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ABSTRACT

TEXT-INDEPENDENT SPEAKER IDENTIFICATION USING SPARSELY

EXCITED SPEECH SIGNALS AND COMPRESSED SENSING

Karamichali Eleni
Computer Science Department

Master of Science

Compressed Sensing (CS) is an emerging theory that claims that the Nyquist
sampling theorem yields for more samples than necessary. According to the
Nyquist sampling theorem, the sampling rate of a signal must be at least
equal to the double of its maximum frequency. On the contrary, CS seeks to
represent a signal using a small number of linear, non-adaptive measurements
which are far less than the signal’s bandwidth. Thus, CS accomplishes both
compression and sampling in one low-complexity step. The only requirement
for CS to be efficient is that the signal is sparse in some basis, which means it
has only a few non zero elements in some basis.

Compressed sensing has been used for full signal reconstruction, but in
our case it was used for feature recovery in order to perform text-independent
speaker identification. Speaker identification is the act of recognizing a speaker

under the condition that he is a part of a database which has been modeled be-



forehand using features extracted from each speaker’s training set. Specifically,
we trained a Gaussian Mixture Model for each speaker in the database, us-
ing Line Spectral Frequencies. Text-independent speaker identification means
that the testing speech signals were not included in the training phase.

We chose to use CS theory for speaker identification for two reasons. The
first one is that CS theory requires just a few samples to reconstruct a signal
and this is very useful in environments like sensor networks where there are
limitations in the data traffic that can be sent between the sensor nodes.
Thus, although traffic is limited, we are still able to avoid information loss.
The second reason is that CS algorithms are robust to noise. These algorithms
force the signals to be sparse in some basis which results in neglecting noisy
samples that have low energy.

After experimenting with some CS algorithms for signal reconstruction, we
decided to use Orthogonal Matching Pursuit for our research because of its
low complexity and the lowest feature distortion after the reconstruction.

The results may not be as good as the ones using features extracted from
the original speech signals, but they are quite good regarding the number of
samples that were used, and are very promising for future investigation and

research.



ABSTRACT

Avayvoplon Owhnth Aveldptntn anéd 1o Kelyevo pe yprorn Apacdv Lnudtwy

xon e Yewplog Yupmeotinhic Aetypotohndiog

Eiévn Kogoptydn
Turua Emothune Troloyiotdy
Havemothuo Kertng

H dewplo e Suumeonuxrc Aetypatorndiog (Compressed Sensing) efvon pio
avanTUGCOUEYY, Vewpio mou urootneiler 6Tt To Vewpnua deryyatorndlac twy
Niyuiot anoutel yeyardtepo puldud derypatohndioc and ot ebvon amoapaitnTo.
Yopgova e to Yempruo derydatohnblag twv Ndyuiot, o pudude derypatoindiog
TEETEL VoL Efval TOUAGYLIGTOV BITAAGLOC ATh T1) UEYAAUTERT) GLUYVOTYTA TOU GHHUATOC,
WOOTE VO PTOPOUUE VA TO AVUXATAOXKEVACOUUE TéAeta. Avtideta, 1 Vewpla Tng
Yuumeotinic Aerypatohniag tpoomadel va Bpet pio avanapdotact) Tou ohuaTog
Tou anapTileTar amd Eva hixpod aprdud YEUUUIXKOY PETENOEWY, TOAD UIXPOTEQO ATO
T0 €0pog GUYVOTRTWY Tou ofuatoc. 'Etol 1 Jewpia g Xupmeouxrc Aetypo-
Tohnlag emTuyydver va cuvdudoeL oe éva B yaunAfg TOAUTAOXOTNTAS, APEVOS
ouunieon xat ageTépou derypatoindioa Tou ofuartoc. H udvn mpobinddeon yia ta
TOEOTAVL Efval To G Vo elvon dpatd oe xdmota fdor, To omolo onualvel va et
ToAO Ay un undevixd ototyelor oe xdmolo Bdon).

H Yewpla tne Yuymeotinric Aetypatorndiog €yet wg topa yenotuonomiel oe



EQUQUOYEC OTIOU YEEWALETO TANENE OVOXATUOXEUT] TOU OHUATOS, GAAd OE AUTH
TNV EPYSIa YENOLOTOUAUNXE IO TNV AVUXATIOXEVT] YUQUXTNOIOTIXGY UE OXOTO
TNV avory vepioT) ouhntr avedptnta and to xelpevo. H avayvopiorn outhnty tvor

1 dtodwacio EVPECTC TOU ATOUOU TOU WAJEL PE TNV TEOUTOVEST, OTL AVAXEL OF
wla Bdon mou amaptiCeton amd omhntéc, xou €yel mponyniel “exnaldeuon’ evog
CUOTAUATOC UE YApaxTNELoTIXd Tou €youv e€ayVel and o ofuata ouhiog xdie
owAnty| o1 Bdon.  Xuyxexpiuéva, onuwoveyninxe uion culhoyr xPavTiouévey
YAPAXTNPLOTIXWY Yt x&Ue OWANTY Tou avixet 11| BACT UaS, YENCLLOTOWYTAS WG
YAROXTNPLOTIXG YRUUUIXES QaopaTinés ouyvoTNTES. O 6p0g aveddpTnTy avary vpLo
Ao TO XEUEVO AVAPEPETAL GTO YEYOVOS OTL T GHHATA OtAlag Tou YpnouoTotfinxay
Yioo T doxiuy) Tou CUCTARATOC pog, dev efyav cuunepthnglel otn @dorn TNng
“exnofdevonc’ Tou GUGTAUATOS.

Emhé€ape tn Yewpla tne Lupmeotinric Actypoatohndiog yio Ty avoryveeto
owAnTy Yo 0o Aoyoug. O mpwtog ebvar 6Tt 1) Yewpla trg Luumeotinhic Actyyo-
Tohnlog amontel TOAD Alyo delypotar yior vor TETOYEL TAROT OVOXATUOXEUT) EVOC
ofjorTog, xat autd ebvar ToA) yeriowo oe tegiBdhhovia OTws dixTua AwoVNTHACWY
6mou 1) xbvnor Sedouévey elvan teploptopévr). Me autédy Tov TpOT0, EVK PTOPOUUE
va otethouye TOAD Alyo Dedouéva, Bev €YoulE anwAgla TANpogoplag. O debtepog
AOYOG €lvan OTL oL OAYORLILOL AVAXATACHEUHS GHUATOC TNS LUPTECTIXAS AEtypo-
Tohnlag ebvon avextixol oto YopuBo. Autol ot aiyopriupol eCavayxdlovy Ta
ofuara vo efvon apoud oe xdmotar Bdom, e amoTEAEoU Vo uny haBdvovton unogn
o Oelypata Tou YoplPou eoutiag Tng YoUNAg Toug EVEQYELIS.

