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Implementation of the Link Monitor for a
minimal-state Max-Min-Fair Rate Regulation

Mechanism

Abstract

In cloud computing, a large number of servers within the same facility work
collectively in order to complete challenging tasks. Current research examines ways
to replace the expensive and high-energy-consumption processors of today, with
lower-cost, energy-efficient ARM-based processor clusters. These environments
will ultimately consist of many lower-capacity end-nodes, potentially increasing
the intensity of inter-server communication. At the same time, VM migration,
checkpointing and storage contribute to sudden traffic bursts, which are responsible
for transient congestion phenomena.

In this thesis, we implement the link monitor logic of a novel congestion control
scheme that can replace the TCP congestion control for RDMA transfers. This
scheme can (i) throttle the offensive flows, (ii) keep the backlogs outside of the
network, and (iii) allocate max-min-fair rates to flows.

The logic per output that we implemented does not require per-flow state inside
the network, and relies on simple components that can readily be implemented on
network interfaces and on switch outputs.

Furthermore this thesis covers the interpretation of the whole given scheme
in abstract hardware architecture, as well as corner case resolution. The corner
cases encountered are the division by zero and high division timing and area cost,
that required modifications in the division component, abrupt traffic patterns that
did not match our system’s focus and were resolved with temporary static generic
assignments, and communication protocol restrictions that could not be resolved
but had to be worked around.

Most of the goals have been met and what is left is well defined for future work.
It is the implementation of the per-end-node logic, the thorough practice in bigger
scale systems, and the optimizations.

The simulation results demonstrate that the scheme reacts promptly to con-
gestion, while the implementation results, prove that the scheme is scalable as the
components only require about 231 LUTs and 171 Flip-Flops of our test environ-
ment FPGA.





Υλοποίηση του ελεγκτή συνδέσμων για έναν

μηχανισμό ελάχιστης κατάστασης κατανομής

Μέγιστου-Ελάχιστου Ρυθμού Ροών

Περίληψη

Στο cloud computing, ένας μεγάλος αριθμός διακομιστών μέσα στις ίδιες εγκαταστά-
σεις λειτουργούν συλλογικά για να ολοκληρώσουν απαιτητικές εργασίες. Η τρέχουσα

έρευνα εξετάζει τους τρόπους αντικατάστασης των δαπανηρών και υψηλής ενέργειας

επεξεργαστών του σήμερα, με φθηνότερα, οικονομικά αποδοτικότερα, συγκροτήματα

επεξεργαστών αρχιτεκτονικής ARM. Αυτά τα περιβάλλοντα τελικά θα αποτελούνται
από πολλούς τελικούς κόμβους χαμηλότερης χωρητικότητας, ενδεχομένως αυξάνοντας

την ένταση της επικοινωνίας μεταξύ των διακομιστών. Η μετανάστευση εικονικών μη-

χανών, η ροή ελέγχου και η αποθήκευση συμβάλλουν σε ξαφνικές ριπές κυκλοφορίας,

οι οποίες ευθύνονται για φαινόμενα παροδικής συμφόρησης.

Σε αυτή την εργασία, υλοποιούμε την παρακολούθηση συνδέσμων ένός νέου σύ-

στηματος ελέγχου συμφόρησης που μπορεί να αντικαταστήσει τον έλεγχο συμφόρη-

σης του TCP για μεταφορές RDMA. Το σχέδιό μας μπορεί να: (ι) να επιταχύνει τις
επιθετικές ροές, (ιι) να κρατήσει τις συσσωρεύσεις εκτός δικτύου, και (ιιι) να κατανεί-

μει μέγιστα-ελάχιστα-δίκαιο ρυθμό στις ροές. Το πρωτόκολλο δεν απαιτεί διατήρηση

κατάστασης ροής στο εσωτερικό του δικτύου και αξιοποιεί απλά στοιχεία που μπορούν

εύκολα να υλοποιηθούν σε διεπαφές δικτύου και σε εξόδους μεταγωγέων.

Επιπλέον, αυτή η διπλωματική εργασία καλύπτει την ερμηνεία ολόκληρου του δο-

θέντος μηχανισμού σε αφηρημένη αρχιτεκτονική υλικού, καθώς και την επίλυση γω-

νιακών περιπτώσεων. Οι γωνιακές περιπτώσεις που αντιμετωπίσαμε είναι η διαίρεση

με μηδεν και υψηλό κόστος χρόνου και επιφάνειας διαίρεσης, που απαιτούσαν τρο-

ποποιήσεις στο στοιχείο διαίρεσης, απότομου είδους κυκλοφορία που δεν ταιριάζουν

με την εστίαση του συστήματος μας και επιλύθηκαν με προσωρινές γενικές στατι-

κές εκχωρήσεις, και περιορισμούς πρωτοκόλλου επικοινωνίας που δεν μπορούσαν να

επιλυθούν αλλά έπρεπε το σύστημά μας να προσαρμοστεί πάνω σε αυτούς.

Τούτου λεχθέντος, οι περισσότεροι από τους στόχους έχουν επιτευχθεί και ό,τι

έχει απομείνει είναι καλά καθορισμένο για μελλοντική εργασία. Πρόκειται για την υλο-

ποίηση της λογικής ανά τελικό κόμβο, της εμπεριστατωμένης πρακτικής σε συστήματα

μεγαλύτερης κλίμακας, και τις βελτιστοποιήσεις.

Τα αποτελέσματα προσομοίωσης αποδεικνύουν ότι το σύστημα μπορεί να αντιδρά-

σει άμεσα στην συμφόρηση, ενώ στην εφαρμογή, αποδεικνύεται ότι το σχέδιο είναι

κλιμακώσιμο καθώς η εφαρμογή απαιτεί περίπου 231 LUTs και 171 Flip-Flops της
FPGA του δοκιμαστικού μας περιβάλλοντος..
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Chapter 1

Introduction

The industry of computing has converged towards building large Data-Centres
(DCs) to achieve High Performance Computing (HPC) facilities. High Perfor-
mance Computing generally refers to the practice of aggregating computing power
in a way that delivers much higher performance than one could get out of a typical
desktop computer or workstation in order to solve large problems in science, en-
gineering, or business. Warehouse-scale data-centres and large HPC systems rely
on efficient networks to interconnect a constantly increasing number of memories
and end-nodes, which hold powerful and costly processors. Ongoing research pro-
poses to replace the expensive, high-end server processors of today with simpler
microservers in order to reduce the energy consumption and the cost of the system
as a whole. In such microserver farms, the network resource is even more critical,
because a larger number of distributed node peers need to communicate in order to
achieve a given task [1]. But such network demand can easily cause a phenomenon
known as congestion.

Network Congestion and Congestion Control

Network Congestion occurs when demand exceeds capacity [2], and in HPC sys-
tems that rely on critical timing it can prove devastating. To very briefly demon-
strate it with a picture of modern life see Figure 1.1, and this phenomenon is
usually avoided by overprovisioning, or to put it bluntly, ‘throwing’ money at the
problem, in this example building wider roads. This solution compromises effi-
ciency and therefore leads to another research topic that we are going to elaborate
on next. Congestion control is about using the network as efficiently as possible.
In order to minimize network cost and space, a mechanism is utilized to enforce
a policy that would allow traffic to flow uninterrupted without creating conges-
tion. For maximum efficiency, a system implementing this mechanism should be
developed in a bottom-up fashion starting from the hardware that contains it, but
also making the higher levels aware of the mechanism. At the same time, this new
system gives us the opportunity to redesign from scratch the network I/O stack
and to optimize it for low-overhead, high-speed communication.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An everyday-life example of Congestion

1.1 RDMA transfers to replace TCP stack

In systems relying on shared interconnects, it is crucial that congested flows from
one workload do not badly interfere with flows from other workloads. To mitigate
the detrimental effects of congestion today, most data-centres rely on TCP con-
gestion control. However, the TCP/IP protocol perceives congestion from packet
drops that cause sources to reduce their transmission rate and packet dropping is
costly [3]. When congestion has progressed as far as causing packets to be dropped,
it is already too late to act, which would hint that this method is sluggish and
suboptimal, and so the industry is looking for alternatives [4]. In this thesis, in
order to properly attack congestion, we avoid the TCP/IP stack altogether and
instead use RDMA transfers reducing latency at the same time. We develop a
new congestion control mechanism to fairly allocate rates to multiple flows. Our
mechanism:

• throttles the offensive flows

• keeps the backlogs outside of the network

• allocates max-min-fair rates to flows

1.2 Prototyping platform

We are currently working for the ExaNeSt project [5] which develops solutions
for Exascale HPC, on a system that consists of multiple Ultrascale+ FPGAs in-
terconnected with high speed serial links with FPGA implemented switching (See
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(a) The ExaNeSt QFDB board

FPGA
UltraScale+

FPGA
UltraScale+

FPGA
UltraScale+

FPGA
UltraScale+

High
Speed
Links

(b) Block Diagram of the QFDB

Figure 1.2: QFDB

Figure 1.2). Each FPGA has 4 ARM R©Cortex-A53 cores and 2 Cortex-R5 real-
time processors. So far the prototyping platform is a miniature version of the big
ware-house scale system suggested before. The final system will consist of millions
of computing cores that communicate together in clusters to achieve high perfor-
mance. The task of this thesis is to implement and study the congestion control
mechanism as given by the patented scheme [6], that will be described in Chapter
2. The mechanism should ensure that all congestion is avoided in the most effi-
cient way, including the size of itself, as in such a big system, multiple instances
of hardware will need to be placed, and therefore it should be of minimal area,
timing and power consumption.

