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Abstract

The growth of communication markets and the variety of services being offered has encouraged
the study of pricing issues in communication networks. Besides the need for charging those using
the network premises, pricing plays a major role in controlling congestion and induces incentives
to utilize the network in an efficient way. In this dissertation we consider problems of bandwidth

allocation and charging in a communication network by means of auction mechanisms.

We consider a hierarchical business model for selling bandwidth in a single link. In the top
level the social planner allocates bandwidth to intermediate providers, who in turn allocate their
assigned shares of bandwidth to the customers in the lower level. The social planner defines the
rules of the mechanism. Our objective is the efficient overall allocation of the entire supply of
bandwidth to the customers, as if the social planner were to assign this bandwidth directly. We
propose an innovative mechanism comprising an appropriate auction in each level. The auctions
are coordinated so that supply is exhausted at the end, as required for attaining efficiency. The
bidders of both auctions have the incentives both to participate uninhibitively and to bid truthfully
and efficiency be ultimately attained.

Further, we formulate business models in which the trading rules are not imposed exclusively
by the social planner. In particular, we extend the hierarchical business model to a less restrictive
one, in which providers are allowed to choose any payment rule to apply to their own local
market, provided they conform to certain (yet fewer) restrictions. We investigate cases in which
it is possible for providers to gain more profits by choosing payment rules that lead to inefficient
allocations. We prove that if each customer is allowed to select his own provider on the basis

of the selected payment rules, then each provider has the incentive to keep the original rule, for
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otherwise he would end up with no customers.

Thus far, we have assumed models for selling bandwidth in which the seller’s role is restricted
to defining the auction rules. We consider the problem of selling a single unit of bandwidth with
the seller participating in the selling procedure too. This may be the case when the seller is also a
service provider. The seller has a positive valuation for the good that is not known to the others.
In order to maximize his expected profits, the seller’s strategy consists of two parts: a) the choice
of the auction type and b) the derivation of his own bid (which can be thought of as a reserve
price that is not known to the bidders). We consider first and second-price auctions. Bidders’
strategies are affected by the fact that they face one more player. Additionally, they receive a
signal for the seller’s valuation according to his choice of the auction type. This extra information
affects their optimal strategy too. We derive both bidders’ and seller’s strategies in first-price and
second-price auction under various information models. We compare the seller’s expected profit
in these two auction types and show that in some cases a first-price auction is more profitable
while in other cases a second-price auction yields higher profits to the seller. We also show that
this does not contradict the fact that the second-price auction with reserve price is the optimal
mechanism with respect to seller profits.

We revisit the network-wide Progressive Second Price auction (PSP) proposed by Lazar and
Semret. In the aforementioned mechanism, each bidder submits a consistent bid independently
in each link he is interested in, taking into account the overall competition that appears in the
path of his interest. We propose a new strategy for bidders taking into account the competition
that appears in each link separately: we split the bidder’s valuation for the demanded quantity
such that each portion depicts his valuation for the same quantity in the respective link. We
have carried out a wide variety of experiments that show the following: a) bidders obtain higher
expected net benefit by adopting the proposed strategy than that attained with the original one.
The only exception to this rule is the case where a bidder with high valuation plays first. b) the

proposed strategy yields an outcome closer to the optimal social welfare than the original one.

Supervisor: Co-Supervisor:
Christos Nikolaou, George D. Stamoulis,
Professor of Computer Science, Associate Professor of Informatics,
University of Crete Athens University of Business and Economics
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Exywpnon xaw Xpéwon TrnAenixowvwviaxwy ITopwy
HECL ATMUOTEACLLDY

Mogiva E. Mritedxn

Awaxtopnf; AtatelBn
Turua Entiotiune Troloylotoy
Havemothuo Kertng

Extevic Ilepindn

H avdntudn twv tnAemxovovioxey ayopny xadeg xol 1 Tohin TV TpocQEpOUEV®Y UTNPE-
oLV €Youv xataoThoel avoyxaia TN EAETN TV Pedodnwy Ypéwons oTa THAETXOVGYIOXSE dixTua.
Extoc and v avdyxn xataBohic TEAOV ex HEPOUS TWV YPNOTWY, OOTE Vo XAAOTTETAL TO XOOTOG
T0UC, 1 YPEwor dadpoapatilel Evay onuavtixd poho aTov EAEYYO NG ouupdenone xou diver xivntpa
yioo anodotuxt yeHon Ty dixtuaxwy topwy. Ot xbpiec yédodor ypéwone mov €youy pehetniel xou
€QUPUOCTEL Yia TNV TOANOY €bpoug Lwvng elvar 1) eninedn ypéwaon xau 1 yeéwon Baoet ypRons. Toco
otay egapudletar 1 eninedn ypéwon 660 xar N ypéwor Bdoel yeRong, o xadoplopds TV TIU®Y v
dvoxohog Yt 1 {Rtnomn TV TeEAAT®Y eV anotelel YVwoTr TAnpogopia Yo Toug twhntés. Mo
evolhoxtixy) u€dodog ypéwong xatd tnv onola ot Tiwég xadopllovtar BAGEL TOU AVTAYWVIOUOD TWY
TeEAATOV ywplc vo anatteltar 7 eX TwV TpoTépwy Yvwon e {ATnong toug, elival 1 eopuoyy| dnuo-
Tpaot®Y. LNy mapovoa datplBr| e€etdloue Tpolhfuata exywenong edpoug Lwmvng xat YeEwang Tou
O TNAETIXOWVOVLOXE BiXTUA UECL DNUOTPACIOY.

Apyxd, opiCope 1o mpoBinua exywenong eipoug LOYNG TNAETIXOVWVIOXGY BIXTOGY OF ayopd
tepapyxnc doung Buo emmEdWY. O TwANTAS ToL dvw emEdoL Stodétel Blaxplté povddes ebpoug LN
o€ €vat 6OVOAO amd eVBIAUETOUS TAPGYOUS TNAETIXOIVWVIAXMY UTNRESI®Y, xadévag and Toug omoloug
WAl To UePidlo TOU GTOUS BIX0NE TOU TEAATES 0TO XATw eninedo. Ocwpolyue OTL 0 TWANTASC TOU AvVe
eMTESOL €YEL WG GTOYO TNY ATODOTIXNY EXYOENOT TOU €0POVS {WVNE GTO GUVOAD TWY TEAIXMY TEAATWY
xou 6Tt autog xadopllel Toug xavdVES TOu Unyaviopol TOANoNg, dNAadY Tov TEOTO TN EXYWENONS
xou ypéwong xat ota duo eninedo. Kdte mehdtng €yer dtoTnd yvwotés allohoyRoELS Yiol TIC LOVADES
oL elpoug Lwvng, mou elvor giivouoeg yio xdde emmAéov povada. Emiong, yia xdde evdidueco

ndpoyo, N aflohdynon xdde povddag woltar e To €coda Tou Yo amoxoulcel and TRV TOANOY TNS
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oLYXEXPIMEVNS UoVAdAC 1) omola elvon Gyvwotrn mpv T cuvakhayr. Auth 7 rautepdtnTa xooTd
Vv enfAvon tou tpoPArfuatog dvoxoln xat eotidlel oY avaliTnon XATIAANAWY BNUOTEUCIOY YLo
ot BUO eTIMEDA XATA TETOO TPOTO MOTE 1 AVTUAAAYY TNC TANEOPORIAS AVAUESA OTOUC TUIXTES Vol
odnyfoet oto emduuntéd anotéheopa. Ilpoteivouue éva xouvotdpo unyaviopd mov cuvictatar ond
dnuponpaoieg avoixtol tOmoOL auiavouevne TuAC Yo xdde eninedo. Apyxd Yewpolue 611 Gheg oL
dnuompacies elvar GUYYPOVIOUEVES YEGL EVOS XOIVOL POAOYLOU TO 0TO[0 LTOBELXVOEL TNV TPEYOLGA TIUN
avd govada evpoug Lwvng o Oheg Tic dnuonpaciec. O malxteg xo TV duo emTEdWY UTOBAAAOLY
™y emdupnty ToodTNTa o xqle TR ywelc vo YiveTow dnudcta YVwoTH auTth TOug 1 TPOCQORd.
Emmhéov, xade maixtne uroypeoltar va unofdher giivouces mpocpopéc xadng 1 tun avgdver. O
unyaviopos teppatileton dtav 1 {Atnom €xet yiver fon pe ™V TpocYopd oe OheC T dNPOTPAGIES.
Kdéve maixtng anoxtd tnv ntocétnta touv {Rtnoe oto t€hog tne dnuonpaciag otny onolo éhaPe pépoc.
O tpdmog ypéwong dagépet ota duo enineda. Xtn dnuompacio Tou dve emnédou epapudlovue Tov
xavovaL ye€waong tne dnuonpaciog auiavopevou pohoylol pe eacpdiion mou Eyet mpotadel and Tov
Ausubel:  xddc evdidpecog ndpoyoc mAnpvel yia xdde Lovdda Tou €yElL ATOXTACEL, TNV TIWH OTNV
onola e€aoPANOE TN CLYXEXPIWEVY LOVADdA, ONAadY TN YAunAoTEPN T XuTd TNy omola 1 povada
auty Bev {nteltar and Toug avTimdAoug Tou. X1 dnuonpacio Tou xdTw emmEdOL opilouue uto VEou

tOnou e&aopdhion, Y€tovtag Toug e€NC TEPLOPIoUOU:

Ié Ié ’ 7 Ié 4 /4 7 z Ié
o Kae povado dratideton and tov evdidueso ndpoyo otny Tt otny omoia TNV x€pBloE GT0 Avw

eninedo.

o H iy xdde povddac tnv onola nwhel xdde evdiduecog tdpoyog dev mpénet va eivar uPnhoTepn

and TNV TEAXT T TG dnuompasiag Tou dve emTESOL.

Anodeixvioupe 06Tl UE TNV EQUQUOYYH TOU TOQUTAVG Unyaviouol, toybouv ot e€ig xuplapyes
otpatnyxés: o) xdde tehixds TeNdTNG anoxahlnTer TRV Tpaypatixy] Tou {Atnon oty dnponpooi-
o oL GUPPETEYEL, xou B) xdle mdpoyog amoxahdnTel TRV Tparypatixy cuvokxh {Rtnon g ayopds
oL 011N dnuonpacio Tou dvw emnédou. H mupandve otpatnyed twv evilapéowy Tapdywy EYel g
ATOTEAEGHO TOV TAUTOYPOVO TEPUATIOUO OADY TWYV BNUOTEACLDY TOL BIEVERYOUVTAL Xat GToL BUO ENITE-
da. Movadixn e€aipeor authc TNe IBIOTNTAC AMOTEREL 1) TERITTWAN TNG U1 AVTAY WVICTIXAS oY OPdS XAUTA
NV onola €Vag EVOLIUECOS TdPOY0C AnoxTd OAeS TIC Lovades ebpoug Lovng. e auth tnv nepintwon,

ETUTEEMETAL 1) YPEWOT) TWV POVADWY GTO XdTw einedo o LPNAGTEPES TIwéS amd TNV TEMXY TIUR TNe
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dnponpaciog Touv dvew emmédou. O unyaviouods XATUARYEL 0T CUYOAIXY ATOBOTIXY EXYWENOT TOU
ebpoug Lovne. Emnpootétwe, 1o dpehoc xdde nehdtn elvar 1o (810 pe autd mou VYo Tou ané@epe 1
ar’ evdelog TdOAnon tou edpoug Lwvng and tov twinth. H achyypovn dieCaywyn tov dnponpastdy
OV BV EMTEDWY PE TIC dNuoTpacieg Tou xdTw emmédou Vo TponyolvTal, AToTEAE! Eval atAoUCTEROD
TpOTO LhoTOINONE TOU TaPATAVE UNyaviopol. TTeputépw, SIATUTOVOLYUE ENLYEIENUATIXE TPOTUTA TOU
YEVIXEVOUV TO 0py X0 LEpapyxd TEdTUTO. Oewpolue OTL o1 Xavoveg GUVIAAAYTG 010 XdTw eninedo
dev emPBdhhovial amOXAEIGTING An6 TOV TWANTY TOu dvw emmédou. Eidwxdtepa, emexteivoupe To
LEQPUPY %O TEOTUTO GE €VAL TILO YEVIXO, 0TO OTO[O0 Ol EVOLAUESOL TPOYOL UTopOLY VoL EMAEEOUY OTOLOVOY-
ToTe xavéva Yeéwone oty Tomxt| Toug ayopd. Meketdue mepinT@oelg oTIC onoleg elvar Suvatd yia
ToLg TPy oLS Vo artoxouilouy TEpIoGOTERY XEPDT UE W) amodoTixolg xavoves ypéwons. Emmiéov
WEAETAPE TEPITTWOELS xaTd TIC onoleg éyel emPBAndel otoug evilapéoous napdyous O TEPIOPLIOUOS TN
HEYIOTNG EMTPENTAS TIUAG TOANONS 0 XAV LoVADdA TOU XATw EMTEBOL TANY TNS TEPLTTWOEWS TNS U
AVTAY WVIOTIXNC CUUTEPLPORAS. LUYXQIVOUUE TOV TRPOTEVOUEVO UNYAVIOUS UE TOV XAVOVA OUOLOULOPPNG
Ye€waong 610 xdtw eninedo. Amnodeixviovpe 0Tt edv xdde meAdTng €yel TN duvatdTNTA Vo ETIAEEEL
TOV TdPOY 0 TOL BUCEL TV EMAEYUEVWY XAVOVODY YPEWOTNC, TOTE XAVEVOS TENATNS DeV Vo eMAEEEL TOV
TapoY 0 ToL £QupUdLEL TOV XaVOVA opoLduopYNS Ypéwons. Enouéveg, xdlde ndpoyog €xet 1o xivntpo
VoL BLOLTNPHOEL TOV TPOTEWVOUEVO YNy avIoWd, 1) ENLAOYT Tou onolou odnyel oe onueio loopponiug UeTall

WY LAPOPOLY TAPOYOV.

Q¢ €dw, €youue Yewproel TpdTUTA YIoL TNV TOANOT EVpous LOVYNE 0T omoiot 0 POAOC TOU TWANTY
neplopileton otov xadoplouwd Twv xavovey dnponpaciog. EZetdlovye 1o TpdBAnua tOANONS WG EVL-
afag povadag e0poug LOVNG, YE ToVv TWANTH Vo GUPUETEYEL 0T Bradixacio TdANong dedouévou 6Tt xat
autog elvon eniong xou mdpoyog. H oupuetoyy) Tou twinty eivan 10odivoun pe Ty LToBoAY xpLPRC
TG exxivnong and avtov. Ocwpolue ott xdle TEAdTNC YVLEIlel TN CUUUETOY Y TOL TWANTY Xt EYEL
BTG Yoot altohdynon Yy o ayads. Emiong, o nwkntic €xer biwtxd yvooty| alohdynon
yioo T0 ayads. Ocwpolye emmhéov 6Tt ol allOAOYNOES OADY TOV TAUXTOY axoAoLYolV TNV OUoLo-
wopon xatavour| oto ddotnua [0,1]. H otpatnyxd tou nwinth npoxeévou vo peytotoromdoidyv
o avaevopeva x€pdr tou anotehelton and dvo pépn: o) TNV emhoyr| Tou TUTOL dnpompaciug xou
B) v emthoyn e mpoopopds tou. EZetdlouye drponpaciec npdtng xon debtepne Tipnc YewpodvTog
apEYIXd 6Tl 0 TWANTAS Eival LTOYPEWUEVOS VoL DIEVERYNOEL TNV WLal oo TG duo dnponpacies xdde popd.

Or otpatnyixés TV Yenotoy ennpedloviot and To Yeyovog 6Tt avTUeETOTI{ouy Evay axour avtinaio
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(tov nwhnth). EZetdloupe Tic oTpatnyIXéS TV YPNOTOV X0t TOU TWANTH 0TI dNUOTPUoiEs TEMTNG
xot 0evTEPNS TG, LT dnuonpacia Tp@TNS TIWAS 0 TWANTAC ATOXUADTTEL TNV TEAYUATIXY] TOL all-
ohbymom v o ebpog Lovng, eved ot dnuonpacio dedtepng Tiurg LToPdiel Tpooopd LYNAGTEET TN
alloAdynonc Tou. L dnponpacia TN TN xdde TEAATNE UTOBIAEL TPOGPOREE YoUNAOTERT TNS
aZloh6ynomc tou yia to e0pog LOVNg, eve 0Ty dnponpacio SeVTEENS TIWAS ATOXANDOTTEL TNV TEAYUATIXT)
T0U aZlONGYNOY. LUVETOC, TPoxUTTEL 6Tl xauia dnponpacia dev amotehel amodoTixd Ynyaviouo.
Luyxpivouye T0 avopevouevo x€pdoc Tou TwhnTH o avtolg Toug dVo TUToug druompaciog xou
delyvouue Ot avdhoya pe TNV T NG oIOAOYNONS TOU TWANTY OE OPICUEVES TEPITTWOEIC 1) ONUO-
npaoio TEOTNE TWAC anopépet LYNMAGTEPA XERDY EVE® e JAAEC TEPITTWOELS 1) dnponpacia SebTepng
Tihc elvon eplocdTepo xepdopdpa yia Tov TwAnth. EEnyolue eniong 611 autd dev épyeton oe avti-
eom ye 1o yeyovodg 6Tl 1 dnuonpocia Sevtepne TIWAS Ue TIwh exxiviong eivar o BértioTog unyaviouoc
660V aPopd To XEEDY TWV TWANTGY. 3T0 TRPOTUTO AVTH 0 TWANTAS ATOXANITTEL TANPOYOpla TYETIXG
He TV a€lohGYNON TOL 0TOUC TMEATES, Ol OTo{oL TNHY YENOOTOOY Yia vor EE8YOUV Th oTRATNYIXY
ToUS. 21N dnuonpacio TE®TNS TIURS COUPOYA UE TO TPOTUTO TOU €YOLUE OPIOEL O TWANTAC BEV €yElL
TNV ETAOYY TOU UNYAVIOUOU, ETOUEVMS Ol TEAATES EEAYOLY TN OTPATNYIXY TOUS BAoEl TN apyIXng
TOLS YVOONS Yo TNV a€loAdYNoT ToL TwANTY. Enopévewe ta duo mpdtuna dev elvan otpatnyixd toodi-
VOO X0l oy Ol TwANTES elyay emthoyT o Yo loyvay To TpoavapepVEvTa AToTEAEGUATO Yol T XEPDT,
toug. Elvar yvwoté and ) dewplo 6t 1) dnuonpacio dedtepng Tipnc e Yvwot) Tipn exxivnong, n
omola anodidet To (510 avauevouevo x€pdoc oTov TWANTYA Ye T dnuonpacio delTepng TIUNC UE XpUYT

T exxivnong anotekel to BEATIOTO Unyavioud.

Téhog, e€etdlovye 10 MPOBANUa exywpenons ebpoug Lovng oc dixtuo avdulpetne Tomoloylag ye
0TOY0 TN YeyoTomoinoy Tne xovwvixhg eunueplac. Idwitepo yopuxtnelotind tneg enrduuntrc hong
anotehel N anaitnon xdde yprotng va xepdilet ny dla tocdnta epoug Lwvng oe xdde chvdeouo Tou
povoratiot tou. EnaveZetdloupe v npoodevtixy dnponpacio dedtepne tuic (Progressive Second
Price Auction) nou éyet mpotael and toug Lazar xar Semret. Koatd v npoodeutixr dnuonpacio
deltepne TiRg, o vixntég xadopilovton BACEL TRV TIUWY TEOCPORMOY TOUS XUl TANPOYOLY YIOL TNV
nocotnTa e0poug LWVNE oL €Y0uY AmOXTHOEL To x60T0g euxatplagc. Me dhha Aoyia, xdde vixnthc
TANPOVEL TO TOG6 TOL TEOGPEEOLY HGOOL anoxAelovTal and TNV Tapousia Tou. Xtov Tpoavapepdévia
UNYOVIoWO, 1) 0TRATNYIXY ToU TPOTElVOLY €YEl ¢ e€Ng: xdie YpRotne uTOPBARier TNV [Blo TpocPOpEd oE

xdde oOVBeEsPO ToU LovoTatiol Tou, hauBdvovTtag uToYr To GUVORIXG avTaywVIoWd Tou eppaviletar
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o€ 6hoLg aUTONE TOUS CLYIECUOVS. AToTéNEoUA AUTHS TNS OTEATNHYIXNS Evol 1) UTOBOAY LYNAGDY TIUGY
and Toug YPNOTES HOVOTATION, TIC OTOIES OEV TANPMYOLY (AGYW TOU Xavdva YEéwomne Tou XGGTOUG
euxauplag) ohhd odnyodv oe apxetéc mEPITTWOES ot Un anodotixd anotéheoua. Ilpoteivouye pia
véo oTpatnyixy UE TNV omola ot ypRoteg AauPBdvouv unddn Tov avtaywviopd mou eugavileton o
x40 cOVOECUO YWEIOTA, XATAVEUOVTAS XATIAANAG TN GUVOAIXY TIUY TEOCHOEJAS YLo TO UOVOTATL
avd Toug oLVBETUOLS. LOUPLVA Ye TN Véd oTpatnYx! xdle ypnotng umoPBdiler Ty Bl TocdTHTA
aANd BraopeTint| T oe xdde abvdeopo mou xadopiletor Bdoel Tou avTAYWVIOUOL 6To GOVOECUO
autd. 'Eyovue mpoyUoTOTOOEL EXTETAUE VO TELOUUOTA UE TA OTOLOL UEAETAUE TNV ATOBOTIXOTITAL XU
o xodapd 0QERN TV YenoTwy und Tig dUo atpatnyixéc. Ta anoteléopata cuvoilovta ota e€ng:
a) ot yerfiotes hapPdvouy uPnhoTeEpo avapevouevo xadupd GPeENoC Pe THY LIOVETNOT TNS TEOTEVOUEVTS
oTpatnyxAc and auTd TOU ETTUYYAvVETOL Y TNV apyixh. Movn elalpeorn oe autdV TOV xovOVaL
evdeyouévwe anoterel o yphotne povoratiol Tou unofdher Tpwtog tpoogopd. B) H mpotewduevn
OTEUTNYIXH TaPdyEL Ya To amodoTix exywenom ebpoug Lodvng and tnv apytxh. H xovwvixi eunuepia
UTO TNV TEOTEWVOUEVY) OTEATNYIXY Elval TOAD xovtd oty péylotn T Avtideta n xowwvixy eunuepio
UG TNV OPYIXY] OTPATNYIXY UTOPEl Vo amoxAivel onuavtixd and tn UEYIOTN TR, SUYXEXPLUEVA,
660 TeploabTEpOL elvar ol ypeRoTEC povomaTiol TOoo UeyahlTepn elvon 1 amdXAON TNG XOWOVIXAC
eunueplac. Emimhéov, 660 uhnhotepn elvan 1 cuvdptnon alohdynons twy yenotwy wovoratiob t16co
peyohOtepn eivan 1 andXAIoT] TNG XOVWVIXAS ELTUERiog.

Kopio yopoxtnetotind AoV v TpoBANUdteny Yeewons Tou UEAETHOUUE 0NV Tapolod dlatplfn
arotelel 1 EAherhn TAnpopoplug TV TuUXTGY Tou euTAéxovTal oTiC didpopes ouvakhayés. H mpoond-
Vel xdde oLUVAAAACGOUEVOL VAL ATOGTACEL TNV ATAUTOUUEVY] TANEOPOpRio amd TOUC AVTITIAOUS TOU
€101 WOTE VO UEYIOTOTOINOEL TO ATOUXO TOL OQeENOG 0dNYel TOAES Qopéc oe un emduuntd anoté-
Aeopa elte Y éva pépog elte yia 6ho To xotvwvixd cOvolo. H egapuoyn tne Yewplog mouyviwy
OTIC TNAETUXOWOVIUXES oYOPES DIEUXOADVEL TN UEAETY TNG CUUTEPLPOPAS TWY TOUXTMY XAl AVOUEVETOL
VoL amoTEAETEL EVaL YENOLHO EPYUAEIO YIOL TNV AVTIUETOTION UEANOVTIXADY EQELVITIXMY XL TEUXTIXWDV

TEOPBANUATWY YEEWONG UTNRESIMY.

Emnfiénwy: YuvemPBrénov:
Xprotog Nixoldov, Fewpylog A. Ytopoling,
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Chapter 1

Introduction

In recent years, considerable research has been conducted on the development of new pricing and
trading mechanisms for network resources and services. The mandate for new charging schemes
has emerged from the evolution of network technology that provides users with more complicated
and customized services. Thus, appropriate charging schemes are required so that economical
and engineering efficiency be reached. The high competition and the lack of information about
users’ demand motivate the use of auction mechanisms. The present dissertation analyzes auction

mechanisms aiming to allocate bandwidth to users efficiently.

1.1 Motivation

Bandwidth is a scarce resource during congestion periods and should be utilized efficiently. To
this end, it is necessary to employ economic methods to allocate resources among competing
users in order to increase network performance. Prices play an important role not only because
network providers need to recover their costs in order to remain in business. Different charging
schemes have showed the importance of generating the right incentives to users for efficient use
of network resources. Users act rationally and seek to maximize their own profits without any
concern about the well-being of the society. The absence of charging rules encourages users to
misuse the network resources and generate congestion, while the introduction of prices may cause
a reduction in demand and control congestion. To anticipate users’ behavior, the network provider

should choose simple and efficient charging schemes that attract many users who are led to reveal
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their true valuation for the resources. This property is referred to as incentive compatibility
and is essential in cases where the objective is efficient usage of resources. A complex charging
scheme would make it difficult for users to realize the effect their actions have in the amount they
will ultimately pay. In addition to aiming for economical efficiency, engineering efficiency is a
matter of concern too. That is, it is desirable that a charging scheme is simple for the network
to implement.

The simplest scheme is flat rate charging. According to this, users pay a flat fee regardless of
the amount of resources they use. Extended research has been conducted for the design of usage-

based charging schemes, which in contrast to flat rate charging have the following properties:

1. They reflect resource usage so that fairness among users is established. This is required for
attaining economical efficiency: the resources should be shared among those users that are
willing to pay the most. Under a usage-based charging scheme each user pays for what he

has used, thus no one has the incentive to waste resources.

2. They deal effectively with congestion, since users restrict their demand according to their

actual needs.

3. They enable the provision of differentiated services. A service is characterized by the type
of traffic it handles and the quality of service required. Different services consume different

amounts of resources and should be charged accordingly.

4. They give the right incentives for providers to upgrade capacity. Given that network re-
sources are used efficiently, the network can only serve more users by increasing the amount
of resources. Part of the revenues obtained by the trade can be used to expand the network

capacity.

A number of researchers have proposed such schemes for best-effort services [21, 13, 6] as
well as for guaranteed services [14, 10, 15]. For the latter case, charging schemes need to mea-
sure/characterize user traffic. The major objections to existing usage-based charging mechanisms

are:

1. The difficulty in price determination in case of partly known demand, which applies almost

always. If the network provider has no information about users’ maximum willingness to
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pay, he may incur losses by not setting the prices that reflect market demand. Low prices
may result in decreased revenues and higher prices generate the risk to the provider of not

selling the resources. In both cases, efficiency is not attained.

