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1. Introduction 
 

Cognition is the mental process of acquiring knowledge and understanding, through 

memory, judgement and decision-making1. Cognitive learning style describes how the learner 

approaches learning through all the above intellectual functions. It is about the manner of 

obtaining the knowledge (Miron, Erez, & Naveh, 2004). The field dependence/independence 

are two cognitive style dimensions based on the individual’s ability to extract particular 

meaning from the context (Ehrman & Leaver, 2003). This relatively stable pattern of 

information processing (Dillon & Watson, 1996)is one of the most broadly studied in the 

literature. These dimensions describe two different ways to acquire, organize and interpret 

information: Field Dependent (FD) and Field Independent (FI) learners. In general, FΙ learners 

are motivated by competition, individual recognition and analytical activities that do not 

necessitate a group type approach. FD learners prefer to work with others to achieve a 

common goal and they like to learn by experimentation (Ariza, 2002). Furthermore, there are 

significant differences between these groups in memory, cognition, compensation and social 

strategy use (Naraghipour & Baghestani, n.d.).  

 Differences between the FDI groups in terms of search tasks and eye gaze patterns 

have also been subject for studies(E. A. Nisiforou & Laghos, 2013; E. Nisiforou & Laghos, 2016). 

In this study, we will focus on the main difference between the FD and FI groups in visual 

perception: the ability of extracting a cue from a complex figure. The FI group is better in the 

discrimination of objects in a background, while the FD group is less able to identify a cue 

without its surroundings (Zhang, 2004). We will study this difference with the use of an 

experiment that takes on ambiguous images. These reversible or ambiguous figures are 

images which exploit graphical similarities to interpret two distinct image forms although the 

visual stimulus is stable and does not change. Rubin’s vase (Parkkonen, Andersson, 

Hämäläinen, & Hari, 2008) and My Wife and My Mother in Law (published by William Ely Hill 

in an American humor magazine on 1915) are two classic examples of ambiguous images. A 

perceptual reversal is reported between the mental states corresponding to the two 

interpretations of the image.  

 

  

  

  

  

  

  

  

 

  

  

 
1 Definition of cognition in English from the Oxford dictionary, www.oxforddictionaries.com. Retrieved 
2016-02-04 

FIGURE 1 EXAMPLES OF AMBIGUOUS IMAGES:  RUBIN’S VASE, MY WIFE AND MY MOTHER IN LAW 
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Due to its high temporal resolution compared to other techniques (MRI, PET, CT) 

Encephalography (EEG) is the ideal method to study the brain activity of the FDI groups. EEG 

is an electrophysiological method to record the difference in the electric potential resulting 

from ionic current within the neurons of the brain. The electrodes are sensors that convert 

the ion current inside the human head to current of electrons. The contact between the 

electrode and the skin is achieved with the help of a special gel that plays the role of an 

electrolyte. When there is electrical activity inside the brain, there is a difference in the electric 

potential between the two layers and as a result, there is electron flow in the electrode. The  

places that we set the electrodes on the head depends on the prototype International System 

10-20 (Kannathal, Choo, Acharya, & Sadasivan, 2005). In our task we used the electrodes FP1, 

F7, FC1, C3, T7, CP1, CP5, TP9, P3 and O1 on the left hemisphere and the FP2, F8, FC2, C4, T8, 

CP2, CP6, TP10, P4, O2 on the right hemisphere. Also, Fz, Cz and Cpz were the center 

electrodes. Each of the above electrode denotes its position from its name.  The letter shows 

the area of the head that the electrode is placed (i.e. F-Frontal, O-Occipital). Even numbers 

correspond to electrodes on the right hemisphere and the odd correspond to the left 

hemisphere. An extra third electrode, called ground electrode, is needed for getting 

differential voltage by subtracting the same voltages showing at active and reference points. 

The electrical human EEG signal is about 10 μV to 100 μV in amplitude when measured 

from the scalp. As a result, an amplifier is needed to strengthen the signal and dense coverage 

from the electrodes to capture the low electrical activity. The EEG signal has different 

waveforms based on the frequency of their harmonics called rhythms. The basic brain rhythms 

are Alpha, Beta, Gamma, Theta and Delta.  

Delta band appears during sleep. Theta rhythm reflects drowsiness and inhibition in 

elicited responses. Alpha rhythm appears in adults during the closure of the eyes and 

relaxation periods. Beta rhythm is correlated with high alertness and active thinking. Gamma 

band is associated with cross-modal sensory processing and short term memory recognized 

objects.  

The EEG signal is related with the brain activities and the level of arousal of the person. 

High brain activation results in high frequencies and short amplitude on the waveforms. For 

example, when the human eyes are closed, we notice mainly the alpha rhythm (8-13 Hz). In 

addition, we could detect pathologies like epilepsy or schizophrenia and abnormal brain states 

during sleep etc. With this thesis, we are interested to know in which frequency band we could 

notice differences between the FDI groups on a visual perception and on a discrimination of 

figures task. More specifically, there are two main purposes in this research: (a) to figure out 

some Granger causality connectivity features that could significantly differentiate FD from FI 

group and in which frequency bands, (b) to confirm if there are findings indicating a perceptual 

reversal in our experiment. 

We applied Multivariate Autoregression (MVAR) Modeling (Chapter 3.1) in the EEG 

channels and created a graph for each subject showing the interaction between the main 

brain Regions of Interest (ROIs). We estimate the interaction flow through the Directed 

Transfer Function (DTF) (Chapter 4.1), a function based on the Granger causality concept 

(Chapter 3.2). We calculate specific connectivity measures (Chapter 4.2) to quantify the 

differences between the two FDI groups. In particular, the methodology was:  

• Preprocessing of the data (Chapter 5.2),  

• Clustering for identifying the Regions of Interest (ROI) (Chapter 5.3),  
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• Source localization for calculating the EEG signal source in each ROI (Chapter 

5.4),  

• Estimation of the brain connectivity (Chapter 6.1) and  

• Statistical results of our connectivity measures (Chapter 6.2). 

 

2. Field dependent and Field Independent group 
 

Two theories have dominated about the phenomenon of reversal of ambiguous 

figures. The first theory (bottom-up), the satiation, has a sensory adaptation approach and 

called the fatiguing of the neural process responsible for one perception that leads to the 

suspension of that process: when that happens the process responsible for the alternative 

perception occurs. The second theory (top-down), the cognitive approach suggests that 

reversal is a process of intention and learning. The fact that the subjects know that a figure is 

ambiguous and also know the two perceptions of the image leads them to engage in some 

form of motivated mental activity pressing for reversal(Rock, Hall, & Davis, 1994). Some 

researchers denote that both processes are combined for the achievement of the perceptual 

reverse(Intaite, Koivisto, Rukšenas, & Revonsuo, 2010). 

A lot of studies, focus on the brain areas responsible for the bistable perception(M. 

Wang, Arteaga, & He, 2013; X. Wang et al., 2017; Weilnhammer, Stuke, Hesselmann, Sterzer, 

& Schmack, 2017). The EEG due to its high temporal resolution captures the brain activity at 

the precise time of the reversal event (V. Sakkalis, 2011). The best way to distinguish the exact 

timing of the reversal in the signal analysis is the manual response that we used in our 

research, where subjects indicate the time of the reversal by pressing a button (Kornmeier & 

Bach, 2012). The experimental set up in the majority of the studies, based on the same 

ambiguous figure as the Boring’s young/old woman (Boring, 1930; Kornmeier & Bach, 

2014)and the Necker cube (Kornmeier & Bach, 2005; Mathes, Strüber, Stadler, & Basar-Eroglu, 

2006). However, in this study we used different random stimulis (ambiguous images) to figure 

out if the perceptual reversal could still be detected even if there is no intention of seeing the 

same ambiguous image in every trial.  

Occipital areas get involved in the visual perception task, but also temporal and 

parietal locations constitute areas that show high activation too.(Kornmeier & Bach, 

2014)suggests that more and different types of stimuli involves other areas of process of the 

ambiguity, like Fusiform Face Area (FFA), except the occipital areas. The perceptual reversal 

indicates a change in the perceived spatial structure of the figure and as a result transforms 

the participant’s viewpoint in the 3D space. Parietal and temporal areas are involved in the 

neural processes that underlie in human spatial abilities. Temporal and parahimppocampal 

cortices are involved in topographic memory and navigation while the parietal lobe is 

responsible for spatial perception and representation of extrapersonal space (A. D. Ekstrom, 

2010)(Colby, 2001). (Goode, Goddard, & Pascual-Leone, 2002) suggested that the larger 

amplitudes in FD participants reflects the inhibition process they must mobilize in order to 

change their usual global passive perception.  

The research depending on the perceptual reversal focus on the event-related 
potentials (ERPs) and frequency related features. In the time window 128-154 ms after the 
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onset of the experiment and in the 274-292 ms there is a reversal negativity. Furthermore, a 
late positivity exhibited in the frontal and parietal areas during 423-471 ms(Britz, Landis, & 
Michel, 2009). 

About the frequency related features, a slow reduction is detected 1000 ms before 
the button press denoting the endogenous reversal (Strüber & Herrmann, 2002). Another 
study investigated the frequency bands of an ambiguity task and revealed an increase in 
gamma band in frontal locations during the same period of time (1000 ms) before the manual 
response (Başar-Eroglu, Strüber, Kruse, Başar, & Stadler, 1996). Also a decrease in the alpha 
power observed in the P300-like component (reversal positivity) about 250 ms before the 
reversal button press (Isoglu-Alkaç et al., 2000) 

There are not a lot of studies about brain connectivity using time series analysis and 
MVAR process during an ambiguity task. (Maksimenko et al., 2019)used a connectivity 
measure called recurrence-based measure of dependence (RMD) that determines the 
presence of a causal relation in a pair of processes. This analysis revealed a large scale 
functional network in the beta frequency band with the pronounced driving role of frontal 
cortical areas. Motivated by the fact that not a lot of studies conducted with the estimation 
of the brain connectivity, we decided to explore the characteristics of the FDI groups through 
the MVAR process and the measure based on the Granger causality principle, the DTF 
function.   
 

3. EEG Parametric modeling 
 

The human nervous system consists from plenty of neural networks that operate with an 

interactive way with each other (L. Lee, Harrison, & Mechelli, 2003). Effective connectivity 

may be defined as the direct or the indirect influence that one neural system exerts over 

another. The research on the brain effective connectivity contribute to understand better the 

functions of the brain. The main research approach based on the information coded on the 

frequency spectrum of the EEG signal. Techniques of signal processing based on frequency 

estimate metrics that highlight interdependency between the signals: correlation coefficient 

(Matousek, 1973), the coherence (Lachaux et al., 2002), generalized phase synchronization (D. 

S. Lee, Kye, Rim, Kwon, & Kim, 2003).  

 Brain connectivity could be calculate from brain activity time series from 

Electroencephalography, Local Field Potentials or spike trains and are separated in two 

categories: the bivariate and the multivariate estimators. In the framework of multivariate 

autoregressive model we define a basic measure based on the Granger causality principle: 

Directed Transfer Function (Kaminski & Blinowska, 1991).  

