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Abstract

During the last decades, sinusoidal model gained a lot of popularity since it is able to represent

non-stationary signals very accurately. The estimation of the instantaneous components (i.e.

instantaneous amplitude, instantaneous frequency and instantaneous phase) is an active area

of research. In this thesis, we develop and test models and algorithms for the estimation of the

instantaneous components of sinusoidal representation. Our goal is to reduce the estimation error

due to the non-stationary character of the analyzed signals by taking advantage of time-domain

information. Thus, we re-introduce a time-varying model referred to as QHM which is able to

adjust its frequency values closer to the true frequency values. We further show that an iterative

scheme based on QHM produce statistically efficient sinusoidal parameter estimation. Moreover,

we extend QHM to chirp QHM (cQHM) which is able to capture linear evolution of instantaneous

frequency quite satisfactorily.

However, neither QHM nor cQHM are not able to represent highly non-stationary signals

adequately. Thus, we further extend QHM to adaptive QHM (aQHM) which uses time-domain

frequency information. aQHM is able to adjust its non-parametric basis functions to the time-

varying characteristics of the signal. This results to reduction of the estimation error of the

instantaneous components. Moreover, an adaptive AM-FM decomposition algorithm based on

aQHM is proposed. Results on synthetic signals as well in voiced speech showed that aQHM

greatly reduce the reconstruction error compared to QHM or sinusoidal model of McAulay and

Quatieri [1].

Concentrating on speech applications, we develop an analysis/synthesis speech system based

on aQHM. Actually, aQHM is used for the representation of the quasi-periodicities of speech

while the aperiodic part of speech is modeled as a time- and frequency-modulated noise. The

resynthesized speech signal produced by the proposed system is indistinguishable from the origi-

nal. Finally, another application of speech analysis where aQHM can be applied is the extraction

of vocal tremor characteristics. Since vocal tremor is defined as modulations of the instantaneous

components of speech, aQHM is the appropriate model for the representation of these modula-

tions. Indeed, results showed that the reconstructed signals are close to the original signals which

validate our method.
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Περίληψη

Κάτα την διάρκεια των τελευταίων δεκαετιών, τα ημιτονοειδή μον΄τελα έχουν γίνει δημοφιλή λόγω

της ικανότητάς τους να αναπαριστούν μη στάσιμα σήματα με ακρίβεια. Η εκτίμηση των στιγ-

μιαίων συνιστωσών (δλδ. του στιγμιαίου πλάτους, της στιγμιαίας συχνότητας και της στιγμιαίας

φάσης) της ημιτονοειδούς αναπαράστασης είναι μια ενεργή ερευνητική περιοχή. Σε αυτό το δι-

δακτορικό, αναπτύσσουμε και τεστάρουμε μοντέλα και αλγορίθμους για την εκτίμηση των στιγ-

μιαίων συνιστωσών της ημιτονοειδούς αναπαράστασης. Ο στόχος μας είναι να μειώσουμε το σφάλμα

εκτίμησης που οφείλεται στον μη στάσιμο χαρακτήρα του σήματος προς ανάλυση εκμεταλλεύομενοι

την χρονική πληροφορία του σήματος. Επαναφέρουμε ένα χρονικά μεταβαλλόμενο μοντέλο το οποίο

ονομάζουμε QHM το οποίο είναι ικανό να προσαρμόζει τις τιμές των συχνοτήτων του στις πραγ-

ματικές τιμές του σήματος. Επιπλέον, δείχνουμε ότι ένας επαναληπτικός αλγόριθμος βασισμένος στο

QHM εκτιμά τις παραμέτρους του ημιτονοειδούς μοντέλου στατιστικά βέλτιστα. Ακόμα, μια παρ-

αλλαγή του QHM την οποία ονομάζουμε cQHM μπορεί να μοντελοποιήσει ικανοποιητικά γραμμικές

μεταβολές στις συχνότητες.

΄Ομως, ούτε το QHM ούτε το cQHM είναι ικανά να αναπαραστίσουν σήματα με υψηλή μη

στασιμότητα. Γι΄vαυτό παρουσιάζουμε μια δεύτερη παραλλαγή του QHM που ονομάζεται aQHM το

οποίο χρησιμοποιεί χρονική πληροφορία στις συχνότητες. Το aQHM είναι ικανό να προσαρμόζει τις

μη παραμετρικές συναρτήσεις βάσης του στα χρονικά μεταβαλλόμενα χαρακτηριστικά του σήματος

προς ανάλυση. Αυτό έχει σαν αποτέλεσμα την μείωση του σφάλματος εκτίμησης των στιγμιαίων

συνιστωσών. Επιπροσθέτως, ένας προσαρμοστικός αλγόριθμος αποδιαμόρφωσης AM-FM σημάτων

βασισμένος στο aQHM παρουσιάζεται. Τα αποτελέσματα πάνω σε συνθετικά σήματα καθως επίσης

και σε σήματα φωνής δείχνουν ότι το aQHM μειώνει σημαντικά το σφάλμα αναπαράστασης σε σχεση

με το QHM ή το ημιτονοειδές μοντέλο των McAulay και Quatieri [1].

΄Οσον αφορά τις εφαρμογές, αναπτύσσουμε ένα σύστημα ανάλυσης/σύνθεσης φωνής βασισμένο

στο aQHM. Βασικά, το aQHM χρησιμοποιείται για να αναπαραστήσει τα περίπου περιοδικά φαινόμενα

της φωνής ενώ τα απεριοδικά φαινόμενα μοντελοποιούνται ως χρονικά και φασματικά διαμορφωμένος

θόρυβος. Το παραγώμενο συνθετικό σήμα φωνής δεν ξεχωρίζει ακουστικά από το αρχικό σήμα.

Τέλος, μια άλλη εφαρμογή όπου το aQHM μπορεί να χρησιμοποιήθει είναι η εξαγωγή χαρακτηρισ-

τικών του φωνητικού τρέμολο. Επειδή το φωνητικό τρέμολο ορίζεται ως η χρονική μεταβολή των

στιγμιαίων συνιστωσών της φωνής, το aQHM είναι κατάλληλο για την αναπαράσταση αυτών των

μεταβολών. Πράγματι, τα αποτελέσματα δείχνουν ότι το αναπαραστούμενο σήμα είναι πολύ κοντά

στο πραγματικό.
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Chapter 1

Introduction

One of the most important aspects in signal processing is the extraction of useful information from

measurements obtained from physical or mechanical systems. Physical systems include speech

production [2], musical instruments [3], marine mammals [4] while, mechanical systems include

radars and sonars [5], [6] or digital communication systems [7]. In these systems, measurements

are usually called signals which are functions of time or space or any other special domain.

Typically, signals are represented by a parametric model whose parameters should be accurately

estimated. The choice of the model depends crucially on the physical properties of the analyzed

signal as well on the efficiency of the parameter estimation method. Indeed, a simple model

usually has a straightforward and easy estimation solution but it is unable to represent accurately

the signal, while, a very complex model may lead to intractable parameter estimation.

Concentrating on speech processing, an accurate representation of speech by parametric

models is necessary for applications such as speech analysis/synthesis and speech modifica-

tion/transformation. Actually, in such applications, the quality of the output speech is more

significant, to some extend, than the computational burden. Indeed, if the signal is not accu-

rately modeled, then the modeling error produced during the representation/analysis step will

be propagated to the modification/transformation/synthesis step resulting in perceptual degra-

dation of the quality of the resynthesized signal. Another area of speech processing where the

modeling accuracy is crucial is that of voice pathology, where recorded speech is used as a non-

invasive technique for the extraction of information related with the voice-production process

and organs. In all these applications, high quality analysis of speech is required. There, the non-

stationary, nonlinear, and non-Gaussian character of speech signals should be considered. Thus,

the estimation and more generally the whole processing of speech becomes a quite demanding
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task.

In this thesis, signals —most of the times speech— are represented using the sinusoidal

model (SM) which adequately addresses the non-stationarity of speech signals. In sinusoidal

representation, signals are assumed to consist of a superposition of sinusoids whose amplitude

and frequency are time-varying. The goal is to accurately estimate the time-varying components

of each sinusoid. The following Section reviews the sinusoidal representation as well approaches

which have been proposed in the literature for the estimation of the unknown parameters of

SM. The limitations of the estimation methods due to the multi-component and non-stationary

character of the analyzed signals are also presented. Moreover, the connection between the

sinusoidal representation and AM-FM signals is provided.

1.1 Review of Sinusoidal Models

Sinusoidal representation, as it was introduced by McAulay and Quatieri [1], received great

popularity due to its simplicity in formulation and estimation as well its wide applicability in

speech and audio synthesis [1, 8, 9, 10], coding [11, 12] and modification [13]. The estimation

of the instantaneous components in sinusoidal representation engaged a lot of research work

during the last decades. In the original work of McAulay and Quatieri [1], the analyzed signal

is chopped into frames and the basic assumption is that locally each frame consists of sinusoids

with constant amplitudes and constant frequency. Then, the sinusoidal components for one frame

are determined from the maxima of the magnitude of the Fourier transform of the frame. This

algorithm is known as spectral pick-peaking and it is motivated from the fact that periodogram

is asymptotically an efficient frequency and amplitude estimator [14]. Quadratic interpolation is

used for reducing the bias due to the discretization of the frequency-domain. Recently, further

studies [15, 16, 17, 18] on the bias of the pick-peaking estimation algorithm led to improvements

in the accuracy of the quadratically interpolated FFT-based pick-peaking estimation algorithm.

It is noteworthy that SM had been studied earlier by Hedelin [19] and by Almeida and Tribolet

[20] but in a limited framework. Indeed, in [19] and in [20] as well in the work of Serra [9] and Serra

and Smith [21] only the voiced speech was represented by SM while [1] suggested, under certain

conditions that also unvoiced speech can be represented by SM. A second sinusoidal parameter

estimation method has been proposed by George and Smith [22, 23, 24] which is based on an

analysis-by-synthesis scheme. In order to determine the sinusoidal parameters, their method uses

a successive approximation-based analysis-by-synthesis procedure rather than peak-picking.
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A third approach for the estimation of sinusoidal parameters is based on the minimization

of an error function which is usually the weighted sum of squared error between the model and

the analyzed frame. This approach is known as the least squares (LS) method [25], [26] and

for Gaussian noise is equivalent to the maximum likelihood estimator (MLE). In the context of

sinusoidal parameter estimation, the minimization of the LS is highly nonlinear for the frequency

parameters while it is linear for the amplitude and phase parameters. Thus, the estimation is

typically split into two subproblems. The first subproblem is to compute an estimate for the

frequencies using methods such as Pisarenko [27] or Yule-Walker [28]. The second subproblem

is the estimation of the complex amplitudes —which merge both real amplitude and phase—

by linear LS [29], [30]. Moreover, iterative schemes such as Gauss-Newton method [31] can be

applied for further improving the accuracy of the frequency estimation leading to asymptotically

efficient estimation. Particularly in voiced speech, Stylianou [32] assumed that frequencies are

integer multiples of a fundamental frequency and proposed to estimate fundamental frequency by

autocorrelation combined with spectral methods and then the complex amplitudes are computed

by linear LS. In this thesis, we also use linear LS method for the estimation of the parameters of

the suggested models.

Even though the sinusoidal model with FFT-based parameter estimation is widely used be-

cause of its simplicity, there are some limitations in this approach. Indeed, for multicomponent

signals, such as speech, the interference between the components affects the accuracy of the

FFT-based estimation methods. In order to alleviate the errors due to component interference,

the duration of the analysis window should be increased. But then, the assumption of local

stationarity is less valid resulting again in biased estimation, this time, due to the non-stationary

character of the signal. On the other hand, LS amplitude estimation method tackles the problem

of interference by canceling the interfering components, hence, windows with shorter duration

may be used. Even though shorter windows can be used, the stationary assumption is not always

valid within an analysis frame, thus, both amplitude and frequency modulation of the signal

during the frame may produce bias at the parameter estimation, consequently, artifacts at the

signal representation. For instance, one well known artifact in sinusoidal modeling is the pre-echo

effect due to amplitude bursts which is tackled using for instance exponentially damped sinusoids

[33, 34] or filterbank approaches as in [35].