2. The high accounting/implementation costs. Usage-based charging schemes should be com-
plemented by the functionality necessary to measure the amount of resources used by every
provider. The design of sophisticated methods for accurate traffic measurement increases
the performance of the network at the expense of an increase of implementation costs and

complexity.

The balance between efficient use and simplicity is a strenuous task. Thus, almost always
efficient charging approaches are complicated. Taking account of the above disadvantages, re-
searchers have employed auction mechanisms as a means to solve the resource allocation and
price discovery problems. Auction mechanisms often provide an efficient way of allocating scarce
resources and achieve high value for the participants. Auction theory is suitably applied in en-
vironments where demand is not known, the information available about the value of the items
is either limited or fluctuates frequently (and thus, prices need to be discovered in the process),
and dynamical response to changes in market conditions is necessary. Properly designed auctions
are simple, well-defined, fast and transparent mechanisms. Also, certain auction mechanisms
lead users to reveal their true willingness-to-pay so that the property of incentive compatibility
is met and efficiency is facilitated. Therefore, auctions are particularly suitable to the problem of

network resource allocation combined with charging.

1.2 Related Work

There have been published several studies on allocating and charging network resources by means
of auction mechanisms. MacKie-Mason and Varian describe in [21], a mechanism for setting
the prices at network access at different priority levels; this mechanism is referred to as “smart
market”. In a smart market a user attaches a bid to each packet he wants to be transmitted. This
bid corresponds to the user’s maximum willingness to pay. All packets with bids greater than a
cut-off value are admitted. Users are charged this cutoff value, which is the highest bid among

packets that are not admitted. This scheme is very unstable since admission control has to be
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performed for each new packet. Thus, the engineering cost is very high making the smart market
hard to implement. Furthermore, the uniform pricing rule that is applied does not lead users to

bid truthfully.

Lazar and Semret propose in [19] the progressive second price (PSP) auction for the allocation
of a divisible good (network capacity) in a single link without any a priori knowledge of demand.
In particular, the PSP auction is an iterated game in which bidders are asked to submit two-
dimensional bids indicating the desired quantity and the unit price. The bid price increases in
time. Bidders respond to their opponents’ offers until an equilibrium is reached. In the PSP
auction users bid truthfully and bandwidth is allocated almost efficiently. The authors extend
their approach to include bandwidth allocation in a network of arbitrary topology assuming
independent PSP auctions in each link [20]. They derive an optimal strategy that combines
information of all links of one’s interest. A bid is then computed and submitted in each link of

the path. It is claimed in [31], that equilibrium and efficiency properties still apply.

Maillé¢ and Tuffin propose in [23] the one-shot multi-bid auction scheme for the allocation of a
divisible resource in a single communication link; this scheme is closely related to the PSP auction.
In particular, bidders submit a set of two-dimensional bids instead of one that is submitted in the
PSP auction. This set of bids corresponds to a discretization of the bidder’s utility function. The
authors use an allocation and payment rule that is close to that of PSP. They prove that a bidder
can not do better than reveal his true valuation and that the multi-bid auction yields an outcome
that is very close to the efficient one. They extend the multi-bid auction to a special case of a
network [24]. In particular, they consider a tree-like network which consists of an overprovisioned
backbone network interconnected with local access networks. They adjust the multi-bid auction

to allocate the same quantity of bandwidth in each link of one’s path.

Courcoubetis et al. present in [9] a descending auction mechanism (MIDAS) for bandwidth
allocation over paths. Bidders report their bids simultaneously and independently in each link
where Dutch auctions are applied. Prices are reduced in each link at different rates and various
price reduction policies are evaluated and compared experimentally. An important feature is
instant allocation of bandwidth due to the property of descending prices. Experiments show that
the proposed mechanism performs well in terms of efficiency. The issue of incentive compatibility

is not covered completely in [9].
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Reichl et al. present in [27] two extensions of the Generalized Vickrey Auction that allow for a
dynamic pricing of flow-based Internet traffic covering more than one Internet Service Provider.
In particular, the authors of [27] deal with Delta Auctions which provide a solution for the
delay problem caused by multiple auctions necessary for setting up a connection crossing multiple
Internet Service Providers. Moreover, the authors of [27] present a multi-provider auction model
(CHiPS) based on the idea that the holders of already running connections are preferred than
newly arriving bidders, so that their connections are not interrupted in the immediate future.

Reichl et al. deal with auctions for multi-period sessions and multi-link connections in the
Internet in [26]. The authors of [26] propose the Second-chance Auction Mechanism (SAM). This
is a combination of the MIDAS auction of [9] with the CHiPS mechanism of [27] in which users
who have received allocations in a certain auction (in time) should be allocated bandwidth in the
subsequent auction as well. The authors of [26] claim that this results in improved efficiency even
for the network case.

Lalis et al. propose in [18] a trading mechanism based on a continuous double auction. This
mechanism is employed for matching application requests to the services offered over an ATM
switch. The authors of [18] investigate the performance and robustness of the mechanism through
a series of experiments. In particular, end-to-end quality of service is achieved when clients

compete in multiple autonomous resource markets, for a fixed period of resource usage.

1.3 Problems Analyzed and Our Contribution

In this section we summarize the problems analyzed in this dissertation as well as our contribution.

Bandwidth allocation through two hierarchical levels. We formulate a new problem
of allocating bandwidth through intermediaries, in a single link. In the top level the social
planner allocates bandwidth to intermediate providers, who in turn allocate their assigned shares
of bandwidth to the customers in the lower level. The social planner defines the rules of the
mechanism. QOur objective is the efficient overall allocation of the entire supply of bandwidth
to the customers, as if the social planner were to assign this bandwidth directly. We propose
an innovative mechanism comprising an appropriate auction in each level. The auctions are

coordinated so that supply is exhausted at the end, as required for attaining efficiency. The bidders
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of both auctions have the incentives both to participate uninhibitively and to bid truthfully and
efficiency be ultimately attained. Our approach has the important property that users pay the
same despite the existence of intermediaries.

Furthermore, we formulate business models in which the trading rules are not imposed exclu-
sively by the social planner. In particular, we extend the hierarchical business model to a less
restrictive one, in which providers are allowed to choose any payment rule to apply to their own
local market, provided they conform to certain (yet fewer) restrictions. We investigate cases in
which it is possible for providers to gain more profits by choosing payment rules that lead to
inefficient allocations. We prove that if each customer is allowed to select his own provider on the
basis of the selected payment rules, then each provider has the incentive to keep the original rule,

for otherwise he would end up with no customers.

Seller participation in a single-unit auction. It is very common in telecommunication
markets for the owner of bandwidth, to have a positive valuation by keeping part of it for himself.
For example, the owner may be an ISP too, as his customers are. We address the problem of
selling a single unit of bandwidth (i.e. the entire capacity of a link) with the seller participating
in the selling procedure too. The seller has a positive valuation for the good that is not known to
the others. In order to maximize his expected profits, the seller’s strategy consists of two parts:
a) the choice of the auction type and b) the derivation of his own bid, which can be thought of
as a reserve price that is not known to the bidders. We consider first and second-price auctions.
Bidders’ strategies are affected by the fact that they face one more player. Additionally, they
receive a signal for the seller’s valuation according to his choice of the auction type. This extra
information affects their optimal strategy too. We derive both bidders’ and seller’s strategies in
first-price and second-price auction under various information models. We compare the seller’s
expected profit in these two auction types and show that in some cases a first-price auction is
more profitable while in other cases a second-price auction yields higher profits to the seller. We
also show that this does not contradict the well-known fact that the second-price auction with

reserve price is the optimal mechanism with respect to seller profits.

Bandwidth allocation in a communication network. We revisit the network-wide Pro-

gressive Second Price auction (PSP) proposed by Lazar and Semret in [20]. We have examined
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thoroughly the efficiency of the mechanism and have discovered a major deviation from the opti-
mal social welfare. We argue that this is caused due to the strategy proposed for path bidders.
According to this strategy, the optimal quantity to be submitted is the largest one such that the
bidder’s marginal valuation is just greater than the total market price. The total market price
is the sum of the prices at the different links. The optimal price to be submitted in each link
of the bidder’s path, is then his marginal valuation at the optimal quantity, which reflects the
total demand of the market. We propose a new strategy for path bidders taking into account the
competition that appears in each link separately: the bid price is now defined to be the minimum
price at which the bidder obtains the demanded quantity in a specific link. Thus, the bid prices
differ in the various links, reflecting the demand of each link as opposed to the total demand,
which is the case with the strategy of [20]. We have carried out several experiments that show

the following:

e bidders obtain higher expected net benefit by adopting the proposed strategy than that
attained with the original one. The only exception to this rule is the case where a bidder

with high valuation plays first and essentially drives the auction to immediately terminate.

e the outcome of the proposed strategy is always very closer to the optimal social welfare,

than the original one.

1.4 Outline

The remainder of the dissertation is organized as follows. In Chapter 2 we introduce basic concepts
of auction theory and review the most important auction mechanisms for a single good, for
many identical goods, and for many heterogeneous goods. Basic results and comparisons of these
mechanisms are also discussed at the end of each section.

In chapter 3 we consider the problem of allocating bandwidth in a single link, through interme-
diaries. First, we define the problem and discuss about the requirements a solution must satisfy
in order to have our objective fulfilled. We highlight basic issues of the problem by analyzing the
case of allocating a single unit of bandwidth. We then describe the hierarchical auction mech-
anism to allocate bandwidth in two levels, and we prove the basic properties of the mechanism

that include bidders’ strategies and efficiency, and discuss about alternative implementations of
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the mechanism and other practical issues. Finally, we introduce various market-based models in
which intermediaries (respectively customers) have been given more flexibility for their charging
rules (respectively which intermediary to associate with). We discuss about the applicability of
our mechanism and the related consequences.

In chapter 4 we consider the problem of seller participation when a single good is being auc-
tioned. First, we review the problem of auctioning a single good by imposing a reserve price.
Furthermore, we derive bidders’ and sellers’ strategies in a first-price auction and in a second-
price auction with the seller participating as if he were one of the bidders. We then compare
the first-price auction and the second-price auction in terms of seller expected profit and discuss
about a paradox that is concerned with the optimal auction for selling one single good.

In Chapter 5 we deal with the problem of allocating bandwidth in a network of arbitrary
topology. First, we revisit the network-wide PSP auction and discuss the weaknesses we have in-
vestigated. We then define a new strategy for the PSP auction. We describe the set of experiments
we have carried out to comparatively assess the two strategies, and present the corresponding re-
sults.

Finally, in Chapter 6 we provide some concluding remarks and discuss directions for future

work.



Chapter 2

Overview of Auctions

2.1 Introduction

An auction is a method for selling a set C of goods to a set N' = {1,..., N} of buyers in which the
auctioneer (seller or a third party) sets the rules and the bidders (potential buyers) place their
offers. The outcome of the auction is specified by the allocation and the payment rules, which
determine the winners and their payments.

The seller is characterized by his cost function and his utility function v : C — R, where
u(q) denotes how much quantity ¢ is worth to him if it is not sold. In the present dissertation,
we consider only cases where the set of goods is fixed and commonly known to all players, and
the seller’s cost function equals zero. Each bidder 4 is characterized by his utility function (or
valuation) 6; : C — R, where 0;(q) denotes the maximum willingness to pay of bidder i for buying
the whole quantity ¢. In case where ¢ takes a continuum of values, the derivative 0} of the utility
function is the marginal utility. €(¢q) denotes the price at which bidder’s ¢ demand equals g; that
is the inverse demand function. Recall that the demand function ¢(p) at price p for a bidder,
denotes the quantity the bidder is willing to buy if the price is p. On the other hand, if the set C of
goods is discrete, the marginal valuation ¢; ; of bidder ¢ for the 4 additional unit he may acquire,
is the maximum amount he is willing to pay for that unit. In this case, the valuation of bidder ¢
for acquiring ¢ units equals the sum of the ¢ marginal valuations, that is 0;(q) = ?:1 0; ;. The
marginal valuations form the respective inverse demand function. The following example clarifies

these issues in the case where identical indivisible units of a single good are being auctioned.
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Example 2.1.1

Consider a set of four identical units of a good. Let O_Z = (0i1,...,0;4) = (8,5,4,2) be the vector
of bidder’s ¢ marginal valuations. Then, for the first unit he is willing to pay 8 units of money, for
the second unit (provided that he has won the first one) he is willing to pay 5 units and so on. The
total valuation of acquiring ¢ (¢ < 4) units is given by the sum Z;Zl 6; ; of the first ¢ marginal
valuations. Following the notation above, the vector O_Z forms the inverse demand function. The

inverse demand function and the utility function of bidder ¢ are depicted in figure 2.1. A
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Figure 2.1: Marginal valuations and utility function of bidder 7 in Example 2.1.1

Another feature that characterizes a player (seller or bidder), is the level of risk aversion.
We introduce the Von Neumann and Morgenstern utility function to explain these notions; for
a thorough study see [3]. Let V' : R — R denote the Von Neumann and Morgenstern utility
function of a player. V' expresses the player’s preferences over the expected profits he gains from
the auction. If V is a concave function of the expected profits, this means that each additional
unit of money is worth less to the player than its previous one. Thus, the player would prefer an

amount equal to the expected utility E(V') of all possible profits than participating in the auction,
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if he had the opportunity to choose. This player is called risk averse. A risk-averse player seeks to
maximize the utility of his expected profits. If V is a linear function of the expected profits, then
the player is indifferent between participating or being given an amount equal to the expected
utility. This player is called risk neutral and seeks to maximize his expected profits.

In order to analyze and design an auction, one should take into consideration the rules, the
players’ utility functions and the information available to each player about his rivals’ charac-
teristics. The two extreme cases, considering bidders’ valuations, usually used in auction theory,

are:

e the private values model in which each bidder’s valuation is privately known to him and not

affected by the others’ valuations and

e the common values model in which all bidders have the same unknown valuation which is

only observed, after the end of the selling procedure.

In any case, bidders’ valuations are not known to the seller and to their rivals, thus, an auction is
considered a game of incomplete information. In fact, the uncertainty about bidder’s 7 valuation
can be described by a probability distribution: the seller and the rivals of bidder ¢ do not know
bidder’s i valuation but know (common knowledge) the distribution this valuation is drawn from.

When these distributions are the same for all bidders, then bidders are said to be symmetric.

2.2 Analysis of an Auction: Objectives and Strategies

Though auctions are easy to organize and implement, it is difficult to design and analyze an
auction such that the desired incentives for the bidders are induced. Thus, the auctioneer should
specify the auction so that his objectives are achieved, taking into consideration how bidders will
play in such an auction. Given the rules and the information available, each bidder selects his
own actions, that is his strategy, such that his own objective is attained.

Among the objectives a seller might pose, is profits mazimization and social welfare mazi-
mization (efficiency). In the first case, the seller wants to select the auction that maximizes his
profit subject to a quantity constraint. The profit for a seller equals the revenues he obtains from

the sold quantity plus the utility he receives from the unsold quantity. Since both revenues and
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quantity finally sold are not known in advance but are assumed to depend on bidders’ distribu-
tions of their valuations, the seller seeks to maximize the expected profits. Auctions having this
property are referred to as optimal auctions. In the case of social welfare maximization, the seller
is a non-profit organization or a government and may also be referred to as social planner. He
wants to allocate (more suitable verb than “sell”) the quantity fairly to those bidders who value
it most. That is, to maximize the social welfare SW, which measures the well-being of the society
consisting of all parts that are involved in the specific trade. Social welfare is given by the sum of
profits of all players (seller and bidders). The profit for a bidder is called net benefit. For a won
quantity g, it is given by NB(q) = 0(q) — ¢(q), where ¢(q) is the amount the bidder is charged for
obtaining quantity g. As a result, the social welfare associated with the vector ¢ = (q1,...,qnN)

of allocated quantities for the N bidders is given by:

ZNB (gi) + u(gs) + r(qp) ZG gi) + u(gs), (2.1)
iEN iEN

where ¢, is the unallocated quantity, ¢ = ¢q1 + -+ + ¢n the allocated quantity and r(g,) the
revenues the seller obtains from selling quantity ¢,. Note that SW is independent of r. Thus, if
all goods are finally sold, the social welfare equals the sum of the bidders’ valuations for the won
quantity. Note that in the case of the social welfare maximization objective, we do not take the
expected value as in the case of profit maximization. Even though 6,’s are not publicly known,
the objective is to find the allocation of the goods that produces the efficient outcome among all
feasible outcomes. In subsequent analysis, we will see that the objectives of profits maximization
and social welfare maximization, are generally in conflict.

As soon as the auction’s rules are set by the seller, the bidders are ready to calculate their
own strategies. A bidder’s strategy is defined as the bidding actions he takes at each time he
has to make a decision during the whole procedure and for each state of information the bidder
may have at such times. Auction theory, as part of game theory, is based on the assumption that
each bidder acts rationally. That is, he selects a strategy such that his utility of the expected
net benefit ! be ultimately maximized, given the auction’s rules. Information exchange among
the different parties of an auction game plays a significant role in analyzing strategic behaviors.

The information (belief) each bidder has about others’ utility functions is part of the assumptions

'In the case of a risk neutral bidder, rational behavior enforces maximization of the expected net benefit.
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about the specific situation in which the auction is applied, whereas the information bidders have
or may acquire about their opponents’ bidding is part of the auction’s rules. The following basic

strategies will be considered in the next sections:

e Truthful bidding is the strategy in which the bidder reveals his true utility function through

his offers.

e Bid shading is the strategy in which the bidder declares a lower price than his valuation for
a quantity; alternatively, we have demand reduction, where the bidder declares less quantity

than his real demand at a given price.

Analyzing one’s rational behavior is far more complicated than considering only the auction’s
rules and the information state. A bidder’s strategy influences and is influenced by the strategies
chosen by the others. Thus, in order to determine the best strategy, a bidder has to take into
consideration what the others’ strategies will be and that the others will make assumptions for his
own strategy too and so forth. A set of strategies, one for each bidder, is called a Nash equilibrium
if no single bidder has the incentive to unilaterally deviate from his strategy, if he knows that all
the other bidders do employ these strategies. An even stronger property of a strategy is that of
dominance. A dominant strategy is an optimal strategy for a bidder irrespectively of the others’
strategies. The special case where truthful bidding constitutes a Nash equilibrium is called the
incentive compatibility property. Throughout this dissertation, bidders will be assumed to select
their strategies without making collusions. Thus, auctions will be analyzed as non-cooperative

games.

2.3 Classification of Auctions

There are various criteria to classify auctions. We distinguish among single-unit, multi-unit and
multi-object auctions, depending on the number and nature of the goods to be sold. In multi-unit
auctions, identical (homogeneous) units are being auctioned such as for example units of band-
width in a communication link. On the other hand, multi-object auctions refer to heterogeneous
goods that might be complements or substitutes. A bundle of goods is said to be complementary
to a bidder, if his valuation for the bundle is higher than the sum of valuations of each good of

the bundle taken separately. For example, consider the problem of selling bandwidth in a path
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of a communication network. A bidder wishes to obtain bandwidth in every link comprising his
desired path, otherwise it is useless to him. Similarly, a bundle of goods is said to be substitute
to a bidder, if his valuation for the bundle is less than or equals the sum of valuations of each
good of the bundle taken separately, that is, goods of the bundle may be substituted by others in
the same bundle. Identical units of a good are perfect substitutes.

We further distinguish between oral and written auction formats. An oral auction is a progres-
sive procedure in which bidders have the chance of making counter-offers and bidding information
may be released, while a written auction is a one shot bidding process in which bidders submit a
sealed bid, and have no chance of responding back.

There have been carried out thorough studies about auction design and very important results
have been established, especially in the single-unit case. In the sequel, we overview some well-
known auctions for selling a single good or multiple goods, some of which can be successfully used
to sell bandwidth in a communication link either seen as a set of identical and indivisible units,

or a single arbitrarily divisible unit.

2.4 Single-Unit Auctions

There are many different auction types used to sell a single good, each one of which is best suited
in different circumstances. An auction is said to be standard if the good is sold to the bidder who
submitted the highest bid. We briefly describe the most commonly used standard auction types

and discuss about their properties. A more detailed exposition can be found in [35].

English Auction. The English auction is an open auction performed in consecutive rounds.
The auction starts at a reserve price, which is the lowest acceptable price set by the auctioneer.
The bidders raise the price in each round until the standing highest bid is no more improved.
The bidder willing to pay the most is the winner and pays his bid, unless nobody submits a bid
higher than the reserve price. The best strategy for each bidder is to increase his bid in each
round by a small amount more than the previous standing bid up to his valuation and then stop.
This is optimal, since bidding a higher amount would not increase his probability of winning but
would increase the payment, had the auction terminated at that time. It is important to mention

that the final price is determined by the second highest valuation of all bidders: the last bid is
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submitted by the bidder with the highest valuation and equals the second highest valuation plus a
small increment. This type of auction is highly susceptible to collusion rings, gives great influence
to the auctioneer and is the most emotional and competitive of auctions. Bidders’ presence is
required and the seller does not necessarily receive the maximum value (not optimal). A principal
property of an ascending auction is that it reveals information to the bidders through the process

of bidding.

Dutch Auction. The Dutch auction is an open auction too. The auctioneer proposes an initial
very high price, which then descends progressively. The first bidder who calls out that he wants
the unit, is the winner and pays the current price. Regarding the strategy, each bidder has to
decide at which price he intends to claim the good before entering the game, since no information
is released during the auction. The only information revealed is the final price and the winner,
which are given at the end, when they are useless. A high bid (up to one’s valuation) increases
the probability of winning, whereas a lower bid induces higher net benefit in case of winning. The
optimal bid shading for each bidder is based on his valuation for the good and his beliefs about
the others’ valuations. The Dutch auction is less susceptible to collusion rings and the auctioneer

has almost no influence.

First-price sealed-bid Auction. Each bidder submits a sealed bid without knowing others’
bids and the unit is awarded to the highest bidder. The winner pays his bid. This type is
strategically equivalent to the Dutch auction; that is each bidder performs bid shading according
to his beliefs about his rivals’ valuations. The following example presented in [16], employs a

first-price auction and shows how the optimal bid shading can be determined.
Example 2.4.1

Consider a set of N risk-neutral and symmetric bidders competing for a good by means of a first-
price sealed-bid auction. Each bidder ¢ has a valuation X; for the good. Each X; is independently
drawn from the uniform distribution on the support [0, 1]. Bidder ¢ knows the realization (i.e. is
the value) z; of X; and that his rivals’ valuations are uniformly distributed. Then the symmetric
equilibrium strategy for each bidder i is given by:

N -1

B(x) = — T (2.2)
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A sketch of the proof is as follows: suppose that each bidder but bidder i applies strat-
egy [ and bidder ¢ has valuation z and bids b. The winning probability of bidder i equals
Plmax;.; B(X;) < b] = Plmax;- X; < 87'(b)] = (87'(b))V~'. Thus, bidder’s i expected net
benefit equals NB; = (871(b))N~1 . (z — b). We take the derivative with respect to b, and solve
the differential equation (NB;) = 0. We obtain b = B(z) = XL - .

We note that, even though bidders lie about their true valuation, the outcome is efficient in
the symmetric case, since the same bid shading is performed by each bidder. Thus, the order of

their bids coincides with the order of their valuations. A

Vickrey Auction. Each bidder independently submits a sealed bid without knowing others’
bids and the unit is awarded to the highest bidder. The winner pays the second-highest bidder’s
bid. It is a dominant strategy for each bidder to reveal his true valuation: a bidder who bids
more than his valuation faces the risk of winning the good at a price higher than his valuation,
while bidding less increases the probability of not winning. In either case, the lowest possible
price reduces to the second highest valuation, which is the same if truthful bidding is applied.

Therefore, the Vickrey auction is an incentive compatible mechanism.

Principal Properties of Standard Single-Unit Auctions. We summarize some interesting
results that arise by comparing the above four auction types with respect to seller’s revenues,
a complete description and justification of which can be found in [35] and [16]. The Dutch
auction is strategically equivalent to the first-price sealed bid auction, since both types release no
information about bidders’ valuations before the end. Under private values, the English and the
Vickrey auctions result in the same outcome (in both types the second highest bidder determines
the winner and his payment), but are not strategically equivalent: in an English auction, bidders
have the opportunity to respond to their rivals’ bids. These results were established by Vickrey
in [33], who additionally showed that all the above standard auction types are revenue equivalent,
given that: bidders have private values, independently distributed, are symmetric, risk neutral
and the seller is risk neutral too (SIPV model). Myerson in [25] extended the above revenue
equivalence result to show that all auctions that award the item to the bidder with the highest
valuation and lead to the same bidder participation, are revenue equivalent. However, if the seller

is risk averse or the bidders are risk averse, then the Dutch auction yields higher revenues to the
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seller than the English auction. A risk averse bidder prefers a higher probability of winning at
a cost of a lower net benefit. Hence in a first-price auction his bid shading is expected to be
less aggressive, thus yielding higher revenues. If the assumption of symmetric bidders is relaxed,
first-price auctions and second-price auctions are no more revenue equivalent: bid shading in a
first-price auction might not be the same for all players, resulting in a different (probably not
efficient) outcome than that of the second-price auction, in which truthful bidding still applies. In
[16], appropriate examples are presented that show that no ranking, with respect to revenues, can
be obtained for the two auction types, when asymmetric bidders take part. Under the common
values model, the English auction is no more equivalent (in terms of outcome) with the Vickrey
auction: information released in an English auction helps bidders make better estimates about

the good’s valuation.

Optimal Auctions. Even though efficiency is attained in any single-unit auction under the
SIPV model (i.e., the good is sold to the bidder who values it most), these auctions are not
optimal. Efficiency and revenue maximization are indeed in conflict. The best the seller could
do, in terms of revenues, is to receive the maximum valuation among all bidders’ valuations, were
he aware of bidders’ valuations for the good. When applying auctions, he can at least receive
the second highest valuation as mentioned above, still this is not optimal. The optimal auction
among all single-unit auctions in the symmetric case is established by Myerson in [25]. This is
a second-price auction, modified by introducing a reserve price that is higher than the seller’s
valuation and depends on the distribution of bidders’ valuation. The winner is the bidder that
has submitted the highest bid provided that it is higher than the reserve price, and pays the
maximum of the second highest bid and the reserve price. Imposing a reserve price, the seller
may lead to the reduction of the number of participants and face the risk of keeping the good
even though there is a bidder willing to pay more than the seller’s valuation (the optimal auction
may not be efficient). This effect is outperformed by the probability of the reserve price being
higher than the second highest valuation, thus resulting in a higher expected value of the revenue.

Optimal auctions are further studied in [28] and [4].
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2.5 Multi-Unit Auctions

In this section, we briefly discuss about multi-unit auctions and summarize some basic properties.
A more detailed discussion can be found in [8] and [16]. Multi-unit auctions of discrete goods can
be either sequential, in which each good is sold one after the other or alternatively simultaneous in
which all goods are auctioned at the same time. Furthermore, we characterize multi-unit auctions
as discriminatory (pay-your-bid) or uniform according to the payment rule that is used. Examples
for both types are given below. We conclude the discussion of multi-unit auctions by describing
an auction for an infinitely divisible good such as bandwidth. All auctions that will be analyzed
in this section are standard auctions; that is, all available units are awarded to the bidders with

the highest bids.

