A Scalable Data Science Platform
built on Open Source Technologies
with Application of Predictive Analytics
on Acute Respiratory Distress Syndrome
disease

Vaggelis Chaniotakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisors:
Prof. Dimitris Plexousakis
Prof. Manolis Tsiknakis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas (FORTH),
Institute of Computer Science (ICS).






University of Crete
Computer Science Department

A Scalable Data Science Platform
built on Open Source Technologies
with Application of Predictive Analytics on Acute Respiratory
Distress Syndrome disease

Thesis submitted by
Vaggelis Chaniotakis
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author: %

Vaggelis Chaniotakis

DIMITRIOS Digitally signed by DIMITRIOS

PLEXOUSAKIS

PLEXOUSAKIS Date: 2021.03.05 12:49:01 +02'00"

Committee approvals:

Dimitris Plexousakis
Professor, Thesis Supervisor, UOC

Digitally signed by Manolis

Manolis Tsiknakis Tsiknakis
Date: 2021.03.05 13:56:56 +02'00'

Manolis Tsiknakis
Professor, Thesis Advisor, Committee Member, HMU

LL \U\\h;’ﬂ -

Kostas Magoutis
Associate Professor, Committee Member, UOC

Departmental approval:

Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies, UOC

Heraklion, March 2021






A Scalable Data Science Platform
built on Open Source Technologies
with Application of Predictive Analytics on
Acute Respiratory Distress Syndrome disease

Abstract

The continuous growth of high volumes of biomedical data in healthcare generates
significant challenges for their efficient management. This need has made inevitable the
adoption of big data infrastructures and relevant techniques from healthcare organizations, in
order for them to efficiently explore the wealth of real-world data generated with the objective
to improve the quality of healthcare services. In the healthcare industry, various big data
sources, that are characterized by heterogeneity, exist. These include hospital information
systems (HIS) and medical records of patients (EHRs), results of laboratory procedures and
examinations residing in relevant information systems (Laboratory Information Systems -
LIS), data from continuous patient monitoring (e.g. in an Intensive Care Unit - ICU) and data
from smart devices, such as wearables. Also, very big data sets are generated from genomics-
related clinical and research work. Regarding genomics, the rate of growth over the last decade
has also been truly astonishing, with the total amount of sequence data produced doubling
approximately every seven months [55]. This data requires efficient management and analysis
in order to derive meaningful and actionable information.

In developing such solutions, a range of challenges and complications associated with each
step of the pipeline for handling such healthcare big data sets need to be addressed. These can
only be resolved by using high-quality computing solutions for big data analysis. Especially
in the current situation of the COVID-19 pandemic, complications that might occur after the
onset of this disease are really important. An important such complication is Acute Respiratory
Distress Syndrome (ARDS), which is a serious respiratory condition with high mortality and
associated morbidity. A large number of basic and clinical studies have demonstrated that early
diagnosis and intervention are key to improving the survival rate of patients with ARDS [56].
Therefore, there is a pressing need for the development and clinical testing of predictive
models for ARDS events, which might improve the clinical diagnosis or the management of
ARDS.

In the present thesis, we focused on two distinct objectives; namely a) to design a scalable
data science platform, built on open source technologies, and b) to exploit the platform and
publically available big healthcare datasets to develop machine learning models for predicting
acute respiratory distress syndrome (ARDS) events through commonly available parameters,
including baseline characteristics and clinical and laboratory parameters.

This thesis is divided into two main parts. The first part presents and analyzes in detail all
the procedures, materials, and methods adopted to develop this big data management platform.
We report on the complications and difficulties that arise in creating and using such systems
with large biomedical datasets, such as the MIMIC-I111 dataset. The second part of the thesis
describes how we exploit this clinical database, to perform an evaluation study of our platform
on a real world clinical scenario for ARDS. The objective of the study was to develop and
evaluate a novel application of machine learning models for predicting acute respiratory
distress syndrome (ARDS. We employ random forests and logistic regression algorithmic
models, trained on patient health record data for the early prediction and diagnosis of ARDS.
Our approach achieves better results in all metrics that are based on AUC, when compared to
relevant published efforts using the MIMIC 111 dataset to develop predictive models of ARDS.
Specifically, both of our algorithmic models outperform in ARDS prediction, with 10-fold
cross validated Random Forest being dominant, according to AUC (95.1%), Accuracy
(98.0%), Specificity (98.62%) and Sensitivity (96.25%).






Mo Erextaoyun IMioatepoppa
Emwotung Asdopnévov, Baciopnévn
ce Teyvoroyieg Avorytov Kmdowka ne
Epappoyn IpoyvomotTikng
AVAAIvoN g Yud T VOGO TOV
2ovoponov OLelag AVATTVEVGTIKNG
AvoyEperLag

Hepiinyn

H cvveyng avémtoén peydiov 6ykov Boiatpik®dv £00UEV®V GTNV VYEIOVOIKN TEpifaiym
ONovpyel GNUAVTIKEG TPOKANGELS Y10 TNV OTOTEAEGLATIKN TOLG Oloyeiplomn. Avti 1 avayKn
EKave avamOQEVKTN TNV V1I0OETNON LEYAA®DY DTOOOUMDV OEOOUEVOV KO GYETIKMOV TEXVIKAOV OO
0PYOVIGHOVE VYEIOVOUIKTG TTEPIBOAYTG, TPOKEEVOL VO, EEEPEVVIICOVV ATTOTEAEGLLOTIKG TOV
TAOVTO TV 0EO0UEVMOV TOV TPAYLOTIKOV KOGLOV TOV dNUovpyovvTol pe 6tdyo T PeAtioon
NG TO0TNTOS TV LINPECIOV VYElag. Xt Propmyovio vYElovokng mepiBaiync, vdpyovv
dlpopec peyGieg mnyég oedouévev, mov yapoktnpilovror omd erepoyéveln. AvTEG
nephapPavouy vocokopelakd cuothuato tAnpoeopidv (HIS) kot wrpwd apyeio acbevov
(EHRs), omoteléopoto €pyactnplok®v Odkacldv kol eeTtdoemv mov Ppiokoviol o€
oyxetikd ocvotnuota mAnpoeopiwv (Laboratory Information Systems - LIS), dedopéva amd
ovveyn mapokoAovOnomn acbevov (m.y. oe pio povada eviatikng Oepomneiog - MEG®) won
dedopéva amd EEumveg GuoKeVEG, Ommwg eopntd. Emiong, moAd peydia chvoro dedopévmv
OMUoVPyYoLVTOL OO KMVIKES KO EPEVVNTIKEG EPYACIEG TOV GYETILOVTOL LLE TN YOVIOLOUOTIKTY).
Ooov apopd ™ YOVIOLOUOTIKT, 0 pUOUOG avATTTUENG KaTd TV TEAELTalN deKkaeTior TaY ETIONG
TPOYLOTIKA EKTANKTIKOC, LLE TOV GLVOMKO aplOUO 0E0UEVOV OAANAOVYIONG TTOL TOPdyoVTOL
va, ormAactdletan mepimov kdbe entd uveg [55]. Avtd To €S0 UEVA ATAITOVY OTOTEAEGLLOTIKY|
dlayeipion Kot ovAAVGT TPOKEWEVOD Vo, EEAYOVV OVGIUCTIKEG KOl EPAPUOGILES TANPOPOPIES.

Kotd v avantoén t1€101mv AVcE®V TPEMEL VO, AVTILETOTICTEL U0 GEPA OO TPOKANCELS
KOl EMTAOKEG TOV GLVOELOVTOL LLE KAOE Prial TOV GYESIOGOV CLGTNUATOVY Yo THV dlayeipion
TETOIOV HEYAAWMV GUVOA®V OEOOUEVOV VYEIOVOKNG TePiBailymc. Avtég pmopovv va
EMAVOOVY HOVO YPNOCIUOTOIDVTAG VYNANG TOOTNTOG VIOAOYIGTIKEG AVGES Yoo avdAvon
peydiov oegdopévav. Ewwd omv tpéyovca katdotaorm tng mavonuiog COVID-19, ot
EMMAOKEG TOV UMOPEl VoL ELPAVIGTOVV HETA TV €vopén avtig g acBévelag ot (o1 tov
avBpomov eivor Tpaypoatikd onpuavtikés. Mia onpoavtikn tétola mmAokn eivat To chvopopo
ofelog avamvevotikng ovoyépelag (ARDS), 1o omoio eivor pi cofapn avamvevotikn
Katdotoon pe VYA Bvnowdmta Kot oxetikn voonpdtta. ‘Evag peydrog apfudg Pasikov
KoL KAWVIKOV HEAETMV £xovv 0gi&etl 0TL 1 Eykaipn 01dyvmor Kot mopépnfacn etvot kKabopioTikng
onpaciog yw tn Peitioon tov mocoostov emiPimong tov acBevav pe ARDS. Emopévac,
VILAPYEL EMTUKTIKT OVAYKT Y10l TNV OVATTUEN KOl KAVIKT OOKIUY TPOYVAOGTIKMV LOVTEAWMV Y10
ocvoupdvta ARDS, ta omoio Ba pmopovoav va BeAtidcovv v KAMVIKN Odlyveoon 1
dweipion tov ARDS.

2mv napovoa dtpiPr], EGTIAGAUE GE dVO OPOPETIKOVG GTOYOVS: GLYKEKPLLEVA OL) VO
oXeO1GOVLE [0l ETEKTACIUN TAATPOPLA dtoryeiptong peydAov dykov dedopévmv, aciopévol
o€ TEYVOAOYIEC AVOLYTOV KMOOKA, KOl ) Vo EKUETOAAEVTOVUE TV TAATPOPLA Kot OMUOGLOL
dwbéoa peydlo chHVoro KAVIKGOV Oed0UEVOV TPOKEWEVOL VO OVOTTOEOVUE HOVTEAQ
LUNYOVIKNG Labnong yuo v mpdPreymn sopPaviov ofeiog avamvevotikng dvoyépetag (ARDS)
HES® KOWMDG S10ECIUOV TAPAUETPOV, COUTEPIAAUPAVOUEVOV TOV PACIKOV XOULPOKTNPICTIKMOV
KO TOV KAVIKOV KOl EPYACTNPLOKADV TOPAUETPOV.



H dwtpi yopiletor oe 600 kopro pépn. To mpdto pépog mapovstalel kol avaAdEL
Aemtopepmg OAeG TIC dwadkaoies, To VAKE Kot Tic peBddovg mov vioBetnOnkav yio v
avAmTLEN VTG TG TAATEOPLAG dlayeipiong peydrlmv dedopuévav. Ectidoape 6Tig emmAoKkEg
K0l TIG SVOKOMEC TOV TPOKVTTOVV KOTA T O1uiovpyia Kot Tn ¥piomn TETolV GLGTNUATOV G
peydio froiatpikd dedopéva, OTMG T0 cHVOAO dedopévemv MIMIC-IIL. To debtepo pépog avtng
™¢ SaTpPng, mEPLYpAPEL TOV TPOTO WE TOV ONOI0 YEWPICTAKOUE OLTHY TNV KAMVIKY Pdaon
JEOUEVOV, Y10 VO TTPOLYLOTOTTO GOV LE Lol LEAETN OEIOAOYNONG TG TAATPOPLLAG LOGC, GE VAL
TPAYHOTIKO KAWVIKO oevipio yio 1o ARDS. O 6t0)0g TG HEAETNG HOS TOV VAL OVOTTOEOVLE
Kol Vo 0EI0AOYNGOVHE Hio VEO €QapuoYr] odyoplBukdv poviédmv, Random Forest kot
Logistic Regression, mov ekmodedTnKoV 6€ d€d0UEVA TYETIKA PE TNV VYELR TV acOevav, Yo
mv Tpowun odyvoon kot tpdPieym tov ARDS. H mpocéyyion pog emrvyydvel koAvtepa
OmOTEAECUOTO GE OAEC TIC LETPNOELS, GE GUYKPION UE OYETIKEG ONUOGIEVUEVES TPOCTAOELEG
mov emiong ypnoomoovv ™ PBdaorn dedopéveov MIMIC I yio v avanTuEn TpoyVOCTIK®OV
povtédmv yuoo ARDS. Zvykexpipéva, kot ta 000 adlyoplOukd poviéda pog £xouv KaAVTEPT
amddoon oty TpdPreyn ARDS, pe kvpiapyo to Random Forest pe 10-fold cross validation,
COUP®VO, [E TNV TEPLoYN KAtw omd v kaumdin AUC (95,1%), v akpifea (98,0%), v
eodmTa (98,62%) Ko v gvaicOncio (96,25%).






