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A Scalable Data Science Platform  

built on Open Source Technologies  

with Application of Predictive Analytics on 

Acute Respiratory Distress Syndrome disease 

 

Abstract 
 

The continuous growth of high volumes of biomedical data in healthcare generates 

significant challenges for their efficient management. This need has made inevitable the 

adoption of big data infrastructures and relevant techniques from healthcare organizations, in 

order for them to efficiently explore the wealth of real-world data generated with the objective 

to improve the quality of healthcare services. In the healthcare industry, various big data 

sources, that are characterized by heterogeneity, exist. These include hospital information 

systems (HIS) and medical records of patients (ΕHRs), results of laboratory procedures and 

examinations residing in relevant information systems (Laboratory Information Systems - 

LIS), data from continuous patient monitoring (e.g. in an Intensive Care Unit - ICU) and data 

from smart devices, such as wearables. Also, very big data sets are generated from genomics-

related clinical and research work. Regarding genomics, the rate of growth over the last decade 

has also been truly astonishing, with the total amount of sequence data produced doubling 

approximately every seven months [55]. This data requires efficient management and analysis 

in order to derive meaningful and actionable information.  

In developing such solutions, a range of challenges and complications associated with each 

step of the pipeline for handling such healthcare big data sets need to be addressed. These can 

only be resolved by using high-quality computing solutions for big data analysis. Especially 

in the current situation of the COVID-19 pandemic, complications that might occur after the 

onset of this disease are really important. An important such complication is Acute Respiratory 

Distress Syndrome (ARDS), which is a serious respiratory condition with high mortality and 

associated morbidity. A large number of basic and clinical studies have demonstrated that early 

diagnosis and intervention are key to improving the survival rate of patients with ARDS [56]. 

Therefore, there is a pressing need for the development and clinical testing of predictive 

models for ARDS events, which might improve the clinical diagnosis or the management of 

ARDS. 

In the present thesis, we focused on two distinct objectives; namely a) to design a scalable 

data science platform, built on open source technologies, and b) to exploit the platform and 

publically available big healthcare datasets to develop machine learning models for predicting 

acute respiratory distress syndrome (ARDS) events through commonly available parameters, 

including baseline characteristics and clinical and laboratory parameters. 

This thesis is divided into two main parts. The first part presents and analyzes in detail all 

the procedures, materials, and methods adopted to develop this big data management platform. 

We report on the complications and difficulties that arise in creating and using such systems 

with large biomedical datasets, such as the MIMIC-III dataset. The second part of the thesis 

describes how we exploit this clinical database, to perform an evaluation study of our platform 

on a real world clinical scenario for ARDS. The objective of the study was to develop and 

evaluate a novel application of machine learning models for predicting acute respiratory 

distress syndrome (ARDS. We employ random forests and logistic regression algorithmic 

models, trained on patient health record data for the early prediction and diagnosis of ARDS. 

Our approach achieves better results in all metrics that are based on AUC, when compared to 

relevant published efforts using the MIMIC III dataset to develop predictive models of ARDS. 

Specifically, both of our algorithmic models outperform in ARDS prediction, with 10-fold 

cross validated Random Forest being dominant, according to AUC (95.1%), Accuracy 

(98.0%), Specificity (98.62%) and Sensitivity (96.25%).



 



 

 

 

Μια Επεκτάσιμη Πλατφόρμα 

Επιστήμης Δεδομένων, βασισμένη 

σε Τεχνολογίες Ανοιχτού Κώδικα με 

Εφαρμογή Προγνωστικής 

Ανάλυσης για τη νόσο του 

Συνδρόμου Οξείας Αναπνευστικής 

Δυσχέρειας 

Περίληψη 

 

Η συνεχής ανάπτυξη μεγάλου όγκου βιοϊατρικών δεδομένων στην υγειονομική περίθαλψη 

δημιουργεί σημαντικές προκλήσεις για την αποτελεσματική τους διαχείριση. Αυτή η ανάγκη 

έκανε αναπόφευκτη την υιοθέτηση μεγάλων υποδομών δεδομένων και σχετικών τεχνικών από 

οργανισμούς υγειονομικής περίθαλψης, προκειμένου να εξερευνήσουν αποτελεσματικά τον 

πλούτο των δεδομένων του πραγματικού κόσμου που δημιουργούνται με στόχο τη βελτίωση 

της ποιότητας των υπηρεσιών υγείας. Στη βιομηχανία υγειονομικής περίθαλψης, υπάρχουν 

διάφορες μεγάλες πηγές δεδομένων, που χαρακτηρίζονται από ετερογένεια. Αυτές 

περιλαμβάνουν νοσοκομειακά συστήματα πληροφοριών (HIS) και ιατρικά αρχεία ασθενών 

(EHRs), αποτελέσματα εργαστηριακών διαδικασιών και εξετάσεων που βρίσκονται σε 

σχετικά συστήματα πληροφοριών (Laboratory Information Systems - LIS), δεδομένα από 

συνεχή παρακολούθηση ασθενών (π.χ. σε μία μονάδα εντατικής θεραπείας - ΜΕΘ) και 

δεδομένα από έξυπνες συσκευές, όπως φορητά. Επίσης, πολύ μεγάλα σύνολα δεδομένων 

δημιουργούνται από κλινικές και ερευνητικές εργασίες που σχετίζονται με τη γονιδιωματική. 

Όσον αφορά τη γονιδιωματική, ο ρυθμός ανάπτυξης κατά την τελευταία δεκαετία ήταν επίσης 

πραγματικά εκπληκτικός, με τον συνολικό αριθμό δεδομένων αλληλούχισης που παράγονται 

να διπλασιάζεται περίπου κάθε επτά μήνες [55]. Αυτά τα δεδομένα απαιτούν αποτελεσματική 

διαχείριση και ανάλυση προκειμένου να εξάγουν ουσιαστικές και εφαρμόσιμες πληροφορίες. 

Κατά την ανάπτυξη τέτοιων λύσεων πρέπει να αντιμετωπιστεί μια σειρά από προκλήσεις 

και επιπλοκές που συνδέονται με κάθε βήμα του σχεδιασμού συστημάτων για την διαχείριση 

τέτοιων μεγάλων συνόλων δεδομένων υγειονομικής περίθαλψης. Αυτές μπορούν να 

επιλυθούν μόνο χρησιμοποιώντας υψηλής ποιότητας υπολογιστικές λύσεις για ανάλυση 

μεγάλων δεδομένων. Ειδικά στην τρέχουσα κατάσταση της πανδημίας COVID-19, οι 

επιπλοκές που μπορεί να εμφανιστούν μετά την έναρξη αυτής της ασθένειας στη ζωή του 

ανθρώπου είναι πραγματικά σημαντικές. Μια σημαντική τέτοια επιπλοκή είναι το σύνδρομο 

οξείας αναπνευστικής δυσχέρειας (ARDS), το οποίο είναι μια σοβαρή αναπνευστική 

κατάσταση με υψηλή θνησιμότητα και σχετική νοσηρότητα. Ένας μεγάλος αριθμός βασικών 

και κλινικών μελετών έχουν δείξει ότι η έγκαιρη διάγνωση και παρέμβαση είναι καθοριστικής 

σημασίας για τη βελτίωση του ποσοστού επιβίωσης των ασθενών με ARDS. Επομένως, 

υπάρχει επιτακτική ανάγκη για την ανάπτυξη και κλινική δοκιμή προγνωστικών μοντέλων για 

συμβάντα ARDS, τα οποία θα μπορούσαν να βελτιώσουν την κλινική διάγνωση ή τη 

διαχείριση του ARDS. 

Στην παρούσα διατριβή, εστιάσαμε σε δύο διαφορετικούς στόχους:  συγκεκριμένα α) να 

σχεδιάσουμε μια επεκτάσιμη πλατφόρμα διαχείρισης μεγάλου όγκου δεδομένων, βασισμένοι 

σε τεχνολογίες ανοιχτού κώδικα, και β) να εκμεταλλευτούμε την πλατφόρμα και δημόσια 

διαθέσιμα μεγάλα σύνολα κλινικών δεδομένων προκειμένου να αναπτύξουμε μοντέλα 

μηχανικής μάθησης για την πρόβλεψη συμβάντων οξείας αναπνευστικής δυσχέρειας (ARDS) 

μέσω κοινώς διαθέσιμων παραμέτρων, συμπεριλαμβανομένων των βασικών χαρακτηριστικών 

και των κλινικών και εργαστηριακών παραμέτρων. 



 

Η διατριβή χωρίζεται σε δύο κύρια μέρη. Το πρώτο μέρος παρουσιάζει και αναλύει 

λεπτομερώς όλες τις διαδικασίες, τα υλικά και τις μεθόδους που υιοθετήθηκαν για την 

ανάπτυξη αυτής της πλατφόρμας διαχείρισης μεγάλων δεδομένων. Εστιάσαμε στις επιπλοκές 

και τις δυσκολίες που προκύπτουν κατά τη δημιουργία και τη χρήση τέτοιων συστημάτων σε 

μεγάλα βιοϊατρικά δεδομένα, όπως το σύνολο δεδομένων MIMIC-III. Το δεύτερο μέρος αυτής 

της διατριβής, περιγράφει τον τρόπο με τον οποίο χειριστήκαμε αυτήν την κλινική βάση 

δεδομένων, για να πραγματοποιήσουμε μια μελέτη αξιολόγησης της πλατφόρμας μας, σε ένα 

πραγματικό κλινικό σενάριο για το ARDS. Ο στόχος της μελέτης μας ήταν να αναπτύξουμε 

και να αξιολογήσουμε μια νέα εφαρμογή αλγοριθμικών μοντέλων, Random Forest και 

Logistic Regression, που εκπαιδεύτηκαν σε δεδομένα σχετικά με την υγεία των ασθενών, για 

την πρώιμη διάγνωση και πρόβλεψη του ARDS. Η προσέγγιση μας επιτυγχάνει καλύτερα 

αποτελέσματα σε όλες τις μετρήσεις, σε σύγκριση με σχετικές δημοσιευμένες προσπάθειες 

που επίσης χρησιμοποιούν τη βάση δεδομένων MIMIC III για την ανάπτυξη προγνωστικών 

μοντέλων για ARDS. Συγκεκριμένα, και τα δύο αλγοριθμικά μοντέλα μας έχουν καλύτερη 

απόδοση στην πρόβλεψη ARDS, με κυρίαρχο το Random Forest με 10-fold cross validation, 

σύμφωνα με την περιοχή κάτω από την καμπύλη AUC (95,1%), την ακρίβεια (98,0%), την 

ειδικότητα (98,62%) και την ευαισθησία (96,25%).
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Chapter 1 

 

Introduction 

1.1 Challenges and Complications 

Nowadays, with the advent of computer systems and its potential, the digitization 

of all clinical exams and medical records in the healthcare systems has become a 

standard and widely adopted practice [1]. Therefore, there is increased interest in 

developing big data technology in healthcare and biomedicine to manage massive 

collections of heterogeneous health datasets, such as electronic health records and 

sensor data, which are increasing dramatically. Furthermore, large scale data 

analytics can improve patient outcomes and personalized care, while reducing 

medical spending. Nevertheless, in the biomedical field, data volume is 

increasingly growing, and traditional methods cannot manage it efficiently. There 

are still challenges of Big Data analytics in healthcare systems that need to be 

identified. These challenges are categorized by volume which refers to high 

amounts of data, variety which emphasizes that data comes under different sources 

and formats, velocity which means that data is generated at a rapid pace and 

veracity which means that accurate and applicable data originates from trustable 

sources. These challenges are often encountered in management, analysis and 

storage of biomedical data and efforts to handle these growing datasets has 

stretched the limits of traditional healthcare information technology systems. 

