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Abstract

In the current thesis we consider an n-dimensional non-compact and complete Rie-
mannian manifold with n ≥ 3. We then present three new monotonicity formulas
which involve quantities that can be thought of as generalized normalized area and
volume of balls in our manifold. Using these new monotonicity formulas, we derive
a new gradient estimate for the Green function which improves a previous estimate
by Cheng and Yau. The present work is based on the study of a recent paper by
Tobias H. Colding [5], as well as the use of standard results of geometric analysis
such as the Bishop-Gromov theorem and the Bochner-Weitzenbock formula.
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Chapter 1

Preface

The current thesis aims at presenting the first parts of the paper of Tobias Holck
Colding entitled: ‘New monotonicity formulas for Ricci curvature and applications
I’ (2012) (see [5]). To this end concepts of geometrical analysis and comparison
geometry are required.

The structure of the thesis is as follows. In Chapter II we first recall some
basic concepts of the Riemannian geometry and then we present various Volume
Comparison Theorems in the case one has bounds on the Ricci curvature of the
manifold. The Chapter concludes with the proof of the standard Bishop-Gromov
volume comparison theorem.

In Chapter III we introduce the Green function, which plays a major role in this
work. We are interested in Riemannian manifolds which admit a positive Green’s
function, that is, non-parabolic manifolds. We review some criteria which guaran-
tee non-parabolicity. We then give a detailed derivation of a technical but crucial
identity that allows us to differentiate integral quantities where the integral is over
a domain that is not fixed but depends on the variable of differentiation.

Chapters IV and V contain the main results of the work. In chapter IV we first
define a “generalized distance” function by b(y) = G

1
2−n (x, y), for fixed x. We then

define the normalized generalized area by

A(r) = r1−n
∫
b=r

|∇b|3dArea ,

and the normalized generalized volume by

V (r) = r−n
∫
b≤r
|∇b|4dVol .

We then show the monotonicity formulas that involve A, V and b.
In chapter V we use the results of Chapter IV to obtain new global gradient

estimates of the Green function that improve previously known estimates by Cheng-
Yau, as well as a new asymptotic gradient estimate for the Green function near
infinity.
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Finally some useful formulas are collected in the Appendix.
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Chapter 2

Geometrical Preliminaries and
Volume Comparison Theorems

2.1 Rauch’s Elementary Comparison Theorem

Comparison Geometry forms a central part of Riemannian Geometry. In this Chap-
ter, follow Isaac Chavel’s approach in [1], we quote some relevant theorems that
compare volumes of balls and in general the geometry of a Riemannian manifold
M to that of a simply connected model space Mδ of constant sectional curvature δ.
Note that this model space for various values of δ, can take the following forms:

Mδ =


Sphere if δ > 0

Euclidean space if δ = 0

Hyperbolic space if δ < 0 .

At the beginning, we introduce some notions which are important for this project:

Given a complete Riemannian manifold (Mn, g), we assume a unit speed geodesic
γ : [0, β] → M . A Jacobi field along γ is a differentiable vector field Y (t) along γ,
satisfying Jacobi’s equation :

∇2
tY +R(γ′, Y )γ′ = 0 .

We now define J to be the set of all Jacobi fields along γ, which is a vector space
over R with dimension equal to 2n. Also J ⊥ is the normal component of J , which
contains all non-zero Jacobi fields Yi with

〈Yi, γ′〉 = 0 ,

on all of [0, β].

Moreover, we have:
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Definition 2.1.1 Given a real constant k, we let Sk denote the solution to the
ordinary differential equation for ψ(t),

ψ′′ + kψ = 0

satisfying the initial conditions

Sk(0) = 0 , S ′k(0) = 1 .

We also let Ck denote the solution to the above ordinary differential equation satis-
fying the initial conditions

Ck(0) = 1 , C ′k(0) = 0 .

Solving the above differential equation with the corresponding initial conditions, we
have for Sk(t) that

Sk(t) =


( 1√

k
) sin
√
kt if k > 0

t if k = 0

( 1√
−k ) sinh

√
−kt if k < 0 .

Also for Ck(t) we have,

Ck(t) =


cos
√
kt if k > 0

1 if k = 0

cosh
√
−kt if k < 0 .

Furthermore, we have the following properties for these functions :

S ′k(t) = Ck(t), C ′k(t) = −kSk(t), C2
k(t) + kS2

k(t) = 1

and (
Ck
Sk

)′
(t) =

(
S ′k
Sk

)′
(t) = − 1

S2
k(t)

.

Also for two given linearly independent tangent vectors x and y, we define the
sectional curvature K(x, y) of the 2-section, determined by x, y as the

K(x, y) :=
〈R(x, y)x, y〉
|x|2|y|2〈x, y〉2

,

where R is the Riemann curvature tensor.

We now present our first Comparison Theorem.
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Theorem 2.1.2 (H.E. Rauch) Let M be a Riemannian manifold, δ a real constant,
γ : [0, β] → M be a unit speed geodesic in M such that K ≤ δ for all sectional
curvatures along γ |[0,β]. If Y ∈ J ⊥, then the function |Y |, with |Y | = 〈Y, Y 〉 1

2 ,
along γ satisfies the differential inequality

|Y |′′ + δ|Y | ≥ 0 , (2.1.1)

on [0, β) .

Furthermore, if ψ(t) denotes the solution on [0, β] of

ψ′′ + δψ = 0 , ψ(0) = |Y |(0) , ψ′(0) = |Y |′(0) (2.1.2)

and ψ(t) does not vanish on (0, β) , then on (0, β) we have

d

dt

(
|Y |
ψ

)
=

(
|Y |
ψ

)′
≥ 0 , |Y | ≥ ψ . (2.1.3)

Equality holds in (2.1.3) at t0 ∈ (0, β) if and only if

K(Y, γ′) = δ

on all of [0, t0], and in this case there exists a parallel vector field E along γ for
which

Y (t) = ψ(t)E(t) ,

on all of [0, t0].

Proof. First we have that

d

dt
|Y | = |Y |′ = 〈Y,∇tY 〉|Y |−1 ,

which implies

d2

dt2
|Y | = |Y |′′ = {〈∇tY,∇tY 〉+ 〈Y,∇2

tY 〉}|Y |−1 − 〈Y,∇tY 〉|Y |−2|Y |′ .

Since from Jacobi’s equation ∇2
tY = −R(γ′, Y )γ′, then we have:

|Y |′′ = {|∇tY |2 − 〈Y,R(γ′, Y )γ′〉}|Y |−1 − |Y |−3〈Y,∇tY 〉2 (2.1.4)

= |Y |−1〈Y,R(γ′, Y )γ′〉+ |Y |−3|Y |2|∇tY |2 − |Y |−3〈Y,∇tY 〉2

≥ −δ|Y |+ |Y |−3{|Y |2|∇tY |2 − 〈Y,∇tY 〉2}
≥ −δY ,

where for the last inequality we have used Cauchy-Schwarz inequality. This proves
(2.1.1).
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For the second claim, since(
|Y |
ψ

)′
=
|Y |′ψ − |Y |ψ′

ψ2
,

we set F (t) := |Y |′ψ − |Y |ψ′. We have for F (t) that F (0) = 0 and

F ′(t) = {|Y |′ψ − |Y |ψ′}′(t) ≥ 0 ,

from (2.1.1), (2.1.2). These imply immediately that

F (t) = {|Y |′ψ − |Y |ψ′} ≥ 0

and hence

(
|Y |
ψ

)′(t) ≥ 0 .

This, together with

lim
t→0

|Y |
ψ

= 1 ,

implies that
|Y |(t) ≥ ψ(t) on (0, β) .

Now in the case of equality, if we have ( |Y |
ψ

)′(t) = 0 at some t0 ∈ (0, β] then

{|Y |′ψ − |Y |ψ}′(t0) = F (t0) = 0 ,

which implies F (t) = 0 on all of [0, t0]. and this, in turn, implies |Y | = ψ on all
of [0, t0]. In this case, we may write Y = ψE with |E| = 1 and ψ > 0 along the
geodesic γ . From the definition of the covariant derivative along a curve,

∇tY = ∇t(ψE) = ψ′(t)E + ψ∇tE . (2.1.5)

Therefore we have equality in (2.1.1) on (0, t0], since

|Y |′′ + δ|Y | = ψ′′ + δψ = 0 .

Then we have equality in (2.1.4) and thus also in the Cauchy-Schwarz inequality,
which implies |〈Y,∇tY 〉| = |Y ||∇tY |. This holds if and only if Y and ∇tY are
linearly dependent on all of (0, t0].
Now, suppose that ∇tY = λY , with λ ∈ R. Then by (2.1.5) we have

ψ′(t)E − λψE = −ψ∇tE ,

which implies
[ψ′(t)− λψ]E = ψ∇tE .

But E and ∇tE are linearly independent whenever ∇tE is non-zero, since the Levi-
Civita connection is compatible with the metric. Finally, since ψ is non-zero on all
of (0, t0], we have that ∇tE = 0 on (0, t0], which in turn induces that E is parallel
along γ on all of [0, t0].

2
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2.2 Some Volume Comparison Theorems

In this section we will prove some comparison theorems under the assumption that
the curvature is bounded either above or below. In the former case we will assume
bounds on the Ricci curvature, while in the latter we need bounds for the sectional
curvature. We will first restate Rauch’s Comparison Theorem.

We need the following definitions :

i) Sp = {ξ ∈ TpM : |ξ| = 1} and
ii) the matrix A(t, ξ) is the solution of the matrix ordinary differential equation on
ξ⊥ : A′′ + RA = 0 satisfying the initial conditions A(0, ξ) = 0 and A′(0, ξ) = I.

Let p ∈M, ξ ∈ Sp and we assume that for all sectional curvatures along γξ there
holds K ≤ δ . Then for any Jacobi field Y along γξ , pointwise orthogonal to γξ and
Y |γξ(0) = Y |p = 0 , we have in the spirit of Rauch’s Theorem

|Y |′

|Y |
≥ S ′δ
Sδ

, (2.2.1)

|Y | ≥ |∇tY |(0)Sδ (2.2.2)

for all t < π√
δ
, where π√

δ
:= +∞ when δ ≤ 0.

Furthermore, we have equality in (2.2.1) at t = t0 ∈ (0, π√
δ
] if and only if there

exists a parallel vector field E along γξ such that

Y (t) = SδE(t) and R(t)E(t) = δE(t) , (2.2.3)

for all t ∈ [0, t0].

(The proof is practically the same with the proof above, both for equality and
inequality of (2.2.1). )

In particular we have
(A∗A)(t, ξ) ≥ S2

δ (t)I , (2.2.4)

where A∗ denotes the adjoint of the linear transformation A, for all t ∈ (0, π√
δ
].

Equality (2.2.4) holds because we have for A, that: (A∗A)∗ = A∗A∗∗ = A∗A is
self-adjoint and then

(A∗A)(t, ξ) ≥ S2
δ (t)I ⇔ 〈A∗Ax, x〉 ≥ 〈S2

δx, x〉
⇔ 〈Ax,Ax〉 ≥ 〈Sδx, Sδx〉
⇔ |Y | ≥ Sδ|Y |′(0) ,

which is valid on (0, π√
δ
] by Rauch’s theorem.

The equality in (2.2.4) at a t0 ∈ (0, π√
δ
] holds if and only if

A(t, ξ) = Sδ(t)I , R(t) = δI , (2.2.5)
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for all t ∈ (0, t0].

This holds, because
(A∗A)(t, ξ) = S2

δ (t)I

is true if and only if equality holds in (2.2.2). Also, equality in (2.2.2) implies (2.2.3).
Finally, since A is the matrix that gives us the solutions of the Jacobi equation along
γξ, (2.2.3) is valid on all of (0, t0] if and only if (2.2.5) is valid, on all of (0, t0].

Theorem 2.2.1 (P.Gunther, R.L.Bishop) We assume we have the geodesic γξ as
described above, with all sectional curvatures along γξ less than or equal to δ . Then

(detA)′

detA
≥ (n− 1)

S ′δ
Sδ

, (2.2.6)

on (0, π√
δ
) and

detA ≥ Sn−1
δ , (2.2.7)

on (0, π√
δ
]. We have equality in (2.2.6) at a t0 ∈ (0, π√

δ
], if and only if (2.2.5) is valid

at each point of [0, t0].

Proof. We set the matrix B := A∗A which is self-adjoint. Since detA = detA∗, we
have easily that

(detB)′

(detB)
=

[(detA)2]′

(detA)2
=

2(detA)′

(detA)
⇒ (detA)′

(detA)
=

1

2

(detB)′

(detB)
.

We now consider τ ∈ (0, π√
δ
) and an orthonormal basis {e1, ..., en−1} of ξ⊥ consisting

of eigenvectors of B(τ). Moreover we consider the solutions {η1(t), ..., ηn−1(t)} to
the vector Jacobi equation in ξ⊥ :

η′′ +R(t)η = 0 .

Observe that

〈ηa(t), ηβ(t)〉 = 〈A(t)ea, A(t)eβ〉 = 〈A∗(t)A(t)ea, eβ〉 = 〈B(t)ea, eβ〉 = Baβ(t) .

Moreover for t = τ and a 6= β ⇒ Baβ(τ) = 0, since

Baβ(τ) = δaβ〈ηa(τ), ηβ(τ)〉 .

Then, since for (Ajk) 6= 0 one has

∂

∂xl
[ln(detA)] = tr[

∂

∂xl
(A)A−1] ,

we have that

(detA)′

(detA)
(τ) =

1

2

(detB)′

(detB)
(τ) =

1

2
tr(B′(τ)B−1(τ))

16



=
1

2

n−1∑
a,β=1

B′aβ(τ)B−1
βa (τ)

=
1

2

n−1∑
a,β=1

{(〈η′a, ηβ〉+ 〈ηa, η′β〉)
δaβ
〈ηa, ηa〉

}
∣∣
τ

=
n−1∑
a=1

〈η′a, ηa〉
〈ηa, ηa〉

(τ) =
n−1∑
a=1

1

2

(|ηa|2)′

|ηa|2
(τ)

=
n−1∑
a=1

|ηa|′

|ηa|
(τ) =

n−1∑
a=1

|Y |′

Y

∣∣
a

≥ (n− 1)
S ′δ
Sδ

,

with the last inequality following from (2.2.1). Now, integrating (2.2.6) we have

t∫
0

[
ln

(
detA

Sn−1
δ

)]′
dt ≥ 0

and since

lim
t→0

detA

Sn−1
δ

= 1 ,

get
detA ≥ Sn−1

δ ,

on (0, π√
δ
], which is (2.2.5).

The case of equality is immediate. If we have equality in (2.2.5) on (0, π√
δ
], we

have that
|ηa|′

|ηa|
=
S ′δ
Sδ

.

Then from (2.2.3)

A(t)ea = ηa(t) = Sδ(t)ea , for a = 1, ..., n− 1 .

Therefore we have equality in (2.2.1) and (2.2.2) which implies that (2.2.5) is valid
at each point of [0, t0].

2

Before we state our next Theorem, we define some quantities on the manifold M
as well as on its tangent bundle.

Given a Riemannian manifold M and γ a geodesic in M , a point γ(t1) is said to
be conjugate to γ(t0) along γ if there exists Y ∈ J , Y 6= 0 such that

Y (t0) = Y (t1) = 0 .
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The cut point of p ∈ M along a curve γt is γ(t0), where t0 is the supremum of
the finite set {t : γ|[0,t] is a minimizing geodesic}. For every p ∈ M , the tangential
cut locus of p in TpM is

C(p) := {c(ξ)ξ : c(ξ) < +∞, ξ ∈ Sp}

and the cut locus of p in M

C(p) := exp C(p) ,

where c(ξ) is the distance to the cut point of p along γξ. Also, is defined

Dp := {tξ : 0 ≤ t < c(ξ), ξ ∈ Sp}

and

Dp := exp Dp .

Finally, the injectivity radius of p, injp, is the infimum of the set

{c(ξ) : ξ ∈ Sp} .

