
A Diagnosis and Repair Framework for
DL-LiteA Knowledge Bases

Michalis Chortis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, Heraklion, GR-71003, Greece

Thesis Advisor: Prof. Vassilis Christophides

This work was partially supported by the EU projects PlanetData (ICT-2009.3.4, #257641)
and DIACHRON (ICT-2011.4.3, #601043), and by the State Scholarships Foundation (IKY).

University of Crete
Computer Science Department

A Diagnosis and Repair Framework for DL-LiteA Knowledge Bases

Thesis submitted by
Michalis Chortis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Michalis Chortis

Committee approvals:
Vassilis Christophides
Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Giorgos Flouris
Researcher, Committee Member

Departmental approval:
Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, June 2014

Abstract

Several logical formalisms have been proposed in the literature for expressing
structural and semantic integrity constraints of Linked Open Data (LOD). Still,
the data quality of the datasets published in the LOD Cloud needs to be improved,
as published linked data often violate such constraints. This lack of consistency
may jeopardise the value of applications consuming linked data in an automatic
way.

A major challenge in this respect, is to provide to the curators of linked data
knowledge bases (KBs), the tools that will help them in detecting the violations of
integrity constraints and in resolving them, in order to render the knowledge base
valid and improve its data quality.

In this work, we propose a novel, fully automatic framework for detecting vi-
olations of integrity constraints (diagnosis) in KBs, by executing the appropriate
queries over the data, as well as for resolving those violations (repair), by removing
invalid data from the KB. Our approach takes into consideration both explicit and
inferred ontology knowledge, by relying on the ontology language DL-LiteA for the
expression of several useful types of logical constraints and for the detection of data
that are inconsistent with those constraints, while maintaining good computational
properties.

The framework that is proposed in this work is modular, allowing each compo-
nent to be implemented in a manner independent to the other components. This
way, we are able to implement our framework with using off-the-shelf, state-of-the-
art tools for several features, such as reasoning, query execution, etc.

We have implemented and evaluated our framework, showing that it is scalable
for large datasets and numbers of invalidities, which are exhibited in reality by
reference linked datasets, such as DBpedia. The evaluation also shows that our
framework can be used over already deployed knowledge bases, without any further
reconfiguration.

Περίληψη

Στη βιβλιογραφία έχουν προταθεί αρκετοί λογικοί φορμαλισμοί με σκοπό την έκ-

φραση δομικών και σημασιολογικών περιορισμών ακεραιότητας, στο πλαίσιο των Δια-

συνδεδεμένων Ανοιχτών Δεδομένων (Linked Open Data - LOD). Ωστόσο, η ανάγκη
βελτίωσης της ποιότητας των δεδομένων που δημοσιεύονται στο σύννεφο Διασυνδε-

δεμένων Ανοιχτών Δεδομένων (LOD Cloud) παραμένει, καθώς τα δημοσιευμένα α-
νοιχτά δεδομένα συχνά παραβιάζουν τέτοιου είδους περιορισμούς ακεραιότητας. Αυτή

η έλλειψη συνέπειας των δεδομένων με τους περιορισμούς, μπορεί να θέσει σε κίνδυνο

την αξία εφαρμογών που καταναλώνουν ανοιχτά δεδομένα με αυτόματο τρόπο.

Μία βασική πρόκληση για τη βελτίωση της ποιότητας των δεδομένων, είναι η

παροχή στους διαχειριστές των γνωσιακών βάσεων, εργαλείων που θα τους βοηθούν

στον εντοπισμό παραβιάσεων των περιορισμών ακεραιότητας, καθώς και στην επίλυση

τέτοιων παραβιάσεων.

Στην εργασία αυτή προτείνεται ένα νέο, πλήρως αυτόματοματοποιημένο πλαίσιο

εντοπισμού παραβιάσεων περιορισμών ακεραιότητας σε γνωσιακές βάσεις, εκτελών-

τας τις απαραίτητες επερωτήσεις, καθώς και επιδιόρθωσης αυτών των παραβιάσεων,

αφαιρώντας ασυνεπή δεδομένα από τη γνωσιακή βάση. Η μέθοδος που παρουσιάζε-

ται, λαμβάνει υπ΄όψη την οντολογική γνώση που είτε προκύπτει από ρητές δηλώσεις,

είτε προκύπτει σα συμπέρασμα από συνδυασμό ρητών δηλώσεων, χρησιμοποιώντας τη

γλώσσα οντολογιών DL-LiteA για την έκφραση χρήσιμων λογικών περιορισμών, κα-
θώς και για τον εντοπισμό δεδομένων που είναι ασυνεπή με αυτούς τους περιορισμούς,

διατηρώντας, παράλληλα, καλές ιδιότητες υπολογιστικής πολυπλοκότητας.

Το πλαίσιο που προτείνεται αποτελείται από συστατικά μέρη που μπορούν να υλο-

ποιηθούν ανεξάρτητα το ένα με το άλλο, δίνοντας έτσι τη δυνατότητα για τη χρησιμο-

ποίηση έτοιμων, σύγχρονων, βελτιστοποιημένων εργαλείων για διάφορες λειτουργίες,

όπως είναι η εκτέλεση επερωτήσεων.

Στα πλαίσια αυτής της εργασίας, παρουσιάζεται η υλοποίηση του πλαισίου, κα-

θώς και η αξιολόγηση της επίδοσής του, από την οποία εξάγεται το συμπέρασμα ότι

μπορεί να χρησιμοποιηθεί για μεγάλα σύνολα δεδομένων και για μεγάλους αριθμούς

παραβιάσεων, που παρατηρούνται στην πραγματικότητα σε γνωστές γνωσιακές βάσεις

αναφοράς, όπως η DBpedia. Από την αξιολόγηση εξάγεται, επίσης, το συμπέρασμα
πως το πλαίσιο που παρουσιάζεται σε αυτή την εργασία μπορεί να χρησιμοποιηθεί

πάνω από γνωσιακές βάσεις που είναι ήδη σε λειτουργία, χωρίς καμία επιπλέον παρα-

μετροποίηση.

Acknowledgements

I would like to express my special gratitude to my supervisor, Professor Vassilis
Christophides, for his belief in me from the first moment, for the chance to be part
of the Information Systems Laboratory of FORTH-ICS and, most of all, for his
invaluable guidance in these first steps I made in research. I would also like to give
my special thanks to Giorgos Flouris, who was by my side, always giving me useful
advises and directions, throughout the whole process of my work for this thesis.
Moreover, I would like to thank Professor Dimitris Plexousakis for his will to take
part in the examination committee of this thesis.

My special thanks also go to the Institute of Computer Science at FORTH for
their support, through my scholarship for the whole process that ended up with
this thesis, as well as for providing the necessary support in terms of knowledge
and materials. Moreover, I would like to thank the State Scholarships Foundation
(IKY) for the very helpful scholarship they provided me.

This thesis would not be possible without the support from my friends, who,
despite the distance, were always by my side, encouraging me every step of the
way. Special thanks go to Danai, who has always been there for me, helping me in
every way possible.

Last, but not least, I express my gratitude to my parents, Argiro and Thomas,
and my brother Vaggelis for giving me all of their support and all the necessary
stepping stones for my studies and my life.

Contents

1 Introduction 3
1.1 Semantic Web and Linked Open Data 3
1.2 The need for repairing in the Semantic Web - Motivation 4
1.3 Contributions . 5
1.4 Structure of the rest of the Thesis 6

2 Related work 7
2.1 Repairing and CQA in relational databases 7
2.2 Repairing and CQA in linked data 8

3 Preliminaries 11
3.1 Description Logics - DL-LiteA . 11

3.1.1 The Description Logics family of languages 11
3.1.2 DL-Lite family of DL languages 12
3.1.3 DL-LiteR, DL-LiteF and DL-LiteFR languages 13
3.1.4 DL-LiteA language . 14

3.2 FOL-Reducibility . 15
3.3 DL-LiteA as a language for the diagnosis of constraint violations . 16
3.4 Linked Data technologies . 17

3.4.1 Resource Description Framework (RDF) 17
3.4.2 Web Ontology Language (OWL) 18
3.4.3 SPARQL Protocol and RDF Query Language 19

4 Overview of the diagnosis and repair framework 21
4.1 Diagnosis . 21

4.1.1 Diagnosis component . 21
4.1.2 Diagnosis algorithm . 23

4.2 Repairing . 26
4.2.1 Repairing component . 26
4.2.2 Repairing algorithm . 26

5 Diagnosis and repair framework implementation 29
5.1 Used tools and libraries . 29

5.1.1 OpenLink Virtuoso Open-Source Edition 29

I

5.1.2 Apache Jena . 29
5.1.3 JUNG - The Java Universal Network/Graph Framework . . 30
5.1.4 Vaadin framework . 31

5.2 Framework architecture . 31
5.2.1 Input component . 32
5.2.2 Diagnosis component . 33
5.2.3 Repairing component . 37

5.3 Implemented applications . 38
5.3.1 Console application . 38
5.3.2 Web application . 39

6 Evaluation of the framework 45
6.1 Environment of experiments . 45
6.2 Description of used ontologies . 46

6.2.1 1st-3rd sets of experiments 46
6.2.2 4th set of experiments . 46

6.3 Synthetic data generator for diagnosis and repair 47
6.3.1 Overview . 47
6.3.2 Triple pattern graph . 47
6.3.3 Generation of invalidities 49

6.4 Description of used datasets . 51
6.4.1 1st-3rd sets of experiments 51
6.4.2 4th set of experiments . 52

6.5 Scalability and performance . 52
6.6 Conclusions from the evaluation . 58

7 Conclusions and future work 61
7.1 Conclusions . 61
7.2 Future work . 61

II

List of Figures

1.1 W3C quality star scheme . 3
1.2 The LOD cloud, as of September 2011 4

3.1 The graph view of the triple <example:John> a <example:Person>. 18

4.1 The main features of the diagnosis and repair framework. 22
4.2 Example of an interdependency graph. 25

5.1 The architecture of the diagnosis and repair framework. 32
5.2 The input user interface of OWLRepair 40
5.3 The diagnosis user interface of OWLRepair 41
5.4 The diagnosis user interface of OWLRepair 42
5.5 The repair user interface of OWLRepair 42
5.6 The repair user interface of OWLRepair 43

6.1 Example of a triple pattern graph. 49
6.2 Performance for DBpedia ontology version 3.6 with datasets of vary-

ing dataset sizes and fixed number of invalid data assertions (10K
triples). 54

6.3 Performance for DBpedia ontology version 3.9 with datasets of vary-
ing dataset sizes and fixed number of invalid data assertions (10K
triples). 54

6.4 Performance for DBpedia ontology version 3.6 with datasets of vary-
ing number of invalid data assertions and fixed dataset size (10M
triples). 56

6.5 Performance for DBpedia ontology version 3.9 with datasets of vary-
ing number of invalid data assertions and fixed dataset size (10M
triples). 56

6.6 Comparison of our framework with the approach evaluated in [1]. . 57

III

IV

List of Tables

4.1 Transformation of DL-LiteA constraints to FOL queries 24

5.1 The input arguments of the console application 39
5.2 The output of the console application 39

6.1 Information on constraints contained in different DBpedia ontology
versions. 46

6.2 Translation of cln(T) constraints to vertices and edges of the triple
pattern graph . 50

6.3 Sizes (in triples) of the datasets used in the 4th set of experiments . 52
6.4 Experiments performed on real datasets. 53
6.5 Comparison of the repairing deltas produced by using the greedy

computation of the vertex cover and the 2-approximation, in the 4th

set of experiments . 58

1

2

Chapter 1

Introduction

1.1 Semantic Web and Linked Open Data

In the last years, following the overall advance in computer science, a major new
branch has been developed in various disciplines. This branch is concentrated
in data exploration and analysis, trying to make use of the massive data flows
coming from multiple and various sources. In line with this new situation, the Web
has been evolving too. There has been a large initiative, mostly during the last
decade, to provide, analyze and share data derived from all kinds of starting points
(government, scientific research, social networks, enterprises etc.).

In order to obtain, analyze and share web data, it is extremely important to
understand the underlying semantics of “things” expressed in this new world. In
other words, one has to understand the meaning of things and the interlinking
between them. In this context, the primary role is given to entities coming from
diverse domains and sources (i.e. persons, places, institutions, abstract concepts
etc.) and the relations between them.

Figure 1.1: W3C quality star scheme

Due to the fact that new “players” continuously appear in the field of open data
producing, editing and publishing, there is a great variety in the formats, quality
and linking of the data available on the Web. Not all linked data is open and
not all open data is linked. For that reason, W3C has walked some steps towards

3

4 CHAPTER 1. INTRODUCTION

the standardization of the Semantic Web and Linked Data1. A star scheme for
data quality assertion has been proposed (Figure 1.1) and there has been a major
community effort to extend the Web with a data commons by publishing various
open data sets as RDF on the Web and by setting RDF links between data items
from different data sources2. Figure 1.2 gives a good look on the extreme diversity
of the information available as Linked Open Data (LOD). This figure presents
the different sources that provide open data (graph nodes) and the available links
between these sources (graph edges). An overview of the concept and technical
principles of Linked Data is given in [2].