Metd 1t Sielaywyr) TEQOPATWY PE XATOLOUSC ahY0plIUOUS avoXATUOXEUTS
ONUTLY, anogacioous Vo yenoionoticouue Tov alyopriuo Ogtnoyovok Matgn-
wy Tupourt Yo Ty €peuvd wag AOYw TNE YouNAS TOU TOAUTAOXOTNTUS %Ol TNS

WXEOTERTS DIICTEERAWOTC TOU TEOXANOVUGE 1) AVUXAUTAOKEVY| OTO O



To anoteréopota unogel va uny elvon 660 xahd ebvon dToy To Yoo TNEIoTIXS

7 ’ 7 7 ’ 7 7 7 7 e

mou €youy edaylel and Ta mpwrtdTUTA orjuaTa omAag, oA elvon TOAD xokd
OEDOMEVOU OTL TA YUQUXTNPLOTIXG AVAXATAOXEUGLOVTOL and €va txpd TOG0GTH
TWY APYIXWY OELYUdTwY %ot elvor Toh) eviagpuvTind Yo TEQUTERW EVACYOANGCT)

xo €pEUVAL
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Chapter 1

Introduction

According to the Shannon/Nyquist sampling theorem, if we want to store a signal
without loosing any information, we have to sample it at least two times faster that the
signal’s maximum frequency, the so-called signal bandwidth. In fact, this principle
underlies nearly all signal acquisition protocols used in consumer audio and visual
appliances, radio receivers, and so on. In such applications, the Nyquist rate is so
high resulting in too many samples, making compression a necessity prior to storage
or transmission. In other applications, including imaging systems (medical scanners
and radars) and high-speed analog-to-digital converters, increasing the sampling rate
is very expensive. Also in gene expression studies one would like to infer the gene
expression level of thousands of genes from a low number of observations. This work’s
focus is a recently developed theory called Compressed Sensing Theory. CS theory
asserts that one can recover certain signals and images from far fewer samples or
measurements than the Shannon/Nyquist sampling theorem requires. To make this
possible, CS relies on two principles: sparsity, which pertains to the signals of interest,

and incoherence, which pertains to the sensing modality. [2, 3]

e Sparsity expresses the idea that the ”information rate” of a continuous time

1



2 Chapter 1 Introduction

signal may be much smaller than suggested by its bandwidth, or that a discrete-
time signal depends on a number of degrees of freedom which is comparably
much smaller than its (finite) length. More precisely, CS exploits the fact that
many natural signals are sparse or compressible in the sense that they have

concise representations when expressed in the proper basis W.

e Incoherence extends the duality between time and frequency and expresses the
idea that objects having a sparse representation in ¥ must be spread out in the
domain in which they are acquired, just as a Dirac or a spike in the time domain
is spread out in the frequency domain. Put differently, incoherence says that
unlike the signal of interest, the sampling/sensing waveforms have an extremely

dense representation in V.

Compressed sensing has been used for full signal reconstruction. However, in this
work we used CS theory for feature recovery in order to perform text-independent
speaker identification. Speaker identification is the task of resolving who is talking,
using features extracted from his or her voice. Moreover, text-independent speaker
identification is the task of finding one’s identity regardless the content of what was
said. This task is accomplished by matching the features extracted from the unknown
speaker’s voice to a trained system that has been acquired from a database of speakers.
In fact, it is a classification problem among a known existing database of speakers.

There are two reasons to use Compressed Sensing in speaker identification. On
the one hand, CS theory uses only a portion of the samples that Nyquist’s sampling
theorem requires to reconstruct a signal. Thus, in environments where we are not
able to send a large amount of data, we are able to avoid information loss regardless
the limited packets we send. On the other hand, signal reconstruction is less affected

by noise. When forcing the signal to be sparse in some basis, the part of the signal



that is going to be neglected will be the one with the smallest energy, thus the noisy
one. This is similar to signal de-noising by low-rank modeling. In the latter case,
the amount of non-zero elements of the signal plays a key role because compressed
sensing theory assumes that the signal is initially sparse in some basis. Thus, it
is interesting to investigate whether speaker identification has better results when
Compressed Sensing is used or when we use the samples of the original signal.

A key question is whether a speech signal can be considered to be sparse in some
sense. For audio signals, it was recently showed that their sinusoidally modeled com-
ponent can be considered to be sparse, and compressed sensing theory was applied
to low-bitrate audio coding [4]. For speech signals, compressed sensing was recently
applied to a sparse representation using the source/filter model in [5] for speech cod-
ing, and encouraging preliminary results were obtained. In this work, we extend the
work of [5] by applying the proposed methodology to the problem of text-independent
speaker identification. In that work, it was found that applying compressed sensing
theory to speech signals modeled using the source/filter model, and assuming a sparse
excitation, resulted in accurate estimation of the filter part (spectral envelope) of the
speech signal.

This work is organized as follows: In the second chapter we will refer to the basics
of the Compressed Sensing theory. In the third chapter, a baseline algorithm for
speaker identification is described analyzing also the feature extraction process. In
the fourth chapter, the algorithm that we used for the speaker identification process
using Compressed Sensing Theory is described. In the fifth chapter, we discuss the
problem that was spotted and the solution we propose, describing our work. In the
sixth chapter we will present the results of our research. And at the last chapter, a
small discussion takes place where we refer to our results and how it is possible to

further investigate the subject worked on.
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Chapter 2

Compressed Sensing

In this chapter we discuss the basics of Compressed Sensing, the general idea behind

the theory and what lead to using CS theory.

2.1 The basics of Compressed Sensing

Compressed sensing seeks to represent a signal using a small number of linear, non-
adaptive measurements. Usually the number of measurements is much lower than
the number of samples needed if the signal is sampled at the Nyquist rate. Thus,
compressed sensing combines compression and sampling of a signal into one low-
complexity step. An important restriction is that compressed sensing requires that
the signal is sparse in some basis, in the sense that it is a linear combination of a
small number of basis functions-in order to correctly reconstruct the original signal.
In this paragraph we will describe how all these are possible.

Let’s consider a real valued signal x, with finite length and one dimension. x is a
N x 1 vector, with x € R and discrete time with elements x[n] with n = 1,2, i, N.

This signal can be represented in terms of a N x N orthonormal basis ¥, where every
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Sparse Signal
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Figure 2.1 Example of a sparse signal

column is {1;}X ;. The signal x can now be expressed by the basis as:

N

Y osihy or x=1s (2.1)

i=1

where s is the N x 1 vector of weighting coefficients s; = (z, ;) = ¥l z. Actually, x
and s represent the same signal, the first in the time domain, and the latter in the W
domain.

