
University of Crete

Computer Science Department

Semantic Query Routing and Planning

in Peer-to-Peer Database Systems:

The SQPeer Middleware

George Kokkinidis

Master’s Thesis

Heraklion, July 2005

�����������
	���
����
������
���
�	
	�������
����������� ��������
	���
��� ��

����
��!�"�����
	���
���
�	$#���������%&�
	��� ��
')(+*�,�*�-�.�/�0�1�0)2�3�4�576�8:9+8:(;/<3�1>=?3)@A0�,�3�1>4B*�-�*�/>4C2�DFE

576�8:(+G�HJI�1<8:GFE"1>8K'ML�*�,�.�H�4?,�3)@NL�1�HJI�,�3�HJ3
��OQPSRUTWV RYX[Z[\]\^X[Z^_[`badc:e^fhg�R^X[ikjlZUm

n�o^p�q[r�sutwvkx�y7tWz{z;s |~}��b�
����� g�Od� fha]g�f[Xb`baUO � T�eYj � m>R^X[Rb� j�aUT�g � m�P�� R�j�eUm>R^X[ibf[j�eUT�e
������������#��������<��#��Y������ ��!������	K�����Y������#�	�
�	

	�\^P~PSOQRU�W��R �d�

%Jg���OQP�� Z � ��Zbf[f�� mdV ��e �d� � � a � R���Xh� TSj�a � e � #�X[Z^`bZdP�� TSjQ��m
��� T�e^PSe^jd� fha]��Xh� j�O�ZbX[a �

��RUTWV `be � ��Od� TSjlZ[�:V ��e �d� ��m�R^Xb`beUO � j�a � fhRdc:e^PSe^j�a �d� ��X[ibXbj�e �

��e � a^j�O�e � ��`bg���Z[\UT��^fhe �d� ��m�R^Xb`be^O � j�a � fhRdc:e^PSedj�a �d� ����`bZ �

%JO�e^PSi[O�e � ��mQj � mdV Z[\ � ��Rdc:e^PSe^j�a �d� ����`bZ �
��g�f[j�a �

��e � a^j�O�e � ��`bg���Z[\UT��^fhe �d� ��m�R^Xb`beUO � j�a � fhRdc:e^PSe^j�a �
��O�i[g���O�Z � ��Xh� j�O�ZbX[a � ��g�jlR^Xbj�\U�S� R^f[��mY	�X[Z[\U�Q��m

�O��^f[`bgl� Z � ��Z[�^`[� Z �>�^�U�b�

Semantic Query Routing and Planning

in Peer-to-Peer Database Systems:

The SQPeer Middleware

George Kokkinidis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Peer-to-peer (P2P) computing is currently attracting enormous attention. In P2P

systems a very large number of autonomous computing nodes (the peers) pool to-

gether their resources and rely on each other for data and services. More and more

P2P data management systems rely nowadays on intensional (i.e., schema) informa-

tion for integrating and querying peer bases. Such information can be easily captured

by emerging Semantic Web languages such as RDF/S. However, a full-fledged frame-

work for evaluating semantic queries over peer RDF/S bases (materialized or virtual)

is missing.

In this thesis, we present the SQPeer middleware for processing RQL queries

over peers, whose bases are advertised by RVL views. SQPeer utilizes the notion

of RDF/S-based Semantic Overlay Networks (SONs) for organizing the peers into

communities, where semantic queries can be efficiently processed and executed. The

notion of RDF/S-based SON is examined with respect to three different architectural

alternatives, i.e., a hybrid, a structured and an ad-hoc one, with each one posing

different challenges. The novelty of SQPeer lies on the use of intensional peer views

used for advertising the content of peer bases. A routing phase is responsible for

identifying peer advertisements relevant to a specific query based on appropriate

query/view subsumption techniques. On the other hand, a query planning phase

uses the obtained data localization information to construct appropriate distributed

query plans considering data distribution in the system for obtaining both complete

and correct results. The produced query plan is executed in a fully distributed way by

contacting the necessary peers and sending them the appropriate (sub-)queries. Peer

communication for exchanging query (sub-)plans and results relies on appropriate

communication channels.

Compile and run-time optimization strategies are employed in order to create op-

timal query plans. Heuristics concerning the ordering of joins and unions are used to

transform the query plan into a more efficient equivalent one. Both communication

and processing cost is used to decide between data, query or hybrid shipping execu-

tion policies. Additionally, adaptability in the formulated query plans is possible by

monitoring the query execution and altering the whole or part of the query plan at

run-time, when peer bases become unavailable or system resources are exhausted.

Finally, SQPeer’s query processing algorithms allow an interleaved execution of

the query routing and planning phases. Especially in a structured P2P setting, this

interleaved execution permits the creation of multiple query plans in several iteration

steps that when combined produce a complete answer. More importantly, intra-peer

processing is favored with the additional benefit on obtaining more relevant results

as soon as possible.

Supervisor: Vassilis Christophides

Associate Professor

')(+*�,�*�-�.�/�0�1�0)2�3�4�576�8:9+8:(;/<3�1>=?3)@A0�,�3�1>4B*�-�*�/>4C2�DFE
576�8:(+G�HJI�1<8:GFE"1>8K'ML�*�,�.�H�4?,�3)@NL�1�HJI�,�3�HJ3

���^�< h¡�¢u£&¤F¥�£:¦&¦§¢ ¨S©«ª~¬W¤

­K�d®[¯S°{®~±W²+¢«¯S¦;³N´< h¡�¯Wµ�©«¯

¶k·:³W·:¯N´�°;¢¸µ§®~³W·:¬W¤7¹º°J£~»{£S¡�¢¸µ§®��<¨{¼�½¾¯W¨~�d°;¢¸µ§®~³W·{¢¸£¿¥� ~³S®~¬W¤

À 8:(�=Á-�0�Â�0

��RÃ��\UZ � i^jd� � RÅÄ Peer-to-Peer aÆXh� ZÇR^Xb`b� P2P È 	�\UTSj�a � R^jlRÆ���~Z[\Um7P�V m�gl��� �d� RbV j�g�O�R��e � Z[�:� `ba�jÉZ^m�j�g�`bg�\^jlRbV Z<fhRb� O�iSÊ�	�jlR�T�\UTSj�a � R^jlR�RU\^j�����m�R ��� g�PS�^`bZ � RUOd� c � i � R^X[i>RU\^j�iUm�Z^Ë
� Z[\ � fhi � _hZ[\ � �d� Rdc:��j�gl�ÉjlZ[\ � X[i[O�Z[\ � jlZ[\�fhRb��g�Xh� fhZh� m � m�Zh�Um � g�jÉRU����jlZ[\ � P�� R�j�eUm�RUmQjÉR^`U`bR^PSa
��g���Z � ��m � m�fhRb�~\^X[eUO�g�TW� ��mbÊ;Ì ��`bZYfhRb��Xh� Z�X[Zd`U`b�>��\UZ � i^jd� � RY	�\UTSj�a � R^jlR<�]� RU�~glV O�eUT�e � ��gÍË
��Z � ��m � m�_hRUTWV Î�ZUmQjlRb�JTSj�eUmkT�e � RUTW� Zd`bZ^P�V RÏj � m¾��g���Z � ��m � mkjlZ[\ � P�� Rºj�eUmkZ^`bZbf[`baUO � T�eÏfhRb�
g�X[g�OQ��j�eUT�eÃj � m!_h�UT�g � mF��g���Z � ��m � mFj � m7fhi � _ � mFX[Z[\ÐjÉRÐR^X[RUOQjdV ÎQZ[\UmbÊÑ����jlZh� Z[\AglV ��Z[\ �
Xb`beUO�Z[�WZ[OdV R � X[Z[O�glV§g��^fhZd`bR�m�R!RUm�R^X[RUO�RUTSjlRdc:glV � gYj�eUm�_hZ[adc:gl� RºP~` � T�TS��m]jÉZ[\�	�e � RUTW� Z^Ë
`bZ^P�� fhZ[�Ï��TSjlZ[� � ibX ��� e RDF/S Ê{��RUObÒ Zd`bR¾RU\^j�� �{� ���~Od�{T�a � g�O�Rk��g�m]\^X[�UO��~gl�{��m�RkXb`baUO�g �Xb`bRbV TW� Z]g�OQPSRUTWV R � P�� R�R^X[Z^jdV � eUT�eÓT�e � RUTW� Zd`bZdP�� f[��m>g�O � j�aUT�g � m�X[�Um � R^X[i RDF/S _h�UT�gl� �
��g���Z � ��m � mÏÄÔ\^`bZbX[Zh� e � ��m�g � a]� ��g�R^j�� � È Ê	�j�eUm�X[RUO�Z[�UT�R�RUm�RU�WZ[O�� � X[RUO�Z[\UTW� �UÎ�Z[\ � g�jlZ SQPeer T��UTSj�e � R�P�� R<g�X[g���g�OQPSRUTWV R RQLg�X[g�O � j�aUT�g � mÓX[�Um � R^X[iÏfhi � _hZ[\ �d� j � mYZbX[ZhV � m]Zh�S_h�UT�gl� � ��e � Z[TW� ZbX[Zh� Z[�^mQjÉRb� � ��T � RVLi[ÕWg � mbÊ���Z SQPeer g�m�T ��� R^jQ��m�gl�~j�eUm>��m�m�Zh� R]j � mY	�e � RUTW� Z^`UZ^P�� f[��mY�]� RUTSj�O ��� R^j ��� ��m � m�]� f[j�� � m (SON) P�� R¾j�eUm�Z[OQPS�Um � T�e¾j � mYfhi � _ � mkT�g�fhZh� m�idj�e^j�g �d� ibX[Z[\ºT�e � RUTW� Z^`bZdP�� fh� �
g�X[g�O � j�aUT�gl� ��� X[Z[O�Z[�Um<R^X[Z^j�g�`bg�T � R^jd� fh�>m�RÓg�X[g���g�OÉPSRUTSjÉZ[�Um�fhRb�~m�RÓg�f[j�g�`Ug�T�jlZ[�UmbÊ�
K��m�m�Zh� R
j � m SON _hRUTW� T � ��m � mºTSj�eUm RDF/S g���g�j��UÎ�g�jlRb�+T�\Um�RUOQj�aUT�gl�;j�Od� ��m!�d� RU�WZ[O�g�jd� f[��m�RUOlË
�S� j�g�f[jlZUmd� f[��m �J� � R � \�_hOd� �d� fha �d�&� � R � ��Z � e � ��m�e � fhRb� � � R � RU��i � e^j�e �d�{� g<fh�dc:g � V R¾m�Rkc:��j�gl�
jd� � �d� fh� � j�e � X[O�Zbf[`baUT�gl� � Êk	�gY��m�RÏj���jlZh� Z�Xb`bRbV TW� Z � eÏ�W�UT�eÏ��O�Z � Z^`bidPSeUT�e � glV m�Rb�J\^X[g��dc:\�Ë
m�eºP�� R!j�eUm¾RUm�R^PSmQ��Od� T�e!i[ÕWg � mÏT��~g�jd� f[��m � g � � R���g���Z � ��m�e!g�X[g�OQ��j�eUT�eºfhRb�{_hRUTWV Î�g�jlRb�JT�g

j�g��~md� fh� � \^X[R^`^`be^`[V R � g�X[g�O � j�aUT�g � mdÖ^i[ÕWg � mbÊ���X[iÆj�eUmº�^`U`be�Xb`bg�\UO�� � eF�W�UT�e���e � � Z[\UOQP�V Ë
R � Xb`b�Um � m�g�f[j���`bg�T�e � �~O�eUTW� � ZbX[Zh� glV{j�eUm�aU��e¾\^X[�UO��~Z[\UT�RkXb`beUO�Z[�WZ[OdV Rº��O�Z � Zd`bidPSeUT�e � P�� R
m�RÐfhR^jlRUTSfhg�\U�UT�gl��jlRÐR^X[RUO�RbV j�e^jÉRÆXb`b�Um�RÐg�f[j���`bg�T�e � ���~ZUmQjlR � \^X[i[Õ:� mFj�eUmFfhR^jlRUm�Z � aÃj�e �
Xb`beUO�Z[�WZ[OdV R � TSjÉZ¾T��UTSj�e � RYP�� Rkj�eUmÓR^X[ibf[j�eUT�e]Xb`baUO � mÓfhRb�WT � TSjQ��m>R^X[Z^j�g�`bg�T � �^j � mbÊ���Z
X[RUO�R^PSi � g�m�ZÆXb`b�Um�ZÆg�f[j���`bg�T�e � g�f[j�g�`bglV jÉRb� � g���m�R�Xb`baUO ��� fhR^jlRUm�g � e � ��m�Z7j�O�ibX[ZÃTSj���`bm�Z^Ë
mQjlR � TSjÉZ[\ � R^X[RUO�RbV j�e^jlZ[\ � fhi � _hZ[\ � jd� � T��~g�jd� fh� � ÄÔ\^X[Z^Ë È g�O � j�aUT�gl� � Ê�
$g�Xh� fhZh� m � mdVuR � g�jlRU���
j � m�fhi � _ � m�P�� R�j�eUm�RUmQjÉR^`U`bRdPSaYÄÔ\^X[Z^Ë È Xb`b�Um � m�fhRb�bg�m��d� � � g�T � m�R^X[Z^j�g�`Ug�T � �^j � m�_hRUTWV Î�g�jlRb�T�g�gl� �d� fh�]fhRUm��^`[� R�g�Xh� fhZh� m � mdV R � Ê

	�j�O�R^j�e^P�� fh� � _hg�`Ujd� TSjÉZbX[ZhV eUT�e � �~O�eUTW� � ZbX[Zh� Z[�UmQjlRb�&P�� RÏj�eÏ��e � � Z[\UOÉP�V R¾_hg�`Ujd� TSjÉZbX[Zh� e � �ÍË
m � mºXb`b�Um � mºg�f[j���`bg�T�e � ÊF��\^Od� TSjd� fh� �¾� �×c:Z[��Zh�§X[Z[\FRU�WZ[O�Z[�Umºj�eUmº�d� �^jlRU��e�j � mºj�g�`Ug�T�jQ��m
��m � T�e � (union) fhRb�{T�\Um���m � T�e � (join) �~O�eUTW� � ZbX[Zh� Z[�UmQjlRb�:P�� Rkj�eUmÓfhR^jlRUTSfhg�\UakR^X[Z^j�g�`bgÍË
T � R^jd� fhi^j�g�O � m�Xb`b�Um � m]g�f[j���`bg�T�e � Ê���Z!fhi[TSjlZ � g�Xh� fhZh� m � mdV R � fhRb�&g�X[g���g�OQPSRUTWV R � �~O�eUTW� � Z^Ë
X[Zh� glV jÉRb�~P�� R�R^X[Z[�W�UT�gl� � T��~g�jd� fh� � g�j�g��~md� fh� ��� g�jlRU�WZ[O�� � ��g���Z � ��m � m>aYg�X[g�O � j�aUT�g � m�fhR^jlR
j�eUmÆ�d� �UOQfhgl� RNg�f[j���`bg�T�e � j � mÆg�X[g�O � j�aUT�g � mbÊØ����`bZ �d� eAX[O�Z[T�RUO � Z[TSjd� fhidj�e^jÉRATSjlRÐX[RUO�R�Ë
PSi � g�m�RÏXb`b�UmQRÏg�f[j���`bg�T�e � glV m�Rb�&R^X[RUO�RbV j�e^j�ekP�� RÏj�eUm�X[RUO�RdfhZ^`bZ[�dc:eUT�ekj�e � g�f[j���`bg�T�e � j � m
g�X[g�O � j�aUT�g � m�fhRb�Sj�eUm<��\Um�R^j�i^j�e^jlR � g�jlR�_hZ^`ba � jlZ[\YXb`b�Um�Z[\�g�f[j���`bg�T�e � i^jlRUm>Zh��_h�UT�gl� � j � m
fhi � _ � m>P�V m�ZUmQjlRb� � e��d� Rdc:��TW� � g � a�Zh�SX[i[O�Zh��jÉZ[\�T�\UTSj�a � R^jlZ � g���RUmQjQ`bZ[�UmQjlRb��Ê

����`bZ �d� Zh�;R^`UPSi[Od� c � Zh�;��O�Z � Zd`bi^PSeUT�e � fhRb�;��e � � Z[\UOQP�V R � Xb`b�Um � m¾jlZ[\ SQPeer g�Xh� j�O��ÍË
X[Z[\Um�j�eUm�g�Xh� fhR^`b\^Xbj�i � g�m�e<g�f[j���`bg�T�e�j � m���\UZÓRU\^jQ��m��W�UT�g � mbÊ+��� �d� fhi^j�g�O�R<P�� R � � R���Z � e � �ÍË
m�e¾��\UZ � i^jd� � eÏRUO��S� j�g�f[jlZUmd� fha � e¾g�Xh� fhR^`b\^Xbj�i � g�m�eÏRU\^j�akg�f[j���`bg�T�e¾Z[��e^PSglV{TSj�eUmY��e � � Z[\UOQP�V R
Xb`b�Um � m]g�f[j���`bg�T�e � T�g<X[Zd`U`bR^Xb`b��_ha � R^jÉR]jlRÏZbX[ZhV RºT�\Um���\URUÎ�i � g�m�RkX[O�Z[T��W��O�Z[\Um�Xb`baUO�eÏR�Ë
X[Z^j�g�`b��T � R^jlR�ÊÏ��� ZÆT�e � RUmQjd� fha!i �U���d� glV m�Rb�§e!X[O�Zb�+c:eUT�eºj�e � g�X[g���g�OQPSRUTWV R �k� g�jlRU����V �d� � m
fhi � _ � m � g�jlZ�g�Xh� Xb`b��ZUm�X[O�ZUm�i � � Z�j�e � jlRU�~�^j�g�O�e � R^X[ibf[j�eUT�e � T��~g�jd� f[��m � g�j�eUm�g�X[g�OQ��j�eUT�e
R^X[Z^j�g�`bg�T � �^j � mbÊ

Ù�Ú&ÛWÚ:Üb�{ÝÏy7Þhß��WrJ�WÜbà{Ý�á���RUTWV `be � ��Od� TSjÉZ[�:V ��e �
��m�R^Xb`beUO � j�a � ��Rdc:e^PSe^j�a �

â�ã×äÉåUæÓç~äQè�é�ê æ�ëJälå

ì�í]îÆï�ðÓñ�òÆóÓôÍõ�ö

	�jlZÏTWe � glV ZÏRU\^j�i]c{R]adc:g�`bR]m�Rkg�\^�~RUOd� TSj�aUT � jlZUmYg�X[ibXbj�e � Z[\]f�Ê���RUTWV `beY��Od� TSjÉZ[�:V ��e
P�� Rºj�eUm¾�UÕWZdPSe!T�\Um�g�OQPSRUTWV R � R � jlRºj�g�`bg�\^jlRbV Rº�~O�i^md� R�ÊÏ���&PSmQ��T�gl� � X[Z[\!R^X[��f[j�eUT�R � ��T �
j�e � PSiUmd� � e � g�OQPSRUTWV R � �dV Xb`bR¾jÉZ[\ÏR^X[Z^j�g�`UZ[�UmkT�e � RUmQjd� fh�¾g��Wi[�d� R�Ê�� � OdV � j�eUm]TSj�aUOd� ��akjlZ[\
fhRb�^j�eUm�T�\Um�g��~a�_hZ[adc:gl� R�X[Z[\�X[�UmQjlR�a^jlRUm��d� Rdc:g�j�gl� � ��m�Z � m�R�X[O�Z[T��W��O�gl� � e�X[RUO�Z[�UT�R�g�OQPSRUTWV R
��g�m<c:R � X[Z[O�Z[�UT�g�m�R]Zd`bZbf[`beUO � c:glV�Ê

��XhV T�e �d� c:RÆadc:g�`bRÆm�RÆg�\U�~RUOd� T�j�a^T � jlZUm�fhRdc:e^PSe^j�a � Z[\ÆfhRb� � ��`bZ � j�e � g���g�jÉRUTSjd� fha �
g�Xh� j�O�ZbX[a � f�Ê+��e � a^j�O�e���`bg���Z[\UT��^fhe � g�jlZUm�ZbX[ZhV ZÓglV �~R�j�eUm�jd� � a�m�R�T�\Um�g�OQPSRUTSjQ�Æg�Xh� j�\U��� �
aU��eÏR^X[i!jd� � XhOQZbX[j�\^�S� R^fh� ��� Z[\ÏTSX[Z[\U��� � Ê>��Xh� Xb`b��ZUm � m�RÏg�\U�~RUOd� TSj�aUT � jlZUm�fhRdc:e^PSe^j�akfhRb�
� ��`bZ � j�e � g�Xh� j�O�ZbX[a � f�Ê�%JO�e^PSi[O�e���mQj � mdV Z[\�Ê
I would also like to thank Professor Val Tannen for his contribution during the

initial steps of my thesis. Additionally, many thanks to Arnaud Sahuguet, whose

thesis has been an inspiration and whose code I borrowed for the evaluation of my

own work.���d� RbV j�g�O�R�c:R�adc:g�`bR�m�R�g�\U�~RUOd� TSj�aUT � jlZ<��RUm�g�Xh� TSj�a � � Z<��O�a^j�e � fhRb�^jlZ<��m�TSjd� jlZ[�^jlZ<��`be�Ë
O�Z[�WZ[Od� fha � jlZ[\!�
�QO�� � R^jÉZ � ��g��~m�Z^`bZdP�V R � fhRb�&Ì ��O�g�\Um�R � P�� R�jd� � PSmQ��T�gl� � fhRb�§jd� � g � X[gl� OdV g �
X[Z[\ � Z[\�X[O�Z[T����Wg�O�RUm>id`bR]RU\^j��ÓjÉR��~O�i^md� R�Ê

Ì ��m�R � g�PS�^`bZ�g�\U�~RUOd� TSjQ�7RUm�a^fhgl�dT�g�i^`bZ[\ � jlZ[\ � T�\ � �WZh� j�e^j�� ��� Z[\�fhRb��jÉZ[\ � T�\Um�RU����`b�WZ[\�Ë
��� g�jlZ[\ � ZbXhZhV Z[\ � T�\Um�g�OQPS�UTSj�e^fhR>fhRdcSÌ[id`beYj�eUm<�d� �UOQfhgl� R�j � m>TSX[Z[\U�Q��m � Z[\�Ê���� T~c:�Um�Z � Rb�
j�\U�~g�O�i � X[Z[\ � g�Od� fh� � R^X[i¾RU\dj�� � jd� � T�\Um�g�OQPSRUTWV g � fhR^j���`beU��RUm>T�g�X[O�R^P � R^jd� fh� � �:� `[V g � Ê���\�Ë
�~RUOd� T�jQ�w`bZh� X[iUm>j�eUm<PSm � TSj�aYX[RUO���R����UT ��� ����TSX[Zh� m�R � %;� ��OQPSZ � ��RUm�R^P�� ��j�eYfhRb����V fhZÏP�� R
i^`bg � jd� � g � X[gl� OdV g � X[Z[\ � Zh� O�RUTSj�a^fhR � g�fhRb�hX[Z[\�c:R�c:\ � i � RUTSj�g�P�� R>i^`be � R � j�eUm�Î � a�Ê���\UOdV Ë
��� i �U��� c:��` � m�RYg�\U�~RUO�� TSj�aUT � j�eUm�� � �Um�m�RÓP�� R>j�eUm�TW\ � X[RUOQ�UTSjÉRUTSa�fhRb�~j�eUm�TSj�aUOd� ��e<XhZ[\
� Z[\�X[RUO�glV �~g�id`bZUmÓRU\^j�iUm>jlZUm<fhRb� O�i � fhRdcW� � fhRb�SP�� R�j�eUm<X[�UmQjlR�g�\Ug�OQPSg�jd� fha�X[RUO�Z[\UTWV RYj�e � Ê

��g�`bg�\djÉRbV ZNR^`U`b� � g�PSR^`b�^j�g�O�ZÇg�\U�~RUOd� TSjQ�÷i �U��� RU�dV Î�gl��TSj�eUmFZh� fhZdP���m�gl� � � Z[\ÐfhRb��Xh� i
T�\^P~fhg�fhOd� � ��m�RºTSjlZ[\ � PSZUm�glV �Y� Z[\ �Jø V `[� XbX[Z�fhRb�{��m�RUTSjlRUTWV R � TSj�eUm�RU��g�`b�Wa � Z[\ �Jø RUm�a � fhRb�
TSj�eUmFP�� R^P�� � � Z[\ ��ø RUm�a�Ê���RUO�i^`bZNX[Z[\Ð_hOdV TSfhZUmQjlRUm � R^fhOd� �ÇX[�UmQjlRAa^jÉRUmÆ�dV Xb`bR � Z[\AfhRb�
� gkTSj�aUOd� ��RUmºT�g]id`bg � jd� � ��\UTSfhZd`[V g � ÊÃ
ùg�OQPSRUTWV R7RU\^j�a7g�`UXhV Î � m�RFR^X[Z^j�g�`b��T�gl� � � R � � fhO�a
RUmQjlR � Zh� _haYP�� R�jd� � c:\UTWV g � fhRb�Sjd� � X[O�Z[TSX[�dc:gl� � � jlZ[\ � id`bZUmÓRU\^j�iUm<jÉZ^m>fhRb� O�iSÊ

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Outline of the Thesis . 6

2 State Of The Art 7

2.1 Centralized Query Routing and Centralized

Query Planning . 15

2.2 Centralized Query Routing and Distributed

Query Planning . 20

2.3 Distributed Query Routing and Centralized

Query Planning . 25

2.3.1 Distributed Index Shipping 27

2.3.2 Clustered PDMSs . 28

2.3.3 Structured PDMSs . 31

2.4 Distributed Query Routing and Distributed

Query Planning . 35

2.4.1 Mapping-driven PDMS . 37

2.4.2 Mobile Planning PDMS . 38

2.4.3 Adaptive Planning PDMS . 42

3 RDF/S-based SONs 45

3.1 Semantic Overlay Networks . 45

i

3.2 Resource Description Framework and Schema

Language . 46

3.3 Constructing an RDF/S-based SON 49

3.3.1 RQL Peer Queries . 49

3.3.2 RVL Advertisements of Peer Bases 54

3.3.3 Query/View Subsumption . 58

3.4 P2P Architectural Alternatives . 60

3.4.1 Hybrid P2P SONs . 62

3.4.2 Structured P2P SONs . 64

3.4.3 Ad-hoc P2P SONs . 66

3.5 Comparison of the Architectural Alternatives 68

4 Query Processing in SQPeer 71

4.1 Core Algebra and Equivalences . 72

4.1.1 The Operators . 72

4.1.2 Translating RQL queries to the core algebra 72

4.1.3 Query Plan Equivalences . 76

4.2 Query Fragmentation and Algebraization 78

4.2.1 Query Fragmentor . 78

4.2.2 Query Routing and Data Localization Algorithm 79

4.2.3 Query Planning and Algebraic Translation Algorithm 82

4.3 Cost-based Optimization . 86

4.3.1 Cost Model . 87

4.3.2 Dynamic Programming in SQPeer 93

4.3.2.1 Classic Dynamic Programming Algorithm 93

4.3.2.2 Iterative Dynamic Programming Algorithm 95

4.3.2.3 Data vs Query Shipping 96

4.4 Interleaved Query Routing and Planning 99

4.5 Query Execution and Communication Channels 104

4.6 Run-time Query Plan Adaptability 106

ii

4.7 Experiments in SQPeer . 107

4.7.1 Query Fragments & Fragmentations 109

4.7.2 Number of Peers . 112

4.7.3 Number of Plans . 115

4.7.4 Planning Time . 117

5 Conclusion 121

5.1 Future Work . 122

Bibliography 125

iii

iv

List of Tables

2.1 Categorization of systems based on query routing and planning alter-

natives . 13

3.1 RQL class and property patterns . 53

4.1 Association between fragments and fragmentations of the linear and

graph queries . 111

v

vi

List of Figures

2.1 Typical architecture of query processing in DDMS 9

2.2 Centralized QR and QP . 15

2.3 Centralized QR and Distributed QP 21

2.4 Distributed QR and Centralized QP in a Clustered PDMS 26

2.5 Distributed QR and Centralized QP in a Structured PDMS 27

2.6 Distributed QR and QP . 36

3.1 The graph representation of RDF . 48

3.2 An RDF/S schema of a SON, an RVL view and an RQL query pattern 50

3.3 RVL Virtual Schemas . 55

3.4 Peer view advertisement and subsuming views 56

3.5 Peer view patterns example . 57

3.6 A graphical containment example . 59

3.7 SQPeer separated query routing and processing phases in a hybrid P2P

system . 63

3.8 SQPeer interleaved query routing and planning mechanism in a struc-

tured P2P system for fragmentation of size 2 65

3.9 SQPeer query processing mechanism in an ad-hoc P2P system 67

4.1 Evaluation plan of Query Q1 . 73

4.2 Evaluation plan of Query Q2 . 75

4.3 Fragments for the query pattern Q 79

4.4 An annotated RQL query pattern . 81

4.5 Query plan generation and channel deployment in SQPeer 84

vii

4.6 Optimizing query plans by applying algebraic equivalences and heuristics 85

4.7 Data and Query Shipping Example 97

4.8 Query plan offering complete answer 99

4.9 Query plans produced during interleaved query routing and planning 101

4.10 Query plan produced after applying algebraic equivalences 102

4.11 Linear- and graph-query examples . 108

4.12 Fragments and fragmentations for the linear and graph queries 110

4.13 Distribution of peer views answering schema fragments 113

4.14 Number of plans with respect to the distribution of data 116

4.15 Iterative vs Traditional Dynamic Programming 117

4.16 Interleave vs Sequential Planning . 118

viii

Chapter 1

Introduction

Over the last few years there has been a drastic increase in the exchange of elec-

tronic information. Each user connected to the Internet has access to a huge amount

of online information. This information is usually dispersed through a great number

of available bases. Moreover, the user is usually interested in a small portion of the

available information and is not willing to spend an excess amount of either time or

processing and communications resources for acquiring it.

