
Computer Science Department
University of Crete

Anontool: Per Application Field Anonymization to
Promote Network Data Sharing

Master’s Thesis

Michael Foukarakis

October 2008
Heraklion, Greece

2

University of Crete

Computer Science Department

Anontool: Per Application Field Anonymization to Promote Network

Data Sharing

Thesis submitted by

Michael Foukarakis

in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Michael Foukarakis

Committee approvals:

Evangelos P. Markatos

Professor, Thesis Supervisor

Sotiris Ioannidis

Visiting Professor

Maria Papadopouli

Assistant Professor

Departmental approval:

Panos Trahanias

Professor, Chairman of Graduate Studies

Heraklion, October 2008

Abstract

As computer networks grow in size and complexity, the need for distributed

network management and monitoring becomes increasingly important. Net-

work data is the single most valuable resource available to network analysts

and security professionals, yet organizations and researchers are still reluc-

tant to share data with third parties. As a result, there is a lack of realistic

network traces for research studies and prototype testing and poor cooper-

ation in network defense.

To alleviate this problem and limit sensitive information leakage, anony-

mization is often applied to network data prior to being publicized. Anony-

mization aims to obfuscate data to protect the privacy of monitored subjects,

while preserving useful information about the data. Today’s approaches in

this field are software utilities or ad-hoc solutions which offer limited flexi-

bility or performance.

Our proposal is Anontool , an application which aims to provide a flex-

ible and efficient solution to deal with anonymization on every layer of a

network packet. Anontool uses the Anonymization API (AAPI) and ex-

tends it to support the popular NetFlow and IPFIX protocols. We also

developed two new anonymization primitives to address attacks against the

anonymized traces’ privacy. Furthermore, our implementation finds and

anonymizes sensitive information within binary packet payloads, in partic-

ular malicious executable payloads. Our evaluation shows that Anontool is

one of the most flexible and powerful tools currently available. Our experi-

mental results show Anontool outperforming tools with similar functionality

and having similar performance with specialized tools.

iii

iv

Supervisor: Professor Evangelos P. Markatos

v

Anontool: Diat rhsh Anwnum�a
 An� Ped�o pou Pro�gei thDianom Dedomènwn DiktÔouFoukar�kh
 Miqa lMetaptuqiak Ergas�aTm ma Epist mh
 Upologist¸nPanepist mio Kr th
Per�lhyhKaj¸
 ta d�ktua upologist¸n megal¸noun se mègejo
 kai poluplokìth-ta, h an�gkh gia katanemhmènh diaqe�rish kai parakoloÔjhsh diktÔwn g�netaioloèna kai pio shmantik . Ta dedomèna diktÔou apoteloÔn ton pio shmantikìpìro sth di�jesh twn analut¸n diktÔou kai twn epaggelmati¸n asfale�a
diktÔwn, ìmw
 oi organismo� kai oi ereunhtè
 akìma dist�zoun na moirastoÔndedomèna me tr�tou
. San apotèlesma, up�rqei mia èlleiyh realistik¸n su-nìlwn dedomènwn diktÔou gia ereunhtikoÔ
 skopoÔ
 kai èlegqo prwtotÔpwn,kaj¸
 kai ftwq sunergas�a se jèmata diktuak
 asf�leia
.Gia thn anakoÔfish apì autì to prìblhma kai ton periorismì diarro
 eua�-sjhtwn plhrofori¸n, h diadikas�a tou anonymization (diat rhsh anwnum�a
)suqn� efarmìzetai sta dedomèna prin apì th dhmos�eus tou
. H diat rhshanwnum�a
 skopeÔei na tropopoi sei ta dedomèna ¸ste na prostateÔsei thmustikìthta twn upì parakoloÔjhsh ontot twn, en¸ tautìqrona na diathr -sei qr sime
 plhrofor�e
 mèsa s�ut�. Oi shmerinè
 prosegg�sei
 sto ped�oapoteloÔntai apì ergale�a logismikoÔ kai ad-hoc lÔsei
 pou prosfèroun pe-riorismènh euelix�a /kai apìdosh.H prìtas ma
 e�nai to Anontool, mia efarmog me skopì na prosfèrei miaeuèlikth kai apodotik lÔsh gia diat rhsh anwnum�a
 se opoiod pote str¸-

vima enì
 pakètou diktÔou. To Anontool qrhsimopoie� to Anonymization API(AAPI) kai to epekte�nei ¸ste na uposthr�zei ta dhmofil NetFlow kai IPFIXprwtìkolla. Ep�sh
 anaptÔxame dÔo nèe
 mejìdou
 gia diat rhsh anwnum�a
gia na antimetwp�soume epijèsei
 sth mustikìthta dedomènwn sta opo�a efar-mìzetai diat rhsh anwnum�a
 me twrinè
 mejìdou
. Epiplèon, ulopoi same ènatrìpo na brejoÔn kai na diathrhje� h anwnum�a eua�sjhtwn dedomènwn mèsa sepakèta pou perièqoun kakìboulo ektelèsimo k¸dika. H an�lus ma
 de�qneipw
 to Anontool e�nai èna apì ta pio euèlikta ergale�a pou e�nai diajèsimaaut th stigm , kai ta peiramatik� ma
 apotelèsmata de�qnoun pw
 e�nai apo-dotikìtero apì ergale�a me parìmoia leitourgikìthta kai sunagwn�zetai polÔexeidikeumène
 prosegg�sei
.Epìpth
 Metaptuqiak
 Ergas�a
: Eu�ggelo
 P. Mark�to

vii

Parts of this work have been published at the Third International Work-

shop on the Value of Security through Collaboration (SECOVAL), Septem-

ber 2007, Nice, France, and at the FloCon Workshop, January 2008, Savan-

nah, Georgia, USA.

viii

ix

Acknowledgments

I’d like to thank my advisor and supervisor, Professor E.P. Markatos,

for his assistance and guidance during my academic steps in the field.

Many thanks to the DCS Laboratory members for all their help, support,

collective wisdom, nights out and valuable comments on this work.

Also, to my family and friends. None of this would have happened

without them.

x

xi

To my family.

xii

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Thesis Outline . 4

2 Motivation 7

2.1 Network Data Sharing . 7

2.2 Lack of Trust . 9

2.3 Anonymization as a Means to Promote Data Sharing 11

2.4 Areas of Application . 13

3 Related Work 15

3.1 TCPdpriv . 15

3.2 Prefix-preserving Anonymization 16

3.3 NetDuDe . 16

3.4 SCRUB-tcpdump . 17

3.5 CANINE . 17

3.6 NFDUMP Tools . 17

3.7 FLAIM . 18

3.8 Other Approaches . 18

3.9 Privacy-Preserving Data Mining Methods 19

xiii

xiv CONTENTS

4 Anontool 23

4.1 AAPI . 24

4.1.1 AAPI Description . 24

4.1.2 Anontool . 29

4.2 NetFlow & IPFIX Anonymization 31

4.3 Binary Payload Anonymization 34

4.4 New Primitives . 41

4.4.1 Attacking Applied NetFlow Anonymization Policies . 42

4.4.2 Countermeasures . 44

5 Evaluation 49

5.1 Evaluating NetFlow Anonymization 49

5.1.1 Functionality Comparison 49

5.1.2 Performance Analysis 54

5.2 Evaluating New Primitives 58

5.3 Evaluation of Binary Payload Anonymization 62

5.4 Availability . 64

6 Conclusions and Future Work 65

List of Figures

4.1 A typical XOR decoder, used by the Wuerzburg shellcode. . . 34

4.2 (a) An encrypted shell command, before decryption. (b) The

same shell command after decryption. The IP and port num-

bers are clearly seen. 36

4.3 A regular expression matching the Wuerzburg shellcode. . . . 38

5.1 Performance comparison (user & system time) deploying prefix-

preserving IP address anonymization 56

5.2 Performance comparison (CPU load) deploying prefix-preserving

IP address anonymization . 57

5.3 Performance comparison (user & system time) deploying zero

IP address anonymization . 58

5.4 Performance comparison (CPU load) deploying zero IP ad-

dress anonymization . 59

5.5 Performance comparison (CPU load) deploying a predefined

policy (zero source and destination IP addresses, random

TCP port numbers and random Uptime) 59

5.6 Performance comparison (user & system time) deploying a

predefined policy (zero source and destination IP addresses,

random TCP port numbers and random Uptime) 60

5.7 Cumulative distribution function of flow sizes 61

xv

xvi LIST OF FIGURES

5.8 The anonymized Wuerzburg shellcode as the final output of

Anontool . 63

List of Tables

3.1 Comparative presentation of available anonymization tools. . 21

4.1 Available Fields and Functions 32

4.2 List of regular expressions incorporated into Anontool for bi-

nary payload anonymization. 39

5.1 Some basic descriptive statistics regarding a NetFlow trace

before, and after anonymization. 61

xvii

xviii LIST OF TABLES

1
Introduction

As computer networks constantly evolve and grow in size [10], the need

for distributed network management and monitoring becomes more impor-

tant than ever. To carry out management and research, both theoretical

as well as experimental, vast and evergrowing amounts of network data and

traces must be manipulated. Monitored network traffic allows researchers to

study the characteristics of networks and observe the patterns in network be-

haviour, permits security analysts to evaluate network defense mechanisms

and open up several other possibilities to network developers and educators.

Collection and management of network data is also a vital issue to network

administrators.

Although network data traces and activity logs are probably the single

1

2 CHAPTER 1. INTRODUCTION

most valuable resource to network analysts and security professionals, orga-

nizations and researchers are reluctant to share their data with third parties,

in fear that they may contain information they deem private or sensitive.

This fundamental lack of trust is a huge obstacle to the cooperation between

different organizations. Some reasons behind this reluctance are concerns

over user privacy and fear of exposing details of an organization’s internal

infrastructure. More than often the organizations involved in potential data

exchanges have conflicting interests, as is usually the case with large ISPs.

To alleviate the problem of information leakage and control the amount

of information that is being exchanged or revealed in the process of publish-

ing network data, traces containing network data are usually anonymized

prior to being publicized. Typical anonymization approaches operate on the

TCP/IP layer headers and obfuscate or completely remove relevant infor-

mation. Today’s organizations provide network traces that are anonymized

by software utilities or ad-hoc solutions that offer limited flexibility. As a

result they can only provide unrealistic traces which are often inappropriate

for use. There are also plenty of cases where data of a specific type is simply

not shared because there is no appropriate agent able to anonymize them.

Specifically, we lack coordinated network data from distributed and diverse

sources to perform research, erect effective network defenses and perform

computer forensics effectively in the case of malicious activities involving

the network.

Our work aims in filling notable gaps in the field of network data anony-

mization. We have developed an anonymization tool, based on an existing

framework [49], that aims to cover all anonymization needs, including those

which are not addressed by existing tools. Besides the functionality offered

by AAPI, we extended it to address open problems in network data anonymi-

zation. More specifically, we are targeting three significant opportunities to

promote information sharing; the NetFlow and IPFIX network log activity

3

formats and executable payloads, as well as providing new anonymization

primitives to help create policies that are better at preserving users’ privacy.

The Cisco NetFlow [36] format is a popular format used by network ac-

tivity monitoring tools and/or agents. It is based on the concept of a flow,

which Cisco defines as a set of packets that have the following five proper-

ties in common: source and destination IP address, source and destination

port numbers, and the IP protocol value. The most recent evolution of the

NetFlow format is NetFlow version 9, which is also the basis for the IETF

standard for information export (IPFIX) [11]. Given this fact, NetFlow and

IPFIX are likely to gain even more in popularity, yet very few anonymization

tools completely support them, leaving plenty of work to be done.

Another important source of information, especially for security profes-

sionals, is traces of network activity containing worm code which propagates

through networks, or other sorts of exploits in the wild. Knowledge about

them and its sharing, can be critical if a quick response to fast-spreading

malware is required. The PREDICT project (Protected Repository for the

Defense of Infrastructure Against Cyber Threats) [23], developed by the U.S.

Department of Homeland Security, is an excellent example of an initiative

which aims at that purpose. Data sets of the type of timeliness proposed by

PREDICT are virtually unavailable today. This lack of critical data restricts

the development of computing infrastructure and the related research. To

further enhance and promote contributions to such repositories, anonymi-

zation of network data traces containing cyber-threats is a valuable asset in

ensuring that both business intelligence and individual privacy will not be

compromised.

Furthermore, the data sharing community relies on few anonymization

policies as a panacea for all applications. Past work [63] has shown that

popular solutions, such as prefix-preserving anonymization on IP addresses

can still be efficiently attacked with moderate effort. We demonstrate two

4 CHAPTER 1. INTRODUCTION

similar attacks on the anonymization of NetFlow traces that are not specific

to a single primitive like the prefix-preserving algorithms but are rather

conceptual in nature. Nonetheless, we propose, discuss and evaluate two

primitives that can defeat such attacks.