1.3 Contributions

This thesis revolves around the context of Max-Min-Fairness (MMF), and partic-
ularly the congestion control scheme given by Manolis Katevenis [6]. This thesis
covers the implementation of one primary and one secondary hardware modules
for the aforementioned MMF scheme. Implementation means:

• Schematic drawings

• Synthesizable Verilog code description of the drawings

• Testbench code that tested the Verilog code

• Simulation results and waveforms of the above testbench code

• FPGA configuration binaries generated by the Xilinx Vivado tools with the
Verilog code input
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• Run logs and output result files of the Vivado tools that show an area util-
isation as low as 231 LUTs and 171 Flip-Flops, and a maximum achievable
clock frequency of 300MHz in the UltraScale+ FPGA that we used

Specifically the contributions of this author in this thesis are:

1. Understanding [6] and translating it into an abstract hardware architecture
including the rest of the parts of the scheme that were not implemented in
this thesis

2. Implementation of per-outgoing-link monitor logic which must exist in all
the network nodes (See Section 2.5 for a high level description and Section
4.2 for the implementation)

3. Implementation of the synchronisation period module (See Sections 2.6 and
4.6)

4. Corner case resolution and inclusion in the implemented logic (See Sections
4.3, 4.4, and 4.6); The corner cases and a brief explanation of their resolution
are:

• Division by zero, was resolved by incrementing the 0 to 1, while modi-
fying other counters to compensate

• Extreme division timing and area cost, was resolved by using a ready,
optimized division engine

• Abrupt traffic patterns that the scheme is not focusing on, were resolved
by temporarily applying some backup static rules

• Communication protocol restrictions, were not resolved but had to be
worked around

1.4 Outline

The outline of this thesis is the following: After Chapter 1 which contains the
Introduction, we move to Chapter 2, that contains the theoretical aspect of the
work, explains terms and definitions, introduces and describes the new congestion
control method and further justifies the necessity of the work, as well as its so-
lutions. Chapter 3 explains the tools that were used, the methodology and all
the technology that this work involved. Moving on to Chapter 4, we explain the
simulations that were carried out; The simulations were an important input for
this work’s process. The main part of the work is described in Chapter 5, which
includes the implementation of the design in hardware, and the rationale behind
specific choices. The work concludes in Chapter 6 with the general findings of the
work as well as the direction for future work.



Chapter 2

Max-min-fair Rate Regulation
Without keeping Per-flow State
(MaRRWiPS)

In this chapter, we will explain the congestion control scheme that is under devel-
opment, that includes the link monitor that we implement in this thesis and we
get into all the theoretical details that are involved. Before getting to the details
of the policy we should first define all terms involved, some of which might seem
trivial but we should make sure that the reader is fully aware of what they are
reading, and any ambiguity is avoided. After clearing the terms and a brief clari-
fication of the issue we are working on, we will describe the scheme in a top-down
fashion, starting from the general features and later explaining each feature on its
own. Lastly, this chapter gives descriptive examples for better understanding of
the scheme and examines optimization potential.

2.1 Terms and definitions

Interconnection networks have converged to using Flow-oriented network traffic
for communication. A Flow is a sequence of packets sent from a same source to a
same destination that concern the same application.

Rate of transmission is how many bytes of a packet a user, or a flow, can pass
through a link or port per second. The rate of a fully utilized link or port is
referred to as its Capacity.

With the term Contention we refer to the phenomenon of a single resource
e.g. a network link or a switch port, that is requested by two or more users of
the resource. For example, two or more flows incoming from different sources in
a switch going to the same destination would create contention on that port and
link, or would content for it. The switch is designed exactly for resolving such
contentions, so it can resolve it by storing one or more packets that would not
be sent immediately in a buffer, or queue, sending one, and with a deterministic

5
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Host

Host

Host

Congestion

Figure 2.1: A switch that directs too many inputs to a single output could poten-
tially suffer from Congestion

behaviour it would continue to send all packets of contenting flows one after the
other until all are sent. If contention is not handled correctly and the resources
are not abundant, contention can lead to Congestion. Figure 2.1 depicts the idea
that was mentioned.

Congestion has been briefly defined in Chapter 1, but it is worth to differentiate
it from Contention. The main difference is that Congestion is the phenomenon of
output contention for periods of time long enough that the buffers of the switch
would fill up, usually having to drop incoming packets and therefore harming the
performance of the network. The main cause of this is that sources inject traffic
in the network unaware, or ignoring other sources, that in turn act similarly. For
that reason, if many flows from different sources have to pass through one link or
port, and these sources inject traffic recklessly, it is easy to surpass the capacity of
the resource, and if this persists through time, eventually the buffers will fill up.
Switches are built to solve contention and despite the overprovisioning, still they
cannot avoid congestion altogether. To properly mitigate congestion the network
needs to utilize a Congestion Control Mechanism.

2.2 The Congestion Control issue

Many Congestion Control Schemes have been proposed in the past [7, 8, 9, 10,
11, 12, 13, 14] but the research has not stopped. This is caused by the network
policies that apply and also to some requirements that congestion control schemes
must satisfy [15]. Such requirements are:

Low overhead, if the overhead is high then the scheme would most likely create
congestion rather than nullifying it.
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Fairness, the fundamental of contest resolving is for all parties to receive ’fair’
service. Fairness is a very ambiguous subject in resource sharing, some researchers
claim that if everyone gets a non-zero share of the resource the scheme is fair.
Others insist that everyone must have equal portion of the resource to achieve
fairness, while others would suggest that different background should affect the
equality (e.g. packets that have travelled the longest, or smaller packets should
have priority). Nonetheless, the matter remains unresolved.

Responsiveness, the scheme must apply fairness quickly, otherwise congestion
will build up and become visible by end users. Furthermore, if it is too slow then
by the time it applies fairness, congestion might have disappeared, or relocated
elsewhere, rendering the whole scheme pointless.

2.3 MaRRWiPS high level description

This scheme resolves congestion in a very responsive way, experimentally within
20 - 40 µs, avoids starvation by allocating Fair Share Rate (FSR) amounts to all
flows, and utilizes links to their capacity by applying Max-Min Fairness.

Before getting into the details, we will briefly overview the features of the
scheme. To sum everything up, all sources send state messages, referred to as Flow
Rate Packets (FRPs), to their destinations periodically. These messages carry a
Current Rate (CR) and a Desired Rate (DR) field which is initially set as the rate
of injection. All link monitors that these pass through may or may not decrease the
CR and DR fields according to the FSR of the link that is calculated periodically
and reflects the traffic going through it. Upon arriving to the destination, the
packet is sent back to the source containing the bottleneck information and the
source changes its injection rate to that specified, sets the CR to that amount and
sets the DR to the rate it desires to achieve.

We will now clarify all the features mentioned in detail before giving examples.

2.4 Max-min Fairness

If the aggregate rate of all flows on a link is less or equal to its capacity, the traffic
is said to be feasible.

By definition [16, 17, 18] Max-min fairness (MMF) is a feasible allocation of
rates that satisfy the following condition: An increase of any rate of the flows
involved comes at the cost of a decrease of some already smaller rate. To put it
more simply, MMF equally distributes the available capacity of a link to all flows
that pass through it, but if a flow cannot use all of the capacity allocated to it
then the remainder is distributed equally to all able flows.

That being said, the essence of MMF is that it can potentially utilize the
capacity of a link, if for example a flow is bottlenecked on a specific link, then
on all the other links that it passes through, there is no reason for it to receive
any higher rate, as it will be unable to utilize it, therefore all those other links
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can reduce the rate given to it to the amount it can receive at its bottleneck, and
utilize the remainder capacity with other flows.

To ensure MMF is applied correctly, the granularity of network multi-path
routing must be adjusted from per-packet to per-flow. All packets from the same
flow must absolutely pass from exactly the same route, otherwise applying MMF
will be pointless. Multi-path can still be used, but not for packets of the same
flow.