Towards the goal of organizing data dispersed in different sites, the notion of dis-

tributed databases was introduced. A distributed database is described as a collection

of multiple, logically interrelated databases distributed over a computer network. A

distributed database system is the software system that permits the management of

the distributed database. It is primarily responsible for making the distribution of

the data transparent to the user. A system like this, in its simplest form, constitutes

of a centralized server that supports a global schema and offers distributed database

services, e.g., distributed query processing or data consistency management. The

fundamental principle behind data management is data independence, which enables

applications and users to share data at a conceptual level, while ignoring implemen-

tation details. By this approach, schema management, high-level query capabilities,

automatic query processing and optimization, and complex object support can be

provided.

As a step forward, peer-to-peer (P2P) computing offers new opportunities for

1

2 CHAPTER 1. INTRODUCTION

building highly distributed data systems by evolving the distributed database ap-

proach. P2P systems are currently attracting enormous attention, spurred by the

popularity of file sharing systems such as Napster [Nap], Gnutella [Gnu], Freenet

[CSWH01], Morpheus [Mor] and Kazaa [Kaz]. Such systems have millions of users

connected and sharing huge amount of data. Thus, P2P systems need to handle a

very large number of autonomous computing nodes (the peers) that pool together

their resources and rely on each other for data and services. Unlike client-server com-

puting, a P2P system operates without central coordination, thus providing a very

dynamic environment, where peers can join and leave the network at any time. Ad-

ditional advantages include direct and fast peer communications, self-organization,

decentralization in data storage and processing, and the ability to scale up to large

number of peers, while ensuring fault-tolerance.

In order to address data management issues in a P2P context, we propose the

SQPeer middleware. Its main goal is to provide the necessary functionality for se-

mantic query routing and planning of distributed queries posed in a P2P context.

More precisely, SQPeer works on top of a dynamic P2P database system consisting

of autonomous peers sharing their local bases.

1.1 Motivation

Despite the recent emergence of P2P systems, most of these systems have se-

vere limitations in contrast to traditional data management systems: file-level shar-

ing, read-only access, simple keyword-based search and poor scaling. In most cases,

searching in a P2P system relies on simple selection conditions on attribute-value

pairs or IR-style string pattern matching. Simple techniques (e.g., network flood-

ing) are used to look up and retrieve relevant data. Moreover, both communication

and processing resources are wasted, since no optimizations are usually considered.

These limitations are acceptable for file-sharing applications, but in order to support

highly dynamic, ever-changing, autonomous social organizations (e.g., scientific or

educational communities), we need richer facilities in exchanging, querying and inte-

University of Crete

1.1. MOTIVATION 3

grating structured and semistructured data hosted by peers. Moreover, considering

data management issues in P2P systems is a quite challenging task due to the scale

of the network and the autonomy and unreliable nature of peers.

When considering data management, the main requirements of a P2P system are

the following:

• Autonomy: an autonomous peer should be able to join or leave the system

at any time without restriction. It should also be able to have control on its

stored data.

• Query Expressiveness: the query language should allow the user to describe

the desired data at the appropriate level of detail. The simplest form of a

query is a key lookup, which is only appropriate for finding files. But in a more

complex scenario, where peers store (semi-)structured data, a high-level query

language is necessary.

• Efficiency: the efficient use of the P2P system resources (bandwidth, comput-

ing power, storage), which is completely decentralized, should result in lower

cost and thus higher throughput of queries, i.e., a higher number of queries can

be processed by the P2P system at a given time. Specifically, query process-

ing can be performed in a distributed way by a number of peers, thus taking

advantage of remote peer resources.

• Quality of Service: refers to the user-perceived efficiency of the system, e.g.,

completeness of query results, data consistency, data availability, query response

time, etc.

• Fault-tolerance: efficiency and quality of services should be provided despite

the occurrence of peer failures caused by the dynamic nature of the system.

In addition to the above, the importance of intensional (i.e., schema) information

for integrating and querying peer bases has been highlighted by a number of recent

projects [BGK+02]nejdl03 [HIST03] [ACMH03]. More precisely, the notion of Seman-

tic Overlay Networks (SONs) [CGM03] [TXKN03] appears to be an intuitive way to

George Kokkinidis

4 CHAPTER 1. INTRODUCTION

cluster together peers sharing the same schema (or different schemas glued together

with appropriate mapping rules) about a community domain or application model.

This approach facilitates query routing, since each peer has the means to identify

relevant to a query peers, instead of broadcasting query requests on the network. A

natural candidate for representing such schemas is the Resource Description Frame-

work /Schema Language (RDF/S). The modeling primitives of RDF/S are crucial for

P2P databases where monolithic RDF/S schemas and resource descriptions cannot

be constructed in advance and peers may have only incomplete descriptions about

the available resources. In this context, several declarative languages for querying

and defining views over RDF/S description bases have been proposed in the litera-

ture such as RQL [KAC+02] and RVL [MTCP03]. However, a full-fledged framework

for evaluating semantic queries over peer RDF/S bases (materialized or virtual) is

still missing. More precisely, a semantic processing mechanism should produce an

appropriate execution plan in order to efficiently answer a query by retrieving data

dispersed throughout the system.

1.2 Contributions

Considering the aforementioned functionality, we present the design and imple-

mentation issues of the SQPeer middleware for semantic query routing and planning

in an RDF/S-based P2P system.

SQPeer utilizes RDF/S for expressing, querying and creating views over the con-

tents of a peer base. More precisely, conjunctive RQL queries expressed against an

RDF/S schema-based SON are represented in our middleware as query patterns. A

novel technique is introduced for advertising peer RDF/S bases using intensional in-

formation. In particular, we are employing RVL view patterns for declaring the parts

of a SON RDF/S schema which are (or can be) actually populated in a peer base.

Query/view subsumption techniques are also used to identify peer views relevant to

a given query with the use of their intensional information.

Query processing in SQPeer is responsible for the generation of appropriate query

University of Crete

1.2. CONTRIBUTIONS 5

plans. More precisely, a semantic query routing phase includes a data localization

algorithm that matches a given RQL query against a set of RVL peer views in or-

der to determine relevant peer bases based on appropriate query/view subsumption

techniques. This algorithm relies on a fragmentation phase that efficiently breaks a

complex query pattern given as input into a set of simpler query patterns. A lookup

service is also used to efficiently discover the remotely available peer advertisement

information. In the end, the routing phase produces query patterns annotated with

the relevant peer views.

We introduce a semantic query planning phase that involves an algebraic transla-

tion algorithm responsible for formulating query plans from annotated query patterns

taking into account the involved data distribution (e.g., vertical, horizontal) in peer

bases. The produced query plan is executed by establishing appropriate communi-

cation channels between the relevant peers. Additionally, we discuss several compile

and run-time optimization opportunities for SQPeer query plans and introduce an

appropriate cost model for executing a dynamic programming approach in order to

optimize the formulated query plans.

As far as the execution order of the query routing and planning phases is con-

cerned, we propose two different alternatives affecting both the nature and the eval-

uation of the produced query plans. So in contrast to a sequential execution of the

two phases, we also present an interleaved execution of query routing and planning

phases as an alternative scenario in processing a distributed query.

In addition, we overview recent approaches for Distributed and P2P Database

Systems. The systems are categorized based on the their routing and planning capa-

bilities, with each category facing different challenges over the common problem of

distributed query processing.

Finally, we present how SQPeer can be utilized in order to deploy hybrid, structured

and ad-hoc P2P database systems. The challenges and special characteristics of each

architecture are considered for efficiently evaluating a query in the specified context.

The work presented in this thesis has been published in the proceedings of the First

International Workshop on P2P Computing and Databases (P2P&DB) [KC04], in the

George Kokkinidis

6 CHAPTER 1. INTRODUCTION

proceedings of the Third Hellenic Data Management Symposium (HDMS), as a book

chapter in “Semantic Web and Peer-to-Peer” by S. Staab and H. Stuckenschmidt,

and has been presented in the 8th International Workshop of the DELOS Network

of Excellence on Digital Libraries on Future Digital Library Management Systems

(System Architecture & Information Access) [KSDC05].

1.3 Outline of the Thesis

The thesis is structured as follows:

Chapter 2 discusses the related work and presents an overview and a proposed

classification for Distributed and P2P Database Systems.

Chapter 3 describes the use of RDF/S in a SON-based P2P system. More pre-

cisely, we illustrate the representation of RQL queries and RVL views as query and

view patterns respectively. We also discuss the notion of query/view subsumption.

Furthermore, we discuss issues emerging from the consideration of different architec-

tural alternatives, i.e., hybrid, structured and ad-hoc P2P architectures.

In Chapter 4 we describe how SQPeer query plans are generated. More pre-

cisely, the core algebra used for the representation of RQL queries as query plans

is introduced. Then, the algorithms for routing and planning are illustrated by ad-

ditionally considering the fragmentation, data localization and algebraic translation

phases. Cost-based optimization issues are also addressed with the use of a dynamic

programming-based query optimizer. The interleaved query routing and planning sce-

nario is given as an alternative for processing and executing a query considering data

distribution and optimization aspects. Then, we illustrate how the query is executed

with the use of appropriate communication channels and several run-time optimiza-

tions that can be performed during query execution. Through a set of experiments

we point out the advantages of interleaved query routing and planning compared to

their sequential execution.

Finally, Chapter 5 summarizes our work and contributions and discusses future

work.

University of Crete

Chapter 2

State Of The Art

In a P2P system, a large number of autonomous nodes (the peers) pull together

their data and/or computing resources, relying on each other for data and services.

P2P systems can be seen as an extension of traditional client/server systems, where

nodes may behave as both servers and clients at the same time. Furthermore, each

peer may enter or leave the system at will, thus providing a higher degree of au-

tonomy; the system, however, should continue being functional irrespectively of the

autonomous decisions of each peer. P2P computing introduces a paradigm of decen-

tralization going hand in hand with self-organization and high degrees of autonomy

among the participating peers.

In a P2P Data Management System (PDMS) each peer maintains its own database,

which shares either in part or as a whole with the rest of the system. As usual, the key

concept in a PDMS is query evaluation, which, since data is network-bound, consists

of two steps: (i) query planning (i.e., identifying which sources to access and in what

way), and (ii) query routing (i.e., shipping computation and/or data across peers in

order to compute the query result.) Before describing how query routing and plan-

ning is implemented in PDMSs, however, we will give an overview of query processing

in the more traditional paradigm of Distributed Data Management Systems (DDMS)

[OV91]. Figure 2.1 illustrates the main query processing steps in a DDMS [Kos00].

The query processor accepts a query and produces a query plan specifying precisely

how the query is going to be executed. Query plans are usually represented as trees.

7

8 CHAPTER 2. STATE OF THE ART

The nodes of such trees correspond to the operators of the query, while the leafs rep-

resent the information sources (e.g., tables) that need to be combined to produce the

final result. In the first phase, the query is parsed and transformed into an algebraic

representation for further processing. Logical optimization applies algebraic trans-

formations regardless of the data distribution in the DDMS. These transformations

include normalization, elimination of redundancies and simplification of algebraic ex-

pressions. The next phase, called data localization, generates a location-based query

plan, where all relations of the query are bound to specific data sources. A single

(logical) relation may be bound to one or more (physical) remote sources. The phys-

ical optimizer receives a localized query plan and by using heuristic or cost-based

techniques produces an optimized query plan taking into account inter- and intra-

source query processing and communication cost. The optimized plan is finally sent

to the execution engine responsible for forwarding the subplans to the appropriate

sources and monitoring their evaluation. The execution engine is also responsible for

(a) establishing the proper communication links between remote sources contributing

to the query plan and (b) adapting query plans [ILW+00] during query execution in

case of run-time problems.

DDMSs handle data management issues by providing advanced capabilities, such

as schema management, high-level query languages, access control, automatic query

processing and optimization, etc. Most importantly, users can transparently access

and acquire data residing in several remote databases. However, a centralized control,

usually provided by a single server, is required, reducing the system to scale up to tens

of databases. On the other hand, PDMSs adopt a completely decentralized approach

to data sharing [VP04]. By distributing data storage, query processing and execution

across autonomous peers, these systems can scale up to very large number of peers,

without the need for central control and powerful servers. In addition, efficiency and

quality of services are provided despite the occurrence of peer failures caused by the

dynamic nature of the system.

More precisely, autonomy, which is one of the most significant characteristic of a

PDMS, can be distinguished into four kinds [KP04]. Storage autonomy refers to the

University of Crete

9

parser
optimization

logical
optimization

physical
localization

data execution

representation
algebraic

query plan
algebraic

query plan
localized

query plan
optimized

query results

Figure 2.1: Typical architecture of query processing in DDMS

freedom of what a peer stores in its base and what it wants to advertise or replicate

to remote peers. Execution autonomy refers to the ability of a peer to locally process

and answer queries allowing coordination between peers for efficiently performing

distributed query processing. Lifetime autonomy refers to the peers’ freedom to join

and leave the system arbitrarily, which actually differentiates these systems from

the traditional DDMSs. Finally, connection autonomy refers to the topology of the

system enabling a peer to select with which and how many peers it will connect to.

In this context, several assumptions made by DDMSs during query processing are

revised by PDMSs creating additional requirements:

• Single administrative structure: A query optimizer in traditional DDMSs de-

cides to fragment a query into certain subqueries and execute it into different

peers. These peers will not deny the execution of a query, e.g., due to processing

load, since their selection is done centrally. Such a “good neighbor” assumption

is not usually true in a PDMS.

• Uniformity : Traditional DDMS query optimizers generally assume that all pro-

cessors and network connections are of the same speed. Additionally, every peer

is considered to be capable of executing all algebraic operators. Both assump-

tions do not usually hold in real-scale PDMSs.

• Fixed Query Plans : Unlike DDMSs where the query plans are fixed, run-time

adaptation of plans to the network or peer failures is an important feature of

PDMS. Adaptability can be achieved by either changing entirely or partially

the currently executed query plan.

In DDMSs only one peer is responsible for all the query processing steps, except

George Kokkinidis

10 CHAPTER 2. STATE OF THE ART

for the last one, since a set of peers are involved in query execution. On the other

hand, a peer in a PDMS can potentially assist in all query processing steps. Despite

the plethora of PDMSs proposed in the literature, a typical P2P query processing

architecture is still missing. For the purposes of our survey, we focus on the following

four main query processing activities and highlight their specific characteristics in

PDMSs:

Query Routing. Query routing is responsible for finding the peers relevant to a

query by considering the data partitioning (either horizontal, vertical or mixed)

on each peer. Query routing relies on advertisements concerning the peers’

bases. Advertisements usually contain information about the data (extensional)

or the schema (intensional) of the peers. In particular, in PDMSs focussing on

data integration, intensional advertisements take the form of views. Peer ad-

vertisements can be either centrally stored in a registry at a single peer, or they

can be distributed through a number of peers of the PDMS. In the distributed

alternative, each peer contains a subset of the peer advertisements that when

combined offer complete data localization information. In this case, the lookup

service for retrieving the distributed advertisements may be performed either

by a single peer or by multiple collaborating peers. Query routing may involve a

query fragmentation phase, where the query is split into distinguished fragments

matching the available peer advertisements.

Query Planning. Query planning is responsible for generating a distributed query

plan that governs the query’s execution in a fully distributed way by considering

all local or remote peer bases contributing fully or partially to the query. The

main challenge during query planning is to determine an appropriate ordering

among the query operators, in order to execute them efficiently in remote peers.

This ordering is also dictated by the planner’s choice between intra- or inter-

peer processing. Based on this decision the query plan is created by promoting

operations whose operands are stored either at the same (intra) or different

(inter) peers. Data can be partitioned among the peers vertically or/and hori-

University of Crete

11

zontally. In vertical partitioning, joins are used to combine data that reside in

remote peers. Alternatively, in horizontal partitioning, set union is employed

to assembly the final answer. Query planning may be either under the respon-

sibility of a single peer or of a number of cooperating peers. In the former case,

query planning usually relies on a global knowledge of peer base advertisements,

resulting in the construction of optimal and complete plans. In the latter case,

this knowledge is distributed at different peers and only partial query plans are

created at each peer. More specifically, these partial plans are created in multi-

ple steps by considering peer base advertisements obtained at each consequent

peer.

Query Optimization. The goal of the physical query optimization phase (see Fig-

ure 2.1) is to produce an efficient query plan with respect to the estimated query

evaluation time. Most widely used optimization techniques are either heuristic-

or cost-based [OV91, LPR98, Sah02]. Heuristics allow us to optimize query

plans by, for example, pushing as much as possible query evaluation to the

same peers. This actually promotes intra-peer processing, which by definition

is more efficient than the inter-peer one. The cost model used in the cost-based

optimization estimates the total resource consumption or the response time for

a given query. The difference between these two cost metrics is that the former

does not consider possible parallelization in plan execution, i.e, the fact that

subplans may be executed simultaneously at different peers. The cost is usu-

ally computed by adding the processing cost of the query plan’s operators at

each relevant peer and the communication cost from the data exchange between

them in order to complete query execution. For calculating this cost, appro-

priate statistics concerning peers’ network and bases are needed. Statistical

information may be either centralized or distributed among peers. In the lat-

ter case, optimization can be performed with incomplete statistical information,

leading to partly optimized query plans. More precisely, query optimization can

be decomposed into local and global optimization phases [OV91]. In local opti-

George Kokkinidis

12 CHAPTER 2. STATE OF THE ART

mization, a peer receiving a (sub)query is responsible for ordering the operators

of the query using statistics regarding the contents of its local base. In global

optimization, a peer responsible for executing a query to other peers, decides

the ordering of the query operators using statistics about the communication

cost or the processing capabilities of remote peers. In addition, it decides which

peer will undertake the responsibility of executing each operator of the query.

Since the number of all possible query plans, i.e., all possible operator order-

ings, can be fairly large, appropriate plan enumeration algorithms are required.

IBM’s System R [SAC+79] dynamic programming algorithm is one of the most

popular algorithms employed for generating an optimal plan if the cost model is

sufficiently accurate. Plans are constructed in a bottom-up fashion, since more

complex plans are built from simpler ones by selecting at each step an opti-

mal subplan. Extensions like iterative dynamic programming [KS00] have been

also proposed with the goal of decreasing dynamic programming’s exponential

complexity by further pruning the search space.

Query Execution. Query execution is responsible for organizing the query’s eval-

uation phase by (i) executing the subqueries at the appropriate peers, with

respect to the produced query plan and (ii) sending the results back to the

peer that posed the query. The produced query plan may be either centrally

coordinated or fully distributed. In the former case, a single peer is responsible

for sending the subqueries to the appropriate peers and for performing the rest

of the processing locally after receiving the results. In the latter case, several

peers communicate with each other in order to execute the plan. Subquery re-

sults are exchanged between the participating peers and when complete results

are computed, they are sent back to the requester. In this respect, appropriate

query execution policies are considered by assigning peers to plan operators,

namely, data shipping, query shipping, or hybrid shipping. In data shipping, a

peer asks for appropriate resources and all further processing takes place locally.

In query shipping, subqueries are sent to remote peers, thus pushing operators

University of Crete

13

Centralized Query Planning Distributed Query Planning
Centralized (1) One peer contributes to both (2) Several peers contribute to QP
Query QP and QR and one peer to QR
Routing . Wide-Area DDBs . Wide-Area DDBs

Query Scheduling Systems: Auction-based Query Planning
DQS [LPR98], ObjectGlobe [BKK+01], Systems:
Ginga [PLP02], SAIL [SHB04] Mariposa [SAL+96], Query Trading [PI04]

Distributed (3) Several peers contribute to QR (4) Several peers contribute to both
Query and one peer to QR QP and QR
Routing . PDMS . PDMS

Systems: Systems:
a) Distributed Index Shipping a) Mapping-driven PDMS
RepositoryGuide [BG03] Piazza [HIST03], GridVine [ACMHP04]

b) Clustered PDMS b) Mobile Planning PDMS
XPeer [SMGC04], Edutella [NWS+03] [BDK+04], HyperQueries [KW01], ubQL [Sah02],

Resource Sharing Clustered P2P [TXKN03], MQP [PMT03], ActiveXML [MAA+03] [ABC+04],

SWAP [ETB+03], KeX [BBMN02] XML Search Engine [GWJD03b]

c) Structured PDMS c) Adaptive Planning PDMS
AmbientDB [BT03] [Bra03], P2P XML FREddies [HJ04], SwAP [Zho03]

Processing [GWJD03a], SemanticPeer [TDL04],

Bookmark-driven QR [BMWZ04],

RDFPeers [CF04]

Table 2.1: Categorization of systems based on query routing and planning alternatives

to be executed remotely. A hybrid approach is possible by combining the two

previous execution policies. The decision for the appropriate shipping approach

is taken during the query plan optimization along with the query operators

ordering as discussed previously.

In Table 2.1, we propose a classification of PDMSs in two axes by considering their

query routing and query planning capabilities. As far as query planning is concerned,

we distinguish between those systems that produce query plans in a centralized way

and those that produce them in a distributed way. The difference lies to the fact that

one or several peers may contribute to the query planning process. Respectively, in

query routing we distinguish between systems that are based on centralized or dis-

tributed advertisements. This means that either one peer or a specific advertisement

registry maintains all necessary data localization information, or each peer indepen-

dently handles a subset of peer advertisements and, consequently, participates in the

George Kokkinidis

14 CHAPTER 2. STATE OF THE ART

routing phase. The order between retrieving data localization information and pro-

ducing the query plan can be either sequential or interleaved. In the former case,

query routing is guided by query planning. The first and third family (i.e., (1) and

(3)) of systems shown in Table 2.1 involves systems where the two phases are distinct.

The second and fourth family of systems (i.e., (2) and (4)) query routing and planning

are indistinguishable, since the query plan is produced in several steps according to

the relevant peer advertisements, which are available at each point in time.

As far as query routing is concerned, the choice of the structure for maintaining

the peer advertisements is implied by the substantial tradeoff between reducing the

number of lookup requests and the amount of distribution and autonomy we desire

from the PDMS. Extensional advertisements are used in the systems of the first and

third categories, while intensional ones are used by all the systems except the ones of

the first category.

Another classification criterion would be the topology of the PDMS, but we con-

sider that this choice is subsumed by the two factors already considered in our clas-

sification schema. More precisely, there exist three possible architectural alternatives

for P2P systems. In ad-hoc or pure P2P systems, each peer simply needs to know

and initially contact at least one other peer. The main challenge in this context is

routing, since each peer is connected to the system through its neighbors, so a clever

advertisement structure and routing process should be implemented. The structured

P2P systems organize their peers according to specific constructs, which provide the

means for an efficient and distributed organization and storage for peer advertise-

ments. The hybrid approach involves the existence of special peers, called super-

peers [YGM03], which have better processing capabilities and are usually highly-

available peers. Super-peers actually organize the simple peers and are capable to

hold all the necessary advertisements of their subordinate peers. In hybrid PDMSs

query routing is completely performed at the super-peer level.

The classification scheme based on query routing and planning implies four distinct

families of systems, which are described thoroughly below.

University of Crete

2.1. CENTRALIZED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 15

Wrapper

Database

Wrapper

Database

Wrapper

Database

Wrapper

Database

Coordinator
(QP & QR)

Sub−query

Results
Query

Figure 2.2: Centralized QR and QP

2.1 Centralized Query Routing and Centralized

Query Planning

The first category comprises systems where both query routing and planning are

centralized, i.e., a single peer controls query processing and remote peers contribute

in query execution as simple servers, as seen in Figure 2.2. Traditional DDMSs can

be included in this category, since in these systems a centralized registry maintains a

global knowledge of the peer capabilities and employs this knowledge to produce the

appropriate query plans.

Query routing is based on the centralized advertisement registry and the coordi-

nator (or mediator) peer decides which peers should be used for executing parts of

the initial query (i.e., subplans of the generated query plan). After a complete query

plan is produced, the coordinator contacts the respective peers in order to send them

the subqueries they can answer. Each peer executes the query locally and sends the

produced results back to the coordinator, which then produces the complete answer.

The main architecture in Figure 2.2 illustrates the interactions between the involved

peers and how routing is performed by systems belonging to this category. By this

George Kokkinidis

16 CHAPTER 2. STATE OF THE ART

approach, the benefit of having global knowledge is exploited, thus leading to a cen-

tralized control of both query planning and choice of execution alternatives (e.g., data

vs. query shipping).

Query processing in these systems slightly differs from the model presented in Fig-

ure 2.1. A local query optimization layer is introduced; local optimization is performed

by all the peers involved in the query plan. After subqueries are sent to appropriate

peers for execution, the receiving peer locally optimizes its subquery by using only

its local statistics and schema information. Local optimization relies on techniques

from traditional database systems. Through this layer, each peer locally contributes

to the optimization of the query, since all global decisions are already taken by the

coordinator peer at the global query optimization layer. The global and local query

optimization layers correspond to the physical optimizer shown in Figure 2.1.

In the following subsections we present different approaches for centralized query

routing and planning.

Distributed Query Scheduling Service

In [LPR98], a distributed query scheduling service (DQS) is introduced in the

context of the DIOM data integration system based on the relational data model and

SQL-like queries. DIOM relies on a two-tier architecture and offers services at both

the mediator and the wrapper tier. DIOM mediators utilize peer advertisements for

efficient processing of distributed queries. Additionally, each peer base has a wrapper

in order to be capable of communicating with the DIOM system, since it addition-

ally provides the appropriate translations between terms of the underlying source

and those used by the mediator. The peer bases considered by DIOM range from

structured to non-structured ones. Each such base is autonomous, but if its exported

schema changes it should notify its respective DIOM mediator. Each mediator orga-

nizes a metadata repository, which contains all available peer advertisements. Both

types of data partitioning (i.e., horizontal or vertical) are considered.

After a user issues a query, an ordered binary query plan tree is created by em-

ploying commonly used single peer optimization methods [OV91]. Then, query rout-

University of Crete

2.1. CENTRALIZED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 17

ing and parallel query plan generation are used to produce an appropriate so-called

location-based query plan. Query routing locates the relevant peer bases for answer-

ing parts of the query from the corresponding metadata repository manager. The

parallel query plan generation decides the degree of intra-operator parallelism used

throughout the query plan, i.e., the number and position of union operators through-

out the query plan. Additionally, the union collector peers are decided for handling

each union and thus manage the parallel execution of query (sub-)plans.

The main service provided by DQS is query optimization. Global optimization

criteria are used to decide between different execution policies for a given plan. A

cost model taking into account communication, processing cost and response time is

used to estimate the total cost of a query plan. A three-phase optimization approach

is employed. At first, during query compilation, well-known heuristics are used, such

as pushing down selections and/or projections, or considering only join orderings that

do not produce Cartesian products. The next phase is query parallelization in which

parallel execution of the query plan is addressed. Appropriate heuristics are used to

decide the union and join ordering that produces the best plan possible. The final

optimization phase comprises of peer selection and query execution, where the peers

for executing the query plan operators are chosen. This selection is cost-based and

all available peer choices are considered for finding the most efficient one. This phase

actually decides between data and query shipping alternatives.

ObjectGlobe

ObjectGlobe [BKK+01] is a distributed query processor for peer bases. Object-

Globe supports a nested relational data model, thus relational, object-relational and

XML data sources can be easily integrated. Peers in ObjectGlobe have certain roles.

Data providers supply the data, cycle providers handle the execution of the query and

metadata providers perform the query routing phase. The metadata providers main-

tain repositories containing the attributes used in a peer base, appropriate statistics

and authorization information, i.e., both intensional and extensional peer advertise-

ments. All metadata providers form a backbone, where each peer publishes descrip-

George Kokkinidis

18 CHAPTER 2. STATE OF THE ART

tions of their relations expressed in RDF. Data consistency is preserved by replicating

the appropriate metadata knowledge to all backbone providers.

Query processing in ObjectGlobe distributes query operators to cycle providers

in order to execute complex queries. The lookup service provides the necessary infor-

mation on what relations should be accessed and if such access is alowed (e.g., user

authentication or read/write privileges). Furthermore, the query optimizer creates a

valid query execution plan, based on the received data localization information, trying

to additionally fulfill possible user constraints. An iterative dynamic programming

algorithm is used to find the optimal execution plan by considering both horizontal

and vertical data partitioning. The cost model employed considers processing and

communication overheads, but also considers whether users’ constraints in terms of

response time or execution cost can be satisfied. Each operator of the output plan

is annotated with the cycle provider that is responsible for its execution. Then, the

query plan is transmitted to the responsible cycle providers and necessary communi-

cation paths are established. Finally, the execution phase is initiated and results are

returned to the user.