Figure 1.2: The LOD cloud, as of September 2011

1.2 The need for repairing in the Semantic Web - Mo-
tivation

Linked Open Data published on the Web of Data are often associated with various
structural (e.g., primary key) and semantic (e.g., disjointness) integrity constraints.
These constraints are usually expressed in ontology (e.g., in OWL [3, 4]) or database
(e.g., embedded dependencies [5], used to prevent inconsistencies in the PROV
data model3) logic frameworks. As a matter of fact, LOD data sources do not
impose such constraints a priori, when data are created, so violations of integrity
constraints must be detected and repaired a posteriori. As have been reported in [6],
reference LOD sources, such as DBpedia4 or LinkedGeoData5, exhibit millions of

1http://www.w3.org/2001/sw/
2http://www.w3.org/wiki/LinkedData
3http://www.w3.org/TR/prov-constraints/
4http://dbpedia.org
5http://linkedgeodata.org

http://www.w3.org/TR/prov-constraints/
http://dbpedia.org
http://linkedgeodata.org

1.3. CONTRIBUTIONS 5

violations. In most of the cases, LOD are manually repaired by their curators
or by their consuming applications, using, at best, diagnosis tools (such as the
ones embedded in OWL reasoners) for detecting violations of various types of
integrity constraints. Obviously, the manual repair of millions of violations is a
time-consuming and error-prone task, a fact that seriously limits the data quality
of the available LOD sources.

A major challenge in this respect is to detect violations of both structural and
semantic integrity constraints when ontology reasoning is involved (i.e., violations
of constraints like disjointness, functional constraints etc., taking into account log-
ical inference and its interaction with those constraints). This challenge is the one
that we aim to tackle in the context of this work.

1.3 Contributions

In this work, we propose a novel, automatic diagnosis and repairing framework
for assisting curators in the arduous task of enforcing integrity constraints in large
datasets. We provide an efficient methodology for detecting invalidities (diagno-
sis), as well as for automatically resolving them (repairing), in a manner that has
minimal impact in terms of lost knowledge on the KB, according to the principles
set out in earlier works [7, 8].

We consider detecting and repairing of invalidities attributed to constraints
of a purely logical nature (e.g., concept disjointness). Constraints are expressed
in the language DL-LiteA [9], which belongs to the DL-Lite family of ontology
languages that forms the foundation of OWL 2 QL6. The choice of DL-LiteA was
motivated by the fact that it is arguably rich enough to capture several useful types
of integrity constraints and their interaction with implicit knowledge, while at the
same time supporting efficient query answering [9].

The main contributions of our work are the following:

• We propose a framework for detecting and automatically repairing invalidi-
ties in datasets, for constraints that are expressed in DL-LiteA, namely con-
cept/property disjointness constraints, property domain/range disjointness
constraints and functional constraints. Diagnosis of invalidities related to
both explicit and inferred constraints can be performed in linear time with
respect to the dataset size, whereas repairing can be performed in polynomial
time with respect to the number of invalidities.

• We have implemented an operational repairing system for real-world appli-
cations. Our implementation is modular, allowing each component to be
implemented in a manner independent to the other components. This way,
we managed to reuse off-the-shelf, state-of-the-art tools for many of the com-
ponents, such as reasoning, storage, query answering, etc.

6http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

http://www.w3.org/TR/owl2-profiles/##OWL_2_QL

6 CHAPTER 1. INTRODUCTION

• We have experimentally evaluated the scalability and performance of our
algorithms, using real and synthetic datasets. The main conclusion drawn
is that our framework can scale for very large datasets, such as the one of
DBpedia, as well as for large numbers (millions) of invalidities.

1.4 Structure of the rest of the Thesis

The rest of the Thesis is structured as follows:

• In Chapter 2, we sketch the work that has been performed in the context of
repairing and compares our contribution to this work.

• In Chapter 3, we introduce the DL-Lite family of ontology languages and we
motivate the use of DL-LiteA in the context of our work. We also introduce
the Linked Data technologies that are used in our framework.

• In Chapter 4, we describe our framework and algorithms, as well as explain
how we address the problems of detecting and resolving invalidities.

• In Chapter 5, we provide details on the implementation of our framework
and the applications we have developed, that make use of it.

• In Chapter 6, we describe our experimental evaluation and report on the
main conclusions drawn.

• Finally, in Chapter 7, we conclude and describe the future directions of our
work.

Chapter 2

Related work

The problem of inconsistencies appearing in KBs can be tackled either by providing
the ability to query inconsistent data and get consistent answers (Consistent Query
Answering - CQA) [10], or by actually repairing the KB, which leads to a consistent
version of it [11]. Both these approaches have attracted researchers’ attention,
mostly in the context of relational databases and, lately, in the context of linked
data and ontology languages as well.

Computing a repair of an inconsistent KB is, essentially, the problem of per-
forming a minimal set of actions (insertions, deletions, updates) over the KB, in
order to render it valid with respect to a given set of integrity constraints. There
have been several approaches that deal with repairing inconsistent KBs, with dif-
ferences in the set of integrity constraints they consider or in the set of actions they
allow (e.g., only deletions).

Consistent Query Answering deals with providing the ability to query an in-
consistent KB and get as a result only consistent answers. This approach does not
materialize a repair of the inconsistent KB, but takes into account, at query exe-
cution time, all the possible repairs. There have been many proposed approaches
for CQA, considering different semantics, different types of integrity constraints,
different ways of computing the repairs.

In the following sections, we will refer to the most notable related works, that
have been proposed in the context of relational databases or KBs and deal with
the problems of CQA or repairing.

2.1 Repairing and CQA in relational databases

Regarding the repairing of inconsistent relational databases, different semantics
have been studied, considering different kinds of constraints.

Chomicki and Marcinkowski [12], following from [13], study the problem of re-
pairing an inconsistent KB, by allowing only tuple deletions (which is also the only
action considered in our work) and, in this way, resolving violations of denial con-
straints and inclusion dependencies, which is a more expressive set of constraints

7

8 CHAPTER 2. RELATED WORK

than the one we consider in this work. However, as it is proven in [12], the unre-
stricted combination of those constraints leads to intractability issues. In [12], the
authors also make use of a conflict-hypergraph, which is similar to the approach we
follow in our work with the interdependency graph.

On the other hand, CQA in relational databases has been studied in various
works dealing with different classes of conjunctive queries and denial constraints,
mainly key constraints (e.g., [14, 15]). These works underline the main advantages
of using First-Order query rewriting for the validation of integrity constraints. A
similar method is also used by our work, in order to translate the constraints to
First-Order queries and execute these queries over the KB.

2.2 Repairing and CQA in linked data

In the context of linked data and the corresponding languages and technologies,
there has been research on the topic of using ontology languages to encode integrity
constraints (ICs) that must be checked over dataset instances.

In [4], the authors present a way to integrate ICs in OWL and they show that
IC validation can be reduced to query answering, for integrity constraints that fall
into the SROI DL fragment. This work considers the set of integrity constraints
as a different set from the other axioms, with the first being interpreted making the
Closed-World Assumption and the latter by making the Open-World Assumption.

A similar approach has been followed in [3]. In [16], the presented approach
integrates constraints that come from the relational world (primary-key, foreign-
key) into RDF and provides a way to validate these constraints.

IC validation is also an important part of some of the current OWL reasoners,
such as HermiT1, Pellet2, FaCT++3, ELK4 and others. One of those reasoners, the
one that is part of Stardog5, provides the ability to express and validate integrity
constraints expressed in SPARQL, OWL or SWRL and combines this ability with
OWL 2 Reasoning.

However, the above approaches address, essentially, only the KB satisfiability
problem and they do not consider detection and repairing of invalidities, which is
considered by our work.

During recent years, there has also been some research on CQA for inconsis-
tent knowledge bases expressed in Description Logics (DL) languages, using query
rewriting techniques. To the best of our knowledge, little work has been performed
on the problem of automatically computing a repair for inconsistent KBs.

Regarding CQA on DLs, [17] deals with different variants of inconsistency-
tolerant semantics to reach a good compromise between expressive power of the
semantics and computational complexity of inconsistency-tolerant query answering.

1http://hermit-reasoner.com
2http://clarkparsia.com/pellet
3http://owl.cs.manchester.ac.uk/tools/fact
4http://www.cs.ox.ac.uk/isg/tools/ELK
5http://stardog.com/

http://hermit-reasoner.com
http://clarkparsia.com/pellet
http://owl.cs.manchester.ac.uk/tools/fact
http://www.cs.ox.ac.uk/isg/tools/ELK
http://stardog.com/

2.2. REPAIRING AND CQA IN LINKED DATA 9

More precisely, this work comes to the conclusion that there are inconsistency-
tolerant semantics that are FOL-rewritable, and therefore give good complexity
behaviour with respect to data complexity.

In the field of diagnosis for DL-Lite KBs, there has been some work regarding
inconsistency checking. The DL-LiteA reasoner QuOnto [18] has the ability to
check the satisfiability of a DL-LiteA KB. However, it does not have the ability to
detect the invalid data assertions in the ABox, neither to repair them.

Finally, [19] is the only related work addressing the automatic repairing of an
inconsistent DL-LiteA KB, based on the inconsistency-tolerant semantics studied
in [17]. The proposed repairing, essentially resolves each invalidity by removing
both data assertions that take part in it. On the contrary, our repairing algorithm
considers the removal of only one of two interdependent data assertions. Thus, [19]
removes more information than necessary from the original KB and, therefore,
the proposed repairs are subsumed by the repairs produced by our algorithm. In
Chapter 6, we also compare the performance of our framework to the approach
in [19], which is evaluated in [1].

10 CHAPTER 2. RELATED WORK

Chapter 3

Preliminaries

3.1 Description Logics - DL-LiteA

3.1.1 The Description Logics family of languages

Description Logics (DLs) [20] is a family of knowledge representation formalisms
developed over the past four decades and, in recent years, widely used in various
domains, such as conceptual modeling, information and data integration, ontology-
based data access and the Semantic Web.

In DLs, the important notions of the domain are described by concept and role
expressions, which are built from atomic concepts (unary predicates) and atomic
roles (binary predicates), using the concept and role constructors provided by the
particular DL. Properties of concepts and roles can be specified through inclusion
assertions, stating that every instance of a concept (resp., role) is also an instance
of another concept (resp., role).

Within a knowledge base (KB), one can see a clear distinction between inten-
sional knowledge (or general knowledge about the problem domain) and extensional
knowledge, which is specific to a particular problem. In a similar manner, a DL
KB is typically comprised by two components, a TBox and an ABox. The TBox
contains the intensional knowledge of a KB, in the form of a terminology, and it
describes general properties of concepts. On the other hand, the ABox contains
the extensional knowledge of a KB, and it describes the knowledge that is specific
to the individuals of the domain of discourse. A TBox typically consists of a set
of axioms stating the inclusion between pairs of concepts or roles. In an ABox,
one can assert membership of objects (i.e., constants) in concepts, or that a pair
of objects is connected by a role.

The standard reasoning services over a DL KB include checking its consistency
(or satisfiability), instance checking (whether a certain individual is an instance of
a concept), and logic entailment (whether a certain constraint is logically implied
by the KB).

11

12 CHAPTER 3. PRELIMINARIES

3.1.2 DL-Lite family of DL languages

One of the most important research topics in Description Logics is finding a good
trade-off between expressive power and computational complexity of sound and
complete reasoning. A significant step in this direction was the introduction of the
DL-Lite family of ontology languages [21], which is specifically tailored to capture
basic ontology languages, conceptual data models (e.g., Entity-Relationship) and
object-oriented formalisms (e.g., basic UML class diagrams), while keeping low
complexity of reasoning (polynomial in the size of the instances in the ABox).

An important feature of the DL-Lite family of languages, is that it is perfectly
suited to representing ABox assertions as relations managed in secondary storage
by a database management system (DBMS). Thus, the query-answering inDL-Lite
KBs can be performed by expanding the original query into a set of queries that
can be directly evaluated by an SQL (or SPARQL in our case) query engine over
the ABox.

The core language of the DL-Lite family and its least expressive member is
DL-Litecore. Concepts and roles are formed using the following syntax:

B −→ A | ∃R R −→ P | R−
C −→ B | ¬B E −→ R | ¬R

where A denotes an atomic concept, P an atomic role, and P− the inverse of
the atomic role P . B denotes a basic concept, that is, a concept that can be either
an atomic concept or a concept of the form ∃R, where R denotes a basic role, that
is, a role that is either an atomic role or the inverse of an atomic role. Note that ∃R
is the standard DL construct of unqualified existential quantification on basic roles.
Finally, C denotes a general concept, which can be a basic concept or its negation,
whereas E denotes a general role, which can be a basic role or its negation.

A DL KB K = 〈T ,A〉 represents the domain of interest in terms of two com-
ponents, a TBox T and an ABox A.

A TBox in DL-Litecore is formed by a finite set of inclusion assertions of the
form:

B v C

That is, general concepts are allowed to occur on the right-hand side of inclusion
assertions, whereas only basic concepts may occur on the left-hand side of inclusion
assertions.

An ABox in DL-Litecore is formed by a finite set of membership assertions on
atomic concepts or atomic roles, of the form

A(a) P (a, b)

stating, respectively, that the object denoted by the constant a is an instance of A
and that the pair of objects denoted by the pair of constants (a, b) is an instance
of the role P .

3.1. DESCRIPTION LOGICS - DL-LITEA 13

3.1.3 DL-LiteR, DL-LiteF and DL-LiteFR languages

Before introducing the DL-LiteA language which is used in the context of our
diagnosis and repair framework, we will mention two extensions of DL-Litecore,
namely DL-LiteR and DL-LiteF , as well as their combination DL-LiteFR, which
forms the basis of DL-LiteA.

DL-LiteR extends DL-Litecore with the ability of specifying inclusion assertions
between roles, of the form

R v E

where R and E are defined as above.
DL-LiteF extends DL-Litecore, by adding the ability of specifying functionality

on roles or their inverses. Functionality assertions, used for this purpose, are of the
form

(funct R)

where R is defined as above.
DL-LiteFR combines the main features of the two DLs described above and

extends them. It is structured using the following specification:

• A denotes an atomic concept, B a basic concept, C a general concept, and >C
denotes the universal concept.

• D denotes an atomic value-domain, E denotes a basic value-domain, F a
general value-domain, and >D the universal value-domain.

• P denotes an atomic role, Q a basic role, and R a general role.

• UC denotes an atomic concept attribute, and VC a general concept attribute.