Beside the research based on the relation between the different regions of the brain, 
another approach is to explore if there is any causality between them. Granger Causality (GC) 
is the relationship resulting between two time series whether the first time series is useful in 
forecasting the second one (Eichler, 2012; Granger, 1980).  Specifically, the time series X it is 
said to Granger cause another time series Y if predictions of the value of Y based on its own 
past values and on the past values of X help to linearly predict future values of process Y 
beyond what can be achieved by using past values of process Y alone. Causality has been used 
to explore the effective connectivity (directed information flow, or causality) in the brain 
based on event-related relationships between channel waveforms. 
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To explore the causality between brain areas, we need to define the directionality and 
the intensity of their interaction. With the use of the bivariate autoregressive modeling we 
achieve to verge these metrics, but only for the correlation between two signals and without 
taking into account the influence of all the other structures of the system (Pereda, Quiroga, & 
Bhattacharya, 2005). This sometimes leads to misleading results (Kuś, Kamiński, & Blinowska, 
2004).  

To overcome these restrictions, the multivariate modeling has been proposed as a 
more precise estimation of the interaction between the multichannel signals. The MVAR 
modeling is one of the most common methods to explore the spectrum characteristics of the 
signals because it is an understandable, easy to solve and provide accurate estimation of the 
power spectrum density. 
 

3.1 MVAR modeling 
 

The multivariate autoregressive (MVAR) model describes for each time series the linear 
contribution coming from its past samples and the past samples of all other time series(Hytti, 
Takalo, & Ihalainen, 2006). The MVAR model is strictly causal due to the modeling only of the 
lagged effects and not of the instantaneous effects. Any zero-lag correlation among time 
series is translated like a correlation among the model residuals (Korhonen et al., 1996).  
 
The set of M zero-mean time series 𝛸(𝑛) =  𝜒1(𝑛), 𝜒2(𝑛), … , 𝜒𝛭(𝑛)is described by the MVAR 
model  

𝑋(𝑛) = ∑ 𝐴(𝑘)𝑋(𝑛 − 𝑘) + 𝑈(𝑛)      (𝐸𝑞. 1)

𝑝

𝑘=1

 

Where 𝑝 is the model order, 𝐴(𝑘) are the 𝑀 × 𝑀 matrices containing the elements 𝐴𝑖𝑗(𝑘), 

namely the model coefficients, that describe the linear interaction at lag 𝑘 from 𝜒𝑗(𝑛 − 𝑘) to 

𝜒𝑖(𝑛)(𝑖, 𝑗 = 1, … , 𝑀) and 𝑈(𝑛) = [𝑢1(𝑛), … , 𝑢𝑀(𝑛)]𝛵 is a vector of zero mean white noise 
process. As referred above any zero-lag cross correlations are explained by correlations 
among the input noises𝑈.  
 Below we can see a schematic of sliding window MVAR modeling that show exactly 
the procedure of transforming the EEG signals to adjacency matrices2.  
 

 
2 Source: SIFT manual (https://sccn.ucsd.edu/wiki/SIFT) 

FIGURE 2 SCHEMATIC OF SLIDING WINDOW MVAR MODELING 

https://sccn.ucsd.edu/wiki/SIFT


8 
 

 
In terms of Granger causality the MVAR model could be described as a procedure that 

𝜒𝑖 causes 𝜒𝑗 if the fact that we know the past states of 𝜒𝑖  (i.e. 𝜒𝑗  (𝑛 − 1), 𝜒𝑗  (𝑛 −

2) … 𝜒𝑗 (𝑛 − 𝑘)) guides to a better prediction of 𝜒𝑗. In terms of mathematics, 𝜒𝑖  causes𝜒𝑗   if 

at least one off diagonal element 𝐴𝑖𝑗  (𝑘) of the matrices 𝐴 is significantly different from zero 

(Erla, Faes, Tranquillini, Orrico, & Nollo, 2009).  
 

Two basic conditions, stationarity and stability must be satisfied regarding the data 𝑋 
and its MVAR model. We should notice at this point that stability implies stationarity, so it is 
sufficient to test for stability to ensure that a VAR process satisfies both of these criteria. 
Evoked or event related data appear to violate these assumptions, so adaptive or time varying 
methods have been developed to relax stationarity assumptions (Kitajo, Hanakawa, 
Ilmoniemi, & Miniussi, 2015)(Ding, Bressler, Yang, & Liang, 2000).  
 Thus, a stochastic process X is weakly stationary (or wide sense stationary) if its mean and 
covariance do not change in time. 
 

Ε[Χ] = 𝜇 , 𝐶𝑜𝑣(𝑋𝑡 , 𝑌𝑠) = 𝑟(𝑡 − 𝑠) 
 
Where μ is a constant and r is an appropriate function.  
 
Equivalently, the multivariate process X is stable if all the eigenvalues of A(k) have modulus 
less than 1 (Lütkepohl, 2005).  
 

3.1.1 MVAR estimators 
 
Algorithms for fitting MVAR models can be separated in two big groups, Least Squares models 
as Yule Walker equations and non-Least Squares as Vieira Morf lattice algorithms. Lattice 
algorithms, can simultaneously calculate the forward and backward model coefficients given 
a set of special reflection coefficients. The forward linear predictor estimates the sample 𝑢(𝑛) 
from the previous m samples while the backward prediction attempts to predict the 𝑢(𝑛 +
𝑀 − 1)  sample given the next 𝑀  elements. Below, we denote the estimated reflection 

coefficients 𝛷̂(𝑘) and 𝛹̂(𝑘) as referred in (Brockwell, Dahlhaus, & Trindade, 2005).  
 

𝛷̂(𝑘) = (
1

𝑛
∑ 𝜀𝐽̂(𝑡)𝜂̂𝐽∗(𝑡 − 𝑘)′

𝑛+𝑘

𝑡=1

) 𝑉̂𝐽∗
−1 

 

𝛹̂(𝑘) = 𝑉̂𝐽∗𝛷̂(𝑘)′𝑈̂𝐽
−1 

 

The 𝛷̂(𝑘)and 𝛹̂(𝑘) are the estimated reflection coefficients where 𝜀𝐽̂ is the empirical forward 

prediction error, the 𝜂̂𝐽∗ is the empirical backward prediction error, the 𝑉̂𝐽∗  is the covariance 

matrix of the backward error vector, the 𝑈̂𝐽
−1 is the inverse covariance matrix of the forward 

error vector and the 𝑘 ∈ 𝐾 = {1, … , 𝑝} is the time lag of the vector autoregression process.   
 
A variety of different estimators have been formulated by modifying the equations that 
estimate the reflection coefficients, such as Nuttall-Strand, Vieira Morf and Burg. The Vieira 
Morf estimators appear to be more effective and give higher Gaussian likelihoods with less 
variability compared to other techniques. An additional property of these estimators is that 
simultaneously minimizing weighted forward and backward prediction errors. Thus, we 
decided to focus on this algorithm to calculate the coefficients (Brockwell et al., 2005).  
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3.1.2 Model Order Selection for the MVAR models 
 

The main parameter in VAR model fitting is the model order. We select the model order that 
minimizes the criterion below (Cr) (Lütkepohl, 2006). The standard form of the model order 
criteria (or information criterion) is: 
 
 

𝐶𝑟(𝑚) = log det (∑(𝑝)

~

) + 𝑐𝑇𝜑(𝑝) 

 
∑(𝑝) is the residual (or noise) covariance matrix for a model of order p 
and𝑙𝑜𝑔𝑑𝑒𝑡 ∑ (𝑝)~ measures the estimated fit of the model (prediction error). We could also 
call it the entropy rate. It decreases when p increases. The term 𝜑(𝑝) represents the number 
of parameters which have to be estimated and 𝐶𝑇 is a variable that depends on the sample 
size T. Akaike Information Criteria (AIC), Schwartz-Bayes Criterion (SBC), Akaike’s Final 
Prediction Error (FPE) and Hannan-Quinn Criterion (HQ) are some of the most popular 
information criteria. All of them were used in this research. The ideal model could be the one 
which its model order minimizes both terms, a model that is parsimonious and accurate with 
data modeling.    

 
Akaike Information Criterion 

𝐴𝐼𝐶(𝑝) = ln |∑(p)

~

| +
2

𝑇̂
𝑝𝑀2 

 
 

Akaike’s Final Prediction Error 
 

𝐹𝑃𝐸(𝑝) = |∑(p)

~

| +
T̂ + Mp + 1

𝑇̂ − 𝑀𝑝 − 1
 

 
And its logarithm  

ln(𝐹𝑃𝐸(𝑝)) = |∑(𝑝)

~

| + 𝑀𝑙𝑛 (
T̂ + Mp + 1

𝑇̂ − 𝑀𝑝 − 1
) 

 
 
 

Schwartz – Bayes Criterion 

𝑆𝐵𝐶(𝑝) = ln |∑(p)

~

| +
ln (𝑇̂)

𝑇̂
𝑝𝑀2 

 
 
 

Hannan-Quinn Criterion 

𝐻𝑄(𝑝) = ln |∑(p)

~

| +
2ln(ln(𝑇̂))

𝑇̂
𝑝𝑀2 

 
 The essential difference between the criteria is how each one penalizes the increase 
in the model order. The concept behind heavy penalization of high model orders is to improve 
forecasting performance by reducing over-fitting. Some features that we should have in mind 
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for the criteria above are that AIC and FPE outperform SBC and HQ in small sample sizes and 
SBC penalizes more heavily larger model orders than the others. Also, HQ dispose 
intermediate penalization between SBC and AIC while show a clear minimum (Lütkepohl, 
2006). 
 
The “frequency resolution” is determined by the model order because the model order 
controls the number of modeled frequency components. We can observe p/2 frequency 
components between each pair of variables (Schlögl, 2006a), so the optimal lower bound on 
the model order should be twice the number of the expected frequencies plus one. Additional, 
considering the physiological system and the time between the underlying brain processes, 
we expect the model order to be greater than the time lag in seconds of the processes 
multiplied by the sampling rate in Hz, namely 𝑝 ≥ 𝜏𝐹. 
 
Generally, the selection of the model order presupposes combination of these information 
with expectations from the bibliography. Through one of the next steps, the model validation, 
we define the quality of our model fit and revise our model characteristics (among other, 
selection of a different model order) until the data is adequately modeled.  
 

3.1.3 Window length selection 
 

The length of the sliding window was selected according to the equation3:  

𝑊 ≥ 10 (
𝑀𝑝

𝑁
) 

Where 𝑊  is the window length,  𝑝  is the model order, 𝑀  is the number of Independent 

Components and 𝑁 is the number of trials. This equation comes from the following statement. 

According to (Schlögl& Supp, 2006)(Korzeniewska, Crainiceanu, Kuś, Franaszczuk, & Crone, 

2008) there must be a sufficient number of data points available to accurately fit the model. 