To apply MMF, we need information about each link and each flow, but our
purpose in the scheme is to not store any flow oriented information. How this is
done is explained further below. First we must explain how to determine a flow’s
rate judging by the route it follows. This is exactly the work of the link monitor
that we are implementing. In that route, we determine which link allocates the
least capacity on this flow, by receiving feedback from the link monitors, and
establish this as its bottlenecked rate. From then on, all other link monitors the
flow passes through will change the rate allocated to it to the bottlenecked rate.
Then those monitors can redistribute the remainder of the capacity to all other
flows.

Determining the bottleneck rate is simple, inject the flow in the network with
a field containing the rate at which it was injected, let us call this Current Rate
(CR), and each node the flow passes through will check if the outgoing link it will
pass through can sustain CR amount of rate for this flow, if it can, it will pass
the packet onwards unmodified, while if the rate that the flow can sustain through
this node is less than CR, the CR field will be replaced by an amount CR’, which
equals the rate this node can sustain for this flow, by the link monitor logic, and
passed onwards. In the end, the CR field will contain the minimum of the rates
sustainable in the path.

This way of finding the bottleneck also resolves the question on how to have
information about a flow without storing it- the flow will carry it. More accurately,
after getting to the destination node, the flow will report the CR field to the source
and the source will inject traffic of this flow at this rate from then on. We assume
there are no malicious users in the network, and we will not address fault tolerance
in this work.

2.5 Fair Share Rate (FSR) Calculation

We have not yet elaborated on how each node will distribute the capacity of each
link fairly. For simplicity let’s initially assume there is n constant flows passing
through one link. Assuming all links want to use the link to its capacity C, it
would be considered fair to distribute a rate of C

n to each one, so let us go ahead
and call this the Fair Share Rate (FSR) of the link. In fact, this would also be the
case if all flows did not want to use the full capability of the link, but still needed
a rate greater than FSR.

Let us now explore the case where one or more flows need less rate than FSR. In
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Figure 2.2: Division of a link’s capacity among 8 flows.

that case, as we have mentioned the remainder of the capacity must be distributed
in an even manner to the rest of the flows. Such flows, either truly do not need
more rate or are bottlenecked elsewhere, to us they are not different so we refer
to them as bottlenecked elsewhere flows, while we refer to flows that need more or
equal rate to FSR as bottlenecked here. We aggregate the rate of the bottlenecked
elsewhere flows (B) and we subtract this amount from the capacity. The remainder
is the capacity that bottlenecked here flows have to share, so each one would receive
C−B
M units, where M is the number of bottlenecked here flows. Figure 2.2 displays

a pie chart of a link’s capacity distributed among 8 flows, we can see that small
flows F1, F5, F6, F7, F8 are considered bottlenecked elsewhere and receive all the
rate they request, while bigger flows F2, F3, F4 fairly share the rest of the capacity
even though they probably could use more.

In our algorithm, a portion of the link capacity, C · α, is reserved and not
allocated to flows, creating some headroom that can accommodate for control
overhead. Increasing parameter α will on one hand allow the network queues to
drain faster the transient backlogs that can be formed during congestive episodes.
On the other hand, an extremely high value for α will result in flow backlogs
staying at their sources, outside the network, while network links are idling. The
FSR is finally calculated by the following formula:

FSR =
C · (1− α)−B

M

2.6 Realistic Fair Share Rate Allocation

Previously we discussed scenarios of static flows, and such scenarios are not real-
istic. Flows have no deterministic beginning or end. They can start without any
warning and end at any point in time. Therefore keeping track of the flows that
are bottlenecked on each node, or on other nodes is difficult.
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DestinationSource

FRP Round trip

CR’ CR’’CR

CR’’CR’’ CR’’

Figure 2.3: Round trip of a Flow Rate Packet that passes through two contention
points (CPs). The current rate field inside the FRP may change on every switch
from source to destination.

In order to resolve this we use a periodic sampling technique to determine, in
every period, how many flows are currently active and update the FSR for this
period. All flows must be aware of this, as they need to announce activity in every
such period. But because we are not keeping flow information, each flow must only
announce itself once per period, with an announcement that differs from normal
packets, so that flows can send more than one packet per period. We refer to
packets carrying announcement information as Flow Rate Packets (FRPs). We
refer to those periods as Rate Re-evaluation Periods (RRPs), and are usually in
the magnitude of 20 µs.

At the end of every RRP, in every outgoing link, information on how many
flows received, how many of them were bottlenecked on that link, and how many
were bottlenecked elsewhere is gathered and a new FSR is calculated, then all
other counters (such as M and B) are reset. On the next period, incoming flows
have to compare themselves with this new calculated FSR to determine if they are
bottlenecked here or elsewhere, and this will increment the respective counter.

In the end of this RRP, the same procedure will repeat, using the information
of this period to recalculate the FSR. Note that if no flows stopped or started
during this time, the FSR should remain the same, as all flows must have sent
FRPs.

Intuitively, the algorithm computes the bandwidth that the M locally bottle-
necked flows would receive by a fair scheduler, considering also that the present
link cannot (and should not) modify the rates of flows bottlenecked elsewhere.

2.6.1 Descriptive examples

Figure 2.3 displays a round trip of an FRP in an example topology. The source
sets the CR field of the FRP message equal to the current maximum sending rate
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RRP: FSR IS 3

FRP: CR = 2 -> CR’ = 2

FRP: CR = 4 -> CR’ = 3

FRP: CR = 4 -> CR’ = 3

RRP: New FSR is 2.5

FRP: CR = 3 -> CR’ = 3 

0μs

20μs

FRP: CR = 3 -> CR’ = 2.5

Figure 2.4: Example timeline of a single Contention Point (CP). In every RRP,
the CP receives one FRP message from each active transfer, indicating the sending
rate of each flow.

of the flow. After passing through the first Contention Point (CP), in the first n
on the way, the CR field might be adjusted to the link’s needs and so the FRP now
carries CR’. Similarly the next CP in the next router adjusts the CR’ to CR” and
passes it to the destination. On the destination, the FRP is injected back in the
network, in the opposite direction, but this time with a flag set so that routers do
not modify the CR field. Effectively, when it reaches the source, the FRP carries
the maximum rate that the network can sustain from this flow.

Figure 2.4 presents the timeline of a CP with a RRP of 20µs and capacity 10
units, it shows how the RRP triggers the FSR calculation, which in this example
is calculated to be 3 units according to previous events. After the end of the RRP,
the CP receives several FRPs and makes sure all of them get their new CR (CR’)
modified accordingly to not surpass the FSR. After the end of the RRP, the CP
recalculates the FSR according to the formula, having 2 flows bottlenecked on
it and 5 throughput units bottlenecked elsewhere. The FSR is (10 - 5)/2 = 2.5,
ignoring parameter α for the sake of simplicity.

2.6.2 Desired Rate

We explained how we gather information about a bottlenecked flow using the Cur-
rent Rate (CR) field. What we have not mentioned yet is that after the destination
replies with the bottleneck rate and the source changes the rate that it injects, it
also changes the CR that will be included in the FRP to the new rate. This creates
a problem, since the rate can never increase- once congestion has been resolved
the rate of the flow can not increase.
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CR DR

·Unmodified at source before retransmit ·Reset to original before retransmit
·At source, reduces rate only ·At source, potentially restores rate

·Changes value at CP, if value is bigger than FSR

Table 2.1: CR/DR disambiguation

To correct that, the FRPs also include a field called Desired Rate (DR). DR
works exactly the same way as CR, while the FRP is in the network, but the
difference is that the source will always set the DR field to the rate it desires,
irrelevant of the bottleneck rate it received. CPs will first look at the DR to see if
they can satisfy it, and then look at the CR, they will modify both CR and DR,
if needed. CR and DR differences are very confusing, so Table 2.1 points out the
main differences.

2.7 Optimizations

2.7.1 Short-circuit notification

Assuming a flow starts abruptly with a very large injection rate, it will take a
full Round Trip Time (RTT) until its rate gets regulated. To mitigate this, an
optimization technique can be applied: An instant response is generated from the
link monitor that observed excessive rate request and forwarded directly to the
source. With this, the instability will last much less than waiting a full RRP.
This however comes at a cost, as common occurrence will flood the network with
responses. To keep the situation under control, the packet will only be generated
and passed back in extreme circumstances, when the flow requests a much bigger
rate than the link can allocate.

2.7.2 Flow Initialization messages

When a new flow commences, the CPs inside the network are still unaware of its
presence. What will happen in this case is that within the next RRP period the
flow will issue an FRP. Subsequently, the affected CPs will update their FSR at
the end of this FRP period, and will start throttling flows taking into account the
presence of the new flow in the next RRP. This latency can induce large backlogs
inside the network.

