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ABSTRACT

TEXT-INDEPENDENT SPEAKER IDENTIFICATION USING SPARSELY

EXCITED SPEECH SIGNALS AND COMPRESSED SENSING

Karamichali Eleni

Computer Science Department

Master of Science

Compressed Sensing (CS) is an emerging theory that claims that the Nyquist

sampling theorem yields for more samples than necessary. According to the

Nyquist sampling theorem, the sampling rate of a signal must be at least

equal to the double of its maximum frequency. On the contrary, CS seeks to

represent a signal using a small number of linear, non-adaptive measurements

which are far less than the signal’s bandwidth. Thus, CS accomplishes both

compression and sampling in one low-complexity step. The only requirement

for CS to be efficient is that the signal is sparse in some basis, which means it

has only a few non zero elements in some basis.

Compressed sensing has been used for full signal reconstruction, but in

our case it was used for feature recovery in order to perform text-independent

speaker identification. Speaker identification is the act of recognizing a speaker

under the condition that he is a part of a database which has been modeled be-



forehand using features extracted from each speaker’s training set. Specifically,

we trained a Gaussian Mixture Model for each speaker in the database, us-

ing Line Spectral Frequencies. Text-independent speaker identification means

that the testing speech signals were not included in the training phase.

We chose to use CS theory for speaker identification for two reasons. The

first one is that CS theory requires just a few samples to reconstruct a signal

and this is very useful in environments like sensor networks where there are

limitations in the data traffic that can be sent between the sensor nodes.

Thus, although traffic is limited, we are still able to avoid information loss.

The second reason is that CS algorithms are robust to noise. These algorithms

force the signals to be sparse in some basis which results in neglecting noisy

samples that have low energy.

After experimenting with some CS algorithms for signal reconstruction, we

decided to use Orthogonal Matching Pursuit for our research because of its

low complexity and the lowest feature distortion after the reconstruction.

The results may not be as good as the ones using features extracted from

the original speech signals, but they are quite good regarding the number of

samples that were used, and are very promising for future investigation and

research.



ABSTRACT

Anagn¸rish Omilht  Anex�rthth apì to KeÐmeno me qr sh Arai¸n Shm�twn

kai thc jewrÐac Sumpiestik c DeigmatolhyÐac

Elènh Karamiq�lh

Tm ma Epist mhc Upologist¸n

Panepist mio Kr thc

H jewrÐa thc Sumpiestik c DeigmatolhyÐac (Compressed Sensing) eÐnai mÐa

anaptussìmenh jewrÐa pou uposthrÐzei ìti to je¸rhma deigmatolhyÐac twn

Nyquist apaiteÐ megalÔtero rujmì deigmatolhyÐac apì ìti eÐnai aparaÐthto.

SÔmfwna me to je¸rhma deigmatolhyÐac twn Nyquist, o rujmìc deigmatolhyÐac

prèpei na eÐnai toul�qiston dipl�sioc apì th megalÔterh suqnìthta tou s matoc,

¸ste na mporoÔme na to anakataskeu�soume tèleia. AntÐjeta, h jewrÐa thc

Sumpiestik c DeigmatolhyÐac prospajeÐ na brei mÐa anapar�stash tou s matoc

pou apartÐzetai apì èna mikrì arijmì grammik¸n metr sewn, polÔ mikrìtero apì

to eÔroc suqnot twn tou s matoc. 'Etsi h jewrÐa thc Sumpiestik c Deigma-

tolhyÐac epitugq�nei na sundu�sei se èna b ma qamhl c poluplokìthtac, afenìc

sumpÐesh kai afetèrou deigmatolhyÐa tou s matoc. H mình proôpìjesh gia ta

parap�nw eÐnai to s ma na eÐnai araiì se k�poia b�sh, to opoÐo shmaÐnei na èqei

polÔ lÐga mh mhdenik� stoiqeÐa se k�poia b�sh.

H jewrÐa thc Sumpiestik c DeigmatolhyÐac èqei wc t¸ra qrhsimopoihjeÐ se



efarmogèc ìpou qrei�zetai pl rhc anakataskeu  tou s matoc, all� se aut 

thn ergasÐa qrhsimopoi jhke gia thn anakataskeu  qarakthristik¸n me skopì

thn anagn¸rish omilht  anex�rthta apì to keÐmeno. H anagn¸rish omilht  eÐnai

h diadikasÐa eÔreshc tou atìmou pou mil�ei me thn proôpìjesh ìti an kei se

mÐa b�sh pou apartÐzetai apì omilhtèc, kai èqei prohghjeÐ "ekpaÐdeush� enìc

sust matoc me qarakthristik� pou èqoun exaqjeÐ apì ta s mata omilÐac k�je

omilht  sth b�sh. Sugkekrimèna, dhmiourg jhke mÐa sullog  kbantismènwn

qarakthristik¸n gia k�je omilht  pou an kei sth b�sh mac, qrhsimopoi¸ntac wc

qarakthristik� grammikèc fasmatikèc suqnìthtec. O ìroc anex�rthth anagn¸rish

apì to keÐmeno anafèretai sto gegonìc ìti ta s mata omilÐac pou qrhsimopoi jhkan

gia th dokim  tou sust matìc mac, den eÐqan sumperilhfjeÐ sth f�sh thc

"ekpaÐdeushs� tou sust matoc.

Epilèxame th jewrÐa thc Sumpiestik c DeigmatolhyÐac gia thn anagn¸rish

omilht  gia dÔo lìgouc. O pr¸toc eÐnai ìti h jewrÐa thc Sumpiestik c Deigma-

tolhyÐac apaiteÐ polÔ lÐga deÐgmata gia na petÔqei pl rh anakataskeu  enìc

s matoc, kai autì eÐnai polÔ qr simo se perib�llonta ìpwc dÐktua aisjht rwn

ìpou h kÐnhsh dedomènwn eÐnai periorismènh. Me autìn ton trìpo, en¸ mporoÔme

na steÐloume polÔ lÐga dedomèna, den èqoume ap¸leia plhroforÐac. O deÔteroc

lìgoc eÐnai ìti oi algìrijmoi anakataskeu c s matoc thc Sumpiestik c Deigma-

tolhyÐac eÐnai anektikoÐ sto jìrubo. AutoÐ oi algìrijmoi exanagk�zoun ta

s mata na eÐnai arai� se k�poia b�sh, me apotèlesma na mhn lamb�nontai upìyh

ta deÐgmata tou jorÔbou exaitÐac thc qamhl c touc enèrgeiac.

Met� th diexagwg  peiram�twn me k�poiouc algorÐjmouc anakataskeu c

shm�twn, apofasÐsame na qrhsimopoi soume ton algìrijmo Orthogonal Match-

ing Pursuit gia thn èreun� mac lìgw thc qamhl c tou poluplokìthtac kai thc

mikrìterhc diastrèblwshc pou prokaloÔse h anakataskeu  sto s ma.