Evyoaprotieg

®a MBeha va guyaplomnom omd kapdldg tov kabnynt Bioiatpwrng [TAnpogopikng kot
HAextpovikng Yyeiag, 6to EAAnvikd Mecoyeiaxo [Havemomuo, koplo Mavaoin Towkvéxn og
cOppovAo g dwTpiPnc pov kot cuvepyalopevo Epevvnt tov Epyaompiov Yrnoroyiotikng
Buo-latpwkng, Ivetitovtov ITinpoeopikng, ITE, o omoiog pe Tig kovotopeg 106e¢ Kot TO
TAOVG10 OpapLa TOV, 6TdONKE ap®YHS G€ VTN TNV TPOSTAOELN, GLUPAAAOVTOG GNUAVTIKA GTNV
dte&aywyn ™e HEAETNG Kol OAOKANpwONG avTNG TG epyaciag. Emiong oe cuvepyasia pe tov
enont kadnynm Emotung Yroloyiotdv kot g otatpiPng pov, oto [Havemommumo Kpnng,
Kopto  Anunrpn I[MAeovodkn, AvBuviy tov Ivotirovtov IMAnpogopikrg, ITE, tovg
eVYOPoTO BepUd Y10 TNV TAOVGI0. LTOGTNPIEN TOVS KOl TTOPOYN GE VITOAOYIGTIKOVS TOPOLGS Y10
™ ovykekpyévn epyacio. Xwpic exeivoug dev Ba Ntav duvatn 1 desaymyn OA®V avTdV TOV
TEPOLOTIKOV SLOOIKOGIDV KO KOT  ETEKTOCT] 1| OAOKANPMOT TG EMEKTAGIUNG TAUTPOPLLOG
dwyeipiong peydlov 6yKov 0€d0UEVOV OV ONoVpYNGapE. Akoun, BEA® va evyoploTIo®
Wwiutépmg Tov emok. kanynt) tov Tunuatog Emoetung Yrnoioyiotodv tov Iavemotpiov
Kpnmg, xopro Xapionpo Kovdvrdakn kot tov xkopro Agvtépn Kovpdkn, cvvepyaldpevoug
Epevvntég tov Epyaostnpiov Yroroywotikng Buo-latpikng, Ivetitovtov [TAnpopopikrg, ITE
YL TNV GUVETIPAEYN TOVG GE AVT TNV €PYOCiO Kol TI TOAVTIUEG GLINTNGELS TOV ETYOLE, TIC
oLUPovALG Kt TV KaBodnynomn tovs. Ae umopd va mapoieiyo BERata tov av. kabnynt tov
Tunpotog Emotung Yroloywotdv, tov Iavemotmuiov Kpnmg, kopro Kodota Maykovtn,
dwdokovta oe cuVaPES Ladnua pe Tov Topéa Egldikevong mov eméaela, Ommg emiong Kot
ovvepyalduevo Epgvvnt tov Ivotitovtov ITAnpopopikng, ITE. Mmopd va e dtt T0 pnddnpa
TOV KOl GUYKEKPIUEVOL O TPOTOG TTOV OV UETAAOUTAOEVLGE TO TEPIEXOUEVO, EMOPPAYIGE TNV
emoyn pov va aoyoAndm ue Distributed and Scalable data store and management teyvoAoyieg
Kol VINPecie. AmotéAece KaOOPIOTIKY EUTVELOT Y10l EUEVA KOl TOV EVYOPIOTH Oepud yio
avto. Emmiéov, 0A® va euyapiotiom eykapdta, Tov akadnuaikdé coppovio pov, IIpodedpo
oto Tunua Emotmung Ymoloyiotdv, tov [oavemomuiov Kprmg, kabnynti kbpro Aviovio
Apyvpo, emiong cvvepyalopevo Epevvntn) tov III, ITE, yioo v auépiom katovonon Kot
EUTIGTOCVVT IOV £0€1E€E GTO TPOTO, LLOV PIHOTO, TIGTELOVTOAG G EUEVO KoL TNV Opesn Tov giyal
Yy 00T 10 peTOmTLYKO. ElAikpvd, Tav TIU] Hov Voo GUVEPYOSTH Kol Vo £X® SImA LoV
OAOVG aVTOVS TOVG KATAEIWUEVOLS avBpdmovg Tov Ivetitovtov TTAnpogopikrg, ITE. Télog,
Ba NBela va guyaplotnom Tovg yovelg pov, Anuntplo kot Bactieio, tov adeped pov dilmno,
™V Adevn Kot Vo TOVG amodMGm POPO TIUNG Yo TNV TEPAGTIO SVVOUT WLYNG oL £de1Eav
TOPAUEVOVTOAG OO TV TPMTH GTLYUN GTO TAAL OV, OTTMG €MioTG Kol dV0 £YKAPS10VG PIAOVG
pov, Nuworao kot Miyoni, divovtag pov ompién kot eAnida otig SVGKOAES OTIYUEG TOV
oLVAVTNGO GE AVTO TO OLOPPO Ta&idt.
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Chapter 1

Introduction

1.1 Challenges and Complications

Nowadays, with the advent of computer systems and its potential, the digitization
of all clinical exams and medical records in the healthcare systems has become a
standard and widely adopted practice [1]. Therefore, there is increased interest in
developing big data technology in healthcare and biomedicine to manage massive
collections of heterogeneous health datasets, such as electronic health records and
sensor data, which are increasing dramatically. Furthermore, large scale data
analytics can improve patient outcomes and personalized care, while reducing
medical spending. Nevertheless, in the biomedical field, data volume is
increasingly growing, and traditional methods cannot manage it efficiently. There
are still challenges of Big Data analytics in healthcare systems that need to be
identified. These challenges are categorized by volume which refers to high
amounts of data, variety which emphasizes that data comes under different sources
and formats, velocity which means that data is generated at a rapid pace and
veracity which means that accurate and applicable data originates from trustable
sources. These challenges are often encountered in management, analysis and
storage of biomedical data and efforts to handle these growing datasets has
stretched the limits of traditional healthcare information technology systems.
Another characteristic of big data is its variability which indicates variations that
occur in the data rates. An additional important aspect of big data infrastructures is
complexity. Complexity arises from the fact that big data is often produced through
various origins, which implies that many operations are being performed over the
data. These operations include identifying relationships, cleaning and transforming
data flowing from different sources (ICU mechanical ventilators, home mechanical

ventilators, smart device sensors, etc.) (Figure 1.1).
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Figure 1.1: Workflow of Big data Analytics. Data warehouses store massive amounts of data
generated from various sources. This data is processed using analytic pipelines to obtain smarter

and affordable healthcare options [1]

Moreover, quantifying patient health and predicting future outcomes is a significant
aspect in biomedical research. According to literature review [9, 12], if a patient’s
condition changes, physiological parameters (such as heart rate, blood pressure,
respiratory rate, etc.) will change at varying degrees, too. Especially when we have
to handle time series data, the difficulty of management increases if we consider
that all data must be interconnected in some logical way. For instance, each patient
in the hospital has a unique identification code, each hospitalization for each patient
also has a unique identification code, each admission to the intensive care unit also
has a unique identification code, as well as all values and physiological parameters
recorded for all these unique patient codes have unique identification codes.
Therefore, we realize that many different values and measurements for many
patients, who are hospitalized for a long time in hospitals and in particular in
intensive care units of these hospitals, with the frequency of their hospitalization
constantly increasing, generate more and more new data. This data must be accurate
in order to be applicable and able to identify clearly a clinical situation. The
management of this data reveals at the same time the fact that we have to handle
the challenges of variety, volume, velocity and veracity of this data. Thus, we

perceive that even in big data infrastructures, complications may occur.

Studies [2, 52] have indicated that ARDS is a highly heterogeneous syndrome that
may be composed of several distinct sub-phenotypes. Heterogeneity in population

implies heterogeneity in relationships between explanatory variables and other



variables within data parts, posing serious challenges in building predictive models
attempting to identify a common explanatory data pattern associated with an
outcome. All of the above are necessary steps of a proper preprocessing and
purification of data in order to reach the ultimate goal which is their modeling in

machine learning algorithms for knowledge mining.

1.2 Significance of ARDS

Acute respiratory distress syndrome (ARDS) is a life-threatening disease,
characterized by acute onset of hypoxia and pulmonary infiltrates, and incited by
conditions such as sepsis, pneumonia, trauma and blood transfusion [3, 4, 5]. ARDS
causes diffuse lung inflammation which leads to increased pulmonary vascular
permeability, pulmonary edema, and alveolar epithelial injury [3]. According to
relevant epidemiological investigations, the in-hospital mortality rate of ARDS is
as high as 40% [4]. The acute respiratory distress syndrome (ARDS) was defined
in 1994 by the American-European Consensus Conference (AECC) [5] and it is
diagnosed based on three criteria: acute onset, moderate to severe impairment of
oxygenation and bilateral lung infiltrates of a non-cardiac origin on chest x-ray or
tomographic (CT) scan. The severity of the ARDS is defined by the degree of
hypoxemia, which is calculated as the ratio of arterial oxygen tension to fraction of
inspired oxygen (PaO2/Fi02). ARDS can be characterized as mild (200 <
(PaO2/Fi02) < 300), moderate (100 < (PaO2/Fi02) < 200) or severe ((PaO2/Fi02)
< 100), which carries a mortality rate of 45%, as clarified by the Berlin definition
of ARDS [5]. Determining the PaO2/FiO2 requires arterial blood gas (ABG)
analysis. To calculate the PaO2/FiO2 ratio, the PaO2 is measured in mmHg and the
FiO2 is expressed as a decimal between 0.21 and 1. As an example, if a patient has
a PaO2 of 100 mmHg while receiving 80 percent oxygen, then the PaO2/FiO2 ratio
is 125 mmHg (i.e., 100 mmHg/0.8). The PaO2/FiO2 ratio and positive end-
expiratory pressure (PEEP) (>=5 cmH20) are valuable clinical measures of the
patient's respiratory status while receiving supplemental oxygen. It enables bedside
clinicians to monitor the degree of hypoxemia, quickly detect early progression of

respiratory failure, and intensify treatment.