To deal with Cisco NetFlow logs and binary payloads, we will describe

in detail the design and implementation of anonymization support for Cisco

NetFlow datagrams, versions 5 and 9 as well as IPFIX datagrams within

Anontool . We will also demonstrate two possible attacks against anonymi-

zation of NetFlow logs and provide two anonymization primitives which can

help defend against them. Furthermore, we provide and examine a proof-

of-concept Anontool extension which is currently able to detect potentially

sensitive information within binary payloads encrypted under several popu-

lar XOR decoders.

1.1 Contributions

The novel contributions of this thesis are the following:

• An open-source, efficient and extensible anonymization tool that works

on all layers of a network packet and supports popular application-level

formats, such as NetFlow and IPFIX.

• Two new primitives (bi-directional mapping and random value shift-

ing) which can help defend against attacks on anonymization of Net-

Flow logs.

• A proof-of-concept implementation which can anonymize sensitive in-

formation inside binary packet payloads.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 will explain the

necessary background information on the field of network data anonymiza-

tion and place our work in context with past research. Chapter 3 presents

1.2. THESIS OUTLINE 5

and examines the state-of-the-art anonymization solutions that have been

proposed or are implemented. Chapter 4 includes problem statement and

describes in detail our approach for solving them. Chapter 5 describes our

evaluation methodology for each of our contributions and presents our analy-

sis of all of the aforementioned elements, as well as our experimental results.

Finally, Chapter 6 concludes this thesis and outlines potential topics for

future work.

6 CHAPTER 1. INTRODUCTION

2
Motivation

This chapter will present the necessary background information on the topic

of network data anonymization, such as the problem of network data sharing

and the related trust issues, then define anonymization and its objectives.

We will thoroughly describe the context of this thesis and place our work

inside it, to explain the motivation behind our ideas.

2.1 Network Data Sharing

The Internet is growing every day and with it the world becomes more

and more interconnected, allowing us to perform tasks in new ways. This

constant growth enables the development of a multitude of new services

and protocols, which aims to provide efficient and accessible network appli-

cations. According to [10], we are seeing a proportional growth of com-

7

8 CHAPTER 2. MOTIVATION

puter networks, which is consequently reflected on the amounts of data

exchanged over those networks, as well as on the amount of computer and

network attacks observed, which the Internet enhanced by providing a sense

of anonymity.

This evolution of computer networks is certainly reflected on the data

passing through them, and data by itself provide evidence of those changes

in the infrastructure, respectively. Logs and traces of network activity are

therefore the single most fundamental resource available to security pro-

fessionals and network analysts. They provide the means to understand

network operations and threats, observe patterns and predict future needs,

enhance operational and security policies of organizations and they also help

design, deploy and evaluate new network algorithms and applications.

To further motivate the reader, we argue that the development of tools

for computer forensics, network intrusion detection and network log analysis

and accounting require true raw network data, as opposed to synthetic mod-

els or simulated traffic. While malicious worms that are deployed without

further human intervention can be adequately simulated [75], this cannot

be the case with human motives and complicated multi-phase attacks. Fur-

thermore, to train, evaluate and refine those tools we need diverse data that

naturally cannot be gathered completely from one vantage point.

In addition to tool development, we argue that educators also need real

network data to effectively teach computer security forensic classes. Real

data should be desired in order to have meaningful student projects; while

simulated data is usually enough for networking classes—as usually happens

with the popular NS2 simulator—they cannot suffice for security courses.

At a higher level, security training courses from institutions like SANS [30]

require students to bring sample logs to class, and while this may be easy

for an established security administrator, it is near impossible for one who is

receiving training in the hope of moving towards such a position. Thus, the

2.2. LACK OF TRUST 9

latter actually depend on network data sharing in order to become network

administrators.

They are also important resources to network administrators and educa-

tors, both in traditional academia as well as the forensics department. The

SANS Institute is a good example of such an organization which requires

access to network logs. There is also a general desire to create centralized

repositories [5] for network security research and network measurement

studies, such as DatCat [27]. To study such vast quantities of raw data, it

is reasonable to rely on distributed measurement, monitoring and analysis

by several different parties, which makes log sharing essential. The aca-

demic world, the industry [12], as well as governments [28] all recognize the

importance of sharing logs of network activity. This leads to an increased

need and significant popularity for network activity log sharing, which based

on observations of today’s computer networks, is not expected to diminish

anytime soon.

2.2 Lack of Trust

Today’s organizations’ security policies typically involve pushing offending

elements away from their private networks. Furthermore, they are not con-

cerned with alerting other organizations about this kind of activity. For

example, when an organization detects an Internet attack, such as a SYN

scan of their subnets, its administrators will block the originating IP ad-

dresses of the attack at the network border as a general rule of thumb and

refuse to further deal with it. Of course, some security engineers and ad-

ministrators have established trusted channels for sharing security events,

but at this time, this is the exception rather than the rule. In this way,

administrators may often fail to realise their organization is just a part of a

larger target.

The Cooperative Association for Internet Data Analysis (CAIDA) [6]

10 CHAPTER 2. MOTIVATION

also recognizes that one of the major obstacles to progress is the lack of

data sharing [31]. Not only is traffic data off limits, but sharing data on the

structure of the network is forbidden too—commercial ISPs are typically not

even allowed to disclose the existence of peering agreements, much less their

terms. So when developing tools for accurate Internet mapping, researchers

cannot validate the connectivity inferences they make, since the information

is typically intended to be secret. They note that the real obstacles mostly

pertain to ownership and trust constraints rather than financial or technical,

however the document focuses more on the legal aspect of the problem.

On the other hand, data sharing is quite common among attackers [44].

They share or trade information on vulnerable systems and/or networks by

publicly posting it, they trade zombie machines and use this information to

perform very effective coordinated attacks. Past events [41] have demon-

strated the effectiveness of such coordinated action, and pointed out that

organizations do not have efficient mechanisms in place to share, correlate

and exploit data. The open problem is to tap into the multitude of the

available data sources and extract and share the critical information inside

the raw data, while satisfying the data owner’s concerns.

The reluctance of data owners to share logs is understandable, due to the

highly sensitive data that is captured within logs. The amount of sensitive

data within a log does not only depend on the granularity of data contained

within, but also on several external factors. For example, a log may be mis-

handled by a friendly peer; made publicly available by accident or malicious

intent and fall into the hands of attackers directly or indirectly. Even in the

case of sharing between friendly peers, it is easy to be held liable for the

security compromise of a third party.

The reasons behind this reluctance to share data vary. To start with, sev-

eral parties are interested in network data; researchers, developers, engineers

and administrators, educators and so forth. These parties have different in-

2.3. ANONYMIZATION AS A MEANS TO PROMOTE DATA SHARING11

terests in the data, potentially conflicting ones. Also, the subsets of data

that interest, for example, a particular group of researchers might be irrel-

evant to network administrators or a specific task they aim to accomplish

using the same set of network logs. At the same time, data sharers must

carefully preserve a balance between the security needs of their organization

and the usefulness of the anonymized/obfuscated logs they provide.

The problem with promoting network data sharing is therefore twofold.

Firstly, there is the issue of analyzing and understanding the fundamental

reasons behind the lack of trust between different parties. Reasons that go

far beyond the scope of this thesis, which addresses the technological part,

into the social and/or economic interests of each organization. Secondly,

deploying the mechanisms necessary to battle this reluctance by providing

tools and knowledge that will help in sharing network data without exposing

sensitive information.

2.3 Anonymization as a Means to Promote Data

Sharing

Raw network data can be used for a variety of tasks. One could use them

to determine weak points in a network, vulnerable hosts and single points

of failure. They can also indicate potential bottlenecks, which in turn can

be used to launch more effective DoS attacks against the infrastructure.

Host activity can also be used to find unpatched servers and exploit them.

Packet payloads may contain all sorts of sensitive information; and some-

times sensitive information is hard to identify because it depends on special

circumstances or requires context knowledge which is not contained in the

network data.

To enforce control over the data, one could have a careful screening

process for potential recipients, or even centralized repositories with a high

level of physical as well as additional code security measures could be used to

12 CHAPTER 2. MOTIVATION

address some of these concerns. However, anonymization techniques provide

a clearly more flexible solution when access to raw logs is needed (otherwise,

privacy preserving data mining techniques already address the issues when

access to data is done through specialized query interfaces).

Several of the tools available today lack efficiency in many ways; they

consider only a small subset of network data types, or focus on few packet

fields and ignore the rest. It is very clear that IP addresses and abstract

payload views are not the only sensitive fields, and they are even not the

only ones directly identifying hosts. For instance, a web server could very

easily be identified as a host that only accepts incoming connections on

port 80 and has no further interaction with other hosts. Lots of other

behavioural criteria, often being heuristics, can help attackers extract useful

information from network data. Tools that provide flexible and efficient

solutions are desired in order to provide the mechanisms required to deal

with the practical issues of anonymization and take research to the next

level, quantifying the information loss tradeoff and detailed evaluation of

anonymization policies. Indeed, even if there are some problems with sharing

of network data, the solution comes through extended use of anonymization;

one can always share what won’t harm them.

Anonymization is the process of removing, hiding, or obfuscating infor-

mation in data logs which might be considered sensitive. Past work [46,

53, 55, 70] has identified an inherent tradeoff between the amount of infor-

mation one is willing to reveal and the utility of the data. In the context

we described above, the main objectives of the anonymization process are

three. First, protecting the privacy of monitored users. Revealing infor-

mation about users, transient or otherwise, within monitored networks is

absolutely unacceptable. Examples of such information are the URLs of the

web pages a user has visited in the past, unencrypted sessions that might

reveal passwords, credit card numbers or other information about the user

2.4. AREAS OF APPLICATION 13

(e.g. command history in a telnet session), peer-to-peer connections, email

sent or received and so on. Privacy protection on its own is already compli-

cated enough, so that major organizations choose to play safe and erase any

parts of network traffic that might reveal such information. For example,

the National Laboratory for Applied Network Research (NLANR) Project

[18] releases packet trace datasets which only contain header information,

skipping payloads in their entirety.

Secondly, and closely related to the aforementioned, is the objective to

hide, or reasonably obfuscate, information about the internal infrastructure

and configuration of the monitored network(s). Ideally, an anonymized trace

should reveal neither “alive” hosts inside the monitored network nor any of

their characteristics that distinguish them from the rest, such as operating

system configuration, activity patterns and so forth. A naive first approach

would be to randomize the IP addresses of hosts, thus hiding host identity

and subnet information, however there are also plenty of other ways to profile

a host, such as its open or active port list. We already gave an example above

of how such information might directly identify a web server.

Lastly, an anonymized network trace aims to be as realistic as possible,

which essentially means being close to the original network trace in terms of

usefulness to the particular study for which they are intended. Evaluation

experiments and network measurements are two good examples of such data.

This requirement is generally conflicting with the other two, and is being

analyzed in detail in various areas of application [63], [52], [70], [73].

2.4 Areas of Application

Anonymization techniques should be able to be applied to any part of a

network packet that one might wish. The aforementioned anonymization

objectives dictate the need to obfuscate any and all fields present inside a

packet, regardless of application, transport, or network layer protocols used,

14 CHAPTER 2. MOTIVATION

according to application needs. Anonymization operations could range from

a simple modification of a field like the IP address to elaborate obfusca-

tion of timestamp values across many packets or string modifications inside

application protocols like HTTP and SMTP. As discussed earlier, sensitive

information could be present anywhere within a packet, depending on cir-

cumstance and malicious intent. One important factor in gaining some a

priori knowledge or rather insight into anonymization needs is protocol pop-

ularity, as it is almost certain that dominant protocols carry larger amounts

of information, which in turn is easier to exploit even based on sheer brute

force. Popular protocols today include, but are not limited to, the Inter-

net Protocol (IP), the TCP and UDP transport layer protocols and a wide

variety of application protocols such as DNS, SMTP, HTTP, NetFlow, the

various file transfer/sharing protocols and so forth. Ideally, we would like a

mechanism to anonymize all of these protocols, proprietary or not. Many

current anonymization tools or solutions do not extend past the transport

layer headers, although there are some exceptions to this case. AAPI [49]

and subsequently Anontool are being developed with that idea in mind, not

trying to provide one universal mechanism for all known protocols (which

might not even be possible), but rather providing a flexible and extensible

implementation that can be easily extended to support any new protocol.

3
Related Work

This chapter will present a categorized overview of the available anonymiza-

tion solutions or tools which are based on past research efforts and comprise

the related work in the area of network data anonymization. A short de-

scription and evaluation is included for each tool or approach that is used

today to anonymize network data. This listing will provide the reader with

an excellent opportunity to place our work with Anontool in context. Table

3.1 shows a comparative summary of each tool’s capabilities.