Ta apotelèsmata mporeÐ na mhn eÐnai ìso kal� eÐnai ìtan ta qarakthristik�

pou èqoun exaqjeÐ apì ta prwtìtupa s mata omilÐac, all� eÐnai polÔ kal�

dedomènou ìti ta qarakthristik� anakataskeu�zontai apì èna mikrì posostì

twn arqik¸n deigm�twn kai eÐnai polÔ enjarruntik� gia peraitèrw enasqìlhsh

kai èreuna.
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Chapter 1

Introduction

According to the Shannon/Nyquist sampling theorem, if we want to store a signal

without loosing any information, we have to sample it at least two times faster that the

signal’s maximum frequency, the so-called signal bandwidth. In fact, this principle

underlies nearly all signal acquisition protocols used in consumer audio and visual

appliances, radio receivers, and so on. In such applications, the Nyquist rate is so

high resulting in too many samples, making compression a necessity prior to storage

or transmission. In other applications, including imaging systems (medical scanners

and radars) and high-speed analog-to-digital converters, increasing the sampling rate

is very expensive. Also in gene expression studies one would like to infer the gene

expression level of thousands of genes from a low number of observations. This work’s

focus is a recently developed theory called Compressed Sensing Theory. CS theory

asserts that one can recover certain signals and images from far fewer samples or

measurements than the Shannon/Nyquist sampling theorem requires. To make this

possible, CS relies on two principles: sparsity, which pertains to the signals of interest,

and incoherence, which pertains to the sensing modality. [2, 3]

• Sparsity expresses the idea that the ”information rate” of a continuous time

1



2 Chapter 1 Introduction

signal may be much smaller than suggested by its bandwidth, or that a discrete-

time signal depends on a number of degrees of freedom which is comparably

much smaller than its (finite) length. More precisely, CS exploits the fact that

many natural signals are sparse or compressible in the sense that they have

concise representations when expressed in the proper basis Ψ.

• Incoherence extends the duality between time and frequency and expresses the

idea that objects having a sparse representation in Ψ must be spread out in the

domain in which they are acquired, just as a Dirac or a spike in the time domain

is spread out in the frequency domain. Put differently, incoherence says that

unlike the signal of interest, the sampling/sensing waveforms have an extremely

dense representation in Ψ.

Compressed sensing has been used for full signal reconstruction. However, in this

work we used CS theory for feature recovery in order to perform text-independent

speaker identification. Speaker identification is the task of resolving who is talking,

using features extracted from his or her voice. Moreover, text-independent speaker

identification is the task of finding one’s identity regardless the content of what was

said. This task is accomplished by matching the features extracted from the unknown

speaker’s voice to a trained system that has been acquired from a database of speakers.

In fact, it is a classification problem among a known existing database of speakers.

There are two reasons to use Compressed Sensing in speaker identification. On

the one hand, CS theory uses only a portion of the samples that Nyquist’s sampling

theorem requires to reconstruct a signal. Thus, in environments where we are not

able to send a large amount of data, we are able to avoid information loss regardless

the limited packets we send. On the other hand, signal reconstruction is less affected

by noise. When forcing the signal to be sparse in some basis, the part of the signal
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that is going to be neglected will be the one with the smallest energy, thus the noisy

one. This is similar to signal de-noising by low-rank modeling. In the latter case,

the amount of non-zero elements of the signal plays a key role because compressed

sensing theory assumes that the signal is initially sparse in some basis. Thus, it

is interesting to investigate whether speaker identification has better results when

Compressed Sensing is used or when we use the samples of the original signal.

A key question is whether a speech signal can be considered to be sparse in some

sense. For audio signals, it was recently showed that their sinusoidally modeled com-

ponent can be considered to be sparse, and compressed sensing theory was applied

to low-bitrate audio coding [4]. For speech signals, compressed sensing was recently

applied to a sparse representation using the source/filter model in [5] for speech cod-

ing, and encouraging preliminary results were obtained. In this work, we extend the

work of [5] by applying the proposed methodology to the problem of text-independent

speaker identification. In that work, it was found that applying compressed sensing

theory to speech signals modeled using the source/filter model, and assuming a sparse

excitation, resulted in accurate estimation of the filter part (spectral envelope) of the

speech signal.

This work is organized as follows: In the second chapter we will refer to the basics

of the Compressed Sensing theory. In the third chapter, a baseline algorithm for

speaker identification is described analyzing also the feature extraction process. In

the fourth chapter, the algorithm that we used for the speaker identification process

using Compressed Sensing Theory is described. In the fifth chapter, we discuss the

problem that was spotted and the solution we propose, describing our work. In the

sixth chapter we will present the results of our research. And at the last chapter, a

small discussion takes place where we refer to our results and how it is possible to

further investigate the subject worked on.
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Chapter 2

Compressed Sensing

In this chapter we discuss the basics of Compressed Sensing, the general idea behind

the theory and what lead to using CS theory.

2.1 The basics of Compressed Sensing

Compressed sensing seeks to represent a signal using a small number of linear, non-

adaptive measurements. Usually the number of measurements is much lower than

the number of samples needed if the signal is sampled at the Nyquist rate. Thus,

compressed sensing combines compression and sampling of a signal into one low-

complexity step. An important restriction is that compressed sensing requires that

the signal is sparse in some basis, in the sense that it is a linear combination of a

small number of basis functions-in order to correctly reconstruct the original signal.

In this paragraph we will describe how all these are possible.

Let’s consider a real valued signal x, with finite length and one dimension. x is a

N × 1 vector, with x ∈ � and discrete time with elements x[n] with n = 1, 2,ffl, N .

This signal can be represented in terms of a N ×N orthonormal basis Ψ, where every

5



6 Chapter 2 Compressed Sensing

Figure 2.1 Example of a sparse signal

column is {ψi}Ni=1. The signal x can now be expressed by the basis as:

N∑
i=1

siψi or x = ψs (2.1)

where s is the N × 1 vector of weighting coefficients si = 〈x, ψi〉 = ψT
i x. Actually, x

and s represent the same signal, the first in the time domain, and the latter in the Ψ

domain.

The signal x is K-sparse if it consists of only K non-zero elements, and N − K

zero elements. In a different point of view, a signal is K-sparse signal when it can be

written as a linear combination of only K basis functions. Obviously, we are interested

in the cases where K is much smaller than N (the length of the signal)(Figure 2.1).

The signal x is called compressible when it has only a few large values and all the

other are very close to zero. In that case we can discard the small values because

they are insignificant, and the signal is supposed to be sparse (Figure 2.2).
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Figure 2.2 Examples of compressible signals

2.1.1 Transform Coding and its inefficiencies

Transform coding is based on the compressible signals, specifically on their property

to transform in K-sparse signals. The process of transform coding consists of the

following steps:

• The full signal must be acquired

• The transform coefficients s = ΨTx must be computed

• The K largest values of s are located, and all the other that are near zero are

discarded

• The K largest values and their locations are encoded.
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This whole process though is very inefficient. First of all, one has to acquire all N

samples of the original signal x, and then compute the measurements s. This means,

that one would need a lot of memory space to save the signal no matter how large

it is, and moreover CPU time to compute N coefficients, although only K will be

needed and stored. Last but not least, the locations of the non zero elements must

be encoded too, resulting in storing 2K elements instead of K.

