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Design and Implementation of a Massively
Multi-threaded RISC-V Processor

Abstract

The computational requirements of modern applications have out-scaled the typi-
cal capabilities that central-processing units (CPU) can provide. One of the rea-
sons is the massive amount of data that needs to be processed in contrast to the
processing power available, as well as the number of tasks and different contexts
that the main CPU has to manage. Another reason is the technological obsta-
cles, such as the power consumption needed to reach ambitious computational
performance levels.

In order to address the later issues, the systems nowadays employ different
types of specialized accelerators for various application domains, such as graphi-
cal processing units (GPUs), tensor processing units (TPUs), and reconfigurable
hardware accelerators implemented in FPGAs. The accelerators are programmed,
accessed, and used through different programming models and toolchains that try
to maximize the utilization of the available resources. Currently some of the most
popular programming models for accelerators are OpenCL and CUDA, where the
main program runs on a host CPU and spawns computational kernels that are
off-loaded for execution on the accelerator devices, such as GPUs. For several
categories of applications, this results in substantial performance gains and en-
ergy savings, since the most important parts of the program are executed in the
specialized and optimized accelerator devices.

This thesis contributes with the design and implementation of a massively
multi-threaded, in-order superscalar core, Matzic , that acts as an accelerator ca-
pable of supporting OpenCL-like and CUDA-like programming models. Matzic
uses the open RISC-V instruction set architecture (ISA) that is becoming increas-
ingly popular in the recent years. The core maintains contexts for up-to 256
threads, can issue up-to 4 independent instructions per thread in each cycle and
contains 7 execution clusters with different types of execution units. The core can
also issue up-to 512 outstanding memory operations.

We implement and verify Matzic using SystemVerilog RTL and evaluate perfor-
mance via RTL simulation and bare metal code that is compiled using the GNU
RISC-V toolchain. Furthermore, we evaluate the resource utilization of the de-
sign on a Xilinx Kintex Ultrascale FPGA. Finally, we test and verify Matzic on
an FPGA design that contains an CVA6 (Ariane) RISC-V CPU, that works as
the main processor and runs the Linux operating system (OS), 2GBytes of DDR3
DRAM for main memory, our Matzic core and an additional memory delayer which
is used to study various DRAM access latencies.





Σχεδίαση και Υλοποίηση Μαζικά Πολυνηματικού

Επεξεργαστή RISC - V

Περίληψη

Οι υπολογιστικές απαιτήσεις των σύγχρονων εφαρμογών έχουν ξεπεράσει τις τυπικές

δυνατότητες που μπορούν να παρέχουν οι μονάδες κεντρικής επεξεργασίας (CPU).
΄Ενας από τους λόγους είναι ο τεράστιος όγκος δεδομένων που πρέπει να υποβληθούν

σε επεξεργασία σε αντίθεση με τη διαθέσιμη επεξεργαστική ισχύ, καθώς και τον αριθμό

των εργασιών και των διαφορετικών διεργασιών που πρέπει να διαχειριστεί η κύρια

CPU. ΄Ενας άλλος λόγος είναι τα τεχνολογικά εμπόδια, όπως η κατανάλωση ενέργειας
που απαιτείται για την επίτευξη φιλόδοξων επιπέδων υπολογιστικής απόδοσης.

Προκειμένου να αντιμετωπιστούν τα προηγούμενα ζητήματα, τα συστήματα σήμε-

ρα χρησιμοποιούν διαφορετικούς τύπους εξειδικευμένων επιταχυντών για διάφορους

τομείς εφαρμογών, όπως μονάδες γραφικής επεξεργασίας (GPU), μονάδες επεξερ-
γασίας τανυστών (TPU) και επιταχυντές υλικού με δυνατότητα επαναδιαμόρφωσης
που υλοποιούνται σε FPGA. Οι επιταχυντές προγραμματίζονται, προσπελάζονται και
χρησιμοποιούνται μέσω διαφορετικών μοντέλων προγραμματισμού και αλυσίδων ερ-

γαλείων που προσπαθούν να μεγιστοποιήσουν τη χρήση των διαθέσιμων πόρων. Επί

του παρόντος, μερικά από τα πιο δημοφιλή μοντέλα προγραμματισμού για επιταχυντές

είναι το OpenCL και το CUDA, όπου το κύριο πρόγραμμα εκτελείται σε μια κεντρι-
κή CPU και δημιουργεί υπολογιστικούς πυρήνες που φορτώνονται για εκτέλεση στις
συσκευές επιτάχυνσης, όπως οι GPU. Για πολλές κατηγορίες εφαρμογών, αυτό έχει
ως αποτέλεσμα σημαντικά κέρδη απόδοσης και εξοικονόμησης ενέργειας, αφού τα πιο

σημαντικά μέρη του προγράμματος εκτελούνται στις εξειδικευμένες και βελτιστοποιη-

μένες συσκευές επιτάχυνσης.

Αυτή η εργασία συμβάλλει στη σχεδίαση και την υλοποίηση ενός μαζικά πολυνη-

ματικού, υπερκλιμακωτού πυρήνα, τον Matzic , που λειτουργεί ως επιταχυντής ικανός
να υποστηρίζει μοντέλα προγραμματισμού τύπου OpenCL και CUDA. ΟMatzic χρη-
σιμοποιεί την ανοιχτή αρχιτεκτονική συνόλου εντολών (ISA) RISC-V που γίνεται όλο
και πιο δημοφιλής τα τελευταία χρόνια. Ο πυρήνας διατηρεί περιεχόμενο κατάστασης

για έως και 256 νήματα, μπορεί να εκδώσει έως και 4 ανεξάρτητες εντολές ανά νήμα σε

κάθε κύκλο και περιέχει 7 συμπλέγματα εκτέλεσης με διαφορετικούς τύπους μονάδων

εκτέλεσης. Ο πυρήνας μπορεί επίσης να εκδώσει έως και 512 εκκρεμείς λειτουργίες

μνήμης.

Υλοποιούμε και επαληθεύουμε τον Matzic χρησιμοποιώντας SystemVerilog επι-
πέδου μεταφοράς καταχωρητών (RTL) και αξιολογούμε την απόδοση μέσω προσομο-
ίωσης RTL και κώδικα που μεταγλωττίζεται χρησιμοποιώντας την αλυσίδα εργαλείων
GNU RISC-V. Επιπλέον, αξιολογούμε τη χρήση πόρων του σχεδίου πάνω σε μία Xil-
inx Kintex Ultrascale FPGA. Τέλος, δοκιμάζουμε και επαληθεύουμε τον Matzic σε
ένα σχέδιο για FPGA που περιέχει μια CVA6 (Ariane) RISC-V CPU, που λειτουργεί
ως ο κύριος επεξεργαστής και εκτελεί το λειτουργικό σύστημα (OS) Linux, 2 GByte
DDR3 DRAM για κύρια μνήμη, τον πυρήνα μας Matzic και μια πρόσθετη μονάδα



καθυστέρησης μνήμης που χρησιμοποιείται για τη μελέτη διαφόρων καθυστερήσεων

πρόσβασης στη DRAM.
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Chapter 1

Introduction

Modern applications have ever increasing computational demands and the prob-
lem sets are becoming substantially larger and more complex. For this reason, the
typical capabilities and processing throughput offered by main central-processing
units (CPU)s, as well as the performance scaling that is expected in the coming
years, are being out-scaled[7] by the computational requirements of the applica-
tions. Another challenging problem that main CPUs are facing, apart from the
need to provide more computational power, is that they are required to perform
not only the computational work but also the administrative work to handle many
different contexts and tasks – this often results in performance losses for the appli-
cations. Moreover, due to the limitations of the CPUs and the modern technolog-
ical obstacles that arise, in order to reach ambitious computational performance
levels they end up consuming increasingly higher power consumption, resulting in
tremendous energy costs compared to the performance gains.

To address the latter issues, the computer architects are moving towards in-
creasingly heterogeneous system architectures. The systems nowadays tend to
contain and employ not only CPUs but also different types of specialized acceler-
ators. Various application domains need the functionality offered by accelerators,
such as floating-point intensive computations and machine learning (ML) tasks.
Some of the popular accelerators used nowadays are:

• Graphical processing units (GPU)s. The GPUs provide large number of
computational units, that are used for different floating-point arithmetic and
ML tasks.

• Tensor processing units (TPU)s that are used to mainly accelerate ML and
AI specific tasks.

• and configurable hardware accelerators that are implemented in FPGAs and
their applicability is more general, due to the programmable nature of the
FPGA.

Programming, access and use of the accelerators happens through different
programming models and toolchains that try to maximize the utilization of the

1



2 CHAPTER 1. INTRODUCTION

resources that accelerators provide. Currently, the most popular programming
models and toolchains for accelerators are OpenCL[10] and CUDA[9]. The way of
operation of those two programming models is to have the main program run on a
host CPU and then spawn different computational kernels that are off-loaded for
execution on the accelerator devices. The main program is responsible for manag-
ing the concurrent tasks and data movement such as: allocating memory, initial-
izing data and transferring data between itself and the accelerator device(s). The
task management activities are performed well by the CPU, as they don’t require
intensive computations that can lead to performance loss if the CPU is interrupted.
The kernels that are off-loaded on the accelerators for execution contain mostly
computationally heavy tasks that take advantage of the resources provided by the
accelerators. For several classes of applications, the use of accelerators results in
substantial performance gains and energy savings, since the most important parts
of the programs are executed in the specialized and optimized accelerator units.

The rest of this chapter highlights the contributions of this thesis and presents
a brief overview of the organization of this document.

1.1 Contributions

This thesis contributes with the design and implementation of a massively multi-
threaded superscalar RISC-V core, Matzic , on real hardware. The implementation
of our processor intends to be a basis for research studies on massively multi-
threaded processors. This work also intends to further explore the capabilities of
the open RISC-V ISA[2] and experiment with additional use cases. In summary,
this thesis makes the following contributions:

• The micro-architecture for a massively multi-threaded superscalar RISC-V
processor (Matzic ).

• The implementation of Matzic ’s design using synthesizable SystemVerilog[5]
RTL and testing in simulation for compliance with the RISC-V ISA specifi-
cation using the official RISC-V compliance test suite.

• An AXI4-Lite interface for the communication and control of Matzic .

• The detailed evaluation of the FPGA resource utilization of Matzic .

• Testing of Matzic on real hardware on a Xilinx FPGA together with the
CVA6 (Ariane) [12] RISC-V CPU that runs a Linux kernel.

• Accelerating applications using Matzic as an accelerator capable of support-
ing OpenCL-like and CUDA-like programming models.

1.2 Thesis Organization

The rest of the thesis is organized as follows:
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• Chapter 2 presents the background and basic concepts that are used by the
design of this thesis.

• Chapter 3 presents the details of the design and implementation of the pro-
posed RISC-V core, Matzic .

• Chapter 4 contains the evaluation of the design using both software and
hardware, as well as a description of the environment and tools used.