ObjectGlobe provides a Quality of Service (QoS) model and allows QoS constraints

for the query plan to be posed by the user; for example, constraints on the number

of results returned or the cost in terms of the evaluation time of the query. These

constraints restrict the search space of query plans, since only plans that satisfy them

all are enumerated. A monitoring system focusses on query execution in order to

detect and react to potential quality violations by changing cycle providers during

query execution.

Ginga

The Ginga system [PLP02] addresses adaptive query processing issues in a wide

area DDMS. A Ginga server, taking on the role of coordinator, is responsible for

processing a query and obtaining results from all the underlying peer bases.

A query is initially processed by the server’s query manager, which coordinates

client query sessions and routes queries according to DIOM’s routing service. Data

University of Crete

2.1. CENTRALIZED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 19

localization involves the selection of the appropriate peer bases by discarding those

that cannot contribute to the query. Each query is transformed into a set of sub-

queries, with each subquery assigned to one of the chosen peers. Since no horizontal

partitioning is considered in Ginga, the obtained query plans only comprise of only

joins.

The adaptive nature of Ginga query plans is achieved in two phases. The reactive

adaptation engagement phase is performed before query execution and during query

planning. An initial optimized plan is generated using DQS. Additionally, a set

of alternative plans are also considered. Assumptions on runtime problems that

may be encountered are made. The optimal plan is added to the set in case these

assumptions hold. Along with each such alternative plan are the triggers capturing

the runtime environmental changes that will generate the selection and execution of

each respective query plan. The reactive control phase is performed during query

execution. The conditions involved in the aforementioned triggers are checked and

when one is fired, the corresponding alternative query plan replaces the current one.

This change is done only if it is beneficial for the total execution of the query and

depends on how far into execution of the current query plan the system has currently

progressed. Ginga’s centralized control of query execution facilitates monitoring and

adaptation distributed query plans.

SAIL

In [SHB04] an architecture for querying distributed RDF bases is introduced.

Queries are expressed in a query language similar to RQL. SAIL consists of several

RDF bases with a mediator on top for processing queries. Each such RDF repository

should provide a certain RDF API (called SAIL) to communicate with the mediator

SAIL. Research focusses on the problem of creating an appropriate index structure for

distributed RDF bases and implementing query planning and optimization algorithms

at the mediator level.

The SAIL index structure contains information about subpaths or complete paths

that can be constructed by employing an index hierarchy over a given RDF schema.

George Kokkinidis

20 CHAPTER 2. STATE OF THE ART

The hierarchy is formed in such a way that each index of a schema path p always

contains the indices for all prefixes of p. For example, for the SeRQL query “{A}

author {W} carriesout {P} topic {‘RDF’}”, which asks for all the authors that carry

out a project in the area of RDF, the index hierarchy for the path (author, carriesout,

topic) will include (author, carriesout) and (carriesout, topic), along with the singleton

paths (author), (carriesout) and (topic). Along with each path, the index contains

the peer bases that can answer it and the number of results that each peer base

holds. This information can be used either for estimating the communication cost,

or for deciding on the join ordering. Both horizontal and vertical partitioning are

considered.

The query planning algorithm uses the index structure to create a complete query

plan. Starting from the complete path, the algorithm iterates by splitting this path

into all its possible path fragments. In each iteration, a join is used to connect

the results from the path fragments (vertical partitioning) and a union aggregates

the results obtained from previous iteration steps (horizontal partitioning). Query

optimization resolves the problem of join reordering at the mediator and does not

consider possible interchange between joins and unions of the query plan. The cost

model employed considers both communication overhead (for retrieving the results

from the underlying bases), as well as join reordering at the mediator.

The obtained plan is executed by sending the appropriate subqueries to the un-

derlying bases and shipping the results back to the mediator for local processing. By

the nature of the produced query plans, all inter-site joins and unions are executed

by the SAIL mediator.

2.2 Centralized Query Routing and Distributed

Query Planning

In systems of this category several peers may contribute to query planning, al-

though a centralized registry is used for holding all necessary peer base advertise-

University of Crete

2.2. CENTRALIZED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 21

Results

Bidding Offer/
Processed Sub−query

Lookup

Advertisement

Query

(QP & QR)
Coordinator/Buyer

Bidder
(QP)

Bidder
(QP)

Registry

Bidder
(QP)

Bidder
(QP)

Figure 2.3: Centralized QR and Distributed QP

ments. The existence of a centralized registry supports the creation of complete

query plans at the peer responsible for query processing, but does not determine plan

execution. The latter is carried out in a distributed fashion.

Query processing in this category bears similarities with the traditional DDMS

approach. However, this category poses some new challenges. Along with data local-

ization, a query fragmentation phase breaks the query into distinct fragments, which

are subplans containing one or more query operators. These fragments are routed

independently and are considered to be answered as a whole by one or more peers.

Each fragment’s execution, however, is not considered to be performed by the peer

it is initially sent to, as is the case in the previous category, but several peers may

contribute by answering parts of it. The fragmentation and localization phases are

interleaved, since fragmentation is affected by the answering capabilities of the un-

derlying peer bases. Since query subplans can be executed at different peers, the

query optimizer may decide to push a subplan to be executed at another peer for

optimization reasons.

The two systems of this category use an auction-based query processing approach.

A bidding phase is used to decide both on query fragmentation and localization. The

peers involved in the bidding phase contribute to query planning, although data

localization information is centrally available. In Figure 2.3, an example of how such

George Kokkinidis

22 CHAPTER 2. STATE OF THE ART

a system works is shown. Initially, each bidder advertises descriptions of its stored

data to a centralized registry. Then, a broker acting as the coordinator can ask and

obtain all the data localization information concerning a given query. Each bidder

after receiving a query can simply return its preferred bid or can additionally further

process the query according to its own capabilities. Thus, each bidder participates

in the query planning phase by contributing subplans to the broker based on local

knowledge. We must point out that not all bidders will finally contribute to query

execution, since winners (e.g., the ones depicted with a bold outline in Figure 2.3) are

elected from the bidding phase and these are the ones who should be contacted by

the coordinator to answer the query. A bidder wins when it offers the best execution

cost for the bidding subplan. This cost can be measured either in total execution

time or in some other predefined metric.

In the following subsections we present different approaches for centralized query

routing and distributed query planning.

Mariposa

Mariposa [SAL+96] addresses distributed data management issues in a wide-area

network (WAN) based on the relational data model and the SQL3 query language.

Each such query references tables that may be fragmented at different peers. These

fragments can obey range- or hash-based partitioning criteria or may simply be un-

structured, when no criteria is introduced.

Cost-based global optimization in Mariposa follows a microeconomic paradigm.

Peers decide their role in the system (i.e., brokers or bidders) and are able to take

decisions concerning their behavior on buying, selling or bidding scenarios. Name

servers, acting as registries, are special peers responsible for storing and providing

the relevant metadata for a given query, including the peers that can answer it.

Advertisements are used by the bidders, i.e., peers that bid for a certain query, in

order for the names servers of the system to become aware of them.

Query processing in Mariposa works in the following way. Queries are submitted

by a client application. Each query starts with a certain budget, which defines what

University of Crete

2.2. CENTRALIZED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 23

the user is willing to pay in terms of time or in terms of some other user-specified

metric. The query should be processed within this allocated budget. The query is

fragmented into a set of subqueries, processed by different peers. Since each subquery

answered by a peer comes at a certain cost, appropriate peer bases should be selected

through a bidding process. The query is parsed by receiving appropriate metadata

from a name server, thus identifying for example the name and type of each attribute

and the location of the fragments of each table it needs to access. A single-peer op-

timizer generates a locally optimized query plan as if all the referenced tables were

stored locally. The next phase, i.e., the query fragmentor, uses the localization infor-

mation of the table fragments in order to efficiently transform the optimized query

plan. These transformations include the decomposition of each single resource of the

query plan into subqueries, one per fragment of the table responsible for answering

this resource. Union is used to merge the partial results for each fragment. Moreover,

joins are decomposed into one join subquery for each pair of fragments of the two

joined relations. Lastly, operations can be organized accordingly in order to be pro-

cessed in parallel for intra-query synchronization reasons. Finally, the broker receives

a query plan containing a collection of subqueries that combined can answer the orig-

inal query. It then sends requests to the bidders responsible for each subquery. Each

bidder sets its price for the execution of the subquery it receives and sends it back

to the broker. The broker decides on which bid it should accept according to rules

obtained by its preferred protocol. The relevant peers are notified for executing the

fragments they have been assigned. A coordinator handles the tasks of assembling

partial results and returning the final answer to the user.

Query Trading

Similar to the Mariposa approach, this work [PI04] focuses on distributed query

optimization by using a query trading approach. The architecture of the system is

similar with the one used in Mariposa, with autonomous peers that act as buyers

or sellers and use their own negotiation protocols. Queries are seen as commodities

exchanged between peers and query optimization is considered as the trading nego-

George Kokkinidis

24 CHAPTER 2. STATE OF THE ART

tiation process for deciding the best execution plan for obtaining these commodities

from the sellers.

The query planning and optimization algorithm iterates on the bargaining pro-

cess between buyer and seller nodes by considering different negotiated queries and

possibly different sellers for each iteration. The input of the algorithm is a query

Q with an initially estimated cost C. More precisely, a set of subqueries q, which

combined produce query Q, with their estimated costs start the iterative bargaining

process. The output is the best estimated execution plan P for query Q, i.e., the one

that minimizes the total execution cost. This cost takes into account the network

resources and current workload of the sellers. During each iteration step the buyer

sends the set of subqueries to the selected sellers. Each seller identifies the parts of

each subquery that it can answer and rewrites it by removing all non-local relations

and binding those available locally to the appropriate tables. Then the optimal lo-

cal plan for these queries is identified. A modified dynamic programming algorithm,

which holds intermediate optimal subplans, is used to find this plan and its cost. The

final plan, along with the intermediate results, is returned to the buyer, since they are

considered for the buyer’s optimal plan resolution. The buyer, after receiving the sets

of offers made from the sellers, selects the winning ones. The buyer query planner

considers these subqueries and finds a set of candidate execution plans for the orig-

inal complete query by again using a dynamic programming approach. An analyzer

examines each candidate execution plan and produces an enhanced set of subqueries

for the next iteration step. These new subqueries may be simple modifications of the

previously used ones (for example by removing redundant attributes or attributes not

used in the final plan). During each iteration the best execution plan is selected and

if it is better than that of the previous iteration step or if the set of subqueries is

modified by the analyzer, the iteration continues. When the iteration completes, the

selected plan is executed by informing the appropriate sellers and obtaining the final

results.

University of Crete

2.3. DISTRIBUTED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 25

2.3 Distributed Query Routing and Centralized

Query Planning

Systems in this category rely on distributed peer base advertisements and create,

at a single peer, a complete query plan according to the data localization information

obtained. The efficiency of the routing process is the primary focus of these systems.

PDMSs that are appropriately organized and generate query plans in a centralized

way are introduced. The peer responsible for the query initially requests and retrieves

the necessary data localization information by using distributed (intensional or exten-

sional) peer advertisements. This suggests the necessity of intensional or extensional

peer organization, since broadcasting messages to the whole system for retrieving data

localization information consumes both bandwidth and processing resources. After-

wards, the peer locally computes the appropriate query plan. Again, the information

gained concerning data distribution in the system implies the plan fragmentation into

subplans that can be answered by the same peer. The query plan is finally executed,

sending the subplans to the relevant peers and retrieving the results for further local

processing. So, the routing phase is introduced first and query planning is performed

in the sequel.

We can split this category into two main subcategories; systems that organize

their peers into clusters based on the notion of Semantic Overlay Networks (SONs)

and the structured systems that use Distributed Hash Tables (DHTs) to efficiently

implement the routing phase.

SONs were initially introduced in [CGM03] as a form for organizing semantically

relevant peers. In SONs, peers classify their data into one or more leaf concepts of

a specific classification hierarchy. This classification also dictates the arrangement of

the peers to their relevant SONs (see Figure 2.4). Each peer can be part of many

SONs but for illustration purposes only a single SON is presented in the figure. Query

processing identifies which SONs and correspondingly which peers are better suited

to answer a query. When a peer issues a query, it first classifies it and then sends it to

the appropriate SONs. Then, the peers within each SON find matches to the query

George Kokkinidis

26 CHAPTER 2. STATE OF THE ART

(QR)
SON SON

SON

SON

Query Results

Lookup Results

Lookup

Query Execution/

Figure 2.4: Distributed QR and Centralized QP in a Clustered PDMS

by propagating it within the SON. Data localization information is sent directly to

the initiator peer and used to create the appropriate query plan. The joining of a

peer into the system and the propagation of a query inside a certain SON can be

done either by a flooding Gnutella-like mechanism or by the help of super-peers.

On the other hand, DHTs are useful lookup structures for P2P applications. DHTs

allows to quickly reduce the amount of nodes needed to answer a given query with

data spread through the P2P system (see Figure 2.5). Given a key, the corresponding

data item can be efficiently located using only O(log n) network messages, where

n is the number of peers in the network. Several protocols (e.g., Chord [SMK+01],

CAN [RFH+01]) implement DHTs and provide lookup operations for mapping a given

key to a specific peer. All the peers are responsible for the routing phase by providing

and/or retrieving information about peer ids that can answer a given query. Query

execution involves contacting a set of peers and retrieving results for the query.

Before we describe the systems for the above two categories, we make note of a

system following a different approach in query processing, following what is known as

the index-shipping approach. Through index-shipping, query processing focuses on

routing indices among different peers and evaluating chains of joins between them.

This approach is different than the rest of the systems, since the main concern now

lies not in the efficient execution of the query plan through the appropriate selection

of data and query (fragment) shipping, but in the efficient discovery and evaluation

University of Crete

2.3. DISTRIBUTED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 27

Query

Query Execution/
Results

Lookup Results

Lookup

Figure 2.5: Distributed QR and Centralized QP in a Structured PDMS

of the data localization information used for the creation of complete query plans.

2.3.1 Distributed Index Shipping

RepositoryGuide

In [BG03] a distributed approach for a large-scale XML repository is introduced.

This work discusses the problem of efficient fragmentation of a globally accepted

XML schema by using index structures that can be well distributed through an XML

repository. XML data are assumed to be modeled as rooted, node-labeled trees.

Queries consist of path and tree patterns, where edges represent ancestor-descendant

relationships and node labels represent constraints, similar to XPath. The global

XML schema is given in a tree-structured representation, called RepositoryGuide

(RG). An efficient fragmentation scheme for the RG is introduced and an extension

to this RG, called Distribution RG (DRG), is used to hold the information on which

peers are responsible for each fragment. These fragments are distributed throughout

the system. Each fragment is bounded to a list of peer ids that can answer it. DRG

George Kokkinidis

28 CHAPTER 2. STATE OF THE ART

can be fully replicated at each peer and thus query planning can be supported by

any peer. Vertical fragmentation is considered, though an approach for horizontal

fragmentation is discussed as future work.

A query can be issued at any peer and query results should be returned to the

initiator peer. The query tree pattern is initially matched with the local DRG for

determining potential matches based on label paths. These matches return lists

of peer ids that may be stored either locally or remotely and should be properly

joined in order to produce the final set of peers that need to be contacted. This

introduces the concept of index shipping, since indices are routed through the system

and processed appropriately for producing the data localization information required

for the planning phase. Consequently, distributed query processing in this setting

involves identifying the most efficient way to gather these peer id lists into a common

peer and compute structural joins between them. Then at query execution, the

detected peers are contacted and the final XML results are produced.

2.3.2 Clustered PDMSs

XPeer

XPeer [SMGC04] is an XML PDMS, which manages data dispersed over a network

of autonomous peers. A hybrid P2P architecture is used and no global schema is

defined. Peers share XML data, which can be queried by a subset of XQuery without

universally quantified predicates and sorting operations. Peers are logically organized

into clusters managed by super-peers. These clusters may be organized according to

schema similarities between the peers, i.e., peers exporting data with similar schemas

are clustered together, thus super peer-based semantic overlay networks are created.

Each peer advertises a description of its base, which contains all the distinct paths

in its XML documents along with statistical information about value ranges. Super-

peers use this knowledge to handle both query routing and planning. Super-peers are

organized into a tree-like logical topology.

XPeer query processing initially involves the transformation of queries into al-

University of Crete

2.3. DISTRIBUTED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 29

gebraic expressions by a user-selected peer. Then, the peer routes the query to its

super-peer in order to locate the appropriate peers that can answer each expression. If

more than one peers are capable of answering an expression, the super-peer can decide

between unioning the results (union operator) or choosing the one that executes the

query the fastest (choice operator). The query is routed inside the super-peer network

in a hierarchical way until the whole query is localized. Then it is sent back to the

initiator peer for executing it. Before execution, logical optimization is performed by

applying well-known algebraic rewritings, e.g., selection push-down. For execution,

the query is split into single-location subqueries, which are sent to the relevant peers

and are executed locally.

Edutella

The Edutella project [NWS+03] explores the design and implementation of a

schema-based P2P infrastructure for the Semantic Web. In Edutella, a number of ex-

tensible RDF/S schemas describe peer content. Super-peers, i.e. peers with advanced

capabilities, undertake the responsibility of message routing, integration/mediation of

peer bases and query planning. Appropriate indices are used for the lookup phase and

by acquiring the appropriate data localization information the (sub-)queries are ini-

tially routed within the super-peer backbone and then to their respective “sub-peers”,

where the actual data resides. These indices consider the schemas and properties used

by a certain peer (intensional) and also the property values that may contain (exten-

sional). The HyperCup topology [SSDN02] is used to form the super-peer backbone

in such a way that super-peers can communicate in an efficient way.

A query processing mechanism in such a schema-based P2P system is presented

in [BDK+04]. Query evaluation plans (QEPs) containing selection predicates, com-

pression functions, joins, etc., are pushed from clients to super-peers where they are

executed. Super-peers use an optimizer for generating partial query plans. Initially,

each logical resource of the query is bound to a resource direction, if it is sent to

another super-peer, or physical resource, if it is directed to a sub-peer’s base, based

on the index. The plan created consists of two parts, (i) the locally-executed query

George Kokkinidis

30 CHAPTER 2. STATE OF THE ART

plan and, (ii) the remaining subqueries that should be broadcasted to the rest of the

super-peers. The remote subqueries are grouped by host and are sent to the relevant

super-peers. Then, cost-based optimization is performed in order to identify the peer

that should execute each operator of the local query plan. Cost estimation is based

on response times, transfer rates or even result sizes of previous queries. Different

optimization strategies are considered, such as equivalence transformations of a query

plan aiming at turning a join of unions into a union of joins. Additionally, collector

nodes are selected during plan generation in order to handle the union of resources

from different peers. This selection is made by considering each peer load for load

balancing purposes.

Resource sharing clustered P2P system, SWAP & KeX

In [TXKN03] a PDMS is presented, where peers are organized into clusters, based

on the semantic categories of their documents. Each peer stores a set of documents,

which it shares with the rest of the system. Additionally, it keeps an amount of

metadata that help organize the routing process. This metadata is kept in tables and

includes mappings of documents to semantic categories, mappings of categories to

clusters and finally mappings of clusters to lists of peer ids. These tables store data

localization information and act as intensional indices for guiding the query through

the network. Each such query is a set of user-defined keywords that describe the

documents that the user wishes to retrieve.

Query processing in this context works in the following way. User queries are

initially submitted to the system. The keywords of the query are mapped to one or

more semantic categories. The cluster of peers that is responsible for these categories

is found by the appropriate indices and a randomly selected peer of the retrieved

cluster is chosen to route the query to. The target peer then identifies its local

documents that answer the given query. If the number of results do not exceed the

threshold set by the user, the query is sent to a neighbor of the target peer belonging

to the same cluster until the desirable number of results is reached. The results are

directly sent back to the requester by each processing peer. A MaxFair algorithm for

University of Crete

2.3. DISTRIBUTED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 31

intra-cluster load balancing is used to achieve fairness, by considering the processing

power and the contribution of each peer in the cluster.

Similar approaches to the above system are SWAP [ETB+03] and KeX [BBMN02].

SWAP is an ontology-based P2P knowledge management system consisting of a set

of peers called “SWAP nodes”. RDF/S is used for the representation and sharing of

peer base advertisements and queries are formulated in an RQL-like query language.

An internal inference engine initially tries to locally solve the query. If no answers are

returned from the local repository, the query is fragmented and distributed to the rest

of the system. Fragmentation and routing are based on metadata about the remote

peers. The remote peers process these subqueries in the same fashion and eventually

return results to the initiator peer. All operators that combine the received results

are computed locally to produce the final answer.

KeX peers, on the other hand, use negotiation protocols in order to be organized

into groups forming federations that agree in certain conceptual terms, i.e., provide

relevant resources. Each peer can play two main roles: a provider and/or a seeker.

A provider publishes to the rest of the system its local knowledge along with its

categorization concerning a specific hierarchy (intensional). A seeker submits a query

by activating a query session. In such a session, the seeker receives asynchronously

answers from the providers to which the query is broadcasted to. The providers,

after receiving a query, either execute it locally and send results back to the seeker,

or broadcast it further. Broadcasting is performa in a semantic way by discovering

federations or peers related to the query.

2.3.3 Structured PDMSs

AmbientDB

AmbientDB [BT03] addresses P2P data management issues in applications such

as autonomous audio players exchanging music collections. AmbientDB provides

full relational database functionality and assumes the existence of a common global

schema. However, each peer may contain its own schema as long as it provides

George Kokkinidis

32 CHAPTER 2. STATE OF THE ART

the necessary mappings to the global one. A peer has access to a local content

repository that is organized inside a SON-like AmbientDB subsystem. In AmbientDB,

apart from the local tables, horizontal partitioning is considered, since fragments of

a table may be stored at a number of peers with (Partitioned Tables) or without

(Distributed Tables) replicated tuples. A P2P protocol set at each peer is responsible

for query routing and uses Chord to connect all peers in a resilient way and as the

basis for implementing the distributed table extensional indices. These indices are

used to identify all possible fragments of a certain distributed table inside AmbientDB.

Each AmbientDB peer contains the index table partition that corresponds to it after

hashing the key-values of all tuples contained in the distributed table to a finger that

Chord maps on that peer.

Each AmbientDB peer contains a Distributed Query Processor, which is respon-

sible for the execution of queries on all ad-hoc connected peers. A query is posed

on both/either local and/or distributed tables. The query processing mechanism is

based on a three-level translation of a global query algebra into stream-based query

plans, since streams are used to facilitate the exchange of partial results through

the appropriate peers. Initially, a user query is posed in standard relational algebra,

which provides the operators for selection, join, aggregation and sorting over abstract

relational tables. Then, this abstract query plan becomes concrete by instantiating

the abstract tables with concrete ones, i.e., the local or distributed tables that exist

in the peer bases. Finally, at the execution level, the concrete query plan is executed

by choosing between different query execution strategies. These strategies include

the selection between distributed (at each peer containing a fragment of a distributed

table) or centralized execution of unary operators, i.e., selection, aggregation, or or-

dering. Additionally, joins can be executed either locally or by routing the tuples of

the local table and execute the join at each relevant peer. Moreover, integrity con-

straints, such as foreign keys, can be exploited, since a join between a local table and

a distributed one over a foreign key produces matching tuples only locally. This can

minimize communication costs, since the join can be executed at the peer holding the

local table after retrieving all the tuples from the distributed tables.

University of Crete

2.3. DISTRIBUTED QUERY ROUTING AND CENTRALIZED
QUERY PLANNING 33

In [Bra03] a super-peer based approach for AmbientDB is used, which allows

hierarchical clustering of peers and facilitates query processing by first sending the

query to a super-peer and then flooding it to the super-overlay network. The super-

peer receiver is responsible for query processing and will eventually return all the

results back to the initiator peer.

P2P XML Query Processing, SemanticPeer & Bookmark-driven Query

Routing

In [GWJD03a] an approach for processing paths in XML data in a DHT-based P2P

system is introduced. A structure of data summaries, which contain all paths leading

to a given element tag, are used to assist query routing. Given a certain XPath query,

the system initially extracts the “ending” element tags. These tags are used as lookup

keys for the DHT to find the peer that stores the relevant data summaries. These

data summaries are used in order to find the peer ids that can answer a given query

path. Finally, the initiator peer, after receiving the list of relevant peers, contacts

them for executing the matching subqueries. System evolution, such as peer arrivals

and departures, as well as scalability issues are also discussed.

A similar approach is found in SemanticPeer [TDL04], a DHT-based P2P lookup

service. The difference is located in the existence of a specific table that resides at

each peer and holds the shared knowledge expressed in RDF between the peers of the

system. This shared knowledge is composed of the domain concepts and the instances

upon which most users agree. The query can then be processed either by contacting

the DHT and/or by checking its local shared knowledge table.

In [BMWZ04] a similar DHT-based P2P system is presented. The improvement

offered by the system lies in the pruning of the candidate peers by considering a

benefit/cost measure computed as the ratio between the estimated result quality and

execution cost. The benefit factor also considers the bookmark overlapping between

two peers, i.e., the amount of same Web pages that these peers have crawled, and

reflects the thematic similarity between them. Peer bookmarks are seen as intensional

indices shared between peers that have similar interests. The bookmark URLs can

George Kokkinidis

34 CHAPTER 2. STATE OF THE ART

also be looked up in the DHT, therefore the bookmark of the query initiator can be

used to fetch semantically similar peers.

RDFPeers

RDFPeers [CF04] is a scalable distributed RDF repository based on an extension

of Chord, namely MAAN (Multi-Attribute Addressable Network), which efficiently

answers multi-attribute and range queries. RDQL is used for querying peer bases

and operates at the RDF-triple level without taking RDF Schema information into

account. Peers are organized in a virtual circle similar to the Chord ring. In MAAN,

each RDF-triple is hashed and stored for each of its subject, predicate or object values

in the corresponding positions in the ring. Furthermore, for arithmetic attributes

MAAN uses order preserving hash functions in order to place close arithmetic values

to neighboring peers in the ring for the evaluation of range queries.

Routing is done as in Chord by searching for each value in the query. Simple query

patterns, where subject, predicate or/and object value is given, can be answered in

the given context. Consequently, disjunctive, range and conjunctive multi-predicate

queries are answered by allowing the expression of constraints on the query’s values.

From each query the relevant query patterns are identified and the appropriate routing

actions are taken. Query routing involves sending lookup requests through the Chord

ring and retrieving appropriate data localization information stored at each peer in

the ring. Joins are handled by using value constraints on the joining attributes and

are performed at the issuing peer.

Finally, the RDFPeers system handles overly popular URIs and literals by ap-

plying a popularity threshold for RDF terms. This threshold restricts a certain peer

from further storing triples whose number exceeds it. Additionally, load balancing

techniques are considered in order to generate a node identifier distribution adaptive

to the actual data distribution in the system.

University of Crete

2.4. DISTRIBUTED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 35

2.4 Distributed Query Routing and Distributed

Query Planning

The last category involves systems in which peers contribute in both the routing

and the planning phases. Query routing and planning are not anymore two separate

phases but are rather executed in an interleaved way. This means that the data

localization, plan generation, query optimization and execution phases are interleaved,

since the complete query plan is produced at multiple steps that may involve multiple

peers.

In particular, query processing (and, consequently, query execution) can be done

in multiple steps as the query is being routed through the system gathering additive

data localization information. This is posed by the distributed nature of the query

plans, which now do not hold the restriction of being created and initiated by the

requester peer. Moreover, information on the location of certain parts of the query

is usually unknown to the requester, so shipping the query or part of it to the rest of

the system is mandatory. Distributed peer advertisements guide the routing of the

query plan. Another approach, found in some systems of this category, is the routing

of partial results along with the rest of the query plan and its development or its

annotation with these data as it is routed through the PDMS.

We will divide the systems into three subcategories. The first group involves those

systems where mappings are used to guide the query routing and planning phases. In

particular, queries are routed according to the local mappings of each peer and may be

reformulated in order to correspond to terms used by remote peer bases. The systems

of the second group introduce the notion of mobile query plans, where plans and data

are exchanged between peers and each peer may contribute to the processing phase

by providing additional data localization information or undertaking the execution of

a subplan. A third group involves systems where adaptability at the execution phase

is their most important characteristic and, so, query plans can be altered at run-time

when network or peer failures arise.

Figure 2.6 outlines an example on how query processing that involves both dis-

George Kokkinidis

36 CHAPTER 2. STATE OF THE ART

Routing

Routing

Results

Query

a) Interleaved Query Routing and Planning Phase 1

b) Interleaved Query Routing and Planning Phase 2

Query

Figure 2.6: Distributed QR and QP

tributed query planning and routing is implemented. Since query planning and rout-

ing are interleaved, the query is initially routed through the PDMS and according to

the data localization information received acts accordingly. Each peer locally decides

on either the execution of a subplan (and receiving and locally processing interme-

diate results), or further routing of the subquery to a more appropriate peer. In

Figure 2.6a, the initiator peer discovers two relevant peers and sends them the rel-

evant subqueries for evaluation. In Figure 2.6b, the second peer decides to further

route its subquery in order to find other relevant sources. When the complete query

plan is fully localized, the appropriate peers send their partial results to those peers

that undertake query processing (depicted by a bold outline) and complete results

are sent back to the requester.