3.1 TCPdpriv

TCPdpriv [45] is a well-known anonymization tool that takes as input traces

written in tcpdump [25] format and removes sensitive information by oper-

ating only on packet headers. TCP and UDP payload is simply removed,

15

16 CHAPTER 3. RELATED WORK

while the entire IP payload is discarded for protocols other than TCP or

UDP. The tool provides multiple levels of anonymization, from leaving fields

unchanged up to performing more strict anonymization, like mapping IP ad-

dresses to integers or prefix-preserving anonymization. Tcpdpriv works only

on TCP/IP headers, thus it does not provide any functionality for Netflow

anonymization. Ip2anonip [40], a tool based on TCPdpriv, is a simple filter

that turns IP addresses into host names or anonymous IPs. Ipsumdump [42]

dumps packets into ASCII format and uses TCPdpriv to anonymize IP ad-

dresses if specified by the user.

3.2 Prefix-preserving Anonymization

Peuhkuri in [59] addressed the problem of IP address anonymization. Cryp-

tographic algorithms that require small amount of memory are applied in

order to provide consistent anonymization across different sessions. Xu, Fan

and Ammar in [72] and [71] also applied cryptographic algorithms to provide

prefix-preserving anonymization. Crypto-PAn [37] is a cryptography-based

sanitization tool for network trace owners to anonymize the IP addresses in

their traces in a prefix-preserving manner. Crypto-PAn is provably as se-

cure as the TCPdpriv scheme and provides consistent prefix-preservation in

a large scale distributed setting. Slagell, Wang and Yurcik in [32] extended

the Crypto-PAn module, which provides a well-known prefix-preserving ano-

nymization scheme, with an integrated passphrase-based key generator and

support for NetFlow logs.

3.3 NetDuDe

NetDuDe [50] is a GUI-based tool for interactive editing of packets in tcp-

dump files. NetDuDe itself does not perform parsing of application-level

protocols in the payload, but offers the option for plug-ins to perform packet

processing such as recomputing checksums.

3.4. SCRUB-TCPDUMP 17

3.4 SCRUB-tcpdump

SCRUB-tcpdump [70] is a set of functions that are used to anonymize a

packet trace in libpcap format so that it can be shared without jeopardizing

the anonymity of the network represented by the captured trace. It too does

not perform payload inspection, or application-level protocol decoding.

3.5 CANINE

CANINE (A Combined Conversion and Anonymization Tool for Processing

Netflows for Security) is a tool which combines conversion and anonymiza-

tion capabilities. As a converter, CANINE augments existing flow tools as

it enables tools working exclusively with one type of NetFlows to operate

on data from NetFlows in other formats. It supports the following Netflow

formats: Cisco NetFlow versions 5 & 7, NFDUMP, and two proprietary

NCSA formats derived from Cisco NetFlows and Argus [4] NetFlows. As an

anonymizer, CANINE addresses problems with sharing sensitive logs by pro-

viding its users with multiple methods of anonymizing the following fields:

IP address, timestamp, port number, protocol number and byte count. It

is implemented in Java, which makes it relatively hard to script and use in

conjunction with automated tools for network management.

3.6 NFDUMP Tools

NFDUMP [20] is a set of tools for collection and processing of NetFlow data.

The nfdump tool among them reads NetFlow log files stored by nfcapd and

performs prefix-preserving anonymization on them. It is worth noting that

nfdump uses the Crypto-PAn module to perform this kind of anonymiza-

tion, and the key for the cryptographic algorithm is user-supplied. A basic

principle of the NFDUMP suite is the separation of the storing process from

analyzing the data. As a result, a limitation of NFDUMP is the inability to

perform anonymization on live traffic (ie. NetFlow export records as sent

18 CHAPTER 3. RELATED WORK

by Cisco routers etc.), since it can only process stored log files. The cur-

rent NFDUMP version is 1.5.6, currently offering support for Cisco NetFlow

versions 5, 7 and 9.

3.7 FLAIM

FLAIM [66](Framework for Log Anonymization and Information Manage-

ment) is a general framework, created to support the anonymization of het-

erogeneous logs to multiple levels. FLAIM was developed by the Log Ano-

nymization and Information Management (LAIM) Working Group [15] to

overcome the limitations of other tools, such as CANINE [54], which could

not be scripted from the command line, and did not offer support of mul-

tiple types of logs. FLAIM includes an anonymization engine containing a

broad set of anonymization algorithms for various datatypes, an XML based

policy engine which validates and parses users’ XML policies against a vari-

ety of schemes and finally an API governing how parsing modules can pass

records back and forth with FLAIM’s anonymization engine. At this time,

the FLAIM nfdump module supports anonymization of netflows contained

only in NFDUMP version 1.4.x logs and not 1.5.x ones, due to changes in

the internal NFDUMP format. As a result, it does not support NetFlow ver-

sion 9. FLAIM provides several anonymization primitives to choose from,

such as prefix-preserving anonymization, random permutations of field val-

ues and specialized operations on time-related fields. FLAIM focuses on

providing generality rather than performace; we believe that Anontool can

provide the same, if not greater, degree of generality while also achieving

the maximum performance, similar to very specialized tools with limited

functionality, such as NFDUMP. The latest version of FLAIM is 0.7.0.

3.8 Other Approaches

Paxson and Pang in [58] introduce a way to anonymize the payload of a

packet and remove sensitive information instead of removing the entire pay-

3.9. PRIVACY-PRESERVING DATA MINING METHODS 19

load as the other approaches do. Packets are reconstructed into data stream

flows and application level parsers modify the data streams as specified by

a policy written in a high-level language. The user can specify the field to

be altered using regular expressions and the modification to be done. To

the best of our knowledge, this work has not yet been extended to Netflow

protocol (currently only HTTP and FTP are supported). tcpmkpub [57] is

a tool for anonymizing packet headers in trace files. As such, it is subject to

the same limitations as several of the tools we already discussed, being un-

able to operate on the application level. Its latest version is 0.1, as of August

2007, so unfortunately it may be considered a largely inactive project.

3.9 Privacy-Preserving Data Mining Methods

The area of privacy-preserving data mining methods is closely related with

the anonymization goals and practices that apply in the area of network

data sharing. Sweeney in [67] introduces the model of k-anonymity, where

the information for one entity cannot be distinguished from at least k-1

other entities whose information also appears in the same release. Meyerson

and Williams in [33] have proved that achieving optimal k-anonymity is an

NP-hard problem. However, optimizations have been proposed through the

years [64].

Machanavajjhala et al. in [56] have shown that k-anonymity still suffers

from severe privacy concerns and proposed the definition of l-diversity, and

have shown it to be practical and able to be implemented efficiently.

Another novel approach to such privacy preserving data mining algo-

rithms was proposed where the individual datum in a data set is perturbed

by adding a random value from a known distribution. In these applications,

the distribution of the original data set is important and estimating it is one

of the goals of the data mining algorithm. This distribution is estimated

via an iterative algorithm such as the Expectation Maximization [39] (EM)

20 CHAPTER 3. RELATED WORK

algorithm which was shown to have desirable properties such as low privacy

loss and high fidelity estimates of the distribution. This method applies to

the primitives we are going to present in Section 4.4. Wu in [35] proposes

further ways to reduce its computational costs.

Other alternatives to k-anonymity have also been proposed, such as [47],

which enables us to limit the maximum confidence for sensitive inferences.

All these approaches are not antagonistic to the technical aspect of anony-

mization which we focus on. Rather, they are complementary, in the way

that the theoretical knowledge behind the aforementioned concepts helps us

construct policies which enable low privacy risks with increased utility for

anonymized traces. Our work focuses more on the technical aspect which

enables such policies to be defined in a practical, real-world anonymization

tool rather than the database systems on which the above references focus

on.

3.9. PRIVACY-PRESERVING DATA MINING METHODS 21

TCPdpriv Crypto-PAn SCRUB-tcpdump tcpmkpub FLAIM Anontool

IP addresses Yes Yes Yes Yes Yes Yes

TCP/IP headers Yes No Yes Yes Yes Yes

Payload No No No Yes Yes Yes

Protocol decoding No No No Yes Yes Yes

Variety of functions Yes No Yes Yes Yes Yes

Function limitations Yes Yes No No Yes No

Extensible No No No No Yes Yes

HTTP No No No Yes Yes Yes

FTP No No No Yes Yes Yes

NetFlow v5 No No No No Yes Yes

NetFlow v9 No No No No No Yes

Table 3.1: Comparative presentation of available anonymization tools.

22 CHAPTER 3. RELATED WORK

4
Anontool

Anontool aims to provide a flexible, yet easy to use, platform to deal with

anonymization on multiple layers of network packet traces. Another goal

is to combine its flexibility with high performance and efficiency, so no

compromises are made when trying to choose a tool for anonymization.

Anontool is built on top of the Anonymization Application Programming

Interface (AAPI) [49] which is described as a generic and flexible framework

which provides extended functionality, covers multiple aspects of anonymiza-

tion needs and allows for fine-tuning of the desired privacy protection level.

Anontool uses and extends AAPI with support for the NetFlow versions 5

and 9 and IPFIX protocols. Leveraging our experience with NetFlow trace

anonymization, we discuss two potential attacks which may be used to com-

23

24 CHAPTER 4. ANONTOOL

promise the privacy of anonymized traces and propose two primitives which

help defend against them. Anontool also incorporates these primitives as

part of its distribution. Furthermore, to stimulate sharing of malware traces,

we provide a proof-of-concept implementation of a mechanism which can be

used to detect and obfuscate sensitive information within executable pay-

loads, and is also analysed in detail below.

4.1 AAPI

4.1.1 AAPI Description

The Anonymization Application Programming Interface (AAPI) is an API

based on the C programming language. It allows users to apply anonymi-

zation primitives on traffic, live or stored. The C language was chosen to

interface directly with traffic capturing libraries, avoiding the use of com-

plex scripting languages from the user’s point of view and for performance

reasons.

It is clear that a generic global anonymization scheme can not exist since

different organizations and applications have different needs. Network ad-

ministrators should be able to specify their anonymization policies at varying

levels of detail. As we have seen, most existing anonymization tools are not

adequate enough to provide such flexibility and are not capable to address

all anonymization needs, since most of the times they were built having a

specific application domain, or a limited range of anonymization policies in

mind. In all cases they work on predefined fields and most of them perform

only header-level anonymization, ignoring the application layer. AAPI, on

the other hand, offers a wide range of anonymization functions that can be

applied to any field of a packet or a record, up to the application level. The

expressiveness of the framework allows creation of anonymized traffic that

is able to express any balance between privacy protection and realism.

A central notion of AAPI is that anonymization is a series of functions

4.1. AAPI 25

that are applied to a traffic stream. The core functions of AAPI are divided

into three main categories. First, there are the anonymization functions

that alter fields of the packets or records in the given traffic stream, e.g

randomize them or replace them, do prefix-preserving anonymization on IP

addresses, etc. Secondly, there are filtering functions, including BPF filters

and string searching. Filtering functions allow to distinguish parts of the

traffic stream and apply complex policies such as “leave all the UDP packets

unchanged but randomize the payload of all TCP packets” or “anonymize all

packets that contain the GNUTELLA-CONNECT pattern”. Finally, we have

application-level stream functions, which provide the ability to compose and

decompose application-level streams from individual packets.

The main function call of AAPI is the add function(set, function, ...),

where “...” denotes a variable number of arguments, depending on the

specific function to be applied. AAPI expresses each anonymization policy

as a single or multiple sets of functions. Each set is a logical group of

functions that are executed sequentially one after the other, in the order

they had been applied. Sets are created through the create set() function.

Once a packet is captured, it is passed through each set and for each set is

processed by its functions. We should note here that a function can prevent

the traversal of a packet in the subsequent functions by simply returning

zero. This behavior enables filtering either by BPF filters or string matching

algorithms. The combined flexibility of sets and filtering functions allows the

user to express “if-else” scenarios or even express different anonymization

policies within the same program. The function arguments define which

specific function will be applied. Natively, AAPI supports “ANONYMIZE”

(field anonymization), “BPF FILTER” (BPF filtering), “STR SEARCH”

(string searching), “COOK” (stream reassembly) and “UNCOOK” (splitting

a stream to its original packets). User functions can also be added in order

to extend the function support. Note that the “COOK” and “UNCOOK”

26 CHAPTER 4. ANONTOOL

functions can be applied transparently in the case of TCP streams without

user-explicit action.