2.5.1 Sealed-Bid Auctions

We summarize three types of sealed-bid auctions to sell C' identical units of a good, namely
the discriminatory, the uniform and the generalized Vickrey auction as presented in [16]. All
these auctions apply the same allocation rule but differ in the payment rule, and thus, in the
bidding behavior. We consider the private values model and that bidders’ marginal valuations

are non-increasing: the bidder assigns a lower value to each extra unit he obtains.

Uniform Auctions. FEach bidder submits C' bids indicating the valuation he assigns to each
additional unit (i.e., his marginal valuations). These bids form his demand function that denotes
how many units he is willing to buy at each price. Winner determination is performed by adding
all bidders’ submitted demand functions so that the aggregate demand function is formed. The
aggregate demand function denotes how many units, bidders are willing to buy in total at each
price. The price at which the aggregate demand function intersects with supply is the market
clearing price. All bids above that price are winning bids. In other words, all bidders’ submitted
bids are ordered and the C highest ones are the winning bids. The market clearing price is
any price lying between the highest losing bid and the lowest winning bid. Each bidder pays
the market clearing price for each unit he obtains (uniform pricing). Figure 2.2 illustrates the
aggregate demand function. The lowest winning bid equals ps and the highest losing bid equals

p1. The market clearing price may take any price between p; and ps.
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Figure 2.2: Aggregate demand function

The bidding behavior in a uniform auction is rather complicated. With uniform pricing bid
shading is enforced: each bidder has the incentive to submit a lower bid than his marginal valuation
for each additional unit. This way, he manages to reduce the market clearing price (demand now
equals supply at a lower price), thus, paying less for each unit won. Even though he thus obtains
less units, there is a market clearing price at which he incurs a higher net benefit. Equilibrium
strategies (i.e. the optimal degree of bid shading) that induce such prices do exist but are difficult
to compute. Nevertheless, interesting properties regarding these equilibrium strategies have been
proved (see [16]). First, bids cannot be higher than bidders’ respective marginal valuations.
Second, it is a weakly dominant strategy for any bidder to submit his true marginal valuation
for the first unit. Bid shading is then performed in the subsequent units. In particular, bid
shading becomes more aggressive in the last units. This differential bid shading causes uniform
auctions to yield inefficient outcomes. In the restricted model where each bidder wishes at most
one unit, truthful bidding is a weakly dominant strategy and the auction is efficient. In the case

of auctioning one unit of a good, a uniform auction reduces to the Vickrey auction provided that
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the market clearing price is taken to be the highest losing bid (i.e., the second highest bid).

Discriminatory Auctions. In a discriminatory auction winners are determined similarly with
the uniform auction but a different payment rule is applied. Each bidder pays his bid for each
unit he wins. Bid shading is the only way for a bidder to extract a positive net benefit. Again
the trade off between increasing the probability of winning or increasing the expected net benefit
is considered. This auction is inefficient too. In the case of one unit, a discriminatory auction

reduces to the first-price auction discussed in the previous section.

Generalized Vickrey Auction (GVA). Vickrey proposed in [33] an efficient mechanism to
allocate C' identical units to players with non-increasing marginal valuations. Each bidder submits
C bids in decreasing order that represent his willingness to pay for each additional unit he might
win. The C' highest bids are the winning bids. A bidder that has won C; units, is charged the
total amount of the C; highest rejected bids that have been placed by the other bidders (and not
including his own). This means that each winner pays the social opportunity cost, which equals
the extra value that would have been generated to the other bidders in his absence. Truthful
bidding (i.e. revealing the truthful demand function) is a weakly dominant strategy yielding an
efficient outcome. In the case of one unit, GVA reduces to the Vickrey auction. The following

example illustrates the uniform and Vickrey payment rules.
Example 2.5.1

Consider two bidders competing for two identical units, with privately known and independent

marginal valuations shown in Table 2.1. If we apply the GVA, bidders are truthful and the efficient

Bidder 1 | Bidder 2

011=8 | 01 =4

O12=5 | O20=2

Table 2.1: Marginal valuations in Example 2.5.1

outcome is attained: bidder 1 wins both units. He pays the two rejected bids 4+2=6. In the case

of applying the uniform auction, each bidder bids truthfully for his first respective unit, while
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shades his bid to zero for the second one. These are equilibrium strategies that yield an inefficient
outcome: each bidder wins one unit. The market clearing price equals zero, so both bidders pay

zero. A

2.5.2 Open Auctions for Selling Identical Units

Ascending Auctions. Ascending auctions are very well explained in [12]. We provide a brief
description herein. In the general form of an ascending auction mechanism for the case of identical
units, winners and prices are determined in an open competition among bidders. All units are
being auctioned simultaneously and bidders willing to pay the most are the winners. Specifically,
each bidder submits a bid of the form s = (¢, p) in each round, where ¢ is the number of units he
would be willing to buy at price p. This bid replaces his previous one. Each bidder is assumed
to have a non-increasing demand curve. Thus, the activity rule that is imposed for each bidder is
a) to increase his bid price and b) decrease the demanded quantity in each round. The set of
all bids forms the aggregate demand function. In the initial round, aggregate demand is high
(higher than supply). In subsequent rounds demand falls as price increases until demand equal
supply, where the auction terminates. The price at which demand equals supply is the market
clearing price. After the end, the bids are ordered from high to low bid prices and the bidders
who have bidded above or at the market clearing price are the winners. Each winner obtains the
units he demanded at his final bid except for the last bidder who obtains the remaining units
(which may be less than the quantity he has demanded). Two alternative payment rules may
be applied: uniform pricing under which winners pay the market clearing price for each unit
they win, or pay-your-bid pricing (a case of discriminatory pricing) in which each winner pays a
different price, namely his bid.

An alternative simpler version of the ascending auction described in [12], is the Ascending
clock auction. A clock that indicates the current price increases in each round. At each price,
each bidder submits the quantity he is willing to buy, instead of a quantity and a price as bidded
in the general format. A bidder cannot increase his quantity as the price increases. Bidding
continues until the total quantity requested by all bidders equals supply. Winners and payments
are determined as above.

The bidding behavior in ascending auctions with uniform pricing is similar as in the sealed-bid
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uniform auction in the private values model. Instead of the term bid shading, demand reduction
is equivalently used: each bidder has the incentive to misreport his demand function and bid for
a quantity less than his true one at each price. Thus, the two auction formats are equivalent
with respect to their outcomes. In the case of common values, though, ascending auctions release
information throughout the process and equivalence is no more valid. With pay-your-bid pricing,
bid shading is inevitable too. Both pricing rules are studied and compared with respect to seller’s
revenues in [2]. The ranking is ambiguous depending on the bidders’ demand curves. Both
approaches discussed above lead to inefficient outcomes.

Note that the probability of a simultaneous decrease in demand by two or more bidders at any
price is negligible. This is due to the fact that bidders are assumed to have marginal valuations
taken from a continuous set, thus the probability that two or more bidders have the same marginal
valuation for a unit, equals zero. However, it is possible for a certain bidder to reduce demand
by two or more units of the good, since each bidder is not assumed to have strictly decreasing
marginal valuations. Thus, it is possible that the final demand be less than supply in an ascending
auction. For simplicity reasons, we henceforth assume that demand does equal supply at the final
price of any ascending auction that is considered in this dissertation. In the case where demand
would be less than supply, the remaining unallocated units of bandwidth would be assigned to

providers according to a rationing rule; for example the rule used in [1].

Ascending Clock Auction with Clinching (ACC). An ascending auction referred to as
Ascending Clock Auction with Clinching was proposed by Ausubel in [1]. This can be applied
to sell C units of a good (e.g. bandwidth) efficiently. The auctioneer starts at a reserve price
that continuously increases as the auction proceeds by means of a price-clock. At each price,
the bidders simultaneously submit the desired quantity which is required to be a non-increasing
function of price. Thus, aggregate demand (sum of bids in each price) decreases and the auction
terminates when it equals supply. Each bidder wins the quantity he demanded at the final price
but is not charged this unit price. Instead of applying a uniform-pricing rule that would result
in demand reduction, each bidder is charged for each unit he wins the standing price at which
he clinched (i.e. he was to be allocated with certainty) this same unit. That is, a bidder wins a
unit at the first time this unit is not claimed by his rivals; i.e., whenever there is a decrease in his

rivals’ aggregate demand, provided that it is less than supply. Under this payment rule, assuming
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pure private values, non-increasing marginal utilities and no information on others’ bids (zero-
information model), truthful bidding by every bidder is a weakly-dominant strategy that yields
an efficient outcome. Alternatively, each bidder may have full information on others’ bids at each
price (full bid information) or may know the sum of bids of his rivals at each price (aggregate bid
information). In the case of full bid information or aggregate bid information, truthful bidding
by every bidder constitutes a Nash equilibrium. GVA is outcome equivalent to the ACC auction
with no bid information: they have the same pricing rule and bidders follow the same strategy.
But the ACC auction does have an advantage over the GVA auction. The ACC auction reveals
only a portion of the winners’ utility functions; their maximum willingness to pay is still preserved

private. Example 2.5.2 shows how ACC is applied.
Example 2.5.2

Suppose there is an amount of C' = 8 units of bandwidth that is allocated to five bidders, with

marginal valuations ? shown in Table 2.2.

Bidder 1 | Bidder 2 | Bidder 3 | Bidder 4 | Bidder 5
611=10 | 621 =17 | 631 =15 | f41 =12 | 051 = 19
0ro=4 |O2a=11| 630=7 | 610=8 |052=18
015=2 | Oos=1 | O35=5 | O43=3 |0s53=16

Table 2.2: Marginal valuations in Example 2.5.2

We apply ACC with the price starting at price 1. Tables 2.3 and 2.4 show the bidding and the
clinching process respectively. Note that although the price is continuous, we only present the
price values at which new bids arise. The auction terminates at price 8 with bidder 1 winning
1 unit, bidder 2 winning 2 units, bidder 3 winning 1 unit, bidder 4 winning 1 unit and bidder 5
winning 3 units, which is the efficient allocation. Bidder 1 clinches his first unit at price 8, since
his opponents’ demand at price 8 is 7 units, whereas the supply is 8. Thus, bidder 1 obtains
the remaining unit (8-7) with certainty at price 8, which is his payment for that unit. Similarly,
bidder 2 clinches his first and second unit at prices 7 and 8 respectively. Bidder 3 clinches his first

unit at price 8, bidder 4 clinches his first unit at price 7 and bidder 5 clinches his first, second

*Recall that 6; ; denotes the marginal valuation of bidder i for the additional unit j.
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Bidding Process
Price | Bidder 1 | Bidder 2 | Bidder 3 | Bidder 4 | Bidder 5

1 3 2 3 3 3
2 2

3 2 2 3 2 3
4 1 2 3 2 3
5 1 2 2 2 3
7 1 2 1 2 3
8 1 2 1 1 3

Table 2.3: Ascending Clock Auction with Clinching in Example 2.5.2: bidding process

and third unit at prices 5, 7 and 8 respectively. Note that even though total demand has dropped
by one unit from price 5 to price 7, three bidders have clinched one unit each. The two last rows
of Table 2.4 show the payments and the net benefits. Bidder 1 pays a total amount of 8 units of
money, bidder 2 pays a total amount of 74+ 8 = 15 units of money, bidder 3 pays a total amount
of 8 units of money, bidder 4 pays a total amount of 7 units of money, and bidder 5 pays a total

amount of 5 + 7 4+ 8 = 20 units of money. A

Decreasing Auctions. In a decreasing auction the seller starts at a very high price that is
gradually decreased. Each bidder calls out a quantity that he is willing to buy at the desired
price. The bidder wins this quantity at the current price and the auction terminates when all
units have been sold. Bid shading is expected invoking inefficient outcomes. Decreasing auctions
are outcome equivalent to sealed-bid discriminatory auctions but not strategically (as in the case
of one unit), since information about one’s rivals’ valuations is being released during a decreasing

auction. Under the private values model, this information is useless.

Revenue Comparison among Multi-Unit Auctions. The comparison among the uniform,
discriminatory, and generalized Vickrey auctions according to their revenues, does not give a clear
rating. If bidding behavior were the same in these formats, then the discriminatory auction would

give the highest revenues among the three, the uniform the second highest and the Vickrey the
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Clinching Process
Price Bidder 1 | Bidder 2 | Bidder 3 | Bidder 4 | Bidder 5

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - 1
7 - 1 - 1 +1
8 1 +1 1 - +1
Allocations 1 2 1 1 3
Payments 8 15 8 7 20
Net benefits 2 13 7 ) 33

Table 2.4: Ascending Clock Auction with Clinching in Example 2.5.2: clinching process

worst among the three, as can be easily seen in Figure 2.3. But this is not the case, since as we
saw previously, bidding behavior differs significantly in each auction. Bid shading for example,
may cause a dramatic decrease in revenues in a uniform or a discriminatory auction. Adapting
the distribution of bidders’ valuations appropriately, one can always find examples in which any

of the above auctions may be superior to the others.

2.5.3 Progressive Second-price Auction (PSP): a mechanism for selling an

arbitrarily divisible good

Lazar and Semret propose in [19], the Progressive Second Price Auction Mechanism for bandwidth
allocation in a single link. They consider a quantity C' of an arbitrarily divisible resource, namely
bandwidth, to be allocated to a set of bidders N' = {1,..., N}. Each bidder is assumed to have
a privately known valuation. Bidder’s 7 valuation is given by the function 6; : [0,C] — R and

satisfies the following assumptions:
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Figure 2.3: Payments under different pricing rules

e 0; is differentiable,
e 0! > 0, non-increasing and continuous,

e Jv; >0,Vz > 0,0i(z) >0 = Vn < z,0/(z) < 0;(n) —~vi(z —n). This implies that as long as

the valuation is strictly increasing, it must also be strictly concave.

Equivalently, a bidder whose valuation satisfies the above assumptions is characterized to have
elastic demand. A repeated game of incomplete information is formed, where each bidder places
a bid asynchronously to his opponents, after observing their bids, thus replacing his old bid. New
responses from bidders follow, and the procedure terminates when none of them is willing to renew
his bid. Bidder’s 7 bid is the pair s; = (gj,p;), where ¢; is the desired quantity at a unit price
p;- The allocation is calculated according to the following allocation rule: for a fixed opponent
profile (i.e. given the opponents’ bids), a bidder gains the minimum of his bid quantity and the
maximum available quantity at his bid price. He pays the social opportunity cost; that is the
amount offered for this quantity by the bidders who are excluded by his presence. Formally, the

allocation and payment rule for bidder 7 is given by:
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Allocation: a;(s) = min{g;, @, (pi, s—:)}, (2.3)
Payment: ¢;(s) = ij[aj((); s—i) — aj(si;s-4)], (2.4)
J#
where, s = (s1,...,$n) is bidders’ bid profile, s_; = (s1,...,8i—1,8i+1,-..,8n) is the bid profile

of bidders’s i opponents, and >

+

Ql(ya S,Z‘) =|C—- Z dk ) for y >0, (25)
Pk>Y,s k#Z

is the maximum available quantity for bidder 7 for a fixed opponent profile, if those of his opponents
that have bidded at or above price y, obtain their demanded quantity. Bidder’s ¢ payment is the
social opportunity cost in the following sense: for each opponent j of bidder 4, the difference
a;(0;5-;) — a;j(s;;5—;) is the quantity bidder j loses by i’s presence. For this quantity, bidder 4
pays the price offered by bidder j, that is p;[a;(0;s_;) — a;j(si; s—i)]-

Lazar and Semret analyze the PSP auction as an iterated game of complete information. For
a fixed opponent profile s_;, a best reply s; is defined to be the bid that maximizes bidder’s
1 net benefit. A Nash equilibrium is a bid profile s, if for each i, s; is i’s best reply given
s_;. Lazar and Semret introduce the notion of the e-Nash equilibrium. For a fixed opponent
profile s_;, they define the e-best reply s{ to be the bid that maximizes his net benefit within
e NBj(s$;s_i) > NBj(s;s—i) —€, Vs; € Si(s—;), where S;(s_;) is the set of all feasible bids of
bidder ¢ for a fixed opponent profile. An e-Nash equilibrium is a bid profile s, if for each ¢, s is
i’s best reply given s€ ;.

Lazar and Semret prove in [19], that under the assumption of elastic demand and for any fixed
opponent bid profile, there exists a truthful e-best reply for each bidder, provided that there is
always a fixed bid sy = (C,pg) set by the seller. A bidder has to calculate his e-best reply each
time he submits a bid. In order to determine his e-best reply, bidder ¢ employs the “staircase” P
that is formed by i’s opponent bid profile s_;. Then, bidder’s 7 best reply s; = (g;, p;) is the point
among those of his marginal valuation function that intersects with the “staircase” P. The e-best
reply is then found by reducing quantity by €/6}(0), that is, ¢f = [¢; — €/6}(0)]", and increasing

price such that pf = €/(¢f). Due to this equality, the e-best reply is characterized as truthful, in

3For any z € R, [2]T =2, if 2 > 0 and [2]t =0, if 2 <0.
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the sense that it constitutes a point of user’s ¢ demand function. The following example illustrates

the derivation of the e-best reply.
Example 2.5.3

Consider four bidders that compete for quantity C. The seller has set a reserve price pg. Assume
that bidder 4 wants to submit a bid and observes an opponent profile s_4 = (s1, s2,$3) , where
s1 = (q1,p1), 82 = (q2,p2) and s3 = (q3,p3). Figure 2.4 illustrates the “staircase” P of bidder’s
4 opponents. His e-best reply is the point s§ = (qs,p4). Had the auction terminated by this
moment, bidder 4 would win the quantity g4 for total charge c4 equal to the shaded area in Figure

24. A

price
Ly

quartity

Figure 2.4: Truthful e-best reply for bidder 4

The authors of [19] further prove, that if all bidders follow the strategy of the e-best replies
the game will end at an e-Nash equilibrium, for every €. € can be interpreted as a fee paid by

each bidder each time they submit a bid. In addition, the PSP auction approximates the efficient
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allocation provided that the second derivatives of bidders’ valuation functions are bounded. In
particular, the social welfare of the outcome is very close to its optimal value. The difference of
the two values is bounded by a term that depends on the value of € and on the bound of second
derivative of bidders’ valuation functions. The smaller €, the closer the outcome to the efficient
allocation gets, and the longer the procedure takes to converge. The authors further extend their
work to the network case. We examine thoroughly the network-wide PSP in Chapter 5, where we

introduce and assess an improvement.

2.6 Multi-Object Auctions

Below we briefly discuss the main issues on multi-object auctions for completeness reasons. Such
are not considered in this dissertation. Auctions for heterogeneous goods are further classified as
combinatorial auctions or independent bidding auctions. In combinatorial auctions, bidders are
allowed to submit a single bid for combinations of goods. Winner determination differs from the
way winners are determined in the multi-unit auctions. In a multi-object auction winners are the
bidders whose sum of bids is the maximum among all feasible combinations of bids. A feasible
combination of bids is a set of bids that includes each good exactly once. Combinatorial auctions
are appropriate when complementary goods are being sold. Consider for example, the case where
bidders compete for bandwidth in each one’s path. In this case a combination bid is a bid for
bandwidth for all links that form one’s path. If combinations of bids are not allowed, then the
bidder faces the risk of winning different portions of bandwidth (or no bandwidth at all) in some
links. The allocation then would not be efficient, while a portion of the allocated bandwidth
would be unused. Combinatorial auctions give rise to the threshold problem in which, groups
of low-valuation bidders may not be able to coordinate their bids to displace a large (meaning
having high valuation) but otherwise inefficient bidder, thus resulting in an inefficient outcome.

The following example illustrates the threshold problem.
Example 2.6.1

Consider three bidders competing for goods A and B. A simultaneous ascending auction is per-
formed. Each bidder’s valuation is privately known to him according to the following: the val-

uation of bidder 1 for good A is 6 4 = 7, the valuation of bidder 2 for good B is 6, p = 8 and
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valuation of bidder 3 for the combination of goods A and B is 03 4p = 12. The efficient outcome
is to give bidder 1 the good A and bidder 2 the good B (since social welfare is then maximized:
7+ 8 > 12). However, assume that the auction has come to the following situation: bidder 1 has
placed a bid of 1, bidder 2 has placed a bid of 2 and bidder 3 has placed a bid of 11. Neither of
the single bidders 1 and 2 can unilaterally place a bid of 11 or 10 respectively so as to overbid
bidder 3. Thus, the good will be awarded to bidder 3 which is not the efficient outcome. A

Furthermore, in combinatorial auctions a computational problem arises. The number of com-
binations of goods upon which bids are allowed to be placed is exponential in the number of
goods: in an auction where C goods are being sold, the different acceptable combinations of
goods equal 2¢ — 1. Thus, the number of submitted bids can be very large, making the problem
of winner determination an NP-complete one. This computational complexity can be smoothed
by restricting the allowable combinations. For example, in the case of a linear communication
network only combinations of adjacent links are meaningful. This problem is considered in [29]
and [30].

Independent bidding auctions perform better if supplementary goods are being sold. On the
contrary, if complementary goods are being sold, independent bidding induces the exzposure prob-
lem, which is, in a way, opposite to the threshold problem. This is briefly as follows: A bidder is
exposed to the risk of not acquiring the desired bundle of goods but a part of it at a total price
exceeding this part’s value for him, or may not be able to compete for the bundle through each
good separately due to the low value each single good has. This may result in bidder losses and/or

inefficient outcomes. The following example taken from [8], illustrates the exposure problem.
Example 2.6.2

Consider two bidders competing for goods A and B. A simultaneous ascending auction is performed
where only independent bids for the goods are allowed. Prices for both goods increase continuously
and each bidder informs if he is active (participates) or not. Each bidder’s valuation is privately
known to him and is given in Table 2.5. (Goods A and B are complements for bidder 1, while
substitutes for bidder 2.) The efficient outcome is to give bidder 1 both goods A and B. However,
assume that the auction has come to the following situation: prices for goods A and B have been
increased to 1 and 2 respectively. If bidder 1 withdraws from both goods, the auction terminates

and the outcome is inefficient: bidder 2 acquires both goods. If bidder 1 continues being active
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bidder | 05 | OB | 0aB

1 1 2 6
2 3 | 4 Y

Table 2.5: Marginal valuations in Example 2.6.2

in higher prices wishing to acquire both goods, then he will win at most one good * at a price

higher than his own valuation on that good, incurring a loss for him. A

Vickrey-Clark-Groves Mechanism (VCG). Consider a set C of C distinct (not identical)
goods that are to be sold to a set of N bidders. Each bidder has a privately known valuation for
each combination of the goods (the number of different combinations is 2¢~1): for any K C C,
let 6(K) denote the total value derived from the K goods. The VCG mechanism introduced by
Groves in [11], is a generalization of the GVA for identical units as well as the pivotal mechanism
for public goods introduced by Clarke in [7]. The GVA mechanism allows combinatorial bidding.
The allocation and payment rules are as follows: winning bids are those non-overlapping bids that
maximize social welfare. Each winner pays the difference between the welfare (sum of bids) of the
others without his participation and the welfare of the others with him participating. Equivalently,
each winner pays his bid reduced by the increment of welfare caused by his participation. Note,
that in the case of a single unit, VCG reduces to the Vickrey auction, while in the case of identical
units it coincides with the GVA. Truthful bidding is a weakly dominant strategy and thus, VCG
is an incentive compatible and efficient mechanism. An even more remarkable property of VCG
that is due to Krishna and Perry ([17]), is that VCG results in the highest revenues among all

efficient mechanisms. The following example illustrates the VCG mechanism.
Example 2.6.3

Consider three bidders competing for two goods A and B. The VCG mechanism is performed.
Each bidder’s valuation is privately known to him and is given in Table 2.6. (Goods A and B are

complements for bidder 3, while substitutes for bidders 1 and 2.)

“Bidder 1 wins at most one good, since there are no prices p; and ps such that p; + p» < 6 and p1 > 3 and

p2 > 4.
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bidder | 05 | OB | 0aB

1 10| 0 | 10
2 0 |15 15
3 0| 0] 20

Table 2.6: Marginal valuations in Example 2.6.3

The outcome is to allocate good A to bidder 1 and good B to bidder 2 (10 + 15 > 20), which
is the efficient one. Bidder 1 pays the amount ¢; = 20 — 15 = 10 — (25 — 20) = 5: if bidder 1 were
not present, bidder 3 would win both units and the winners’ social welfare would be 20. If bidder
1 participates, the winners’, apart from him, social welfare is 15. Thus the cost for him is the

difference 20 — 15. Similarly, bidder 2 pays the amount ¢o =20 — 10 = 15 — (25 — 20) = 10. A



Chapter 3

An Efficient Auction Mechanism for
Hierarchically Structured Bandwidth
Markets

3.1 Introduction

Nowadays, markets of services and resources involve chains of multiple providers. Thus, in the
general case of a business model, there may be multiple levels of bandwidth trading until the
resources are actually allocated to the end customers. Indeed, in the presence of large and
geographically distributed sets of customers, their direct transaction with the seller is either im-
possible, or entails high computational and physical or communication overheads. This motivates
studying a hierarchical market model. Indeed consider a seller that faces a large and widespread
market for selling bandwidth. It is possibly beneficial and more effective for him to assign the
trading of bandwidth to intermediaries, rather than dealing directly with customers. The fact
that intermediaries may have access to a wide number of customers, leads the bandwidth market
to grow in size substantially. Moreover, the division of the market into several parts facilitates the
selling process, while reduces and/or distributes the management overhead. However, the seller
should ensure that the intermediaries’ profits, which correspond to a potential loss for him, will
be lower than the cost induced by selling bandwidth directly. Furthermore, bandwidth markets

are not stable due to unpredictable demand and increasing supply. Traders may acquire excess

33
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bandwidth that cannot be stored for later use. The inefficiencies that arise due to the failure
of the market to balance, make reselling unavoidable. Profits can be extracted from successive
trades, thus help wholesale providers survive and grow in the market. Considering hierarchically
structured bandwidth markets, the seller takes into account resale imposing rules that direct the
outcome to serve his own purposes. In the degenerate case, the hierarchy consists of only one level
where no resale appears. In a middle case some intermediaries proceed on reselling and others
keep all the bandwidth for themselves. Another reason that motivates the use of multiple levels in
selling bandwidth, is the need to offer differentiated services to the customers. Service provision-
ing is built upon bandwidth trade giving rise to the necessity of studying models that describe
value chains. Note also that the objective of the top-level seller may be either to maximize his

expected profit or to allocate the bandwidth efficiently to the end customers.

In this chapter, we formulate a new resource allocation problem. In particular, we deal with a
two-level hierarchical business model for selling bandwidth in a single link. In the top level the
social planner sells bandwidth to intermediate providers [e.g. Internet Service Providers (ISPs)],
who in turn sell their assigned shares of bandwidth to the customers in the lower level. The
social planner defines the rules of the mechanism. Our objective is the efficient overall allocation
of the entire supply of bandwidth to the customers, as if the social planner were to assign this

bandwidth directly. Hence the use of the term social planner, rather than profit-seeking seller.