• Finally, Chapter 5 concludes the thesis and presents perspectives for future
work.
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Chapter 2

Background

This chapter covers some of the background about RISC-V[2], which is the in-
struction set architecture (ISA) of our core, and some basics about processor
multi-threading, AXI4 and AXI4-Lite protocols. Further technical details can
be found in the original source for RISC-V [2], regarding multi-threading in [11]
and about the AXI protocols in [1]. Moreover, we also present some related work
relevant to Matzic . The structure of this chapter is as follows:

• RISC-V ISA

• Multi-Threading

• AXI Protocols

2.1 RISC-V

The name RISC-V (called ”risk five”) refers to the fifth major RISC instruction-set
architecture (ISA) design from UC Berkeley (RISC-I, RISC-II, SOAR, and SPUR
were the first four). The RISC-V ISA was originally designed to support computer
architecture research and education. More specifically, some of the primary goals
of the RISC-V design are:

• To be an open ISA that is freely available to both academia and industry.

• To be suitable for native hardware implementation.

• Not being specific for particular micro-architectures or implementations, but
can be implemented in any of these.

• To have support for the revised 2008 IEEE-754 floating point standard.

• To support ISA extensions and specialized variants.

• Support for 32-bit and 64-bit address spaces for applications, operating sys-
tem kernels, and hardware implementations.

5
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• Support for highly-parallel multi-core or many-core implementations, includ-
ing heterogeneous multiprocessors.

There are also more design goals of this ISA, as well as, extensions to the
base integer ISA, including, custom extensions that we use in this thesis and will
describe after describing the RV32I integer base ISA.

2.1.1 The RISC-V 32I ISA

The RISC-V 32I (RV32I) ISA is designed sufficiently enough to be a compiler
target and support modern operating system environments, as well as, reducing
required hardware for a minimal implementation. Also, RV32I can be used to
emulate the other extensions, except the A extension which requires additional
hardware support for atomic operations.

The RV64I architecture has 32 registers with width of 64 bits, from those
register 0 is hardwired to equal 0 and the other 31 registers are general purpose
registers. In addition to those 32 registers there is also the pc register that holds
the address of the current instruction.

For the instructions of the ISA, there are four base formats(R/I/S/U), that
can be seen in Figure 2.1. Every instruction is aligned to a four-byte boundary in
memory and if the address is not aligned then an instruction misaligned exception
is generated. For conditional jumps generate an exception only if the branch is
successful.

Figure 2.1: RV32 I R, I, S, U formats. source:[2]

As Figure 2.1 shows, the destination register and source registers address field
remain at fixed positions, as does the position of funct3, in the instruction. This
convention simplifies the decoding process. The only part that changes between
the different formats is the bits of the immediate value, as Figure 2.2 shows. A
sign-extension to 32-bits is always performed to the generated immediate value,
by replicating bit 31 of the instruction, thus allowing for a faster immediate gen-
eration. In Figure 2.1 there are also two more formats, in addition to the previous
four. The two new formats (B/J) differ from the S and U formats in the position
of the immediate bits and also that the generated immediate value is a multiple of
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2. Figure 2.3 shows the immediate value each instruction format generates from
the instruction bits it has.

Figure 2.2: RV32I instruction formats with immediate positions. source: [2]

Figure 2.3: Generated immediates by each format. source: [2]

2.1.2 RISC-V 64I

The RISC-V 64I extension of the RISC-V ISA builds upon the RISC-V 32I in-
struction set. One of the extensions it adds is to widen the registers from 32-bits
to 64-bits. It also widens the user address space that is supported to 64-bits. All
the instructions that the 32I base extension defines, now operate on 64-bit regis-
ters and immediates. This also means that immediates now sign-extend to 64-bits
instead of 32-bits that they were before.

Since all the instructions of the 32I base extension now operate between 64-bit
immediates and registers, the 64I extension introduces additional instructions that
operate between 32-bit values. The result of those instructions are sign-extend to
64-bit to be compatible with the base registers of the 64I extension. The extension
also adds load and store instructions to write and read atomically 64-bit from the
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memory, as well as a load operation where it loads a 32-bit value from memory
without sign-extending it.

2.1.3 RISC-V 64E

The RISC-V 64E extension reduces the number of available registers from 32 to 16.
More specifically, it only permits the use of the registers x0− x15. The extension
reserves the rest of the registers (x16 − x31). In all other aspects, this extension
has the same instructions as the 64I extension.

2.1.4 RISC-V M

The M extension of the RISC-V ISA is used to add standard integer multiplication
and division capability. If it is used together with the 64I extension it also adds
multiplication and division instructions for 32-bit integer values. The result of the
32-bit instructions of course is sign-extended to 64-bit.

The multiplication instructions the extension adds, also allow to get the upper
bits of the result, which would overflow when the result of the multiplication
doesn’t fit in 64-bits. Those multiplication instructions take into consideration the
sing of the operands when the upper bits, of the multiplication, are requested, as
it can result in different numbers than the ones intended for multiplication.

The division instructions provided are for the remainder of a division and not
only the quotient of the division. The division instructions also provide a choice
for the sign of the operands the operation will use.

2.1.5 RISC-V F and D

The F extension of the RISC-V ISA adds support for floating point operations. It
also adds 32 additional registers, the f0−f31 registers, to the ones of the base 32I
ISA, which are exclusive for floating point operations. Those registers are 32-bits
wide. The extension mostly has instructions that operate between floating point
registers, but it also provides instructions that load and store floating point values
to memory, as well as, capabilities to transfer and convert data between the integer
and floating registers.

While for the load and store instructions the extension uses the I and S in-
struction format, it generally uses the R format for all others where it further
defines things as Figure 2.4 shows. In the Figure the funct3 field of the R-format

Figure 2.4: Instruction format for float operations. source: [2]

changes to rm which is the type of rounding mode to use when there is a need for
rounding, the operands, or the result, for the operation that occurs. The funct7
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part of the instruction also divides to funct5 and fmt. While funct5 serves the
same purpose as funct7, the fmt part of the instruction indicates the format of
the floating-point values the operation uses. In the F extension, fmt is always set
to indicate that the operands and result are 32-bit single-precision floating point
numbers.

The F extension also adds fused multiply instructions, that require 3 source
operands as it does 2 operations at the same time. The first operation is to
multiply the first 2 operands and then add the third operand to the result of
the multiplication. For those instructions the F extension adds a new type of
instruction format, the R4-type format, that Figure 2.5 shows. This instruction

Figure 2.5: R4 instruction format. source: [2]

format uses the 5-bit wide func5 field that is seen in Figure 2.4 as the 3rd source
operand register. All the other aspects of the instruction remain the same.

The D extension works similarly to the 64I extension for the 32I base ISA. The
extension widens the float registers to 64-bits, as well as introduces the value for
double-precision 64-bit floats to the fmt format field where it is used to define
the size of the operands. Moreover when a 32-bit float needs to be represented in
the 64-bit float registers then the upper 32 bits must all be set to 1. Finally the
D extension also adds instructions for converting floating values between different
floating point formats.

2.1.6 The RISC-V Custom Opcode and Instructions

The RISC-V ISA defines the opcodes in a way that allows for custom ISA exten-
sions to be made. In Figure 2.6 we see how the ISA defines the opcodes and how
it leaves opcodes open for custom instructions to be implemented. In this thesis
we use the custom-0 opcode, which equals 0001011, to implement a custom barrier
and get thread id instructions that the programs can use for synchronization and
other reasons when the processor runs them.

Figure 2.6: RISC-V ISA opcode definition table. source:[2]
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2.2 Multi-threading

There is a limit to the instruction level parallelism (ILP) in conventional instruc-
tion streams. That means there is also a limit to the instructions we can have in
a typical pipeline. A multi-threaded processor tries to solve this by concurrently
executing instructions of different threads of control within a single pipeline. Be-
cause the threads of control are different that means the instructions between
those threads are also independent and can be executed concurrently. Through
the different architectural approaches, multi-threading can either:

• increase the performance of a single program by implicitly utilizing more
coarse-grained parallelism than ILP. We call that implicit multi-threading.

• increase the performance of workload that is either multiprogramming or
multi threaded. We call that explicit multi-threading.

A thread for a multi-threaded processor is different from the software threads
of multi-threaded operating systems. We always view a thread of a multi-threaded
processor as a hardware-supported thread which, depending on the specific form
of multithreaded processor, can be a full program (single-threaded UNIX pro-
cess), a light-weight process (e.g. a POSIX thread) or a compiler- or hardware-
generated thread (subordinate microthread, microthread, nanothread, etc.). The
consequences for designing a multi-threaded processor are:

• In case the processor wants to execute multiple processes in parallel, it needs
to maintain different address spaces for each instruction stream in execution.

• In case of executing multiple threads from a single application, usually that
implies that the threads can have a common address space. Which means
we can have threads share some structures, such as caches or even registers.
That also depends on the application.

Therefore we define a multi-threaded processor to be able to interleave the
execution of instructions of different threads of control in the same pipeline, as well
as have multiple program counters available in the fetch unit and store multiple
contexts in different register sets on the chip. Its execution units also multiplex
between thread contexts that are loaded in the register sets. As a result, the
latency that may arise in the computation of a single instruction stream is filled
by computations of another thread. In that way, multi-threaded processors can
tolerate memory latencies by overlapping the long-latency operations of one thread
with the execution of other threads.

2.2.1 Implicit Multi-threaded Processors

The term implicit multi-threaded architecture refers to any architecture that can
concurrently execute several threads from a single sequential program. The threads
may be obtained with or without the help of the compiler. To get threads a
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higher than normal degree of speculation is used in combination with functional
partitioning of the processor, which allows finding contiguous regions of the static
or dynamic instruction sequence. So a thread in such architectures refers to those
instruction sequences.

2.2.2 Explicit Multi-threading

The multi-threaded processors that are designed to simultaneously execute
threads of the same or of different processes, are called explicit multi-threaded
processors in contrast to the implicit multi-threaded processors mentioned above.
The Explicit multi-threaded processors can to increase the performance of a multi-
programming or multi-threaded workload. However, the single-thread performance
may slightly decrease when compared to a single-threaded processor. Notice that
explicit multi-threaded processors aim at a low execution time of a multi-threaded
workload, while implicit multi-threaded processors aim at a low execution time of
a single program.

2.2.3 Multi-threaded Approaches

The minimal requirement a multi-threaded processor should have is the ability to
pursue two or more threads of control in parallel within the processor pipeline and
a mechanism that triggers a thread switch. With that we have the following main
approaches to multi-threading processors:

• The Interleaved multi-threading technique, which is to fetch the instruction
of another thread and feed it into the execution pipeline at each processor
cycle.

• The Blocked multi-threading technique, which is to execute the instructions
of a thread successively until an event occurs that may cause long latency.
When the event occurs, it induces a context switch.

• The Simultaneous multi-threading technique, which combines the wide su-
perscalar instruction issue with the multiple-context approach. Therefore,
it simultaneously issues instructions from multiple threads to the execution
units of a superscalar processor, in-order to utilize as many of them as pos-
sible.