However, the estimation of frequency modulations is more crucial compared with the estima-

tion of amplitude modulations due to the fact that the parametric estimation of the time-varying

amplitude given the time-varying frequency is always linear [36, 37] in the context of LS esti-
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mation. A lot of effort has been put in signal processing community on modeling the frequency

modulation of the analyzed frame. In order to remove the local stationarity assumption within

a frame, the most common extension is to assume linear evolution of the frequency, thus, a chirp

model replaces SM for one frame. Based on the fact that the Gaussian window has Fourier trans-

form which is again a Gaussian function, many studies [38, 39, 40, 41] estimate the chirp rate by

fitting a quadratic function to the log-magnitude spectrum. Other chirp rate estimation methods

include discrete polynomial phase transform [42, 43] which is able to handle even higher-order

frequency modulations, and, in the context of phase vocoder, chirp rate can be estimated from

the slope of the derivative over time of the estimated instantaneous phase [44].

A different way of improving the accuracy of the sinusoidal parameter estimation is to in-

crease the resolution of the Fourier spectrum. Reassignment method [45], [46] is a technique

which refines both time and frequency resolution of the spectrogram. Moreover, variants of the

Fourier transform such as Chirplet transform [47], [48] or fractional Fourier transform [49], [50]

or Fan-Chirp transform [51], [52] are applied for smearing out the non-stationary sinusoids which

are spread exactly due to the non-stationarity. One limitation of these approaches is that the

parameters which determine the non-stationarity (for instance, the chirp rate which determines

the linear evolution of the frequency) should somehow provided a priori. Other time-frequency

distributions, such as Wigner-Ville [53], can be used with optimal results for some special cases.

However, their use is rather limited in the case of multicomponent signals due to high amplitude

interfering components.

1.1.1 AM-FM Signals and Demodulation

The definition of SM is well connected with the definition of an AM-FM signal. Actually, the

mathematical definition of both models are mainly the same, although, there are differences

between them. For instance, the components of an AM-FM signal may cross-over and usually

the carrier frequency is of orders greater than the modulation frequency which is not typical

for SM. Moreover, the number of components in AM-FM signals is usually smaller than the

number of components in SM. In voiced speech, for instance, SM may be applied for modeling

the harmonics, while AM-FM representation models the formants of speech (usually one formant

per kHz). Since we develop an algorithm which is able to decompose both time-varying sinusoids

and AM-FM signals, we will review most of the AM-FM demodulation algorithms presented in

the literature.

The demodulation of an AM-FM signal depends on the number of components it contains.
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For the mono-component case, analytic signal through Hilbert transform [54, 55] provides an es-

timate of the instantaneous amplitude and instantaneous phase. Instantaneous frequency is then

computed by differentiate the unwrapped instantaneous phase. Another well-known algorithm

for mono-component AF-FM demodulation is the Discrete Energy Separation Algorithm (DESA)

developed by Maragos, Quatieri and Kaiser [56, 57]. DESA utilizes the nonlinear Teager-Kaiser

operator which has fine time-resolution. For a comparison between Hilbert method and DESA,

please refer to [58] and [59]. Phase-locked loops [60], as well extended Kalman filter [61] are also

utilized for the demodulation of mono-component AM-FM signals.

However, the generalization to multi-component AM-FM signals is not a trivial task. Even

the well-posiness of the definition of a multi-component AM-FM signal received great attention

[62, 63, 64]. The most common solution for demodulation of a multicomponent AM-FM signal

is to pass the signal from a filterbank and then apply the preferred mono-component AM-FM

demodulation algorithm to the output of each filter [65, 66, 67, 35]. This approach is similar to

phase vocoder algorithm [68] used in speech processing. However, the interference between the

adjacent filters as well the crossing of a component between different filters add limitations to

this approach. Another AM-FM component-separation approach has been proposed relatively

recently by Santhanam and Maragos [69] which separates the AM-FM components algebraically

based on the periodicity characteristics of the components. This algorithm is very attractive

since the separation is accurate even when the AM-FM components cross each other. The weak

point of this demodulation method is that the period of each AM-FM component should be

correctly computed. Finally, a novel multi-component AM-FM decomposition algorithm was

proposed in [70] which is highly accurate for signal representation, however, the extracted AM-FM

components usually lacks physical meaning especially when the components have approximately

equal strength.

1.2 Contribution of this thesis

The importance of accurate sinusoidal parameter estimation has been highlighted. Different

approaches based on stationary or time-varying models which perform sinusoidal parameter esti-

mation as well their limitations have been presented. The time-varying frequencies of the signals

put a major limitation in the estimation methods since bias is introduced. Thus, a way to

efficiently tackle this issue is of high interest. The main objective of this thesis is to develop time-

varying models which are able to adjust locally their frequency information to the frequency of
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the analyzed signal. This results in reducing the estimation bias since the model representation

is more accurate. Hence, the quality of the signal representation is improved. Then, the novel

models are applied in applications such as speech analysis/synthesis and voice quality assessment.

The major contributions of the work presented in this thesis are:

• A time-varying model which is referred to as Quasi-Harmonic Model (QHM) was revised in

a new basis and its properties have been fully explored [71]. The estimation of the unknown

parameters of QHM is performed using Least Squares (LS) method.

• The most significant property of QHM is its ability to estimate the frequency mismatch

between the original frequency and the initially provided frequency for each component of

the signal. This is achieved by proper decomposition of the estimated QHM parameters.

Thus, an iterative algorithm called iQHM similar to Gauss-Newton (GN) method is de-

veloped for the estimation of sinusoidal parameters given an initial estimate of frequencies

[72]. Statistical efficiency of iQHM is also tested.

• The region of convergence of the iterative algorithm i.e., bounds on the maximum allowed

frequency mismatch is provided. It is shown that the frequency mismatch should be less

than one third of the bandwidth of the squared analysis window.

• An extension of QHM referred to as chirp QHM (cQHM) [73] which is able to capture

linear evolution of the frequency without the need of providing a priori the chirp rate is

also presented. Basic properties of cQHM are given.

• Another even more powerful extension of QHM, referred to as adaptive QHM (aQHM)

is proposed. Instead of initially estimated frequencies, aQHM uses an estimate of the

instantaneous phase. Thus, time information is added to the model which results in an

adaptive to the input signal and a non-stationary signal representation.

• An AM-FM decomposition algorithm is suggested [73], [74]. This algorithm is initialized

by QHM, which serves as a frequency tracker, providing, thus, an initial estimate of the

instantaneous components of the signal. The accuracy of the estimation is then improved

by aQHM.

• An interpolation scheme for the instantaneous phase is proposed. It is based on the integra-

tion of the instantaneous frequency plus a correction term which guarantees the continuity

of phase and of frequency.
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• Analysis/synthesis of speech based on separation of speech into two parts, the determin-

istic part and the stochastic part. The deterministic part is modeled by the sinusoidal

representation and the instantaneous components are estimated using a variant of the sug-

gested AM-FM decomposition algorithm. The stochastic part is modeled as a time- and

frequency-modulated noise. Time-modulation of noise is based on an estimation of the

energy envelope [75] .

• Extraction of vocal tremor characteristics of sustained vowels based on the suggested AM-

FM decomposition algorithm [76] is developed. The decomposition algorithm is applied for

the estimation of the instantaneous components of speech signals as well for the extraction

of acoustic characteristics of vocal tremor such as modulation frequency and modulation

level.

1.3 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, QHM, which is an extension of SM,

is introduced. Parameter estimation of QHM is performed through LS. The properties of QHM

both in time-domain and in frequency-domain are provided. Moreover, an iterative scheme is

presented which is able of unbiased estimation of sinusoidal parameters. The convergence of the

iterative algorithm are also investigated. Finally, an extension of QHM which is called chirp

QHM (cQHM) is provided.

Chapter 3 shows that stationary sinusoidal analysis is inappropriate for the case where the

analyzed frame is non-stationary. Thus, a novel model is introduced, namely aQHM, which is

able to adaptively estimate the time-varying characteristics of the frame. We show that aQHM

is fundamentally different from QHM. Furthermore, aQHM suggests an AM-FM decomposition

algorithm which is also presented. The performance of the new AM-FM decomposition algorithm

is tested on synthetic signals and on real voiced speech.

Chapter 4 presents an analysis/synthesis speech system based on the decomposition of speech

into two parts. The deterministic part, which accounts for the quasi-periodicities of speech, is

modeled by the sinusoidal representation whose parameters is estimated from the suggested AM-

FM decomposition algorithm. The stochastic part, which accounts for the aperiodicities of speech,

is modeled as time-modulated and frequency-modulated noise. Details on the implementation

issues are given.

Chapter 5 applies the proposed AM-FM decomposition algorithm for the estimation of vocal
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tremor properties. Thus, vocal tremor in sustained phonation is defined and an algorithm based

on the suggested AM-FM decomposition is used for the extraction of acoustical vocal tremor

characteristics such as modulation frequency and modulation level.

Chapter 6 resumes the major contributions and results of this thesis and gives some directions

for further research on sinusoidal parameter estimation, on AM-FM signal decomposition methods

as well on extensions of the presented speech applications.

Finally, Appendix A presents various computational tricks for faster estimation of QHM

unknown parameters while Appendix B shows the equivalence between iQHM and a sequential

version of GN method.



Chapter 2

Quasi-Harmonic Model

In this Chapter, we introduce the Quasi-Harmonic Model (QHM) for the representation of almost

(or quasi) periodic signals. QHM is not a novel model since it has been firstly introduced by

Laroche [77] back in 1989 for the representation of percussive sounds and, later, for modeling

of voiced speech by Stylianou [32]. However, the main properties of QHM were not extensively

explored. For instance, it was known that QHM contains frequency information ([32], pg. 83)

but it was not known why and, furthermore, how this information can be extracted correctly.

Recently, Valin et al. [78] defined a variant of QHM using linear approximations of trigonometric

functions. In this Chapter, we derive the time-domain and, most importantly, the frequency-

domain properties of QHM. We show that a proper decomposition of QHM’s parameters results

in estimation of the frequency mismatch between the analysis frequency and the true frequency

of a sinusoid, whenever there is a frequency mismatch. Furthermore, an iterative algorithm is

derived for the estimation of sinusoidal parameters using QHM and Least-Squares (LS) method.

However, some approximations are performed for the estimation of the frequency mismatch,

hence, we present the effects and the limitations of these approximations. Also the robustness

of the estimation process under noisy conditions is explored. Finally, a variant of QHM which is

able to capture not only frequency mismatches but also the chirp rate of the analyzed signal is

presented.
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2.1 Preliminaries

In the context of sinusoidal representation, the real signal to be analyzed is viewed as a sum of

amplitude-modulated and frequency-modulated sinusoids given by

s(t) = A0(t) +

K(t)∑
k=1

2Ak(t)cos(φk(t)) =

K(t)∑
k=−K(t)

Ak(t)e
jφk(t) (2.1)

where Ak(t) is the instantaneous amplitude, while φk(t) is the instantaneous phase of the kth

component, respectively. Instantaneous frequency is defined as the derivative of instantaneous

phase with respect to time scaled by 1/(2π), i.e.,

fk(t) =
1

2π

dφk(t)

dt
(2.2)

Note also that the number of components is not constant over time which is necessary for the

representation of non-stationary signals such as music or speech.

In a frame-by-frame sinusoidal analysis, signal s(t) is chopped into pieces called frames which

are denoted by

sl(t) = s(t− tl)w(t) (2.3)

where tl is the center of the frame and w(t) be the analysis window function with support in

t ∈ [Tl, Tl]. Typically, the window function vanish at the limits of its support so as to alleviate

the discontinuities at the boundaries of the frame as well to eliminate the side-lobe interference

between the components. Note also that the window length may depend on the particular frame

and, in speech analysis for instance, it is usual to depend on the local pitch period.

Sinusoidal modeling assumes that one frame has stationary components, meaning that it

consists of a superposition of sinusoids with constant amplitudes and constant frequencies, i.e.,

one frame is modeled as1

hs(t) =

K∑
k=−K

ake
j2πfktw(t), t ∈ [−T, T ] (2.4)

where K is the local number of components while fk and ak are the local frequency and local

complex amplitude of the kth sinusoid, respectively. As stated in Chapter 1, there is a vast

1In order to be consistent with (2.3), we should add a subscript to each parameter to denote the particular
frame number. However, it is not necessary for this chapter and it is dropped for simplicity. The additional frame
indexing is applied in Chapter 3 where the AM-FM decomposition algorithm is presented.
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literature on the estimation of the unknown sinusoidal parameters.

A usual restriction of the admissible frequency values of SM which is utilized in many real

signals results in the harmonic model (HM). In HM, the frequencies are not arbitrary, rather they

are determined as integer multiples of a fundamental frequency. Hence, HM is given by

hh(t) =

K∑
k=−K

ake
j2πkf0tw(t), t ∈ [−T, T ] (2.5)

where f0 is the local fundamental frequency and ak is again the local complex amplitude of kth

sinusoid. The typical estimation approach for HM’s unknown parameters is to firstly estimate

the local fundamental frequency using time-domain and/or frequency-domain techniques and

then estimate the complex amplitudes using linear LS [32]. However, this estimation approach

suffers from the fact that it produces bias in the estimation of complex amplitudes whenever the

local fundamental frequency is erroneous or whenever the frequencies of the real signal are not

exactly integer multiples of fundamental frequency. In QHM, which follows, the goal is again the

estimation of the complex amplitudes using LS method without the limitations due to inaccurate

frequency estimation. As we will show, QHM is able to correct frequency estimation errors, thus,

it produces unbiased estimates for the complex amplitudes.