Due to its hierarchical structure, the above allocation problem cannot be solved efficiently in
two independent stages, one for each level. The social planner cannot sell the bandwidth to the
providers before they acquire knowledge of the demand they will face by their customers, while
the providers cannot trade with their customers before they learn the quantity of bandwidth
they obtain from the social planner. Thus, a dynamic mechanism enforcing coordination between
the two levels is required. The exchange of information between the auctions taking place at
the two levels is necessary for the solution to be efficient. In light of this necessity, we propose
an innovative mechanism comprising an appropriate auction in each level. The auctions are
coordinated so that supply is exhausted at the end, as required for attaining efficiency. The
service providers and the customers are expected to act according to their own incentives, i.e.
so that their respective benefits are maximized, without being concerned about social welfare.

Nevertheless, our mechanism is specified so that bidders of both auctions have the incentives
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both to participate uninhibitively and to bid truthfully (incentive compatibility property) and
efficiency be ultimately attained. Our mechanism has the following important feature: Although
bidding of each provider is based on aggregation of information of his own market, there is no
loss of information regarding the ordering of customers’ valuations over all markets. Such a loss

of information would clearly lead to an inefficient outcome.

What is of particular importance is that efficiency and incentive compatibility are influenced
by the way information is distributed to the players. Efficiency and incentive compatibility are
attained in an environment where each player only possesses a certain part of information on the
entire market. In particular, we assume that customers’ preferences are privately known to them,
providers have no prior information about their local markets, while the social planner may only
interact with providers. Moreover, the rules of the mechanism are announced to all players by
the social planner but the bidding records of both levels are only released after the end of the
procedure. The social planner restricts providers: a) to supply their local markets with bandwidth
as soon as it is made available to them, and b) to sell each unit of bandwidth at a price that
does not exceed the one of the most expensive unit sold to any of the providers at the top-level

auction. These rules render our mechanism efficient.

Further, we formulate business models in which the trading rules are not imposed exclusively by
the social planner. In particular, we extend the model to a less restrictive one, in which providers
are allowed to choose any payment rule to apply to their own local market, provided they conform
to certain (yet fewer) restrictions. We investigate cases in which it is possible for providers to gain
more profits by choosing payment rules that lead to inefficient allocations. However, we prove
that if each customer is allowed to select his own provider on the basis of the selected payment
rules, then each provider has the incentive to keep the original rule, for otherwise he would end

up with no customers.

Walsh and Wellman [34] consider task allocation problems with hierarchical dependencies, how-
ever in a different context. They consider a supply chain through a hierarchy of task achievement;
a supplier supplies a set of primitive goods, a provider uses primitive goods as input to produce a
single output good and finally the consumer acquires a high-level good. Each consumer wishes to
acquire only one high-level good. In that paper the term “hierarchy” refers to the various steps

taken by different providers to produce and dispose a good to the customer rather than to the
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process of selling goods through a set of intermediaries. In the absence of providers high-level
goods cannot be produced and sold by the supplier, whereas in the absence of intermediaries in
our problem the social planner sells the goods directly to the customers.

Maillé and Tuffin [24] propose a charging scheme applied in a backbone network interconnected
with congested access networks that have a tree structure. The authors perform a multi-bid
auction to allocate bandwidth in the backbone network and then assign the bandwidth in the
same way in the access networks. The hierarchical structure involves the topology of the network
presented in [24] rather than the selling procedure as we consider it in our problem.

The remainder of this chapter is organized as follows: We formulate the hierarchical bandwidth
allocation problem, and analyze the requirements for an efficient solution to the problem in Section
3.2. In Section 3.2.2 we discuss various mechanisms for the case of a single unit of bandwidth. In
Section 3.3 we develop our mechanism to sell bandwidth hierarchically. We then analyze players’
strategies and prove that the proposed mechanism is incentive compatible and efficient in Section
3.4. In Section 3.5 we extend the model to allow providers determine by themselves the payment
rules applied to their own markets, and study the related consequences. Finally, in Section 3.6

we provide some concluding remarks.

3.2 The Hierarchical Bandwidth Allocation Problem

3.2.1 Problem Specification

We consider the problem of allocating C' indivisible units of bandwidth in a single network link
efficiently. Allocation is performed in two levels (C' is taken as integer). We identify three types of
players: the social planner who sells the bandwidth to a set of M bandwidth providers in the top
level, who in turn sell the obtained quantity of bandwidth to a set of N (N > M) customers in
the lower level. The social planner imposes certain allocation and payment rules for both levels.

We assume that the quantity C' of bandwidth available in the top level is fixed and known
to all players, and that customers are partitioned into fized groups, each of which constitutes
the local market of a certain provider. We denote the local market of provider j as the set of
customers S, for j = 1,..., M. Without loss of generality we assume that the indices of customers

within the same market j constitute a subset of |S;| consecutive numbers of {1,..., N} that is,
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S; = {|Sj=1] + 1,...,]1Sj=1] + |Sj|}. Note that customers are not allowed to move to another
market after their initial choices. This issue is revisited in Section 3.5. Each customer i, receives
marginal utility 6;; by his E*™™ allocated unit of bandwidth, for k = 1,...,C. We assume that
marginal utilities of each customer are diminishing and privately known to him. A customer
knows neither the utility function of other customers, nor the distribution this utility is drawn
from, not even the quantity to be offered in his local market. In contrast to customers, providers
do not know their own valuations. Indeed, provider’s j marginal utility u;; is assumed to equal
the revenue he would obtain if he were to sell the £"™ unit of bandwidth after the trade. Thus,
it cannot be determined or predicted without knowledge of market demand, which is taken to be
completely unknown. As a consequence, all parts have incomplete demand information that must
be extended through the mechanism process. Each part possesses a certain piece of information
and is lacking of others. In particular, customers do not know the quantity to be offered in their
local market, as it is determined by the competition among the providers. At the same time,
providers need to exploit their local demand (through the competition among the customers), in
order to obtain the optimal bandwidth quantity for their own local markets by participating in
the top-level auctioning mechanism.

The objective of the social planner is to mazimize social welfare, which measures the overall

well-being of the society. In our setting it is given by the formula:

N x;
SW(E) =3 ik, (3.1)

i=1 k=1

where Z is the vector of the allocated quantities to the N customers. Note that, without loss of
generality, we assume that the cost of bandwidth to the social planner is zero, since this cost is
already sunk. The social planner wishes to determine the vector £* of the allocated quantities that
maximizes the social welfare given the bandwidth constraint. In case of complete information,
the social planner would solve the problem by ordering the 6; ;s over all customers and selecting
the C largest ones.

From the social planner’s perspective, the mechanisms of the two levels need to appropriately
interact so that both providers and customers dynamically obtain the exact set of information
that leads to an efficient outcome. It is necessary that we only employ efficient mechanisms in

both levels. Still, this is only a necessary condition for efficiency in the context of our problem,
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but it is not a sufficient one. To illustrate this we will give an example in the case of a single unit,
where coordination between the two levels fails, even though efficient mechanisms for both levels

are employed.

3.2.2 The case of a single unit of bandwidth

Analyzing the case of selling a single unit of bandwidth provides us with considerable insight and
understanding on the issues that arise in the general case C' > 1 too. In particular, we discuss
about various well-known auction mechanisms for a single unit and whether they can be applied
to our problem of hierarchical allocation.

Suppose that the social planner wants to sell a single good (i.e., unit of bandwidth) to one
of N customers with valuations €; through M providers. He performs an auction to select the
winner among the providers (top-level auction), who will sell the good to one of his customers
by means of another auction (lower-level auctions). The fact that the good must be sold to a
provider and subsequently to one of his customers does not necessarily determine the order the
two auctions take place, although it imposes certain limitations thereto. The objective of the
social planner is to ultimately sell the good to the customer with the highest valuation. Below we
examine three mechanisms, only one of which attains efficiency under the assumption of privately
known valuations.

First we deal with the combination of Vickrey auctions in both levels. The lower-level auction
in each market is performed first so that the respective provider learns his utility. That is, his
revenue if he does win the good in the top-level auction; this revenue equals the second highest
bid among the bids placed by his customers. Then, the providers participate to the top-level
auction according to this utility. All players (in both levels) bid truthfully, due to the Vickrey
payment rule, but the outcome may not be efficient. That is, the good may not be sold to the
provider with whom is associated the customer having the overall highest valuation. Indeed, the
good is sold to the provider who submitted the largest among the second highest valuations per
market, which does not necessarily coincide with the aforementioned provider. The same results
hold in case of applying the English auction independently in the two levels starting from the
lower one: each provider learns his potential revenue which is again the second highest valuation

of his customers.
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In the second mechanism under consideration, the First Price sealed bid auction is applied first
in the lower level and then the Vickrey auction in the top level. Since the payment rule (in the
lower level) is pay-your-bid in case of winning, the customers shade their bids. For each provider,
the highest of these bids is his potential revenue. Thus, it is used as his bid in the top level,
since he bids sincerely due to the Vickrey payment rule. However, it is possible that the order of
providers according to the highest shaded bid per local market is different than that according to
the highest valuation, thus resulting in inefficiency.

Suppose now that we apply the English auction in both levels simultaneously as follows: a
common price ascends continuously in each level. At every price, each customer either accepts
(e.g. by pressing a button) the offer according to their valuations, or withdraws from the auction.
Regarding each provider’s strategy, it is meaningful to accept the offer at the same price if at
least one of his customers accepts it; otherwise, the provider withdraws from the top-level auction.
This auction terminates at the first price where only one of the providers still accepts the offer.
This is the winner and pays the current price. His market’s auction continues until only one of
his customers still accepts the offer. This customer is the final winner and pays the final price of
his local market. The winning provider surely ends up with non-negative profits, because his buy
price is always less than or equal his sell price. The mechanism produces the efficient outcome,
since as the price increases only the customer with the highest valuation remains active. The
provider’s strategy described above is a weakly dominant strategy: if he withdraws instead of
accepting the offer at a given price where some of his customers are still active, then he ends up
with a zero profit, (because he will not win anything); if he accepts instead of withdrawing (when
there is no more activity in his local market) then he may end up with a negative profit (lower
selling price than buying if he wins in the top level), or zero profit.

Example 3.2.1 clarifies the above ideas.
Example 3.2.1

Assume two providers A and B having two and three customers with valuations ¢y = 2, 6, =
7, 03 = 4.5, 4 =6, 05 = 3 respectively. For the outcome to be efficient, the good must be sold
to customer 2.

a. We apply the first mechanism (i.e. Vickrey auctions in both levels) with privately known val-

uations. The bids in the two levels are shown in Table 3.1. Providers A and B bid their revenues
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Lower Level A Lower Level B Top Level

Custl Cust2 Cust3 | Cust4 | Custb | ProvA | ProvB

bid in mechanism 1 2 7 4.5 6 3 2 4.5

bid in mechanism 2 1 3.5 3 4 2 3.5 4

Table 3.1: Bidding process in Example 3.2.1 a and b

from their customers in case of winning; that is, 2 and 4.5 respectively. Provider B wins the good
at price 2 and sells it to customer 4 at price 4.5. Thus, the efficient outcome is not attained.

b. Next, we apply the second mechanism assuming that the customers are symmetric and their
valuations have been drawn from the uniform distribution on [0, 10], which is common knowl-
edge to all players. In this case the equilibrium strategy of customers is to perform bid-shading

according to the size of the respective local market (see [35]). Thus, customer i would bid

Bi = N]]'VEIOZ-, forall « = 1,2,3,4 and 5 = 1,2. The bids of all players are shown in Table
3.1. Provider B wins at price 3.5 and sells the good to customer 4 at price 4. The outcome is not
efficient because the customers’s shading does not preserve the ordering of their valuations since
B2 < (B4 although 0y > 04.

c. The third mechanism assumes privately known valuations for the customers. The price starts
at 1 and at each price each player accepts the offer ("yes”) or withdraws ("no”) as shown in Table
3.2. Note that although the price is continuous we only present the price values at which new
withdrawals arise. Provider A wins at price 6 and sells the good to customer 2 at price 6, which

is the efficient outcome. A

The above discussion supports our assertion that our problem cannot be solved without the
appropriate relation of information in the two levels. The third mechanism attains efficiency,
because the order of customers’ valuation is preserved in the top-level auction in contrast to the
other mechanisms that just exploit a certain point of the local demand. In the generalized problem
of selling C' units, the Ascending Clock Auction with Clinching (ACC) proposed by Ausubel [1],
which is the generalization of the English Auction, is not a proper solution, as explained in the
next section. On the contrary, a new version of ACC with a modified payment rule serves our

purpose.
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Lower Level A Lower Level B Top Level

Price | Custl | Cust2 | Cust3 | Cust4d | Custd | ProvA | ProvB
1 yes yes yes yes yes yes yes
2 no yes yes yes yes yes yes
3 yes yes yes no yes yes
4.5 yes no yes yes yes
6 yes no yes no

Table 3.2: Bidding process in Example 3.2.1 ¢

3.2.3 Providers’ profits

Employing efficient mechanisms in both levels of our hierarchy is indeed not sufficient to achieve
overall efficiency as we showed in Example 3.2.1. In the next subsection we prove that a neces-
sary condition for overall efficiency is that each provider submits truthfully his market demand in
the top level auction. Thus, the social planner has to design the whole mechanism so that each
provider maximizes his profits by transferring his market demand in the top level. A require-
ment for this, is that all players obtain non-negative profits at the end. Negative profits raise
participation issues and generate incentives that result in inefficiencies. Since customers know
their own valuations and act rationally, there is no possibility of obtaining negative profits in
any mechanism. But this is not the case for the providers, since they participate in two different
trades. Thus, depending on the mechanism, there may exist a possibility of price inconsistency
for a provider; i.e. to buy certain units of bandwidth at prices that are higher than the corre-
sponding selling prices. In Example 3.2.1 a. in which Vickrey auctions are employed in both
levels, provider’s A local market demand is one unit at price 7. If provider A submits truthfully
his markets’ demand or equivalently if he submits a bid equal to 7, he will obtain the good at
price 4.5 but he will sell it to customer 2 at a price of 2, thus making a negative profit equal to

2—-45=-25.
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3.2.4 The Hierarchical Optimization Problem

Next, we define an optimization problem that is motivated by the hierarchical nature of our model,
and prove that it produces the optimal solution Z* that maximizes social welfare. Note that we
specify the appropriate optimization problem that serves our purposes. The solution will be given

in a subsequent section.
HIERARCHICAL OPTIMIZATION:

LOWER LEVEL ALLOCATION

T Z;
w33 6 wae 373 0
z;, 1€S] ’ ’

i€S1 k=1 i M g k=1
s.t. Z i =qf s.t. Z T = Q) (3.2)
1€ST €SN
z; EN, Vi€E S z; EN, Vi€ Sy
where ¢* = (qf,...,q},) is the vector of the allocated quantities to the M providers and is the

solution of:

TOP LEVEL ALLOCATION

The values {v;;, : k = 1,--- ,C}, are the marginal utilities of market j, which are defined to be

the C' maximum marginal utilities over all customers of market j. That is:

vk = k™ maximum of {05, 115 015, 10 >0, 1181 5010 -
fork=1,---,Cand j=1,---,M.

The interpretation of the above optimization problem is as follows: the social planner supplies

the provider of each local market j, whose utility is v;, with the optimal, in terms of efficiency,



3.3 The Hierarchical Auction Mechanism 43

quantity ¢; (top level of hierarchy). Provider j in turn, allocates q; optimally, in terms of efficiency,
to its set S; of customers (lower level of hierarchy). We claim that this procedure provides the

overall efficient allocation #*. The proof of the following proposition is given in Appendix A.

Proposition 3.2.1 If the marginal utilities vy for j = 1,--- .M and k = 1,--- ,C are given
by Equation (3.4), then the hierarchical optimization problem is equivalent to the social welfare

mazximization given by Equation (3.1).

Yet, we have assumed that the social planner has no knowledge of the various ;s and therefore
cannot derive the q;fs. Therefore, the social planner should run an auction in order to acquire
the necessary information from the providers. However, the social planner should set the stage so
that the allocation of bandwidth to providers and thereby to their local markets does induce such
incentives so that the hierarchical optimization problem is solved. Specifically, Proposition 3.2.1
implies that the social planner, in order to allocate bandwidth efficiently to the N customers, has

to define a dynamic procedure in which:

1. Customers reveal their true marginal valuations (#;), so that demand for each local market

J is derived by the values v;;, for k=1,---,C.

2. Providers reveal their local market demand to the social planner so that ensuing efficient

allocation of bandwidth coincides with ¢, ..., q},.

3. Each provider allocates g; efficiently to his customers.

The mechanism we propose in Section 3.3 satisfies all these requirements.

3.3 The Hierarchical Auction Mechanism

We propose a synchronized ! mechanism in the top and lower levels of our hierarchy for selling
C indivisible units of bandwidth to N customers through M providers. The Ascending Clock
Auction with Clinching is performed in both levels. In the lower level, however, we introduce a
new allocation rule, which makes use of the outcome of the top-level auction; this rule is discussed

below. The price is common in the two auctions, starts at a reserve price py and increases

! A non-synchronized version is presented in 3.4.3.
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continuously until the end of the process at a final price, to be defined below. Without loss of

generality, we henceforth assume that pg = 0.

Players of both levels bid for quantities at every price according to their strategies. Similarly
to the zero information model of ACC (see Section 2.5.2), we assume that during the bidding
process no information is made available to any player about his opponents’ bids. Each customer
observes price p and decides whether to submit a new bid at this price or not. A pure strategy
for customer 4 is the function x; : )* — N, where z;(p) denotes the quantity demanded at price p.
Each customer’s bids have to be non-increasing as price ascends. That is, z;(p’) < z;(p) for any
two prices p and p’ where p < p'. Moreover, x;(p) is right-continuous. Each provider observes
his own customers’ demanded quantities at price p and uses this information to calculate his
bid for the top-level auction, as we discuss in Section 3.4. This bid is submitted automatically
in the top-level auction. (Practical matters are discussed in subsection 3.4.3.) A pure strategy
for provider j is the function @); : RN — R, where Nj; is the number of customers in market
j. Q;(Z(p)) denotes the quantity provider j demands in the top-level auction at price p. For
each price p, this depends on the vector Z(p) = (z1(p), -+ ,zn,(p)) of demanded quantities in the
provider’s local market. In order to simplify notation, we denote this function as Q;(p). Again,
the bids of provider j bids have to be non-increasing as price ascends. We will determine the
dominant strategies of all players in the next section. The top-level auction terminates at the
first time where demand equals supply in the top-level auction. Let pr be the final price of the
top-level auction. Accordingly, each lower-level auction terminates when demand equals supply

at the respective market.

The evolution of the mechanism is given completely by the set of prices p!, I = 1,--- , L, corre-
sponding to the occasions on which one or more players in any of the two levels strictly decreases
his quantity. Next, we will define the allocation and payment rules for the two levels, using the

notation of [1].

TOP LEVEL AUCTION:
Let qg- denote the quantity demanded by provider j at the I*® occasion. Due to clinching in the
top-level auction, at each price p!, each provider has already guaranteed a quantity of bandwidth

for his respective market. We define the quantity cé- clinched up to (and including) price p! by
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provider j as follows:
c; = max {0,C — quc}, forl=1,---,Land j=1,--- , M. (3.5)
k#j
After the bidding process is completed, the social planner announces to each provider the quan-
tity of bandwidth he wins and his charge. In particular, each provider obtains the quantity he
demanded at the final price pr and pays for each unit of bandwidth the standing price at which
he clinched this unit, as suggested by the Ascending Clock Auction with Clinching. Formally, the

outcome of the top-level auction is defined by:

Allocation of Provider j : ¢; = c;; = qJL, forj=1,---,M; (3.6)
L

Payment of Provider j : k;(q}) = Zpl . (cé — cz-*l), forj=1,---, M. (3.7)
=1

We refer to the case where one provider obtains the entire capacity as the case of non-competitive
market. The typical case in which two or more than two providers share the capacity is referred

to as the case of competitive market.

LOWER LEVEL AUCTION:

Let mﬁ denote the quantity demanded by customer 7 at the I occasion. That is, mﬁ = z;(p'). For
the allocation and payment by the customers (in the lower level) we introduce a new clinching
rule: At each price p, and at each local market of provider j, the condition for determining the
quantity to be clinched by the various customers employs the already guaranteed supply cz- in this
market. That is, as long as a provider clinches new units of bandwidth in the top-level auction,

he is required to make them available in the lower auction of his own market. This is different

ck

than performing the original ACC auction for the ¢;

units of bandwidth the provider wins at
the end of the top-level auction. We denote as bﬁ the quantity clinched by customer i up to (and

including) price p; this is given by:

b :max{(),cz- —mec}, forl=1,---,Landi=1,---,N, (3.8)
k#j

where cé- is the supply offered at the /*!

occasion at the customer’s ¢ local market j. Each customer
wins the quantity demanded at the final price pf and is charged according to two restrictions, which

are part of the definition of our mechanism:
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1. Each customer pays the standing prices at which he clinched the won units of bandwidth

as defined in the modified process above.

2. If the case of competitive market applies, then the following rule is also imposed: no unit

of bandwidth is sold at a price higher than ps.

Formally, the outcome of the lower-level auction is defined by:

Allocation of Customer i : zf =b =2l i=1,..- N, (3.9)

Payment of Customer 7 in the case of competitive market:

Z mln{p pf} ( _bfjil)? IL:]-a 7N

=1 (3.10)

Payment of Customer ¢ in the case of non-competitive market:

L
=y ph- (B —b"), i=1,-- N
=1

In Example 3.3.1, we apply the proposed mechanism assuming that players employ the following
strategies: a) each customer bids truthfully according to his utility function and b) each provider
bids the aggregate demand of his local market observed at each price provided that it is less than
the capacity C. If the aggregate demand exceeds supply, the provider submits the capacity C. In
Section 3.4 we will prove that these are indeed the dominant strategies for the customers and the

providers respectively.
Example 3.3.1

Suppose there is an amount of C = 8 units of bandwidth that is allocated to two service providers A
and B that have two customers and three customers respectively, with marginal valuations shown
in Table 3.3. The efficient outcome is given by the vector Z* = (z7, x5, 25, z1, z%) = (1,2,1,1,3)
and the optimal social welfare is SW (£*) = 10+ 17+ 11+ 15+ 12419+ 18+ 16 = 118. We apply
the proposed procedure letting the price start at price 1. We provide two tables to describe the
evolution of the hierarchical auction. Table 3.4 presents the bids for both levels at the prices of
various occasions. Note that the bids of the providers are provided in the last two columns. This
property is proved in Section 3.4. All auctions terminate simultaneously. The last row shows the

final allocation which is the efficient allocation Z*. After the procedure is terminated, the social
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Provider A Provider B
Custl Cust2 Cust3 Cust4 Custh
11 =10 | 621 =17 | 037 =15 | 041 =12 | O5, = 19
Oro=4 |O22=11| O32=T7 O10=8 | O52=18
013 =2 o3 =1 033 =25 O13=3 | 053=16

Table 3.3: Marginal valuations in Example 3.3.1

Lower Level A Lower Level B Top Level
Price | Custl | Cust2 | Cust3 | Cust4 | Custb | ProvA | ProvB
1 3 2 3 3 3 5 8
2 2 3
3 2 2 3 2 3 4 8
4 1 2 3 2 3 3 8
) 1 2 2 2 3 3 7
7 1 2 1 2 3 3 6
8 1 2 1 1 3 3 5

Table 3.4: Bidding process in Examlpe 3.3.1

planner and the providers calculate their allocations and payments, as shown in Table 3.5. Note

that the providers’ payments are given in the columns 2 and 3 prior to the customers’ payments.

Customer 2 for example, clinches his first unit of bandwidth at price 7 since at this price the total

supply for provider A is 2 units and his opponent’s (customer 1) bid is 1 unit, thus the residual

supply left for customer 2 equals 1 (=2 — 1). In the sequel, at price 8 the supply for provider A

equals 3 units, meaning that customer 2 clinches his second unit of bandwidth at this price. A

3.4 Derivation of Players’ Strategies and Efficiency

In this section, we analyze players’ strategies and prove that all the objectives set by the social

planner are met when the proposed allocation mechanism is applied. We will prove that in our
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Top level Lower level A Lower Level B
Price ProvA | ProvB | Custl | Cust2 | Cust3 | Cust4d | Custb
1 - 3 - - - - -
2 - +1 - - - - -
3 _ N - - - - -
4 - +1 - - - - -
5 1 - - - - - 1
7 +1 - - 1 - 1 +1
8 +1 - 1 +1 1 - +1
Allocation 3 5 1 2 1 1 3
Payments 20 9 8 15 8 7 20
Profits 3 26 2 13 7 5 33

Table 3.5: Clinching process in Example 3.3.1

mechanism customers have the incentive to bid truthfully in the lower-level auction, as was the case
with the ACC auction in the non-hierarchical case. This applies despite the fact that in our case,
the providers do not have a pre-specified supply, but gain incrementally in each occasion units of
bandwidth that are simultaneously made available to their customers. Since no bid information is
made available during the procedure, this increasing local supply is not known. Customer utility
functions and thus local demand is independent of forthcoming increases of supply, thus implying
that customers’ strategies are not affected by the amount of bandwidth that is made available
to them in each price. The clinching and payment rules for the lower level that we defined in
Section 3.3, guarantees that each unit’s standing price in the top level never exceeds that in the
lower level. This guarantees non-negative profits for the providers (actually on a per unit basis)

but raises further concerns about players’ incentives. These are analyzed below.

3.4.1 Players’ Dominant Strategies

Providers wish to maximize their profits from participation in two trading markets that interact

with each other only through their own actions. Their strategy involves a buy process in the top
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level and a sell process in the lower level. Since it is taken that the social planner has pre-specified
the mechanism in both levels including charging in the lower level, the provider’s strategy reduces
to the bidding strategy of the top level on the basis of the information progressively revealed to
him in his own local market auction. The key factor determining his optimal bidding strategy in
the top-level auction is his utility function. If the demand in his local market were known and
he had the authority to define the payment rule for his own customers, he could calculate his
utility function completely and bid truthfully according to this function in the top-level auction.
In our setting neither local demand is known nor the payment rule is determined by the provider.
Demand is derived step-by-step starting from lower prices (higher quantities) to higher prices
(lower quantities). At each price the information available to the provider is the demand up to
this level. On the other hand, each customer takes part in the local market auction and wishes
to maximize his net benefit according to his known utility function.

We henceforth restrict attention to:

e the following strategy of providers, referred to as demand revelation: bid the quantity

indicated by local demand if not exceeding the capacity C, otherwise bid C' and

e the following strategy of customers, referred to as truthful bidding: bid the quantity indi-
cated by own utility function at each price p if not exceeding the capacity C, otherwise bid

C.

Recalling that Q;(p) and z;(p) denote the bidding strategies of providers and customers respec-

tively, aforementioned strategies are given as follows:

max{k : gi,k > p}, if 92',1 >Dp
Q;(p) = min{C, Y x;(p)} and z(p) = (3.11)
1€S; .
0, otherwise,
where we have also used the fact that marginal values of the same customer are diminishing. We

claim that provider j maximizes his profit by adopting Q;(p) and customer 7 maximizes his net

benefit by adopting z;(p), regardless of the strategies of other players.