University of Crete

2.4. DISTRIBUTED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 37

2.4.1 Mapping-driven PDMS

Piazza

Piazza [HIST03] is a PDMS for XML, which primarily focuses on the use of

schemas and the definition of schema integration and mapping techniques for P2P

systems. A Piazza application consists of many peers, each of which can either provide

a schema or supply source data (or both). A new peer in the system should become

semantically related to a portion of the existing system. Mappings are used in order to

semantically glue together those peers. Queries are always posed from the perspective

of a given peer’s schema, which defines also the preferred terminology used by the

user. The query answering algorithm proceeds as follows. Given a query Q over the

schema of a node P , the algorithm initially checks for the mappings that refer to

local data. Next, the semantic neighbors of P are considered, i.e., all nodes that are

related to elements of P ’s schema by semantic mappings. These mappings are used

to reformulate the query in order for other peers to be able to answer it. The answers

are returned to the initiator peer and are unioned with the ones obtained locally. This

process is done recursively until no useful paths between nodes are found. Concluding,

mappings guide query routing and so query processing is reduced to the appropriate

reformulation of queries, with no further optimization.

GridVine

GridVine [ACMHP04] presents a DHT-based P2P architecture, where data are

expressed in RDF/S and RDQL is used to formulate queries. A two-layer architecture

is presented distinguishing the logical data layer from the physical one. The logical

layer, i.e., GridVine, supports the operations needed for the maintenance and use of

a SON supporting semantic interoperability. Operations at the logical layer allows

us to insert RDF-triples, RDF schemas and OWL schema mappings or search for a

given query. The physical layer is based on P-Grid, an efficient, self-organizing and

fully decentralized access structure. P-Grid uses DHTs and implements its two basic

functionalities for retrieving and inserting a value based on a hash key. The values

George Kokkinidis

38 CHAPTER 2. STATE OF THE ART

searched through the DHT may correspond to the subject, predicate and/or object

value of the requested RDF triples, therefore P-Grid is based on extensional indices.

Semantic gossiping is presented as a technique for fostering semantic interoper-

ability in a decentralized setting. Peers in GridVine are allowed to create and share

mappings from their own schemas to remote ones. These mappings are used to ap-

propriately translate a query and thus to implement query routing between peers

employing different schemas. Query processing, apart from the gossiping part, relies

on simply sending the query down to the physical layer. P-Grid then uses the DHT

to lookup relevant peers, send them the query and retrieve the appropriate results.

2.4.2 Mobile Planning PDMS

HyperQueries

QueryFlow [KW01] is a system offering dynamic and distributed query processing

using the notion of HyperQueries. HyperQueries are essentially subplans that exist

in peer nodes and guide the processing of a query through the network. The pro-

posed framework is based on virtual attributes expressed in XML, whose values are

determined by evaluating remote subqueries on demand.

Hyperlinks are defined by Uniform Resource Identifiers (URIs), which are used for

query routing issues. Users initially specify HyperQueries, which are transformed into

an operator tree stored as a subplan in a local repository. Three such templates are

used by QueryFlow. A dispatch operator, which splits one input stream into multiple

output streams, implements the nesting of subplans. A union operator merges the

returned results and produces a single output stream. The second pattern is used

for sequencing subplans by also using the dispatch operator but no union is used for

collecting the results. Further processing is not controlled by the initiator subplan and

a surrounding one should exist that will handle them. The final pattern implements

the inner subplans, since one input and one output stream exist. This pattern is used

for the innermost parts of the query execution, where the actual values of the virtual

attributes are determined.

University of Crete

2.4. DISTRIBUTED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 39

For a more complicated scenario involving multiple peers, QueryFlow introduces

two types of HyperQuery execution. Hierarchical HyperQuery execution indicates

that a host that receives a query and encounters a virtual attribute acts as intermedi-

ary and initiates a nested subquery at a remote host. According to this scenario, the

produced objects should be returned to the surrounding plan and eventually at the

final step to the initiator node. This hierarchical execution offers a certain amount

of control over the distributed query plan. Broadcast HyperQuery execution, on the

other hand, suggests the delegation of the evaluation of a certain object to the re-

mote peer. Thus, a fully distributed and autonomous query plan is created and the

produced object is returned not to the “upper” peer, but to the actual initiator of

the query.

In this framework, certain optimizations are discussed, such as predicate migration

and result caching at the intermediary remote hosts. Experiments show the scalability

of the framework according to the number of clients and objects that participate in

the system.

Ubiquitous Query Language

ubQL [Sah02], which stands for ubiquitous query language, provides a suite of

process manipulation primitives that can be added on top of any traditional query

language to support distributed query optimization. In ubQL, queries are encapsu-

lated into query processes that can migrate and configured between peers. ubQL

distinguishes the deployment and migration of a query process from its execution.

Each peer contains (intensional) views, expressed as replicated query processes, and

physical data that it shares with the rest of the system. Communication channels

support the communication between query processes that reside at different peers

and the exchange of data between them.

The deployment phase is responsible for routing the query process through the

system and gather the necessary information for its execution. To control the de-

ployment at the level of the language, annotations are used that make possible the

migration of subqueries to remote peers. Deployment strategies govern the way a

George Kokkinidis

40 CHAPTER 2. STATE OF THE ART

query process is handled by a peer. After a peer receives a query process, it checks

whether it is possible to merge it with its own local information. The peer then has

the choice between performing data or query shipping. Moreover, a peer can decide

according to the data localization information contained in the query process to op-

timize it locally and send the corresponding subqueries for further process to remote

peers. Optimizations include the application of dynamic programming or a simple

reordering of the joins, if only local ones are considered. Different strategies lead to

different types of optimizations. The cost model used considers both transmission

and local processing cost.

Finally, ubQL supports adaptability of query plans during the execution phase

by offering specific adaptive operators. These operators can monitor the execution

process and may react by changing the whole or part of the present query plan.

Mutant Query Plans

Mutant Query Plans (MQPs) [PMT03] introduce a new solution to the problem

of query routing in a P2P framework. A MQP is a logical query plan, where leaf

nodes may consist of URN/URL references, or of materialized XML data. MQPs are

themselves serialized as XML elements and are exchanged among the peers. When a

node S receives a MQP P , S can resolve URN references and/or materialize URL ref-

erences, thus offering its local intensional data localization information. Furthermore,

S can evaluate and re-optimize MQP subplans adding XML fragments to the leaves.

Finally, it can route P to another server. If P is completely reduced to XML markup,

it is sent to the target node, i.e., the node originating the query. As a consequence, a

MQP traverses the system, carrying partial results and unevaluated subplans, until

it is fully evaluated, i.e., it becomes an XML fragment.

The efficient routing of MQPs is preserved by information derived from multi-

hierarchical topic namespaces, e.g., educational material on computer science or geo-

graphical information. These namespaces are handled in a distributed way by assign-

ing roles to certain peers in the system. Consequently, index or category servers exist

for organizing the categorization of queries into areas according to their semantics.

University of Crete

2.4. DISTRIBUTED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 41

These servers are also responsible for routing, since they provide information for peers

that are relevant to a given query.

A similar approach for evaluating active XML documents with embedded web

service calls has been presented in ActiveXML [MAA+03] [ABC+04]. In ActiveXML,

intensional XML documents, where some of the data are given explicitly, while other

parts are defined by means of embedded calls to Web Services, are exchanged be-

tween peers. A flexible data exchange model is introduced, where intensional data

are materialized either by the sender or by the receiver of an intensional document.

The sender, after agreeing with the receiver on the data exchange schema, should

choose between a set of equivalent, increasingly materialized documents, by consider-

ing whether to materialize intensional information. Algorithms are presented to find

one such document by considering the possible restrictions posed by either safety or

schema issues on the processed data or services.

XML Search Engine

In [GWJD03b] an XML distributed search engine is presented to support a PDMS.

An XML search engine is able to execute containment queries that fully exploit the

inherent structure of XML documents. Inverted lists, which map keywords to doc-

uments, are used as indices for the local peer data. Additionally, remote data are

indexed by peer inverted indices exchanged at the joining phase of each peer. In

order to limit the number of peers that one is aware of, horizons are used that confine

this number below a certain threshold. This means that indices that should point to

peers outside the horizon now point to selected peers at the edges of the horizon, so the

number of indices stored locally at each peer is reduced without losing the assurance

that the required data localization information will be eventually discovered.

Query processing is governed by the estimation that it is more beneficial to send

queries directly to the relevant peer bases, than route the whole query through the

system. The search engine breaks the query into simple subqueries and matches

them with the peer’s indices to identify relevant peers. Intersection or union of the

returned set of peers leads to a final set, where the whole query is sent for evaluation

George Kokkinidis

42 CHAPTER 2. STATE OF THE ART

and execution. The choice between intersection or union of these sets is made by

considering the query operators used to bind the simple subqueries. By this type

of routing and processing only local optimizations are possible and no intra-peer

operations are executed.

2.4.3 Adaptive Planning PDMS

FREddies

FREddies [HJ04] is an extension of the centralized Eddy operator [AH00] for use

in a P2P query processing system. FREddies operate within the framework of PIER.

PIER is a DHT-based P2P query processor. Following the functionality of Eddies,

a FREddy is a query plan operator that dynamically routes tuples through local

operators, some of which may send the tuple to another peer in the network. A

DHT, used by PIER, organizes peers in an overlay routing layer, where data can be

directly addressed.

Query processing in this PIER context with the use of FREddies is done in the

following way. First, a query plan is created, which determines the operators that are

necessary to execute the query and the possible operator routing order by avoiding,

for example, cross-products. All nodes participating in the execution are aware of

this same plan. When a query arrives at a certain node, all operators, including the

FREddy, are instantiated. The FREddy then begins dataflow by requesting tuples

from each of its sources. Metadata on each tuple are used to identify the operators

it already passed through. Routing policies, including an order-specific, a random

choice and one according to the input queue length of each operator, are used to

route the tuples through the operators of each FREddy. These policies dictate the

order of the processing of tuple until its complete processing. This decision is taken

at execution time resulting in run-time optimization. Additionally, by routing each

semi-processed tuple with the use of DHT, distributed query processing is achieved.

University of Crete

2.4. DISTRIBUTED QUERY ROUTING AND DISTRIBUTED
QUERY PLANNING 43

SwAP

SwAP [Zho03] is another large scale distributed system, where Eddies [AH00]

are used to achieve run-time query plan adaptability. Each peer contributing in the

query plan is equipped with an Eddy providing adaptability for local operations. A

preparatory phase performed by a coordinator peer produces a distributed processing

graph. The graph contains all processing peers that handle the necessary operations.

Additionally, it contains information on the types of parallelism to be employed.

The whole processing plan is then launched and appropriate operators for intra-peer

communications are set. Tuples are routed through each peer for processing until it

completes all the necessary operations. At each peer, further routing of each query

is performed according to run-time statistics. These statistics are gathered by the

exchange of virtual tuples between peers, which contain zero data, but provide a way

to monitor query execution.

George Kokkinidis

44 CHAPTER 2. STATE OF THE ART

University of Crete

Chapter 3

RDF/S-based SONs

In this chapter, we introduce the notion of RDF/S-based Semantic Overlay Net-

works (SONs) as the basis for the SQPeer middleware. Initially, we give a description

of what is a SON and how we can use it to efficiently organize the peers. Then,

RDF/S is introduced to provide efficient mechanisms for describing, querying and

creating views on top of a peer base with the additional use of appropriate query and

view definition languages. We show how these two worlds merge into what we call

RDF/S-based SONs and how we handle the challenges that emerge in a context like

this. Finally, we overview three architectural alternatives for deploying SQPeer and

how we can cope with the special characteristics of each one.

3.1 Semantic Overlay Networks

SONs were initially introduced in [CGM03] for organizing semantically relevant

peers. In SONs peers should classify their stored data into one or more leaf concepts

of a specific classification hierarchy. This classification dictates also the assignment of

each peer to its relevant SON(s). A peer is added to a SON, if it has any documents

classified in its corresponding concept or in a less conservative scenario, if a “signifi-

cant” number of documents are classified under that concept. Different classification

hierarchies may be employed to specify SONs with different characteristics.

In this context, query processing simply identifies which SONs can actually answer

45

46 CHAPTER 3. RDF/S-BASED SONS

the query. When a peer issues one query, it is initially classified in the same way as

its documents are. Then, the query is matched and sent to the appropriate SONs

for execution. The peers within the selected SONs find more specific and relevant

matches to the query by propagating it within their overlay network. The joining of

a peer into the system and the propagation of a query in a specific SON can be done

either by a flooding Gnutella-like mechanism or by the help of super-peer nodes, i.e.,

highly-available nodes capable of organizing the peers in the system.

By introducing the notion of SONs, peers are grouped based on the semantics of

their stored data. Since queries are routed according to the same semantically-based

classification policy, documents are found faster and only relevant to the query peers

are considered. Peers that have few or no results considering a given query will not be

contacted, since their classification will assign them to different SONs, thus avoiding

wasting processing and communication resources on that requests.

In general, SONs appear to be an intuitive way to cluster together peers shar-

ing the same schema information about a community domain or application model.

A natural candidate for representing such descriptive schemas (ranging from sim-

ple structured vocabularies to complex reference models [MACP02]) is the Resource

Description Framework/Schema Language (RDF/S). RDF/S is chosen, since its mod-

elling primitives are the most appropriate for P2P databases, where monolithic RDF/S

schemas and resource descriptions cannot be constructed in advance and peers may

have only incomplete descriptions about the available resources. In the following sec-

tions, RDF/S along with the appropriate languages for querying and defining views

over RDF/S description bases are described and used in the context of a SON, thus

introducing the notion of RDF/S-based SONs.

3.2 Resource Description Framework and Schema

Language

The Web provides a simple and universal infrastructure to exchange various kinds

of information. In order to share, interpret, and manipulate information worldwide,

University of Crete

3.2. RESOURCE DESCRIPTION FRAMEWORK AND SCHEMA
LANGUAGE 47

the role of metadata is widely recognized. Indeed, metadata allow us to easily lo-

cate information available in the Web, by providing descriptions about the structure

and the content of the various Web resources (e.g., data, documents, images, etc.)

and for different purposes. The emergence of the Resource Description Framework

(RDF) [RDFa] [RDFb] was expected to enable metadata interoperability across differ-

ent communities or applications by supporting common conventions about metadata

syntax, structure, and semantics.

The Resource Description Framework (RDF) is a general-purpose language for

representing information about resources in the World Wide Web. It is particularly

intended for representing metadata that can be identified on the Web and moreover

resources that cannot be directly retrieved on the Web. RDF is meant for situations in

which this information needs to be processed by applications, rather than being only

displayed to people. It provides a common framework for expressing this information

so it can be exchanged between applications without loss of meaning. More precisely,

RDF provides (i) a standard representation language for Web metadata; and (ii) a

schema definition language (RDF/S) to interpret (meta)data using specific class and

property hierarchies (i.e., vocabularies).

RDF’s vocabulary description language, RDF Schema, is a semantic extension

of RDF. It provides mechanisms for describing groups of related resources, the re-

lationships between these resources and determine characteristics of other resources,

such as the domains and ranges of properties. In particular, RDF/S (a) enables a

modular design of descriptive schemas based on the mechanism of namespaces; (b)

allows easy reuse or refinement of existing schemas through subsumption of both class

and property definitions; (c) supports partial descriptions since properties associated

with a resource are by default optional and repeated and (d) permits super-imposed

descriptions in the sense that a resource may be multiply classified under several

classes from one or several schemas.

RDF is based on a directed graph model that implies the semantics of resource

descriptions. The basic idea is that a resource (identified by a URI) can be described

through a collection of statements forming a so-called RDF description. A specific

George Kokkinidis

48 CHAPTER 3. RDF/S-BASED SONS

Thesaurus Enumeration

WebResourceRealWorldObject

rdfs:Class rdfs:Property

SchemaProperty

Artist

Painter

Sculptor

Artifact

Painting

Sculpture

Museum
Enumeration1

String

String Location Thesaurous

String

ExtResource

DateTime Integer

String

related
maxCardinality

creates

paints

sculpts

fname

lname

exhibited

technique

location

Working_hours

Michelangelo

Buonarroti

Descent
Louvre

France

9-1,5-8

fname

lname

sculpts

sculpts

title

exhibited
title

location

Working_hours

&r1 &r2

&r4&r3

ns1 ns2

ns1: www.icom.com/schema.rdf ns2: www.oclc.org/schema.rdf

r1: www.culture.net//michelangelo

r2: www.photojournal.com/classicart/talmasters/michelangelo/sculptur/descent.jpg

r3: www.photojournal.com/classicart/talmasters/michelangelo/sculptur/theslave.jpg

r4: www.louvre.fr/

subClassOf

subPropertyOf

typeOf(instance)

MetaSchemas

Schemas

Resource Descriptions

Figure 3.1: The graph representation of RDF

resource together with a named property and its value is an RDF statement. The

value of a property can be another resource or a literal. A literal is either a simple

string or another primitive data type. RDF/S schemas are then used to declare

vocabularies, i.e., collections of classes and properties, that can be used in resource

descriptions for a specific application or domain.

We can see RDF through three different points of view - representations: (i) as

RDF graph, (ii) as RDF 3-tuples (the set of statements described in triples) and (iii)

as RDF syntax (provides some standard ways for describing data using XML).

The RDF graph is a syntax-neutral way of representing RDF expressions using

directed labelled graphs. These graphs are also called nodes and arcs diagrams. Each

arc represents a named property. Each property connects two nodes, coming from a

node representing a resource (drawn as oval) and pointing to another resource or a

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 49

literal (drawn as rectangle). An example of the RDF graph is shown in Figure 3.1.

The other way to represent RDF is 3-tuples, also called triples. Each triple {s, p,

o} corresponds to an arc from the subject s to the object o, labelled by the predicate

p. This 3-tuple representation is an easy way to reenact a very huge set of statements,

since it needs less space in comparison with the other two representations.

3.3 Constructing an RDF/S-based SON

In SQPeer we consider that each peer provides RDF/S descriptions about infor-

mation resources available in the network that conform to a number of community

RDF/S schemas (e.g., for e-learning or for museum artifacts). These schemas are con-

sidered to be available and known to the rest of the system and moreover to be widely

accepted by communities of peers. Peers employing the same schema to construct

their RDF descriptions in their local bases belong to the same SON. Thus, RDF-based

SONs are formulated for each RDF schema available and peers are organized in a

semantic way into groups having the same interests and needs. In a more complicated

scenario, SONs may be constructed by peers contributing RDF descriptions specified

by local schemas that can be appropriately mapped to the SON schema.

In the upper part of Figure 3.2, we can see an example of an RDF/S schema defin-

ing such a SON, which comprises four classes, C1, C2, C3 and C4, that are connected

through three properties, prop1, prop2 and prop3. There are also two subsumed

classes, C5 and C6, of C1 and C2 respectively, which are related with the subsumed

property prop4 of prop1. Finally, classes C7 and C8 are subsumed by C5 and C6

respectively.

3.3.1 RQL Peer Queries

One of the proposed RDF query languages satisfying the need for a sufficiently

expressive declarative language for querying both RDF descriptions and schemas is

RQL [KAC+02]. RQL is a typed functional language and relies on a formal model

for directed labeled graphs permitting the interpretation of superimposed resource

George Kokkinidis

50 CHAPTER 3. RDF/S-BASED SONS

SELECT X, Y
FROM {X}n1:prop1.{Y}n1:prop2{Z}
WHERE Z="..."
USING NAMESPACE n1

prop4
C5 C6

C7 C8

View Pattern: V Query Pattern: Q

RVL View RQL Query

C1 C3C2

X* Y* Z

prop1 prop2

USING NAMESPACE n1
FROM {X}n1:prop4{Y}
VIEW n1:C5(X), n1:prop4(X,Y), n1:C6(Y)

RDFS Schema Namespace: n1

prop4

C1 C3
prop1 prop2

C5 C6

prop3

C2

C4

Figure 3.2: An RDF/S schema of a SON, an RVL view and an RQL query pattern

descriptions by means of one or more RDF schemas.

RQL adapts the functionality of semistructured/XML query languages to the

peculiarities of RDF. However, the innovation of RQL is that it can query at both

schema and instance level, exploring the subclass-subproperty hierarchies and the

multiple classification of the resources in a transparent (to the user) way. Another

advantage is the ability to support generalized path expressions with variables in the

class and property names.

Queries in SQPeer are formulated by peers in RQL, according to the RDF/S

schema (e.g., defined in a namespace n1) of the SON they belong using an appropri-

ate GUI [ACK04]. RQL queries allow us to retrieve the contents of any peer base,

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 51

namely resources classified under classes or associated to other resources using prop-

erties defined in the RDF/S schema. As already noticed, RQL queries imply both

intensional (i.e., schema) and extensional (i.e., data) filtering conditions. A graphical

end-user interface1 may be used to assist RQL query formulation.

RQL provides a select-from-where filter to iterate over the contents of a peer base.

For instance, in the bottom right part of Figure 3.2 we can see an RQL query Q re-

turning in the select-clause all the resources binded by the variables X and Y. The from-

clause employs two property patterns (i.e., {X}n1:prop1{Y} and {Y}n1:prop2{Z}),

which imply a join on Y between the target resources of the property prop1 and the

origin resources of the property prop2. Note that no restrictions are considered for

the domain and range classes of the two properties, so the end-point classes C1, C2 and

C3 of prop1 and prop2 are obtained from their corresponding schema definitions in

the namespace n1. The where-clause, as usual, filters the binded resources according

to the provided boolean conditions (e.g., on variable Z).

Conjunctive RQL queries not using aggregate functions and nesting can be seen

in a rule-based formalism, which is compatible to Datalog; the only difference is that

instead of first-order predicates, RQL path expressions are used.

Definition 3.1 An RQL conjunctive query has the general form: ans(Ū) : − . . . ,

Ei(Ūi), . . . , Uim = Ujn, The rule’s head consists of the query’s name ans and

the tuple Ū of the returned variables; the rule’s body consists of a conjunction of RQL

patterns Ei(Ūi) and equalities Uim = Ujn between variables and/or constants. Each

Ūi involves the variables Xi, $Ci, @Pi, Yi, $Di - where @Pi is a property variable,

$Ci and $Di are class variables, Xi and Yi are resource variables - or a subset of

them.

Writing the RQL queries in a rule-formalism demands that a normalization phase

initially reduces the complex path expressions found in the from clause into the

general form of RQL queries. For example, for the following RQL query:

1See for example the RQL interactive demo at http://139.91.183.30:8999/RQLdemo/

George Kokkinidis

52 CHAPTER 3. RDF/S-BASED SONS

select X

from {X}prop1.prop2{Z}

where Z=“. . . ”;

the normalization phase reduces it to the equivalent query:

select X

from {X}prop1{Y}, {Y}prop2{Z}

where Z=“. . . ”;

By replacing the constants found in the patterns with variables and adding the

corresponding equalities we get:

select X

from {X}@P1{Y}, {Y}@P2{Z}

where @P1=“prop1” and @P2=“prop2” and Z=“. . . ”;

It is easy to derive the rule that is equivalent to the above RQL query:

ans(X) : − X @P1 Y, Y @P2 Z, @P1 = “prop1”, @P2 = “prop2”, Z = “. . . ”

Table 3.1 summarizes the basic class and property path patterns, which can be

employed in order to formulate complex RQL query patterns. These patterns are

matched against the RDF/S schema or data graph of a peer base in order to bind

graph nodes or edges to the variables introduced in the from-clause. The most com-

monly used RQL patterns essentially specify the fragment of the RDF/S schema

graph (i.e., the intensional information), which is actually involved in the retrieval of

resources hosted by a peer base.

In other words, class and property patterns specify the part of the SON RDF/S

schema, which is involved in the evaluation of a query issued by a peer. The right

middle part of Figure 3.2 illustrates the pattern of query Q, where X and Y resource

variables are marked with “*” to denote projections. Note that the end-point classes

C1, C2 and C3 of properties prop1 and prop2 are obtained from their corresponding

definitions in the namespace n1.

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 53

Path Patterns Interpretation

Class Path Patterns

$C {c | c is a schema class}

$C{X} {[c, x] | c a schema class, x in the interpretation

of class c}

$C{X;$D} {[c, x, d] | c, d are schema classes, d is a subclass

of c, x is in the interpretation of class d}

Property Path Patterns

@P {p | p is a schema property}

{X} @P {Y} {[x, p, y] | p is a schema property, [x, y] in the

interpretation of property p}

{$C} @P {$D} { [c, p, d] | p is a schema property, c, d are

schema classes, c is a subclass of p’s domain,

d is a subclass of p’s range}

{X; $C} @P {Y; $D} {[x, c, p, y, d] | p is a schema property, c, d are schema

classes, c is a subclass of p’s domain, d is a subclass

of p’s range, x is in the interpretation of c,

y is in the interpretation of d, [x, y] is in the

interpretation of p}

Table 3.1: RQL class and property patterns

George Kokkinidis

54 CHAPTER 3. RDF/S-BASED SONS

In the rest of this chapter, we are focusing on conjunctive queries formed only

by RQL class and property patterns, as well as projected variables (filtering condi-

tions are ignored). We should also note that SQPeer’s query routing and planning

algorithms can be also applied to less expressive RDF/S query languages [HBEV04].

3.3.2 RVL Advertisements of Peer Bases

In the context of a P2P system and more specifically of a SON, each peer should

be able to advertise its local base contents to other peers. Using these advertisements

a peer becomes aware of the bases hosted by others in the system. Advertisements

may provide descriptive information about the actual data values (extensional) or the

actual schema (intensional) of a peer base.

In order to reason on the intension of both the query requests and peer base con-

tents, SQPeer relies on materialized of virtual RDF/S schema-based advertisements.

In the former case, a peer RDF/S base actually holds resource descriptions created

according to the employed community schema(s), while in the latter, schema(s) can

be populated on demand with data residing in a relational or an XML peer base. In

both cases, the RDF/S schema defining a SON may contain numerous classes and

properties not necessarily populated in a peer base. Therefore, we need a fine-grained

definition of schema-based advertisements.

In the context of the Semantic Web, information consumers of the same infor-

mation set, pose different requirements to the way they view information, hence

necessitating the existence of mechanisms, such as views, to provide tailored access

to the information sources. Specifically in the context of an RDF/S-based SON, each

peer is required to relate its locally defined schema with the schema of the SON in

order to identify itself to the rest of the system. We employ RVL views to specify

the subset of a community RDF/S schema(s) for which all classes and properties are

(in the materialized scenario) or can be (in the virtual scenario) populated in a peer

base. Specifically, if an RVL statement uses the same namespace for both asking

and returning RDF descriptions, we are dealing with a materialized view. On the

other hand, if these namespaces are different, we have a virtual view scenario, where

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 55

Figure 3.3: RVL Virtual Schemas

the instances are computed from the source base(s) or schema(s) using the RVL pro-

gram specifying the view. Consequently, the ability of a query language to support

mechanisms for defining views over a data set is recognized as an added-value func-

tionality to the expressive power of a query language in traditional database systems,

such as relational and object-oriented ones, but also in modern database and P2P

applications based on the semistructured data models.

Recognizing the above need, RVL [MTCP03] has been proposed as a view def-

inition mechanism for the Semantic Web. Based on the data model of the RDF/S

and by taking advantage of the expressiveness of the RQL query language for RDF/S

graphs, this view definition language incorporates the needed functionality and the

peculiarities of the underlying data model, in a uniform way. Being the first inte-

grated effort for a view definition language specification, RVL exploits the RQL type

system and the abstraction levels of an RDF/S graph to specify two operators, which

are able to support all the necessary functionality. This minimality constitutes the

most important advantage of RVL.

Figure 3.3 represents the construction of a virtual RVL view, given the source

schemas. Generally the definition of an RVL view is in the form:

George Kokkinidis

56 CHAPTER 3. RDF/S-BASED SONS

C5 C6

C8C7

C3

C1 C2

Query
prop1

prop4 prop2

Peer View 1 Peer View 2

Figure 3.4: Peer view advertisement and subsuming views

[VIEW operator

FROM RQL_path_expression

WHERE filtering_conditions

USING NAMESPACE root_schema_namespace]

[••••]

USING NAMESPACE root_schema_namespace

CREATE NAMESPACE RVL_view_namespace

The view clause is used to create constructions of the type defined by the operator.

The from and where clause, similarly to the RQL one, is used for the evaluation of the

variables defined in the view clause and for defining the necessary filtering conditions

respectively. Finally, the using namespace clause is used to define the prefix of a

namespace that is used in the RQL query, while the create namespace clause defines

the URI of the namespace that is created in the view. Given the definition above, we

can see that the functionality of RVL exceeds the one of RQL. RQL is able to query

RDF schemas and data, while RVL has the ability to construct virtual schemas and

to instantiate them with the use of RQL variable bindings.