AAPI offers a wide range of anonymization functions that can be applied

on any field of a packet, up to the application layer. All the widely used

primitives that appear on similar tools are included. The expressiveness

of AAPI allows creation of anonymization policies that are able to balance

privacy protection and application utility for any given packet trace. In

particular, anonymization functions include hashing (MD5, SHA1, SHA2),

block ciphers (CRC32, AES and DES algorithms), random number genera-

tors for generic usage and random strings for filenames/URIs, mapping to

either sequential values or based on some distribution (uniform, Gaussian,

etc.), replacing with constant integers or strings, prefix-preserving for IP

addresses (cryptographic and map based), regular expression substitution,

checksum adjustments for all protocols, and removing fields mainly used for

application-level protocols, thus providing adequate functionality for all user

needs. Internally, AAPI performs sanity checks for each function applied be-

fore starting to process packets and informs the user in case a function is

used in a not meaningful manner. For example, it does not make sense to

remove (using the “STRIP” function) the IP header version field, because

packets then become corrupt and unusable.

Prior to the work done as part of this thesis, AAPI supported IP, TCP

and UDP, ICMP, HTTP and FTP protocols, including HTTP/1.1 features

such as persistent connections.

AAPI is simple enough to use, since any anonymization policy is ex-

pressed as a set of function calls. Furthermore, the API’s implementation

is modular and extensible, so the user is given the ability to implement

and incorporate her own anonymization functions into the framework. In

Section 4.4 we make use of this ability to provide two new primitives for

the purposes of anonymizing NetFlow records. For purposes of I/O, AAPI

4.1. AAPI 27

currently uses libpcap. However the I/O code is modular, so it is easy to

incorporate code that handles other input sources, such as text logs used by

other tools like NFDUMP [20], Snort [65] alert logs or proprietary binary

formats.

With AAPI, the user can split traffic into one or more “streams” with

BPF filters, and apply a different anonymization policy on each. Application-

level stream reconstruction is also possible, and is a transparent process.

AAPI preserves stream information internally, so that it is able to decon-

struct a stream to its individual packets accurately, after the anonymization

policy is applied. Consider the following anonymization policy, which we

will show how it can be implemented with AAPI. The policy is: “remove

the TCP payload for TCP packets, remove of IP payload for all other pack-

ets, all packets must have their IP addresses anonymized by mapping them to

random integers”. Before we proceed to the actual code, we should observe

that this policy divides the packets into two categories, TCP and non-TCP.

It is thus very useful to apply filtering functions to distinguish the packets

and then for each category apply the appropriate anonymization functions.

The “BPF FILTER” function returns zero if the filter does not match, else-

where returns one and the packet is processed by subsequent functions. The

given anonymization policy is implemented as follows with AAPI:

int set1=create_set();

int set2=create_set();

add_function(set1,"BPF_FILTER", "tcp");

add_function(set1,"ANONYMIZE", IP,SRC_IP,MAP);

add_function(set1,"ANONYMIZE", IP,DST_IP,MAP);

add_function(set1,"ANONYMIZE", TCP,PAYLOAD, STRIP);

add_function(set2,"BPF_FILTER", "ip and not tcp");

add_function(set2,"ANONYMIZE", IP,SRC_IP,MAP);

add_function(set2,"ANONYMIZE", IP,DST_IP,MAP);

28 CHAPTER 4. ANONTOOL

add_function(set2,"ANONYMIZE", IP,PAYLOAD, STRIP);

Note that each packet will match to only one set (it can be either TCP

or not) and in the case of TCP the “STRIP” function is applied to the TCP

payload.

AAPI also implements function (re-)ordering to automatically detect

common pitfalls when applying anonymization functions and ensuring the

correctness of the semantics of the anonymization process. It accomplishes

three main tasks:

• All anonymization functions except “CHECKSUM ADJUST”, which

adjusts the checksums to correct value, that are applied on IP, TCP,

UDP or ICMP level are moved first. If they were placed between a

“COOK” and an “UNCOOK” function, then the headers stored by

“COOK” would not be anonymized and “UNCOOK” will emit non-

anonymized packets.

• “CHECKSUM ADJUST” and functions that alter the packets length

fields are applied at the end of the anonymization. “CHECKSUM

ADJUST” is called last in order to reflect all changes, after the rest of

the anonymization functions have been applied. Updating the packet

length is also applied at the end because other anonymization functions

may modify the original packet size. As a result, explicit modifications

to the packet length must be performed at the end.

• If the policy requires to use functions that modify an application-level

protocol (HTTP, FTP, etc.), they are all grouped together in order

to apply “COOK” and “UNCOOK” only once. This means it also

detects duplicate reconstruction attempts.

• Lastly, reordering detects and fixes common logic pitfalls of function

usage. For instance, in a policy that hashes a URL string and then

4.1. AAPI 29

removes it from the packet, the first modification is useless and never

seen in the final result. It is therefore safe (and more efficient, as a

side effect) to skip it.

The key point in AAPI is configurability, meaning the user can define

any anonymization policy as a series of functions that are applied on packets.

The main design goal is to facilitate the development of custom anonymiza-

tion tools, that are able to implement both simple and complex policies, in a

relatively small amount of lines of code. Furthermore, the framework is im-

plemented in a modular way so it is fully extensible in terms of functionality,

protocols and new traffic sources.

AAPI has also been successfully integrated with a large monitoring plat-

form [17]. All the features of AAPI, as well as a performance analysis, are

described in greater detail within [49]. The authors have confirmed that

with the most commonly used policies, AAPI outperforms similar applica-

tions which offer but a fraction of the AAPI functionality.

4.1.2 Anontool

Anontool is a console application, written using the C language, that uses the

AAPI library to perform anonymization of packet traces. It is implemented

as a console application to allow for easy scripting from the command line, a

feature which has hindered other tools, like CANINE [54] from being widely

adopted. Anontool does not implement any anonymization functions in

itself; it is much more transparent to the user to place all the anonymization

functionality inside the AAPI implementation, which is a standalone library

that can be used by any application. What Anontool does do, however, is to

provide the user with the choice of protocols and functions to apply in order

to create her anonymization policy for a packet trace. It is worth noting,

that to maintain simplicity and not overwhelm the user with the vast amount

of choices, we have not added support for every primitive AAPI provides.

30 CHAPTER 4. ANONTOOL

On the contrary, we have provided a few preset policies which are commonly

used and can be selected by a single command line parameter, and we are

currently in the process of supporting predefined policies which are stored

in files in an XML-derivative language. For instance, a user can invoke a

predefined policy which will set IP source and destination addresses’ bits to

zero, set the values of the TCP port field into new random ones and replace

the values of the Uptime field with a random value, and finally generate new

checksums for the NetFlow datagrams before writing them to a file named

anon trace.pcap by invoking the tool as follows:

./anontool -i eth0 -d anon_trace.pcap

Enabling Anontool to use another primitive made available by AAPI and

not currently implemented is as simple as adding another command line

option for it, which any user with knowledge of the C language is able to

do.

Anontool then enables users to select the desired anonymization func-

tion per field. It can read traffic either from a live interface or from a

tcpdump [25] trace file. The anonymized packets may be written to disk,

again in tcpdump format, . The choice of the tcpdump format was made

based on the popularity of the format and the fact that can be given as input

to many security and network management applications. Other useful op-

tions of Anontool are to automatically fix checksums of anonymized packets

(the checksum will be changed once all other anonymization functions are

applied on a packet, as we saw) and its ability to print packets on screen –

in human readable form – for manual inspection. An example invocation of

Anontool is the following:

./anontool -i eth0 -t ZERO -c /dev/null

The above invocation will open the NIC named “eth0” for packet capturing,

will zero the TCP port numbers of NetFlow records in the packets captured

4.2. NETFLOW & IPFIX ANONYMIZATION 31

and recompute checksums, then write each packet to /dev/null. Alterna-

tively, a user could write:

./anontool -i eth0 -a PREFIX --NF5_TOS RANDOM -c 42.pcap

which would open the interface named “eth0” for capturing, then in every

NetFlow datagram captured it would perform prefix-preserving anonymiza-

tion on source and destination IP addresses and replace the value in the

TOS field with a random value, then recompute checksums before writing

the packets to a pcap file named 42.pcap

In the following sections, we will expand on the non-trivial enhancements

we incorporated inside AAPI and made available through Anontool .

4.2 NetFlow & IPFIX Anonymization

Since the emerging use of Netflow data, we decided to extend AAPI with

support of the Cisco NetFlow packet export format. Taking advantage of the

extensibility feature of AAPI we implemented decoding and anonymization

functions for both version 5 and the newly defined version 9 of the NetFlow

format. Table 4.1 shows all the fields and anonymization primitives available

regarding NetFlow v5. Bear in mind the names of the functions are merely

indicative, and most are highly configurable with extra parameters. The

table does not contain all the NetFlow version 9 fields, which are in the

vicinity of a hundred.

Exploiting the template-based nature of the NetFlow version 9 format,

Anontool provides the user with complete control of every field made avail-

able from information export nodes, be it Cisco routers or network moni-

toring applications which support the NetFlow export format.

The implementation consists of two major components. The first is the

decoding facility which identifies NetFlow information within packet pay-

loads, and the second is the mechanism which enables anonymization. Due

to the modular architecture of AAPI, implementing these two components

32 CHAPTER 4. ANONTOOL

Protocol Fields Functions

NETFLOW V5 VERSION UNCHANGED

FLOWCOUNT MAP

UPTIME MAP DISTRIBUTION

UNIX SECS STRIP

UNIX NSECS RANDOM

SEQUENCE HASHED

ENGINE TYPE PATTERN FILL

ENGINE ID ZERO

SRCADDR REPLACE

DSTADDR PREFIX PRESERVING

NEXTHOP PREFIX PRESERVING MAP

INPUT CHECKSUM ADJUST

OUTPUT REGEXP

DPKTS BD MAP

DOCTETS VALUE SHIFT

FIRST

LAST

SRCPORT

DSTPORT

TCP FLAGS

PROT

TOS

SRC AS

DST AS

SRC MASK

DST MASK

Table 4.1: Table presents the NetFlow 5 fields that AAPI makes available

for anonymization and the functions which can be applied on them.

4.2. NETFLOW & IPFIX ANONYMIZATION 33

and putting them to work is a relatively simple process.

The decoder for NetFlow v9 datagrams iteratively tries to identify a

NetFlow datagram by effectively laying the packet structure over the pay-

load, starting with the NetFlow header which provides basic information

about the packet - such as the NetFlow version, number of records contained

within the packet, and sequence numbering, which enables lost packets to

be detected. Following the packet header, an exported datagram contains

information that must be parsed. These are one of two types of records,

which Cisco refers to as “flowsets”, template or data. A datagram may con-

tain both types of flowsets, interleaved within the payload. Flowset headers

allow us to distinguish between these two types and parse them accordingly,

keeping track of all their fields in the process, to make them available to the

user during the actual anonymization phase. Based on the header informa-

tion, Anontool is able to enumerate all flowsets inside a NetFlow datagram

and process them iteratively. For each flowset, a header structure similar to

the basic NetFlow header is laid over the data and the flowset is correctly

identified as template or data. Template flowsets have a simple, list-like

structure and are the easiest to decode - we simply enumerate the fields

present, check them against the Cisco specifications to verify field lengths

and store them for future reference. Note that, for manufacturer-specified

fields the previous verification step is skipped. In the case of option or data

flowsets, the first field is the template flowset ID that describes the data

contained. We use the previously mentioned list to recover the template

with the corresponding ID and identify each field inside these flowsets, so

that the anonymization component can traverse it and perform the actual

anonymization process.

At any time during the decoding process, if the application encounters

an unrecoverable error or corrupt data inside the payload data, the process

is aborted for the malformed packet and an appropriate error message is

34 CHAPTER 4. ANONTOOL

Figure 4.1: A typical XOR decoder, used by the Wuerzburg shellcode.

generated for the user.

The anonymization component, having all the information and internal

structure of the NetFlow datagram at its disposal, can track the desired

field by enumerating all the flowsets, if necessary, and simply choose the

relevant pointer to the packet data. The anonymization function for the

NetFlow data is then, essentially, a simple iterative switch selection. There

are naturally many optimizations which may be done, such as grouping fields

over each flowset for faster access due to cache locality, and so forth, which

can greatly increase efficiency and performance. Such optimizations have

not yet been implemented, and are the subject of future work on our tool.

4.3 Binary Payload Anonymization

Traces containing executable code are collected and produced by a variety

of applications. From simple traces can be collected from intrusion detec-

tion systems (IDS) [65] containing an attack that has passed through the

network, to network traffic logs from the deployed honeypots and honeypot

infrastructures [2], [9], [26], [21], as well as other related tools [60]. One such

location can be found in [19].

In their effort to hide from simple payload level signature matching iden-

tification, attackers tend to use polymorphic or metamorphic techniques [13],

4.3. BINARY PAYLOAD ANONYMIZATION 35

[62], [69], usually by encrypting the attack payload. Usually, a small decryp-

tor precedes the shellcode in the packet payload. When the attack succeeds,

it first executes the decryptor over the packet data to get the unencrypted

payload that is going to be executed. An example of such a piece of code

is the Wuerzburg shellcode [1] which contains a XOR decoder – pictured in

Figure 4.1 –, and a connect-back file transfer code segment which connects

to a host and downloads a file named ftpupd.exe. In Wuerzburg, the IP

address and port are XOR’ed with a secondary key (which is a static value

of 0xAAAAAAAA) inside the XOR’ed exploit.