To accelerate this procedure, flows can inject a flow-init FRP together or in
advance of the first network packet. Flow-init FRPs trigger a prompt update of
the link’s fair share, and may also cause short-circuit notifications.



2.8. SIMULATION 13

2.7.3 Flow Termination messages

If a flow wants to stop transmitting, it should send a flow-stop FRP message. With
this message, it lets the CPs know that its bandwidth is not being used any more.
This allows CPs to distribute their rates right on the next RRP, so that flow rates
can reach an optimal state, and utilization can reach its maximum.

Note that this message is the only exception to the only one FRP per RRP
rule, and can only be sent after the normal FRP was sent. Unlike other FRP
messages, this will be handled in a very different manner, as its purpose is to
reduce counters- if the counters did not contain the values to be subtracted, the
result could be disastrous.

2.8 Simulation

In this section we present some computer simulations [19] that can assist the
understanding of the proposed scheme. In these experiments, the scheme is referred
to as Distributed Max-Min Fairness (DMMF). To evaluate DMMF, we use event-
driven simulations based on Omnet++ [20] in 10 Gb/s networks.

We use the implementation of TCP that comes together with the INET library
in Omnet. The TCP is configured with maximal receiver buffer capacity of 21KB,
no delayed ACKs, maximum segment size of 1500Bytes and the Congestion Control
algorithm is TCPReno. We test lossless TCP, which is essentially TCP in a network
with flow control that prevents packet drops, and two types of lossy TCP, one
performing drop-tail at switch inputs and one at switch output. The network
zero-load round-trip time in our simulations is equal to two microseconds.

With DMMF, the transfers are initiated by user applications which fire up
the DMA engine. The DMA engine generates network packets with maximum
size of 256B. Each flow communicates messages from its source to the destination
host using RDMA transfer. DMMF is configured with flow-initialization FRP
messages. In DMMF, we set the parameter α to be equal to 0.05, so the available
useful bandwidth is 9.5 Gb/s.

2.8.1 RRP setting

The RRP must not be too long in order for the system to react promptly to traffic
changes. On the other hand, if we set it too small, then the number of FRPs will
flood the network. FRP messages may need to travel with high priority in order
to not get stuck behind other traffic. In our experiments, the length of standalone
FPRs is 20 bytes, and the RRP is set at 20 microseconds. Thus, the overhead of
a single active flow is 20 bytes every 20 microseconds, i.e., 8 Mb/s. This overhead
is minor when a few flows congest a single link of 10 Gb/s, as is expected at the
periphery of the network inside the rack. The capacity of core (inter-rack) links,
which may carry many more flows, will be considerably higher: one thousand flows
will only waste 8 Gb/s, i.e., less than 10% of the aggregate capacity of 100 Gb/s
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Figure 2.5: Network topology and flows used in Experiment 1.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90100

T
h

ro
u

g
h

p
u

t 
(G

b
/s

)

Time (tens of microseconds)

f1

f2

f3

f4

(a) Pause-only

100
0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t 
(G

b
/s

)

Time (tens of microseconds)

f1

f2

f3

f4

(b) DMMF

Figure 2.6: Experiment 1: Convergence to max-min-fair allocation.

link. To further reduce the overhead, one may try to piggyback FPRs over payload
packets or to increase the RRP.

2.8.2 Description of experiments

We report the results from three experiments, which stress the areas that we want
to focus on.

• Experiment 1: Convergence to max-min-fair rate allocation

• Experiment 2: Flow completion times of latency-sensitive flows
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• Experiment 3: Fairness in scenarios with local and remote flows

2.8.3 Convergence to max-min-fair rate allocation

In our first experiment, we configure four flows in the custom network topology
depicted in Figure 2.5. All links run at 10 Gb/s. Each flow communicates messages
from its source host to its destination host, using RDMA transfers. Only one source
host and one destination host are shown. The other nodes shown in the figure are
switches; one input and one output port is shown at each switch. In reality, the
switches have additional input and output ports, which we omit for clarity.

Flows f1 and f4 are sourced at the left host and diverge inside the network.
Flows f2, f3 and f4 pass through a common link, which will become their bottleneck
during the experiment. The flows start sending at different times, as described
below.

• Flows f1 and f2 last throughout the simulation experiment

• Flow f3 is activated at time 170 µs, and stays on till the end of the experiment

• Flow f4 is triggered at time 370 µs and goes down at time 570 µs

Before 170 µs, only flows f1 and f2 are active; therefore, no link is congested,
and the flows can reach full link rate. At the same time, no backlog is formed
inside the network. Problems emerge together with flow f3, which together with
flow f2 congest one network link (the one having the label ”interlink” in the figure).

In our tests, we examine the DMMF algorithm as well as Pause-only (link-
level) flow control with no congestion management. As shown in Figure 2.6(a),
with Pause-only flow control, once flow 3 becomes active, f2 and f3 get 5 Gb/s
because they share a link. Subsequently, a backlog is formed in front of this link
(interlink backlog curve). Because the network is flow controlled, backlogs are
also formed upstream, inside compute nodes 1 and 2, which source flows f2 and f3
respectively. However, the backlog does not reach compute node 0, which sources
flow f1, because the path of f1 is disjoint from that of both f2 and f3. Effectively,
the rate of f1 is unaffected.

The interplay among flows becomes more complicated once flow f4 is activated
at time 370 µs. Since f2, f3 and f4 share a link, they all get a rate of 3.33 Gb/s.
However, due to Pause-only flow control, the backlog of f4 reaches compute node
0, wherein it strikes flow f1. Flow f1 shares a link with flow f4, therefore, the local
fair share of each is 5 Gb/s. Since f4 is constrained at 3.33 Gb/s, ideally f1 should
get 10-3.33 = 6.66 Gb/s.

Nevertheless, as seen in Figure 2.6(a), with Pause-only flow control, f1 gets as
little as 3.33 Gb/s. This happens due to head-of-line blocking inside the queue
that f1 shares with f4: because of downstream flow control, this queue drains f4’s
packets at a rate of 3.33 Gb/s, effectively limiting the departure rate of f1 packets
as well.
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Figure 2.7: Network topology and flows used in Experiments 2 and 3.

Next, we examine how the proposed congestion control scheme can correct this
behaviour. The results are shown in Figure 2.6(b). When the congestion begins,
flow f1 is first throttled to rate 0.5, because it shares a link with f4. However, at
the next RRP, f4 informs the corresponding CP that its CR is 0.33. Effectively, f1
can use the excess bandwidth and get the ideal, max-min-fair rate of 6.66 Gb/s.
In this example, the protocol converges to the correct max-min-fair rates in two
RRP periods, i.e. 40 usec.

2.8.4 Flow completion times of latency-sensitive flows.

Figure 2.7(a) depicts the network topology and the traffic flows that we simulated
in the second experiment. The network consists of two Computing Nodes. Each
computing node has four hosts and one computing node switch. The two comput-
ing node switches are connected with a single link, labelled interlink in the figure.
The interlink is the link to be congested by many flows which send packets form
computing node 1 to computing node 2.

For this experiment, flow 1 sends large messages of 1 MBytes at 5 Gbits/s,
whereas Flow 2 sends smaller (3 and 30 KBytes) messages, at a varying rate.

Figure 2.8 and Figure 2.9 depict the Flow Completion Times (FCTs) as a
function of the sending rate of flow 2, which is displayed on the x-axis. Note that
given that flow 1 sends at 5 Gb/s, the network saturates when the input load of
flow 2 is 0.5.

In Figure 2.8, the y axis shows the flow completion time (FCT) of Flow 2,
whereas in Figure 2.9, it shows the FCT for all flows. From Figure 2.8, comparing
the FCT of flow 2, we observe that DMMF outperforms TCP. Especially for the
critical (small) flows, the proposed scheme achieves almost 2x smaller latency than
TCP.

As the input load increases, the FCT of DMMF increases at a significantly
lower rate than with TCP implementations. This proves that DMMF is more sta-
ble and reliable than TCP in case where the input load exceeds a certain limit.
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Figure 2.8: Experiment 2: Flow completion times of latency-sensitive (small) flow
2.
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Figure 2.9: Experiment 2: Flow completion times of all flows.

In Figure 2.9, comparing the FCT of all flows, we observe that DMMF, albeit de-
creasing the latency of small flows, does not degrade significantly the performance
of small flows. Overall, these results show that with the proposed scheme, the
FCT of small (latency-sensitive) flows is significantly better than that of the TCP.

