to do so, had 2 hidden layers and
used SGD with a learning rate of 0.2. As expected errors are not exactly
the same but they are close enough. Our NN from ”in house code” had a
MAE of 0.697◦C at 20 million epochs while the TensorFlow’s NN produced
a MAE of 0.889◦C at 50 thousand epochs. Despite the huge difference in
epochs, our NN took 2320 seconds to complete while the TensorFlow’s took
3088 seconds. Note that TensorFlow computes gradients in a different way
than the ”in house code”, so epochs can not be compared as an absolute
number. They do not perform the same actions. 20 million epochs on the
TensorFlow would likely have a produced a vastly different result in terms of
error order.

Since both TensorFlow and ”in house code” give similar results, but Ten-
sorFlow makes things easier in implementation we proceed to compare some
of the key features the DNNs incorporate using TensorFlow only. These are
the number of hidden layers, the number of neurons, the learning rate, the
number of epochs, the optimization algorithms and last but not least the
percentage of samples used in the training sets. Considering that this is a
multivariable object of study and examining all those parameteres at once is
not very practical, we discuss each of those features individually or in pairs,
keeping everything else the same.
Note that the errors presented above and in the upcoming sections are ob-
tained by validating our model on all available examples after training, unless
specified otherwise. All neural networks implemented in this thesis, use the
sigmoid activation function and used mean squared error as an error
metric of the cost function. However we present the differences between pre-
dictions and experimental values in mean absolute error, since this is closer

49

to the human perception of differences in temperature.

5.1 Number Of Hidden Layers and Neurons

The learning rate was set to 0.02 since this one seemed to be a good choice
during the preparation and the test runs for the problem of this thesis. The
optimization algorithm we kept through this study was Adamax even though
all of the algorithms mentioned in 3.3.2 and 3.4 were tested and produced
similar results. The reason for this choice was simply past experience from
other problems where Adamax was yielding the best results, plus, no other
algorithm seemed to excel comparing to the others at the test runs. The
number of epochs used for this section was 50000 for every run.

Table 5.1 shows the mean absolute errors in Celsius degrees obtained us-
ing the first method for various combinations of number of hidden layers
(HL) and number of neurons. The heading of the table refers to the number
of hidden layers while the left column refers to the number of neurons in
every hidden layer.

Neurons
HL

2 3 4 5

5 0.711 0.623 0.602 0.609
10 0.589 0.578 0.532 0.447
15 0.630 0.463 0.435 0.375
20 0.619 0.629 0.392 0.396
30 0.684 0.445 0.326 0.299
40 0.567 0.530 0.322 0.229

Table 5.1: MAEs (◦C) Method 1

What we observe is that in general, adding layers and neurons will improve
the accuracy of the network. However the improvements will begin fade past
a number of neurons and layers, giving smaller and smaller improvements
while increasing the complexity of the algorithm.

50

Figure 5.2: Left: 2 hidden-5 neurons - Right: 5 hidden-40 neurons

In Figure5.2 we can see the graphs of two different DNNs from the ones
we used to get the results of Table 5.1, comparing the observed temperature
(red) with the network’s predictions (blue). On the left side of the figure we
have the predictions of the network with just 2 hidden layers and 5 neurons
in each hidden layer, while on the right side we have the predictions of the
network with 5 hidden layers and 40 neurons in each hidden layer. Both
of those give excellent results and succeed to approximate the temperature
really close to the true value most of the times. However, the network with
just 2 hidden layers fails to approach the temperature enough at the extreme
temperatures, while the bigger network is practically on the experimental
data all of the time.

Another thing that we can observe from the table, is that the descending
course of the error is not always guaranteed by adding neurons. While the
general pictures implies that result, most of the times while we are approach-
ing a minimum, the cost function starts to fluctuate vigorously up and down.
This makes stopping at a lower point of the cost function at the last epoch
just a matter of luck, but we will discuss it in 5.2.

Moving on to the second method, we obtained the results shown in Table
5.2.