• UR denotes an atomic role attribute, and VC a general role attribute.

Given a concept attribute UC (resp. a role attribute UR), we call the domain
of UC (resp. UR), denoted by δ(UC) (resp. δ(UR)), the set of objects (resp. of
pairs of objects) that UC (resp. UR) relates to values, and we call range of UC

(resp. UR), denoted by ρ(UC) (resp. ρ(UR)), the set of values that UC (resp. UR)
relates to objects (resp. pairs of objects). Furthermore, we denote with δF (UC)
(resp. δF (UR)) the set of objects (resp. of pairs of objects) that UC (resp. UR)
relates to values in the value-domain F .

DL-LiteFR expressions are defined as follows:

1. Concept expressions:

B → A | ∃Q | δ(UC)
C → >C | B | ¬B | ∃Q.C | δF (UC) | ∃δF (UR) | ∃δF (UR)−

14 CHAPTER 3. PRELIMINARIES

2. Value-domain expressions:

E → D | ρ(UC) | ρ(UR)
F → >D | E | ¬E | rdfDataType

3. Role expressions:

Q → P | P− | δ(UR) | δ(UR)−

R → Q | ¬Q | δF (UR) | δF (UR)−

4. Attribute expressions:

VC → UC | ¬UC

VR → UR | ¬UR

A DL-LiteFR TBox is formed by a finite of assertions of the following form:

B v C (concept inclusion assertion)
Q v R (role inclusion assertion)
E v F (value-domain inclusion assertion)
UC v VC (concept attribute inclusion assertion)
UR v VR (role attribute inclusion assertion)

(funct P) (role functionality assertion)
(funct P−) (inverse role functionality assertion)
(funct UC) (concept attribute functionality assertion)
(funct UR) (role attribute functionality assertion)

A DL-LiteFR ABox is formed by a finite of assertions of the following form:

A(a), D(c), P (a, b), UC(a, c), UR(a, b, c) membership assertions

3.1.4 DL-LiteA language

Following from the previously described DLs, a DL-LiteA KB is a pair 〈T ,A〉,
where A is a DL-LiteFR ABox and T is a DL-LiteFR TBox, satisfying the fol-
lowing rules:

1. for every atomic or inverse of an atomic role Q appearing in a concept of the
form ∃Q.C, the assertions (funct Q) and (funct Q−) are not in T ;

2. for every role inclusion assertion Q v R in T , where R is an atomic role or
the inverse of an atomic role, the assertions (funct R) and (funct R−) are not
in T ;

3. for every concept attribute inclusion assertion UC v VC in T , where VC is an
atomic concept attribute, the assertion (funct VC) is not in T ;

3.2. FOL-REDUCIBILITY 15

4. for every role attribute inclusion assertion UR v VR in T , where VR is an
atomic role attribute, the assertion (funct VR) is not in T ;

In the rest of this thesis, we will consider the fraction of DL-LiteA TBox
expressions which can be expressed in OWL syntax, as well as the ABox assertions
that can be expressed in the form of RDF triples. Thus, in the following sections,
concept and role expressions will be considered to be of the following form:

C −→ A | ∃R R −→ P | P−

Moreover, a DL-LiteA TBox will be considered to consist of axioms of the
following form:

C1 v C2 C1 v ¬C2 R1 v R2 R1 v ¬R2 (funct R)

whereas, a DL-LiteA ABox will be considered to be a finite set of assertions of the
following form:

A(a) P (a, b)

We make the above simplification, without loss of generality, in order to make
the following sections easier to read. However, we should note here, that our
approach can be seamlessly extended to the full DL-LiteA specification.

3.2 FOL-Reducibility

In this section we refer to the notion of FOL-reducibility for KB satisfiability check
and query answering. This notion is introduced in [21].

Given an ABox A, we denote by db(A) = (∆db(A),·db(A)) the interpretation
defined as follows:

• ∆db(A) is the nonempty set consisting of all constants occurring in A;

• adb(A) = a, for each constant a;

• Adb(A) = {a | A(a) ∈ A}, for each atomic concept A; and

• Pdb(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P.

Intuitively, FOL-reducibility of satisfiability (resp., query answering) captures
the property that we can reduce satisfiability checking (resp., query answering) to
evaluating a FOL query over the ABox A considered as a relational database, that
is, over db(A). Definitions for FOL-Reducibility follow.

Definition 1. KB satisfiability in a DL L is FOL-reducible if, for every TBox T
expressed in L, there exists a Boolean FOL query q, over the alphabet of T , such
that for every nonempty ABox A, 〈T ,A〉 is satisfiable if and only if q evaluates to
false in db(A).

16 CHAPTER 3. PRELIMINARIES

Definition 2. Query answering in a DL L for unions of conjunctive queries is FOL-
reducible if, for every union of conjunctive queries q and every TBox T expressed
in L, there exists a FOL query q1, over the alphabet of T , such that for every
nonempty ABox A and every tuple of constants ~a occuring in A, ~a ∈ ans(q, 〈T ,A〉)
if and only if ~adb(A) ∈ qdb(A)1 .

As proven in [22], KB satisfiability in DL-LiteA is FOL-Reducible. This fea-
ture means that one can check the satisfiability of a DL-LiteA KB by posing the
appropriate FOL queries over the ABox, stored in a database (or a triple store in
our case). This has an immediate impact on the data complexity of the problem.
Indeed, since the FOL queries considered in the above definitions depend only on
the TBox (and the query), but not on the ABox, and since the evaluation of a
FOL query over an ABox is in AC0 in data complexity [23], FOL-Reducibility
of a problem has an immediate consequence that the problem is in AC0 in data
complexity.

The feature of FOL-Reducibility is used by our framework for performing di-
agnosis of inconsistencies in a DL-LiteA KB. We illustrate the diagnosis process
in Section 4.1.1 and the corresponding algorithm in Section 4.1.2. In the following
subsection we describe the queries that should be posed over the ABox, to diagnose
the KB for invalidities.

3.3 DL-LiteA as a language for the diagnosis of con-
straint violations

We can distinguish three different types ofDL-LiteA TBox axioms, namely positive
inclusions, negative inclusions and functionality assertions. In a simplified - but
adequate - manner, positive TBox inclusions are of the form C1 v C2 (where C1

and C2 are concept expressions) or R1 v R2 (where R1 and R2 are role expressions).
Respectively, negative TBox inclusions are of the form C1 v ¬C2 or R1 v ¬R2.
Functionality assertions are of the form (funct R).

This distinction is important due to the fact that DL-LiteA makes the Open
World Assumption (OWA), which is also considered for the ontology languages of
the Semantic Web (such as OWL). Due to the OWA, a positive inclusion can never
be violated, because knowledge that is not present in the ABox is not considered
as false; therefore, the only interesting (from the diagnosis perspective) axioms are
the negative inclusions and functionality assertions.

Nonetheless, positive inclusions are still relevant for the diagnosis process, be-
cause they may generate inferred information that should be taken into account.
As an example, assume that the TBox contains the constraint A v ¬C and the
axiom B v C (where A,B and C are atomic concepts), and suppose that the ABox
contains both A(x) and B(x) for some x. Even though no constraint is explicitly
violated, the combination of the ABox contents with the aforementioned TBox
would lead to inferring both C(x) and ¬C(x), i.e., an invalidity. Note that the

3.4. LINKED DATA TECHNOLOGIES 17

positive inclusion B v C, albeit not violated itself, plays a critical role in creating
this invalidity.

Rather than capturing such invalidities via the obvious method of computing
the closure of the ABox, it is more efficient to identify the constraints implied by
the explicitly declared constraints and the positive inclusions in the TBox. In the
previous example, we could identify that the constraint A v ¬B is a consequence
of the two explicit axioms in the TBox, so the presence of A(x) and B(x) vio-
lates this implicit constraint. This process amounts to computing the closure of
negative inclusions and functionality assertions of the TBox (cln(T), also see Sec-
tion 4.1.2) [21], in other words, the set of all the functionality assertions and the
explicit and implicit negative inclusions present in the TBox.

Furthermore, it has been proven that, in order to check the satisfiability of a
DL-LiteA KB (therefore diagnose the KB for invalidities), one has to take into
account only the constraints in cln(T). More precisely, it has been shown that an
invalidity in a DL-LiteA KB exists if and only if an ABox assertion contradicts a
functionality assertion or a negative inclusion that is present in cln(T) [22].

We should also note here, that constraints expressed in DL-LiteA allow the
presence of interrelated violations, i.e., violations whose potential resolutions coin-
cide; this implies that there are resolutions which resolve more than one violated
constraint instance (e.g., negative inclusion or functionality assertion in cln(T)) at
the same time.

The following example illustrates the derivation of the closure of negative in-
clusions and functionality assertions from a TBox, and will be used as a running
example in the following sections to illustrate the features of our framework:

Example 1. Consider the following DL-LiteA KB K = 〈T ,A〉:

T = {(funct P1), A1 v ¬A2, A2 v ∃P2}
A = {A1(x1), A2(x1), P2(x1, y1), P1(x3, y2), P1(x3, y3), P1(x3, y4)}

The closure of negative inclusions and functionality assertions of T (cln(T)), com-
puted in the way that was presented in [22], is the following:

cln(T) = {(funct P1), A1 v ¬A2, ∃P2 v ¬A1}

3.4 Linked Data technologies

3.4.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF)1 is a language for representing in-
formation about resources in the World Wide Web and it is a standard model for
data interchange on the Web. RDF extends the linking structure of the Web to use
URIs to name the relationships between things, as well as the two ends of the link.

1http://www.w3.org/TR/2004/REC-rdf-primer-20040210

http://www.w3.org/TR/2004/REC-rdf-primer-20040210

18 CHAPTER 3. PRELIMINARIES

Figure 3.1: The graph view of the triple <example:John> a <example:Person>.

This model is referred to as the triple representation of an RDF statement, with
each statement expressed with a subject, a predicate and an object. The subjects,
the predicates and the objects that appear in RDF statements are identified by
Uniform Resource Identifiers (URIs).

For example, the triple "<example:John> a <example:Person>", states that the
resource that exists in the URI example:John is a member of the class example:Person.
The subject of this triple is example:John, the predicate is a (which states that
the subject IsA object) and the object is example:Person.

The linking structure of an RDF document forms a directed, labeled graph,
where the edges represent the named link between two resources, represented by
the graph nodes. This graph view is the easiest mental model for RDF and it is
often used for explaining the structure of an RDF document. The graph view of
the triple described above is illustrated in 3.1.

3.4.2 Web Ontology Language (OWL)

Web Ontology Language (OWL)2 is a Semantic Web ontology language designed to
represent rich and complex knowledge about things, groups of things, and relations
between things (in other words, ontologies). OWL is logic-based and it is intended
to be used when the information contained in documents needs to be processed by
computer applications, as opposed to situations where the content only needs to
be presented to humans. OWL is endorsed by the World Wide Web Consortium
(W3C) and has attracted academic, medical and commercial interest.

An important feature of OWL is that it can be used, like any other ontology
language, to verify the consistency of a dataset with the semantics of the underlying
knowledge representation formalism, as well as to infer implicit knowledge from the
explicit statements. These tasks are often handled by applications that are called

2http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

3.4. LINKED DATA TECHNOLOGIES 19

OWL reasoners (e.g. HermiT 3, Pellet4, Stardog5, etc.).
The current version of OWL is OWL 2, which has three sublanguages (profiles),

namely OWL 2 EL, OWL 2 QL and OWL 2 RL. The OWL 2 QL fragment is based
on the DL-Lite family of description logics, which was previously discussed. In
fact, OWL 2 QL is based on DL-LiteR, giving it nice computational features.

We should make the remark that the techniques and results presented in the
following sections have a direct application on OWL 2 QL, i.e., on a standard
language of the Semantic Web, that builds on a large user base. Hence, such
results are of immediate practical relevance.

3.4.3 SPARQL Protocol and RDF Query Language

SPARQL6 is a query language for data stored in the RDF format. As noted before,
RDF is a directed, labelled graph data format for representing information in the
Web. This specification defines the syntax and semantics of the SPARQL query
language. SPARQL can be used to express queries across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via middleware.

SPARQL works as a query language, by matching graph patterns against the
data source. The graph pattern may include restrictions and other conditions like
optional parts, union, nesting of graphs and filtering of the values of the results.
Several SPARQL queries will be presented in the rest of this work.

3http://hermit-reasoner.com
4http://clarkparsia.com/pellet
5http://stardog.com
6http://www.w3.org/TR/rdf-sparql-query

http://hermit-reasoner.com
http://clarkparsia.com/pellet
http://stardog.com
http://www.w3.org/TR/rdf-sparql-query

20 CHAPTER 3. PRELIMINARIES

Chapter 4

Overview of the diagnosis and
repair framework

The purpose of our framework is to automatically perform diagnosis and repairing
of invalidities that appear in a DL-LiteA KB. Our framework consists of two
individual components, namely the diagnosis and the repairing component.

The diagnosis component is responsible for detecting inconsistencies between
the ABox and the given TBox, with the integrity constraints it includes. It is
responsible, as well, for reporting these invalidities in an intuitive way, in the form
of a graph that represents the interdependencies between them.

The repairing component takes as input the graph produced by the diagnosis
component and is responsible for automatically computing a repairing delta, as
well as for applying this repairing delta to render the KB valid.

The main features of the diagnosis and repair framework are illustrated in
Figure 4.1. In the figure, as well as in the definitions presented in this chapter, we
use the notation Ai to denote any data assertion appearing in the ABox.

4.1 Diagnosis

4.1.1 Diagnosis component

Before describing the main functionality of the diagnosis component, we must de-
fine the meaning of invalidities and invalid data assertions in the context of our
framework.