The signal x is K-sparse if it consists of only K non-zero elements, and N — K
zero elements. In a different point of view, a signal is K-sparse signal when it can be
written as a linear combination of only K basis functions. Obviously, we are interested
in the cases where K is much smaller than N (the length of the signal)(Figure 2.1).

The signal x is called compressible when it has only a few large values and all the
other are very close to zero. In that case we can discard the small values because

they are insignificant, and the signal is supposed to be sparse (Figure 2.2).
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Compressible Signal
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Figure 2.2 Examples of compressible signals

2.1.1 Transform Coding and its inefficiencies

Transform coding is based on the compressible signals, specifically on their property
to transform in K-sparse signals. The process of transform coding consists of the

following steps:
e The full signal must be acquired
e The transform coefficients s = U7z must be computed

e The K largest values of s are located, and all the other that are near zero are

discarded

e The K largest values and their locations are encoded.
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This whole process though is very inefficient. First of all, one has to acquire all N
samples of the original signal x, and then compute the measurements s. This means,
that one would need a lot of memory space to save the signal no matter how large
it is, and moreover CPU time to compute N coefficients, although only K will be
needed and stored. Last but not least, the locations of the non zero elements must
be encoded too, resulting in storing 2K elements instead of K.

This is why a need emerged for a new theory to surpass these problems. Com-
pressed Sensing surpasses the above problems by acquiring from the start only the K
non zero elements of the signal. It acquires M < N inner products between x and a
M x N matrix ® consisting of N columns {¢; }jj‘il Let’s consider the inner product,

M x 1 vector y; = (x, ¢;). Then using 6.1 we can rewrite ¢ as:
y=®r =0dVUs =0s (2.2)

where © = ®W is a M x N matrix. The measurement process is not adaptive. This
means that ® is fixed and does not depend on the signal x.

The challenge though is twofold. In one hand, we should find a stable measure-
ment matrix ® such that the measurement process does not damage the important
information of the signal, and on the other hand, we should find a reconstruction al-
gorithm that recovers x from only M samples that were kept, and moreover recovers

the right positions of the non-zero samples.

2.1.2 Designing matrix ¢

We have to reconstruct a N x 1 vector signal, only by M measurements. However,
M < N so the problem is ill- conditioned. If our signal x is K-sparse and the positions
of the non-zero elements are known, since M > K, the problem can be solved. For

this problem to be well-conditioned, there is a necessary and sufficient condition. For
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any vector v sharing the same K nonzero entries as s and for some € > (

.-l
= ol

<l+e (2.3)

This inequality means that matrix © must preserve the length of the K-sparse vectors.
However, we said earlier that this is in effect if the positions of the non-zero elements
are known, which are not. A sufficient condition for a stable solution for both K-sparse
and compressible signals is that © satisfies equation (2.3) for an arbitrary 3K -Sparse
vector v. This condition is referred to as restricted isometry property (RIP). A related
condition referred to as incoherence, requires that the rows {¢;} of ® cannot sparsely
represent the columns of ¥ and vise versa.

Direct construction of a matrix ® such that © = &V has the RIP requires verifying
equation (2.3) for all the possible combinations of K non-zero elements in the vector
v of length N. However, both the RIP and incoherence can be achieved with high
probability simply by selecting ® as a random matrix.

If matrix ® consists of independent and identically distributed random variables
from a Gaussian probability density function, with zero mean and variance 1/N,
then because y = ®x, y will consist of M different weighted linear combinations of

the elements of x. The Gaussian measurement matrix ® has interesting properties:

e The matrix ® is incoherent with a basis equal to an identity matrix and it
can be shown that © = ®¥ = & has the RIP with high probability if M >
cKlog(N/K) <« N, with ¢ a small constant. Therefore, K-sparse or com-
pressible signals of length N can be recovered from only M random Gaussian

measurements that obey the above inequality.

e No matter what the basis ¥ will be, matrix © will be i.i.d. Gaussian and thus

have the RIP with high probability.
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As long as we have chosen our measurement matrix, we have to chose a recon-
struction algorithm. It has to recover all N samples of our original signal x or the
sparse vector s, from only M measurements in the vector y, our measurement matrix
®, and the basis V.

We have stated that y = ©s. But for M < N there are too many s’ that satisfy
that equation. This is because if ©Os = y then O(s 4 r) = y for any vector r in the
null space N(©) of ©. Therefore, the signal reconstruction algorithm tries to find the
signal’s sparse coefficient vector in the (N — M )-dimensional translated null space
H=N(©)+s.

There are three kinds of basic reconstruction algorithms. First of all, let’s define

the 1, norm of a vector s as (||s||,)? = SN, [si]? .

e The most classical approach to inverse problems of this type is to to find the

vector in the translated null space with the smallest [, norm energy by solving
§=argmin||s'||ls such that ©Os =y (2.4)

This optimization has the convenient closed-form solution 5 = ©7(©67)"y.
Unfortunately, I minimization will almost never find a K-sparse solution, re-

turning instead a non sparse s with many non-zero elements.

e Since the [ norm measures signal energy and not signal sparsity, consider the [
norm that counts the number of non-zero entries in s. (Hence a K-sparse vector

has [y norm equal to K.) The modified optimization
§=argmin|s'||o such that Os =y (2.5)

can recover a can recover a K-sparse signal exactly with high probability using

only M = K + 1 iid. Gaussian measurements (2.3). Unfortunately solving
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(2.5) is both numerically unstable and NP-complete, requiring an exhaustive

enumeration of all () possible locations of the nonzero entries in s.

e Surprisingly, optimization based on the [; norm, which is basically the sum of

the elements of the signal,
§=argmin|s'||; such that Os =y (2.6)

can exactly recover K-sparse signals and closely approximate compressible sig-
nals with high probability using only M > ¢Klog(N K) i.i.d. Gaussian mea-
surements (2.4). This is a convex optimization problem that conveniently re-
duces to a linear program known as Basis Pursuit, whose computational com-

plexity is about O(N?). Equation 6.2 can be easily reformulated as:
/
$=argmin|jy — ©s'l]a such that |sllo=K (2.7)

where the [y norm just counts the nonzero elements.

2.2 Sparsely Excited Signals

There are two parametric ways to represent speech or audio signals in the time do-
main. The one is by linear system models which can represent only speech signals,
and the other one is sinusoidal modeling for representing both speech ad music. It
is widely known that the most important features of a sound are their spectral ones
and their harmonicity due to periodic excitation. That is why we represent signals
by either linear prediction coefficients or their cepstrum analysis, in order to separate
the periodic information from the spectral features.