Figure 2.7 shows how the techniques of interleaved multi-threading (b) and
blocked multi-threading (c) work by showing how the traditional pipeline (a) would
work. It also shows how a superscalar pipeline (d) works when it implements the
interleaved multi-threading (e) and blocked multi-threading (f) techniques as well.
The A, B, C and D are the contexts of different instruction streams that can be
viewed as threads.
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Figure 2.7: Different approaches possible with scalar and superscalar processors:
(a) single-threaded scalar; (b) interleaved multi-threading scalar; (c) blocked multi-
threading scalar; (d) single-threaded superscalar; (e) interleaved multi-threading
superscalar; (f)blocked multi-threading superscalar. source [11]

2.2.3.1 Interleaved Multi-threading

The interleaved multi-threading model, also called as fine-grain multi-threading,
allows the processor to switch to a different thread after each instruction fetch.
In principle, we feed an instruction of a thread into the pipeline after the retire-
ment of the previous instruction of that thread. Since interleaved multi-threading
eliminates control and data dependencies between instructions in the pipeline, the
known pipeline hazards don’t arise and the processor pipeline is easily built with-
out the complex forwarding paths. Because no pipeline hazards can occur and we
don’t calculate forwarding, this leads to a very simple and therefore potentially
very fast pipeline. Moreover, the context-switching overhead is zero cycles. Mem-
ory latency is tolerated by not scheduling a thread until the memory transaction
has been completed. This model requires at least as many threads as pipeline
stages in the processor. Interleaving the instructions from many threads limits the
processing power accessible to a single thread, thereby it degrades the single-thread
performance.

2.2.3.2 Blocked Multi-threading

The approach of blocked multi-threading, which is also called coarse-grain multi-
threading, executes a single thread until it reaches a situation that triggers a con-
text switch to another thread. Usually, a situation for the context switch appears
when the instruction execution reaches a long-latency operation or a situation
where latency may appear. An example of such a situation is when a memory
operation is executed or an interrupt arrives at the core. Compared to the in-
terleaved multi-threading technique, a smaller number of threads is needed and a
single thread can execute at full speed until the next context switch. The single-
threaded performance of this scheme is similar to the performance of a comparable
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processor without multi-threading.

2.2.3.3 Simultaneous Multi-Threading

The approach of simultaneous multi-threading (SMT) combines the wide super-
scalar instruction issue with the multi-threading approach by providing several
register sets on the processor and issuing instructions from threads simultaneously.
Therefore, operations of several threads can fill the issue slots of the wide-issue
processor. The latencies occurring in the execution of a single thread are bridged
by issuing operations of the other remaining threads loaded on the processor. In
principle, a thread combination of instructions can utilize the full issue bandwidth.
The SMT fetch unit can take advantage of the interthread competition for instruc-
tion bandwidth in two ways

1. First, it can partition the instruction bandwidth among the threads and fetch
from several threads each cycle. In this way, it increases the probability of
fetching only non-speculative instructions.

2. Second, the fetch unit can be selective about which threads it fetches. For ex-
ample, it may fetch those that will provide the most immediate performance
benefit.

Because an SMT processor exploits both coarse- and fine-grained parallelism, it
uses its resources more efficiently and thus achieves better throughput and speedup
than single-threaded superscalar processors for multi-threaded workloads. The
trade-off is a more complex hardware organization.

2.3 AXI4 and AXI4-Lite

The AXI protocols design is to support high-performance and high-frequency sys-
tem designs [1]. More accurately the AXI protocol:

• is suitable for high-bandwidth and low-latency designs.

• provides high-frequency operation without using complex bridges.

• meets the interface requirements of a wide range of components.

The way it accomplishes the design goals is through the key features the protocol
provides. Those are:

• to have separate phases for the control/address of a transaction and the data
of the transaction.

• to have separate read and write channels, that provide low-cost direct mem-
ory access.
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• the ability to issue multiple outstanding transactions and also have support
for out-of-order completion of those transactions.

Those are some of the futures the protocol provides that made us consider and
decide to use it in the implementation of our thesis for more information you can
read the source material[1].

2.3.1 AXI4

The AXI4 is a master-slave protocol that has five different transaction channels.
The transaction channels it has are:

• The read address (AR) channel. This channel is responsible for sending the
address of a read operation as well as different control signals from the master
to the slave that will handle the request.

• The read data (R) channel. This channel sends from the slave to the master
the data corresponding to the address the master provides from the AR
channel. The R channel also generates a response for the validity of the
address and control combination the master provides. In case of an invalid
combination, an error response returns to the master alongside the data.

• The write address (AW) channel. This channel does the same job as the AR
channel but for write transactions. So it provides the address and control
for a write transaction to the slave from the master.

• The write data (W) channel. This channel is responsible for sending the
data for a write transaction that started or will start from the AW channel
to the slave interface.

• The write response (B) channel. This channel’s responsibility is to notify the
master about the success or failure of an issued Write request. If the action
of the request results in unsuccessfulness, an error response generates and
reaches the master.

Each of the above channels is independent and consists of a set of information
signals, as well as a V ALID and READY signal pair to provide a two-way hand-
shake between master and slave. The information source asserts the V ALID signal
to show that it is issuing a valid address, data, or control on the channel. The
destination asserts the READY signal to show that it is available to receive the
information from the source. A V ALID signal must not depend on the READY
signal to avoid possible deadlocks. It is possible to assert the READY signal
before the V ALID signal, to show the readiness of the destination to receive the
information. The W and AR channels that transfer data also include a LAST
signal that signals the dispatch of the final data of a transaction.

Taking advantage of the different independent channels, the AXI protocol:
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• permits the issue of the address and information ahead of the actual data
transfer.

• allows for multiple outstanding transactions to happen.

• allows for out-of-order transaction completion (the completion of the trans-
actions can be in a different order from the one they were issued).

2.3.1.1 AXI read transaction

A single read transaction uses the AR and R channels in the way that Figure 2.8
shows.

Figure 2.8: An AXI read transaction. source:[1]

In the Figure, we see that the master first sends the address and control for
a read transaction, and then the slave sends back all the data for that request.
That defines a relation between the Read address channel (AR) and the read data
channel (R), which is that there must be a request in the AR channel before the
R channel sends the data and the response.

The signals the AR channel uses when issuing a request are:

• ARID signal: Since AXI can have multiple outstanding requests and also
supports out-of-order completion, this signal is the way to differentiate be-
tween active requests. If two or more active requests have the same ARID
value, then those requests must complete in the order they are issued. Oth-
erwise, there isn’t a guarantee for the completion of requests.

• ARADDR signal: This is the address from which we want to read data.

• ARV ALID signal: Indicates when the master sends valid address and con-
trol signals.

• ARREADY signal: Slave asserts it when he is ready to receive an address
and associated control signals.

The signals the R channel uses when a slave returns data to the master are:
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• RID signal: This is the signal that differentiates between the active requests
this transaction replies to. It has the same value as the ARID value of the
request the reply refers to.

• RDATA signal: It is the signal that carries the data of the read request,
that was issued earlier in the AR channel. This signal is a bus with a width
of 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide. In this thesis, we define it
as 64-bit.

• RRESP signal: It is the signal that indicates if the transaction was successful
or an error occurred.

• RV ALID signal: The slave asserts it when it sends back (to the master)
valid data and response.

• RREADY signal: The master asserts when he can receive the data and
information a slave sends.

The signals we describe on the channels above are not all the signals that the
AXI protocol provides. The mentioned signals are the ones this thesis mostly uses.
The signals not mentioned, like the RLAST signal, have to mainly do with the
burst nature of the protocol that this thesis doesn’t use, so they have a default
value defined by the spec. The RLAST signal signifies when the slave sends the
last data of a read operation. For more information, see source[1].

2.3.1.2 AXI write transaction

A write transaction on the AXI protocol has the form that Figure 2.9 shows. In

Figure 2.9: An AXI write transaction. source:[1]

the Figure, we see that a write transaction uses the remaining three channels of the
protocol (the Write address channel (AW), the Write data channel (W), and the
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Write response channel (B)). The AW channel is responsible for transferring (from
the master to the slave) the information (address and control) needed to complete
the transaction. The W channel handles the transfer of the transaction data the
slave uses to complete the transaction. The data correspond to the address and
control information that passes through the AW channel. In the Figure, we see a
lot more transactions on the W channel because of the burst nature of the protocol,
which this thesis doesn’t use. After the slave receives all the data and information
(address and control), it performs the write operation and sends a response to the
master, through the B channel, about the operation’s success.

Although the Figure shows the master sending the data (through the W chan-
nel) after sending the address and control (through the AW channel) for simplicity,
the protocol doesn’t define such an ordering constraint. The dispatch of informa-
tion (address and control) and data can happen in any order. The only ordering
existing is that the slave must send the response after both data and information
arrive at the slave.

The signals the AW channel uses when issuing a Write request are

• AWID signal: Since AXI can have multiple outstanding requests and also
supports out-of-order completion, this signal is the way to differentiate be-
tween active write requests. If two or more active requests have the same
AWID value, then those requests must complete in the order the master
issues them. Otherwise, there isn’t a guarantee about the order the requests
complete. Write requests have no relation to read requests, so there is no
relation between AWID and ARID.

• AWADDR signal: This is the address that the slave uses to write the data
of the request.

• AWV ALID signal: Indicates when the master sends valid address and con-
trol signals.

• AWREADY signal: Indicates when the slave is ready to receive the write
address and associated control signals.

The signals the W channel uses when issuing a Write request are:

• WDATA signal: This is a bus signal with a width of 8, 16, 32, 64, 128, 256,
512, or 1024 bits wide. It carries the data the slave needs to perform and
finish the write request.

• WSTRB signal: This signal indicates which byte lanes (from the WDATA
bus) contain valid data for the write request. It has a validity bit per 8-
bits in the WDATA bus. An asserted bit means the slave should write the
corresponding byte in the memory.

• WVALID signal: Indicates when the master sends valid data to the slave.
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• WREADY signal: Indicates when the slave is ready to receive the data from
the master.

As we see, the W channel has no ID field that can connect the data it sends to an
address and control previously the AW channel sends. For that reason, the master
must send the data in the same order as the address and control transactions they
correspond to (in the AW channel).

The signals that are used when the slave sends a response to the master about
a write request are:

• BID signal: It indicates for which active write request this write response
refers. For that reason, it has the same value as the AWID signal of the
request.

• BRESP signal: It is the signal that indicates if the transaction was successful
or an error occurred.

• BV ALID signal: The slave asserts it when it sends back a response to the
master.

• BREADY signal: The master asserts it when he can receive information
that the slave interface sends.

The above signals in the channels are the ones this thesis uses. The protocol
defines more signals for the support of the burst functionality it has. For example,
the protocol defines the WLAST signal in the W channel, which the master asserts
when he sends the last needed data of a write request, else the master will send
more data. For more information about that functionality and the signals refer to
source[1].

2.3.2 AXI4-Lite

Simpler control register style interfaces that don’t need to provide the full func-
tionality of AXI4 (for communication) can use the AXI4-Lite protocol (a subset
of the AXI4 protocol). Some of the main features the AXI4-Lite protocol provides
are:

• It has no burst transactions.

• All data accesses use the full bus width. Also, the width data busses are
either 32- or 64-bit.