1.3 ARDS Relation with COVID-19 Pandemic

Especially in the current situation of the COVID-19 pandemic, complications that
could occur after the onset of this disease in human’s life are really important and
one of the most dangerous of these complications is ARDS [3, 6, 7]. As we
explained above, ARDS is an important cause of morbidity and mortality
worldwide. It may be developed after a direct injury to the lungs as aspiration,
trauma or pneumonia (one of its consequences of COVID-19) or an indirect injury
to other parts of the body as sepsis or pancreatitis. Specifically, severe COVID-19
presents viral pneumonia from severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection leading to ARDS [3]. According to this study [3],
COVID-19 ARDS is diagnosed when someone with confirmed COVID-19
infection meets the Berlin 2012 ARDS diagnostic criteria of (i) acute hypoxaemic
respiratory failure; (ii) presentation within 1 week of worsening respiratory
symptoms; (iii) bilateral airspace disease on chest x-ray, computed tomography
(CT). In 2020, there were approximately 100 million confirmed cases of people
infected with the virus, including approximately 2 million deaths [53]. The most
worrying point, however, is not the total number of infected people but the high
rate at which this virus is transmitted to the human community. ARDS develops in
42% of patients presenting with COVID-19 pneumonia, and 61-81% of those
requiring intensive care [3]. The cases of people infected with COVID-19 virus are
increasing dramatically. As we can see in the charts below, the transmission rate in
Figure 1.2 and Figure 1.4 and the deaths in Figure 1.3 and Figure 1.5 are quite high

in relation to time.
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Figure 1.4: New Confirmed COVID-19 cases in European Region.
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Figure 1.5: Daily New Confirmed COVID-19 deaths in European Region.

1.4 Significance of Scalable Infrastructures for Big Data
Predictive Analysis

Early identification and management of ARDS can limit the relapse of lung disease
and significantly improve patient outcomes [51]. The difficulty in analyzing and
predicting ARDS outcomes originates from the fact that it is a highly heterogeneous



condition. ARDS involves the interaction of multiple risk factors, various vital
signs, symptoms, past and current conditions [51]. This difficulty grows, as the
volume of heterogeneous data that needs to be processed and analyzed to give us
useful information grows. Therefore, identifying patients with COVID-19 related
or not related ARDS is not an easy task. One reason is the large number of different
types of data to be analyzed, structured or unstructured, that exist in the scientific
community. Another reason is that, although every detail for analysis is biomedical
data, the majority of the useful information in this field is not clear and obvious.
Clinical data is not always well defined. Significant parts of the data are coded with
specific numbers that define specific clinical situations. ICD-9 diagnosis codes [8]
and ItemID codes [8] that identify mechanically ventilated patients with their
laboratory measurements and their charts values, contribute significantly on
identification of severity class of ARDS patients. There are study cases [2, 9, 10,
11] where Artificial Intelligence (Al) models are developed for ARDS
identification and the authors omit to describe how their data were retrieved from
big data sources and how they were actually managed in order to get used from
predictive models. It is important when presenting the result and conclusion of a
study, to list the main points of the recipe of this result or even difficulties that were
encountered trying to reach it. Building an Al system for early identification of
ARDS based on large volumes of data, hides complications and some specific
implementation processes which are good to get known to the scientific community
of data management and analysis. This tactic would help more researchers and
analysts in the future to be able to reproduce such clinical scenarios in order to
improve them and achieve even better results. We encountered such complications
in our own work, using the MIMIC-III Clinical database [8], in order to examine,

analyze and export ARDS related data.

It is worth noting that another major challenge in this area is data integration. More
specifically there is a large need to integrate the data that is obtained for each patient
into one system, as that will allow for fast data analysis, and give clinicians all the
information they need to treat their patients in a perfect way. However, most of the
time data is coded due to the patients’ privacy rules, making it necessary to be

decoded and normalized.



Early management of a disease requires early identification. To our knowledge, to
date, there are a few reliable ways [9, 10] to anticipate which patients are likely to
develop ARDS. Improved predictive validity is needed to enable reliable early
identification and management of patients at risk for ARDS. All the above facts
make the immediate identification of patients with ARDS a high priority of the
scientific community. This action, however, presupposes the rapid processing and
analysis of biomedical data by stable, scalable and fault tolerant systems governed
by simplicity. Concluding that it is not trivial to develop Al models based on big
data sources, we aimed that a systematic approach is required. Consequently, we
need a scalable system for processing and analyzing large volumes of diverse data.

1.5 Our Approach

To this direction, in this thesis, we focus on deploying a scalable open source based
platform that enables the development of machine learning predictive models for
the early identification of patients with ARDS. We used this clinical data analysis
scenario in order to evaluate our platform’s infrastructure in real world use cases.
We present an overview of our solution in this area and we focus on building a
scalable architecture, using open source components. We identify the main
problems occurring in such a big data infrastructure and we report experiences and
solutions proposed. Moreover, we produced a complete workflow from defining
the research question, retrieving the data using our scalable platform,
preprocessing, building and training the model and eventually testing it. It was
necessary to rely on well supported and documented open source, large scale data
management infrastructures, for achieving quality data analysis results without
being burdened from high financial costs and waste of time. Our platform may
handle stream and batch data processing of clinical scenarios with fast, fault
tolerant methods and support the development of machine learning models for the

early identification of patients with life threatening diseases, such as ARDS.

As a big data test case for our infrastructure we used the last version (1.4) of



MIMIC-I1I database [8]. The raw size of this dataset is approximately 50 GB. It
gave us the opportunity to explore the biomedical data in depth and develop specific
cleaning and preprocessing methods, as a response to the problems listed above.
Furthermore, we explored the relation of these parameters and focused on the
identification of P/F and S/F [9, 12, 13, 14] ratio in combination with PEEP,
according to literature review [2, 5, 9, 10, 15, 16, 17]. Using our infrastructure in
building Al models for big data analysis, we developed algorithms for prediction
of ARDS disease based mostly on various noninvasive parameters [9] in order to
provide medical staff with the early and accurate knowledge of disease diagnosis.
We used specific machine learning algorithms and a cross validation method to
evaluate our predictive model based on the integrated data that retrieved from our
infrastructure. More specifically, we first used WEKA [18] in order to see the
potentials and the perspective of our techniques in our data and then we ran Random
Forest with cross validation of 10 folds and Logistic Regression algorithms with
specific tuning parameters. In comparison with recently relevant works and
solutions on ARDS, we accomplished excellent performance in prediction results.
To the best of our knowledge there is no other solution to enable uninterrupted
integration and execution of modeling, using real world big data and make tests on

real biomedical challenges like ARDS, outperforming on existing solutions.

Overall, the remaining of this thesis is structured as follows: Section 2 mentions
the related work on other biomedical and healthcare big data infrastructures as well
as review of efforts in developing predictive models of ARDS. Section 3 considers
the background of the technologies that we used to build our platform’s
infrastructure and we explain the materials and methods of its architecture in detail.
Moreover, we mention our experiences in the configuration procedure and all the
challenges in addition with complications that we met. Section 4 describes the
datasets we used and all the preprocessing and cleaning methods as a significant
part of our work and summarizes the data analysis evaluation and the performance

results. Finally, Section 5 concludes this work, noting future prospects.



Chapter 2

Related Work

In this section, we briefly survey various categories of related work on big data
infrastructures and review of efforts in developing predictive models of ARDS.

2.1 Other Solutions on Big Data Infrastructures

Jacob McPadden, et al., in 2018 [11], demonstrated the implementation of a data
science platform built on open source technology within a large, academic
healthcare system and describe two computational healthcare applications built on
this platform. According to the authors, their Hadoop based infrastructure provides
a robust analytics platform where healthcare and biomedical research data can be
analyzed in near real-time for precision medicine and computational healthcare use
cases. They also report that several limitations exist in data science platforms like
this, noting that it requires substantial technical expertise to use them to their full

potential.

Jagreet Kaur et al., in 2018 [19], proposed a generic architecture for enabling Al
based healthcare analytics platform by using open source technologies. They tried
to show the importance of applying Al based predictive and prescriptive analytics
techniques in the Health sector. They provided a systematic approach to support
fast growing data of people with severe diseases. Their proposed architecture can
support Artificial intelligence based healthcare analytics by providing batch and

stream computing, extendable storage solution and query management.

Ankita Sharma et al., in 2019 [20], presented a Hadoop-based big data framework
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(called BHARAT) integrating non-invasive magnetic resonance imaging (MRI),
MR spectroscopy (MRS) as well as neuropsychological test outcomes to identify
early diagnostic biomarkers of Alheimer’s Disease. The proposed framework is
partitioned into four major components, namely (1) Data Normalization, (2) Data
Management, (3) Data Storage, and (4) Data Processing. They describe big data
challenges in AD research and specifically regarding the large data size, the feature

extraction in heterogeneous data, classification and missing values.

Van-Dai Ta et al., in 2016 [21], proposed a generic architecture for big data
healthcare analytic by using open source technologies, including Hadoop, Apache
Storm, Kafka and NoSQL Cassandra. Thy concluded that the combination of high
throughput publish, subscribe messaging for streams, distributed real-time
computing, and distributed storage system can effectively analyze a huge amount
of health care data coming with a rapid rate.

Waullianallur Raghupathi and Viju Raghupathi, in 2014, have proposed “Big data
analytics in healthcare: promise and Potential” [22]. In this paper the authors
proposed the potential of big data analytics in healthcare. The paper provides an
overview of big data analytics for healthcare practitioners and researchers, noting

that still remain challenges to overcome.

Naoual EI Aboudi et al., in 2018 [23], proposed an extensible big data architecture
based on both stream computing and batch computing in order to enhance further
the reliability of healthcare systems by generating real-time alerts and making
accurate predictions on patient health condition. Based on the proposed
architecture, a prototype implementation has been built for healthcare systems in
order to generate real-time alerts. The suggested prototype is based on spark and

MongoDB tools.

Mariam Kiran et al., in 2015 [24], presented an implementation of the lambda
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architecture design pattern to construct a data-handling backend on Amazon EC2
[25]. This paper combines ideas from database management, cost models, query
management and cloud computing to present a general architecture that could be
applied in any given scenario where affordable online data processing of Big
Datasets is needed. Authors had foreseen that the current industry would focus of
using Spark SQL have aided further faster processing reducing some of the

weaknesses of the Hadoop processing model [26].

Most of the above related works are referring to generic architectures and platforms
without a real use case to prove their value. Nevertheless, with the push for
population-wide research initiatives such as the COVID-19 ARDS [3, 6, 7] and the
mortality of already well know ARDS, that will rely on large, complex, relational
data, institutions need to develop systems that can adequately scale to handle the
data inflow and provide sufficient capacity for analytic needs. Despite this fact, any
new approaches must be mindful to the privacy and reliability requirements
associated with healthcare data. Therefore, we present a use case that highlights the
architecture and implementation of our biomedical data science platform and
enables scalable, integrated, fault tolerant and attentive to privacy healthcare
analytics. These strategies imply current best practices for data management,
system integration, and distributed computing, maintaining a high level of

credibility and fault tolerance.

2.2 Review of Efforts in Developing Predictive Models of
ARDS

Pengcheng Yang et al., in 2020 [9], proposed a new method for identifying the
acute respiratory distress syndrome disease based on noninvasive physiological
parameters. According to their study, arterial gas blood is required in order to define
the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen
(PaO2/FiO2 ratio) for ARDS prediction. They used the MIMIC-I11 database and

they proposed an algorithm based on non-invasive physiological parameters which
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helps in the estimation of P/F levels to aid in the ARDS disease diagnosis. They
applied machine learning methods in co-operation with specifically feature
selection filters in order to study more accurately the correlation in plenty of
noninvasive parameters from patients that leads to the identification of ARDS
disease. Moreover, they used cross-validation techniques on their machine learning
methods in order to measure and approve the performance of their algorithms for
various feature subsets. More specifically, they used XGBoost which is a gradient
boosted tree model with 10-fold cross validation and they achieved satisfying
results on the performance of ARDS identification, with the sensitivity of 84.03%,
the specificity of 87.75% and the AUC of 0.9128. As part of feature extraction they
discriminated some risk factors that contribute significantly to any ARDS
prediction model. According to the Berlin Definition [5], they stated positive end-
expiratory pressure (PEEP) >=5 cmH20 and PaO 2/FiO 2 ratio (P/F ratio) <= 300
mmHg as the most important criteria for ARDS classification. They categorized
these criteria in three states of severity, namely, mild (200 < arterial oxygen partial
pressure (PaO2)/ fraction of inspired oxygen (FiO2) (P/F) <=300), moderate (100
< P/F <=200), and severe (P/F <=100), according to the level of oxygenation index
(P/F). They mainly used blood gas analysis in order to measure PaO2 that
contributes to the P/F value for the ARDS severity evaluation. According to all the
above, their selection criteria contained patients with P/F < 300 on the first day of
entering the ICU, patients older than 16 years old, with 48h minimum LOS (Length
of Stay) in the ICU and mechanically ventilated at some time during their presence
in the ICU.