We have 𝑀𝑝 coefficients to estimate for a multivariate model which requires minimum of 𝑀𝑝 

data samples. In addition, there must be at least 10 times that many data points to ensure an 

unbiased fit.  

 

𝑊𝑁 ≥ 10𝑀𝑝 

 

 
 
 
 
 
 

 
3  As Makoto Miyakoshi stated in his pipeline 
(https://sccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline), the equation used in SIFT’s 
function est_checkMVARParams() line 85 for testing the ‘window length’ is wrong and till the publishing 
of this thesis in not corrected by the authors of the toolbox. Here we refer to the correct form of the 
equation. The interested reader should correct the script of the equation on his own according with the 
author’s guidance in the link.    
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3.1.4 Model Validation 
 

Checking the residuals 

𝑋(𝑛) = ∑ 𝐴(𝑘)𝑋(𝑛 − 𝑘) + 𝑈(𝑛)      (𝐸𝑞. 1)

𝑝

𝑘=1

 

 
The matrix 𝐴(𝑘) with the model coefficients describe the linear interaction at lag k from 
𝜒𝑗(𝑛 − 𝑘) to 𝜒𝑖(𝑛)(𝑖, 𝑗 = 1, … , 𝑀) . For these model coefficients we can obtain the 

residuals𝑈(𝑛) = [𝑢1(𝑛), … , 𝑢𝑀(𝑛)]𝛵 that they should be uncorrelated if we have adequately 
modeled the data. We check the correlation structure (or the whiteness) of the residuals with 
testing the autocorrelation coefficients. If the coefficients up to a lag ℎare small enough, it is 
ensured that we cannot reject the null hypothesis (definition below) of white residuals at 
some significance level(Delorme et al., 2011a).  
 
Firstly, the lag ℎautocovariance matrix of the residuals is given by𝐶ℎ = 𝐸[𝑈𝑛𝑈𝑛−ℎ].  
 
 
 

𝐶ℎ = [
𝐶𝑜𝑣(𝑋1, 𝑋1−ℎ) … 𝐶𝑜𝑣(𝑋1, 𝑋𝑛−ℎ)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑋1, 𝑋𝑛−ℎ) … 𝐶𝑜𝑣(𝑋𝑛, 𝑋𝑛−ℎ)

] 

 
We define the lag ℎ autocorrelation matrix 𝑅h = 𝐷−1𝐶ℎ𝐷−1  where 𝐷−1 is a diagonal matrix 
of which its elements are the square root of the diagonal elements of 𝐶0 
 
 
The autocorrelations up to a lag h are defined as 𝑹ℎ = (𝑅1, … , 𝑅ℎ) 
 
The general idea is testing if the null hypothesis (the residuals are white) 𝐻0: 𝑹ℎ =
(𝑅1, … , 𝑅ℎ) = 0  or the alternative 𝐻1 : 𝑹ℎ ≠ 0 is true.  
 
The simplest test, based on asymptotic properties of univariate white noise processes involve 

rejecting the hypothesis that U is white noise at the 5% level if |𝑅ℎ| > ±2√𝑇̂ for any lag ℎ for 

𝑇̂ = 𝑇𝑁 is the total number of samples. The probability of a coefficient exceeding the 5% 
significance bounds: 
 

𝜌 =
𝑐𝑜𝑢𝑛𝑡(|𝑹ℎ| > ±2√𝑇̂)

𝑐𝑜𝑢𝑛𝑡(𝑹ℎ)
 

 
If 𝜌 < 0.05we cannot reject the null hypothesis at the 0.05 level and we accept that the 
residuals are not correlated and white.  
 
The simple asymptotic ACF test in small samples may be conservative (reject the null 
hypothesis less often than indicated) and lead to misleading results (Lütkepohl, 2005). For this 
reason we propose some alternatives, for testing of the residuals, through portmanteau test 
statistics: Box-Pierce (BPP), Ljung-Box (LBP), Li-McLeod (LMP). Each of these tests follows a χ2-
distribution. Also, we obtain a ρ-value by comparing the test statistic with the cumulative 
distribution function of this distribution.  
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The Box Pierce (BPP) test is the original portmanteau test. For small samples its distribution 
diverges from the asymptotic distribution and this can make it overly conservative.  
 

𝐵𝑃𝑃ℎ = 𝑇̂ ∑ 𝑡𝑟(𝐶𝑙
′𝐶0

−1𝐶𝑙𝐶0
−1)

ℎ

𝑙=1

 

 
The Ljung-Box (LBP) test improves small sample properties but inflates the variance of the test 
statistic. It is more sensitive with significance levels somewhat larger than expected in large 
samples.  
 

𝐿𝐵𝑃ℎ = 𝑇̂(𝑇̂ + 2) ∑(𝑇̂ −  𝑙)
−1

𝑡𝑟

ℎ

𝑙=1

(𝐶𝑙
′𝐶0

−1𝐶𝑙𝐶0
−1) 

  
The Li-McLeod (LMP) it has better small properties than BPP without inflating its variance. The 
statistical power of LMP and LBP is almost identical while LMP is slightly more conservative.  
 

𝐿𝑀𝑃ℎ = 𝑇̂ ∑ 𝑡𝑟

ℎ

𝑙=1

(𝐶𝑙
′𝐶0

−1𝐶𝑙𝐶0
−1) +

𝑀2ℎ(ℎ + 1)

2𝑇̂
 

 
 

Checking the consistency and stability of the model 

 

As we would like to examine of what fraction of the correlation structure of the original data 
is captured by our fitted MVAR model, we calculated the percent consistency. We compared 
the real data with the simulated data segments of equal dimensions. In each window we 
computed all auto-correlations and cross-correlations between all the variables up to a 
predetermined lag. The statistical consistency between the correlation structure of the real 
data and of the simulated data can be measured by the percent consistency (PC) measure: 
 

𝑃𝐶 = (1 −
‖𝑅𝑠 − 𝑅𝑟‖

‖𝑅𝑠‖
) × 100 

A PC value near 0% indicates a failure to model the data. When the PC value is near 100%, this 
denotes that the simulated model is able to generate data with almost identical characteristics 
as the original data.  
 
In exact terms, a VAR process is stable if its reverse characteristic polynomial has no roots in 
or the complex unit circle. Precisely,  
 

det(𝐼 − 𝐴𝑧) ≠ 0 for ∣ z ∣ ≤ 1 
In other words, an M-dimensional VAR[p] process is stable if all the eigenvalues of the 
[𝑀𝑝 × 𝑀𝑝] coefficient matrix A have absolute value less than 1(Lütkepohl, 2005). Thus, the 
stability index we used is the 𝑙𝑛 of the largest eigenvalue 𝜆𝑚𝑎𝑥 of the coefficient matrix 𝐴:   

𝑆𝐼 = ln |𝜆𝑚𝑎𝑥| 
If the SI is negative (𝑆𝐼 < 0), the VAR[p] process is stable. A stable process is a stationary 
process, so it is sufficient to check only the stability.  
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3.2 Granger causality in MVAR modeling 
 
Let the V represent the set of all the EEG variables: 𝑉 = {1,2, … , 𝑀} 
 

𝑋𝑉(𝑡) = ∑ 𝐴(𝑘)𝑋𝑉(𝑡 − 𝑘) + 𝑈(𝑡)      (𝐸𝑞. 1)

𝑝

𝑘=1

 

We calculate the mean-square prediction error when 𝑥𝑖 is predicted from the past values of 
𝑥𝑉 up to the specified model order: 
 

𝑣𝑎𝑟(𝑥𝑡
𝑖|𝑥𝑉) = 𝑣𝑎𝑟(𝑢𝑡

𝑖 )where𝑥𝑉 = {𝑥𝑡−𝑘
𝑉 , 𝑘 ∈ {1, … , 𝑝}} denotes the past of 𝑥𝑡 

 
We exclude the variable 𝑗 from the set of variables and refit the model: 

𝑋𝑉\𝑗(𝑡) = ∑ 𝐴̅(𝑘)𝑋𝑉\𝑗(𝑡 − 𝑘) + 𝑈̅(𝑡)

𝑝

𝑘=1

 

With mean square prediction error: 

𝑣𝑎𝑟(𝑥𝑡
𝑖|𝑥𝑉\𝑗) = 𝑣𝑎𝑟̅̅ ̅̅ ̅(𝑢𝑡

𝑖 ) 

 

Generally, 𝑣𝑎𝑟(𝑢𝑡
𝑖 ) ≥ 𝑣𝑎𝑟̅̅ ̅̅ ̅(𝑢𝑡

𝑖 )  . 

 
That means that the fitted model without the variable 𝑗 will be more accurate to predict the 

variable 𝑥𝑖 than the fitted model with all the variables (included𝑗). This is one important part 
of the multivariate Granger causality definition. 
 
Definition: 

Let 𝑖 and 𝑗 be two variables of V. Then 𝑥𝑗 Granger causes 𝑥𝑖 if and only if: 

𝑣𝑎𝑟(𝑢𝑡
𝑖 ) ≥ 𝑣𝑎𝑟̅̅ ̅̅ ̅(𝑢𝑡

𝑖 )and𝐴𝑘,𝑖𝑗 ≫ 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ {1, … , 𝑝} 

 

𝐹𝑖𝑗 = 𝑙𝑛 (
𝑣𝑎𝑟(𝑥𝑡

𝑖|𝑥𝑖)

𝑣𝑎𝑟̅̅ ̅̅ ̅(𝑥𝑡
𝑖|𝑥𝑖, 𝑥𝑗)

) 

The non-negative quantity 𝐹 defines the process 𝑗 to process 𝑖 and increases to the degree to 
which the past of process 𝑗 “granger-causes” (conditionally explains) the future of process 𝑖  
time series (Granger, 1969)(Geweke, 1982).  
 
In the frequency domain, we obtain the Fourier-transform of our VAR[p] coefficient 
matrices𝐴(𝑓).  

𝑋(𝑡) = ∑ 𝐴(𝑘)𝑋(𝑡 − 𝑘) + 𝑈(𝑡)      (𝐸𝑞. 1)

𝑝

𝑘=1

 

𝑈(𝑡) = ∑ 𝐴̂(𝑘)𝑋(𝑡 − 𝑘)      

𝑝

𝑘=0

 

 
    We use Fourier transformation:  
 

   𝑈(𝑓) = 𝐴(𝑓)𝑋(𝑓)  where 𝐴(𝑓) = ∑ 𝐴̂(𝑘)𝑒−𝑖2𝜋𝑓𝑘𝑝
𝑘=0  

 
  Multiplying by 𝐴(𝑓)−1 we have 𝑋(𝑓) = 𝐴(𝑓)−1𝑈(𝑓) = 𝐻(𝑓)𝑈(𝑓) 
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where 𝑋(𝑓) is the spectral matrix of the multivariate process, 𝑈(𝑓) is a matrix of random 
sinusoidal shocks and 𝐻(𝑓) is the transfer matrix of the system.   
 