Another characteristic of big data is its variability which indicates variations that 

occur in the data rates. An additional important aspect of big data infrastructures is 

complexity. Complexity arises from the fact that big data is often produced through 

various origins, which implies that many operations are being performed over the 

data. These operations include identifying relationships, cleaning and transforming 

data flowing from different sources (ICU mechanical ventilators, home mechanical 

ventilators, smart device sensors, etc.) (Figure 1.1).  
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Figure 1.1: Workflow of Big data Analytics. Data warehouses store massive amounts of data 

generated from various sources. This data is processed using analytic pipelines to obtain smarter  

and affordable healthcare options [1] 

Moreover, quantifying patient health and predicting future outcomes is a significant 

aspect in biomedical research. According to literature review [9, 12], if a patient’s 

condition changes, physiological parameters (such as heart rate, blood pressure, 

respiratory rate, etc.) will change at varying degrees, too. Especially when we have 

to handle time series data, the difficulty of management increases if we consider 

that all data must be interconnected in some logical way. For instance, each patient 

in the hospital has a unique identification code, each hospitalization for each patient 

also has a unique identification code, each admission to the intensive care unit also 

has a unique identification code, as well as all values and physiological parameters 

recorded for all these unique patient codes have unique identification codes. 

Therefore, we realize that many different values and measurements for many 

patients, who are hospitalized for a long time in hospitals and in particular in 

intensive care units of these hospitals, with the frequency of their hospitalization 

constantly increasing, generate more and more new data. This data must be accurate 

in order to be applicable and able to identify clearly a clinical situation. The 

management of this data reveals at the same time the fact that we have to handle 

the challenges of variety, volume, velocity and veracity of this data. Thus, we 

perceive that even in big data infrastructures, complications may occur.  

Studies [2, 52] have indicated that ARDS is a highly heterogeneous syndrome that 

may be composed of several distinct sub-phenotypes. Heterogeneity in population 

implies heterogeneity in relationships between explanatory variables and other 
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variables within data parts, posing serious challenges in building predictive models 

attempting to identify a common explanatory data pattern associated with an 

outcome. All of the above are necessary steps of a proper preprocessing and 

purification of data in order to reach the ultimate goal which is their modeling in 

machine learning algorithms for knowledge mining. 

1.2 Significance of ARDS 

Acute respiratory distress syndrome (ARDS) is a life-threatening disease, 

characterized by acute onset of hypoxia and pulmonary infiltrates, and incited by 

conditions such as sepsis, pneumonia, trauma and blood transfusion [3, 4, 5]. ARDS 

causes diffuse lung inflammation which leads to increased pulmonary vascular 

permeability, pulmonary edema, and alveolar epithelial injury [3]. According to 

relevant epidemiological investigations, the in-hospital mortality rate of ARDS is 

as high as 40% [4]. The acute respiratory distress syndrome (ARDS) was defined 

in 1994 by the American-European Consensus Conference (AECC) [5] and it is 

diagnosed based on three criteria: acute onset, moderate to severe impairment of 

oxygenation and bilateral lung infiltrates of a non-cardiac origin on chest x-ray or 

tomographic (CT) scan. The severity of the ARDS is defined by the degree of 

hypoxemia, which is calculated as the ratio of arterial oxygen tension to fraction of 

inspired oxygen (PaO2/FiO2). ARDS can be characterized as mild (200 ≤ 

(PaO2/FiO2) ≤ 300), moderate (100 ≤ (PaO2/FiO2) < 200) or severe ((PaO2/FiO2) 

< 100), which carries a mortality rate of 45%, as clarified by the Berlin definition 

of ARDS [5]. Determining the PaO2/FiO2 requires arterial blood gas (ABG) 

analysis. To calculate the PaO2/FiO2 ratio, the PaO2 is measured in mmHg and the 

FiO2 is expressed as a decimal between 0.21 and 1. As an example, if a patient has 

a PaO2 of 100 mmHg while receiving 80 percent oxygen, then the PaO2/FiO2 ratio 

is 125 mmHg (i.e., 100 mmHg/0.8). The PaO2/FiO2 ratio and positive end-

expiratory pressure (PEEP) (>=5 cmH2O) are valuable clinical measures of the 

patient's respiratory status while receiving supplemental oxygen. It enables bedside 

clinicians to monitor the degree of hypoxemia, quickly detect early progression of 

respiratory failure, and intensify treatment. 
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1.3 ARDS Relation with COVID-19 Pandemic 

Especially in the current situation of the COVID-19 pandemic, complications that 

could occur after the onset of this disease in human’s life are really important and 

one of the most dangerous of these complications is ARDS [3, 6, 7]. As we 

explained above, ARDS is an important cause of morbidity and mortality 

worldwide. It may be developed after a direct injury to the lungs as aspiration, 

trauma or pneumonia (one of its consequences of COVID-19) or an indirect injury 

to other parts of the body as sepsis or pancreatitis. Specifically, severe COVID-19 

presents viral pneumonia from severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) infection leading to ARDS [3]. According to this study [3], 

COVID-19 ARDS is diagnosed when someone with confirmed COVID-19 

infection meets the Berlin 2012 ARDS diagnostic criteria of (i) acute hypoxaemic 

respiratory failure; (ii) presentation within 1 week of worsening respiratory 

symptoms; (iii) bilateral airspace disease on chest x-ray, computed tomography 

(CT). In 2020, there were approximately 100 million confirmed cases of people 

infected with the virus, including approximately 2 million deaths [53]. The most 

worrying point, however, is not the total number of infected people but the high 

rate at which this virus is transmitted to the human community. ARDS develops in 

42% of patients presenting with COVID-19 pneumonia, and 61–81% of those 

requiring intensive care [3]. The cases of people infected with COVID-19 virus are 

increasing dramatically. As we can see in the charts below, the transmission rate in 

Figure 1.2 and Figure 1.4 and the deaths in Figure 1.3 and Figure 1.5 are quite high 

in relation to time. 
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Figure 1.2: Daily New Confirmed COVID-19 cases. 

 

 

 

Figure 1.3: Cummulative Confirmed COVID-19 deaths. 
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Figure 1.4: New Confirmed COVID-19 cases in European Region. 

 

 

 

Figure 1.5: Daily New Confirmed COVID-19 deaths in European Region. 

1.4 Significance of Scalable Infrastructures for Big Data 

Predictive Analysis 

Early identification and management of ARDS can limit the relapse of lung disease 

and significantly improve patient outcomes [51]. The difficulty in analyzing and 

predicting ARDS outcomes originates from the fact that it is a highly heterogeneous 
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condition. ARDS involves the interaction of multiple risk factors, various vital 

signs, symptoms, past and current conditions [51]. This difficulty grows, as the 

volume of heterogeneous data that needs to be processed and analyzed to give us 

useful information grows. Therefore, identifying patients with COVID-19 related 

or not related ARDS is not an easy task. One reason is the large number of different 

types of data to be analyzed, structured or unstructured, that exist in the scientific 

community. Another reason is that, although every detail for analysis is biomedical 

data, the majority of the useful information in this field is not clear and obvious. 

Clinical data is not always well defined. Significant parts of the data are coded with 

specific numbers that define specific clinical situations. ICD-9 diagnosis codes [8] 

and ItemID codes [8] that identify mechanically ventilated patients with their 

laboratory measurements and their charts values, contribute significantly on 

identification of severity class of ARDS patients. There are study cases [2, 9, 10, 

11] where Artificial Intelligence (AI) models are developed for ARDS 

identification and the authors omit to describe how their data were retrieved from 

big data sources and how they were actually managed in order to get used from 

predictive models. It is important when presenting the result and conclusion of a 

study, to list the main points of the recipe of this result or even difficulties that were 

encountered trying to reach it. Building an AI system for early identification of 

ARDS based on large volumes of data, hides complications and some specific 

implementation processes which are good to get known to the scientific community 

of data management and analysis. This tactic would help more researchers and 

analysts in the future to be able to reproduce such clinical scenarios in order to 

improve them and achieve even better results. We encountered such complications 

in our own work, using the MIMIC-III Clinical database [8], in order to examine, 

analyze and export ARDS related data. 

It is worth noting that another major challenge in this area is data integration. More 

specifically there is a large need to integrate the data that is obtained for each patient 

into one system, as that will allow for fast data analysis, and give clinicians all the 

information they need to treat their patients in a perfect way. However, most of the 

time data is coded due to the patients’ privacy rules, making it necessary to be 

decoded and normalized.  



8 

 

Early management of a disease requires early identification. To our knowledge, to 

date, there are a few reliable ways [9, 10] to anticipate which patients are likely to 

develop ARDS. Improved predictive validity is needed to enable reliable early 

identification and management of patients at risk for ARDS. All the above facts 

make the immediate identification of patients with ARDS a high priority of the 

scientific community. This action, however, presupposes the rapid processing and 

analysis of biomedical data by stable, scalable and fault tolerant systems governed 

by simplicity. Concluding that it is not trivial to develop AI models based on big 

data sources, we aimed that a systematic approach is required. Consequently, we 

need a scalable system for processing and analyzing large volumes of diverse data. 

1.5 Our Approach 

To this direction, in this thesis, we focus on deploying a scalable open source based 

platform that enables the development of machine learning predictive models for 

the early identification of patients with ARDS. We used this clinical data analysis 

scenario in order to evaluate our platform’s infrastructure in real world use cases. 

We present an overview of our solution in this area and we focus on building a 

scalable architecture, using open source components. We identify the main 

problems occurring in such a big data infrastructure and we report experiences and 

solutions proposed. Moreover, we produced a complete workflow from defining 

the research question, retrieving the data using our scalable platform, 

preprocessing, building and training the model and eventually testing it. It was 

necessary to rely on well supported and documented open source, large scale data 

management infrastructures, for achieving quality data analysis results without 

being burdened from high financial costs and waste of time. Our platform may 

handle stream and batch data processing of clinical scenarios with fast, fault 

tolerant methods and support the development of machine learning models for the 

early identification of patients with life threatening diseases, such as ARDS.  

As a big data test case for our infrastructure we used the last version (1.4) of 
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MIMIC-III database [8]. The raw size of this dataset is approximately 50 GB. It 

gave us the opportunity to explore the biomedical data in depth and develop specific 

cleaning and preprocessing methods, as a response to the problems listed above. 

Furthermore, we explored the relation of these parameters and focused on the 

identification of P/F and S/F [9, 12, 13, 14] ratio in combination with PEEP, 

according to literature review [2, 5, 9, 10, 15, 16, 17]. Using our infrastructure in 

building AI models for big data analysis, we developed algorithms for prediction 

of ARDS disease based mostly on various noninvasive parameters [9] in order to 

provide medical staff with the early and accurate knowledge of disease diagnosis. 