Sidney Le et al., in 2020 [10], developed and evaluated an application of gradient
boosted tree models trained on patient health record data for the early prediction of
ARDS. They used MIMIC-I11l database for their analysis and they created XGBoost
gradient boosted tree models in order to achieve early ARDS prediction. They
extracted clinical variables and numerical representations of radiology reports as
data source to their models and applied 10-fold cross validation. They followed
specific methods and selection criteria in order to feed their model with important
and useful features. More specifically, they included patients with at least 18 years

of age, following the Berlin Definition [5]. According to this and the co-occurrence
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of two parameters, (1) Positive end Expiratory Pressure (PEEP) >=5 cmH 20 and
(2) PaO 2/FiO2 ratio (P/F ratio) <= 300 mmHg, they examined the patient data.
According to their results, their classifier demonstrated AUROC performance of
0.843, 0.858, 0.810, and 0.790 for early ARDS prediction on the test set at 0 hours,
12 hours, 24 hours, and 48 hours prior to onset, respectively.

The same time period, in 2020 [27], Elizabeth Sanchez et al., studied about Acute
Respiratory distress syndrome (ARDS). They created a predictive model using
baseline characteristics in order to identify patients at high risk of having severe
ARDS. The selection criteria according to the Berlin Definition [5] included the
ratio PaO2/FiO2 <= 100 mmHg. Moreover, FiO2, and positive end-expiratory
pressure (PEEP) were categorized by the authors as useful variables to predict
persistent severe ARDS. They used random forest and regularized logistic
regression with an L1 penalty [Least Absolute Shrinkage and Selection Operator
(LASSO)] techniques in order to identify predictive variables of persistent severe
ARDS. They presented their results concluding that PaO2:FiO2, FiO2 and positive

end-expiratory pressure (PEEP) at enrollment were useful predictive variables.

Wang et al. [2], in 2019, studied about ARDS identification for enhanced machine
learning predictive performance. They used MIMIC-III database from which they
extracted adult patients (age >= 18 years old). According to the authors, ICD-9
diagnosis codes and procedure codes that are used for the identification of
mechanically ventilated patients are very important factors in ARDS prediction.
They extracted PaO2, FiO2, and PEEP from the dataset and they used Berlin
Definition criteria [5], setting as basic parameters PaO2/FiO2 ratio < 300 and PEEP
>=5 cmH20. They used much more clinical variables in case of analysis, i.e. mean
airway pressure (MAP), PaCO2, tidal volume, platelet count, total bilirubin;
minimum of sodium, glucose, albumin, hematocrit, systolic blood pressure (SBP);
maximum of temperature, heart rate, white blood cell (WBC) count, creatinine.
They developed predictive models, including gradient boosted machine (GBM) and

random forest (RF) with cross validation as part of parameters’ tuning.
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Xue-Shu Yu et al. [29], in 2019, studied about risk factors for acute respiratory
distress syndrome (ARDS) and found out that lung heart pressure index is a one of
them. They used MIMIC-111 database from where they selected ARDS patients who
had undergone mechanical ventilation for more than 48 hours (using structured
query language SQL queries). They collected demographics and useful variables
via data extraction such as age, sex, ethnicity (white, black, other), body mass index
(BMI), smoking status, ARDS severity (according to the Berlin definition), disease
severity scores (Sequential Organ Failure Assessment [SOFA]), vital signs (MAP,
respiratory rate [RR], heart rate [HR], Pao2/Fio2 ), laboratory values (pH, lactate,
red cell volume distribution width [RDW]) and ventilator parameters (lung-heart
pressure index (LHPI, [100%*DP/MAP]), DP, MP, platform pressure (Pplat). The
primary outcome of their study was 30-day mortality from the date of ICU
admission. In order to achieve accurate predictions, they used random forest and
logistic regression models with 10-fold cross validation, resulting in ARDS
identification and presenting the mortality of ARDS in patients. Their study showed
that the LHPI was a powerful prognostic indicator of 30-day mortality in ARDS
patients, and its predictive discrimination was better than that of driving pressure

DP and mechanical pressure MP.

Emilia Apostolova et al., in 2019 [51], used a combination of free-text and
structured data in order to create an Acute Respiratory Distress Syndrome (ARDS)
analytics model. They used MIMIC-III database deriving patients-specific
contextual ARDS risk factors, making use of deep-learning methods on ICD and
free-text clinical data. They extracted structured data from the first 24 hours of
admission, such as vital signs and lab results, building an ARDS patient prediction
model and an ARDS patient mortality prediction model. The age of patients that
attempted to predict ARDS was above 18 years old with ICD-9 codes for severe
acute respiratory failure and use of continuous invasive mechanical ventilation. The
structured data included in this analysis consists of anion gap (anion gap), albumin,
bands, bicarbonate, bilirubin, creatine, chloride, glucose, hematocrit, hemoglobin,
lactate, platelet, potassium, partial thromboplastin time (ptt), international
normalized ratio (inr), prothrombin time (pt), sodium, bun, white blood cell count

(wbc), heart rate (heart rate), systolic blood pressure (sysbd), diastolic blood
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pressure (diasbp), mean blood pres- sure (mean bp), respiratory rate (resperate),
body temperature (tempc), peripheral capillary oxygen saturation (spo2), body
mass index (bmi), gender, age, urine output. All variables were measured over the
first 24 hours of ICU admission, because according to the authors it has been
reported that ARDS develops at a median of 30 hours after hospital admission.
They referred to a variety of ICD9 codes that were utilized in their study and

explained the significance of these codes in the core of the study.

Jianfeng Xie et al. [28], in 2018, studied about acute respiratory distress syndrome
prediction (ARDS) in order to establish a modified ARDS prediction score (MAPS)
helping clinicians in the early recognition of ARDS in patients who need to be
admitted to the ICU. They used data from 13 tertiary hospitals in China. The main
risk factor that used in their selection criteria was patients with PaO2/FiO2 <= 300
mmHg and PEEP >5 cmH20. They used univariate and multivariate logistic
regression models in order to make accurate predictions, resulting in various
statistics about patients and concluding that MAPS discriminated patients who
developed ARDS from those who did not, with an area under the curve (AUC) of
0.8009.
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Chapter 3

Platform Architecture and Deployment

This section provides an overview of the procedures described in the adopted
methods and our platform’s architecture, which are visually summarized in Figure
3.6.

3.1 Methods and Categories

Big data technologies have received great attention due to their successful handling
of high volume data compared to traditional approaches. Big data frameworks
support all kinds of data, structured, semi structured, and unstructured data, while
providing several features. Those features include predictive model design and big
data mining tools that allow better decision making process through the selection

of relevant information.

Big data processing is characterized by two categories: batch processing and stream
processing. The first category, batch processing, is based on analyzing data over a
specified period of time and it is mainly used when there are no constraints
regarding the response time. Specifically, this category aims to process high
volume of data by collecting and storing batches to be analyzed and generate results
at a fast pace. The second category, stream processing, is preferable for applications

that require real-time feedback.

Batch computing requires ingesting all data before processing it in a specified time.

For several years, Mapreduce [30] represents a widely adopted solution in the field
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of batch processing. It operates by splitting data into small pieces that are
distributed to multiple nodes in order to produce intermediate results. Once data
processing by nodes is finished, outcomes will be aggregated in order to generate

the final results.

As regards, stream computing in real applications such as healthcare, a high
quantity of data is generated continuously. When the need for real time stream
processing increases, data analysis takes into consideration continuous manner of
data to change over time and being trained in these data changes, manages them
accordingly. Indeed, storing large quantities of data for further processing may be
challenging in terms of memory resources. Moreover, real applications tend to
produce noisy data which contain missing values along with redundant features,
making data analysis complicated, as it requires significant computational time
[23]. Stream processing reduces this computational load by performing simple and
fast computations for small amounts of data, spending only a few seconds in

computations.

3.2 Background and Materials

This section presents essential background information related to the topic
described in this thesis and we explain the main concepts. In order to contribute
and support the informatics needs for the next generation of computational health

research, novel approaches to data storage and analysis are necessary.

3.2.1 Apache Spark Ecosystem

Fortunately, several applications have emerged that begin to address the key
challenges in big data processing, such as distributed data storage and scalable
processing capacity. One example is the Apache Spark framework, which contains

a set of open source modules designed specifically for these tasks [31, 32]. The
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goal of these platforms is to create a central repository, called data lake, which can
store raw data in its native format for later search, retrieval, and analysis. However,
researchers and clinicians in the healthcare region looking to leverage modern big
data architectures, are faced with particular challenges in implementation and little
guidance or evidence on the use of these platforms in parallel with production

environments.

Apache Spark is a unified open source and cluster computing analytics engine for
large scale data processing [32]. More specifically, it is an open source analytics
engine used for big data which is designed to cover a wide range of workloads such
as batch applications, iterative algorithms, interactive queries, and streaming. The
main feature of Apache Spark is its in-memory cluster computing that increases the
processing speed of an application. Spark provides an interface for programming
entire clusters with implicit data parallelism and fault tolerance. It can handle both
batches as well as real-time analytics and data processing workloads. Apache Spark
started in 2009 as a research project at the University of California, Berkeley.
Researchers were looking for a way to speed up processing jobs in Hadoop systems.
It is based on Hadoop MapReduce [26, 30, 33, 34] and it extends the MapReduce
[30] model to efficiently use it for more types of computations, such as interactive
queries and stream processing that mentioned above. Spark provides native
bindings for the Java, Scala, Python, and R programming languages. In addition, it
includes several libraries to support build applications for sequential querying
(SQL), machine learning [MLIib], stream processing [Spark Streaming], and graph
processing [GraphX]. Apache Spark consists of Spark Core and a set of libraries.
Spark Core is the heart of Apache Spark and it is responsible for providing

distributed task transmission, scheduling, and 1/O functionality.

Spark_Core
Spark Core is the base engine for large scale parallel and distributed data

processing. Further, additional libraries which are built on the top of the core allows
diverse workloads for streaming, SQL, and machine learning. It is responsible for

memory management and fault recovery, scheduling, distributing and monitoring
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jobs on a cluster and interacting with storage systems.

Spark Streaming

Spark Streaming is the component of Spark which is used to process real-time
streaming data. Thus, it is a useful addition to the core Spark API. It enables high-
throughput and fault-tolerant stream processing of live data streams.

Spark_SQL

Spark SQL is a new module in Spark which integrates relational processing with
Spark’s functional programming API. It supports querying data either via SQL or
via the Hive Query Language. For those who are familiar with RDBMS, Spark SQL
IS an easy transition from their earlier tools where they can extend the boundaries

of traditional relational data processing.

Mllib_(Machine_L earning)
MLIib stands for Machine Learning Library. Spark MLlIlib is used to perform

machine learning in Apache Spark.