2.8.5 Fairness in scenarios with local and remote flows

In the third experiment (see Figure 2.7(b)), two hosts in Computing Node 1 (H0
and H1) send packets to a host in Computing Node 2 (H0) that is also receiving
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Figure 2.10: Simulation results for Experiment 3, with local and remote flows
competing for a link.

packets from another host in Computing Node 2 (H3). All flows send packets at
full link speed.

For DMMF congestion control, the CP in switch 1 in front of the interlink tries
to allocate a fair share of the rate on the interlink to all flows; thus, every flow
receives control messages at its source in order to adjust its sending rate. The CP
in switch of Computing Node 2 acts similarly for the flows towards H0.

The results are presented in Figure 2.10. The max throughput for DMMF is
9.5 Gb/s since 0.5 Gb/s is reserved for control messages. What is obvious from
these results is that DMMF allocates a fair share of the link’s rate to all flows
without distinguishing between local and remote ones. In contrast, lossless TCP
allocates two times more bandwidth to the local flows than to remote ones.



Chapter 3

Tools, Technologies, and
Methodology

In this chapter we will go over the tools as well as the technology and methodology
used in the development of this thesis. We mention most of these resources in their
respective section but e decided that we should summarize everything used in one
section. We cover all hardware, software resources, as well as all tools involved in
simulation and implementation.

3.1 Hardware Resources

We will begin by describing what physical machine resources we used. Of course
we used workbench computers for the whole process. Other hardware includes
ZedBoard [21] and Zynq UltraScale+ [22] FPGA boards for implementation test-
ing. ZedBoards we chosen as the initial platform due to their abundance in the
laboratory, and UltrScale+ were used for final testing due to them being the main
components of the prototyping platform mentioned in Section1.2.

3.2 Software Resources

Software used includes the Xilinx Vivado design suite [23] for developing the HDL
modules, the same suite was used for synthesizing the designs for FPGA testing.
Implementation, placement and simulation tools of the same suit were used. The
reasons for using the Xilinx tools is mainly the expertise that we have with them,
and the laboratory already owns licensing for use.

Microsoft tools used are the Microsoft Visio [24] software, which was used for
creating the figures and Microsoft Word [25] that was used for intermediate text
and note management,

Notepad++ [26] was used for writing the final text, and MikTex engine [27]
was used for LATEXcompilation for the production of the final text.

19
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3.3 Simulation tools

The simulations that were given used an OMNeT++ [20] environment. This en-
vironment was used because it is very modular, as you can freely create and ma-
nipulate any topology needed and due to previous expertise of the operators. The
simulation scenarios and topology were written in C++. Figures that will be dis-
playedin the respective section were drawn using the gnuplot [28] tool as it is the
most common practice in academic works and can be handled with great precision.

3.4 Implementation tools

As already mentioned Xilinx Vivado suite was mostly used for the implementation.
The HDL language used is Verilog, due to expertise of the author as well as it being
the language of choice in current proects of the laboratory.

The design patterns and techniques follow the Xilinx Synthesis and Simulation
Design Guide [29] in order to ensure that translation from code to hardware is
precise.

The module creation process followed the Vivado Design Suite User Guide [30].



Chapter 4

Implementation

In this Chapter we will cover the implementation process from the very beginning
until the end of this thesis. We will cover all details including design choices
and why they were made, as well as information that could help future readers
of this thesis understand or even implement the scheme on their own, given the
code material. The chapter is written in a top-down fashion starting with a very
abstract level and reaching low levels with specific details.

4.1 High Level Design

Before implementing anything we make designs. We need to plot out what we
need, following levels of abstraction. In the most abstract level, we are looking
into a black box network that achieves maximal utilization.

Our aim is that assuming uniform traffic, at the beginning the aggregate rate
of the output of the network will be either equal to the aggregate capacity of
the output links, or equal to the aggregate input rates. This means that either
the incoming rate is feasible for the output and can be passed over, or that the
outputs are used maximally. This has to change quickly though as the network
traffic should converge to all sources injecting feasible traffic and soon the aggregate
rate of the inputs should equal the capacity and the aggregate rate of the outputs.
Since in practice, the traffic will not be uniform, our goal is tend to what is said
above as optimally as possible.

Network

I0R
I1R
I2R

InR

O0R
O1R
O2R

OkR

Figure 4.1: An abstract idea of the congestion control’s effect on the network
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RP CP DPFRP
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FRP FRP FRP 

FRP  Reply

Flow

Figure 4.2: An abstract idea of the mechanism’s components

In Figure 4.1, I0R represents Rate of Input 0, O0R represents Rate of Output
0 and so on. Assuming that the Aggregate rate of outgoing links is Ao =

∑k
i=0OiR

and C is the aggregate capacity of the links, our aim is during instability to be
able to achieve at all times:

Ao = min(

n∑
i=0

IiR , C)

And after convergence we want to optimally achieve:

Ao =
n∑

i=0

IiR = C

To start implementing we move to abstraction level 2, which contains the
network nodes, for simplicity we ignore most of the components involved and
will only focus on the components that implement our congestion controller. In
this abstract level we demonstrate 3 modules as shown in Figure 4.2.

• The Reaction Point (RP), that is the module responsible for applying the
rate changes in the source depending on feedback. It is positioned at the
ingoing part of the switch, meaning that all flows pass from there and its
logic determines if the incoming data is normal traffic to be passed down
to the switch fabric. If it is an FRP or an FRP reply that has not arrived
back to the source, it is also passed to the switch fabric. Only FRPs that
were sent by this node and returned back are treated differently. In that
case, they forward the new rate restriction to the DMA engine to be applied
directly.

• The Contention point (CP), is the link monitor and is present in all outgoing
links in all switches in the network, and is responsible for observing the rate
(Current Rate (CR)) of Flow Rate Packets (FRPs) that pass through it
and modifying some fields of it if necessary, according to the algorithm we
explained in Chapter 2. Any packet that is passing through and is not an
FRP is forwarded as is. An FRP that reached its destination in the past and
is now heading back to the source, befalls in the same category, and is also
forwarded as is.
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Figure 4.3: An example setup of the Congestion Control Scheme

• The Destination Point (DP), which can exist either in the input or in the
output of all links, is responsible for determining whether the destination has
been reached, in which case it will swap the source and destination fields,
set the forward flag to 0, notifying the network that this FRP is going back
to the source and should not be touched, and inject the packet back to the
network.

In our implementation we design the CP in a way that it fulfils the duties of
the DP as well- we only mention it separately for clarity.

Figure 4.3 displays an example setup of a node in the congestion control scheme.
It is a rather small example as we are not aiming for nodes with 2 inputs and 4
outputs, but it only serves the purpose of explanation. In the example, we can see
that all inputs are connected directly to the Reaction Point. The reaction point
determines if the input is an FRP reply for one of its flows in which case it has to
notify the DMA engine of the acquired feedback, or for any other packet it will pass
it to the switching fabric. At the same time the Reaction Point must generate and
inject an FRP for every active flow whenever an RRP ticks, and does so by handing
the FRP packet to the switching fabric. The switching fabric is a conventional
switching module, it will determine whether the packet was aiming for this node,
in which case it will pass it over to the DMA, or if it was moving elsewhere, in
which case it will direct it to the correct output. Contention Points are present
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field #bits notes

stop 1 FRP stop message

init 1 FRP init message

FRP 1 FRP message

FW 1 Packet has not reached destination yet

CR 8-24 Current Rate field

DR 8-24 Desired Rate field

Table 4.1: FRP layout

in all outputs, and they determine whether the packet must be processed (see
Section 4.2) or just passed onwards. Assuming all nodes are built in a similar
manner, they can properly communicate to resolve congestion.

At this point, it is useful to define our packet layout for future reference.
Normally the layout is defined by the protocol of communication, but in some
fields of the packet, either in the header, footer or even the payload, if needed, we
can add our own necessary fields. Table 4.1 displays these fields.

• stop: The stop flow bit determines whether the packet is an FRP stop packet.
In that case, the init and FW flags are ignored (and the FRP flag is assumed
to be 1 by default in many implementations that have another type field in-
dicating FRP). When this packet arrives to the destination, it is not injected
to return, but is instead dropped.

• init : The init flow bit determines whether the packet is an initialization mes-
sage, in which case it will be handled as explained in Section 2.7.2. Similarly,
it is assumed that the FRP flag is 1 in implementations that allow it.

• FRP : This is the most important flag, and the least important at the same
time. It declares that these fields represent an FRP message. The reason
why it might not be important is that in most protocols there will be another
‘type’ field outside the FRP fields, so that it is known to other mechanisms
as well. But because the scheme is designed to be universal we include this
information as well. For optimization purposes it can be omitted during
implementation.

• FW : This flag requires that the FRP flag is set, and determines that the FRP
is moving forward, towards the destination. When arriving to the destination
this flag will be set to 0 to notify the nodes it passes through not to process
it.