2.2 Definition of Quasi-Harmonic Model, QHM

As in sinusoidal model (2.4), one frame is assumed to consist of a superposition of sinusoids

with constant frequencies and constant amplitudes. Nevertheless, we suggest modeling one frame

using a time-varying model referred to as QHM, which is defined by

hq(t) =

K∑
k=−K

(ak + tbk)e
j2πf̂ktw(t), t ∈ [−T, T ] (2.6)

where K is the number of sinusoidal components, f̂k is the analysis frequency for the kth com-

ponent which are assumed to be known, ak is the complex amplitude while bk is the complex

slope of the kth component, respectively. Please note that a−k = āk and b−k = b̄k as well that

a0, b0 ∈ R when the analyzed signal is real. Hence, QHM has 4K + 2 unknown real variables in

the real signal case. Analysis window, w(t), has support in [−T, T ]. We assume that the true

frequencies of the analyzed signal are not known, but an estimate of them is provided. Hence,
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there is a frequency mismatch error given by

ηk = fk − f̂k (2.7)

where fk are the true frequency of the kth component. It is very common in speech the a

priori provided frequencies, f̂k, being integer multiples of an estimated fundamental frequency,

i.e. f̂k = kf̂0.

The estimation of QHM unknown parameters is performed by minimizing the Least Squares

(LS) error. The error is defined by

ε(a,b) =
n=N∑
n=−N

|s(tn)− hq(tn)|2

= (s− E

a

b

)HWHW (s− E

a

b

)

(2.8)

where a = [a−K , ..., aK ]T and b = [b−K , ..., bK ]T are the unknown vectors of size (2K + 1) × 1,

s = [s(t−N ), ..., s(tN )]T is the samples of the analyzed frame of size (2N + 1)× 1, E = [E0|E1] is

the matrix with the exponentials of size (2N + 1)× (4K + 2). Furthermore, submatrices E0 and

E1 have elements which are given by (E0)n,k = ej2πf̂ktn and (E1)n,k = tne
j2πf̂ktn = tn(E0)n,k,

respectively, while W is a diagonal (2N+1)×(2N+1) matrix with entries the window values. The

superscript H denotes the Hermitian operator. It is noteworthy that while we used continuous-

time in (2.6), we switch to discrete-time in (2.8) in order to perform the LS computation. Please

note that in this thesis, discrete-time formulation is used only for the estimation of unknown

parameters of the models. In any other case, continuous-time will be used since it is easier for

mathematical manipulation.

The minimization of the error function is linear with respect to the complex unknown param-

eters given that the analysis frequencies, f̂k, are known. The solution in matrix notation is given

by â

b̂

 = (EHWHWE)−1EHWHW s (2.9)

Appendix A shows the fully discrete formulation and how the solution can be speed up by, firstly,

using some explicit formulas and, secondly, by taking advantage of the properties of the derived

matrices. Furthermore, we show in Appendix A that the time-consuming part of LS estimation

is not so much the inversion of the involved matrix but mostly its construction.
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Finally, for an objective evaluation of the modeling performance, we propose to reconstruct

the signal and then measure the Signal-to-Reconstruction Error Ratio (SRER) which is defined

as

SRER = 20 log10
σs(t)

σs(t)−ŝ(t)
(2.10)

where σs denotes the standard deviation of s(t), and ŝ(t) is the reconstructed signal. Please

note that SRER is measured in decibel (dB). For QHM, the reconstructed signal —actually,

reconstructed frame— is given by

ŝ(t) =

K∑
k=−K

(âk + tb̂k)e
j2πf̂ktw(t), t ∈ [−T, T ] (2.11)

2.2.1 Motivation Example

The advantage of QHM over HM is revealed when the analysis (or input, or a priori provided)

frequencies are different from the true ones. In such cases, the estimation of the complex ampli-

tude is biased due to the frequency mismatch and the representation of the analyzed signal is not

accurate. This is depicted in Figure 2.1 where a pure sinusoid with frequency 100Hz (line with

circles) is modeled with HM (solid line) and QHM (dashed line) with analysis frequency at 90Hz.

The duration of the signal is 40ms (T = 20ms) and Hamming window is used. Obviously, HM is

incapable of modeling the original signal while QHM is able to remedy the frequency mismatch

quite satisfactorily. Indeed, SRER for QHM is 20.5dB while SRER for HM is 8.5dB. In the

following Sections, we provide a solid theoretical analysis of this behavior and we suggest ways

to exploit it for the estimation of sinusoidal parameters in the context of LS estimation.

2.3 Properties of QHM

In this Section, we study the time-domain and frequency-domain properties of QHM showing in

parallel the differences between QHM and SM.

2.3.1 Time-Domain Properties

The time-domain characteristics of the model are discussed in this subsection. From (2.6), it is

easily seen that the instantaneous amplitude of the kth component is a time-varying function

which is given by

Mk(t) = |ak + tbk| =
√

(aRk + tbRk )2 + (aIk + tbIk)
2 (2.12)
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Figure 2.1: The Fourier spectra of the original signal (line with circles), of the reconstruction of
HM (solid line) and of the reconstruction of QHM (dashed line). Obviously, QHM representation
is closer to the original signal compared with HM.

where xR and xI denote the real and the imaginary part of x, respectively.

Since both amplitudes and slopes {ak, bk} are complex variables, instantaneous phase and

instantaneous frequency are not constant functions over time. Indeed, instantaneous phase for

the kth component is given by

Φk(t) = 2πf̂kt+ ∠(ak + tbk) = 2πf̂kt+ atan
aIk + tbIk
aRk + tbRk

(2.13)

while instantaneous frequency is given by

Fk(t) =
1

2π
Φ′k(t) = f̂k +

1

2π

aRk b
I
k − aIkbRk
M2
k (t)

(2.14)

Substituting (2.12) to (2.14), it is easily observed that the instantaneous frequency is a bell-

shaped curve similar to Cauchy distribution. Figure 2.2 shows the instantaneous frequency of

QHM (dashed line) as it is computed from (2.14). Obviously, it is closer to the true frequency

(line with circles) especially at the middle of the analysis window even though the analysis is

performed at a wrong frequency (solid line). From the same Figure, it is also obvious that

the overall shape of the instantaneous frequency of QHM has no correlation with the original

instantaneous frequency of the sinusoid, which is constant in this example. Finally, a feature of

the model worth noting is that the 2nd term of the instantaneous frequency in (2.14) depends
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on the instantaneous amplitude which means that the accuracy of frequency estimation (or,

the estimation of phase function) depends on the amplitude strength. This observation is in

accordance with the Cramer-Rao lower bound of frequency estimation [26].
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Figure 2.2: A frame of 40ms duration which contains a pure sinusoid with frequency 100Hz (line
with circles) is analyzed at 90Hz (solid line). Instantaneous frequency of QHM (dashed line)
tries to adjust to the true frequency of the sinusoid.

2.3.2 Frequency-Domain Properties

Let us consider the Fourier transform of hq(t) in (2.6) given by

Hq(f) =

K∑
k=1

(
akW (f − f̂k) +

jbk
2π

W ′(f − f̂k)
)

(2.15)

where W (f) is the Fourier transform of the analysis window, w(t), and W ′(f) is the derivative

of W (f) with respect to f . For simplicity, we will only consider the kth component of Hq(f)

Hq,k(f) = akW (f − f̂k) +
jbk
2π

W ′(f − f̂k) (2.16)

To reveal the main properties of QHM, we suggest the projection of bk onto ak as illustrated in

Figure 2.3. Accordingly,

bk = ρ1,kak + ρ2,kjak (2.17)
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where jak denotes the perpendicular (vector) to ak, while ρ1,k and ρ2,k are computed as

ρ1,k =
aRk b

R
k + aIkb

I
k

|ak|2
(2.18)

and

ρ2,k =
aRk b

I
k − aIkbRk
|ak|2

(2.19)

Figure 2.3: The projection of bk into one parallel and one perpendicular to ak component. Com-
plex numbers are thought as vectors on the plane.

Thus, the kth component of Hq(f) is rewritten as

Hq,k(f) = akW (f − f̂k)−
akρ2,k

2π
W ′(f − f̂k) +

jakρ1,k
2π

W ′(f − f̂k) (2.20)

Considering the Taylor series expansion of W (f − f̂k −
ρ2,k
2π ) we obtain

W (f − f̂k −
ρ2,k
2π

) = W (f − f̂k)−
ρ2,k
2π

W ′(f − f̂k) +O(ρ22,kW
′′(f − f̂k))

≈W (f − f̂k)−
ρ2,k
2π

W ′(f − f̂k)
(2.21)

Consequently, from (2.20) and (2.21) it follows that

Hq,k(f) ≈ ak
[
W (f − f̂k −

ρ2,k
2π

) + j
ρ1,k
2π

W ′(f − f̂k)
]

(2.22)
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Going back in the time-domain, (2.6) (i.e., QHM) is approximated as

hq(t) ≈
K∑

k=−K
ak

[
ej(2πf̂k+ρ2,k)t + ρ1,kte

j2πf̂kt
]
w(t) (2.23)

From (2.23), it is clear that
ρ2,k
2π can be thought as an estimate of the frequency mismatch

between the actual frequency of the kth component and the provided frequency, f̂k, while ρ1,k

accounts for the normalized amplitude slope of the kth component. Another way to see this

relationship, is to associate the time-domain and the frequency-domain properties of QHM. From

(2.14) and (2.19), it follows that
ρ2,k
2π

= Fk(0)− f̂k (2.24)

Therefore,
ρ2,k
2π accounts for a frequency deviation between the initially estimated frequency, f̂k,

and the value of the instantaneous frequency of QHM at the center of the analysis window (t = 0).

Similarly, for ρ1,k, we have

ρ1,k =
dMk(t)
dt |t=0

Mk(0)
(2.25)

which shows that ρ1,k provides the normalized slope of the amplitude for the kth component,

considering the instantaneous amplitude of QHM at the center of the analysis window.

Presumably, the decomposition of bk gives a way to estimate the frequency mismatch be-

tween the true frequency and the analysis frequency. Thus, it is straightforward to construct an

algorithm which performs sinusoidal parameter estimation.

2.4 Application to Sinusoidal Parameter Estimation

Previous Section suggests that an estimate of the frequency mismatch of the kth sinusoidal

component is given by

η̂k = ρ2,k/2π (2.26)

Thus, an algorithm which is able to iteratively estimate the frequency mismatches and correct

the frequencies is suggested. We name this iterative algorithm iQHM and it is given in pseudo-

code by

————————————————————————————————–

Iterative Sinusoidal Parameter Estimation
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————————————————————————————————–

1. Initialization

i. Get an initial estimate of frequencies, {f̂k}Kk=1

ii. Estimate {ak, bk}Kk=−K given {f̂k}Kk=1 using (2.9)

2. Do iterations

i. For each kth component:

a. Estimate η̂k using (2.26)

b. Update frequencies: f̂k ← f̂k + η̂k

ii. Reestimate {ak, bk}Kk=1 given {f̂k}Kk=1 using (2.9)

————————————————————————————————–

The above iterative algorithm converges to the true parameters when the frequency mismatch,

ηk, is adequately small. In the next Section we will provide the necessary conditions of the

frequency mismatch for the convergence of iQHM. Once the frequency mismatch is within the

appropriate region of convergence, the number of iterations needed for reaching a stable estimate

is very low. Typically two to four iterations are enough. Alternatively, a convergence criterion

can be used for stopping the iterative algorithm. For instance, a convergence criterion may be:

if
|f̂newk −f̂oldk |

f̂oldk
< ε is satisfied for all k, then stop. Please note that an estimate of the complex

amplitude of the kth sinusoid is provided by ak.

Finally, using Taylor series expansion, it can be shown that QHM is a linearization of the

frequency mismatch. This linearization in conjunction with LS method make iQHM similar to

other iterative sinusoidal estimation method. Indeed, iQHM can be viewed as a variant of the

Gauss-Newton (GN) optimization method which is developed in Appendix B. In Appendix B,

the similarities and the differences between iQHM and GN method are explored.