Consider a DL-LiteA TBox T , the closure (cln(T)) of negative inclusions and
functionality assertions of T and an ABox A; then, an invalidity is a pair of data
assertions in A which violates a constraint in cln(T). Each of the data assertions
that take part in an invalidity, is called an invalid data assertion. More formally:

Definition 3. Let K = 〈T ,A〉 be a DL-LiteA KB and let cln(T) be the closure
of negative inclusions and functionality assertions of T . A pair of data assertions
I = 〈A1, A2〉, where A1, A2 ∈ A, is called an invalidity of K, iff there is some

21

22CHAPTER 4. OVERVIEW OF THE DIAGNOSIS AND REPAIR FRAMEWORK

Figure 4.1: The main features of the diagnosis and repair framework.

c ∈ cln(T), such that I 2 c. In this case, A1 and A2 are called invalid data
assertions.

Following from Definition 3, we can formally define a consistent (resp. incon-
sistent) knowledge base:

Definition 4. Let K = 〈T ,A〉 be a DL-LiteA KB and let cln(T) be the closure
of negative inclusions and functionality assertions of T . If K contains an invalidity
I, such that I 2 c for some c ∈ cln(T), then K is called inconsistent and we write
A 2 c. If K does not contain any invalidities, it is called consistent and we write
A � cln(T).

The diagnosis component of our framework is responsible for detecting the
invalidities in a DL-LiteA KB, by posing the constraints in cln(T) as FOL queries
over the ABox. It is also responsible for providing these invalidities as input to
the repairing component, in the form of an interdependency graph, formally defined
below.

Definition 5. Let K = 〈T ,A〉 be a DL-LiteA KB, let cln(T) be the closure of
negative inclusions and functionality assertions of T , let c be a constraint in cln(T),
and let A1, A2 be two data assertions in A. A1 and A2 are called interdependent
due to c, iff I = 〈A1, A2〉 2 c. The interdependency graph of K is an edge-labeled
graph IG(K) = (V,E), where V = {Ai | Ai is an invalid data assertion in A} and
E = {(Ai, Aj , ck) | 〈Ai, Aj〉 2 ck, ck ∈ cln(T)}

The use of the interdependency graph as a structure to represent the invalidities
that are diagnosed in the KB, gives the ability to get a better grasp of the form

4.1. DIAGNOSIS 23

and complexity of interdependencies, to visualize these interdependencies in a way
that is easily understood (using graph visualization tools), and to use methods and
tools that come from graph theory in order to facilitate the repairing process.

4.1.2 Diagnosis algorithm

The diagnosis algorithm is the core of the diagnosis component and is used to
detect all the invalidities in a KB, as well as provide them as output in the form of
an interdependency graph. The steps needed to perform diagnosis are illustrated
in Algorithm 1.

Algorithm 1 Diagnosis(K)
Input: A DL-LiteA KB K = 〈T ,A〉
Output: The interdependency graph of K, IG(K) = (V,E)
1: V,E ← ∅
2: Compute the cln(T)
3: for all c ∈ cln(T) do
4: qc ← δ(c)
5: Ansqc ← qAc
6: for all 〈i1, i2〉 ∈ Ansqc do
7: V ← V ∪ {i1, i2}
8: E ← E ∪ {(i1, i2, c)}
9: end for

10: end for
11: return IG(K) = (V,E)

The diagnosis algorithm starts by computing the closure cln(T) of negative
inclusions and functionality assertions of the TBox (line 2 of Algorithm 1), in
order to get the full set of constraints that need to be checked over the ABox. The
process of computing cln(T) is defined below.

Definition 6. Let T be a DL-LiteA TBox. We call NI-closure of T , denoted by
cln(T), the TBox defined inductively as follows:

1. All functionality assertions in T are also in cln(T).

2. All negative inclusion assertions in T are also in cln(T).

3. If C1 v C2 is in T and C2 v ¬C3 or C3 v ¬C2 is in cln(T), then also
C1 v ¬C3 is in cln(T).

4. If R1 v R2 is in T and R2 v ¬R3 or R3 v ¬R2 is in cln(T), then also
R1 v ¬R3 is in cln(T).

5. If R1 v R2 is in cln(T) and ∃R2 v ¬C or C v ¬∃R2 is in cln(T), then also
∃R1 v ¬C is in cln(T).

24CHAPTER 4. OVERVIEW OF THE DIAGNOSIS AND REPAIR FRAMEWORK

Constraint (c) Transformation (δ(c))
c = A1 v ¬A2 δ(c) = q(x)← A1(x), A2(x)
c = A1 v ¬∃P1 (or c = ∃P1 v ¬A1) δ(c) = q(x)← A1(x), P1(x, y)
c = A1 v ¬∃P−1 (or c = ∃P−1 v ¬A1) δ(c) = q(x)← A1(x), P1(y, x)
c = ∃P1 v ¬∃P2 δ(c) = q(x)← P1(x, y1), P2(x, y2)
c = ∃P−1 v ¬∃P

−
2 δ(c) = q(x)← P1(y1, x), P2(y2, x)

c = ∃P1 v ¬∃P−2 δ(c) = q(x)← P1(x, y1), P2(y2, x)

c = P1 v ¬P2 (or c = P−1 v ¬P
−
2) δ(c) = q(x, y)← P1(x, y), P2(x, y)

c = P1 v ¬P−2 δ(c) = q(x, y)← P1(x, y), P2(y, x)

c =(funct P) δ(c) = q(x)← P (x, y1), P (x, y2)
c =(funct P−) δ(c) = q(x)← P (y1, x), P (y2, x)

Table 4.1: Transformation of DL-LiteA constraints to FOL queries

6. If R1 v R2 is in cln(T) and ∃R−2 v ¬C or C v ¬∃R−2 is in cln(T), then also
∃R−1 v ¬C is in cln(T).

7. If one of the assertions ∃R v ¬∃Q, ∃Q− v ¬∃Q−, or Q v ¬Q is in cln(T),
then all three such assertions are in cln(T).

Each of the constraints in cln(T) is then transformed to a FOL query using
predefined patterns, as defined in Table 4.1 (line 4). The answers to those queries
identify the diagnosed invalidities. In Algorithm 1, the execution of each FOL
query over the ABox is performed in line 5, where Ansqc denotes the set of in-
validities that break the constraint c. Note that these FOL queries can be easily
expressed as SPARQL queries over an ABox stored in a triple store, so that off-the-
shelf, optimized tools can be used for query answering (this process is presented in
Chapter 5).

The last step of the algorithm encodes the invalidities in the form of an in-
terdependency graph (lines 6-9). This graph is produced by iterating over all
invalidities (provided by the previous step of the algorithm) and adding the invalid
data assertions as vertices (line 7). For each pair of vertices (representing a pair
of interdependent invalid data assertions), an edge connecting them is added and
labeled with the constraint that this pair breaks (line 8).

Note that the graph does not contain duplicate vertices, meaning that, an
invalid data assertion will appear at most once in the graph, regardless of how
many invalidities it is involved in. Also note, however, that for each invalidity that
said data assertion is involved in, a different edge connecting its vertex with the
vertex that represents the other data assertion of the invalidity, is added to the
graph. As a result, we can easily determine how many invalidities each invalid
data assertion is involved in. This information is used by the repairing component
for the computation of the repairing delta.

The following example illustrates the diagnosis algorithm in action:

4.1. DIAGNOSIS 25

Figure 4.2: Example of an interdependency graph.

Example 2. Consider the KB K and the cln(T) of Example 1. The corresponding
FOL queries to check for invalidities, with respect to the constraints in cln(T), are
defined as follows:

q1(x)← P1(x, y)∧P1(x, z)∧y 6= z
q2(x)← A1(x) ∧A2(x)
q3(x)← P2(x, y) ∧A1(x)

From the execution of the above three queries over the ABox of Example 1, we get
the following sets of invalidities:

Ansq1 = {〈P1(x3, y2), P1(x3, y3)〉,
〈P1(x3, y2), P1(x3, y4)〉,
〈P1(x3, y3), P1(x3, y4)〉}

Ansq2 = {〈A1(x1), A2(x1)〉}
Ansq3 = {〈A1(x1), P2(x1, y1)〉}

Figure 4.2 shows the interdependency graph produced by these sets of invalidi-
ties.

26CHAPTER 4. OVERVIEW OF THE DIAGNOSIS AND REPAIR FRAMEWORK

4.2 Repairing

4.2.1 Repairing component

Given the interdependency graph, the repairing component is responsible for auto-
matically computing and applying a repairing delta which leads to a consistent KB.
Due to the form of DL-LiteA constraints, repairing is performed by the deletion of
either one of the two invalid data assertions that take part in an invalidity. Thus,
in terms of the interdependency graph, resolving an invalidity amounts to removing
one of the two vertices that are connected by the edge representing this invalidity.
A full repair amounts to repeating this process for all edges in the graph. Formally:

Definition 7. Let K = 〈T ,A〉 be a DL-LiteA KB, let cln(T) be the closure of
negative inclusions and functionality assertions of T , and let IG(K) = (V,E) be
the interdependency graph of K. A repairing delta of K is a selection of vertices
V ′ ⊂ V , such that A \ V ′ � cln(T). A repairing delta V ′ is called minimum, iff
there is no other repairing delta V ′′, such that V ′′ ⊂ V ′.

The problem of identifying the minimum repairing delta is actually the well-
known problem of finding the minimum vertex cover [24]. A vertex cover of a
graph is a set of vertices, such that each edge of the graph is incident to at least
one vertex of this set. By computing a vertex cover of the interdependency graph,
the repairing component computes a repairing delta that, when applied to the
dataset, leads to a consistent KB. This is due to the fact that the removal of all the
vertices (in other words, all the invalid data assertions) in the vertex cover leads
to the removal of all the edges (in other words, all the invalidities) from the graph.
Note that we are interested in the minimum, with respect to set inclusion, vertex
cover, in order to guarantee minimum impact of the repairing process on the ABox
(i.e., remove the minimum amount of data assertions, cf. [7, 8]).

4.2.2 Repairing algorithm

The repairing algorithm takes as input the interdependency graph and is respon-
sible for automatically repairing the KB.

In its first step (line 2 in Algorithm 2), the repairing algorithm breaks the
interdependency graph IG(K) into the set of its connected components (denoted
as CC in the algorithm). This way, the computation of the vertex cover of IG(K)
can be divided into the separate computation of the vertex covers of the connected
components, thus it can be parallelized for better performance.

As a next step, the repairing algorithm computes the vertex cover of each of
the connected components (lines 3-5). Recall that the computation of the mini-
mum vertex cover is not efficient, as this is a known NP-complete problem [25].
However, many approximation algorithms can be used to compute the vertex cover,
such as the 2-approximation algorithm, attributed to Gavril and Yannakakis in [25],
or the approximation algorithm presented in [26].

4.2. REPAIRING 27

Algorithm 2 Repair(IG(K),A)
Input: An interdependency graph IG(K) and a DL-LiteA ABox A
Output: K in a consistent state
1: repairing_delta← ∅
2: CC ← ConnectedComponents(IG(K))
3: for all C ∈ CC do
4: repairing_delta← repairing_delta ∪GreedyV ertexCover(C)
5: end for
6: A ← A \ repairing_delta

We chose to compute the vertex cover in a greedy manner, as presented in [25].
Greedy means that, in each step of the computation, the vertex that is chosen to
be included in the cover is the vertex with the highest degree (in other words, the
invalid data assertion that is part of the most interdependencies/invalidities). In
the case that there exist more than one vertices with the same degree, one of those
vertices is arbitrarily chosen. This way, a single vertex cover is returned by the
algorithm. This computation is performed in the GreedyVertexCover subroutine,
which is presented in Algorithm 3.

Algorithm 3 GreedyVertexCover(G)
Input: A graph G = (V,E)
Output: The vertices in V that belong to an approximate vertex cover of G
1: cover ← ∅
2: while E 6= ∅ do
3: Pick the vertex v with the greatest degree
4: cover ← cover ∪ v
5: V ← V \ v
6: end while
7: return cover

The simple approximation algorithm described above guarantees that the best
choice is made locally (i.e., in each step of the algorithm) and is very efficient. It is
proven that the above approximation algorithm achieves O(log n) approximation
of the optimal solution, where n is the number of vertices of the graph, with a time
complexity of O(n log n) [25].

The vertices in the computed vertex covers of the connected components repre-
sent the invalid data assertions to be removed from the dataset in order to render
it valid. It is obvious that, the union of the vertex covers of the connected compo-
nents of a graph forms a vertex cover of the entire graph. Thus, this union forms
the repairing delta (line 4).

The final step of the repairing algorithm is to apply the repairing delta (line 6 of
Algorithm 2). This can be performed in a very efficient manner, by posing a single
SPARQL-Update query, containing the deletion of all the invalid data assertions

28CHAPTER 4. OVERVIEW OF THE DIAGNOSIS AND REPAIR FRAMEWORK

in the repairing delta, over a triple store that stores the ABox (see Chapter 5).
The following concludes the running example for our framework:

Example 3. Consider the interdependency graph of Figure 4.2. The repairing
algorithm will compute the following repairing delta:

repairing_delta = {A1(x1), P1(x3, y2), P1(x3, y3)}

After the application of the repairing delta, the ABox A is in the following state:

A = {A2(x1), P2(x1, y1), P1(x3, y4)}

which forms a consistent KB with respect to the cln(T).

Chapter 5

Diagnosis and repair framework
implementation

In this chapter, we provide details on the way we implemented the diagnosis and
repair framework, described in the previous chapters, and the tools we used for this
purpose. The whole project was developed in the Java programming language1,
using the Eclipse Integrated Development Environment (IDE)2.

5.1 Used tools and libraries

5.1.1 OpenLink Virtuoso Open-Source Edition

OpenLink Virtuoso Open-Source Edition3 is a high-performance, cross-platform
server for SQL, XML and RDF data management. It includes a virtual database
engine, a web services deployment platform, a web application server, as well as
SPARQL support over an RDF data store tightly integrated with its relational
storage engine.