This is why a need emerged for a new theory to surpass these problems. Com-

pressed Sensing surpasses the above problems by acquiring from the start only the K

non zero elements of the signal. It acquires M < N inner products between x and a

M ×N matrix Φ consisting of N columns {φj}Mj=1. Let’s consider the inner product,

M × 1 vector yj = 〈x, φj〉. Then using 6.1 we can rewrite ψ as:

y = Φx = ΦΨs = Θs (2.2)

where Θ = ΦΨ is a M ×N matrix. The measurement process is not adaptive. This

means that Φ is fixed and does not depend on the signal x.

The challenge though is twofold. In one hand, we should find a stable measure-

ment matrix Φ such that the measurement process does not damage the important

information of the signal, and on the other hand, we should find a reconstruction al-

gorithm that recovers x from only M samples that were kept, and moreover recovers

the right positions of the non-zero samples.

2.1.2 Designing matrix Φ

We have to reconstruct a N × 1 vector signal, only by M measurements. However,

M < N so the problem is ill- conditioned. If our signal x is K-sparse and the positions

of the non-zero elements are known, since M ≥ K, the problem can be solved. For

this problem to be well-conditioned, there is a necessary and sufficient condition. For
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any vector v sharing the same K nonzero entries as s and for some ε > 0

1− ε ≤ ‖Θv‖2‖v‖2 ≤ 1 + ε (2.3)

This inequality means that matrix Θ must preserve the length of the K-sparse vectors.

However, we said earlier that this is in effect if the positions of the non-zero elements

are known, which are not. A sufficient condition for a stable solution for both K-sparse

and compressible signals is that Θ satisfies equation (2.3) for an arbitrary 3K-Sparse

vector v. This condition is referred to as restricted isometry property (RIP). A related

condition referred to as incoherence, requires that the rows {φj} of Φ cannot sparsely

represent the columns of Ψ and vise versa.

Direct construction of a matrix Φ such that Θ = ΦΨ has the RIP requires verifying

equation (2.3) for all the possible combinations of K non-zero elements in the vector

v of length N. However, both the RIP and incoherence can be achieved with high

probability simply by selecting Φ as a random matrix.

If matrix Φ consists of independent and identically distributed random variables

from a Gaussian probability density function, with zero mean and variance 1/N ,

then because y = Φx, y will consist of M different weighted linear combinations of

the elements of x. The Gaussian measurement matrix Φ has interesting properties:

• The matrix Φ is incoherent with a basis equal to an identity matrix and it

can be shown that Θ = ΦΨ = Φ has the RIP with high probability if M ≥
cK log(N/K) 
 N , with c a small constant. Therefore, K-sparse or com-

pressible signals of length N can be recovered from only M random Gaussian

measurements that obey the above inequality.

• No matter what the basis Ψ will be, matrix Θ will be i.i.d. Gaussian and thus

have the RIP with high probability.
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As long as we have chosen our measurement matrix, we have to chose a recon-

struction algorithm. It has to recover all N samples of our original signal x or the

sparse vector s, from only M measurements in the vector y, our measurement matrix

Φ, and the basis Ψ.

We have stated that y = Θs. But for M < N there are too many s′ that satisfy

that equation. This is because if Θs = y then Θ(s + r) = y for any vector r in the

null space N(Θ) of Θ. Therefore, the signal reconstruction algorithm tries to find the

signal’s sparse coefficient vector in the (N −M)-dimensional translated null space

H = N(Θ) + s.

There are three kinds of basic reconstruction algorithms. First of all, let’s define

the lp norm of a vector s as (‖s‖p)p = ∑N
i=1 |si|p .

• The most classical approach to inverse problems of this type is to to find the

vector in the translated null space with the smallest l2 norm energy by solving

ŝ = argmin ‖s′‖2 such that Θs′ = y (2.4)

This optimization has the convenient closed-form solution ŝ = ΘT (ΘΘT )−1y.

Unfortunately, l2 minimization will almost never find a K-sparse solution, re-

turning instead a non sparse ŝ with many non-zero elements.

• Since the l2 norm measures signal energy and not signal sparsity, consider the l0

norm that counts the number of non-zero entries in s. (Hence a K-sparse vector

has l0 norm equal to K.) The modified optimization

ŝ = argmin ‖s′‖0 such that Θs′ = y (2.5)

can recover a can recover a K-sparse signal exactly with high probability using

only M = K + 1 i.i.d. Gaussian measurements (2.3). Unfortunately solving
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(2.5) is both numerically unstable and NP-complete, requiring an exhaustive

enumeration of all (NK) possible locations of the nonzero entries in s.

• Surprisingly, optimization based on the l1 norm, which is basically the sum of

the elements of the signal,

ŝ = argmin ‖s′‖1 such that Θs′ = y (2.6)

can exactly recover K-sparse signals and closely approximate compressible sig-

nals with high probability using only M ≥ cK log(N K) i.i.d. Gaussian mea-

surements (2.4). This is a convex optimization problem that conveniently re-

duces to a linear program known as Basis Pursuit, whose computational com-

plexity is about O(N3). Equation 6.2 can be easily reformulated as:

ŝ = arg
′

min
s
‖y −Θs′‖2 such that ‖s‖0 = K (2.7)

where the l0 norm just counts the nonzero elements.

2.2 Sparsely Excited Signals

There are two parametric ways to represent speech or audio signals in the time do-

main. The one is by linear system models which can represent only speech signals,

and the other one is sinusoidal modeling for representing both speech ad music. It

is widely known that the most important features of a sound are their spectral ones

and their harmonicity due to periodic excitation. That is why we represent signals

by either linear prediction coefficients or their cepstrum analysis, in order to separate

the periodic information from the spectral features.

Nevertheless, we can represent signals in other ways too, by projecting them onto

bases that would make the representation sparse. For example, we can represent
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Figure 2.3 Signal Reconstruction using Matching Pursuit

the original signal as a linear combination of Discrete Cosine Transform (DCT) or

Discrete Fourier Transform (DFT) coefficients. In the former case the measurement

matrix would be a real valued transform matrix, but in the latter one it would be

complex. However, the sparsity of the outcome will be unknown.

There is another linear sparse representation in the time domain, which is more

suitable than the previously stated. In speech coding, the transform domain where

the representation is required to be sparse is the prediction residual. [6, 7] In the
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Figure 2.4 Signal Reconstruction using Basis Pursuit

simple case, a sparse linear predictor a of order P derives from

â = arg min
a∈�P

‖x−Xa‖1 (2.8)

where

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x(N1)

...

x(N2)

⎤
⎥⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x(N1 − 1) · · · x(N1 − P )

...
...

x(N2 − 1) · · · x(N2 − P )

⎤
⎥⎥⎥⎥⎥⎥⎦

and ‖ · ‖1 is the l1 norm. The points N1 and N2 can be chosen with various ways.