2.5 Effects of approximations on the frequency estimation pro-

cess and noise robustness

In the previous Section, we showed that ρ2,k/(2π) is an estimator, under certain conditions, of

the frequency mismatch between the true and the initially provided analysis frequencies of the
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underlying sine-wave. In this Section, we explicitly refer to these conditions and investigate their

effects. Namely, these are the effect of the analysis window and the effect of the approximation

in (2.21). Finally, we discuss the robustness of the frequency estimator under noise.

2.5.1 Effect and Importance of Window Duration

Since QHM has 4K + 2 unknown real parameters, the length of the analysis window should be

at least 4K + 2 (in samples) in order to obtain stable LS solutions. Moreover, low frequency

components need larger windows, and an empirical choice for the analysis window length is that

this should be at least 2b fs
min
k
fk
c where b·c denotes the floor operator while fs is the sampling

frequency. Furthermore, when the original signal is contaminated by noise, more samples (i.e.

larger window) are needed in order to perform more robust and accurate estimation of the un-

known parameters [26], [30]. On the other hand, when larger windows are used, the possibility of

the signal being non-stationary is higher, which may introduce errors and biases in the estimation

process. Additionally, we will show in the following subsection that the smaller the window length

the more valid is the approximation in (2.21). From the above discussion, it should be clear that

the length of the analysis window is very important and there is a trade-off between the accuracy

of the proposed iterative sinusoidal parameter estimation algorithm and its robustness. As a rule

of thumb, we suggest the use of as small as possible window length.

2.5.2 Estimation Error of Frequency Mismatch

Due to the approximation in (2.21), the suggested estimator for the frequency mismatch, ρ2,k/(2π),

is generally not an unbiased estimator. Moreover, frequency mismatch estimator cannot be, in

the general case, computed analytically. Nevertheless, it is important to examine the adequacy

and the validity of the proposed algorithm. In the case where the signal has multiple components

and/or is characterized as non-stationary, the estimation of frequency mismatch will be analyzed

numerically. However, in the case where the input signal is mono-component and stationary, the

estimation of the frequency mismatch can be derived analytically. Note also that the frequency

parameter is by far the most significant one. Indeed, if the correct value of the frequency of

a component of the input signal is known, then, unbiased estimates of the corresponding com-

plex amplitude is obtained through LS [26], [30]. Thus, the focus is on the frequency mismatch

estimation.
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Let us consider the mono-component case of a stationary signal where one frame is given by

s(t) = A1e
j2πf1tw(t) = A1e

j(2πf̂1t+2πη1t)w(t)

= A1(cos(2πη1t) + jsin(2πη1t))e
j2πf̂1tw(t), t ∈ [−T, T ]

(2.27)

where A is the complex amplitude, f1 is the true frequency, f̂1 is the estimated frequency and η1

is the frequency mismatch between them to be estimated.

In the context of QHM, the original signal is modeled as

hq(t) = (a1 + tb1)e
j2πf̂1tw(t), t ∈ [−T, T ] (2.28)

where a1 and b1 are the unknown complex amplitude and slope, respectively, which are estimated

through LS as presented in Section 2.2. It can be shown that the LS method involves the

projection of the input signal onto two orthogonal basis functions: ej2πf̂1tw(t) and tej2πf̂1tw(t).

Thus, for a rectangular window the complex amplitude is obtained by

a1 =
< w(t)s(t), w(t)ej2πf̂1t >

< w(t)ej2πf̂1t, w(t)ej2πf̂1t >

= A1
sin(2πη1T )

2πη1T

(2.29)

where < ., . > denotes the inner product between functions, defined as

< x1(t), x2(t) >=

∫ T

−T
x1(t)x̄2(t)dt

The complex slope is obtained by

b1 =
< w(t)x(t), w(t)tej2πf̂1t >

< w(t)tej2πf̂1t, w(t)tej2πf̂1t >

= 3jA1(
sin(2πη1T )

(2πη1)2T 3
− cos(2πη1T )

2πη1T 2
)

(2.30)

Then, the estimated value for η1 is given by

η̂1 =
1

2π
ρ2,1 = 3

(
1

η1(2πT )2
− cot(2πη1T )

2πT

)
(2.31)

To inquire the properties of this estimator, it is worth computing its error in estimating the



Chapter 2. Quasi-Harmonic Model 21

frequency mismatch (i.e., estimation error)

er(η1) = η1 − η̂1 (2.32)
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Figure 2.4: Upper panel: Estimation error of frequency mismatch for a rectangular window
computed analytically (solid line) and numerically (dashed line). Middle panel: The estimation
error for a rectangular (solid line) and Hamming window (dashed line). Lower panel: The
estimation error using the Hamming window (as in b) without (solid line) and with two iterations
(dashed line). Note that the iterative estimation fails when |η1| > B/3.

In the case of a mono-component signal and using a rectangular window, the estimation

error can be computed analytically as above. Figure 2.4(a) depicts the error for a rectangular

window of 16ms (T = 8ms) obtained analytically via (2.31) (solid line), and numerically through

LS computation of {a1, b1} and then applying (2.19) (dashed line). Both ways to compute the

estimation error provide the same result. Although there is no guarantee that this will be true

in the general case, we suggest computing numerically the estimation error to infer its analytical

value, whenever the latter is not computationally tractable. In Figure 2.4(a), the estimation error
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is small2 (see the bold line) if the frequency mismatch is below 50Hz. For a Hamming window,

the error is small if the frequency mismatch is below 135Hz as shown on Figure 2.4(b).

In order to get further insight on the role played by the analysis window, we can first notice

from (2.29) and (2.30), that the Fourier Transform of the square of the analysis window appears in

the LS estimates of a1 and b1 and consequently in the denominator of ρ2,k. Thus, the frequency

mismatch must be smaller than the bandwidth (i.e. the width of the main lobe [54]) of the

squared analysis window. Note also that the bandwidth of a (squared) rectangular window of

length 2T is B = 1/T = 125Hz (T = 8ms) while for a squared Hamming window we have

B = 3/T = 375Hz, which may explain why the region with small estimation error is about 3

times larger for a Hamming window than for a rectangular window in Figure 2.4. After testing

a variety of window types and window lengths, we found that for mono-component stationary

signals the estimation error is small when the frequency mismatch is smaller than one third of

the bandwidth of the squared analysis window, i.e., when

|η1| < B/3 (2.33)

where B is the bandwidth of the squared analysis window.

Applying the iterative scheme (iQHM), it is expected to reduce the estimation error of fre-

quency mismatch to zero at least for the cases where the frequency mismatch is less than B/3 Hz.

Indeed, in Figure 2.4(c) the estimation error is depicted for no iteration (solid line) and after two

iterations (dashed line). Again, Hamming window of duration 2T = 16ms is used as in Fig-

ure 2.4(b). We observe that the estimation error is considerably reduced (mainly is zero) if

the initial frequency mismatch is smaller than B/3. It is worth noting that two iterations are

adequate for reducing the estimation error of frequency mismatch, thus, the frequency error to

zero.

2.5.3 Robustness in Noise

In this subsection, the performance of QHM and iQHM is assessed for the case when a signal

with multiple sinusoidal components is contaminated by white Gaussian noise. Concisely, the

ability of the proposed model to improve the accuracy of the frequency estimation – hence the

accuracy of the complex amplitude estimation – is tested. The signal consists of 4 sinusoids and

it is corrupted by noise while window’s duration is 16ms (T = 8ms) and sampling frequency

2By small, we mean that |er(η1)| < |η1|.
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16000Hz (i.e, so the duration of the window duration in samples is 257). Moreover, Hamming

window is used, thus, the maximum allowed frequency mismatch is 125Hz. In Table 2.1, the

frequency and the amplitude of each component are given. Two closely-spaced sinusoids and two

well-separated sinusoids are considered. Monte Carlo simulations are used for the assessment of

the robustness of the proposed method. For each simulation, the frequency mismatch of each

sinusoid is sampled uniformly on the intervals defined in Table 2.1.

Sinusoid 1st 2nd 3rd 4th

Frequency (Hz) 100 200 1000 2000

Amplitude ejπ/10 ejπ/4 ejπ/3 ejπ/5

Freq. Mismatch interval (Hz) [−20, 20] [−20, 20] [−75, 75] [−75, 75]

Table 2.1: Parameters of a synthetic sinusoidal signal with four components and intervals of
allowed frequency mismatch per component.

Figures 2.5 and 2.6 respectively depict the mean squared error (MSE) of the complex ampli-

tude and frequency of each component after 105 Monte Carlo simulations. Please note that MSE

for a parameter θ is generally given by

MSE(θ) =
1

M

M∑
i=1

|θ − θ̂(i)|2 (2.34)

where M is the number of simulations while θ̂(i) is the estimated parameter at the ith simulation.

Moreover, Cramer-Rao lower bound (CRLB) [79, 14] for the amplitude and for the frequency

are depicted at both Figures. CRLB for the amplitude of the kth component is given by

CRLB(ak) =
σ2

2N + 1
(2.35)

while CRLB for the frequency of the kth component is given by

CRLB(fk) =
fs
2π

12σ2

|ak|2(2N)(2N + 1)(2N + 2)
(2.36)

where σ2 is the variance of the white noise while 2N + 1 is the duration of the analysis window

in samples. Figures indicate that the estimation of both complex amplitudes and frequencies

asymptotically reaches the CRLB after three iterations which means that iQHM is a statistically

efficient sinusoidal estimator. This result is expected since iQHM is closely related with GN

method (see Appendix B) which is a statistically efficient sinusoidal parameter estimator.



24 AM-FM Signal Decomposition

0 20 40 60 80
10

−10

10
−5

10
0

SNR (dB)

M
S

E
(a

1)

 

 

0 20 40 60 80
10

−10

10
−5

10
0

SNR (dB)

M
S

E
(a

2)

 

 

0 20 40 60 80
10

−10

10
−5

10
0

SNR (dB)

M
S

E
(a

3)

 

 

0 20 40 60 80
10

−10

10
−5

10
0

SNR (dB)

M
S

E
(a

4)

 

 

CRLB
no iter
3 iter

CRLB
no iter
3 iter

CRLB
no iter
3 iter

CRLB
no iter
3 iter

Figure 2.5: MSE of the four amplitudes as a function of SNR. Please note that no iterations
refers to QHM while 3 iterations refers to iQHM.
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Figure 2.6: MSE of the four frequencies as a function of SNR. Please note that no iterations
refers to QHM while 3 iterations refers to iQHM.
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2.6 QHM and Real Signals

There is a vast literature in coding, synthesis, modification, etc. where both speech and music

signals are modeled frame-by-frame as a sum of harmonically related sinusoids. However, looking

at the magnitude spectrum of short-term Fourier transform it is easily seen that the local maxima

(peaks) are not exactly at the integer multiples of the fundamental frequency. This inharmonicity

– also called detuning – induces biased estimation of the complex amplitudes. Furthermore, even

if the frequencies of the real signals were perfect harmonics, errors may occur in the estimation

of the fundamental frequency, hence once again, bias is introduced in the amplitude estimation.

Previously, we showed theoretically and on synthetic signals that QHM is able to tackle

with small frequency errors. Hence, we are interested to compare its performance with HM for

real signals. For that purpose we select a 30ms frame from a reasonably stationary section of

speech. The magnitude spectra computed by FFT and estimated using the classic harmonic

representation as in [32] as well QHM are shown in Figure 2.7. Interestingly, the harmonics

between 1.5kHz and 2kHz where the second formant takes place are greatly detuned and are

missed by a purely harmonic model. By contrast, QHM provides a better spectral estimation. In

terms of Signal-to-Reconstruction Error Ratio (SRER), the improvement is 3.9dB. Moreover, the

iterative scheme is not necessary in these case since the estimation of the fundamental frequency

is accurate enough. However, when the estimation of fundamental frequency is inaccurate the

iterative scheme is applied to correct the frequency estimation. Similarly, Figure 2.8 depicts the

comparison between QHM and HM for a 30ms frame from a saxophone sound (i.e. musical

signal). Again, QHM represents the sinusoidal components more accurately compared with HM.

In terms of SRER the improvement is 3.9dB.

Finally, these observations are consistent by testing more than 5 minutes of voiced speech

from both male and female voices where the average SRER improvement is found to be 4.3dB.

2.7 Capturing Chirp Signals: A variant of QHM

QHM, as SM, assumes that locally the analyzed frame is stationary. However, this is rarely

the case. The frequencies as well the amplitudes are time-varying during the period of few ms

(one frame duration) for natural sounds like speech. In order to remove the local stationarity

assumption, a very common extension is to assume that frequencies are varying linearly over

time, which means that one frame is modeled as a chirp signal. In this Section, we investigate

the representation of chirp signals by an extension of QHM which is called chirp QHM (cQHM).
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Figure 2.7: Upper panel: speech modeling using QHM. Lower panel: speech modeling using HM.
The estimated fundamental frequency is 138.9Hz.
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Figure 2.8: Upper panel: music modeling using QHM. Lower panel: music modeling using HM.
The estimated fundamental frequency is 217.5Hz.