• CR: The Current Rate field consists of 8 to 24 bits (can also be more or fewer,
but we use this range) and displays the rate in which the flow is transmitting
or is forced to transmit if there is a bottleneck. The rate is set to what the
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process desired at the beginning but is modified according to feedback. We
will talk about the representation below.

• DR: The Desired Rate field consists of similar bits to the CR, but it displays
the rate at which the flow desires to transmit. Unlike the CR, this field
is refreshed to the desire of the process always at the source, but it is also
reduced when encountering a bottleneck.

4.1.1 Current Rate and Desired Rate Representation

The initial plan was for the fields to be 8 bit long floating point encoded. We
understand that normally floating point encoding would require 32 bits, but we
took the concept and applied it to fewer bits, as we wanted the FRP fields to be as
small as possible, so as to reduce overhead. We can use 4 bits for the exponent and
4 bits for the mantissa. There will be no sign bits as there are only positive numbers
and negative exponents as all rates are represented as a fraction of the maximum
bandwidth (100Gbit/s or 1Tbit/s). In this way you can represent numbers in a
range of 215 (21111(2)) and can have an error of around 3% ( The minimum distance
between numbers is 1− 1

2 −
1
4 −

1
8 −

1
16 , which is around 6%, but if you also round

the number it is as if you use 5 bits for precision therefore the error is around 3%).

That concept can also be applied to more bits, increasing the mantissa will
yield better precision, while increasing the exponent will result in an increase of
range.

All that being said, in our implementation we use integer numbers of 8 to 10
bits.

There are two reasons for not using floating point encoding. The first reason
is because unless the mantissa is significantly big there will always be some error.
This might not seem so big a problem but it might lead to underutilization or
worse overutilization of the links, which is exactly what we are aiming to avoid.

The second reason is because floating calculations are costly and difficult, and
on top of that having some floating point numbers and some integers (e.g. number
of flows) enhances the burden. Either the integers have to be converted to floats,
which is extra overhead because you need to calculate the exponent and estimate
the mantissa, or even worse, you have to implement modules that can perform
calculations between integers and floating point numbers.

The reason we insist on the numbers being small is because one of the oper-
ations needed is division, which can very easily compromise timing by requiring
a lot of processing. The division is a very complicated operation to perform in
hardware and in our implementation we have not implemented this operation. We
use a divider generated by Xilinx tools as we will mention later, and with bigger
sizes it would require several processor cycles for a division to complete.
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Figure 4.4: Abstract Functional overview of the Contention Point

4.2 Contention Point, the link monitor implementa-
tion

We will implement the contention point (CP) logic, which actively implements the
functions of the link monitor and is needed in all switch outputs in hardware, but
first we have to make a functional description for it. The purpose of this block is
to throttle the congestive flows. Messages that pass through a CP are divided into
4 groups:

• Normal payload traffic that passes through the switch is not processed

• FRPs going forward are processed as explained in Chapter 2 and further
detailed in this section

• FRP responses that reached their destination and are now travelling back to
their source are not processed.

• Flow-init and flow-stop messages inform the network about a new or a fin-
ished transmission and need special processing.

We will move to abstraction level 3 and show a functional description of the
CP. Figure 4.4 displays the overview of the sub-processes of the module.

We assume a clock input, an RRP input and the FRP fields in the format we
presented before. Our goal is to output an FRP message upon receiving an FRP
message with or without editing the CR and DR fields according to the scheme
description.
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4.3 Handling corner cases

At this point, we are deep enough to start explaining corner-case problems that
have occurred and how we solve them.

• The aggregate capacity (B) of flows bottlenecked elsewhere exceeds the total
capacity (C). This may happen when many flows start transmitting simul-
taneously, thus not allowing the system to realize where the real bottlenecks
lie. Then, the FSR equation yields a negative FSR. To handle this case, we
temporarily set the FSR as:

FSR =
C

K

where K is the total number of flows passing through the link.

• The number of flows bottlenecked on this link (M) is zero. In this case, the
FSR equation will attempt division by 0. We handle this as follows: If B is
also 0, then we do not have any flow active, so we do not care about the FSR.
If on the other hand B 6= 0, then we use the maximum of the bottlenecked
elsewhere rates value, bmax, that we have kept in a register, set M = 1, and
decrement B by bmax.

• New flows sending init messages must not wait for an RRP clock event in
order to get a rate assigned to them. Instead, the CPs may give them a
feasible rate immediately. A problem is that in every RRP clock event, the
M and B variables of the CP are reset to zero (0) and therefore the CP
cannot assign a legitimate rate to these new flow without waiting for all
flows to send their FRPs, which will only happen at the end of the RRP.

To address this issue, the CP keeps the old (previous RRP) FSR, M and
B values in registers, and uses these old values to find a sending rate for
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the new flow, considering that the new flow was present in the previous
RRP. In particular, the CP compares the CR field with the old FSR, and
correspondingly updates the old M and B values. It then calculates a new
FSR using these updated values.

Getting into more detail on level 4 displayed in Figure 4.5 we can now see what
operations are triggered from what inputs. Note here that K represents the total
number of flows (bottlenecked or not).

• Upon reception of a stop message, the module should reduce the total amount
of flows, and if the received CR corresponds to a flow that is bottlenecked
here, it should decrement M by 1. Otherwise it should decrement B by the
CR amount. It should then forward the message to the next node in line,
without any other processing

• Upon reception of an init message, the module will increment the total
amount of flows by one, and then depending on the bottleneck status, it
should increment either M by 1, or B by CR. It will do the same for the
old counters mentioned in the corner cases. The init message will trigger an
FSR recalculation, and use the newly calculated FSR for the rest of the pro-
cedure. The rest of the procedure is identical to the procedure that occurs
upon reception of a normal FRP message, detailed bellow

• Upon reception of a ‘normal’ FRP message- a message that is not a stop
message or an init message- and the fields FRP and FW are set to 1, the
module will compare the CR and DR fields to the FSR, and again depending
on the bottleneck status and similarly to the init message handling, it will
increment either M or B, but not the old values. Depending on the com-
parison it might also change the CR, the DR, or both to the value of FSR.
More specifically:

– If the DR is bigger than the FSR, and the CR is bigger then the FSR,
they both change their value to the FSR and the packet is forwarded

– If the DR is bigger than the FSR but the CR is smaller, the DR changes
its value to FSR and the CR remains as is, and the packet is forwarded.

– If the DR is smaller than the FSR and the CR is also smaller than the
FSR, both remain intact and the packet is forwarded

• Upon reception of a packet, that is none of the above types according to its
flags, it will be forwarded to the output without any processing

• Upon the event of RRP, or any FSR calculation such as init message triggered
recalculation, the new FSR is calculated as described in Section 2.5, and the
corner cases are resolved as described in this section
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Figure 4.6: Outline of the register transfer level (RTL) implementation of the CP.

Our circuit that implements the CP is fairly simple, a coarse version is shown in
Figure 4.6, but we will elaborate on the full design. Our implementation is generic,
and does not assume any specific network packet format, such as Ethernet. We
assume an FRP data packet input, an RRP clock input, and a data output. We
deliberately ignore needed input/output signals like ready, valid, reset as well as
many inner structures as they do not contribute significantly in the understanding
of the concept.

The datapath is oriented around the incoming packet and the incoming RRP
signal. Upon receiving an FRP packet, a CP first determines if this is a flow-init or
a flow-stop message. The CP also maintains variables M , B and FSR, as explained
in Section 2.5.

If the message is a forward FRP, the CP compares the FSR with the CR. If
FSR ≤ CR, it increases M and updates the CR field of the packet with FSR.
Otherwise, it increases B by the CR value of the packet.

At the end of the RRP, i.e. at every RRP clock event, the CP calculates the
new FSR value and keeps the old values M , B and FSR variables in its “old”
registers; these are not displayed in this figure for clarity, but will be shown in the
next figure for deeper elaboration.

The full circuit is displayed in Figure 4.7, and it includes all sub-components
and corner case solutions. Note that it diverges slightly from common RTL design
conventions and that is to mitigate excess complexity. However, great effort has
been made to ensure there is no ambiguity in the demonstration. For this same
purpose, we use several colours to mitigate confusion. A rough labelling of the
colours is:
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• red - represents some actions related to stop messages

• blue - represents some actions related to init messages

• gold - represents some actions related to the B counters, mostly to avoid
confusion with the M counters that have wiring in the same area

• green - represents the path of the RRP signal

• turquoise - represents the corner case solutions

We will now explain all the functionality in detail, starting from packet recep-
tion. It is not displayed in the schematic, but checking for a stop message or init
message also includes checking for the packet to be an FRP.