Note that the smallest distance from p to the cut locus of p is equal to injp.

Now we have M\C(p) = D(p) and thus, a chart on D(p) is given by

(expp |Dp \ {p})−1 : Dp\{p} → Dp\{p} .

The Riemannian measure is given on Dp by

dV (exp(tξ)) =
√
g(t, ξ)dtdµp(ξ)

for some function
√
g on Dp, where dµp(ξ) denotes the Riemannian measure on Sp

induced by the Euclidean Lebesque measure on TpM and√
g(t, ξ) = detA(t, ξ) .

The next Theorem is about the volumes of a disk on M and Mδ.

Theorem 2.2.2 (P.Gunther, R.L.Bishop) Assume that the sectional curvatures of
M are all less than or equal to δ. Then for every x ∈M we have

V (x, r) ≥ Vδ(r) (2.2.8)

for all r ≤ min{injx, π√
δ
}, with equality for some fixed r if and only if B(x, r) is

isometric to the disk of radius r in the constant curvature space form Mδ.
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Proof. Fubini’s Theorem together with the theorem 2.2.1 gives

V (x, r) =

∫
Dx

√
g(t, ξ)dtdµx(ξ)

=

∫
Sx

dµx(ξ)

min{c(ξ),r}∫
0

√
g(t, ξ)dt

=

∫
Sx

dµx(ξ)

r∫
0

√
g(t, ξ)dt

=

∫
Sx

dµx(ξ)

r∫
0

detA(t, ξ)dt

≥
∫
Sx

dµx(ξ)

r∫
0

Sn−1
δ (t)dt

= Vδ(r) .

The last equality holds since∫
Sx

dµx(ξ) =

∫
|ξ|=1

dµx(ξ) = cn−1

and a disk of radius r in Mδ has volume equal to Vδ(r) = cn−1

r∫
0

Sn−1
δ (t)dt.

If we have equality in the above inequality, it follows that for every ξ, t

detA(t, ξ) = Sn−1
δ (t) ,

which implies that
A(t, ξ) = SδI .

Therefore g equals the metric of constant curvature δ in polar coordinates and
B(x, r) is isometric to Vδ(r).

2

Now, as we said at the beginning of this Chapter, we have some similar volume
comparison theorems in which the curvature is bounded from below, where the final
of these is the Bishop-Gromov theorem, which is the goal of this chapter.

Theorem 2.2.3 (R.L. Bishop) We assume we are given a fixed geodesic γξ, with
the Ricci curvature along γξ greater than or equal to (n− 1)k, that is,

Ric(γ′ξ(t), γ
′
ξ(t)) = trR(t)≥(n− 1)k , (2.2.9)

19



for all t ∈ (0, c(ξ)]. Then
(detA)′

detA
≤ (n− 1)

S ′k
Sk

, (2.2.10)

in (0, c(ξ)), and

detA ≤ Sn−1
k , (2.2.11)

in (0, c(ξ)].

Equality holds in (2.2.10) at t = to ∈ (0, c(ξ)] if and only if

A(t) = Sk(t)I and R(t) = kI , (2.2.12)

for all t ∈ (0, t0].

Remark: Note that (2.2.11) implies the non-existence of a conjugate point after the
first zero of Sk(t), i.e. after π√

k
, unless π√

k
is the conjugate point. With other words,

when k > 0 detA haven’t a zero later than π√
k
.

Proof. Set Ctk(t) :=
S′k(t)

Sk(t)
and consider ψ(t) := (n − 1)Ctk. Calculations show

that the function ψ satisfies the scalar Riccati equation

ψ′(t) +
ψ2(t)

(n− 1)
+ (n− 1)k = 0 .

Also the function ψ(t) = (n− 1)
S′k(t)

Sk(t)
satisfies:

• It is strictly decreasing with respect to t, for each t.
• When k ≤ 0, has limiting value, as t → ∞, equal to (n − 1)

√
−k, because when

k < 0,

lim
t→∞

ψ(t) = (n− 1) lim
t→∞

S ′k(t)

Sk(t)
= (n− 1) lim

t→∞

[( 1√
−k ) sinh(

√
−kt)]′

( 1√
−k ) sinh(

√
−kt)

= (n− 1)
√
−k lim

t→∞

cosh(
√
−kt)

sinh(
√
−kt)

= (n− 1)
√
−k

with limt→∞
cosh(

√
−kt)

sinh(
√
−kt) = 1 and when k = 0,

lim
t→∞

ψ(t) = (n− 1) lim
t→∞

S ′k(t)

Sk(t)
= (n− 1) lim

t→∞

1

t
= 0 .

Furthermore for linear transformations K(t), L(t) : V −→ V , where V is a finite
dimensional vector space, their Wronskian W (t) is defined by

W (K,L) := K ′∗L−K∗L′ .

20



From this we have that W (A,A) = 0 because

d

dt
W (A,A) =

d

dt
[A′∗(t)A(t)− A∗(t)A′(t)]

= [(A′∗)′A+ A′∗A′](t)− [(A∗)′A′ + A∗A′′](t)

= (A′∗)′(t)A(t)− A∗(t)A′′(t) .

Now since (A′)∗ = (A∗)′ and because of A′′ +R(t)A = 0, we have

(A′∗)′ = (A∗)′′ = (A′′)∗ = (−R(t)A)∗ = −A∗R∗(t) . (2.2.13)

Of course, we have also for R(t) = R(·, γ′(t))γ′(t) : Tγ(t)M −→ Tγ(t)M that, if X, Y
are differentiable vector fields on M :

R(t) = R∗(t)⇔ 〈R(t)X, Y 〉 = 〈X,R(t)Y 〉
⇔ 〈R(X, γ′)γ′, Y 〉 = 〈R(Y, γ′)γ′, X〉 .

With this and (2.2.12) we conclude

d

dt
W (A,A) = −A∗R(t)A+ A∗R(t)A = 0 .

Moreover

W (A(t), A(t))(0) = W (A(0), A(0)) = (A′(0))∗A(0)− A∗(0)A′(0) = 0 ,

by the initial conditions of A′′ +R(t)A = 0.

All above give us:
W (A,A) = 0 .

Now for the matrix U := A′A−1, we can see that is self-adjoint. Indeed

U∗ − U = (A−1)∗A′∗ − A′A−1

= (A−1)∗[A′∗A− A∗A′]A−1

= (A−1)∗W (A,A)A−1

= 0 .

One more property about the matrix U , is that it satisfies the matrix Riccati equa-
tion U ′ + U2 +R = 0.

Now we have that

tr(U ′) =
∑
i

u′ii = (
∑
i

uii)
′ = (trU)′ ,

and then
(trU)′ + trU2 + trR = 0 . (2.2.14)

21



Moreover the Cauchy-Schwarz inequality implies

(trU)2 ≤ (n− 1)tr(U2) . (2.2.15)

To see this, suppose that λ1, ..., λn−1 are the eigenvalues of U . Then

(trU)2=(λ1 + ...+ λn−1)2=
n−1∑
i=1

λ2
i+
∑
i 6=j

2λiλj

≤
n−1∑
i=1

λ2
i+
∑
i 6=j

(λ2
i+λ

2
j)

=
n−1∑
i=1

λ2
i+(n− 2)

n−1∑
i=1

λ2
i

= (n− 1)
n−1∑
i=1

λ2
i

= (n− 1)tr(U2) .

For φ := trU = trA′A−1 = (detA)′

detA
, (2.2.15) implies that

φ′(t)+
φ2(t)

n− 1
+trR(t) ≤ 0 ,

which implies, since trR(t)≥(n − 1)k and the above inequality, the differential in-
equality

φ′(t)+
φ2(t)

n− 1
+(n− 1)k ≤ 0 . (2.2.16)

Now we wish to compare φ with ψ. Let the function f be

f(t) = S ′′kSk−(S ′k)
2 = −kS2

k − (S ′k)
2 .

Then

f ′(t) = −2kSkS
′
k − 2S ′kS

′′
k

= −2kSkS
′
k + 2kSkS

′
k = 0 .

Also,

f(0) = [−kS2
k − (S ′k)

2](0)

= −(S ′k)
2 < 0 ,

and from these follows that ψ′(t)<0, and then

Ψ :=
ψ2

n− 1
+ (n− 1)k > 0 ,
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on all of (0, π√
k
).

Taking the Taylor series for A, we have

A = tI + o(t) .

From this, it follows that

A−1(t) = t−1I + o(t−1) , (2.2.17)

and as before
A′(t) = I + o(t) . (2.2.18)

From (2.2.17) and (2.2.18) we have

φ = trA′A−1 = tr(t−1I) + tr(o(t−1))

= (n− 1)t−1 + o(t−1) .

Therefore, φ ∼ n−1
t

, as t ↓ 0.

So, there exists an ε0 > 0 such that

Φ :=
φ2

n− 1
+ (n− 1)k > 0 ,

on (0, ε0). Assume that Φ > 0 on all of (0, t), t ∈ (0, conjξ). Then the differential
inequality (2.2.16) implies

−φ′
φ2

n−1
+ (n− 1)k

≥ 1 , (2.2.19)

which impies
s∫

0

−φ′
φ2

n−1
+ (n− 1)k

(τ)dτ ≥ s,∀s ∈ (0, t] . (2.2.20)

From the last inequality we have φ ≤ ψ on (0, t], because

s∫
0

−φ′
φ2

n−1
+ (n− 1)k

(τ)dτ = arcCtk

(
φ(s)

n− 1

)
, (2.2.21)

where arcCtk is the inverse function of Ctk. To prove (2.2.21) it is enough to show
that

arcCtk

[
φ(s)

n− 1

]′
=

−φ′
φ2

n−1
+ (n− 1)k

and since φ(0) = ∞ from φ ∼ n−1
t

, we have Ctk(0) = ∞. Then integrating from 0

to s we have (2.2.21). Then we have by letting φ(s)
n−1

, that[
arcCtk

(
φ(s)

n− 1

)]′
=

d

dx
[arcCtk(x)]

d

ds

[
φ(s)

n− 1

]
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=
1

[Ctk(x)]′
∣∣
x=Ctk

−1( φ(s)
n−1)

φ′(s)

n− 1
. (2.2.22)

Now from the properties of functions Sk(t), Ck(t) and the definition of Ctk, we have

(Ctk)
′ =

S ′′(t)

S(t)
−
[
S ′(t)

S(t)

]2

=
S ′′(t)

S(t)
− Ct2k

= −k − Ct2k .

With the last computation, (2.2.22) becomes[
arcCtk

(
φ(s)

n− 1

)]′
= − 1

k + φ2(t)
(n−1)2

φ′(s)

n− 1

=
−φ′

φ2

n−1
+ (n− 1)k

,

which is the claim. Now, (2.2.11) follows from (2.2.10).
Equality in (2.2.10) at some t0 > 0, means that we have φ(t0) = ψ(t0) and since

these functions both satisfy the Riccati equation, at this t0 we have that

−φ′
φ2

n−1
+ (n− 1)k

= 1

and hence equality in (2.2) too. This implies equality in (2.2.16) on all of (0, t0] and
then the equality in the Cauchy-Scharz inequality above, since

0 = (trU)′+tr(U2)+trR

≥ trU ′ +
(trU)2

n− 1
+ (n− 1)k

= φ′ +
φ2

n− 1
+ (n− 1)k = 0 .

Moreover, the above impies
trR = (n− 1)k ,

on all of (0, t0]. Now, since U is self-adjoint and satisfies

tr(U2) =
(trU)2

n− 1
,

which is a property only of multiples of the identity matrices, we have that

U = λI
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with λ ∈ R and for all t ∈ (0, t0]. Then from matrix Riccati equation follows that R
is scalar multiple of the identity for each t, because

U ′ + U2 +R = 0

and from this it follows

(λI)′ + (λI)2 +R = 0

and then

R = −λ2I = λ′I .

Also, since

trU = tr(λI) = (n− 1)λ

and

trU = tr(A′A−1)(t) =
(detA)′

detA
= (n− 1)

S ′k
Sk

(t) ∀t ∈ (0, t0] ,

we have that λ =
S′k
Sk

and then R(t) = kI and A(t) = Sk(t)I for all t ∈ (0, t0], which
is (2.2.12).

It remains to consider the case of a given point t ∈ (0, conjξ], for which the
inequality Φ > 0 is not valid on all of (0, t] and assume that we do not have
φ(t) ≤ ψ(t) on all of (0, t). Let S := {t > 0, φ(s) ≤ ψ(s),∀s} and the assumption
that φ > ψ. Then since the sup(S) := t1 exists, we have φ ≤ ψ on (0, t1) and
φ(t1) = ψ(t1). Then Φ(t1) > 0 and since Φ(t) is continuous, there exists ε1 > 0
such that Φ|[t1,t1+ε1) > 0. This implies that (2.2.19) is valid on all of [t, s), with
s ∈ (t1, t1 + ε1) and from this follows φ ≤ ψ on (t1, t1 + ε1), which is a contradiction
to the fact that t1 = sup(S). Then we have (2.2.10) on all of (0, t] and this holds
also in the case of equality, by similar arguments we may prove.

2

2.3 Bishop-Gromov’s Volume Comparison Theo-

rem

From now on, we will write the volume of a geodesic ball in M with radius r centered
at some x ∈ M , as Vol(Bx(r)), instead of V (x, r) and Vol(Bk

x(r)), instead of Vk(r)
respectively.

Considering this lower bound for the Ricci curvature, we have the Bishop’s The-
orem in which in contrast to Gunter-Bishop Theorem, the opposite inequality is
holding in the relationship of the volumes we are interested in. With this theorem
we are able to compare volumes of balls in our manifold with the volumes of the
respective balls in manifolds with constant sectional curvature.
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Theorem 2.3.1 (R.L.Bishop) Assume that the sectional curvatures of M are all
greater than to (n− 1)k. Then for every x ∈M and every r > 0, we have

Vol(Bx(r)) ≤ Vol(Bk
x(r)) , (2.3.1)

for all r ≤ min{injx, π√
δ
}, with equality for some fixed r if and only if B(x, r) is

isometric to the disk of radius r in the constant curvature space form Mδ.

Proof. The proof is almost the same with the proof of Gunther-Bishop’s theorem
before.

2

A technical result follows, which we will need in the proof of the main theorem
of this Chapter.

Lemma 2.3.2 (M. Gromov) Suppose that f and g are positive integrable functions,
of a real variable r, for which

f/g

is decreasing with respect to r. Then the function

r∫
0

f/

r∫
0

g

is also decreasing with respect to r.

Proof. For r < R we have that

r∫
0

f

R∫
0

g =

r∫
0

f

r∫
0

g +

r∫
0

f

R∫
r

g (2.3.2)

and
R∫

0

f

r∫
0

g =

r∫
0

f

r∫
0

g +

R∫
r

f

r∫
0

g . (2.3.3)

Set f = gh and by hypothesis h is decreasing with respect to r. This implies that

r∫
0

f

R∫
r

g =

r∫
0

gh

R∫
r

g ≥
r∫

0

g h(r)

R∫
r

g = h(r)

r∫
0

g

R∫
r

g .

Moreover we have

h(r)

r∫
0

g

R∫
r

g =

r∫
0

g

R∫
r

g h(r) ≥
r∫

0

g

R∫
r

gh =

r∫
0

g

R∫
r

f.
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Thus we have
r∫

0

f

R∫
r

g ≥
r∫

0

g

R∫
r

f . (2.3.4)

But from (2.3.2), (2.3.3) and (2.3.4)

r∫
0

f

R∫
0

g −
r∫

0

f

r∫
0

g ≥
R∫

0

f

r∫
0

g −
r∫

0

f

r∫
0

g

and hence,
r∫

0

f

R∫
0

g ≥
R∫

0

f

r∫
0

g

which means that the function
r∫

0

f/
r∫

0

g is decreasing with respect to r.