The AXI4-Lite protocol (according to the above) still has the same five channels
as the AXI protocol, but some signals and functionality have been changed or
removed. More accurately, AXI4-Lite:

• Removes the AWID, BID, ARID, and RID signals. That means the
requests in the interface are complete in the order of issue. However, read
and write actions remain independent still.
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• Doesn’t guarantee support of the WSTRB signal by the slave.

• Defines the WDATA and RDATA busses to have a width of either 32- or
64-bit.

• Contains (only) all the other signals we describe for the AXI4 protocol in
each channel, plus the AWPROT signal in the AW channel and ARPROT
in the AR channel. The use of these two additional signals is to protect
against illegal transactions.

The changes (the AXI4-Lite protocol makes to the AXI protocol above) still allow
for multiple outstanding transactions. Although multiple active transactions can
exist, the transactions will complete in the same order as the order the master
issues them.
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Chapter 3

Design & Implementation

In this chapter, we present the design of Matzic . Specifically the chapter starts
with the analysis of the pipeline, continues with the scheduling of the threads and
completes with the controller of the core.

The structure of this chapter is as follows:

• Matzic Pipeline

• Thread scheduling

• Controller

3.1 Pipeline

The pipeline of Matzic is a 6-stage superscalar pipeline that supports up-to 256
threads, as Figure 3.1 shows. The following stages make up the pipeline:

1. PC Fetch

2. Instructions Fetch

3. Decode

4. Operands Fetch

5. Execute

6. Commit

Matzic also allows the schedule of up-to 4 instructions and has 7 execution
clusters to service them. The execution clusters are:

1. Multiply and ALU. Able to execute multiply or ALU operations.

2. Div and ALU. Able to execute divide and ALU operations.

3. FPU. Able to execute floating point operations.

4. Load1. Able to execute Load operations.

5. Load2. Able to execute Load operations.

6. Store. Able to execute store operations.

7. Branch and ALU. Able to execute branch, jump, and ALU operations.

21
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Figure 3.1: Execution Pipeline and Matzic Overview

Each instruction that passes through the pipeline needs a minimum of 8 Cycles
until it reaches the commit stage of the execution.

3.1.1 PC Fetch

The PC Fetch section of the pipeline is responsible for keeping the PC values for
each thread. The implementation of the section can be seen in Figure 3.2 .

Figure 3.2: PC Fetch Top
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For the task of keeping the PC values, we use a 256× 64-bit two-port memory
named PC Memory in Figure 3.2. Each address maps to a distinct thread-ID.
That allows for the ability to read and write the value of two different threads at
the same time. In the case the reading and the writing thread are the same, then
the memory returns the old value to the reading thread.

The write arbiter selects which thread should write in the memory. The options
for writing threads are:

1. A thread that’s ready to commit its PC value coming from the Commit stage
of the pipeline.

2. A thread that wants to initialize its PC value coming from the Controller.

The scheduling policy of the arbiter is to schedule the committing thread when
available. Otherwise, it schedules the initializing thread. This policy assumes that
an initialization operation is a rare occurrence, and it’s best to be ready as soon
as possible in case the committing thread starts execution in the next cycle.

3.1.2 Instruction Fetch

The Instruction Fetch section is responsible for getting 4 instructions from the
Instruction Memory. The implementation of the Instruction Fetch can be seen in
Figure 3.3.
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Figure 3.3: Instruction Fetch Top

We read the 4 instructions starting from PC. That means we get the instruc-
tions from PC, PC+4, PC+8 and PC+12 . For that reason we use an unaligned
memory of width 16 Bytes. In case of using an aligned memory that would not
allow to always read 4 instructions from memory because there is no guarantee
that PC would always be aligned at 16 Bytes. As a result we would need 2 reads
from the memory. By using an unaligned memory we can get the full 16 Bytes in
1 cycle without having the concern of PC to be aligned at 16 Bytes.

The unaligned memory has a single address for reading and writing, as we
deem a write operation while we execute code to be an uncommon case. For that
reason, we prioritize reading (from the Read PC) when a valid reading thread is
present and only write when there is a bubble at this stage. The unaligned memory
consists of 8 2-Byte wide single ported memories. Each memory has a possibility
of 2 addresses, except the last memory, which has only 1 possible address. We
create the first address by discarding the 4 LS bits of the input address and the
second by adding 1 to the first address. If the value of the 4 LS discarded bits is
greater than the id of that memory, we select the second address. Otherwise, we
select the first address. The value of the discarded bits can never be greater than
the id of the last memory, so we always address it using the first address.
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3.1.3 Decode

The Decode section of the pipeline is responsible for decoding and scheduling the
instructions to the different execution clusters. It also detects the hazards between
instructions. The implementation can be seen in Figure 3.4.

Figure 3.4: Decode

We use 4 instruction decoders and immediate generators, 1 for each instruc-
tion, as each instruction generates differently an immediate value and has different
requirements for execution. Also, each instruction generates a mask with asserted
bits to the units it can use to execute. The PC Generator has 3 adders that create
the PC values for all the instructions after the first. The first instruction has the
same PC value as the one used for reading the instructions. Because the instruc-
tions are sequential, the PC values corresponding to the second, third, and 4th

instructions are PC+4, PC+8, and PC+12.
The Register Address Generator creates the register addresses (for the register

files) to read the correct source register values the instructions need. We do this
by concatenating the thread ID and the source register field in the instructions.
As a result, it creates 8 addresses for the integer register file and 12 for the float
register file.
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The module (hazard detector and operation scheduler) detects and schedules
all the instructions that are possible to execute in program order. The checks that
the scheduler does are for:

• Read-After-Write (RAW) hazards. By checking the source and destination
registers of the instructions.

• Memory hazards. To avoid the memory disambiguation problem, we avoid is-
suing together load and store (or two store) instructions for execution, from
the same thread, in the same issue window. As a result, that avoids the
potential write-after-read (WAR), write-after-write (WAW), and RAW haz-
ards that can happen when two memory operations access the same memory
address.

• Control hazards. We define control hazards being the branch, jump, and
barrier instructions. Branch and jump instructions change the normal flow
of the program, which is to increase the PC counter by 4, and set the PC
value to some other address. As a result, we don’t schedule (to units) the
instructions after a branch (or jump) instruction, as we deem them invalid.
Although barrier instructions maintain the program flow, they also work
as a point of synchronization between threads. For the thread to continue
to issue and execute the instructions succeeding the barrier instruction, all
other threads must also reach the synchronization point.

• Structural hazards. This hazard occurs when the processor has insufficient
units to service all the instructions.

After detection of the hazards, the detector schedules as many sequential in-
structions as possible, as long as they don’t violate the program order and there
aren’t any hazards between them. The pipeline stalls when it’s impossible to
schedule even the first instruction (due to structural hazards), until it becomes
possible.

The Register Read Enables Generate module creates the corresponding read
enables required to read from the register file. The register file performs a read
to a register address only for the corresponding asserted enable signals. Thus, the
scheduled instructions can read only the registers they require from the register
file and reduce power consumption.

3.1.4 Operands Fetch

The Operands Fetch stage is responsible for keeping the register values for each
thread and reserving credits for the clusters that the execution can complete in a
different order than the one issued. Figure 3.5 shows the implementation of this
section.
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Figure 3.5: Operand Fetch

We keep two register files 1 for the integer registers and 1 for the float registers.
Each register file has the same number of write-back ports but a different number of
read ports. More accurately, the float register file has 12 read ports, and the integer
register file has 8. The number of ports a register file needs is given by the function:
frd ports = InstructionIssueWidth∗RegisterSources. Where RegisterSources is
the maximum possible number of sources the instructions can have, which resolves
to 2 for integer instructions and 3 for float instructions due to the fused multiply
(-add and -sub) instructions. Although we can reduce the number of ports in the
float register file, as it’s impossible to schedule 4 fused multiply instructions, the
12 ports simplify the logic for the register source selection in the Execute Section.

The write-back is the same for both register files, as the mapping for the float
registers corresponds to the mapping for the integer registers. The number of write-
back ports is given by: fwr ports = InstructionIssueWidth ∗ DestinationRegs.
The DestinationRegs parameter is the maximum possible number of destinations
registers in the ISA, which for the case of RISC-V is 1. So the number of write-
back ports is 4. Although it is impossible to utilize all the read ports on the float
register file, that is not the case for write ports, as 4 instructions can perform a
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write-back in the float register file i.e. 2 fld, 1 fadd, and 1 fmv.

3.1.4.1 Integer Register File

Figure 3.6 shows the implementation of the integer register file.

Figure 3.6: Integer Register File

We implement the integer register file as a banked memory. For that reason,
it has 15 256 × 64-bit two-port memories. Each memory bank corresponds to an
ISA register from x1 to x15. There is no need to have a bank for the register x0 as
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its value is always 0, and a write to that register has no effect. Each memory has
as many words as existing threads, so each word in the bank maps to the register
value of a thread’s register. That way, we create the address for each memory
without wasting resources and only provide the executing thread’s ID when we
want the value of that thread’s register. Each memory also has a read enable
signal (ren), which disables the read port of the memory and thus reduces power
consumption, as reads happen only to the banks (registers) the thread needs. Each
of the 8 (1 − to − 15) decoders produces a ren signal for every bank. All the ren
signals for a bank then pass from an or gate to determine if that bank should
perform a read operation. The or gates also solve the problem when we need to
read a register more than once. We use the 8 read regs signals to decide which
bank to read and also pipeline them to set the output value for each read port of
the register file to the correct read register value that the instructions need.

When committing data to the register file, we follow the same method as for
reading. We use 4 decoders to decide the bank(s) where a write operation must
occur, and we use an or gate for each bank in case multiple ports want to write
at the same bank(register) – this should not typically happen by efficient code
sequences but it is permitted. The write address for all the banks we want to
write follows the same philosophy as the read but this time we use the committing
thread’s ID. When the commit bank(register) is the same for more than one port,
the write operation uses the data of the last port in the register file, this is because
the last port is used by the last instruction issued in program order for the specific
thread. For example, if both port 0 and port 2 want to write at Bank#4(register
x4), then the register file uses the data of port2.

3.1.4.2 Float Register File

Figure 3.7 shows the implementation of the float register file. The implementation
is similar to the integer register file, with the difference that we use 16 256×64-bit
two-port memories, which correspond to registers f0 to f15. The float register set
doesn’t have special cases as the x0 register in the integer register set.
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Figure 3.7: Float Register File

3.1.5 Execute

The Execute section performs the operations that the scheduled instructions need.
Figure 3.8 shows the implementation of this section.
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Figure 3.8: Execute

All the operands (which the previous stages of the pipeline create or read) go
into the Operand Distribute module so that it can distribute them to the appro-
priate clusters. Each of the seven clusters also receives the control signals it needs
for the execution. When the FPU and Div/ ALU clusters have space to receive a
new operation, they assert the DivAvailable and FPUAvailable output signals.
When the Decode stage schedules an instruction to the FPU or Div/ ALU clusters,
it also asserts the appropriate signal from FPUReserve and DivReserve. The
scheduler from the Decode stage of the pipeline shouldn’t schedule an operation
to a cluster when the corresponding available signal is deasserted.