Proposition 3.4.1 Demand revelation constitutes a weakly dominant strategy for every provider.
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Proof. Consider a fixed provider j. Suppose that each other provider bids according to an
arbitrary but fixed strategy of his own and the same applies to each customer. We will prove that
provider j maximizes his profit by revealing his local demand.

Suppose that at a given price, provider j bids a quantity less than this demand. The arguments
that follow, hold for both the case of competitive market and the case of non-competitive market.
This is due to the fact that the case of non-competitive market reduces to the case of competitive
market if the provider who obtains the entire capacity bids a quantity that is less than this
capacity. Since the other providers and provider’s j customers do no deviate from their strategies,
the procedure will remain the same except for termination, that will be reached earlier, i.e., at
a lower price. Indeed, provider j will win less or the same number of bandwidth units than he
would if he had revealed his demand. Due to the second restriction of the payment rule in the

lower level, all units will be sold at most at this price. This implies that:

1. Provider’s j buy price for all bandwidth units won is the same compared to the case where

his bid equals his demand at each price — no extra profit.

2. His sell price for bandwidth units sold up to the new market-clearing price is the same —

no extra profit from these units.

3. His sell price for bandwidth units that would be sold at higher prices is now the new market-

clearing price, which is lower than the original one — loss.

4. He will not win some units of bandwidth that, a subset of which could be sold with positive

profit — possible loss.

Conversely, suppose that at a certain price provider j bids a quantity higher than his demand,
yet not exceeding the capacity C'. This strategy is meaningful only for the case of competitive

market. Termination of the procedure will be delayed, which implies that:

1. Provider 7 may possibly obtain more units that he will not be able to sell — possible loss.

2. His buy price for units besides the extra ones does not change since the other providers do

not change their bids — no extra profit.

3. Besides the extra units, the other ones will not be sold in higher prices since his customers

do not change their bidding — no extra profit.
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This also applies in the case where provider j obtains the entire capacity due to overbidding
(case of non-competitive market). The extra units won by the provider due to overbidding

are are not demanded by his customers at all.

Thus, at each price, provider j should bid his local demand, regardless of the other players’

strategies. m

Proposition 3.4.2 Truthful bidding constitutes a weakly dominant strategy for every customer.

Proof. Suppose that each provider bids according to an arbitrary but fixed strategy of his own.
We will prove that every customer maximizes his net benefit by bidding truthfully. Indeed, the
number of a customer’s clinched units of bandwidth at each price is independent of his own bids.
The units of bandwidth and the prices at which he gains them depend on the bids of his com-
petitors in the same market and on local supply, which is derived by the other providers’ bids. In
other words, if, at a certain price, customer ¢ reports a higher quantity than the true one, then
he might win an extra unit at a price that is higher than his corresponding marginal value, thus
resulting in a loss. Conversely, if customer ¢ reports a lower quantity than the true one, then he
faces a loss from not winning his last unit with positive net benefit, without achieving a lower

price for any of his other units won. Thus, customer ¢ bids truthfully. [ ]

Corollary 3.4.1 In the case of competitive market, if each provider’s bidding strategy is demand
revelation, then all auctions in which a positive portion of capacity is allocated, terminate simul-

taneously when demand equals supply in the top-level auction.

Proof. At price ps demand equals supply in the top-level auction. At the corresponding price
each local market demand (i.e., the final bid of each provider) equals the respective local market
supply (i.e., the amount he has gained, which in turn equals the provider’s final bid in the top
level), the value of which is only then determined. Thus, all lower-level auctions are terminated
no later than price pr as well.

Additionally, each “competitive” 2 provider sells at least one unit at price pe: If at price pe

no customers of a specific provider clinches any units, this means that neither his customers

2A competitive provider is the provider who obtains a positive portion of the capacity.
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changed bids at this price, nor did local supply change. That is, no customer of any “competitive
provider” changed bids so the procedure should have already terminated. Clearly, this constitutes
a contradiction. Thus, no lower-level auction (of a “competitive provider”) has been terminated
at a lower price than ps.

Consequently, all lower-level auctions in which a positive portion of capacity is allocated, ter-

minate simultaneously at price p. [ ]

Remark 3.1

The case at which one provider obtains the entire capacity and the demand in his local market
equals the capacity at price py, is a special case of the non-competitive market. Obviously, corollary

3.4.1 holds for this special case.

3.4.2 Efficiency and Social Welfare

The selected mechanisms in both levels lead to efficient outcomes if considered independently.
As we showed in Section 3.2.4, this does not suffice for achieving the overall efficiency in our
hierarchical allocation problem. However, for the case of non-competitive market overall efficiency
is achieved, since all capacity is allocated by the unique provider efficiently. Henceforth we restrict
attention to the case of competitive market which is more interesting and harder to analyze.
Revelation of local demand for every provider is a necessary condition for the mechanism to be
efficient. This implies that provider’s j marginal utility (revenues for the k' additional unit)
should equal the local market’s marginal utility v;;. Our mechanism satisfies the condition so
that the final price (which is the maximum price at which a won unit can be sold) be equal to each
provider’s marginal utility for the last demanded unit of bandwidth (provided that this provider
has won at least one unit). Indeed, since the providers reveal demand, each of them will sell at
least one unit at final price pf for otherwise the procedure would have terminated earlier (see
proof of Corollary 3.4.1). Thus, the final price equals each provider’s revenues for the last unit
of bandwidth, that is his marginal utility. Note that this is a less general condition than that
imposed in Section 3.2. The provider need not reveal all the demand; a part of it starting from

low prices up to the final one is sufficient to achieve efficiency.
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Our mechanism has the important property that the social welfare attained in a market with
intermediaries is the same as that under direct allocation by the social planner. More interesting
is the fact that customers’ net benefits are identical in both cases. However, the social planner

faces a loss that is conveyed as profit to the providers. This is proved in the next proposition:

Proposition 3.4.3 For each customer, allocation and payments arising under our hierarchical
auction mechanism are the same with those when the trade is performed directly and efficiently

by the social planner.

Proof. Assume first that the social planner allocates C' units of bandwidth directly to the cus-
tomers. Let p; be the price at which customer 1 clinches his first unit of bandwidth. Then p; is

the smallest value that satisfies the condition:

N

C=ailp)=14C=> gE)+ab) =1, (3.12)
i#1 i=1

where g;(p1) is the bid of customer ¢ at price p1, i =1,..., N.

We will prove that at the hierarchical auction we propose, customer 1 clinches his first unit of
bandwidth at price p; too. Suppose there are two providers A and B, and customer 1 belongs
to the set Sy of customers of provider A. Let Q4(p),@p(p) be the bids of providers A and B

respectively and a4 (p) the quantity already clinched by provider A at price p. Then

as(p) = C — Qp(p). (3.13)

Let p,1 be the price at which customer 1 now clinches his first unit of bandwidth. Then p'1 is the

smallest value that satisfies the condition:

aap) — Y. alp) =1 aalp) —Qalp) +a(p)) = 1.
€Al

Combining this with (3.13), we obtain

N

C—Qp(p) —Qalp) +a1(p) =1 C—=> alp) +a(py) = 1. (3.14)
i=1

Combining this with (3.12) we obtain p; = pll. Applying inductively the same argument it follows

that for £ = 2,...,x1, (where z; is the quantity customer 1 ultimately obtains), the price at
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which customer 1 clinches his £ unit is the same in both mechanisms. [}

Corollary 3.4.2 The hierarchical auction mechanism yields the efficient outcome.

Proof. Allocation of bandwidth to customers under our hierarchical auction mechanism is the

same with that under ACC, which is efficient. Hence, efficiency of our mechanism follows. [ ]

To conclude, we defined a mechanism to allocate bandwidth efficiently in the presence of
intermediaries, who make profits too, taking advantage of the fact that demand is revealed in the

right order due to the proposed coordination of the auctions in the two levels.

3.4.3 Implementation and Practical Issues

In the model presented in Section 3.3 we have assumed that auctions of both levels are performed
simultaneously. To simplify implementation, we propose an alternative version of the mechanism:
auctions of the lower level are performed asynchronously and prior to the top-level auction; each
lower-level auction is rum until the total demand equals the total available bandwidth C. As soon
as all providers have completed their respective own local auctions, the top-level auction is run.
All the other rules and restrictions still apply.

Even though providers know their own local market’s demand before entering the top-level
auction, they are forced to apply the payment rule of Section 3.3 that induces truthful revelation
of demand. Additionally, customers have the same set of information and the same payments in
both implementations, implying that their strategies will be the same, that is truthful bidding.
Since all players’ strategies and allocation rules still apply under the asynchronous implementation,
the outcome will be the same too.

This alternative implementation is less complicated because input from the various parts need
not be gathered at the same time. However, it is required that each customer reveals his utility
for the whole range of available bandwidth, rather than for the part of the bandwidth to be made
available in his respective local market. This constitutes unnecessary revelation of information.

Another difficulty involved in our approach, is the implementation of the continuous clock that

represents the price. Practically, only the prices at which there is a change in demand need to be
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considered. The set of these instances is finite since identical and indivisible units are being sold.
Thus instead of reporting a continuous set of bids, it suffices to report only a finite set of bids.
Finally, it is important to guarantee that providers conform to the rules imposed by the social
planner. The auditability of our approach is indeed attained by announcing the prices of all units
sold in the top-level auction as well as in the lower-level auctions. Each customer can verify that

his bids were treated as specified by the mechanism.

3.5 Competition

Thus far, we have assumed that the social planner regulates the bandwidth trade by imposing
certain rules to the providers. In this section we will try to define the minimum set of rules
and regulations to be imposed by the social planner in order to have his initial requirement for
efficiency fulfilled. Obviously, if a provider is allowed to choose the mechanism for his own local
market, then he will try to maximize his profits, without being concerned with social welfare. Tt
is important to examine whether or not such a choice is in conflict with the proposed solution of

Section 3.3, in which the social planner directs the whole system.

3.5.1 Model I: No Restrictions for Providers

Suppose that the social planner defines the top-level mechanism as described in Section 3.3 and
imposes no rules to the providers on how each of them will charge his own market. Each market
is assumed to have a known and fixed number of customers. Each provider seeks to maximize
his profits by choosing an appropriate auction for the lower-level trade. However, he is restricted
by the fact that he has to compete for bandwidth himself in the top-level auction based on the
demand he will learn by the bids of his own customers.

The payment rule of the hierarchical auction mechanism we proposed in Section 3.3, is not
optimal in terms of profits, for the provider, in the following sense: It is the restriction on the
maximum permissible price in the lower level that renders demand revelation a weakly dominant
strategy. Had it been omitted, providers would shade demand to their benefit: Lower-level
auctions would terminate at higher prices (not simultaneously) yielding more revenues per unit
won, while the top-level auction would terminate at a lower price yielding smaller charges, as

shown in Example 3.5.1.
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Provider A Provider B
Custl Cust2 Cust3 Cust4
11=12 | 01 =7 | 631 =13 | 4, =8
O12=10 | b2 =5 | 032 =11 | 042 =4
th3s=6 | bO3=31| O033=9 | O43=2

Table 3.6: Marginal valuations in Example 3.5.1

Lower Level A | Lower Level B Top Level
Price | Custl | Cust2 | Cust3 | Cust4d | ProvA | ProvB

1 3 3 3 3 6 6
2 3 2 6 5
3 3 2 3 2 5 5
4 3 2 3 1 5 4
5 3 1 3 1 4 4
6 2 1 3 1 3 4
7 2 - 3 1 2 4

Table 3.7: Bidding process in the original mechanism in Example 3.5.1

Example 3.5.1

Suppose there is an amount of C' = 6 units of bandwidth that is allocated to two service providers
A and B that have two customers each, with marginal valuations shown in Table 3.6.

In Tables 3.7 and 3.8 we present the bidding and clinching process of the original mechanism
respectively.

We apply again the proposed mechanism relaxing the restriction on the maximum permissible
price in the lower level. In Table 3.9 we present the bidding process. Each provider observes that
his demand equals that of the other provider at price 1. Thus, it is plausible that both of them
decide to reduce demand to 3 units, thus sharing evenly the bandwidth between them at a low
price. We observe that provider’s A local auction terminates at price 6 and provider’s B local

auction terminates at price 8, whereas top-level auction terminates at price 2. The allocation and
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Top level Lower level A | Lower Level B
Price ProvA | ProvB | Custl | Cust2 | Cust3 | Cust4

1 - - - - - -

2 1 - - - - -

3 - 1 - - - -

4 +1 - - - - -

5 - +1 1 - 1 -

6 - +1 - - +1 -

7 - +1 +1 - +1 1
Allocation 2 4 2 0 3 1
Payments 6 21 12 0 18 7

Profits 6 4 10 0 15 1

Table 3.8: Clinching process in the original mechanism in Example 3.5.1

Lower Level A | Lower Level B Top Level
Price | Custl | Cust2 | Cust3 | Custd | ProvA | ProvB
1 3 3 3 3 6 6
2 3 2 3 3
3 3 2 3 2
4 3 2 3 1
5 3 1 3 1
6 2 1 3 1
7 3 1
8 3 -

Table 3.9: Bidding process in relaxed model in Example 3.5.1
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Top level Lower level A | Lower Level B
Price ProvA | ProvB | Custl | Cust2 | Cust3 | Cust4

1 - - - - - -

2 3 3 - - 1 -

3 1 - - -

4 - - +1 -

5 +1 - - -

6 - 1 - -

7 - -

8 +1 -
Allocation 3 3 2 1 3 0
Payments 6 6 8 6 14 0

Profits 8 8 14 1 19 0

Table 3.10: Clinching process in relaxed model in Example 3.5.1

payments of all players in this case are calculated in Table 3.10. We see that provider A improves
his profits from 6 to 8 units of money and provider B improves his profits from 4 to 8 units of
money. Thus, demand revelation is not a dominant strategy any more when the restriction on
the maximum permissible price is relaxed. Moreover, this ruins efficiency of the allocation of

bandwidth to customers. Recall, that the efficient allocation is the vector (2,0,3,1). A

We have shown that the hierarchical auction mechanism in not an optimal mechanism for
providers in the unrestricted environment of model I. In fact, there can be found other auctions
too in the lower level, that yield higher profits to the providers. Moreover, we have assessed the
significance of the restriction of the maximum permissible price in the lower-level auctions. In
the following, we will define models in which the hierarchical auction mechanism performs well in

terms of providers’ profits.
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3.5.2 Model II: Restrictions to Providers’ Highest Price

A somewhat more restrictive model for providers is now considered, yet less restrictive from the
original model of Section 3.3. The social planner still controls the top-level auction which is again
the Ascending Clock Auction with Clinching, and imposes the following price restriction to the

providers for the lower-level auction:

If the case of competitive market applies, the maximum permissible price for each unit of

bandwidth to be sold by each provider is the final price of the top-level auction.

The lower-level auctions may take place either simultaneously with the top-level auction, or
asynchronously prior to the top-level auction. The above price restriction is necessary, for if
it is omitted the providers can find a more profitable strategy than truthfully revealing demand

(see Example 3.5.1), which in general results in an inefficient outcome.

Under the new setting, the providers are asked to solve two different problems: First, a provider
has to select an allocation mechanism in the lower level. After the whole mechanism is defined,
the provider has to calculate the optimal (with respect to his profits) strategy for the top-level
auction. These two problems are not independent and thus, they should be treated together.
Each provider is now free to charge each unit of bandwidth at any price up to the maximum
value imposed by the social planner. The pricing rule of the lower-level mechanism introduced
in Section 3.3 and the uniform pricing rule (pay the market clearing price for all units obtained)
both satisfy the above restriction. These pricing rules constitute the two eztreme cases among all
rules conforming to the above restriction: the former sets the lowest possible prices for each unit
of bandwidth, since each such unit is made available in the lower-level auction as soon as it is won
in the top-level auction; the latter sets the maximum price for all units of bandwidth. Next we
compare these two schemes in terms of provider profits and examine under various assumptions
whether our mechanism will indeed be employed by the providers. It is assumed that the payment

rule is announced to the customers prior to trading.
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Provider A Provider B
Custl Cust2 Cust3 Cust4
011 =10 | 627 =12 | 037 =11 | 641 = 13
b1p=4 | O22=5 | 32=9 | 042=8
O13=1 | O3=3 | O33=2 | O43=26

Table 3.11: Marginal valuations in Example 3.5.2

3.5.3 Comparison of Uniform Pricing and the Original Payment Rule with

respect to Profits in the Lower Level

In this section we will compare two alternative payment rules applied to the lower level from
the perspective of the provider profits. Assume that the providers charge their customers by
applying uniform pricing: each unit is sold at the market clearing price. Providers’ dominant
strategy is to reveal the demand expressed through customers’ bid, since the reasoning of Section
3.4.1 still holds. On the other hand, knowing the payment rule, customers have the incentive
of demand reduction. In general, the outcome of this game will not be efficient and providers’
profits will be in some cases higher and in other cases lower compared to our mechanism. Below
we present Example 3.5.2 where uniform pricing is not beneficial for any provider, and Example
3.5.3 where uniform pricing is indeed beneficial for one of them. In both examples we assume
complete availability of information. That is, customers’ utility functions are common knowledge

to all players.
Example 3.5.2

Suppose there is an amount of C' = 8 units of bandwidth that is allocated to two service providers
A and B that have two customers each, with marginal valuations shown in Table 3.11. In Tables
3.12 and 3.13 we present the bidding and clinching process of the original mechanism respectively.

Next, we apply uniform pricing in the lower level. Providers reveal demand truthfully. More-
over, it is proved in Appendix B that truthful bidding of all customers at each price except for
customer 2 who reduces demand by 2 units at price 2, constitutes a Nash equilibrium in the
complete information game. Note that other customers too, have the incentive to reduce demand

due to the uniform pricing rule taking into consideration their opponents’ bidding, but at different
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Lower Level A | Lower Level B Top Level
Price | Custl | Cust2 | Cust3 | Cust4d | ProvA | ProvB
1 2 3 3 3 5 6
2 2 3
3 2 2 2 3 4 )
4 1 2 2 3 3 5

Table 3.12: Bidding process in the original mechanism in Example 3.5.2

Top level Lower level A | Lower Level B

Price ProvA | ProvB | Custl | Cust2 | Cust3d | Cust4
1 2 3 - - - -
2 +1 - - 1 - 1
3 - +1 1 - 1 +1
4 - +1 - +1 +1 +1
Allocation 3 5 1 2 2 3
Payments 4 10 3 6 7 9
Profits 5 6 7 11 13 18

Table 3.13: Clinching process in the original mechanism in Example 3.5.2
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Lower Level A | Lower Level B Top Level

Price Custl | Cust2 | Cust3 | Custd | ProvA | ProvB
1 2 3 3 3 5 6
2 2 1 2 3 3 5
Payments 4 2 4 6 4 7
Profits 10 10 16 21 2 3

Table 3.14: Uniform pricing in lower level in Example 3.5.2

Top level

Price ProvA | ProvB

1 2 3
2 +1 +2
Allocation 3 5

Table 3.15: Clinching process in the top level under uniform pricing in the lower level in Example

3.5.2

prices each. The first customer to proceed to such a reduction is customer 2 at the price 2, which
thus becomes the new final price of all auctions. The bidding process, the payments and profits
are shown in Table 3.14. Note that providers’ payments are calculated according to the clinching
process of the top level, which is shown in Table 3.15. Both providers A and B have lower profits
under the uniform pricing rule than under our mechanism. Moreover, the final allocation under

the uniform pricing rule, is not the efficient one. A
Example 3.5.3

Assume that two providers A and B compete for C = 5 units of bandwidth. Each provider has
two customers. Their marginal utilities are shown in Table 3.16. The efficient outcome is given
by vector ¥ = (z7,...,z}) = (4,0,1,0). We apply the hierarchical auction using the uniform
pricing rule in the lower level. Reasoning as in Appendix B, it can be checked that the equilibrium

strategy of customers is as follows: All customers bid truthfully at each price except for customer 1



3.5 Competition 63

Provider A Provider B

Custl Cust2 Cust3 Cust4

91,1 =16 0271 =8 0371 =11 94,1 =9

91,2 =14 0272 =8 93’2 =7 94’2 =4

91,3 =12 9273 =6 93,3 =5 94,3 =4

014=10 | 024 =6 | O34=05 | O4s=4

Table 3.16: Marginal valuations in Example 3.5.3

Lower Level A | Lower Level B Top Level
Price Custl | Cust2 | Cust3 | Custd | ProvA | ProvB
4 4 4 4 1 5 5
5 4 4 2 1
6 4 2 2 1 ) 3
7 4 2 1 1 5 2
8 3 - 1 1 3 2
Allocation 3 0 1 1 3 2
Payments 24 0 8 8 17 16
Profits 18 0 3 1 7 0

Table 3.17: Uniform pricing in lower level in Example 3.5.3

who reduces demand by 1 unit at price 8. Providers again reveal demand truthfully. The bidding
process, the payments and profits are shown in Table 3.17. Note that providers’ payments are
calculated according to the clinching process of the top level: Provider A clinches two units at
price 5 and one unit at price 7; he thus pays an amount of 2 x 5 + 7 = 17 units. Provider B
clinches two units at price 8, paying an amount of 2 x 8 = 16 units. Players’ bidding process and
profits had we applied the original mechanism are given in Tables 3.18 and 3.19 respectively. We
observe that provider A (whose customer reduced demand) has higher profits (7 versus 6) under

the uniform pricing rule. Moreover, the outcome is not efficient. A
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Lower Level A | Lower Level B Top Level
Price | Custl | Cust2 | Cust3 | Cust4d | ProvA | ProvB
4 4 4 4 1 5 5
5 4 4 2 1
6 4 2 2 1 5 3
7 4 2 1 1 ) 2
8 4 - 1 1 4 2
9 4 - 1 - 4 1

Table 3.18: Bidding process in the original mechanism in Example 3.5.3

Top level Lower level A | Lower Level B
Price ProvA | ProvB | Custl | Cust2 | Cust3d | Cust4

4 - - - - - -

5 2 - - - - -

6 - - - - - -

7 +1 - 1 - - -

8 - 1 +2 - - -

9 +1 - +1 - 1 -
Allocation 4 1 4 0 1 0
Payments 26 8 32 0 9 0

Profits 6 1 20 0 2 0

Table 3.19: Clinching process in the original mechanism in Example 3.5.3
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These examples suggest that the model of Section 3.5.2 where providers are less restricted than
in the initial model of Section 3.2, does not in general lead to the efficient solution. Providers
take advantage of their chance to select the most profitable way to charge their customers and,

as we saw, there are cases where the outcome differs from the efficient one.

3.5.4 Model III: Relaxing Restrictions for Customers

Thus far, we have assumed that customers are committed to a local market. We extend the model
of Section 3.5.2 by letting customers choose a provider after they become aware of the payment
rules of all providers. As in our initial model, after local markets are formed, customers are not
allowed to move to another market. Obviously, customers take advantage of the information on
the payment rules employed and choose the provider from which they will obtain the highest net
benefit. Providers’ strategy now becomes more complicated since they should take into account
customers’ freedom of market selection. On one hand, uniform pricing might lead a provider
to higher profits (yet not always) had his population of customers not changed. On the other
hand, as a reaction to choosing uniform pricing, the population of this provider’s customers might
shrink, thus leading him to lower profits. Actually no customer will select this provider as we
argue below! Next, we establish some very interesting properties that support the selection of the

original mechanism by the providers.

Proposition 3.5.1 Under model 111, if all providers choose the payment rule for the lower level
that is defined in Section 3.3, then each customer has the same net benefit in any market he

chooses and for any distribution of the rest of the customers among the markets.

Proof. Since the bidders’ marginal valuations for each unit of bandwidth are assumed to be drawn
from a continuous set of values, the probability of two or more bidders having the same valuation
for a unit is negligible. This implies that the efficient allocation is unique. Consequently, all
possible placements of customers in the various markets result in the same outcome, namely, the

unique efficient allocation. The result follows by combining this with Proposition 3.4.3. [ |

Proposition 3.5.1 implies that customers are indifferent regarding which provider to choose,

assuming that all providers apply the same charging scheme. In the sequel, we examine customers’
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choices in case a provider, say A, has announced the selection of uniform pricing as the payment

rule in his local market’s auction and the other providers have selected the original mechanism.

Proposition 3.5.2 Under model III, any fized customer i has the incentive not to choose the

provider applying uniform pricing.

Proof. Assume that provider’s A market consists of group S of customers and all other providers
have the group S’ of customers. Consider the fixed customer 7. We remind that truthful bidding
is customers’ weakly dominant strategy under our mechanism. Thus, customers of all providers

apart from A will still bid truthfully. We define three possible scenarios:

1. Customer 4 chooses group Sy, i.e. joins the local market of provider A. Due to uniform

pricing, his optimal strategy is to shade bids. Let N B be his net benefit.

i
2. Customer 4 chooses group S’ but employs the same strategy as in scenario 1. We will show
that his new net benefit NBZ-(Q) is at least as much as previously, i.e. NBZ-(I) < NBZ-(Q).
First note that all customers not belonging to S4 bid truthfully as in scenario 1, due to
Proposition 3.4.2. Providers bid truthfully in both scenarios as well, since they do not
depend on their respective populations of customers. Consequently, total demand remains
the same in each price in each level, so the final price of the top level will be the same in
both scenarios. Again, since all players apply the same strategies, the final allocation will
be the same. Thus, customer 7 wins the same units of bandwidth, each at a price less than
or equal to the final price of scenario 1 (which is equal to the final price of scenario 2). This
results from the fact that the providers of group S’ charge according to the clinching prices

of the original mechanism that are less than the final price.

Consider the special case where S 4 consists only of customer ¢ who subsequently leaves this
market, and the group S’ belongs to one provider, say B. Then, the non-cooperative case
arises. In this case, N BZ.(I) <N BZ.(Z) still holds: if customer ¢ wins no bandwidth in group
S, then he wins no bandwidth in group S’; thus, the equality holds: NBZ-(I) = NBZ-(Q).
If customer 4 obtains a positive portion of capacity from provider A, then he obtains this
quantity from provider B too. This implies that provider’s B demand (not just his bid)
equals supply at price ps. Thus, the results of the competitive market still apply according

to the remark in Section 3.4.1. Therefore, NBZ-(I) < NBZ-(Q) in any case.
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3. Customer i chooses group S’ and plays according to his (weakly) dominant strategy; that

(2)

i .

is, he bids truthfully. Consequently, his net benefit N BZ-(3) is greater than or equal NB

This together with the previous conclusion implies that N BY <N B®. Therefore, customer ¢

i i
will choose group S’, i.e. he will not join the local market of provider A. [ ]
Thus, no customer will choose provider A who announced to have selected uniform pricing. Com-
bining this result with the property given in Proposition 3.5.1, each customer will arbitrarily
choose one of the providers adopting the original mechanism. Consequently, no provider has the
incentive to choose uniform pricing. In other words, under model III, each provider is better off

in terms of profits with the original mechanism.