Definition: 

Let 𝑖 and 𝑗 be two variables of V. Then 𝑥𝑗 Granger causes 𝑥𝑖 if and only if: 
𝐴 𝑖𝑗 ≫ 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓 

 
 
As a result we test for the non zero coefficients of |𝐴(𝑓)|and by this come a group of GC 
estimators called Partial Directed Coherence measures (PDC). 
 
 
There is a direct relationship between time-domain and frequency domain on Granger 
causality. The time domain GC estimator 𝐹𝑖𝑗 and the frequency domain GC estimator 

𝑊(𝑓)𝑖𝑗hold the below equivalency: 

 

𝐹𝑖𝑗 = ∫ 𝑊(𝑓)𝑖𝑗

𝐹

2

0

𝑑𝑓 

 
The Granger Causality extends through the MVAR models and the Fourier transformation to 
get the transfer, spectral density matrices, ordinary and partial coherences(Delorme et al., 
2011a). Through frequency domain representation of bivariate GC and measures of directed 
conditional multivariate dependence as the DTF and PDC the brain network dynamics are 
described. To study the causal dynamics of non-stationary EEG channel time series, we 
implement filtering, locally stationary sliding windows and spectral matrix factorization. These 
approaches can be used to explore the time- and frequency-dependent dynamics of directed 
information flow or causality during cognitive information processing between brain sources. 
 

3.3 MVAR modeling with SIFT toolbox 
 
 Source Information Flow (SIFT) is an open-source Matlab (The Mathworks, Inc.) 
toolbox for modeling and visualizing information flow between sources of electrophysiological 
data(Mullen, 2014). The data must be first separated into maximally independent processes 
using Independent Component Analysis (ICA) to apply them the six modules, as follows:  
 
(1) data preprocessing, that contains functions for normalization, downsampling, detrending, 
and other standard preprocessing steps  
(2) model fitting and connectivity estimation, that consists of adaptive MVAR modeling 
approaches (ARfit, Group Lasso, Ridge regression, SCSA, Vieira Morf). From the fitted model, 
the user can chose to estimate spectral power, coherence, and frequency-domain 
connectivity. 
 (3) statistical analysis, with surrogate statistics (phase-randomization and bootstrap statistics) 
for all measures, and analytic statistics for partial directed coherence and directed transfer 
function measures. 
 (4) visualization, with novel routines for interactive visualization of information flow dynamics 
and graph-theoretic measures across time, frequency, and anatomical source location. 
 
 The main characteristic of SIFT comparing to other toolboxes is that the dynamical 
modeling is performed at the level of sources rather than between surface EEG signal 
channels. That gives the advantage of minimizing the risk of misidentifying network events 
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resulting from mixing brain and non brain sources (arising by volume conductions or other 
artifacts). Transient dynamic network events between spatially static components could be 
detected from this toolbox. 
 

3.4 Clustering  
 

Spatially and functionally clustering was used through the EEGlab toolbox to define 
the cortical regions of interest (ROIs) for the later connectivity analysis. We did not take the 
raw EEG signal from the channels for the clustering procedure. Instead, we followed a 
preprocessing pipeline through filtering and ICA decomposition. In the Independent 
Component Analysis some filters (from EEGLAB4 toolbox) produce the maximally temporally 
independent signals available in the channel data with a linear change of basis.  These are, in 
effect, information sources in the data whose mixtures, via volume conduction have been 
recorded at the scalp channels. 

 Information from the equivalent dipole fitted to each IC, the event related potential 
(ERP), the topographical scalp map of the IC, the Event Related Spectral Perturbation of the IC 
(ERSP)(Makeig, 1993) andtheInter Trial Coherence (ITC) was used to extract homogenous 
clusters with similar functional characteristics. 

The equivalent dipole fitted to each component was estimated with the use of a non-
linear optimization technique using a spherical model. The goal of the inverse problem solving 
is to find some number of equivalent current dipoles (like small batteries), whose summed 
projections to the scalp nearly resemble the observed scalp 
distribution. The event-related potential (ERP) is the 
electrophysiological response to any stimulus that could evoke 
sensory, cognitive or motor action. The EEG reflects 
simultaneously a lot of brain processes, so the brain response 
to a single stimulus is not usually visible in the EEG recording in 
a single trial. To estimate the wavelength of the ERP, we must 
average the results from many trials causing random brain 
activity to be averaged out. An experimental task could create 
several ERP components in the EEG signal consecutively, for 
example N100 denotes the Negative ERP component around 
100 msec after the onset of the stimulus while P300 denotes 
the Positive ERP component around 300 msec.  

 
 The topographical scalp maps we took into account to 
form the clusters describe the distribution of electrical activity across the brain as measured 
from the EEG channels. The ERSP measures average dynamic changes in amplitude of the 
broad band EEG frequency spectrum as a function of time relative to an experimental event. 
That is, the ERSP measures the average time course of relative changes in the spontaneous 
EEG amplitude spectrum induced by a set of similar experimental events. These spectral 
changes typically involve more than one frequency or frequency band, so full-spectrum ERSP 
analysis yields more information on brain dynamics (Makeig, 1993).   
 
 For explaining the Inter-trial coherence let’s start with the definition of time-
frequency analysis, where the ITC measure belongs (Nash-Kille & Sharma, 2014). Time-
frequency analysis adopt a different perspective on the evoked response from the traditional 
time-only analyses where component peaks are averaged, while the remainder of the evoked 
potential signal is considered to be noise and disregarded. In time-frequency analyses, we 

 
4 https://sccn.ucsd.edu/wiki/Chapter_09:_Decomposing_Data_Using_ICA 

FIGURE 3 EVENT RELATED POTENTIAL 

(SOURCE: WIKIPEDIA) 



16 
 

focus on brain oscillations, which can be detected using a time-frequency decomposition of 
the EEG. When the waveform of the EEG is interrupted by a stimulus event, the distribution 
of EEG phase becomes “phase-locked” to that event (Makeig, Debener, Onton, & Delorme, 
2004) and this phase synchronization of brain oscillations can be determined by computing 
phase relations across single trials. Phase synchronization of brain oscillations within and 
between cortical areas is a fundamental mechanism involved in information processing and 
has been found to be critical for feature-binding and other cognitive processes (Tass et al., 
1998) (Palva, Palva, & Kaila, 2005). Inter-trial coherence (ITC) is a measure that is computed 
from single trial EEG, which reflects the temporal and spectral synchronization within EEG, 
elucidating the extent to which underlying phase-locking occurs. Thus, ITC provides a direct 
measure of cortical synchrony that is not available in the aggregate evoked response 
waveform. All this information from these measures is combined to extract the clusters and 
subsequently the ROIs of our research.   
 
 

3.5 Source Localization  
 

For the estimation of the source localization of the brain activations, we should solve 

the forward and the inverse problem with specific algorithms. For forward and inverse 

distributed source imaging,we used theDistributed Source Imaging (DSI)toolbox that 

combines the ‘Head model’ toolbox and the Recursive Sparse Bayesian Learning inverse 

filtering code(Ojeda, Klug, Kreutz-Delgado, Gramann, & Mishra, 2019). We have used 

forward modeling routines from the ‘HeadModel’ toolbox for x,y,z, which is open-source and 

can be freely downloaded from https://github.com/aojeda/headModel. The forward model 

function coregistered the channel positions to a head model template based on the 

standardized MRI MNI Colin27three layer Boundary Element Models (Holmes et al., 1998) 

and computed the lead field matrix through OpenMEEG template (Gramfort Alexandre, 

Papadopoulo Théodore, Olivi Emmanuel, & Clerc Maureen, 2010). The electrical lead field 

matrix was computed for the three BEM layers, “relating the conduction of electrical fields 

generated by current dipoles from the cortical mesh (bottom layer) to the top of the skin 

(outer layer) where the field potential is recorded by scalp electrodes”(Courellis, Mullen, 

Poizner, Cauwenberghs, & Iversen, 2017).   

The Recursive Sparse Bayesian Learning (RSBL) filtering algorithm used for inverse 

modeling(Ojeda et al., 2019). Solving the ‘inverse model’, we localize the current source inside 

the fixed brain source we made previously and transform scalp EEG data to distributed cortical 

source estimates. More specifically, we find the equivalent electric dipole whose projections 

to the brain most nearly correspond to the observed scalp map distribution. We chose the 

RSBL algorithm because ‘it induces the segregation of the electrical activity into a few 

maximally independent components’ with anatomical projections while minimally 

overlapping artifact activity. It reduces the artifacts without significantly deforming the 

epochs of the data, in contrast with other algorithms (Ojeda et al., 2019). At the same time, 

we reduce the source activity from the cortical space to the ROI space taking the mean of the 

source values within it (estimate the current localized at each grid-point in the head model 

within a given ROI). As a result, each ROI has a single time series that represent the dynamics 

taking place in it. For further analysis, we select the ROIs that include the centroids or were 

approximately neighboring with the centroids from the clustering conducted before.  
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4. Brain Connectivity 
 
 Brain Connectivity may reflect several different aspects of brain organization. 
Structural, functional and effective connectivity attempt to group these aspects in distinct 
categories(Karl, 1994). Structural connectivity refers to a network of anatomical (direct or 
indirect axonal-dendritic) connections linking neurons. Functional connectivity describes 
statistical dependence (i. e. measuring correlation, covariance, spectral coherence, phase 
locking) between all brain regions of a system, regardless whether these elements are 
connected directly or not. This kind of connectivity is highly time-dependent but it cannot 
provide identification of asymmetric information transfer or directional effects between brain 
areas. Functional connectivity can be estimated through computing cross-correlations in the 
time frequency domain or spectral coherence. Effective connectivity provides the 
identification of asymmetric information transfer mentioned above and refers to causal 
dependencies of one neural element over another. We will choose to deepen on the last type 
of connectivity as it is usually better for understanding the functional brain segregation (one 
of the principles of brain organization). Effective connectivity mediates the influence that one 
neuronal system exerts on another. 

For estimating effective connectivity various techniques are proposed(V. Sakkalis, 
2011). One widely adopted technique is estimation through the time-series analysis that 
based on adaptations of the concept of Granger causality. Transfer entropy(Schreiber, 2000) 
detects directed exchange information between two systems taking into account how the 
state of one element effects the state of another. The measures based on Granger causality 
and transfer entropy are the Directed Transfer function and the Partial Directed Coherence. 
These measures are defined in the Multivariate Autoregressive Modeling framework.   
 Structural connection patterns constrain a lot the cortical circuits and therefore the 
functional and effective connectivity. But also temporal activations in functional or effective 
connectivity may mirror changes in anatomic-structural variables.  Given these links for the 
brain connectivity, it is likely that structural characteristics relate with functional interactions. 
 

 
FIGURE 4 SKETCHES ILLUSTRATE STRUCTURAL CONNECTIVITY (FIBER PATHWAYS), FUNCTIONAL CONNECTIVITY (CORRELATIONS) AND 

EFFECTIVE CONNECTIVITY (INFORMATION FLOW) AMONG BRAIN REGIONS IN MACAQUE CORTEX (HONEY, KÖTTER, BREAKSPEAR, & 

SPORNS, 2007). 