Nevertheless, we can represent signals in other ways too, by projecting them onto

bases that would make the representation sparse. For example, we can represent
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Figure 2.3 Signal Reconstruction using Matching Pursuit

the original signal as a linear combination of Discrete Cosine Transform (DCT) or
Discrete Fourier Transform (DFT) coefficients. In the former case the measurement
matrix would be a real valued transform matrix, but in the latter one it would be
complex. However, the sparsity of the outcome will be unknown.

There is another linear sparse representation in the time domain, which is more
suitable than the previously stated. In speech coding, the transform domain where

the representation is required to be sparse is the prediction residual. [6,7] In the
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Figure 2.4 Signal Reconstruction using Basis Pursuit
simple case, a sparse linear predictor a of order P derives from
a = arg min ||z — Xall (2.8)
aceRP
where
T = , X =
and || - ||; is the {1 norm. The points N; and N, can be chosen with various ways.

The most appropriate one is Ny =1 and N, =N + P.
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The residual excitation component expressed in a N x 1 vector can then be ex-

pressed as

r=Ax
and the signal can be reconstructed by
r=A"r=h-r (2.9)

where h is the signal domain impulse response of the smooth spectral envelope ex-

pressed in a N x N impulse response matrix.

1 0 0 0

a(1) 1 0 0

h = a(1) 1 0
a(P) a(P—1) - 1 0
0 a(P) a(P—1) -+ 1|

The matrix h would be N x K Toeplitz lower triangular for linear convolution and
N x N circulant Toeplitz for circular convolution. Since h is signal dependent, in [5]
it is proposed to use a codebook of size L of such matrices, produced by the training
data. Then the reconstruction problem can be formulated similar to the basic formula

of the orthogonal matching pursuit algorithm (which will be described in Chapter 4)
7, ) = argrilin ly—®-hy- 7|2, such that |r|o=K, (2.10)
1,7
and &= hy -7
where K is the level of sparsity of the signal and [ = 1,2, ..., L. This representation is
more suitable because, when the signal is represented in the time domain, it is pro-
cessed in small time-windows because of the constant changes in the sound features.

During these windows, the number of periods in the time domain are much fewer

than the number of harmonics in the spectrum resulting in a sparser x.
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Figure 2.5 Example of CS recovery of speech: (a,e) 40ms speech frame, (b,f)
residue signal (c,g) estimated residue (d,h) spectra of estimated LP, speech
signal and recovered signal. Left column: signal with exact sparsity. Right
column: original speech with approximate sparsity. [5]
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Chapter 3

Background Information on

Speaker Identification

In this chapter we will present a baseline speaker identification process, used to com-
pare our results. We describe the data modeling, the way we extract the features
chosen to represent our data and finally the computation of the identification cer-

tainty probabilities.

3.1 Text Independent Speaker Identification

There are two different tasks to which speaker recognition refers to, depending on the
application. The one is speaker verification, which seeks the validity of the speaker’s
claim about his identity. The second one is the speaker identification, which tries to
match the voice sample with one of the speakers in a given database. Furthermore,
in either task, the voice sample can be constrained, for example a specific sequence of
words, or unconstrained. The first case is called text-dependent recognition, and the

second is called text-independent where the recognition depends only on the features

17
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of the speech signal and not on its content. [8]

Several speaker dependent spectral shapes tend to be represented by Gaussian
densities. Moreover, Gaussian mixtures can model arbitrary densities. For these rea-
sons, Gaussian Mixture Models (GMM) were used to represent the speaker database.

A Gaussian Mixture Model is a weighted sum of M component densities and given

by the equation
M
p(E|A) =) pibi(2) (3.1)
i=1
where ¥ is a D-dimensional vector, b;,i = 1, ..., M, are the component densities and

pit = 1,..., M, are the mixture weights. Each component density is a D-variate

Gaussian function of the form
bi(7) = oD v (L exp — (7' — :ui)lzi (7 — fi;) (3.2)

with mean vector fi; and covariance matrix ;. The mixture weights satisfy the
constraint: M p; = 1. The complete Gaussian mixture density is parameterized
by the mean vectors, covariance matrices and mixture weights from all component

densities. These parameters are collectively represented by

For speaker identification, each speaker is represented by a different GMM. The co-
variance matrix of every GMM can have several forms, but in this work we use

diagonal ones.

3.2 Linear Prediction

The variables that represent each speaker cannot be the speech signal itself, but we

have to extract some features by the signal that reflect the identity of the speaker.
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The features selected are called Linear Prediction Coding coefficients. The LPC
coefficients represent the spectral envelope of the signal and are widely used in audio
signal processing. The basic idea is to formulate a linear system based on the input
and previous outputs. Let’s say that xz(n) is the input of the system and y(n) its

output (with y(n — 1), y(n — 2), ... the previous outputs). The linear system will be:

g(n) = kﬁ: alk)y(n — k) + Z b(k)z(n — k) (3.4)

The g(n) denotes an estimation of the exit y(n). The problem is to determine the
a(k) and b(k) constants such that the estimation of the future output is as accurate
as possible. If the system is modeled as an all-pole one, then the prediction will be
perfect if we know the input and the previous outputs. In practice, the prediction can
never be perfect because the systems are not linear nor all-pole and there is always
some noise. Moreover, the input z(n) is unknown. Nevertheless, when we model the
vocal tract with an all-pole model, the results are very good.

So if we form equation 3.4 as an all-pole system we will have:

§n) = — kﬁau@)y(n k). (3.5)

Since b(k) = 0, we have to compute «(k) such that the prediction is as close as
possible to the original output of the system. There are two ways to compute a(k),

the autocorrelation method and the Levinson - Durbin Recursion.

Autocorrelation Method

In the autocorrelation method, the parameters «(1), ..., a(p) are chosen in a way that

>_(5(n) —y(n))*

n

is minimized. In the following the output y(n) will be denoted as s(n).
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So we have a speech signal s(n) with a finite number of nonzero elements. With
the given prediction coefficients (1), «(2), ..., a(p), the energy prediction error can

be written as

E, = n;f_fooe(n)z
_ niw[s(n)—é‘(n)P
= ﬁm[sm) - él —a(k)s(n — k)],

where p is the length of the prediction filter and §(n) is the prediction of the s(n).By
having convention that «(0) = 1, the energy E, of the prediction error can be written

as
0 P

E,= > D alk)s(n— k)

n=—oo k=0

Now we have to minimize FE, in terms of a(1),...,a(p). A necessary condition for
optimality of the choice of «(i) is that the partial derivative of E, with respect to
variable (i) equals zero. Notice that E, depends on the variables a(1), (2), ..., a(p)
so it could be written as E,(a(1), ®(2), ..., a(p)) but we omit this to keep the notation

short. The partial derivative with respect to a(i),i =1,2,...,p is:

oE, 3Z,L[Zi:0 a(k)s(n—k)]?
dali) 90()
3 P « s(n—
n k=0

= 22y a(k)s(n — k)]s(n — i),

n k=0

where the differentiation rule f(g(x)) = f'(g(z))¢'(x) has been utilized. By regroup-

ing this we get

”E:oo Q[é()a(k)s(n — k)]s(n — i)
=25 a(k) 3 s(n—k)s(n—1)

- zéoa<k)r<k, i)

where
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is in fact the autocorrelation of the signal s(n) with delay k& — ¢ which is

o0

3 stps(n— (k=)
because, _
r(k,i) = nzi'i;ms(n — k)s(n — i)
- niws((n +i) — k)s((n +1) — i)
_ nims(n)s(n — (k—1)).