In the above case, sharing the attack trace as-is may leak information

that the organization or owner of the host considers confidential. Any in-

dividual can, with little effort considering the available tools, decrypt the

payload and get information from it. This information may be used for

a subsequent attack to the organization or for naming the organization as

vulnerable.

We further explain the problem by observing the actual data of the

Wuerzburg shellcode. Figure 4.2(a) shows the original payload of the attack

as seen in the wire and captured by a tcpdump session. Because of the

encryption, the whole payload appears as almost random bytes and seems

to contain no interesting information. However, if we decrypt the payload

(Figure 4.2(b)), we can clearly recognize the actions of the attack. The

payload first builds a small file with FTP commands and the executes the

file to download a binary file (which is probably a malware). In the case of

the example, the IP 1 address of the FTP server (128.192.216.37) might be

information the corresponding organization would not like to be leaked, in

order to not expose vulnerable hosts or not be advertised as a vulnerable

organization.

The case with modern shellcodes is that they are compact, self-contained

1IP address is anonymized for the example above.

36 CHAPTER 4. ANONTOOL

(a) Actual Shellcode

(b) Decrypted Shellcode

Figure 4.2: (a) An encrypted shell command, before decryption. (b) The

same shell command after decryption. The IP and port numbers are

clearly seen.

4.3. BINARY PAYLOAD ANONYMIZATION 37

and lightweight pieces of code which exploit a vulnerability in the target

service, acquire superuser access privileges and often connect back to a pre-

defined host which is defined within the payload and transfer a rootkit or

trojans, or anything that serves the will of the attacker.

The methods used by attackers in order to obfuscate their shellcode are

several and range from simple XOR encoding to metamorphic payloads.

Ways to identify malicious payloads range from simple regular expressions

of invariant strings present within the payload (as is most usually the case

with the Snort [65] intrusion detection system) to complex taint analysis

within a sandbox environment, such as Argos [61].

It becomes clear that there is a gap to be filled when it comes to packet

trace anonymization. There are major advantages to promoting attack trace

sharing for the computer security industry, and providing the means to per-

form anonymization on them could lead to that direction. In the remainder

of this section, we’re going to relate our work with the modern methods that

aim to identify binary payloads and explain our method of choice that will

aid us in filling the aforementioned gap.

The first important design decision to be made was in deciding what

mechanism to use in order to detect the various types of binary payloads

and the sensitive information that may appear within. While there is a

vast variety of ways to do that, we chose to implement regular expression

matching to identify binary payloads combined with limited emulation to

seek and match sensitive information such as IP addresses, URL’s, and so

forth.

The most important reasons that led to that decision are two. Firstly,

regular expression matching is fast, and can be successfully used in deep

packet inspection. It can also be made significantly faster, in case speed is

an issue [74]. This provides the user with the option to anonymize attack

traces on-the-fly, as they are produced by analysis and detection algorithms

38 CHAPTER 4. ANONTOOL

Figure 4.3: A regular expression matching the Wuerzburg shellcode.

and tools. Secondly, regular expressions are expressive enough so as to

cover both the case where sensitive information such as an IP address ap-

pears within the payload of an attack, as well as when that information

is masked by an encoder or packer which has to be executed first, before

the actual payload is executed. In both cases, it is important to note that

we are not aiming at providing a detection framework; several ways to do

so have already appeared in the bibliography. We assume that our input

is a trace of the network activity which is the result of such a framework,

when it detects suspicious behaviour. That means the user already knows

the specifics of the attack inside the trace and can therefore produce a reg-

ular expression to match the encoder, shellcode and private information she

wishes to anonymize.

Such regular expressions are easy to produce, share, and acquire. There

are many examples of databases of such regular expressions. Most notable

are the Snort rule database [24], the nepenthes project page [21], as well as

several others affiliated mostly with honeypots [2].

Table 4.2 mentions the names and short descriptions for each binary

payload currently supported by Anontool , as well as the number of attack

traces each signature matched. We don’t make mention of few other sig-

natures which did not match any of the traces processed. We chose the

nepenthes project information on shellcodes as a point of reference because

of its detailed information related to the code provided. In Figure 4.3, you

can see the regular expression that matches the code in Figure 4.1.

The core of our implementation uses the PCRE library [22], to search

4.3. BINARY PAYLOAD ANONYMIZATION 39

Name Type Matched traces Comment

Bielefeld connectback shellcode 9552 None

Metasploit PexEnvSub xor decoder 2608 None

rbot 256 byte xor decoder 2575 None

adenau xor decoder 1133 None

halle xor decoder 987 None

schoenberg xor decoder 129 None

langenfeld xor decoder 21 None

Leimbach xor decoder 16 TFTP download

kaltenborn xor decoder 15 None

Wuerzburg connectback file transfer 1 None

Table 4.2: List of regular expressions incorporated into Anontool for

binary payload anonymization.

for a given set of regular expressions characterizing different kinds of binary

payloads within a packet trace. When found, we provide the user with

the option of anonymizing the potentially sensitive information that may

be contained in that piece of code. Instances of such information may be

a hardcoded IP address inside the shellcode, which is frequently the case.

The external host information may as well be obtained at runtime, so further

inspection might be needed, or modification of the respective instructions.

This first pass can handle straightforward shellcodes which implement

a reverse shell technique. If the matched regular expression identifies a

decoder/packer, we need to emulate its behaviour, and then search for host

information in the decrypted parts of the payload. The emulation process is

carried out on a per-decoder basis. We do not use any emulation frameworks

or external processes for this task, because most decoders are currently very

40 CHAPTER 4. ANONTOOL

simple in their operation. For the decoders in our prototype implementation,

we simply emulate in the application level the operations carried out by the

decoder. We do this in a very similar way to the nepenthes low interaction

honeypot. When the decryption process finishes, another scan is necessary

to identify any possible information that may leak information; IP addresses,

port numbers, URLs or anything else that may be used in order to fingerprint

a host on the Internet (Fig.4.2(b)).

The user is then given the opportunity to manipulate all of this infor-

mation as she deems fit. One should also take into account that there’s

the possibility for sensitive information to be leaked even when a hostname

inside a shellcode is anonymized. For instance, if the shellcode executed on

an infected machine opens a connection to a given IP address, say a.b.c.d,

it is possible that the flow between these two hosts is also captured. Should

the sequence of packets that comprise the conversation between these two

hosts is included in the attack trace, an attacker may infer that a.b.c.d is a

host that quite possibly plays some part in spreading malware or is part of

a botnet, and so on. It’s obvious that the IP address a.b.c.d also needs to

be anonymized. One needs to be aware of the semantics of an attack trace

to apply anonymization policies effectively and efficiently.

We already mentioned of faster alternatives to libpcre when it comes to

regular expression matching. We choose not to incorporate them into the

prototype implementation for the following reason. Packet trace anonymiza-

tion is at the moment an offline process. Indeed, when it comes to anonymiz-

ing traffic as it appears on a network interface, speed is critical. However,

when it comes to binary payloads, there are two processes which precede

anonymization: the first is detection of the executable content, malicious

or not, and the second is the analysis needed to reverse-engineer, classify

and produce a signature for it. Although all of them could be considered

time-critical components of computer security, analysis and classification is

4.4. NEW PRIMITIVES 41

a lengthy process, and is usually done manually and takes even few days for

newly observed payloads (not variants of existing ones).

4.4 New Primitives

In this section, we describe in detail two attacks against conventional anony-

mization policies which are commonly used today and outline related work

in both packet traces and flows.

We assume that the anonymization process is applied onto NetFlow

traces which are generated by a router at the border of a monitored net-

work, and export information for traffic entering and exiting this particular

network. The network could be of any size or topology, from a small home

network to larger networks belonging to research institutes, universities, and

so on.

Our threat model assumes an active adversary that is able to direct

traffic to the monitored network at will, has knowledge of the address space

it occupies and can potentially compromise hosts inside it. We assume

a rational attacker, for whom it is less costly or more useful, to “probe”

and profile the monitored network before mounting attacks against it, to

increase her chances for a successful attack. The adversary may also have

several external hosts under her command. She is also able to gain access

to the anonymized traces, which will most likely be publicly released.

The first attack, which we call “Active Fingerprinting”, aims to break

the mapping algorithm when used on IP addresses. Mapping takes the set

of IP addresses in a trace and performs a simple mapping function onto

another totally different set. The second set may be the output of a deter-

ministic function seeded by a random quantity, such as the drand48() family

of functions [8], or a very simple sequential assignment of unique IP address

numbers which results in a one-to-one mapping. This choice is irrelevant;

the attack is independent of this decision.

42 CHAPTER 4. ANONTOOL

The second attack aims at using the information about flow sizes con-

tained inside NetFlow traces in order to deduce information about either

hosts inside the monitored network or hosts that may be outside it, such as

their IP address, network usage profiles, etc. We name this attack “Statis-

tical Signature Inference”.

4.4.1 Attacking Applied NetFlow Anonymization Policies

Active Fingerprinting

The idea that active fingerprinting exploits is that the mapping between real

and anonymized IP addresses is one-to-one. Consequently, if the mapping on

one flow is discovered, the mapping on the whole trace is compromised. This

attack has been described on packet traces in [48, 57] and we demonstrate

its applicability on NetFlow records below.

Using this idea, an adversary can establish flows from a host under her

control, which resides outside the victim network, to one or more victim

hosts inside it. These flows will appear in the anonymized trace. The chal-

lenge for the adversary is to construct those flows in such a way that they

will be easily distinguished in the final trace. This can be accomplished in

a variety of ways; she can craft a flow with specific attributes which are

known not to be anonymized (the list is as large as the potential fields listed

in a NetFlow record, and may usually include TCP flags, IP ToS, and so

forth), or in the unlikely scenario where flows are fully anonymized, she can

use temporal patterns which are easy to detect. Even a specific packet size

can be used as an identifier for the packets involved in a dictionary attack.

If the traces from the monitored network span a wide enough time period,

the latter scenario is very feasible as the trace contains a large number of

attack packets.

This information can then be exploited in many ways. Consider this

scenario: the attacker identifies a host inside the monitored network and

4.4. NEW PRIMITIVES 43

the mapping is therefore considered “broken”. She can now gain information

such as, ”which sites does that host visit?”. She can acquire the IP address

mapping information as described in [48] or by compromising a machine

inside the monitored network and performing the aforementioned technique

for hosts external to the monitored network as well.

A trivial way an adversary could create these flows is to perform a SYN

scan on the victim network’s address space. In this case, even if there is

a clear temporal pattern (handshake initiation - response from potential

victim’s host) which is easily detectable in the anonymized trace, it can be

defeated in an easy way. Setting only the SYN bit in TCP flags and setting

the number of bytes to a specific quantity makes the adversary unable to

distinguish live hosts from unused address space. Generally, there are many

ways to craft these packets that can’t be known a priori.

We discuss a more general measure to defend against this kind of attack

in Section 4.4.2.

Statistical Signature Inference

The idea behind this kind of attack is that each web page has a unique and

complex enough structure which allows them to be identifiable despite our

best efforts to anonymize their presence in NetFlow logs and preserve useful

information in them as well.

A naive first effort would be the following. Consider the web sites inter-

esting.com and newssite.com, and that a web session with each of them

is n and m bytes long, respectively. The adversary can use one of the hosts

under her command to initiate a web session to these sites and view the

NetFlow records for source and destination IP addresses, port numbers, and

the total size of traffic exchanged (which would reflect n and m). Assuming

web page sizes do not radically differ from one session to another, and that

NetFlow data records TCP traffic in its entirety, it is possible to filter out

the set of web browsing sessions from an anonymized trace and construct

44 CHAPTER 4. ANONTOOL

a frequency histogram with the number of bytes transferred in each flow.

According to our assumptions above, it is possible to see a great deal of

flows around the values of n and m. The adversary can employ the same

tactic to find those flows, and then gather further information about hosts

inside the monitored network, which can then be used to answer questions

such as: “What web sites does host A visit?”, “Which hosts do frequently

visit www.google.com?”, and make user profiles.

Past work [48] has demonstrated this kind of attack on packet traces.

Recent work [38] has extended and demonstrated this attack on NetFlow

logs as well. We argue that the fundamental property of web sessions that

allows this kind of analysis to be exploited is the fact that web sessions to

different hosts produce flows with similar characteristics, especially in flow

size. In Section 4.4.2 we are going to view our proposal of a primitive which

deals with this issue.