We decided to use Apache Spark against other technologies such as the
aforementioned and widely used from related works [1, 20, 21, 35, 36] Hadoop,
because of specific features that spark grants us. We mentioned the most important
components of it above, concluding with the six main ones that are depicted in

Figure 3.1:

e Speed
Spark runs much faster than Hadoop MapReduce for large scale data
processing. It is also able to achieve this speed through controlled

partitioning.
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Powerful Caching
Simple programming layer provides powerful caching and disk persistence

capabilities.

Deployment
It can be deployed through Mesos [37], Hadoop via YARN [38], or Spark’s

own cluster manager.

Real-Time
It offers Real-time computation and low latency because of in-memory

computation.

Polyglot

Spark provides high-level APIs in Java, Scala, Python, and R. Spark code
can be written in any of these four languages. It also provides a shell in Scala
and Python which is extremely helpful in cases of server or cluster

deployment.

Scalable

It can be easily paralleled to any server or cluster of servers.

Polyglot @—@ Spoﬁ\(z :‘| —@ Powerful Caching

Figure 3.1: Apache Spark most important characteristics.
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3.2.2 Apache Kafka and Zookeeper

Apache Kafka and Zookeeper [39] are two open source tools that work together to
serve primarily stream processing scenarios. Apache Kafka [39] is a distributed,
scalable, high performance messaging system that was developed for collecting and
delivering high volumes of log data with low latency. We can observe a Kafka
messaging queue workflow in Figure 3.2. Being open source means that it is
essentially free to use and has a large network of users and developers who
contribute towards updates, new features and offering support for new users. Kafka
[40] is designed to run in a “distributed” environment, which means that it runs
across several (or many) servers, leveraging the additional processing power and
storage capacity that this brings. Kafka was originally created at LinkedIn [41],
where it played a part in analyzing the connections between their millions of
professional users in order to build networks between people. It was given open
source status and passed to the Apache Foundation — which coordinates and

oversees development of open source software — in 2011.
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Figure 3.2: Kafka Messaging Queue Workflow.

ZooKeeper is a top-level software developed by Apache that acts as a centralized
service and is used to maintain naming and configuration data and to provide
flexible and robust synchronization within distributed systems. As we can observe
in Figure 3.3, ZooKeeper keeps track of status of the Kafka cluster nodes and it
also keeps track of Kafka topics and partitions. The data within ZooKeeper is
divided across multiple collections of nodes and this is how it achieves its high

availability and consistency. In case a node fails, ZooKeeper can perform instant
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failover migration; e.g. if a leader node fails, a new one is selected in real-time by
polling within an ensemble. A client connecting to the server can query a different
node if the first one fails to respond. Kafka uses ZooKeeper to manage the cluster.

ZooKeeper is used to coordinate the brokers/cluster topology.

Producer] |~ Brokerl —| Subscriber 1
Producer2 | —————  Broker2 Subscriber 2
Producer3 (———*  Broker3 Subscriber 3

‘ Zookeeper ‘

Figure 3.3: Kafka ZooKeeper Architecture.

3.3 System Configuration

This section presents the system configuration and build, regarding the hardware
and the software parts, summarizing the important points of each one through

experimental evaluation results.

3.3.1Hardware Configuration

In the context of tests and experiments about the scalability of our platform we used
a desktop personal computer with a 64bit Intel® Core™ 17 CPU at 3,60 GHz with
total 4 processing cores, 8 threads, 16 GB Memory and 1 TB of storage, running
Linux Ubuntu 18.04. The Apache Spark platform was deployed on a single node
research laboratory Server at FORTH Computational Bio-Medicine Laboratory,
running Linux Ubuntu 18.04. This server has a 64bit Intel® Xeon® CPU at 2,60
GHz (3,50 GHz Max) with total of 24 processing cores, 48 threads, 250 GB
Memory and approximately 50 TB of storage. Moreover, Apache Kafka with
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Zookeeper was deployed on the same server.

3.3.2 Software Configuration

We configured Apache Spark appropriately to run every piece of code distributed,
making full use of all available resources. To be more specific we divided our
available resources, setting 12 cores and 60 GB memory on each worker node as
we can see at Figure 3.4 below. In this figure we can also observe how spark
environment’s interior components interact and cooperate with each other. Spark
uses a master-slave architecture with one coordinator and four distributed workers.
The central coordinator is called Driver. The Driver communicates with a number
of distributed workers called executors. Driver and its executors compose a Spark
application. A Spark application runs on a set of machines or processors using a

service called Cluster Manager.

SEEKS

Driver

SparkContext

[ Cluster Manager J
Worker 1 Worker 2 Worker 3 Worker 4
Executor Executor Executor Executor
12 Cores 12 Cores 12 Cores 12 Cores
60 GB Memory 60 GB Memory 60 GB Memory 60 GB Memory

Figure 3.4: Parallelization and System Configuration of Apache Spark.

Our architecture is based and shares the most characteristics of Lambda architecture
[24]. Lambda is one of the most discussed architecture patterns in the data science
space that is designed to address robustness, scalability and fault tolerance of big

data systems. It contains batch layer that has two major tasks: (a) managing
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historical data, (b) computing results (ML) and speed layer that manages near real
time data and provides results in a low-latency. (see Figure 3.15)

Event
Producer 1

Event
Producer 2

]| Sééﬁ% Streaming

Event
Producer 3

Figure 3.5: Apache Kafka with Zookeeper and Spark integration.

Kafka is the best performing framework for queueing slightly large messages and
CPU load. The Direct (D)Stream integration with Spark means that messages
coming from Event Producers, are being transferred directly from the Kafka server
to the Spark workers (see Figure 3.5). It is also worth noting that Kafka is not
intended for handling large file sizes (>1 Mb) in terms of velocity.
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Figure 3.6: Architecture of our Integrated Scalable Platform for Big Data Analytics.
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3.3.3 Experimental Evaluation of System Configurations
on Query Application

Initially, we created a plan with the available resources. Consequently, combining
our knowledge in SQL and Scala language we created a complete query
(subsystem) application in Spark SQL where the user may ask questions in any
large database such as MIMIC-III and get answers in a much shorter time than he
would get in a conventional Postgresgl. The advantage of our query application is
that it takes full benefit of the possibilities offered by Spark in terms of
parallelization and cooperation of all available resources of a given server or even
a cluster of servers, with the feeling of fault tolerance that governs spark. It is also
noteworthy that very easily a user with good knowledge in information systems
management, can configure the spark and parallelize the available resources
depending on their needs and the materials available. We can realize how important
the scalability of such a platform is by observing the execution times (Duration) in
Figures [3.7 — 3.12], where the same query appears to run on a personal computer
(Figure 3.7 — 3.9) with few resources (Table 3.1, System Conf. 1) and respectively
to run on the FORTH CBML server (Figure 3.10 - 3.12) with much more resources
(Table 3.1, System Conf. 2). Execution time was captured through the spark Web
Ul which allows us to monitor our application’s status and resource consumption
in real time, providing us with a wealth of useful information. This fact proves that
our platform which is built on open-source technologies, is scalable and capable to
serve the management and processing of big data with speed and stability,

depending on the available computing resources.

Desktop personal computer vs FORTH CBML Server

System | Workers | Cores | Memory | Memory per | Execution time Stages:
Conf. (GB) Executor (min) Succeeded/Total
1 2 8 12 6 25 41/56
2 4 48 240 60 7 41/56

Table 3.1: Desktop personal computer and FORTH CBML Server configurations
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Figure 3.7: Spark Web Ul, system configuration on personal computer.
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Figure 3.8: CPU usage of personal computer.
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Figure 3.9: Execution time on personal computer.
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Figure 3.10: Spark Web Ul, system configuration on FORTH CBML server.

Figure 3.11: CPU usage on FORTH CBML Server.
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Figure 3.12: Execution time on FORTH CBML Server.

3.4 Data Processing Clinical Scenarios

This section presents the main points of our platform's architecture, summarizing
the complications and the prospects. Our architecture depicts two different big data
processing clinical scenarios. To take advantage of the infrastructure speed we use
one of the low level APIs that Spark provides us, which uses resilient distributed
datasets (RDDs). In both scenarios of clinical data processing, we used Scala
language because of its performance advantage over Python. The name Scala
comes from the English phrase "scalable language”, which states that it is designed
to grow in line with the needs of its users. Dataframes and especially RDDs perform
better in Scala because they are executed directly on JVM, avoiding a significant

communication (Python-JVM) time overhead.

3.4.1Batch Processing Clinical Scenario

The first clinical scenario is called batch processing. In this scenario we get the data
from sources like mechanical ventilators of ICU, hospital rooms, homes and data
from smart health devices such as wearable sensors, smart watches etc. Data is
stored in the available storage space called the data lake. Then we load our data
from the data lake in Spark and using Spark SQL we start the procedure of
normalization, cleaning, feature extraction and generally the preprocessing. When
the data have been preprocessed and all the significant features for analysis have
been extracted successfully, enter the Spark MLIib and the machine learning
process begins. The data are divided into input features and output class values and

enter in the respective machine learning algorithm where the predictive model is
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built. This model will give us the analytics and the prediction for the respective

disease. In our work and specifically in the spark application we created in order to

evaluate the analytics efficiency in our data and predict patients with ARDS, we

used Random Forest with 10-fold cross validation and Logistic Regression

algorithms. Moreover, we may run dynamic queries on patient clinical data at any

time through the query (subsystem) application that our infrastructure supports

upon Spark SQL. We present below a workflow on Figure 3.13 and some examples

of the queries that a clinician might run in both clinical scenarios in order to perform

a statistical analysis and clinical questions on this dataset:

e ARDS related queries:

O

Give me all the/specific distinct ARDS cases in newborn patients and
demographics information about them.

Give me all the/specific distinct Acute Respiratory Failure cases in all
patients.

Give me all the/specific admissions where patients have PEEP >=5.
Give me all the/specific admissions where patients have PaO2 and FiO2.
Give me all the/specific Heart Rates from table chartevents grouped by

icustay id, etc.

e General MIMIC-III related queries:

O

Give me the number of patients who died while the patients were in the
hospital and who survived

Give me the maximum length of stay in the ICU for specific patients
Give me the maximum length of stay in the ICU for each patient

Give me the maximum length of stay in the ICU for each patient where
the maximum length of stay is < 10 days

Give me the number of male and female patients
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Figure 3.13: Batch Processing Clinical Scenario.

3.4.2 Stream Processing Clinical Scenario

The second clinical scenario is called stream processing. In this scenario we get
data from the same sources, however the data follow a different “path”.
Specifically, new data coming in real time, get into Apache Kafka under the
ZooKeeper support and are being queued and processed as topics. Every topic from
Kafka gets into Spark and specifically into Spark Streaming where it can then be
processed and follow the same procedures as in the first scenario (cleaning,
preprocessing, etc.) depending on the algorithms we run. After this stage, we can
also take as output real time analytics, prediction of a disease and make dynamic
queries on data. Therefore, we have created a complete integration as we can

observe the workflow on Figure 3.14.
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Figure 3.14: Stream Processing Clinical Scenario.
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3.4.3 Complications and Experiences

Regarding the batch processing part, we made a first allocation and parallelization
of resources and started running the first queries on the data in order to test our
infrastructure and collect useful information for data analytics use. We noticed
some technical issues regarding the configuration of Spark when we started to scale
up using our large database for analysis. However, apache spark has a large
supporting community and we managed to solve any problem without spending
much time to search for the solution.