As already mentioned before, the first check is for a stop message. If the packet
has the stop-message flag and the FRP flag, if needed, set. The red arrows and
lines show the circuit responsible for the stop message process. Upon identification
of such packet, it will reduce the total amount of flows (K ) by 1, and in order to
decrement the correct corresponding counters, both current and old values, it
will determine whether the flow was bottlenecked here or elsewhere, by following
the forward FRP path, as the red line, extending to the right of the comparison
indicates. At the end of the red line the path does not stop, but rather the default
circuit, that handles normal FRP packets, takes over and completes the task,
propagating the stop packet to the output. As implied before the flag bits are
propagated by default.

If the packet is not a stop message FRP, the circuit will continue to check
whether it is a flow init message. If so, it will broadcast the blue line across the
circuit which causes the following things:

• The bottlenecked here/elsewhere counters will increment together with their
old values. If the flow is bottlenecked elsewhere and its rate is the highest
of the other bottlenecked elsewhere flows, its rate will be stored in the bmax

register

• The FSR value will be recalculated- Note the turquoise segments that cover
the corner cases

• The CR will be compared with the old FSR, but the CR will be replaced
by the newly calculated FSR, if needed, when the FRP is propagated to the
next node. Note that DR does not matter for init messages- it will always
equal to the CR, since it is by default the first message sent by a flow

Upon finishing the tasks it will propagate the init-message FRP, changing the CR
field if needed, but leaving the flags intact.

If the packet is neither a stop message nor an init message, it can be a normal
FRP, in which case it will be checked for the forward flag to determine if it is
going forward or backwards. If it is going backward, or of it is not an FRP at all,
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then the packet will be forwarded to the output as is, as the rightmost multiplexor
in Figure4.7 displays. If the FRP is going forward, it will compare the CR and
DR with the FSR and forward the lower one each time to the output. In the
figure there should be two multiplexors, one for each field, but because they are
completely identical we display a merged version for simplicity. The FRP will be
forwarded to the output with the flags remaining intact and the CR and DR, that
were chosen in comparison.

At the same time, the circuit will increment the corresponding counter depend-
ing on the result of the comparison between the FSR and the CR. Again, if the
flow is bottlenecked elsewhere and its rate is the highest of the other bottlenecked
elsewhere flows, its rate will be stored in the bmax register.

When the RRP ends, the RRP signal is triggered. The RRP signal path is
outlined in green. During the RRP, the ‘old’, previous values of the registers are
updated, and the current values, as well as bmax, are reset to 0. The current FSR
register is not reset to 0, but rather a new FSR is recalculated.

Here we would like to note a big difference between Figure 4.6 and Figure 4.7.
In the former figure, the division that calculates the FSR, takes place inside the
module, while in the later, the division does not appear, and in its place there
are outputs of the divider and the divisor, and an input of the result. This is
because the division is very complex and time consuming, so many designs will
prefer to avoid creating their own, and use an optimized module, as we did by
using the Xilinx Divider Generator [31]. We will talk about our implementations
and module layout later.

It is also notable that during the FSR calculation, the first two corner cases
might appear, if M is 0 and B is not, then we will attempt to divide by 0 so we
act as the solution mentioned in the corner cases section. The turquoise pieces in
the middle lower part of the schematic display that solution. M is assumed to be
1 and B is assumed to be bmax units less.

If the aggregate rate of flows bottlenecked elsewhere (B) is bigger than the
capacity, which can only happen when a sudden burst of many small new flows,
then for the short period that this will last, we divide the capacity to number of
flows, seen again in turquoise in the middle of the schematic.

4.4 Implementation on FPGAs

As mentioned in Chapter 3, we developed the hardware using the Verilog hardware
description language on the Xilinx Vivado tools. We will briefly elaborate on the
process from the beginning until the point we have reached now.

After completing all the abstraction level schematics, demonstrated earlier in
this chapter we were confident that we knew what we are creating. We used
Figure 4.7 as a point of reference and coded in Verilog language from scratch,
starting from the registers, multiplexors, comparators, adders and subtracters in
that order, and then we added the wiring to connect them all together. We then
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added the Xilinx Divider Generator tool to generate a divider for our purpose,
and we wired it with the rest of the circuit accordingly. See the Appendix for a
demonstration of what each of those units is represented as in Verilog code, as well
as how the divider module is instantiated.

Next thing on the procedure of module development is debugging. We ran
Verilog tests on the design, with different parameter values (like CR size and
Capacity) and clock and RRP frequencies, using Verilog testbench modules on the
Xilinx Vivado Simulator. Some of the tests were parallel test-verifications, using
functions to predict the state of the system and if the predicted state was not
the same as the actual state, this would mean the discovery of a bug. See the
Appendix for a small example test, as well as part of the state prediction function.

The tests that we have mentioned so far are only behavioural simulation tests.
That means that the simulator makes a functional plan of the code and simulates
how the circuit logic reacts depending on the test inputs. This however does not
take into account physical constraints such as timing and area complexity, and so
the next step was to synthesize and implement the design for a specific FPGA.
For the first tests a ZedBoard [21] FPGA was used. After running the synthesis
and implementation tools of Vivado, we performed the same tests using a clock
frequency of 150.25MHz and a RRP of 20µs. The tests in the end were successful
in timing restrictions and the results showed low device utilization as expected.

The next step was to implement the module as a component in an existing
design and test it in hardware. At that point, we were using the AXI protocol
for communication between devices, so the module needed an AXI interface to be
able to receive outgoing packets, process them, and pass them to the next node.

4.4.1 AXI Implementation Attempt

In order for the scheme to communicate using the AXI protocol, we needed our
design to follow the interface conventions. We implemented a wrapper in Verilog
to connect our implementation to the AXI Interface. Simulations were ran but
ultimately it was never implemented on an actual hardware FPGA as it was dis-
covered that Xilinx implementation of AXI communication components did not
apply Quality of Service as the Protocol dictated and treated all traffic equally,
thus not allowing the FRP packets to have high priority. With no guarantee of
immediate transmission, those packets could be stuck in queues, and on arrival,
their information would already be invalid. Similar problem was affecting the RRP
transmission as we will explain later in Section4.6.

4.4.2 EXAnet Implementation Attempt

Ultimately the AXI Interface caused a lot of other difficulties for the project and it
was replaced for node to node communication by a custom network communication
protocol, which we will refer to as EXAnet. The protocol is pretty simple, each
data transmission consists of 3 transfers, the header, the payload, and the footer.
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Module LUTs Flip-Flops

Divider 108 83

CP 117 86

Total 225 171

Total % 0.08% 0.03%

156.250 MHz clock frequency

Module LUTs Flip-Flops

Divider 105 83

CP 125 86

Total 231 171

Total % 0.08% 0.03%

300.030 MHz clock frequency

Table 4.2: FPGA Area utilization for two different clock frequency inputs

The channel width is 128 bits but we do not need to explicitly explain each of the
fields, only the bits that affect us, which are the type field in the header, and the
user bits field in the footer. The type field in the header is important as a specific
5-bit combination will represent an FRP message. The actual data for the FRP
will be contained in the footer user bits and the payload can freely be used to
transmit data.

What the above means is that the FRPs can exist in the network with poten-
tially zero overhead, as active flows will just need to contain an FRP on the first
transmission of every RRP. At the same time, there is no need for the module to
check for FRP flag internally as the type field covers this comparison. The module
container or wrapper will determine whether the packet should be processed by
this module or not.

The module with and without the EXAnet wrapper has been placed, synthe-
sized and implemented on an UltraScale+ design and Table 4.2 displays the timing
and area results that Vivado outputs. We use a clock frequency of 156.250 MHz as
it is the Frequency of the system we are working on, but the module can achieve
a Frequency of up to 300.030MHz on the UltraScale+.

Ultimately, it has not been downloaded on the FPGA to be tested yet, due
to limited time and lack of understanding that could not catch up with the rapid
ongoing development of the design, and is left for future work. That being said
we are confident that upon verification, only a small number of errors could arise
and the probable cause is imprecise timing calculation by the Vivado tool, which
can be compensated by adding one cycle delay, using pipeline registers, before the
data output, or by adding 1 to 4 cycles delay after the FSR calculation. This last
solution will be of help, if timing is compromised during a burst of init-message
FRPs, arriving back-to-back.

4.5 Reaction point at DMA engines

A Reaction Point is implemented at each DMA engine, which sources rate con-
trolled DMA channels. The reaction point receives feedback for the flows it is
responsible for, and adjusts the rate accordingly. This rate limiting function can
be implemented using a leaky-bucket or a priority heap, similar to QCN’s [12]



4.6. BROADCASTING A COMMON RRP CLOCK EVENT 35

reaction points. For instance, the DMA engine inside the processing system of Ul-
traScale+ [32] already implements rate control on the eight (8) virtualized DMA
channels that it provides.