 Segregation and integration are two potential principals that link anatomical, 
functional and effective connectivity (Tononi, Sporns, & Edelman, 1994). The existence of 
specialized neurons and brain areas grouped to form segregated cortical areas called 
‘segregation’. The activation of distributed neuronal populations and therefore enabling the 
appearance of contiguous cognitive states called ‘integration’.  The interaction between 
segregation and integration generates information that is highly diversified and highly 
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integrated, thus creating patterns of high complexity. The application of network analysis 
techniques allows the comparison of high complexity brain connectivity patterns.  
 Brain connectivity patterns derive from network analysis techniques and can be 
represented as matrices or graphs. Structural connectivity is imprinted in a weighted or binary 
graph. The weighted graph represents connection densities and the binary graph represents 
the presence/absence of a connection. A full symmetric matrix is formed when we study the 
functional connectivity. By the values of the matrix are denoted the statistical dependence 
between two elements (i.e. neurons). Effective connectivity constructs a full non symmetric 
matrix that applying a threshold creates a binary directed graph. A binary graph could be 
created from a full symmetric matrix also. 
 The construction of the brain graph requires the use of a multivariate autoregressive 
model on the EEG data and a function that will be used as an estimator of the intensity of the 
activity flow between the brain regions. Direct Transfer Function is a function among others 
that will be the one we will use in this thesis based on the Granger causality principle between 
time series (Granger, 1969) and the spectral properties of the initial signals.  
 
 

  
 

4.1 Directed Transfer Function (DTF) 
 
Each graph has to be estimated from the EEG data. In a brain network, each vertex is 

a brain area or Region of Interest (ROI) and each edge corresponds to statistical dependence 
in the activation between two areas. A lot of techniques measure both the linear and 

FIGURE 5 MATRICES SHOW BINARY STRUCTURAL CONNECTIONS FROM STRUCTURAL CONNECTIVITY (LEFT), SYMMETRIC MUTUAL 

INFORMATION FROM FUNCTIONAL CONNECTIVITY (MIDDLE) AND NON-SYMMETRIC TRANSFER ENTROPY FROM EFFECTIVE CONNECTIVITY 

(RIGHT). DATA WAS OBTAINED FROM A LARGE-SCALE SIMULATION OF CORTICAL DYNAMICS(Honey, Kötter, Breakspear, & Sporns, 
2007). 
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nonlinear dynamic coupling between different brain regions. When these methods apply in 
different frequency bands constitute indices of cerebral engagement in cognitive tasks.  

 
 For the analysis of the relations between brain structures we have  applied  a  
multichannel  model,  which  takes  into account  all  signals  simultaneously,  not  pair-wise.  
The multichannel approach avoids the general disadvantage of pair-wise analysis, which in 
certain cases can lead to incorrect conclusions especially when some channels are fed from 
common signal sources, as is very likely  in neurobiological systems. Additionally, the 
multichannel model creates a common base with regard to the whole system providing an 
absolute scale for comparison  of quantitative results. The Directed Transfer Function DTF 
(Kaminski & Blinowska, 1991) based on the multichannel (multivariate) autoregressive 
(MVAR)  model is an estimator of the intensity of activity flow between structures depending 
of frequency of the signal. The high value of DTF indicates the information flow between two 
given brain areas. Also, we should notice that the non-normalized DTF function is equivalent 
to the Granger causality measure (Kamiński, Ding, Truccolo, & Bressler, 2001). DTF in some 
cases may not easily differentiate between the direct and the indirect connections via 
mediating structures, so researchers attempted to create a new measure to estimate direct 
causal relations between signals.   By multiplying DTF by partial coherence we emphasize only 
in the direct connections. The function direct Directed Transfer Function (dDTF) combines 
information about direction of influence in one measure (distinguish between direct and 
indirect connections while minimizing the indirect connections).  Estimation of the direction 
of the EEG flow by means of  dDTF (or DTF)  relies  on  the  difference  of  phases between 
signals (Korzeniewska, Mańczak, Kamiński, Blinowska, & Kasicki, 2003).  
 

4.2 Graph Theory 
 

 Measures of graph theory and other mathematical network science tools have been 
applied aiming to understand the complexity of the brain network(Colombo, 2013)(Fornito, 
Zalesky, & Bullmore, 2016). Brain graphs are composed from neural elements (neurons or 
brain regions) and their interconnections (synapses or pathways or statistical dependencies), 
also called nodes and edges respectively. The simplest form of the graph’s topology can be 
summarized in the form of an adjacency matrix with binary or weighted elements describing 
the presence or the absence of an edge or a directed edge.  
 
 One analysis approach focusing on the network’s topological features such as the path 
lengths (distances), subgraphs (motifs), clustering coefficients, vertex and edge centrality. This 
approach requires the suitable random graph model accompanied with the appropriate null 
hypothesis. These random graph models are not uniquely defined, they differ but they 
preserve some subsets of structural parameters, i.e. edge randomization techniques with 
preserved vertex degrees. The detection of network communities through the observation of 
the graph’s eigenspectrum is another technique that could be applied to brain connectivity 
datasets. Another analysis approach focus on the three dimensional structure of brain 
networks that include for example measuring wiring length or volume(Wen & Chklovskii, 
2005).  
  
 According to the first analysis approach, we decided to estimate some basic metrics 
to compare the constructed subjects’ graphs(Vangelis Sakkalis, Tsiaras, & Tollis, 2010). 
Centrality measures are the local measures detecting which vertices are the most relevant to 
the organization and functioning of a network, for example node betweenness centrality 
degree and node strength. Node betweenness centrality (BC) degree is the fraction of all 
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shortest paths in the network that contain a given node. The equation is defined below 
where𝜎𝑥𝑦  is the total number of shortest paths from node 𝑥  to node 𝑦  and𝜎𝑥𝑦(𝑢) is the 

number of those paths that pass through 𝑢. 

𝐵𝐶(𝑢) =  ∑
𝜎𝑥𝑦(𝑢)

𝜎𝑥𝑦
𝑢≠𝑥≠𝑦

 

 
Node strength is the sum of weights (SW) of links connected to the node. In directed 

networks, the in-strength is the sum of inward link weights and the out-strength is the sum of 
outward link weights(“Node Degree and Strength,” 2016). The out-strength and the in-
strength value will be referred also as ‘Outflow’ and ‘Inflow’ in this thesis because of the 
different appellation used by Sift toolbox. 

𝑆𝑊 =
1

𝑛 − 1
∑ 𝑤𝑢,𝑣

𝑢≠𝑣

 

In order to obtain a better understanding of network’s structure and function, 
networks are often classified into categories. We classify a network by describing essential 
properties of the network called graph (or network) metrics. Network metrics like clustering 
coefficient or average shortest path length are chosen to catch the needed information to 
differentiate graphs into different categories. The average shortest path length (L) is a 
measure of interconnectedness of the graph and defined as the shortest path between any 
two pairs  𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣 of nodes in a network.  

𝐿 =
1

𝑛(𝑛 − 1)
∑ 𝑑(𝑢, 𝑣)

𝑢,𝑣∈𝑉

 

 We decided to use the dDTF with causal normalization function to create the graph of 
each subject because it combines the advantages of DTF and partial coherences. Also the new 
dDTF (or SdDTF) was normalized to all direct transfers between channels (Korzeniewska et al., 
2008). We calculate only some representative measures from each group of metrics: the 
centrality degree, the node strength, the in-strength and out-strength from the centrality 
measures and the average shortest path of each graph from the graph metrics.  
 
 
 

5. Methodology 
Below we can see in a diagram the methodology we used and the nine (9) steps of the 

analysis.  
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5.1 Dataset description 
 

The data collected from Plymouth University in the U. K. for course credit. Thirty-one 

students (Mean= 21 years and 2 months, SD= 5.22) with normal or corrected-to-normal 

vision took part in the training session and in the experiment while the EEG device was 

recording. They also completed the HFT and TTCT test.  

The experiment consisted of three different tasks and lasted 3 hours: (a) an 

ambiguous perceptual task, (b) a FD-I visuospatial performance task (Hidden Figures Task) 

and (c) a creativity performance task (Torrance Test of Creative Thinking). Brain activity 

captured via a wireless Electroencephalogram (EEG) recording device while the eye moves 

recorded from a synchronized eye-tracking device. In the current study, we focused on the 

EEG recordings throughout the ambiguous figures experiment along with the results at the 

HFT test.  

An mBrainTrain Smarting EEG device used along with 24 channels at a sampling 

frequency of 500 Hz with 24-bit resolution. The electrodes applied following the 

international 10-20 system. Data were recorded from the recording positions FP1, F7, FC1, 
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C3, T7, CP1, CP5, TP9, P3 and O1 for the left hemisphere along with their right counterparts 

FP2, F8, FC2, C4, T8, CP2, CP6, TP10, P4, O2 and from the center electrodes Fz, Cz and Cpz. 

The reference electrode was positioned at FCz and a ground electrode at Fpz. EEG data were 

recorded using OpenVIBE 0.18 (Renard et al., 2010)and stored using the European Data 

Format (EDF+) (Kemp & Olivan, 2003)and the General Data Format for biomedical signals 

(GDF), version 1.25 (Schlögl, 2006b). 

We used 100 black-white images from the collection of Snodgrass and Vanderwart 

(1980): 50 images having two possible interpretations for the bistable condition and 50 

images having a single interpretation for the control condition. The images had random 

order. At the center of the screen, a fixation cross appeared in every trial and the 

participants were asked to focus their gaze on it for about 800 to 1300 msec. In the next 

step the image appeared and the participants were instructed to press a button once they 

perceive the initial interpretation. If an ambiguous image appeared as a stimulus, 

participants were asked to press the button once again when they figure out the second 

meaning. With no report of the second interpretation, the trial ended after 5000 msec. An 

image of closed eyes reminded the participants to blink between trials. Before the 

experiment, a training session of 10 trials with two preselected images (one from the 

bistable condition and one from the normal condition) was performed.   

The Hidden Figures Test (HFT) estimates the Field Dependence – Independence level 

of the participants (E. A. Nisiforou & Laghos, 2013)(R. B. Ekstrom, French, Harman, & 

Dermen, 1976). Participants have to specify which one of the given five simple geometrical 

shapes is embedded in a more complex pattern. The HFT duration is 24 min and it is equally 

divided into two parts. According with the manual, the calculation of the HFT score 

conducted by taking the number of the correct responses minus the number of the incorrect 

responses. According to this classification, participants were categorized as 14Field 

Dependent, 7 Field Independent and 8 Field Neutral learners (also, 2 subjects’ recordings 

were partially destroyed). Only the data of the FD and FI participants were analyzed.  