2

Theorem 2.3.3 (Bishop, Gromov) Assume that the Ricci curvatures of M are all
greater than or equal to (n− 1)k. Then for every x ∈M , we have

Vol(Bx(r))

Vol(Bk
x(r))

, (2.3.5)

is decreasing with respect to r.

Proof. Consider r < R. First note that Dx(R)⊆Dx(r). We have that the function

F (r) =

∫
Dx(r)

detA(r, ξ)dµx(ξ)

cn−1S
n−1
k (r)

is decreasing with respect to r, because

F (r) =

∫
Dx(r)

detA(r, ξ)dµx(ξ)

cn−1S
n−1
k (r)

=
1

cn−1

∫
Dx(r)

detA(r, ξ)

Sn−1
k (r)

dµx(ξ)

≥ 1

cn−1

∫
Dx(R)

detA(r, ξ)

Sn−1
k (r)

dµx(ξ) (2.3.6)

≥ 1

cn−1

∫
Dx(R)

detA(R, ξ)

Sn−1
k (R)

dµx(ξ) (2.3.7)
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=

∫
Dx(R)

detA(R, ξ)dµx(ξ)

cn−1S
n−1
k (R)

.

Note that (2.3.6) and (2.3.7) hold since Dx(R)⊆Dx(r) and detA(t,ξ)

Sn−1
k (t)

is decreasing

with respect to r from Bishop-Gromov, respectively.

Now the claim follows since, together with the above Lemma, it holds for the
volume of a geodesic ball of radius r in M and also for a disk of radius r in Mδ, that

Vol(Bx(r)) =

r∫
0

∫
Dx(r)

detA(r, ξ)dµx(ξ)

and

Vol(Bk
x(r)) =

r∫
0

cn−1Ak(t)dt ,

respectively.

2

A direct conclusion of the Bishop-Gromov theorem, is the following Corrolary,
which is proved by Peter Li (see [11], p. 16-17, Theorem 2.5) and is based on a
paper written by Yau (see [21]).

Corollary 2.3.4 Let M be an n-dimensional complete and non-compact Rieman-
nian manifold, with nonnegative Ricci curvature.Then M has infinite volume.

Proof. Let p be an arbitary point in M and x ∈ ∂Bp(1 + r), with Bp(1 + r) be
a geodesic ball in M . By the Bishop-Gromov theorem for the geodesic balls with
radius 2 + r =: s and r =: t, both centered at x, we have

Vol(Bx(s))

Vol(Bk
x(s))

≤ Vol(Bx(t))

Vol(Bk
x(t))

.

For k = 0 and hence Mn
0 = Rn, we get

Vol(Bx(s)) ≤ Vol(Bx(t))
snVol(B0(1))

tnVol(B0(1))

⇒ Vol(Bx(s))− Vol(Bx(t)) ≤ Vol(Bx(t))
sn − tn

tn
. (2.3.8)

Now, from the fact that the distance between p and x is d(p, x) = 1 + r, we have

Bp(1) ⊂ (Bx(2 + r) \Bx(r))
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and therefore the same holds for their volumes, that is,

Vol(Bp(1)) ≤ Vol(Bx(2 + r))− Vol(Bx(r)) . (2.3.9)

Also, since
Bx(r) ⊂ Bp(1 + r) ,

we have
Vol(Bx(r)) ≤ Vol(Bp(1 + r)) .

Combining, (2.3.8) and (2.3.9) we conclude that

Vol(Bp(1)) ≤ Vol(Bp(1 + 2r))
sn − tn

tn

= Vol(Bp(1 + 2r))
(2 + r)n − rn

rn
. (2.3.10)

Note that (2+r)n−rn
rn

= C
r

, for r → ∞ and C be a positive constant depending
only on n.

Finally, from (2.3.8), (2.3.9) and (2.3.10) we have that the volume of the geodesic
ball increases like r

Vol(Bp(1)) ≤ Vol(Bp(1 + 2r))
(2 + r)n − rn

rn
,

and for r →∞,

Vol(Bp(r)) ≥
r

C(n)
Vol(Bp(1)) =∞ .

2
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Chapter 3

The Green function on Complete
Riemannian Manifolds

In this thesis, our general interest is how the curvature of a manifold affects the
solution of a differential equation and in particular the Laplace equation. Thus
from this point, an important role will play the Green’s function which will be
used for the defining of some quantities and the behavior of them will give us some
estimates for the Green’s function itself (Chapters IV, V).

3.1 Existence of Green’s function and Parabolic

Manifolds

In this section we recall some well-known facts about the existence of Green’s func-
tion on manifolds and its basic properties. This is a topic studied by several math-
ematicians (e.g. Cheng, Yau, Li, Varopoulos, etc.); in the sequel we will quote their
results.

First of all, we have in general for the Green’s function on manifolds, that:

Let (Mn, g) be a Riemannian manifold, with or without boundary. Then a
function G : M ×M \ {{x, x} : x ∈ M} → R is called a Green’s function on M , if
it satisfies :

• G(x, y) = G(y, x) i.e. is symmetric,
• for each y in M we have that the function Gx(y) ∈ C2(M \ {x}) (as a function of
x),
• ∆yG(x, y) = −δx(y) for all x 6= y,

where ∆ is the Laplace-Beltrami1orerator and δx(y) is the Delta Dirac function.

1The Laplace-Beltrami operator, like the Laplacian, is defined to be the divergence of the
gradient. You can also see how it is written in terms of a local coordinate system: Appendix 6.1,
Bochner-Weitzenbock formula.
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In the rest of this thesis, we will use for the Green function, the normalization
(see also [7])

∆G(x, ·) = (2− n)Vol(Sn−1)δx ,

with n ≥ 3. Sn−1 denotes the standard (n−1)-dimensional sphere of radius 1. With
this normalization we have

G(x, y) = |x− y|2−n

in Rn.

Now, we will show the distinguish between two cases; that is when a Riemannian
manifold is compact and non-compact.

If we have a compact Riemannian manifold (Mn, g) with boundary, the Green’s
function, let G(x, y), exists and is unique. T. Aubin and Tsutomu Hirosima con-
structed Green’s function. In this case, Hirosima to construct G(x, y) (see [17]) used
harmonic coordinates2 and found some estimates for G near the singularity.

Now in the case that we have a non-compact and complete Riemannian manifold
(Mn, g), without boundary (see [19]), Bernard Malgrange ([22]) proved in 1955
the existence of a symmetric Green’s function. Also, in 1987 Li-Tam ([12]) gave
an alternative constructive argument for the existence of this symmetric Green’s
function.

At this point, we have the following definition (see [10]):

Definition 3.1.1 A complete Riemannian manifold is said to be non-parabolic if it
admits a positive Green function. Otherwise, is said to be parabolic.

After that, the question when a complete Riemannian manifold is or isn’t parabolic
involved many mathematicians.

The parabolicity or not, of a manifold, is associated with the existence of a
positive Green’s function. More precisely (see [23]), we have that if G(x, y) =: Gx(y)
is a Green’s function with pole at some x ∈ Ω ⊂M and Dirichlet boundary condition
on ∂Ω, i.e. {

∆G = δx in Ω

G = 0 on ∂Ω ,

then either there exists a positive Green’s function Gx(y) (which is called minimal
positive Green function), or there does not exist.

We confine ourselves in the case which exists a positive Green’s function and
then we choose the minimal one to be our Green’s function. Note that if there

2 On a Riemannian manifold (Mn, g), harmonic coordinates are a coordinate system {x1, ..., xn}
each of whose coordinate functions xi is harmonic, meaning that it satisfies Laplace’s equation
∆xi = 0.
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exists a positive Green’s function, there exists also the minimal one. This becomes
true by looking its value at infinity: if it has limit which equals to zero , then this
is the minimal positive function that we are interested in. If not, we subtract the
liminf of its and thus we get the minimal positive Green’s function.

In the case when (Mn, g) is parabolic, let x a fixed point in M and Bx(r) is the
geodesic ball of radius r, centered at x.

In 1975 Cheng and Yau, in [4], showed something relevant in this direction, i.e.,
one has for some x ∈M that if we have

lim inf
r→+∞

Volg(Bx(r))

r2
< +∞ ,

then (Mn, g) is parabolic.

Later, Grigoryan in [16] and Varopoulos in [20], proved that if for some x ∈ M
we have

∞∫
1

r

Volg(Bx(r))
dr = +∞ ,

then (Mn, g) is again parabolic. Moreover, Varopoulos proved that if we have non-
negative Ricci curvature and also

∞∫
1

r

Volg(Bx(r))
dr < +∞ ,

then (Mn, g) is non-parabolic.

Applying the above results we have, knowing that the volume of an n-dimensional
ball of radius r in Rn

Vn(r) =
π
n
2

Γ(n
2

+ 1)
rn ,

that for n = 2, since Vol(Bx(r)) = πr2 and

lim
b→+∞

b∫
1

1

πr
dr =∞ ,

R2 is parabolic. More generally, as a direct consequence of Bishop-Gromov theorem,
any 2-dimensional surface with Ric≥ 0, is parabolic.

Also, since the volume of a ball in R3 is Vol(Bx(r)) = 4
3
πr3, we have by a simply

computation that

3

4π
lim
b→+∞

b∫
1

1

r2
dr <∞ ,
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and hence R3 is non-parabolic3.

As we conclude, the parabolicity of a manifold is characterized by the behavior
of the volumes of the geodesic balls, asymptotically at infinity. If these volumes are
upper than r2, then we say that the manifold is non-parabolic and if they are until
r2, the manifold is said to be parabolic.

3.2 Green fuction and some useful results

In this Chapter, we mention an intermediate result of a paper written by Lei-Ni([13]).

Let Ω ⊆ M be a bounded domain in M and x ∈ Ω. Denote by GΩ(x, y) the
Green’s function with Dirichlet boundary condition on ∂Ω.

By the maximum principle for harmonic functions, we have GΩ(x, y) > 0 for any
x, y ε Ω. Note that, GΩ(x, y) is a harmonic function with pole at x.

Now we may define the GΩ-sphere

Ψr := {y|GΩ(x, y) = r−a}

with a > 0 which is by Sard’s theorem, a smooth hypersurface in Ω for almost every
r.
To continue, if we let φr(y) = GΩ(x, y)− r−a, we have respectively the GΩ-ball

Ωr = {y|φr(y) > 0}.

Proposition 3.2.1 Let v : Ω ⊆ M → Rn be a smooth function. Then for every
r > 0,

v(x) =
1

ra

∫
Ωr

|∇ logGΩ|2vdµ−
a

ra

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
. (3.2.1)

Proof. We first show that for almost every r > 0, v(x) can be also written as

v(x) =

∫
Ψr

|∇GΩ|vdAy −
∫
Ωr

φr∆vdµy . (3.2.2)

By Green’s second identity on a Riemannian manifold∫
Ωr

[(∆GΩ)v −GΩ(∆v)]dµ =

∫
Ψr

(
∂GΩ

∂ν
v − ∂v

∂ν
GΩ)dA

and by the fact that ∆yGΩ(x, y) = −δx(y), we have

v(x) = −
∫
Ψr

(
∂GΩ

∂ν
v − ∂v

∂ν
GΩ)dA−

∫
Ωr

GΩ(∆v)dµ . (3.2.3)

3In general, is true that Rn is non-parabolic if and only if n > 2.
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Moreover, notice that on Ψr

∂GΩ

∂ν
= N · ∇GΩ = −|∇GΩ| , (3.2.4)

is valid, where N is the normal vector. Now, by Stokes’ theorem∫
Ψr

∂v

∂ν
GΩdA =

1

ra

∫
Ψr

∂v

∂ν
dA =

1

ra

∫
Ωr

∆vdµ . (3.2.5)

By combining (3.2.3), (3.2.4), (3.2.5) we have

v(x) = −
∫
Ψr

(
∂GΩ

∂ν
v − ∂v

∂ν
GΩ)dA−

∫
Ωr

GΩ∆vdµ

= −
∫
Ψr

(
∂GΩ

∂ν
v)dA+

∫
Ψr

∂v

∂ν
GΩdA−

∫
Ωr

GΩ∆vdµ

=

∫
Ψr

|∇GΩ|vdA+
1

ra

∫
Ωr

∆vdµ−
∫
Ωr

GΩ∆vdµ

=

∫
Ψr

|∇GΩ|vdA−
∫
Ωr

(GΩ − r−a)∆vdµ

=

∫
Ψr

|∇GΩ|vdA−
∫
Ωr

φr∆vdµ

which is (3.2.2).

Equality (3.2.1) follows now from (3.2.2) by the co-area4 formula. Indeed, mul-
tiplying with ηa−1 on the both sides of (3.2.2) and integrate on [0, r], we have that

r∫
0

ηa−1v(x)dµ =

r∫
0

ηa−1{
∫
Ψr

|∇GΩ|vdA−
∫
Ωr

φr∆vdµ} .

Hence, by straightforward computations we get

1

a
rav(x) =

r∫
0

ηa−1

∫
Ψr

|∇GΩ|vdAdη −
r∫

0

ηa−1

∫
Ωr

φr∆vdµdη

=

r∫
0

ηa−1

∫
Ψη

|∇GΩ|vdAdη −
r∫

0

ηa
∫
Ωη

φη∆vdµ
dη

η

4For further details see Appendix 6.2: The Co-area formula on Riemannian manifolds
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=
1

a

r−a∫
∞

1

β2

∫
GΩ=β

|∇GΩ|vdAda−
r∫

0

ηa
∫
Ωη

φη∆vdµ
dη

η

=
1

a

∞∫
r−a

1

β2

∫
GΩ=β

|∇GΩ|vdAda−
r∫

0

ηa
∫
Ωη

φη∆vdµ
dη

η

=
1

a

∞∫
r−a

∫
GΩ=β

|∇GΩ|
|G2

Ω|
vdAda−

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η

=
1

a

∞∫
r−a

∫
GΩ=β

|∇ logGΩ|2

|∇GΩ|
vdAda−

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
.

Now, we apply the co-area formula to obtain

1

a
rav(x) =

1

a

∫
GΩ≥β

|∇ logGΩ|2vdµ−
r∫

0

ηa
∫
Ωη

φη∆vdµ
dη

η

=
1

a

∫
Ωr

|∇ logGΩ|2vdµ−
r∫

0

ηa
∫
Ωη

φη∆vdµ
dη

η
.

Hence we have,

v(x) =
a

ra
1

a

∫
Ωr

|∇ logGΩ|2vdµ−
a

ra

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
,

which implies

v(x) =
1

ra

∫
Ωr

|∇ logGΩ|2vdµ−
a

ra

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
.

2

Since we have applied the co-area formula, we have to verify that |∇ logGΩ|2 is
integrable. This follows from the asymptotic behavior of GΩ(x, y) near x. Also, a
gradient estimate by Cheng-Yau (see [8], Theorem 6.1) asserts that near x,

|∇ logGΩ|2(y) ≤ k

(
1 +

1

d2(x, y)

)
,

for some constant k > 0. We have the following global result.
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Definition 3.2.2 The Riemannian manifold (M,g) is called strongly non-parabolic
if

lim
y→∞

G(x, y) = 0 ,

where G is the minimal positive Green’s fuction on M .

We now define, similarly to the bounded domain Ω before, the useful quantities:
G-sphere, G-ball, φr and the function ψr = log(Grn), global on M .

