Transient Detection and Tempo Estimation in Polyphonic Music Signals

Georgina Tryfou
Department of Computer Science
University of Crete

Heraklion
May 2011
Transient Detection and Tempo Estimation in Polyphonic Music Signals

Submitted to the Department of Computer Science
in partial fulfilment of the requirements for the degree of Master of Science
May 30, 2011
© 2011 University of Crete. All rights reserved.

Author:
Georgina Tryfou
Department of Computer Science

Board of enquiry:
Supervisor
Athanasios Mouchtaris
Assistant Professor

Member
Panagiotis Tsakalides
Professor

Member
Yannis Stylianou
Professor

Accepted by:
Chairman of the
Graduate Studies Committee
Angelos Bilas
Associate Professor

Heraklion, May 2011
Abstract

Tempo estimation is a subject of intensive research in the field of Music Information Retrieval, as many applications demand the automatic induction of the tempo of musical excerpts. In such applications it is desired that a correct tempo estimation would be available to the system at about the same time that the tempo is detected by a human listener. This is technically very difficult because the human listeners are able to use higher level context cues to conduct tempo detection. In fact, many algorithms proposed for tempo detection in the past require a long signal segment for reliable results in tempo estimation. This is clearly a problem in contents such as radio programs, where the rhythmic music content may alternate with, for example, speech segments.

There is a wide range of literature methods related to the topic of tempo estimation. So far, tempo estimation systems follow a general scheme that consists of two main steps. In the first step, a feature list is created which is used in the second step in order to detect recurrences of certain events in it.

Many different approaches have been proposed in the past for the implementation of the above stages. In this thesis, a new approach to the implementation of the first step is proposed, along with the addition of a final step that will enhance the whole tempo estimation procedure. The proposed method for the extraction of the feature list is based on transient detection. The term transient is used to describe these points in the time representation of the input signal where abrupt changes take place in its amplitude. The detection is conducted using Gammatone subspace analysis and adaptive Linear Prediction Error Filters. The transient detection function produced from this processing is further processed resulting to the necessary feature list.
After the second step, where the feature list is fed as an input to a bank of comb filters resonators, the application of a model that approximates the tempo perception by human listeners is proposed. The later will enhance the results of tempo estimation with perceptual information.

The evaluation of the proposed system is done using accuracy measures and musical excerpts obtained from the ISMIR 2004 Tempo Induction Evaluation Exchange benchmark corpus, also used from the first ever attempt to conduct systematic comparison of tempo estimation systems. The results of the evaluation indicate that the proposed method compares favourably with other, state-of-the-art tempo estimation methods, using only one frame of the musical excerpts when most of the literature methods demand the processing of the whole piece.
ΠΕΡΙΛΗΨΗ

Η εκτίμηση της ταχύτητας εκτέλεσης (τέμπο) της μουσικής αποτελεί αυτοκείμενο εντατικής έρευνας στον τομέα της Ανάλυσης Μουσικής Πληροφορικής, καθώς πολλές εφαρμογές απαιτούν την αυτόματη επαγωγή του τέμπο μουσικών αποτελεσμάτων. Σε αυτές τις εφαρμογές είναι επιθυμητό να υπάρξει σωστή εκτίμηση του χρόνου που ιδανικά θα είναι διαθέσιμη στο σύστημα την ίδια στιγμή που ο ρυθμός αναγνωρίζεται από έναν ακροατή. Αυτό είναι τέχνη πολύ δύσκολο καθώς οι ακροατές είναι σε θέση να χρησιμοποιήσουν υψηλού επίπεδου μουσικά στοιχεία για την αντιλήψη του τέμπου. Είναι γεγονός ότι πολλοί αλγορίθμοι που προτάθηκαν για την ανάγνωση του τέμπου στο παρελθόν απαιτούν μεγάλα τμήματα του σήματος για την παραγωγή αξιόπιστων αποτελεσμάτων. Αυτό σαφώς δημιουργεί προβλήματα σε περιεχόμενα, όπως ραθυμοκρατών προγράμματα, όπου ο ρυθμικός μουσικός περιεχόμενο μπορεί να εναλλάσσεται με τμήματα ομίλιας.

Υπάρχει ένα ευρύ φάσμα μεθόδων στη βιβλιογραφία που σχετίζονται με το θέμα της εκτίμησης τέμπου. Μέχρι σήμερα, τα συστήματα αυτά ακολουθούν ένα γενικό αλγόριθμό που αποτελείται από δύο βασικά βήματα. Στο πρώτο βήμα, δημιουργείται μια λίστα με χαρακτηριστικά, η οποία χρησιμοποιείται κατά το δεύτερο βήμα με σκοπό τον εντοπισμό επαναλαμβανόμενων γεγονότων σε αυτή.

Πολλές διαφορετικές προσεγγίσεις έχουν προταθεί στο παρελθόν για την υλοποίηση των δύο αυτών σταδίων. Στην παρούσα μεταπτυχιακή εργασία, προτείνεται μια νέα προσέγγιση για την υλοποίηση του πρώτου βήματος της παραπάνω γενικευμένης αρχιτεκτονικής, παράλληλα με την προσθήκη ενός τελικού βήματος που θα ενσωματώσει ακόμη περισσότερα παράγοντες της διαδικασίας εκτίμησης τέμπου. Η προτεινόμενη μέθοδος για την εξαγωγή της λίστας χαρακτηριστικών βασίζεται στην ανάγνωση μεταβατικών γεγονότων. Ο όρος μεταβατικό γεγονός περιγράφει σημεία στην χρονική αναπαράσταση του σήματος εισόδου, στα οποία απότομες μεταβολές λαμβάνουν χώρα στο εύρος του. Η ανάγνωση τους βασίζεται σε ανάλυση σε υπογρού Gammatone και σε φίλτρα σφάλματος γραμμικής πρόβλεψης. Η συνάρτηση ανάγνωσης μεταβατικών φαινομένων που παράγεται από
αυτή τη διαδοχικά, μεταγραμμιστέεται περαιτέρω στην απαραίτητη λίστα χαρακτηριστικών.

Μετά το δεύτερο βήμα, όπου η λίστα δίνεται σαν είσοδο σε μία συστοιχία comb φίλτρων, προτείνεται η εφαρμογή ενός μοντέλου που προσεγγίζει την ανίχνευση χρόνου από τους ακροατές, κάτι που θα εμπλουτίσει τα αποτελέσματα εκτίμησης χρόνου με πληροφορία σχετικά με την αντίληψη αυτού.

Η αξιολόγησή του προτεινόμενου συστήματος γίνεται με την χρήση μέτρων αφρέτειας και μουσικών αποσπασμάτων που προέρχονται από το ISMIR 2004 Tempo Induction Evaluation Exchange, η οποία είναι η πρώτη προσπάθεια συστηματικής σύγκρισης των συστημάτων εκτίμησης τέμπο. Τα αποτελέσματα της αξιολόγησης δείχνουν ότι η προτεινόμενη μέθοδος συγκρίνεται ευνοϊκά με άλλες μεθόδους τελευταίας τεχνολογίας μεθόδους εκτίμησης τέμπο, χρησιμοποιώντας μόνο ένα χαρά του μουσικού αποσπάσματος, όταν οι περισσότερες από τις μεθόδους βιβλιογραφίας απαιτούν ολόκληρο το χορμάτι.
Acknowledgements

I am heartily thankful to my supervisor, Dr. Athanasios Mouchtaris. His guidance, patience and support made my graduate studies a valuable experience. It was an honour for me to work next to him and enjoy his trust. I also would like to thank him for giving me the opportunities to travel and work abroad, where I had the chance to broaden my knowledge and meet new people.

Among them, I owe a special “thank you” to my internships supervisors Dr. Aki Härma at Philips Research and Dr. Andy Hung at Cidana. They both offered to me guidance and knowledge that I value a lot.

I would also like to thank Dr. Panagiotis Tsakalidis and Dr. Anthony Griffin as they both contributed to my studies and offered me guidance that enhanced my abilities in various aspects. I would like to thank all of the past and present members of the Telecommunications Lab, in the Institute of Computer Science, Foundation of Research and Technology - Hellas (ICS-FORTH). Among them, Mairi and Sofia for being also good friends and for motivating me to follow their steps.

Moreover, these years of graduate studies would not be so fulfilling without my special friends Petros, Panagiota and Andreas. They never failed to calm me down and cheer me up even when the circumstances and distances were against them.

Last but not least, I owe my deepest gratitude to my family. My parents, Spiros and Youlie, have always proven that I can rely on them for anything I may need. They never fail to support my choices even beyond language and geographic barriers. My sister, Elsie is, and always have been, my best friend and I want to thank her for that.
Contents

List of Figures

List of Tables

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>1.1 Scope of the Thesis</td>
</tr>
<tr>
<td></td>
<td>1.2 Outline of the Thesis</td>
</tr>
<tr>
<td>2</td>
<td>Background</td>
</tr>
<tr>
<td></td>
<td>2.1 Signal Processing Essentials</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Linear Prediction</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Gammatone Analysis</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Comb Filters</td>
</tr>
<tr>
<td></td>
<td>2.2 Music Structure, Hierarchy and Perception</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Basic Music Elements</td>
</tr>
<tr>
<td></td>
<td>2.2.2 The Metrical Structure of Music</td>
</tr>
<tr>
<td>3</td>
<td>Literature Review</td>
</tr>
<tr>
<td></td>
<td>3.1 Tempo Estimation</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Feature List Creation</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Pulse Induction</td>
</tr>
<tr>
<td></td>
<td>3.2 Event Detection in Music Signals</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Definitions: Transients, Attacks and Onsets</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Overview of existing systems</td>
</tr>
<tr>
<td></td>
<td>3.3 Conclusions</td>
</tr>
</tbody>
</table>
CONTENTS

4 Proposed Method
 4.1 Subspace Analysis .. 29
 4.2 Feature List Extraction 30
 4.2.1 Detection Function Determination using Linear Prediction 31
 4.2.2 Peak-picking .. 32
 4.2.3 Window application 33
 4.3 Pulse Induction .. 39
 4.4 Perceptual Modelling ... 40
 4.5 Conclusions .. 42

5 Evaluation and Results
 5.1 Feature List Extraction 43
 5.1.1 Dataset and Ground-Truth 44
 5.1.2 Term definitions and evaluation measures 47
 5.1.3 Results ... 48
 5.2 Tempo Estimation ... 51
 5.2.1 Datasets and Evaluation Measures 54
 5.2.2 Results ... 57
 5.3 Conclusions .. 58