Moreover the term 7(k,7) depends only on value k — i so it can be denoted by one

variable autocorrelation function
r(k —1i) =r(k,i).
By setting the derivatives to zero, we obtain:

230 palk)r(k—1)=0
230 salk)r(k—2)=0

i

250y alk)r(k - p) =0

which can also be written in the following form, with a(0) =1 and r(k) = r(—k)
ket (R)r(k —1) = —r(1)

ket 2(R)r(k = 2) = —r(2)

e (k)r(k —p) = —r(p)

which in turn can be reformulated with matrices as:

M0 r1) @ o 1) | | a) r(1) |
) ) ) -2 || a@ r(2)
M@ ) () -3 || a®) | =] r®)
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The coefficient matrix is symmetric and Toeplitz due to r(k) = r(—k) and r(k, i) =
r(k —i,1), which is crucial when deriving a fast computational method to find the
coefficients (1), a(2), ..., a(p).

At this point we have derived the equations (so called normal equations) for the
prediction coefficients a(1), a(2), ..., a(p) based on the minimization of the prediction
error. Now the coefficients could be solved by inverting the autocorrelation matrix,

but this is computationally rather demanding.

Levinson - Durbin Recursive algorithm

In the Levinson - Durbin Recursive algorithm the basic idea is to solve the matrix
equation

Rx =y

in steps, that is, by increasing the length of the vector x and by calculating a new

solution based on the previous solution. The optimal coefficients satisfy

P
a(i)r(i) = E,

=0

where E is the sum of squares of prediction error. By using this, the group of equations

boils down to

r(0)  r(1) r(2) r(p) 1 E
r(t)  r(0) r(1) rip=1) | | (1) 0
r(2)  r(1) (0) r(p —2) a2) | =1 0
| r(p) rlp=1) rlp=2) -~ r(0) ||a@ | | 0]

The matrix on the left is still symmetric and Toeplitz. Assume that we have

already solved the equation when p = 2. Now, let us see how it helps us to solve
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as(1), a3(2), a3(3) when p = 3, where the subscript refers to the degree of the equa-

tion. So this is what we have already solved:

r(0) r(1) r(2) 1 E,
r(1) r(0) r(1) ax(l) | =1 0
r(2) (1) r(0) as(2) 0

r(0) (1) r(2) as(2) 0
r(1) r(0) r(1) ax(l)y | =1 0 |,
r(2) r(1) r(0) 1 Ey

thus: symmetric Toeplitz matrices have the property that when the coefficient vector

and the result vector are twisted upside down, the equation is still satisfied.

_T(O) r(1) r(2) T(3)_ 1 | _ 0 |
r(1) r(0) r(1) r(2) as(1) az(2)
+ k3
r(2) (1) r(0) (1) az(2) as(1)
_r(3) r(2) r(1) T(O)_ 0 | I 1 ]
_ . - _ q -
0 0
= + k3 )
0 0
L q 4 _EQ_.

where ¢ = 3°7_ an(i)r(3 — ).
For this to be a solution, we only require that all the elements, except the first

one, in the vector on the right side are equal to zero. It will be so, if

q+ ksEy =0,
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in other words

We notice that
E3 = E2 + kgq

= Ey+ ks(—ksE»)
— B(1-k)
Thus, we found that by trying a vector that is a sum of the lower degree solution
and its twisted version multiplied by a constant, we get a solution to the problem of
the higher degree. Same deduction works in general when increasing the size from

n — 1 to n. Thus, the results are

and
an (1) = a—1(2) + kpoy—1(n — 7).
Because E,, > 0 (E, is the prediction error for the nth degree filter), it follows

k| < 1.

The values k,, are called reflection coefficients. Levinson-Durbin recursion will be
started with condition
r(0) = Ej,

which may be thought to be the error of the Oth degree predictor (no prediction at
all).

There exist also other methods and variations to solve the coefficients but Levinson-
Durbin recursion is the most commonly used one. Besides, calculating the coefficients
in this way guarantees that the absolute values of the reflection coefficients are always

< 1, yielding a stable filter.
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3.3 Line Spectral Frequencies vs LPC

Line Spectral Frequencies are widely used in speech coding, synthesis and recognition.
They are alternatives to represent the all-pole spectrum of speech. They are a useful
representation because the LPC coefficients are not a homogenous set and they do
not quantize too well resulting on large spectral distortion. They also interpolate
better than the LPC’s because we cannot compute LPC’s at two distinct times and
expect to accurately predict the in between values. The zeros of the LPC polynomial
are a better choice, since they all have the same physical interpretation. However,
finding these zeros numerically entails a complex two dimensional search, while the the
corresponding LSF zeros can be found by simple one-dimensional search techniques.

Let the m-th order inverse filter A,,(2),
Ap(z) =14z + o+ apz™, (3.6)

be obtained by the LP analysis of speech. The LSF polynomials of order m +
1, Puii(2) and Quni1(z),can be constructed by setting the (m + 1)-st reflection
coefficient to 1 or -1. In other words, the polynomials P,,.(z) and Q,,11(z), are
defined as

Pri1(2) = Ap(2) + 27 A (27 (3.7)

and
Qui1(2) = Ap(2) = 27"V A, (271 (38)

The zeros of P,,11(2) and Q,,+1(z) are called Line Spectral Frequencies and they
uniquely characterize the LPC invert filter A,,(z). Pni1(2) and @Qu41(2) are sym-

metric and anti-symmetric, respectively. They have the following properties:

e all of the zeros of the LSF polynomials are on the unit circle,

e the zeros of the symmetric and anti-symmetric LSF polynomials are interlaced,
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Figure 3.2 Examples of LSF coefficients derived from LPC of different orders

e the reconstructed LPC all-pole filter maintains its minimum phase property,

and

e LSFs are related with the formant frequencies. [15]

3.4 Maximum Likelihood Parameter Estimation

As long as we have calculated the training features for each speaker, our goal is to find
the set of A that best matches the training features. There are several techniques for
estimating the parameters of the GMM, but the most well-established if the Maximum
Likelihood (ML) Estimation. For a sequence of T training vectors X = 7, ..., 27, the
GMM likelihood can be written as

T

p(XIN) = [ p(#|N). (3.9)

t=1
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Unfortunately, this expression is not a linear function of the parameters of the GMM,
thus direct maximization is not possible. However, we can use the Expectation Max-
imization(EM) algorithm instead to obtain the parameter estimates by iteration.