4.4.2 Countermeasures

The previous section described two attacks for revealing sensitive informa-

tion from an anonymized NetFlow trace. In this section, we will describe

our proposed ways to deal with the aforementioned attacks, and evaluate

their consistency.

Bidirectional Mapping

We propose a way to deal with the issue that does not iteratively consider all

the combinations of fields an adversary may use to craft her flows. Instead,

we aim to eliminate the one-to-one host mapping property without losing

all of the information the trace can provide. To this goal, we propose a

bidirectional mapping to be used, that is different mapping for each traffic

direction. Let A be the IP address of a live host inside the monitored

network, and B the IP address of a host outside the monitored network.

Conventional mapping functions would map a flow (A, B) to (A”, B”) and

4.4. NEW PRIMITIVES 45

a flow (B, A) to (B”, A”). Bidirectional mapping maps a different address

to A according to the direction of the flow that involves it. In the case of

our example, the flow (A, B) would be mapped to (A”, B”) yet the flow

(B, A) would receive a different mapping, say (C, D).

Using this anonymization scheme by applying the function “BD MAP”

with AAPI, we prevent the attacker from identifying her own network flows

inside the anonymized trace. Thus, it is made impossible to correlate her

data with the trace information and reveal any sensitive data inside it. Also,

most of the statistic information derived from the trace remains the same.

We can still gather information about the incoming and outgoing traffic of

the organization and identify the producers and the consumers of the net-

work. Correlation of incoming and outgoing traffic for a specific IP address

can not be done, but we argue that this is a general trade-off of the anony-

mization process and is up to the organization to decide whether to sacrifice

sensitivity for usability in the data it makes public.

The implementation of such a primitive is quite easy. Regardless of the

way a mapping for the host IP is produced, we basically want a different

mapping based on whether the host initiates a given flow or not. Essentially,

if the IP address is present in the source IP address, or the destination IP

address field. We therefore preserve two tables with mappings; one with

mappings for IP addresses that appears in the source IP field and another

for the destination IP addresses. These tables’ construction and update are

completely independent, and even the algorithm used to obtain the map-

pings can differ between them. Bidirectional mapping is then very easy to

implement, performing a hash table-like insertion on the aforementioned ta-

bles whenever an IP address is encountered. So, for any IP address, if that

address is already present within the table, the mapping is taken and writ-

ten on the corresponding field of the packet’s IP header. Otherwise, a new

mapping is generated using the appropriate algorithm selected by the user

46 CHAPTER 4. ANONTOOL

and the IP header is modified in the same manner. The implementation of

bidirectional mapping is already included in the stable version of Anontool .

Random Value Shifting

In order to diminish the viability of a statistical identification approach,

but still be able to calculate some basic representative statistics about a

NetFlow log, we propose a randomized shifting of values, which we will

describe below.

Given a NetFlow data field with a given value range, our intent is to

“scramble” its values across the NetFlow log to the point that we make an

adversary unable to distinguish between two web sessions with the same web

site and two web sessions with web sites that have similar web pages in size,

but not as much as to destroy all the useful information a log may provide.

More specifically, we intend to preserve metrics such as arithmetic averages

and standard deviation, as well as other descriptive statistics. On the other

hand, we wish to obfuscate inferential statistics, so that an adversary would

be unable to reach conclusions that extend beyond the immediate data alone.

For clarity, we are going to use the flow size NetFlow field as an example

from here on.

Our method is to add to the value of the flow size field a random value.

This value is chosen uniformly at random from a fixed range [-d, d]. One

of the basic properties of our choice is it allows us to directly preserve the

arithmetic average and standard deviation of the original distribution of flow

size values. The parameter d may be chosen arbitrarily, but we will demon-

strate the importance of an educated choice with an example. Consider, as

an elementary example, three flows with sizes of 15, 17 and 25 bytes, which

repeatedly occur within a NetFlow log. Choosing d to be equal to two, this

is what happens in the anonymized trace: The flows with the initial size of

15 now occur with flow sizes from thirteen to seventeen. Flows with the

size of 17 bytes now occur with sizes from fifteen to nineteen. These two

4.4. NEW PRIMITIVES 47

groups of flows are now ”mixed up”; what happens is that the confidence

intervals for the random variables which represent the flow sizes of each flow

are now different, and they overlap. On the other hand, that is not the case

for the flow with size 25 bytes. It now occurs on the anonymized trace with

values from 23 to 27. An adversary is still able to distinguish this flow from

the other two with relative ease. Now we can easily conclude that a proper

choice for the parameter d will have to take the entirety of the NetFlow log

into consideration. This is an interesting topic for future work if random

value shifting is to be used properly and gain acceptance, however we will

not further explore it in the rest of this thesis. We will, however, evaluate

that our assumptions hold true in Section 5.2, with experimental data.

Currently, Anontool performs some basic trace pre-processing when ran-

dom value shifting is going to be used. It processes all packets in a trace in

order to extract the information it needs to calculate d. This information

is dependent on the field that random value shifting is being applied on.

After the value of d is calculated and chosen according to the user’s method

of choice, the actual anonymization process takes place. It is possible to

estimate d during the anonymization process, however, as knowledge of the

whole trace is impossible to have until the whole trace has been processed,

we believe the estimated value will not yield as good a result as when a trace

can be preprocessed and the value of d calculated on it.

48 CHAPTER 4. ANONTOOL

5
Evaluation

In this Section, we will evaluate the contributions of this thesis in detail.

Subsections 5.1.1 and 5.1.2 analyze the benefits and shortcomings of the

NetFlow and IPFIX anonymization implementation. Section 5.2 discusses

in short the results from the application of the newly proposed primitives

and lastly, Subsection 5.3 outlines the methodology followed when evaluating

binary payload anonymization.

5.1 Evaluating NetFlow Anonymization

5.1.1 Functionality Comparison

Before proceeding with the performance evaluation of the available tools, we

are going to briefly discuss the choices they present to the user who wishes

49

50 CHAPTER 5. EVALUATION

to perform anonymization on NetFlow records using each of these tools. In

our discussion, we will include the NFDUMP, CANINE and FLAIM tools,

as they are the only ones in the bibliography that support anonymization of

NetFlow data in any form of logs.

Before proceeding, it is essential to define the notion of “flexibility” in

the context of the anonymization process. As mentioned earlier, AAPI was

developed by having flexibility in mind. What this means, is that we feel a

potential user, who wishes to perform anonymization on any kind of network

data, should have the potential to do so in any way she deems fit. As different

organizations, institutions and different groups of people like researchers or

network engineers tend to have different views and interests over network

data, it is most likely that they would wish to “hide” or obfuscate different

aspects of their owned network data traces or logs. Therefore, providing

them with the ability to do so, is a very important factor an anonymization

tool developer should bear in mind. We therefore believe that the maximum

degree of flexibility in anonymization policy definitions is when the user has

complete control over what primitives she can use over all of the data. This

is ensured because Anontool operates on the granularity of protocol fields,

and this is the most fine-grained choice a user can have.

Moreover, supporting packet traces as a source of network data is impor-

tant for two reasons. Firstly, the information in packet traces is complete

and does not bear any information loss over logs. During our work with ano-

nymization tools we came along with log formats which, in order to achieve

storage and computation efficiency, discarded certain packet contents; we

feel this should not be imposed implicitly on a user. Secondly, anonymized

packet traces can be further processed by tools meant for accounting, in-

trusion detection or other tools such as NFDUMP which operate on packet

traces, without the need for another application that would reconstruct a

packet trace from logs. We feel that this is another factor that gives a user

5.1. EVALUATING NETFLOW ANONYMIZATION 51

the maximum degree of choice between all the different protocol fields a

packet may contain, and this contributes to achieving maximum flexibility

as defined in the previous paragraph.

NFDUMP provides the user with the simplest and most rigid anonymi-

zation policy of the three tools; prefix-preserving anonymization of all the

source and destination IP addresses inside the log file. Remember that this

is due to the integration of the Crypto-PAn tool in the nfdump application.

Regarding the supported formats, NFDUMP handles the collection of Net-

Flow export packets versions 5 and 7, as well as the newest version 9. The

log files it stores, however, are not in the packet export format Cisco has

defined. The single user-configurable parameter in this setup is the choice

of the key used for the cryptographic algorithm which Crypto-PAn imple-

ments. While it may prove useful for specialized applications, NFDUMP

offers no flexibility when a user wants to consider alternative anonymization

policies.

FLAIM offers support for NetFlow versions 5 and 7. Although its modu-

lar nature should make adding support for new protocols or log formats easy,

at the moment of this writing, it does not support NFDUMP version 1.5 logs,

and therefore cannot process NetFlow v9 records. Note that, when it comes

to NetFlow anonymization, FLAIM also operates on NFDUMP log files, and

not on the Cisco packet export format. Nevertheless, FLAIM presents the

user with choice between all of the fields a NetFlow record contains. The

user may then choose the desired primitive to be applied on any field of each

record, through the use of XML-based documents which describe her anony-

mization policy. FLAIM has a wide variety of anonymization primitives for

the user to choose; wiping field values clean (Black Marker primitive), trun-

cating fields, several types of permutation of a field, hashing, partitioning

and a specialized partitioning for time-based fields called Time Unit Annihi-

lation, and enumeration. While a lot in themselves, FLAIM imposes certain

52 CHAPTER 5. EVALUATION

restrictions on the algorithms a user can select to apply on each field. For

instance, only the BinaryBlackMarker and Annihilation primitives are valid

to apply on the Packets field of a NetFlow structure. It is worth noting, the

FLAIM user can change the module schema in order to lift those restrictions,

but at the same time she is advised not to do so. We feel only experienced

users with FLAIM and XML would be able to perform such changes; such

assumptions about a user or anonymization policies should, in our opinion,

be avoided. Although it may not seem important, it should essentially be

up to the user to decide the optimal anonymization policy to apply in each

case, which could certainly vary from sharing of network activity logs, to

obfuscating certain parameters of the network which could be inferred from

the log, if not anonymized properly.

CANINE supports different kinds of NetFlow formats. Among them, the

NetFlow v5 and v7, the NFDUMP format, and two NCSA internal formats

derived from them. It can anonymize IP addresses, port and protocol num-

bers, timestamps and the byte counter on each flow record. The algorithms

supported on each field resemble closely the ones used by FLAIM; trunca-

tion, random permutations, and prefix-preserving anonymization. For the

timestamp, it can annihilate certain parts of it, perform random time shifts,

or perform an enumeration. There’s also a bilateral classification algorithm

available for port numbers. Unfortunately, CANINE was considered non-

extensible and difficult to script from the command line, so its developers

proceeded with the definition and implementation of FLAIM. Due to these

factors, but also because FLAIM is a later tool which addresses these diffi-

culties, we will also not consider CANINE in our performance comparison,

as it was indeed quite difficult to evaluate its behavior.

Anontool preserves the basic principle of AAPI, which is bent on being

generic and flexible. It offers support for NetFlow version 5, which is the

most used version supported on routers, and NetFlow version 9, the latest

5.1. EVALUATING NETFLOW ANONYMIZATION 53

addition to the series, which has an extensible design and is currently the

IETF standard for information export. We chose not to implement support

for NetFlow v7, because its a specialized enhancement which is incompat-

ible with the majority of Cisco routers, and therefore not quite popular.

As an application based on AAPI, the Anontool user has complete control

over every field which may be present in a NetFlow packet. We have al-

ready mentioned in Section 4.2 the available choices of fields a user has, and

there are no restrictions regarding the operations which a user may apply

on them. Regarding the anonymization operations a user can apply, Anon-

tool offers a wide variety of primitives to choose from. Starting with the

simplest deletion of a field value, or setting it to a fixed value, a user can

also choose mapping a field’s values to new ones, which may or may not

follow a probability distribution, she can strip certain parts of a field, or

replace them with a specified value (binary or string). The popular prefix-

preserving algorithms are also supported, and so are various hash functions,

cryptographic and not. Also, the user can set fields according to a pattern,

and specify regular expressions to match and change a part or whole of a

field. This last feature is particularly useful when a user would want to elim-

inate potentially sensitive information which could appear on the packets of

an HTTP transaction, such as part of a URL being requested by a browser.

At this point, we believe that having discussed the capabilities of each

tool, Anontool presents a user with the maximum amount of flexibility, of-

fering complete control over the NetFlow packet export structure. FLAIM

also offers a significant amount of choices to the user, yet it places restric-

tions which a user may find limiting. NFDUMP offers the least capabilities

of the three tools. Also, we argue that since Anontool operates on packets

using libpcap, its output can be used as input to other tools for network

management, monitoring, or accounting, and thus it can be used in con-

junction with other tools, including FLAIM and NFDUMP. This is not the

54 CHAPTER 5. EVALUATION

case with the NFDUMP log format, unless there are specialized converters

which perform this task. Yet the process of conversion takes time and makes

the whole process tedious and prone to error.