6 Conclusions and future work
 6.1 Overview of the System 59
 6.2 Future Work .. 62

References ... 65
List of Figures

1.1 The tempo estimation procedure translated into a general block diagram ... 3
2.1 Filters based on linear prediction .. 3
2.2 The relation between a forward linear predictor and the prediction error filter 8
2.3 The impulse and frequency response of a Gammatone filter bank with 16 channels 9
2.4 The two possible directions of Comb Filters 11
2.5 The relationships among beats in a 4/4 meter 14
3.1 The general scheme of automatic Tempo Estimation 16
3.2 Attack, transient, decay and onset in the ideal case of a single note .. 20
4.1 The block diagram of the proposed system 29
4.2 The general architecture of a filterbank that splits the input signal in M frequency bands and downsamples each band M times. The processing is done separately in each frequency band before upsampling and reconstructing the final output signal .. 30
4.3 The block diagram of the feature list extraction method for a single band of the input signal 31
4.4 The general architecture of a LMS adaptive filter 33
4.5 The main parts of the peak-picking procedure 37
4.6 The preprocessing of the DF before the peak-picking 38
4.7 A bank of comb filters for frequency band k 39
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>The resonance model that was described in [45] to fit the distributions of responses to several pieces of music.</td>
</tr>
<tr>
<td>5.1</td>
<td>The Praat environment, used for the annotation of the sound test files.</td>
</tr>
<tr>
<td>5.2</td>
<td>The predefined separation windows.</td>
</tr>
<tr>
<td>5.3</td>
<td>The average F-scores that the system achieved for the different test cases.</td>
</tr>
<tr>
<td>5.4</td>
<td>The F-scores for the 6 test files for the optimum set of arguments.</td>
</tr>
<tr>
<td>5.5</td>
<td>Accuracy 1 on the Ballroom dataset. The literate algorithms mentioned are the following: Alonso [2], Dixon [17], Klapuri [35], Uhle [57], and Scheier [52].</td>
</tr>
<tr>
<td>6.1</td>
<td>The block diagram of the proposed system.</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The defined input arguments for the Transient Detection and Separation system.</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>The selected subset of arguments for which testing took place.</td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>The results per file for the optimum set of arguments</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>The Accuracy 1 of the algorithm for the estimation of the winning tempi</td>
<td>54</td>
</tr>
<tr>
<td>5.5</td>
<td>Resulting percentages of the algorithm</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

The last few years, users have a growing interest for new technologies that enable them to enjoy music in a frequent basis. There are several reasons explaining this. First of all, music is a universal form of art, that people can share and understand, despite the barriers of national languages and cultural backgrounds. Moreover, the advent of the technology in the field of music recording and reproduction allows users to access music at a quality comparable to that of a live performance. Music today is portable and accessible by a large group of the population that seeks an auditory experience. The above reasons prove the importance of music, in a cultural but also commercial context.

Music Information Retrieval (MIR) is an emerging research field, devoted to fulfil the information needs that users of music have. MIR comprises a variety of different applications, which aim at managing music, while making it more accessible. A user study, that focuses upon real-time music information needs, proves that users seek information to assist the building of music collections and verify or identify musical excerpts, artists and lyrics. During these procedures users value on-line music reviews, ratings and automatic recommendations. MIR applications help music information seeking to become a public and shared process, instead of being a private and isolated one.

There are several systems that access and retrieve music based on metadata, i.e. textual descriptors. Such systems are mainly Digital Libraries, most of which are devoted to Western music. Some popular examples are Cantate, Harmonica and Musica. However, despite the emphasis on the retrieval part in the name
of MIR, most of the research in this field and most of the systems this research generated, are content-based. This means, that a music file is described by a set of features that are directly computed by its content, with this term (i.e. content) referring to the internal of an object, and being directly related to what this object is. A basic assumption for content-based information retrieval approaches is that metadata are for some reason unavailable. In audio standards (e.g. MP3), metadata fields are usually not mandatory and even if these fields are present, their quality and suitability relies on the creator of the file.

There is a strong motivation to design and develop systems that completely rely on the content of the music files. These systems process directly the sound signal to extract information that can be used by a great variety of applications. Some examples of features that are used to obtain content-based representations of music files, are audio onset and key detection, melody extraction, fundamental frequency estimation, beat tracking and tempo estimation. MIR systems that offer audio classification, query-by-humming, cover song identification and structural segmentation, are only a few of the systems that use the above features to cover music information needs.

1.1 Scope of the Thesis

During the first half of the 19th century, the invention of the metronome, by Johann Nepomuk Mälzel, led to systematic mathematical markings for tempo which, as time passed, became very popular. Beethoven was the first one to use metronome markings for his symphonies, while others, like Béla Bartók and John Cage, preferred to give the total time of a piece for a rough estimation of the tempo. Today tempo is indicated in beats per minute (BPM) and with the advent of modern electronics it became an extremely precise measure.

The process of automatically inferring the tempo of a musical piece plays an important role among several applications in the field of MIR. Many of them, for example beat tracking and music classification, need a preprocessing stage where tempo estimation takes place. Beyond these, tempo induction is essential in music similarity and recommendation, automatic transcription, even audio editing. More complicated tasks such as meter extraction and rhythm description demand
1.1 Scope of the Thesis

![Diagram showing the tempo estimation procedure](image)

Figure 1.1: The tempo estimation procedure translated into a general block diagram

A tempo estimation module. Finally, in applications where visual animations and beat synchronous audio effects are implemented, the estimation of the tempo is a necessary part.

In formal definition, the task of tempo estimation is the calculation of a single value, t', which better describes the perceptual tempo, t, of a given piece of music. This value should agree with the speed at which a human listener would tap along the music, the common “foot-tapping” rate. In that sense, the procedure that is illustrated in Figure 1.1(a), where a listener directly reacts to a reproduced musical signal, tapping her foot or dancing along with it, has to be replaced by a system able to estimate the same tempo, as depicted in Figure 1.1(b).

In this thesis, a system that estimates the tempo from musical signals is presented. It follows the same fashion as the current state-of-the-art in this field, but it does however introduce novel approaches that will significantly enhance its performance. In a very short description, the developed system is based on Linear Prediction Error Filters (LPEFs) which facilitate the creation of a feature list. This list is then used for periodicity analysis. The results of this analysis are perceptually processed in order to obtain a single tempo estimation t' as close as possible to the perceived tempo t.
1. INTRODUCTION

1.2 Outline of the Thesis

The rest of the thesis is organised as follows. In Chapter 2 all the necessary material for the understanding and justification of the implementation is described. Working with music signals demands knowledge and processing tools inspired from two main fields: Signal Processing and MIR. Therefore, this chapter focuses on both of these domains. In Chapter 3 the existing literature on the field of tempo estimation is presented. Existing algorithms are explained, discussed and compared. During this review, important findings, that address problems in the existing systems, are revealed and these are examined in the last part of the chapter. The proposed method is thoroughly explained in Chapter 4. Each step that is important for the whole architecture is presented, discussed and justified. In Chapter 5 the developed system is evaluated. Apart from the results of the evaluation that took place, the methods, data and metrics used for it are also presented. Finally, this thesis concludes in Chapter 6 with the summary of the work. The important bits and pieces of the whole thesis are gathered and represented in a reviewing chapter which also discusses possible extensions of this work.
Chapter 2

Background

An MIR application uses knowledge from areas as diverse as signal processing, machine learning, information and music theory. In this chapter, the theoretical background, which provides necessary knowledge for understanding the content of this thesis is presented. Firstly, certain Signal Processing tools used in various parts of the implementation are introduced to the reader in Section 2.1. In the second part of the chapter, Section 2.2 important aspects from Music Theory and Music Signal Processing are described.

2.1 Signal Processing Essentials

2.1.1 Linear Prediction

A signal $x[n]$ represents the realization of an autoregressive (AR) process of order M, if it satisfies the difference equation

$$x[n] + a_1x[n - 1] + \ldots + a_Mx[n - M] = v[n], \quad (2.1)$$

where a_1, a_2, a_M are constant values called AR parameters, $x[n - k]$ is the k^{th} past value of the signal and $v[n]$ white noise. An attempt to better understand equation (2.1) may lead to rewriting it as

$$x[n] = -a_1x[n - 1] - \ldots - a_Mx[n - M] + v[n]. \quad (2.2)$$
2. BACKGROUND

In this form, it is obvious that the current value of the signal, \(x[n] \), may be expressed as a finite linear combination of the past values of the signal, plus the term \(v[n] \). Using this representation, the term \(v[n] \) may be considered as the error term. The value \(x[n] \) can now be seen as a linear combination of its past values plus an error term. This observation leads to the conclusion that if the signal \(x[n] \) is stationary, meaning that its second order statistics do not change with respect to time shift, then the error term, \(v[n] \), not only is white noise, but it also bears significantly lower energy than the original signal.

Figure 2.1: Filters based on linear prediction
2.1 Signal Processing Essentials

Forward Linear Prediction Assuming that the current value of the signal $x[n]$ is unknown, and using the all-pole filter shown in Figure 2.1(a), we can predict an approximation $\hat{x}[n]$ of $x[n]$ where

$$\hat{x}[n] = \sum_{k=1}^{M} a_k x[n - k].$$ \hspace{1cm} (2.3)

In that case, the error between the actual value $x[n]$ and the predicted value $\hat{x}[n]$ is given by

$$e[n] = x[n] - \hat{x}[n].$$ \hspace{1cm} (2.4)

Forward Linear Prediction Error filter The forward linear predictor shown in Figure 2.1(a) consists of M unit-delay elements and M tap weights, i.e AR parameters, $a_1, a_2, \ldots a_M$ that are fed with the respective samples $x[n-1], x[n-2], \ldots, x[n-M]$ as inputs. The resulting output is the predicted value $\hat{x}[n]$, given from the equation (2.3). Substituting this into equation (2.4), the prediction error can be expressed as

$$e[n] = x[n] - \sum_{k=1}^{M} a_k x[n - k].$$ \hspace{1cm} (2.5)

Denoting

$$a^*_k = \begin{cases} 1 & \text{if } k = 0 \\ -a_k & \text{if } k = 1, 2, \ldots, M \end{cases}$$ \hspace{1cm} (2.6)

the equation (2.5) may be rewritten as follows

$$e[n] = \sum_{k=0}^{M} a^*_k x[n - k].$$ \hspace{1cm} (2.7)

From this form, it is obvious that, using the $M + 1$ tap weights a^*_k and again M unit-delay elements, we can create a filter which takes the signal $x[n]$ as an input and produces in the output the prediction error of the forward linear error filter. Figure 2.1(b) shows the design of such a system, while Figure 2.2 illustrates the relation between a forward linear prediction filter and a forward linear prediction error filter.
2. BACKGROUND

Figure 2.2: The relation between a forward linear predictor and the prediction error filter.

2.1.2 Gammatone Analysis

The Gammatone function has been used to model the basilar membrane displacement in the human ear already since 1960 [21]. But only in 1992 Patterson et al. [48] stated that the Gammatone filter delineates psychoacoustically determined auditory filters in humans. The use of such a filter, that describes the human auditory system, is considered of great importance to both, tempo estimation and transient detection. The input signal is shaped by the Gammatone function and the transient parts of it may get more dominant in the analysed output.

Using the gamma distribution, which has the form:

\[
\Gamma[n] = \int_0^\infty n^{\nu-1}e^{-n} \, dn
\] (2.8)

and a cosine term, an impulse response is produced. This response describes a linear filter called Gammatone filter, with a center frequency the one of the used tone and follows the shape of Gammatone function as it was introduced by Johannesma [32]. The form of this function, and consequently the impulse response of a Gammatone filter is given by:

\[
\gamma[n] = \alpha n^{\nu-1}e^{-\lambda n}e^{2\pi if_c n}
\] (2.9)

where \(a\) is the amplitude and \(\nu\) the filter order. The filter is centred in the frequency \(f_c\). The smoothing factor \(\lambda\) is given by \(\lambda = 2\pi bERB(f_c)\), with \(ERB\) denoting equivalent rectangular bandwidth. The factor \(b\) controls the bandwidth of the filter that describes the human auditory filter. The optimum values for \(b\) and \(\nu\) have been derived experimentally ([30], \(\nu = 4\) and \(b = 1.019\)) while the
2.1 Signal Processing Essentials

(a) The frequency response.