The most appropriate one is N1 = 1 and N2 = N + P .



14 Chapter 2 Compressed Sensing

The residual excitation component expressed in a N × 1 vector can then be ex-

pressed as

r = Ax

and the signal can be reconstructed by

x = A−1r = h · r (2.9)

where h is the signal domain impulse response of the smooth spectral envelope ex-

pressed in a N ×N impulse response matrix.

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

a(1) 1 0 · · · 0

· · · a(1) 1 · · · 0

a(P ) a(P − 1) · · · 1 0

0 a(P ) a(P − 1) · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

The matrix h would be N × K Toeplitz lower triangular for linear convolution and

N ×N circulant Toeplitz for circular convolution. Since h is signal dependent, in [5]

it is proposed to use a codebook of size L of such matrices, produced by the training

data. Then the reconstruction problem can be formulated similar to the basic formula

of the orthogonal matching pursuit algorithm (which will be described in Chapter 4)

[r̂, ĥl] = argmin
hl,r

‖y − Φ · hl · r‖2, such that ‖r‖0 = K, (2.10)

and x̂ = ĥl · r̂

where K is the level of sparsity of the signal and l = 1, 2, ..., L. This representation is

more suitable because, when the signal is represented in the time domain, it is pro-

cessed in small time-windows because of the constant changes in the sound features.

During these windows, the number of periods in the time domain are much fewer

than the number of harmonics in the spectrum resulting in a sparser x.



2.2 Sparsely Excited Signals 15

Figure 2.5 Example of CS recovery of speech: (a,e) 40ms speech frame, (b,f)
residue signal (c,g) estimated residue (d,h) spectra of estimated LP, speech
signal and recovered signal. Left column: signal with exact sparsity. Right
column: original speech with approximate sparsity. [5]
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Chapter 3

Background Information on

Speaker Identification

In this chapter we will present a baseline speaker identification process, used to com-

pare our results. We describe the data modeling, the way we extract the features

chosen to represent our data and finally the computation of the identification cer-

tainty probabilities.

3.1 Text Independent Speaker Identification

There are two different tasks to which speaker recognition refers to, depending on the

application. The one is speaker verification, which seeks the validity of the speaker’s

claim about his identity. The second one is the speaker identification, which tries to

match the voice sample with one of the speakers in a given database. Furthermore,

in either task, the voice sample can be constrained, for example a specific sequence of

words, or unconstrained. The first case is called text-dependent recognition, and the

second is called text-independent where the recognition depends only on the features

17
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of the speech signal and not on its content. [8]

Several speaker dependent spectral shapes tend to be represented by Gaussian

densities. Moreover, Gaussian mixtures can model arbitrary densities. For these rea-

sons, Gaussian Mixture Models (GMM) were used to represent the speaker database.

A Gaussian Mixture Model is a weighted sum of M component densities and given

by the equation

p(�x|Λ) =
M∑
i=1

pibi(�x) (3.1)

where �x is a D-dimensional vector, bi, i = 1, ...,M , are the component densities and

pi, i = 1, ...,M , are the mixture weights. Each component density is a D-variate

Gaussian function of the form

bi(�x) =
1

(2π)
D
2 |Σi| 12

exp−1

2
(�x− �μi)

′Σ−1i (�x− �μi) (3.2)

with mean vector �μi and covariance matrix Σi. The mixture weights satisfy the

constraint:
∑M

i=1 pi = 1. The complete Gaussian mixture density is parameterized

by the mean vectors, covariance matrices and mixture weights from all component

densities. These parameters are collectively represented by

λ = {pi, �μi,Σi}i = 1, ...,M (3.3)

For speaker identification, each speaker is represented by a different GMM. The co-

variance matrix of every GMM can have several forms, but in this work we use

diagonal ones.

3.2 Linear Prediction

The variables that represent each speaker cannot be the speech signal itself, but we

have to extract some features by the signal that reflect the identity of the speaker.
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The features selected are called Linear Prediction Coding coefficients. The LPC

coefficients represent the spectral envelope of the signal and are widely used in audio

signal processing. The basic idea is to formulate a linear system based on the input

and previous outputs. Let’s say that x(n) is the input of the system and y(n) its

output (with y(n− 1), y(n− 2), ... the previous outputs). The linear system will be:

ŷ(n) =
p∑

k=1

α(k)y(n− k) +
N∑
k=0

b(k)x(n− k) (3.4)

The ŷ(n) denotes an estimation of the exit y(n). The problem is to determine the

α(k) and b(k) constants such that the estimation of the future output is as accurate

as possible. If the system is modeled as an all-pole one, then the prediction will be

perfect if we know the input and the previous outputs. In practice, the prediction can

never be perfect because the systems are not linear nor all-pole and there is always

some noise. Moreover, the input x(n) is unknown. Nevertheless, when we model the

vocal tract with an all-pole model, the results are very good.

So if we form equation 3.4 as an all-pole system we will have:

ŷ(n) = −
p∑

k=1

α(k)y(n− k). (3.5)

Since b(k) = 0, we have to compute α(k) such that the prediction is as close as

possible to the original output of the system. There are two ways to compute α(k),

the autocorrelation method and the Levinson - Durbin Recursion.

Autocorrelation Method

In the autocorrelation method, the parameters α(1), ..., α(p) are chosen in a way that

∑
n

(ŷ(n)− y(n))2

is minimized. In the following the output y(n) will be denoted as s(n).
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So we have a speech signal s(n) with a finite number of nonzero elements. With

the given prediction coefficients α(1), α(2), ..., α(p), the energy prediction error can

be written as

Ep =
∞∑

n=−∞
e(n)2

=
∞∑

n=−∞
[s(n)− ŝ(n)]2

=
∞∑

n=−∞
[s(n)−

p∑
k=1
−α(k)s(n− k)]2,

where p is the length of the prediction filter and ŝ(n) is the prediction of the s(n).By

having convention that α(0) = 1, the energy Ep of the prediction error can be written

as

Ep =
∞∑

n=−∞
[

p∑
k=0

α(k)s(n− k)]2.

Now we have to minimize Ep in terms of α(1), ..., α(p). A necessary condition for

optimality of the choice of α(i) is that the partial derivative of Ep with respect to

variable α(i) equals zero. Notice that Ep depends on the variables α(1), α(2), ..., α(p)

so it could be written as Ep(α(1), α(2), ..., α(p)) but we omit this to keep the notation

short. The partial derivative with respect to α(i), i = 1, 2, ..., p is:

∂Ep

∂α(i)
=

∂
∑

n
[
∑p

k=0
α(k)s(n−k)]2

∂α(i)

=
∑
n
2[

p∑
k=0

α(k)s(n− k)]
∂
∑p

k=0
α(k)s(n−k)

∂α(i)

=
∑
n
2[

p∑
k=0

α(k)s(n− k)]s(n− i),

where the differentiation rule f(g(x))′ = f ′(g(x))g′(x) has been utilized. By regroup-

ing this we get
∞∑

n=−∞
2[

p∑
k=0

α(k)s(n− k)]s(n− i)

= 2
p∑

k=0
α(k)

∞∑
n=−∞

s(n− k)s(n− i)

= 2
p∑

k=0
α(k)r(k, i)

where

r(k, i) =
∞∑

n=−∞
s(n− k)s(n− i)
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is in fact the autocorrelation of the signal s(n) with delay k − i which is

∞∑
n=−∞

s(n)s(n− (k − i))

because,

r(k, i) =
∞∑

n=−∞
s(n− k)s(n− i)

=
∞∑

n=−∞
s((n+ i)− k)s((n+ i)− i)

=
∞∑

n=−∞
s(n)s(n− (k − i)).