The bottom left part of Figure 3.2 illustrates the RVL statement employed to

advertise a peer base according to the RDF/S schema identified by the namespace

n1. This statement populates classes C5 and C6 and property prop4 (in the view-

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 57

V2:

prop3
C4

C2
prop1

C1 V4:
prop2

C3C5 C6
prop4

V1: V3:
prop2

C3
prop2

C3

prop3
C4

C2
prop1

C1

prop3
C4

C2
prop1

C1

P3 View

P4 ViewP2 View

P1 View

Figure 3.5: Peer view patterns example

clause) with appropriate resources from the peer’s base according to the bindings

introduced in the from-clause. Given the query pattern used in the from-clause, C5

and C6 are populated with resources that are direct instances of C5 and C6 or any of

their subsumed classes, i.e., C7 and C8. Actually, a peer advertising its base using

this view is capable to answer query patterns involving not only the classes C5 and

C6 (and prop4), but also any of the classes (or properties) that subsume them. For

example, Figure 3.4 illustrates a simple query involving classes C1, C2 and property

prop1 subsuming the above peer view 1 (vertical subsumption). The second peer

view illustrated in Figure 3.4 extends the previous view with resource instances of

class C3, which are reachable through prop2 with instances of C6. Peer view 2 can be

employed to answer not only a query {X;C5}prop4{Y;C6}prop2{Z;C3} but also any

of its fragments. As a matter of fact, the results of this query are contained in either

{X;C5}prop4{Y;C6} or {Y;C6}prop2{Z;C3} (horizontal subsumption). So peer view

2 can also contribute to the query {X;C1}prop1{Y;C2}.

A more complex example is illustrated in Figure 3.5, comprising the view patterns

of four peers. Peer P1 and P3 contain resources related through the properties prop1,

prop2 and prop3, while peer P4 contains resources related through the properties

prop5 and prop2. Peer P2 contains resources related by prop1 and prop3.

As we will see in Section 3.4 the propagation of advertisements depends strongly on

the underlying P2P system architecture. Moreover, the lookup service utilized by each

architecture, should consider both horizontal and vertical subsumption, as described

George Kokkinidis

58 CHAPTER 3. RDF/S-BASED SONS

above, in order to efficiently identify and return the appropriate data localization

information given a specific view.

3.3.3 Query/View Subsumption

We can note the similarity in the intensional representation of peer base advertise-

ments and query requests, respectively, as view or query patterns. This representation

provides a uniform logical framework to route and plan queries through distributed

peer bases using exclusive intensional information (i.e., schema/typing). However, in

order to identify peer views relevant to a given query, we should be able to identify

whether a specific view, expressed in RVL, is subsumed (“⊆”) by a given query, ex-

pressed in RQL. This problem actually corresponds to the RQL query containment

problem, which is further discussed in [Ser05].

Definition 3.2 A conjunctive RQL query Q1 is contained in a conjunctive RQL

query Q2 (Q1 ⊆ Q2) given an RDF description schema DS iff for every description

base DB conforming to DS the result of Q1 is contained in that of Q2 (∀ DB Q1(DB)

⊆ Q2(DB)).

In some cases the containment is obvious. This is the case of simple queries that

do not involve complex paths. For example, it is easy to figure out that the following

query

select X

from {X;Painter}paints{Y;Painting};

is contained in the following view

select X

from {X;Painter}creates{Y;Painting};

because it is pretty straightforward from the RDF/S semantics of a relevant RDF

namespace that when ”a painter paints a painting”, at the same time he creates a

University of Crete

3.3. CONSTRUCTING AN RDF/S-BASED SON 59

C6

C5 C1

C2

prop4 prop1

Figure 3.6: A graphical containment example

painting. This is expressed in RDF/S by setting the property paints to be subprop-

erty of property creates.

Alternatively, in a similar example involving classes and properties of the RDF

schema of Figure 3.2, the containment can easily be spotted if the two RQL queries

are seen as graphs, where the nodes correspond to classes and the edges to properties.

The subject node of the right query subsumes (is a superclass of) the corresponding

one of the left query. The same holds for the object nodes. Moreover, the property

edge of the right query subsumes (is a superproperty of) the corresponding one of the

left query. Thus, all instances satisfying the first query satisfy the second one, too.

Figure 3.6 illustrates the containment check between the two graphs.

In SQPeer, as will be further described in the following chapter, queries can be de-

composed into their simple patterns, so the above straightforward containment check

can be easily utilized. However, deciding containment of more complex queries is not

trivial. Moreover, there exist many applications that need dealing with containment

in an automated way. Thus, the definition of a sound and complete algorithm for

checking RQL query containment is mandatory. The query/view subsumption algo-

rithms presented in Semantic Web Integration Middleware (SWIM [CKK+03]), are

used by SQPeer to decide whether a view is subsumed or not by a specific query.

Concluding, we should note that the above representation of both peer adver-

tisements and queries exhibit significant performance advantages. First, the size of

the indices, which can be constructed on the intensional peer base advertisements is

George Kokkinidis

60 CHAPTER 3. RDF/S-BASED SONS

considerably smaller than on the extensional ones. Second, by representing in the

same way what is queried by a peer and what is contained in a peer base, we can

reuse the RQL query/RVL view (sound and complete) subsumption algorithms as

presented in this section. Finally, compared to global schema-based advertisements

[NWS+03], we expect that the load of queries processed by each peer is smaller, since

a peer receives queries that exactly match its base. This also affects the amount of

network bandwidth consumed by the P2P system.

3.4 P2P Architectural Alternatives

SQPeer can be used in different P2P architectural settings. Even though the spe-

cific P2P architecture affects peers’ topology, our proposed query routing and planning

algorithms work independently of any particular architectural setting. Recall that the

formulation and existence of RDF/S-based SONs lead to minimizing the broadcasting

(flooding) in the P2P system, since a query is received and processed only by relevant

peers. Before going more on details regarding these issues, we detail the possible roles

that peers may play in each setting with respect to their corresponding computing

capabilities.

On the one hand, we have client-peers, which may frequently join or leave the

system. These peers have only the ability to pose RQL queries to the rest of the P2P

system. Since these peers usually have limited computing capabilities and they are

connected with the rest of the system for short periods of time, they do not participate

in the query routing and planning phases. In addition, client-peers do not share their

bases or exchange their views, since their brief connection with the system does not

allow any kind of useful participation.

On the other hand, we may have simple-peers that also act autonomously by join-

ing or leaving the system, but not as frequently as client-peers. Their corresponding

bases can be shared by other peers during their connection to the P2P system. When

they join the system, simple-peers should either broadcast their RVL views or alter-

natively request the views of other peers in the system. Thus, a simple-peer connects

University of Crete

3.4. P2P ARCHITECTURAL ALTERNATIVES 61

physically with the SON(s) it belongs to by identifying peer advertisements similar

(in the sense that they are posed under the same RDF namespace) to its own and

contacting the peers holding them. These peers eventually will formulate its new

neighborhood, thus connecting the simple-peer with the already formulated SONs.

Simple-peers have also the ability to pose queries similar to client-peers, but with the

extra functionality of executing these queries against their own local bases. Addi-

tionally, simple-peers have the ability to coordinate the execution of (sub-)queries on

remote peers by undertaking the execution of query (sub-)plans.

Since all peers inside the P2P system are not equal considering their processing

or communication capabilities, a small percentage of the peers may play the role of

super-peers. Super-peers are usually highly-available nodes offering high computing

capabilities and each one acts as a centralized server for a subset of simple-peers.

Super-peers are mainly responsible for routing (sub-)queries through the system and

for managing the cluster of simple-peers which are responsible for. In general, queries

received or issued by a simple-peer are first send to its corresponding super-peer, which

undertakes the routing process by possibly contacting other relevant super-peers and

reply to the simple-peer with the relevant data localization information in order to

manage query processing. Each super-peer may accept peers according to their views,

thus formulating and efficiently managing SONs. Furthermore, super-peers may play

the role of a mediator in a scenario where a query expressed in terms of a globally

known schema needs to be reformulated in terms of the schemas employed by the

local bases of the simple-peers by using appropriate mapping rules.

In this context, we consider three architectural alternatives distinguished accord-

ing to the organization of the peers and the distribution of knowledge between them

regarding peer base advertisements. The first alternative corresponds to a hybrid P2P

architecture based on the notion of super-peers, the second one is closer to a structured

P2P architecture based on the notion of Distributed Hash Tables (DHTs), while the

third one corresponds to an ad-hoc P2P architecture based on self-organized SONs.

George Kokkinidis

62 CHAPTER 3. RDF/S-BASED SONS

3.4.1 Hybrid P2P SONs

In a hybrid P2P system [YGM03] [NWS+03] [SMGC04] each peer is connected

with at least one super-peer, who is responsible for collecting the views (materialized

or virtual) of all its simple-peers. The peers, holding bases described according to

the same RDF/S schema, are clustered under the same super-peer. Thus, each peer

implicitly knows the views of all its semantic neighbors. In a more sophisticated

scenario, super-peers are responsible only for a specific fragment of the RDF/S schema

and thus a cluster of super-peers is responsible for the entire schema. Moreover,

a hierarchical organization of super-peers can be adopted, where the classes and

properties managed at each level are connected through semantic relationships (e.g.,

subsumption) with the class and properties of the upper and lower levels.

When a simple-peer initially joins the system, it should identify a super-peer and

forward its corresponding view (push). All super-peers are aware of each other forming

a super-peer backbone, in order to be able to answer queries expressed in terms of

different RDF/S schemas (or schema fragments). A simple-peer should be connected

to its relevant super-peer according to the peer’s intensional information, i.e., the peer

view. If the peer base commits to more than one schemas, the simple-peer should

consequently be connected to more than one super-peers. By this approach, SONs

are formulated with each super-peer being responsible for at least one of them. The

exact topology of the P2P system depends on the clustering policy with respect to the

number of available super-peers providing the bandwidth and connectivity guarantees

of the system.

A client-peer can connect to a simple-peer and send a query request for further

processing to the system. The simple-peer forwards the query to the appropriate

super-peer according to the schema employed by the query (e.g., by examining the

involved namespaces). If this schema is unknown to the simple-peer, it sends the

query randomly to one of its known super-peers, which will consecutively discover

the appropriate super-peer through the super-peer backbone. In this alternative,

we distinguish two separate query evaluation phases: the first corresponds to query

University of Crete

3.4. P2P ARCHITECTURAL ALTERNATIVES 63

Q Q

SP2 SP1

SP3

P1

P2

P3

P4

P5

AS2 = Q1

AS3 = Q1

AS4 = Q

AS5 = Q2

SP2 SP1

SP3

P1

P2

P3

P4

P5

AS2 = Q1

AS3 = Q1

AS4 = Q

AS5 = Q2a) Routing Phase b) Planning Phase

Figure 3.7: SQPeer separated query routing and processing phases in a hybrid P2P

system

routing performed exclusively at the super-peers, while the second to query planning,

which is usually performed by the simple-peers.

For example, in Figure 3.7, we consider a super-peer backbone containing three

super-peers, SP1, SP2 and SP3, and a set of client-peers, P1 to P5. All the simple-

peers are connected with at least SP1, since their bases commit to the schema that

SP1 is responsible for. When P1 receives a query Q consisting of two simple property

pattern Q1 and Q2, it initially contacts SP1, which is the super-peer responsible for

the SON on which the query is addressed (Figure 3.7a). Since SP1 contains all related

peer views, it can also decide on the appropriate fragmentation of the received query

pattern according to the view patterns of its simple-peers. Then, SP1 creates an

annotated query pattern containing the information that P2 and P3 can answer only

the Q1 pattern, while P5 can answer only the Q2 pattern. SP1 sends this annotated

query pattern to P1 to generate the appropriate query plan. In our example, this

plan implies the creation of three channels with P2, P3 and P5 for gathering the

appropriate results (Figure 3.7b). The contacted peers send their results back to P1,

who joins them locally in order to produce the final answer. Of course, a different

execution policy may be selected by peer P1 for either pushing some of the query

evaluation to the rest of the peers or for minimizing the response time of the query

plan. We should point out that since super-peers contain all the peer views of a SON,

George Kokkinidis

64 CHAPTER 3. RDF/S-BASED SONS

the annotated query pattern for Q contains sufficient data localization information

for producing not only a correct but also a complete query plan and thus no further

routing and processing phases for Q are required.

3.4.2 Structured P2P SONs

Alternatively, we can consider a structured P2P architecture [BT03] [CF04] [TP03].

Peers in the same SON are organized according to the topology imposed by the un-

derline structured P2P architecture, e.g., based on Distributed Hash Tables (DHTs)

[RFH+01] [SMK+01]. In DHT-based P2P systems, peers are logically placed in the

network according to the value of a hash function applied to their IP, while a table of

pointers to a predefined number of neighbor peers is maintained. Each information

resource (e.g., a document or a tuple) is uniquely identified within the system by a

key. In order to locate the peers hosting a specific resource, we need to match the hash

value of a given key with the hash value of a peer and forward the lookup request to

other peers by taking into account the hash table maintained by each contacted peer.

In our context, unique keys are assigned to each view pattern and hence peers, whose

hash values match those keys, are aware of the peer bases that are populated with

data answering a specific schema fragment. An appropriate key assignment and hash

function should be used in order neighbor peers to hold successive view patterns with

respect to the class/property hierarchy defined in the employed RDF/S schema. This

is necessary for optimizing query routing, since successive view patterns are likely to

be subsumed by the same query pattern.

Unlike hybrid architecture, in this alternative there is no peer with a global knowl-

edge of all peer views in each SON. The localization information about remote peer

views is acquired by the lookup service supported by the system. Specifically, we are

interested in identifying peer views that can actually answer an entire (sub-)query

pattern given as input.

This implies an interleaved execution of query routing and planning phases in sev-

eral iteration rounds leading to the creation and execution of multiple query plans

that when “unioned” offer completeness in the results. This is in contrast to tradi-

University of Crete

3.4. P2P ARCHITECTURAL ALTERNATIVES 65

AS4 = Q

AS7=Q2

AS8 = Q3

P2

P1

P4

P5

P7

P8

Q

AS2 = Q

lookup(Q2)

Q

Q2

C1 C2 C3

C4

prop1 prop2

prop3

Q4

Q

C1 C2 C3

C4

prop1 prop2

prop3

Q3

Q5

AS4 = Q

AS7=Q2

AS8 = Q3

lookup(Q3)

P2

P1

P4

P5

P7

P8

Q

AS2 = Q

P3
P6

P6
P3

AS3 = Q5

AS3 = Q5

AS5 = Q4

AS6 = Q4

AS6 = Q4

AS5 = Q4
lookup(Q5)

lookup(Q4)

a)

b)

Figure 3.8: SQPeer interleaved query routing and planning mechanism in a structured

P2P system for fragmentation of size 2

tional dynamic programming algorithms, where the best possible plan is obtained in

terms of execution cost and no guarantees for complete results are given. Note that

the generated plans at each round can be actually executed (in contrast to bottom-

up dynamic programming algorithms) by the involved peers in order to obtain the

first parts of the final query answer. Starting with the initial query pattern, at

each round, smaller fragments are considered in order to find the relevant peer bases

(routing phase) that can actually answer them (planning phase). In this context, the

interleaved query processing terminates when the initial query is decomposed into

its basic class and property patterns. It should be also stressed that SQPeer inter-

leaved query routing and planning favors intra-peer joins, since each query fragment

is looked up as a whole and only peers that can fully answer it are contacted.

For example, in Figure 3.8 we consider that peers P1 to P8 are connected in a

George Kokkinidis

66 CHAPTER 3. RDF/S-BASED SONS

structured P2P system. When P1 receives the query Q, it launches the interleaved

query routing and planning. At round 1, P1 issues a lookup request for the entire

query pattern Q, and annotates Q with peers P2 and P4. In this initial round, plan

Plan 1 = Q@P2
⋃
Q@P4 is created and executed. At round 2, the fragmentor is

called with #joins equal to 1. The two possible fragmentations of query Q are de-

picted in Figures 3.8a and b. First, peers P6 and P3 are contacted through the lookup

service, since they contain the list of peer bases answering query fragment patterns

Q4 and Q2 respectively (seen in the left part of Figure 3.8a). P6 returns the list of

peers P2, P4, P5 and P6, while P3 returns peers P2, P3, P4 and P7. For this fragmen-

tation, the query plan Plan 2 =
⋃
(./ (Q4@P2, Q2@P3), ./ (Q4@P2, Q2@P4), . . . ,

./ (Q4@P6, Q2@P4), ./ (Q4@P6, Q2@P7)) is created and executed by deploying the

necessary channels between the involved peers (see right part of Figure 3.8a). It is

worth noticing that the generated plans at each round do not include redundant com-

putations already considered in a previous round. For example Plan 2 produced in

round 2 excludes the query fragment plan ./ (Q4@P2, Q2@P2) generated in round 1.

Next, peers P5 and P7 are contacted through the lookup service, since they contain

the list of peer bases answering query patterns Q3 and Q5 respectively (seen in the

left part of Figure 3.8b). P5 returns the list of peers P2, P4, P5, P6 and P8, while P7

returns peers P2, P3 and P4 and the query plan Plan 3 =
⋃
(./ (Q3@P2, Q4@P3),

./ (Q3@P2, Q4@P4), . . . , ./ (Q3@P8, Q4@P3), ./ (Q3@P8, Q4@P4)) is created and

executed (see right part of Figure 3.8b). Again, Plan 3 is disjoint with the plans

already generated. At the last round (#joins equals to 2), we consider all basic prop-

erty and class patterns of query Q and run one more time the routing and planning

algorithms to produce query plans returning the remaining parts of the final answer.

3.4.3 Ad-hoc P2P SONs

Finally, in an ad-hoc P2P architecture when a peer first joins the system, it

becomes aware only of its physically close neighbors. The peer should identify, by

sending appropriate requests, at least one other related peer for each of its RDF/S

community schemas. The related peers identified in this way, form the semantic

University of Crete

3.4. P2P ARCHITECTURAL ALTERNATIVES 67

P2

AS2 = Q1

P3 AS3 = Q1

P5

AS5 = Q2

≠AS4 Q

Q
P1

P4

P2

AS2 = Q1

P3 AS3 = Q1

P5

AS5 = Q2

P4 ≠AS4 Q

Q
P1

a) Routing Phase b) Planning Phase

Figure 3.9: SQPeer query processing mechanism in an ad-hoc P2P system

neighborhood of the peer. In the next step, the peer explicitly requests the peer

views of its neighbor peers (pull). Then, when a peer receives a relevant query, it

applies locally the query routing and planning phase and creates a query plan. When

the peer receives a query, whose schema is unknown or which cannot be answered

by the semantic neighbors of this peer, it could request the peer views of a 2-depth,

3-depth, etc. neighborhood, until a relevant peer is found and thus constructing

progressively self-adaptive SONs.

Unlike super-peers, in the ad-hoc scenario there are no real guarantees that a

peer can actually generate a complete query plan. The query processing algorithm

produces a query plan according to its local knowledge about relevant peers and

therefore the query plan may contain “holes”, i.e., subplans with incomplete data

localization information (denoted by ?). In order to discover the answering peers and

fill the holes (except from flooding the network with routing requests), the query plan

can be forwarded to other peers which are known to be able to answer at least a part

of the initial query plan. By establishing appropriate channels, the peers receiving

a partial plan can in turn interleave query planning and routing using their locally

stored peer advertisements. The first peer that is able to fill all the “holes” and

generate a complete query plan, holds also the responsibility of executing it and send

the results back to the root peer through the already deployed channels.

Figure 3.9 depicts an example where peers P1 to P5 are connected in a self adaptive

George Kokkinidis

68 CHAPTER 3. RDF/S-BASED SONS

SON. P1 is aware of the views of its neighbor peers, i.e., P2 and P3. When P1

receives the query Q, it uses the already gathered peer advertisements in order to

apply locally the routing phase. Since P2 and P3 can answer the Q1 part of Q and

since no known neighbor peer can answer theQ2 part, P1 creates the query plan Plan

1 =
⋃
(./ (Q1@P2, Q2@?), ./ (Q1@P3, Q2@?)). P1 may then decide to request the

peer views of a 2-depth neighborhood (Figure 3.9a). According to the received data

localization information, P4 cannot contribute to the query plan, while P5 can fill

the holes of the already produced query plan, since it can answer Q2. P1 can then

execute the query plan Plan 2 =
⋃
(./ (Q1@P2, Q2@P5), ./ (Q1@P3, Q2@P5)) by

deploying the necessary channels between the involved peers (Figure 3.9b). The

appropriate subplans are sent to peers P2, P3 and P5 and the results are returned

to P1, where there are “joined” and “unioned” locally producing the final complete

answer.

3.5 Comparison of the Architectural Alternatives

The above architectural alternatives exhibit different behaviors on routing and

planning a query.

In the structured architecture, we have self-adaptive SONs, while in the super-

peer architecture SONs are created in a more static way, since each super-peer is

responsible for the creation and further management of its assigned SON(s). On

the contrary, in the ad-hoc scenario SONs are formulated by the self-organization of

the peers without any restriction on the structure (as is the case in the structured

architecture).

It should be stressed that while in the structured and ad-hoc architecture, peers

handle both the query routing and planning load, super-peers are primarily respon-

sible for routing and simple-peers for planning queries in two distinct phases.

Additionally, super-peers contain a global knowledge of the simple-peer views in

a SON, while in the structured and ad-hoc alternative this knowledge is distributed,

since each peer is aware only of a small number of peer advertisements in the SON.

University of Crete

3.5. COMPARISON OF THE ARCHITECTURAL ALTERNATIVES 69

However, a structured P2P system can offer an efficient lookup service for obtain-

ing locally the relevant peer views, while in the ad-hoc system peers should either

request or handle partial data localization information with appropriate techniques

(i.e., partial query plans). This makes super-peers capable of offering complete data

localization information concerning their SONs, while in the structured and ad-hoc

scenario this information should be requested via one or several lookup phases. This

makes these two architectures good candidates for applying the interleaved query

routing and planning scenario.

George Kokkinidis

70 CHAPTER 3. RDF/S-BASED SONS

University of Crete

Chapter 4

Query Processing in SQPeer

Query processing in SQPeer is responsible for generating distributed query plans

guiding the execution of the query in the P2P system. The creation of the query plans

is based on an annotated query pattern, which in turn is formulated by considering

the relevant peer views gathered during the routing phase. The produced query plan

specifies precisely how the query is going to be deployed and executed at the selected

peers contributing to the final answer. As already discussed in Section 2, query plans

are represented as trees, where the nodes correspond to the operators of the query,

while the leaves represent the (complex or simple) path patterns extracted from the

query that need to be combined to produce the final result. We should point out

that these path patterns actually correspond to peer views, since the routing phase

identifies the peers that answer these patterns as a whole. Additionally, the query

plan specifies the query operators that each peer should process in order to combine

intermediate results into the final answer.

Query processing can be broken into several phases based on the DDMS architec-

ture already presented in Section 2. Initially, the query is parsed and the generated

query patterns are handled by the routing algorithm. A fragmentor is responsible for

breaking the query into distinguished fragments and for each one the lookup service

is utilized to find relevant data localization information. Then, a data localization

algorithm produces an annotated query pattern by annotating each fragment of the

query with the peers that can handle it. The produced pattern is then send to

71

72 CHAPTER 4. QUERY PROCESSING IN SQPEER

the algebraic translation algorithm, where an appropriate query plan is produced by

translating the pattern into the SQPeer query algebra. Next, this query plan is passed

to an optimizer in order to apply heuristic and/or cost-based optimization techniques

taking into account inter- and intra-peer query processing and communication cost.

Finally, the optimized plan is sent to the execution engine responsible for forward-

ing the already distinguished subplans to the appropriate peers and monitoring their

evaluation. Peer communication is achieved by the use of appropriate communication

channels that additionally provide the means for query plan adaptation during query

execution in case of run-time failures.

4.1 Core Algebra and Equivalences

In this section the core algebra [KAC+02] used for the representation of the RQL

queries as query plans is described.

4.1.1 The Operators

The core of the algebra we are using consists of common operators of object-

oriented query algebras that are defined on sets of ordered tuples. More precisely,

these operators are: union (∪), intersection (∩), difference (\), selection (σ),

join (./), semi-join (¤< >¢), d-join(< . >) and mapping (χ). The set operators as

well as the selection, join and semi-join operators are well-known from the relational

context. The d-join operator is used for performing a join between two sets, the second

of which depends on the first. Finally, the mapping operator is used to transform a

set of objects to a set of tuples, so as to preserve associativity of join operations, also

adding a name to the generated tuple, since tuple attributes are named. Moreover,

this operator is used to apply a function to every member of a given set.

4.1.2 Translating RQL queries to the core algebra

Using the above operators we can express all different kinds of (possibly nested)

RQL queries. A translation phase is introduced, in which appropriate definitions for

University of Crete

4.1. CORE ALGEBRA AND EQUIVALENCES 73

Select

y=w

Project

Join

technique[w,z]creates[x,y]

z=‘‘oil on canvas’’

x, y

Figure 4.1: Evaluation plan of Query Q1

RQL operations are collected in an extra define clause. We illustrate this translation

using a query Q1 as an example:

Q1: Find the resources that have created something, using technique “oil on

canvas”, as well as the creations themselves

select X, Y

from {X}creates{Y}.using technique{Z}

where Z = “oil on canvas”

, which is translated into the query:

select X, Y

from creates A, using technique B

define X = A[0], Y = A[1], W = B[0], Z = B[1]

where Z = “oil on canvas” and Y = W

This query involves two scans on the extents of the properties creates and

using technique. These scans return pairs (sequences) of values and we need to

define appropriate sequence accessor operations (as shown in the define clause) on

George Kokkinidis

74 CHAPTER 4. QUERY PROCESSING IN SQPEER

which variables at the extremities of these paths are range-restricted. The corre-

sponding query evaluation plan is shown in Figure 4.1.

More specifically, for translating Q1 and eventually represent it as a query eval-

uation plan, the following operations for each clause of the query are performed:

• For the two path components in the from clause, we construct two scan oper-

ations on the extent of the corresponding properties (called A for creates and

B for using technique). For each of these properties we define a constant op-

eration (serving as a reference to the corresponding collection), which serves as

the domain of the scan variable.

• The scan variables A, B return sequence values with two elements. In order

to obtain from and to values of a property from such scans, we create two

sequence access operations (denoted by [0], [1]). Then, we create two name

operations, in order to assign the names of the variables in the query (i.e., X,

Y) to the operation that valuates these variables (i.e., the two sequence access

operations).

• The composition of the two path components implies a join condition between

their extremities. In this query, the appropriate condition is equality between

the to-values of creates and from-values of using technique.

• Then we process the conditions in the where clause; in Q1 there is an equality

condition between variable Z and a constant operation that represents the string

“oil on canvas”. The constructed operation is and-ed with the join condition

that is implied by the path composition. As a result, the root selection operation

of Q1 is the and operation.

• Finally, the comma-separated list of projections in the select clause is trans-

lated into a sequence constructor operation, since RDF sequence values are

used to represent tuples. Note that for queries with only one projection we do

not need a sequence constructor; in this case, the operation (variable or other)

University of Crete

4.1. CORE ALGEBRA AND EQUIVALENCES 75

Select

Project

P[w,z]

Select

DProperty[P]

Map

R = range(P)
D = domain(P)

D >= Painter
or

D <= Painter

subclassTreeOf(R)(Y)

Z in ^Y

z=‘‘oil on canvas’’

x, P, Z, y

D-Join

D-Join

Figure 4.2: Evaluation plan of Query Q2

that appears in the select clause of the query is considered as the projection

operation of the query.

Things are more complex when the path element is not a ground property or

class from a given schema, but instead are variables, either already bound from an-

other path or using RQL’s shortcut notation for class ($) or property (@) variables.

Consider, for example, the following query Q2:

Q2: Find all properties and their range classes that can be applied on class

Painter

select X, @P, Z, $Y

from {X;Painter}@P{Z;$Y}

This query can be rewritten, using the define clause, in the following intermediate

form:

George Kokkinidis

76 CHAPTER 4. QUERY PROCESSING IN SQPEER

select X, P, Z, Y

from DProperty P, P Q, subclasstreeof(R) Y

define X = Q[0], Y = Q[1], D = domain(P), R = range(P)

where D = Painter and X in Painter and Z in ˆY

This translation involves the application of two functions (domain, range) on a

set (DProperty). DProperty corresponds to an RQL built-in metaclass used in order

to be able to retrieve only data properties, that are defined at schema level (i.e.,

relations between resources or attributes of resources). As we explained previously,

the above application of the functions can be expressed using the mapping operator

(χ). Moreover, the scan on each property name returned by the first scan implies

a d-join, since the second scan depends on the first one. The corresponding query

evaluation plan is shown in Figure 4.2.

For the query plans considered in SQPeer, we will focus on the join and the union

operators. We should point out that in order to perform query routing in SQPeer,

we require information given from the from and select clauses. However, where

clause provides information necessary in the planning phase. Since the join and

union operators consume the majority of the processing time, their evaluation is the

main concern of most of the distributed database and P2P query plan optimizers.