To begin, the multi-component chirp signal is defined for a frame as

s(t) =

K∑
k=−K

Ake
j2π(f̂kt+η1,kt+η2,kt

2)w(t), t ∈ [−T, T ] (2.37)

where K is the number of harmonics, f̂k and Ak are the initially provided frequency and the

complex amplitude of the kth component, respectively, while η1,k is, as in QHM, the frequency
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mismatch (i.e. fk = f̂k+ηk is the true frequency) and 2η2,k is the chirp rate of the kth component,

respectively.

The estimation of the unknown parameters of the chirp signal in (2.37) is a highly nonlinear

procedure. In order to obtain a linear estimation problem, a simple, yet powerful, technique is

to approximate the signal in (2.37) by Taylor series expansion. Thus, for the kth component, the

first order Taylor series approximation gives

sk(t) ≈ Ak[1 + j2π(η1,kt+ η2,kt
2)]ej2πf̂ktw(t), t ∈ [−T, T ] (2.38)

Motivated by the above approximation as well by QHM, we propose to model a frame of the

original signal by a second order polynomial with complex coefficients given by

hc(t) =
K∑

k=−K
(ak + bkt+ ckt

2)ej2πf̂ktw(t), t ∈ [−T, T ] (2.39)

where, as before, K is the number of harmonics and f̂k is the estimated frequency of the kth

component, while {ak, bk, ck}Kk=−K are complex coefficients which contain both amplitude and

phase/frequency information.

The estimation of the complex unknown parameters {ak, bk, ck}Kk=−K is performed again

through linear LS. In matrix form, the solution is given by


â

b̂

ĉ

 = (EHWHWE)−1EHWHW s (2.40)

where a, b, c and s are the vectors constructed from ak, bk, ck and s(t), respectively, while W

is a diagonal matrix whose elements are the values of the analysis window function. Finally,

E = [E0|E1|E2] where the elements of submatrices Ei for i = 0, 1, 2 are given by (Ei)n,k =

(tn)iej2πf̂ktn . The reconstruction of the analyzed frame is then given by

ŝ(t) =
K∑

k=−K
(âk + b̂kt+ ĉkt

2)ej2πf̂ktw(t), t ∈ [−T, T ] (2.41)

Finally, please note that cQHM has 6K + 3 unknown real parameters in the real signal case

which means that cQHM requires larger analysis windows compared to QHM, for robust estima-

tion of its parameters. Consequently, the computational load for cQHM parameter estimation is
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about 8 times more compared with the corresponding QHM computational load. This may put

a limitation on the use of cQHM for real-time applications. Nevertheless, cQHM combines both

the linear evolution of frequency as well the frequency mismatch as it is shown in the following

subsections.

2.7.1 Time-domain Properties

From (2.39), the instantaneous amplitude for the kth component is given by

Mk(t) = |ak + tbk + t2ck| =
√

(aRk + tbRk + t2cRk )2 + (aIk + tbIk + t2cIk)
2 (2.42)

while the instantaneous phase is computed as

Φk(t) = 2πf̂kt+ ∠(ak + tbk + t2ck) = 2πf̂kt+ atan
aIk + tbIk + t2cIk
aRk + tbRk + t2cRk

(2.43)

Finally, instantaneous frequency which is the derivative of instantaneous phase over time is given

by

Fk(t) =
1

2π
Φ′k(t) = f̂k +

1

2π

(aRk b
I
k − aIkbRk ) + 2t(aRk c

I
k − aIkcRk ) + t2(bRk c

I
k − bIkcRk )

M2
k (t)

(2.44)

Obviously, the instantaneous frequency of cQHM is richer compared to QHM. Figure 2.9

shows the instantaneous frequency of a chirp signal (line with circles) as well the instantaneous

frequency of cQHM as it is computed by (2.44). Even though the analysis have been performed

with constant frequency (solid line), the instantaneous frequency of cQHM is able to follow the

original instantaneous frequency at least around the center of the analysis window.

2.7.2 Towards the target model

Following similar ideas as in Section 2.3, the decomposition of bk and ck into two components

one collinear and one orthogonal to ak yields

bk = ρ1,kak + ρ2,kjak (2.45)

and

ck = σ1,kak + σ2,kjak, (2.46)
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Figure 2.9: A frame of 20ms duration which contains a chirp sinusoid with instantaneous fre-
quency f1(t) = 200+4000tHz (line with circles) is analyzed at 190Hz (solid line). Instantaneous
frequency (dashed line) tries to adjust to the true instantaneous frequency of the sinusoid. Ham-
ming window of 20ms duration was used.

where ρ1,k, ρ2,k, σ1,k, and σ2,k are the projections of bk and ck onto ak and jak, respectively.

Mathematically, the projections are given by

ρ1,k =
aRk b

R
k + aRk b

R
k

|ak|2
and ρ2,k =

aRk b
I
k − aIkbRk
|ak|2

(2.47)

while

σ1,k =
aRk c

R
k + aRk c

R
k

|ak|2
and σ2,k =

aRk c
I
k − aIkcRk
|ak|2

(2.48)

With this notation, (2.39) can be rewritten as

hc(t) =

K∑
k=−K

ak
[
1 + (ρ1,k + jρ2,k)t+ (σ1,k + jσ2,k)t

2
]
ej2πf̂kt. (2.49)

Finally, from (2.38) and (2.49), an estimate of the kth frequency mismatch and kth chirp rate

are obtained by

η̂1,k =
ρ2,k
2π

(2.50)

and

η̂2,k =
σ2,k
2π

(2.51)
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Note that ρ1,k and σ1,k can be used for the estimation of the slope and higher-order quantities

of the instantaneous amplitude.

2.7.3 Iterative Estimation

Once the instantaneous phase parameters {η̂1,k, η̂2,k} of the frame have been computed using

(2.50) and (2.51), they can be used to define a new model which takes into account the estimated

parameters leading to a more accurate representation of the signal. Hence, we suggest an iterative

procedure where, at each iteration, one frame is modeled as

hic(t) =
K∑

k=−K
(ak + bkt+ ckt

2)ej2π(f̂kt+η̂1,kt+η̂2,kt
2)w(t), t ∈ [−T, T ] (2.52)

where ak, bk and ck are again complex coefficients estimated by LS method. Technically, sub-

matrices Ei has elements (Ei)n,k = (tn)iej2π(f̂ktn+η̂1,kt+η̂2,kt
2). This procedure is repeated until

convergence, i.e., once a criterion based on the evolution of the LS error or based on the relative

chance of the estimated parameters is satisfied. Then, the reconstruction of the analyzed frame

is provided by

ŝ(t) =

K∑
k=−K

(âk + b̂kt+ ĉkt
2)ej2π(f̂kt+η̂1,kt+η̂2,kt

2)w(t), t ∈ [−T, T ] (2.53)

Region of Convergence of iterative cQHM

The convergence of iterative cQHM is very difficult to analyze analytically because the model is

changing at each iteration since the estimates of the previous iteration are used. Nevertheless,

we explore numerically the estimation error of both frequency mismatch and chirp rate for a

mono-component chirp signal and then some clues about the region of convergence (ROC) of

iterative cQHM are provided.

Figure 2.10 shows the estimation error of frequency mismatch when cQHM and (2.50) is ap-

plied. Analysis window is a Hamming window of 16ms duration. Frequency mismatch takes val-

ues in the interval [−400, 400]Hz, while chirp rate takes values in the interval [−100, 100]Hz/ms.

Have in mind that a chirp rate of 50Hz/ms means that in one millisecond, instantaneous fre-

quency changes 50 Hertz. It is obvious from Figure 2.10 that the error is not a convex function,

however, there are regions where the convexity holds and in these regions we expect the iterative

cQHM to converge. Figure 2.11 shows with white color the region where the estimation error is
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less than the initial frequency mismatch. In this region, iterative cQHM is expected to converge

since the frequency mismatch is reduced.

Figures 2.12 and 2.13 shows the estimation error and the convergence region of chirp rate

parameter, η2, respectively. Now, the region of convergence (white color) is considerably smaller

compared with the corresponding ROC for the frequency mismatch which limits the maximum

allowed chirp rate value. Nevertheless, motivated by Figures 2.11 and 2.13, different iterative

schemes may be suggested. For instance, one suggestion could be to iteratively reduce the fre-

quency mismatch and then try to reduce iteratively the chirp rate error.

2.7.4 Application to speech

To test the performance of cQHM for multi-component cases, we apply cQHM on real signals.

In Figure 2.14, one frame of a female voice is analyzed using cQHM. The sampling frequency

of the signal is 16kHz and the number of harmonics is set to 15. In this example, after careful

manual inspection of the evolution of the glottal cycle, it was observed that within the analysis

window, the fundamental frequency approximately increases from 180Hz to 220Hz. It must be

also pointed out that for speech signal the chirp rate is larger for higher harmonics. Actually,

it is expected to be k times the chirp rate of the fundamental frequency. Consequently, there

may be cases in which the Taylor approximation in (2.38) is not valid. This is noticeable in

Figure 2.14 where some partials has opposite slope than the expected. To handle such cases, it

is recommendable to use a single fan-chirp rate η2 estimated from the chirp rates of the first K0

components. We will refer to this as restricted chirp rate estimation procedure. As an estimate of

the single chirp rate, η2, is used a weighted average of the chirp rate of the first K0 components

given by

η̂2 =
1

K0

K0∑
k=1

η̂2,k/k (2.54)

Then, the iterative analysis is carried out using chirp rate η̂2,k = kη̂2 for the kth harmonic.

Figure 2.15 shows the same frame analyzed with the restricted chirp rate estimation approach for

each component. K0 is set to 3. Now, the frequency evolution is consistent for each component

which results in higher accuracy. Indeed, in this example, the SRER is improved 2dB when the

single chirp rate parameter is used.
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Figure 2.10: Absolute value of the frequency mismatch estimation error using cQHM. Please note
that er(η1) = η1 − η̂1.

Figure 2.11: Region of convergence (white region) for the frequency mismatch using the itera-
tive cQHM. It is worth noting that almost for any chirp signal the frequency mismatch will be
corrected.
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Figure 2.12: Absolute value of the chirp rate estimation error using cQHM. Please note that
er(η2) = η2 − η̂2.

Figure 2.13: Region of convergence (white region) for the chirp rate using the iterative cQHM.

2.8 Conclusion

In this Chapter, we re-introduced a time-varying model which is referred to as QHM. The esti-

mation of the unknown parameters was performed through linear LS. Then, the main properties
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Figure 2.14: 40ms of female speech. Upper panel: Original (solid) and reconstructed (dashed)
signals (SRER = 11.1dB). Sinusoidal components may have arbitrary chirp rates. Lower panel:
The estimated frequency evolution of the 15 first harmonics.
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Figure 2.15: 40ms of female speech. Upper panel: Original (solid) and reconstructed (dashed)
signals (SRER = 13.1dB). Sinusoidal components have chirp rates which are integer multiples
of a fundamental chirp rate. Lower panel: The estimated frequency evolution of the 15 first
harmonics.

of QHM were presented. We showed that an important property of QHM is its ability to de-

tect frequency mismatch errors and then correct them. Thus, an iterative algorithm (iQHM),
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which efficiently estimates the sinusoidal parameters, was proposed. The region of convergence

of the iterative algorithm was provided and the importance of the window type and duration

was highlighted. Moreover, the robustness of QHM and iQHM under additive noisy conditions

was demonstrated. Furthermore, QHM was tested on real signals such as voiced speech and

music signals showing its superiority over HM. Finally, an extension of QHM, namely chirp QHM

(cQHM), was presented which is able to model not only the frequency mismatch but also the

linear evolution of the frequency. Iterative parameter estimation was also applied for this model

in order to reduce the estimation error.
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Chapter 3

Adaptive QHM

In previous Chapter, we showed that QHM is able, under certain conditions, to correct frequency

mismatch errors efficiently when the analyzed frame is locally stationary. In practice however,

even for frames of duration of few ms, the natural signals like speech are non-stationary. The

use of cQHM, which is a more complex model than simple QHM or SM, is not satisfactory due

to the fact that computation cost becomes very high as well the convergence of iterative cQHM

is not guaranteed in the multi-component case. In this Chapter, we propose a non-parametric

and adaptive model referred to as adaptive QHM (aQHM) which is able to model efficiently

the non-stationarity of the analyzed frame. Furthermore, an algorithm for the decomposition of

AM-FM signals based on aQHM is developed. Then, the AM-FM decomposition algorithm is

tested on synthetic signals with highly non-stationary characteristics as well under noise. Finally,

the application of aQHM to voiced speech reveals its superiority in terms of SRER against QHM

and FFT-based SM.