We used specific machine learning algorithms and a cross validation method to 

evaluate our predictive model based on the integrated data that retrieved from our 

infrastructure. More specifically, we first used WEKA [18] in order to see the 

potentials and the perspective of our techniques in our data and then we ran Random 

Forest with cross validation of 10 folds and Logistic Regression algorithms with 

specific tuning parameters. In comparison with recently relevant works and 

solutions on ARDS, we accomplished excellent performance in prediction results. 

To the best of our knowledge there is no other solution to enable uninterrupted 

integration and execution of modeling, using real world big data and make tests on 

real biomedical challenges like ARDS, outperforming on existing solutions. 

Overall, the remaining of this thesis is structured as follows: Section 2 mentions 

the related work on other biomedical and healthcare big data infrastructures as well 

as review of efforts in developing predictive models of ARDS. Section 3 considers 

the background of the technologies that we used to build our platform’s 

infrastructure and we explain the materials and methods of its architecture in detail. 

Moreover, we mention our experiences in the configuration procedure and all the 

challenges in addition with complications that we met. Section 4 describes the 

datasets we used and all the preprocessing and cleaning methods as a significant 

part of our work and summarizes the data analysis evaluation and the performance 

results. Finally, Section 5 concludes this work, noting future prospects. 
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Chapter 2 

 

Related Work 

In this section, we briefly survey various categories of related work on big data 

infrastructures and review of efforts in developing predictive models of ARDS. 

2.1 Other Solutions on Big Data Infrastructures 

Jacob McPadden, et al., in 2018 [11], demonstrated the implementation of a data 

science platform built on open source technology within a large, academic 

healthcare system and describe two computational healthcare applications built on 

this platform. According to the authors, their Hadoop based infrastructure provides 

a robust analytics platform where healthcare and biomedical research data can be 

analyzed in near real-time for precision medicine and computational healthcare use 

cases. They also report that several limitations exist in data science platforms like 

this, noting that it requires substantial technical expertise to use them to their full 

potential. 

Jagreet Kaur et al., in 2018 [19], proposed a generic architecture for enabling AI 

based healthcare analytics platform by using open source technologies. They tried 

to show the importance of applying AI based predictive and prescriptive analytics 

techniques in the Health sector. They provided a systematic approach to support 

fast growing data of people with severe diseases. Their proposed architecture can 

support Artificial intelligence based healthcare analytics by providing batch and 

stream computing, extendable storage solution and query management. 

Ankita Sharma et al., in 2019 [20], presented a Hadoop-based big data framework 
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(called BHARAT) integrating non-invasive magnetic resonance imaging (MRI), 

MR spectroscopy (MRS) as well as neuropsychological test outcomes to identify 

early diagnostic biomarkers of Alheimer’s Disease. The proposed framework is 

partitioned into four major components, namely (1) Data Normalization, (2) Data 

Management, (3) Data Storage, and (4) Data Processing. They describe big data 

challenges in AD research and specifically regarding the large data size, the feature 

extraction in heterogeneous data, classification and missing values. 

Van-Dai Ta et al., in 2016 [21], proposed a generic architecture for big data 

healthcare analytic by using open source technologies, including Hadoop, Apache 

Storm, Kafka and NoSQL Cassandra. Thy concluded that the combination of high 

throughput publish, subscribe messaging for streams, distributed real-time 

computing, and distributed storage system can effectively analyze a huge amount 

of health care data coming with a rapid rate. 

Wullianallur Raghupathi and Viju Raghupathi, in 2014, have proposed “Big data 

analytics in healthcare: promise and Potential” [22]. In this paper the authors 

proposed the potential of big data analytics in healthcare. The paper provides an 

overview of big data analytics for healthcare practitioners and researchers, noting 

that still remain challenges to overcome. 

Naoual El Aboudi et al., in 2018 [23], proposed an extensible big data architecture 

based on both stream computing and batch computing in order to enhance further 

the reliability of healthcare systems by generating real-time alerts and making 

accurate predictions on patient health condition. Based on the proposed 

architecture, a prototype implementation has been built for healthcare systems in 

order to generate real-time alerts. The suggested prototype is based on spark and 

MongoDB tools. 

Mariam Kiran et al., in 2015 [24], presented an implementation of the lambda 
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architecture design pattern to construct a data-handling backend on Amazon EC2 

[25]. This paper combines ideas from database management, cost models, query 

management and cloud computing to present a general architecture that could be 

applied in any given scenario where affordable online data processing of Big 

Datasets is needed. Authors had foreseen that the current industry would focus of 

using Spark SQL have aided further faster processing reducing some of the 

weaknesses of the Hadoop processing model [26].  

Most of the above related works are referring to generic architectures and platforms 

without a real use case to prove their value. Nevertheless, with the push for 

population-wide research initiatives such as the COVID-19 ARDS [3, 6, 7] and the 

mortality of already well know ARDS, that will rely on large, complex, relational 

data, institutions need to develop systems that can adequately scale to handle the 

data inflow and provide sufficient capacity for analytic needs. Despite this fact, any 

new approaches must be mindful to the privacy and reliability requirements 

associated with healthcare data. Therefore, we present a use case that highlights the 

architecture and implementation of our biomedical data science platform and 

enables scalable, integrated, fault tolerant and attentive to privacy healthcare 

analytics. These strategies imply current best practices for data management, 

system integration, and distributed computing, maintaining a high level of 

credibility and fault tolerance. 

2.2 Review of Efforts in Developing Predictive Models of 

ARDS 

Pengcheng Yang et al., in 2020 [9], proposed a new method for identifying the 

acute respiratory distress syndrome disease based on noninvasive physiological 

parameters. According to their study, arterial gas blood is required in order to define 

the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen 

(PaO2/FiO2 ratio) for ARDS prediction. They used the MIMIC-III database and 

they proposed an algorithm based on non-invasive physiological parameters which 
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helps in the estimation of P/F levels to aid in the ARDS disease diagnosis. They 

applied machine learning methods in co-operation with specifically feature 

selection filters in order to study more accurately the correlation in plenty of 

noninvasive parameters from patients that leads to the identification of ARDS 

disease. Moreover, they used cross-validation techniques on their machine learning 

methods in order to measure and approve the performance of their algorithms for 

various feature subsets. More specifically, they used XGBoost which is a gradient 

boosted tree model with 10-fold cross validation and they achieved satisfying 

results on the performance of ARDS identification, with the sensitivity of 84.03%, 

the specificity of 87.75% and the AUC of 0.9128. As part of feature extraction they 

discriminated some risk factors that contribute significantly to any ARDS 

prediction model. According to the Berlin Definition [5], they stated positive end-

expiratory pressure (PEEP) >=5 cmH2O and PaO 2/FiO 2 ratio (P/F ratio) <= 300 

mmHg as the most important criteria for ARDS classification. They categorized 

these criteria in three states of severity, namely, mild (200 < arterial oxygen partial 

pressure (PaO2)/ fraction of inspired oxygen (FiO2) (P/F) <=300), moderate (100 

< P/F <= 200), and severe (P/F <= 100), according to the level of oxygenation index 

(P/F). They mainly used blood gas analysis in order to measure PaO2 that 

contributes to the P/F value for the ARDS severity evaluation. According to all the 

above, their selection criteria contained patients with P/F < 300 on the first day of 

entering the ICU, patients older than 16 years old, with 48h minimum LOS (Length 

of Stay) in the ICU and mechanically ventilated at some time during their presence 

in the ICU.  

Sidney Le et al., in 2020 [10], developed and evaluated an application of gradient 

boosted tree models trained on patient health record data for the early prediction of 

ARDS. They used MIMIC-III database for their analysis and they created XGBoost 

gradient boosted tree models in order to achieve early ARDS prediction. They 

extracted clinical variables and numerical representations of radiology reports as 

data source to their models and applied 10-fold cross validation. They followed 

specific methods and selection criteria in order to feed their model with important 

and useful features. More specifically, they included patients with at least 18 years 

of age, following the Berlin Definition [5]. According to this and the co-occurrence 
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of two parameters, (1) Positive end Expiratory Pressure (PEEP) >= 5 cmH 2O and 

(2) PaO 2/FiO2 ratio (P/F ratio) <= 300 mmHg, they examined the patient data. 

According to their results, their classifier demonstrated AUROC performance of 

0.843, 0.858, 0.810, and 0.790 for early ARDS prediction on the test set at 0 hours, 

12 hours, 24 hours, and 48 hours prior to onset, respectively. 

The same time period, in 2020 [27], Elizabeth Sanchez et al., studied about Acute 

Respiratory distress syndrome (ARDS). They created a predictive model using 

baseline characteristics in order to identify patients at high risk of having severe 

ARDS. The selection criteria according to the Berlin Definition [5] included the 

ratio PaO2/FiO2 <= 100 mmHg. Moreover, FiO2, and positive end-expiratory 

pressure (PEEP) were categorized by the authors as useful variables to predict 

persistent severe ARDS. They used random forest and regularized logistic 

regression with an L1 penalty [Least Absolute Shrinkage and Selection Operator 

(LASSO)] techniques in order to identify predictive variables of persistent severe 

ARDS. They presented their results concluding that PaO2:FiO2, FiO2 and positive 

end-expiratory pressure (PEEP) at enrollment were useful predictive variables. 

Wang et al. [2], in 2019, studied about ARDS identification for enhanced machine 

learning predictive performance. They used MIMIC-III database from which they 

extracted adult patients (age >= 18 years old). According to the authors, ICD-9 

diagnosis codes and procedure codes that are used for the identification of 

mechanically ventilated patients are very important factors in ARDS prediction. 

They extracted PaO2, FiO2, and PEEP from the dataset and they used Berlin 

Definition criteria [5], setting as basic parameters PaO2/FiO2 ratio ≤ 300 and PEEP 

>= 5 cmH2O. They used much more clinical variables in case of analysis, i.e. mean 

airway pressure (MAP), PaCO2, tidal volume, platelet count, total bilirubin; 

minimum of sodium, glucose, albumin, hematocrit, systolic blood pressure (SBP); 

maximum of temperature, heart rate, white blood cell (WBC) count, creatinine. 

They developed predictive models, including gradient boosted machine (GBM) and 

random forest (RF) with cross validation as part of parameters’ tuning.  
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Xue-Shu Yu et al. [29], in 2019, studied about risk factors for acute respiratory 

distress syndrome (ARDS) and found out that lung heart pressure index is a one of 

them. They used MIMIC-III database from where they selected ARDS patients who 

had undergone mechanical ventilation for more than 48 hours (using structured 

query language SQL queries). They collected demographics and useful variables 

via data extraction such as age, sex, ethnicity (white, black, other), body mass index 

(BMI), smoking status, ARDS severity (according to the Berlin definition), disease 

severity scores (Sequential Organ Failure Assessment [SOFA]), vital signs (MAP, 

respiratory rate [RR], heart rate [HR], Pao2/Fio2 ), laboratory values (pH, lactate, 

red cell volume distribution width [RDW]) and ventilator parameters (lung-heart 

pressure index (LHPI, [100%*DP/MAP]), DP, MP, platform pressure (Pplat). The 

primary outcome of their study was 30-day mortality from the date of ICU 

admission. In order to achieve accurate predictions, they used random forest and 

logistic regression models with 10-fold cross validation, resulting in ARDS 

identification and presenting the mortality of ARDS in patients. Their study showed 

that the LHPI was a powerful prognostic indicator of 30-day mortality in ARDS 

patients, and its predictive discrimination was better than that of driving pressure 

DP and mechanical pressure MP. 