Using the above presented query algebra, we can proceed in describing the frag-

mentation and algebraization phase utilized by SQPeer, after we first introduce several

possible query plan equivalences and heuristics.

4.1.3 Query Plan Equivalences

An issue concerning the creation of the query plans is the placement of the unions

in the produced query plan tree. Usually, unions exist at the bottom of the plan tree

combining all the results for each resource answered by several peer bases. These

results are later combined by the joins and produce the final answer. We can push

unions to the top and consequently push joins closer to the leaves. This makes possible

(a) to evaluate an entire join at a single peer (intra-peer processing) when its view

University of Crete

4.1. CORE ALGEBRA AND EQUIVALENCES 77

is subsumed by the query fragment, and (b) to parallelize the execution of the union

in several peers. The latter can be achieved by allowing for example each fragment

plan (consisting of only joins) to be autonomously processed and executed by different

peers. The former suggests applying the following algebraic equivalence as long as the

number of inter-peer (i.e., between different peers) joins in the equivalent query plan

is less than the intra-peer one. This heuristic comes in accordance to best effort query

processing strategies for P2P systems introduced in [RSWB05]. Moreover, promoting

intra-peer processing exploits the benefits of query shipping as discussed in [FJK96].

Algebraic equivalence: Distribution of joins and unions

Given a subquery ./ (
⋃
(Q11, . . . , Q1n),

⋃
(Q21, . . . , Q2m)) rewrite it into

⋃
(./ (Q11, Q21), ./ (Q11, Q22), . . . , ./ (Q1n, Q2m)).

In order for the produced query plans to identify intra-peer (i.e., between the

same peer) processing and thus consider the fact that one peer can answer more

than one successive patterns (unless more sophisticated fragmentation is considered

as discussed in the following section), the following heuristics are introduced:

Heuristic 1:

Given a subquery ./ (Q1@Pi, . . . , Qn@Pi) rewrite it into Q@Pi, where Q =

Q1 .// Qn.

Heuristic 2:

Given a subquery ./ (./ (QP,Q1@Pi), Q2@Pi) rewrite it into ./ (QP,Q@Pi), where

Q = Q1 ./ Q2 and QP any non-empty query subplan.

These two heuristics actually identify parts of the query plan that can be answered

by the same peer and group them in order to be executed as a whole. It should be

stressed that in order to identify all appropriate intra-peer joins, the two heuristics

should be applied recursively, until no further change in the query plan is possible.

The query fragmentor practically embodies these heuristics by considering complex

patterns as a single fragment as will be presented in the next section.

George Kokkinidis

78 CHAPTER 4. QUERY PROCESSING IN SQPEER

4.2 Query Fragmentation and Algebraization

4.2.1 Query Fragmentor

Query processing involves a query fragmentation phase, where the query is split

into distinguished fragments, which will eventually be executed as a whole by the

same peer. More precisely, the fragmentor splits the query based on the existing data

distribution, since the fragments should exploit as much as possible the answering

capabilities of the involved peers. By executing more complex fragments at a single

peer, not only we consider horizontal data distribution but additionally the cost of

the query plan is minimized and results that are more relevant to the original query

are returned as fast as possible. A description of how the fragmentation phase works

is given below.

A fragmentor receives as input a complex query pattern in order to produce a set

of simpler query patterns, according to the number of joins (input parameter #joins)

between the resulting fragments, which are required to answer the original pattern.

Recall that a query pattern is always a fragment graph of the underlying RDF/S

schema graph.

Each fragment (or fragment pattern) consists of a connected set of property pat-

terns of the initial query pattern. A set of fragments that when combined produce the

complete initial query pattern is considered as a fragmentation of this query pattern.

Since there are multiple ways to break a query into a specific number of fragments, the

fragmentor produces a set of all the possible fragmentations given a specific #joins.

In the simplest case #joins equals to 0, so the whole query schema subgraph is re-

turned. The variable value may increase until no further fragmentation of the query

is possible, i.e., the total number of simple property patterns contained in the input

query pattern is produced. At this case, the query or view pattern is decomposed into

its basic class and property patterns and all the joins involved in it are considered.

Since the fragmentation phase affects query processing by restricting the type of

the created query plans, the input parameter #joins is determined by the optimiza-

tion techniques employed by the query processor. More information concerning the

University of Crete

4.2. QUERY FRAGMENTATION AND ALGEBRAIZATION 79

C3
prop2

C1 C2
prop1

C3
prop2

C1 C2
prop1

C1 C2

C4

prop1

prop3

QC4

prop3

C1
prop1

C2

C2 C3
prop2

C1 C4
prop3

Q1

Q2

Q3
Q5

Q4a)Fragment of size 3

b)Fragments of size 1 c)Fragments of size 2

Figure 4.3: Fragments for the query pattern Q

execution of the fragmentor and the choice for its input parameter is discussed in

Section 4.4 in conjunction with the proposed query processing and execution alter-

natives.

An example of all possible fragments of a query pattern Q, whose size equals to 3,

is given in Figure 4.3. Easily we note that only one fragment of size 3 is possible that

is the whole query pattern. Respectively the number of fragments of size 1, i.e., the

simple property patterns Q1, Q2 and Q3 that consist the query, equals to the size of

the initial query pattern, which in our example is 3. Finally, only two fragments of size

2 are possible, i.e., Q4 and Q5. Note that the number of the intermediate produced

fragments is governed by the structure (i.e., linear, tree or graph) and naturally the

size of the input query. The fragmentations returned by the algorithm are all the

possible combinations of the above fragments that produce a correct result for the

considered query. In our example, the set of all the possible fragmentations of the

query Q is the following {{Q}, {Q4, Q1}, {Q5, Q3}, {Q1, Q2, Q3}}.

4.2.2 Query Routing and Data Localization Algorithm

Query routing is responsible for finding the relevant to a query peers (or more

precisely their advertisements) by taking into account data distribution (vertical,

George Kokkinidis

80 CHAPTER 4. QUERY PROCESSING IN SQPEER

horizontal and mixed) of peer bases committing to a SON RDF/S schema. In par-

ticular, query routing is responsible for the data localization and the lookup phases.

The main role of data localization is to translate the operations on relations in order

to bear on local data that may be stored in remote or local peer bases. This is done

by using data distribution information obtained by the lookup service. The lookup

service is responsible to identify and return the relevant peer advertisements with the

possible help of a peer view index embedded in the P2P system.

In SQPeer, data localization information takes the form of peer views (also referred

to as peer advertisements) that are used for efficiently and intensionally advertising

their peer contents (see Section 3.3.2). Peer advertisements can be either collected

at specific peers that act as central routers (each one handling specific type of peer

views) or distributed at a number of peers all over the P2P system. In the centralized

alternative, where the views are centrally stored, all peers are required to publish

their bases to the appropriate central registry. In the distributed alternative, each

peer contains a subset of the peer base advertisements that need to be combined

in order to offer the complete data localization information. The first alternative

requires from the lookup phase to contact that central registry and simply return

the appropriate data localization information. However, in the distributed scenario a

more sophisticated lookup service is necessary to efficiently contact the appropriate

peers and gather the advertisements that are relevant to the query searched. Nev-

ertheless, in both alternatives the lookup phase should consider subsumption issues

between the query and the corresponding views, as discussed in Sections 3.3.2 and

3.3.3.

Prior to the initiation of the routing phase, a fragmentor is employed to break

a complex query pattern given as input into more simple ones, as discussed in the

previous subsection. For each fragment pattern produced, the data localization phase

is executed and all the available views are checked for identifying those that can answer

it. Such a data localization algorithm for SQPeer is discussed below.

The data localization algorithm takes as input a query pattern and returns a query

pattern annotated with information about the peers that can efficiently evaluate it.

University of Crete

4.2. QUERY FRAGMENTATION AND ALGEBRAIZATION 81

P2’s View

prop3
C4

C2
prop1

C1

prop3
C4

C2
prop1

C1
prop2

C3

P1’s View

prop3
C4

C2
prop1

C1
prop2

C3

Annotated Query Pattern

Q1

Q2
Q3

Q

prop3

prop2
C3C2

prop1
C1

C4

V2:

P3’s View

V3:

V1: V1=Q

V2=Q4

V3=Q

⊆V4 Q5

Q1:

Q2:

Q3: {P1, P2, P3}

{P1, P2, P3, P4}

{P1, P3, P4}
P4’s View

V4:
prop2

C3C5 C6
prop4

Figure 4.4: An annotated RQL query pattern

A lookup service (i.e., function lookup), which strongly depends on the underlying

P2P topology, is employed to find peer views relevant to the input pattern. The

query/view subsumption algorithms of [CKK+03] are employed to determine whether

a query can be answered by a peer view. More precisely, function isSubsumed checks

whether every class/property in the query is present or subsumes a class/property of

the view. A pseudocode depicting how data localization works is given below:

DataLocalization(QP)

1 QP ′ ← construct an empty annotated query pattern for QP

2 V P ← lookup(QP)

3 for all view patterns V Pi ε V P, i← 1 to n

4 do if isSubsumed(V Pi, QP)

5 then annotate QP ′ with peer P responsible for V Pi

6 return QP ′

Figure 4.4 illustrates an example of how SQPeer data localization algorithm works

given the RQL query Q composed by three property patterns, namely Q1, Q2 and

George Kokkinidis

82 CHAPTER 4. QUERY PROCESSING IN SQPEER

Q3, as well as the views of four peers. The middle part of the figure depicts how

each fragment pattern matches one of the four peer views. The variable #joins in

our example is set to 2 so the three simple property patterns of query Q are checked.

A more sophisticated example with a different fragmentation will be presented in

Section 4.2.3. P1’s and P3’s views consist of the property patterns Q1, Q2 and Q3,

so all three patterns are annotated with P1 and P3 respectively. P2’s view consists

of patterns Q1 and Q3, so they are both annotated with P2. Finally, P4’s view is

subsumed by patterns Q1 and Q2, since prop4 is a subproperty of prop1, therefore

Q1 and Q2 are annotated with P4. In the right part of Figure 4.4 we can see the

annotated query pattern returned by the SQPeer data localization algorithm, when

applied to the RQL query and RVL views of our example.

In the data localization algorithm presented we have considered the fragmentation

of the query into its minimal query patterns (i.e., simple property patterns) by setting

the number of the #joins variable to be equal to the total number of joins involved

in the input query pattern. However, we should note that for a given #joins value,

there are more than one ways to break a given query pattern, i.e., there are more

than one fragmentations possible. Exceptions are the two extreme values for #joins,

i.e., 0 and the total number of joins of the query pattern, with each one producing

only one possible fragmentation. For example for a query of size 4 and for #joins

equal to 1, we can break the query into two different sets. The first involving queries

of size 2, which are joined together, and the second involving queries of size 3 and 1

also joined with each other. Moreover, same type of fragmentations may also differ,

for example the fragmentations {Q4, Q2} and {Q5, Q3} of query Q in Figure 4.4,

so each will produce a different annotated query pattern. In this sense, the output of

the routing phase is a set of annotated query patterns, one for each fragmentation of

the query. This will become more clear in Section 4.4, where the interleaved query

routing and planning phase is discussed.

4.2.3 Query Planning and Algebraic Translation Algorithm

Query planning in SQPeer is responsible for generating a distributed query plan

according to the localization information returned by the routing algorithm. The

University of Crete

4.2. QUERY FRAGMENTATION AND ALGEBRAIZATION 83

first step towards this end, is to provide an algebraic translation of the RQL query

patterns annotated with data localization information.

The algebraic translation algorithm relies on the object algebra of RQL (see also

Section 4.1). Initially, the annotated query pattern (i.e., a schema fragment) is tra-

versed and for each subfragment, already distinguished by the fragmentor, the anno-

tations with relevant peers are extracted. If more than one peers can answer the same

fragment, the results from each such peer base are “unioned” (horizontal distribution).

As the query pattern is traversed, the results obtained for different fragments that

are connected at a specific domain or range class are “joined” (vertical distribution).

The final query plan is created when all subquery fragments are translated.

The generated query plan reflects the data distribution of the P2P system. Since

the input annotated graph is created according to a specific fragmentation policy

adopted by the routing algorithm, the produced query plan considers each fragment

as a single resource answered by the peers in the corresponding annotation set. As a

result only inter-peer joins are explicitly constructed by the planning algorithm. All

intra-peer joins are already considered by each fragment, hence the peer receiving the

specific fragment will have to undertake its execution by locally processing all the

involved joins.

A pseudocode depicting how the algebraic translation algorithm works is presented

below:

AlgebraicTranslation(AQ′, PP)

1 QP ← nil

2 P ← {P1, . . . , Pn}, set of peers obtained from the annotation of PP in AQ′

3 if P ← nil

4 then QP ← PP@?

5 else for all peers Px ε P

6 do QP ← QP
⋃
PP@Px −Horizontal Distribution−

7 for all subquery patterns PPj ε children(PP)

8 do TPj ← AlgebraicTranslation(PPj, AQ
′)

9 QP ← ./Cp (QP, TP1, . . . , TPn) − V ertical Distribution−

George Kokkinidis

84 CHAPTER 4. QUERY PROCESSING IN SQPEER

c2join
P1

P2 P3

P4

Q

ch1

ch3

ch2

⊃Subplan 1 Subplan 2 ⊃

Q2@P1 Q2@P3 Q2@P4Q4@P1 Q4@P2 Q4@P3

Query Plan 1 P1’s Query Execution and Channel Deployment

Figure 4.5: Query plan generation and channel deployment in SQPeer

Figure 4.5 illustrates how the RQL query Q can be processed given the four peer

views (as seen in Figure 4.4), the #joins variable equals to 1 and concentrating on

the fragmentation policy of breaking the query into its two subqueries Q4 and Q2.

In this example, we assume that P1 has already carried out the routing phase by

executing the data localization algorithm in order to generate the annotated query

pattern for the respective fragmentation. The algebraic translation algorithm, also

running at P1, receives as input the annotated query pattern and the root pattern,

i.e., Q4. It initially translates the root pattern into the algebraic Subplan 1 depicted

in Figure 4.5 (i.e., P1, P2 and P3 can effectively answer the subquery). The partial

results obtained by these peers should be “unioned” (horizontal distribution at line

6). By checking all the children patterns of the root, we recursively traverse the input

annotated query pattern and translate its constituent fragment plans. For instance,

when Q2 is visited as the first (and only) child of Q4 the algebraic Subplan 2 is

created (i.e., P1, P3 and P4 can effectively answer the subquery). Then, the returned

query plan concerning Q2 is “joined” (vertical distribution at line 9) with Subplan

1, thus producing the plan illustrated in Figure 4.5 (i.e., no more fragments of the

initial annotated query pattern Q need to be traversed).

The algebraic translation algorithm should also consider in the same manner the

fragmentation of the query into its two subqueries Q5 and Q3 producing a similar

plan. The two produced plans should also be “unioned”, thus finalizing the planning

phase for the given value of #joins. A more elaborate example is presented in Section

4.4.

University of Crete

4.2. QUERY FRAGMENTATION AND ALGEBRAIZATION 85

joinc2

joinc2joinc2 joinc2joinc2

joinc2

⊃

...

Q2@P3

Q@P1

⊃

Q2@P1 Q2@P3 Q2@P4Q4@P1 Q4@P1 Q4@P3

... ...

Q4@P3 Q2@P3

Q4@P1

...

Q2@P4Q4@P3

Q@P3

Query Plan 3

Query Plan 2

Figure 4.6: Optimizing query plans by applying algebraic equivalences and heuristics

We can easily observe from our example that taking into account the vertical

distribution ensures correctness of query results (i.e., produce a valid answer), while

considering horizontal distribution in query plans favours completeness of query re-

sults (i.e., produce more and more valid answers).

Applying the algebraic equivalence introduced in Section 4.1.3, the query plan of

Figure 4.5 is transformed into the equivalent query plan 2 of Figure 4.6. This plan

decreases the data transferring cost between the peers due to smaller intermediate

results and additionally offers the ability to evaluate this plan in a pipeline way, since

each leaf of the union operator can be optimized and executed in parallel. However,

this comes with the additional effect of increasing the processing time, since the

number of considered plans increases.

Moreover, one can easily observe that query plan 2 does not take into account

the fact that one peer (e.g., P4) can answer more than one successive patterns, unless

more sophisticated fragmentation is considered by the data localization algorithm.

By applying the two heuristics of Section 4.1.3 on query plan 2, query plan 3 of

Figure 4.6 is produced. This allows fragment plans that translate the whole query

pattern Q to be directly sent for execution to the relevant peers, i.e., joins between

George Kokkinidis

86 CHAPTER 4. QUERY PROCESSING IN SQPEER

subqueries Q4 and Q2 are executed by peers P1 and P3 respectively.

In this context, a question that naturally arises is how SQPeer query planner

behaves in cases where there is no sufficient data localization information to produce

a valid query answer (e.g., when there are no peers that can answer subquery Q2).

This occurs when the peer processing the query does not contain sufficient data

localization information in order to create a complete query plan and thus the routing

phase produces an annotated graph with null annotations for certain patterns of the

query. For handling this, SQPeer produces partial query plans with “holes” at the non-

associative subquery patterns with relevant peers. These holes are denoted by the ?

symbol. In this case, the query plan should be further routed through the system, until

appropriate data localization information is gathered in order to answer the unknown

part. This additive routing activity of the query plan is governed by the architecture

of the P2P system, since different architectures require different approaches in the

query (sub-)plan routing. For example in an unstructured P2P system a peer may

decide either to first acquire all the appropriate data localization information (by

flooding, for example, routing requests) or create a partial query plan in the sense

introduced above and route this plan until all data localization information needed

is gathered. We should remind that partial query plans may be formulated only

in a fully unstructured P2P system, since in the case of a hybrid or a structured

P2P architecture already discussed in Section 3.4 the problem of insufficient data

localization information is not encountered during the routing phase.

4.3 Cost-based Optimization

Query optimization’s goal is to produce an efficient query plan with respect to the

estimated query evaluation time. To this end, a cost model is required to estimate

the total resource consumption or the response time of a specific query plan. The

difference between these two cost metrics is that the former does not consider possible

parallelization during the plan execution, i.e, the fact that fragment plans may be

executed simultaneously at different peers. In SQPeer, we consider the latter metric,

University of Crete

4.3. COST-BASED OPTIMIZATION 87

since the main factor in most of the P2P systems is minimizing the time for receiv-

ing the complete answer without concerning on wasting system resources, which is

computed by the total cost.

The cost is usually computed by adding the processing cost of the query plan

operators and the communication cost from the data exchange between the peers

contributing to the final query result. For computing this cost, appropriate statistics

concerning both peers and their bases are needed. Statistical information may be

either available locally at the peer undertaking query processing or may be on demand

requested by the involved peers. Partially optimized query plans may also be created,

when the peer contains incomplete statistical information and do not wish or is not

permitted to ask the peers involved in the query plan. Query optimization, as already

described in Chapter 2, can be distinguished into local and global optimization. In

this section, we will focus on global query plan optimization, since a number of remote

peers may contribute to the execution of the formulated query plan by undertaking

a fragment of it and/or providing locally stored data.

SQPeer’s query optimizer receives the query plan created by the algebraic transla-

tion algorithm and generates an optimized plan. A cost model is utilized by a dynamic

programming approach in order to compute this optimized query plan. The necessary

formulas, as long as a description of the approach on cost-based optimization followed

in SQPeer is presented below.

4.3.1 Cost Model

In order to decide between different query plan deployments, i.e., decide which

peer and in what order will undertake the execution of each query operator, and more

importantly to evaluate the execution cost of a query plan, a cost model should be

used.

Statistics are used in order to compute both the communication and the processing

costs. These statistics include a) the speed of each peer’s connection, b) the size of the

relevant data stored in each peer base and c) the selectivity of the query operators.

The connection speed characterizes the peer’s capabilities for sharing and receiving

George Kokkinidis

88 CHAPTER 4. QUERY PROCESSING IN SQPEER

intermediary query results or requested data stored locally. The size of intermediary

results can be estimated using the size of the stored data along with the selectivity of

the operators handling these results. The first two statistics can be retrieved by the

relevant peer by directly asking the peer for its data and connection capabilities. The

third one is the most difficult to be acquired or even to be predicted in a precise way.

Each query operator is equipped with a specific cost formula for evaluating the size

of the intermediate results in accordance to the size of the input or output relations.

In [OV91] the cost of a query plan depicting the adopted execution strategy can

be expressed with respect to either the total cost (measured in time) or the response

time. The total cost is the sum of all cost components, while the response time

corresponds to the necessary time period for fully executing the given query. A total

cost formula is specified as follows:

Total cost = CCPU ∗#insts+CI/O ∗#I/Os+CMSG ∗#msgs+CTR ∗#bytes (4.1)

Processing time is computed by the first two components and corresponds to the

CPU instruction and disk I/O costs. The communication time involves the creation

and transmission of the messages needed for the inter-peer communication and data

exchange and corresponds to the last two components. The transmission data unit is

given here in terms of bytes, but could correspond to different units (e.g., packets).

For the response time both communication and processing time are used, but all

possible parallel (both processing and communication) operations must be considered.

A response time formula is given below:

Response time = CCPU ∗ seq #insts+

CI/O ∗ seq #I/Os+ CMSG ∗ seq #msgs+ CTR ∗ seq #bytes (4.2)

where seq x is the maximum number of x operations that must be done sequen-

tially for executing the query. Thus any processing and communication done in

parallel is not computed.

Minimizing response time, i.e., exploiting all possible parallel execution, does not

imply the consequent minimization of the total cost. On the contrary, the total cost

University of Crete

4.3. COST-BASED OPTIMIZATION 89

may be increased from the increase of processing done in parallel. This may not

be desirable in certain systems, as is the case of the P2P systems, and usually a

compromise between the two cost metrics is made.

In [LPR98] a more simplified cost-based estimation for inter- and intra-peer query

processing is used. The cost formula 4.3 consists of three independent factors: com-

munication cost (C), local processing cost (L) and total response time cost (R).

Cost = acc ∗ C + alqp ∗ L+ art ∗R (4.3)

While the first two components correspond to the total cost, the third component

is identical to the notion of response time seen in [OV91]. The coefficients in front

of each of the formulas components can be controlled by the user according to which

factor should be the primer concern for the system. For example, with the values (0

0 1), the response time is considered for the evaluation of each query plan. Statistics

concerning the cardinalities of the partial results produced by query operators, which

are calculated according to the selectivity factors of the operators, are used to estimate

the total cost.

Finally, in [Sah02] the response time is computed similarly by using both process-

ing and communication time. Processing time considers the evaluation of joins and

cross products, with each one having a specific formula evaluating the CPU time for

executing them according to the cardinalities of the input relations. Communication

time on the other hand considers the network connections of the involved peers and

computes the time for exchanging the necessary partial results. The bandwidth of

each peer is modelled as a linear function and ranges from 56k to WAN peer connec-

tions.

Based on the above approaches, we first need to introduce the appropriate formulas

for computing the cardinality of the output results for each operator of the query plan

used in SQPeer. We focus on the two most time-consuming query plan operators,

i.e., the join and the union. For the join operator the following cardinality estimation

formula is used:

JoinCard(./ (Q1, Q2)) = card(Q1) ∗ card(Q2)/(join selectivity)m (4.4)

George Kokkinidis

90 CHAPTER 4. QUERY PROCESSING IN SQPEER

where m stands for the number of the joined attributes between the two relations

of the join. This formula considers the same join selectivity for all the involved joined

attributes, although this is not usually true. In the case of path queries, which are

considered in SQPeer, the joined attributes are actually the common classes shared

by the path patterns involved in the join.

Likewise, the cardinality estimation formula for the union operator is shown below:

UnionCard(∪(Q1, . . . , Qi)) =
i∑

n=1

card(Qn)/i+max(card(Q1), . . . , card(Qi))

(4.5)

This formula is suggested by the definition of the union operator, since the union

result will always be no less than the cardinality of the largest set participating in

the union (≥ max(card(Q1), . . . , card(Qi))) and as large as the sum of the sizes of

the operands (≤
∑i

n=1 card(Qn)). So, as suggested in [GMUW00], something in the

middle is the most appropriate choice, e.g., the average of the sum plus the larger.

Using the two formulas presented above, we can compute the cardinalities of all the

intermediate results of our query plan with statistics concerning only the peer views at

the leaves of the plan. Since peer views considered by SQPeer can be complex patterns

that consist of more than one simple pattern, their statistics can be either retrieved

for the complex pattern as a whole or can be computed with the above formulas by

using the statistics of the simple patterns. These cardinalities will eventually help us

compute not only the processing but also the communication cost in order to decide

on the optimal query plan by considering operators reordering and execution.

The processing cost of a query plan can be computed by assigning to each of

the query’s operators a certain cost that corresponds to the CPU time required for

computing it. This cost is proportional to the size of the output relations of the

operator, since larger number of relations require more processing time.

In general, communication cost prevails in the computation of the overall query

plan cost, in contrast to the processing cost, which usually is much smaller. This

assumption, which is considered by most of the distributed database approaches,

highlights the importance of favoring intra-peer processing, since communication cost

University of Crete

4.3. COST-BASED OPTIMIZATION 91

is minimized by taking into account as much as intra-peer operators as possible and

thus producing the minimum amount of intermediate results for inter-peer exchange.

Nevertheless, since the progress in peer connections results in faster communications,

processing cost becomes more significant and notably affects the decision of executing

an operator at a specific peer.

The processing cost formula of the join operator used in SQPeer is given below:

ProcCost(./ (Q1, Q2)) = join setup cost +

JoinCard(./ (Q1, Q2)) / join ratio (4.6)

The join setup cost corresponds to the constant time required for setting up the

join operator. Respectively, the join ratio is used for simulating the peer processor’s

speed, therefore faster processors require a bigger ratio.

A similar processing cost formula is used for the union operator, where union setup

cost and union ratio suggest the same thing:

ProcCost(∪(Q1, . . . , Qn)) = union setup cost +

UnionCard(∪(Q1, . . . , Qn)) / union ratio (4.7)

Note that the above model ignores the size of each tuple but only considers the

cardinality of the relations. Moreover, it should be noted that given the nature of a

P2P system like SQPeer, it is unrealistic to try and use a more refined cost model, since

no accurate statistical knowledge can easily be obtained in a P2P setting neither a

control on the local processing time of a remote peer can be systematically performed.

The communication cost in SQPeer is computed according to the following for-

mula:

CommCost(Q) = latency + card(Q)/bandwidth (4.8)

where latency represents the cost placed by the network distance between two

peers, i.e., the constant time inserted at each link that connects two peers. The

communication cost is defined as the sum of the latency as described above and the

size of the exchanged data (measured by the cardinality of the exchanged relations)

George Kokkinidis

92 CHAPTER 4. QUERY PROCESSING IN SQPEER

divided by the bandwidth. The bandwidth is computed as the minimum bandwidth

found along the path that connects the two considered peers. A fixed incoming and

outgoing bandwidth is considered for each peer in the system. Moreover, a linear

function is used for modelling bandwidth, since it provides a good approximation of

the reality as proposed in [Sah02].

The processing cost of the operators in the query plan affects their ordering in the

query plan. For example, by changing the possible order of the joins execution in the

query plan, results in the change of the cardinalities of the intermediate results. This

in turn affects the cost of executing the operators, since larger intermediate results

means more intermediate processing time. On the other hand, the communication

cost affects both the operators ordering and the selection of the appropriate peers

for executing them. For the former, it is obvious that larger intermediate results

mean larger transmission time for exchanging them between the involved peers. For

the latter, since the processing time of a specific operator with specific operands is

independent of the peer that handles the operator’s execution, processing cost does

not affect this selection. On the contrary, the communication cost may vary according

to which peer takes the responsibility of executing the operator, since the remotely

stored operands should be send to that specific peer.

For the cost estimation of a query plan, SQPeer uses the response time metric (i.e.,

formula 4.2) as discussed in [Sah02]. The processing and communication cost of each

query plan operator is added and the response time of the query plan is computed.

To this end, another metric that may be considered by the optimizer is the process-

ing load of the peers, since a peer that processes fewer queries, even if its connection

is slow, may offer a better execution time. This processing load can be measured by

the existence of slots in each peer, which show the amount of queries that can be

handled simultaneously. The use of this metric in SQPeer is left as future work.

University of Crete

4.3. COST-BASED OPTIMIZATION 93

4.3.2 Dynamic Programming in SQPeer

4.3.2.1 Classic Dynamic Programming Algorithm

In this section, we will describe the classic dynamic programming algorithm

used for optimizing queries in several distributed database systems as described in

[SAC+79]. As input to the algorithm, we consider a queryQ on relations {R1, . . . ,Rn}.

The algorithm outputs a query plan similar to the notion presented in Chapter 2. This

plan is produced in a bottom-up way. First, the algorithm selects all access plans

for every relation involved in the query, i.e., use of an index scan or simply read the

table containing the relation. In the second phase, all possible ways of joining these

relations are considered. Initially, all the two-way joins are considered (joinPlans

function) by building a join plan consisting of two relations. Then all three-way joins

are considered and so on until n-way joins are checked. In the last phase, the n-way

plans are treated accordingly in order to become finalized (finalizePlans function) by

for example attaching project or group-by operators.