The basic idea of the EM algorithm is, in every iteration, to estimate a new model
A such that if A the model of the previous iteration, p(X|\) > p(X|A). The new model
then becomes the initial one for the next iteration until some convergence threshold is
reached. On each EM iteration, the following re-estimation formulas are used which
guarantee a monotonic increase in the model’s likelihood rate:

Mixture Weights:

o1&
pi = T ZP(ZWu A) (3.10)
=1
Means:
0 = Sha il V)7 -
> =1 P T, )
Variances:

52 = Zic PUITL N (3.12)

' Z?:l p(i‘fh )‘) '

where o, z;, andy; refer to arbitrary elements of the vectors &;, #;, andji; respectively.

The a posteriori probability for class/speaker i is given by

= pibi(ft)
A= ———"—"——. 3.13
p<l|xt’ ) Z}i\/lzlpkbk(ft) ( )

3.5 Speaker Identification

For speaker identification, a group of S speakers S = 1,2,...,5 is represented by
GMM’s A1, A\g, ..., Ag. The objective is to find the speaker model which has the max-

imum a posteriori probability for a given observation sequence. Formally, under the
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Maximum Likelihood framework

~

S = arg 1rélkagxsp(X\)\k). (3.14)

Using logarithms and the independence between the observations, the speaker iden-

tification system computes
. T
e T . . 1
S = arg mmax, ;:1 p(Ze| k) (3.15)

in which p(Z|\g) is given in 3.4.
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Chapter 4

Speaker Identification Using

Compressive Sensing

In this chapter we will describe two of the three signal reconstruction algorithms used
for our experiments. The third one was Basis Pursuit and was described in the second
chapter. Moreover, the identification process will be described which is used when

applying CS theory on speaker identification application.

4.1 Orthogonal Matching Pursuit

Let’s consider a real valued signal s that is m-sparse. That means that s consists of
m nonzero elements. Moreover, let’s consider a N x d measurement matrix ® in R?,
independent to the signal s. In order to take measurements of the signal, we have
to take the inner products of the signal with every row of the measurement matrix
¢n with n = 1,..., N. We cannot take fewer than m measurements if we want to

reconstruct the signal, and we can reconstruct it by solving the following statement:

m;anHl subject to (f,¢n) = (s,¢n) for n=12 .., N. (4.1)

31
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providing that the measurement matrix is known. It has been shown that this recovery
is possible by Candes-Tao [10] and of Rudelson-Vershynin [11] who have published

Theorem 1.

Theorem 1 Let N > Kmln(d/m), and draw N vectors ¢q, ¢, ..., o independently
from the standard Gaussian distribution on R?. The following statement is true with
probability exceeding 1 — e*N. It is possible to reconstruct every m-sparse signal s in
R from the data {(s,¢n) : n = 1,2,.... N}. The numbers K and k are universal

constants.

Particularly, Gaussian measurement vectors succeed for every m-sparse signal with
high probability. The above statement is the main idea of the Basis Pursuit algorithm
for signal reconstruction but although it is a linear programming problem, it may take
a long time to solve and if optimization algorithms do not exist, it takes a lot of effort
to construct or implement one.

For the above reasons, Orthogonal Matching Pursuit Algorithm (OMP) was used
for signal reconstruction. The advantages of this algorithm is its ease of implemen-
tation and speed, although the performance of OMP was considered to degrade in
cases that are not simple [13]. This choice was made because the negative results that
were published for OMP were not misleading. Experiments have shown that OMP is
capable to recover a m-sparse signal when the number of measurements is a multiple

of m.

Theorem 2 Fiz 0 € (0,0.36), and choose N > Kmln(d/d). Suppose that s is an
arbitrary m-sparse signal in R¢. Draw N measurement vectors ¢1, ¢, ..., ¢n indepen-
dently from the standard Gaussian distribution on R?. Given the data {(s,¢,) : n =

1,2,..., N}, Orthogonal Matching Pursuit can reconstruct the signal with probability



4.1 Orthogonal Matching Pursuit 33

exceeding 1 —20. For this theoretical result, it suffices that K = 20. When m is large,

it suffices to take K ~ 4.

As we mentioned, our signal is a m-sparse vector in ®¢ and measurement matrix is
® which is NV x d. The actual measurements will be an N-dimensional vector v = ®s.
That means that vector v is a linear combination of m columns from ® since s is a
m-sparse signal. In order to recover the original signal, we have to determine which
m columns take part in the measurement vector v and pick them in a greedy fashion.
The basic idea of the OMP algorithm is to choose the column of ¢ that is most
strongly correlated with the remaining part of v in each iteration. Then subtract off
its contribution to v and iterate on the residual. After m iterations, the algorithm
will have identified the correct set of columns.

Analytically, the input of the algorithm is a N X d measurement matrix ®, a N-
dimensional data vector v and m (the sparsity level of the original signal). For the

signal recovery the following steps are conducted in each iteration:
1. Initialize the residual as the measurements ry = v and the the index set Ay = 0.

2. Find the solution in the optimization problem

-----

If the solutions are more than one, process the solutions deterministically.

3. Add the solution found in the index set, and ¢,, in the matrix of the chosen

atoms.

4. Find a new signal estimate by solving

z, = argmin [[ 0z — vll;.
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5. The new data approximation is oy = ®,x; and the new residual is r;, = v — 4.
6. If iterations are not completed, return to Step 2.

7. The indices of the nonzero elements of the original signal are listed in the index

set and the value of the signal in A; equals to the jth component of z;.

The residual 7, in every iteration is orthogonal to the columns of the measurement
matrix, thus the algorithm selects a new atom in each step and ¢ has full column
rank. OMP is a relatively-efficient iterative algorithm that produces one component
of ex; in each iteration, and thus allows for simple control of the sparsity of the signal.
As the true sparsity is often unknown, the OMP algorithm is run for a pre-determined

number of iterations, K, resulting in x being K-sparse.

4.2 SLO complex

The main idea of the Smoothed L0 algorithm is to find a sparse solution for the
optimization problem As = x by directly minimizing the [y norm, that is the amount
of the nonzero elements of the signal. It is called smooth because the [y norm is
not a continuous function but if we try to minimize it we have to find a smooth
approximation of it, in order to use gradient based methods and solve the sensitivity
to noise.