51

Neurons
HL

2 3 4 5

5 1.233 1.182 1.074 1.109
10 1.106 0.863 0.945 0.806
15 1.067 0.771 0.663 0.699
20 0.928 0.659 0.564 0.471
30 0.978 0.609 0.563 0.622
40 0.963 0.604 0.475 0.424

Table 5.2: MAEs (◦C) Method 2

It depicts the mean absolute errors in Celsius degrees obtained using the
second method for the same combinations of hidden layers and number of
neurons as before. The results are just like what was expected. This method
gives less accurate results than the first method since less data about the
external factors that affect the PV cells were fed into the NN. Moreover,
increasing the number of layers and/or neurons will rapidly improve the ac-
curacy of the model’s predictions in the beginning and tend to fade past a
point.

For the third method the results were surprising. Since this method uses
temperature estimations as inputs, we expected better results in accuracy af-
ter feeding them into a NN rather than the two previous methods. However
that was not what we observed. Table 5.3 depicts the mean absolute error in
Celsius degrees using the third method for the same combinations of hidden
layers and number of neurons.

Neurons
HL

2 3 4 5

5 1.351 1.396 1.210 1.316
10 1.426 1.085 1.005 1.063
15 1.276 0.958 0.860 0.797
20 1.316 0.937 0.747 0.677
30 1.262 0.866 0.644 0.654
40 1.275 0.786 0.654 0.430

Table 5.3: MAEs (◦C) Method 3

This table makes it clear that using more hidden layers and number of
neurons will improve the accuracy, however, just like every other previous
method, improvements tend to shrink as the layers/neurons are increased

52

more and more.

Method 1 Method 2 Method 3
MAE(5HL, 40N) 0.229 0.424 0.430

Table 5.4: comparison of MAEs (◦C)

In Table 5.4 we collect the smallest MAE produced by each method. All
methods gave the smallest MAE for the same number of hidden layers and
neurons, which were the biggest we tested. Method 2,3 produce an error
which is twice as large as the error of the Method 1. The main reason for
this behaviour is that Method 1 uses as input quantities related to the actual
performance of the solar cell such as Isc, Voc. However these measurements
might not be available in realistic situations.
Methods 2,3 use as input parameters which are mostly known a priori, thus
representing more actual cases at the expenses of increased error.
Nevertheless, all methods produced errors which are below 0.5◦C which is
about 1% of the solar cells’ NOCT.

5.2 Dependency on Learning Rates

Recall that learning rate, is simply the size of step the algorithm takes point-
ing in a direction. Most of the times small learning rates require more epochs,
however even if large learning rates can rapidly decrease the error, too large
learning rates often cause more trouble, since they can make the model over-
shoot the minimum or even completely diverge. In this section, we present
some of the conclusions we came into. In Table 5.5 we present the observed
errors for various compinations of learning rates and epochs. We use the
DNN that was developed for the first method, with 5 hidden layers, 40 neu-
rons for each layer, using the Adamax optimizer, i.e. the one that gave the
best results overall.
The table rows represent number of epochs while the columns represent learn-
ing rates. The same data are graphically represented in Figure 5.3. Note that
in order to make the graphs easier to understood and to stress out the fading
improvement past a point, we interpolated the observed data using cubic
splines.
Lastly we want to mention that for results shown below, we re-run the DNN
for every combination of learning rate and number of epochs. That is why
the error might be slightly different from the Table 5.1. Even re-running the

53

exact same DNN, will in general produce slightly different results, since the
initialization of the weights and biases is random in TensorFlow, however
they should have the same behavior.

Figure 5.3: Errors for various learning rates and epochs

epochs
lr

0.001 0.002 0.005 0.01 0.02 0.05 0.1

1000 1.508 1.431 1.363 1.151 1.118 0.799 1.055
10000 0.875 0.771 0.788 0.994 0.714 0.462 0.839
25000 0.787 0.796 0.737 0.737 0.284 0.352 0.285
35000 0.858 0.739 0.608 0.612 0.386 0.323 0.540
50000 0.863 0.714 0.610 0.420 0.338 0.293 0.430
75000 0.773 0.708 0.631 0.343 0.245 0.226 0.335
100000 0.726 0.702 0.457 0.316 0.238 0.274 0.348

Table 5.5: MAEs (◦C) for various learning rates and epochs

What we can conclude from Table 5.5 is that too small learning rates will
reduce the speed the algorithm will converge towards a minimum or even get
stuck around a point. On the other hand too large learning rates will quickly
reduce the error in the early steps, but they produce a much more unstable
learning process, with big oscillations or even converge to sub-optimal solu-
tion. We can also observe that no matter the value of the learning rate, the
reduction of the cost tends to fade in every case, meaning that our model is
unable to learn anymore or fast enough to consider using even more epochs

54

efficient and productive. An other interesting observation to point out, is
that even when the learning rate is ”just fine” and the error reduction is
more likely with more epochs, it is yet not guaranteed that the algorithm
will stop a the best possible solution. This is where the factor ”luck” comes
into play as we mentioned in 5.1.