Regarding the stream processing part, we had difficulty in connecting Apache
Kafka with Spark. We did this in order to be able to send real-time data to our
system and have them filtered and managed first by Kafka and then in queue form
to get into Spark. Unfortunately, there is not much community in Apache Kafka
that has dealt with the specific issue, as there is also not much community in Apache
Flink [44, 45] and Apache Druid [42]. Apache Flink is an open source system for
processing streaming and batch data. It is an excellent work in the field of data
management and can compete with Apache Spark in individual use cases. We tried
to connect Apache Kafka with Flink to see if it is better than Apache Spark in some
cases (performance, stability, community support), however the difficulties we
encountered in its configuration and communication with Kafka, made us leave it
out of our architecture. We performed some use cases individually on it, but the
Kafka-Flink connection procedure cost us much time ending up with unsolved
problems so we skipped it. Druid [43] is an open source database that is most often
used for powering use cases where real-time ingest, fast query performance, and
high uptime are important. As such, Druid is commonly used for powering GUIs
of analytical applications, or as a backend for highly-concurrent APIs that need fast
aggregations. We installed and tried to set up Apache Druid in order to test it on
streaming data and see if it fits our needs, however it still has poor community
support, so we did not let any other configuration difficulties cost more valuable
time to us. After all, our scope was to create a system that is simple to use and at

the same time stable. At Spark-Kafka connection, we encountered some difficulties
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which did not bother us much because fortunately Apache Spark has a large, rich
community and support as well as excellent documentation as we described above.
It is very important when we work with open source technologies with which we
want to deploy a scalable infrastructure, to have well written documentation and

support to rely on.

o Batch
' ew
Data

Sources Queries Data/Results

I ,_ﬁu \ l Storage

Figure 3.15: Lambda Architecture.

Data Sources: Data can be obtained from a variety of sources, which can then be included in the
Lambda Architecture for analysis. Batch Layer: This component saves all data coming into the
system as batch views in preparation for indexing. Serving Layer: This layer incrementally
indexes the latest batch views to make them query by end users. Speed Layer: This layer
complements the serving layer by indexing the most recently added data not yet fully indexed by
the serving layer. Query: This component is responsible for submitting end user queries to both

the serving layer and the speed layer and consolidating the results.
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Chapter 4

Using the Architecture to Build Predictive
Models

In this section we describe the real world datasets used in our experiments and the
data analysis application build procedure. We present all the complications and
challenges that we managed to handle eventually with specific techniques and

methods. We summarize this chapter with our experimental evaluations and results.

4.1 Data Selection and Sources

As we mentioned above, we needed a large enough dataset to build the biomedical
application of predictive analysis in order to evaluate our platform and validate our
study. Consequently, we used MIMIC-I11l (Medical Information Mart for Intensive
Care - Ill) [8, 49] clinical database, which is a large, freely available database
comprising information relating to patients admitted to critical care units at a large
tertiary care hospital. The MIMIC-III clinical database captures over a decade of
intensive care unit (ICU) patient stays at Beth Israel Deaconess Medical Center. An
individual patient might be admitted to the ICU multiple times over the years, and
even within a single hospital stay could be moved in and out of the ICU multiple
times. This is a fact that generates many non-unique identification codes regarding
the patient’s activity. As we can observe in Figure 4.1, data includes vital sign
measurements obtained at the bedside, demographics, medications, laboratory
measurements and test results, records of arterial blood gas levels observations and
notes charted by care providers, fluid balance, procedure codes, diagnostic codes,
imaging reports, hospital length of stay, survival data, and other clinical variables.

The raw data in MIMIC-III, with size of 50 GB, provide fine-grained timestamps
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for each laboratory measurement and recorded vital sign. However, most
measurements are infrequent (e.g. blood tests of interest may be run every few
hours at most), meaning each variable’s raw time-series is quite sparse [46] and this
Is a fact that generates many missing values. Each measurement in the MIMIC-III
database is associated with a unique ItemlID, as specified by the original EHR
software. These raw ItemIDs are not robust to changes in software or human data
entry practices. For example, “HeartRate” may be recorded under ItemID 211
(using CareVue EHR systems before 2008) or under ItemID 220045 (using
MetaVision EHR software after 2008). We thus developed a manually curated
clinical taxonomy designed to group semantically equivalent ItemIDs together into
more robust “clinical aggregate” features. These aggregate representations reduce
overall data missingness and the presence of duplicate measures. Therefore, we
have included as much as possible all the coded values that interest us. Appendix
D (Tables A.4, A.5), details the proposed clinical taxonomy about the MIMIC-I11
encoded features. Ventilator settings were documented by respiratory therapists at
intubation and as ventilator settings were adjusted. International Classification of
Diseases, Ninth Revision (ICD-9) codes were documented for specific diseases as
required by hospital staff on patient discharge. Each row associated with one
ItemID (e.g. 212) corresponds to an instantiation of the same measurement (e.qg.
heart rate). We used ICD-9 and ItemID codes in order to filter and clean our data

(see Appendix D).
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Figure 4.1: Overview of the MIMIC-I1I critical care database.
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Furthermore, we used FitBitChargeHR dataset [47] from Kaggle [48] data science
repository. The file contains one year of human activity such as calories, steps,
distance in meters, floors, minutes sitting, minutes of moderate activity, minutes of
intense activity as well as the calories burned for the activities. The data was
gathered with a Fitbit Charge HT fitness tracker and every observation regards one
day. We multiplied and used this data in conjunction with MIMIC-III data to

implement and simulate real world stream processing scenarios.

4.2 Data Extraction for Class Analysis

The majority of the useful information in this dataset is not clear and obvious.
Significant parts of the data are coded with specific numbers. As we mentioned
above, ICD-9 diagnosis codes [8] and ItemID codes [8] that identify mechanically
ventilated patients with their laboratory measurements and their charts values,
contribute significantly on identification of severity class of ARDS patients. More
specifically, PaO2, FiO2, PEEP and HR information were extracted from charted
data using ICD-9 and ItemID codes. WBC (White Blood Cell), lactate and other
useful ARDS related values were extracted from laboratory measured data. Time
series include specific time points of ARDS onset which are defined based on
Berlin criteria [5], i.e. PaO2/FiO2 ratio < 300 with PEEP at least 5 cmH20O or
SpO2/Fi02 < 200 [9, 12, 13, 14]. The observed vital signs and laboratory
measurements after the identified diagnosis time are extracted and features
constructed as class-defining variables in our modelling including diastolic blood
pressure, mean airway pressure (MAP), respiratory rate, systolic blood pressure,
temperature, PH, platelet, blood cultures, tidal volume, GCS, height, weight, BMI,
PaO2/FiO2 (P/F), SpO2/FiO2 (S/F) and some demographic variables. (see
Appendix B, C, D)
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4.3 Data Extraction for Predictive Modeling

The features that we considered to build the predictive model include:

1. Vital signs from chart measurements: heart rate, respiratory rate, body
temperature, systolic blood pressure, diastolic blood pressure, mean arterial
pressure, oxygen saturation, tidal volume.

2. Laboratory measurements: white blood cell count, hematocrit, lactate,
creatinine, bicarbonate, pH, INR, blood gas measurements (partial pressure of
arterial oxygen, fraction of inspired oxygen, and partial pressure of arterial
carbon dioxide).

3. Other chart measurements: motor, verbal, and eye sub-score of Glasgow Coma
Scale (GCS).

4. Demographic indicators as potential risk factors: gender, age, ethnicity, etc.

(see Appendix B, C, D)

4.4 Data Preprocessing Methods

This section describes all the adopted data preprocessing, cleaning, filtering and
normalization methods, in addition with solutions to the challenges arose.

4.4.1 Data Cleaning and Filtering

Primarily, we comprehended the nature of the data and their peculiarities,
investigating in depth the large number of parameters and their varied content. As
we explained above, there are specific codes that need to be decoded and clarified
in order to access the data that really interest us. The primary purpose for starting
the cleaning and preprocessing of the data was to separate the useful details we
were looking for in this database. Regarding the feature selection section, in this
study we extracted a variety of information and physiological parameters of the

patients, consulted and guided mainly by the clinical doctor we collaborated with
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and the relevant study [9]. Subsequently, in next steps we validated the feature
selection and the dynamic of our data preprocessing methods using WEKA [18].
To get the information we needed from the data we used the query (subsystem)
application that we built (described above in the architecture section) and gathered
all the necessary details. According to the literature review [9, 10] we found the
specific codes that correspond to ARDS related risk factors. Each query asks the
database for the specific codes (ItemID, ICD9) we are looking for in the specific
files and then returns the answer accompanied by all the necessary information that
we want. In our case, this information is called SUBJECT_ID, HADM_ID and
ICUSTAY _ID which were accompanied by associated values such as vital signs,
laboratory measurements, demographics, etc. SUBJECT _ID refers to patients,
HADM _ID refers to hospital admissions and ICUSTAY _ID refers to ICU stays.
Once we collected this information, we then proceeded with the process of cleaning
the data from missing and not useful values. In the process of collection of
physiological parameters from patients, we have found that some parameters were
missing, possibly because they were recorded at a lower frequency, however, this
fact would result in an imbalance in the dataset. Fortunately, this issue had already
been handled successfully from [9], therefore, in any case we had to balance the
missing data, we used the technique of imputation and oversampling which they
suggested and explained in detail, filtering at the same time the fields with
information that interested us mostly. Then, after categorizing the data based on
their content, we proceeded with the rest pre-processing procedure on them which
revealed various problems that usually arise in the processing and management of

time series data.

4.4.2 Data Normalization and Solutions to Challenges

We will focus on the main problem that preoccupied us and cost us much time and
computing resources in data normalization procedure. Since we split and
categorized our significant ARDS related values into pieces, per patient,
hospitalization and ICU stay, facilitating the process of retrieving them through a

query at any moment, it was time to put these pieces together in order to create a
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single data set which we would then split into training and test set with all the
necessary information and features that we would like to give to the machine
learning algorithms of the predictive model. To achieve this, we had to find some
common points in these pieces that would form the links, the so-called "keys" in
the databases field. In time series data, of course, we rarely see unique keys when
the dataset contains hospitalization IDs and patient IDs. This is because each patient
is connected to a machine, whether it is in the intensive care unit, the hospital room,
or a room in a home. This machine records information (SpO2, Heart rate, PaO2,
FiO2, etc.) over time, so we had many different values for different timestamps for
the same patient. Therefore, it was inevitable to join all the pieces we wanted in
non-unique keys, taking into account the size of the tables with millions of rows.
At this point we met the biggest challenge of our work, (see Figure 4.2), trying to

solve this issue with the available resources.

Dataframe 1

SUBJECT_ID | HADM_ID | ICUSTAY_ID SUBJECT_ID | HADM_ID | ICUSTAY_ID
12543 2210 7910 M
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Figure 4.2: Join attempt on non-unique keys.