3.1 Limitations of QHM

We showed that if the analyzed frame is a sum of stationary sinusoids, QHM is able to correct the

frequency mismatch1 between the initially provided frequencies and the true frequencies. More-

over, applying iQHM, we showed that both frequency and amplitude estimation errors approach

the CRLB, which means that iQHM is a statistically efficient estimator of sinusoidal parame-

ters. However, even locally the sinusoids have variations both in amplitude and in frequency. In

Section 2.7, we further expanded QHM to cQHM in order to represent chirp signals, thus, we

1As presented in previous Chapter, the maximum allowed frequency mismatch depends on the bandwidth of
the analysis window.
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manage to model linear evolution of frequency within a frame with the additional cost of more

parameters, larger analysis windows, and higher computational cost. As concerns the ability of

QHM and cQHM in capturing amplitude modulations, QHM is able to model linear evolution

of amplitude while cQHM is able to capture quadratic amplitude evolution. Nevertheless, the

frequency estimation of non-stationary signals is by far more important and the performance of

the models presented in the previous Chapter is not satisfactory. This is shown in the following

example where a more complex mono-component signal is considered. One frame of the signal is

given by

x(t) = (1 + α1t+ α2t
2 + α3t

3)ej2π(f̂1t+η1t+η2t
2+η3t3)w(t), t ∈ [−T, T ] (3.1)

where the amplitude coefficients, {αi}3i=1, as well as the phase coefficients, {ηi}3i=1, are real

numbers. Again, f̂1 is an estimate of the signal frequency which is used for the computation of

the unknown complex parameters of QHM (or cQHM). In order to test whether QHM is able to

correctly estimate the frequency mismatch parameter, η1, we resort to numerical computations

and Monte Carlo simulations. Thus, each parameter in (3.1) takes values uniformly distributed

on the intervals provided in Table 3.1. The analysis window is a Hamming window of duration

min max

α1 −2/T 2/T

α2 −2/T 2 2/T 2

α3 −2/T 3 2/T 3

η1 −16/T 16/T

η2 −2/T 2 2/T 2

η3 −2/T 3 2/T 3

Table 3.1: Intervals for each parameter in (3.1).

2T = 16ms. Note that the synthetic signal under consideration changes its characteristics very

fast. For example, if all the coefficients in (3.1) are set to zero except for α1, which is set to 1
T ,

then the instantaneous amplitude starts from 0 at the beginning of the frame and ends (after

16ms) at the value of 2A. Figure 3.1(a) depicts the estimation error of frequency mismatch

for 105 Monte-Carlo runs. It can be seen that a reasonable estimate of frequency mismatch is

obtained if the frequency mismatch is smaller than 100Hz, which is less than in the stationary

case (125Hz) that corresponds to the specific window type and length. Hence, the region of

convergence of iQHM is smaller for non-stationary signals. More importantly, even for very low
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frequency mismatch, a persistent error is present. This is why further updates of the frequencies

(depicted in Figure 3.1(b)) provide only marginal refinements but do not systematically decrease

the estimation error at each iteration as is the case for the mono-component stationary signal.

Similar results are obtained when cQHM is used instead of QHM. Figure 3.2(a) shows the

estimation error of frequency mismatch, η1, using cQHM. Even though the region of convergence

using cQHM is almost doubled (actually, the maximum allowed frequency mismatch is 175Hz),

a pertinent error in the estimation of frequency mismatch remains, even if the iterative scheme is

applied (Figure 3.2(b)). As a conclusion, neither QHM nor cQHM are able to model adequately

the non-stationarity of the analyzed frame. Thus, a different approach should be utilized for

highly non-stationary signals. In the following Section, an adaptive model, which extends QHM,

is suggested. We show that the new model uses time-dependent frequency information at the

estimation level and it is able to represent non-stationary signals with higher accuracy using the

same number of parameters as in SM and using .

3.2 Definition of adaptive QHM, aQHM

In this Section, we suggest a different approach where the basis functions of the model are not re-

stricted to be chirp or exponential functions but can adapt to the locally estimated instantaneous

frequency/phase components. More specifically, one frame is projected in a space generated by

time varying non-parametric sinusoidal basis functions. We will refer to this modeling approach

as adaptive QHM (aQHM).

Lets assume for the moment that an estimate of the instantaneous components of the signal,

{Âk(t), f̂k(t), φ̂k(t)}kk=−K , are given. Then, one frame, sl(t), of the signal centered at time instant

tl is modeled as2

hla(t) =

Kl∑
k=−Kl

(alk + tblk)e
j(φ̂k(t+tl)−φ̂k(tl))w(t), t ∈ [−Tl, Tl] (3.2)

where alk and blk are again complex numbers. The term blk plays the same role as in QHM; it

provides a means to update the frequency of the underlying sine wave at the center of the analysis

window, tl. The suggestions regarding the type and size of the analysis window made for QHM,

are also valid for aQHM, since the same update mechanism is used. Note also that the old phase

value at tl (i.e., φ̂k(tl)) is subtracted from the instantaneous phase, so as the argument of the basis

2The frame indexing is necessary for aQHM, so, it reappears here.
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Figure 3.1: Upper panel: The estimation error of η1 using QHM and a Hamming window of 16ms
length, after 105 Monte-Carlo simulations of (3.1). Lower panel: Same as above, but with two
iterations for the estimation of η1.
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Figure 3.2: Upper panel: The estimation error of η1 using cQHM and a Hamming window of
16ms length, after 105 Monte-Carlo simulations of (3.1). Lower panel: Same as above, but with
two iterations for the estimation of η1.

function has zero value at the center of the analysis. Thus, a new phase estimate at time-instant

tl is obtained from the argument of alk.

The estimation of the unknown parameters of aQHM is similar to the QHM’s parameter
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estimation. The mean squared error between the signal and the model is minimized. The solution

is straightforward and it is provided byâ

b̂

 = (EHWHWE)−1EHWHW s (3.3)

where now submatrices Ei, i = 0, 1 of matrix E = [E0|E1] have elements given by (E0)n,k =

ej2π(φ̂k(tn+tl)−φ̂k(tl)) and (E1)n,k = tne
j2π(φ̂k(tn+tl)−φ̂k(tl)) = tn(E0)n,k. Unfortunately, most of

the improvements for the computation of the above linear equation system presented in the

Appendix A are not applicable to aQHM because the basis functions are non-parametric. The

only applicable improvement is to diagonalize the submatrices of EHWHWE which results in

speed-ups of its construction and its inversion. The reconstruction of the frame is given by

ŝl(t) =

Kl∑
k=−Kl

(âlk + tb̂lk)e
j(φ̂k(t+tl)−φ̂k(tl))w(t), t ∈ [−Tl, Tl] (3.4)

3.2.1 Difference between aQHM and QHM or cQHM

In contrast to QHM or cQHM, where the argument of the basis functions is parametric and/or

stationary, in aQHM the argument of the basis functions is non-parametric neither necessarily

stationary. Moreover, since the aQHM basis functions use the instantaneous phases which have

been estimated from the input signal, these are also adaptive to the current characteristics of the

signal. In other words, they are adaptive to the analyzed signal. This is depicted in Figure 3.3

where the original instantaneous frequency (line with circles) is shown for the frame centered

at time tl, along with the frequency track used by QHM (solid line) as well the frequency track

used by aQHM (dashed line). It is obvious from Figure 3.3 that aQHM will produce less error in

the estimation of alk and blk compared to QHM because the signal is projected to basis functions

which are closer to the original instantaneous frequency.

Indeed, an interpretation of LS estimation method is that the instantaneous frequency (or

more correctly instantaneous phase) of the basis function is subtracted from the original instan-

taneous frequency and then an averaging is performed in order to provide the estimates of the

unknown parameters. Looking at Figure 3.3 the difference between the original and the instanta-

neous frequency of the models reveals that it is smaller for aQHM rather than for QHM. Finally,

note that aQHM needs an initial estimation for the instantaneous phase. This is provided by

QHM which acts as a frequency tracker as it will be shown next.
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Figure 3.3: QHM vs aQHM. The instantaneous frequency of the mono-component signal (line
with circles) is assumed to be constant for QHM (solid line) while aQHM (dashed line) does not
make any assumption about the shape of instantaneous frequency.

3.2.2 Initialization of aQHM

In order to apply aQHM, we actually need an estimate for the instantaneous phase for each

sinusoidal component. Any algorithm that produces such an estimate can be used as an ini-

tialization for aQHM. In this thesis, we suggest initial estimate of the instantaneous phase (and

amplitude/frequency) to be provided by QHM. Since QHM is able to correct small frequency

mismatch errors, it can also be used as a frequency tracker. Indeed, assuming that the analysis

is moved from time-instant tl−1 to time-instant tl, the estimated frequency at time-instant tl−1

can be used as an initial estimate of the frequency for QHM. Thus, let f̂k(tl), Âk(tl), and φ̂k(tl),

denote the frequency, the corresponding amplitude and phase at time-instant tl (center of anal-

ysis window) of the kth component, with l = 1, . . . , L where L be the number of frames. These

parameters are estimated using QHM as

f̂k(tl) = f̂k(tl−1) +
ρl2,k
2π

(3.5a)

Âk(tl) = |alk| (3.5b)

φ̂k(tl) = ∠alk (3.5c)

Considering now all the estimations made at tl, with l = 1, · · · , L, we may construct the

corresponding time series for the instantaneous amplitude, frequency and phase, for each of the
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components of the signal. Then, we should consider the effect of the step size, or otherwise the

distance between the centers of the analysis frames, tl, in the performance of aQHM.

Effect and importance of step size

For applications in speech analysis such as voice function assessment (i.e., voice disorders, anal-

ysis of vocal tremor) or voice modification, one sample time-step is accepted. In this case, the

instantaneous values of frequency, amplitude, and phase are just provided, since at each sample

an estimate of these parameters are computed. In other applications however, such as speech

synthesis, larger time-steps are required. In SM, between two consecutive synthesis instants,

linear interpolation for the amplitudes and cubic interpolation for the phases were suggested [1].

In aQHM, many interpolation schemes can be considered for the estimation of the intermedi-

ate samples. For instantaneous amplitude we suggest linear interpolation because it guarantees

that the instantaneous amplitude will be always positive which is a necessary condition for the

well-posiness of the instantaneous amplitude. Cubic or spline interpolation unfortunately do not

guarantee positiveness of the instantaneous amplitude. For the instantaneous frequency, we sug-

gest using spline interpolation because it provides smooth estimates of the frequency trajectories

(which is considered to be representative of the typical voiced speech; in other types of sounds

different approaches may be applied). However, such simple solutions are not possible for the

interpolation of instantaneous phase. For this purpose, we will describe in the following a non-

parametric approach based on the integration of instantaneous frequency, as an alternative to

the cubic phase interpolation method suggested in [1].

Phase interpolation

Based on the definition of phase, the instantaneous phase for the kth component can be computed

as the integral of the computed instantaneous frequency. For instance, between two consecutive

analysis time-instants tl−1 and tl, the instantaneous phase of the kth component can be computed

as

φ̌k(t) = φ̂k(tl−1) +

∫ t

tl−1

2πf̂k(u)du (3.6)

This solution, however, does not take into account the frame boundary conditions at tl, which

means that there is no guarantee that φ̌k(tl) = φ̂k(tl) + 2πM , where M is the closet integer to

|φ̂k(tl)− φ̌k(tl)|/(2π). We suggest modifying (3.6) in order to guarantee phase continuation over
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frame boundaries as following

φ̂k(t) = φ̂k(tl−1) +

∫ t

tl−1

2πf̂k(u) + rlk sin

(
π(u− tl−1)
tl − tl−1

)
du (3.7)

In (3.7), the continuation of instantaneous frequency at the frame boundaries is also guaranteed

by the use of the sine function (although other choices may be used as well). Please note that

the instantaneous frequency is re-estimated as the derivative of the modified instantaneous phase

with respect to time. Moreover, it can be easily shown that the instantaneous phase of (3.7) at

tl will be equal to φ̂k(tl) + 2πM if rlk is selected to be

rlk =
π(φ̂k(tl) + 2πM − φ̌k(tl))

2(tl − tl−1)
(3.8)

where M is computed as before. Moreover, rlk is not just a correction factor and it can be thought

as a measure of how valid is the assumption that the analyzed signal is a superposition of time-

varying sinusoids. To be more specific, rlk is used for correcting small errors due to discretization

of the instantaneous components as well estimation errors of frequency or phase. Whenever the

signal is indeed an AM-FM signal, then the correction factor should be small. On the other hand,

when the signal is not an AM-FM signal and contains wide-band information, then the correction

factor should be high.