 

5.2 Preprocessing 
 Channel space data from EEG was conducted using EEGLAB (Delorme & Makeig, 

2004). After bandpass filtering (2-65 Hz) using a Hamming window FIR filter and average re-

referencing, we corrected the baseline from the data using the time range [-1000 0]. The data 

were epoched time-locked to three different events: the appearance of the image on the 

screen, the first button press that indicates the first interpretation of the image and the 

FIGURE 6 SCHEMATIC DIAGRAM OF THE EPOCH EXTRACTION PROCESS. THE PLOTS CORRESPOND TO THE ERPS, AS CALCULATED FOR EACH 

EPOCH, WHERE THE BLUE LINE CORRESPONDS TO THE BISTABLE CONDITION C1 AND THE RED LINE TO UNAMBIGUOUS CONDITION C2. 
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second button press the second interpretation of the image. Below there is a schematic 

diagram denoting the epoch extraction process (Farmaki, Sakkalis, Loesche, & Nisiforou, 

2019). The plots correspond to the ERPs, as calculated for each epoch.  

After that, the epoched data were decomposed into maximally independent 

components using theInfomax ICA (implemented for EEGlab toolbox with the algorithm 

‘runica’) (Bell & Sejnowski, 1995). Noise components were identified using IC-label classifier. 

The classifier implementation is trained in thousands of labeled and unlabeled Independent 

Components (IC) and classifies each component as brain or non brainsources (eye, muscle, 

heart, line noise, channel noise and other). From each subject, about ten components with 

the less percentage of brain sources were removed (Pion-Tonachini, Kreutz-Delgado, & 

Makeig, 2019).  

We checked each component before removing 

it examining carefully its plot: the scalp topography, the 

ERP image, the component time series and the activity 

power spectrum.  If a component is classified as a brain 

component, we should check the scalp topography to 

look dipolar and residual variance from dipole fitting 

should be lower than 15 %. The power spectrum (down 

right) should decrease as frequency increases (follows 

the behavior of the function 𝑋 = 1/𝑓) and the epoched 

data will have a visible ERP. To distinguish a brain 

component from an artifact, for example an eye 

artifact, we check the scalp topographies to be near 

eyes and the power to concentrate at low frequencies 

(below 10 Hz). In addition, another argument is that the 

ERP shows a very noisy signal without a specific waveform.  

 

 

 

 

 

 

FIGURE 7, 8, 9 EXAMINING IF A COMPONENT CATEGORIZED AS A BRAIN COMPONENT OR AN EYE ARTIFACT (IC-LABEL). 
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5.3 Clustering – Identification of ROIs 
 

We define the cortical regions of interest (ROIs) using spatially and functionally 

clustering from the Independent Components (ICs) with the EEGlab toolbox for the 

connectivity analysis. Information from the equivalent dipole fitted to each IC, the event 

related potential (ERP), the topographical scalp map of the IC, the Event Related Spectral 

Perturbation of the IC (ERSP) (Makeig, 1993) and the Inter Trial Coherence (ITC) was used in 

order to create homogenous clusters with similar functional characteristics (see “Chapter 3.5 

Clustering” for more details). We achieved the reduction of the dimensionality of each of the 

features through Principal Component Analysis (PCA) and following K-means algorithm was 

used to cluster the ICs into groups. We tested the clustering for eight groups (K=8) to 

thirteen (K=13) and we choose the most spatially and functionally tight clustering, the one 

with the nine (9) groups. (Lancaster et al., 2000).  

 

 

 

 

 

 

FIGURE 10 AFTER THE CLUSTERING, NINE (9) GROUPS OF COMPONENTS GENERATED TAKING INTO ACCOUNT INFORMATION FROM THE 

EVENT RELATED POTENTIAL, THE TOPOGRAPHICAL SCALP MAP, THE EVENT RELATED SPECTRAL PERTURBATION AND THE INTER TRIAL 

COHERENCE.  
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5.4 Source Localization 
 

We used the Source Localization step (forward and inverse modeling) to localize each 

Idependent Component (IC) signal into a Region of Interest (ROI) and to calculate the current 

inside this ROI. After we keep only the ROIs we are interested in that we found them from the 

previous “Clustering” step. 

  As we read in the “Chapter 3.4 Source Localization” for forward and inverse 

distributed source imaging, we used the Distributed Source Imaging (DSI)toolbox that 

combines the ‘Head model’ toolbox and the Recursive Sparse Bayesian Learning inverse 

filtering code (Ojeda et al., 2019). Using forward modeling routines, we co-registered the 

channel positions to a head model and computed the lead field matrix (picture 1, (Litvak et 

al., 2011)). The lead field matrix relating the conduction of electrical fields generated by 

current dipoles from the bottom layer of the brain to the skin layer where the electrodes 

record the field potential.   

 

 For inverse modeling, we used the Recursive Sparse Bayesian Learning (RSBL) (Ojeda 

et al., 2019) filtering algorithm. Through the solving of the inverse model, we find the 

FIGURE 11 THESE FIGURES SHOW THE HEAD MODEL  THAT WAS USED TO COMPUTE THE BEM FORWARD SOLUTION FOR THE DATA 

FIGURE 12 THE FIGURE SHOWS THE SOURCE LOCALIZATION OUTPUT FROM THE INVERSE MODELING. FOR EACH 

ROI (SOURCE) WE CALCULATE  A SPECIFIC EEG SIGNAL IN TIME WITH THE RSBL ALGORITHM 



26 
 

localization of the source inside the lead field matrix we made previously. We transform also 

all the brain sources inside a ROI in one signal source by taking the mean of the brain sources 

within each Region of Interest. We take the current localized at each grid-point in the head 

model within a given ROI and we calculate the average of these values. After this, each ROI 

has a unique signal. At this step, we distinguish and keep the ROIs for the further analysis that 

include the centroids from the clustering we did before.  

The centroid of each cluster was categorized through the Talairach Atlas and the web 

application Talairach Applet (Lancaster et al., 2000). The ROIs are in total thirteen (13): right 

caudal anterior cingulate, right caudal middle frontal, right occipital cuneous, left posterior 

lobe (fusiform), left parietal inferior (parietal), left posterior lobe - lingual, left posterior lobe 

- parahimpocampal, right parietal post central, right posterior cingulate, left precentral gyrus 

frontal, right rostral middle frontal, right superior frontal and left superior temporal gyrus.  

 

 

6. Results 
 

6.1 Brain Connectivity  
 

The brain activity we kept from each subject was represented from 13 ROIs, as time 

series. We used SIFT (Delorme et al., 2011b) for Multivariate Autoregressive linear modeling 

to estimate the multivariate causality between these ROIs. The preprocessing included 

normalization across time and ensemble. We choose the Vieira-Morf algorithm to construct 

the MVAR model because it uses a multichannel geometric-mean non-least-squares lattice 

approach to solve for the model coefficients instead of the common least square approach. 

The reader could see (Schlögl, 2006a)for a detailed comparison of some estimators with the 

Vieira Morf.  

FIGURE 9 REGIONS OF INTEREST (SOURCE: 

HTTPS://WWW.WIKIWAND.COM/EN/CEREBRUM) 
FIGURE 8 REGIONS OF INTEREST 2 (SOURCE: 

HTTPS://GL.WIKIPEDIA.ORG/WIKI/FICHEIRO:MEDIAL_SURFACE_OF_CEREBRAL_CORT

EX__ENTORHINAL_CORTEX.PNG) 
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 The optimal order was estimated taking four different estimation criteria: Schwartz-

Bayes Criterion (SBC), Akaike Information Criterion (AIC), Akaike’s Final Prediction Error (FPE), 

Hannan-Quinn Criterion (HQ). The whole range of model order 1 to 30 was tested with the 

criteria above in every subject. The top panel shows the information criteria plotted versus 

model order. The vertical lines indicate the average optimal model order for each criterion, 

namely the model order that minimizes each information criterion. AIC and FPE criterion do 

not seem to exhibit a clear minimum across the specified model range. In contrast, SBC shows 

a very low value that does not seem to appear reasonable. Thus we decided to take into 

consideration the ‘HQ’ criterion as it takes more reasonable values somewhere between the 

extreme values of the other tests5. The lower array of histograms show the distribution of 

optimal model orders for all windows for each criterion and the vertical lines denote the 

standard deviations of the distributions. 

For each dataset (Trial Start dataset, 1st dataset, 2nd button dataset), we calculate 

independently the model order. For the Trial Start dataset, the average model order was 10.3, 

for the 1st button dataset was 10.1 and for the 2nd  button dataset, the model order was 12.1. 

Therefore, we used model order 10, 10 and 12 respectively using rounding. The model order 

and the window length selection was conducted with the parameter-to-datapoint ratio never 

exceed 0.1 as is recommended for a well-fitted MVAR model computed with the Vieira Morf 

algorithm. The window length selected at 0.5 sec and the window step size at 0.03 sec.  

 

 
5 Another check we did for choosing the right criterion is that we used the model order recommended 
from the ‘HQ’ criterion in a small subset of subjects and it passed the validation tests on the contrary 
with the other model orders suggested from the other tests. 

FIGURE 10 RESULTS OF MODEL ORDER SELECTION: THE TOP DIAGRAM PLOTS THE AVERAGE OPTIMAL MODEL ORDER FOR THE 

SELECTED CRITERIA (INFORMATION CRITERIA VERSUS MODEL ORDER AVERAGED ACROSS WINDOWS). THE LOWER ARRAY OF 

HISTOGRAMS SHOW THE DISTRIBUTION OF OPTIMAL MODEL ORDERS FOR ALL WINDOWS FOR EACH CRITERION AND THE 

VERTICAL LINES DENOTE THE STANDARD DEVIATIONS OF THE DISTRIBUTIONS 
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The MVAR model (𝑋 = 𝐴𝑋 + 𝑈) transforms innovations (random white noise) into 

observed structured data 𝑋. If we have adequately modeled the data, the residuals should be 

small and uncorrelated (white). Correlation structure in the residuals means there is still some 

correlation structure in the data that has not been described by our model. Checking the 

whiteness of the residuals involves testing whether the residual autocorrelation coefficients 

up to some desired lag  ℎ  are sufficiently small to ensure that we cannot reject the null 

hypothesis of white residuals at some desired significance level (the null hypothesis 𝐻𝑜: “the 

residuals are white”, the alternative hypothesis 𝐻1: “the residuals are not white”).  