We chose the Virutoso Open-Source 7.1.0 server as a triple store for our imple-
mentation, as it supports very efficiently the loading of big volumes of data and
has a very good query answering performance [27]. It also provides support for the
SPARQL/Update (SPARUL) extension of SPARQL, which is used by the repairing
component. Moreover, Virtuoso comes with a Jena provider, which supports the
interaction between the Jena framework (described below) and the Virtuoso server.

5.1.2 Apache Jena

Apache Jena4 (or Jena in short) is a free and open source Java framework for
building semantic web and Linked Data applications. The framework is composed

1http://www.java.com
2http://www.eclipse.org
3http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
4http://jena.apache.org

29

http://www.java.com
http://www.eclipse.org
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://jena.apache.org

30CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

of different APIs interacting together to process RDF data. Some of the APIs
provided by Jena are: the RDF API, the Ontology API, the Inference API, the
ARQ API for SPARQL, etc.

In the context of our implementation, we use Jena APIs for three different
purposes (more information will be provided in the next separate sections for each
component):

• Ontology API: We use the Ontology API for loading a DL-LiteA ontology
expressed in OWL syntax, for interacting with that ontology (e.g., finding
several different types of assertions) and for exporting the ontology produced
after the computation of the closure of negative inclusions and functionality
assertions.

• Inference API: We use the Inference API for expressing the necessary rules
for the computation of the closure of negative inclusions and functionality
assertions of the ontology, as well as for applying these rules and inferring
the closed ontology.

• ARQ API: We use the ARQ API to execute the necessary queries for the
diagnosis process and interact with their results, as well as for applying the
repairing delta over the triple store that stores the ABox.

• RDF API: We use the RDF API for exporting the repairing delta and provide
it to the user as an RDF document, for further use.

5.1.3 JUNG - The Java Universal Network/Graph Framework

JUNG5 is an open source software library that provides a common and extendible
language for the modeling, analysis, and visualization of data that can be repre-
sented as a graph or network. It is written in Java, which allows JUNG-based
applications to make use of the extensive built-in capabilities of the Java API, as
well as those of other existing third-party Java libraries.

The JUNG architecture is designed to support a variety of representations of
entities and their relations, such as directed and undirected graphs, multi-modal
graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism
for annotating graphs, entities and relations with metadata. This facilitates the
creation of analytic tools for complex data sets that can examine the relations
between entities as well as the metadata attached to each entity and relation.

JUNG also provides a visualization framework that makes it easy to construct
tools for the interactive exploration of network data. Users can use one of the layout
algorithms provided, or use the framework to create their own custom layouts.
In addition, filtering mechanisms are provided which allow users to focus their
attention, or their algorithms, on specific portions of the graph.

5http://jung.sourceforge.net

http://jung.sourceforge.net

5.2. FRAMEWORK ARCHITECTURE 31

In the context of our implementation, we use JUNG for the generation and
manipulation of the interdependency graph, which is produced by the diagnosis
component and is used by the repairing component.

5.1.4 Vaadin framework

Vaadin Framework6 is an open source Java web application development framework
that helps in creating and maintaining rich web applications. Vaadin supports two
programming models: server-side and client-side. Ajax7 technology is used at the
browser-side to ensure a rich and interactive user experience. On the client-side
Vaadin is built on top of and can be extended with Google Web Toolkit8.

Vaadin uses Java as the programming language for creating web content. The
framework incorporates event-driven programming and widgets, which enables a
programming model that is closer to GUI software development than traditional
web development with HTML and JavaScript. It uses Google Web Toolkit for
rendering the resulting web page.

We use the Vaadin framework to develop the OWLRepair web application, a
web application that makes use of our framework implementation. The OWLRepair
web application is still under development, but it is in functioning condition. It
will be further discussed in 5.3.2.

5.2 Framework architecture

The overall architecture of the framework implementation is illustrated in Fig-
ure 5.1. Our implementation consists of three main and independent components:
i)the input component, ii)the diagnosis component and iii)the repairing component.

In Figure 5.1, each rectangular describes a separate module that handles a
specific functionality. Furthermore, the interactions between the modules of each
component are illustrated by the arrows that connect them. For example, the
output of the module that computes the closure of negative inclusions and func-
tionality assertions of the TBox is provided as input to the module that translates
the rules in the closure to their corresponding SPARQL queries, which are then
provided as input to the query engine for the query execution. In a similar manner,
the module that is responsible for the automatic computation of the repairing delta
provides its output as input to the module that applies this repairing delta.

Each component of the overall architecture is implemented as a separate source
package and each module is implemented as a Java class. Our implementation
follows the Model-View-Controller programming pattern, in order to be more mod-
ular.

We have developed two independent applications that use our framework, one
that can be run from a console (see Section 5.3.1) and one that can be run as a

6http://vaadin.com
7http://en.wikipedia.org/wiki/Ajax_(programming)
8http://www.gwtproject.org

http://vaadin.com
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.gwtproject.org

32CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

Figure 5.1: The architecture of the diagnosis and repair framework.

web application (see Section 5.3.2). Both of these applications are in functioning
condition, but they are under active development.

5.2.1 Input component

The input component of the framework is responsible for loading the ontology that
is provided by the user and that will be used as the TBox for the diagnosis process,
as well as for connecting to the Virtuoso triple store which stores the ABox that
will be queried for invalidities.

Regarding the ontology that is provided by the user, it must be given as an
OWL document, using the DL-LiteA specification. The ontology can be given
either as a local OWL file or as a URL pointing to an OWL document. In case the
ontology contains assertions that are outside the DL-LiteA scope, the framework
ignores these assertions and takes into consideration only the ones that correspond
to the DL-LiteA TBox assertion rules. After parsing the OWL document, the
input component keeps the ontology in a main memory model until the completion
of the diagnosis process, using the Ontology API of the Jena framework.

With regard to the ABox, the user is asked to provide the details in order for
the input component to establish a connection with the Virtuoso triple store that

5.2. FRAMEWORK ARCHITECTURE 33

stores the data instances. More precisely, the component takes as input: i)the IP
address of the Virtuoso server deployment, ii)the connection port, iii)the username
and password of the user and, iv)optionally, the named graph in which the ABox
is stored. After this information is provided, the input component establishes a
connection to the triple store which, as it is illustrated in Figure 5.1, is passed to
the other two components, as it is used both for diagnosis and for repairing.

5.2.2 Diagnosis component

The implementation of the diagnosis component follows the steps of the diagnosis
algorithm, presented in Section 4.1.2. It takes as input (from the input component)
the connection to the triple store that stores the ABox and the main memory model
that holds the TBox.

Computation of the cln(T)

The first step that is performed by the diagnosis component, is the computation
of the cln(T). This step is implemented by using the Inference API of the Jena
framework and, more precisely, the general purpose rule engine. This general
purpose rule-based reasoner can be used to implement both the RDFS and OWL
reasoners, but is also available for general use. This reasoner supports rule-based
inference over RDF graphs and provides forward chaining, backward chaining and
a hybrid execution.

By using the general purpose rule-based reasoner, we express the rules that
define the cln(T) and that were described in Section 4.1.2, as generic reasoning
rules. Then, the reasoner produces the inferred ontology (in our terms, the cln(T)),
by applying those rules over the provided TBox, and stores it in the main memory.
The following is an example of the syntax of the generic reasoning rules:

Example 4. The following rule, that is part of the definition of cln(T) (see Sec-
tion 4.1.2):

• If C1 v C2 is in T and C2 v ¬C3 or C3 v ¬C2 is in cln(T), then also
C1 v ¬C3 is in cln(T).

is expressed in the context of the Jena general purpose rule-based reasoner, as the
following two rules:

• (?C1 rdfs:subClassOf ?C2), (?C2 owl:disjointWith ?C3) ->
(?C1 owl:disjointWith ?C3)

• (?C1 rdfs:subClassOf ?C2), (?C3 owl:disjointWith ?C2) ->
(?C1 owl:disjointWith ?C3)

34CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

Translation of cln(T) constraints to SPARQL queries - Execution of the
SPARQL queries

After the computation of the cln(T), the diagnosis component performs the detec-
tion of invalidities in the ABox. This is implemented by executing the FOL queries
that correspond to the negative inclusions and functionality assertions in cln(T),
as SPARQL queries over the triple store that stores the ABox.

At first, the statements in cln(T) are divided into the following four classes of
constraints: i)concept disjointness, ii)property disjointness, iii)functional proper-
ties, and iv)inverse functional properties. This is performed in the following way:

• If the statement is of the type [C1 owl:disjointWith C2] then it belongs
to the concept disjointness class of constraints.

• If the statement is of the type [P1 owl:propertyDisjointWith P2] then it
belongs to the property disjointness class of constraints.

• If the statement is of the type [P1 rdf:type owl:FunctionalProperty]
then it belongs to the functional properties class of constraints.

• If the statement is of the type [P1 rdf:type owl:InverseFunctionalProperty]
then it belongs to the inverse functional properties class of constraints.

Then, for each class of constraints, the statements are translated to their cor-
responding SPARQL query, according to their type.

The procedure of translating the constraints of the concept disjointness
class of constraints, is the following: If the statement belongs to the concept
disjointness class of constraints (i.e., it is of the type [C1 owl:disjointWith C2]),
then the following cases apply, in order to detect the inconsistencies with respect
to this statement:

1. Always execute the following SPARQL query:
SELECT ?s WHERE {
?s rdf:type C1.
?s rdf:type C2.
}

2. If there is a statement of the type P1 rdfs:domain C1 in the TBox, then
execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s rdf:type C2.
?s P1 ?o.
}

5.2. FRAMEWORK ARCHITECTURE 35

3. If there is a statement of the type [P1 rdfs:domain C2] in the TBox, then
execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s rdf:type C1.
?s P1 ?o.
}

4. If there is a statement of the type [P1 rdfs:range C1] in the TBox, then
execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s rdf:type C2.
?o P1 ?s.
}

5. If there is a statement of the type [P1 rdfs:range C2] in the TBox, then
execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s rdf:type C2.
?o P1 ?s.
}

6. If there are both statements of the type [P1 rdfs:domain C1] and [P2
rdfs:domain C2] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o1 ?o2 WHERE {
?s P1 ?o1.
?s P2 ?o2.
}

7. If there are both statements of the type [P1 rdfs:domain C1] and [P2
rdfs:range C2] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o1 ?o2 WHERE {
?s P1 ?o1.
?o2 P2 ?s.
}

8. If there are both statements of the type [P1 rdfs:range C1] and [P2 rdfs:domain
C2] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o1 ?o2 WHERE {
?o1 P1 ?s.
?s P2 ?o2.
}

9. If there are both statements of the type [P1 rdfs:range C1] and [P2 rdfs:range
C2] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o1 ?o2 WHERE {
?o1 P1 ?s.

36CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

?o2 P2 ?s.
}

The procedure of translating the constraints of the property disjointness
class of constraints, is the following: If the statement belongs to the property
disjointness class of constraints (i.e., it is of the type [P1 owl:propertyDisjointWith
P2]), then the following cases apply, in order to detect the inconsistencies with re-
spect to this statement:

1. Always execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s P1 ?o.
?s P2 ?o.
}

2. If there is a statement of the type [P1 owl:inverseOf P3] or [P3 owl:inverseOf
P1] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o WHERE {
?o P3 ?s.
?s P2 ?o.
}

3. If there is a statement of the type [P2 owl:inverseOf P3] or [P3 owl:inverseOf
P2] in the TBox, then execute the following SPARQL query:
SELECT ?s ?o WHERE {
?s P1 ?o.
?o P3 ?s.
}

4. If there are both statements of the type [P1 owl:inverseOf P3] and [P2
owl:inverseOf P4] (or their reverse statements) in the TBox, then execute
the following SPARQL query:
SELECT ?s ?o WHERE {
?s P3 ?o.
?s P4 ?o.
}

The procedure of translating the constraints of the functional prop-
erties class of constraints, is the following: If the statement belongs to
the functional properties class of constraints (i.e., it is of the type [P1 rdf:type
owl:FunctionalProperty]), then the following query is executed:

SELECT ?s ?o1 ?o2 WHERE {
?s P1 ?o1.
?s P1 ?o2.
FILTER (?o1 != ?o2).
}

5.2. FRAMEWORK ARCHITECTURE 37

The procedure of translating the constraints of the inverse functional
properties class of constraints, is the following: If the statement belongs
to the inverse functional properties class of constraints (i.e., it is of the type [P1
rdf:type owl:InverseFunctionalProperty]), then the following query is exe-
cuted:

SELECT ?s1 ?s2 ?o WHERE {
?s1 P1 ?o.
?s2 P1 ?o.
FILTER (?s1 != ?s2).
}

After the translation has been performed, the SPARQL queries described above are
executed against the triple store that stores the ABox, by using the Virtuoso Jena
Provider. We should note here that the results of the execution of these queries are
variable bindings and not the complete invalid triples. Thus, our implementation
wraps these results accordingly, in order to recreate the actual pairs of triples (i.e.,
invalidities) that appear in the ABox.

Generation of the interdependency graph

With the invalidities in hand, the last step of the diagnosis component is to generate
the interdependency graph, on which the repairing component is based. This is
implemented by using the JUNG framework.

The interdependency graph is generated by inserting every triple that takes
part in an invalidity as a vertex to the graph and by connecting the interdepen-
dent triples (see Section 4.1.1 for the definition of interdependency) with an edge.
The edge between invalid triples is labeled with the constraint of cln(T) that this
invalidity breaks (see Section 4.1.1).

5.2.3 Repairing component

The implementation of the repairing component follows the steps of the repairing
algorithm, presented in Section 4.2.2. It takes as input the interdependency graph
produced by the diagnosis component and the connection to the triple store that
stores the ABox.