3.6 Concluding Remarks

In this chapter, we focus on strategic interactions among sellers, retailers and potential buyers. We
propose and analyze a new hierarchical auction to allocate bandwidth efficiently in a hierarchical
structured market. We take advantage of the distribution of information over the parts involved
and coordinate the various trades that have to take place, such that no one has the incentive to
deviate from bidding truthfully. We prove that despite the consecutive transactions, customers
do not incur further losses (this is the cost the social planner has to pay to assure efficiency).
This is an important property, because the hierarchical structure does not affect customers. We
also argue that applying efficient mechanisms in each level, this alone does not guarantee overall
efficiency. The key issue is demand revelation by the providers who are enforced to do so by
restricting their choices.

We also define business models that differ in the distribution of information and the level of
decision making each player possesses, and we investigate the impact competition has on their
profits. The above models are based on the initial hierarchical auction used to sell bandwidth in
multiple levels efficiently. We show that the more power an intermediate provider has, the more
profits can he extract from his customers. However, we also prove that if each customer is allowed
to choose his own provider on the basis of the selected payment rules, then each provider has the
incentive to apply the initial payment rule, for otherwise he would end up with no customers.

Our results are not particular for bandwidth markets; they also apply to other markets for
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which the trading hierarchical model pertains, such the hierarchical trading of units of other
services (e.g. call minutes), or the trading of bandwidth of an overprovisioned backbone link
(top-level trade) that interconnects with congested access networks (lower-level trade), considered

by Maillé and Tuffin in [24].



Chapter 4

Seller Participation in First and

Second Price Auctions

4.1 Introduction

An issue that has received attention in auction theory and practice is the influence that the seller
of a good may exert on the outcome of an auction, simply by choosing the auction type that
would serve his own purposes. Even in regulated environments, where the type of auction to be
employed is given by a third party, the seller may play an active role in the auction’s progress.
In many situations, he participates in an auction by setting a reserve price publicly announced to
the bidders prior to the auction, or he retains the right to bid as if he were a bidder by himself.
The latter perspective can be thought of as that of imposing a secret reserve price. We assume
that bidders are informed of the seller’s participation as opposed to the problem of “phantom”
bidding in which the seller submits bids unofficially in order to raise the price. Bidding behavior
is more complicated in this setting, since bidders have to take into account the behavior of the
seller too.

The seller has the incentive to announce a reserve price in an effort to raise his expected profit.
Indeed, it is proved in [25] that, in the case of symmetric bidders, the optimal ! auction for a
single good is any auction in which the seller keeps the good if the highest bid is less than the

optimal reserve price; otherwise the bidder with the highest bid wins the good. In this context,

'Recall that an optimal auction is the auction that yields the highest expected profit for the seller.

69
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first and second-price auctions with the corresponding optimal reserve price both maximize seller’s
expected profit. Moreover, the seller has the incentive to participate in an auction for a good
that is valuable to him too. This may be the case when the seller is a service provider. If the
bidders are not willing to pay an amount more than the seller’s valuation, then the seller benefits

by keeping it for personal use.

In this chapter we study the case of imposing a secret reserve price and whether this affects
first and second-price auctions in terms of seller’s expected profit, under the private values model.
We show that in some cases a first-price auction is more profitable while in other cases a second-
price auction yields higher profits to the seller. We also show that this does not contradict the
fact that the second-price auction with reserve price is the optimal mechanism with respect to
seller profits. In our model the first-price auction could yield more profits to the seller than the
second-price in specific cases, provided that he would be forced to apply a first-price auction, so
that the distribution of his valuation would be known to the bidders. If the seller has a choice of
mechanism then the players’ strategies that result in the aforementioned comparison of profits,
do not constitute an equilibrium any more. This applies because the distribution of the seller’s
valuation, conditional on his selection of mechanism, affects bidders’ strategies and should be

derived as part of the equilibrium.

Chakraborty and Kosmopoulou deal with the problem of seller participation under the common
values model in [5]. The authors of [5] analyze an ascending price bidding process for a single
good and examine the effect seller participation has on profits. They prove that the potential of
seller participation makes the seller worse off. In fact, any out-of-auction mechanism that makes
it difficult for the seller to submit a bid, increases his revenues. In addition, they prove that the

bidders’ surplus and the surplus from trade is reduced.

Wolfstetter considers in [35] first price auctions with the seller keeping his reserve price secret.
The author of [35] conjectures that bidders’ equilibrium strategy is independent of the secret
reserve price, and proves that the seller’s equilibrium reserve-price strategy is to set it equal to
the seller’s own valuation. In our analysis we prove that it is a dominant strategy for the seller to
set the secret reserve price equal to his valuation and that bidders’ strategy is actually affected

by the seller’s presence.

Before proceeding with our analysis, we summarize the results of first and second-price auctions



4.1 Introduction 71

with a publicly known reserve price below. For a thorough study see [16].

4.1.1 Reserve Prices

Consider the problem of selling a single good to a set of N bidders. We examine the first and
the second-price auction as trading mechanisms. The seller imposes a reserve price r, so that the
good is not sold if the highest bid is less than r. The reserve price r is announced to all bidders
at the beginning of the auction. Each bidder ¢ has a privately known valuation z; for the good.
The seller has a valuation z, which is his maximum willingness-to-pay for the good. That is, he
wishes to keep the good for himself if no bidder is willing to pay more than x,. Each bidder 7 is
assumed to know the distribution functions of his rival’s valuations X1,..., X;—1, Xj41,..., XN
respectively as well as the seller’s valuation X;. We assume that Xy,..., Xy and X, are drawn
independently and identically from the uniform distribution on [0, 1]: the cumulative distribution
function equals F(z) = z, = € [0,1] and the density function equals f(z) = 1, = € [0,1]. The
seller knows the distribution functions of bidders’ valuation too. We examine bidding behavior

and how seller’s expected profit is affected.

First-price auction with reserve price. Recall that in a first-price (sealed-bid) auction with
reserve price, the winner is the bidder with the highest bid provided that this bid is higher than
the reserve price r. The winner pays his own bid. All bidders have the same information for the
game. Thus, there exists a symmetric equilibrium strategy 3 for each bidder. B(x) denotes the
bid submitted by a bidder whose valuation is z. If a bidder has a valuation x < r, then there is
no possibility of winning the good. If a bidder has a valuation x = r, then §(r) = r. Indeed, if
B(r) < r, then the bidder wins with probability 0. If 3(r) > r, then he obtains a negative net
benefit in case of winning. For all 2 > r, there holds 3(z) > r.

It is proved in [16] that the symmetric equilibrium strategy for any bidder with valuation z > r

is as follows:
(N—-1)-z" +rV

Bla) = = (1)
The optimal reserve price r* and the seller’s expected revenue E} are:
1
=L + , and (4.2)

2
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. (zg+ )N +N—1
S22V (N+1) N+

(4.3)

Note that the optimal reserve price is higher than the seller’s valuation. According to [25], the
first-price auction with reserve price is an optimal auction in the symmetric case. The underlining
intuition is that the announcement of a reserve price induces more aggressive bidding so that for
each fixed bidder the probability of winning be increased. Indeed, the bidders’ strategy of Equa-
tion (4.1) gives a higher bid than that of a standard first-price auction given in Example 2.4.1. The
seller benefits from the reserve price, since higher bids produce higher revenues too. However, the
bidding strategy given in Equation (4.1) does not preserve the order of the bidders’ valuations,
resulting in an inefficient outcome. For example, let N = 3, z; = 0.8, o = 0.5, 3 = 0.6
and z; = 0.4. Then r = 0.7 and the bidders submit the following bids: b = 0.7119,
by = 0.79, by = 0.7175. The winner is bidder 2 which is the bidder with the lowest valuation.

Therefore, the first-price auction with reserve price is not efficient.

Second-price auction with reserve price. In a second-price (sealed-bid) auction truthful
bidding is a weakly dominant strategy: (G(z) = = when a reserve price is introduced. The winner
is the bidder with the highest bid provided that this bid is higher than the reserve price r. The
winner pays the second highest bid provided that it is higher than the reserve price. Otherwise,
he pays the reserve price. Thus, bidding behavior is not affected in the presence of a reserve
price. Note that if x < r the respective bidder will definitely not be the winner. It is proved in
[16] that both the seller’s expected profit and the optimal reserve price are the same as in the
first-price auction for any distribution function of the bidders’ valuation. Therefore, the second-
price auction with reserve price and symmetric bidders is an optimal auction too. The fact that
the reserve price might be higher than the second highest valuation results in a higher expected
profit for the seller. Nevertheless, if no bidder has a valuation higher than the reserve price,
the good is not sold even though there might be a bidder willing to pay more than the seller’s
valuation. Thus, second-price auction with reserve price is not efficient either. For example, let
N =3, 1 =0.85, 2o = 0.7, 3 = 0.5 and x5 = 0.8. Then, since bidders are truthful and » = 0.9,
the good is not sold. Even though bidder 1 is the highest bidder, he does not obtain the good
due to the high reserve price.

In conclusion, profit equivalence does hold in first and second-price auctions in the case of
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reserve prices for any distribution function of the bidders’ valuation. Moreover these mechanisms
are optimal for the seller in the case of symmetric and uniformly distributed bidders. In the next
section, we study first and second-price auctions with seller participation and show that profit

equivalence is no more valid.

4.2 Seller Participates in the Auction as a Bidder

We extend the model of Section 4.1.1 to the case where the seller competes for the good as if he
were a bidder like the others. A bidder’s strategy consists of the bid that denotes how much he is
willing to “pay” for the good. The good is allocated to the bidder submitting the highest bid if
that bid exceeds the one of the seller too. The seller’s strategy consists of two parts: a) the type
of the auction to be employed and b) the bid he will submit in the auction selected. In order to
derive his optimal bid, a bidder now takes into consideration: 1) the auction rules, 2) his belief
about the other bidders’ and the seller’s valuations, 3) the other bidders’ strategies and 4) the
seller’s strategy. This last feature complicates bidding behavior substantially. The seller’s choice
of an auction type may reveal information about his valuation. Bidders anticipate the behavior

of the seller adjusting their strategies.

Recall that we have assumed the private values model and that the distribution functions of
all players’ valuations are independently and identically drawn from the uniform distribution on
interval [0,1]. We further assume that the seller is enforced to employ a first or a second-price
auction. Thus, his strategy only consists of the bid he will submit in the auction and is derived

by maximizing his expected profit:

Eg =P x5+ (1 — Py) - yp, (4.4)

where P; is the probability of the seller keeping the good, and , is the payment of the winner
in case the good is sold to a bidder. In a first-price auction ¥, equals the highest bid, whereas in
a second-price auction y, equals the second highest bid including the seller’s bid too. We derive

equilibrium strategies for both mechanisms below.
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4.2.1 First-Price Auction

We consider that the seller is enforced to employ the first-price auction, i.e. there is no other
option of a mechanism. This means that the seller’s strategy reduces to the choice of the bid
he intends to submit. Thus, bidders obtain no extra information about the seller’s valuation.
They hold their initial belief that the seller’s distribution function of his valuation is the uniform

distribution on interval [0,1]. Next, we prove that:

1. truthful bidding is a dominant strategy for the seller, provided that bidders adopt a sym-

metric strategy.

2. bid shading, the same as in a classical first-price auction with N + 1 bidders (i.e., the N

original ones and the seller), is an equilibrium strategy for every bidder.

Wolfstetter considers in [35] this game and only proves the weaker result that it is an equilibrium
strategy for the seller to bid truthfully. In order to prove this, he considers that bidders’ strategy
is not affected by the seller’s presence, which, according to our analysis does not apply. To the

best of our knowledge the analysis and the results to follow are new.

Proposition 4.2.1 In a first-price auction with seller participation, truthful bidding is a domi-

nant strategy for the seller provided that bidders adopt a symmetric strategy.

Proof. Let the seller with valuation x; submit a bid bs. Assume further that each bidder with
valuation z applies the symmetric, increasing and differentiable strategy ((x). Each bidder’s
valuation is uniformly distributed on [0,1]. We will prove that the seller’s optimal strategy ﬁf is

to bid truthfully, against any 5. We have

Pr[ﬁ(Xj) <bs] =

-1 or
{ﬂ (bs), for by < B(1) (4.5)

1, for b, > (1)
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The seller’s probability of winning is a function of his bid b; and is given by:

Ps(bs) = PI‘[ ?fN {/B(X])} < bs]

= Pr[B(X1) < bs and --- and B(Xn) < bs]

L

PI‘[IB(X]') < bs]

<
ﬂ‘
—~

=

D
~

—-

PrX; < B (b)] &

=1
“L(by)N, for by < B(1
P = { V70 e <50
1, for bs > (1)
where we have also used independence of X1,..., Xy. The seller’s expected profit Es equals his

valuation z; if he is the winner; otherwise, it equals the expected value of the maximum bid Y of

the N original bids conditional on the seller not being the winner. Therefore,

Eu(by) = { Ps(bs) - x5 + [1 — Ps(bs)] - E[Y']Y > bg], for by < (1) (4.7)
Ts, for by > (B(1)

where Y = max;=1_ .~ {3(X;)}. Henceforth, to simplify notation, we use max; {-} instead of
maxj—i, . n{}. Assume for now that b, < B(1). The distribution function of ¥ given that
Y > by, is

Pr[3~"(bs) < max; {X;} < B~ (y)]
Primax; {X;} > 1(bs)]

Prfmax {8(X;)} < ylmax (B(X;)} > b.] = (4.8)

Reasoning as in the case of (4.6), it follows easily that

Pr[m]ax {B(X;)} <yl max {B(X))} > bs] = , for any y € [bs, B(1)]. (4.9)

Differentiating (4.9) with respect to y, we obtain the probability density function fy of Y condi-

tional on Y > b;. Thus, for the expected value at large, we have

NN
=[5 )Y A )

B(1) B(1)
E[Y|Y>bs]=/b y-fy(y)dyz/b y dy

(4.10)
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Combining (4.6) and (4.7) with (4.10), the seller’s expected profit is given by:

B(1 ~1(,\]N~1
Ey(bs) = [B7 (0)]Y - 25 + {1 — 5 (bs)]V} - W /,, - % W
(4.11)
S N [y Ny
5 T )

In order to maximize E with respect to bg, we differentiate the above expression. We have

[ﬂ_l(bS)]N_lxs Nbs[ﬂ_l(bS)]N_l

Bb) =N =551y N A G 100)
(4.12)
NN I )
_( S bS)N /Bl(ﬁ_l(bs)) .
Therefore,
ElL(bs) =0 & x5 = b, (4.13)

while this point corresponds to a maximum because all functions =" and their derivatives are
positive. If indeed x5 < £(1), then F4(bs) as given by (4.7) is maximized for x; = bs. Notice
that the topmost expression in the right-hand side of (4.7) equals x4 for by = (3(1), which implies
that if x5 < (1), then bidding a quantity bs > (1) is not beneficial due to (4.13). On the other
hand, if z; > B(1), then E(bs) is increasing in [0, 3(1)] and constant for bs > (B(1). Therefore,
any bid bs > (3(1) is optimal for the seller which includes the case by = 5. Therefore, in any case

ﬂf (x) = x. That is, truthful bidding of the seller maximizes his expected profit. [

Remark 4.1

Consider the more general case were each bidder i adopts a non-symmetric strategy (3; in a first-
price auction with seller participation. Then, truthful bidding is still a dominant strategy for the
seller provided that (31(1) = --- = Bx(1). The proof of this result is provided in Appendix C. In
fact, we conjecture that truthful bidding by the seller applies for every strategy of the bidders.
The proof of the general result should be similar to the Appendix C.

Proposition 4.2.2 In q first-price auction with seller participation, the bidders’ symmetric equi-

librium, strategy is B4 (x) = NLH ..
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Proof. Suppose that each bidder applies the symmetric, increasing and differentiable strategy ((z).
Consider a fixed bidder ¢ with valuation £ who submits a bid that equals b. From Proposition
4.2.1, bidder i knows that the seller applies the strategy b, = B! () = x. Moreover, bidder i
assumes that the seller’s valuation is uniformly distributed on [0,1]. We will prove that bidder’s
i optimal strategy is 8(z) = 8/ (z) = NLH - .

Bidder’s ¢ probability of winning equals
Pi(b) = Primax {5(X;)} < b and 5] (X,) <?]
VE=

= Primax {3(X;)} < 8] - Pr[5(X,) <]
= {HPI‘[IB(X]) <b]} -PI‘[XS <b] (4.14)
J#

= {TIpex; <o)} -prix <
J#

Bidder’s 7 expected net benefit E; equals

N-1

Ei(b) = Bi(b) - (x —b) = (87(0))"  -b-(z D). (4.15)

Since (3 is a symmetric equilibrium strategy, there holds b = 3(z) < B~ '(b) = z. In order to

maximize E; with respect to b, we differentiate E;(b). It follows from (4.15) that

Ei()) =0& (b- (B~ 0)Y ) (z=b) —b(B~10)N =0
1\ N—1 (BN 2 1\ N—1
S [(B70)" T+ (N—1) ] - (2 —b) = b(B7 (b))
T 0) i
-1 . _ . 1 . _ —h. -1 .
[ +b- (N 1) T ))] (—b)=0b-5"(b)
1
@[x—i—b-(N—l)-m]-(x—b) =b-1.
Solving the above differential equation with the initial condition 5(0) = 0, we have
N
Blz) = i1 © (4.17)
Thus, the equilibrium strategy for bidder i equals /() = % x
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The bidders’ strategy is indeed affected by the presence of another “bidder”, namely the seller.
In particular, they consider him as being one of them. The bidder’s equilibrium strategy has the
same form with that of a first-price auction. However, the number of bidders IV is just replaced by
N 4 1. On the other hand, the seller’s strategy is different from that of the bidders. This reflects
the fact that the seller’s objective function (i.e., expected profit) is different from the bidders’

objective function (i.e., net benefit).

Seller’s expected profit in first-price auction. Recall that the seller’s expected profit when
his bid equals bs is F4(bs) given by Equation (4.11). We derived in the proof of Proposition 4.2.1,
that E; is maximized at by = x5 for any symmetric strategy of the bidders. However, the bidders
will bid according to their equilibrium strategy b/ and will affect the seller’s profit through this
strategy. In order to calculate the optimal value of Es; we need to replace in Equation (4.11), bs
with z, as well as the bidders’ strategy 3 with the equilibrium strategy 57. The optimal expected

profit in a first-price auction is then given by:

N +1 N+1 N +1 _ N+1
E(J;pt(%) = (—N > - Tg +N/ < ) .yN L, 4( N ) dy
N 2 N—1
_ (NN v (LN (N SN+ (4.18)
N § N+1 N §

LN v (N
N N 5 N +1 )
4.2.2 Second-Price Auction

Next, we assume that the seller is enforced to employ a second-price auction, in which he partici-
pates too. Thus, his strategy consists of the bid he submits in the auction. Again, bidders’ belief
for the seller’s distribution function is that it is drawn from the uniform distribution on [0,1].

In a second-price auction, bidders’s weakly dominant strategy is truthful bidding. When the
seller participates in a second-price auction, truthful bidding is still bidders’ weakly dominant

strategy: one more player (the seller) does not affect bidders’ strategies no matter what his bid or
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valuation may be. Next, we prove that overbidding the same amount as in a second-price auction

with reserve price is an equilibrium strategy for the seller.

Proposition 4.2.3 In a second-price auction with seller participation, the seller’s equilibrium

strategy equals 33 (z) = Ztl.

Proof. Assume that the seller’s valuation is z; and his bid is bs. He knows that each bidder bids
according to the strategy [(z) = z and that each bidder’s valuation is uniformly distributed on

[0,1]. The seller’s probability of winning is
Py(bs) = Pr[j:rrllaxN{ﬁ(Xj)} < bg) = [B7(bs)]Y = 1Y, (4.19)

which follows reasoning similarly with (4.6). (We have assumed that 55(z) < 1 for every = € [0, 1],
since bidding higher than 1 is equally good for the seller as bidding exactly 1.) If one of the N
original bidders wins, then the payment depends on whether the seller has submitted the second
highest bid. If this occurs, the winner pays the seller’s bid, otherwise the winner pays the second
highest bid among the other bidders’ bids. Therefore the probability Ps(2) that the seller has
submitted the second highest bid equals

PAG) = 3 PrBX) > b, and max {B(X,)} < b

i=1,..,.N (4.20)

S

= Y (1=b)bY ' =N(1 b))
=1

The seller’s profit equals: 1) z, if he does not sell the good (i.e. if by is the highest bid), 2) bs
if he sells the good and his own bid is the second highest bid, 3) the second highest among the
bidders’ bid if by is less than the second highest bid. Thus, the seller’s expected profit equals

Es(bs) = Ps(bs) “Ts + Ps(Q)(bS) -bs + (1 - PS(bS) - P(Z)(bS)) ’ E[Y2|Y2 > bs], (4-21)

S

where Y5 is the second maximum value among 3(X1),...,8(Xx). The distribution function of
Y equals Fy(y) = NbY¥~=! — (N —1)bY. The distribution function of Y3 conditional on Y5 > by, is

Fy(y) — Fo(bs)

Pr[Ye < ylYs > bs] = 1 — Fy(by)

, for any y € [bs, 1]. (4.22)

Differentiating (4.22) with respect to y, we obtain the probability density function f.,,q of Y

conditional on Yy > b,:

__fly) NN - -y
fcond(y) - 1— F2(y) - 1 Nbév_l + (N — l)bév (4'23)
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Using this, the conditional expected value of Ys given that Yo > bs equals
N(N -1 1-bY  1—plHt
_ NV —1) ( s _1-b ) (4.24)
1—Nbs "+ (N —1)bY N N+1
Combining (4.19), (4.20) and (4.21) with (4.24), the seller’s expected profit is given by:
(V-1
(N +1)

In order to maximize Fg with respect to b, we differentiate Eg(bs).

1
E[Y2|YQ > bs] = /b Y- fcond(y) dy

Ey(bs) =bNxy+ N1 —b)bY + (N 1)1 —bY) =N (1 — b+, (4.25)

S

El(bs) =0 NbN oy — NN + N2(1 — b )oY ' — (N = 1)NOY L+ N(N = 1) =0

S
< T+ 1
&by = Bi(zs) = 5

(4.26)

Seller’s expected profit in second-price auction. Replacing by with ""’S; L in Equation

(4.25) we obtain the seller’s optimal expected profit in a second-price auction in which the seller

participates too.
(zs + 1N+ N N-1
(N+1)2N  N+1°

We observe that the seller’s optimal bid equals the optimal reserve price in the model of Section

Ejpu(s) = (4.27)

S

opt remains the same as in the case

4.1.1. Furthermore, the seller’s optimal expected profit F
of imposing a reserve price. That is, it does not make any difference for the seller whether he
announces the reserve price prior to the auction or not. Bidders’ truthful bidding is not affected
either.

As already discussed in 4.1.1 profit equivalence with first and second-price auctions does apply.

It is apparent from (4.18) and (4.27), that profit equivalence does not apply with first and second-

price auctions in case of seller participation. Next, we compare the respective expected profits.

4.3 Profits Comparison in First and Second-Price Auctions with
Seller Participation
In Section 4.2 we restricted attention to bidding behavior given the type of the auction employed

by the seller. In this setting, we derived the optimal expected profit for the seller in first and

second-price auctions to be E({pt and Ej, respectively.
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Since the optimal auction for selling a single good is the second-price auction with reserve price
(see [25]), then the second-price auction with seller participation is an optimal auction too. Thus,
one would expect that the following inequality holds for every z; € [0,1]: Ej,(7s) > E(fpt(xs).
However, we prove below that the aforementioned inequality applies only for a subset of the
range of values of zg, as opposed to the entire interval [0,1]. In particular, we prove the following

proposition:

Proposition 4.3.1 Let AE(z,) = E({pt(azs) — Ejy(ws). Then Ej,(zs) > Egpt(ms), if x5 € (a,b)

and E?

ot (Ts) < El (z4), if (zs € [0,a) or zs € (b,1]), where a and b are the unique roots of AE

opt
in [0,1], with a <.

Proof. Combining equations (4.18) and (4.27),

AE(z,) = Bl (25) — Bipy(xs)

LN+ v (N Y @)Y N1 (4.28)
= — _— x p— J— .
N\ N N N+1 (N+1)2N  N+1
We take the first order derivative of AFE with respect to z,:
N+1\V N
N 2N
(4.29)
o= Y
*N+2
The second order derivative of AFE(zs) equals:
N+1\Y v, N(z,+1)N!
It can be checked that
AE( N - (N+DY NN 41
N+2"  (N+2)N-1  2N-I(N 42)
(4.31)

_NA+1([2(N+ 1)Vt - N(N 4 2)N—2
_N+2{ ONI(N + 2)N 2 }>0‘
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Figure 4.1: Profit comparison in first and second-price auctions with seller participation

Thus the function AFE has a unique minimum point at x; = NLH Since
N N +2)VN — (N + )N+t
AR N WA - (NEDT
N +2 (N 4+ 2)N(N +1)2

(N +1)2V — (N +1)?

AB(O0) = S e s ey > 0 (4.32)

(N 4+ 1)N+L — (2N + 1)NV

AE(L) = NN(N +1)?

>0,

we conclude that AE has two roots in the interval [0,1]. Let a and b be those roots with a < b.
For N > 4 these roots can only be found numerically. Then, E({pt > By ifxs € [0,a) or z5 € (b,1]

and EJ, < B3, if z, € (a,b).

Figure 4.1 illustrates the function AE(z,) for N = 20. The roots of AE equal a = 0.675 and
b = 0.97. The seller prefers a first-price auction if his valuation z; € [0,0.675) U (0.97,1] and a
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second-price auction if z5 € (0.675,0.97).

Note that the difference AE(zs) converges to 0 as N tends to infinity. This means that the
first and second-price auctions tend to yield the same expected profit to the seller in the presence
of a very large set of bidders. Indeed, the bidders’ shading decreases as the number of bidders
increases. Actually, the bids converge to the bidders’ true valuations. Thus, the expected payment
under the first-price auction increases and tends to reach the maximum possible value which is
1. Similarly, the expected payment under the second-price auction increases with the number of

bidders up to the value 1.

4.3.1 An Apparent Explanation Paradox and its Explanation

We have proved that the seller prefers a first-price auction in some cases and a second-price auction
in others, depending on his own valuation. We also know from the literature, that a second-price
auction with reserve price, or equivalently with seller participation, is an optimal auction with
respect to seller’s expected profit, independently of the seller’s valuation. This may be seen as a
paradox in the first place. Next, we argue that both results are valid because each applies in a
different context.

The seller’s choice regarding which of the two auctions to apply depends on his valuation.
Each bidder knows that the seller chooses the auction that maximizes his expected profit. Thus,
a bidder receives information about the seller’s valuation. For example, consider that the seller
adopts the strategy: choose first-price if 25 € [0,a) U (b, 1] or choose second-price if x5 € (a,b). If
a particular seller runs a first (respectively second) price auction, then each of the bidders realizes
that the seller’s valuation z, lies in [0,a) U (b, 1] (respectively in (a,b)). The bidder’s optimal
strategy is now different than that derived in Section 4.2 for the particular mechanism. Indeed,
there we did not take into consideration any extra information about the seller’s valuation. We
assumed that the seller is enforced to choose one type or the other and that his valuation is
uniformly distributed on [0,1]. The results of Section 4.2 are valid only under this assumption.