The validation tests run independently for every subject and specify if we have 

appropriately fit our VAR model. The tests we used are checking the whiteness of the 

residuals, the percent consistency and model stability for each of our windows. The top of the 

figure shows the results of the whiteness tests as a function of window index. The whiteness 

test are the Autocorrelation function (ACF) and the Portmanteau tests: Box-Pierce, Ljung-Box 

and Li-McLeod. In the diagram, we plot for the ACF the probability of an observed ACF 

coefficient to be within the expected interval for white residuals. Values greater than 0.95 

indicate that the residuals are white at the 𝑝 < 0.05 level. In our example, the line of ACF is 

slightly above the red line so there is increased probability for the residuals to be white. For 

the Portmanteau tests we plot the p-value of acceptance of the null hypothesis of correlated 

residuals, namely 1 − 𝑝  is the p-value for rejection of the null hypothesis. Values of the 

Portmanteau tests greater than 0.05 indicate that the residuals are white at the 𝑝 < 0.05 

level. The higher the values are on the level of white significance, the better. As we can see, 

most of the lines and the dots pass the blue dot line. This indicates that there was no 

statistically significant correlation structure exposed in the model residuals. In the top right of 

the figure, all the tests show that not all the windows are white. For the ACF the total number 

of windows are white (217 from 217 windows are white) and for the Portmanteau tests a little 

less than the total pass the whiteness test. 

FIGURE 11  THE VALIDATION TESTS (THE WHITENESS SIGNIFICANCE TEST, THE PERCENT CONSISTENCY AND THE STABILITY INDEX) 



29 
 

The middle panel shows the Percent Consistency (PC) plotted versus increasing 

window index. The PC is reliably high (𝜇 = 86.83%) suggesting a reasonable model fit. The 

last panel shows the stability index for each window. Values above or near 0 indicate an 

unstable and possibly nonstationary model. In our case the stability index is reliably low (-

0.12) indicating a stable and stationary model. As a result, examining our tests, the MVAR 

modeling did not manage with great success in capturing the wholeness of the dynamics 

exhibited by the brain network but it fitted relatively well in our data.  

We computed the connectivity between the ROIs through the DTF function for the 

gamma, beta, alpha, theta waves. Gamma waves relate to simultaneous processing of 

information from different brain areas, as also modulate perception and consciousness. Beta 

waves are present in our normal waking state of consciousness like when we are engaged to 

problem solving, decision making etc. Alpha waves dominate in quietly flowing thoughts, 

calmness and resting state of the brain. During learning, memory, intuition and information 

beyond our normal state of conscious awareness but also during fears we noticed the theta 

waves. We decided not to explore the delta waves because they are generated in deepest 

sleep and meditation, some actions that does not keep up with the research we are 

conducting.  

An 13 × 13 adjacency matrix was computed that denotes the relation between the 

ROIs as both sources and destinations. This matrix constructed a graph that we see below with 

the ROIs as nodes and the calculated connectivity between them as edges. We conduct a 

statistical analysis on the connectivity matrices in the different datasets. We found that in the 

period 520 ms untill 10 ms before the 2nd button press there is a statistical significant 

difference in the measures of the FDI groups. In the visualization procedure, we decided to 

focus on this period on the Gamma band (30-50 Hz). We examine the Connectivity Magnitude 

and the Outflow of each ROI. The period we investigated was between 190 ms until 10 ms 

before the Perceptual Reversal (“second button press”). We added also the period of 110 ms 

after the reversal between the two groups.  

In the picture below we plot the nodes as a function (color and size) of the measure 

‘Outflow’ and the edges as a function (color and size)  of ‘Connectivity magnitude’ at the time 

point 0.19 sec before the second button press that denotes the perceptual reversal. The 

‘Outflow’ is remarkable on the Right Posterior Cingulate Cortex having the value ≈0.14, when 

the other ROIs having values less than 0.10. The connectivity (dDTF) between Right Posterior 

Cingulate Cortex and 

Caudal Anterior Cingulate 

constitute a significant 

connection (≈0.04) 

comparing with all the 

others (≈0.01). 

 

 

FIGURE 12 A GRAPH CONSTRUCTED FROM THE ADJACENCY MATRIX 
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Comparing the graphs of the two groups we 

noticed an interesting difference on the 

value ‘Out-strength’ or ‘Outflow’ (SIFT 

toolbox). In the FD group we noticed in 

64.28% of the subjects (9 from 14 subjects) 

a great ‘Outflow’ of the Right Posterior 

Cingulate (PCC) (Outflow≈0.02 and 

Connectivity Magnitude≈0.02) and Right 

Superior Frontal (Outflow=0.012) 

compared to the other ROIs (≈0.007) on the 

190 msec before the second button press 

(perceptual reversal). After this time point, 

the Right PCC connectivity reduced to 

0.015 until 100 ms after the button press. It 

is important to refer that L fusiform showed 

a significant activation (Outflow≈0.01) too 

between 190 ms before the button press 

until 20 ms after that. Above we see the 

graph from a FD subject in different time 

points displaying the ‘Outflow’ value and below we see the ‘Outflow’ values across all the 

brain ROIs in the 0.190 to 0.160 s period. 

 

 

Field Dependent (Subj. 20) 

 0.190-0.160 s 

1. R caudal anterior cingulate 0.0033 

2. R caudal middle frontal 0.0014 

3. R cuneus 0.0014 

4. L fusiform 0.0101 

5. L inferior parietal 0.0007 

6. L lingual 0.0021 

7. L Para hippocampal 0.0079 

8. R postcentral 0.0011 

9. R posterior cingulate 0.0197 

10. L precentral 0.0013 

11. R rostral middle frontal 0.0026 

12. R superior frontal 0.0128 

13. L superior temporal 0.0014 

 

 

 

 

 

FIGURE 13 FD SUBJECT - GRAPH WITH OUT-STRENGTH VALUES 
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In the pictures below, we noticed an 

interesting interaction between the Left Para-

Hippocampal region and the Left Fusiform in a big 

percentage  of the FI group (71.42%, 5 from 7 

subjects). For example, in the FI-Subj 28 the 

‘Outflow’ value of the Para-hippocampal (denoted 

with red color in the image) is about 0.011 

between 190 ms and 160 ms before the second 

button press. At the same period, Left fusiform’s 

value is less than Para-hippocampal value 

(denoting with yellow color) but showing a 

significant value comparing with all the other 

nodes (≤0.005). This correlation with Para-

hippocampal is also visible around 10 ms before 

the button press.  

 

 

 

 

Field Independent (Subj. 28) 

 0.190-0.160 s 
1. R caudal anterior 

cingulate 
0.00055 

2. R caudal middle 
frontal 

0.00155 

3. R cuneus 0.00055 
4. L fusiform 0.00745 

5. L inferior parietal 0.00055 
6. L lingual 0.00215 

7. L Para hippocampal 0.01135 
8. R postcentral 0.005 

9. R posterior cingulate 0.00225 
10. L precentral 0.0005 

11. R rostral middle 
frontal 

0.0013 

12. R superior frontal 0.0013 
13. L superior temporal 0.00105 
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FIGURE 14 FI SUBJECT – GRAPH WITH OUT-STRENGTH VALUES IN DIFFERENT TIME POINTS 
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From the adjacency matrix, we estimate some basic measures of the graph theory: 

centrality, strength, in-strength, out-strength, average path length. These metrics allow a 

characterization of the participants’ brain graphs and a further comparison between the two 

groups, FD and FI. However, without the statistical analysis it will be difficult to see the 

significance of the differences between them.  

 

 

6.2 Statistical Results 
 

To interpret the difference between the groups we conducted a statistical analysis 

procedure. We tested through the D'Agostino-Pearson's K2 test (for assessing normality of 

data using skewness and kurtosis) if the connectivity values follow the normal distribution. As 

the connectivity values did not pass the test, we used the non-parametric Mann Whitney test 

to calculate the statistical significance of our results. The statistical significance of each 

comparison was evaluated independently by applying the Bonferroni-Holm correction 

method for solving the multiple comparisons problem (Holm, 1979).  

 

Trial Start 
 

 We compare the connectivity features (centrality, characteristic path length, strength, 

in-strength, out-strength) between Field Dependent and Field Independent participants. 

Below we see the results from the time period between 100-200 ms after the Trial Start 

(appearance of the ambiguous image). As we can see there is no statistical significance 

between the two groups, FD and FI, in any frequency band.  

 

Gamma band (30-50 Hz) 

 p-values 

Centrality 0.2529 

Char Path 1 

Strength 0.9018 

In-strength 0.9368 

Out-strength 0.9018 
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Beta band (13-30 Hz) 

 p-values 

Centrality 0.3725 

Char Path 0.9671 

Strength 0.9671 

In-strength 0.8741 

Out-strength 0.9671 

 

Alpha Band (8-13 Hz) 

 p-values 

Centrality 0.7108 

Char Path 0.7108 

Strength 0.6504 

In-strength 0.8741 

Out-strength 0.6504 

 

Theta Band (4-8 Hz) 

 p-values 

Centrality 0.2697 

Char Path 0.3402 

Strength 0.6504 

In-strength 0.8741 

Out-strength 0.6504 
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1nd button press (-0.520 s, -0.280 s) 
 

We conducted analysis in the time period 520-280 ms before the first button press that 

indicates that the subject understands the first figure in an ambiguous image. Still, in this 

time point there is no statistical significance in the difference of the graph measures 

between the Field Dependent and Field Independent group except the gamma frequency 

band. There is no difference in the brain connectivity between the groups during that period 

of time before the first button press.  

Gamma band (30-50 Hz) 

 p-values 

Centrality 0.2220 

Char Path 1 

Strength 0.0127* 

In-strength 0.0505 

Out-strength 0.0621* 

 

Beta band (13-30 Hz) 

 p-values 

Centrality 0.5321 

Char Path 0.2220 

Strength 1 

In-strength 0.7897 

Out-strength 1 

 

Alpha Band (8-13 Hz) 

 p-values 

Centrality 0.222 

Char Path 1 

Strength 1 

In-strength 0.7897 
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Out-strength 1 

 

 

Theta Band (8-13 Hz) 

 p-values 

Centrality 0.222 

Char Path 0.222 

Strength 0.222 

In-strength 0.1550 

Out-strength 0.222 

 

 

2nd button press (-1 s, 0) 
 

 The figures below show that there is a statistical significance in the difference 

between the groups, 1 sec before the 2nd button press. In between this time period there 

is a perceptual reversal of the image, specifically the understanding of the second figure 

in the ambiguous image.  

 

Gamma band (30-50 Hz) 

 p-values 
Bonferroni-Holm 

correction 

Centrality 0.1627  

Char Path 0.0051* 0.0102* 

Strength 0.0025* 0.0100* 

In-strength 0.0091* 0.0102* 

Out-strength 0.0025* 0.0100* 

 

Beta band (13-30 Hz) 

 p-values 
Bonferroni-Holm 

correction 
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Centrality 0.0731  

Char Path 0.0153* 0.0612 

Strength 0.0153* 0.0612 

In-strength 0.0409* 0.0409* 

Out-strength 0.0153* 0.0459* 

 

Alpha band (8-13 Hz) 

 p-values 
Bonferroni-Holm 

correction 

Centrality 0.2323  

Char Path 0.0153* 0.0153* 

Strength 0.0020* 0.0080* 

In-strength 0.0074* 0.0148* 

Out-strength 0.0020* 0.0080* 

 

Theta band (4-8 Hz) 

 p-values 
Bonferroni-Holm 

correction 

Centrality 0.4115  

Char Path 0.0153* 0.0224* 

Strength 0.0032* 0.0128* 

In-strength 0.0112* 0.0224* 

Out-strength 0.0032* 0.0128* 

 

 

2nd button press (-0.520 s, -0.280 s) 
 

 We compare the connectivity features (centrality, characteristic path length, strength, 

in-strength, out-strength) between Field Dependent and Field Independent participants. 