Moreover the term r(k, i) depends only on value k− i so it can be denoted by one

variable autocorrelation function

r(k − i) = r(k, i).

By setting the derivatives to zero, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑p

k=0 α(k)r(k − 1) = 0

2
∑p

k=0 α(k)r(k − 2) = 0

...

2
∑p

k=0 α(k)r(k − p) = 0

,

which can also be written in the following form, with α(0) = 1 and r(k) = r(−k)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑p
k=1 α(k)r(k − 1) = −r(1)

∑p
k=1 α(k)r(k − 2) = −r(2)

...

∑p
k=1 α(k)r(k − p) = −r(p)

,

which in turn can be reformulated with matrices as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2) · · · r(p− 1)

r(1) r(0) r(1) · · · r(p− 2)

r(2) r(1) r(0) · · · r(p− 3)

...
...

...
. . .

...

r(p− 1) r(p− 2) r(p− 3) · · · r(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(1)

α(2)

α(3)

· · ·
α(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(1)

r(2)

r(3)

· · ·
r(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



22 Chapter 3 Background Information on Speaker Identification

The coefficient matrix is symmetric and Toeplitz due to r(k) = r(−k) and r(k, i) =
r(k − i, i), which is crucial when deriving a fast computational method to find the

coefficients α(1), α(2), ..., α(p).

At this point we have derived the equations (so called normal equations) for the

prediction coefficients α(1), α(2), ..., α(p) based on the minimization of the prediction

error. Now the coefficients could be solved by inverting the autocorrelation matrix,

but this is computationally rather demanding.

Levinson - Durbin Recursive algorithm

In the Levinson - Durbin Recursive algorithm the basic idea is to solve the matrix

equation

Rx = y

in steps, that is, by increasing the length of the vector x and by calculating a new

solution based on the previous solution. The optimal coefficients satisfy

p∑
i=0

α(i)r(i) = E,

where E is the sum of squares of prediction error. By using this, the group of equations

boils down to
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2) · · · r(p)

r(1) r(0) r(1) · · · r(p− 1)

r(2) r(1) r(0) · · · r(p− 2)

...
...

...
. . .

...

r(p) r(p− 1) r(p− 2) · · · r(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

α(1)

α(2)

· · ·
α(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E

0

0

· · ·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix on the left is still symmetric and Toeplitz. Assume that we have

already solved the equation when p = 2. Now, let us see how it helps us to solve
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α3(1), α3(2), α3(3) when p = 3, where the subscript refers to the degree of the equa-

tion. So this is what we have already solved:

⎡
⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2)

r(1) r(0) r(1)

r(2) r(1) r(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1

α2(1)

α2(2)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

E2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The structure of R yields

⎡
⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2)

r(1) r(0) r(1)

r(2) r(1) r(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α2(2)

α2(1)

1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

E2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

thus: symmetric Toeplitz matrices have the property that when the coefficient vector

and the result vector are twisted upside down, the equation is still satisfied.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(0) r(1) r(2) r(3)

r(1) r(0) r(1) r(2)

r(2) r(1) r(0) r(1)

r(3) r(2) r(1) r(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

α2(1)

α2(2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ k3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

α2(2)

α2(1)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E2

0

0

q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ k3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

0

0

E2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where q =
∑2

i=0 α2(i)r(3− i).

For this to be a solution, we only require that all the elements, except the first

one, in the vector on the right side are equal to zero. It will be so, if

q + k3E2 = 0,



24 Chapter 3 Background Information on Speaker Identification

in other words

k3 = − 1

E2

2∑
i=0

α2(i)r(3− i).

We notice that

E3 = E2 + k3q

= E2 + k3(−k3E2)

= E2(1− k23).

Thus, we found that by trying a vector that is a sum of the lower degree solution

and its twisted version multiplied by a constant, we get a solution to the problem of

the higher degree. Same deduction works in general when increasing the size from

n− 1 to n. Thus, the results are

kn = − 1

En−1

n−1∑
i=0

αn−1(i)r(n− i),

En = En−1(1− k2n)

and

αn(i) = αn−1(i) + knαn−1(n− i).

Because En ≥ 0 (En is the prediction error for the nth degree filter), it follows

|kn| ≤ 1.

The values kn are called reflection coefficients. Levinson-Durbin recursion will be

started with condition

r(0) = E0,

which may be thought to be the error of the 0th degree predictor (no prediction at

all).

There exist also other methods and variations to solve the coefficients but Levinson-

Durbin recursion is the most commonly used one. Besides, calculating the coefficients

in this way guarantees that the absolute values of the reflection coefficients are always

≤ 1, yielding a stable filter.
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Figure 3.1 Examples of LPC coefficients of different orders
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3.3 Line Spectral Frequencies vs LPC

Line Spectral Frequencies are widely used in speech coding, synthesis and recognition.

They are alternatives to represent the all-pole spectrum of speech. They are a useful

representation because the LPC coefficients are not a homogenous set and they do

not quantize too well resulting on large spectral distortion. They also interpolate

better than the LPC’s because we cannot compute LPC’s at two distinct times and

expect to accurately predict the in between values. The zeros of the LPC polynomial

are a better choice, since they all have the same physical interpretation. However,

finding these zeros numerically entails a complex two dimensional search, while the the

corresponding LSF zeros can be found by simple one-dimensional search techniques.

Let the m-th order inverse filter Am(z),

Am(z) = 1 + α1z
−1 + ...+ αmz

−m, (3.6)

be obtained by the LP analysis of speech. The LSF polynomials of order m +

1, Pm+1(z) and Qm+1(z),can be constructed by setting the (m+ 1)-st reflection

coefficient to 1 or -1. In other words, the polynomials Pm+1(z) and Qm+1(z), are

defined as

Pm+1(z) = Am(z) + z−(m+1)Am(z
−1) (3.7)

and

Qm+1(z) = Am(z)− z−(m+1)Am(z
−1) (3.8)

The zeros of Pm+1(z) and Qm+1(z) are called Line Spectral Frequencies and they

uniquely characterize the LPC invert filter Am(z). Pm+1(z) and Qm+1(z) are sym-

metric and anti-symmetric, respectively. They have the following properties:

• all of the zeros of the LSF polynomials are on the unit circle,

• the zeros of the symmetric and anti-symmetric LSF polynomials are interlaced,
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Figure 3.2 Examples of LSF coefficients derived from LPC of different orders

• the reconstructed LPC all-pole filter maintains its minimum phase property,

and

• LSFs are related with the formant frequencies. [15]

3.4 Maximum Likelihood Parameter Estimation

As long as we have calculated the training features for each speaker, our goal is to find

the set of λ that best matches the training features. There are several techniques for

estimating the parameters of the GMM, but the most well-established if the Maximum

Likelihood (ML) Estimation. For a sequence of T training vectors X = �x1, ..., �xT , the

GMM likelihood can be written as

p(X|λ) =
T∏
t=1

p(�xt|λ). (3.9)
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Unfortunately, this expression is not a linear function of the parameters of the GMM,

thus direct maximization is not possible. However, we can use the Expectation Max-

imization(EM) algorithm instead to obtain the parameter estimates by iteration.