(b) The impulse response.

Figure 2.3: The impulse and frequency response of a Gammatone filter bank with 16 channels.
size of an ERB in the human auditory system has been estimated as \(ERB(f_c) = 24.7 + 0.108f_c \) [22] for median sound pressure levels. The impulse and frequency responses of 16 filters that comprise a Gammatone filterbank are shown in Figure 2.3.

2.1.3 Comb Filters

A comb filter is a unit that adds a delayed version of a signal to itself. This action results to interference, constructive or destructive, depending on the phase difference upon addition. For example, if a wave \(A_1 \) and its delayed version \(A'_1 \) are in phase, then since they share the same frequency, their troughs and peaks will line up and result to a wave with amplitude \(A = A_1 + A'_1 = 2A_1 \). In the opposite case, where the wave is not in phase with its delayed version, the resultant amplitude is \(A = |A_1 - A'_1| = 0 \). In the more general case, where the signal \(A_1 \) is not a wave but an audio or music signal, the type of resulting interference will not depend only on the relative delay, but also on the different periodicities that appear locally on the input signal.

Mathematical Model The comb filters may be described in two different ways, according to the direction in which signals are delayed before they are added to the input. These two forms appear in Figure 2.4, and namely are feed-forward and feedback.

Feed-forward The general structure of a feed-forward comb filter in shown in Figure 2.4(a). It is described by the difference equation

\[
y[n] = (1 - \alpha)x[n] + \alpha x[n - T],
\]

where \(x[n] \) is the input signal, \(y[n] \) the corresponding output, \(\alpha \) the feed-forward gain and finally, \(T \) the added delay.

Feedback The general structure of a feedback comb filter in shown in Figure 2.4(b) It is described by the difference equation

\[
y[n] = (1 - \alpha)x[n] + \alpha y[n - T],
\]
where $x[n]$ is the input signal, $y[n]$ the corresponding output, α the feedback gain and finally, T the added delay. Taking the Z transform of equation (2.11), we obtain

$$Y(z) = (1 - \alpha)X(z) + \alpha z^{-T}Y(z)$$

which leads to the transfer function

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - \alpha}{1 - \alpha z^{-T}}.$$

(2.13)

If we make the substitution $z = e^{j\omega}$ into the Z-domain expression for the feedback comb filter, we get the magnitude response of it

$$|H(e^{j\omega})| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega T}} \right|,$$

(2.14)

which has local maxima wherever $\alpha e^{-j\omega T}$ gets close to 1. These points i. e. the T^{th} roots of unity, can also be expressed as

$$e^{-j2\pi n/T}, \quad 0 \leq n < T.$$

(2.15)

These points are those at which a periodic signal of period T has energy. The response peaks in the filter line up with the frequency distribution of energy in the signal, which means that the comb filter with delay T will respond more strongly to a signal with period T than any other.
2. BACKGROUND

2.2 Music Structure, Hierarchy and Perception

Most of the approaches and techniques used for MIR applications are based on a number of music concepts that may not be familiar to readers without musical training. This section will present a short introduction to such concepts and terms.

2.2.1 Basic Music Elements

The musical instruments produce almost periodic vibrations, with percussive instruments being the only exception to that. A sound produced by a musical instrument is a combination of various frequencies, all of which are integer multiples of a *fundamental frequency*.

A basic feature, which is directly related to the perception of the fundamental frequency, is the *pitch*. Although pitch is closely related to frequency, the two are not equivalent \[35\]. Frequency is an objective, scientifically measurable concept, whereas pitch is subjective. Sound waves themselves do not have pitch, and their oscillations can be measured to obtain a frequency. It takes a human brain to map the internal quality of pitch and range a musical piece from *low* or *deep* to *high* or *acute* sounds.

Another basic music element is the *intensity*. Intensity is related to the amplitude, and thus to the energy of the vibration and may also be defined as the *loudness*. Therefore intensity may range from *soft* to *loud*.

When two sounds are of the same pitch and intensity listeners are still able to perceive them as different when these two sounds have a different *timbre*. Timbre, also called *tone quality* or *tone colour*, mediates from physical characteristics of sound such as its spectrum and envelope.

Regarding the perception of the above elements, pitch and intensity are not perceived in as a straightforward way as the above definitions may imply. The behaviour of the human ear is not linear. However, it is possible to approximate the perceptually relevant qualities of them, taking into consideration the fundamental frequency and the energy of the sound. On the other hand, timbre is a multidimensional sound quality that is related to the recognition of the sound source, but cannot be described with simple features.
2.2 Music Structure, Hierarchy and Perception

In the case of percussive instruments, as mentioned above there is no fundamental frequency, and the sound is usually called noise. The noisy parts are still perceived as low, medium or high, so intensity and timbre are still relevant descriptors.

2.2.2 The Metrical Structure of Music

When listening to a piece of music, humans instinctively infer regular patterns of strong and weak beats. The actual musical content relates to these patterns and listeners tap their feet along to the music. The term used for these patterns of beats is meter. Generalizing, the regular hierarchical pattern of beats to which the listener relates musical events to, is called metrical structure.

Following the terminology used in [38], a first term associated to the metrical structure of music is the accent. It is often used in connection with meter and it has gained a lot of attention in the field of automatically description of it. Three kinds of accent are distinguished:

1. **Phenomenal Accent** is any event at the musical surface (i.e. attacks or sudden changes) that emphasizes moments in the musical flow.

2. **Structural Accent** is caused by melodic or harmonic, sudden events.

3. **Metrical Accent** is any beat, relatively strong in its metrical level.

An important relation between the above kinds of accent is that phenomenal accent functions as a perceptual input to metrical accent. In other words, *the moments of musical stress in a music signal, are used by a human listener to extract a regular pattern of metrical accents.* If phenomenal accent is not regular, the perception of metrical structure becomes ambiguous.

Metrical patterns consist of elements called beats. Beats do not have duration, they are temporal points that performers utilize and listeners infer. A fundamental concept of musical meter is the periodic alternation between “strong” and “weak” beats. To achieve so, a metrical hierarchy, consisting of two or more beat levels, exists in every musical sound. When a beat is felt to be stronger than other beats (of the same metrical level) then it is also a beat at the higher level.
In Figure 2.5 such an example is presented. In this Figure, a 4/4 meter is depicted, where the first and third beats are felt to be stronger than the second and fourth. It is important to note that the beats in Figure 2.5 are equally spaced, not only at the first level, but also at the higher ones. The term meter implies measuring of fixed intervals and distances.

In the above description of the hierarchical structure of musical meter, the most prominent level, the one at which the conductor waves his baton and the listeners taps his foot is the \textit{tactus}. This is illustrated as the second level in Figure 2.5. One level below, is the \textit{tatum} level, a name stemming from “temporal atom” as the period of the beats in this level is the shortest that is encountered. The remaining higher level is often called \textit{measure}, related to the length of a rhythmic pattern. “Well-formedness” rules for music demand that every metrical level, strong beats are spaced either two or three beat apart, while beats at the \textit{tactus} level, or above, should be equally spaced throughout the piece. The \textit{tempo} of a piece is defined as the rate of the \textit{tactus} beats.
Chapter 3

Literature Review

In this chapter the most important findings in the field of tempo estimation are presented. An extended literature review revealed a general scheme that is followed by most tempo induction algorithms. In Section 3.1 this general architecture is presented with references to popular algorithms that either established or proved the importance of using certain tools. As described there, the first step of this architecture often relies on the detection of musical events. The term musical events is used to describe onsets, transients and attacks that take place in the temporal evolution of the signal. Literature that concerns the detection of such events is presented in Section 3.2. Finally, Section 3.3 discusses issues that have been revealed during the review of existing methods. These issues are important for an attempt to resolve the problems that these methods have and to develop an accurate tempo estimation method.

3.1 Tempo Estimation

The tempo is a dominant element connected to the hierarchical structure of a music signal that can define various aspects of it. Moreover, it is an intuitive music property that human listeners, even without any musical education are able to perceive and understand only by listening to the first few seconds of an excerpt. The tempo is defined as the rate of the tactus pulse, a prominent level in the hierarchical structure of music, which is also referred to as the foot-tapping rate.
3. LITERATURE REVIEW

![Diagram](image)

Figure 3.1: The general scheme of automatic Tempo Estimation

In the literature, systems that conduct tempo estimation present a variation on the type of input signals they use. Older systems [10, 42] deal with symbolic data (Musical Instrument Digital Interface - MIDI) or manually parsed scores that contain only onset times and durations. More recent systems on the other hand, tend to use directly the audio, or even the compressed, signal [60]. There are some cases though that newer systems use a MIDI input [16, 49] and older ones use audio input [11, 53].

Regardless the type of the input data they use, tempo induction algorithms usually follow a general scheme [25, 26], that consists of two main stages and is depicted in Figure 3.1. In the first stage, the audio signal is parsed, or filtered, into a sequence of features. During the second stage of the tempo induction scheme, fundamental periodicities of the feature lists are highlighted and the tempo is inducted.

3.1.1 Feature List Creation

Several methods have been proposed in the literature for the task of extracting feature lists, adequate for tempo estimation systems. A short description of the most important and widely used among these methods is given in the next paragraphs.

Onset Times & Inter-Onset Intervals (IOIs) The use of onset times for tasks related to rhythmic analysis is very common in the literature. There has been extended research in the task of onset detection, that is reviewed in Section 3.2. In addition to the exact times at which onset events take place, several systems make use of the IOIs. Some representative algorithms of this category, that make use of onsets and IOIs for the extraction of a feature list may be found...
3.1 Tempo Estimation

in [10, 42, 47]. Some more recent and quite accurate algorithms of this category are [2, 14].

Relative Amplitude The relative amplitude is easily estimated from the audio signal (of MIDI data if these are used). Although it is a factor that contributes to the perceptual accentuation, score notation is largely absent from it. However, relative amplitude is used by various systems for weighting reasons [15, 17].

Pitch Pitch is another feature easily extracted from MIDI data or even scores. However, it gets difficult to obtain it from polyphonic signals. It has not been regularly used, with an exception in [16], where pitch is extracted along with duration and amplitude from MIDI data. The above are used for the calculation of the “salience” of musical events.

Percussive Events Drum sounds are considered by several authors as cues that indicate the hierarchical structure of music [23, 27]. It is rather easy to extract this information from MIDI data or monophonic music signals (isolated percussions) but their recognition is still under research in the polyphonic music. The detection of transient events, which are the source of percussions, is described in Section 3.2.

Frame Features In this category the algorithms use features that are extracted directly from the audio signal. These features may emphasize onset locations but they do not result from onset lists. In [52] an amplitude envelope of the signal in six octave-spaced subbands is created at the first stage of the system. This approach is expanded in [35], where a more generic and therefore robust accent signal is created across four subbands.

3.1.2 Pulse Induction

During the second stage of the tempo induction scheme is when pulse induction takes place. A pulse, or metrical level, is defined here as a periodic recurrence of a certain feature in time. This stage aims in emphasizing the periodic behaviours of the features lists so that pulse periods are estimated. An important assumption
3. LITERATURE REVIEW

is made at this stage: the pulse period should be constant over the data used for its computation.