We examine now with more accuracy the period before the second button press. The 

figures below show the mean values of the measures for each group and after the 

statistical significance of their difference. There is a statistical significance between the 
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groups, during (-0.520, -0.280) sec before the 2nd button press (the perceptual reversal, 

the understanding of the second figure in the ambiguous image).  

 

 

 

 Alpha band (8-13 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 16.6374 16.3407 0.7652  

Char Path 7.8882 8.4226 0.0402* 0.0402* 

Strength 0.2648 0.2369 0.0032* 0.0128* 

In-strength 0.1236 0.1185 0.0112* 0.0224* 

Out-strength 0.1324 0.1185 0.0032* 0.0128* 

 Gamma band (30-50 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 16.7033 15.0659 0.1004  

Char Path 9.2164  9.6259 0.0124* 0.0124* 

Strength 0.1274 0.1233 0.0025* 0.0025* 

In-strength 0.1350 0.0616 0.0091* 0.0091* 

Out-strength 0.1447 0.0616 0.0025* 0.0025* 

 Beta band (13-30 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 15.9396 16.1978 0.6815  

Char Path 8.5893 9.2001 0.0153* 0.0224* 

Strength 0.1499 0.1342 0.0032* 0.0128* 

In-strength 0.0699 0.0671 0.0112* 0.0224* 

Out-strength 0.0749 0.0671 0.0032* 0.0128* 
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2nd button press (-0.250 s, 0.010 s) 
 

 Gamma band (30-50 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 15.3681 15.7033 0.9109  

Char Path 8.8901 9.6505 0.0032* 0.0064* 

Strength 0.1369 0.1231 0.0020* 0.0080* 

In-strength 0.0684 0.0616 0.0074* 0.0074* 

Out-strength 0.0684 0.0616 0.0020* 0.0080* 

 

 Beta band (13-30 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 15.9725 16.5714 0.8813  

Char Path 8.5773 9.1787 0.0188* 0.0564 

Strength 0.1497 0.1493 0.0335* 0.0670 

In-strength 0.0698 0.0746 0.0780  

Out-strength 0.0748 0.0746 0.0335* 0.0670 

 

 

 Theta band (4-8 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 16.6264 15.9011 0.1787  

Char Path 7.8675 8.3856 0.0480* 0.0480* 

Strength 0.2894 0.2593 0.0051* 0.0204* 

In-strength 0.1350 0.1296 0.0165* 0.0330* 

Out-strength 0.1447 0.1296 0.0051* 0.0204* 
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7. Discussion 
 

We aim to focus on visual ambiguity in FDI groups through a different experimental 

scheme. Randomly, bistable and normal images lead the subjects to a reversal or a stability 

trial depending if the perceptual reversal takes place or not. In this study, we use 50 different 

ambiguous images that lead to reversal or stability trials depending on the subject’s ability to 

recognize the ambiguity or not. Another 50 different unambiguous images are used in our 

experiment for the control condition. The participants observed the ambiguous and the 

unambiguous images in a random queue during the task.  

There are two experimental schemes used in the ambiguity tasks: the onset paradigm 

and the manual response paradigm. In our study we used both indicators for calculating the 

connectivity features. We called the onset of the trial ‘Trial Start’ point and the subject’s 

manual response ‘First Button’ point (indicator for distinguishing the first figure of an 

ambiguous image) and ‘Second Button’ point (perceptual reversal).  

 Alpha band (8-13 Hz) 

 FD FI p-values 
Bonferroni-Holm 

correction 

Centrality 16.3956 16.1429 0.3905  

Char Path 7.8837 8.5127 0.0081* 0.0162* 

Strength 0.2641 0.2369 0.0032* 0.0128* 

In-strength 0.1233 0.1184 0.0112* 0.0162* 

Out-strength 0.1321 0.1184 0.0032 0.0128 

 Theta band (4-8 Hz) 

 FD FI p-values 
Bonferroni-

Holm correction 

Centrality 16.2143 16.0659 0.4552  

Char Path 7.9546 8.5057 0.0277* 0.0831 

Strength 0.2771 0.2593 0.0277* 0.0831 

In-strength 0.1293 0.1296 0.0668  

Out-strength 0.1385 0.1296 0.0277* 0.0554 
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We investigated three periods: one after the ‘Trial Start’, one before the ‘First Button’  

and a third one before the ‘Second Button’. We considered a multivariate autoregressive 

modeling based analysis consisting of calculation of graph theory connectivity features: 

betweenness centrality, strength, in-strength, out-strength, average path length. A statistical 

significance has been noticed between the two FDI groups during the time interval from 520 

ms before the ‘Second Button’ until the ‘Second Button’ press in the gamma, beta, alpha, and 

theta band. The fact that during the same period before the ‘First button’ press we did not 

notice any statistical significance between the connectivity features of the two groups, 

declares that there is an essential difference in the brain connectivity on the way they process 

the perceptual information of the second figure of an ambiguous image between the FDI 

groups. According to bibliography, a reversal positivity as a P300-like component is occurring 

about 250 ms before a key press indicating the perceptual reversal (Isoglu-Alkaç et al., 2000; 

Strüber & Herrmann, 2002). Therefore, our finding confirms that indeed there is a perceptual 

reversal taking place but closer to 200 ms (perhaps between 190 to 160 ms according with the 

out-strength values). The statistically significant difference indicates that different brain areas 

get involved in the perceptual reversal on each FD-I group. 

In related publications, the reversal positivity appears around 100 ms after the 

stimulus onset (Britz et al., 2009; Kornmeier & Bach, 2005, 2006). We calculated the same 

graph theory connectivity features for the specific time (100 ms after the ‘Trial Start’). We 

concluded that there was no statistically significant difference of the brain connectivity 

between the two groups while they are watching the ambiguous image for the first time. This 

finding is maybe explained in the following way. The experimental scheme from the previous 

studies presents the same ambiguous image in every trial. In contrast, our experiment shows 

randomized ambiguous images. This fact prevents the participant from having the intention 

of the specific ambiguity. Because of the randomized order, participants cannot predict the 

ambiguity of the bistable image. We prove wrong the second theory explaining the reversal 

phenomenon of ambiguous  figures focusing on the intention and learning (Chapter 2, ‘the 

subjects know that a figure is ambiguous and also know that the two perceptions of the image 

lead them to engage in some form of motivated mental activity pressing for reversal’ (Rock et 

al., 1994)).   

Investigating precisely the graph measures, we connect them with the physical 

meaning they have in human brain. Node betweeness centrality measures how many of the 

shortest paths between all other node pairs in the network pass through a specific node and 

captures the relative importance of each node in the brain. A node with high centrality is 

crucial to efficient communication and as a result a graph with high mean centrality 

constitutes a graph with important nodes that deleting only one of them could bring effects 

of perturbations on local or global network states (Bullmore & Sporns, 2009; Freeman, 1977). 

In our brain graphs, the betweenness centrality measure has not a statistical significant p-

value showing that there is no significant difference between the FDI groups on the level of 

the importance of each node for the graph. The brain regions of the two groups have 

approximately the same interconnections with their neighbor regions, a fact that makes them 

equally important for the network.  This applies in all the frequency bands we examined.  

The mean node strength is the average sum of weights of links connected to the nodes 

of each graph. In our analysis, we found statistical significance between the FDI groups in the 

time period 520-10 ms before the ‘Second Button’ press. This fact could be explained as 
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different information flow and density of the links in the brain areas evolved in the perceptual 

reversal between the groups.  

The average shortest path length shows statistically significant p-values that exhibit 

different interconnectedness between the groups. This quantity measures the direct 

association existing between the brain areas and consequently the brain integrative process. 

Integration process is the tendency of the brain to synchronize different but relevant areas 

aiming to early response to stimuli.  The FI values of shortest path length were much greater 

than the FD group respective values during the 520 ms period before the ‘Second Button’ 

press in all frequency bands. We propose that the brain integrative process is slightly altered 

between the groups. The FI group needs more direct node connections in order to perform 

the same visual perception task. The FD group does not have many direct brain connections 

between regions and as a result, there is some delay on perceiving the ambiguous image. They 

have a crux not to transform with nimbleness and velocity their viewpoint in the 3D space of 

the ambiguous image. Based on a previous study (E. A. Nisiforou, 2015) the FD group makes 

many saccades for scanning the image, so it seems reasonable that they perceive with some 

delay and difficulty the second figure at the bistable image and as a consequence having less 

direct brain connections.  

In the level of the brain graphs visualization, in a big percentage (69.23 %) of the FD 

group, we noticed a significant information outflow in the Right Posterior Cingulate cortex 

(PCC) compared to the other nodes in the perceptual reversal before the second button press 

(160-190 ms). The PCC shows strong connectivity to frontal and parietal regions involved in 

cognitive control  (Leech & Sharp, 2014) and engaged in the top-down control of visual 

attention and eye movements. More specifically, PCC shows a complex pattern of interaction 

with the fronto-parietal control network (FPCN) and the dorsal attention network in tasks 

related with visual perception and executive motor control. Also, there are findings that PCC 

is activated in neuroimaging studies in motivation related tasks showing that may constitute 

an important site for the integration of motivational and spatial attention information 

(Engelmann, Damaraju, Padmala, & Pessoa, 2009). As a result, we considered the PCC area as 

a neural interface between visual attention and different actions (i.e. motor control, 

motivational decisions), a fact that is strengthened even more by our findings.  

In 71.42% of the FI group, we find an interesting interaction between the Left Para-

hippocampal and the Fusiform brain area before the second button press (160-190 ms). Para-

hippocampal area plays an important role in the encoding and recognition of environmental 

scenes (as landscapes, cityscapes, or rooms). The fusiform is a structure that is involved in 

high-level vision; the ability to identify the objects in view based on visual input. However, the 

connectivity values were not much greater than the values in other brain areas and perhaps 

it is not necessary to analyze it further (See Table, Chapter 6.1).  

Apart from studying each measure independently, we will try to quantify their 

interaction. We noticed a difference in the brain graph topology between the two groups 

regarding the direct connections, the density and the weights of the links but there was not a 

brain area that contributed more than others. The involvement of the brain areas was 

approximately equally distributed holistically during the task. Despite that, there are 

alterations in the integration of the brain function in specific time points during the visual 

perception task indicating that indeed the two groups use different regions for processing of 

extracting a cue from a complex figure as reported in the Tables of Chapter 6.1. The FD group 

presents a brain circuit that includes the Right Posterior Cingulate Cortex, an area that is 
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confirmed that takes part as a main link in tasks that include and executive motor control from 

previous studies. The FI group shows activation between the Para-hippocampal and Fusiform 

area in the Left-brain hemisphere.  
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