The basic idea of the EM algorithm is, in every iteration, to estimate a new model

λ̄ such that if λ the model of the previous iteration, p(X|λ̄) ≥ p(X|λ). The new model

then becomes the initial one for the next iteration until some convergence threshold is

reached. On each EM iteration, the following re-estimation formulas are used which

guarantee a monotonic increase in the model’s likelihood rate:

Mixture Weights:

p̄i =
1

T

T∑
t=1

p(i|�xt, λ) (3.10)

Means:

�̄mi =

∑T
t=1 p(i|�xt, λ)�xt∑T
t=1 p(i|�xt, λ)

(3.11)

Variances:

σ̄2
i =

∑T
t=1 p(i|�xt, λ)x2t∑T
t=1 p(i|�xt, λ)

− μ̄2
i (3.12)

where σ2
i , xt, andμi refer to arbitrary elements of the vectors �σi, �xt, and�μi respectively.

The a posteriori probability for class/speaker i is given by

p(i|�xt, λ) = pibi(�xt)∑M
k=1 pkbk(�xt)

. (3.13)

3.5 Speaker Identification

For speaker identification, a group of S speakers S = 1, 2, ..., S is represented by

GMM’s λ1, λ2, ..., λS. The objective is to find the speaker model which has the max-

imum a posteriori probability for a given observation sequence. Formally, under the
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Maximum Likelihood framework

Ŝ = arg max
1≤k≤S

p(X|λk). (3.14)

Using logarithms and the independence between the observations, the speaker iden-

tification system computes

Ŝ = arg max
1≤k≤S

T∑
t=1

p(�xt|λk). (3.15)

in which p(�xt|λk) is given in 3.4.
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Chapter 4

Speaker Identification Using

Compressive Sensing

In this chapter we will describe two of the three signal reconstruction algorithms used

for our experiments. The third one was Basis Pursuit and was described in the second

chapter. Moreover, the identification process will be described which is used when

applying CS theory on speaker identification application.

4.1 Orthogonal Matching Pursuit

Let’s consider a real valued signal s that is m-sparse. That means that s consists of

m nonzero elements. Moreover, let’s consider a N × d measurement matrix Φ in �d,

independent to the signal s. In order to take measurements of the signal, we have

to take the inner products of the signal with every row of the measurement matrix

φn with n = 1, ..., N . We cannot take fewer than m measurements if we want to

reconstruct the signal, and we can reconstruct it by solving the following statement:

min
f
‖f‖1 subject to 〈f, φn〉 = 〈s, φn〉 for n = 1, 2, ..., N. (4.1)
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providing that the measurement matrix is known. It has been shown that this recovery

is possible by Candes-Tao [10] and of Rudelson-Vershynin [11] who have published

Theorem 1.

Theorem 1 Let N ≥ Km ln(d/m), and draw N vectors φ1, φ2, ..., φN independently

from the standard Gaussian distribution on �d. The following statement is true with

probability exceeding 1− ekN . It is possible to reconstruct every m-sparse signal s in

�d from the data {〈s, φn〉 : n = 1, 2, ..., N}. The numbers K and k are universal

constants.

Particularly, Gaussian measurement vectors succeed for everym-sparse signal with

high probability. The above statement is the main idea of the Basis Pursuit algorithm

for signal reconstruction but although it is a linear programming problem, it may take

a long time to solve and if optimization algorithms do not exist, it takes a lot of effort

to construct or implement one.

For the above reasons, Orthogonal Matching Pursuit Algorithm (OMP) was used

for signal reconstruction. The advantages of this algorithm is its ease of implemen-

tation and speed, although the performance of OMP was considered to degrade in

cases that are not simple [13]. This choice was made because the negative results that

were published for OMP were not misleading. Experiments have shown that OMP is

capable to recover a m-sparse signal when the number of measurements is a multiple

of m.

Theorem 2 Fix δ ∈ (0, 0.36), and choose N ≥ Km ln(d/δ). Suppose that s is an

arbitrary m-sparse signal in �d. Draw N measurement vectors φ1, φ2, ..., φN indepen-

dently from the standard Gaussian distribution on �d. Given the data {〈s, φn〉 : n =

1, 2, ..., N}, Orthogonal Matching Pursuit can reconstruct the signal with probability
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exceeding 1−2δ. For this theoretical result, it suffices that K = 20. When m is large,

it suffices to take K ≈ 4.

As we mentioned, our signal is a m-sparse vector in �d and measurement matrix is

Φ which is N ×d. The actual measurements will be an N -dimensional vector v = Φs.

That means that vector v is a linear combination of m columns from Φ since s is a

m-sparse signal. In order to recover the original signal, we have to determine which

m columns take part in the measurement vector v and pick them in a greedy fashion.

The basic idea of the OMP algorithm is to choose the column of Φ that is most

strongly correlated with the remaining part of v in each iteration. Then subtract off

its contribution to v and iterate on the residual. After m iterations, the algorithm

will have identified the correct set of columns.

Analytically, the input of the algorithm is a N × d measurement matrix Φ, a N -

dimensional data vector v and m (the sparsity level of the original signal). For the

signal recovery the following steps are conducted in each iteration:

1. Initialize the residual as the measurements r0 = v and the the index set Λ0 = ∅.

2. Find the solution in the optimization problem

λt = arg max
j=1,...,d

|〈rt−1, φj〉|

If the solutions are more than one, process the solutions deterministically.

3. Add the solution found in the index set, and φλt in the matrix of the chosen

atoms.

4. Find a new signal estimate by solving

xt = argmin
x
‖Φx− v‖2.
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5. The new data approximation is αt = Φtxt and the new residual is rt = v − αt.

6. If iterations are not completed, return to Step 2.

7. The indices of the nonzero elements of the original signal are listed in the index

set and the value of the signal in λj equals to the jth component of xt.

The residual rt in every iteration is orthogonal to the columns of the measurement

matrix, thus the algorithm selects a new atom in each step and Φ has full column

rank. OMP is a relatively-efficient iterative algorithm that produces one component

of •xt in each iteration, and thus allows for simple control of the sparsity of the signal.