Computation of the vertex cover/repairing delta

The first step of the repairing component is the computation of the vertex cover of
the interdependency graph, which is, in fact, the repairing delta. The implemen-
tation of the computation of the vertex cover follows the steps of the algorithms
Repair (Algorithm 2) and GreedyVertexCover (Algorithm 3), by using methods of
the JUNG API.

In order to break the interdependency graph to its connected components, we
use the class WeakComponentClusterer of the JUNG API. The method transform

38CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

of this class finds all weak components in a graph, as sets of vertex sets. A weak
component is defined as a maximal subgraph in which all pairs of vertices in the
subgraph are reachable from one another in the underlying undirected subgraph.

Afterwards, the repairing component computes the vertex cover of each of the
connected components of the interdependency graph. These computations are
implemented as threads in order to be executed in parallel and improve the per-
formance of the implementation.

The computation is performed by adding to the vertex cover the vertex with
the highest degree (i.e., the triple that takes part in the most invalidities), until
there are no edges left that are uncovered. This is performed by using an im-
plemented method called VertexDegreeComparator, which, in each step of the
iteration, compares the vertices of the graph by their degrees.

After the vertex cover of each connected component is computed, all the vertex
covers are added up and this set forms the repairing delta.

Application of the repairing delta

The final step of the repairing component (and, as a result, of the diagnosis and
repair framework) is the application of the previously computed repairing delta.
This is implemented by executing a single SPARQL-Update query, which contains
the deletion of every triple in the repairing delta, over the triple store. The way
this SPARQL-Update query is formed, is the following:

DELETE DATA FROM <named_graph>
{
TRIPLE_1 .
TRIPLE_2 .
. . .
TRIPLE_N .
}
After the application of the repairing delta, the knowledge base is consistent

and the goal of the diagnosis and repair framework is completed.

5.3 Implemented applications

5.3.1 Console application

The first application that we have implemented on top of the framework that was
described in the previous sections is a console application. This application was
used for the execution of the experiments that are described in Chapter 6.

The console application comes in the form of a standalone JAR (Java ARchive)
file. It can be executed by providing the following VM arguments:

Table 5.2 illustrates the output that is provided by the console application at
the end of its execution.

5.3. IMPLEMENTED APPLICATIONS 39

file: A local file that contains the ontology to be loaded.
inferred: A local file that contains the (precomputed) cln(T). In this

case, the cln(T) is not computed again by the application.
url: A URL that points to an ontology on the web.
server: The IP address of the Virtuoso server that hosts the ABox.

The default value is localhost.
port: The connection port of the Virtuoso server. The default

value is 1111.
graph (Optional): The named graph that stores the ABox. If it is not provided,

all the graphs are used.
user: The username for the connection to the server. The default

value is dba.
pass: The password for the connection to the server. The default

value is dba.

Table 5.1: The input arguments of the console application

Inference time: The time consumed to compute the cln(T).
Diagnosis time: The time consumed by the diagnosis component.
Delta computation time: The time consumed to compute the repairing

delta.
Delta application time: The time consumed to apply the repairing delta.
Number of constraints: The number of constraints in cln(T).
Executed queries: The number of queries that were executed by the

diagnosis component.
Invalid triples found: The number of the invalid triples that were di-

agnosed.
Number of interdependencies: The number of the edges of the interdependency

graph.
Delta size: The size (in triples) of the repairing delta.

Table 5.2: The output of the console application

5.3.2 Web application

The other application that we have implemented is a web application, named
OWLRepair. This application is developed using the Vaadin framework (see Sec-
tion 5.1.4). OWLRepair, essentially, follows the framework implementation that
was sketched in the previous section of this chapter. The main feature that is
added by OWLRepair on top of the implementation is a user-friendly GUI.

40CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

Input user interface

The input user interface of OWLRepair gives the ability to the user to choose
in which way he wants to load the OWL ontology, by providing the following
options: i)upload a file containing the ontology, ii)upload a file containing the
cln(T), iii)load the ontology from a URL and, iv)use an ontology that has already
been uploaded to the server that hosts OWLRepair. Moreover, the user is provided
with the appropriate fields to fill-in the information about the connection to the
triple store. The overall picture of the input user interface of OWLRepair is given
in Figure 5.2.

A useful feature of the input user interface, is that it provides feedback to
the user about the input he has given. This is achieved by giving the user two
checkpoints (illustrated as green checkpoints in the figure). One checkpoint is for
the loading of the ontology, which is passed (i.e., the visual checkpoint dynamically
turns dark green) if the ontology provided by the user is syntactically correct
and can be used by the repairing framework. The other checkpoint is for the
connection to the triple store, which is passed when the provided information leads
to a successful connection. If both checkpoints are passed, the button Proceed to
diagnosis turns clickable and the user can move on to the diagnosis process.

Figure 5.2: The input user interface of OWLRepair

5.3. IMPLEMENTED APPLICATIONS 41

Diagnosis user interface

The diagnosis user interface of OWLRepair is used to provide information to the
user about the progress of the diagnosis process, by letting him know how many of
the constraints in cln(T) have been diagnosed so far. At the end of the diagnosis
process, the user is also given the option to download the cln(T) that has been
computed by the diagnosis component. The two different pages of the diagnosis
user interface are presented in Figure 5.3 and Figure 5.4.

Figure 5.3: The diagnosis user interface of OWLRepair

Repair user interface

The repair user interface of OWLRepair presents the computed repairing delta in
a user-friendly manner, giving the user the choice to make alterations to the triples
that will be removed.

The repairing delta is given as a table of triples which can be sorted with respect
to the subject, the predicate or the object (see Figure 5.5). The user has the option
to click on a triple and see the available alternative option in order to exclude this
triple from the repairing delta (i.e., keep it in the triple store). This is implemented
by searching the interdependency graph for triples that are interdependent with
the selected triple and are not currently included in the repairing delta. Thus,
the alternative option would be to include in the repairing delta, all those triples
that are interdependent with the selected triple. This interface is illustrated in
Figure 5.6.

42CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

Figure 5.4: The diagnosis user interface of OWLRepair

Finally, the user is given the option to save the repairing delta for future refer-
ence or use, and to apply the repairing delta on the triple store.

Figure 5.5: The repair user interface of OWLRepair

5.3. IMPLEMENTED APPLICATIONS 43

Figure 5.6: The repair user interface of OWLRepair

44CHAPTER 5. DIAGNOSIS AND REPAIR FRAMEWORK IMPLEMENTATION

Chapter 6

Evaluation of the framework

6.1 Environment of experiments

The experimental evaluation of our framework was performed using the console
application that we have developed (c.f. Chapter 5. The system that we used to
perform the experiments had the following specification: AMD OpteronTM 3280
8-core CPU with 24GB RAM (we allocated 8GB for the JVM), running Ubuntu
Server 12.04. We used version 07.10 of Virtuoso Open-Source Edition Server. The
experiments were performed with the use of 3x1, a tool for executing exploratory
experiments.

We have performed several experiments in order to measure the performance
and scalability of our framework, as well as to determine those factors that play
a decisive role in the performance of the different phases of the process. We also
performed a set of experiments to compare the performance of our framework to
the experimental evaluation of the approach in [19] (the evaluation of this work is
presented in [1]).

For our experiments, we used different combinations of TBoxes (hereafter, re-
ferred to as ontologies) and ABoxes (hereafter, referred to as datasets). More
specifically, we performed four sets of experiments: i)the first set of experiments
verified that our framework can handle millions of violations in real-world datasets
that scale up to more than 2 billion triples, considering hundreds of thousands of
constraints, ii)the second set quantified the impact of the dataset size on perfor-
mance, by using real ontologies with constraints and synthetic datasets of varying
sizes, iii)the third set quantified the impact of the number of invalid data assertions
on performance, by using real ontologies with constraints and synthetic datasets
with varying number of invalid data assertions and, iv)the fourth set of experiments
compared the performance of our framework to the performance of the approach
in [19].

In all of the above sets of experiments, we measured the time needed to run
the diagnosis algorithm and produce the interdependency graph (diagnosis time),

1http://netj.github.io/3x

45

http://netj.github.io/3x

46 CHAPTER 6. EVALUATION OF THE FRAMEWORK

the time needed by the repairing algorithm to compute the repairing delta (repair
computation time) and the time needed to apply this repairing delta on the dataset,
using a SPARQL-Update query (repair application time). All of our experiments
were run in sets of 5 hot runs and the average times were taken.

6.2 Description of used ontologies

6.2.1 1st-3rd sets of experiments

As ontologies for the first three sets of experiments, we used two versions of the
DBpedia ontology, namely versions 3.6 and 3.9. These two ontology versions al-
ready contain different amounts and types of constraints, as illustrated in Table 6.1.
More specifically, for each ontology version, Table 6.1 shows information on how
many functional and (concept/domain/range) disjointness constraints exist in the
original ontology, as well as how many of these exist in the closure of negative
inclusions of the ontology (cln(T))2 and how many queries need to be executed
for diagnosis. We should note here that we were unable to find any real ontologies
that contained property disjointness constraints, which is the only remaining type
of constraints that can be captured by DL-LiteA. For running our experiments,
we used the two ontology versions, together with both real and synthetic datasets.

Ontology version Constraints Constraints in cln(T) QueriesFunctional Disjointness Functional Disjointness
DBpedia 3.6 18 0 18 0 18
DBpedia 3.9 26 17 26 323389 323415

Table 6.1: Information on constraints contained in different DBpedia ontology
versions.

6.2.2 4th set of experiments

For the fourth set of experiments, we used the Lehigh University Benchmark
(LUBM) ontology. We should note here that the original LUBM ontology does
not contain any negative inclusions or functionality assertions, so it can not cause
any invalidities. For this reason, we modified the LUBM ontology in the same way
as it was modified in [1], by adding the following axioms:

2The big difference in the amount of disjointness constraints between the original DBpedia 3.9
ontology and its cln(T) is caused by the many positive inclusions and their interaction with the
negative inclusions during the computation of cln(T).

6.3. SYNTHETIC DATA GENERATOR FOR DIAGNOSIS AND REPAIR 47

:takesCourse owl:propertyDisjointWith :teacherOf
:takesCourse owl:propertyDisjointWith :worksFor
:Student owl:disjointWith :Professor
:Student owl:disjointWith :Organization
:Course owl:disjointWith :Person
:ResearchGroup owl:disjointWith :University
:ResearchGroup owl:disjointWith :Institute
:Person owl:disjointWith :Publication
:ResearchAssistant owl:disjointWith :FullProfessor
:subOrganizationOfInverse owl:inverseOf :subOrganizationOf
:subOrganizationOf owl:propertyDisjointWith :subOrganizationOfInverse

6.3 Synthetic data generator for diagnosis and repair

In our effort of evaluating our framework for performance and scalability, we faced
the problem of not being able to find a sufficient amount of real-world ontology
and dataset combinations to take as input. The combinations that we found either
did not include any invalidities in their datasets, or they did not have a sufficient
amount of constraints in their ontologies. The only real-world combinations, that
contained both constraints and invalidities based on these constraints, were the
various DBpedia versions. However, these were also not enough to evaluate the
performance of our framework in various different sizes of datasets and numbers of
invalidities.

Due to this fact, we developed a basic synthetic data generator that would help
us in the process of evaluating our framework. This data generator is described in
the rest of this section.

6.3.1 Overview

The synthetic data generator takes as input a TBox that contains negative inclu-
sions and/or functionality assertions and, based on the constraints in cln(T) and
the relations between those constraints, produces a uniformly distributed set of
invalidities.

The two parameters of the generator, besides the TBox, are the number of
invalid triples and the total size of the synthetic dataset (valid and invalid triples) to
be produced, as the generator not only produces invalidities, but also has the ability
to produce synthetic triples that are valid with respect to the given constraints.

6.3.2 Triple pattern graph

The first task of the synthetic data generator is to generate a graph which contains
all the pairs of triple patterns that can lead to an inconsistency.

48 CHAPTER 6. EVALUATION OF THE FRAMEWORK

After the computation of the cln(T), the data generator iterates through all of
the constraints. For each constraint, it generates a pair of triple patterns, which,
if instantiated appropriately in the dataset, would break the constraint. The triple
patterns are formed by using the appropriate URI as predicate and the appropriate
URIs or placeholders as subject and object.

The two triple patterns are inserted in a graph called triple pattern graph and
are connected with each other with an edge that describes in which cases the
simultaneous presence of their instances in the dataset would break the constraint.
The edge describes which parts (subject or object) of the two triple patterns should
be the same in their instantiations, in order to lead to an inconsistency. We should
note that one triple pattern can be connected to itself (functional constraints).

An illustrative example of the above process is provided below:

Example 5. Suppose that the cln(T) is the same as in the Example 1:

cln(T) = {(funct P1), A1 v ¬A2, ∃P2 v ¬A1}

The pairs of triple patterns generated for each of the above constraints will be the
following:

• (funct P1) will generate the following pair of triple patterns:
%s% P1 %o%
%s% P1 %o%

• A1 v ¬A2 will generate the following pair of triple patterns:
%s% rdf:type A1
%s% rdf:type A2

• ∃P2 v ¬A1} will generate the following pair of triple patterns:
%s% P2 %o%
%s% rdf:type A1

The triple pattern graph generated by the above constraints is illustrated in Fig-
ure 6.1.

Algorithm for the triple pattern graph generation

The algorithm for the generation of the triple pattern graph, given a DL-LiteA
cln(T), is presented in Algorithm 4. In this algorithm, for each constraint in
cln(T), the corresponding triple patterns are created and are inserted in the graph.
For each pair of triple patterns created, an edge connecting their two vertices is
also added to the graph, describing the similarity that the instantiations of the
two patterns should have, in order to cause an invalidity (e.g., an edge with label
SubjectWithSubject means that, in order to cause an invalidity, the instantiations
of the two patterns that are at the two ends of this edge should have the same URI
as subject). The translation of cln(T) constraints to vertices and edges of the triple
pattern graph is described in Table 6.2.