Some systems provide user control over the rate the DMA is sending. On these
systems, the Reaction Point only needs to parse the returning FRPs, and pass the
information on to the DMA. Other systems do not provide such feature, and in
those cases, it is the Reaction Point that should enforce it. To do so, it must be
placed on the output of DMA channels, and have storage capacity to hold packets
as it injects them to the network in the appropriate rate.

So far, we have not made any implementation attempts for the second sce-
nario, but we have attempted to experiment with the first scenario in our project
environment. This remains to be completed as future work.

4.6 Broadcasting a common RRP clock event

Our protocol assumes that a central clock generates synchronous events to all
modules with a frequency of 50kHz for an RRP of 20 microseconds. For rack-
scale interconnects, a custom protocol can be used to achieve this distribution
of a common clock. For instance, in general LAN networks, the Precision Time
Protocol (PTP) is already approaching these accuracy levels [33].

It should be noted that many communication protocols will not allow a single
bit/line of communication for RRP transmission. Therefore RRP has to be trans-
mitted as a normal data packet, but we are hopeful that such protocols will allow
high priority enforcement and the RRP can be transmitted without delay. For this
work, the RRP event had to be created as a different module. After research we
have concluded that there are two optimal choices, each on its own field.

• Ad-hoc chain transmission
The period is generated by all nodes - every node transmits the RRP to all
its connections, and ignores all RRP notifications within a small time after
receiving one notification. This allows networks to have dynamic topology,
but it is quite traffic expensive

• Specific node transmission
The period is generated by a central node that passes it to all its connections.
Only nodes that are out of reach from the central node need to receive the
RRP from a chain. This results in minimum traffic but the topology can not
change dynamically.

The previous statements implied the general concept of flow and rate counting
as to (a) define a global constant RRP, and (b) arrange so that all flows periodically
transmit FRPs equally spaced in time by RRP among themselves. In practice, this
has the problems of (i) arbitrary phases of when each FRP is transmitted, even if
all of them are transmitted with the same period RRP, and (ii) variability of the
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delays in-between, when each FRP is generated and when it reaches downstream
switches.

One method to resolve these problems is for all flow sources to transmit their
FRPs not only within the same period, RRP, but also with the same phase i.e.
synchronized in time. To achieve this, all source nodes and all switches have a
timer, and these timers are kept synchronized among themselves, for example us-
ing periodic control messages. These synchronized timers define the boundaries
between the successive rate re-evaluation periods, so that these boundaries are
synchronous across the entire network (within a tolerance, that is a small percent-
age of the RRP). Then, all flow sources may transmit one FRP during the first
half of each RRP.

In general, the RRP transmission might create timing implications, as the time
for the signal to be transmitted might be big enough to bring the devices out-of-
sync, each being in a different period than the other. By that, numbers such as the
aggregate throughput will be unreliable, but this problem is commonly faced in
distributed-system algorithms and has yet to be solved completely and therefore
all we can do is just be aware of it.

The other problem is that if you use certain implementations of protocols such
as the Xilinx AXI implementation for communication among devices, you can not
have a single bit that is atomic and direct. You have to use the implemented
features, potentially sending big packets of data, without any priority enforcement
and risk delaying in queues along the way.



Chapter 5

Conclusion and Future work

Modern high-speed networks shift away from traditional TCP-based communica-
tion, adopting RDMA transfers in order to achieve lower latency. These networks
will need hardware-based congestion management in order to deal with queue and
buffer overload. In this work, we described an efficient, accurate and fair con-
gestion control scheme that can be readily implemented inside the hardware of
RDMA engines and switches. Our simulation results have demonstrated that our
solution reacts promptly to congestion, throttles the offensive flows by allocating
bandwidth in a max-min-fair manner, and that it reduces the flow completion
time. We have implemented the contention point logic in FPGA hardware. In our
implementation for a Xilinx Ultrascale+ FPGA, the CPs needed at the outputs of
a 16-port switch occupy around 1% of the FPGA resources and easily achieve and
surpass the targeted frequency of 156.25 MHz.

The outcomes of this work are not limited to the implementation of the con-
tention point module. An outcome far more important is that the whole procedure
of this work greatly developed our understanding on the topic of congestion, con-
gestion control, the networking needs of High Performance Computing facilities,
and how to effectively manage large bandwidth capacities.

At the beginning, this thesis appeared to be engineering work, taking a patented
scheme and implementing it. On the contrary, this work had a significant academic
aspect, since the failures in design, the lacking feasibility, the dead ends, corner
cases and all other forms of adversity encountered, incited research activity, which
is now interwoven in this thesis. We might not have completely reached the goal
of implementing congestion control in an environment of thousands of cores, but
the field is set for future work to do so.

In future work, we will complete what is left of the Contention Point, loading
the EXAnet design on the UltraScale+ FPGA and making verification tests and
measurements. We will also add the short circuit notifications optimization that
is not featured yet. The next step is to actively claim control over the sending rate
of DMAs with our Reaction Point logic, perhaps by implementing another module
that could be placed at the source of any node, using any protocol.
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The last step of the work is to make sure that the scheme lives up to its name; it
must be able to perform well in exascale systems, but this test will require further
progress of the ExaNeSt project as a whole.
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Appendix A

Verilog interpretation examples

always @(posedge i c l k ) //on p o s i t i v e edge o f c l o c k
begin

i f ( r e s e t ) // i f the r e s e t s i g n a l i s on
Q <= 1 ’ b0 ; // Q = 1 b i t v a l u e 0

else
i f (EN) // o t h e r w i s e check Enable

Q <= D; // then Q = input
end

Listing A.1: Example of a Flip-Flop with synchronous reset and enable that trig-
gers on the positive edge of the clock

always @( in0 or in1 or in2 or in3 or s e l )
begin
// f o r every d i f f e r e n t v a l u e o f s e l e c t ( s e l )
// output a d i f f e r e n t input

i f ( s e l == 2 ’ b00 ) D = in0 ;
else i f ( s e l == 2 ’ b01 ) D = in1 ;
else i f ( s e l == 2 ’ b10 ) D = in2 ;
else D = in3 ;

end

Listing A.2: Example of a 4to1 signle bit multiplexor

i
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always @(posedge i c l k )
begin

i f ( r e s e t )
Q <= 1 ’ b0 ;

else
i f (EN)

i f ( s e l == 2 ’ b00 ) Q <= in0 ;
else i f ( s e l == 2 ’ b01 ) Q <= in1 ;
else i f ( s e l == 2 ’ b10 ) Q <= in2 ;
else Q <= in3 ;

end

Listing A.3: An unorthodox Example of a 4to1 single bit multiplexor with a flip
flop

Note the technique of Listing A.3 is not advised by the guide, but as it saves time
and space we use it commonly and the Xilinx compiler translates it correctly.

Div ider my div ider ( // Module name and i n s t a n c e name
// . wire name of module ( w i r e t o c o n n e c t f r o m t o p m o d u l e )

. a c lk ( c l k ) ,

. d iv identData (CminusB ) ,

. d iv identVa l id ( d iv InVal id ) ,

. d iv i so rData (M) ,

. d i v i s o r V a l i d ( d iv InVal id ) ,

. divOutData ( FSRcalc ) ,

. divOutValid ( FSRca lc va l id )
) ;

Listing A.4: Divider Instantiation Example

task RRP;
thisFSR = ( thisCap − thisB )/ thisM ;

endtask
task MorB ;

begin
i f ( i d a t a [ 1 1 : 4 ] > thisFSR )

thisM = thisM + 1 ;
$display ( ”M i s : %d” , thisM ) ;

else
th isB = thisB + i d a t a [ 1 1 : 4 ] ;
$display ( ”B i s : %d” , thisB ) ;

end
endtask

Listing A.5: Concept of State Prediction
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task GEN;
begin
i f ( random == 1 ’ b1 )

i d a t a = $urandom ;
else
begin

//DR CR
i d a t a [ 1 9 : 4 ] = 16 ’ b10101010 10101010 ;
i d a t a [ 3 : 0 ] = 4 ’ b1100 ; // f l a g s

end
end

endtask

i n i t i a l
begin

i RRP = 1 ’ b0 ;
ac lk = 1 ’ b0 ;
r e s e t = 1 ’ b1 ;
i d a t a = 20 ’ b0 ;
i v a l i d = 1 ’ b0 ;

#100;
r e s e t = 1 ’ b0 ;
#100;

for ( i =0; i < 16 ; i=i +1)begin
@(posedge ac lk ) ;#6;
GEN( ) ;
i v a l i d = 1 ’ b1 ;
#3.4 i v a l i d = 0 ;

end
. . .

Listing A.6: Example test
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