An important feature of the dynamic programming algorithm is the fact that it

discards at every step inferior plans. This approach is called pruning, since cheaper

plans are kept for the next step and costly ones are pruned (prunePlans function).

The pruning makes the dynamic programming algorithm to run significantly faster

than an exhaustive search, where all expensive plans are carried through all the

consequent steps. A pseudocode for the classic dynamic programming algorithm is

given below:

ClassicDynamicProgrammingAlgorithm(Q)

1 for i← 1 to n

2 do optP lan({Ri})← accessP lans(Ri)

3 pruneP lans(optP lan({Ri}))

4 for i← 2 to n

5 do for all S ⊂ {R1, . . . , Rn} such that |S| = i

6 do optP lan(S) = Ø

7 for all O ⊂ S

George Kokkinidis

94 CHAPTER 4. QUERY PROCESSING IN SQPEER

8 do optP lan(S) = optP lan(S)∪

9 joinP lans(optP lan(O), optP lan(S \O))

10 pruneP lans(optP lan(S))

11 finalizeP lans(optP lan({R1, . . . , Rn}))

12 pruneP lans(optP lan({R1, . . . , Rn}))

13 return optP lan(optP lan({R1, . . . , Rn}))

Cost-based optimization in SQPeer requires the selection of an optimal query plan

between different alternatives that considers not only the most appropriate query plan

operator ordering but also the optimal selection of the peers that will undertake their

execution. SQPeer’s query optimizer uses a similar approach to the classic dynamic

programming algorithm. Initially, the algorithm considers all relations required for

the evaluation of the query. Then, it produces all the two-way joins producing one

join plan for each such combination. Iteratively the algorithm considers three-way,

four-way join plans, and so on up to n-way joins, where n is the number of relations

involved in the plan. At each step of the algorithm, a pruning phase is used. During

the pruning, plans that produce the same results are evaluated by using the cost

model previously discussed and the best plan is selected for consideration at the next

phase. After the final step, a number of equivalent query plans will be produced.

Again these plans are evaluated and the best one is chosen for execution.

Since dynamic programming algorithm considers only the joins of the query plan

and additionally the union operators reside either at the top or the bottom of the query

plan, the union evaluation is done separately. Its actual implementation includes

checking all possible peer assignments for each union operator and setting the best

such assignment to be the “union collector” peer. The union operator evaluation is

done either at the beginning (when the unions reside at the leaves of the query plan)

or at the end of the dynamic programming execution (when the unions are pushed

at the top of the query plan).

The output optimized query plan includes not only the best possible ordering of

the query operators, but also assigns at each such operator the peer, where it is going

to be most efficiently executed. An example of how the dynamic programming algo-

University of Crete

4.3. COST-BASED OPTIMIZATION 95

rithm works and the choices it makes concerning data or query shipping is presented

in a following subsection.

4.3.2.2 Iterative Dynamic Programming Algorithm

Iterative dynamic programming (or IDP) algorithm [KS00] is an extension of the

classic dynamic programming algorithm. Its main idea is to apply dynamic program-

ming several times in the process of optimizing a query; either to optimize different

parts of a plan separately or in different phases of the optimization process.

IDP works essentially in the same way as dynamic programming with the only

difference that IDP respects that the available resources (e.g., main memory) of a

machine (in our case a peer) are limited or that the user might want to limit the

time spent for query optimization, which is also the case in P2P systems. To describe

how IDP works, we assume that a peer has enough memory to keep all access plans,

two-way, ..., k-way join plans for a query with n relations, where n>k. In such a

situation, the dynamic programming algorithm would crash or be the cause of severe

paging of the operating system when it starts to consider (k+1)-way join plans. On

the other hand, IDP would generate all access plans, two-way, ..., k-way join plans

like dynamic programming, but rather than starting to generate (k+1)-way plans, it

would break, select one of the k-way join plans, discard all other access plans and join

plans that involve one of the relations of the selected plan, and restart in order to

build (k+1)-way, (k+2)-way,... join plans using the selected plan as a building block.

A pseudocode for the iterative dynamic programming is given below:

IterativeDynamicProgrammingAlgorithm(Q)

1 for i← 1 to n

2 do optP lan({Ri})← accessP lans(Ri)

3 pruneP lans(optP lan({Ri}))

4 toDo = {R1, . . . , Rn}

5 while |toDo| > 1

6 do k = min{k, |toDo|}

7 for i← 2 to k

George Kokkinidis

96 CHAPTER 4. QUERY PROCESSING IN SQPEER

8 do for all S ⊂ toDo such that |S| = i

9 do optP lan(S) = Ø

10 for all O ⊂ S

11 do optP lan(S) = optP lan(S)∪

12 joinP lans(optP lan(O), optP lan(S \O))

13 pruneP lans(optP lan(S))

14 find P, V with P ε optP lan(V), V ⊂ toDo, |V | = k such that

15 eval(P) = min{eval(P ′) | P ′ ε optP lan(W), W ⊂ toDo, |W | = k}

16 generate new symbol : T

17 optP lan({T}) = {P}

18 toDo = toDo− V ∪ {T}

19 for O ∪ V

20 do delete(optP lan((O)))

21 finalizeP lans(optP lan(toDo))

22 pruneP lans(optP lan(toDo))

23 return optP lan(optP lan(toDo))

In general, any plan enumeration algorithm faces the tradeoff between its complex-

ity and the quality of the generated plans. IDP manages not only to have reasonable

(i.e., polynomial) complexity, but also to produce in most situations very good plans.

In particular, IDP produces better plans than any other algorithm during situations

in which dynamic programming is not viable because of its high (i.e., exponential)

complexity.

In SQPeer, we have additionally implemented an IDP algorithm for handling

query optimization. More on the results and the comparison with the classic dynamic

programming approach is presented in Section 4.7.

4.3.2.3 Data vs Query Shipping

Having the appropriate statistics in hand and by executing the dynamic pro-

gramming algorithm, a peer actually decides at compile-time between data, query

or hybrid shipping execution policies. We should remind that in the data shipping

University of Crete

4.3. COST-BASED OPTIMIZATION 97

P1

P2 P3

Q join

Q’ Q’’

union P1

P2 P3

union

Q join

Q’ Q’’
query shipping

data shipping

Q Q P3P3

P1

P2

P4 P1

P2

P4

ch1

ch2

ch2

ch1

Figure 4.7: Data and Query Shipping Example

scenario, the appropriate resources are asked by the peer bases and all the processing

is done locally. Alternatively, in query shipping, subqueries are sent to remote peers,

thus pushing operators to be executed remotely. A hybrid approach is possible by

combining the two previous execution policies.

Let us consider the existence of three peers, P1, P2 and P3, and a single query

Q that can be broken into two simple subqueries, Q’ and Q”, as can be seen in

Figure 4.7. P1 can efficiently answer the whole query Q, while P2 and P3 can an-

swer subqueries Q’ and Q” respectively. By initiating the execution of the dynamic

programming algorithm, access plans will be formulated for the simple subqueries

involved in the query. This means that scan(Q′, P2) and scan(Q′′, P3) will be cre-

ated as access plans for the two subqueries. The algorithm will then enumerate

all two-way join plans using the access plans as the building blocks. This enumer-

ation will consider all the relevant peers that are considered for carrying out the

respective join. In our example, the two-way join plans that will be considered

are three, i.e., ship(scan(Q′, P2), P1) ./ ship(scan(Q′′, P3), P1), scan(Q′, P2) ./

ship(scan(Q′′, P3), P2) and ship(scan(Q′, P2), P3) ./ scan(Q′′, P3), where ship(Q,P)

George Kokkinidis

98 CHAPTER 4. QUERY PROCESSING IN SQPEER

corresponds to shipping the result of Q to the peer P . This means that either peers

P2 and P3 send their data to peer P1 and P1 handles the join operator or one of

the two peers will decide to send their data to the other one, which will eventually

execute the join operator. While the first corresponds to the data shipping scenario,

the other two choices corresponds to query shipping, since part of the query plan (i.e.,

the join operator) is sent for execution to a peer that contributes to the evaluation of

this plan.

The selection between the three possible two-way join plans is performed by prun-

ing the two plans and keeping the cheaper one. The cost evaluation of the plans is

done according to formulas 4.6, 4.7 and 4.8 introduced in Section 4.3.1. For example,

the first plan should consider the shipping cost of the intermediate results of peers

P2 and P3 to the peer P1 and additionally the processing cost of the join at peer

P1. On the other hand, the second plan needs only to compute the shipping cost of

the intermediate results of peer P3 to peer P2 and the processing cost at peer P2.

Therefore, in case the results obtained by executing Q’ and Q” at their respective

peers are rather small or the bandwidth between peers P2 to P1 and P3 to P1 is large

enough, the first plan will be selected as the most appropriate. On the contrary, if

for example P2 offers a large amount of data and the join operator produces small

intermediate results, the second plan will probably produce the optimal cost.

In a similar way, the union operator is handled, by enumerating again all the

possible plans. The two unions operands are the plan selected by the previously

described computation and the plan scan(Q,P1). As an example, if the first plan

for the handling of the join is selected as the first optimal operand, then it is quite

straightforward that the optimal plan for the union is to execute it locally at peer P1.

In the example of Figure 4.7, we can see two alternatives on how P1 can actually

execute the generated query plan. In the left part of the figure we can see the data

shipping alternative, since P1 sends queries Q’ and Q” to peers P2 and P3 and joins

their results locally. In the right part of the figure we can see the query shipping

alternative, since P1 decides to forward the join operation down to P2, which in

turn receives the results from P3 and executes the join locally before sending the full

University of Crete

4.4. INTERLEAVED QUERY ROUTING AND PLANNING 99

join

⊃

...

⊃

...Q1@P1 Q1@P4 Q2@P1 Q2@P4

join

c2

c1

⊃

...Q3@P1 Q3@P3

Figure 4.8: Query plan offering complete answer

answer to P1 for further processing.

At the bottom of the figure, we can see the deployment of the channels in SQPeer

for each of these two alternative execution policies. More on the channel deployment

will be discussed in Section 4.5.

4.4 Interleaved Query Routing and Planning

We distinguish between two scenarios concerning the execution of both query

routing and planning algorithms in the context of SQPeer.

The first scenario involves the sequential execution of query routing and planning

phase, where the user requires the creation of a single query plan offering complete

results to the input query. In this scenario the fragmentor’s #joins equals to the

total number of joins involved in the input query. In this way, the produced query

plan contains in its leaves, all the simple property patterns of the query and evaluates

the answer by considering the most beneficial ordering of all the joins between them.

Unions are utilized to gather all the data concerning each simple pattern, before they

are further processed by the joins. This scenario offers completeness in the results of

the query with the creation of a single query plan. An example of such a query plan

can be seen in Figure 4.8, where all the joins and all simple patterns of the query Q

of Figure 4.4 are considered.

However several tradeoffs concerning the evaluation of this plan should be consid-

ered:

George Kokkinidis

100 CHAPTER 4. QUERY PROCESSING IN SQPEER

• Data localization information for all simple patterns of the query should be

gathered, which most probably will be huge considering that many peers will

be capable of answering them.

• Furthermore, no intra-peer processing is considered during the routing phase.

The planning phase should apply the dynamic programming algorithm with all

the possible joins and by checking all the peers offering results, which increases

the time required for the optimal query plan generation.

• Finally, the intermediate results produced during the query execution will be

fairly large, since all the available data for each simple pattern are processed.

This results in the creation of a quite expensive query plan regardless of the

applied optimizations.

Considering the aforementioned arguments, there is a need for a second more

complicated scenario, where the evaluation of the above complete query plan may be

split into several steps. While the first scenario requires a single execution of both

query routing and planning phase and a simple fragmentation for the input query, this

is not adequate for this second scenario, where more complex fragmentation policies

should be considered and many plans should be constructed and executed at several

steps.

To this end, we introduce an interleaved execution of query routing and planning

phase for obtaining a complete and correct answer to a given query. To do this, the

data localization algorithm should consider all possible fragmentations of the query

at several steps. The number of possible fragmentations is actually the number of

combinations of all the possible fragments of the query produced by the execution

of the fragmentor procedure for all possible #joins values. For each fragmentation

policy, i.e., each combination produced by the fragmentor, the algebraic translation

algorithm should be executed producing the appropriate query plan.

More precisely, this alternative initiates by considering the whole query pattern

and at each step the input #joins variable of the fragmentation algorithm is increased

by one. The query routing phase produces at each stage a different annotated query

University of Crete

4.4. INTERLEAVED QUERY ROUTING AND PLANNING 101

⊃

Phase2

⊃

⊃
...

⊃

...

⊃

...

⊃

...

joinjoin c1

Q4@P1 Q2@P4

c2

Q5@P1 Q3@P1

Phase 3

Phase 1

⊃

Q@P1

join

⊃

...
⊃

...Q1@P1 Q1@P4 Q2@P1 Q2@P4

join

c2

c1
⊃

...Q3@P1

Q2@P1

Q@P3

Q4@P3 Q5@P4 Q3@P3

Q3@P3

Figure 4.9: Query plans produced during interleaved query routing and planning

pattern (since the fragments are changed), which is passed to the query planner for

producing and eventually executing the appropriate query plan. This is illustrated

in Figure 4.9, where all the produced query plans for each possible fragmentation

of the query Q of Figure 4.4 can be seen. Each such plan is unioned with the

rest, since their combined results offer a complete answer to the given query. All

unions contained inside the query plans of the consequent phases are introduced by

the algebraic translation algorithm. However, the union employed for combining the

results obtained from each distinct phase (i.e., for each #joins value) does not consist

part of the respective query plans, but is rather suggested and actually executed at a

selected peer (usually the client itself) receiving the final results for the posed query.

In Figure 4.9, one such union can be seen at the top of the query plans of the three

interleaved phases.

As already dicussed, the interleaved execution starts by considering those peers

that answer the whole query pattern and gradually the size of the considered frag-

ments is reduced until the simple property patterns of size 1 are reached. By using

George Kokkinidis

102 CHAPTER 4. QUERY PROCESSING IN SQPEER

joinc2

Q2@P1Q4@P2

joinc2

Q4@P2 Q2@P3

joinc2

Q4@P2 Q2@P4

joinc2

Q2@P1Q4@P3

joinc2

Q4@P3 Q2@P4

joinc2

Q4@P1 Q2@P4

joinc2

Q4@P1 Q2@P3

⊃

Phase 2

Figure 4.10: Query plan produced after applying algebraic equivalences

this order, it is easy to note that the latter phases of processing take into consideration

answers that are already handled by the previous stages. For example, the first query

plan of the second phase of Figure 4.9 involves a join at the class C2. The unions

residing at the bottom of the query plan consider that subqueries Q4 and Q2 can be

answered by the sets of peers {P1, P2, P3} and {P1, P3, P4} respectively. While the

join between the results obtained from subqueries Q4@P1 and Q2@P3 produces

new correct query answers, the join between subqueries Q4@P1 and Q2@P1 pro-

duces results already gathered at the first phase of the interleaved execution. This

also holds for the results obtained from the evaluation of the subqueries at peer P3.

Receiving duplicates on the results does not only make the evaluation of the plan

more expensive, but may also produce false results, since the user’s query may not

require the existence of such duplicates. In order to solve this we need to apply the

algebraic equivalences of Section 4.1.3 and identify the intra-peer joins involved in

the query plan. More precisely, the two heuristics discussed in the respective section

are used to reorder unions and joins and identify the emerging intra-peer joins. Since

these joins, as already depicted by the example, are answered by the previous stages

of the interleaved execution, they can be removed. Figure 4.10 shows the first query

plan of the second phase of Figure 4.9 after the reordering of unions and joins and

the removal of redundant intra-peer processing already considered by previous phases.

This results in retrieving at the end of the execution of all the produced query plans

a correct and complete answer to the input query. No duplicates are considered at

the end of this scenario and no additional cost in both processing and communication

time is produced.

University of Crete

4.4. INTERLEAVED QUERY ROUTING AND PLANNING 103

On the other hand the interleaved scenario exhibits several advantages. To start

with, this scenario is most appropriate in a DHT-based system, where by using the

provided efficient lookup service a user receives at a constant and rather inexpensive

time the data localization information (in our case the peer views) for any path

pattern needed.

More importantly, the interleaved execution permits parallelism, i.e, the pipeline

formulation and execution of multiple query plans. This means that the processing

phase can be broken easily by assigning to several peers different parts of the query

plan. For instance, each peer may produce query plans based on a specific fragmen-

tation by considering a #joins value. This corresponds to assigning each phase, as

illustrated in Figure 4.9, to a different peer. Additionally, the same approach can be

performed for the execution of the query plans, since each peer may undertake the

execution of a different query plan.

Since the query is gradually broken into simpler patterns, the results obtained at

the initial steps are more relevant and more cost-efficient than those produced at the

final steps. This has a twofold value, since the time required for the receipt of the first

results is quite small and additionally intra-peer processing is promoted. Receiving

the first results as fast as possible is a primary concern for many P2P systems, since

many users want to get early answers to their posed queries in the minimum possible

time. In the scenario, where a single plan is produced, the user should wait for

the planning phase, which is rather costly, to finish and then wait for this one plan

execution, which again will consume a great amount of execution time.

On the other hand, the interleaved execution promotes intra-peer processing, since

every time the query is broken, inter-peer processing is performed only at the joins

emerged by the fragmentation. In particular, the fragments are send to be executed

as a whole to the respective peers and since these fragments may involve complex

patterns, their processing is locally performed (intra-peer) at the selected peer. For

example, in Figure 4.9, the plans of the second phase involve one intra-peer join (

./(Q1, Q2) and ./(Q1, Q3) respectively) and one inter-peer join (at classes C2 and

C1 respectively), while the plan at the third phase involves only inter-peer joins.

George Kokkinidis

104 CHAPTER 4. QUERY PROCESSING IN SQPEER

Easily we can notice that at each layer inter-peer processing is added, thus advancing

the cost in both processing and execution time. This fact becomes more important,

if we consider the cost of the dynamic programming algorithm (exponential if the

classic approach is used) for optimizing the query plan. Since in the early steps the

query operators considered for the ordering are fewer than their total possible number

(e.g., in the second phase only one of the possible two operators are considered), the

cost of the dynamic programming algorithm is consequently smaller.

Another fact that should be considered is that when the number of fragments

is reduced, consequently the number of relevant peers and data is increased. In

our example of Figure 4.9, the expected peers that are capable of answering the

complete query Q in a real-life scenario are expected to be less than those answering

the simple query fragments Q1, Q2 and Q3. This makes the query plans, which

are produced containing small fragments, more expensive than those where their

respective fragments consider more inter-peer joins. Respectively, the query plans

produced at the early stages of the interleaved execution, i.e., when the whole query

pattern is considered, are less expensive than those produced when #joins is closer

to the total number of joins of the query.

4.5 Query Execution and Communication Chan-

nels

In order to create the necessary foundation for executing distributed query (sub-)

plans, as well as for exchanging data between the involved peers, SQPeer relies on

appropriate communication channels [Sah02].

Through channels, peers are able to route (sub-)plans and exchange the interme-

diary results produced by their execution. It is worth noticing that channels allow

each peer to further route and process autonomously the received (sub-)plans, by

contacting peers independently of the previous routing operations. This functionality

sets the basis for interleaved execution of query routing and processing, since each

peer acts autonomously and may further ask for additional peer advertisements or

University of Crete

4.5. QUERY EXECUTION AND COMMUNICATION CHANNELS 105

process the query by altering the query plan received according to new gathered data

localization information. Finally, channel deployment can be adapted during query

execution in order to response to network failures or peer processing limitations.

Each channel has a root and a destination node. The root node of a channel is

responsible for the management of the channel by using its local unique id. Data

packets are sent through each channel from the destination to the root node. Beside

query results, these packets can also contain information about network or peer fail-

ures for possible plan modification or even statistics for query optimization purposes.

The channel construct and operations of ubQL [Sah02] are employed to implement

the above functionality in the SQPeer middleware.

Once a query plan is created and a peer is assigned to its execution, this peer is

responsible for the deployment of the necessary channels in the system. In Figure 4.5

one such example can be seen, where the peer responsible for the query processing

(P1), creates three channels with the appropriate peers (P2, P3 and P4) for enabling

the query execution. A channel is created having as root the peer launching the

execution of the query and as destination one of the peers that need to be contacted

each time according to the plan. Although each of these peers may contribute in

the execution of the plan by answering to more than one query fragments, only one

channel is of course created.

Query plan adaptability, which is necessary in a fully dynamic P2P system, usually

requires to carry out the query routing and planning phases after the initiation of

the execution phase. This may produce query plans that consider more update data

localization or peer statistical information, thus adapting to possible problems caused

at run-time. This means that query execution should also handle the monitoring of

the executed query plans in order to re-execute query processing when necessary.

Since this service is described as run-time query optimization, it will be discussed in

more details in the following section.

George Kokkinidis

106 CHAPTER 4. QUERY PROCESSING IN SQPEER

4.6 Run-time Query Plan Adaptability

Run-time adaptability of query plans is an essential characteristic of query pro-

cessing when peer bases join and leave the system at free will or more generally when

system resources are exhausted. For example, the optimizer may alter a running

query plan by observing the throughput of a certain channel. This throughput can

be measured by the number of incoming or outgoing tuples (i.e., resources related

through one or several properties). Changing query plans may alter an already in-

stalled channel, as well as the query plans of the root and destination peer of the

channel. These changes include deciding at execution time on altering the data or

query shipping decision or discovering alternative peers for answering a certain sub-

plan. The root peer of each channel is responsible for identifying possible problems

caused by environmental changes and for handling them accordingly. It should also

inform all the involved peers that are affected by the alteration of the plan. Since

the alteration is done on a subplan and not on the whole query plan, only the peers

related to this subplan should be informed and possibly a few other peers that contain

partial results from the execution of the failed plan. Finally, the root peer should cre-

ate a new query plan by re-executing the routing and planning phase and not taking

into consideration those peers that became obsolete.

We should keep in mind that switching to a different query plan in the middle of the

query execution raises new challenges. Previous results, which were already created

by the execution of the query to possible multiple peers, have to be handled, since the

new query plan will produce new results. Two are the possible solutions to this issue.

The ubQL approach [Sah02] proposes to discard previous intermediate results and

all on-going computations are terminated. Alternatively [Ive02] proposes a phased

query execution, in which each time the query plan is changed, the system enters into

a new phase. The final phase, which is called the cleanup phase, is responsible for

combining the sub-results from the other phases in order to obtain a full answer. In

SQPeer middleware, we have adopted the ubQL approach.

University of Crete

4.7. EXPERIMENTS IN SQPEER 107

4.7 Experiments in SQPeer

In this chapter, we experimentally evaluate the proposed interleaved and sequen-

tial execution of the query planning and routing algorithms in order to point out

the need for an alternative way in query processing. The following experiments are

conducted by using the ubQL virtual machine (ubQLV M), a simulator for the ubQL

language as introduced in [Sah02]. All code is written in Java. A SUN Blade 100

Workstation with a 500MHz processor, 128MB of main memory, was used to install

the simulator and run the following experiments.

Peers in ubQLV M are modelled as separate execution threads. By this way, com-

plex network configurations can be represented without the need for physical peers.

Queries can be deployed and executed in an arbitrary way. Certain tasks, including

local processing, query deployment and data shipping, are simulated by the ubQLV M .

On the contrary, query planning and optimization are physically executed and can be

measured at real time. The lookup service is also simulated and relevant peer views

are considered to be already locally stored at the peer handling query processing.

The following parameters are considered in order to outline different situations

and scenarios for the creation and final execution of the SQPeer distributed query

plans:

Queries The structural nature of the queries (e.g., linear, tree, graph) affects both

the form of the query plans, as well as, the query planning time based on the

dynamic programming approach. We distinguish between two different types

of queries, i.e., linear and graph ones.

Data Distribution The distribution of the data inside the P2P system affects the

performance of each execution strategy. For example, horizontal distribution

implies the use of multiple union operators to combine results spread in remote

peers, while vertical distribution requires the evaluation and ordering of inter-

peer joins. Moreover, the number of peers that are capable of answering a

particular query (i.e., when the peer view is subsumed by the query) affects the

cost for formulating, optimizing and executing the query plan.

George Kokkinidis

108 CHAPTER 4. QUERY PROCESSING IN SQPEER

prop3
C4

prop4
C5C1

prop1
C2

prop2
C3

prop5 prop7
C6 C8

prop9
C10

prop6 prop8
C7 C9

prop11prop10
C11 C12

C4 C5 C6
prop11prop10

C11 C12C1
prop1 prop2

C3
prop4 prop5 prop6

C7
prop7

C8 C9
prop9

C2
prop3 prop8

C10

Figure 4.11: Linear- and graph-query examples

Optimization Decisions In order to provide efficient execution time, the query

plan needs to be optimized accordingly. Actually, the execution time of the

dynamic programming algorithm for producing the optimal query plans con-

sumes the majority of the time required by query planning. More precisely, the

distribution of joins and unions with the additional appliance of the interleaved

query planning and routing phases exhibit different behaviors in the evaluation

of the distributed queries.

As far as the structural nature of the queries is concerned, we have considered two

queries of different type, whose graph is shown in Figure 4.11. The first is a linear

query consisting of 12 classes and 11 properties. The second is a graph query with

the same number of classes and properties. The difference lies in the existence of star

joins, i.e., joins where more than two properties are joined at the same class (e.g.,

the join at class C3). Even though, both queries involve 10 joins, the fragmentation

of the graph query is a more demanding task considering that a joined class may be

shared by more than two simple patterns.

The interleaved routing and planning scenario suggests the creation of multiple

plans in several phases, with each phase considering more inter-peer joins than its

preceding. We remind that this scenario suggests the appliance of the algebraic

equivalence for pushing unions to the top of the query plan produced by each phase

(see Figures 4.9 and 4.10). Under the union operator produced by each phase there

are a number of query plans that consist of only inter-peer joins and that require

optimization. In order to compute this number and thus compare the interleaved

University of Crete

4.7. EXPERIMENTS IN SQPEER 109

routing and planning strategy (producing several “unioned” plans with partial results)

with the sequential one (producing one plan with complete results), we first need to

identify the number of fragmentations produced in each phase and then to consider

the number of peers that are capable of answering each such fragment.

4.7.1 Query Fragments & Fragmentations

To specify the possible fragmentations for a given query, we initially need to

identify all the possible fragments that can be produced. Figure 4.12a shows the

number of fragments for the two example queries of Figure 4.11 with respect to the

number of joins they involve. As it was expected, the number of fragments for the

graph query is fairly larger than the respective one for the linear query due to the

existence of star joins.

On the other hand, Figure 4.12b depicts the number of possible fragmentations

produced by combining all the already produced fragments. We can see that only

one fragmentation is possible, when we have no joins and the fragmentation is the

whole query, and when all the possible joins are considered and the fragmentation

considers all the simple patterns of the query. Compared to the linear query, the

total number of possible fragmentations for the graph query is again significantly

larger, since there are more possible combinations for its fragments. This growth

affects not only the execution time of the planning algorithm but also the number

of possible plans, when all the fragmentations of the query should be considered

(as is the case in the interleaved approach). Overall, graph queries require more

planning time considering their structural complexity and consequently increase the

demands in their fragmentation and routing, since more sophisticated fragmentations

are produced.

In the following Table 4.1, we can see the number of fragments that are used

to construct the fragmentations of different size for the two example queries. The

first table corresponds to the linear query, while the second to the graph one. For

instance, for the linear query, when no joins are considered, only one fragment of size

11 is used. Respectively, for the fragmentations with 9 joins, 90 fragments of size 1

and 10 fragments of size 2 were combined to formulate them.