As the true sparsity is often unknown, the OMP algorithm is run for a pre-determined

number of iterations, K, resulting in x being K-sparse.

4.2 SL0 complex

The main idea of the Smoothed L0 algorithm is to find a sparse solution for the

optimization problem As = x by directly minimizing the l0 norm, that is the amount

of the nonzero elements of the signal. It is called smooth because the l0 norm is

not a continuous function but if we try to minimize it we have to find a smooth

approximation of it, in order to use gradient based methods and solve the sensitivity

to noise.

This problem is said to be intractable as the dimensions increase because it requires

a combinatorial search. This is why researchers tried other forms of solutions like

minimizing the l1 norm (Basis Pursuit). This solution is easy to find by Linear

Programming and the algorithm is based on the idea that the Basic Pursuit’s optimal

solution is also the minimum l0 norm minimum.

The l0 norm of signal s = [s1, ..., sn]
T is defined as the number of the nonzero
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Figure 4.1 Signal Reconstruction using OMP.



36 Chapter 4 Speaker Identification Using Compressive Sensing

elements of s. We can form this in the following equations:

v(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 s 
= 0

0 s = 0
(4.2)

then

‖s‖0 =
n∑

i=1

v(si). (4.3)

Equation 4.2 is the main problem of the minimization due to its discontinuities.

This is why it is replaced by other functions such as zero mean Gaussian, in order to

be differentiable. If we define:

fσ = exp(−s2/2σ2), (4.4)

we have:

lim σ → 0fsigma(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 s = 0

0 s 
= 0
= 1− v(s). (4.5)

If we define a function

Fσ(s) =
n∑

i=1

fσ(si), (4.6)

then the limit in 4.5 will be:

lim σ → 0Fσ(s) =
n∑

i=1

(1− v(si)) = n− ‖s‖0. (4.7)

with ‖s‖0 ≈ n − Fσ(s). The value of σ specifies the trade-off between accuracy and

smoothness of the approximation. The smaller the σ the better the approximation

to the real minimum value of the l0 norm, and the larger the σ the smoother the

approximation. For small values of σ Fσ has a lot of local maxima which makes the

maximization very difficult.

In order not to get trapped in a local maxima, the algorithm initializes the value

of σ at∞ and then gradually decreases it. The choice of σ to be initialized as∞ was

because of the the following theorem:
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Theorem 3 The solution of the problem: Maximize Fσ(s) subject to As = x, where

σ →∞, is the minimum l2 norm solution of As = x, that is s = AT (AAT )−1x.

By maximizing Fσ(s), s gets as sparse as possible.

The final SL0 algorithm is :

• Initialization

1. Choose an arbitrary solution from the feasible set S, v0.

2. Choose a suitable decreasing sequence for σ, [σ1...σK ]

• for k = 1,...,K:

1. Let σ = σk.

2. Maximize (approximately) the function Fσ on the feasible set S using L

iterations of the steepest ascent algorithm (followed by projection onto the

feasible set):

– Initialization: s = vk−1.

– for j = 1 ... L:

(a) Let: Δs = [s1 exp(−s21/2σ2
k), ..., s1 exp(−s2n/2σ2

k)]
T .

(b) Let s← s− μΔs.

(c) Project s back onto the feasible set S:

s← s− AT (AAT )−1(As− x)

3. Set vk = s.

• Final answer is s = vl.
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[14]

One advantage of the SL0 algorithm is that we do not need to spend much time to

wait for it to converge. All the algorithm needs is to be near the absolute maximum

of Fσ for escaping the local maxima, which can be achieved in just a few iterations

(small L).

4.3 Speaker Identification Using CS

In order to perform speaker identification using compressed sensing, we have to con-

struct a codebook of basis matrices from speech training data for each of the S

speakers that we wish to identify, just like it was mentioned in section 2.2. This

is essentially formed by performing a codebook of the LSF vectors of each speaker

separately. This process is in fact similar to the GMM training for speaker identifica-

tion, and is based on the assumption that LSF”s are suitable feature vectors for the

classification task.

A simple way to do classification using compressed sensing is to find a basis for

each of the C classes of interest, and then reconstruct a sparse vector from each

of the class bases. The measured signal is then said to come from the class that

produced the sparsest recovered vector. This can work well, but requires that the

class bases be incoherent. In our case, the class bases would be the hl”s for each

speaker. Unfortunately these bases are far from incoherent. We thus need to find

another method to perform speaker identification, and we proceed in the following

manner.

We first find a residual excitation vector for each basis matrix from each speaker”s

codebook using

r̂s,l = argmin
r
‖y − Φhs,lr‖2 such that ‖r‖0 = K. (4.8)
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Figure 4.2 Signal Reconstruction using SL0 Complex.
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Once these have been found, we then calculate

ds = min
l
‖y − Φhs,lr̂s,l‖2, (4.9)

which represents the minimum distance between the measurements y and measure-

ments from the reconstructions from the s-th speaker”s codebook.

Now, let di,s be the ds calculated for the i-th frame. The actual speaker s* in the

i-th frame should have the smallest distance, so that

di,s∗ < di,s, ∀s 
= s ∗ . (4.10)

Thus if this is true we have chosen the correct speaker, and if not we have an error.

In practice, we can greatly improve the reliability of speaker identification by

considering n frames at a time. This is based on the fact that the speaker will not

change from frame to frame, and will rather be constant for a group of frames. Thus

we use a sliding window to determine the most probable speaker as

ŝ = argmin
s

i∑
j=i−(n−1)

di,s, (4.11)

to determine the speaker. Obviously if ŝ 
= s∗ then the identification has failed for

this particular segment. This approach is the same as the segment-based approach

for identification.
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Results

In this chapter we discuss the results of our research. All the experiments were

conducted using speech signals from the VOICES corpus, available by OGI’s CSLU

[16]. The speech signals, originally sampled at 22 kHz, were downsampled at 8 kHz,

with N = 320 samples per frame and 50% overlapping between frames. The training

data consisted of 30 sentences from 12 speakers, resulting in around 6000 frames per

speaker. All the the simulations were performed using 10 sentences for each speaker

different to those used in the training process. This provided more that 2000 frames

of test data per speaker.

We performed the experiments using three types of signal reconstruction algo-

rithms. SL0 complex, Basis Pursuit and Orthogonal Matching Pursuit. SL0 complex

algorithm was implemented by Massoud Babaie-Zadeh and Hossein Mohimani and

is available at http://ee.sharif.ir/ SLzero , Basis Pursuit was implemented by Justin

Romberg, Caltech and is available in the toolbox l1-magic, and finally the OMP

algorithm was implemented in Stanford and is available in the toolbox SparseLab.

For each of these cases experiments were conducted using a codebook of size L =

8, and the process described in chapter 4. For the case of OMP, experiments were

41
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conducted for larger codebooks too, and for different numbers of iterations.