This problem is said to be intractable as the dimensions increase because it requires
a combinatorial search. This is why researchers tried other forms of solutions like
minimizing the /; norm (Basis Pursuit). This solution is easy to find by Linear
Programming and the algorithm is based on the idea that the Basic Pursuit’s optimal
solution is also the minimum [y norm minimum.

The Iy norm of signal s = [sy,...,s,]7 is defined as the number of the nonzero
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36 Chapter 4 Speaker Identification Using Compressive Sensing

elements of s. We can form this in the following equations:

1 s#0
v(s) = 7 (4.2)
0 s=10

then

n

Isllo = >_v(si). (4.3)

i=1

Equation 4.2 is the main problem of the minimization due to its discontinuities.
This is why it is replaced by other functions such as zero mean Gaussian, in order to

be differentiable. If we define:

fcr - eXp(_32/202)7 (44)
we have:
1 s=0
limo — 0fsigma(s) = =1-—u(s). (4.5)
0 s#0

If we define a function

then the limit in 4.5 will be:

limo — 0F,(s) => (1 —v(s;)) = n— [|s]o. (4.7)
i=1

with ||s|lo & n — F,(s). The value of o specifies the trade-off between accuracy and
smoothness of the approximation. The smaller the o the better the approximation
to the real minimum value of the /[y norm, and the larger the o the smoother the
approximation. For small values of ¢ F, has a lot of local maxima which makes the

maximization very difficult.
In order not to get trapped in a local maxima, the algorithm initializes the value
of o at oo and then gradually decreases it. The choice of ¢ to be initialized as oo was

because of the the following theorem:
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Theorem 3 The solution of the problem: Maximize F,(s) subject to As = x, where

o — 00, is the minimum ly norm solution of As = x, that is s = AT(AAT) 'z

By maximizing F,(s), s gets as sparse as possible.

The final SLO algorithm is :

e Initialization

1. Choose an arbitrary solution from the feasible set S, vg.

2. Choose a suitable decreasing sequence for o, [07...0k]
o for k =1,...K:

1. Let 0 = oy,.

2. Maximize (approximately) the function F, on the feasible set S using L
iterations of the steepest ascent algorithm (followed by projection onto the

feasible set):
— Initialization: s = vy_;.
—forj=1..L:
(a) Let: As = [s;exp(—s2/20%), ..., 51 exp(—s2/20%)]| .
(b) Let s + s — uAs.

(c) Project s back onto the feasible set S:
54 s— AT(AAT) 1 (As — 1)
3. Set v, = s.

e Final answer is s = v;.
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[14]
One advantage of the SLO algorithm is that we do not need to spend much time to
wait for it to converge. All the algorithm needs is to be near the absolute maximum

of F, for escaping the local maxima, which can be achieved in just a few iterations

(small L).

4.3 Speaker Identification Using CS

In order to perform speaker identification using compressed sensing, we have to con-
struct a codebook of basis matrices from speech training data for each of the §
speakers that we wish to identify, just like it was mentioned in section 2.2. This
is essentially formed by performing a codebook of the LSF vectors of each speaker
separately. This process is in fact similar to the GMM training for speaker identifica-
tion, and is based on the assumption that LSF”s are suitable feature vectors for the
classification task.

A simple way to do classification using compressed sensing is to find a basis for
each of the C' classes of interest, and then reconstruct a sparse vector from each
of the class bases. The measured signal is then said to come from the class that
produced the sparsest recovered vector. This can work well, but requires that the
class bases be incoherent. In our case, the class bases would be the h;”s for each
speaker. Unfortunately these bases are far from incoherent. We thus need to find
another method to perform speaker identification, and we proceed in the following
manner.

We first find a residual excitation vector for each basis matrix from each speaker”s

codebook using

Fsg = argmin ly — ®hgyr|la  such that |r]o = K. (4.8)
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Once these have been found, we then calculate
ds = min ly — ®hs 75|, (4.9)

which represents the minimum distance between the measurements y and measure-
ments from the reconstructions from the s-th speaker”s codebook.
Now, let d; 5 be the d; calculated for the i-th frame. The actual speaker s* in the

i-th frame should have the smallest distance, so that
d@s* < di,37 Vs 7é S k. (410)

Thus if this is true we have chosen the correct speaker, and if not we have an error.
In practice, we can greatly improve the reliability of speaker identification by
considering n frames at a time. This is based on the fact that the speaker will not
change from frame to frame, and will rather be constant for a group of frames. Thus
we use a sliding window to determine the most probable speaker as
A i
§ = arg msmj_i_%_l) di s, (4.11)
to determine the speaker. Obviously if § # s then the identification has failed for
this particular segment. This approach is the same as the segment-based approach

for identification.



Chapter 5

Results

In this chapter we discuss the results of our research. All the experiments were
conducted using speech signals from the VOICES corpus, available by OGI’'s CSLU
[16]. The speech signals, originally sampled at 22 kHz, were downsampled at 8 kHz,
with N = 320 samples per frame and 50% overlapping between frames. The training
data consisted of 30 sentences from 12 speakers, resulting in around 6000 frames per
speaker. All the the simulations were performed using 10 sentences for each speaker
different to those used in the training process. This provided more that 2000 frames
of test data per speaker.

We performed the experiments using three types of signal reconstruction algo-
rithms. SLO complex, Basis Pursuit and Orthogonal Matching Pursuit. SLO complex
algorithm was implemented by Massoud Babaie-Zadeh and Hossein Mohimani and
is available at http://ee.sharif.ir/ SLzero , Basis Pursuit was implemented by Justin
Romberg, Caltech and is available in the toolbox l1-magic, and finally the OMP
algorithm was implemented in Stanford and is available in the toolbox SparseLab.

For each of these cases experiments were conducted using a codebook of size L =

8, and the process described in chapter 4. For the case of OMP, experiments were
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conducted for larger codebooks too, and for different numbers of iterations.

5.1 SLO complex and Basis Pursuit

As a first step, we tested the performance of the sparsity-based speaker identification
for SLO Complex. The measurement matrix ® consisted of M x N Gaussian samples
with zero mean and unit variance. The performance measure used was the probability
of correct identification of the speaker using 4.11 with n equal to 140 frames (2.8
seconds), and averaged over all 12 speakers. The sparsity level range tested, was
from 50% of the signal to 90% of the signal. The probability of correct speaker
identification using these two reconstruction algorithm is shown below. The same
conditions were tested using Orthogonal Matching Pursuit for reconstruction. The

results were better so we continued the experiments only with OMP.