George Kokkinidis

110 CHAPTER 4. QUERY PROCESSING IN SQPEER

0

10

20

30

40

50

60

70

0 2 4 6 8 10

N
um

be
r o

f F
ra

gm
en

ts

Number of Joins

Graph Query
Linear Query

(a) Fragments

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

N
um

be
r o

f F
ra

gm
en

ta
tio

ns

Number of Joins

Graph Query
Linear Query

(b) Fragmentations

Figure 4.12: Fragments and fragmentations for the linear and graph queries

University of Crete

4.7. EXPERIMENTS IN SQPEER 111

#frags 1 2 3 4 5 6 7 8 9 10 11

#joins

0 0 0 0 0 0 0 0 0 0 0 1

1 2 2 2 2 2 2 2 2 2 2 0

2 27 24 21 18 15 12 9 6 3 0 0

3 183 135 106 74 53 29 16 4 0 0 0

4 560 372 233 136 67 26 6 0 0 0 0

5 984 561 281 115 38 7 0 0 0 0 0

6 1128 530 188 50 8 0 0 0 0 0 0

7 772 258 66 8 0 0 0 0 0 0 0

8 366 84 9 0 0 0 0 0 0 0 0

9 90 10 0 0 0 0 0 0 0 0 0

10 11 0 0 0 0 0 0 0 0 0 0

#frags 1 2 3 4 5 6 7 8 9 10 11

#joins

0 0 0 0 0 0 0 0 0 0 0 1

1 6 3 3 3 1 1 3 3 3 6 0

2 90 48 38 29 17 21 26 20 17 0 0

3 692 356 237 168 130 107 93 33 0 0 0

4 2287 1129 690 417 271 176 50 0 0 0 0

5 4292 1933 961 497 256 59 0 0 0 0 0

6 4588 1797 699 275 54 0 0 0 0 0 0

7 2924 894 255 47 0 0 0 0 0 0 0

8 1060 232 31 0 0 0 0 0 0 0 0

9 189 22 0 0 0 0 0 0 0 0 0

10 11 0 0 0 0 0 0 0 0 0 0

Table 4.1: Association between fragments and fragmentations

of the linear and graph queries

George Kokkinidis

112 CHAPTER 4. QUERY PROCESSING IN SQPEER

4.7.2 Number of Peers

The number of peers answering each consequent fragment of the respective SON

RDF/S schema is something that cannot be easily estimated. Moreover, we should

consider that a peer that contains data conforming to a certain view is also capable of

answering all of its fragments, as suggested by the horizontal subsumption. Thus, the

number of peers that answer views of small size is expected to be larger than those that

can answer bigger ones. Additionally, vertical subsumption of query/view patterns

similarly affects the number of peers answering each query. While the former type

of subsumption is affected by the form of the schema graph comprising properties,

the latter type is affected by the size of class or property subsumption hierarchies

(see Section 3.3.3). For simplicity, in our experiments we focus on the horizontal

subsumption, but the same considerations can be made for the vertical one as well.

In order to identify the number of peers answering each fragment of the SON

RDF/S schema, we consider that each view that can be produced from it can inde-

pendently be answered by a constant number of peers. In order to take into account

horizontal subsumption, where views of smaller size can be answered by more peers

that those of bigger size, we employ the following formula for computing the number

of peers advertising a view with size m:

P (m) = constant+
n∑

i=m+1

P (i) (4.9)

where V iew(i) ⊆ V iew(m) denotes that V iew(i) is horizontally subsumed by

V iew(m), i.e., a peer answering a view of size m, i.e., V iew(m), can also answer all

view fragments of size i, i.e., V iew(i).

For example, if only one peer is considered to advertise each view and the schema

of query Q of Figure 4.4 is used, then Q can be answered by one peer, Q4 and Q5

can be answered by two peers (considering that Q ⊆ Q4 and Q ⊆ Q5), Q2 and Q3

can be answered by three peers (considering that Q5 ⊆ Q2, Q ⊆ Q2, Q4 ⊆ Q3 and

Q ⊆ Q3) and finally Q1 can be answered by four peers (considering that Q4 ⊆ Q1,

Q5 ⊆ Q1 and Q ⊆ Q1) (all the view fragments can be seen in Figure 4.3).

University of Crete

4.7. EXPERIMENTS IN SQPEER 113

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r o

f P
ee

r V
ie

w
s

Fragment Size

1P
1P−WS

5P
5P−WS

10P
10P−WS

(a) Linear query

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r o

f P
ee

r V
ie

w
s

Fragment Size

1P
1P−WS

5P
5P−WS

10P
10P−WS

(b) Graph query

Figure 4.13: Distribution of peer views answering schema fragments

George Kokkinidis

114 CHAPTER 4. QUERY PROCESSING IN SQPEER

Figure 4.13 depicts the distribution of data considering our two example queries

and identifying the number of peers capable of answering them. The constant value

is set to be 1, 5 and 10, in the sense that one (five or ten) peer(s) contains resources

conforming to the whole schema and additionally one (five or ten) peer(s) can answer

each fragment of the query.

In the figure, we illustrate for each consequent fragment size and for each constant

peer value, the total number of peers containing views of size equal to the fragment

size. For each constant value and for each type of query (linear or graph), we have

two different values for the respective number of views. The difference is that the

latter considers the horizontal subsumption (depicted with the WS, meaning With

Subsumption) by adding the number of peers that answer all the subsumed views.

The graph should be read from right to left, since both values considered for the y

axis are increased as the size of the fragments decreases (x axis). However, this is

not the case in the graph query, where the number of peers decreases from a certain

value of the fragment size. This is due to the fact that the number of fragments for

the graph query increases rapidly when middle-size fragments are considered.

Easily we can also detect that for the graph query the number of answering peers

reaches greater values than in the linear query. This occurs due to both the increase

in the fragment number and in the increase of the number of bigger fragments that

are subsumed by the smaller ones, which affects the second component of the formula

4.9.

The above experiment shows the way data are distributed through the system, in

the sense that smaller queries will most probably be answered by a considerably larger

number of peers than bigger ones. The number of answering peers affects the query

planning algorithm with respect to the query plan equivalences described in Section

4.1.3. In the case of a complete query plan, where the unions reside at the bottom

of the query plan, the number of peers affect poorly the planning phase. However,

this comes with a tradeoff in the execution of the query plan, since for each simple

pattern considered in the query plan, one peer should undertake the task of collecting

all the data answering this pattern, which considering their expected popularity will

University of Crete

4.7. EXPERIMENTS IN SQPEER 115

be rather huge. In the case of interleaved routing and planning with additional push

of the unions to the top of the query plan, the planning time is influenced by the

respective number of plans that are created. However, the possibility of parallelization

of the planning and execution phases may lighten the processing requirements for this

scenario.

In general, data distribution is an important factor for query processing, where

complete results need to be returned, since it affects both planning, optimization and

execution time.

4.7.3 Number of Plans

As discussed in Section 4.4, in the interleaved query routing and planning phase,

the only way to achieve completeness and correctness in the results is to push unions

at the top of the query plan. This means that at each consequent phase, as depicted

visually in Figure 4.9, a number of plans (consisting of only inter-peer joins) exist

under each union. This number equals to all the possible plans created from different

fragmentations but with the same number of inter-peer joins. However, at each such

fragmentation, if the unions, which combine the data for each fragment from all the

peers that can answer it, are pushed up (as seen in Figure 4.10), the number of these

plans are increased. More precisely, if we consider n number of fragments and Pn the

number of peers answering each fragment, all the possible combinations for a single

fragmentation after we push the unions to the top are
∏n

i=1 Pi. However, at each step

of the interleaved execution, query plans that are considered at the previous phases

of the execution should be removed, since their results are already computed. This is

performed after applying the two heuristics explained in Section 4.1.3; all the plans

that are already processed during the previous phases should be subtracted from the

number of plans captured by our formula. This actually means that only inter-peer

processing is considered, since all emerging intra-peer joins have been handled in the

previous phases.

Considering the distribution of data shown in Figure 4.13 in the peers of our

system, we show the number of possible plans that equals to the number of the

George Kokkinidis

116 CHAPTER 4. QUERY PROCESSING IN SQPEER

1

100000

1e+10

1e+15

1e+20

1e+25

1e+30

1e+35

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f Q
ue

ry
 P

la
ns

Number of Joins

GQ−10P

LQ−1P

LQ−5P
GQ−1P

GQ−5P
LQ−10P

Figure 4.14: Number of plans with respect to the distribution of data

possible combinations with respect to this distribution. We present four types of

experiments in Figure 4.14, two with the linear query and two with the graph one.

For each type of queries, the constant value used for the computation of the number

of peers answering each fragment of the query is set either to 1 or 5. The illustrated

number of plans are the plans that should be considered if we push unions to the top

of the query plan produced by the query planning algorithm. A logarithmic scale was

used for the y axis, since the number of plans increases exponentially to the number

of inter-peer joins.

By this experiment, we can realize that it is inefficient to optimize and execute at

once all the produced plans, so more elaborate techniques should be considered. As

far as the type of the queries is concerned, graph queries produce greater number of

query plans than the linear queries taking into account both their increased number

of fragmentations and their distribution in the system.

University of Crete

4.7. EXPERIMENTS IN SQPEER 117

IDP LQ

IDP GQ
DP GQ

DP LQ

0.001

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

Pl
an

ni
ng

 T
im

e

Number of Joins

Figure 4.15: Iterative vs Traditional Dynamic Programming

4.7.4 Planning Time

For SQPeer’s query planning and optimization phase, a dynamic programming

approach is used. More precisely, we have implemented a classic and an iterative dy-

namic programming algorithm. Figure 4.15 shows one of the experiments performed

for our two example queries and for both algorithms. The time presented in the figure

concerns the formulation of one query plan considering one possible fragmentation of

the query and that only one peer answers each involved fragment. The fragmenta-

tion size ranges from one fragment to the maximum number of the simple fragments

that can be extracted from the input query. As can be seen, the classic dynamic

programming execution time is exponential with respect to the number of joins in the

constructed query plan. The iterative approach, on the other hand, offers polynomial

execution time with little effect in the quality of the produced results. Additionally,

it offers solution, i.e., produces an optimized query plan, in cases where the dynamic

approach cannot due to time or resource limitations.

We should note that the planning time is affected not only from the number of joins

George Kokkinidis

118 CHAPTER 4. QUERY PROCESSING IN SQPEER

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8 9 10 10

Pl
an

ni
ng

 T
im

e

Number of Joins

IDP
DP

Figure 4.16: Interleave vs Sequential Planning

that need to be reordered, but also from the number of candidate peers for executing

the operators of the query. On the other hand, the evaluation of the union operators

is rather trivial compared to the rest of the planning time, since their reordering is

handled by the algebraic equivalence introduced in Section 4.1.3.

In the sequential scenario considered in Section 4.4, one query plan is formulated

that produces complete results for the given query. This means that only one execu-

tion of the query planning phase is needed. However, in the interleaved routing and

planning scenario the same conditions do not hold, since all possible fragmentation

sizes are considered and the planning phase is executed more than once. We have

also seen that in order to favor the less expensive intra-peer processing (see Section

4.1.3), we need to push the unions to the top of the query plan by using appropriate

query plan equivalences.

Considering the above, we show an experiment of running the planning algorithm

by considering the graph query. We run the interleaved scenario with each phase

having more inter-peer joins than the previous one. We again consider that only

University of Crete

4.7. EXPERIMENTS IN SQPEER 119

one peer can answer each fragment of the query, so the number of plans that are

formulated for each phase is bounded by the possible fragmentations. As can be seen

in Figure 4.16, this number affects the planning time, which at each phase practically

equals to the time optimizing one plan with the considered number of joins and

multiplying it with the number of possible fragmentations. We can note that in the

final phases of the interleaved execution, the required planning time decreases, since

the number of fragmentations also decreases. We should also recall that when each

phase completes, the formulated query plan can be immediately executed, since the

results of each phase are independent from the previous and the following ones. The

user can decide on the number of query results he wants to receive by stopping the

planning algorithm at any desirable phase. The last column in the figure shows the

sequential execution of the planning algorithm. In this scenario, one plan is created

having one union and all the possible inter-peer join plans underneath. As can be

seen, the planning phase is rather expensive, since all the possible combinations should

be checked. Moreover, no parallelization is possible and the optimization should end

before the execution of the query plan can begin. In the sequential scenario, where no

complex fragments are considered, so data localization information is retrieved only

for the simple query patterns, intra-peer joins should also be optimized and identified

during the optimization phase. This is not the case in the interleaved scenario, where

at each phase complex fragments are looked up and intra-peer joins need not to be

optimized.

The above experiments show that under certain circumstances the interleaved

query routing and planning phase is the most appropriate processing policy. More

precisely, when the user is interested in receiving as quick as possible results concern-

ing its posed query, the interleaved processing should be chosen, since its first plans

are produced and executed very quickly. Additionally, the results obtained at the

first phases are the most relevant to the query, since peers that can answer bigger

fragments of the query are contacted first. However, in the case where result com-

pleteness is the user’s will, then a single execution of the planning algorithm should

be chosen, i.e., the one that examines each simple pattern of the query and produces

George Kokkinidis

120 CHAPTER 4. QUERY PROCESSING IN SQPEER

a single query plan by using all the available data localization information.

University of Crete

Chapter 5

Conclusion

P2P systems adopt a completely decentralized approach to resource management.

By distributing data storage, processing and bandwidth across all peers in the net-

work, they can scale without the need for powerful servers. However, these systems

show severe limitations in contrast to traditional data management systems: file-

level sharing, read-only access, simple keyword-based search and poor scaling. Thus,

in order to support highly dynamic, ever-changing, autonomous social organizations

(e.g., scientific or educational communities), we need richer facilities in exchanging,

querying and integrating (semi-)structured data hosted by peers.

In this thesis, we have dealt with the above problem by introducing SQPeer as an

RDF/S-based P2P data management system providing a fully-fledged framework for

evaluating semantic queries over remote peer RDF/S bases (materialized or virtual)

in a distributed way.

In particular, we presented how (conjunctive) RQL path queries expressed against

a SON RDF/S schema can be represented as semantic query patterns. Peers advertise

their content to the rest of the system through appropriate peer advertisements. These

advertisements, expressed as RVL view patterns, declare the parts of the RDF/S

schema which are (or can be) populated in a peer base. In this way, an intensional

representation is achieved for both query requests and peer advertisements.

We detailed a semantic query processing involving both query routing and plan-

ning issues. Semantic query routing discovers peer views advertised throughout the

121

122 CHAPTER 5. CONCLUSION

system that are relevant to a given input. A data localization algorithm relies on

query/view subsumption techniques to annotate semantic query patterns with in-

formation concerning relevant peers. We also presented how SQPeer query plans are

created and executed by taking into account the data distribution in peer bases. Issues

emerging from the interleaved query routing and planning phase were discussed and

several compile and run-time optimization opportunities for SQPeer query plans were

illustrated. Based on the above context, we demonstrated the application of SQPeer

on several architectural alternatives for hybrid, structured and ad-hoc RDF/S-based

SONs. Finally, a set of experiments were conducted for reasoning on the execution

of the proposed query planning algorithm with respect to a number of parameters

affecting it.

5.1 Future Work

The functionality of SQPeer presented in this thesis can be extended in several

ways.

The cost model introduced in Section 4.3.1, although based on previous work on

query plan optimization in traditional and distributed database systems, does not

reflect a real life scenario. A more refined cost model is needed based on actual

operation execution and cardinality statistics that will consider and cope with the

characteristics of the underlying P2P system.

The number of query plans that are generated by the query planning algorithm

by considering all fragmentation alternatives of the given query pattern can be fairly

large. Pruning the available plans may be necessary with the use of appropriate

coverage metrics [DH02] [NK01]. It would also be interesting to study the trade-off

between result completeness and response time in terms of processing and communi-

cation cost using the notion of Top N (or Bottom N) queries [Kos00] [TSBN04]. In

the same direction, we can use constraints regarding the number of peers that each

query is broadcasted and further processed.

Finally, we can consider adaptive implementations of algebraic operators borrow-

University of Crete

5.1. FUTURE WORK 123

ing ideas from [AH00] [HJ04] [ILW+00] and thus providing more efficient run-time

optimization opportunities.

George Kokkinidis

124 CHAPTER 5. CONCLUSION

University of Crete

Bibliography

[ABC+04] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and

N. Preda. Lazy Query Evaluation for Active XML. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

Paris, France, 2004.

[ACK04] N. Athanasis, V. Christophides, and D. Kotzinos. Generating On the

Fly Queries for the Semantic Web: The ICS-FORTH Graphical RQL

Interface (GRQL). In Proceedings of the 3rd International Semantic

Web Conference (ISWC’04), Hiroshima, Japan, 2004.

[ACMH03] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. The Chatty Web:

Emergent Semantics Through Gossiping. In Proceedings of the 12th In-

ternational World Wide Web Conference (WWW), Budapest, Hungary,

2003.

[ACMHP04] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. Van Pelt. Grid-

Vine: Building Internet-Scale Semantic Overlay Networks. In Proceed-

ings of the 3rd International Semantic Web Conference (ISWC04), Hi-

roshima, 2004.

[AH00] R. Avnur and J.M. Hellerstein. Eddies:Continuously Adaptive Query

Processing. In ACM SIGMOD, pages 261–272, Dallas, TX, 2000.

[BBMN02] M. Bonifacio, P. Bouquet, G. Mameli, and M. Nori. KEx: a Peer-to-

Peer Solution for Distributed Knowledge Management. In Proceedings

125

126 BIBLIOGRAPHY

of the 4th International Conference on Practical Aspects of Knowledge

Management (PAKM02), Vienna, Austria, December 2002.

[BDK+04] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wies-

ner. Distributed Queries and Query Optimization in Schema-

Based P2P-Systems. In Proceedings of the International Work-

shop on Databases, Information Systems and Peer-to-Peer Computing

(DBISP2P), Toronto, Canada, 2004.

[BG03] J. Bremer and M. Gertz. On Distributing XML Repositories. In

Proceedings of the International Workshop on the Web and Databases

(WebDB), San Diego, California, 2003.

[BGK+02] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,

L. Serafini, and I. Zaihrayeu. Data Management for Peer-to-Peer Com-

puting: A Vision. In Proceedings of the 5th International Workshop on

the Web and Databases (WebDB), Madison, Wisconsin, 2002.

[BKK+01] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz,

S. Seltzsam, and K. Stocker. ObjectGlobe:Ubiquitous Query Processing

On The Internet. In VLDB Journal, pages 48–71, 2001.

[BMWZ04] M. Bender, S. Michel, G. Weikum, and C. Zimmer. Bookmark-driven

Query Routing in Peer-to-Peer Web Search. In Proceedings of the SIGIR

Workshop on Peer-to-Peer Information Retrieval, 2004.

[Bra03] S. Brahmananda. Design of Peer-to-Peer Protocol for AmbientDB. Mas-

ter’s thesis, University of Twente, 2003.

[BT03] P. Boncz and C. Treijtel. AmbientDB: Relational Query Process-

ing in a P2P Network. In Proceedings of the International Work-

shop on Databases, Information Systems and Peer-to-Peer Computing

(DBISP2P). Springer Verlag, 2003.

University of Crete

BIBLIOGRAPHY 127

[CF04] M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Reposi-

tory based on A Structured Peer-to-Peer Network. In Proceedings of the

13th International World Wide Web Conference (WWW), New York,

2004.

[CGM03] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P

Systems. Technical report, Computer Science Department, Stanford

University, 2003.

[CKK+03] V. Christophides, G. Karvounarakis, I. Koffina, G. Kokkinidis,

A. Magkanaraki, D. Plexousakis, G. Serfiotis, and V. Tannen. The ICS-

FORTH SWIM: A Powerful Semantic Web Integration Middleware. In

Proceedings of the SWDB’03 International Workshop, Berlin, Germany,

Humboldt-Universitat, Berlin, Germany, 2003.

[CSWH01] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A Dis-

tributed Anonymous Information Storage and Retrieval System. In Pro-

ceedings of the International Workshop on Design Issues in Anonymity

and Unobservability, volume 2009. Springer Verlag, 2001.

[DH02] A. Doan and A. Halevy. Efficiently Ordering Query Plans for Data

Integration. In Proceedings of the 18th IEEE Conference on Data En-

gineering (ICDE), 2002.

[ETB+03] M. Ehrig, C. Tempich, J. Broekstra, F. van Harmelen, M. Sabou,

R. Siebes, S. Staab, and H. Stuckenschmidt. SWAP - Ontology-based

Knowledge Management with Peer-to-Peer Technology. In Proceedings

of the 1st National “Workshop Ontologie-basiertes Wissensmanagemen”

(WOW), 2003.

[FJK96] M.J. Franklin, B.T. Jonsson, and D. Kossmann. Performance Tradeoffs

for Client-Server Query Processing. In Proceedings of the ACM SIG-

MOD Conference, pages 149–160, Montreal, Canada, 1996.

George Kokkinidis

128 BIBLIOGRAPHY

[GMUW00] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database System Im-

plementation. Prentice Hall, 2000.

[Gnu] The Gnutella file-sharing system. http://www.gnutella.com.

[GWJD03a] L. Galanis, Y. Wang, S.R. Jeffery, and D.J. DeWitt. Locating Data

Sources in Large Distributed Systems. In Proceedings of the 29th Con-

ference on Very Large Databases (VLDB), 2003.

[GWJD03b] L. Galanis, Y. Wang, S.R. Jeffery, and D.J. DeWitt. Processing Queries

in a Large P2P System. In Proceedings of the 15th International Con-

ference on Advanced Information Systems Engineering (CAiSE), 2003.

[HBEV04] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF

Query Languages. In Proceedings of the 3rd International Semantic Web

Conference (ISWC’04), Hiroshima, Japan, 2004.

[HIST03] A. Halevy, Z.G. Ives, D. Suciu, and I. Tatarinov. Piazza: Data Manage-

ment Infrastructure for Semantic Web Applications. In Proceedings of

the 12th Conference on World Wide Web (WWW), Budapest, Hungary,

2003.

[HJ04] R. Huebsch and S.R. Jeffery. FREddies: DHT-Based Adaptive Query

Processing via FedeRated Eddies. Technical report, Computer Science

Division, University Of Berkeley, 2004.

[ILW+00] Z.G. Ives, A.Y. Levy, D.S. Weld, D. Florescu, and M. Friedman. Adap-

tive Query Processing for Internet Applications. IEEE Data Engineering

Bulletin, pages 19–26, 2000.

[Ive02] Z.G. Ives. Efficient Query Processing for Data Integration. PhD thesis,

University of Washington, 2002.

[KAC+02] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and

M. Scholl. RQL: A Declarative Query Language for RDF. In Proceed-

University of Crete

BIBLIOGRAPHY 129

ings of the 11th International World Wide Web Conference (WWW),

Honolulu, Hawaii, USA, 2002.

[Kaz] The Kazaa file-sharing system. http://www.kazaa.com.

[KC04] G. Kokkinidis and V. Christophides. Semantic Query Routing and Pro-

cessing in P2P Database Systems: The ICS-FORTH SQPeer Middle-

ware. In Proceedings of the International Workshop on P2P Computing

and Database (P2P&DB), Heraklion, Crete, 2004.

[KCPA01] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki.

Querying RDF Descriptions for Community Web Portals. In 17ie‘mes

Journees Bases de Donnees Avancees (BDA’01), Agadir, Maroc, 2001.

[Kos00] D. Kossmann. The State of the Art in Distributed Query Processing.

ACM Computing Surveys, 32(4):422–469, December 2000.

[KP04] G. Koloniari and E. Pitoura. Peer-to-Peer Management of XML Data:

Issues and Research Challenges, 2004. Unpublished manuscript.

[KS00] D. Kossmann and K. Stocker. Iterative Dynamic Programming: A

New Class of Query Optimization Algorithms. ACM Transactions on

Database Systems, 25(1), March 2000.

[KSDC05] G. Kokkinidis, L. Sidirourgos, T. Dalamagas, and V. Christophides.

Semantic Query Routing and Processing in P2P Digital Libraries. In

Proceedings of the 8th International Workshop of the DELOS Network

of Excellence on Digital Libraries, Schloss Dagstuhl, Germany, 2005.

[KW01] A. Kemper and C. Wiesner. HyperQueries: Dynamic Distributed Query

Processing on the Internet. In Proceedings of the 27th Conference on

Very Large Data Bases (VLDB), Rome, Italy, 2001.

[LPR98] L. Liu, C. Pu, and K. Richine. Distributed Query Scheduling Service:

An Architecture and Its Implementation. In International Journal of

Cooperative Information Systems (IJCIS), 1998.

George Kokkinidis

130 BIBLIOGRAPHY

[MAA+03] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F.D. Ngoc. Ex-

changing Intensional XML Data. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, San Diego, Califor-

nia, 2003.

[MACP02] A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis.

Benchmarking RDF Schemas for the Semantic Web. In Proceedings

of the 1st International Semantic Web Conference (ISWC’02), 2002.

[Mor] The Morpheus file-sharing system. http://www.morpheus.com.

[MTCP03] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis.

Viewing the Semantic Web Through RVL Lenses. In Proceedings of

the 2nd International Semantic Web Conference (ISWC), 2003.

[Nap] The Napster file-sharing system. http://www.napster.com.

[NK01] Z. Nie and S. Kambhampati. Joint Optimization of Cost and Cover-

age of Query Plans in Data Integration. In Proccedings of the 10th

International Conference on Information and Knowledge Management,

Atlanta, Georgia, USA, 2001.

[NWS+03] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunk-

horst, and Aa Loser. Super-Peer-Based Routing and Clustering Strate-

gies for RDF-Based Peer-To-Peer Networks. In Proceedings of the 12th

Conference on World Wide Web (WWW), Budapest, Hungary, 2003.

[OV91] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.

Prentice Hall, 1991.

[PI04] F. Pentaris and Y. Ioannidis. Distributed Query Optimization by Query

Trading. In Proceedings of the 9th International Conference on Extend-

ing Database Technologies (EDBT), Heraklion, Crete, Greece, 2004.

University of Crete

BIBLIOGRAPHY 131

[PLP02] H. Paques, L. Liu, and C. Pu. Ginga: A Self-Adaptive Query Processing

System. In Proceedings of the CIKM, Virginia, USA, 2002.

[PMT03] V. Papadimos, D. Maier, and K. Tufte. Distributed query processing and

catalogs for p2p systems. In Proceedings of the CIDR’03 International

Conference, Asilomar, CA, USA, 2003.

[RDFa] RDF/XML Syntax Specification. http://www.w3.org/TR/rdf-syntax-

grammar/.

[RDFb] RDF Primer. http://www.w3.org/TR/rdf-primer/.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

Scalable Content-Addressable Network. In Proceedings of the ACM SIG-

COMM Conference, San Diego, California, August 2001.

[RSWB05] P. Rosch, K. Sattler, C. Weth, and E. Buchmann. Best Effort Query

Processing in DHT-based P2P Systems. In Proceedings of the ICDE

Workshop NetDB, Tokyo, Japan, 2005.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Ac-

cess Path Selection in a Relational Database Management System. In

Proceedings of the ACM SIGMOD Conference on Management of Data,

Boston, 1979.

[Sah02] A. Sahuguet. ubQL: A Distributed Query Language to Program Dis-

tributed Query Systems. PhD thesis, University of Pennsylvania, 2002.

[SAL+96] M. Stonebraker, P.M. Aoki, W. Litwin, A. Preffer, A. Sah, J. Sidell,

C. STaelin, and A. Yu. Mariposa: A Wide-Area Distributed Database

System. VLDB Journal, (5):48–63, 1996.

[Ser05] G. Serfiotis. Optimising and Reformulating RQL Queries on the Seman-

tic Web: The ICS-FORTH SWIM. Master’s thesis, University of Crete,

2005.

George Kokkinidis

132 BIBLIOGRAPHY

[SHB04] H. Stuckenschmidt, R. Houben, and J. Broekstra. Index Structures and

Algorithms for Querying Distributed RDF Repositories. In Proceedings

of the 13th Conference on World Wide Web (WWW), New York, USA,

2004.

[SMGC04] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A Self-

organizing XML P2P Database System. In Proceedings of the Interna-

tional Workshop on P2P Computing and Database (P2P&DB), Herak-

lion, Crete, 2004.

[SMK+01] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-

tions. In Proceedings of the ACM SIGCOMM Conference, San Diego,

California, August 2001.

[SSDN02] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP-

Hypercubes, Ontologies and Efficient Search on P2P Networks. In

Procceedings of the International Workshop on Agents and Peer-to-Peer

Computing, Bologna, Italy, 2002.

[Stu04] H. Stuckenschmidt. Similarity-Based Query Caching. In Proceedings of

the 6th International Conference on Flexible Query Answering Systems

(FQAS 2004), Lyon, France, 2004.

[TDL04] J. Tian, Y. Dai, and X. Li. SemanticPeer: An Ontology-Based P2P

Lookup Service. Lecture Notes in Computer Science, (3032):464–467,

2004.

[TP03] P. Triantafillou and T. Pitoura. Towards a Unifying Framework for Com-

plex Query Processing over Structured Peer-to-Peer Data Networks. In

Proceedings of the Workshop on Databases, Information Systems, and

Peer-to-Peer Computing (DBISP2P), Collocated with VLDB ’03, 2003.

University of Crete

BIBLIOGRAPHY 133

[TSBN04] U. Thaden, W. Siberski, W.T. Balke, and W. Nedjl. Top-k Query Evalu-

ation for Schema-Based Peer-to-Peer Networks. In Proceedings of the In-

ternational Semantic Web Conference (ISWC2004), Hiroshima, Japan,

2004.

[TXKN03] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Towards

High Performance Peer-to-Peer Content and Resource Sharing Systems.

In Proceedings of the International Conference on Innovative Data Sys-

tems Research (CIDR), January 2003.

[VP04] P. Valduriez and E. Pacitti. Data Management in Large-scale P2P Sys-

tems. In Proceedings of the 6th International Conference on High Per-

formance Computing in Computational Sciences (VECPAR), Valencia,

Spain, June 2004.

[YGM03] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In Pro-

ceedings of the 19th International Conference Data Engineering (ICDE),

IEEE Computer Society Press, Los Alamitos, CA, 2003.

[Zho03] Y. Zhou. Adaptive Distributed Query Processing. In Proceedings of the

VLDB 2003 PhD Workshop, Berlin, Germany, September, 2003.

George Kokkinidis

134 BIBLIOGRAPHY

University of Crete