Figure 5.4: A loss function

We can observe this phenomenon in Figure5.4 for example. It is the MSE
loss function of a DNN we used for our study problem. The DNN had 5
hidden layers, 10 neurons and a learning rate of 0.02 for 50.000 epochs. The
function highly fluctuates, which is expected, however as it is shown here,
while the epochs progress, the loss function fluctuates more and more, mak-
ing it a possible scenario, when the algorithm stop, we could either land at a
high point or low point. That is why, stopping at a good point is sometimes
a matter of luck.
An other observation we can make, is that there was a rapid reduction of the
cost in the beginning but the function tends to decrease at a slower rate as
the error is decreased. This behavior of the loss function is what a typical
loss function will look like. Fluctuations may be a lot higher or lot lower
depending on the step size i.e the learning rate.

55

As a matter of fact we can see in Figure 5.5 the loss function of 2 DNNs, dif-
fering only in the learning rate. Both have 5 hidden layers with 40 neurons
each, for 25.000 epochs, however the left cost function corresponds to the
DNN with a learning rate of 0.001 and the right cost function corresponds
to the DNN with a learning rate of 0.05.

Figure 5.5: Loss function with learning rates 0.001(left) and 0.05(right)

The fluctuations on the right picture are so immense that can change the
accuracy by more than on order of magnitude.

5.3 Sampling Percentage

Every result obtained so far, has come from a 70% train - 30% test split,
which is the most commonly used in practice. In this section we proceed to
examine the effect, the percentage of examples used in the training set, has
on our model’s accuracy.
The motivation for such a test is time complexity. Fewer training examples
result in less time needed to compile the model. If we are satisfied with the
accuracy, there is no need wait any longer and keep on training the network.
As a bonus to that, if the results are good enough on the test set, training
with fewer examples normally means better generalization of the model. Ac-
curate results on many previously unseen data translates to lower chance of
overfitting.
Of course, training with fewer examples can not always guarantee that the
model will find all the features and learn as good as we would like.

We try out five different splitting ratios, starting from 30% train-70% test
sets, exchanging 10% at every test, all the way up to 70% train-30% test

56

set split. The two DNNs presented here, have 2 hidden and 5 hidden layers
respectively, 40 neurons at each hidden layer, trained for 50.000 epochs with
a learning rate of 0.02, using the Adamax optimization algorithm for both,
using the first method.
For the smaller network with 2 hidden layers the errors for both the whole
dataset and test set solely are shown in Table 5.6, while the results from the
network with 5 hidden layers are shown in Table 5.7. The percentages on the
side of the table represent the percentage of the dataset used for training,
while the heading shows the mean absolute errors obtained for the whole
data and for the test set only.

MAE MAE test set

30% 0.673 0.686
40% 0.713 0.733
50% 0.648 0.671
60% 0.633 0.672
70% 0.567 0.679

Table 5.6: MAEs 2 hidden layers

MAE MAE test set

30% 0.656 0.827
40% 0.486 0.702
50% 0.380 0.705
60% 0.316 0.675
70% 0.229 0.599

Table 5.7: MAEs 5 hidden layers

From Table 5.6 we see that the MAE on the test set remains unchanged after
the 50% mark for this DNN.
However the situation is different for the DNN with a bigger number of layers
where the increased percentage of the training set decreases the MAE on the
test set.

While this is beyond the scope of this thesis, we want to close this chap-
ter by stressing out a few things about the Gradient Descent variations we
discussed in 3.4 when implemented on different problems. The DNN used
was the one 5 hidden layers, 40 neurons for Method 1 build with TensorFlow.
While Adamax (3.4.4) seems to produce the best results in terms of accuracy
overall in this specific problem, it was not the one giving the fastest results
all the time, when we used a given desired error threshold. For example, for
a mean squared error threshold of 5 × 10−4, RMSProp (3.4.5) managed to
achieve that, in 2 minutes and 27 seconds, Adamax manged to achieve that
in 59 seconds while Adam (3.4.3) reached that threshold in just 36 seconds.