Two main procedures can be found in the literature for pulse induction, namely **pulse selection** and **periodicity function computation**.

Pulse Selection The first approach to pulse induction assumes that each found IOI defines a possible pulse period and the corresponding events define the phase. In [42] the two first events in an onset list are considered to be the two first pulses while in [12] the first two agreeing IOIs define the pulse. It is also possible to seek periodic behaviours in the feature list by computing a similarity measure between the list and several pulse track. Although several authors have followed this approach for pulse induction, current state-of-the-art systems generally follow the approach described next.

Periodicity Function Computation The second approach to pulse induction is the computation of a *periodicity function* which assigns a specific salience in each frequency that appears. These functions are often calculated with standard signal processing algorithms, such as Fourier transform applied on onset lists [8]. In [54] wavelets are used to capture temporal organizations at different hierarchical levels. Nevertheless, the most common signal processing tool used for the computation of the periodicity function is the autocorrelation function (ACF) [17, 23, 27, 56, 57]. This may be computed from a wide range of different input data, for example sequences of (weighted or not) onsets [10, 51]. An alternative approach to ACFs uses a bank of resonators, each tuned to a different possible periodicity. The output of each resonator indicates the strength of the input in the corresponding period. In [52] comb filter resonators are used separately in 6 frequency sub bands of the input signal. In [35] comb filter resonators are also used while in [36] phase-locking resonators are proposed.

3.2 Event Detection in Music Signals

The detection, modelling and separation of certain events that appear in music signals are of great importance to a wide range of audio signal processing algor-
3.2 Event Detection in Music Signals

Algorithms. The term event, is used here to describe onsets, transients and attacks. The detection of these attempts to locate the onsets of any percussive instruments and it can be used in tasks such as tempo estimation, beat tracking and automatic transcription. Algorithms for audio editing, content delivery and indexing also need a transient detector. Moreover, as a subset of the automatic event detection algorithms, transient detection techniques give new possibilities to a wide range of music applications, including content delivery, compression, indexing and retrieval [5].

Correctly detecting and identifying musical events is of critical importance for accurate music information retrieval algorithms. The available literature on the topic includes many different approaches for detecting onset, transient and attack parts in a music signal. An attempt to implement a system able to fully detect drum parts in an audio recording should be approached as any other system of musical events detection. As drums may be considered as a subset of the transient events of an audio recording it is important to study the available literature in topics such as detection of onsets, transients and attacks.

3.2.1 Definitions: Transients, Attacks and Onsets

The similarities between terms transients, onset and attack are many and the differences rather vague. Due to the difficulty to precisely define what a transient is, only an informal description of transients can be given. In general, transients are short intervals during which the signal evolves quickly in some non-trivial or relatively unpredictable way. Even if the start time of a transient can easily be found with the time representation of a signal, it is still quite difficult to localize its end. Usually the duration of the transient is considered to be the duration during which new frequencies exist in the spectrum of the signal.

Quite similar to the term transient, are the terms onset and attack. A lot of algorithms developed for the detection of transient parts within a music signal give quite satisfactory results for the detection of onsets and attacks, and vice versa. However, it is necessary to distinguish these three concepts. Onset of a note is called the exact time that this note begins, but this time is not always the starting point of a transient. Once a new note has been introduced in a music
3. LITERATURE REVIEW

signal, the amplitude envelope of this signal increases for a certain period of time, until it obtains the maximum value. This period is called the attack of the note. The starting point of the attack and the corresponding transient is considered to be the same. However, the transient ends after the attack has ended, as the decrease of the amplitude envelope is also included in the transient event. Figure 3.2 demonstrates the three concepts of transients, onsets and attacks in order to make their differences clear.

3.2.2 Overview of existing systems

A review of the available literature on event detection reveals a general architecture used by the great majority of solutions. This architecture consists of 3 main steps: pre-processing, creation of a detection function and post-processing. The main goal of the first module (pre-processing) is to extract a certain set of attributes from the original signal which will be the input to the next module. These attributes can either be temporal features of the signal, spectral features or the result of some probabilistic model. Some implementations also include in this step subspace analysis or sinusoidal modelling of the original signal.
3.2 Event Detection in Music Signals

Having obtained a set of features that can be used for transient detection, the next step is to create an appropriate detection function. In most of the cases this function is a highly subsampled function that follows the spectral or time envelope of the original signal, having local maxima (peaks) around the region of the appearance of a transient. These peaks are often masked by noise, making it rather difficult for any peak-picking algorithm to locate them in the detection function. The selected peak-picking algorithm must be as robust as possible. Once the peaks have been extracted from the detection function, the locations of the appearance of transient events in the signal are known. During the post processing each application handles these detected transients according its needs. Since this step of post processing is quite application-oriented any generalization of it would be beyond the need of the current description.

3.2.2.1 Preprocessing

An optional step which consistently appears in the literature is the preprocessing step, which aims in accentuating or attenuating aspects of the signal so that the task in hand is simplified. There is a wide range of preprocessing modules, however there are two methods that appear to be more popular than the rest of them: subspace analysis and transient/steady-state separation.

Subspace Analysis The analysis in several frequency bands has been found to be useful in a wide range of algorithms. Among these algorithms, we can discern two main categories: one that consists of the system that need the subspace analysis in order to produce global estimates on the transients and one that consists of systems that aim in improving the robustness of the system by breaking down the analysis into several bands. As an example of the systems falling into the first category, in [24] a multiple-agent architecture is used. This architecture detects rhythmic structure in music, and the analysis into several frequency strips is of great importance to recognize sudden changes in energy. Moreover, in [52] a sixth-order elliptic filter is used for the implementation of a six-band filter bank. Onset trains are then created, via a psychoacoustically inspired processing, which are fed into comb-filter resonators estimating that way the tempo of a signal.
3. LITERATURE REVIEW

In the second category, belong systems as the one presented in [34] where a filter bank divides the spectrum into 8 non-overlapping bands. In each band, onset times and intensities are calculated and then combined so that the human auditory cochlea is approximated. Another system of this category is described in [3], where a short time Fourier Transform is used in order to separate the signal in different frequencies and then assign a percussivity measure to short frames of every frequency bins.

Transient/steady-state separation The processes using transient/steady-state separation produce modified signals, such as residuals and/or transient signals for the purpose of onset detection. One group of approaches that fall into this category make use of sinusoidal models, such as in [44]. The audio signal is represented as a sum of sinusoids and noise. Levine in [40] calculates the residual between the original signal and a *spectral modelling synthesis* model. Following this approach, any significant increases in the energy of the residual imply a mismatch between the model and the signal, a fact that successfully highlights existing onsets. An extension of spectral modelling synthesis, the transient modelling synthesis, is presented in [59]. Transient signals are analysed there by a sinusoidal analysis/synthesis scheme, on the discrete cosine transform of the residual.

3.2.2.2 Detection Function Creation

The process of transforming the audio signal to a highly subsampled detection function is possibly the core of the transient/onset detection algorithms. The detection function may be created with algorithms inspired by two different general approaches: use of predefined signal features or probabilistic signal models. In any case the resulting detection function will manifest the occurrence of transients in the input signal.

Predefined signal features In the time domain, when observing the evolution of simple musical signals, it is noticeable that the occurrence of an onset is usually accompanied by an increase of the signal’s amplitude. The technique of following the amplitude envelope of the signal dominated in the early methods of onset
3.2 Event Detection in Music Signals

detection. This operation could be easily done by rectifying and smoothing the signal in time domain representation. A variation on this is following the local energy, instead of the amplitude, by squaring the signal during the calculation.

Even after the smoothing, though, these signals (amplitude or energy envelope) cannot provide a stable onset detection function. For that reason, a great number of onset detection studies used the derivative of the energy. In that way, any sudden changes in the energy are translated into narrow peaks in the derivative function. This method in combination with filter-bank analysis is employed in [24] while in [40] and [20] is used with transient/steady-state separation.

Finally, psychoacoustics may be used for further improvement on the detection functions. Empirical evidence, as described in [46] proves that loudness is perceived logarithmically. This means that the calculation of the logarithm of the signal’s energy will simulate the ear’s perception of loudness. Such an implementation in multiple bands is described in [34].

Moving now to the frequency representation of the signal, a lot of applications have been designed that use spectral features for onset/transient detection. This reduces the need for pre-processing while is quite useful when it comes to polyphonic music and instruments discrimination. In the spectral domain, energy increases linked to transients tend to appear as a broadband event. However, since the energy of the signal is usually concentrated at low frequencies, changes due to transients are more noticeable at high frequencies. Using this knowledge the spectrum of the signal (obtained via a short time Fourier transform) may be weighted toward the high frequencies [50]. In that way a detection function that also exhibits peaks where transient information is located, is obtained.

Also in the frequency domain, [43] uses the L_1-norm of the difference between magnitude spectra, while [20] uses the L_2-norm on the rectified difference. Finally, certain approaches [6, 7, 19] make use of the phase spectra of the signal to obtain extended information on the behaviour of onsets. This can be justified taking into consideration that much of the temporal structure of a signal is encoded in the phase spectrum.

Another approach [29], introduces onset detection based on the phase spectrum and specifically using the average of the group delay function. A frame based analysis of a music signal provides the evolution of group delay over time,
creating a phase slope function. Onsets are may be detected simply by locating the positive zero-crossings of the phase slope function.

Probabilistic Models Assuming that the signal may be described by some probability model, statistical methods for onset/transient detection have been developed. The success of such models depend in a high level on the ability of the model to fit to the real distribution of the signal. Likelihood measures or Bayesian selection criteria may be used for the quantification of the system’s success.

A quite robust and well known probabilistic approach is based on the sequential probability ratio test \([3]\). Assuming that the signal samples are generated from one of two statistical models and defining the log-likelihood ratio, the expectation of the observed log-likelihood ratio depends on which model the signal is actually following. In this context, the log-likelihood ratio can be considered as a detection function that will present changes in polarity, as its detectable feature. Algorithms presented in \([31, 55]\), apply variation of the above method, using parametric Gaussian autoregressive models for the estimation of the statistical models.

3.2.2.3 Post-processing

If the above described parts of a transient (or onset) detection system are properly designed and implemented, the produced detection function will exhibit certain attributes indicating the appearance of the events to be detected. These features are local maxima in the most common case. Their shape and size is of course variable and they are normally masked by noise. Therefore a robust peak-picking algorithm is needed for estimating the actual times of events.

The peak-picking in the detection function may be further divided in three steps: post-processing, thresholding and the decision making process. Based on the exact method used to produce the detection function, the post-processing step is necessary for improving the efficiency of the peak-picking procedure. The noise may be reduced here via a smoothing actions while normalization may help the selection of the thresholding arguments.
3.3 Conclusions

Even after post-processing, there will be a number of peaks in the detection function which are not related to the events to be detected. Hence, it is necessary to define a threshold which effectively separates event-related and non-event-related peaks. This threshold may be implemented using either fixed or adaptive thresholding. In fixed thresholding only peaks that exceed the predefined threshold may be considered as onsets. Although this approach performs well when the music does not exhibit significant loudness changes, this is not the usual case and therefore it tends to miss onsets in the most quiet parts. Using adaptive thresholding \cite{20, 46} on the other hand overcomes this problem, but tends to mask any silent onsets that appear near a louder one.