In the general model in which the seller’s choice of an auction type does affect bidding behav-
ior, the set of equilibrium strategies includes the bidders’ bidding strategies, the seller’s bidding
strategy and the distribution function of the seller’s valuation. In order to verify that the expected

profits of the first-price auction are indeed less than those of the optimal auction, the distribution
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function of the seller’s valuation should be derived as part of the players’ equilibrium strategies.
The set of players’ strategies of the second-price auction with seller participation we derived in
Section 4.2, is an equilibrium of the general model, since bidders’ strategy is truthful bidding
irrespectively of the distribution function of the seller’s valuation. This is indeed the optimal

mechanism, thus our results do not contradict with those from literature.

Concluding Remarks

In this chapter we assess the impact of seller participation on bidding behavior and profits. We
derive equilibrium strategies in first and second-price auctions and compare the expected profits
obtained by the seller. This study can be extended to multi-unit auctions. In many markets such
as bandwidth markets, the owner of the goods benefits by keeping a portion for himself. In this
case he would require to obtain as much profit as possible as a seller, whereas he would benefit
by an efficient selling procedure as a buyer. Analysis of such models constitutes an interesting

yet challenging direction for future research.



Chapter 5

Bandwidth Allocation in a
Communication Network:
Assessment of PSP and a New

Strategy

5.1 Introduction

We consider the problem of allocating a quantity C of bandwidth efficiently to a set of bidders
in a communication network of arbitrary topology. Each bidder is assumed to have a privately
known valuation. The feature that plays a significant role in designing the appropriate mechanism
in this model, is the requirement that a bidder should obtain the same quantity of bandwidth in
each link that belongs to his own path. (This is henceforth referred to as consistent allocation of
bandwidth to this user). In the case where a bidder would obtain more quantity in a link than
in the others, this excess quantity would be useless to him, while he would have paid for it a
non-negative amount of money. This portion could be fairly given to another bidder increasing
in this way both the social welfare and the net benefit of the two users. Therefore, consistent
allocation of bandwidth is necessary for attaining efficiency. Consistent bandwidth allocation can

be attained by means of a combinatorial auction mechanism that would allow a unique bid per

85
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bidder for the whole path. However, since in general users are interested in a multitude of different
paths, the winner determination process of a combinatorial auction (described in Section 2.6) is
very complicated, if not intractable. Lazar and Semret propose in [20] an auction mechanism
that allows for independent bids in each link. Each bidder exploits the information of all links he
acquires during the process and determines his own bid for each link independently. In the PSP
auction a bidder is allowed to submit a bid in any link irrespectively of the network topology.
The most common case is that of bidding in consecutive links that form a path but there can
be other cases too, in which a bidder has interest in links that are not physically connected.
In the latter case, the bidder following the PSP rules, submits a bid independently in each link
of interest without being affected by the network topology. The aforementioned mechanism is
a generalization of the Progressive Second Price (PSP) auction for a single link that we briefly
described, in Chapter 2. The PSP auction has played a significant role in the field of auctioning
network resources and has attracted much attention of other researchers too, who have published
related works, e.g. [22, 23, 24, 32]. Prior to describing the network-wide PSP and the problems

we have investigated, we give our remarks about the PSP auction for a single link.

5.2 Remarks on the Progressive Second Price Auction for a Sin-

gle Link

The PSP auction manages to allocate a divisible good such as bandwidth in a nearly efficient
way. Nevertheless, there have been observed some drawbacks of the mechanism which we briefly
discuss below. A major drawback of PSP, is that the strategy of the e-best reply is considered in
the short run. That is, without taking into account the future actions of opponent bidders in the
determination of one’s optimal strategy. Thus, the e-best reply is e-optimal (i.e., nearly optimal)
for a bidder, if this bid would cause the termination of the game, as opposed to the repeated
game. As evidence to this, Maillé and Tuffin provide in [22] a different Nash equilibrium of the
PSP game, which comprises strategies that take into consideration subsequent actions: the first
bidder observes no demand by his opponents. Thus, he has the incentive to bid for the whole
capacity at a very high price so that no other bidder can afford bidding against him afterwards.

As a result the first bidder wins all the capacity at a very low price (reserve price pg). Extending
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this argument, one could claim that a bidder at any possible step of the PSP game could overbid
for the desired quantity ¢¢ to exclude all subsequent bidders. However, in our opinion, this does
not apply. Indeed, a bidder cannot know or determine whether he will be playing first or at any
specific order, since the game is completely asynchronous and distributed. This implies that more
than one bidders might submit a bid, each having the belief that he is the first to play. In this case,
overbidding might cause a bidder to suffer a negative net benefit. This follows by reasoning as in
the case of the Vickrey auction, that a bidder cannot profit from overbidding: he faces the risk
to obtain the good at a price higher than his own valuation. The difference is that overbidding is
never preferred in the Vickrey auction whereas in the PSP auction the bidder might be better off

by overbidding, but he cannot predict when. The following example illustrates the above ideas.
Example 5.2.1

Suppose that two bidders A and B compete for a quantity C' = 5. Bidders A and B have marginal
valuations €4 (z) = —z+6 and 05 (z) = —z+9 respectively. Assume that each bidder plays as if he
were the first one. Let s4 = (5,200) and sg = (5,100) be their bids. Each one overbids expecting
to exclude the other from participating. The winner is bidder A who obtains the whole capacity
at a unit price of 100. Thus, his net benefit equals NB4 = 04(5) — ca(5) = —52/2+6 %5 — 500 =
—482.5. A

In our opinion, the e-Nash equilibrium established by Lazar and Semret in the single-link case is
a reasonable set of strategies for the bidders. Nevertheless, Maillé and Tuffin propose in [22] a
variation of the PSP algorithm that deters the first bidder from overbidding. According to the
authors of [22] bidders that cannot get any bandwidth are required to submit a bid, at no cost,
which will punish the bidder who obtains all the capacity due to overbidding.

Our second remark has to do with the case of ties. That is, when a bidder’s bidding price
coincides with another previously submitted bidding price. Then, the PSP allocation rule punishes
both bidders involved. For example, assume two bidders that compete for capacity C' = 8 and
submit the bids s; = (4,7) and so = (6,7) respectively. According to the PSP allocation rule
bidder 1 obtains 8 — 6 = 2 units of bandwidth and bidder 2 obtains 8 —4 = 4 units of bandwidth.
The remaining 2 units of bandwidth are not allocated to them. This perspective gives bidders
the incentive to change their bids by increasing slightly their price and decreasing the demanded

quantity, so as to avoid ties. As deduced from [20], the intuition for introducing e is that bidders
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never experience ties if they follow the strategy of the e-best reply explained in the previous
chapter. However, this is not true; any selected price near the best reply might coincide with
another bid, although the introduction of € does reduce the frequency with which ties occur. In
our opinion, this is actually the impact of parameter e, as opposed to the interpretation given
in [20], that € can be thought of as fee each time a bidder submits a bid. With this approach,
a bidder faces the risk of obtaining a negative net benefit, since the strategy he adopts is based
only in the current step. In the extreme case, a bidder that places K bids and finally wins no
bandwidth at all, faces a negative net benefit of —Ke units. Tuffin considers in [32], the problem
of ties. He defines a new allocation rule and proves that ties do not occur, in the PSP auction
under this new rule. This modified allocation rule reduces to the rule in equation (2.3) when no tie
arises. Thus the strategy proposed by Lazar and Semret in [19] and the properties of convergence

to an e-Nash equilibrium and efficiency still apply.

5.3 PSP in a Network

Lazar and Semret extend in [20], the PSP auction in the network case. They consider a set of
bidders N = {1,..., N} and a set of resources £ = {1,..., L} corresponding to communication
links of a network, with bandwidth capacity C', ..., C¥ respectively. Each bidder desires band-
width in a combination of links that form his path, which is fixed and known to him before the
auction starts. Bids at any combination of links are allowed. All the assumptions about bidders’
valuations made in the single link case still hold. It is further assumed that each bidder benefits
only from the minimum allocated quantity of bandwidth among all links of his path. For example,
consider a bidder interested in a path consisting of two links. Consider further, that he obtains
3 and 5 units of bandwidth in each link respectively. He can use only 3 units in both links,
even though he has paid for more in the second link. The PSP auction is performed in each link
independently, so that the whole mechanism is decentralized: the outcome at any link can be ex-
tracted without knowledge of other links’ state. Each bidder combines information released from
all links he is interested in, and determines his strategy such that his net benefit be maximized.
Lazar and Semret in [20], prove that a bidder cannot do better than place the same bid at all
links on his path (consistent bidding). They claim that there exists a truthful e-best reply, which

leads the game at a truthful e-Nash equilibrium if reserve prices for each link are introduced. The
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e-best reply s¢ = (¢f,pS) of bidder ¢ that is submitted in each link separately is derived as follows:
the best reply s = (¢;, p;) is the intersection of 7’s marginal valuation function and the “staircase”
that depicts the market price at each quantity. For bidder 7, the market price at quantity ¢ equals
the sum of the prices at quantity g offered by the opponents at the auctions of the various links
that form bidder’s 7 path. That is, the “market staircase” of bidder 7 equals the sum of the
“staircases” of each link in his path: for each quantity are added prices. In other words, ¢; is the
largest quantity such that his marginal value is just greater than the market price, whereas p;
equals his marginal valuation at ¢;. That is, p; = 0.(¢;). The e-best reply is then calculated by
decreasing ¢; by Weo) so that ¢f = ¢; — %, and adjusting p; such that p§ = 0.(gf). The bidder
then bids (¢f, p§) in each link of his path. Figure 5.1 illustrates the derivation of the e-best reply
of bidder ¢ whose path comprises two links with the same capacity, given his opponents’ profiles
in the two links.

Figure 5.2 illustrates the derivation of the e-best reply of bidder i whose path comprises two
links with different capacities C7 and Cy (C; < C9) respectively, given his opponents’ profiles
in the two links. In the case where C # C9, bidder’s i demand function 6, is defined in the
interval [0, min{C1, Cy}], since he requires to obtain the same quantity in each link. Thus, the
monotonicity property of his bid (price increases and quantity decreases in time) is preserved:
the bid never lies in the interval [min{C}, C2}, max{C}, C2}|. For simplicity reasons, we consider
links with the same capacity in the rest of this chapter.

Efficiency in the network-wide PSP auction is examined in [31]. It is proved in [31] that the
social welfare is within a bound from its maximum value provided that the second derivatives of

bidders’ valuation functions are bounded.

Efficiency and related aspects in the network-wide PSP auction. The aforementioned
bidding strategy for the network case suggests that path bidders submit a high bid, the same
in each link, for the demanded quantity. Moreover, in this step, they could obtain this same
quantity by submitting a lower price in each link. This overbidding is apparently harmless to the
path bidder himself, due to the fact that charging is performed according to social opportunity
cost. By construction of the market “staircase”, it follows that the total charge in all links never
exceeds p§. Nevertheless, we claim that efficiency is not very close to maximum in many cases, due

to this overbidding approach. Competitive path bidders are reasonably expected to have higher
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Figure 5.1: Bidder’s i e-best reply (qf,p$) proposed in [20] for a network of two links with the

same capacity

valuations in general than single-link bidders, because their valuations correspond to a whole path
instead of one single link, even if single-link bidders should win considerable portions of capacity in
the efficient allocation. In general, the path bidder who desires the path with the most links, has
the advantage over all other bidders to submit a high bid and exclude them from winning. This
problem is reminiscent of the threshold problem discussed in Chapter 2: combinatorial bidding
causes a low valuation bidder to be unable to respond to high bids. Bidding in network-wide PSP
is similar to that of combinatorial, since each bidder’s strategy is derived by considering the sum
of the market prices of all links as opposed to the set of the different prices of each link. We have
carried out several experiments that verify our assertion. These will be described in a subsequent
section. Herein, we provide an example in which the approach discussed leads to an inefficient

allocation.
Example 5.3.1

Consider two communication links A and B with capacities C4 = CB = 8 and three bidders with

marginal valuations €] (z) = —z + 10 for link A, 05(z) = —z + 16 for link B, 65(x) = —z + 25 for
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Figure 5.2: Bidder’s i e-best reply (qf,pS) proposed in [20] for a network of two links with different

capacities

links A and B respectively. Their respective utilities are 0;(z) = —%2 + 10z, O2(x) = —$2—2 + 16z
and 03(x) = —:”2—2 + 25x. We take € equal to 1 and the reserve price pg in each link equal to 1 too.
The efficient allocation in this example is the solution of the following social welfare maximization
problem:

2 2 2
max {91(.’1:1) + 92(%2) + 93((1:3)} = mgx{—% + 10z1 — % + 16x9 — % + 25(1:3}
Z Z

s.t. x1+x23 =28 (5.1)

To+x3 =28

The solution of this problem is the vector of quantities Z = (3,3,5) and the maximum value of
the social welfare is SW,,(3,3,5) = 181.5.

If we apply the network-wide PSP auction and the proposed strategies for the bidders, then the
game terminates immediately after the first bid of the path bidder 3, independently of the order the
bidders may submit their bids. For example, assume for the sake of simplicity that bidder 3 plays
first; that is, he observes no demand in neither of the two links. His bid s§ = (g5, p§) for each link

according to the strategy is calculated as follows: ¢§ = 8 — 05,—?0) = 7.96 and p§ = 65(7.96) = 17.04.
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The other single-link bidders cannot compete against bidder 3, since the marginal valuation of
any one of them is less than 17.04 for any quantity of bandwidth. We assume that the remaining
quantity of bandwidth which equals 0.04 units in each link is awarded to the respective single-
link bidder at the reserve price. (This would be the case if the single-link bidders played first.)
Thus, the auction terminates at the allocation Z = (0.4,0.4,7.96). The resulting social welfare

SW(0.4,0.4,7.96) equals 168.3576, which is significantly below the optimal value. A

Next, we justify why the social welfare of the network-wide PSP auction often deviates con-
siderably from the corresponding optimal value. This is due to the fact that the e-best reply is
not truthful in the following sense: The e-best reply is a point of the overall marginal valuation
function of bidder . However, on a per link basis, the e-best reply submitted is not a truthful one,
since the sum of the prices p{ offered for the quantity ¢{ in each link is higher than the bidder’s
marginal valuation at ¢ which is pj. Actually, the price p§ offered in each link is considerably
higher than the price that would suffice to obtain the quantity ¢{. Since the auction in each
link is a PSP auction itself, this strategy amounts to overbidding. However, overbidding forces
prices increase more aggressive in each link, which thus does not converge to those resulting in the
efficient outcome, as was the case in the single-link PSP auction. Next, we provide an example in
which the deviation of the social welfare from its maximum value can be very high as the number

of links increases.

Example 5.3.2

Consider a linear network consisting of L links, each of capacity C. Consider further that there is
one path bidder interested for the whole path of the L links and one single-link bidder in each link.
We take that the utility function ), of the path bidder and the utility functions 6; of the various
single-link bidders are identical. Let 6 be the common utility function of all bidders. Then, the
efficient allocation is to award each single-link bidder with capacity C resulting in the optimal
social welfare SW,,; = LO(C). If each bidder adopts the strategy of Lazar and Semret and the
path bidder plays first, then the path bidder obtains the whole capacity due to overbidding. The
resulting social welfare equals SW = 6(C'). Thus, the percentage loss of the social welfare equals

Lo(C)-6(C) _ L—1

loss = e~ = L Note that the loss increases and approaches 100% as the number of

links increases. A
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5.4 A New Bidding Strategy for Path Bidders

As already mentioned, a key question on the proposed strategy for path bidders of the network-
wide PSP auction is whether it is fair or optimal (for the bidder himself and/or for the society) to
apply overbidding in the various links. It is not obvious whether this approach leads to optimal
price discovery and final bandwidth allocation. Thus, we propose another strategy for path
bidders of the network-wide PSP auction that we consider to be more reasonable. This strategy
suggests that instead of bidding the market clearing price in each link, split this and set the prices
-differently in each link- to be the smallest ones that assure winning of the optimal quantity. The
optimal quantity is found similarly as in the strategy of [20].

Recall that, by assumption, each bidder knows his valuation function for the whole path of his
interest. If he could split his valuation function and determine the corresponding portion for each
link, then he could find the right price for this link’s bid. For each link, this price corresponds
to the intersection of the vertical line through the optimal quantity with this link’s “staircase”.
These prices sum to the market clearing price. Therefore, a path bidder employing this strategy
reveals his real demand, thus avoiding overbidding.

Formally, consider a bidder 7 that is interested in a path consisting of K links, which are
taken to be links 1,..., K. Let s = (g;,p;) and s¢ = (¢, p5) be the best reply and the e-best
reply respectively, as defined in the previous section. For j = 1,..., K, let I; be the set of all
intersection points of the vertical line through ¢; with the “staircase” of link j. For the set of

points I; there are two possibilities:

a) I; is a single point that lies on the interior of a horizontal segment of the “staircase” of link

7; this is the general case.

b) I; is a set of points that lie on a vertical segment of the “staircase” of link j. This means
that the quantity ¢; coincides with another previously submitted quantity in link j. This is

an exceptional case arising when two or more bidders are identical.

In order to define the price p; ; that bidder ¢ will submit in each link j, we distinguish among the

following three cases:

Case 1. For each j = 1,..., K, I; is a single point. Then, define p; ; to be the price that corresponds
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Figure 5.3: The vertical line through ¢; intersects with the “staircase” of both links horizontally

(Case 1)

to the intersection point I;. Obviously, prices p; ; are uniquely defined in this case. Figure

5.3, depicts the prices p; 1 and p; » for bidder ¢ in a two-link path in this case.

Case 2. For each 7 = 1,..., K, j # k, I; is a single point. I} is a set of points. Then, for each
j=1,...,K, j #k define p; ; as previously and let p; ; equal &'(q;) — (32,4 Pi,j)- Again,
prices p; ; are uniquely defined. Figure 5.4 depicts the prices p; 1 and p; 2 in a two-link path

in this case.

Case 3. For two or more links, the respective I;’s are intervals rather than single points. Then,
for each such link j, define p; ; to be the lowest price of all prices that correspond to the
intersection points of set I;. For the remaining links define p; ; as in case 1. Prices p; ; are
uniquely defined in this case too. Figure 5.5 depicts prices p; 1 and p; 2 in a two-link path,

in this case.

Recall that the market price p; at quantity ¢; equals the sum of the prices at quantity g; offered

by i’s opponents at the auctions of the various links that form bidder’s 7 path. From the definition
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Figure 5.4: The vertical line through ¢; intersects with the “staircase” of link 1 vertically and
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of p; j’s we have the following:
Pi1 + -+ pi,x = pi, for cases 1 and 2 and, (5.2)

pi1+ -+ pix < pi, for case 3 (5.3)

Similarly with the strategy of [20], the quantity to be demanded in the bids of all links is slightly
less than ¢g;. To keep in line with [20] as much as possible, this decrease equals Weo)' Since price
increases as quantity decreases, we have that p¢ = p; + G, where pf is such that p¢ = 6/(¢f) and G
is some positive scalar. The prices of the bids of the various links should also be increased. For
simplicity, we define

. G
(Alternatively, G could have been split proportionally with respect to the p; j.) Combining this

with equations 5.2 and 5.3 we obtain the following:
Pt Pk =pin+ - +pik + G =p;+G=pj, for cases 1 and 2 and, (5.4)

Pt Pk <pint -+ pik + G <pi+ G=pj, for case 3. (5.5)

Bidder’s 4 bid for link j is (qf,pg,j) for j = 1,..., K. Essentially, path bidder 4 first derives the
best quantity and (total) price for the entire path and then splits the price among the various
links so that he can win the desired quantity in all links. Obviously, for single-link bidders, this
strategy reduces to the one proposed by Lazar and Semret in [20] in the single-link case. Figure
5.6 depicts the derivation of bidder’s ¢ bids according to our approach for a two-link network.
Lazar and Semret have showed in [20], that the strategy they propose is the e-best reply for
each bidder in the short run; that is, without taking into consideration subsequent actions of his
opponents. Our strategy is an e-best reply in the short run too in the following sense: given a
particular “staircase”, if the path bidder responds according to our strategy, then he obtains the
same quantity and pays the same total charge as he would with the overbid strategy. Indeed,
the quantity bidded for in our strategy is the same and even though the price in each link is
lower than that of the overbid strategy, it is high enough so that the desired quantity be won.
Since the charge in each link is the social opportunity cost, it is the same in both cases had the
auction terminated with this bid. Thus, the path bidder’s net benefit is the same with that under

the overbid strategy, which would be optimal, had this bid caused termination of the auction.
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Figure 5.6: Bidder i submits the bid (gf,p}) in link 1 and (gf,p?) in link 2 according to the

proposed strategy in a network of two links

However, the two strategies differ in how the auction evolves in subsequent steps and of course in
the final allocation.

Below, we compare the strategy of Lazar and Semret (overbid strategy, also denoted as “LS”)
with our proposed strategy (minimum bid strategy, also denoted as “new”) in terms of both

individual net benefit for path bidders and social welfare.

5.5 Experimental Evaluation of Strategies

In this section, we compare the overbid strategy with the minimum bid strategy in terms of
efficiency and equilibrium. We expect that, since the minimum bid strategy amounts to less
aggressive bidding, it yields outcomes that are closer to the maximum social welfare. It is also
reasonable that path bidders with high valuation prefer the minimum bid strategy, since they will
win anyway their share (as in efficient allocation), but without increasing prices that would result
in a higher payment and a lower net benefit for them. On the contrary, path bidders (particularly

those with low valuation) may prefer the overbid strategy, since they win more capacity than they
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obtain under the efficient allocation. These assertions are justified in the experiments that follow.

5.5.1

Specification of Experiments

We carried out several experiments and considered the following assumptions:

The network consists of 2 links, each having capacity C' = 5 units of bandwidth. Motivation

for considering such a small network is provided at the end of this section.

Each experiment involves two runs of the network-wide PSP auction. In the first run the
overbid strategy is applied by every bidder. In the second run the minimum bid strategy is
applied by every bidder. Additionally, we have carried out several experiments in which one

bidder applies one of the two strategies and all the other bidders apply the other strategy.

Players have elastic demand of the form 6'(¢) = aq + b, a < 0. Three categories of bidders
take part in the game: single-link bidders interested in link 1, single-link bidders interested
in link 2 and path bidders. We carried out experiments with the following mixes of bidders:
a) many single-link bidders and one path bidder, b) many single-link bidders and a few path
bidders, and c) a few single-link bidders and many path bidders.

We consider a reserve price pg = 0.1 in each link. This price is set by the seller (bidder 0)

of the first link and by the seller (bidder 1) of the second link.

We take € equal 1. When applying the minimum bid strategy for path bidder ¢, we split the

extra price GQTGO) equally for the two links, so that Piy = pi’1+0'59§T€0) and p 5 = pi2 +0'50;T60)’

(We employ the notation defined in Section 5.4).

The order of bidders is predefined and is applied periodically throughout an experiment.

Note that the PSP auction algorithm that we implemented differs from that of [20] in two

points. First, since the problem of ties does not completely disappear by introducing e (see

Section 5.2), we introduced an iterative method to avoid ties. This is as follows: the e-best reply

is calculated, as in [20]. If a tie arises, then the price is reduced again by the same value as the

first reduction; that is, by €/6:(0). The quantity is further adjusted so that p} = 6/(q}) is satisfied

for the new bid (g},p}). We repeat this adjustment procedure until the tie is resolved. Second,
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we do not interpret € as a bid fee. That is, a bidder submits his next bid if he thus improves his
net benefit by any positive amount. Recall that in [20] it is necessary that this improvement is at
least €; otherwise, the bid is not submitted. Of course, € is used to derive the e-best reply, which
is further employed to calculate the next value of net benefit. In our opinion, there is no reason
to include € again in the criterion of adjusting one’s net benefit. Therefore, the algorithm bidder

1 employs is as follows:
1. Initially s; = 0.
2. Take the updated s_;.
3. Compute the e-best reply s{ as given by the corresponding strategy.
4. If necessary, adjust the bid s{ so as to eliminate ties.

5. Let s; be the bid at the end of step 3 and 4 (if necessary). If NB;(sf) > NB;(s;), then

replace the bid s; with s;.
6. In the next time of bidding go to step 2.

For the experimental evaluation of the two strategies we have developed a special software
using the Java programming language. The optimal value of social welfare in each experiment

was derived using Mathematica, considering full information about bidders’ utility functions.

5.5.2 Results

The experiments confirmed our assertions for efficiency and bidding behavior in the network-wide
PSP auction. In particular, the experiments revealed that the minimum bid strategy outperforms
the overbid strategy with respect to efficiency of the mechanism, while it is also beneficial for
path bidders. We will discuss about these findings in further detail below. Table 5.1 shows a
typical representation of a pair of experiments. Each row provides information and results for a
specific bidder. The first column shows the identity of each bidder, the second column refers to
the link(s) each bidder is interested in, and columns 3 and 4 indicate the parameters a and b of
the marginal valuation of each bidder. The optimal allocation is indicated in column 5. Each

bidder’s allocation and net benefit under the overbid strategy is indicated in column 6. Each
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Bidder | Link | ¢« | b | Optimal Alloc | Over. Strategy | New strategy
Bandw. NB Bandw. NB
0 (seller) 1 0 0.1 0 0 0 0 0
2 1 -1 13 2.2 0 0 2.13 24.54
4 1 -1 12 1.2 0 0 1.19 12.79
6 1 -1 11 0.2 0 0 0.18 1.3182
8 1 -119 0 0 0 0 0
10 1 -1 1 10 0 0.05 0.09 0.05 0.1
1 (seller) 2 0 0.1 0 0 0 0 0
3 2 -1 3 0 0 0 0 0
2 -1] 6 0.2 0 0 0.15 0.29
7 2 -1 07 1.2 0 0 1.18 6.49
9 2 -1 8 2.2 0 0 2.2 13.65
11 2 -115.5 0 0.05 0.13 0.02 0.13
12 1-2 | -1 18 1.4 4.94 19.96 1.42 22.63
SW 90.3 77.63 90.24

Table 5.1: A pair of experiments that shows the allocation and net benefit of each bidder in both

strategies

bidder’s allocation and net benefit under the minimum bid strategy is indicated in column 7. The
last row shows the optimal social welfare, the social welfare under the overbid strategy and the

social welfare under the minimum bid strategy.