Adam Adamax RMSProp
time 0m 36s 0m 59s 2m 27s

Table 5.8: Execution times of code for threshold MSE of 5× 10−4

57

That time difference was unexpected, since a MSE of 5× 10−4 is not a very
demanding error threshold to reach in that specific problem and from past
experience RMSProp was expected to run faster than Adamax. However
this was far from the actual outcome. We mention that, just stress out that
there is no more accurate algorithm for everything nor a faster algorithm
altogether. Every real world problem is different and most of times, one can
not predict the behavior the algorithms will have. In practice, experience
and trials are what will determine the algorithms used in order to train a
network efficiently.

58

Chapter 6

Conclusions

In this thesis we have developed machine learning techniques for estimating
the operating temperature of solar cells. We have used DNN with various
number of layers and neurons. Three different approaches were used in terms
of the kind of input data for these DNN.

All three methods produced excellent results in predicting solar cell’s
operating temperature. The first method that took into account all ambient
factors and electrical characteristics products the best results out the three.
However, errors were small for all methods that have practically no difference.

For the specific problem we work with, errors less than half a Celsius
degree, pose no problem. Actually, even bigger errors than that, would be
absolutely acceptable and someone could use those predictions. For problems
where such errors are tolerable, there is no need to let the network train for
more than 50 minutes, time that was needed in order to complete all 50000
epochs. For example, a mean squared error of 5×10−4 we mentioned in Table
5.8 translates to about 1 Celsius degree difference in our problem. However,
to achieve that error we only needed to wait for less than 1 minute which is
extremely lower than the time it took us for 50000 epochs.

Nonetheless, since ANNs are offered for practically an infinite range of
problems, one might find smaller errors much more useful. For that, larger
and more accurate set of data could probably help improve the accuracy.
It is reminded that part of our ambient data such as wind velocity and air
temperature, were simply estimations coming from interpolation or typical
meteorological years and not the actual measurements.

Bigger networks in terms of width and/or depth could also be a better
solution for more precise results, especially when data are more complex and
the problem has a higher dimension. Of course this means bigger computa-
tional complexity. More epochs seemed to help improving the accuracy, even
if the improvement tends to slow down as the epochs progress and even if

59

more epochs means more time training. However, we need to stress out one
more time that this is not guaranteed. For both those cases, a more powerful
computer, with a dedicated cuda-core GPU and/or a better CPU could dras-
tically reduce the time needed to finish the training even with more complex
network structures, since TensorFlow is designed to run extremely fast and
efficient on cuda-cores.

60

Bibliography

[1] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. Insight Centre for Data Analytics, NUI Galway Aylien Ltd.,
Dublin

[2] G. Cybenko, Approximation by superpositions of a sigmoidal func-
tion,Math. Control Signals Systems,2 (1989), 303–314

[3] Kurt Hornik, ”Approximation capabilities of multilayer feedforward net-
works”. Neural Networks, Vol. 4 (1991), 251–257

[4] Activation Functions: Comparison of Trends in Practice and Research for
Deep Learning Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony
Gachagan, and Stephen Marshall

[5] Leonardo Ferreira Guilhoto, An Overview Of Artificial Neural Networks
for Mathematicians (2018)

[6] Molecular Cell Biology, 4th edition Harvey Lodish, Arnold Berk, S
Lawrence Zipursky, Paul Matsudaira, David Baltimore, and James Dar-
nell. New York: W. H. Freeman; 2000.