The FPU Credit, Load1, and Load2 Credit that go into FPU, Load1, and
Load2 clusters, respectively, are the credits that accompany the resulting values
the clusters produce since they can complete the operations in a different order
than that which they accept them. For example, if two threads with id 0 and id
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1 enter the Load1 cluster with that order, then it is possible the output order to
be id 1 and then id 0. The credits assure that the data will commit in the correct
order when the time for commit comes.

Although the Store Cluster has the same trouble as the Load1, Load2, and
FPU clusters, which is the completion of out-of-order store operations, we don’t
need something elaborate for that because store operations don’t commit any data
to the register files, and we only need to know that the store operation for a thread
is complete.

Each cluster has a different set of operations it can perform, and we can see
most of them below.

3.1.5.1 Branch/ ALU

The Branch/ ALU execution cluster can perform either ALU or branch type op-
erations. Its implementation can be seen in Figure 3.9.

Figure 3.9: Branch/ ALU

The Branch Unit receives the PC and immediate values corresponding to the
instruction scheduled in that cluster and the 2 source operands when the instruc-
tion is a conditional branch instruction. The output of the Branch Unit is the next
PC value (Next PC) that the thread should next fetch instructions from, as well
as the return address of a jump instruction.

The Branch Unit always provides the next PC value to fetch instructions from,
even when it has no branch or jump operation to execute. If it has no operation
to execute, then the Next PC value is the PC of the last instruction Decode stage
scheduled, plus 4.

The ALU allows the Decode stage to schedule more instructions in the pipeline.
It commits its data when there is no operation for the Branch Unit. Also, since
the Branch Unit needs to write back in the register file only when it executes
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an unconditional branch instruction, this cluster outputs the data of the ALU by
default. The ALU Operation & Control signals mostly contain the operation that
the ALU has to execute, as well as if the result is a 32-bit integer and has to
sign-extend to 64-bit or it is a move operation to the float register file, and the
result may be NaN boxed in case of single precision float numbers.

3.1.5.2 Mult/ ALU

The Mult/ ALU cluster operates for ALU and Multiply operations. The cluster
implementation can be seen in Figure 3.10.

Figure 3.10: Mult/ ALU

This cluster contains an ALU and a 4-stage pipelined multiplier. This cluster
pipelines the output of the ALU to be synchronous with the output of the multi-
plier. It also generates a V alid output signal to avoid committing any erroneous
results. The cluster also pipelines the is mul signal that determines which unit
produces the operation’s result value. An asserted V alid signal generates when a
valid input and operation are present in the cluster. To identify a valid operation,
the cluster checks the alu valid and is mul signals.

3.1.5.3 Div/ ALU

The Div/ ALU cluster operates for ALU and Multiply operations. The cluster
implementation can be seen in Figure 3.11.
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Figure 3.11: Div/ ALU

The cluster uses a credited FIFO to buffer operations in case of slow division,
as well as an ALU and the SerialDivider from the Ariane CPU [12] that handles
integer division operations. We use an output V alid signal that signifies an oper-
ation’s completion. The cluster serves the operations on a first come first served
basis, which means that the executing threads that enter the cluster will finish
and exit in the same order. We couple the divider with an ALU to increase the
possible amount of instructions scheduled.

The cluster regulates how many operations it can handle by using a credited
FIFO that acts as a buffer. The proper order of operations to enqueue data to the
credited FIFO is to allocate a position and then enqueue the data. To allocate a
position the Decode stage asserts the DivReserve signal (which also asserts the
res FIFO input signal) only when the FIFO has the DivAvailable signal asserted
(through the avail signal). If the FIFO has available space for allocation it asserts
the avail signal, else the deassertion of the signal signifies the lack of free space in
the FIFO. The FIFO provides the enq input signal for when data need to enqueue.
The FIFO deasserts the empty signal only after an enqueue operation and leaves it
deasserted as long as it still contains data. When we assert the deque input signal
the FIFO frees (and makes available for allocation) the oldest enqueued position,
and in the next cycle, the output data change to the ones directly enqueued after
the current. We enqueue data in the FIFO only when a valid thread is in this
stage of the pipeline, and either we have either of the input is div or alu valid
signals asserted. Those signals can never be asserted simultaneously, as doing
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both operations isn’t possible. The Hazard Detector & Operation Scheduler, seen
in Figure 3.4, ensures the exclusivity of those signals.

The SerialDivider (divider) accepts operations and outputs via handshaking.
A divide operation happens when the FIFO is not empty, and an asserted is div
signals from the head output of the FIFO. The divider asserts the in rdy signal
when idle. We use the ALU when is div and empty signals are deasserted. The
DivControl signals contain information about the type of division operation the
SerialDivider will perform. We assert the V alid signal when either the divider
asserts the out val signal, which signifies that the divider outputs the result of the
latest operation it started, or when the FIFO is not empty, the divider is idle, and
is div is deasserted. The default data output of the cluster is from the ALU and
changes to the divider’s only when it asserts out val. Although Figure 3.11 does
not depict this, the divider has an input out rdy signal that notifies that the result
it outputs is accepted, and can return to an idle state, since we can always accept
the result of the divider we always assert the out rdy signal.

3.1.5.4 FPU

The FPU cluster is responsible for performing all of the floating-point operations,
except for the floating-point move operations, which we handle with ALUs. Figure
3.12 shows the implementation of this cluster.

Figure 3.12: FPU

This cluster contains a floating-point unit (FPU) created from ETH Zurich [8]
and a credited FIFO. The FPU operates via handshaking to receive operations
and return results. When the FPU can’t accept an operation, we use a credited
FIFO to buffer them and not stall the pipeline.

The FIFO is used to buffer up to 8 operations if the FPU can’t absorb them.
It works the same as the one used in the Div/ALU cluster, where the avail out-
put signal signifies that the cluster has available space, and the res input signal
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allocates space in the FIFO. To enqueue data a valid thread must be present in
the Execute stage, and there must also be an operation for the FPU. An asserted
V alid signal signifies the presence of a valid thread, while an asserted is fop signal
means there is a valid operation for the ALU.

The FPU has different configurations depending on the different needs that
exist. We use the configuration for the RISC-V 64-bit D extension, and also
change the pipeline depth of the units it contains to reach higher frequencies. The
FPU can execute different operations concurrently. An input tag is given together
with an input operation to differentiate between the active operations in the FPU.
The FPU can have a lot of active operations because the operations in the FPU
have different execution times. That means the operations can finish executing
in a different order from that which the FPU starts processing them, because of
their execution time differences. The unit accepts and starts an operation when it
has both the in valid input signal and in rdy output signals asserted. The intag
input signal is the tag that accompanies the operation the FPU accepts. As the
tag value, we use the credit that this thread will use when its result reaches the
Commit stage of the pipeline, because the credit is already unique, and it allows
us to conserve resources we would use to track it. The FPU Control signals are
the signals that contain information about the operation the FPU will perform,
such as the operation it will execute, the rounding mode, and others. When the
FPU wants to output the result data of an operation, it asserts the out valid signal
and sets the out tag signal value to the in tag (credit) of the operation the result
corresponds. The FPU also provides an out rdy signal which Figure 3.12 does not
depict, as it is always asserted. That signal signifies to the FPU that the current
output is received and can continue to the next.

3.1.5.5 Load1 & Load2

The Load 1 and Load 2 clusters have the same structure, as they only handle
memory read operations. Figure 3.13 shows the implementation of these clusters.
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Figure 3.13: Load Unit

Each cluster contains an adder that adds the first operand read from the integer
register file and adds the immediate value to create the final destination address.
The cluster stores the Thread ID and the address from which the read operation
will take place in the memory in a FIFO. The FIFO has 256 available slots. We
use the FIFO to buffer operations when a slave device’s AXI AR Channel either
can’t handle many different requests or accepts requests slower than the pipeline
issues them. Thus the use of the buffer avoids introducing stalls in the pipeline.
The value we use for the AXI ARID of the AXI AR Channel is the same as
the ThreadID. That allows each cluster to issue up to 256 outstanding requests.
That means both clusters can issue up to 512 outstanding read requests together
if the environment can handle them. The reason for having so many requests is
to be tolerant of the delay of reading from a DRAM memory, which is about 100
nanoseconds. The AXI Read Request Sender module creates and handles the AXI
transaction that a read operation needs. The valid input signal signifies a valid
memory read request, which happens when the FIFO is not empty. The next
output signal notifies about the acceptance of the request and that in the next
clock cycle the AXI Read Request Sender can issue a new request.

In the clusters, there is also a 256 entry two-port memory, to keep information
for each active load request. The data the memory keeps for each load is the
memory credit it needs when the result goes to the Commit stage of the pipeline,
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as the order in which the replies to the load requests arrive isn’t guaranteed and
can be different from the order of issue. The other info we have is the size (how
many Bytes we read from memory) of the load operation, the sign of the operation,
and the 3 LS bits of the address for shifting the received data if the address is not
8-Byte aligned.

The AXI Read Response module receives the replies to the read requests issued
by the AXI AR Channel. The module outputs the Thread ID (which it knows
from the AXI RID signal that the AXI AR Channel provides), the data the
memory sends, and a valid signal to signify when the output of the module is
valid. We pipeline the data and valid signal as we need a cycle delay to retrieve
the Load Info (from the array) that we need to create the correct data for the
load operation and the credit the Commit stage needs to commit the data. The
Load Data Handler module is responsible for creating the final (result) data by
doing the sign extensions and ordering the operation needs on the pipelined data.

These clusters only handle aligned memory operations. In case of an unaligned
memory operation the behaviour is undefined.

3.1.5.6 Store

The Store cluster is responsible for the memory store operations. Figure 3.14
shows the cluster’s implementation.

Figure 3.14: Store

This cluster has an adder to create the address where the store should take
place. It also has 2 256 entries FIFOs for buffering requests in case any of the AXI
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AW or W Channels accepts requests slower than the pipeline issue rate. In the
first FIFO, we enqueue together the address and the Thread ID. The data we
will store in the memory pass through the Write Data & Enable Generate module,
which creates the final data that will submit in the memory, as well as a write-
enable mask that has the asserted bits for the exact bytes (from the data) that
the memory should update, and discard the others. The second FIFO stores the
data and write-enable mask.

The Sending Write Address module is responsible for sending the address where
the memory should store the data and opening a write transaction on the AXI AW
Channel. The AWID of the transaction is the same as the Thread ID. Through
that, we know which thread completes his store operation when a response arrives.
The valid input signal signifies that a store request is valid, which corresponds to
the FIFO having data. The next output signal hints that the module can accept
a new input request in the next cycle.

The Sending Write Data module is responsible for sending the data the memory
needs to store, and the write strobe (write-enable mask) that has asserted bits for
the data bytes the memory should update. The memory keeps the old value for
the bytes that have deasserted bits in the write strobe. The module sends the data
and write strobe through the AXI W Channel. Because this channel doesn’t have
an ID, the transactions on this channel must follow the same order as the ones
AW Channel starts. For example, if a thread with id 0 wants to write at address
A0 the data D0 and a thread with id 1 to address A1 the data D1, then if thread
0 sends the address (A0) through the AW channel first it must also send first the
data (D0) in the W channel. If thread 1 sends its data (D1) first, then the memory
would write the D1 data to the A0 address, which is different from the intended
action.