Emilia Apostolova et al., in 2019 [51], used a combination of free-text and 

structured data in order to create an Acute Respiratory Distress Syndrome (ARDS) 

analytics model. They used MIMIC-III database deriving patients-specific 

contextual ARDS risk factors, making use of deep-learning methods on ICD and 

free-text clinical data. They extracted structured data from the first 24 hours of 

admission, such as vital signs and lab results, building an ARDS patient prediction 

model and an ARDS patient mortality prediction model. The age of patients that 

attempted to predict ARDS was above 18 years old with ICD-9 codes for severe 

acute respiratory failure and use of continuous invasive mechanical ventilation. The 

structured data included in this analysis consists of anion gap (anion gap), albumin, 

bands, bicarbonate, bilirubin, creatine, chloride, glucose, hematocrit, hemoglobin, 

lactate, platelet, potassium, partial thromboplastin time (ptt), international 

normalized ratio (inr), prothrombin time (pt), sodium, bun, white blood cell count 

(wbc), heart rate (heart rate), systolic blood pressure (sysbd), diastolic blood 
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pressure (diasbp), mean blood pres- sure (mean bp), respiratory rate (resperate), 

body temperature (tempc), peripheral capillary oxygen saturation (spo2), body 

mass index (bmi), gender, age, urine output. All variables were measured over the 

first 24 hours of ICU admission, because according to the authors it has been 

reported that ARDS develops at a median of 30 hours after hospital admission. 

They referred to a variety of ICD9 codes that were utilized in their study and 

explained the significance of these codes in the core of the study. 

Jianfeng Xie et al. [28], in 2018, studied about acute respiratory distress syndrome 

prediction (ARDS) in order to establish a modified ARDS prediction score (MAPS) 

helping clinicians in the early recognition of ARDS in patients who need to be 

admitted to the ICU. They used data from 13 tertiary hospitals in China. The main 

risk factor that used in their selection criteria was patients with PaO2/FiO2 <= 300 

mmHg and PEEP ≥5 cmH2O. They used univariate and multivariate logistic 

regression models in order to make accurate predictions, resulting in various 

statistics about patients and concluding that MAPS discriminated patients who 

developed ARDS from those who did not, with an area under the curve (AUC) of 

0.809. 
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Chapter 3 

Platform Architecture and Deployment 

This section provides an overview of the procedures described in the adopted 

methods and our platform’s architecture, which are visually summarized in Figure 

3.6. 

3.1 Methods and Categories 

Big data technologies have received great attention due to their successful handling 

of high volume data compared to traditional approaches. Big data frameworks 

support all kinds of data, structured, semi structured, and unstructured data, while 

providing several features. Those features include predictive model design and big 

data mining tools that allow better decision making process through the selection 

of relevant information.  

Big data processing is characterized by two categories: batch processing and stream 

processing. The first category, batch processing, is based on analyzing data over a 

specified period of time and it is mainly used when there are no constraints 

regarding the response time. Specifically, this category aims to process high 

volume of data by collecting and storing batches to be analyzed and generate results 

at a fast pace. The second category, stream processing, is preferable for applications 

that require real-time feedback. 

Batch computing requires ingesting all data before processing it in a specified time. 

For several years, Mapreduce [30] represents a widely adopted solution in the field 
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of batch processing. It operates by splitting data into small pieces that are 

distributed to multiple nodes in order to produce intermediate results. Once data 

processing by nodes is finished, outcomes will be aggregated in order to generate 

the final results. 

As regards, stream computing in real applications such as healthcare, a high 

quantity of data is generated continuously. When the need for real time stream 

processing increases, data analysis takes into consideration continuous manner of 

data to change over time and being trained in these data changes, manages them 

accordingly. Indeed, storing large quantities of data for further processing may be 

challenging in terms of memory resources. Moreover, real applications tend to 

produce noisy data which contain missing values along with redundant features, 

making data analysis complicated, as it requires significant computational time 

[23]. Stream processing reduces this computational load by performing simple and 

fast computations for small amounts of data, spending only a few seconds in 

computations. 

3.2 Background and Materials 

This section presents essential background information related to the topic 

described in this thesis and we explain the main concepts. In order to contribute 

and support the informatics needs for the next generation of computational health 

research, novel approaches to data storage and analysis are necessary. 

3.2.1 Apache Spark Ecosystem 

Fortunately, several applications have emerged that begin to address the key 

challenges in big data processing, such as distributed data storage and scalable 

processing capacity.  One example is the Apache Spark framework, which contains 

a set of open source modules designed specifically for these tasks [31, 32]. The 
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goal of these platforms is to create a central repository, called data lake, which can 

store raw data in its native format for later search, retrieval, and analysis. However, 

researchers and clinicians in the healthcare region looking to leverage modern big 

data architectures, are faced with particular challenges in implementation and little 

guidance or evidence on the use of these platforms in parallel with production 

environments. 

Apache Spark is a unified open source and cluster computing analytics engine for 

large scale data processing [32]. More specifically, it is an open source analytics 

engine used for big data which is designed to cover a wide range of workloads such 

as batch applications, iterative algorithms, interactive queries, and streaming. The 

main feature of Apache Spark is its in-memory cluster computing that increases the 

processing speed of an application. Spark provides an interface for programming 

entire clusters with implicit data parallelism and fault tolerance. It can handle both 

batches as well as real-time analytics and data processing workloads. Apache Spark 

started in 2009 as a research project at the University of California, Berkeley. 

Researchers were looking for a way to speed up processing jobs in Hadoop systems. 

It is based on Hadoop MapReduce [26, 30, 33, 34] and it extends the MapReduce 

[30] model to efficiently use it for more types of computations, such as interactive 

queries and stream processing that mentioned above. Spark provides native 

bindings for the Java, Scala, Python, and R programming languages. In addition, it 

includes several libraries to support build applications for sequential querying 

(SQL), machine learning [MLlib], stream processing [Spark Streaming], and graph 

processing [GraphX]. Apache Spark consists of Spark Core and a set of libraries. 

Spark Core is the heart of Apache Spark and it is responsible for providing 

distributed task transmission, scheduling, and I/O functionality. 

Spark_Core 

Spark Core is the base engine for large scale parallel and distributed data 

processing. Further, additional libraries which are built on the top of the core allows 

diverse workloads for streaming, SQL, and machine learning. It is responsible for 

memory management and fault recovery, scheduling, distributing and monitoring 
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jobs on a cluster and interacting with storage systems. 

Spark_Streaming 

Spark Streaming is the component of Spark which is used to process real-time 

streaming data. Thus, it is a useful addition to the core Spark API. It enables high-

throughput and fault-tolerant stream processing of live data streams. 

Spark_SQL 

Spark SQL is a new module in Spark which integrates relational processing with 

Spark’s functional programming API. It supports querying data either via SQL or 

via the Hive Query Language. For those who are familiar with RDBMS, Spark SQL 

is an easy transition from their earlier tools where they can extend the boundaries 

of traditional relational data processing. 

Mllib_(Machine_Learning) 

MLlib stands for Machine Learning Library. Spark MLlib is used to perform 

machine learning in Apache Spark. 

We decided to use Apache Spark against other technologies such as the 

aforementioned and widely used from related works [1, 20, 21, 35, 36] Hadoop, 

because of specific features that spark grants us. We mentioned the most important 

components of it above, concluding with the six main ones that are depicted in 

Figure 3.1: 

● Speed 

Spark runs much faster than Hadoop MapReduce for large scale data 

processing. It is also able to achieve this speed through controlled 

partitioning. 
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● Powerful Caching 

Simple programming layer provides powerful caching and disk persistence 

capabilities. 

● Deployment 

It can be deployed through Mesos [37], Hadoop via YARN [38], or Spark’s 

own cluster manager. 

● Real-Time 

It offers Real-time computation and low latency because of in-memory 

computation. 

● Polyglot 

Spark provides high-level APIs in Java, Scala, Python, and R. Spark code 

can be written in any of these four languages. It also provides a shell in Scala 

and Python which is extremely helpful in cases of server or cluster 

deployment. 

● Scalable 

It can be easily paralleled to any server or cluster of servers. 

 

Figure 3.1: Apache Spark most important characteristics. 
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3.2.2 Apache Kafka and Zookeeper 

Apache Kafka and Zookeeper [39] are two open source tools that work together to 

serve primarily stream processing scenarios. Apache Kafka [39] is a distributed, 

scalable, high performance messaging system that was developed for collecting and 

delivering high volumes of log data with low latency. We can observe a Kafka 

messaging queue workflow in Figure 3.2. Being open source means that it is 

essentially free to use and has a large network of users and developers who 

contribute towards updates, new features and offering support for new users. Kafka 

[40] is designed to run in a “distributed” environment, which means that it runs 

across several (or many) servers, leveraging the additional processing power and 

storage capacity that this brings. Kafka was originally created at LinkedIn [41], 

where it played a part in analyzing the connections between their millions of 

professional users in order to build networks between people. It was given open 

source status and passed to the Apache Foundation – which coordinates and 

oversees development of open source software – in 2011.  

                   

Figure 3.2: Kafka Messaging Queue Workflow. 

ZooKeeper is a top-level software developed by Apache that acts as a centralized 

service and is used to maintain naming and configuration data and to provide 

flexible and robust synchronization within distributed systems. As we can observe 

in Figure 3.3, ZooKeeper keeps track of status of the Kafka cluster nodes and it 

also keeps track of Kafka topics and partitions. The data within ZooKeeper is 

divided across multiple collections of nodes and this is how it achieves its high 

availability and consistency. In case a node fails, ZooKeeper can perform instant 
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failover migration; e.g. if a leader node fails, a new one is selected in real-time by 

polling within an ensemble. A client connecting to the server can query a different 

node if the first one fails to respond. Kafka uses ZooKeeper to manage the cluster. 

ZooKeeper is used to coordinate the brokers/cluster topology. 

 

Figure 3.3: Kafka ZooKeeper Architecture. 

3.3 System Configuration 

This section presents the system configuration and build, regarding the hardware 

and the software parts, summarizing the important points of each one through 

experimental evaluation results. 

3.3.1 Hardware Configuration 

In the context of tests and experiments about the scalability of our platform we used 

a desktop personal computer with a 64bit Intel® Core™ i7 CPU at 3,60 GHz with 

total 4 processing cores, 8 threads, 16 GB Memory and 1 TB of storage, running 

Linux Ubuntu 18.04. The Apache Spark platform was deployed on a single node 

research laboratory Server at FORTH Computational Bio-Medicine Laboratory, 

running Linux Ubuntu 18.04. This server has a 64bit Intel® Xeon® CPU at 2,60 

GHz (3,50 GHz Max) with total of 24 processing cores, 48 threads, 250 GB 

Memory and approximately 50 TB of storage. Moreover, Apache Kafka with 
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Zookeeper was deployed on the same server. 