Theorem 3.2.3 Assume that (M,g) is a strongly non-parabolic Riemannian mani-
fold. Let v be a smooth function (as in Proposition 3.2.1). Then for every r > 0

v(x) =
1

ra

∫
Ωr

|∇ logGΩ|2vdµ−
r∫

0

a

ηa+1

∫
Ωη

ψη∆vdµdη. (3.2.6)

As before, for almost every r > 0 we have the same expression for v(x), i.e.

v(x) =

∫
Ψr

|∇G|vdAy −
∫
Ωr

φr∆vdµy. (3.2.7)

Proof. The only thing we need to verify is that

r∫
0

a

ηa+1

∫
Ωη

ψη∆vdµdη =
a

ra

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
. (3.2.8)

To prove this, we will use Tonelli’s theorem together with some straightforward
computations. Thus we have, on the right-hand side of (3.2.8), that

r∫
0

ηa
∫
Ωη

φη∆vdµ
dη

η
=

r∫
0

ηa−1

∫
Ωη

(G− η−a)∆vdµdη =

r∫
0

∫
Ωη

(Gηa−1 − η−1)∆vdµdη

=

r∫
0

∫
G≥η−a

(Gηa−1 − η−1)∆vdµdη

=

∫
G≥r−a

r∫
G−

1
a

(Gηa−1 − η−1)∆vdµdη

=

∫
Ωr

[G
ηa

a
− log η]r

G−
1
a
∆vdµ

=

∫
Ωr

[G
ra

a
− log r − 1

a
+ logG

−1
a ]∆vdµ
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=
ra

a

∫
Ωr

(G− 1

ra
)∆vdµ−

∫
Ωr

1

a
(a log r + logG)∆vdµ

=
ra

a

∫
Ωr

φr∆vdµ−
1

a

∫
Ωr

log(Gra)∆vdµ . (3.2.9)

We now apply Tonelli’s theorem on the left-hand side of (3.2.8) :

r∫
0

a

ηa+1

∫
Ωη

ψη∆vdµdη = a

r∫
0

∫
G≥η−a

(η−a−1ψη)∆vdµdη

= a

∫
G≥r−a

r∫
G−

1
a

(η−a−1ψη)∆vdηdµ

= a

∫
G≥r−a

[

r∫
G−

1
a

η−a−1 logGdη +

r∫
G−

1
a

η−a−1 log ηadη]∆vdµ

= a

∫
G≥r−a

([logG
η−a

−a
]r
G−

1
a

+ (−η−a log η − η−a

a
)∆vdµ

= a

∫
Ωr

1

a
(−r−a logG− ar−a log r − r−a +G)∆vdµ

=

∫
Ωr

[(G− r−a)− (r−a logG+ ar−a log r)]∆vdµ

=

∫
Ωr

(∆v)φrdµ−
∫
Ωr

r−a(logG+ log ra)∆vdµ

=

∫
Ωr

(∆v)φrdµ− r−a
∫
Ωr

(∆v)ψrdµ . (3.2.10)

From (3.2.8), (3.2.9) and (3.2.10) we have,

ra

a

∫
Ωr

(∆v)φrdµ−
1

a

∫
Ωr

(∆v)ψrdµ =
ra

a
[

∫
Ωr

(∆v)φrdµ−
∫
Ωr

r−a(logG+ log ra)∆vdµ]

(3.2.11)

=
ra

a

∫
Ωr

(∆v)φrdµ−
1

a

∫
Ωr

(∆v)ψrdµ .

2
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Corollary 3.2.4 For any smooth (or Lipschitz) function v, we define

Jv(r) :=

∫
Ψr

|∇G|vdA ,

with Ψr and G as before. Then for almost every r > 0 and positive a we have

d

dr
Jv(r) =

a

ra+1

∫
Ωr

∆vdµ .

Proof. We have from the Proposition 3.2.1 that (3.2.7) holds globally on M . We
differentiate (3.2.7) with respect to r :

v(x) =

∫
Ψr

|∇G|vdAy −
∫
Ωr

φr∆vdµy

⇒v(x) = Jv(r)−
∫
Ωr

φr∆vdµy

⇒0 =
d

dr
[Jv(r)]−

d

dr
[

∫
Ωr

φr∆vdµy] ,

and we obtain

J ′v(r) =
d

dr
[

∫
Ωr

(G− r−a)∆vdµ] =
d

dr
[

∫
Ωr

G∆vdµ− 1

ra

∫
Ωr

∆vdµ] =

=
d

dr
[

r∫
0

dη

∫
G−

1
a=η

G∆v

|∇G− 1
a |
dA− 1

ra

r∫
0

dη

∫
G−

1
a=η

∆v

|∇G− 1
a |
dA]

=

∫
G−

1
a=r

G∆v

|∇G− 1
a |
dA− 1

ra

∫
G−

1
a=r

∆v

|∇G− 1
a |
dA+

ara−1

r2a

r∫
0

dη

∫
G−

1
a=η

G∆v

|∇G− 1
a |
dA .

The first two orders in the last equality are equal since G = r−a and by the co-area
formula again, we have the desired result.

2
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Chapter 4

New Monotonicity Formulas for
Ricci Curvature and Applications

4.1 The first monotonicity formula

Let (Mn, g) be a complete Riemannian manifold with dim(M) = n ≥ 3. For now,
we will not require any conditions about the Ricci curvature of M .

We now define the function b, via Green’s function, and this function which will
be used as a generalized distance function. Thus, for the function b = G

1
2−n , we

have that

∇b2 =

(
2

2− n

)
G

2
2−n∇G .

Since for any smooth function f and for every n ∈ Z, we have that

∆fn = n(n− 1)n−2|∇f |2 + nfn−1∆f,

then,

∆b2 =
2n

(2− n)2
G

2n−2
2−n |∇G|2 +

(
2

2− n

)
G

n
2−n∆G . (4.1.1)

Let φ ∈ C∞(M) be a function with compact support. Then we have that∫
M

∆Gx(y) G
2

2−n (y) φ(y) dµy = 0 ,

since 2
2−n < 0 and G

2
2−n is a continous function on M with

G
2

2−n (x) = 0 .

The last in turn implies that

G
n

2−n∆G = 0 ,
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which together with (4.1.1) give us the following useful relation

∆b2 = 2n|∇b|2 . (4.1.2)

Next we consider a quantity which we will see several times in what follows. That
is an integral over the level sets of the function b, defined as

Iv(r) = r1−n
∫
b=r

v|∇b|dArea =
1

n− 2

∫
b=r

v|∇G|dArea ,

where v is a smooth function on M . Then we have from Corollary 3.2.4 of Chapter
3, that for a = n− 2 > 0,

d

dr
(Iv(r)) = I ′v(r) = r1−n

∫
b=r

vndArea , (4.1.3)

where vn: is the outward normal derivative of the function v, normal to the boundary
of {x : b(x) ≤ r}. From Stokes’ theorem, the right hand side of (4.1.3) is equal to

r1−n
∫
b≤r

∆vdVol .

4.1.1 Normalized Generalized Area and Volume

In this section we introduce two new quantities on M , the normalized generalized
area A(r) and volume V (r) of balls with radius r. We define the non-negative
functions

A(r) = r1−n
∫
b=r

|∇b|3dArea

and

V (r) = r−n
∫
b≤r

|∇b|4dVol .

We will use the results of the next Lemma to understand the behavior of the nor-
malized generalized area and volume and the function b, as r tends to 0.

Lemma 4.1.1 Let Mn be a smooth manifold with n ≥ 3. Then for r → 0 the
function b(x) behaves like the radius of balls (or Euclidean distance). In other words,
in small balls, the following properties hold:

i) lim
r→0

sup
∂Br(x)

∣∣ b
r
− 1
∣∣ = 0

ii) lim
r→0

sup
∂Br(x)

∣∣|∇b|2 − 1
∣∣ = 0
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iii) lim
r→0

A(r) = lim
r→0

I1(r) = lim
r→0

Vol(∂B1(0))

iv) lim
r→0

V (r) = Vol(B1(0)) ,

where I1(r) in (iii), is the function

I1(r) = r1−n
∫
b=r

|∇b|dArea

which is constant in the level set b = r, as function with respect to r.

Proof. For the first two claims (i), (ii) we will use a result of a paper of Gilbarg-
Serrin ([24]), in which some estimates for the Green function were proven. Hence
we have that for a Green function G(x, y) with pole at x, holds

Gx(y) = d2−n(x, y)(1 + o(1))

and for its gradient

|∇Gx(y)| = (n− 2)d1−n(x, y)(1 + o(1)) ,

where o(1) is a function with o(y) → 0 as y → x. Now it is easy to see that, for

b = G
1

2−n it follows

b = d(x, y)(1 + o(1))
1

2−n

= d(x, y)(1 + o(1)),

Therefore

lim
r→0

sup
∂Br(x)

∣∣d(1 + o(1))

d
− 1
∣∣ = 0 ,

which proves (i).
We accordingly have for the second claim,

|∇b|2 = (1 + o(1)) ,

since
|∇G| = (n− 2)b1−n|∇b|

and hence
lim
r→0

sup
∂Br(x)

∣∣|∇b|2 − 1
∣∣ = 0 .

For the two other claims, we first have to observe that

lim
r→0

I1(r) = lim
r→0

r1−n
∫
b=r

|∇b|dArea


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= lim
r→0

r1−n
∫
b=r

|∇b|3dArea


= lim

r→0
A(r) ,

from (ii). Moreover by the coarea formula we have that

∫
b≤r

|∇b|2dVol =

+∞∫
−∞

∫
b=s

|∇b| dArea ds

=

r∫
0

sn−1I1(s) ds

=
rn

n
I1(r)

and thus I1(r) can be written as

I1(r) =
n

rn

∫
b≤r

|∇b|2dVol .

Finally, for the limit of I1(r) we have

lim
r→0

I1(r) = I1(1) = lim
r→0

n

rn

∫
b≤r

|∇b|2dVol . (4.1.4)

Now, we observe that for r → 0, we have∫
b≤r

dVol

Vol(B0(r))
→ 1 ,

where Vol(B0(r)) = Vol(B0(1))rn is the Euclidean volume for the ball Bx(r), cen-
tered at some x.

To see this, first note that (i) means that for δ > 0 and for r sufficiently small,
we have

r

1 + δ
≤ b ≤ r

1− δ
.

Therefore,
Bx(t(1− δ)) ⊆ {b ≤ t} ⊆ Bx(t(1 + δ)) ,

and then∣∣Vol({b ≤ t})− Vol(Bx(t))
∣∣∣∣Vol(Bx(t))

∣∣ ≤
∣∣Vol[Bx(t(1 + δ))]− Vol[Bx(t(1− δ))]

∣∣∣∣Vol(Bx(t))
∣∣ ,
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where the left-hand side of the above inequality tends to (1 + δ)n − (1 − δ)n =
δ(2n+ o(1)). Finally,

Vol({b ≤ t}) = Vol(Bx(t))(1 + o(1)) ,

as t→ 0 and since
Vol(Bx(t)) = Vol(B0(1))(1 + o(1)) ,

for t→ 0, we conclude our claim.
Hence, the left hand side of (4.1.4) is equal to Vol(∂B1(0)) and as |∇b|4 tends to

1 as well as r → 0,
lim
r→0

V (r) = Vol(B1(0)) ,

which is (iv).
2

Before studying the first monotonicity formula, we need two more Lemmas:

Lemma 4.1.2 For the functions A(r) and V (r), as described bofore, we have

V ′(r) =
1

r
[A(r)− nV (r)] .

Proof. By the coarea formula again, we can rewrite V (r) as

V (r) = r−n
∫
b≤r

|∇b|4dV ol = r−n
r∫

0

∫
b=t

|∇b|3dArea dt

= r−n
r∫

0

tn−1A(t) dt .

Then for the derivative of V (r) with respect to r we have

V ′(r) = −nr−n−1

r∫
0

tn−1A(t) dt+ r−nrn−1A(r)

= −nr−1V (r) + r−nrn−1A(r)

=
1

r
[A(r)− nV (r)] .

2

Lemma 4.1.3 If the gradient of b is bounded from above by a constant C depending
only on the dimension of Mn, i.e. |∇b| ≤ C(n) = C, then the generalized area A(r)
and volume V (r) are bounded by their Euclidean values (their values as r → 0)
multiplied by a constant.
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Proof. We will show that

i) A ≤ C2Vol(∂B1(0)) and

ii) V ≤ C2Vol(B1(0)) .

The first claim follows from (iii) of Lemma 4.1.1, together with the fact that I1(r)
is constant as a function of r and the bound for |∇b|.

For the second claim we have from the alternative expression of V (r):

V (r) = r−n
r∫

0

tn−1A(t) dt ,

and from (i) that

V ≤ C2 Vol(∂B1(0))

n
= C2Vol(B1(0)) .

2

Now we are ready to state our first monotonicity formula, in the following the-
orem. This monotonicity formula, together with two other that follow, are the
intermediate results of the study of the monotonicity of A(r) and V (r), which we
are of our interested.

Before this, we first cite an auxiliary result from Geometric Analysis, the Bochner-
Weitzenbock formula1, which relates harmonic functions on a Riemannian manifold
(Mn, g) to the Ricci curvature. From this very important technique, which is used
here for the function b2, we get the following identity

1

2
∆|∇b2|2 = |Hessb2|2 + 〈∇∆b2,∇b2〉+ Ric(∇b2,∇b2) .

Theorem 4.1.4 On a Riemannian manifold (Mn, g), n ≥ 3, with A and V to be
the ‘area’ and ‘volume’ of balls respectively, one has

[A(r)− 2(n− 1)V (r)]′(r) =
r−1−n

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
dVol .

(4.1.5)
In particular, when the Ricci curvature is non-negative, the function

F (r) = A(r)− 2(n− 1)V (r)

is non-decreasing in r.

1For more details about the theorem and its proof, see the Appendix 6.1: Bochner-Weitzenbock
formula
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Proof. At first, we note that generally the right side of the equation (4.1.5) has no
sign, and this is obtained when the Ricci curvature is non-negative.

We now observe that we can rewrite A(r) as

A(r) = r1−n
∫
b=r

|∇b|2|∇b|dArea = r1−n
∫
b=r

|∇b2|2

4b2
|∇b|dArea

=
r−1−n

4

∫
b=r

|∇b2|2|∇b|dArea ,

since |∇b2|2 = 4b2|∇b|2 and b 6= 0, for r > 0.

We will now ’built’ the expression we need. We have that

r2A(r) =
r1−n

4

∫
b=r

|∇b2|2|∇b|dArea

and the derivation of this equality gives

r−2[r2A(r)]′(r) = r−2 d

dr

r1−n

4

∫
b=r

|∇b2|2|∇b|dArea


= r−2

r1−n

4

∫
b=r

∂

∂n
(|∇b2|2)dArea

 (4.1.6)

=
r−1−n

4

∫
b=r

∂

∂n
(|∇b2|2)dArea

=
r−1−n

4

∫
b≤r

∆(|∇b2|2)dVol ,

where the expression into the brackets in (4.1.6) came just as the integral in (4.1.3)
for v = (|∇b2|2). Now continuing, from the Bochner-Weitzenbock formula it follows

r−1−n

2

∫
b≤r

[
|Hessb2|2 + 〈∇∆b2,∇b2〉+ Ric(∇b2,∇b2)

]
dVol

=
r−1−n

2

∫
b≤r

[
|Hessb2|2 − |∆b2|2 + Ric(∇b2,∇b2)

]
dVol +

+
r−1−n

2

∫
b=r

∆b2〈∇b2, N〉dArea
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=
r−1−n

2

∫
b≤r

[
|Hessb2|2 − |∆b2|2 + Ric(∇b2,∇b2)

]
dVol +

r−1−n

2

∫
b=r

4nb|∇b|3dArea

=
r−1−n

2

∫
b≤r

[
|Hessb2|2 − |∆b2|2 + Ric(∇b2,∇b2)

]
dVol +

2nr1−n

r

∫
b=r

|∇b|3dArea

=
r−1−n

2

∫
b≤r

[
|Hessb2|2 − |∆b2|2 + Ric(∇b2,∇b2)

]
dVol +

2n

r
A(r) , (4.1.7)

from the Divergence Theorem, since the unit normal to the hypersurface {b = r} is
N = ∇b

|∇b| .