The Write Response Receiver receives the responses for the write operations
that start through the AW channel and outputs for which thread the write op-
eration in the memory was successful. It can extract that information through
the BID field of the B Channel, which corresponds to the AWID of a started
transaction for which we use the Thread ID of a thread.

This cluster only handles stores for aligned addresses. In case of an unaligned
address the behavior is undefined.

3.1.6 Commit

The Commit Stage of the pipeline is responsible for committing the results of a
thread when they are ready and updating the state of a thread. Figure 3.15 shows
the implementation of this pipeline stage.
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Figure 3.15: Commit

This stage has a 256 entry FIFO that contains the order in which the threads
will commit their results and information about the commit. The commit infor-
mation the FIFO contains for each entry are:
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• the destination register file (integer or float) where each instruction wants to
commit its results.

• a bit for each instruction that wants to update a register.

• the register each instruction wants to update.

• a bit to signal that the thread has to enter a barrier state and wait for others.

• a bit to signal that the thread has finished execution.

• a mask ((the unit wait mask) with asserted bits for the clusters the thread
uses.

We use the unit wait mask mask to know when all the instructions executing
for the thread have finished, so we can commit their result data and update the
PC of the thread. The FIFO that keeps the commit information enforces the order
the threads will commit. The order the threads commit is the same as the order
they enter the pipeline because the FIFO fills when the Decode stage successfully
schedules a thread, and the Decode stage doesn’t reorder the threads.

We use 3 FIFOs to keep the result data from the Branch/ ALU cluster, Mul/
ALU cluster, and Div/ ALU cluster. We use FIFOs for those clusters because
the thread execution follows the same execution order as the order they enter
the commit FIFO. So the output data of those FIFOs corresponds to the output
commit info the commit FIFO outputs. When those FIFOs are not empty, it
means they hold the result value for a thread that uses the corresponding cluster.
We always enqueue data to the Branch FIFO as each entry holds two values, the
next PC of the thread (that we always use to update the threads PC) and a value
we can commit to the register file. The value we commit to the register file is either
the return address from a jump and link instruction or the result of the ALU in
the cluster.

The Load1, Load2, and FPU clusters, that can reorder the threads’ finish order,
have 3 Reorder Buffers to keep their results. The reorder buffers give a credit that
allows reordering the data in the order the credits are reserved. So it puts the
data in the correct position for commit. An asserted val signal means the buffer
outputs valid data. The Operand Fetch stage reserves the credits when a scheduled
instruction heads to one of the Load1, Load2, and FPU execution clusters. When
a cluster commits to the reorder buffer it uses the reserved credit and asserts a
valid signal to signify that the buffer should store the data. It also provides the
result data for the thread. When we assert the deq input signal, the reorder buffer
continues to fetch the next data in the next cycle.

The Store Keeper tracks the threads with a finished store operation. The Store
Keeper asserts the Store Completed signal when the Commit thread has finished
its store operation. The input clear signal resets the state for the Commit thread
so it can track another store operation of the Commit thread in the future.
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The Commit Check module checks if all clusters thread uses have produced
results. When all the clusters produce the results the thread needs, it then asserts
the Commit V alid signal to signify that the thread is now committing. It also
asserts the appropriate deq signals for the units the thread uses, so it doesn’t erase
data of other threads. The 4 Write Back Data multiplexers select the appropriate
data to commit from one of the 3 FIFOs or 3 Reorder Buffers, using the 4 wb select
signals. The Commit Reg en signal is a mask that has asserted bits only for the
instructions that need to commit data and only when the commit is valid to avoid
unneeded commits in the register files. We always dequeue both the FIFO for the
Branch Cluster and the commit info FIFO, as the first always contains useful data
for the thread (which is the next PC) and the second to advance to the next thread
to commit.

3.2 Thread Scheduling

The thread scheduling is one of the most important aspects of the processor. The
scheduling we follow is a simple round-robin. The scheduler always goes to the
next thread from the current one, even when the next thread is not available for
execution until it reaches a specific thread ID which is the maximum allowed ID
for a thread. When the scheduler reaches the max ID, it starts again from the first
thread. More accurately, the function fnext gives the next thread that will enter
the pipeline. We describe the function as follows:

fnext(thread) =

{
thread+ 1 , if 0 ≤ thread < MAX THREAD
0 , if thread ≥ MAX THREAD

Moreover someone can generally say that fnext is a function that has a definition
domain, as well as, a result domain to be [0, MAX THREAD], or more mathe-
matically correct fnext : [0,MAX THREAD] 7→ [0,MAX THREAD].
The fnext input argument thread is the current thread that the scheduler sends to
the pipeline for execution, while MAX THREAD is the maximum thread ID the
scheduler can reach. In the design, MAX THREAD can only be a value in the
range [0, 255] as there are 256 threads. The behavior of the scheduler is undefined
for values outside that range.

As stated above the scheduler always advances to the next thread, even when
the next thread is not ready for execution. The reason for that decision is that
in the common case of operation, which is to have all 256 threads active, each
thread should finish execution in 256 cycles until the scheduler decides to schedule
it again. The latency of 256 cycles is enough to cover a round-trip to the DRAM,
which in modern processors is about 100 processor cycles. The reason a thread is
not available for execution can be any of the following:

• It reaches the end of execution. After a thread executes all the available code
it needs to execute, it should stop, as further execution may corrupt the data
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and state of the program. A thread finishes execution when it executes an
ecall instruction.

• It’s in a barrier state and all the other threads have yet to arrive at the
synchronization point specified by the barrier. A barrier is a point in the
code where every thread should reach and wait for all the other threads. If
a thread continues to execute before all threads reach that point, then the
result may differ from the intended behavior by the programmer.

• It still executes the instructions from a previously scheduled time. That can
be because of different reasons in the pipeline, like having unavailable the
unit the first fetched instruction needs or the memory latency being greater
than the time the scheduler needs to reach the ID again.

If any of the above cases is true then the scheduler doesn’t schedule the thread
and inserts a bubble in the pipeline to replace the slot of the thread.

3.3 Controller

The controller provides communication with the processor pipeline. It is responsi-
ble for initializing the PC values of each thread, initializing the instruction mem-
ory, setting the MAX THREAD variable where the thread id wraps around,
and starting the execution of the threads. It also contains different performance
counters that we use for evaluation.

The controller communicates via the AXI-Lite protocol, with a 64-bit bus for
address and data. The controller implements the functionality of an AXI-Lite
slave. Since we use the AXI-Lite protocol, we map operations to different ad-
dresses. More accurately, we use the 18 LS bits of the address which the AW
and AR Channels of the protocol provide to determine the operation the con-
troller needs to execute to the processor. The controller can handle read and write
requests simultaneously because of the AXI protocol.

3.3.1 Write Operations

The controller handles write requests one at a time. The way the controller handles
a write request is by using an FSM. Figure 3.16 shows the FSM.
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Figure 3.16: Controller Write FSM

The controller starts from the Wr Idle state and returns to that state when it
is ready to receive a new write request. The controller then moves to one of the
following 3 states:

• It moves to the WaitData state when it receives the address from the AW
Channel but still waits for the data through the W Channel.

• It moves to the WaitAddress state when it receives the data from the W
Channel but still waits for the address through the AW Channel.

• It moves to the Operation state when it receives at the same time both the
data from the W Channel and the address from the AW Channel.

When the controller is in either the WaitData or WaitAddress state, it will move
to the Operation state after it receives the missing information it requires. On
the Operation state, it executes an operation depending on the 18 LS bits of
the write address. Table 3.1 summarizes the possible write operations. When an
operation finishes, it asserts the We Op Done signal, and the FSM moves to the
SendResponse state. In the SendResponse state, the controller sends a response
back that the operation is successful and waits until the master accepts it. After the
master accepts the write response through the B Channel, the controller returns
to the Wr Idle state.
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Address 18 LS bits Write

0aaaaaaaaaaaaaaaaa Load 2 Instructions in Instruction Memory

10xxxxxttttttttxxx Initialize PC for thread (tttttttt).

110xxxxxxxxxxggxxx Enables threads in group (gg).

111xxxxxxxxxxxxxxx Starts execution for enabled threads.

Table 3.1: Controller Write Operation

The controller looks at the 3 MS bits from the 18 LS bits of the address to find
which operation to execute. The controller doesn’t utilize the WSTRB signal of
the W channel to simplify its implementation. So depending on those MS bits we
have the following:

• The MS bit is 0. If the MS bit is 0 then the controller must write the two
instructions (which come from the data of the W channel) in the instruction
memory of the processor. The controller writes two instructions because
each instruction is 32-bit and the data bus is 64-bit. The controller creates
the address where it will write the instructions in the instruction memory
from the a bits Table 3.1 shows. The controller finishes the operation when
the processor doesn’t need to read from the instruction memory. When the
operation finishes it asserts the Wr Op Done signal.

• The 2 MS bits are equal to 10. In that case, the controller initializes the PC
value of a thread in the PC File using the data the W channel provides. The
8 t bits Table 3.1 shows, create the thread for which we initialize the PC
value. Since there are 8 bits we can initialize any of the 256 threads. The
operation completes and asserts the Wr Op Done signal when the processor
pipeline doesn’t want to write in the PC file.

• The 3 MS bits are equal to 110. For this combination of MS bits, we enable
which threads we want to run next time a start operation initiates. Since
the bus is 64-bit and we have 256 threads, we split the threads into 4 groups
of 64 threads each. The data this operation uses is a mask of which threads
should be active and inactive in a group. The 2 g bits, which Table 3.1
shows, are the group for which the data correspond. The controller asserts
the Wr Op Done signal as there is no direct interference with the processor.

• The 3 MS bits are equal to 111. When this combination of MS bits happens,
it signifies a thread start operation. In the thread start operation, the pro-
cessor can start to enter all the enabled threads from the 4 groups into the
pipeline and execute the code in the instruction memory. The controller uses
the 8 LS bits of the data to set the MAX THREAD variable and ignores
the rest. The controller also resets the performance registers when a thread
start operation occurs and asserts the Wr Op Done signal.
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3.3.2 Read Operations

The read requests work the same way as the writes, as they happen 1 at a time and
use an FSM. Figure 3.17 shows the FSM the controller uses for read operations.

Figure 3.17: Controller Read FSM

The controller starts from the RdIdle state, where it awaits an address through
the AR Channel. After it receives the address, it advances to the ReadData state,
where it prepares the appropriate read data the operation wants depending on the
18 LS bits of the address. Table 3.2 summarizes the possible read operations.

Address 18 LS bits Read

0xxxxxxxxxxxxggxxx Threads running in a group.

10xxxxxxxxxxxxxxxx Cycles since last thread start.

110xxxxxxxxxiiixxx Issues since last thread start.