3.3.2 Software Configuration 

We configured Apache Spark appropriately to run every piece of code distributed, 

making full use of all available resources. To be more specific we divided our 

available resources, setting 12 cores and 60 GB memory on each worker node as 

we can see at Figure 3.4 below. In this figure we can also observe how spark 

environment’s interior components interact and cooperate with each other. Spark 

uses a master-slave architecture with one coordinator and four distributed workers. 

The central coordinator is called Driver. The Driver communicates with a number 

of distributed workers called executors. Driver and its executors compose a Spark 

application. A Spark application runs on a set of machines or processors using a 

service called Cluster Manager. 

 

Figure 3.4: Parallelization and System Configuration of Apache Spark. 

Our architecture is based and shares the most characteristics of Lambda architecture 

[24]. Lambda is one of the most discussed architecture patterns in the data science 

space that is designed to address robustness, scalability and fault tolerance of big 

data systems. It contains batch layer that has two major tasks: (a) managing 
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historical data, (b) computing results (ML) and speed layer that manages near real 

time data and provides results in a low-latency. (see Figure 3.15) 

 

Figure 3.5: Apache Kafka with Zookeeper and Spark integration. 

Kafka is the best performing framework for queueing slightly large messages and 

CPU load. The Direct (D)Stream integration with Spark means that messages 

coming from Event Producers, are being transferred directly from the Kafka server 

to the Spark workers (see Figure 3.5). It is also worth noting that Kafka is not 

intended for handling large file sizes (>1 Mb) in terms of velocity. 

 

Figure 3.6: Architecture of our Integrated Scalable Platform for Big Data Analytics. 
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3.3.3 Experimental Evaluation of System Configurations 

on Query Application 

Initially, we created a plan with the available resources. Consequently, combining 

our knowledge in SQL and Scala language we created a complete query 

(subsystem) application in Spark SQL where the user may ask questions in any 

large database such as MIMIC-III and get answers in a much shorter time than he 

would get in a conventional Postgresql. The advantage of our query application is 

that it takes full benefit of the possibilities offered by Spark in terms of 

parallelization and cooperation of all available resources of a given server or even 

a cluster of servers, with the feeling of fault tolerance that governs spark. It is also 

noteworthy that very easily a user with good knowledge in information systems 

management, can configure the spark and parallelize the available resources 

depending on their needs and the materials available. We can realize how important 

the scalability of such a platform is by observing the execution times (Duration) in 

Figures [3.7 – 3.12], where the same query appears to run on a personal computer 

(Figure 3.7 – 3.9) with few resources (Table 3.1, System Conf. 1) and respectively 

to run on the FORTH CBML server (Figure 3.10 - 3.12) with much more resources 

(Table 3.1, System Conf. 2). Execution time was captured through the spark Web 

UI which allows us to monitor our application’s status and resource consumption 

in real time, providing us with a wealth of useful information. This fact proves that 

our platform which is built on open-source technologies, is scalable and capable to 

serve the management and processing of big data with speed and stability, 

depending on the available computing resources. 

 

Desktop personal computer vs FORTH CBML Server 

System 

Conf. 

Workers Cores Memory 

(GB) 

Memory per 

Executor 

Execution time 

(min) 

Stages: 

Succeeded/Total 

1 2 8 12 6 25 41/56 

2 4 48 240 60 7 41/56 
Table 3.1: Desktop personal computer and FORTH CBML Server configurations 
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Figure 3.7: Spark Web UI, system configuration on personal computer. 

 

Figure 3.8: CPU usage of personal computer. 

 

Figure 3.9: Execution time on personal computer. 

 

Figure 3.10: Spark Web UI, system configuration on FORTH CBML server. 

 

Figure 3.11: CPU usage on FORTH CBML Server. 
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Figure 3.12: Execution time on FORTH CBML Server. 

3.4 Data Processing Clinical Scenarios 

This section presents the main points of our platform's architecture, summarizing 

the complications and the prospects. Our architecture depicts two different big data 

processing clinical scenarios. To take advantage of the infrastructure speed we use 

one of the low level APIs that Spark provides us, which uses resilient distributed 

datasets (RDDs). In both scenarios of clinical data processing, we used Scala 

language because of its performance advantage over Python. The name Scala 

comes from the English phrase "scalable language", which states that it is designed 

to grow in line with the needs of its users. Dataframes and especially RDDs perform 

better in Scala because they are executed directly on JVM, avoiding a significant 

communication (Python-JVM) time overhead. 

3.4.1 Batch Processing Clinical Scenario 

The first clinical scenario is called batch processing. In this scenario we get the data 

from sources like mechanical ventilators of ICU, hospital rooms, homes and data 

from smart health devices such as wearable sensors, smart watches etc. Data is 

stored in the available storage space called the data lake. Then we load our data 

from the data lake in Spark and using Spark SQL we start the procedure of 

normalization, cleaning, feature extraction and generally the preprocessing. When 

the data have been preprocessed and all the significant features for analysis have 

been extracted successfully, enter the Spark MLlib and the machine learning 

process begins. The data are divided into input features and output class values and 

enter in the respective machine learning algorithm where the predictive model is 
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built. This model will give us the analytics and the prediction for the respective 

disease. In our work and specifically in the spark application we created in order to 

evaluate the analytics efficiency in our data and predict patients with ARDS, we 

used Random Forest with 10-fold cross validation and Logistic Regression 

algorithms. Moreover, we may run dynamic queries on patient clinical data at any 

time through the query (subsystem) application that our infrastructure supports 

upon Spark SQL. We present below a workflow on Figure 3.13 and some examples 

of the queries that a clinician might run in both clinical scenarios in order to perform 

a statistical analysis and clinical questions on this dataset: 

 

● ARDS related queries: 

○ Give me all the/specific distinct ARDS cases in newborn patients and 

demographics information about them. 

○ Give me all the/specific distinct Acute Respiratory Failure cases in all 

patients. 

○ Give me all the/specific admissions where patients have PEEP >= 5. 

○ Give me all the/specific admissions where patients have PaO2 and FiO2. 

○ Give me all the/specific Heart Rates from table chartevents grouped by 

icustay_id, etc. 

 

 

● General MIMIC-III related queries: 

○ Give me the number of patients who died while the patients were in the 

hospital and who survived 

○ Give me the maximum length of stay in the ICU for specific patients 

○ Give me the maximum length of stay in the ICU for each patient 

○ Give me the maximum length of stay in the ICU for each patient where 

the maximum length of stay is < 10 days 

○ Give me the number of male and female patients 
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Figure 3.13: Batch Processing Clinical Scenario. 

3.4.2 Stream Processing Clinical Scenario 

The second clinical scenario is called stream processing. In this scenario we get 

data from the same sources, however the data follow a different “path”. 

Specifically, new data coming in real time, get into Apache Kafka under the 

ZooKeeper support and are being queued and processed as topics. Every topic from 

Kafka gets into Spark and specifically into Spark Streaming where it can then be 

processed and follow the same procedures as in the first scenario (cleaning, 

preprocessing, etc.) depending on the algorithms we run. After this stage, we can 

also take as output real time analytics, prediction of a disease and make dynamic 

queries on data. Therefore, we have created a complete integration as we can 

observe the workflow on Figure 3.14. 

 
Figure 3.14: Stream Processing Clinical Scenario. 
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3.4.3 Complications and Experiences 

Regarding the batch processing part, we made a first allocation and parallelization 

of resources and started running the first queries on the data in order to test our 

infrastructure and collect useful information for data analytics use. We noticed 

some technical issues regarding the configuration of Spark when we started to scale 

up using our large database for analysis. However, apache spark has a large 

supporting community and we managed to solve any problem without spending 

much time to search for the solution.  

Regarding the stream processing part, we had difficulty in connecting Apache 

Kafka with Spark. We did this in order to be able to send real-time data to our 

system and have them filtered and managed first by Kafka and then in queue form 

to get into Spark. Unfortunately, there is not much community in Apache Kafka 

that has dealt with the specific issue, as there is also not much community in Apache 

Flink [44, 45] and Apache Druid [42]. Apache Flink is an open source system for 

processing streaming and batch data. It is an excellent work in the field of data 

management and can compete with Apache Spark in individual use cases. We tried 

to connect Apache Kafka with Flink to see if it is better than Apache Spark in some 

cases (performance, stability, community support), however the difficulties we 

encountered in its configuration and communication with Kafka, made us leave it 

out of our architecture. We performed some use cases individually on it, but the 

Kafka-Flink connection procedure cost us much time ending up with unsolved 

problems so we skipped it. Druid [43] is an open source database that is most often 

used for powering use cases where real-time ingest, fast query performance, and 

high uptime are important. As such, Druid is commonly used for powering GUIs 

of analytical applications, or as a backend for highly-concurrent APIs that need fast 

aggregations. We installed and tried to set up Apache Druid in order to test it on 

streaming data and see if it fits our needs, however it still has poor community 

support, so we did not let any other configuration difficulties cost more valuable 

time to us. After all, our scope was to create a system that is simple to use and at 

the same time stable. At Spark-Kafka connection, we encountered some difficulties 
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which did not bother us much because fortunately Apache Spark has a large, rich 

community and support as well as excellent documentation as we described above. 

It is very important when we work with open source technologies with which we 

want to deploy a scalable infrastructure, to have well written documentation and 

support to rely on. 

 

 

Figure 3.15: Lambda Architecture.  

Data Sources: Data can be obtained from a variety of sources, which can then be included in the 

Lambda Architecture for analysis. Batch Layer: This component saves all data coming into the 

system as batch views in preparation for indexing. Serving Layer: This layer incrementally 

indexes the latest batch views to make them query by end users. Speed Layer: This layer 

complements the serving layer by indexing the most recently added data not yet fully indexed by 

the serving layer. Query: This component is responsible for submitting end user queries to both 

the serving layer and the speed layer and consolidating the results. 
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Chapter 4 

Using the Architecture to Build Predictive 

Models 

In this section we describe the real world datasets used in our experiments and the 

data analysis application build procedure. We present all the complications and 

challenges that we managed to handle eventually with specific techniques and 

methods. We summarize this chapter with our experimental evaluations and results. 

4.1 Data Selection and Sources 

As we mentioned above, we needed a large enough dataset to build the biomedical 

application of predictive analysis in order to evaluate our platform and validate our 

study. Consequently, we used MIMIC-III (Medical Information Mart for Intensive 

Care - III) [8, 49] clinical database, which is a large, freely available database 

comprising information relating to patients admitted to critical care units at a large 

tertiary care hospital. The MIMIC-III clinical database captures over a decade of 

intensive care unit (ICU) patient stays at Beth Israel Deaconess Medical Center. An 

individual patient might be admitted to the ICU multiple times over the years, and 

even within a single hospital stay could be moved in and out of the ICU multiple 

times. This is a fact that generates many non-unique identification codes regarding 

the patient’s activity. As we can observe in Figure 4.1, data includes vital sign 

measurements obtained at the bedside, demographics, medications, laboratory 

measurements and test results, records of arterial blood gas levels observations and 

notes charted by care providers, fluid balance, procedure codes, diagnostic codes, 

imaging reports, hospital length of stay, survival data, and other clinical variables. 