Note that, if X is a compactly supported vector field on U ⊆M with boundary
∂U , then the Divergence Theorem2 states that∫

U

divXdVol =

∫
∂U

〈X,n〉dArea ,

where n is the outward-pointing normal on ∂U .
Moreover, since

∣∣Hessb2 −
∆b2

n
g
∣∣2 =

∣∣Hessb2
∣∣2 − 2

∆b2

n
〈g,Hessb2〉+

∣∣∆b2
∣∣2

n2
〈g, g〉

=
∣∣Hessb2

∣∣2 − ∣∣∆b2
∣∣2

n
, (4.1.8)

we have that∣∣Hessb2
∣∣2 − ∣∣∆b2

∣∣2 =
∣∣Hessb2 −

∆b2

n
g
∣∣2 − (1− 1

n

) ∣∣∆b2
∣∣2

=
∣∣Hessb2 −

∆b2

n
g
∣∣2 − 4n2

(
1− 1

n

) ∣∣∇b∣∣4 .
After these computations, (4.1.7) becomes

r−1−n

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
dVol−

− 2

(
1− 1

n

)
n2r−1−n

∫
b≤r

|∇b|4dVol +
2n

r
A(r)

=
r−1−n

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
dVol− 2n2

r

(
1− 1

n

)
V (r)

2See ( [15], 1.2).
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+
2n

r
A(r) .

Now setting I for the first term and using Lemma 4.1.2, the last is equal to

I − 2n2

r
V (r) +

2n

r
V (r) +

2n

r
A(r)

=
2n

r
(A(r)− nV (r)) +

2n

r
V (r) .

Finally, since A′(r) = r−2(r2A)′(r)− 2
r
A(r) we have that

A′(r) = I +
2n

r
(A(r)− nV (r)) +

2n

r
V (r)− 2

r
A(r)

=
2(n− 1)

r

[
A(r)− nV (r)

]
and then[

A(r)− nV (r)
]′

(r) = A′(r)− 2(n− 1)V ′(r)

= I +
2(n− 1)

r

[
A(r)− nV (r)

]
− 2(n− 1)V ′(r)

= I ,

or equivalently,[
A(r)− nV (r)

]′
(r) =

r−1−n

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
dVol .

2

Note that we have not need any assumptions for the Ricci curvature in our
theorem. But now we have the following result on a manifold with non-negative
Ricci curvature.

Corollary 4.1.5 If M is an n-dimensional manifold with non-negative Ricci cur-
vature, then, for all r > 0, we have

A(r)− Vol(∂B1(0)) ≥ 2(n− 1)
[
V (r)− Vol(B1(0))

]
.

Moreover, if for some r > 0 we have equality, then the set {x : b(x) ≤ r} is isometric
to a ball of radius r in Rn.

Proof. Since F is non-decreasing with respect to r, we have for s < r that

F (s) = A(s)− 2(n− 1)V (s) ≤ A(r)− 2(n− 1)V (r) = F (r) .

Taking the limit on the left side of inequality, with s → 0, we have from Lemma
4.1.1, that

Vol(∂B1(0))− 2(n− 1)Vol(B1(0)) ≤ A(r)− 2(n− 1)V (r) .

But this gives us the expected, i.e.

A(r)− Vol(∂B1(0)) ≥ 2(n− 1)
[
V (r)− Vol(B1(0))

]
.

2
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4.2 The second Monotonicity Formula

The next Lemma is useful in the proof of the second monotonicity formula, which
lies in the next theorem. Note that this Lemma holds for any positive harmonic
function G, where, as before, b is given by b2−n = G.

Lemma 4.2.1 The following identities hold:

b2∆|∇b|2 + (2− n)〈∇b2,∇|∇b|2〉 =
1

2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
,

∆(|∇b|2G) =
1

2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−n .

Proof. By the Bochner-Weitzenbock formula again and (4.1.8), we have

1

2
∆|∇b2|2 = |Hessb2|2 + 〈∇∆b2,∇b2〉+ Ric(∇b2,∇b2)

=
∣∣Hessb2 −

∆b2

n
g
∣∣2 +

|∆b2|2

n
+ 〈∇∆b2,∇b2〉+ Ric(∇b2,∇b2)

=
∣∣Hessb2 −

∆b2

n
g
∣∣2 + 4n|∇b|4 + 2n〈∇|∇b|2,∇b2〉+ Ric(∇b2,∇b2) ,

(4.2.1)

since of course |∆b2|2 = 4n2|∇b|4. Moreover, from the fact that

|∇b2|2 = 4b2|∇b|2 ,

it follows

∆|∇b2|2 = 4b2∆|∇b|2 + 4(∆b2)|∇b|2 + 8〈∇b2,∇|∇b|2〉
= 4b2∆|∇b|2 + 8n|∇b|4 + 8〈∇b2,∇|∇b|2〉 . (4.2.2)

For the first claim we have from (4.2.1) and (4.2.2) that∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2) =

1

2
∆|∇b2|2 − 4n|∇b|4 − 2n〈∇b2,∇|∇b|2〉

=
1

2
(4b2∆|∇b|2 + 8n|∇b|4 + 8〈∇b2,∇|∇b|2〉)

− 4n|∇b|4 − 2n〈∇b2,∇|∇b|2〉
= 2b2∆|∇b|2 + 2(2− n)〈∇b2,∇|∇b|2〉 .

The second claim follows easily from the fact that for any two smooth functions f, g
we have ∆(fg) = ∆f g + 2〈∇f,∇g〉 + ∆g f . This together with the first claim,
gives

2∆(|∇b|2G) = 2 ∆|∇b|2G+ 4〈∇G,∇|∇b|2〉+ 2|∇b|2∆G
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= 2 ∆|∇b|2G+ 4〈∇G,∇|∇b|2〉
= 2 ∆|∇b|2b2−n + b−n(2− n)〈∇b2,∇|∇b|2〉
= b−n(2 ∆|∇b|2 b2 + 2(2− n)〈∇b2,∇|∇b|2〉) .

2

In the following theorem we observe that the assumptions are applicable on any
smooth manifold Mn, as it was also the case in the previous theorem .

Theorem 4.2.2 Let (Mn, g) be an n-dimensional Riemannian manifold, with the
assumption that n ≥ 3. Then,[
r2−n[A(r)− Vol(∂B1(0))]

]′
=
r1−n

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−n

dVol .

In particular, when Ricci curvature is non-negative, the function

H(r) = r2−n[A(r)− Vol(∂B1(0))]

is non-decreasing with respect to r.

Proof. We will first show a formula equivalent to the requested, one that is

(2−n)[A(r)−Vol(∂B1(0))]+rA′(r) =
1

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−n

dVol . (4.2.3)

First we observe that for a special choise for the function v, the useful quantity Iv(r)
becomes

I|∇b|2G(r) = r1−n
∫
b=r

|∇b|3G dArea = r2−nA(r) .

For r2 > r1 > 0,

rn−1
2 (r2−nA)′(r2)− rn−1

1 (r2−nA)′(r1)

=rn−1
2 I ′|∇b|2G(r2)− rn−1

1 I ′|∇b|2G(r1)

=rn−1
2 r1−n

2

∫
b=r2

(
|∇b|2G

)
n
dArea− rn−1

1 r1−n
1

∫
b=r1

(
|∇b|2G

)
n
dArea .

Also we have from Stokes’ theorem, that∫
b=r

(
|∇b|2G

)
n
dArea =

∫
b≤r

∆(|∇b|2G)dVol
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and Lemma 4.2.1 now implies∫
b≤r2

∆(|∇b|2G)dVol−
∫

b≤r1

∆(|∇b|2G)dVol

=
1

2

∫
r1≤b≤r2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−ndVol .

Moreover,

rn−1(r2−nA)′(r) = (2− n)A(r) + rA′(r) ,

as well as that there exists a sequence ri → 0 such that

(2− n)A(ri) + riA
′(ri)→ (2− n)Vol(∂B1(0)) , (4.2.4)

as ri → 0. This is true, because from Lemma 4.1.1, A(r) → Vol(∂B1(0)) as r → 0
and this in turn implies that A is uniformly bounded for r sufficiently small. Hence
there exists a sequence ri → 0 such that riA

′(ri) → 0. Then from (4.2.4) we get
that

(2− n)[A(r)− Vol(∂B1(0))] + rA′(r) =
1

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)

b−ndVol ,

which is equivalent to the original claim.

2

4.2.1 An alternative Second Monotonicity Formula

Now, we will mention an ’alternative’ second monotonicity formula. We say alter-
native, because we will reformulate the Second Monotonicity Formula by defining a
new ‘volume’ of balls on a Riemannian manifold, integrating again the appropriate
function over the level sets of b. We do that by setting

V∞(r) =

∫
1≤b≤r

(|∇b|2 − 1)|∇b|2b−n dVol ,

and by the coarea formula

V∞(r) =

r∫
1

s−n
∫
b=s

(|∇b|3 − |∇b|) dArea ds .
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Hence, by the definition of A(r) and Lemma 4.1.1 we have that its derivative satisfies

d

dr
V∞ = V ′∞(r) = r−n

∫
b=r

(|∇b|3 − |∇b|) dArea =
A(r)− Vol(∂B1(0))

r
. (4.2.5)

We can now rewrite our second monotonicity theorem in terms of this second ‘vol-
ume’ of balls as follows.

Theorem 4.2.3 Let (Mn, g) be a Riemannian manifold, with n ≥ 3. Then the
following holds:

[
A− (n− 2)V∞

]′
(r) =

1

2r

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−ndVol .

Moreover, when M has non-negative Ricci curvature, the function

G(r) = A(r)− (n− 2)V∞(r) ,

is non-decreasing with respect to r.

Proof. We have that

r
[
A− (n− 2)V∞

]′
(r) = (2− n)[A(r)− Vol(∂B1(0))] + rA′(r) ,

is equivalent to

(2− n)[A(r)− Vol(∂B1(0))] = −r(n− 2)
A(r)− Vol(∂B1(0))

r
.

Therefore the desired result follows from (4.2.3).

2

Similarly to the situation after the first monotonicity formula, we get the follow-
ing immediate corollary from this second monotonicity formula for manifolds with
non-negative Ricci curvature.

Corollary 4.2.4 If M is an n-dimensional Riemannian manifold with non-negative
Ricci curvature, then for r2 > r1 > 0, we have that

A(r2)− (n− 2)V∞(r2) ≥ A(r2)− (n− 1)V∞(r1) .

Moreover, if in the above inequality, we have equality, then the set {x ∈M : b(x) ≤
r2} is isometric to a ball of radius r2 in Euclidean space.
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Proof. Since the function G(r) is a non-decreasing function from the previous
Theorem, it follows directly that

for r2 > r1 ⇒ G(r2) ≥ G(r1) ,

which is the claim.
2

Before the next theorem, we define the following function via V∞,

J(s) = −(n− 2)sV∞(s
1

(2−n) ) .

Theorem 4.2.5 Let Mn be an n-dimensional Riemannian manifold. Then for the
function J(s) holds the following properties

i) J ′(s) = A(s)− Vol(∂B1(0))− (n− 2)V∞(s
1

(2−n) ) ,

ii) J ′′(s) = − 1

2(n− 2)s

∫
b≤s

1
(2−n)

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−ndVol .

Moreover, when the Ricci curvature is non-negative, J ′′(s) ≤ 0 and thus the function
J ′(s) is non-increasing with respect to s.

Proof. For the first claim we have that

J ′(s) = −(n− 2)V∞(s
1

2−n ) + s
1−n
2−n

∫
b=s

1
(2−n)

(|∇b|3 − |∇b|) dArea

= −(n− 2)V∞(s
1

2−n ) + A(s
1−n
2−n )− Vol(∂B1(0)) .

Now by setting the integral equal to I, over the level set b = s
1

2−n in this time,
Theorem 4.2.3 gives,

J ′′(s) =
[
A− (n− 2)V∞

]′
(s

1
2−n ) = − 1

2(n− 2)
s−1I .

which is (ii).
2

4.2.2 Asymptotic Description of A(r) and V (r)

The next theorem give us information about the behavior of A(r) and V (r), as r
tends to infinity. It is also in substance, the first result that shows us how the ge-
ometry of a manifold affects the asymptotic behavior of Green’s function at infinity.
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Note that this result is in the opposite direction of Lemma 4.1.1, mentioned at
the beginning of this Chapter. We use a paper of Colding-Minicozzi ([7]) to calculate
this asymptotic description of A(r) and V (r) for manifolds with non-negative Ricci
curvature.

At first, we have from the Bishop-Gromov theorem that the function

f(r) =
Vol(Bx(r))

Vol(Bk
x(r))

is bounded (0 ≤ f(r) ≤ 1) and also decreasing in the radius r and hence the quotient
Vol(Bx(r))

rn
converges either at 0, either at infinity. The last case is the interesting one

and thus we have the following definition.

Definition 4.2.6 On an n-dimensional Riemannian manifold (Mn, g) we define3

the

VM = lim
r→∞

VolBx(r)

rn
,

where Vol(Bx(r)) is the volume of the geodesic ball centered at x ∈M of radius r.

This quantity is relevant, because as we know from the Bishop-Gromov theorem,
the volumes of the geodesic balls increase mostly like the Euclidean volumes of balls.
As such, we distinguish two cases:

When our manifold M has non-negative4 Ricci curvature, then we say that:

- M has Euclidean volume growth, if VM > 0 which means that the geodesic
volume rises like Euclidean (rn)

- M has sub-Euclidean volume growth, if VM = 0 which in turn means that the
geodesic volume rises with less speed than the Euclidean

Theorem 4.2.7 If (Mn, g) is a Riemannian manifold with non-negative Ricci cur-
vature, then

lim
r→∞

A(r)

Vol(∂B1(0))
=

(
VM

Vol(B1(0))

) 2
n−2

, (4.2.6)

lim
r→∞

V (r)

Vol(B1(0))
=

(
VM

Vol(B1(0))

) 2
n−2

. (4.2.7)

Proof. We first observe that in both the left sides of the two claims above, the
asymptotic behavior at infinity of A(r) and V (r), is directly related to VM on the

3You can also see ([6], p 14).
4Note that for the Hyperbolic space, we have VM =∞ .
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right sides of these two equalities. By the Bishop-Gromov volume comparison the-
orem, if r ≥ r0 ≥ 0, then

Vol(Bx(r))

Vol(Bk
x(r))

≤ Vol(Bx(r0))

Vol(Bk
x(r0))

.

Now, when k = 0, and then Mn
k = Rn, we get that

Vol(Bx(r))

rnVol(B1(0))
≤ Vol(Bx(r0))

rn0 Vol(B1(0))
,

which implies

r−nVol(Bx(r)) ≤ r−n0 Vol(Bx(r0)) .

Then, by the Li-Yau ([9]) lower bound for the Green function,

C

∞∫
d(x,y)

s

Vol(Bx(s))
ds ≤ G(x, y) . (4.2.8)

More precisely, by Theorem 5.2 in [9], we have that there exist constants a, b de-
pending only on n, such that

a

∞∫
r2

V −1(Bx(
√
t))dt ≤ G(x, y) ≤ b

∞∫
r2

V −1(Bx(
√
t))dt ,

where r(x, y) is the distance function and Bx(
√
t) is a geodesic ball of radius

√
t,

centered at some x ∈M .

Therefore, straightforward computations and the Bishop-Gromov inequality, give
(4.2.8). It follows that if d(x, y) ≥ 0 then,

G(x, y) ≥ rn0 C

Vol(Bx(r0))
d2−n(x, y) .

Indeed, this happens since

G(x, y) ≥ C

∞∫
d(x,y)

s

Vol(Bx(s))
ds ≥ C

∞∫
d(x,y)

s rn0
sn Vol(Bx(r0))

ds ,

and the last is equal to

C rn0
Vol(Bx(r0))

lim
a→∞

a∫
d(x,y)

s1−nds .
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Note that this lower bound for the Green function is global on M .

Now by the Cheng-Yau [4] gradient estimate5, we have that on a complete Rie-
mannian manifold Mn, n ≥ 2, with Ric ≥ −K and K ≥ 0, if u is a positive harmonic
function in a geodesic ball Bx0(r) ⊂M , then

|∇u|
u
≤ cn

r
+ cn
√
K ,

holds in Bxo(
r
2
), where cn depends only on the dimension n.