In Figure 3.4, (3.6) and (3.7) are compared on a synthetic example. The signal was analyzed

frame-by-frame using QHM at time-instants t1, ..., tl, ..., tL with time-step 4ms and estimates

of the instantaneous components at these instants are obtained. Figure 3.4(a) shows the true

instantaneous frequency contour (dashed line) of the AM-FM signal along with the estimated

instantaneous frequency which is computed as the derivative of the instantaneous phase computed

by (3.6). Figure 3.4(b) shows the same but, now, (3.7) has been used for the instantaneous phase

computation. It is obvious that in the former case there are spikes at the frame boundaries while

in the latter case, the estimated instantaneous frequency is free of these spikes.

3.3 AM-FM decomposition algorithm

Summarizing, aQHM suggests a non-parametric AM-FM decomposition algorithm which pro-

ceeds by successive adaptations of the basis functions of the model to the characteristics of the

underlying sine-waves of the input signal. Initial estimate of the instantaneous phase necessary

for aQHM is provided by QHM. A pseudo-code of the algorithm is presented below.
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Figure 3.4: Actual instantaneous frequency (dashed line) and estimated instantaneous frequency
(solid line) as the derivative of the instantaneous phase computed from (3.6) (upper panel) and
(3.7) (lower panel).

————————————————————————————————–

Adaptive AM-FM Decomposition Algorithm

————————————————————————————————–

1. Initialization step:

Provide initial frequency estimate f0k (t1)

For l = 1, 2, ..., L

(a) Compute alk, b
l
k using f0k (tl) as initial frequency estimates in (2.6)

(b) Update f̂0k (tl) using (3.5a) and (2.19)

(c) Compute Â0
k(tl) and φ̂0k(tl) using (3.5b) and (3.5c), respectively

(d) f0k (tl+1) = f̂0k (tl)

end

Interpolate f̂0k (t), Â0
k(t), φ̂

0
k(t) as described

2. Adaptation step:

For i = 1, 2, ...

For l = 1, 2, ..., L
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(a) Compute alk, b
l
k using φ̂i−1k (t) in (3.2)

(b) Update f̂ ik(tl) using (3.5a) and (2.19)

(c) Compute Âik(tl) and φ̂ik(tl) using (3.5b) and (3.5c), respectively

end

Interpolate f̂ ik(t), Â
i
k(t), φ̂

i
k(t) as described

end

————————————————————————————————–

The aQHM-based AM-FM decomposition algorithm is intuitively simple, and, as concerns

its complexity, the most time-consuming part is the computation of alk and blk via LS at each

time-step. For comparison purposes, when there is only one component, the complexity of each

time-step is O(N) where 2N +1 is the duration of the analysis window. This order of complexity

is comparable to AM-FM decomposition algorithms with very low complexity such as the DESA

algorithm [56]. For multi-component signals, the complexity of each step is O((N + K)K2)

where K is the number of components. Please note also that the window duration may be

frame-dependent and usually it depends on the smallest frequency.

The signal is reconstructed by summing the time-varying components, i.e.

ŝ(t) =

K∑
k=−K

Âk(t)e
jφ̂k(t) (3.9)

An objective measure on how close the reconstructed signal is to the original signal is given by

SRER at it is defined by (2.10). Now, SRER measures the overall performance of the AM-FM

decomposition algorithm, hence, it is considered as a global measure3. Thus, the adaptation step

can be iterated until changes in the SRER are not significant. As we will show, the number of

adaptations depends on the amount of non-stationarity of the signal.

3.4 Validation on Synthetic Signals

In this Section, the performance of the suggested adaptive AM-FM decomposition algorithm will

be validated on two AM-FM synthetic signals. The first signal is a chirp signal with a second

order polynomial for AM, while the second signal has two sinusoidally time-varying AM-FM

components. Moreover, we will consider the case with additive noise in order to further validate

3Up to now, SRER measured the modeling error for one frame, hence, it was considered as a local measure.
Nevertheless, SRER is able to measure the total performance of a method/model.
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the robustness of the proposed algorithm. For all synthetic examples, please note that we consider

a sampling frequency of fs = 8000Hz and the time-step will be fixed to one sample (tl−tl−1 = 1).

Thus, interpolation of the instantaneous components is not necessary.

For comparison purposes, we suggest comparing the AM-FM decomposition algorithm which

we denote it by aQHM with QHM (i.e. only the initialization step of the AM-FM decomposition

algorithm) and the estimation procedure used in the sinusoidal modeling of [1]. Regarding SM,

at each analysis frame, we compute the Fourier transform of the windowed signal and determine

the frequency and amplitude of each component of the signal by performing peak-picking in the

magnitude spectrum. To improve the frequency resolution of this standard approach, parabolic

interpolation in the magnitude spectrum is used. The Fourier transform of the signal is computed

at 2048 frequency bins.

Since the synthetic signals are parametric in AM-FM components, we will use as a validation

metric the Mean Absolute Error (MAE) between the true and the estimated AM-FM components.

MAE for a time-varying parameter θ(t) with support in [0, T ] is defined as

MAE(θ) =
1

M

M∑
i=1

∫ T

0
|θ(t)− θ̂(i)(t)|dt (3.10)

where M is the number of simulations while θ̂(i)(t) is the estimated time-varying parameter at

the ith simulation.

3.4.1 Mono-component AM-FM signal

Firstly, let us consider the following mono-component chirp signal with a 2nd order amplitude

modulation given by

x(t) = (11− 340t+ 4000t2)ej2π(100t+19500t2), t ∈ [0, 0.1] (3.11)

whose instantaneous frequency is f1(t) = 100+39000t (Hz). Note that the chirp rate is significant

and starting from 100Hz, it reaches 4000Hz in 0.1s, which is the maximum allowed frequency

since the sampling frequency is 8000Hz. Figure 3.5(a) shows the real part of the chirp signal

while Figure 3.5(b) shows its spectrogram.

Based on the analysis presented before (Section 2.5), the maximum frequency mismatch

between the initial estimate and the actual frequency of the signal is defined as one third of

the bandwidth of the squared analysis window. In this experiment, we use a 8ms (T = 4ms)
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Hamming window, so the squared window has bandwidth B = 3/T = 750Hz. Therefore the

maximum frequency mismatch is ±250Hz. The center of the first analysis window is located at

4ms, where the actual instantaneous frequency is 256Hz. We set the initial frequency estimate to

200Hz which means that there is frequency mismatch of 56Hz. The upper plots of Figure 3.6 show

the original (line with circles) and the estimated using aQHM (bold dashed line) instantaneous

components of the chirp signal. Three adaptation passes are enough for aQHM to converge. The

lower plots of Figure 3.6 show the estimation error of the instantaneous components not only for

aQHM (dashed line) but also for SM (solid line) and QHM (dotted line). The performance of

QHM and SM is similar which is expected since both methods use stationary basis functions. On

the other hand, aQHM adapts to the characteristics of the analyzed signal, thus, its estimation

error is greatly reduced.

We now consider the case of complex additive white Gaussian noise of 30dB and 10dB local

SNR4. Then, the average performance of each algorithm was measured based on 104 simulations

of noise realization. Table 3.2 reports the MAE between the estimated and the actual AM and

FM component, for QHM, aQHM, and SM. Please note that two or three adaptations were used

for aQHM. First, we observe that aQHM outperforms all the other approaches, while QHM and

SM present about the same performance. When there is no additive noise, aQHM efficiently

resolves the non-stationary character of the signal in contrast to the other two approaches. As

the local SNR decreases, the performance of aQHM decreases too, while the performance of QHM

and SM remains about the same. In this experiment, estimation error has mainly two sources.

One stems from the non-stationarity characteristics of the input signal while the other stems from

the additive noise. The former source seems to be more important for the case of QHM and SM,

while the latter affects more aQHM. However, even for 10dB local SNR, aQHM is more than

200% and 60% better than SM (in terms of MAE) in estimating the AM and FM components,

respectively. Finally, in the case of additive noise, the reported SRER suggests that aQHM is not

an overdetermined method (i.e. aQHM does not model the noise) since SRER is approximately

equal to the local SNR.

4By local SNR, we mean that SNR is constant at any time instant, i.e. SNR is independent from the instanta-
neous amplitude of the analyzed signal. This is achieved by multiplying the additive noise with the instantaneous
amplitude of the signal.
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Figure 3.5: Upper panel: The real part of the mono-component AM-FM signal. Lower panel: Its
STFT with squared Hamming window of 8ms as analysis window and the time-step is set to 1
sample.
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Lower panels: The error between the true and the estimated components by aQHM (dashed
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SNR Method AM FM (Hz) SRER (dB)

∞
d
B QHM 0.19 2.21 15.0

aQHM 0.006 0.002 61.8
SM 0.19 2.69 13.1

30
d
B QHM 0.20 2.30 14.8

aQHM 0.02 0.66 29.5
SM 0.19 2.73 13.0

10
d
B QHM 0.23 5.04 10.1

aQHM 0.22 6.23 10.1
SM 0.23 5.23 8.2

Table 3.2: MAE of AM and FM components for QHM, aQHM and SM without noise, and with
complex additive white Gaussian noise at 30dB and 10dB local SNR. SRER is also reported.

3.4.2 Two-component AM-FM signal

Let us consider a two-component AM-FM signal of the form

s(t) = 2(1 + 0.4cos(2π30t))ej(2π700t+cos(2π130t))

+ 2(1 + 0.3cos(2π50t))ej(2π1000t+cos(2π130t))
(3.12)

where instantaneous amplitudes and frequencies present sinusoidally time-varying characteristics.

Note that the AM of the second component (AM2) varies faster than the corresponding AM of

the first component (AM1), and that frequency modulation for both components is high: 130

cycles per second. Figure 3.7(a) shows the real part of the two-component AM-FM signal while

Figure 3.7(a) shows its spectrogram. It is worth-noting that the two components cannot be

distinguished from the spectrogram.

For the proposed AM-FM decomposition algorithm, a Hamming window of length 16ms

(T = 8ms) is used. In case of QHM, an initial frequency mismatch of 32Hz is assumed for

both components, which is below the maximum allowable mismatch (namely B/3 = 125Hz in

this example). The performance of the proposed AM-FM decomposition algorithm is shown in

Figure 3.8 where the original (solid line) as well the estimated by aQHM (bold dashed line)

instantaneous components after 14 adaptations are presented. Figure 3.9 shows the modeling

error of each instantaneous component estimated by SM (solid line), by QHM (dotted line) and

by aQHM (dashed line). Even though the estimation error of aQHM is not fully eliminated, it is

greatly reduced compared to the estimation error of the other two methods.

Moreover, the performance of the algorithms is tested with complex additive white Gaussian
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Figure 3.7: Upper panel: The real part of the two-component AM-FM signal. Lower panel: Its
STFT with squared Hamming window of 16ms as analysis window and the time-step is set to 1
sample. It is noteworthy that the two components are not well-separated.

noise of 10dB local SNR. As previously, in case of additive noise, the average performance of

each algorithm was measured based on 104 simulations of noise realization. In Table 3.3, the

performance of QHM, aQHM, and SM is shown in terms of MAE as well in terms of SRER.

Indeed, aQHM is about 500% better than SM or QHM in terms of MAE for the noiseless case

and more than 300% for the 10dB noise level. It is worth noting here, that over the duration

of the window length, the signal components change quickly, therefore, it may be seen as a

highly non-stationary signal. Specifically, in 16ms, about 2 periods of the FM components are

observed. Regarding amplitude modulation, this is about half of one period for AM1 and about

one period for AM2. Therefore, more iterations in aQHM are expected in order to reduce MAE

for each of these components. Indeed, aQHM required 14 adaptations to converge (meaning that

no significant changes in SRER were observed) in case of clean data while 8 adaptations are

required in case of additive noise.