6.3. SYNTHETIC DATA GENERATOR FOR DIAGNOSIS AND REPAIR 49

Figure 6.1: Example of a triple pattern graph.

6.3.3 Generation of invalidities

After the generation of the triple pattern graph, the data generator proceeds to the
generation of invalidities, based on it. As a first step, the generator picks a random
vertex of the triple pattern graph. For this vertex, an instance of the triple pattern
is created (i.e., new, unique resource URIs that replace the subject and object
placeholders are generated and a new triple is produced). Afterwards, a random
distance from the chosen vertex is picked, with values between one and four. Up
to this distance, the generator visits (recursively) a random amount of neighbors
and instantiates their triple patterns, by giving the same URI in their connected
resources (subject or object) and new unique URIs for the resources that are left3.

After traveling the randomly picked distance and visiting the randomly picked
neighbors, another vertex from the triple pattern graph is randomly chosen and the
process described above is restarted, until the number of produced invalid triples
reaches the number that was given as input.

Algorithm for the generation of invalidities

The process previously described is illustrated in Algorithms 5 and 6. In Algo-
rithm 5, the first step is to pick a random vertex from the triple pattern graph

3We use the maximum distance of 4 in order to simulate real datasets, which, in general, do
not have larger paths in their interdependency graphs

50 CHAPTER 6. EVALUATION OF THE FRAMEWORK

Constraint c V1(c) V2(c) E(c)
(funct P) %s% P %o% %s% P %o% V1(c),V2(c),SubjectWithSubject
(funct P−) %s% P %o% %s% P %o% V1(c),V2(c),ObjectWithObject
C1 v ¬C2 %s% rdf:type %C1% %s% rdf:type %C2% V1(c),V2(c),SubjectWithSubject
C1 v ¬∃P %s% rdf:type %C1% %s% P %o% V1(c),V2(c),SubjectWithSubject
C1 v ¬∃P− %s% rdf:type %C1% %s% P %o% V1(c),V2(c),SubjectWithObject
∃P v ¬C1 %s% P %o% %s% rdf:type %C1% V1(c),V2(c),SubjectWithSubject
∃P− v ¬C1 %s% P %o% %s% rdf:type %C1% V1(c),V2(c),ObjectWithSubject
∃P1 v ¬∃P2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),SubjectWithSubject
∃P1 v ¬∃P−2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),SubjectWithObject
∃P−1 v ¬∃P2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),ObjectWithSubject
∃P−1 v ¬∃P

−
2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),ObjectWithObject

P1 v ¬P2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),〈SubjectWithSubject,ObjectWithObject〉
P−1 v ¬P

−
2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),〈SubjectWithSubject,ObjectWithObject〉

P1 v ¬P−2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),〈SubjectWithObject,ObjectWithSubject〉
P−1 v ¬P2 %s% P1 %o% %s% P2 %o% V1(c),V2(c),〈ObjectWithSubject,SubjectWithObject〉

Table 6.2: Translation of cln(T) constraints to vertices and edges of the triple
pattern graph

Algorithm 4 TriplePatternGraph(cln(T))
Input: A DL-LiteA cln(T)
Output: The triple pattern graph TPG = (V,E) that corresponds to cln(T)
1: V,E ← ∅
2: for all c ∈ cln(T) do
3: V ← V ∪ {V1(c),V2(c)}
4: E ← E ∪ {E(c)}
5: end for
6: return TPG = (V,E)

(line 3) and instantiate its triple pattern (lines 4-13). The NewResourceURI rou-
tine (lines 9 and 12) generates a unique resource URI to assign to the subject or the
object of the instantiated triple pattern. Afterwards, the triple is added to the set
of invalid triples (line 14), a random distance between one and four is chosen (line
15) and the recursive routine RandomWalk is called (line 16). The arguments of
RandomWalk are: i)the currently chosen vertex of the triple pattern graph, ii)the
subject that was assigned to the instantiation of the triple pattern, iii)the object
that was assigned to the instantiation of the triple pattern, iv)the set of already
produced invalid triples, v)the current distance that has been traveled from the
initial vertex, vi)the distance that was randomly picked as limit and, vii)the total
number of invalid triples to be produced.

The RandomWalk recursive routine is presented in Algorithm 6. At first, the
routine checks if the distance already traveled from the initial vertex is smaller than
the distance that was previously randomly picked (line 1) and, if true, it picks a
random number of neighbors of the vertex that called the routine (line 2).

Afterwards, the routine begins an iteration for as many times as the randomly
picked number of neighbors and while the invalid triples that have been produced
are less than the invalid triples that have were asked (lines 3 and 4). The first task

6.4. DESCRIPTION OF USED DATASETS 51

Algorithm 5 InvalidityGeneration(TPG, n)
Input: A triple pattern graph TPG = (V,E) and the number of invalid triples to

be produced
Output: A set INV of n invalid triples
1: INV ← ∅
2: while |INV | ≤ n do
3: Randomly pick a vertex v ∈ V
4: Create a new triple t
5: subject(t)=subject(v)
6: predicate(t)=predicate(v)
7: object(t)=object(v)
8: if subject(t)=%s% then
9: subject(t)=NewResourceURI

10: end if
11: if object(t)=%o% then
12: object(t)=NewResourceURI
13: end if
14: INV ← INV ∪ t
15: dist = a random number between 1 and 4
16: RandomWalk(v,subject(t),object(t),INV ,1,dist,n)
17: end while
18: return INV

inside the iteration, is to randomly pick a neighbor vertex of the vertex that called
the routine (line 5) and instantiate its triple pattern (lines 6-23). The algorithms
performs the necessary checks to determine what kind of edge connects the two
vertices (the one that called the routine and the one that was picked from the
neighbors) and, according to the type of the vertex, it gives the newly created
triple its subject (lines 10-16) and its object (lines 17-23). After the instantiation,
the generated triple is added to the set of invalid triples (line 24) and the routine
calls itself with new arguments, in order to continue traveling in the graph until
the distance limit is reached.

6.4 Description of used datasets

6.4.1 1st-3rd sets of experiments

As real data, we used the two DBpedia datasets that correspond to the two
aforementioned ontology versions, namely DBpedia 3.6 and DBpedia 3.9 (multi-
language versions), stored in a local Virtuoso instance. The DBpedia 3.6 dataset
contains 541M triples, whereas the DBpedia 3.9 dataset contains more than 2 bil-
lion triples. The real data were used in the 1st set of experiments.

In order to generate synthetic data, we used the two DBpedia ontology ver-

52 CHAPTER 6. EVALUATION OF THE FRAMEWORK

% of
invalidities

of
Universities 1 5 10 20

1 101560 630842 1285431 2715200
5 105836 657404 1339554 2811400
10 111716 693926 1413974 2986720
20 125681 780667 1590721 3360060

Table 6.3: Sizes (in triples) of the datasets used in the 4th set of experiments

sions and produced new datasets that contained a defined numbers of invalid data
assertions, using the synthetic data generator previously described. More specifi-
cally, for each of the ontology versions, we generated two different sets of synthetic
datasets that contained invalid data assertions. The first set of datasets had a
fixed number of invalid data assertions (10K triples) and a varying dataset size
(500K-5M triples, with a step of 500K triples). The second set of datasets had a
fixed dataset size (10M triples) and a varying number of invalid data assertions
(50K-500K triples, with a step of 50K triples). The above two sets of datasets were
used in the 2nd and 3rd set of experiments respectively.

6.4.2 4th set of experiments

The data used in the 4th set of experiments were partly produced by the LUBM
data generator (UBA) and partly produced by our data generator. We used UBA
to generate valid data, with respect to the original LUBM ontology, and we used
our data generator to produce invalidities, with respect to the axioms that we
added to the original LUBM ontology.

We produced four different versions for every original dataset that was produced
by UBA (1 university, 5 universities, 10 universities and 20 universities). The four
different versions of each dataset contained different percentages of invalid data
assertions (1% of the dataset, 5%, 10% and 20%). The sizes of the datasets we used
in this set of experiments are illustrated in Table 6.3. The sizes have insignificant
differences with the ones presented in [1], which are caused by the different tools we
used to produce the invalidities. However, the numbers of invalid data assertions
that appear in our datasets are true to the percentages of the dataset sizes.

6.5 Scalability and performance

1st set of experiments

The first set of experiments was performed to verify the scalability of our framework
in real-world settings, with datasets of billions of triples and with large numbers
of constraints (up to hundreds of thousands). For this purpose, we used the two

6.5. SCALABILITY AND PERFORMANCE 53

complete versions of DBpedia (both ontology and real dataset, namely versions
3.6 and 3.9). For each of these two versions, we measured the diagnosis time, the
repair computation time, the repair application time and the total time. We also
measured the number of invalid data assertions that appear in the datasets, to
see how well our framework scales with respect to that, as well as the size of the
repairing delta, to see whether a manual repair by the curator would be feasible in
this context.

The results of this set of experiments are illustrated in Table 6.4. In the table,
IDA denotes the number of invalid data assertions, td denotes the diagnosis time,
tr.c. the repair computation time, tr.a. the repair application time and tt the total
time needed for diagnosis and repairing. All times are in milliseconds.

Ontology Dataset (Triples) IDA Delta td tr.c. tr.a. tt
DBpedia 3.6 DBpedia 3.6 (541M) 1109 749 2440 402 219 3061
DBpedia 3.9 DBpedia 3.9 (>2B) 1020199 717798 9610319 27190191 1415329 38215839

Table 6.4: Experiments performed on real datasets.

The results show that our framework is scalable, for both large datasets and big
numbers of invalid data assertions, and that it can be applied in real-world settings,
as the total time for diagnosis and repairing goes up to about 11 hours. It also
proves the important fact that, already deployed and massively used reference KBs,
such as DBpedia, don’t have sufficient mechanisms for preventing the introduction
of invalid data or for detecting and repairing such invalid data. Moreover, our
experiments illustrate that the number of invalid data assertions and the size of
the repairing delta would be prohibitive for repairing by manual curation.

2nd set of experiments

As a next set of experiments, we used the two versions of the DBpedia ontology
and, for each of them, we used the corresponding set of synthetic datasets of varying
dataset sizes and fixed number of invalid data assertions, that we had previously
generated. The results of this set of experiments can be found in Figures 6.2-
6.3. We should note here that some of the curves in the graphs are difficult to
distinguish, either because they are too close to the start of the x-axis (such as the
repair computation time and the repair application time in Figure 6.3), or because
they are too close with another curve (such as the diagnosis time and the total
time in Figure 6.3).

From the results of this set of experiments, we can come to the conclusion
that diagnosis time grows linearly with respect to the dataset size and that it is
the dominating impact factor of the total time, when the number of invalid data
assertions is fixed. This is an important conclusion because it shows that, overall,
our framework scales linearly with respect to the dataset size.

Moreover, another conclusion is that the number of constraints has a major im-
pact on the diagnosis time and the total time, which are two orders of magnitude

54 CHAPTER 6. EVALUATION OF THE FRAMEWORK

Figure 6.2: Performance for DBpedia ontology version 3.6 with datasets of varying
dataset sizes and fixed number of invalid data assertions (10K triples).

Figure 6.3: Performance for DBpedia ontology version 3.9 with datasets of varying
dataset sizes and fixed number of invalid data assertions (10K triples).

6.5. SCALABILITY AND PERFORMANCE 55

larger in the experiments performed with the version 3.9 of the DBpedia ontol-
ogy, that contains 323415 constraints, than in the experiments performed with the
version 3.6, that contains 18 constraints.

3rd set of experiments

As a 3rd set of experiments, we combined the two versions of the DBpedia ontology
with the corresponding sets of synthetic datasets, that contained varying number
of invalid data assertions and had fixed dataset size. The results of this set of
experiments are illustrated in Figures 6.4-6.5.

From these results, we can conclude that the number of invalid data assertions
has no immediate impact on the diagnosis time. On the contrary, this number
is the main impact factor of the repair computation time. That was an expected
behavior, as the repair computation is done by computing the vertex cover of the
interdependency graph. A bigger number of invalid data assertions leads to a bigger
graph and this leads to a more timely computation of the vertex cover.

Another significant impact factor of the repair computation time is the amount
of interdependencies in the interdependency graph. We can see that the repair
computation time increases with a higher rate in Figure 6.4 than in Figure 6.5,
which can be explained by the fact that the DBpedia 3.6 ontology contains only
functional constraints, which form cliques in the interdependency graph (thus, more
interdependencies), whereas the DBpedia 3.9 ontology contains mainly disjointness
constraints, which cause less interdependencies, therefore less edges in the interde-
pendency graph.

Moreover, the repair application time seems to be negligible in all of the above
experiments. This is due to the fact that the repair application is performed by
executing a single SPARQL-Update query containing the deletion of all the triples
in the repairing delta, which is very efficient due to the optimizations for batch
operations performed by Virtuoso.

The last significant conclusion from the three first sets of experiments comes
from the comparison of the times measured for the two different DBpedia ontology
versions. We can see that the diagnosis times using the version 3.9 of the DBpe-
dia ontology are two orders of magnitude higher compared to the diagnosis times
measured using the version 3.6. This is due to the fact that the cln(T) of version
3.9 contains 323415 constraints, whereas the one of version 3.6 contains only 18.
The bigger number of constraints of version 3.9 leads to the generation of more
queries to be executed by the diagnosis algorithm, causing this big difference in the
measurements.

4th set of experiments

As a last set of experiments, we combined our framework with the approach evalu-
ated in [1]. We put an effort in recreating the datasets presented in that work, but
we didn’t manage to achieve that, as the datasets that are available in the webpage

56 CHAPTER 6. EVALUATION OF THE FRAMEWORK

Figure 6.4: Performance for DBpedia ontology version 3.6 with datasets of varying
number of invalid data assertions and fixed dataset size (10M triples).