After post-processing and thresholding the detection function, the task of peak-picking is reduced in identifying local maxima above the defined, static or adaptive threshold. In \cite{33} an extended review on peak-picking algorithms for audio signals is available.

3.3 Conclusions

While studying the available literature in the topic of tempo estimation for polyphonic music signals, several issues are revealed. It is important to underline these issues, as their examination and correct approach will lead to an efficient method, able to accurately induct the perceived tempo.

Selection of feature list extraction method

Although algorithms that select low-level frame features for the computation of the feature list have been found more noise-robust and in cases more accurate, it is still under discussion whether this is perceptually more valid. The perception of tempo is considered to be a redundant procedure that expands in many different levels. An ideal system should take into consideration as many of these levels as possible during the selection of the method for extracting the feature list. This however would significantly raise the computational complexity of the whole system. Is this a trade-off we have to accept or is there a way to gain information for more than one levels, while keeping the algorithm simple?
3. LITERATURE REVIEW

Improving the existing algorithms Different systems seem to work well in different data sets. This poses the question whether we should try and built even more complex systems or it is enough to merge the existing ones, somehow combining their output. The answer seems to be that a “smart” combination will improve the global tempo estimation. This would also mean that an extra processing step in the general tempo estimation architecture, could be useful for a variety of systems.

Tolerance Window A tolerance window is systematically used in the literature when it comes to the evaluation of tempo induction and event detection systems. This is motivated by the fact that the evaluation of these algorithms highly depends on ground truth data, which is obtained using hand labelling techniques. Such techniques are ambiguous. In systems that detect musical events, 50ms is a widely accepted tolerance window as it coincides with the just noticeable inter-onset interval. Since beat pulses appear on onset times, this interval of 50ms corresponds to a percentage range 3.3% - 20% (for periods range 40 to 240 BPM). The choice of 4% tolerance window seems to be widely accepted in the literature.

Frequency Decomposition It is depicted in the literature that it is rather important to apply frequency decomposition in the input signal. It is not yet clear how (and whether) the exact choice of decomposition affects the results. There are a few different approaches to this topic: the subspace analysis may happen before or after the feature list extraction, in a few or more frequency bands and with a wide range of different filterbanks.

Concluding this literature review in the topic of machine emulation of human tempo induction, it becomes clear that it is still an open issue. Although there are algorithms performing very well in some subsets of huge datasets, they fail to do so globally, for any musical genre.

Moreover, existing systems need a long musical excerpt in order to give a reliable tempo estimation. Many applications, though, demand instant estimation available at the about the same time as a human listener would detected. An algorithm able to induct perceived tempo, *accurately, globally*, using only a
short part of the input signal, is still missing from the literature. These are the attributes that the proposed algorithm tries to achieve.
3. LITERATURE REVIEW
Chapter 4

Proposed Method

Human perception of tempo is considered to be redundant, expanding at many levels [9]. The recognition and processing of points where abrupt changes take place at the temporal evolution of a signal *i.e.* transient events, has been extensively discussed to be one of these levels. We propose the use of an adaptive LPEF that enables the accentuation of such points. Prior to that, the use of a Gammatone filterbank will model the input signal using a frequency resolution that is similar to that of the human auditory system, enhancing that way the estimation of the *perceptual* tempo.

A block diagram of the proposed system is shown in Figure 4.1. As depicted there, three major units comprise the final architecture each of which is described in details in the following sections of this chapter. The developed system follows the general scheme of tempo estimation algorithms as this was presented in Section 3.1. Subspace analysis, the first step of many tempo induction techniques (including the proposed one), is omitted in this general scheme but it is explained in the detailed description of the proposed method, in Section 4.1. After that, in Section 4.2 the processing that takes place for the extraction of the feature

![Diagram](image-url)

Figure 4.1: The block diagram of the proposed system.
4. PROPOSED METHOD

Figure 4.2: The general architecture of a filterbank that splits the input signal in M frequency bands and downsamples each band M times. The processing is done separately in each frequency band before upsampling and reconstructing the final output signal.

list is presented. Pulse induction, the next step on the general architecture of tempo estimation systems, is discussed in Section 4.3. In addition to these, a last step where perceptual processing of the results takes place is integrated in the proposed algorithm. This step is not a part of the general tempo estimation scheme, but gives promising results. It is presented in Section 4.4 and it is based on a resonance model that has been found to follow the perceptual responses to a variety of musical excerpts [45].

4.1 Subspace Analysis

To analyse an audio signal using Gammatone signal models, a corresponding signal processing unit has to be defined. This unit follows the general architecture of a filterbank shown in Figure 4.2 and consists of K Gammatone filters of impulse responses $h_k[n], k \in [0, K - 1]$.

The bandpass analysis output signals,

$$s_k[n] = h_k[n] \ast x[n] = \sum_{m=0}^{L-1} x[n - m] h_k[m], \quad k = 0, 1, \ldots, K - 1,$$ \hspace{1cm} (4.1)
where \(L \) the order or the filter, are decimated by a factor of \(K \), resulting to the subband sequences

\[
x_k[n] = s_k[Kn] = \sum_{m=0}^{L-1} x[Kn-m]h_k[m], \quad k = 0, 1, \ldots, K-1,
\] (4.2)

which comprise a critically sampled signal representation.

The used bank of filters splits the full band signal \(x[n] \) into \(K \) frequency bands. In our implementation \(K \) was selected to be 16, a number of bands large enough to have a good frequency resolution maintaining comparably low computational complexity. In the same fashion and in order to reduce the computation complexity, the equation (4.1) may also be implemented in the frequency domain, using Fourier Transform

\[
S_k (e^{j\omega}) = X (e^{j\omega}) H_k (e^{j\omega}).
\] (4.3)

where \(S_k (e^{j\omega}), X (e^{j\omega}), H_k (e^{j\omega}) \) the Fourier representations of the corresponding time signals, \(s_k[n], x[n], h_k[n] \).

4.2 Feature List Extraction

The process of feature list extraction, follows the architecture shown in Figure 4.3. As illustrated in this figure, there are three main modules that lead to the creation of a set of signals, that are called *mask functions* and represent the feature list for different critically sampled sub bands of the input signal.
4. PROPOSED METHOD

4.2.1 Detection Function Determination using Linear Prediction

This module is the key process for transient detection. The goal is to obtain a highly subsampled intermediate signal called detection function, DF, which reveals the occurrences of transients in the original signal. The implementation of this part is based on linear prediction (LP).

The application of LP assumes the signal to be stationary. This does not hold when audio signals are used. In order to solve this problem it is necessary to assume local stationarity over the signal. Every shorter part, even the transient parts of the signal are considered as locally stationary parts. During the analysis the application of a short window ensures that the currently processed part (frame) is stationary. However, if the frame length of the analysis is a predetermined constant number it is most probable that some frames will contain more than one locally stationary segments of the signal, leading to a poor modelling of these parts. Based on this idea, an LP based algorithm has been implemented for the detection of transient parts within an audio signal.

The design of an adaptive LPEF for the detection of transient events

Using the linear prediction error filter (Figure 2.1(b)) the output error signal is white noise of low energy if the input signal is stationary. If the window size (which is used when obtaining a short frame of the input), is of a predefined fixed length, then there will be some frames where the short frame will not be stationary (due to poor modelling) and the linear prediction will fail to give good results. During transient parts, where sudden changes happen to the input signal, the prediction has poor results so this non stationarity is apparent in the residual signal.

There are several ways to compute the linear prediction coefficients. In this case, a long frame in time is analysed with the LP approach and for that reason an adaptive algorithm based in Least-Mean-Squares (LMS) has been developed. This algorithm updates the tap weights (a_k^*) with time after their initial calculation, which is done with the use of Levinson-Durbin algorithm.
4.2 Feature List Extraction

![Diagram of LMS adaptive filter](image)

Figure 4.4: The general architecture of a LMS adaptive filter

The Levinson-Durbin Algorithm One of the most efficient methods for computing the linear prediction error filter coefficients is the Levinson-Durbin algorithm. In order to give the optimum values for the tap weights of the filter, the Levinson-Durbin algorithm solves the augmented Wiener-Hopf equations. The algorithm was described firstly by Levinson [41] in 1947 and then independently by Durbin [18] in 1960.

The adaptive LMS algorithm The least-mean-squares (LMS) algorithm is a very simple linear adaptive filtering algorithm, a standard and widely used method in the field of adaptive filtering [28]. The LMS algorithm consists of two basic processes: a filtering process and an adaptive process. The filtering process is the one that computes the output of a traversal filter produced by a set of tap weights and generates the estimation error by comparing this output to a desired response. The adaptive process on the other hand, takes the responsibility to automatically adjust the tap-weights according to the computed estimation error, minimizing the mean square value of it.

Figure 4.4 illustrates these parts of the LMS mechanism. The signal $x[n]$ is used as an input to the traversal filter, and an estimation of the desired response, $d[n]$ is produced, denoted as $\hat{d}[n]$. According to the estimation error, $e[n]$ the LMS
4. PROPOSED METHOD

algorithms undertakes the update of the tap weights of the filter. The adaptive iteration that is used to achieve this is written as

- Filter output
 \[d[n] = w^T[n]x[n] \] (4.4)

- Estimation error
 \[e[n] = d[n] - \tilde{d}[n] \] (4.5)

- Tap-weight adaptation
 \[w^T[n + 1] = w^T[n] + \mu e[n]x[n], \] (4.6)

where \(w^T[n] = (a_1, a_2, \ldots, a_M) \) are the coefficients of the filter and \(x[n] = (x[n - 1], x[n - 2], \ldots, x[n - M])^T \) are \(M \) values of the input signal. According to normalized LMS the step size \(\mu \) is chosen to be

\[\mu = \min \left(a, \frac{1}{x^T[n]x[n]} \right), \] (4.7)

where \(a \) is a small value preventing the step size to become too big when the value \(x^T[n]x[n] \) approaches zero.

In our approach, the traversal filter used is a linear prediction filter. The desired response that is needed is set to be the current value of the input signal (that means that the estimation error \(e[n] \) is the output of a linear prediction error filter). The input vector to the system, \(x[n] \), consists of the \(M \) past values of the input signal, \(x[n] = (x[n - 1], x[n - 2], \ldots, x[n - M])^T \)

Summary of the adaptive LPEF Until now, the signal has been analysed into several subbands, preprocessed and separated into short frames. Each frame is then processed with an adaptive LPEF, that uses the Algorithm 1. In this notation, \(x[n] \) is a vector of \(M \) values of the processed frame (which length is \(N \)), while \(w[n] \) is a vector with the current tap-weights of the LPEF. The call of the function LPC illustrates the initialization of the vector using the Levinson-Durbin algorithm.