[7] Jones EY. 2015 Understanding cell signalling systems: paving the way
for new therapies. Phil. Trans. R. Soc. A 373: 20130155. http://dx.doi
.org/10.1098/rsta.2013.0155

[8] Wang SC. (2003) Artificial Neural Network. In: Interdisciplinary Com-
puting in Java Programming. The Springer International Series in Engi-
neering and Computer Science, vol 743. Springer, Boston, MA. https:
//doi.org/10.1007/978-1-4615-0377-4 5

[9] https://www.quora.com/How-does-one-show-that-the-expected-

value-of-a-mini-batch-in-SGD-is-equal-to-the-true-empirica

l-gradient/answer/Conner-Davis-2

61

http://dx.doi.org/10.1098/rsta.2013.0155
http://dx.doi.org/10.1098/rsta.2013.0155
https://doi.org/10.1007/978-1-4615-0377-4_5
https://doi.org/10.1007/978-1-4615-0377-4_5
https://www.quora.com/How-does-one-show-that-the-expected-value-of-a-mini-batch-in-SGD-is-equal-to-the-true-empirical-gradient/answer/Conner-Davis-2
https://www.quora.com/How-does-one-show-that-the-expected-value-of-a-mini-batch-in-SGD-is-equal-to-the-true-empirical-gradient/answer/Conner-Davis-2
https://www.quora.com/How-does-one-show-that-the-expected-value-of-a-mini-batch-in-SGD-is-equal-to-the-true-empirical-gradient/answer/Conner-Davis-2

[10] Szandala, Tomasz. “Review and Comparison of Commonly Used Activa-
tion Functions for Deep Neural Networks.” ArXiv abs/2010.09458 (2020)

[11] https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture s

lides lec6.pdf

[12] https://cnl.salk.edu/~schraudo/teach/NNcourse/brain.html

[13] Zeidler, E. (1995). Applied Functional Analysis: Main Principles and
Their Applications.

[14] https://www.linkedin.com/pulse/choosing-number-hidden-laye

rs-neurons-neural-networks-sachdev

[15] https://mcneela.github.io/machine learning/2017/03/21/Unive

rsal-Approximation-Theorem.html

[16] https://www.tensorflow.org/

[17] https://www.python.org/

[18] S. Albawi, T. A. Mohammed and S. Al-Zawi, ”Understanding of a con-
volutional neural network,” 2017 International Conference on Engineer-
ing and Technology (ICET), 2017, pp. 1-6, doi: 10.1109/ICEngTech-
nol.2017.8308186.

[19] Tammy Jiang, Jaimie L. Gradus, Anthony J. Rosellini, Supervised Ma-
chine Learning: A Brief Primer, Behavior Therapy, Volume 51, Issue 5,
2020, Pages 675-687, ISSN 0005-7894, https://www.sciencedirect.co
m/science/article/pii/S0005789420300678

[20] Caruana, R. et al. “Overfitting in Neural Nets: Backpropagation, Con-
jugate Gradient, and Early Stopping.” NIPS (2000).

[21] Th. Katsaounis, K. Kotsovos, I. Gereige, A. Basaheeh, M. Abdullah, A.
Khayat, E. Al-Habshi, A. Al-Saggaf, A.E. Tzavaras, Performance assess-
ment of bifacial c-Si PV modules through device simulations and outdoor
measurements, Renewable Energy, Volume 143, 2019, Pages 1285-1298,
ISSN 0960-1481, https://www.sciencedirect.com/science/article/
pii/S0960148119307177

62

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://cnl.salk.edu/~schraudo/teach/NNcourse/brain.html
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev
https://www.linkedin.com/pulse/choosing-number-hidden-layers-neurons-neural-networks-sachdev
https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
https://www.tensorflow.org/
https://www.python.org/
https://www.sciencedirect.com/science/article/pii/S0005789420300678
https://www.sciencedirect.com/science/article/pii/S0005789420300678
https://www.sciencedirect.com/science/article/pii/S0960148119307177
https://www.sciencedirect.com/science/article/pii/S0960148119307177

	Introduction
	Problem Description
	Artificial Neural Networks
	Biological and Artificial Neural Networks
	Structure of ANNs
	Neurons and Layers
	Weights, Biases and Activation Functions

	Learning Process
	Cost Function
	Minimizing the Cost Function
	Backpropagation

	Gradient Descent Optimization Algorithms
	Gradient Descent with Momentum
	Adagrad (Adaptive Gradient Algorithm)
	Adam (Adaptive Moment Estimation)
	AdaMax
	RMSProp (Root Mean Square Propagation)

	Implementation/Methodology
	Train Set, Validation Set and Test Set
	Method 1
	Method 2
	Method 3

	Numerical Results
	Number Of Hidden Layers and Neurons
	Dependency on Learning Rates
	Sampling Percentage

	Conclusions