This estimate applied to the harmonic function G, and setting K = 0, implies
that at such a y, into the ball By(

r
2
), with r

2
< d(x, y) holds,

|∇G(y)|
G(y)

≤ cn
r
⇒ |∇b(y)2−n|

b(y)2−n ≤ cn
r

⇒ (2− n)|∇ log b(y)| ≤ cn
r
,

and hence follows

|∇b| ≤ Cb

r
,

for some constant C = C(n).

This, together with the fact that

Cb

r
= C

G
1

2−n

r
≤ C

[
r−n0 Vol(Br0(x))

] 1
n−2 ,

implies

|∇b| = b|∇ log b| ≤ C
G

1
2−n

r
≤ C

[
r−n0 Vol(Br0(x))

] 1
n−2 . (4.2.9)

At this point, we will distinguish the following cases: First when M has Euclidean
volume growth and second, when M has a sub-Euclidean volume growth.

Then, if M has sub-Euclidean volume growth, i.e. VM = 0, (4.2.9) implies that

there exists r0 such that |∇b| ≤ C
(Bx(r0)

rn0

) 1
n−2 , ∀r ≥ r0 .This assumption together

with the fact that limr(x)→∞ |∇b(x)| = 0 implies limr(x)→∞ supb(x)≥r |∇b(x)| = 0,
where it is assumed from the minimality of Green’s function that, b(x) ≥ r 6= ∅,
implies

A(r) = r1−n
∫
b=r

|∇b|3 dArea

≤ r1−n
∫
b=r

|∇b|
[
sup
b=r
|∇b|2

]
dArea

5You can also see ( [18], 4.6).
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≤

r1−n
∫
b=r

|∇b| dArea

 sup
b≥r
|∇b|2

= I1(r) sup
b≥r
|∇b|2 → 0 ,

as r →∞. From this, (4.2.6) follows directly since,

lim
r→∞

A(r)

Vol(∂B1(0))
= 0 .

The second claim also holds, by a similar argument. Indeed, since

V (r) = r−n
∫
b≤r

|∇b|4 dVol,

and by letting an arbitary r0 > 0, we have that

V (r) = r−n

 ∫
b≤r0

|∇b|4 dVol +

∫
r0≤b≤r

|∇b|4 dVol


≤ r−n

∫
b≤r0

|∇b|4 dVol +

[
sup
b≥r0
|∇b|2

]
r−n

∫
b≤r

|∇b|2 dVol

=
h(r0)

rn
+
I1(r)

n
sup
b≥r0
|∇b|2 .

Since h(r0) :=
∫

b≤r0
|∇b|4 dVol does not depend on r, we have

lim
r→∞

V (r) ≤ 0 +
I1(r)

n
sup
b≥r0
|∇b|2 ,

and by taking the limit as r0 →∞ on the both sides of the last inequality, we get

lim
r→∞

V (r) ≤
[

lim
r0→∞

sup
b≥r0
|∇b|2

]
Vol(∂B0(1)

n
= 0 .

Now, we suppose that M has Euclidean volume growth. We set ω = Vol(B1(0))

and λ =
[
VM
ω

] 1
n−2 . Then from (3.37) and (3.38) in [7], we have that ∀δ > 0, ∃Rδ

such that, for r > R = Rδ,

i)|λ−1b− r| < δr ,

ii)

∫
b≤r

∣∣λ−2|∇b|2 − 1
∣∣2 ≤ δ Vol ({x : b(x) ≤ r}) ,
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with λ−1b = r(1 + o(1)), when r → 0.
We wish to show that

|λ−2V (r)− ω| → 0 ,

as r tends to infinity. Indeed, for r > R the Cauchy-Schwarz inequality together
with (ii) implies

|λ−2V (r)− ω| =
∣∣r−n ∫

b≤r
λ−2|∇b|4dVol− r−n

∫
b≤r
|∇b|2dV ol

∣∣
≤ r−n

∫
b≤r

∣∣λ−2|∇b|2 − 1
∣∣|∇b|2dVol

≤
[
r−n

∫
b≤r

∣∣λ−2|∇b|2 − 1
∣∣] 1

2

V (r)
1
2

≤ δ

[
Vol ({x : b(x) ≤ r})

rn

] 1
2

V (r)
1
2

≤ Cδ .

Note that in the last inequality used the fact that
[

Vol({x:b(x)≤r})
rn

]
is bounded. This

argument follows from (i) and the Bishop-Gromov inequality, since∣∣λ−1b− r
∣∣ < δr

implies that for t large,

{b ≤ t} ⊆ {r ≤ t

λ(1− δ)
} ,

and therefore

(
t−nVol({b ≤ t})

) 1
2 ≤

(
t−nVol({r ≤ t

λ(1− δ)
})
) 1

2

≤
[
t−nVol(B0(1))

(
t

λ(1− δ)

)n] 1
2

= (Vol(B0(1)))
1
2 [λ(1− δ)]

−n
2 .

This, combined with the fact that |∇b| is also bounded by (4.2.9), implies that V (r)
is also bounded.

Consequently, we have (4.2.7) since

|λ−2V (r)− ω| → 0 ,

as r →∞, or equivalently

lim
r→∞

VM
ω

= λ2 =

(
VM
ω

) 2
n−2

. (4.2.10)
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Now for (4.2.6), we consider r0 > 0 such that

ωλ2 − ε ≤ V (r) ≤ ωλ2 + ε ,

for r > r0. This argument comes from (4.2.10).

We will use the following expession for V (r) :

V (r) = r−n

r∫
0

sn−1A(s) ds .

Also we need the first monotonicity formula, which says that

[A(r)− 2(n− 1)V (r)]′ ≥ 0 ,

with the assumption for the Ricci curvature to be non-negative.

Thus, for r > r0, we have from Corollary 4.1.5 of first monotonicity Theorem,
that

A(r) ≥ A(r0) + 2(n− 1) [V (r)− V (r0)] ≥ A(r0)− 4(n− 1)ε , (4.2.11)

and then

V (r) ≥ r−n

 r0∫
0

sn−1A(s) ds+

r∫
r0

sn−1 (A(r0)− 4(n− 1)ε) ds


=
C

rn
+
A(r0)− 4(n− 1)ε

n
−→ A(r0)− 4(n− 1)ε

n
,

as r →∞.

This implies that for r0 →∞ and ε→ 0,

ωλ2 = lim
r→∞

V (r) ≥ A(r0)− 4(n− 1)ε

n
,

and it also follows that

lim sup
r→∞

A(r) ≤ ωλ2

n
.

From (4.2.7) and the first monotonicity formula, the limit of A(r) at infinity
exists.

Finally, we have again by the second expression of V (r), that

lim
r→∞

A(r) = n lim
r→∞

V (r) ,
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and

lim
r→∞

A(r)

αn−1

=
nωn
αn−1

λ2 = λ2 ,

which is (4.2.6). 2

From the above Theorem and (4.2.5), the following characterization of Euclidean
space as the only manifold with non-negative Ricci curvature where V∞ is bounded
follows directly.

Corollary 4.2.8 Let Mn be a manifold with non-negative Ricci curvature. Then

inf V∞ > −∞ ,

if and only if M is Euclidean space.

Proof. The opposite direction of this equivalence is direct, because when M is the
Euclidean space, we obviously have that V∞ = 0 and hence

inf V∞ > −∞ .

Now, for the right direction, we suppose that M is not the Euclidean space and we
expect to show that inf V∞ = −∞.

For this purpose, we will use a classical argument from Comparison Geometry :

Lemma 4.2.9 If for the Ricci curvature of a manifold M holds Ric ≥ 0, then

VM
Vol(B1(0))

≤ 1 ,

with the equality holds if and only if M is the Euclidean space.

Proof. Since M is not the Euclidean space, Bishop-Gromov theorem allows us to
choose an arbitrary r0 such that

Vol(Bx(r0))

Vol(Bk
x(r0))

< 1 , ∀r > r0 .

Note that when k = 0, i.e. we are in the Euclidean space, Bk
x(r0) = B0(r0) is a ball

with radius r0. Thus we have that

Vol(Bx(r))

Vol(Bk
x(r))

≤ Vol(Bx(r0)

Vol(Bk
x(r0))

:= c < 1

and
VM

Vol(B1(0)
= lim

r→∞

Vol(Bx(r))

Vol(B0(r))
≤ c < 1 ,

when k = 0.
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2

Now, from (4.2.6) we have,

lim
r→∞

A(r)

Vol(∂B1(0))
=

[
VM

Vol(B1(0))

] 2
n−2

≤ c
2

n−2 < 1 .

Therefore, there exists an r1 > 0 such that A(r)
Vol(∂B1(0))

< c
2

n−2 +1
2

= c′ < 1, for each
r > r1.

Now we have,

V∞(r) = V∞(r1) +

r∫
r1

V ′∞(t) dt

= V∞(r1) + Vol(∂B1(0))

r∫
r1

A(t)
Vol(∂B1(0))

− 1

t
dt

≤ V∞(r1) + Vol(∂B1(0))

r∫
r1

c′ − 1

t
dt

= V∞(r1) + Vol(∂B1(0))(c′ − 1)(log r − log r1) .

Letting r →∞, we have the result.
2

4.3 The L operator and estimates for b

Define a drift Laplacian on the manifold M by

Lu =
1

G2
div(G2∇u)

= ∆u+G−2∇G2∇u
= ∆u+ 2〈∇ logG,∇u〉 .

The next Lemma is useful for proving results which apply to 3- as well as to 4-
manifolds. To prove this, we will need Lemma 4.2.1 together with the L operator.

Lemma 4.3.1 Let Mn be a Riemannian manifold with non-negative Ricci curvature
and G be a positive harmonic function defined as before by b2−n = G. Then we have

i) L|∇b|2 =
1

2b2

(∣∣Hessb2 − ∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
,

ii) Lb2 = 2(4− n)|∇b|2 ,
iii) Lbn−2 = 0 .
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Proof. Since

L|∇b|2 = ∆
(
|∇b|2

)
+ 2〈∇ logG,∇|∇b|2〉 ,

we have from Lemma 4.2.1 that the first claim holds if and only if

2〈∇ logG,∇|∇b|2〉 = b−2(2− n)〈∇b2,∇|∇b|2〉
⇔ b−2〈G

n
2−nG−1∇G,∇|∇b|2〉 = 〈∇ logG,∇|∇b|2〉 ,

which obviously holds.

The second claim follows from straightforward computations, using the fact that
∆b2 = 2n|∇b|2. Finally, since ∇bn−2 = ∇G−1 = −G−2∇G and G is harmonic, we
have

Lbn−2 = G−2div
(
G2∇bn−2

)
= G−2div

[
G2(−G−2∇G)

]
= −G−2∆G = 0 .

2

From this Lemma it follows that on a manifold with non-negative Ricci curvature
Hessb2 is a multiple of the identity, at a maximum for |∇b|2. This is because, since a
smooth function u has a maximum at p ∈M , it follows that ∇u(p) = 0, ∆u(p) ≤ 0
as well as Lu = ∆u+ 2〈∇ logG,∇u〉 = ∆u. Now for u = |∇b|2 and since the Ricci
curvature is non-negative, we have that

0 ≥ ∆
(
|∇b|2

)
= L|∇b|2 =

1

2b2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
≥ 0 .

This implies immediately that

Hessb2 =
∆b2

n
g , (4.3.1)

and

Ric(∇b2,∇b2) = 0 . (4.3.2)

Then (4.3.1) in turn implies that at a maximum point of |∇b|2 we have

Hessb2 =
2n|∇b|2

n
g = 2|∇b|2g .

The first two inequalities of the Lemma are proven assuming that G is the Green
function, whereas the third inequality holds for any positive harmonic function G,
with 1

G
proper.

63



Lemma 4.3.2 On a manifold with non-negative Ricci curvature, if x ∈M is a fixed
point and r is the distance to x, then we have

i) b ≤ r ,

ii) |∇b| ≤ C = C(n) ,

iii) L|∇b|2 ≥ 0 .

Proof. The last claim was used as an intermediate argument in the proof of a
previous Lemma and therefore it applies here since we have the same conditions for
Ricci curvature.

To prove the other two claims, observe first of all that by the Laplace comparison
theorem6, we have

∆r2−n = (2− n)r1−n∆r + (2− n)(1− n)r−n|∇r|2

≥ −(n− 2)r1−n(n− 1)r−1 + (n− 2)(n− 1)r−n

= 0 ,

and then since f(0) = 0, with f := r2−n −G and lim supr→∞ f ≤ 0, we have

r2−n −G ≤ 0 ,

by the maximum principle. Therefore, on such a manifold one has

b ≤ r ,

which is the first claim.

For the second claim, we have from an intermediate result of Theorem 4.2.7,
based in the Cheng-Yau gradient estimate, that

b|∇ log b| ≤ C G
1

2−n ,

for some constant C, which depends only on the dimension of the manifold. This
implies that

|∇b| ≤ b C(n)

r
≤ C(n) (4.3.3)

and from (i) we have the result.

2

The following Lemma connects the derivative of Iu(r), where u is a smooth
function, with the L operator applied on u. The result of this Lemma will be used
to study the monotonicity of Iu(r), when u is bounded from above.

6For the Laplacian comparison theorem see Appendix 6.3.
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Lemma 4.3.3 Let Mn be a manifold and suppose that u : M → R is a smooth
function. Then for r2 > r1 > 0,

I ′u(r2) = rn−3
2 r3−n

1 I ′u(r1) + rn−3
2

∫
r1≤b≤r2

G2Lu dVol . (4.3.4)

Proof. Observe first that,

r3−n
1 I ′u(r1) = r3−n

1 r1−n
1

∫
b=r1

un dArea

⇒ rn−3
2 r3−n

1 I ′u(r1) = rn−3
2 r4−2n

1

∫
b=r1

un dArea .

Now for r2 > r1 > 0, we will get the desired result by calculating the difference

I ′u(r2)− rn−3
2

∫
r1≤b≤r2

G2Lu dVol .

So we have

r1−n
2

∫
b≤r2

∆u dVol− rn−3
2

∫
r1≤b≤r2

G2Lu dVol

= r1−n
2

∫
b=r2

un dArea− rn−3
2

∫
r1≤b≤r2

div
(
G2∇u

)
dVol

= r1−n
2

∫
b=r2

un dArea− rn−3
2

 ∫
b=r2

G2un dArea−
∫

b=r1

G2un dArea


= rn−3

2 r4−2n
1

∫
b=r1

un dArea .

2

Corollary 4.3.4 Let Mn be a manifold with n ≥ 3 and suppose that u is an L-
subharmonic function that is bounded from above. Then

Iu(r) = r1−n
∫
b=r

u|∇b| dArea

is non-increasing.
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Proof. Since u is an L-subharmonic function, we have that Lu ≥ 0. Then it follows
from Lemma 4.3.3 that for r2 > r1 > 0,

I ′u(r2) ≥ rn−3
2 r3−n

1 I ′u(r1) .

As u is bounded from above, Iu is also bounded from above. Now, recall that as
r → 0,

r−n
∫
b≤r

1 dVol→ Vol(B1(0)) ,

as well as
|∆u| ≤ C .

Hence, by the triangle inequality, we have

|I ′u| ≤ r1−n
∫
b≤r

|∆u| → 0 , (4.3.5)

as r → 0.
Eventually we conclude that the function Iu(r) is non-increasing with respect to

r, i.e.
I ′u(r) ≤ 0 .

To see this, suppose I ′u(r0) > 0 for some r0 ∈ R and integrate Iu(r) ≥ rn−3r3−n
0 I ′u(r0),

on [r0,∞). This gives a contradiction, since by hypothesis u and therefore Iu is
bounded.

2

The next Corollary gives us the expression of I ′u(r) on 3 and 4-manifolds.

Remark : For a smooth function u : M → R we have that

i) lim
r→0

I ′u(r) = 0 and

ii) lim
r→0

I ′u(r)

r
= Vol(B1(0)) ∆u(x) .