5.1.2 Performance Analysis

Nowadays, NetFlow data are being used for security purposes and anomaly

detection([34, 51, 68]). In the field of computer security, high performance

and timely response to threats are of paramount importance. Therefore,

if anonymized network flow data are to be used and shared for security

purposes, we should explore how fast the anonymization process can be

completed. Moreover, in the case the user wants to anonymize live traffic

on the fly, it is important to explore Anontool ’s capacity for doing so.

In this section, we present a performance evaluation of the tools avail-

able with NetFlow anonymization capabilities, referenced and described in

Section 5.1.1. In order to perform the performance evaluation we used a

real traffic trace collected from a monitoring sensor located at the Univer-

sity of Crete. The trace was collected from 26/03/2008 morning through

27/03/2008 afternoon and contains 7328264 flows presenting total traffic of

94.1 GB. The trace itself was 857 MB large.

To perform our evaluation, we used the most recent versions of the tools

available; 1.0 for Anontool , 1.5.6 for NFDUMP, and 0.7.0 for FLAIM.

All the figures we present are means calculated over 20 iterations. The test

machine was an Intel(R) Pentium(R) 4 CPU clocked at 2.53GHz, with 1 GB

of RAM, running a Kubuntu OS with Linux kernel version 2.6.24.

Since both NFDUMP and FLAIM require the collection of NetFlow data

from the network before the actual anonymization process can take place,

we used the nfcapd daemon, supplied with the NFDUMP tools, to convert

the trace into the NFDUMP format and calculated the sum of user and

system time needed for the conversion in the total time needed for the trace

anonymization. As this collection/conversion process is required for log

5.1. EVALUATING NETFLOW ANONYMIZATION 55

processing by the aforementioned tools, we feel this extra cost should be

taken into consideration, as the result is a very close approximation of a

“direct” comparison.

In this point we would like to argue, once more, that sharing network

level traces is more useful than sharing logs, since the user can use the traces

for several purposes; i.e. she can translate the trace into flows in the format

that is more suitable for the analysis she wants to perform, or she can use

the anonymized network trace in order to evaluate NetFlow collection or

translation tools.

In our first experiment we choose to follow the NFDUMP anonymiza-

tion policy, which we implemented both with AAPI and FLAIM. NFDUMP

deploys prefix preserving anonymization only in the flow source and destina-

tion IP addresses. Figure 5.1 shows the sum of system and user time taken

for a single trace to be anonymized by the three tools, and Figure 5.2 shows

the average CPU load during anonymization. We note that all three tools

use a high amount of CPU time, which is easily explained because prefix-

preserving anonymization, and the AES cipher in particular, involves a lot

of expensive cryptographic operations. As we can see the performance of our

implementation and NFDUMP is similar but our tool has the ability of de-

ploying anonymization in all fields of the Netflow implementation. FLAIM

presents 5 times worse performance, which is attributed to high memory

consumption which led to excessive swapping operations (as indicated by

the vmstat tool). This performance problem appears in FLAIM’s current

release (0.7.0) at the time of this writing as well as a previous release we

tested (0.5.2), and the developers were made aware of this behaviour.

In our second experiment we choose to implement a different anony-

mization policy. We zero both source and destination IP addresses in all

Netflow records. Since NFdump has a single anonymization policy we can

compare only with FLAIM. As the results from figures 5.3 and 5.4 indicate,

56 CHAPTER 5. EVALUATION

Performance Comparison

0 200 400 600 800 1000 1200 1400

Anontool

NFDUMP

FLAIM
User + System time (sec)

Figure 5.1: Performance comparison (user & system time) deploying

prefix-preserving IP address anonymization

our implementation is again one order of magnitude faster than FLAIM and

also requires half the CPU utilization that FLAIM does. This shows that

our tool would be able to anonymize NetFlow datagrams on the fly without

any loss even in high bandwidth rates (the 20 seconds needed by Anontool

are translated to approximately 350 Mbps throughput), while other tools

would require capturing the data first and then follow the anonymization

procedure.

Finally, we measured the time it took Anontool and FLAIM to execute

the predefined anonymization policy we saw at the end of Section 4.2. This

policy instructs that source and destination IP addresses are set to zero,

the TCP port fields are set to a random value and the Uptime field is also

set to a random value. Again, we note that NFdump cannot perform these

operations as it only applies prefix-preserving anonymization of IP addresses,

it is therefore not included in the results. The results appear in figures 5.6

5.1. EVALUATING NETFLOW ANONYMIZATION 57

Performance Comparison

0 20 40 60 80 100

Anontool

NFDUMP

FLAIM
CPU load (%)

Figure 5.2: Performance comparison (CPU load) deploying

prefix-preserving IP address anonymization

and 5.5, and they are consistent with our previous experimental results.

One might think this comparison with respect to the results on FLAIM’s

poor performance shows nothing but the effect of swapping operations on

application performance, but this is not the case; it stresses the need to

stop focusing on providing a plethora of different tools for performing ano-

nymization and focus research efforts on anonymization policies and the

open theoretical issues about tradeoff quantification, etc. Spending time

and effort in rediscovering the wheel and solving bugs which other imple-

mentations lack is a waste; it would be more productive to unify the various

implementations into one and support it. This is still a long way ahead,

though.

58 CHAPTER 5. EVALUATION

Performance Comparison (zero IPs)

0 200 400 600 800 1000 1200

Anontool

FLAIM

User + System time (sec)

Figure 5.3: Performance comparison (user & system time) deploying zero

IP address anonymization

5.2 Evaluating New Primitives

While describing our motivation behind the design and implementation of

bidirectional mapping, we also presented our evaluation of it. Bidirectional

mapping is straightforward enough to evaluate - a simple verification stage

for its operation is enough, in order to confirm it works as expected.

To verify our assumptions about the descriptive statistics of a NetFlow

log being preserved after the application of random value shifting, we im-

plemented it in Anontool and proceeded to process a NetFlow packet trace

with it. Our choice for the parameter d was the minimum flow size observed,

divided by 2. As we previously mentioned, this is most likely not a good

choice for real world applications, but it is good enough for the experimental

evaluation we describe. For a given packet trace, we computed its cumula-

tive statistics and then used them to compute the value for d ; we underline

5.2. EVALUATING NEW PRIMITIVES 59

Performance Comparison (zero IPs)

0 20 40 60 80 100

Anontool

FLAIM

CPU load (%)

Figure 5.4: Performance comparison (CPU load) deploying zero IP

address anonymization

Performance Comparison (predefined)

0 20 40 60 80 100

Anontool

FLAIM

CPU load (%)

Figure 5.5: Performance comparison (CPU load) deploying a predefined

policy (zero source and destination IP addresses, random TCP port

numbers and random Uptime)

60 CHAPTER 5. EVALUATION

Performance Comparison (predefined)

0 200 400 600 800 1000 1200 1400

Anontool

FLAIM

User + System time (sec)

Figure 5.6: Performance comparison (user & system time) deploying a

predefined policy (zero source and destination IP addresses, random TCP

port numbers and random Uptime)

here once again that the choice for d opens a wide topic for discussion in

itself, and real world applications should consider it in great length. The

value for d specifies how certain values in the original trace will overlap with

the others, therefore “scrambling” the value range and making it harder for

the attacker to distinguish between them.

We then calculated the arithmetic average and the standard deviation

for both the original and the anonymized trace, which we present in the

first row of table 5.1. The NetFlow trace spanned a time period of three

minutes and a bit more than 150.000 bytes transferred. Given the above

choice of d, we subsequently applied random value shifting to our packet

trace and verified that cumulative statistics were indeed largely preserved,

with a difference of 0.072%. Table 5.1 presents the values calculated for

both traces. We can see that the average and standard deviation do not

largely differ. This supports our initial hypothesis, that we can preserve

5.2. EVALUATING NEW PRIMITIVES 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

C
D

F

Flow Size (bytes)

Non-anonymized trace
Anonymized trace

Figure 5.7: Cumulative distribution function of flow sizes

some amount of general information about NetFlows in the trace even after

performing random value shifting. In the case the reader is wondering on the

use of such information like basic cumulative statistics, we should note that

it is of great importance to network administrators, which take interest in

basic traffic patterns in their networks without necessarily wondering about

the specifics of each flow.

Trace Average Flow Size (bytes) Std. Deviation

Original 1843.69 7336

Anonymized 1845.02 7335.52

Table 5.1: Some basic descriptive statistics regarding a NetFlow trace

before, and after anonymization.

62 CHAPTER 5. EVALUATION

Figure 5.7 presents the cumulative distribution function of the distribu-

tion of flow sizes in the original, and the anonymized traces, for comparison

and reference. As we can see the distribution remains almost identical after

the anonymization process. This enforces our initial argument that the in-

formation that can be derived by the anonymization process are not affected

by the value scrambling.

For such a value of d, which was not chosen with the purpose of mixing

flow sizes in mind, it is not useful to examine each flow individually and

attempt to identify it in the resulting trace after anonymization. This should

be the object of future work, as it is being done with existing anonymization

primitives [55] and the anonymization process in general [70], [53].

5.3 Evaluation of Binary Payload Anonymization

In order to test our implementation against a set of packet traces contain-

ing malicious payloads, we obtained using the prototype implementation

of the Network-level Emulation attack detection method formally described

in [43], [60], which identifies the presence of self-modifying polymorphic shell-

code in network streams. The alerts generated contain full payload traces

in libpcap format. Each trace corresponds to a single attack attempt and

contains all packets of the network flow (quintuple) of the particular attack

instance, including the initial TCP 3-way handshake.

In total, the number of attack traces generated by NEMU was 21726,

spanning a time period from January 11, 2007 to April 6, 2008. Anontool

detected and anonymized sensitive data within 17036 of those traces, a 78.4%

of the total number of alert-generating traces.

For verification purposes, we manually checked and inspected some of

the attack traces, to determine two things: firstly, whether we anonymized

the bytes at the correct offset(s), and secondly to determine whether ex-

ploits that weren’t anonymized did not contain any sensitive data or we just

5.3. EVALUATION OF BINARY PAYLOAD ANONYMIZATION 63

Figure 5.8: The anonymized Wuerzburg shellcode as the final output of

Anontool .

happened to lack a regular expression for the corresponding decoder.

For the first case, we chose a random trace which Anontool reported

it anonymized an IP within it, and tried to determine whether the IP was

correctly anonymized. Figure 5.8 shows the anonymized output for the

example explained in Section 4.3, taken from the resulted trace of Anontool .

Our tool managed to find and anonymize the sensitive information contained

in the encrypted payload. The outlined bytes show the offset at which the

IP address was identified and subsequently masked. We therefore were able

to verify the anonymization process was correct.

We then proceeded to examine in detail a few attack traces which Anon-

tool did not anonymize. Among them we discovered an remote root exploit

for the Knox Arkiea Server (arkiead) [14] which did not connect back to any

hosts and additionally its payload did not contain any sensitive information.

By choice, we do not include and regular expressions for this kind of exploits

inside our tool. It is by definition they lack the sensitive information that

may expose an innocent host to attackers, which means they can be shared

without that risk in mind.

Our search for remote exploits which used connect-back methods or sub-

64 CHAPTER 5. EVALUATION

sequently downloaded another binary did not prove fruitful. That, however,

does not by any means prove there are no such exploits out there. The user

needs to be aware that regular expressions within the tool do not constitute

a panacea. On the other hand, given the fact that we designed and imple-

mented our tool with modularity and extensibility in mind, adding support

for a new kind of shellcode/binary payload is easy and intuitive. We ex-

pect that, in order for our tool to be widely deployed and used, this is a

necessary quality, especially since we cannot predict future advances in the

area of polymorphic and metamorphic shellcode construction. Experts in

that field, however, should be given the convenience of easily implementing

a code module for our tool to anonymize their traces of choice.

5.4 Availability

Stable versions of Anontool are made available on [3], and is mirrored from

the Community Resource for Archiving Wireless Data (CRAWDAD [7]). It

has already been downloaded from at least 98 different users since it was

first mirrored from the CRAWDAD download page, and we have received

constructive input and debugging information which has aided us in debug-

ging, profiling and further developing Anontool , to maintain a high level of

code quality, performance and usability. We have also ported Anontool to

the OpenBSD [29] and Mac OS X [16] operating systems.

6
Conclusions and Future Work

This thesis provided a detailed overview of some open problems regard-

ing network data anonymization. Based on a widely accepted framework

technology, Anontool provides a complete, flexible and efficient basis for

performing anonymization on packet traces. Moreover, the architecture and

implementation of Anontool was designed to be extensible in order to ac-

comodate future needs. Anontool aims to provide a standard codebase to

meet the privacy needs of parties sharing network traces.

We described the implementation of Anontool , which is built on top

of the AAPI framework, while focusing on our three major contributions.