Table 3.2: Controller Read Operation

We use the same scheme that writes use of checking the 3 MS bits from the 18LS
address bits to split the different read operations. The different read operations
depending on the MS bits that Table 3.2 shows are the following:

• When the MS bit is equal to 0. Then we read how many threads still run in
the group the 2 g bits (that Table 3.2shows) describe. The operation shows
how many threads still run since the last thread start operation. The return
data is a mask of 64-bit and has asserted bits for the threads that still run.

• When the 2 MS bits are equal to 10. Then we read the elapsed processor
cycles since the last thread start operation. The counter stops counting when
there aren’t any running threads left.

• When the 3 MS bits are equal to 110. Then we read the number of instruc-
tions issued since the last thread start operation. The 3 i bits define one of
the following cases:
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– If iii is equal to 000. Then we want to read the total instructions the
processor issued.

– If iii is equal to 001. Then we want to read how many times the processor
scheduled 1 instruction.

– If iii is equal to 010. Then we want to read how many times the processor
scheduled 2 instructions.

– If iii is equal to 011. Then we want to read how many times the processor
scheduled 3 instructions.

– If iii is equal to 100. Then we want to read how many times the processor
scheduled 4 instructions.

After the controller creates the data the operation wants, it moves to the
SendRdResponse state. In that state, it sends back the data and waits until the
one that requested them receives them. After the communicator receives the data
the controller returns to the RdIdle state and waits for new read requests.

On both Table 3.1 and Table 3.2, when an address bit has an x value, it means
the controller ignores it and doesn’t considerate it for the operation it will execute.
That way we simplify the implementation of the controller.
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Chapter 4

Evaluation

In this chapter, we present the evaluation of Matzic . More specifically, the FPGA
resources it requires and the performance of the core.

4.1 Evaluation Environment and Tools

The evaluation setup for Matzic is to use it as an accelerator to a host processor
in both the simulation and real hardware environment. This section describes the
tools we use for implementing and evaluating the core of this thesis. This section
also describes the environments under which we use the tools and evaluate the
processor.

4.1.1 Tools

This thesis uses the following tools for its implementation and evaluation:

• Software

– Xilinx Vivado 2020.2

– Linux

– RISC-V GNU Toolchain

• Hardware

– Ariane RISC-V CPU [12]

– Xilinx Kintex Evaluation Board

4.1.1.1 Software: Xilinx Vivado 2020.2

The Xilinx Vivado 2020.2 design suite is the primary software we use for the design,
simulation, and implementation of the core. Vivado also downloads and programs
the design to the FPGA. Moreover, Xilinx also provides different modules we use
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to debug the real hardware implementation of the core, such as the Integrated
Logic Analyzer (ILA) core.

4.1.1.2 Software: Linux

Linux is the OS that runs on the Host machine (Ariane CPU) and provides the
base environment for running the applications. It allows the evaluation system to
be as close to a real one as possible. It also provides ssh support, an NFS system
that improves the collection of accurate metrics for the processor.

4.1.1.3 Software: RISC-V GNU Toolchain

The RISC-V GNU Toolchain provides the GCC C compiler. The GCC compiler is
the basic compiler we use to compile all the code that runs on Matzic . Since it is an
open-source compiler, it allows someone to modify it and add extra functionality
to serve particular needs. To do this, they have to create a machine description
file, which describes the pipeline of the machine so that the compiler does a better
job when it optimizes the machine code. The compiler also provides the ability to
add options in the compilation that can suit the needs of a RISC-V machine, but
we don’t use this feature. We don’t implement it because it is beyond the scope of
this work. However, we modify the compiler’s settings so that the compiled code
only uses half the registers the RISC-V architecture provides.

4.1.1.4 Hardware: Ariane RISC-V CPU

The Ariane RISC-V CPU [12] is a 64-bit, single issue, in-order RISC-V core
with some limited out-of-order execution capabilities. It supports hardware multi-
ply/divide, atomic memory operations, and contains an IEEE-compliant floating-
point unit (FPU). It has 3 privilege levels with which it is allowed to run a Unix-like
operating system such as Linux. The modes are the M, S, and U modes. Figure
4.1 shows an overview of the core. The figure also shows that Ariane has branch
prediction by having a branch target buffer (BTB) and a branch history table
(BHT). It also has a page-table walker (PTW) and translation look-aside buffer
(TLB) to support fast memory translations for memory operations.

4.1.1.5 Hardware: Xilinx Kintex Evaluation Board

The FPGA we use to test our design is the xcku040-ffva1156-2-e, part of the Xilinx
Kintex UltraScale KCU105 Evaluation Kit. The FPGA comes with 484, 800 LUTs,
242, 400 Flip-Flops, and 21.1 Mb Block RAM, as well as other resources that Figure
4.2 shows. The evaluation board, in addition to the FPGA, also contains other
resources that we use in this thesis, such as:

• A 2GB DDR4 64-bit DRAM memory. From the 2 GB, we use the 1st as the
memory for Matzic , and the Debian Linux kernel that runs on the Ariane
CPU uses the 2nd.
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Figure 4.1: Ariane CPU pipeline overview. source:[12]

Figure 4.2: Xilinx Kintex FPGAs infos. source:[4]

• An Ethernet port that allows the Ariane CPU to have network access for
communication.

• An USB-UART Connector, which we use to provide direct access to the Linux
kernel on the Ariane CPU. The UART connector provides information about
the state of the kernel and allows for communication with the kernel when
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there is no network.

• An USB-JTAG connector that we use to download our design in the FPGA.

• A PCIe connector that we use to boot and start the Linux Kernel in the
Ariane CPU.

For more information about the board evaluation board you can refer to source [3]

4.1.2 Simulation Environment

In the simulation environment, in which we simulate and fine-tune the core, we use
a simple RISC-V 64IM simulation processor to act as the host processor. In that
setup, both processors have access to the same memory and use physical addresses
when entering that memory. The host (simulation) core completes 1 instruction
per cycle, in most cases, except when it communicates with the controller of Matzic
.

We use 2 matrix multiply programs to test and tune the core in the simulation.
The first program (mm32-fp32) multiplies 2 32 × 32 32-bit float matrices, while
the second (mm32-int64) multiplies 2 32× 32 64-bit integer matrices. Each of the
programs respectively executes 477,428 and 574,528 instructions.

During the simulation phase, we try to increase the average number of instruc-
tions for the core issues each time a valid thread is in the Decode stage of the
pipeline. For that reason, we measure the hazards that block the issue of all 4
instructions. We define the hazards that can happen as one of the following:

1. Control Hazards: The problem this hazard presents is the change in the
normal flow of execution. It occurs if one of the 3 first instructions fetched is
a branch, jump, barrier, or ecall. When that happens we don’t schedule all
the instructions after the first such instruction, as it can lead to an erroneous
result.

2. Memory Hazards: Memory hazards happen when there are more than one
instructions that want to access the memory, and at least one wants to write
in the memory.

3. Read-After-Write Hazards: These happen because, in the batch of instruc-
tion currently present at the Decode stage for issue, an instruction produces
the result that another one uses as an operand.

4. Structural Hazards: These hazards occur when we can’t schedule other in-
structions because there are no available units that can serve them.

From the different kinds of hazards, we identify that structural hazards are the
most common. After identifying that the structural hazards are the most common,
we then measure which of the execution units are the ones that the instructions
(that we fail to schedule) most request. Finally, we find that the most common
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Program 1ALUs 2ALUS 2ALUs 3ALUs 3ALUs
1Load 1Load 2Load 1Load 2Load

mm32-fp32 346,688 217,856 201,440 208,512 175,712

mm32-int64 387,616 249,632 224,992 240,320 192,128

Table 4.1: Total issues for each simulation program for different combination of
available units

(a) mm32-fp32 (b) mm32-int64

Figure 4.3: Percent of how many instructions where issued during each Issue for
different combination of available units

requested units are the ALU and the Load unit. After that, we increase the number
of those units and see how it affects our metrics. The different setups we try are
with 1 ALU and 1 Load (the starting setup), 2 ALUs and 1 Load, 2 ALUs and 2
Loads, 3 ALUs and 1 Load, and 3 ALUs and 2 Loads.

In Table 4.1, we can see how many issues each setup needs to execute each pro-
gram. In Figure 4.3, we show the percent where an issue scheduled 1 instruction, 2
instructions, 3 instructions, or 4 instructions from the total issues each evaluation
setup makes.

From the plots in Figure 4.3, we see that we can schedule more instructions
with the setup this thesis uses, which is with 3 ALUs and 2 Load Units. Following,
we show the reason why that happens by studying the hazards that occur. In Table
4.2 and Figure 4.4, we see the total number of hazards that occurred based on the
setup of available ALU and Load units and continue the analysis with the plots in
Figure 4.5.

Figure 4.5 shows the percent of each of the 4 types of hazards as a percent
based on the unit setups available. Because we classify every hazard as one of the
4 previously described types above, all those percentages sum up to 100% of the
total hazards Table 4.2 shows.

In the Figure, we see that in the basic setup (1 ALU and 1 Load unit), the
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Program 1ALUs 2ALUS 2ALUs 3ALUs 3ALUs
1Load 1Load 2Load 1Load 2Load

mm32-fp32 346,688 217,760 177,600 167,424 109,856

mm32-int64 387,616 249,536 191,936 191,072 101,728

Table 4.2: Total hazards for each simulation program for different combination of
available units

Figure 4.4: Plot showing the total hazards that happened for different combination
of available units.

(a) mm32-fp32 (b) mm32-int64

Figure 4.5: Percent of each type of hazard from total hazards, for different combi-
nation of available units.
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(a) mm32-fp32 (b) mm32-int64

Figure 4.6: Percent of each unit responsible for the structural hazards, for different
combination of available units.

largest percentage of the hazards that occur are of the structural type and is more
than 80%. As we add units and observe the results of the other setups, we see that
the structural hazards reduce to a low percentage, and the majority of hazards
that remain are of the Read-after-Write type. We expect the compiler to try to
minimize and address that type of hazard during compilation and optimization.
We don’t address those hazards another way, as this type of hazard defines a true
dependency between instructions, and we can’t execute them in parallel.

The following plot, in Figure 4.6, depicts which units are the ones that cause
the structural hazards. The plot shows the values as a percent of all the structural
hazards.

As per the Figure, most structural hazards happen due to unavailable ALUs
and Load units. For that reason, the evaluation setups increase the available
number of ALU and Load Units. After testing the different setups, we conclude
that 3 ALUs and 2 Load Units are enough to reduce the number of hazards to a
satisfying degree and increase the average number of instructions the Decode stage
schedules each time an issue happens. In Figure 4.7, we show how the average
instructions issued per issue (IPI) change per the different setups we evaluate.

In the Figure, we see the IPI double from the original setup of 1 ALU and 1
Load Unit.

We try arrays of different sizes and setups during the simulation to reach as
close as possible to use all the 256 threads. Due to the limitations of the simulator
and the time a run takes to complete once we use 128 threads, we stopped trying
to reach the full 256 threads in the simulation. But from the different setups, there
is no change in the ratios we use for the evaluation after the 32 threads. Also, we
focused on improving the IPI because when all the threads are active and there
are no stalls in the pipeline, IPI will be close to the instructions per cycle (IPC)
metric, which measures a processor’s performance.
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Figure 4.7: Average Instructions Issued per Issue (IPI).