After running this routine for each frame of each band of the input signal, we obtain a set of signals, \(e_k[n] \), where \(k = 1, \ldots, K - 1 \) corresponds to a certain
4.2 Feature List Extraction

Algorithm 1 The implemented adaptive LPEF algorithm for the frequency band k. The algorithm is based on estimating the LPC coefficients of the initial M values of the N long frame, and adapting these coefficients using the Least Mean Squares (LMS) algorithm for the remaining $N - M$ samples. The selected values for M and N are 23 ms and 1 second respectively (converted in samples). The output of the adaptive LPEF, $df_k[n]$ is a residual signal that presents high values when abrupt events take place in the temporal evolution of the signal. More details on linear prediction and the LMS algorithm can be found in [28].

$$
mu \leftarrow 10^{-3}
$$

$$
w_k[0] \leftarrow \text{LPC}(x_k[0])
$$

for $n = 1$ to $N - M$ **do**

$$
\hat{x}_k[n] \leftarrow w_k^n[n] \ast x_k[n]
$$

$$
df_k[n] \leftarrow x_k[n] - \hat{x}_k[n]
$$

$$
\mu \leftarrow \min \left(mu, \frac{1}{x_k^n[n] x_k[n]} \right)
$$

$$
w_k[n + 1] \leftarrow w_k[n] + \mu df_k[n] x_k[n]
$$

$n \leftarrow n + 1$

end for

The final goal of this processing block though is the production of a single DF, which will be later used for the positioning of the transient events.

In order to obtain a single, wideband detection function the narrowband residual signals are aggregated

$$
df[n] = \sum_{k=0}^{K-1} a[k] e_k[n], \quad (4.8)
$$

where $a[k]$ a weight function that controls the effect of each band-wise residual signal on the final signal. In the simpler version, the value of this weight function is constant and equal to 1. This means that transient events detected in any band will equally affect the final result. As already described, a main idea of the current implementation is to model our signals according to human auditory system. Therefore, a perceptually inspired weighting function (e.g., absolute threshold of hearing) could also be a possibility. Apart from that, the algorithm could use a descending or ascending weighting function so that lower or higher bands af-
fect strongly the output. The latter would be useful for detection of bandwise transient events (or transcription of different percussive sounds, as snare drums).

4.2.2 Peak-picking

The output of the adaptive linear prediction filter, described in Section 4.2.1, is a function that presents local maxima when abrupt events take place in the input signal. These peaks are subject to some level of variability in shape and size due to noise or other aspects in the initial signal. In order to determine which of these peaks are related to transient events, a robust peak-picking algorithm is needed. This module will take as an input the DF produced from the LPEF filter and will produce a time series that localize the transients onsets into the initial signal. In this chapter the processing done on the DF is described in details. This processing can also be seen in Figure 4.5. Firstly, a short post-processing is necessary (4.2.2.1) in order to prepare the DF for the peak-picking module. This post-processing consists of smoothing and normalizing of the DF. An adaptive threshold is then calculated (4.2.2.2) and given as an input to the peak-picking algorithm (4.2.2.3).

4.2.2.1 Post-processing

Up until now the produced DF is a highly subsampled, noisy signal that illustrates peaks in positions corresponding to transient parts of the initial signal. A strong post-processing module before the peak detection, will facilitate the task of the peak-picking, by removing the noisy parts and smoothing the DF. The first step on this direction is to normalize the DF. This normalization is done by subtracting the mean value of the signal and then dividing by the deviation. This function is presented as follows

\[x'[n] = \frac{x[n] - \mu}{\sigma}, \]

(4.9)

where

\[\sigma = \left(\frac{1}{M} \sum_{i=1}^{M} (x[i] - \mu)^2 \right)^{\frac{1}{2}} \]

(4.10)
4.2 Feature List Extraction

![Diagram of feature list extraction process]

Figure 4.5: The main parts of the peak-picking procedure

and

\[
\mu = \frac{1}{M} \sum_{i=1}^{M} x[i]
\]

(4.11)

the standard deviation and the mean value of a time series \(x[1], x[2], \ldots x[M]\).

After this first processing the DF has to get be smoothed. This is achieved with the application of a low-pass filter that cuts off the noisy parts.

4.2.2.2 Thresholding

Even after the post-processing described above, the DF may presents peaks not related to transient onsets of the signal. A threshold is necessary for the peak-picking procedure to ensure that peaks, not caused by a transient event are not selected as such. The thresholding can be either fixed or adaptive. A fixed thresholding will accept as transients the peaks of the DF that exceed a certain positive constant, \(t\). On that terms a certain point of the DF \(df[n]\), corresponds to a transient event when \(df[n] \geq t\). The selection of the value \(t\) affects the results of the peak-picking definitely and a constant value over the whole signal will result to a large ratio of missing detections, especially in parts where the total energy of the signal is lower.

On the other hand, an adaptive threshold, updated with time, will ensure more consistency in the peak-picking procedure. There are several methods in order to obtain an adaptive threshold [5]. A widely used is to use as a threshold a smooth version of the same signal as the one given as an input to the peak-picking module. This smoothing can be a linear or nonlinear function of the input signal. Good results are given using a moving median filter. This can be expressed as follows

\[
\tilde{t}[n] = t + \lambda \text{median} \{ |df[n - M]|, \ldots, |df[n + M]| \}.
\]

(4.12)
where \(t \) is a predefined constant value, the threshold that is being adaptive according to the median value of a block of \(2M \) values of the DF.

4.2.2.3 Peak-picking

After obtaining a threshold for each value of the post-processed DF the remaining task is as simple as choosing the local maxima of this function, that exceed the defined threshold. These maxima are considered to correspond to the existence of a new transient part in the initial audio signal.

A peak picking procedure, applied on the analysis frames (of length \(N \)) of the smoothed and normalized signals \(df_k[n] \), produces a time series

\[
t_{sk}[n] = \begin{cases}
1 & \text{if } df_k[n] \text{ demonstrates a peak here} \\
0 & \text{otherwise}
\end{cases}
\]

During peak picking, the adaptive threshold calculated by equation (4.12) is used.
4.3 Pulse Induction

The second part of the system is where the periodicity analysis is carried out in order to infer tempo from the list of features (i.e. mask functions) produced until here. The periodicity analysis is done using a bank of Comb filters.

Each one of the mask functions, $m_k[n]$ is given as an input to a bank of Comb filters. In that terms, for the analysis band k the following takes place:

$$y_{k,\tau}[n] = a_{\tau} y_{k,\tau}[n - \tau] + (1 - a_{\tau}) m_k[n], \quad (4.14)$$

for every $\tau \in \mathcal{I}$. The interval \mathcal{I} ranges from 45 to 242 beats per minute (BMP). In this interval the filter’s delay τ takes integer values. a_{τ} corresponds to the filter’s feedback gain and it is calculated as $a = 0.5^\tau$. The time during which the signal should reach its half energy is T_0. In this system T_0 is equal to 4 seconds, a time window small enough to quickly adapt to any tempo changes, but also long enough to respond to a very slow tempo.
4. PROPOSED METHOD

The energy of each filter, in each frequency band k is then calculated by

$$
e_{k,\tau}[n] = \frac{1}{\tau} \sum_{i=n-\tau+1}^{n} y_{k,\tau}[i]^2. \quad (4.15)$$

A sum across all the frequency bands k will result to a wide band energy signal for each tempo τ

$$
e[\tau][n] = \sum_{k=0}^{K-1} e_{k,\tau}[n] \quad (4.16)$$

So far, for every time index n of the input signal we obtain a vector

$$
e = [e_{42}[n] \ e_{43}[n] \ldots \ e_{242}[n]]' \quad (4.17)$$

consisting of the instant energies in every periodicity $\tau \in \mathcal{J}$.

The N_T maximum components of the vector e are then selected in order to form a vector w. The corresponding tempi form the vector T. The vector T contains the so far winning tempi, and vector w their relative weights.

4.4 Perceptual Modelling

The ambiguity in the perception of tempo has been modelled and tested in experiments \[45, 58\] where the distribution of responses from several listeners to the same pieces of music are studied. This analysis resulted to the following resonance model:

$$A_e(t) = \frac{1}{\sqrt{(t_o^2 - t^2)^2 + \beta t^2}} - \frac{1}{\sqrt{t_o^4 + t^4}} \quad (4.18)$$

where A_e is the effective resonance amplitude, t_o is the resonance tempo, β the damping constant and t is the tempo variable. During experimenting, these parameters were fit to the distribution of the tapped tempi. It has been found that, on average, music experts produce a resonant tempo of 138 BPM with a damping constant, β equal to 5.0. In Figure \[4.8\] the produced model, with the use of these parameters is depicted.
4.4 Perceptual Modelling

Figure 4.8: The resonance model that was described in [45] to fit the distributions of responses to several pieces of music.

We propose the use of this model in order to weight the results from the periodicity analysis,

\[w'_i = A_c(T_i)w_i \quad i \in [1, 2, \ldots, N_T], \]

where \(T_i \) the i-th value of vector \(T \) and \(w_i \) the corresponding weight. After this step, \(w' \) contains the perceptually modified weights of the winning tempi in \(T \). The tempo estimation is therefore enhanced with perceptual information.

Systems that estimate periodicity patterns in a signal strongly respond to the multiples and aliquots of any fundamental periodicity that appears in it. Likewise, when it comes to human listeners, the more ambiguities in determining the tempo appear due to the selection of multiples and divisors of the same tempo. In the vector of winning tempi, \(T \), also appear not only possible perceived tempi, but also multiples and aliquots of them.

In order to discard some “false” estimations from \(T \) and decide which is the perceived tempo in a group of tempi that have a common divisor, an extra weighting step is introduced. During experimenting, it was found that increasing the weights of each tempo that appears in \(T \) with a factor of the weight of its multiples and divisors that also appear in \(T \), has the following two desired effects:

a. Significant decrease in the (normalized) weights of tempi whose multiples and aliquots are not present.
4. PROPOSED METHOD

b. Highly accurate decision on which is the true perceived tempo within a set of tempi that have the same common divisor).

This factor was chosen experimentally as 0.3 for multiple periods and as 0.6 for aliquots.

4.5 Conclusions

A method for estimating the tempo of polyphonic music signals has been proposed in this Section. Four main parts comprise the final architecture:

1. **Subspace Analysis** The signal is separated in 16 frequency bands using Gammatone subspace analysis. The algorithm treats each frequency band separately, combining the results at the end.

2. **Feature List Extraction** *Tempo induction* cues are extracted and a signal that describes the predominant rhythmic information of the input is created. The cues considered in this study as *tempo induction cues* are the onsets of transient events in the temporal representation of the signal. The detection of these is done with the application of a peak picking procedure in the output of an adaptive LPEF.

3. **Pulse Induction** The feature lists, produced in the previous step are given as an input to a bank of Comb Filters Resonators. The energy of each band of the *feature list*, in periodicities that vary from 42 to 242 BPM are calculated there.

4. **Perceptual Modelling** The periodicities were feature lists have stronger energy are considered “winning”. A model, inspired by the human perception of tempo is applied on these winning tempi in order to facilitate the estimation of the final output.
Chapter 5

Evaluation and Results

The extraction of the feature lists, which are used for the tempo estimation task, is considered as a critical part of the whole system. It is not however possible to correctly evaluate this part as a separate unit, and obtain a quantitative measure on how successful or accurate the feature list extraction is. Since the initial motivation for the method that was developed, was the detection of transient events in the input signal, the evaluation of this part is conducted in the context of transient detection. More details on this part of the evaluation are given in Section 5.1.