5.1 SL0 complex and Basis Pursuit

As a first step, we tested the performance of the sparsity-based speaker identification

for SL0 Complex. The measurement matrix Φ consisted of M ×N Gaussian samples

with zero mean and unit variance. The performance measure used was the probability

of correct identification of the speaker using 4.11 with n equal to 140 frames (2.8

seconds), and averaged over all 12 speakers. The sparsity level range tested, was

from 50% of the signal to 90% of the signal. The probability of correct speaker

identification using these two reconstruction algorithm is shown below. The same

conditions were tested using Orthogonal Matching Pursuit for reconstruction. The

results were better so we continued the experiments only with OMP.

Figure 5.1 Probability of correct identification versus the number of itera-
tions of the three reconstruction algorithms for a codebook size of 8.
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5.2 Orthogonal Matching Pursuit

Initially, we tested the performance of the sparsity-based speaker identification. The

measurement matrix Φ consisted ofM×N Gaussian samples with zero mean and unit

variance. The performance measure used was the probability of correct identification

of the speaker using 4.11 with n equal to 140 frames (2.8 seconds), and averaged over

all 12 speakers.

Figure 5.2 Probability of correct identification versus the number of itera-
tions of the reconstruction algorithm for a codebook size of 16. The number
of measurements is equal to half the Nyquist rate (M = N/2).

As an initial investigation, we looked at the effect of the number of iterations of

the OMP algorithm, K, on our proposed method for M = N/2 measurements per

frame. The results are shown in Figure 5.2 for a codebook size of L = 16. The

identification process can be seen to not be very sensitive to K around K ≈ M/4,

and it is this value for K that we used in the rest of this work.

Figure 5.3 presents the performance of our proposed method as the number of
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Figure 5.3 Probability of correct identification versus the number of mea-
surements for various speaker codebook sizes. The number of iterations of
the reconstruction algorithm is equal to one quarter of the number of mea-
surements (K = M/4).

measurements M and the size of each speaker”s codebook L are varied. These results

are intuitively satisfying; as M decreases, the reconstruction quality will degrade,

and thus the probability of correct identification decreases. The results for M/N =

1 do not use compressed sensing, and this can be thought of as the best possible

performance. The performance also improves as L increases, although there seems to

be diminishing returns after L = 32, and each increase in L increases the complexity

of the identification process. Thus for L = 32 with 50% measurements the probability

of correct identification is about 0.8, and if the measurements are lowered to 25% this

probability drops to about 0.6.

All the previous results are for noise-free speech. We also explored the effect of

additive white Gaussian noise on the probability of correct identification for the L =

32, M = N/2 case, and this is presented in Figure 5.4, along with the corresponding
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Figure 5.4 Probability of correct identification versus the signal to noise
ratio of the speech signal for the Gaussian mixture model (GMM) method
and the proposed compressed sensing (CS) method.

results for the GMM method discussed in Chapter 3. The GMM method used 32

diagonal mixtures and the same training and testing data as the compressed sensing

(CS) method. It is clear that the CS method outperforms the GMM method once

the signal to noise ratio (SNR) is below 30dB. In fact, there is very little loss in

performance for the CS method down to an SNR of 20dB, and even an SNR of 15dB

only affects the performance mildly.
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Chapter 6

Discussion

In this work, we examined the effect of Compressive Sensing Theory on a speaker iden-

tification application using three different algorithms for signal reconstruction. The

experiments showed that speaker identification is possible using Orthogonal Matching

Pursuit although the probability of a right recognition could be improved.

Assuming the two methods (CS and baseline GMM method) were used in a sensor

with limited power resources, the CS method would require slightly more processing

than the GMM method in the sensor, as it needs to calculate the measurements,

although efficient measurement methods do exist. However the CS method would

require half the bandwidth of that of the GMM method to transmit the measurements

back to a central processor. This transmission power gain and the robustness to

noise for the CS method come at the cost of increased complexity in the speaker

identification algorithm, but for many applications this is acceptable.

We have presented a novel method for speaker identification based on a sparse sig-

nal model and the use of compressed sensing. The use of compressed sensing permits

the use of less transmission power for the sensor recording the voice. Additionally,

our method has been shown to be robust to noise in the recorded speech signal. This
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is an encouraging result, and warrants further investigation.

In order to have a more robust recognition we could utilize a part of the idea of [17].

The idea of this publication is on the one hand to enhance the training database by

adding samples with various amounts of noise. On the other hand, instead of using

the whole testing vector used to represent the speech signals, they use only the parts

that have a strong connection with the corresponding trained system.

The motive to use this specific publication was that the authors try to solve the

problem of speaker identification in noisy environments, and we noticed from the

experiments conducted that CS algorithms are already robust in noise. It describes

a method that combines a multicondition model training and missing feature theory

to model noise with unknown spectral characteristics. Multicondition training is per-

formed by generating multiple copies of the original training set which contains only

clean speech. Each copy gets corrupted by additive noise with specific characteristics.

Particularly, white noise at various signal-to-noise ratios is added to simulate the cor-

ruption. The augmentation of the training set results in a new likelihood function. If

we assume that Φ0 is the original training set and Φi, i = 1, ..., L the corrupted ones,

then the likelihood will be:

p(X|S) =
L∑
l=0

p(X|S,Φl)p(Φl|S) (6.1)

where p(X|S,Φl) is the likelihood function of frame vector X trained on set Φl, and

P (Φl|S) is the prior probability of the noise condition Φl for speaker S. This equation

is called a multicondition model.

Another step to make the speaker identification process further robust, is to choose

which part of the testing vector is going to participate in the process. One way to

do that is to ignore the heavily mismatched subbands and focus the score only on

the matching subbands. If X = (x1, x2, ..., xN) a test frame vector and Xl ⊂ X be
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a subset of X containing all the subband features corrupted at noise condition Φl.

Then (6.1) will be refined as:

p(X|S) =
L∑
l=0

p(Xl|S,Φl)P (Φl|S) (6.2)

where p(Xl|S,Φl) is the marginal likelihood of the matching feature subset Xl, derived

from p(X|S,Φl) with the mismatched subbands features ignored to improve mismatch

robustness between test frame X and the training noise condition Φl. The approach

expressed in 6.2 extends the traditional approaches because traditional approaches

determine the importance of a feature against the clean data, while the new approach

assesses this against the data containing variable degrees of corruption. This allows

the model to use not only clean data, but also noisy features that match the noisy

training conditions for recognition.

The posterior union model introduced by the authors of [17] is formulated finally

as:

P (S,Φl|Xsub(M)) =
p(Xsub(M)|S,Φl)P (S,Φl)∑

S′,l′ p(Xsub(M)|S ′,Φl′)P (S,Φl′)
(6.3)

where Xsub(M) is the subset of test frame X with length M and is considered as a

function of the length of the subset of the subbands we keep and not of the content.

Based on the basic idea of 6.2 we could expand the algorithms used for speaker

identification of this work. Instead of using a dictionary made of clean speech, we

could apply the same principle as the multicondition model and use a larger dictionary

with simulated corruption. Thus, even if CS algorithms are robust to noise because

they ignore very small elements considered as noise, if they cannot be ignored they

can be recognized correctly.
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