4.1.3 Hardware Environment

During the evaluation of the hardware environment, we use the Ariane CPU as
the host processor. Furthermore, the host also runs a Debian Linux operating
system kernel (OS). The OS in the host makes the evaluation as close to real-
world conditions as possible because the application couldn’t access the memory
directly. Each memory access the application makes uses a virtual address, while
the accelerator can only use physical addresses. To solve those issues, we develop
a user-level library in C language, that we call “Muda”, that we use to compile
and run the applications using both cores. Table 4.3 shows the functions that the
user-level library has.

Of the functions the table describes, there are three that also have arguments.
Tables 4.4, 4.5 and 4.6 show the functions we implement and the specific arguments
that launch kernel, mudaMalloc and mudaMemcpy receive respectively. The user-
level library also provides some directives we use for the functions that will run
on Matzic and not the host processor. Those directives are the global and
device directives. If a function that will run on Matzic doesn’t have one of the

directives, then the program behavior is undefined, and anything can happen.

In the hardware implementation, we also use a delayer for the requests that go
to the DRAMmemory. The delayer introduces latency to the memory requests and
allows the hardware evaluation to be even closer to real-world scenarios. Figure
4.8 presents a diagram of the hardware setup together with the used components.
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Function Name # Args Description

mudaInit 0 Initializes the environment to allow the use of
Matzic .

launch kernel 8 This function is responsible for setting up
Matzic to run a code for the device.

mudaMalloc 2 It allocates memory that is accesable by Matzic
.

mudaMemcpy 4 It transfers data between Matzic and the host
processor.

mudaDestroy 0 Unsets the environment that was initialized by
mudaInit.

get thread 0 Returns the ID of the hardware thread that ex-
ecuted it.(Only used in code for Matzic )

get deployed num 0 Returns the number of threads that were
launched on Matzic .(Only used in code for
Matzic )

barrier 0 Used to set a rendezvous point for all threads
running on Matzic to meet before code execu-
tion continues. (Only used in code for Matzic )

Table 4.3: Functions provided by user level library in order to run.

Argument Type Description

threads no unsigned int The number of threads that should run on
Matzic . They map to the ids belonging in
range [0,threads no).

func pointer It is the pointer for the function to run
on Matzic . The function must have the
global attribute in order to run on Matzic

.

arg0, arg1, ...
arg5

unsigned int /
pointer

Those are the arguments the function that
will run on Matzic will use. We limited to
only six arguments and them either being
pointers or integers, but it is possible for
more arguments to be used if encapsulated
and transferred as a struct in the C language.
Also pointers passed as arguments have to be
gotten through the mudaMalloc function.

Table 4.4: Arguments of launch kernel function.

4.2 Resource Utilization

This section analyzes the hardware resources we use during the implementation of
Matzic . The resources we use are:
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Argument Type Description

devPtr pointer It is the location in memory where malloc will write
the address of the allocated space that can be used
by Matzic .

nbytes unsigned int The amount of space that should be alocated.

Table 4.5: Arguments of mudaMalloc function.

Argument Type Description

dst pointer The address to which the data will be copied to.

src pointer The address from where the data will be copied
from.

nbytes unsigned int The amount bytes to copy from src.

kind mudaMemcpyKind One of the two following value

1. HostToDevice: To copy from host memory
to memory compatible for Matzic .

2. DeviceToHost. To copy from memory com-
patible for Matzic to host memory.

.

Table 4.6: Arguments of mudaMemcpy function.

Figure 4.8: Hardware setup where evaluation took place.

• LookUp Tables (LUT): Basic component of a FPGA that simulates logic
functions of up to 6 inputs.

• Registers (Regs)

• Carry Lookahead (CARRY8): fast lookahead carry logic allows to perform
fast arithmetic addition and subtraction.

• F7 Mux: Multiplexer combining LUTSs to form logic functions of up to 13
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Stage LUTs Regs CARRY8 F7 F8 BRAM’s DSP

Controller 907 1,067 83 0 0 0 0

Thread Scheduler 1,247 523 23 102 50 0 0

PC Fetch 200 0 0 0 0 1 0

Instruction Fetch 196 76 0 0 0 32 0

Decode 831 0 24 1 0 0 0

Operand Fetch 8,541 120 0 2,560 1,280 31 0

Execute 13,455 7,505 284 90 1 6 27

Commit 2,472 1,466 0 314 17 8 0

Matzic (Total) 29,941 13,570 493 3,067 1,348 81 27

Table 4.7: FPGA Resources used.

inputs,

• F8 Mux: Multiplexer combining F7 Muxes to form logic functions of up to
27 inputs.

• Block RAM tile(BRAM)

• Digital Signal processors (DSP)

In Table 4.7, we show the resources each pipeline stage utilizes and the resources
that the Controller and the Thread Scheduler utilize.

At the end of Table 4.7 is the total number of resources that Matzic utilizes.
These numbers are not the sum of all the values above because of the pipeline
registers, logic, and other sources that exist between pipeline stages. The reason
we do not include this info in a separate line is that we do not consider those values
to have a noticeable impact on the main resource usage.

In Figure 4.9 we show the percent of utilization that each of the entries in
Table 4.7 use. The plot also contains the percent of resources that exist between
the stages of the pipeline. From the plot, we also see that the Execute stage
of the pipeline has the most dominant percent for LUTs, Regs, CARRY8, and
DSPs, which the instructions use for execution. In the plot, we also see that
a huge percentage of resources go to the Operand Fetch stage, but most of those
resources implement the multiplexors at the outputs of the register files. Moreover,
we see that the Operand Fetch stage also uses a large amount of BRAMs because
of the volume of registers we have that we implement as memory.

To evaluate the utilization of Matzic we compare it to the utilization of the
Ariane CPU. In Table 4.8 we show the resources that Ariane utilizes.

When we compare the results, we conclude Matzic has 22.65% fewer LUTs,
56.90% fewer Regs, and 12.17% less CARRY8s, but it has 40.30% more F7 muxes,
3.17× more F7 muxes and 2.18× more BRAMs.

Finally Matzic runs at 50 MHz on the FPGA, which is the same speed as
Ariane. The critical path of the core is in the FPU implementation.
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Figure 4.9: Stage Core Utilization

Stage LUTS Regs CARRY8 F7 F8 BRAM’s DSP

Ariane (Total) 36,724 21,291 553 2,186 425 37 27

Table 4.8: Ariane CPU used resources.

4.3 Performance Evaluation

This section contains the performance evaluation for the hardware implementation
of Matzic . We evaluate the performance of Matzic by comparing it to the execution
of a program run on Ariane. The programs that we use for the evaluation are the
following:

1. bfs: This is a breadth-first search program that is a port from the Rodinia
Benchmark suite[6]. We execute the program with a graph with 65, 536
nodes.

2. magic sq: Program that counts how many solutions a magic square with
missing elements has. The test executes on a 3×3 magic square with 9 miss-
ing elements. It has to check 362, 880 permutations of the missing elements.

3. mm256 fp64: A matrix multiply program between 2 256 × 256 matrices of
64-bit float numbers.

4. vec add fp64: A program that initializes and adds 2 vectors with 4, 194, 304
each.

We also implement the programs on Ariane, as well as Matzic . We run the
programs on Matzic with 1, 2, 4, 8, 16, 32, 64, 128, and 256. Also, we benchmark
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(a) delay 1 (b) delay 25

(c) delay 50 (d) delay 75

Figure 4.10: Cycles of computation of each program

them with different memory latencies that we artificially create with the memory
delayer. The delay setups we use are 1, 25, 50, and 75 additional clock cycles delay.
The delay starts from 1 clock cycle, which is the performance without introducing
latency to the system, and we raise it to 75 clock cycles which is the delay that we
expect in a real-world system scenario.

In the plots we show in Figures 4.10 and 4.11, we present the number of clock
cycles (cc) and instructions per cycle (IPC) each program takes respectively. The
Figures show how the clock cycles and IPC develop as the number of threads
increases and with the different delay setups.

Except for the plots of clock cycles a run needs for the execution and the
IPC of the programs, we also present in Figures 4.12 and 4.13 the speedup, or
slowdown, the execution has with the different setups with the Ariane execution as
the baseline. In Figure 4.12, we show the speedup to the cycles the program needs
for the computation as we use more threads for the computation, and we show how
the speedup also changes between the different delays. From these results, we like
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(a) delay 1 (b) delay 25

(c) delay 50 (d) delay 75

Figure 4.11: IPC of programs executed

to highlight the greater than 70× speedup we get for the vec add fp64 program
for 256 threads and a delay of 75. Figure 4.13 shows the same things that Figure
4.12 shows but for the IPC. The highlight of the IPC graphs is the 37× speedup
to IPC with the setup of 256 threads and 75 cycles delay.

Figures 4.14 and 4.15 show how the cycles and IPC develop as the memory
delay increases for the different execution setups of using different numbers of
threads on Matzic and running only on Ariane. The highlight of the plots is that
the number of cycles and the IPC of the programs that run on all 256 threads
remains the same, despite the access latency to the memory increasing.
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(a) delay 1 (b) delay 25

(c) delay 50 (d) delay 75

Figure 4.12: Cycles of computation of each program
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(a) delay 1 (b) delay 25

(c) delay 50 (d) delay 75

Figure 4.13: IPC of programs executed



4.3. PERFORMANCE EVALUATION 65

(a) bfs (b) magic square

(c) matrix multiply (d) vector add

Figure 4.14: How delay affected the cycles of each program run
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(a) bfs (b) magic square

(c) matrix multiply (d) vector add

Figure 4.15: How delay affected the IPC of each program run



Chapter 5

Conclusions and Future Work

This chapter concludes the thesis and presents potential future work to advance
this research topic.

5.1 Summary

In this thesis, we presented a superscalar massively multi-threaded RISC-V 64EMFD
processor named Matzic , which can issue up to 4 instructions per cycle and is tol-
erant to high latency events. Matzic also runs along with another host processor
in real hardware. The setup of host and Matzic can run in real-world conditions
where the host runs a Linux operating system. Finally, the host successfully used
Matzic to accelerate computing tasks with a sizeable speedup gain when it utilizes
all the threads.

5.2 Future Work

We can develop, explore and improve a lot of different areas in this thesis. Specif-
ically, the areas we would like to improve and explore are:

1. To reduce the hardware implementation resource usage to become more ef-
ficient.

2. Use a form of branch prediction to reduce the impact of control hazards and
increase the IPI metric.

3. Issue load and store instructions together when the addresses don’t conflict
and increase the IPI.

4. Implement a better user library to use the resources more efficiently.

5. Increase the optimization of the compiler-generated code for Matzic to reduce
the Read-After-Write hazards.

67
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6. Use an IOMMU to virtualize the memory operations of Matzic and allow
it to have a common address space with the host processor, thus using the
same memory.

7. Develop a runtime environment that will allow OpenCL programs to use
Matzic and also port it for the One-API environment, as the processor of this
thesis is compatible to be used for programming models that take advantage
of a large number of available threads.
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