For the second claim, we have

lim
r→0

I ′u(r)

r
= lim

r→0
r−n

∫
b≤r

∆u dVol = Vol(B1(0)) ∆u(x) ,

where the last equality holds from Lemma 4.1.1.

Corollary 4.3.5 Let Mn be an n-dimensional manifold and suppose that the func-
tion u : M → R, is smooth. Then

i) if n = 3, I ′u(r) =

∫
b≤r

G2 Lu dVol and
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ii) if n = 4, I ′u(r) = r Vol(∂B1(0)) ∆u(x) + r

∫
b≤r

G2 Lu dVol .

Proof. The proof follows directly by the Lemma 4.3.3, together with the above
remark, both for cases n = 3 and n = 4.

2

4.4 Third Monotonicity formula

Corollary 4.4.1 On any Riemannian manifold (Mn, g) with non-negative Ricci
curvature and n ≥ 3, we have that A(r), V (r) and V∞(r) are non-increasing func-
tions with respect to r and bounded from above by the same bounds as on Rn. We
have also that A(r) ≤ nV (r).

Proof. By Lemma 4.3.2 we have that |∇b|2 is an L-subharmonic function, i.e.
L|∇b|2 ≥ 0. Hence by Corollary 4.3.4, since Iu(r) is non-increasing function in r,
we have that

A(r) = I|∇b|2(r) ,

is also non-increasing. Moreover, since A starts off at what it is in Euclidean space
by Lemma 4.1.1, we get the first claim, that is the generalized normalized Area A(r)
is a non-increasing function and is bounden from above by the constant Vol(∂B1(0)).

Now, since the function F (r) in the First Monotonicity formula, is non-decreasing
(with our assumptions), we have that

A′(r) ≥ 2(n− 1)V ′(r) .

This, together with the fact that A′(r) ≤ 0 ∀r, proves the claim also for V (r), since
it starts being equal to what it is in Euclidean space, by Lemma 4.1.1.

Finally, the Second Monotonicity formula gives us that when Ricci curvature is
non-negative, then the U(r) function is non-decreasing, i.e.

A′(r) ≥ (n− 2)V ′∞(r) .

Hence V∞(r) is non-increasing in r. For the upper bound of this second volume of
balls, we have from the second claim, together with Lemma 4.1.2 that

1

r
[A(r)− n V (r)] ≤ 0 .

2

For the next Theorem, which is the Third Monotonicity formula, we will need
Lemmas 4.3.1 and 4.3.3.
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Theorem 4.4.2 Let (Mn, g) be an n-dimensional Riemannian manifold. Then for
r2 > r1 > 0 we have

r3−n
2 A′(r2)−r3−n

1 A′(r1) =
1

2

∫
r1≤b≤r2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b2−2n dVol.

This implies that, when the Ricci curvature on a Mn is non-negative, then the
function

U(r) := r3−nA′(r) ,

will be non-decreasing in r.

Proof. For r2 > r1 > 0 and by multiplying (4.3.4) in Lemma 4.3.3 with r3−n
2 , we

get

r3−n
2 I ′u(r2) = r3−n

1 I ′u(r1) +

∫
r1≤b≤r2

G2Lu dVol . (4.4.1)

Now, since
I ′|∇b|2(r) = A′(r) ,

it follows from (i) of Lemma 4.3.1, that∫
r1≤b≤r2

G2L|∇b|2 dV ol =
1

2

∫
r1≤b≤r2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
G2

b2
dVol

=
1

2

∫
r1≤b≤r2

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b2−2n dVol.

Then the claim follows directly from (4.4.1).
2

The first consequence of the Third monotonicity formula is the following Corol-
lary, in which we will present a different expression of A(r) (compare to the one
we had at first monotonicity formula; here the integration occurs over the level sets
{b ≥ r}). More generally, the assymptotic description of A(r) and V (r), is the one
that urged us to study what happens in supplements of the level sets {b ≤ r}.

Corollary 4.4.3 If Mn is a Riemannian manifold with non-negative Ricci curva-
ture, then

A′(r) = −r
n−3

2

∫
b≥r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b2−2n dVol .

Proof. Firstly we note that since G is minimal, we have {b ≥ r} 6= ∅.
By letting r2 → ∞ in the above Theorem, we easily have that r3−n

2 A′(r2) = 0.
Hence the claim follows, for every r > 0.

2
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Corollary 4.4.4 Let (M3, g) be a 3-dimensional Riemannian manifold. If |∇b|2 is
C2 function in a neighborhood of x ∈M , then

A′(r) = −1

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−4 dVol .

In addition, if M has non-negative Ricci curvature, then M is flat R3.

Proof. The first claim follows easily from Lemma 4.3.1, Corollary 4.3.4 and (i) of
Corollary 4.3.5.

To prove the second claim, note first that A′(r) = 0 since A(r) is non-increasing
function in r. Hence A(r) is constant from Corollary 4.4.1, together with the first
claim. From this, as we have already seen, it follows directly that

Hessb2 =
∆b2

n
g and Ric(∇b2,∇b2) = 0 .

This in turn implies that M is flat R3.
2

Corollary 4.4.5 Let (M4, g) be a 4-dimensional Riemannian manifold. If |∇b|2 is
C2 function in a neighborhood of x ∈M , then

A′(r) = r V ol(∂B1(0)) ∆|∇b|2(x) +
r

2

∫
b≤r

(∣∣Hessb2 −
∆b2

n
g
∣∣2 + Ric(∇b2,∇b2)

)
b−6

dV ol .

Proof. The proof follows with similar arguments as in the case of 3-dimensional
manifolds. However, in this case the second claim of Corollary 4.3.5 will be needed.

2
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Chapter 5

New gradient estimates for
Green’s function

5.1 Sharp gradient estimates for the Green func-

tion

In this section, we will show how the monotonicity formulas we have studied so far
are related to a sharp gradient estimate of the Green function. This will introduce
later various results obtained from this sharp gradient estimate. As mentioned by
Tobias Colding in his paper (see [5]), the correlation of our monotonicity formulas
with this sharp gradient estimate for the Green function, which we will see below,
is parallel to the fact that Perelman’s monotonicity formula for the Ricci flow is
closely related to the sharp gradient estimate of Li-Yau ([9]) for the heat kernel.

Theorem 5.1.1 If (Mn, g) is any n-dimensional Riemannian manifold, with n ≥ 3
and non-negative Ricci curvature, then for the function b, as defined above, it holds

|∇b| ≤ 1 .

Moreover, if equality holds at any point on M , then M is the flat Euclidean space
Rn.

Proof. From (ii ) of Lemma 4.1.1, we have that

lim
r→0

sup
∂Br(x)

∣∣|∇b|2 − 1
∣∣ = 0 .

That is,
∀ε > 0, ∃ r0 such that sup

∂Br(x)

∣∣|∇b|2 − 1
∣∣ < ε , ∀r ≤ r0 .

We assume that r > 0 is sufficiently small, so that

sup
∂Br(x)

|∇b|2 ≤ 1 + ε ,
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where Br(x) a geodesic ball. Also we have from Lemma 4.3.2 that

|∇b| ≤ C = C(n) .

We consider the set {x : b(x) = R}, with R big enough and the smooth function
u : M \ {x} → R, with

u = |∇b|2 − (1 + ε)− C2(n)
bn−2(x)

Rn−2
.

Then, we have

sup
∂Br∪{x:b(x)=R}

u ≤ 0 .

Moreover, since M has non-negative Ricci curvature, Lemma 4.3.2 again gives that

Lu ≥ 0 .

By the maximum principle for the L operator1 applied to u, we have for a fixed
y ∈M \ {x} that

u ≤ 0 in the set {x : b(x) ≤ R} \Br(x)

or, equivalently

|∇b|2(y) ≤ 1 + ε+ C2(n)
bn−2(y)

Rn−2
.

Now letting ε → 0 and R → ∞, the expected inequality follows; it gives a global
gradient estimate for b on M , i.e. ,

|∇b| ≤ 1 .

We suppose that the function |∇b|2 achieves its maximum value, i.e. ,

|∇b|2(p) = 1 ,

at some p ∈ M . From the proof above, |∇b|2 ≤ 1 and L|∇b|2 ≥ 0. From these, it
follows by the strong maximum principle this time, that

|∇b|2 ≡ 1 ,

everywhere in the manifold, and thus from the first claim of Lemma 4.3.1, we get
that

Hessb2 =
∆b2

n
g and Ric(∇b2,∇b2) = 0 .

1Note that the maximum principles for the L operator are the same with those for the Laplacian
one, since they differ in first-order derivatives.
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Now, a paper of Cheeger-Colding ([2]) in chapter 1, implies that M is a metric cone
and that the function b is the distance to the vertex. These, together with the fact
that the euclidean space is the only smooth cone, we get the claim.

2

At this point we will give a second proof of the above theorem. To do so, we will
use the maximum principle for the Laplace operator applied to the function u.

Alternative proof of the sharp bound for the gradient of b:
We have again by (ii) in Lemma 4.1.1 that for a given ε > 0, we may choose r > 0
sufficiently small such that

sup
∂Br(x)

|∇b|2 ≤ 1 + ε .

Also, by choosing R > 0 sufficiently large, together with the fact that for

r →∞ ⇒ G→ 0 ,

we get
sup
∂BR

G ≤ ε .

Here, C is the gradient bound for b, given by Cheng-Yau gradient estimate. We
consider a fuction u as follows

u = |∇b|2G− (1 + ε)G− C2(n)ε .

Then
sup

∂Br∪{x:b(x)=R}
u ≤ 0 .

Now, by Lemma 4.2.1 and since G is harmonic,

∆u = ∆
(
|∇b|2G

)
≥ 0 ,

by Lemma 4.2.1. Thus, by the maximum principle for the Laplacian of u, the
function u must be non-negative for each y in M \ {x}.

Hence we have at such a fixed y, that

u(y) ≤ 0 ⇔
[
|∇b|2(y)− (1 + ε)

]
G(y) ≤ C2ε .

Letting ε→ 0 and since G(y) is non-negative, we have the inequality.
2

Remark. The argument in the proof of Theorem 5.1.1 in fact gives that

sup
b=r
|∇b|2 ,

is a non-increasing function of r.

This observation is generalized in the following theorem.
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Theorem 5.1.2 Let Ω be an open bounded subset on M containing x. Then, for
all y ∈M \ Ω,

|∇b|2(y) ≤ sup
∂Ω
|∇b|2 .

Moreover, strict inequality holds unless M is isometric to a cone outside a compact
set.

Proof. The proof follows in the lines of the previous proof. We define

u = |∇b|2(y)− (sup
∂Ω
|∇b|2 + ε)G− C2ε ,

and repeat all the arguments mentioned above.
2

Now we can write the sharp gradient estimate of Theorem 5.1.1 in terms of G.

Corollary 5.1.3 If (Mn, g) is any n-dimensional non-parabolic Riemannian man-
ifold, with n ≥ 3 and non-negative Ricci curvature, then for the Green function G,
we have

|∇G| ≤ (n− 2)G
n−1
n−2 .

Proof. We have directly from the inequality in Theorem 5.1.1, that∣∣ 1

G
∇G

∣∣ = |∇ logG| = (n− 2)|∇ log b| = (n− 2)
|∇b|
b
≤ (n− 2)G

1
n−2 .

Thus
|∇G| ≤ (n− 2)G

n−1
n−2 .

2

Another immediate Corollary of the sharp gradient estimate for the Green func-
tion is the following, in which we will try to compare the volume of the sets which
are defined via the level sets of the function b, with the volume of balls that we have
in Euclidean space, respectively.

Corollary 5.1.4 If Mn has non-negative Ricci curvature with n ≥ 3, then, for all
r > 0 we have

i) Vol ({x : b(x) = r}) ≥ Vol(∂Br(0)) ,

ii) Vol ({x : b(x) ≤ r}) ≥
r∫

0

Vol ({x : b(x) = s}) ds ≥ Vol(Br(0)) .

Proof. By the sharp gradient estimate and the fact that I1(r) is constant as a
fuction in r, we get

Vol ({x : b(x) = r}) =

∫
b=r

1 dArea
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≥
∫
b=r

|∇b| dArea

= rn−1I1(r)

= rn−1Vol(∂B1(0)) = Vol(∂Br(0)) .

For the second claim, by using the co area formula we have

Vol ({x : b(x) ≤ r}) =

∫
b≤r

1 dVol

≥
∫
b≤r

|∇b| dVol

=

r∫
0

∫
b=s

|∇b|
|∇b|

dArea ds

=

r∫
0

Vol ({x : b(x) = s}) ds

≥
r∫

0

Vol(∂Bs(0)) ds = Vol(Br(0)) .

2

5.2 Sharp asymtotic gradient estimates for the

Green function

In this section we show a sharp asymptotic gradient estimate for the Green function
on manifolds with non-negative Ricci curvature.

Theorem 5.2.1 Let (Mn, g) be an n-dimensional Riemannian manifold, with the
assumption that n ≥ 3. If Mn has non-negative Ricci curvature, then for the gradient
of the function b we have

lim
r→∞

sup
M\Br(x)

|∇b| =
[

VM
Vol(B1(0))

] 1
n−2

. (5.2.1)

To prove this theorem, we will need the following Lemma that was initially proved
in [3] and was followed by a more complete description in Tobias Colding’s paper.
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Lemma 5.2.2 Let Mn be an open manifold with non-negative Ricci curvature and
let u : M → R be a positive supeharmonic function on Br(x), x ∈ M . Then there
exists a constant C, depending only on the dimension of M , such that

1

Vol(Br(x))

∫
∂Br(x)

u dArea ≤ C u(x) .

Proof. Let hr be the harmonic function on Br(x), with the property

hr
∣∣
∂Br(x)

= u
∣∣
∂Br(x)

.

Then by the maximum principle we get that hr is positive on Br(x), since u is
positive on it.

Moreover, since u is also superharmonic on Br(x), we have that for hr

hr
∣∣
Br(x)

≤ u
∣∣
Br(x)

,

and thus
0 < hr(x) ≤ u(x) .

Now, the Cheng-Yau Harnack inequality for hr, applied on the ball B r
2
(x), implies

that for some constant C = C(n), we have

sup
B r

2
(x)

hr ≤ C inf
B r

2
(x)
hr ≤ C u(x) .

From Stokes’ theorem, and since hr is harmonic and positive on Br(x), we have for
some s < r that

0 =

∫
Bs(x)

∆hr dVol =

∫
∂Bs(x)

∂hr
∂s

dArea .

By using standard properties of the Lie derivative and the Cartan’s formula, we
have

L ∂
∂s

(hr i ∂
∂s
ωg) = L ∂

∂s
(hr) i ∂

∂s
ωg + hr L ∂

∂s
(i ∂
∂s
ωg)

=
∂

∂s
hr dS + hr i ∂

∂s
L ∂
∂s

(ωg)

=
∂

∂s
hr dS + hr i ∂

∂s
(∆s ωg)

=

(
∂

∂s
hr + hr ∆s

)
dS .

Hence, we get by a standard computation that

∂

∂s

(∫
∂Bs(x)

hr dArea

)
=

∫
∂Bs(x)

hr ∆s dArea+

∫
∂Bs(x)

〈∇r,∇hr〉dArea .
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Then, from the Laplacian comparison theorem we get that∫
∂Bs(x)

∂hr
∂s

dArea ≥ ∂

∂s

(∫
∂Bs(x)

hr dArea

)
− n− 1

s

∫
∂Bs(x)

hr dArea ,

and equivalently,

∂
∂s

(∫
∂Bs(x)

hr dArea
)
− n−1

s

∫
∂Bs(x)

hr dArea∫
∂Bs(x)

hr dArea
≤ 0 . (5.2.2)

For the left hand-side of the previous inequality, we have

(1− n)s−n
∫
∂Bs(x)

hr dArea+ s1−n ∂
∂s

(∫
∂Bs(x)

hr dArea
)

s1−n
∫
∂Bs(x)

hr dArea
=

=

[
log

(
s1−n

∫
∂Bs(x)

hr dArea

)]′
.