The raw data in MIMIC-III, with size of 50 GB, provide fine-grained timestamps 
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for each laboratory measurement and recorded vital sign. However, most 

measurements are infrequent (e.g. blood tests of interest may be run every few 

hours at most), meaning each variable’s raw time-series is quite sparse [46] and this 

is a fact that generates many missing values. Each measurement in the MIMIC-III 

database is associated with a unique ItemID, as specified by the original EHR 

software. These raw ItemIDs are not robust to changes in software or human data 

entry practices. For example, “HeartRate” may be recorded under ItemID 211 

(using CareVue EHR systems before 2008) or under ItemID 220045 (using 

MetaVision EHR software after 2008). We thus developed a manually curated 

clinical taxonomy designed to group semantically equivalent ItemIDs together into 

more robust “clinical aggregate” features. These aggregate representations reduce 

overall data missingness and the presence of duplicate measures. Therefore, we 

have included as much as possible all the coded values that interest us. Appendix 

D (Tables A.4, A.5), details the proposed clinical taxonomy about the MIMIC-III 

encoded features. Ventilator settings were documented by respiratory therapists at 

intubation and as ventilator settings were adjusted. International Classification of 

Diseases, Ninth Revision (ICD-9) codes were documented for specific diseases as 

required by hospital staff on patient discharge. Each row associated with one 

ItemID (e.g. 212) corresponds to an instantiation of the same measurement (e.g. 

heart rate). We used ICD-9 and ItemID codes in order to filter and clean our data 

(see Appendix D). 

 

Figure 4.1: Overview of the MIMIC-III critical care database. 
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Furthermore, we used FitBitChargeHR dataset [47] from Kaggle [48] data science 

repository. The file contains one year of human activity such as calories, steps, 

distance in meters, floors, minutes sitting, minutes of moderate activity, minutes of 

intense activity as well as the calories burned for the activities. The data was 

gathered with a Fitbit Charge HT fitness tracker and every observation regards one 

day. We multiplied and used this data in conjunction with MIMIC-III data to 

implement and simulate real world stream processing scenarios. 

4.2 Data Extraction for Class Analysis 

The majority of the useful information in this dataset is not clear and obvious. 

Significant parts of the data are coded with specific numbers. As we mentioned 

above, ICD-9 diagnosis codes [8] and ItemID codes [8] that identify mechanically 

ventilated patients with their laboratory measurements and their charts values, 

contribute significantly on identification of severity class of ARDS patients. More 

specifically, PaO2, FiO2, PEEP and HR information were extracted from charted 

data using ICD-9 and ItemID codes. WBC (White Blood Cell), lactate and other 

useful ARDS related values were extracted from laboratory measured data. Time 

series include specific time points of ARDS onset which are defined based on 

Berlin criteria [5], i.e. PaO2/FiO2 ratio ≤ 300 with PEEP at least 5 cmH2O or 

SpO2/FiO2 ≤ 200 [9, 12, 13, 14]. The observed vital signs and laboratory 

measurements after the identified diagnosis time are extracted and features 

constructed as class-defining variables in our modelling including diastolic blood 

pressure, mean airway pressure (MAP), respiratory rate, systolic blood pressure, 

temperature, PH, platelet, blood cultures, tidal volume, GCS, height, weight, BMI, 

PaO2/FiO2 (P/F), SpO2/FiO2 (S/F) and some demographic variables. (see 

Appendix B, C, D) 
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4.3 Data Extraction for Predictive Modeling 

 

 
The features that we considered to build the predictive model include: 

 

1. Vital signs from chart measurements: heart rate, respiratory rate, body 

temperature, systolic blood pressure, diastolic blood pressure, mean arterial 

pressure, oxygen saturation, tidal volume. 

 

2. Laboratory measurements: white blood cell count, hematocrit, lactate, 

creatinine, bicarbonate, pH, INR, blood gas measurements (partial pressure of 

arterial oxygen, fraction of inspired oxygen, and partial pressure of arterial 

carbon dioxide). 

 

3. Other chart measurements: motor, verbal, and eye sub-score of Glasgow Coma 

Scale (GCS). 

 

4. Demographic indicators as potential risk factors: gender, age, ethnicity, etc. 

 

(see Appendix B, C, D) 

 

4.4 Data Preprocessing Methods 

This section describes all the adopted data preprocessing, cleaning, filtering and 

normalization methods, in addition with solutions to the challenges arose. 

4.4.1 Data Cleaning and Filtering 

Primarily, we comprehended the nature of the data and their peculiarities, 

investigating in depth the large number of parameters and their varied content. As 

we explained above, there are specific codes that need to be decoded and clarified 

in order to access the data that really interest us. The primary purpose for starting 

the cleaning and preprocessing of the data was to separate the useful details we 

were looking for in this database. Regarding the feature selection section, in this 

study we extracted a variety of information and physiological parameters of the 

patients, consulted and guided mainly by the clinical doctor we collaborated with 
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and the relevant study [9]. Subsequently, in next steps we validated the feature 

selection and the dynamic of our data preprocessing methods using WEKA [18]. 

To get the information we needed from the data we used the query (subsystem) 

application that we built (described above in the architecture section) and gathered 

all the necessary details. According to the literature review [9, 10] we found the 

specific codes that correspond to ARDS related risk factors. Each query asks the 

database for the specific codes (ItemID, ICD9) we are looking for in the specific 

files and then returns the answer accompanied by all the necessary information that 

we want. In our case, this information is called SUBJECT_ID, HADM_ID and 

ICUSTAY_ID which were accompanied by associated values such as vital signs, 

laboratory measurements, demographics, etc. SUBJECT_ID refers to patients, 

HADM_ID refers to hospital admissions and ICUSTAY_ID refers to ICU stays. 

Once we collected this information, we then proceeded with the process of cleaning 

the data from missing and not useful values. In the process of collection of 

physiological parameters from patients, we have found that some parameters were 

missing, possibly because they were recorded at a lower frequency, however, this 

fact would result in an imbalance in the dataset. Fortunately, this issue had already 

been handled successfully from [9], therefore, in any case we had to balance the 

missing data, we used the technique of imputation and oversampling which they 

suggested and explained in detail, filtering at the same time the fields with 

information that interested us mostly. Then, after categorizing the data based on 

their content, we proceeded with the rest pre-processing procedure on them which 

revealed various problems that usually arise in the processing and management of 

time series data. 

4.4.2 Data Normalization and Solutions to Challenges 

We will focus on the main problem that preoccupied us and cost us much time and 

computing resources in data normalization procedure. Since we split and 

categorized our significant ARDS related values into pieces, per patient, 

hospitalization and ICU stay, facilitating the process of retrieving them through a 

query at any moment, it was time to put these pieces together in order to create a 
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single data set which we would then split into training and test set with all the 

necessary information and features that we would like to give to the machine 

learning algorithms of the predictive model. To achieve this, we had to find some 

common points in these pieces that would form the links, the so-called "keys" in 

the databases field. In time series data, of course, we rarely see unique keys when 

the dataset contains hospitalization IDs and patient IDs. This is because each patient 

is connected to a machine, whether it is in the intensive care unit, the hospital room, 

or a room in a home. This machine records information (SpO2, Heart rate, PaO2, 

FiO2, etc.) over time, so we had many different values for different timestamps for 

the same patient. Therefore, it was inevitable to join all the pieces we wanted in 

non-unique keys, taking into account the size of the tables with millions of rows. 

At this point we met the biggest challenge of our work, (see Figure 4.2), trying to 

solve this issue with the available resources. 

 

Figure 4.2: Join attempt on non-unique keys. 

This cost us mainly in random access memory because as we mentioned above, 

Spark loads the data that is to be processed into memory. It was not a trivial 

situation and we still had to deal with it and continue with the preprocessing 

procedure of our data. There is no simple way to achieve this when it comes to large 
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volumes of data and in particular non-unique keys. It is worth noting that none of 

the related works mentioned this important fact, so there was no officially recorded 

solution. Even with the resources we had available in combination with the 

parallelism offered by spark, when we had to combine information from multiple 

tables with non-unique keys, the system was too late to answer our questions and 

in some cases was impossible to finish the join procedure. Nevertheless, we found 

a kind of solution in order to continue and finish our work. No matter how much 

memory we had at our disposal the problem would not be solved so easily. 

Therefore, we had to adapt to this situation and handle it. At this point we decided 

that it was necessary to consider one more parameter in the filtering and pre-

processing methods of our data. We investigated our available data further to see if 

we can find any other common factor in these pieces besides the obvious ones that 

the MIMIC-III dataset officially states. After exhausting investigation inside the 

data, we found another element called “CHARTTIME” and we managed to handle 

the aforementioned problem by setting this new parameter as the only unique sub-

key. 'CHARTTIME' records the time at which an observation was made, and is 

usually the closest proxy to the time the data was actually measured. It is essentially 

a unique timestamp for each patient's records. We set specific time limits in which 

we singled out and filtered the data that had a common timestamp, taking into 

account the year, month, day and time, rarely including the minutes and not at all 

the seconds. As a result, we re-categorized the patients who met the selection 

criteria we set and managed to join our data by creating the final data file that we 

would use in our model to split for train and test set in order to run the machine 

learning algorithms. This file contained all the necessary features and values for the 

build of our machine learning model. Below in Figure 4.3, we present a flowchart 

outlining a small part of our patient selection and filtering methods, detailing the 

number of patients that eventually get inside the predictive model. 
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Figure 4.3: Flow diagram for patient selection. 

4.5 Classification Algorithms 

This section describes all the classification and prediction analysis algorithms in 

addition with parameters tuning methods used. 

4.5.1 Prediction Class Analysis 

Machine learning algorithms are generally divided into two categories: supervised 

and unsupervised learning algorithms. Supervised learning algorithms are used to 

uncover the relationship between variables of interest and one or more target 

outcomes. For supervised problems, the target outcome(s) must be known. 

Unsupervised learning algorithms are used to uncover naturally occurring patterns 

or groupings in the data, without targeting a specific outcome. In our case, we have 

to handle a supervised problem where we target two categorical outcomes. 1 for 

positive and 0 for negative in each case of ARDS severity. More specifically, we 

used this method for 4 different cases of severity in order to rebound at 4 classes 

which we set as output in our prediction model. Each case-class as we can see in 



41 

 

Table 4.1 represents the severity of ARDS in patients. The first class means "mild", 

the second class means "moderate", the third class means "severe" and the fourth 

class means "non ARDS", i.e. no risk. The most common applications of data 

science to critical care problems are predictive models using supervised learning 

algorithms. In this study, as we can see in Figure 4.4, we designed a complete 

pipeline model that combined feature selection (from a given number of total 

features) with multiple classification algorithms, used a 10-fold cross-validation 

model, trained classifiers for different feature subsets, and selected the optimal 

combination of feature subsets and classifiers, accomplishing the early 

identification of the ARDS. We used random forest and logistic regression machine 

learning algorithms in order to build and validate our predictive model with the 

available data of MIMIC-III, splitting them in train (70%) and test (30%) sets. 