Firstly, the implementation of modules to support anonymization on Net-

Flow (versions 5 & 9) and IPFIX protocols. Anontool gives the user com-

65

66 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

plete control over every field of flow datagrams made available by an informa-

tion export node, without imposing limitations of other tools. Furthermore,

our results have shown that Anontool is a lot faster than other tools with

similar flexibility, and on par with very specialized and limited approaches.

Continuing with NetFlow traces, we described two attacks on existing

trace anonymization schemes which cannot be resolved with the primitives

already implemented in popular tools, and provided countermeasures for

each of them, namely bidirectional mapping and random value shifting which

preserves cumulative statistics about a trace while obfuscating inferential

statistics. Lastly, we designed and implemented a proof-of-concept mech-

anism for identifying and anonymizing executable payloads, with emphasis

on malicious payloads such as shellcodes and remote exploits and the poly-

morphic and metamorphic components of them. The mechanism has still

a lot of potential for improvement and extensibility but still is a significant

step towards sharing attack traces for the benefit of the computer security

community.

Anontool is under deployment and new features are constantly being

added and refined. It has the privilege of enjoying usage in real world sce-

narios, a process which has also helped a lot with debugging and making

it more stable and faster. Overall, the traits that make Anontool popu-

lar, extensible and fast are the same traits that provide its users with lots

of future capabilities to support new network protocols and policy-related

implementations for verification and evaluation on the various metrics of

anonymization, which is still an area with many open problems and lots of

opportunities for novel research.

Bibliography

[1] Amun Honeypot: breakdown of the Wuerzburg shellcode. "http://zero.

ram.rwth-aachen.de/amun/shellcode.php?id=1" .

[2] Amun: Python honeypot. "http://zero.ram.rwth-aachen.de/amun/

shellcodes.php" .

[3] Anontool Download Page. http://www.ics.forth.gr/dcs/

Activities/Projects/anontool.html .

[4] Audit Record Generation and Utilization System (Argus). http://www.

qosient.com/argus/index.htm .

[5] CAIDA - COMMONS Project. http://www.caida.org/projects/

commons/ .

[6] CAIDA - Cooperative Association for Internet Data Analysis. http://www.

caida.org .

[7] Community Resource for Archiving Wireless Data (CRAWDAD). http://

crawdad.cs.dartmouth.edu/ .

[8] drand48() Linux Manual Pages. http://www.manpagez.com/man/3/

drand48/ .

[9] European Network of Affined Honeypots. "http://www.fp6-noah.org/" .

[10] Internet World Stats. http://www.internetworldstats.com/stats.

htm .

[11] IP Flow Information Export (IPFIX). "http://www.ietf.org/html.

charters/ipfix-charter.html" .

67

68 BIBLIOGRAPHY

[12] It industry’s 12-point cyber-security plan. http://www.vnunet.com/

vnunet/news/2126395/industry-point-cyber-security-p lan .

[13] K2, admmutate. "http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.

gz." .

[14] Knox Arkiea Server Backup local/root remote exploit. "http:

//archives.neohapsis.com/archives/fulldisclosure/

2005-02/att-0397/arksink2.c" .

[15] Log Anonymization and Information Management Working Group (LAIM).

http://laim.ncsa.uiuc.edu/.

[16] Mac OS X Homepage. http://www.apple.com/macosx/ .

[17] MAPI official homepage. "http://mapi.uninett.no/" .

[18] National Laboratory for Applied Network Research (NLANR) Project. http:

//www.nlanr.net .

[19] Network traces of attacks captured at various LOBSTER passive monitoring

sensors. "http://lobster.ics.forth.gr/traces/" .

[20] Nfdump tools collection. http://nfdump.sourceforge.net/.

[21] Official Nepenthes website. http://nepenthes.mwcollect.org/

contact" .

[22] Perl Compatible Regular Expressions (PCRE) library. "http://www.pcre.

org/" .

[23] Protected Repository for the Defense of Infrastructure Against Cyber Threats

(PREDICT). https://www.predict.org/ .

[24] Sourcefire VRT Certified Rules. "http://www.snort.org/pub-bin/

downloads.cgi" .

[25] Tcpdump/libpcap official site. "http://www.tcpdump.org" .

[26] The HoneyNet Project. "http://www.honeynet.org/" .

[27] The Internet Measurement Data Catalog (DatCat). http://imdc.datcat.

org/help/general .

BIBLIOGRAPHY 69

[28] The National Strategy to Secure Cyberspace. http://www.whitehouse.

gov/pcipb/ .

[29] The OpenBSD Operating System. http://www.openbsd.org/ .

[30] The SANS (SysAdmin, Audit, Network, Security) Institute. http://www.

sans.org/ .

[31] Ten Things Lawyers Should Know About Internet Research, Au-

gust 2008. http://www.caida.org/publications/papers/2008/

lawyers_top_ten/ .

[32] J. W. A. Slagell and W. Yurcik. Network Log Anonymization: Application of

Crypto-PAn to Cisco Netflows. NSF/AFRL Workshop on Secure Knowledge

Management (SKM), 2004.

[33] A.Meyerson and R.Williams. General k-anonymization is hard. Carnegie Mel-

lon School of Computer Science Tech Report,2003; 03-113.

[34] P. Barford and D. Plonka. Characteristics of Network Traffic Flow Anoma-

lies, 2001. "citeseer.ist.psu.edu/barford01characteristics.

html" .

[35] Chai Wah Wu. Privacy Preserving Data Mining: A Signal Processing Perspec-

tive and a Simple Data Perturbation Protocol. In In Proc. of the IEEE ICDM

Workshop on Privacy Preserving Data Mining, pages 10–17, 2003.

[36] Cisco Systems, Inc. Netflow Specification. "http://www.cisco.com/

warp/public/732/Tech/nmp/netflow/index.shtml" .

[37] College of Computing, Georgia Tech. Cryptography-based Prefix-

preserving Anonymization. "http://www.cc.gatech.edu/computing/

Telecomm/cryptopan" .

[38] S. Coull, M. Collins, C. Wright, F. Monrose, and M. Reiter. On Web Browsing

Privacy in Anonymized NetFlows. In 16th USENIX Security Symposium, pages

339–352, 2007.

[39] Dakshi Agrawal and Charu C. Aggarwal. On the design and quantification

of privacy preserving data mining algorithms. In PODS ’01: Proceedings of

70 BIBLIOGRAPHY

the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 247–255, New York, NY, USA, 2001. ACM.

[40] Dave Plonka. ip2anonip. "http://dave.plonka.us/ip2anonip" .

[41] A. Desjanun. Hacker Teams Breach Powerful Research Networks,

2004. http://www.usatoday.com/tech/news/computersecurity/

2004-04-14-synchronized-hacking_x.htm .

[42] Eddie Kohler. ipsumdump. "http://www.cs.ucla.edu/ ˜ kohler/

ipsumdump" .

[43] M. P. et al. Emulation-based Detection of Non-self-contained Polymorphic

Shellcode. In Proceedings of RAID’07, 2007.

[44] A. Ghose and K. Hausken. A Strategic Analysis of Information Sharing Among

Cyber Attackers. In SSRN Working Paper Series, 2006. http://ssrn.com/

abstract=928138 .

[45] Greg Minshall. Tcpdpriv. "http://ita.ee.lbl.gov/html/contrib/

tcpdpriv.html" .

[46] Jian Xu et al. Utility-Based Anonymization for Privacy Preservation with Less

Information Loss. In 12th ACM SIGKDD, 2006.

[47] K. Wang and B. C. M. Fung and P. S. Yu. Handicapping Attacker’s Confidence:

An Alternative to k-Anonymization. Knowledge and Information Systems: An

International Journal (KAIS), 2006.

[48] D. Koukis, S. Antonatos, and K. G. Anagnostakis. On the Privacy Risks of

Publishing Anonymized IP Network Traces. In Communications and Multi-

media Security, pages 22–32, 2006.

[49] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and E. Markatos. A

Generic Anonymization Framework for Network Traffic. In Proceedings of the

IEEE International Conference on Communications (ICC 2006), June 2006.

[50] C. Kreibich. NetDuDe: Network Dump data Displayer and Editor. "http:

//netdude.sourceforge.net" .

BIBLIOGRAPHY 71

[51] A. Lakhina, M. Crovella, and C. Diot. Characterization of Network-Wide

Anomalies in Traffic Flows, 2004. "http://citeseer.ist.psu.edu/

715839.html" .

[52] K. Lakkaraju and A. Slagell. Evaluating the Utility of Anonymized Network

Traces for Intrusion Detection. ArXiv e-prints, 712, Dec. 2007.

[53] K. Lakkaraju and A. J. Slagell. Evaluating the Utility of Single Field Anony-

mization Polices by the IDS Metric : Towards measuring the trade off between

Utility and Security. In Proceedings of the 4th Annual SECURECOMM Con-

ference, September 2008.

[54] Y. Li, A. Slagell, K. Luo, and W. Yurcik. CANINE: A Combined Converter

and Anonymizer Tool for Processing NetFlows for Security. In Proceedings of

the International Conference on Telecommunication Systems - Modeling and

Analysis (ICTSM), Nov. 2005.

[55] M. Burkhart, D. Brauckhoff, M. May and Elisa Boschi. The Risk-Utility

Tradeoff for IP Address Truncation. In 1st ACM Workshop on Network Data

Anonymization (NDA 2008), October 2008.

[56] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-

diversity: Privacy beyond k-anonymity. In Proceedings of the 22nd Interna-

tional Conference on Data Engineering (ICDE’06), page 24, 2006.

[57] R. Pang, M. Allman, V. Paxson, and J. Lee. The Devil and Packet Trace

Anonymization. ACM Computer Communication Review, 36(1):29–38, Jan.

2006.

[58] R. Pang and V. Paxson. A High-Level Programming Environment for Packet

Trace Anonymization and Transformation. In Proceedings of the ACM SIG-

COMM Conference, August 2003.

[59] M. Peuhkuri. A Method to Compress and Anonymize Packet Traces. Internet

Measurement Workshop (San Francisco, California, USA: 2001), pages 257–

261, 2001.

[60] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-

level Polymorphic Shellcode Detection using Emulation. In Proceedings of

DIMVA’06, 2006.

72 BIBLIOGRAPHY

[61] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for Finger-

printing Zero-Day Attacks. In Proc. ACM SIGOPS EUROSYS’2006, Leuven,

Belgium, April 2006.

[62] P.Szor. Hunting for Metamorphic. In Proceedings of the Virus Bulletin Con-

ference, 2001.

[63] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley. Analyzing Privacy in En-

terprise Packet Trace Anonymization. In Proceedings of NDSS 2008, February

2008.

[64] Roberto J. Bayardo and Rakesh Agrawal. Data Privacy through Optimal k-

Anonymization. Data Engineering, International Conference on, 0:217–228,

2005.

[65] M. Roesch. Snort: Lightweight Intrusion Detection for Networks. November

1999. (available from http://www.snort.org/).

[66] A. J. Slagell, K. Lakkaraju, and K. Luo. FLAIM: A Multi-level Anonymization

Framework for Computer and Network Logs. In LISA, pages 63–77, 2006.

[67] L. Sweeney. k-anonymity: a Model for Protecting Privacy. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[68] T. T.Dbendorfer, A.Wagner and B.Plattner. Flow-Level Traffic Analysis of teh

Blaster and Sobig Worm Outbreaks in an Internet Backbone. In Proceedings

of DIMVA 2005, Springer’s Lecture Notes in Computer Science, 2005.

[69] Y. T.Detristan, T.Ulenspiegel and M.V.Underduk. Polymorphic Shellcode En-

gine Using Spectrum Analysis. Phrack magazine, "http://www.phrack.

org/issues.html?issue=61\&id=9#article" .

[70] W. Yurcik et al. SCRUB-tcpdump: A Multi-Level Packet Anonymizer Demon-

strating Privacy/Analysis Tradeoffs. In Proceedings of SECOVAL ’07, 2007.

[71] J. Xu, J. Fan, M. Ammar, and S. Moon. Prefix-Preserving IP Address Anony-

mization: Measurement-based Security Evaluation and a New Cryptography-

based Scheme. ICNP 2002, 2002.

BIBLIOGRAPHY 73

[72] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the Design and Perfor-

mance of Prefix-Preserving IP Traffic Trace Anonymization. Internet Mea-

surement Workshop (San Francisco, CA, USA: 2001), pages 263–266, 2001.

"citeseer.nj.nec.com/462352.html" .

[73] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based

anonymization for privacy preservation with less information loss. SIGKDD

Explor. Newsl., 8(2):21–30, 2006.

[74] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In ANCS ’06:

Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking

and communications systems, pages 93–102, New York, NY, USA, 2006. ACM.

[75] C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation Modeling

and Analysis, 2002.