Therefore (5.2.2) is equivalent to the fact that for fixed r, the function

f(s) = log

[
s1−n

∫
∂Bs(x)

hr dArea

]
,

is non-increasing with respect to s.
All these impliy that,

r1−n
∫
∂Br(x)

hr dArea ≤
(r

2

)1−n
∫
∂B r

2
(x)

hr dArea

≤
(r

2

)1−n
∫
∂B r

2
(x)

1 dArea Cu(x)

= C
(r

2

)1−n
V ol

(
∂B r

2
(x)
)
u(x) .

Finally, combining Bishop-Gromov inequality with the last computation we get
the claim:

1

Vol(∂Br(x)

∫
∂Br(x)

u dArea =
1

Vol(∂Br(x)

∫
∂Br(x)

hr dArea

≤ 2n−1C
Vol
(
∂B r

2
(x)
)

Vol (∂Br(x))
u(x)

≤ 2nCnu(x) .

2

Now we are ready to see the Theorem’s proof.
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Proof. First we observe that in the case where M has sub-Euclidean volume growth,
the claim follows trivially: Both sides of (5.2.1) are equal to zero. Note that the left
hand side of (5.2.1) equals to zero, as this follows from the proof of Theorem 4.2.7

Now in the case where M has Euclidean volume growth, we consider as before
the geodesic ball Br(x), centered at x ∈M and we set

L = sup
M\Br(x)

|∇b|2 .

We also consider the ball B2r(x) and an arbitary point y ∈M \B2r(x). Since G is
a positive harmonic function in the ball B2r(y), we get for some constant C = C(n)
that

sup
Br(y)

G ≤ C inf
Br(y)

G ,

using Cheng-Yau Harnack inequality for the Green function.
Now for the function G(L− |∇b|2) we have

∆
[
G(L− |∇b|2)

]
= −∆(G|∇b|2) ≤ 0 ,

with the last inequality following from Lemma 4.2.1, since the Ricci curvature is
non-negative. This, using Lemma 5.2.2, applied to the positive and superharmonic
function G(L− |∇b|2), on Br(y).

Hence we get

1

CVol(∂Br(y))

∫
∂Br(y))

(L− |∇b|2) dArea ≤ 1

Vol(∂Br(y))

∫
∂Br(y))

G(L− |∇b|2) dArea

≤ C(L− |∇b|2)(y) .

We stress that the positive constant C depends only on the dimension of M
(does not depend on r) 2.

Then, for the average of L− |∇b|2 on the geodesic ball Br(y) we have

1

Vol(Br(y))

∫
Br(y)

(L− |∇b|2) dVol ≤ C(L− |∇b|2)(y) ,

since

1

Vol(Br(y))

∫
Br(y))

(L− |∇b|2) dVol =
1

Vol(Br(y))

r∫
0

∫
∂Bs(y)

(L− |∇b|2) dArea ds

≤ 1

Vol(Br(y))
C(L− |∇b|2)(y)

r∫
0

Vol(∂Bs(y)) ds

2See for completeness the Corollary 6.1, with λ = R = 0, in [8].
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= C(L− |∇b|2)(y) .

Therefore, if we show that

1

Vol(Br(y))

∫
Br(yr)

|∇b|2 dVol −→

[(
VM

Vol(B1(0))

) 1
n−2

]2

,

as r → ∞, with yr ∈ ∂B2r(x), then we will have shown the claim. This is true,
because if we choose a sequence (yn) such that

|∇b|2(yn)→ L = lim sup
y→∞

|∇b|2(y) ,

then by setting (rn) = d(x,yn)
2

, we get for r →∞ that

0 ≤ 1

Vol(Brn(yn))

∫
Brn (yn)

(L− |∇b|2) dVol

= L− 1

Vol(Brn(yn))

∫
Brn (yn)

|∇b|2 dVol ≤ C(L− |∇b|2)(yn) ,

with the last tends to zero, as n→∞ and therefore we get

L =

(
VM

Vol(B1(0))

) 2
n−2

.

So, we are left to show that the average of |∇b|2 on all geodesic balls of radius r

centered at ∂B2r(x) converges to the real and positive number
(

VM
Vol(B1(0))

) 2
n−2

. In

[7], (3.38) says that as r tends to infinity,∫
b≤r

∣∣λ2 − |∇b|2
∣∣2dVol = o [Vol({b ≤ r})] ,

where λ =
(

VM
Vol(B1(0))

) 1
n−2

.

But the proof of the Theorem 4.2.7 shows that as r →∞,∫
Br(x)

∣∣λ2 − |∇b|2
∣∣2dVol ≤

∫
b≤2λr

∣∣λ2 − |∇b|2
∣∣2dVol

= o [Vol(b ≤ 2λr)]

= o [Vol(Br(x))] ,
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or, ∫
B3r(x)

∣∣λ2 − |∇b|2
∣∣2dVol = o [Vol(B3r(x))] .

But now, for the yr defined above we have

Br(yr) ⊆ B3r(x) , (5.2.3)

and also

B3r(x) ⊆ B5r(yr) .

By the Bishop-Gromov Volume Comparison theorem we immediately get that

Vol(B3r(x)) ≤ Vol(B5r(yr)) ≤ 5nVol(Br(yr)) . (5.2.4)

Combining (5.2.3) and (5.2.4), we have∫
Br(yr)

∣∣λ2−|∇b|2
∣∣2dVol ≤

∫
B3r(x)

∣∣λ2−|∇b|2
∣∣2dVol = o [Vol(B3r(x))] = o [Vol(Br(yr))] .

Therefore, by the Holder inequality we get as r →∞ that∣∣∣∣∣∣∣λ2Vol(Br(yr))−
∫

Br(y)

|∇b|2dVol

∣∣∣∣∣∣∣ ≤
∫

Br(yr)

∣∣λ2 − |∇b|2
∣∣dVol

≤ Vol(Br(yr))
1
2

 ∫
Br(yr)

∣∣λ2 − |∇b|2
∣∣2dVol


1
2

= Vol(Br(yr))
1
2 o[Vol(Br(yr))]

1
2

= o[Vol(Br(yr))] .

Then we have

1

Vol(Br(yr))

∫
Br(yr)

|∇b|2dVol→ λ2 =

(
VM

Vol(B1(0))

) 2
n−2

as claimed.

2

As before, in the sharp gradient estimate, we can write this as an asymptotic gra-
dient estimate for the Green function, which is in a sense, one of the most important
of our goals, in this thesis.
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Corollary 5.2.3 If (Mn, g) is any n-dimensional non-parabolic Riemannian man-
ifold, with n ≥ 3, then for the minimal positive Green function G, we have

1

n− 2
lim
r→∞

sup
M\Br(x)

|∇G|
G

n−1
n−2

=

[
VM

Vol(B1(0))

] 1
n−2

.

Proof. The claim follows directly from the last Theorem, since

|∇b| = 1

n− 2

|∇G|
G

n−1
n−2

.

2
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Chapter 6

Appendix

6.1 Bochner-Weitzenbock formula

As it is proved in ([14]), we have the following theorem, which is known as Bochner-
Weitzenbock formula.

Theorem 6.1.1 Let (Mn, g) be a complete Riemannian manifold. Then for any
function f ∈ C2(M), we have

1

2
∆|∇f |2 = |Hessf |2 + 〈∇f,∇(∆f)〉+ Ric(∇f,∇f) ,

pointwise.

Proof: For a fixed point p ∈M , let {X1, ..., Xn} be a local orthonormal frame, such
that

〈Xi, Xj〉 = δij, ∇XiXj(p) = 0 .

In terms of a local coordinates system {x1, ..., xn} at p, the Laplace Beltrami operator
is defined by

∆f =
1
√
g

∂

∂xi

(
√
g gij

∂f

∂xi

)
.

Using the fact that Hessian is symmetric, the classical Leibniz rule and properties
of the curvature tensor, we have

1

2
∆|∇f |2 = ∆(〈∇f,∇f〉) =

1

2

n∑
i=1

XiXi〈∇f,∇f〉 =

=
1

2

n∑
i=1

Xi (〈∇Xi∇f,∇f〉+ 〈∇f,∇Xi∇f〉) =

=
n∑
i=1

Xi〈∇Xi∇f,∇f〉 =
n∑
i=1

Xi · Hessf(Xi,∇f) =
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=
n∑
i=1

Xi · Hessf(∇f,Xi) =
n∑
i=1

Xi〈∇∇f (∇f), Xi〉 =

=
n∑
i=1

〈∇Xi∇∇f (∇f), Xi〉+ 〈∇∇f (∇f),∇XiXi〉 =

=
n∑
i=1

〈R(Xi,∇f)∇f,Xi〉+
n∑
i=1

〈∇∇f∇Xi∇f,Xi〉+

+
n∑
i=1

〈∇[Xi,∇f ]∇f,Xi〉 . (6.1.1)

Here, the first term is by definition equal to Ric(∇f,∇f).

The second term of (1.1) is equal to,

n∑
i=1

(∇f〈∇Xi∇f,Xi〉 − 〈∇Xi∇f,∇∇fXi〉) =

n∑
i=1

∇f〈∇Xi∇f,Xi〉 = ∇f
n∑
i=1

〈∇Xi∇f,Xi〉 =

∇f
n∑
i=1

Hessf(Xi, Xi) = ∇f(∆f) = 〈∇f,∇(∆f)〉 . (6.1.2)

Finally, for the last term of (1.1) we have

n∑
i=1

〈∇[Xi,∇f ]∇f,Xi〉 =
n∑
i=1

Hessf([Xi,∇f ], Xi) =

n∑
i=1

Hessf(∇Xi∇f −∇∇fXi, Xi) =
n∑
i=1

Hessf(Xi, (∇Xi∇f) =

n∑
i=1

〈∇Xi∇f,∇Xi∇f〉 =
n∑
i=1

|∇Xi∇f |2 =
n∑
i=1

∇Xi∇Xi |∇f |2 =

|Hessf |2 . (6.1.3)

Combining (1.2),(1.3) and (1.4) the claim follows. Note that for Rn, the Bochner-
Weitzenbock formula becomes

1

2
∆|∇f |2 = |Hessf |2 + 〈∇f,∇(∆f)〉 ,

namely missing the curvature term.
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6.2 The Co-area formula on Riemannian mani-

folds

Co-area formula extends naturally from the Euclidean space to Riemannian mani-
folds as follows:

Theorem 6.2.1 Let (M, g) be a Riemannian manifold and f ∈ C∞c (M) a fixed
function. Then, for each h ∈ L1(M) we have∫

M

hdµg =

∫
R

∫
Γ(t)

h

|∇f |
dA(t)dt , (6.2.1)

where Γ(t) := f−1({t}) = {p ∈ M : f(p) = t} and dA(t) is the induced measure on
Γ(t).

Proof. By Sard’s theorem, the critical values of f have measure zero, so Γ(t) is
an immersed (n − 1)−dimensional submanifold of M for almost all t ∈ f(M) ⊆ R.
We also have that Reg(f), the set of all regular values of f , is an open subset of
R. Let (α, β) ⊆ Reg(f) and pick any fixed number c ∈ (α, β). Let ϕt−c be the flow
determined by the vector field ∇f

|∇f |2 restricted to f−1
(
(a, b)

)
, that is

d

dt
ϕt−c(p) =

∇f
|∇f |2

and ϕt−c(p)
∣∣∣
t=c

= p , for any p ∈ f−1
(
(α, β)

)
.

Clearly, the mapping

Φ : f−1(c)× (α, β) −→ f−1
(
(α, β)

)
, (p, t) 7−→ Φ(p, t) := ϕt−c(p) ,

defines a diffeomorphism onto f−1
(
(α, β)

)
. For all (p, t) ∈ f−1(c)× (α, β) we have

f
(
Φ(p, c)

)
= f(ϕ0(p)) = f(p) = c,

d

dt
f
(
Φ(p, c)

)
= ∇f

∣∣∣
Φ(p,c)

· d
dt

(
ϕt−c(p)

)
=
(
∇f · ∇f

|∇f |2
)∣∣∣

Φ(p,c)
= 1 .

Thus, for any (p, t) ∈ f−1(c)× (α, β),

f(Φ(p, t)) = t =⇒ Φ(p, t) ∈ Γ(t) .

Furthermore, ∂Φ(t)
∂t
⊥ Γ(t) since ∂Φ(t)

∂t
= ∇f
|∇f |2 is parallel to ∇f and ∇f is perpen-

dicular to Γ(t). Since Φ is diffeomorphism we can choose local coordinates (p, t)
on the open f−1

(
(α, β)

)
⊆ M where p ∈ Γ(t) and t ∈ (α, β). Specifically, if

Gij(t) (i, j = 1, 2, . . . , n−1) are the components of the metric on Γ(t), we may write

g
∣∣∣
f−1
(

(α,β)
) =

(
metric on Γ(t) 0

0 metric on
(
Γ(t)

)⊥) =

(
Gij(t) 0

0 |∂Φ
∂t
|2

)
.
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Thus, locally we have

dµg =
√
det(gij)dx1 ∧ . . . dxn−1 ∧ dt

=

√
|∂Φ

∂t
|2det(Gij(t))dx1 ∧ . . . dxn−1 ∧ dt

= |∂Φ

∂t
|
√

det(Gij(t))dx1 ∧ . . . dxn−1 ∧ dt

=
∣∣∣ ∇f|∇f |2 ∣∣∣(

√
det(Gij(t))dx1 ∧ . . . dxn−1

)
∧ dt

=
1

|∇f |
dA(t) ∧ dt .

and therefore, for any function h ∈ L1(M) we have

hdµg =
h

|∇f |
dA(t) ∧ dt =⇒

∫
M

hdµg =

∫
R

∫
Γ(t)

h

|∇f |
dA(t) ∧ dt .

2

6.3 Laplacian Comparison Theorem

The Laplacian Comparison Theorem1 is a fundamental result in Riemannian geom-
etry. It is directly related to the volume comparison theorem and also a special case
of the Rauch comparison theorem.

Theorem 6.3.1 Let (Mn, g) be a complete Riemannian manifold with Ricci curva-
ture bounded from below by

Ric ≥ (n− 1)k ,

for some constant k. Suppose p ∈ M a fixed point and we consider the distance
function r(x) be smooth. Then for any x ∈M , the Laplacian of the distance function
satisfies

∆r =


(n− 1)

√
k cot

√
kr for k > 0 ,

n−1
r

for k = 0 ,

(n− 1)
√
−k cot

√
−kr for k < 0 .

Proof. From the Bochner-Weitzenbock formula for any function f ∈ C2(M) we
have

1

2
∆|∇f |2 = |Hessf |2 + 〈∇f,∇(∆f)〉+ Ric(∇f,∇f) .

1For more details we refer to see [14].
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Now, letting f(x) = r(x) we get, outside the cut locus of p, that

0 = |Hessr|2 +
∂

∂r
(∆r) + Ric(

∂

∂r
,
∂

∂r
) ,

since |∇r| = 1.

We assume λ1, ..., λn be the eigenvalues of Hessr, and hence we have that λi = 0,
with i ∈ {1, ..., n}, since the exponential function is a radial isometry.

By the Cauchy-Schwarz inequality, we have

|Hessr|2 = λ2
1 + ...+ λ2

n

≥ (λ1 + ...+ λn)2

n− 1

=

(
tr(Hessr)

)2

n− 1

=
(∆r)2

n− 1
.

Since we consider Ric ≥ (n− 1)k, the last inequality together with the Bochner-
Weitzenbock identity, imply

(∆r)2

n− 1
+

∂

∂r
(∆r) + (n− 1)k ≤ 0 . (6.3.1)

If we let now u = n−1
∆r

, we get from (6.3.1) that

(n− 1)
∂
∂r

(∆r)

(∆r)2
+

(n− 1)2

(∆r)2
k + 1 ≤ 0

⇔ u′

u2k + 1
≥ 1 .

Note that ∆r → n−1
r

when r → 0; thus u → r. Now, integrating the above
inequality, we get the claim.

2
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