This cost us mainly in random access memory because as we mentioned above,
Spark loads the data that is to be processed into memory. It was not a trivial
situation and we still had to deal with it and continue with the preprocessing

procedure of our data. There is no simple way to achieve this when it comes to large
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volumes of data and in particular non-unique keys. It is worth noting that none of
the related works mentioned this important fact, so there was no officially recorded
solution. Even with the resources we had available in combination with the
parallelism offered by spark, when we had to combine information from multiple
tables with non-unique keys, the system was too late to answer our questions and
in some cases was impossible to finish the join procedure. Nevertheless, we found
a kind of solution in order to continue and finish our work. No matter how much
memory we had at our disposal the problem would not be solved so easily.
Therefore, we had to adapt to this situation and handle it. At this point we decided
that it was necessary to consider one more parameter in the filtering and pre-
processing methods of our data. We investigated our available data further to see if
we can find any other common factor in these pieces besides the obvious ones that
the MIMIC-I111 dataset officially states. After exhausting investigation inside the
data, we found another element called “CHARTTIME” and we managed to handle
the aforementioned problem by setting this new parameter as the only unique sub-
key. 'CHARTTIME' records the time at which an observation was made, and is
usually the closest proxy to the time the data was actually measured. It is essentially
a unique timestamp for each patient's records. We set specific time limits in which
we singled out and filtered the data that had a common timestamp, taking into
account the year, month, day and time, rarely including the minutes and not at all
the seconds. As a result, we re-categorized the patients who met the selection
criteria we set and managed to join our data by creating the final data file that we
would use in our model to split for train and test set in order to run the machine
learning algorithms. This file contained all the necessary features and values for the
build of our machine learning model. Below in Figure 4.3, we present a flowchart
outlining a small part of our patient selection and filtering methods, detailing the

number of patients that eventually get inside the predictive model.
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Figure 4.3: Flow diagram for patient selection.

4.5 Classification Algorithms

This section describes all the classification and prediction analysis algorithms in
addition with parameters tuning methods used.

4.5.1Prediction Class Analysis

Machine learning algorithms are generally divided into two categories: supervised
and unsupervised learning algorithms. Supervised learning algorithms are used to
uncover the relationship between variables of interest and one or more target
outcomes. For supervised problems, the target outcome(s) must be known.
Unsupervised learning algorithms are used to uncover naturally occurring patterns
or groupings in the data, without targeting a specific outcome. In our case, we have
to handle a supervised problem where we target two categorical outcomes. 1 for
positive and 0 for negative in each case of ARDS severity. More specifically, we
used this method for 4 different cases of severity in order to rebound at 4 classes

which we set as output in our prediction model. Each case-class as we can see in
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Table 4.1 represents the severity of ARDS in patients. The first class means "mild",
the second class means "moderate™, the third class means "severe™ and the fourth
class means "non ARDS", i.e. no risk. The most common applications of data
science to critical care problems are predictive models using supervised learning
algorithms. In this study, as we can see in Figure 4.4, we designed a complete
pipeline model that combined feature selection (from a given number of total
features) with multiple classification algorithms, used a 10-fold cross-validation
model, trained classifiers for different feature subsets, and selected the optimal
combination of feature subsets and classifiers, accomplishing the early
identification of the ARDS. We used random forest and logistic regression machine
learning algorithms in order to build and validate our predictive model with the
available data of MIMIC-I111, splitting them in train (70%) and test (30%) sets.

ARDS Severity Class
Mild 1
Moderate 2
Severe 3
None 4

Table 4.1: ARDS severity classes.

4.5.2 Random Forest

Random forests are ensembles of decision trees. They combine many decision trees
in order to reduce the risk of overfitting. Like decision trees, random forests handle
categorical features, extend to the multiclass classification setting, do not require
feature scaling, and are able to capture non-linearities and feature interactions.
Spark.mllib [54] supports random forests for binary and multiclass classification
and for regression, using both continuous and categorical features. It implements
random forests using the existing decision tree implementation. Random forests
train a set of decision trees separately, so the training can be done in parallel. The
algorithm injects randomness into the training process so that each decision tree is
a bit different. Combining the predictions from each tree reduces the variance of
the predictions, improving the performance on test data. To make a prediction on a

new instance, a random forest must aggregate the predictions from its set of
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decision trees. As regards the classification method that we used, the majority vote
wins. Each tree’s prediction is counted as a vote for one class. The label is predicted
to be the class which receives the most votes. The most important parameters that
we used and tuned in order to improve the performance of our model are the number
of trees and the maximum depth of each tree in the forest. Increasing the number
of trees will decrease the variance in predictions, improving the model’s test-time
accuracy and training time increases roughly linearly in the number of trees.
Increasing the depth makes the model more expressive and powerful. However,
deep trees take longer to train, it is acceptable to train deeper trees when using
random forests than when using a single decision tree, because one tree is more
likely to overfit than a random forest (because of the variance reduction from
averaging multiple trees in the forest). We experimented with many different cases
of the same algorithm, changing some important parameters each time, in order to
conclude at the optimal one that would give us the best results. More specifically,
we experimented setting different values at the max depth of the tree, the number

of the trees and the number of folds at cross validation step.

4.5.3 Logistic Regression

Logistic regression is a popular method to predict a categorical response. It is a
special case of Generalized Linear models that predicts the probability of the
outcomes. It can be used to solve under classification type machine learning
problems. Classification involves looking at data and assigning a class (or a label)
to it. Usually there are more than one classes, when there are two classes (0 or 1) it
identifies as Binary Classification. In spark.ml [54] logistic regression can be used
to predict a binary outcome by using binomial logistic regression, or it can be used
to predict a multiclass outcome by using multinomial logistic regression. Our
Logistic Regression model builds a Binary Classifier model to predict ARDS based
on historical data of patients. Specifically, we built a Logistic Regression model by
experimenting and finally defining the number of max iterations, the number of

regression parameters and the number of elastic Net parameters.
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4.6 Evaluation and Results

According to the diagnostic definition of ARDS disease, P/F < 300 means ARDS.
According to this standard, each sample is divided into positive and negative
results. Table 4.2 describes the relationship between the actual category and the
prediction category. A common metric used to evaluate the accuracy of a Logistic
Regression and Random Forest model with binary classification is Area Under the
Curve (AUC). We measured the classification performance based on the average

of AUC, the accuracy, sensitivity and specificity.

Predicted Class Actual Class
Positive (P/F<300) Negative (P/F>300)
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 4.2: The relationship between actual categories and prediction results.

We identified 8582 patients who met our inclusion criteria from a total of 46520
patients enrolled in the MIMIC-I11 database. As we can observe in Figure 4.3, there
were 6008 patients (101520 data points) in the training set and 2574 patients (43500
data points) in the test set. The patient demographics and characteristics that
utilized in this study are shown in Table 4.3 and in Appendix B, C, D in Tables
A2, A3, A4 and A.5. Table 4.3 summarizes the demographic information of
patients that we used. The training set has a consistent patient distribution with the

test set. In the training set, the patients were hospitalized in various intensive care
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units: CSRU (Cardiac Surgery Recovery Unit), MICU (Medical Intensive Care
Unit), SICU (Surgical Intensive Care Unit), TSICU (Trauma Surgical Intensive
Care Unit), and CCU (Coronary Care Unit) and the average age of patients was 65
years. The majority of the patients were male. Appendix C in Table A.3 summarizes
the physiological parameters of patients classified in the training and test sets. For
the training set and the test set, the two datasets were randomly grouped and had a
common distribution. According to [9] and WEKA [18] feature selection methods
and rankings, SpO2 was clearly the most relevant parameter. Furthermore, SpO2,
S/F, FiO2, and PEEP, were also highly relevant features. Using the training dataset,
the 10-fold cross validation methods were used to evaluate the performance of the
random forest algorithm. Moreover, we used the same data in order to evaluate the
logistic regression algorithm and the test sets were completely independent of the
data of model training.

Demographic Variables
Age(year)
Gender (Male — Female)
BMI(kg/m2)
Length of stay in ICU (days)

ICU type (CSRU, MICU, SICU, TSICU, CCU)
Admission type (Emergency, Elective)
Ethnicity (White, Asian, Black, Hispanic, Other)
Table 4.3: Patient demographics in training and test sets.

The common features in relation to [10] were many, so we considered that we could
make a comparative study of the two most relevant works [9, 10] in relation to our
own. In Table 4.4 we present the similar features of [9, 10] with our work and in
Table 4.5 we present the most in common features, that we used in order to perform
our machine learning experiments, of our work with [9] which is the closest use
case to ours. As we can observe, most of the features are common, therefore we

can compare our performance results with both of these works [9, 10].
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Mutual features between two related works [10], [9] and our work

[10] [9] Our work
Age Age Age
PEEP PEEP PEEP
FiO2 FiO2 FiO2
Creatinine GCS (eye) GCS (eye)
Blood Culture GCS (motor) GCS (motor)
Diastolic BP TV /Kg TV /Kg
Fluid Bolus GCS (Verbal) GCS (Verbal)
GCS GCS GCS
Heart Rate Heart Rate Heart Rate
INR Gender (Female) Gender (Female)
Lactate Gender (Male) Gender (Male)

Mean Air Pressure

Mean Air Pressure

Mean Air Pressure

Organ Dysfunction

Peak Pressure

Peak Pressure

PP Plateau Pressure Plateau Pressure
Platelets OSI OSI
Respiratory Rate Respiratory Rate Respiratory Rate
SpO2 SpO2 Sp02
Temperature Temperature Temperature
Urine Output Nidbp Nidbp
WBC Minute Ventilation Volume | Minute Ventilation Volume
pH Nisbp Nisbp
Systolic Blood Pressure Nimbp Nimbp
Antibiotics BMI BMI
PaO2 PaO2 PaO2
Bilirubin S/IF SIF
PaO2/FiO2 (P/F) P/F P/F

Table 4.4: Mutual features among [10], [9] and our work.
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Most in common features between [9] and
our work
SpO2
Pa02
FiO2
Heart Rate
Temperature
Tidal Volume
PEEP
Nbps
GCS
GCS Verbal
P/F
First careunit
Last careunit
Ethnicity
Admission type
Height
Weight
Dbsource
Table 4.5: Most in common features between [9] and our work.

We observe the AUC results of the two algorithms in Figure 4.5 and their
comparison with the dominant algorithm (XGBoost) of [9] is shown in Figure 4.6.
The AUC of the Random Forest (0.95) is higher than the AUC of Logistic
Regression (0.93) under the same feature set and both of them are higher than AUC
of [9] XGBoost (0.91). Moreover, in Table 4.6 we may observe the AUC,
Accuracy, Specificity and Sensitivity results of RF and LR algorithms that arise
from the calculations of confusion matrix (RF) and confusion matrix (LR) that we
can see in Table 4.7 and Table 4.8 respectively. Based on the results, we show that
the overall performance of our two algorithms exhibits significantly better

performance with respect to the closest related work [9] algorithm.

Algorithm Results
AUC Accuracy Specificity Sensitivity
Random 95,1 % 98,0 % 98,62 % 96,25 %
Forest
Logistic 93,31 % 95,0 % 98,62 % 90,63 %
Regression

Table 4.6: Identification results of two algorithms on test sets.
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Area Under the Curve (AUC) Performance Results between RF and LR

AUC
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Figure 4.5: AUC Performance results between RF and LR.

Area Under the Curve (AUC) Performance Results among RF , LR and XGB
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Figure 4.6: AUC Performance results among RF, LR and XGB [9].

Confusion Actual Class
Matrix (RF) Class 1 Class 2 Class 3 Class 4
Class 1 20723 392 0 101
Predicted Class 2 0 19776 592 0
Class Class 3 0 661 12893 0
Class 4 598 0 0 3571

Table 4.7: Confusion Matrix (Random Forest).

Confusion Actual Class
Matrix (LR) Class 1 Class 2 Class 3 Class 4
Class 1 19398 1292 0 425
Predicted Class 2 540 19067 169 0
Class Class 3 0 1116 12438 0
Class 4 1687 0 0 2482

Table 4.8: Confusion Matrix (Logistic Regression).
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In this case study, we analyzed the classification ability of two different algorithms,
as we can see in Table 4.9, Table 4.10 and Figure 4.7, Figure 4.8 respectively. In
the algorithmic evaluation, we compare the experimental results of both algorithms
which reflect the great ability of the Random Forest algorithm to mine information
from different aspects. Therefore, according to the results, Random Forest with 10-

fold cross validation and specific parameters tuned, achieves the best results under

the selected dataset.