Figure 6.5: Performance for DBpedia ontology version 3.9 with datasets of varying
number of invalid data assertions and fixed dataset size (10M triples).

6.5. SCALABILITY AND PERFORMANCE 57

of that evaluation4 are given as PostgreSQL dump files and we could not load them
as RDF triples. However, we managed to produce RDF files that had the same
characteristics (percentage of invalidities, uniform coverage of the constraints of the
extended LUBM ontology) as the datasets used in [1], by using our synthetic data
generator. Note that sizes of the datasets have some differences, which, however,
are minor.

After producing the datasets for this set of experiments, we evaluated the per-
formance of our framework, using as input the combination of the extended LUBM
ontology and the datasets produced (16 measurements). At first, we used the
greedy approach for the computation of the vertex cover (i.e., the repairing delta),
and the results of this evaluation (in comparison with the total times presented
in [1]) can be found in Figure 6.6.

As it was noted in Chapter 2, the work in [1] computes the repairing delta
in a different way than we do in our framework, resolving each invalidity by re-
moving both data assertions that take part in it and, in this way, removing more
information than necessary. The approach in that work is, essentially, the same as
computing the vertex cover using the 2-approximation algorithm [25] in the context
of our framework. For this reason, we also evaluated our framework with the use
of the 2-approximation algorithm for the computation of the vertex cover. The
results of this evaluation can also be found in Figure 6.6.

Figure 6.6: Comparison of our framework with the approach evaluated in [1].

From the results of this last set of experiments, we can conclude that our
framework performs better than the approach in [1] in the vast majority of the
experiments, for both the greedy computation of the vertex cover and the 2-
approximation approach. The only experiment in which our framework performed

4http://www.dis.uniroma1.it/~ruzzi/quid

http://www.dis.uniroma1.it/~ruzzi/quid

58 CHAPTER 6. EVALUATION OF THE FRAMEWORK

worse is the experiment with the dataset of 20 universities and 20% of invalidities,
with the use of the greedy computation. This can be explained by the fact that
the greedy computation calculates the vertex with the greatest degree in each step
of the process, which can be a time-consuming task. It can be seen by the compar-
ison of their evaluation, that the greedy computation is far more complex than the
2-approximation, thus giving worse times overall. However, in this way the repair
that is produced removes less information from the original dataset, thus it is of
better quality. This is also illustrated in Table 6.5, which gives a comparison of the
repairing deltas produced using the greedy computation and the 2-approximation.

Repairing delta (# of triples)
Dataset Greedy computation 2-approximation

1 University/1% invalidities 349 654
1 University/5% invalidities 1628 3226
1 University/10% invalidities 2376 4752
1 University/20% invalidities 10559 18564
5 Universities/1% invalidities 1957 3610
5 Universities/5% invalidities 8750 17114
5 Universities/10% invalidities 19610 38398
5 Universities/20% invalidities 46719 89116
10 Universities/1% invalidities 2681 5176
10 Universities/5% invalidities 25817 47426
10 Universities/10% invalidities 44983 86350
10 Universities/20% invalidities 77831 145792
20 Universities/1% invalidities 8986 16886
20 Universities/5% invalidities 25582 50584
20 Universities/10% invalidities 97186 186462
20 Universities/20% invalidities 176044 352088

Table 6.5: Comparison of the repairing deltas produced by using the greedy com-
putation of the vertex cover and the 2-approximation, in the 4th set of experiments

6.6 Conclusions from the evaluation

Summing up the outcome of the experimental evaluation, we can come to the
following main conclusions:

• Diagnosis, in the context of our framework, can be performed in linear time
with respect to the size of the dataset.

• Repair computation can be in performed in polynomial time with respect to
the number of invalid data assertions that appear in the dataset.

6.6. CONCLUSIONS FROM THE EVALUATION 59

• Our implementation enjoys a decent performance in real-world settings, with
large datasets, large numbers of constraints and invalidities, being able to
repair the huge DBpedia 3.9 (>2B triples) in about 11 hours, which is a
reasonable amount of time given that repairing is expected to be an offline
process. This fact also proves that our framework can be used on top of
already deployed knowledge bases, without any further reconfiguration.

• In terms of performance and quality of the produced repair, our framework
compares well to the only related work addressing the automatic repairing of
an inconsistent DL-LiteA KB [19].

60 CHAPTER 6. EVALUATION OF THE FRAMEWORK

Algorithm 6 RandomWalk(v,s,o,INV ,d,dist,n)
Input: A vertex v of the TPG = (V,E), a subject URI s, and object URI o, the

set of already produced invalidities INV and the distance covered so far d
1: if d ≤ dist then
2: neighbors =a random number of neighbors of v
3: for neighbors do
4: while |INV | < n do
5: Randomly pick a vertex v′ from the neighbors of v
6: Create a new triple t
7: subject(t)=subject(v′)
8: predicate(t)=predicate(v′)
9: object(t)=object(v′)

10: if SubjectWithSubject∈Edge(v, v′) then
11: subject(t)=s
12: else if ObjectWithSubject∈Edge(v, v′) then
13: subject(t)=o
14: else
15: subject(t)=NewResourceURI
16: end if
17: if ObjectWithObject∈Edge(v, v′) then
18: object(t)=o
19: else if SubjectWithObject∈Edge(v, v′) then
20: object(t)=s
21: else
22: object(t)=NewResourceURI
23: end if
24: INV ← INV ∪ t
25: RandomWalk(v′,subject(t),object(t),INV ,d+ 1,dist,n)
26: end while
27: end for
28: end if

Chapter 7

Conclusions and future work

7.1 Conclusions

In this work, we presented a novel, fully automatic and modular diagnosis and
repairing framework for assisting KB curators in the arduous task of enforcing
integrity constraints in large datasets, taking into account logical inference, and
maintaining consistency of the KB. The framework we have presented is based on
the DL-LiteA ontology language, with which we can express and diagnose several
useful types of logical constraints, while maintaining good computational features.
Our framework also uses a novel graph representation of the invalidities in the
KB, which gives us the ability to use notions of graph theory to lead the repairing
process.

We have implemented our framework and produced two different applications,
one running from the console and one with a web interface. The experimental
evaluation of our framework implementation shows that it can be used on top of
already deployed KBs without any further reconfiguration. Moreover, the evalu-
ation shows that our framework is scalable for large dataset sizes, often found in
real reference KBs, such as DBpedia. More specifically, it can handle datasets of
billions of triples and large numbers of invalidities (millions of triples).

7.2 Future work

As a direction for our future work, we aim to enrich our framework beyond the fully
automatic approach. We are considering a semi-automatic approach, which will be
guided by user guidelines/preferences over the possible resolutions of invalidities,
thus providing a repair that is as close as possible to the user needs.

We are also considering a manual approach, which will allow the user to perform
massive repairing of several violations at once, with a few clicks, rendering the
manual repairing of millions of invalidities possible. This approach will also be
based on the interdependency graph to lead the decisions of the user.

61

62 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

As another direction, we plan to consider improvements on the scalability prop-
erties of our algorithms. More precisely, we plan to consider different algorithms,
and their computational properties, for the computation of the vertex cover, as
this can be a very time-consuming task, as shown by the experimental evaluation.
Moreover, we will be considering different techniques for querying the triple store
for invalidities, possibly by combining similar queries and, in this way, executing
less, but more complex, queries. We are also considering improvements on the
implemented web application, in the direction of stability and better functionality.

Last, as a direction of future research and extension of our work, we plan to
incorporate a TBox diagnosis and repair component in our framework, in order to
be able to check if the TBox is satisfiable and, if not, in what manner it could be
repaired. Moreover, we are considering the changes that would be necessary in our
algorithms and framework, in order to be able to capture incremental data updates
in the ABox and to perform incremental diagnosis and repairing, without having
to check over the entire ABox.

Bibliography

[1] R. Rosati, M. Ruzzi, M. Graziosi, and G. Masotti, “Evaluation of techniques
for inconsistency handling in OWL 2 QL ontologies,” in The Semantic Web–
ISWC 2012. Springer, 2012, pp. 337–349.

[2] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,” Inter-
national journal on semantic web and information systems, vol. 5, no. 3, pp.
1–22, 2009.

[3] B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between OWL and
relational databases,” Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 7, no. 2, pp. 74–89, 2009.

[4] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness, “Integrity constraints in OWL.”
in AAAI, 2010.

[5] A. Deutsch, “Fol modeling of integrity constraints (dependencies),” in Ency-
clopedia of Database Systems. Springer, 2009, pp. 1155–1161.

[6] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, and R. Cor-
nelissen, “Databugger: a test-driven framework for debugging the web of data,”
in Proceedings of the companion publication of the 23rd international confer-
ence on World wide web companion. International World Wide Web Confer-
ences Steering Committee, 2014, pp. 115–118.

[7] F. N. Afrati and P. G. Kolaitis, “Repair checking in inconsistent databases: al-
gorithms and complexity,” in Proceedings of the 12th International Conference
on Database Theory. ACM, 2009, pp. 31–41.

[8] J. Chomicki and J. Marcinkowski, “On the computational complexity of
minimal-change integrity maintenance in relational databases,” in Inconsis-
tency Tolerance. Springer, 2005, pp. 119–150.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and
R. Rosati, “Linking data to ontologies: The Description Logic DL-LiteA.”
in OWLED, 2006.

63

64 BIBLIOGRAPHY

[10] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers in incon-
sistent databases,” in Proceedings of the eighteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 1999, pp.
68–79.

[11] G. Greco, S. Greco, and E. Zumpano, “A logical framework for querying and
repairing inconsistent databases,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 15, no. 6, pp. 1389–1408, 2003.

[12] J. Chomicki and J. Marcinkowski, “Minimal-change integrity maintenance us-
ing tuple deletions,” Information and Computation, vol. 197, no. 1, pp. 90–121,
2005.

[13] M. Arenas, L. Bertossi, and J. Chomicki, “Scalar aggregation in fd-inconsistent
databases,” in Database Theory—ICDT 2001. Springer, 2001, pp. 39–53.

[14] L. Grieco, D. Lembo, R. Rosati, and M. Ruzzi, “Consistent query answer-
ing under key and exclusion dependencies: Algorithms and experiments,” in
Proceedings of the 14th ACM international conference on Information and
knowledge management. ACM, 2005, pp. 792–799.

[15] J. Wijsen, “Consistent query answering under primary keys: a characterization
of tractable queries,” in Proceedings of the 12th International Conference on
Database Theory. ACM, 2009, pp. 42–52.

[16] G. Lausen, M. Meier, and M. Schmidt, “SPARQLing constraints for RDF,” in
Proceedings of the 11th international conference on Extending database tech-
nology: Advances in database technology. ACM, 2008, pp. 499–509.

[17] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo, “Query rewrit-
ing for inconsistent DL-Lite ontologies,” in Web Reasoning and Rule Systems.
Springer, 2011, pp. 155–169.

[18] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
M. Palmieri, and R. Rosati, “QUONTO: querying ontologies,” in AAAI, vol. 5,
2005, pp. 1670–1671.

[19] G. Masotti, R. Rosati, and M. Ruzzi, “Practical ABox cleaning in DL-Lite
(progress report).” in Description Logics, 2011.

[20] F. Baader, The description logic handbook: theory, implementation, and ap-
plications. Cambridge university press, 2003.

[21] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable reasoning and efficient query answering in description logics: The
DL-Lite family,” Journal of Automated Reasoning, vol. 39, no. 3, pp. 385–429,
2007.

BIBLIOGRAPHY 65

[22] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, and R. Rosati, “Ontologies and databases: The DL-Lite
approach,” in Reasoning Web. Semantic Technologies for Information Systems.
Springer, 2009, pp. 255–356.

[23] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases. Addison-
Wesley Reading, 1995, vol. 8.

[24] M. R. Garey and D. S. Johnson, Computers and intractability. Freeman San
Francisco, 1979, vol. 174.

[25] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms
and complexity. Courier Dover Publications, 1998.

[26] G. Karakostas, “A better approximation ratio for the vertex cover problem,”
in Automata, languages and programming. Springer, 2005, pp. 1043–1050.

[27] C. Bizer and A. Schultz, “Berlin SPARQL benchmark (BSBM) Experiment -
v3.1,” 2013.

	Introduction
	Semantic Web and Linked Open Data
	The need for repairing in the Semantic Web - Motivation
	Contributions
	Structure of the rest of the Thesis

	Related work
	Repairing and CQA in relational databases
	Repairing and CQA in linked data

	Preliminaries
	Description Logics - DL-LiteA
	The Description Logics family of languages
	DL-Lite family of DL languages
	DL-LiteR, DL-LiteF and DL-LiteFR languages
	DL-LiteA language

	FOL-Reducibility
	DL-LiteA as a language for the diagnosis of constraint violations
	Linked Data technologies
	Resource Description Framework (RDF)
	Web Ontology Language (OWL)
	SPARQL Protocol and RDF Query Language

	Overview of the diagnosis and repair framework
	Diagnosis
	Diagnosis component
	Diagnosis algorithm

	Repairing
	Repairing component
	Repairing algorithm

	Diagnosis and repair framework implementation
	Used tools and libraries
	OpenLink Virtuoso Open-Source Edition
	Apache Jena
	JUNG - The Java Universal Network/Graph Framework
	Vaadin framework

	Framework architecture
	Input component
	Diagnosis component
	Repairing component

	Implemented applications
	Console application
	Web application

	Evaluation of the framework
	Environment of experiments
	Description of used ontologies
	1st-3rd sets of experiments
	4th set of experiments

	Synthetic data generator for diagnosis and repair
	Overview
	Triple pattern graph
	Generation of invalidities

	Description of used datasets
	1st-3rd sets of experiments
	4th set of experiments

	Scalability and performance
	Conclusions from the evaluation

	Conclusions and future work
	Conclusions
	Future work