—#— Basis Pursuit
—&— 510 complesx
—&— OMP

09

Probability of correct identification

L 1 i i
0.4 0E 07 na 0.9
[

Figure 5.1 Probability of correct identification versus the number of itera-
tions of the three reconstruction algorithms for a codebook size of 8.



5.2 Orthogonal Matching Pursuit 43

5.2 Orthogonal Matching Pursuit

Initially, we tested the performance of the sparsity-based speaker identification. The
measurement matrix ® consisted of M x N Gaussian samples with zero mean and unit
variance. The performance measure used was the probability of correct identification
of the speaker using 4.11 with n equal to 140 frames (2.8 seconds), and averaged over

all 12 speakers.
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Figure 5.2 Probability of correct identification versus the number of itera-
tions of the reconstruction algorithm for a codebook size of 16. The number
of measurements is equal to half the Nyquist rate (M = N/2).

As an initial investigation, we looked at the effect of the number of iterations of
the OMP algorithm, K, on our proposed method for M = N/2 measurements per
frame. The results are shown in Figure 5.2 for a codebook size of L = 16. The
identification process can be seen to not be very sensitive to K around K =~ M/4,
and it is this value for K that we used in the rest of this work.

Figure 5.3 presents the performance of our proposed method as the number of
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Probability of correct identification

0 0.25 0.5 0.75 1
M/N

Figure 5.3 Probability of correct identification versus the number of mea-
surements for various speaker codebook sizes. The number of iterations of
the reconstruction algorithm is equal to one quarter of the number of mea-
surements (K = M/4).

measurements M and the size of each speaker”s codebook L are varied. These results
are intuitively satisfying; as M decreases, the reconstruction quality will degrade,
and thus the probability of correct identification decreases. The results for M/N =
1 do not use compressed sensing, and this can be thought of as the best possible
performance. The performance also improves as L increases, although there seems to
be diminishing returns after L = 32, and each increase in L increases the complexity
of the identification process. Thus for L = 32 with 50% measurements the probability
of correct identification is about 0.8, and if the measurements are lowered to 25% this
probability drops to about 0.6.

All the previous results are for noise-free speech. We also explored the effect of
additive white Gaussian noise on the probability of correct identification for the L =

32, M = N/2 case, and this is presented in Figure 5.4, along with the corresponding
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Figure 5.4 Probability of correct identification versus the signal to noise
ratio of the speech signal for the Gaussian mixture model (GMM) method
and the proposed compressed sensing (CS) method.

results for the GMM method discussed in Chapter 3. The GMM method used 32
diagonal mixtures and the same training and testing data as the compressed sensing
(CS) method. It is clear that the CS method outperforms the GMM method once
the signal to noise ratio (SNR) is below 30dB. In fact, there is very little loss in

performance for the CS method down to an SNR of 20dB, and even an SNR of 15dB

only affects the performance mildly.
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Chapter 6

Discussion

In this work, we examined the effect of Compressive Sensing Theory on a speaker iden-
tification application using three different algorithms for signal reconstruction. The
experiments showed that speaker identification is possible using Orthogonal Matching
Pursuit although the probability of a right recognition could be improved.

Assuming the two methods (CS and baseline GMM method) were used in a sensor
with limited power resources, the CS method would require slightly more processing
than the GMM method in the sensor, as it needs to calculate the measurements,
although efficient measurement methods do exist. However the CS method would
require half the bandwidth of that of the GMM method to transmit the measurements
back to a central processor. This transmission power gain and the robustness to
noise for the CS method come at the cost of increased complexity in the speaker
identification algorithm, but for many applications this is acceptable.

We have presented a novel method for speaker identification based on a sparse sig-
nal model and the use of compressed sensing. The use of compressed sensing permits
the use of less transmission power for the sensor recording the voice. Additionally,

our method has been shown to be robust to noise in the recorded speech signal. This
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is an encouraging result, and warrants further investigation.

In order to have a more robust recognition we could utilize a part of the idea of [17].
The idea of this publication is on the one hand to enhance the training database by
adding samples with various amounts of noise. On the other hand, instead of using
the whole testing vector used to represent the speech signals, they use only the parts
that have a strong connection with the corresponding trained system.

The motive to use this specific publication was that the authors try to solve the
problem of speaker identification in noisy environments, and we noticed from the
experiments conducted that CS algorithms are already robust in noise. It describes
a method that combines a multicondition model training and missing feature theory
to model noise with unknown spectral characteristics. Multicondition training is per-
formed by generating multiple copies of the original training set which contains only
clean speech. Each copy gets corrupted by additive noise with specific characteristics.
Particularly, white noise at various signal-to-noise ratios is added to simulate the cor-
ruption. The augmentation of the training set results in a new likelihood function. If
we assume that @ is the original training set and ®;,7 =1, ..., L the corrupted ones,
then the likelihood will be:

L
p(X]5) = ;p(XI& ©1)p(Pi]5) (6.1)
where p(X|S, ®;) is the likelihood function of frame vector X trained on set ®;, and
P(®,]5) is the prior probability of the noise condition ®; for speaker S. This equation
is called a multicondition model.

Another step to make the speaker identification process further robust, is to choose
which part of the testing vector is going to participate in the process. One way to
do that is to ignore the heavily mismatched subbands and focus the score only on

the matching subbands. If X = (z1,z,...,2x) a test frame vector and X; C X be



49

a subset of X containing all the subband features corrupted at noise condition ;.
Then (6.1) will be refined as:
L

p(X]5) = lgp(XzIS, ®y) P(®]S5) (6.2)
where p(X;|S, ®;) is the marginal likelihood of the matching feature subset X, derived
from p(X|S, ®;) with the mismatched subbands features ignored to improve mismatch
robustness between test frame X and the training noise condition ®;. The approach
expressed in 6.2 extends the traditional approaches because traditional approaches
determine the importance of a feature against the clean data, while the new approach
assesses this against the data containing variable degrees of corruption. This allows
the model to use not only clean data, but also noisy features that match the noisy
training conditions for recognition.

The posterior union model introduced by the authors of [17] is formulated finally

as:
C p(Xau(M)IS, 2 P(S, @)
ZS’,Z’ p(Xsub(M)|S/a q)l’)P(S7 q)l’)

where X (M) is the subset of test frame X with length M and is considered as a

function of the length of the subset of the subbands we keep and not of the content.

Based on the basic idea of 6.2 we could expand the algorithms used for speaker
identification of this work. Instead of using a dictionary made of clean speech, we
could apply the same principle as the multicondition model and use a larger dictionary
with simulated corruption. Thus, even if CS algorithms are robust to noise because
they ignore very small elements considered as noise, if they cannot be ignored they

can be recognized correctly.
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