 

ARDS Severity Class 

Mild 1 

Moderate 2 

Severe 3 

None 4 
Table 4.1: ARDS severity classes. 

4.5.2 Random Forest 

Random forests are ensembles of decision trees. They combine many decision trees 

in order to reduce the risk of overfitting. Like decision trees, random forests handle 

categorical features, extend to the multiclass classification setting, do not require 

feature scaling, and are able to capture non-linearities and feature interactions. 

Spark.mllib [54] supports random forests for binary and multiclass classification 

and for regression, using both continuous and categorical features. It implements 

random forests using the existing decision tree implementation. Random forests 

train a set of decision trees separately, so the training can be done in parallel. The 

algorithm injects randomness into the training process so that each decision tree is 

a bit different. Combining the predictions from each tree reduces the variance of 

the predictions, improving the performance on test data. To make a prediction on a 

new instance, a random forest must aggregate the predictions from its set of 
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decision trees. As regards the classification method that we used, the majority vote 

wins. Each tree’s prediction is counted as a vote for one class. The label is predicted 

to be the class which receives the most votes. The most important parameters that 

we used and tuned in order to improve the performance of our model are the number 

of trees and the maximum depth of each tree in the forest. Increasing the number 

of trees will decrease the variance in predictions, improving the model’s test-time 

accuracy and training time increases roughly linearly in the number of trees. 

Increasing the depth makes the model more expressive and powerful. However, 

deep trees take longer to train, it is acceptable to train deeper trees when using 

random forests than when using a single decision tree, because one tree is more 

likely to overfit than a random forest (because of the variance reduction from 

averaging multiple trees in the forest). We experimented with many different cases 

of the same algorithm, changing some important parameters each time, in order to 

conclude at the optimal one that would give us the best results. More specifically, 

we experimented setting different values at the max depth of the tree, the number 

of the trees and the number of folds at cross validation step. 

4.5.3 Logistic Regression 

Logistic regression is a popular method to predict a categorical response. It is a 

special case of Generalized Linear models that predicts the probability of the 

outcomes. It can be used to solve under classification type machine learning 

problems. Classification involves looking at data and assigning a class (or a label) 

to it. Usually there are more than one classes, when there are two classes (0 or 1) it 

identifies as Binary Classification. In spark.ml [54] logistic regression can be used 

to predict a binary outcome by using binomial logistic regression, or it can be used 

to predict a multiclass outcome by using multinomial logistic regression. Our 

Logistic Regression model builds a Binary Classifier model to predict ARDS based 

on historical data of patients. Specifically, we built a Logistic Regression model by 

experimenting and finally defining the number of max iterations, the number of 

regression parameters and the number of elastic Net parameters. 
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Figure 4.4: Machine learning pipeline model. 

4.6 Evaluation and Results 

According to the diagnostic definition of ARDS disease, P/F ≤ 300 means ARDS. 

According to this standard, each sample is divided into positive and negative 

results. Table 4.2 describes the relationship between the actual category and the 

prediction category. A common metric used to evaluate the accuracy of a Logistic 

Regression and Random Forest model with binary classification is Area Under the 

Curve (AUC). We measured the classification performance based on the average 

of AUC, the accuracy, sensitivity and specificity. 

 

Predicted Class Actual Class 

Positive (P/F≤300) Negative (P/F>300) 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
Table 4.2: The relationship between actual categories and prediction results. 

We identified 8582 patients who met our inclusion criteria from a total of 46520 

patients enrolled in the MIMIC-III database. As we can observe in Figure 4.3, there 

were 6008 patients (101520 data points) in the training set and 2574 patients (43500 

data points) in the test set. The patient demographics and characteristics that 

utilized in this study are shown in Table 4.3 and in Appendix B, C, D in Tables 

A.2, A.3, A.4 and A.5. Table 4.3 summarizes the demographic information of 

patients that we used. The training set has a consistent patient distribution with the 

test set. In the training set, the patients were hospitalized in various intensive care 
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units: CSRU (Cardiac Surgery Recovery Unit), MICU (Medical Intensive Care 

Unit), SICU (Surgical Intensive Care Unit), TSICU (Trauma Surgical Intensive 

Care Unit), and CCU (Coronary Care Unit) and the average age of patients was 65 

years. The majority of the patients were male. Appendix C in Table A.3 summarizes 

the physiological parameters of patients classified in the training and test sets. For 

the training set and the test set, the two datasets were randomly grouped and had a 

common distribution. According to [9] and WEKA [18] feature selection methods 

and rankings, SpO2 was clearly the most relevant parameter. Furthermore, SpO2, 

S/F, FiO2, and PEEP, were also highly relevant features. Using the training dataset, 

the 10-fold cross validation methods were used to evaluate the performance of the 

random forest algorithm. Moreover, we used the same data in order to evaluate the 

logistic regression algorithm and the test sets were completely independent of the 

data of model training. 

 

Demographic Variables 

Age(year) 

Gender (Male – Female) 

BMI(kg/m2) 

Length of stay in ICU (days) 

ICU type (CSRU, MICU, SICU, TSICU, CCU) 

Admission type (Emergency, Elective) 

Ethnicity (White, Asian, Black, Hispanic, Other) 
Table 4.3: Patient demographics in training and test sets. 

The common features in relation to [10] were many, so we considered that we could 

make a comparative study of the two most relevant works [9, 10] in relation to our 

own. In Table 4.4 we present the similar features of [9, 10] with our work and in 

Table 4.5 we present the most in common features, that we used in order to perform 

our machine learning experiments, of our work with [9] which is the closest use 

case to ours. As we can observe, most of the features are common, therefore we 

can compare our performance results with both of these works [9, 10]. 
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Mutual features between two related works [10], [9] and our work 

[10] [9] Our work 

Age Age       Age 

PEEP      PEEP PEEP 

FiO2 FiO2 FiO2 

Creatinine GCS (eye) GCS (eye) 

Blood Culture GCS (motor) GCS (motor) 

Diastolic BP TV / Kg TV / Kg 

Fluid Bolus GCS (Verbal) GCS (Verbal) 

GCS GCS GCS 

Heart Rate Heart Rate Heart Rate 

INR Gender (Female) Gender (Female) 

Lactate Gender (Male) Gender (Male) 

Mean Air Pressure Mean Air Pressure Mean Air Pressure 

Organ Dysfunction Peak Pressure Peak Pressure 

PP Plateau Pressure Plateau Pressure 

Platelets OSI OSI 

Respiratory Rate Respiratory Rate Respiratory Rate 

SpO2 SpO2 SpO2 

Temperature Temperature Temperature 

Urine Output Nidbp Nidbp 

WBC Minute Ventilation Volume Minute Ventilation Volume 

pH Nisbp Nisbp 

Systolic Blood Pressure Nimbp Nimbp 

Antibiotics BMI BMI 

PaO2 PaO2 PaO2 

Bilirubin S/F S/F 

PaO2/FiO2 (P/F) P/F P/F 
Table 4.4: Mutual features among [10], [9] and our work. 
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Most in common features between [9] and 

our work 

SpO2 

PaO2 

FiO2 

Heart Rate 

Temperature 

Tidal Volume 

PEEP 

Nbps 

GCS 

GCS Verbal 

P/F 

First careunit 

Last careunit 

Ethnicity 

Admission type 

Height 

Weight 

Dbsource 
Table 4.5: Most in common features between [9] and our work. 

We observe the AUC results of the two algorithms in Figure 4.5 and their 

comparison with the dominant algorithm (XGBoost) of [9] is shown in Figure 4.6. 

The AUC of the Random Forest (0.95) is higher than the AUC of Logistic 

Regression (0.93) under the same feature set and both of them are higher than AUC 

of [9] XGBoost (0.91). Moreover, in Table 4.6 we may observe the AUC, 

Accuracy, Specificity and Sensitivity results of RF and LR algorithms that arise 

from the calculations of confusion matrix (RF) and confusion matrix (LR) that we 

can see in Table 4.7 and Table 4.8 respectively. Based on the results, we show that 

the overall performance of our two algorithms exhibits significantly better 

performance with respect to the closest related work [9] algorithm.  

  

Algorithm Results 

AUC Accuracy Specificity Sensitivity 

Random 

Forest 

95,1 % 98,0 % 98,62 % 96,25 % 

Logistic 

Regression 

93,31 % 95,0 % 98,62 % 90,63 % 

Table 4.6: Identification results of two algorithms on test sets. 
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Figure 4.5: AUC Performance results between RF and LR. 

 

Figure 4.6: AUC Performance results among RF, LR and XGB [9]. 

 

 

Confusion 

Matrix (RF) 

Actual Class 

 Class 1 Class 2 Class 3 Class 4 

 

Predicted 

Class 

Class 1 20723 392 0 101 

Class 2 0 19776 592 0 

Class 3 0 661 12893 0 

Class 4 598 0 0 3571 
Table 4.7: Confusion Matrix (Random Forest). 

 

 

 

 

Confusion 

Matrix (LR) 

Actual Class 

 Class 1 Class 2 Class 3 Class 4 

 

Predicted 

Class 

Class 1 19398 1292 0 425 

Class 2 540 19067 169 0 

Class 3 0 1116 12438 0 

Class 4 1687 0 0 2482 
Table 4.8: Confusion Matrix (Logistic Regression). 
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In this case study, we analyzed the classification ability of two different algorithms, 

as we can see in Table 4.9, Table 4.10 and Figure 4.7, Figure 4.8 respectively. In 

the algorithmic evaluation, we compare the experimental results of both algorithms 

which reflect the great ability of the Random Forest algorithm to mine information 

from different aspects. Therefore, according to the results, Random Forest with 10-

fold cross validation and specific parameters tuned, achieves the best results under 

the selected dataset. 

 

Classification 

Results (RF) 

Random Forest  

Class 1 Class 2 Class 3 Class 4 

Accuracy 98,12 % 97,19 % 97,85 % 98,79 % 

Specificity 98,66 % 98,43 % 98,52 % 98,89 % 

Sensitivity 97,20 % 94,94 % 95,61 % 97,25 % 
Table 4.9: Classification results per class (RF) 

 

 

Figure 4.7: Prediction performance classification results (RF). 

 

Classification 

Results (LR) 

Logistic Regression 

Class 1 Class 2 Class 3 Class 4 

Accuracy 93,12 % 94,48 % 97,65 % 96,19 % 

Specificity 95,19 % 97,98 % 97,35 % 96,79 % 

Sensitivity 89,70 % 88,79 % 98,66 % 85,38 % 
Table 4.10: Classification results per class (LR) 
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Figure 4.8: Prediction performance classification results (LR). 

 

4.7 Discussion 

Our approach achieves significantly better results in all metrics that are based on 

AUC, when compared to relevant published efforts that also use the MIMIC III 

database to develop predictive models of ARDS. Our prediction performance 

results between our two deployed algorithms (RF and LR) and XGBoost (XGB) 

[9] are depicted in Figure 4.9 and as we can see in Table 4.11 and Figure 4.10 we 

outperform among [9] and [10] which also uses the XGBoost (XGB) algorithm. 