In the community of MIR, much effort has been dedicated to the automatic detection of the tempo of music excerpts. However, until recently the field lacked of systematic evaluation and proposed models did not present consistent quantitative measurements of their success rates. The reason for that was firstly the diversity of different applications, as well as the diversity of input and output data. Apart from that, evaluation datasets were usually private and of relatively small size. The first systematic evaluation of tempo induction systems was performed in 2004, as part of the International Conference on Music Information Retrieval (ISMIR 2004). Based on the specifications introduced in this contest and in a detailed report on it [26], the developed system is evaluated and compared to the state-of-the-art in the field. The evaluation method and the results are presented in Section 5.2.
5. EVALUATION AND RESULTS

5.1 Feature List Extraction

After designing the transient detection system, that forms the feature list used as an input to the pulse induction block, an intermediate part of the evaluation was conducted in order to ensure that this list is appropriate to be used as an input to the next step of the system. The desired output of the feature list extraction is a mask function that has non zero values around the detections of transient events. Therefore, it is of importance to ensure the accuracy of the system in detecting transient events.

5.1.1 Dataset and Ground-Truth

The first step of evaluating the transient detection method, is the creation of a dataset that contains music signals and ground truth information for the transient events that appear in each of these signals. In order to obtain the ground-truth for a subjective evaluation of our results, a database that consists of hand-labelled versions of the test samples should be created. This task of annotating the starting point of every transient event within a music signal is time consuming and it often results in ambiguous ground-truth labels. Usually, the annotation of a music file depends on the employed annotation method and the software that is used, the listener-annotator and his understanding of musical events as well as on the type of music and number of instruments. Since all these problems arise in the procedure of annotating the starting points of musical events, it is critical to provide a detailed method of how to realize this task. The next paragraphs exhibit this detailed description of the whole annotation task.

Software used The software used for the labelling of the test samples was Praat\(^1\) an open source software for acoustics, developed by Paul Boersma and David Weenink at the Department of Phonetics in the University of Amsterdam. Using Praat, the annotator can label a sample of sound using the interface shown in Figure 5.1. As depicted there, the annotator can see in a single window both the plot of the signal in time domain and the spectrogram of it. On the lower

\(^1\)Available from http://www.fon.hum.uva.nl/praat/
Figure 5.1: The *Praat* environment, used for the annotation of the sound test files.
5. EVALUATION AND RESULTS

part of the window, the annotation area is visible. In this area, the annotator can add, remove, and edit special boundaries that define the starting (or ending) point of a new event. Each boundary can be assigned with a label that classifies the adjacent event to a certain type of events.

Methods employed During the labelling of music events there are three widely used methods that an annotator can employ in order to locate these events. These namely are looking at the signal plot, looking at the signal spectrogram and listening to signal slices \[39\]. In case of labelling transient events, looking at the signal spectrogram is enough to roughly locate most of the corresponding events. However, the poor time resolution of a spectrogram that provides sufficient frequency resolution, does not allow the annotator to find the exact point in time where the event takes places. The annotator has to use the other two methods before applying the label. The ultimate judge should be listening to the slice of the signal, around the located transient event and then, according to the understanding of the event and the changing amplitude of signal plot, find the exact starting point of the event.

Tolerance window In order to annotate the starting point of a transient event within a music signal, a certain definition of this starting point is necessary. However, as already described no such definition is currently available. The exact point of the annotated event is completely up to the understanding of the annotator. As an outcome it is almost impossible to obtain an annotation completely unambiguous, and usually the maximum achieved precision is around 50\(\text{ms}\) \[39\]. Moreover, the annotator needs a very strict description of the events that has to look for. During any multi-instrument music file, a big variety of different events takes place; which of these events are of interest during annotation completely depends on the nature of the developed algorithm. In our case, the events of interest are the starting points of transient events. It is rather easy to locate such events when they are caused by the onset of a percussive note, but when more than one instruments are involved in a single file, the task gets more and more complicated.
5.1 Feature List Extraction

5.1.2 Term definitions and evaluation measures

After the creation of the ground-truth data set, we are ready to commence the actual evaluation procedure. However, it is necessary to define the correct evaluation measures which are going to give the final score of the system and prove either its success or its failure. The measures that are used are widely recognised as appropriate measures for any kind of information retrieval tasks. MIREX [1] contest also describes similar measures for the evaluation of submitted algorithms in the field of MIR.

During objective evaluation, the detected events are compared with the ground-truth ones. For a given ground-truth event, if there is a detection within a tolerance window, it is considered as a correct detection, T_{cd}. If not, it is a false negative, T_{fn}. Every detected event, outside the tolerance window is counted as a false positive, T_{fp}. A subset of T_{fn} events are the merged events, T_{m}, where one detection takes place for two ground-truth events. Finally, doubled events, T_{d}, are those detections where two events are mapped to the same ground-truth event. T_{d} is a subset of T_{fp}.

Two widely used statistical classifications defined for information retrieval are the precision, p, and recall, r. Precision is defined as

$$p = \frac{T_{cd}}{T_{cd} + T_{fp}}$$

(5.1)

and refers to the exactness or fidelity of the result. On the other hand, recall can be seen as a measure of completeness and is defined as

$$r = \frac{T_{cd}}{T_{cd} + T_{fn}}.$$

(5.2)

Combining these two measures, we can obtain the F-measure, that is the weighted harmonic mean of precision and recall. The F-measure is a widely used measure [1, 13], that provides an accuracy value for the output of an information retrieval algorithm. It can be expressed as

$$F = \frac{2pr}{p + r}.$$

(5.3)

In addition to F-measure, common evaluation measures for onset detection, that can be applied to the task of the developed algorithm are the following:
5. EVALUATION AND RESULTS

<table>
<thead>
<tr>
<th>Argument ID</th>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inArg01</td>
<td>winLen</td>
<td>The length of the transients modelling window</td>
</tr>
<tr>
<td>inArg02</td>
<td>winType</td>
<td>The shape of the transients modelling window</td>
</tr>
<tr>
<td>inArg03</td>
<td>ppThres</td>
<td>The static threshold for the peak picking algorithm</td>
</tr>
<tr>
<td>inArg04</td>
<td>intTime</td>
<td>The minimum interval time between two events so that they may be considered different transients</td>
</tr>
<tr>
<td>inArg05</td>
<td>dfType</td>
<td>A flag that defines whether the results should be obtained with wideband or band-wise processing</td>
</tr>
<tr>
<td>inArg06</td>
<td>wFunc</td>
<td>The weighting function to be used for weighting each analysis sub-band</td>
</tr>
</tbody>
</table>

Table 5.1: The defined input arguments for the Transient Detection and Separation system.

1. **False positive Rate** \(fpr = \frac{T_{fp}}{T_{cd} + T_{fp}} \),

2. **Doubled events Rate** in \(T_{fp} \): \(dr = \frac{T_d}{T_{fp}} \) and

3. **Merged events Rate** in \(T_{fn} \): \(mr = \frac{T_m}{T_{fn}} \).

5.1.3 Results

The modules that conduct transient detection and modelling of transient events in a set of mask functions, can be adjusted in a high degree, by modifying a specific set of input arguments. Any evaluation results for the final tool highly depend on the selection of a specific argument set. Table 5.1 presents an overview of all these input arguments, along with a short description of their function. The understanding of the way that each of them affects the final results is quite important as this will allow to obtain a subset of input arguments which can be tested before deciding the optimum set of input arguments to be used for (a) obtaining the final results and (b) extracting the most accurate possible feature list.
• **Argument inArg01: winLen** After the execution of the peak picking algorithm and the generation of a transient time series, mask windows are placed around each detected event. The length of the used window is a quite important variable. The idea is that this length will approach the length of a transient onset as much as possible.

• **Argument inArg02: winType** Apart from the length of the separation window, another quite critical argument is the shape of this window. In order to model transient events, the window has to follow a very generalized envelope of such events. Figure 5.2 illustrates three of the windows that were considered to be used in order to model a transient event. Based on the intuitive description of transients events, the selected mask function should follow the evolution of these events, having the attack and decay phase. These parts are better modelled from the BBT window. However, as this window is thinner in the higher values and wider in the lower, it is quite important to correctly place it around a detected transient. On the other hand, using a window that also allows a wide range of high values to pass through, makes the modelling robust in slight differences in timing. Based on that, windows like the Hanning and the Gamma were also used and tested.

• **Arguments inArg03: ppThres & inArg04: intTime** The peak picking procedure used in the detection algorithm is the part that is affected the most from different argument values. When local maxima have to be detected on an input function using a peak picking procedure, it is critical to correctly define the threshold and the minimum interval time between two local peaks. Giving a very big value as a threshold, important events may be discarded as non transient while a very low threshold would result to the opposite, that is considering a big set of irrelevant events as transient information. As far as the time interval between selected peaks is concerned, it is also an important argument. A very small interval would result to several detections for a single event while the opposite, that is a very big time interval would result to a bigger false negative value since each detected event would act as a masker for the following events.
5. EVALUATION AND RESULTS

Figure 5.2: The predefined separation windows

- **Argument inArg05: dfType** As described in previous sections, the designed system is able to provide transient information either in a wide band or a narrow band representation. It is important to note here, that since the wideband results are not obtained via a simple adding across the several frequency bands, it increases the efficiency of the detection module but also the processing demands of it. The activation of this extra processing can be controlled by this argument.

- **Argument inArg06: wFunc** In case the extra processing for producing a wide band detection function is enabled, the way that the information is combined can be partially controlled by this parameter. Detections from different frequency bands affect the corresponding wide band detections in different ways, is formulated through this argument that describes the weighting method for each sub space frequency band.

Determining Optimum Set of Arguments A final step is missing before obtaining the final scores of the transient detection algorithm. This is to obtain
5.2 Tempo Estimation

Table 5.2: The selected subset of arguments for which testing took place.

<table>
<thead>
<tr>
<th>Argument ID</th>
<th>Argument</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>inArg01</td>
<td>winLen</td>
<td>0.05, 0.1 & 0.2 sec</td>
</tr>
<tr>
<td>inArg02</td>
<td>winType</td>
<td>Hanning</td>
</tr>
<tr>
<td>inArg03</td>
<td>ppThres</td>
<td>0.05 - 0.4 sec of the maximum amplitude</td>
</tr>
<tr>
<td>inArg04</td>
<td>intTime</td>
<td>0.02, 0.05 & 0.2 sec</td>
</tr>
<tr>
<td>inArg05</td>
<td>dfType</td>
<td>wide band</td>
</tr>
<tr>
<td>inArg06</td>
<td>wFunc</td>
<td>no</td>
</tr>
</tbody>
</table>

the optimum set of arguments. To do so, an exhaustive testing of several argument sets took place. The set that optimized the average F-score of the system over the dataset was selected to be the one used as the default.

In Table 5.2 the selected sets of arguments during this testing are presented. All the possible combinations of the different arguments formed more than 70 test cases. In Figure 5.3 the average F-score that was obtained from the various test cases, over all the test files, is illustrated. Based on this figure, the combination that was chosen is the one that corresponds to the 5th test case.

Final Results for the Optimum Argument Set Using this set of arguments, Figure 5.4 illustrates the F-score of the system for 6 test files. Separately results for all the evaluation measures defined earlier are given in Table 5.5.