Classification Random Forest

Results (RF) Class 1 Class 2 Class 3 Class 4
Accuracy 98,12 % 97,19 % 97,85 % 98,79 %
Specificity 98,66 % 98,43 % 98,52 % 98,89 %
Sensitivity 97,20 % 94,94 % 95,61 % 97,25 %

Table 4.9: Classification results per class (RF)

Prediction Performance Classification Results (RF)

mClass 1 ®mClass2 ®

Figure 4.7: Prediction performance classification results (RF).

Classification Logistic Regression

Results (LR) Class 1 Class 2 Class 3 Class 4
Accuracy 93,12 % 94,48 % 97,65 % 96,19 %
Specificity 95,19 % 97,98 % 97,35 % 96,79 %
Sensitivity 89,70 % 88,79 % 98,66 % 85,38 %
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Prediction Performance Classification Results (LR)
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mClass | WClass 2 ®Class 3 ® Class 4

Figure 4.8: Prediction performance classification results (LR).

4.7 Discussion

Our approach achieves significantly better results in all metrics that are based on
AUC, when compared to relevant published efforts that also use the MIMIC IlI
database to develop predictive models of ARDS. Our prediction performance
results between our two deployed algorithms (RF and LR) and XGBoost (XGB)
[9] are depicted in Figure 4.9 and as we can see in Table 4.11 and Figure 4.10 we
outperform among [9] and [10] which also uses the XGBoost (XGB) algorithm.
Our distinction in the results originates from the preprocessing in data management
procedure, the feature selection and the different algorithms we used. In addition,
we tuned specific parameters in both of our algorithms and we concluded that the
random forest prediction model performs significantly better than logistic
regression and the related works [9, 10], because of the fine-tuned number and

depth of trees in combination with 10-folds cross validation.
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Sampling, Splitting and Algorithms used on MIMIC-111 data with Results

[10] [9] Our work
Number of 9001 8702 8582
samples
Split of Data Train: 90 % Train: 75 % Train: 70 %
Test: 10 % Test: 25 % Test: 30 %
Algorithms Used XGBoost XGBoost Random Forest

AUC 90,5 % 91,28 % 95,1 %
Accuracy 82,5 % 85,89 % 98,0 %
Specificity 82,3 % 87,75 % 98,62 %
Sensitivity 80,06 % 84,03 % 96,25 %

cases.

Table 4.11: Sampling, splitting and algorithms used on MIMIC-I11 with performance results of best

Prediction Performance Results among RF, LR and XGB
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Figure 4.9: Prediction performance results among RF, LR and XGB [9].
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Figure 4.10: Prediction Performance Results between [9], [10] and our work.
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Chapter 5

Conclusion and Future Work

In this thesis, we present a scalable data science platform built on open source
technologies, accompanied by a biomedical data analysis application about Acute
Respiratory Distress Syndrome disease (ARDS). We underlined the main
challenges and complications about infrastructures and data analysis in our use
case, managing to handle and explain in detail any issues that arose. In the first part
of this thesis, we presented our platform’s architecture and the main clinical
scenarios that may serve. These scenarios depict a batch and stream processing data
flow respectively. We analyzed the most significant parts of this platform with all

the adopted methods, giving insights on its scalability and utilization techniques.

As a result of conducting this study for this thesis, we conclude in the first part, that
scalable systems and infrastructures, built on open source technologies, have the
potential to manage big data processing scenarios, however they also have
limitations. We refer mainly to the technical problems that arose in the construction
of the platform and then in development and evaluation of the application of
predictive models. Time series big data need special handling in the preprocessing
procedure, especially in cases where the data is biomedical and we aim to predict a
clinical situation accurately. Consequently, we propose the adoption of open source
technologies for the construction of scalable infrastructures and systems, provided
that they have rich supporting community and documentation for time and financial

benefit.

At the second part of this thesis, we explained how we used our scalable platform
to build prediction models of ARDS, giving insights about the data sources utilized

and mainly data selection of MIMIC-III clinical database. We focused on the
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preprocessing methods, highlighting technical data analysis issues that arise from
such a large dataset, with such a heterogeneous clinical situation that needs to be
managed. Our approach handled the complications that arose with specific
methods, that the related works mentioned above, do not report in their study cases.
Moreover, we experimentally evaluated our data analysis application of ARDS,
using machine learning algorithms, comparing our results with the closest related
work [9, 10] use cases. The overall classification effects of our Random Forest
model was better than our Logistic Regression model and outperforms the related
works [9, 10] XGBoost model. Concluding, our approach, specifically of random
forest with fine tuning of parameters, achieves significantly better results, when
compared to relevant published efforts that also use the MIMIC Il database to
develop predictive models of ARDS. Of course, it is worth noting that specific and
valuable risk factors of ARDS, in addition with feature selection information that
we consulted from [9] and WEKA [18] results, highly contributed in this

comparison study.

As future work, we plan to evaluate our platform on new use cases using MIMIC-
IV [50] clinical database that was released a few time ago. Furthermore, we intend
to extend the existing functions of our platform in order to be able to manage
multimodal data sets, including signals, images (MRI, CT, etc.), videos and
genomics data. Eventually, we do not neglect the fact that our platform requires
substantial technical expertise to use it clinical staff to its full potential. Therefore,
we aim to create a graphical user interface (GUI) that will enable data visualization
with charts, in addition with data management features. This action will eliminate
the above functional limitation of the platform and upgrade the value of the query

application, making it easier to be utilized by doctors and clinical staff.
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Appendix

A. Review of solutions using MIMIC-I111

rate, laboratory values (pH,

Year | Publ. Risk factors Features Methods
2020 | [9] (PaO2/FiO2 ratio <= 300), | Age, PEEP, FiO2, GCS (eye), [ XGBoost with
End-Expiratory Pressure GCS (motor), GCS (Verbal), Cross
(PEEP) >=5 cmH20, mild TV / Kg, GCS, Heart Rate, validation
(200 < arterial oxygen partial Gender, Peak Pressure,
pressure (PaO2)/ fraction of | Plateau Pressure, Respiratory
inspired oxygen (FiO2) (P/F) Rate, OSI, SpO2,
<=300), moderate (100 < P/F | Temperature, Nidbp, Minute
<= 200), and severe (P/F <= Ventilation Volume, BMI,
100), according to the level of Pa02, S/F, P/IF
oxygenation index (P/F)
2020 | [10] Positive end Expiratory Age, PEEP, FiO2, Creatinine, XGBoost
Pressure Blood Culture, Diastolic BP, gradient
(PEEP) >=5 cmH 20, PaO Systolic Blood Pressure, boosted tree
2/FiO 2 ratio (P/F ratio) <= Fluid Bolus, GCS, Heart models
300 Rate, INR, Lactate, MAP, with 10-fold
mmHg Organ Dysfunction, PP, Cross
Platelets, Respiratory Rate, validation
SpO2, Temperature, Urine
Output, WBC, pH,
Antibiotics, PaO2, Bilirubin,
PaO2/FiO2 (P/F)
2019 | [2] | PaO2/FiO2 ratio <300, PEEP | BMI, means of bicarbonate, Gradient
>= plateau pressure, mean Boosted
5 cmH20 airway pressure (MAP), Machine
PaCQ2, tidal volume, platelet (GBM)
count, total bilirubin; Random
minimum of sodium, glucose, | Forest (RF)
albumin, hematocrit, systolic | with 5-fold
blood pressure (SBP); Cross
maximum of temperature, validation
heart rate, white blood cell
(WBC) count, creatinine
2019 | [29] Pa02/FiO2 ratio < 300 Age, sex, DP, MAP, Logistic
(Berlin Definition [5]) Pao2/Fio2, SOFA, RR, BMI, regression,
RDW, Ph and, ethnicity, Random
BMI, smoking, SOFA, heart forest with

10-fold cross
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lactate, RDW), and ventilator validation
parameters (LHPI, driving
pressure, mechanical power,
platform pressure)

2019 | [51] [ Berlin Definition risk factors anion gap (aniongap), Gradient
albumin, bands, bicarbonate, Boosting
bilirubin, creatine, chloride, Machine

glucose, hematocrit, (GBM) model

hemoglobin, lactate,
platelet, potassium, partial
thromboplastin time (ptt),
international normalized ratio
(inr), prothrombin time (pt),
sodium, bun, white blood cell
count (whc), heart rate
(heartrate), systolic blood
pressure, diastolic blood
pressure, mean blood
pressure, respiratory rate,
body temperature, peripheral
capillary oxygen saturation
(spo2), body mass index
(bmi), gender, age, urine

output
Table A.1: Review of solutions using MIMIC-III.
B. Static variables and description
Static Variable Description
Age Patient Age
Gender Patient Gender
Ethnicity Patient Ethnicity
Insurance Patient Insurance Type
Admittime Hospital Admission Time
Dischtime Discharge Time
Intime ICU admission time
Outtime ICU discharge time
Admission_type Type of hospital admission
First_careunit First ICU the patient was cared for

Table A.2: Static variables and description names.
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C. Features used in predictive modeling and query subsystem

Category

Name

Vital

Heart Rate

Systolic Blood Pressure

Diastolic Blood Pressure

Mean Airway Pressure

Respiratory Rate

Temperature

Blood Gas

SpO2

PCO2

PO2

F102

Bicarbonate

Tidal volume

Oxygen saturation

Hematology

PTT

INR

Platelet

Hematocrit

PT

WBC

GCS

Total

GCS Motor

GCS Verbal

GCS Eye

Blood Chemistry

Anion Gap

Albumin

Bilirubin

Creatinine

Glucose

Lactate

pH

Demographics

Age

Gender

BMI

Table A.3: Features used in predictive modeling and query application.




D. Identification codes for ARDS related risk factors and features

from MIMIC-III
ICD-9 Code Name
5279, 51881 Acute respiratory failure
5274, 51851 Acute respiratory failure following
trauma and surgery
8702, 769 Respiratory distress syndrome in
newborn
5133, 5063 Other acute and subacute respiratory
conditions
Table A.4: ICD9-Codes with names.
ItemID Code Name
490, 779 Pa02
646, 220277 Sp0O2
190, 223835, 3422 FiO2
220045 Heart Rate
8368, 8440, 8441, 8555, 220180, Diastolic BP
220051
50827, 50828, 51237 INR
50813 Lactate
456, 52, 6702, 443, 220052, 220181, MAP
225312

615, 618, 220210, 224690

Respiratory Rate

51, 442, 455, 6701, 220179, 220050 Systolic BP
223762, 676, 50825 Temperature C
50820 PH
51300, 51301 WBC
198 GCS

50800, 50801, 50802, 50803, 50804,

50805, 50806, 50807, 50808, 50809,

50810, 50811, 50812, 50813, 50814,

50815, 50816, 50817, 50818, 50819,
50820, 50821

Blood Cultures

223761, 678 Temperature F
828 Platelets
220179 Non Invasive Blood Pressure systolic
220180 Non Invasive Blood Pressure diastolic
220181 Non Invasive Blood Pressure mean
220051 Arterial Blood Pressure diastolic
220052 Arterial Blood Pressure mean
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50826 Tidal Volume
507 PIP
543 Plateau Pressure
3259, 6078 MV
50819, 505 PEEP
198 GCS Total
227012, 226757, 454, 223901 GCS Motor
227014, 226758, 723, 223900 GCS Verbal
227011, 226756, 184, 220739 GCS Eyes
226730, 920, 1394, 4187, 3486, 3485, Height
4188, 226707
3580, 3693, 226512, 220739 Weight

Table A.5: ItemID Codes with names of patient physiological parameters and characteristics.
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