Assessment of efficiency in the network-wide PSP auction. Running the same exper-
iment with both strategies, the overbid strategy results in lower social welfare than with the
minimum bid strategy. This was the case for every experiment we carried out. In fact, the more
path bidders involved or the higher their valuation, the greater the observed loss in social welfare
with the overbid strategy. Below we present the results of five sets of experiments with different

mixes of path and single-link bidders. For each set of experiments, a variety of bidders’ valuations
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were taken.

e Set A: 6 single-link bidders contend in link 1, 6 single-link bidders contend in link 2, while
there is also 1 path bidder (interested in both links). In Table 5.2, we present the optimal
social welfare, the social welfare under the overbid strategy and the social welfare under the
minimum bid strategy for a multitude of experiments. The two last columns show the per-

centage loss of social welfare under the overbid and the minimum bid strategy respectively.

e Set B: 7 single-link bidders contend in link 1, 5 single-link bidders contend in link 2, while
there is also 1 path bidder (interested in both links). In Table 5.3, we present the optimal
social welfare, the social welfare under the overbid strategy and the social welfare under the
minimum bid strategy for a multitude of experiments. The two last columns show the per-

centage loss of social welfare under the overbid and the minimum bid strategy respectively.

e Set C: 7 single-link bidders contend in link 1, 5 single-link bidders contend in link 2, while
there are also 2 path bidders (interested in both links). In Table 5.4, we present the op-
timal social welfare, the social welfare under the overbid strategy and the social welfare
under the minimum bid strategy for a multitude of experiments. The two last columns
show the percentage loss of social welfare under the overbid and the minimum bid strategy

respectively.

e Set D: 4 single-link bidders contend in link 1, 4 single-link bidders contend in link 2, while
there are also 4 path bidders (interested in both links). In Table 5.5, we present the op-
timal social welfare, the social welfare under the overbid strategy and the social welfare
under the minimum bid strategy for a multitude of experiments. The two last columns
show the percentage loss of social welfare under the overbid and the minimum bid strategy

respectively.

e Set E: 2 single-link bidders contend in link 1, 2 single-link bidders contend in link 2, while
there are also 6 path bidders (interested in both links). In Table 5.6, we present the op-
timal social welfare, the social welfare under the overbid strategy and the social welfare
under the minimum bid strategy for a multitude of experiments. The two last columns
show the percentage loss of social welfare under the overbid and the minimum bid strategy

respectively.
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Experiment | Optimal SW | SWoyer | SWhew | 108Soper (%) | 108Spew (%)

1 187.5 186.97 | 187.12 0.28 0.2

2 137.5 137.28 | 137.39 0.16 0.08
3 110.58 109.47 | 110.58 1.003 0

4 90.3 77.63 90.24 14.03 0.06
) 98.45 96.92 98.44 1.55 0.01
6 247.5 247.36 | 247.49 0.05 0.004
7 337.5 337.14 | 337.24 0.1 0.07
8 493.81 487.53 | 493.36 1.27 0.09

Table 5.2: Social welfare comparison in set A of experiments

The results of Tables 5.2 - 5.6, reveal the following: In each experiment the minimum bid
strategy yields higher or equal social welfare than the overbid strategy. Moreover, social welfare
under the minimum bid strategy is always almost equal to the optimal. The maximum social
welfare loss observed was less than 0.22%. On the contrary, the social welfare under the overbid
strategy may considerably deviate from the optimal value. For example, in the experiment 2 of
set E the loss observed was 31.82%, in the experiment 5 of set D the loss observed was 8.94% and
in the experiment 2 of set B the loss observed was 9.72%. In fact, the higher the number of path
bidders considered, the higher the social welfare loss in the overbid strategy is observed. In the
experiments of set E, the minimum loss of social welfare is 4.44% and the maximum loss of social
welfare is 31.82% under the overbid strategy. In most experiments of set A, the social welfare loss
under the overbid strategy is very close to that under the minimum bid strategy, since there is
only one path bidder. Nevertheless, in experiment 4 of set A, the loss under the overbid strategy
is remarkably high 14.03% because the path bidder in this experiment has a high valuation and
this overbidding is beneficial for him. Experiments 5,6,7 of set E comprise the same set of users,
but in a different order. We observe that the social welfare under the minimum bid strategy is
the same for all these experiments, while the social welfare under the overbid strategy differs in

each of these experiments.
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Experiment | Optimal SW | SWoyer | SWhew | 108Soper (%) | 108Spew (%)

1 215.67 193.73 | 215.60 10.17 0.03
2 215.70 194.73 | 215.64 9.72 0.02
3 215.76 195.72 | 215.68 9.28 0.03
4 215.85 196.71 | 215.77 8.86 0.03
) 215.96 197.71 | 215.87 8.45 0.04
6 220.30 212.63 | 219.99 3.48 0.14
7 237.70 237.51 | 237.70 0.07 0

8 262.5 262.42 | 262.42 0.03 0.03

Table 5.3: Social welfare comparison in set B of experiments

Experiment | Optimal SW | SWoyer | SWhew | 108Soper (%) | 108Spew (%)
1 262.5 262.39 | 262.42 0.04 0.03
2 237.75 216.62 | 237.48 8.88 0.11
3 223.09 207.65 | 222.97 6.92 0.05
4 223.95 212.63 | 223.75 5.05 0.08
) 225.45 217.60 | 225.15 3.48 0.13
6 243.75 237.51 | 243.74 2.56 0.004
7 233.36 232.54 | 233.33 0.35 0.01
8 247.5 247.48 | 247.48 0.008 0.008

Table 5.4: Social welfare comparison in set C of experiments
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Experiment | Optimal SW | SWoyer | SWhew | 108Soper (%) | 108Spew (%)

1 204.16 186.92 | 203.78 8.44 0.18
2 204.3 186.92 | 204.25 8.5 0.02
3 205 186.92 | 204.95 8.81 0.02
4 208.7 191.93 | 208.68 8.03 0.009
) 210.8 191.94 | 210.75 8.94 0.02
6 207.2 191.94 | 206.74 7.36 0.22
7 208.7 191.96 | 208.51 8.02 0.09
8 210.57 199.42 | 210.35 5.29 0.1

Table 5.5: Social welfare comparison in set D of experiments

Experiment | Optimal SW | SWoyer | SWhew | 108Soper (%) | 108Spew (%)

1 97.91 87.34 97.91 10.79 0

2 142.96 97.47 142.96 31.82 0

3 142.99 127.14 | 142.98 11.08 0.006
4 90.3 77.63 90.24 14.03 0.06
) 143.43 137.06 | 143.42 4.44 0.006
6 143.43 135.57 | 143.42 5.48 0.006
7 143.43 128.63 | 143.42 10.31 0.006
8 167.5 127.29 | 167.46 24.005 0.02

Table 5.6: Social welfare comparison in set E of experiments
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Assessment of equilibrium properties in network-wide PSP auction. We carried out a
multitude of experiments in order to gain intuition on which of the two strategies is beneficial for
bidders as well as whether these strategies constitute equilibria. We ran four types of experiments:
a) experiments in which bidders employ exclusively the overbid strategy, b) experiments in which
bidders employ exclusively the minimum bid strategy, ¢) experiments in which one bidder employs
the minimum bid strategy and all the others employ the overbid strategy and d) experiments
in which one bidder employs the overbid strategy and all the others employ the minimum bid
strategy. Note that in each experiment, each bidder employs a specific strategy throughout the

auction. We have observed the following:

e We have identified certain cases in which a path bidder benefits by deviating from the
overbid strategy and applying the minimum bid strategy, when all the others follow the
overbid strategy. In Table 5.7, we present the result of a pair of experiments (of set E) in
which bidder 7 obtains a much higher net benefit if he deviates from the overbid strategy
to the minimum bid strategy (22.39 versus 2.20). Recall that a and b are the valuation
parameters (6}(z) = ax + b). This result is due to the fact that path bidder 7 raises the
price under the overbid strategy without excluding other bidders from playing. Thus, all

winners pay more under the overbid strategy for almost the same quantity of bandwidth.

e Similarly, we have identified certain cases in which a path bidder benefits by deviating from
the minimum bid strategy and applying the overbid strategy, when all the others follow the
minimum bid strategy. The result of such a pair of experiments is presented in Table 5.8:
bidder 9 obtains a much higher net benefit if he deviates from the minimum bid strategy
to the overbid strategy (137.55 versus 80.02). This is due to the fact that bidder 9 raises
the price under the overbid strategy and manages to obtain the most of the capacity by

excluding the other bidders from playing.

e Considering the previous two remarks, we conclude that none of the two strategies consti-

tutes an equilibrium in the iterated game.

e When all path bidders apply the overbid strategy, the first path bidder to bid, obtains most
of the quantity and all the others obtain almost no bandwidth. The underline intuition is

the same with that of overbidding in the single-link case. If his valuation is not low, then
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the path bidder raises the price very much and the others are unable to respond. Note that
when the overbid strategy is applied the allocation is affected by the order bidders place
their bids. An experiment that illustrates this fact is given in Table 5.9. The order of players
in this experiment is as follows: 0123 11 58 9 6 7 10 4, which is then repeated periodically.
Note that bidder 11 is the first path bidder to bid and obtains the most of the capacity. The
valuation of path bidder 8 is comparable to that of path bidder 11. Nevertheless, since the
former places a bid after the latter, he wins no bandwidth at all which is in disagreement

with the optimal allocation.

e Ifall path bidders adopt the minimum bid strategy, then they are all better off than when all
apply the overbid strategy, except perhaps for the first path bidder who in certain cases gains
almost the entire capacity when all bidders employ the overbid strategy. This exception does
not apply if there are single-link bidders with considerable valuation, that bid before the
first path bidder. A pair of experiments that illustrates the superiority of the minimum bid
strategy is presented in table 5.10. Note that this is a pair of experiments of set C and the
order of bidding is as follows: 012345678910 11 12 13.

From the above we conclude that it is safer for a path bidder to choose our strategy because, if he
is not the first one to play, then he faces the risk of obtaining almost nothing if he did otherwise.
In general, overbidding makes sense when one manages to exclude all the other bidders from
playing, otherwise he raises prices that will cause him pay ultimately more for a lower quantity.
However, the order of players is not determined by the bidders themselves. In the asynchronous
implementation of the PSP auction without instant feedback of new bids, a bidder may not be the
first one to play but may submit a bid as if he were. Other bidders may act similarly. Only one of
them may benefit from this (the first one), but he does not know it prior to bidding. Thus, even
if a bidder is willing to risk for being the actual first bidder, he may not benefit from overbidding.
He will benefit only if he manages to exclude all other bidders from playing.

Last, we have not considered networks with more than two links because the overbid strategy
performs better in the case of two links. Indeed, we have seen that the larger the number of path
bidders, the higher the deviation from the optimal social welfare is observed. We expect that
the social welfare loss increases as the number of links (and thus the number of path bidders)

increases. In fact, we have already seen this in Example 5.3.2. Thus, the negative effect of the
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Bidder | Link a b Optimal Alloc | Over. Strategy | New strategy by bidder 7
Bandw. NB Bandw. NB
0 (seller) 1 0 0.1 0 0 0 0 0
2 1 -0.08 | 30 4.62 4.24 126.16 4.32 128.44
1 (seller) 2 0 0.1 0 0 0 0 0
3 2 -0.08 | 6 4.62 4.24 24.31 4.32 24.74
4 1-2 -1 28 0 0 0 0 0
) 1-2 -1 28.2 0 0 0 0 0
6 1-2 -1 ] 283 0 0 0 0 0
7 1-2 -1 36 0.37 0.75 2.20 0.67 22.39
8 1-2 -1 1268 0 0 0 0 0
9 1-2 -1 ] 29.7 0 0 0 0 0
SW 179.07 178.27 178.27

Table 5.7: A pair of experiments where it is beneficial for bidder 7 to deviate from the overbid

strategy

overbid strategy is magnified in the case of large networks. Therefore, it is more interesting to

compare the two strategies in the case of two links.

5.6 Concluding Remarks

In this chapter, we discuss certain issues on the PSP auction and propose a new strategy for the
network-wide PSP auction. This strategy yields a more efficient outcome, is independent of the
bidders’ order and is individually beneficial to them, most of the cases. As a future direction,
one could investigate various adaptive strategies and how well they perform in the PSP auction.
One such strategy could be the following: apply the minimum bid strategy if one observes low
demand and the overbid strategy if demand increases. Or alternatively: apply the minimum bid
strategy if one realizes that he has a relatively high valuation (compared to his opponents) and

otherwise apply the overbid strategy.
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Bidder | Link a b Optimal Alloc | New Strategy | Over. strategy by bidder 7
Bandw. NB Bandw. NB
0 (seller) 1 0 0.1 0 0 0 0 0
2 1 -0.08 6 0 0 0 0 0
1 (seller) 2 0 0.1 0 0 0
3 2 -0.08 6 0 0 0
4 1-2 -1 28.3 0.5 0.51 6.40 0 0
5 1-2 -1 28.2 0.4 0.41 4.59 0 0
6 1-2 -1 29.7 1.9 1.88 45.79 0 0
7 1-2 -1 27.5 0 0 0 0 0
8 1-2 -1 26.8 0 0 0 0.03 0.51
9 1-2 -1 30 2.2 2.18 54.72 4.96 80.02
SW 143.43 143.42 137.55

Table 5.8: A pair of experiments where it is beneficial for bidder 9 to deviate from the minimum

bid strategy. Note that bidder 9 is not the first to submit a bid.
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Bidder | Link a b | Optimal Alloc | Over. Strategy | New strategy
Bandw. NB Bandw. NB
0 (seller) 1 0 0.1 0 0 0 0 0
2 1 -0.08 | 6 0 0.25 0.14 0 0
4 1 -1 30 3.2 0 0 3.18 71.04
6 1 -1 11 0 0 0 0 0
1 (seller) 2 0 0.1 0 0 0 0 0
3 2 -0.08 | 6 0 0.25 0.14 0.007 0.04
5 2 -1 15 3.2 0 0 3.17 24.76
7 2 -1 10 0 0 0 0 0
8 1-2 -1 39 0.4 0 0 0.39 10.71
9 1-2 -1 32 0 0 0 0 0
10 1-2 -1 25 0 0 0 0 0
11 1-2 -1 40 1.4 4.97 132.6 1.42 39.2
SW 204.3 186.92 204.25

Table 5.9: A pair of experiments to compare bidders’ net benefit in the overbid strategy and the

minimum bid strategy
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Bidder | Link | ¢« | b | Optimal Alloc | Over. Strategy | New strategy
Bandw. NB Bandw. NB
0 (seller) 1 0 0.1 0 0 0 0 0
2 1 -1 6 0 0 0 0 0
1 -1 22 0 0 0 0 0
6 1 -1 119 0 0 0 0 0
8 1 -1 20 0 0 0 0 0
10 1 -1 25 0 0.02 0.15 0 0
12 1 -1 23 0 0 0 0 0
1 (seller) 2 0 0.1 0 0 0 0 0
3 2 -1 6 0 0 0 0 0
5 2 -1 21 0 0 0 0 0
7 2 -1 21 0 0 0 0 0
9 2 -1 21 0 0.02 0.09 0 0
11 1-2 | -1 50 2.5 4.98 56.53 2.49 70.40
13 1-2 | -1 50 2.5 0 0 2,51 70.98
SW 243.75 237.51 243.74

Table 5.10: A pair of experiments to compare bidders’ net benefit in the overbid strategy and the

minimum bid strategy




Chapter 6

Conclusions - Directions for further

research

In this dissertation we study auction mechanisms for allocating bandwidth in communication
networks. The lack of information about users’ demand for bandwidth is the major reason for
employing auction mechanisms in communication markets.

First, we formulate and analyze a new hierarchical auction to allocate bandwidth efficiently in
a hierarchically structured market. Nowadays, markets involve intermediaries due to the physical
and management overheads that arise in direct trading. We consider two levels of hierarchy. The
top-level seller allocates the bandwidth to intermediaries. These are the lower-level sellers and
allocate their portion of bandwidth to end customers. We take advantage of the distribution of
information over all parts involved and coordinate the various trades taking place, so that no
one has the incentive to deviate from bidding truthfully. The mechanism provides the efficient
overall allocation of bandwidth to the customers as if the top-level seller were to assign this band-
width directly. We prove that despite the consecutive transactions, customers do not incur extra
losses with respect to their net benefits. We also argue that applying efficient mechanisms in
each level, this alone does not guarantee overall efficiency. The key issue is demand revelation
by the providers. We also define business models in which the intermediate providers are allowed
to choose any payment rule to apply in their own local market. We show that the intermediate
provider may obtain more profits employing inefficient mechanisms. However, we also prove that

if each customer chooses his own provider taking into account the payment rules employed in
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the various markets, then each provider has the incentive to apply the initial payment rule; for
otherwise he would end up with no customers and no profits. Our results are not particular for
bandwidth markets; they also apply to other markets for which the hierarchical trading model
pertains, such the hierarchical trading of units of other services (e.g. call minutes). The hier-
archical auction mechanism can be extended in selling bandwidth through multiple hierarchical
levels. Throughout our analysis, we assume that the efficient overall allocation of bandwidth
is the ultimate objective of the top-level seller. The study of business models with hierarchical
structures in which the top-level seller seeks to maximize his expected profit rather than social

welfare is an interesting and challenging direction for further research.

Furthermore we study auctions in which the seller participates as a bidder too. The seller may
be a service provider himself and thus he may wish to keep the bandwidth if no one would be
willing to pay for it an amount higher than his own valuation. We assess the impact of seller
participation on bidding strategies and profits. We derive the equilibrium strategies in first and
second-price auctions and compare the expected profits of the seller. An interesting topic of
future work is to extend this study to multi-unit auctions, thus giving the owner of the goods the

opportunity to benefit by keeping a portion of the bandwidth rather than the entire quantity.

Finally, we revisit the network-wide Progressive Second Price Auction (PSP) proposed by Lazar
and Semret, and we introduce a new strategy for path bidders that yields a more efficient outcome
than under the overbidding strategy proposed by Lazar and Semret. In fact, the outcome under
our strategy is independent of the bidders’ order. Moreover, bidders obtain higher expected net
benefit by adopting the new strategy in most of the cases. In future research, one could investigate
the use of adaptive strategies and how well they perform in the PSP auction. One such strategy
could be the following: apply the new strategy if one observes low demand and the overbidding
strategy if demand increases. Or alternatively: apply the new strategy if one realizes that he has

a relatively high valuation (compared to his opponents) and otherwise apply the overbid strategy.

Another interesting research problem is that of offering and charging contracts for communica-
tion services. A service is characterized by two or more parameters such as peak rate, mean rate,
etc., thus giving rise to a multidimensional version of the problem of allocating resources. In their
selection of service contracts, users should become more sophisticated since they must balance

the weights of the different parameters in a way that yields them the maximum net benefit. It
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also becomes a complicated task for providers to solve the winner determination problem (i.e.,
derive the allocation resulting in the maximum revenue or the maximum social welfare) as there
are more constraints to be taken into consideration on top of the link capacity constraint. The
problem of charging such communication services can possibly be solved by resorting to the no-
tion of the effective bandwidth, which provides a measure of resource usage and thus, transforms
the multidimensional problem to its one-dimensional counterpart. The study of auction-based
charging for services constitutes an interesting yet challenging direction for further research.
The application of auctions as well as of other game theoretic tools in communication markets
has attracted much interest recently. This is due to the fact that bandwidth trading can be seen as
a game of incomplete information in which players’ private information affects strategic behavior.
We believe that in the future research work in this area will shed on more problems of strategic

interaction among players who compete for resources.
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Appendix A

Proof of Proposition 3.2.1

Proof.

Let vector & = (x}f, e ,x}}\,) be a concatenation of solutions of the M sub-problems defined in
(3.2). For the vector * = (z7,--- ,z%) that maximizes the social welfare, we set Zz‘esj T} = qj.
Since:

N M
Zx;‘ :Zq;-:Cand (A.1)
i=1 j=1

N M9
SN 0= vk (A.2)

i=1 k=1 j=1k=1

—y

it follows that the vector ¢’ is a solution of problem (3.3). Combining this, with definition
(3.2), it follows that,

Z Z ik < Z Z Oi ks (A.3)

1€S; k=1 1€S; k=1

which implies that,

X
Z;

N N ozl
>N 0k <D0 O (A.4)

i=1 k=1 i=1 k=1
Since Zf\;l >3t 0;k is the maximum value of the social welfare given by equation (3.1) it

follows that,

* h
Z; Z;

SN0 =D ik (A.5)

1=1 k=1 =1 k=1
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From equations A.4 and A.5 it follows that

N T N b
SN 0ik=>> bk (A.6)

i=1 k=1 i=1 k=1
Combining this, with the fact the efficient allocation is unique, it follows that the unique solution

of the two problems is #* = Z", hence they are equivalent.



Appendix B

Equilibrium Strategy under Uniform
Pricing in the Lower-Level Auction of

Example 3.5.2

We consider the complete information game in which each customer knows the marginal valuations
of his rivals in his local market and in the other markets too. Each provider reveals his local
market’s true demand in the top-level auction. We will prove that the following set of strategies

constitutes a Nash equilibrium:
e S: Customer 1 bids truthfully at each price.

e So: Customer 2 bids truthfully up to price 2, reduces demand by 2 units at price 2 and does

not change demand up to the termination of the auction.
e S3: Customer 3 bids truthfully at each price.

e S4: Customer 4 bids truthfully at each price.

First, assume that customers 1, 3 and 4 bid truthfully at each price. We will prove that
customer 2 maximizes his net benefit by adopting strategy S3. Customer 2 has no incentive to
overbid at any price, since he will receive negative profit for the extra units he may obtain and
he will pay a higher price for the remaining. (We remind that a bidder pays the final price for

each unit he obtains). In addition, customer 2 will not reduce demand up to price 2, since this
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action does not cause the termination of the auction: rivals’ total demand equals 8 which is the
capacity. Customer’s 2 true demand equals 3 units at price 2. If he reduces demand by 2 units,
the auction terminates and he obtains 1 unit as shown in Table 3.14. His net benefit equals
NBy =12 — 2 = 10. If he reduces demand by 2 units at any price in the interval (2,3) or by 1
unit at any price in the interval [3,5), he obtains 1 unit as well but pays a higher price than 2,
so his net benefit is less than N By. Moreover, he has no incentive to reduce demand by 1 unit at
any price in the interval [2,3) since this action does not cause the termination of the auction. By
any other reduction, customer 2 obtains no units at all achieving zero net benefit. If he is truthful
at each price, the auction terminates at price 4 and he obtains 2 units as shown in Table 3.12.
His net benefit equals then 12 + 5 — 2 x4 = 9 which is again less than N Bs. Thus, the optimal
strategy for customer 2 provided that customers 1, 3 and 4 bid truthfully, is to reduce demand
by two units at price 2 and cause the termination of the auction.

Assume now that customers 2, 3 and 4 bid according to strategies So, S3 and Sy respec-
tively. Next, we derive the optimal strategy of customer 1. Reasoning as previously, it follows
that customer 1 has the incentive neither to overbid at any price, nor to reduce demand up
to price 2. At price 2, his rivals’ demand equals 1 + 2 + 3 = 6, thus he bids truthfully for 2
units at this price too. The auction terminates at price 2 and customer 1 receives net benefit
NBy; =10+4 —2 %2 =10. Consequently, truthful bidding at each price (i.e., strategy S1) is the
optimal strategy for customer 1.

Similarly, one can show that customers’ 3 and 4 optimal strategy is to bid truthfully, so the

set {S1, 52,53, 54} constitutes a Nash equilibrium.
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Seller’s Bidding Strategy in the
First-Price Auction with Seller

Participation

Proposition C.0.1 In a first-price auction with seller participation, truthful bidding is a domi-
nant strategy for the seller provided that 51(1) = --- = OBn(1), where §; is bidder’s i strategy; that
is, provided that bidders’ strategies are such that the maximum possible bid of all bidders is the

same.

Proof. Let the seller with valuation z; submit a bid bs.  Assume further that each
bidder ¢ with valuation z; applies the increasing and differentiable strategy g;(z;). Let
fi(l) = --- = Bn(1) = B(1). Each bidder’s valuation is uniformly distributed on [0,1]. We
will prove that the seller’s optimal strategy ﬁﬁc is to bid truthfully, against any 5. We have

ﬁj_l(bs), for by < B(1)
1, for by > (B(1)

Pr[B;(X;) < bs] = { (C.1)

The seller’s probability of winning is a function of his bid bs and is given by:
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Pu(b;) = Pr{_max_{8,(X;)} < b,

= Pr[B;(X1) < bs and --- and 3;(Xn) < bs]

—-

Pr[f;(X;) < bs]

- (C.2)
N
=[] PrlX; < B, (bs)] &
j=1
Pub,) = { By (bs) By H(bs) - By (bs), for by < B(1)
L for by > B(1)
where we have also used independence of Xi,..., Xx. The seller’s expected profit Es equals his

valuation z; if he is the winner; otherwise, it equals the expected value of the maximum bid Y of
the N original bids conditional on the seller not being the winner. Therefore,

Py(bs) - 25+ [1 — Pg(bs)] - E[Y|Y > bs], for by < (1

By = { P00 0 P BV 2 b, orb <400 .

Ts, for by > (1)
where Y = max; =1~ {8;(X;)}. Henceforth, to simplify notation, we use max; {-} instead of
max;—i,. n {-}. Assume for now that by < #(1). The distribution function of Y given that Y > b,,
is

Pribs < max; {5;(X;)} <y]
Primax; {3;(X;)} > b,]

Prfmax {6(X,)} < vl max {6(X,)} > b] =

_ Pr[max; {;(X})} <y] — Pr[max; {8;(X})} > bs]
Pr[max; {#;(X;)} > bs] '

(C.4)

Reasoning as in the case of (C.2), it follows easily that

BB () -+ Byt (y) — Byt (b) By (by) - - By (by)
1— 37 (bs)B5 " (bs) - - By (bs) ’

Pr[m;lx {Bi(X;)} <y max {Bi(X5)} > bs] =

for any y € [bs, 5(1)].
(C.5)
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Differentiating (C.5) with respect to y, we obtain the probability density function fy of Y condi-

tional on Y > b;. Thus, for the expected value at large, we have

B(1)
E[Y]Y > by :/b y- fy(y)dy

/ﬁ(”y_ (O @B W)+ B )+ -+ AT T ) I8 W,
by

- ﬂfl(bS)Bgl(bS) e ﬂﬁl(bS)

- 1 i{/m) 6 ! T8 way
— 1_ ﬂl_l(bs)ﬁg_l(bs) . B;fl(bs) — b Y1o; Yy i j y)ay ¢.
(C.6)
Combining (C.2) and (C.3) with (C.6), the seller’s expected profit is given by:
Es(bs) = Py(b 1— Py(b = 3 T “(y)d
00 =p a0} S [ o 15" v}
(C.7)
—1 —1 —1 = B -1
GRS RIES 98 f el ) RO
i=1 s j#i
In order to maximize FEs with respect to bg, we differentiate the above expression. We have
N N
Ey(bs) = Z [Bz'_l(bS)]l Hﬁj_l(bS)xs - st[ﬁi_l(bs’)]l Hﬁj_l(ba’)
i=1 j#i i=1 j#i
N (C.8)
ORI (5 ) ERO)
i=1 j#i
Therefore,
E;(bs) =0 x5 = bs, (C.9)

while this point corresponds to a maximum because all functions S~! and their derivatives are
positive. If indeed zs < (1), then Es(bs) as given by (C.3) is maximized for z; = bs. Notice
that the topmost expression in the right-hand side of (C.3) equals z, for by = (1), which implies
that if z; < 3(1), then bidding a quantity bs > (1) is not beneficial due to (C.9). On the other
hand, if z; > B(1), then E(bs) is increasing in [0, 3(1)] and constant for bs > (B(1). Therefore,
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any bid bs > (3(1) is optimal for the seller which includes the case by = 5. Therefore, in any case

ﬁﬁc (x) = x. That is, truthful bidding of the seller maximizes his expected profit. [ |
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