Our distinction in the results originates from the preprocessing in data management 

procedure, the feature selection and the different algorithms we used. In addition, 

we tuned specific parameters in both of our algorithms and we concluded that the 

random forest prediction model performs significantly better than logistic 

regression and the related works [9, 10], because of the fine-tuned number and 

depth of trees in combination with 10-folds cross validation. 
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Sampling , Splitting and Algorithms used on MIMIC-III data with Results 

 [10] [9] Our work 

Number of 

samples 

9001 8702 8582 

Split of Data Train: 90 % 

Test: 10 % 

Train: 75 % 

Test: 25 % 

Train: 70 % 

Test: 30 % 

Algorithms Used XGBoost  XGBoost Random Forest 

AUC 90,5 % 91,28 % 95,1 % 

Accuracy 82,5 % 85,89 % 98,0 % 

Specificity 82,3 % 87,75 % 98,62 % 

Sensitivity 80,06 % 84,03 % 96,25 % 
Table 4.11: Sampling, splitting and algorithms used on MIMIC-III with performance results of best 

cases. 

 

Figure 4.9: Prediction performance results among RF, LR and XGB [9]. 

 

 

Figure 4.10: Prediction Performance Results between [9], [10] and our work. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we present a scalable data science platform built on open source 

technologies, accompanied by a biomedical data analysis application about Acute 

Respiratory Distress Syndrome disease (ARDS). We underlined the main 

challenges and complications about infrastructures and data analysis in our use 

case, managing to handle and explain in detail any issues that arose. In the first part 

of this thesis, we presented our platform’s architecture and the main clinical 

scenarios that may serve. These scenarios depict a batch and stream processing data 

flow respectively. We analyzed the most significant parts of this platform with all 

the adopted methods, giving insights on its scalability and utilization techniques. 

As a result of conducting this study for this thesis, we conclude in the first part, that 

scalable systems and infrastructures, built on open source technologies, have the 

potential to manage big data processing scenarios, however they also have 

limitations. We refer mainly to the technical problems that arose in the construction 

of the platform and then in development and evaluation of the application of 

predictive models. Time series big data need special handling in the preprocessing 

procedure, especially in cases where the data is biomedical and we aim to predict a 

clinical situation accurately. Consequently, we propose the adoption of open source 

technologies for the construction of scalable infrastructures and systems, provided 

that they have rich supporting community and documentation for time and financial 

benefit. 

At the second part of this thesis, we explained how we used our scalable platform 

to build prediction models of ARDS, giving insights about the data sources utilized 

and mainly data selection of MIMIC-III clinical database. We focused on the 
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preprocessing methods, highlighting technical data analysis issues that arise from 

such a large dataset, with such a heterogeneous clinical situation that needs to be 

managed. Our approach handled the complications that arose with specific 

methods, that the related works mentioned above, do not report in their study cases.  

Moreover, we experimentally evaluated our data analysis application of ARDS, 

using machine learning algorithms, comparing our results with the closest related 

work [9, 10] use cases. The overall classification effects of our Random Forest 

model was better than our Logistic Regression model and outperforms the related 

works [9, 10] XGBoost model. Concluding, our approach, specifically of random 

forest with fine tuning of parameters, achieves significantly better results, when 

compared to relevant published efforts that also use the MIMIC III database to 

develop predictive models of ARDS. Of course, it is worth noting that specific and 

valuable risk factors of ARDS, in addition with feature selection information that 

we consulted from [9] and WEKA [18] results, highly contributed in this 

comparison study. 

As future work, we plan to evaluate our platform on new use cases using MIMIC-

IV [50] clinical database that was released a few time ago. Furthermore, we intend 

to extend the existing functions of our platform in order to be able to manage 

multimodal data sets, including signals, images (MRI, CT, etc.), videos and 

genomics data. Eventually, we do not neglect the fact that our platform requires 

substantial technical expertise to use it clinical staff to its full potential. Therefore, 

we aim to create a graphical user interface (GUI) that will enable data visualization 

with charts, in addition with data management features. This action will eliminate 

the above functional limitation of the platform and upgrade the value of the query 

application, making it easier to be utilized by doctors and clinical staff. 
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Appendix 

A. Review of solutions using MIMIC-III 

 

Year Publ. Risk factors Features Methods 

2020 [9] (PaO2/FiO2 ratio <= 300), 

End-Expiratory Pressure 

(PEEP) >=5 cmH2O, mild 

(200 < arterial oxygen partial 

pressure (PaO2)/ fraction of 

inspired oxygen (FiO2) (P/F) 

<=300), moderate (100 < P/F 

<= 200), and severe (P/F <= 

100), according to the level of 

oxygenation index (P/F) 

Age, PEEP, FiO2, GCS (eye), 

GCS (motor), GCS (Verbal), 

TV / Kg, GCS, Heart Rate, 

Gender, Peak Pressure, 

Plateau Pressure, Respiratory 

Rate, OSI, SpO2, 

Temperature, Nidbp, Minute 

Ventilation Volume, BMI, 

Pa02, S/F, P/F 

XGBoost with 

cross 

validation 

2020 [10] Positive end Expiratory 

Pressure 

(PEEP) >= 5 cmH 2O, PaO 

2/FiO 2 ratio (P/F ratio) <= 

300 

mmHg 

 

Age, PEEP, FiO2, Creatinine, 

Blood Culture, Diastolic BP, 

Systolic Blood Pressure, 

Fluid Bolus, GCS, Heart 

Rate, INR, Lactate, MAP, 

Organ Dysfunction, PP, 

Platelets, Respiratory Rate, 

SpO2, Temperature, Urine 

Output, WBC, pH, 

Antibiotics, PaO2, Bilirubin, 

PaO2/FiO2 (P/F) 

XGBoost 

gradient 

boosted tree 

models 

with 10-fold 

cross 

validation 

2019 [2] PaO2/FiO2 ratio ≤ 300, PEEP 

>= 

5 cmH2O 

 

BMI, means of bicarbonate, 

plateau pressure, mean 

airway pressure (MAP), 

PaCO2, tidal volume, platelet 

count, total bilirubin; 

minimum of sodium, glucose, 

albumin, hematocrit, systolic 

blood pressure (SBP); 

maximum of temperature, 

heart rate, white blood cell 

(WBC) count, creatinine 

Gradient 

Boosted 

Machine 

(GBM) , 

Random 

Forest (RF) 

with 5-fold 

cross 

validation 

2019 [29] PaO2/FiO2 ratio ≤ 300 

(Berlin Definition [5]) 

 

Age, sex, DP, MAP, 

Pao2/Fio2, SOFA, RR, BMI, 

RDW, Ph and, ethnicity, 

BMI, smoking, SOFA, heart 

rate, laboratory values (pH, 

Logistic 

regression, 

Random 

forest with 

10-fold cross 
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lactate, RDW), and ventilator 

parameters (LHPI, driving 

pressure, mechanical power, 

platform pressure) 

validation 

 

2019 [51] Berlin Definition risk factors anion gap (aniongap), 

albumin, bands, bicarbonate, 

bilirubin, creatine, chloride, 

glucose, hematocrit, 

hemoglobin, lactate, 

platelet, potassium, partial 

thromboplastin time (ptt), 

international normalized ratio 

(inr), prothrombin time (pt), 

sodium, bun, white blood cell 

count (wbc), heart rate 

(heartrate), systolic blood 

pressure, diastolic blood 

pressure, mean blood 

pressure, respiratory rate, 

body temperature, peripheral 

capillary oxygen saturation 

(spo2), body mass index 

(bmi), gender, age, urine 

output 

Gradient 

Boosting 

Machine 

(GBM) model 

Table A.1: Review of solutions using MIMIC-III. 

 

B. Static variables and description 

 

Static Variable Description 

Age Patient Age 

Gender Patient Gender 

Ethnicity Patient Ethnicity 

Insurance Patient Insurance Type 

Admittime Hospital Admission Time 

Dischtime Discharge Time 

Intime ICU admission time 

Outtime ICU discharge time 

Admission_type Type of hospital admission 

First_careunit First ICU the patient was cared for 
Table A.2: Static variables and description names. 
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C. Features used in predictive modeling and query subsystem 

 

 

Category Name 

Vital Heart Rate 

Systolic Blood Pressure 

Diastolic Blood Pressure 

Mean Airway Pressure 

Respiratory Rate 

Temperature 

Blood Gas SpO2 

PCO2 

PO2 

FIO2 

Bicarbonate 

Tidal volume 

Oxygen saturation 

Hematology PTT 

INR 

Platelet 

Hematocrit 

PT 

WBC 

GCS Total 

GCS Motor 

GCS Verbal 

GCS Eye 

Blood Chemistry Anion Gap 

Albumin 

Bilirubin 

Creatinine 

Glucose 

Lactate 

pH 

Demographics Age 

Gender 

BMI 
Table A.3: Features used in predictive modeling and query application. 

 



62 

 

D. Identification codes for ARDS related risk factors and features 

from MIMIC-III 

 

 

ICD-9 Code Name 

5279, 51881 Acute respiratory failure 

5274, 51851 Acute respiratory failure following 

trauma and surgery 

8702, 769 Respiratory distress syndrome in 

newborn 

5133, 5063 Other acute and subacute respiratory 

conditions 
Table A.4: ICD9-Codes with names. 

 

ItemID Code                  Name 

490, 779 PaO2 

646, 220277 SpO2 

190, 223835, 3422 FiO2 

220045 Heart Rate 

8368, 8440, 8441, 8555, 220180, 

220051 

Diastolic BP 

50827, 50828, 51237 INR 

50813 Lactate 

456, 52, 6702, 443, 220052, 220181, 

225312 

MAP 

615, 618, 220210, 224690 Respiratory Rate 

51, 442, 455,  6701, 220179, 220050 Systolic BP 

223762, 676, 50825 Temperature C 

50820 PH 

51300, 51301 WBC 

198 GCS 

50800, 50801, 50802, 50803, 50804, 

50805, 50806, 50807, 50808, 50809, 

50810, 50811, 50812, 50813, 50814, 

50815, 50816, 50817, 50818, 50819, 

50820, 50821 

Blood Cultures 

223761, 678 Temperature F 

828 Platelets 

220179 Non Invasive Blood Pressure systolic 

220180 Non Invasive Blood Pressure diastolic 

220181 Non Invasive Blood Pressure mean 

220051 Arterial Blood Pressure diastolic 

220052 Arterial Blood Pressure mean 
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50826 Tidal Volume 

507 PIP 

543 Plateau Pressure 

3259, 6078 MV 

50819, 505 PEEP 

198 GCS Total 

227012, 226757, 454, 223901 GCS Motor 

227014, 226758, 723, 223900 GCS Verbal 

227011, 226756, 184, 220739 GCS Eyes 

226730, 920, 1394, 4187, 3486, 3485, 

4188, 226707 

Height 

3580, 3693, 226512, 220739 Weight 
Table A.5: ItemID Codes with names of patient physiological parameters and characteristics. 
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