5.2 Tempo Estimation

5.2.1 Datasets and Evaluation Measures

The developed system is evaluated using the measures proposed in [26]. The two measures defined are Accuracy 1 and Accuracy 2, corresponding to the percentage of tempo estimates within 4% of the ground truth data. For the calculation of Accuracy 2 integer multiplications and divisions of the ground-truth tempo are also considered to be correct estimates. This is motivated by the fact that the
5. EVALUATION AND RESULTS

Figure 5.3: The average F-scores that the system achieved for the different test cases.

<table>
<thead>
<tr>
<th>File ID</th>
<th>F</th>
<th>fpr</th>
<th>dr</th>
<th>mr</th>
</tr>
</thead>
<tbody>
<tr>
<td>f01</td>
<td>0.9</td>
<td>0.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f02</td>
<td>0.63</td>
<td>0.53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f04</td>
<td>0.83</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>f05</td>
<td>0.92</td>
<td>0.14</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>f06</td>
<td>0.73</td>
<td>0.42</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.3: The results per file for the optimum set of arguments
5.2 Tempo Estimation

![F-score graph](#)

Figure 5.4: The F-scores for the 6 test files for the optimum set of arguments.

ground-truth used for the evaluation does not necessarily represent the metrical level that the majority of human listeners would choose.

The results are based in two different datasets, both used in [26] for a comparative evaluation of tempo induction algorithms. That way our results can be compared to previous work. The first dataset, *Ballroom*, consists of 698, (30 seconds long each) audio excerpts. The second dataset, *songs*, contains 465 audio excerpts, this time each one being around 20 seconds long. The two datasets cover a wide range of genres (namely Rock, Classic, Electronica, Flamenco, Jazz, AfroBeat, Samba, Balkan, Greek, Cha Cha, Rumba, Samba, Jive, Quickstep, Tango and Waltz). Both datasets have been made publicly available[^1]. It is mentioned here that due to some missing or bad formatted files, the following results have been calculated over a subset of the above datasets, that covers the 97.25% of the whole data.

5. EVALUATION AND RESULTS

<table>
<thead>
<tr>
<th>Winning Tempi</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy 1 (%)</td>
<td>38.40</td>
<td>28.22</td>
<td>6.02</td>
<td>1.72</td>
<td>2.44</td>
</tr>
<tr>
<td>CDF (%)</td>
<td>38.40</td>
<td>66.62</td>
<td>72.64</td>
<td>74.36</td>
<td>76.80</td>
</tr>
</tbody>
</table>

Table 5.4: The Accuracy 1 of the algorithm for the estimation of the winning tempi

5.2.2 Results

The first phase of the evaluation procedure was to check the accuracy of the algorithm in defining the vector of the winning tempi, T, i.e. before applying the perceptual modelling. The winning tempi in the vector are placed in descending order, based on their weight. In Table 5.4, the results on the Ballroom dataset are illustrated. In the first row, the Accuracy 1 of the algorithm in each index of the winning tempi is shown. The next row, presents the cumulative results up to each index of the vector T. As depicted in this table, the algorithm has a success rate of 76.8% in estimating the correct tempo in the first 5 estimations.

The perceptual model at the end was inspired by this ambiguity in the results. Although the algorithm is quite accurate in detecting the right periodicity from a music excerpt, it has a relatively low percentage (38.4%) to do so in the first guess (i.e. the tempo with the higher energy). Until this point, only low-level music features have been used. The encoding of higher level knowledge on tempo perception in the model could be useful in choosing the right index of the winning tempi vector as the final estimation.

Indeed, the last step of the system achieves this task. The perceptual method is applied to the output, improving significantly the results of the algorithm. The results for both datasets, for the two evaluation metrics can be seen in Table 5.5. In the first row the results of the two datasets are presented, for both measures.
5.2 Tempo Estimation

<table>
<thead>
<tr>
<th>Method</th>
<th>Ballroom</th>
<th>Songs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>Simple</td>
<td>38.40</td>
<td>69.05</td>
</tr>
<tr>
<td>Rerceptual</td>
<td>57.31</td>
<td>80.80</td>
</tr>
</tbody>
</table>

Table 5.5: Resulting percentages of the algorithm

Accuracy 1 (A1) and *Accuracy 2* (A2), without the application of the perceptual model. In the second row, the corresponding accuracy values are shown after the application of the perceptual weighting.

Comparing Table 5.4 and Table 5.5, it becomes clear that there is a significant improvement of 49% in the *Accuracy 1* measure when the perceptual weighting is used as a last step. Moreover, the fact that this improvement is not followed in *Accuracy 2* measure implies that the improvement in estimation takes places due to less multiplication and division errors.

As mentioned above, the use of the *Ballroom* and *Songs* datasets, along with the use of the *Accuracy 1* and *Accuracy 2* measures, enables the comparison of the results to the current state-of-the-art algorithms. In Figure 5.5 such a comparison is depicted and the proposed system seems to perform well. As it can be seen there, the developed system performs 2nd among the 6 compared algorithms. The algorithm that seems to perform better is [35], however it is important to mention here that the specific algorithm uses a probabilistic method that models the temporal evolution of three metrical levels. The result, as appears in Figure 5.5, is obtained using the whole length of the test excerpts, compared to the proposed methods that uses a single frame (*i.e.* 4 seconds). Similarly, methods in [57] and [52] need rather long pieces of music excerpts.

Moreover, although the system was based on detection of (discrete) transient events, here it becomes obvious that many of the disadvantages that these kind of methods have, are eliminated. In Figure 5.5 algorithms [2] and [17] are the algorithms that use detection of discrete events for the feature list extraction and have significantly less accurate results than the proposed system.
Figure 5.5: Accuracy on the Ballroom dataset. The literature algorithms mentioned are the following: Alonso [2], Dixon [17], Klapuri [35], Uhle [57], and Scheirer [52].
5.3 Conclusions

The evaluation of the developed system, conducted in two stages, was presented in this chapter. During the first stage, the feature list extraction method was evaluated on its success to correctly detect transient events, which are considered to be the *tempo induction cues*. Since the database used for this stage of evaluation was a very small database created only for this task, no comparison to other literature algorithm could be presented. However, as the goal of this stage was to have an intermediate understanding of the system accuracy, such a comparison was considered to be beyond the scope of this thesis.

The final, and more critical stage of the evaluation, was that of the accuracy in estimating the tempo of a given music excerpt. The results, obtained on a widely used dataset, could be compared to the current state-of-the-art on the field. This comparison showed that the algorithm operates well. Further improvements to the proposed method though are envisioned and these are discussed in the following chapter.
5. EVALUATION AND RESULTS
Chapter 6

Conclusions and future work

A system that detects transient events in polyphonic signals and uses their appearance in the temporal evolution of the music excerpt, to estimate the perceived tempo has been proposed. Previous sections, covered the main theoretical background relevant to the task of tempo estimation and presented the current state-of-the-art in the field. The detailed description of the system and systematic evaluation of its main parts were also covered in previous sections of this thesis. However, before concluding this thesis, it is useful to present a short overview of the system (Section 6.1). This restatement, during which technical details are omitted, will provide the reader with a general picture of the system and its important features. Moreover it will clarify ideas, used later in Section 6.2, where the possibilities for improvement of the transient detection and tempo estimation are discussed, along with possible extensions of the system.

6.1 Overview of the System

In Figure 6.1 the final architecture of the whole system is depicted.

Let us consider the input music signal $x[n]$. The first step of the processing is the application of a bank of K Gammatone filters on it:

$$x_k[n] = h_k[n] \ast x[n] \quad k \in [0, 1, \ldots, K - 1].$$ \hspace{1cm} (6.1)

The Gammatone filterbank will model the input signal according to the human auditory system. After the filtering of the input signal, each subband signal is
Figure 6.1: The block diagram of the proposed system.
decimated \(K \) times as follows

\[x_k[n] = x_k[Kn]. \] (6.2)

The \(x_k[n] \) signals are then given as an input to the bank of adaptive LPEFs, forming the detection function, which is the prediction error of an adaptive linear predictive algorithm. The algorithm is based on estimating the LPC coefficients of the initial \(M \) values of the \(N \) long frame, and adapting this coefficients using the Least Mean Square (LMS) algorithm. The output of the adaptive LPEF, \(df_k[n] \) is a residual signal that presents high values when abrupt events take place in the temporal evolution of the signal.

The \(df_k[n] \) signals are then smoothed and normalized and a peak picking procedure, is applied on them producing a time series

\[ts_k[n] = \begin{cases} 1 & \text{if } df_k[n] \text{ demonstrates a peak here} \\ 0 & \text{otherwise} \end{cases} \] (6.3)

During peak picking, an adaptive threshold, calculated by the sum of a predefined, static threshold and a moving median filter is used.

The time series \(ts_k[n] \) are then convolved with a Hanning window, in order to produce the mask functions \(m_k[n] \). In that way, a strongly smoothed version of the corresponding detection function is created, that however accentuates the detected abrupt events.

In the second part of the system, tempo induction is carried out with the use of a comb filter resonator for each frequency band \(k \). The energy of the output of each filter, in each frequency band \(k \), is calculated and used in

\[e_{\tau}[n] = \sum_{k=1}^{K} e_{k,\tau}[n], \] (6.4)

where the sum across all the frequency bands \(k \) results to a wide band energy signal for each tempo \(\tau \).

The maximum components of the vector \(e \) are then selected in order to form a vector \(w \). The corresponding tempi form the vector \(T \). The vector \(T \) contains the so far winning tempi, and vector \(w \) their relative weights.
6. CONCLUSIONS AND FUTURE WORK

The next and final step is the application of the resonance model and the perceptual weighting. The results from the periodicity analysis are then weighted with the perceptual model $A_e(t)$ and factor of the weights of their multiples and aliquots. The maximum weighted tempo is given to the output and considered to be the estimated tempo for the input signal $x[n]$.

6.2 Future Work

A new method to estimate the tempo of musical signals, based on detection of transient events, was presented. The evaluation of this method was conducted using popular datasets for the tempo estimation task along with previously defined evaluation measures. Although at an early stage, the algorithm seems to operate very well in comparison to the state-of-the-art, using only a single frame (4 seconds long) for calculating the result. The part of extracting the feature list, based on a transient detection technique, was though evaluated in a much narrower range of dataset. A more systematic evaluation of this part, separately could give use an even better insight on how this part can be improved.

As mentioned, the above described results are obtained from a single frame of the input signal. An application of the algorithm on the whole signal, and then the computation of a median or average tempo estimate did not seem to yield a significant improvement. However, the implementation of a voting mechanism could improve the overall tempo estimation of a piece. In such an extension an extra assumption has to be made, i.e. that the tempo of the piece does not present any variations throughout the song.

The use of LPEFs introduced by this work, seems to work well in the task of extracting tempo estimation features (i.e. transient detection). However, it was observed during experimenting, that the final results and success rates, of both the transient detection module and the tempo estimation system, are sensitive to the the set of parameters used by the feature list extraction part (LPC order, peak picking static threshold). A detailed examination of the results from different parameter sets and the determination of an optimum set may further improve the accuracy of the whole system.
Until now, the existing knowledge on the perceptual event that leads to the well known action of foot-tapping, has not been extensively used for a systematic way of estimating perceived tempo. This study indicates that taking advantage of auditory modelling tools can significantly improve the performance of a tempo estimation algorithm.
6. CONCLUSIONS AND FUTURE WORK
References

REFERENCES

REFERENCES

REFERENCES