As in the mono-component signal, QHM and SM have similar performance regarding the AM

components, while for the FM components, QHM performs better than SM. It seems that the

presence of two components affects more SM than QHM due to the interference between the

components. Also, aQHM outperforms both QHM and SM for all the parameters and under all

conditions. Furthermore, in contrast to the mono-component case, aQHM is not so sensitive to

the additive noise. In this case, the source of the estimation error due to the highly non-stationary



52 AM-FM Signal Decomposition

0 0.02 0.04 0.06 0.08 0.1
1

1.5

2

2.5

3

Time (s)
     (a)

A
M

 1

 

 

0 0.02 0.04 0.06 0.08 0.1
1

1.5

2

2.5

3

Time (s)
     (c)

A
M

 2

 

 

0 0.02 0.04 0.06 0.08 0.1
500

600

700

800

900

Time (s)
     (b)

F
M

 1
 (

H
z)

 

 

0 0.02 0.04 0.06 0.08 0.1
800

900

1000

1100

1200

Time (s)
     (d)

F
M

 2
 (

H
z)

 

 

True

Estimated

True

Estimated

True

Estimated

True

Estimated

Figure 3.8: Upper panels: The true and the estimated by aQHM instantaneous amplitude and
frequency for the first AM-FM component. Lower panels: The same but for the second AM-FM
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character of the input signal is more important than the corresponding error source due to the

presence of noise. Therefore, decreasing the SNR, does not significantly affect the performance

of aQHM.
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SNR Method AM1 AM2 FM1 (Hz) FM2 (Hz) SRER (dB)

∞
d
B QHM 0.36 0.38 70.02 69.81 5.4

aQHM 0.07 0.10 17.11 16.54 20.1
SM 0.30 0.34 88.02 78.84 5.4

10
d
B QHM 0.36 0.08 71.02 69.81 4.6

aQHM 0.10 0.12 22.80 20.55 10.0
SM 0.31 0.34 88.39 79.46 4.2

Table 3.3: Mean Absolute Error for QHM, aQHM and SM for the two-component synthetic
AM-FM signal, without noise, and with complex additive white Gaussian noise at 10dB local
SNR.

3.5 Application to Voiced Speech

The suggested adaptive AM-FM decomposition algorithm based on aQHM can be applied on

voiced speech signals in a straightforward way. Actually, the aQHM algorithm can be applied

on large voiced speech segment. The only modification in the previously presented the AM-

FM decomposition algorithm in order to work, is that instead of tracking each frequency, a

fundamental frequency is tracked and then the analysis frequencies for QHM are provided as

integer multiples of the estimated fundamental frequency, i.e. f0k (tl) = kf0(tl) for each k. The

reason is that voiced speech could be highly non-stationary and sinusoidal components are born

or die making the tracking of each frequency extremely difficult while fundamental frequency

is a quantity which is always present in voiced speech. Thus, providing just the fundamental

frequency for the first frame of the voiced segment and the number of components, the whole

voiced segment is analyzed by the suggested AM-FM decomposition algorithm. It is worth noting

that the accuracy of the fundamental frequency estimator is not crucial for QHM, since frequency

mismatches are easily corrected (of course, we exclude cases of fundamental frequency doubling

or halving).

In this Section, we compare aQHM with QHM and SM in terms of SRER for voiced speech

signal reconstruction. If time-step is one sample, then all algorithms have an estimation of the

instantaneous amplitude and phase as these are estimated at the center of their analysis windows.

For SM, parabolic interpolation in the magnitude spectrum is used in order to improve frequency

resolution. Phases are then computed from the phase spectrum by considering the phase at the

point nearest the interpolated frequency. As previously, the Fourier transform of the signal is

computed at 2048 frequency bins.

In Figure 3.10(a), a segment from a voiced speech signal generated by a male speaker is shown
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(sampling frequency 16kHz). The analysis was performed using a Hamming window of 24ms and

with one sample as time-step. For QHM, we set f0(t1) = 140Hz (the average fundamental

frequency of the segment) and K = 40. The results from QHM were used as an initialization

for aQHM, where three adaptations were performed. Regarding SM, the most prominent 40

components in the magnitude spectrum were selected after peak picking and parabolic interpo-

lation. We verified that the frequency of the selected peaks were closely related to the updated

frequencies, f̂k of QHM. The estimated instantaneous amplitude and phase information for all

the methods (QHM, aQHM, and SM) were then used to reconstruct the speech signal as in (3.9).

The reconstruction error for each method is depicted in Figure 3.10(b), (c) and (d), for QHM,

aQHM, and SM, respectively. Again, aQHM provides the best reconstruction compared to the

other two alternatives even if only one iteration is applied. The SRER is 19.5dB for SM, 24.1dB

for QHM, and 30.5dB for aQHM.

3.5.1 Large-scale Objective Test

In case the time-step is bigger than one sample, then the instantaneous amplitudes and phases

should be computed from the estimated parameters at the analysis time-instances. The instan-

taneous phase of QHM and aQHM is computed from (3.7). For SM, instantaneous amplitude

is computed with linear interpolation while for the instantaneous phase, cubic interpolation is

used [1]. Using three different step sizes, namely 1ms, 2ms, and 4ms, we analyze and reconstruct

about 200 minutes of voiced speech from 20 male and 20 female speakers (about 5 minutes per

speaker) from the TIMIT database. The sampling frequency of the speech signals is 16000Hz.

Assuming an average pitch of 100Hz and 160Hz for male and female speakers, respectively, we

use Hamming windows of fixed length; 2.5 times the average pitch period. Thus, we used a fixed

length analysis window: 25ms for male and 15ms for female speakers. The same windows is

used for all the algorithms. The number of components is set to K = 40 for male voices and to

K = 30 for female voices. The average and standard deviation of the SRER (in dB) is provided in

Table 3.4 along with various time-steps. Table 3.4 also presents the mean number of adaptations

(NoA) needed for aQHM to converge. Since only aQHM suggests an adaptive algorithm, this

column of the table is considered only for aQHM.

We observe that the reconstruction error has lower power for the female voices than for the

male voices. This is expected as the duration of analysis window is shorter in this case. As already

mentioned, time-step is a crucial parameter in QHM and in aQHM. Results show that there is

a minor decrease in the performance of these two algorithms when the time-step is increasing.
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Figure 3.10: (a) Original speech signal and reconstruction error for (b) QHM, (c) aQHM after
three adaptations, and (d) SM, using K = 40 components. Obviously, aQHM has the smallest
reconstruction error.

Comparing aQHM with SM, we see that the improvement in SRER is between 56% (for males)

and 55% (for females), thus providing an average improvement of over 55%. Compared to QHM,

aQHM provides an average improvement of 22% in SRER.
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Male Female

Step Method Mean Std Mean Std NoA

1m
s QHM 23.9 4.9 29.1 4.7 –

aQHM 29.1 4.4 34.1 4.3 2.4
SM 17.5 5.2 21.1 6.0 –

2m
s QHM 22.4 5.5 28.3 4.9 –

aQHM 28.3 4.3 33.6 4.4 2.6
SM 17.8 5.1 21.4 5.9 –

4m
s QHM 19.9 6.1 25.7 5.7 –

aQHM 26.2 4.9 30.9 4.5 2.8
SM 18.2 4.9 20.9 5.5 –

Table 3.4: Mean and Standard Deviation of SRER (in dB) for approximately 200 minutes of
voiced speech from TIMIT.

3.6 Conclusion

In this Chapter, we showed that QHM (or cQHM) is not appropriate for modeling highly non-

stationary signals. Thus, we proposed an extension of QHM, which is referred to as adaptive

QHM (aQHM), for the modeling of locally non-stationary signals. In this case, the basis functions

of the model are non-parametric and they are able to adjust to the time-varying characteristics

of the signal.

Moreover, an AM-FM decomposition algorithm based on aQHM was developed. Since aQHM

requires an initial estimate of the instantaneous phase, aQHM is initialized by QHM. Results on

synthetic signals showed that aQHM estimates efficiently the instantaneous components of the

signals. Comparisons with QHM and SM on synthetic AM-FM signals showed that aQHM

outperforms both of them. Finally, similar results were obtained when aQHM was compared to

QHM and SM on voiced speech signals.



Chapter 4

Analysis/Synthesis Speech System

based on aQHM

This Chapter develops an analysis/synthesis (A/S) speech system which is able to produce in-

distinguishable resynthesized speech. Taking into account the different sources that constitute

speech, we choose to follow a hybrid representation of speech. Hybrid models separate speech

into a deterministic component and a stochastic component [80, 9, 81]. The deterministic com-

ponent models the quasi-periodic features of speech while the stochastic component models the

non-periodic characteristics of speech. Voiced speech usually contains both components. The

source separation results in better manipulation of the different components leading to more

flexible and efficient speech modification algorithms.

One well known hybrid model for speech is the Harmonic+Noise model (HNM) developed by

Stylianou [32] and Stylianou et al. [81] and it was used for high quality time-scale/pitch-scale

modification of speech and for voice transformation. HNM decomposes speech into two bands:

the lower band (deterministic part) where the speech signal is modeled as a sum of harmonically

related sinusoids and the upper band (stochastic part) where the speech signal is modeled as

modulated noise. In the literature, the separation of periodic and aperiodic components of speech

has gained a lot of research interest [82, 83]. In our separation scheme, the deterministic part

captures the speech signal up to a maximum voiced frequency and the residual signal between the

speech signal and the reconstructed deterministic component defines the stochastic component.

We suggest modeling the deterministic part using aQHM initialized by QHM as in the AM-

FM decomposition algorithm presented in the previous Chapter. Taking advantage of the time-

varying characteristics of the analyzed signal, aQHM is able to address efficiently the local non-
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stationarity of the speech signal. Compared to HNM or SM, this new approach reduces further

the bias in the estimation of the sinusoidal parameters, yielding a more accurate, compared to

these models, signal representation. However, the AM-FM decomposition algorithm cannot be

applied directly. One reason is that speech is a non-stationary process and some components may

be “born” or “die” and the AM-FM decomposition algorithm is not able to cope with such cases.

Actually, the AM-FM decomposition algorithm assumes that the number of AM-FM components

is known (and constant). Thus, the tracking of the frequency trajectories is very difficult. Another

reason is that not only the frequency tracking is difficult but also the tracking of the fundamental

frequency is not always robust. Actually, it has been observed that sometimes the tracking of the

fundamental frequency is lost which results in deterioration of the quality of the reconstruction.

Thus, we suggest adding a module to the A/S system which performs fundamental frequency

estimation. Having an estimation of the fundamental frequency, both the initialization step and

the definition of the frequency tracks are simplified. Indeed, in the initialization step, QHM uses

as initial frequencies integer multiples of the estimated fundamental frequency up to a maximum

voiced frequency, while the frequency tracks are defined by the number of harmonics.

The stochastic component is modeled as a time-modulated and frequency-modulated Gaussian

noise. Frequency modulation is achieved by AR modeling and LPC analysis while the time

modulation is achieved by a time-domain envelope. The time-domain envelope is very important

for correct fusion of the two components and it was shown in [71] that an energy-based envelope

gives the best perceptual result. Moreover, the analysis of stochastic part can be performed

synchronous or asynchronous to the deterministic part. Our choice is to use an asynchronous

analysis for the stochastic part.

In the synthesis step, the deterministic part is synthesized as a time-varying sum of amplitude-

modulated and frequency-modulated sinusoids. Indeed, in aQHM, frame-by-frame interpolation

of the parameters is more natural than overlap-add (OLA) method. On the other hand, the

stochastic part is synthesized frame-by-frame using the OLA method. Listening tests show that

the reconstructed signal is indistinguishable from the original which validates the high-quality

speech representation.
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4.1 Analysis

The separation of speech signal, s(t), into two additive parts is given by

s(t) = sd(t) + ss(t) (4.1)

where sd(t) denotes the deterministic part while ss(t) denotes the stochastic part. Voiced seg-

ments contain both parts while deterministic part is zero in unvoiced segments.

Deterministic part which models the periodicities of voiced speech segments as a sum of

time-varying sinusoidal components (i.e. SM) is written as

sd(t) =

K(t)∑
k=−K(t)

Ak(t)e
jφk(t) (4.2)

where K(t) is the time-varying number of components, Ak(t) and φk(t) are the instantaneous

amplitude and instantaneous phase of the kth component, respectively. Instantaneous frequency

is once again given by fk(t) = 1
2π

dφk(t)
dt .

Stochastic part models the aperiodicities of speech signal as a time- and frequency-modulated

Gaussian noise. As stated above, stochastic part models all the information of unvoiced segments.

For voiced segments, stochastic part is defined as the residual between the speech signal and the

reconstructed deterministic part. However, deterministic part cannot fully represent the period-

icities especially at the extremely non-stationary regions of voiced segment, thus, the residual

signal is highpass filtered. In other words, this processing step asserts that below a frequency,

voiced speech contains only quasi-periodic information. To sum up, stochastic part is given by

ss(t) = (s(t)− ŝd(t)) ? p(t) (4.3)

where ŝd(t) is the reconstructed deterministic part while p(t) is the impulse response of a zero-

phase highpass filter with cutoff frequency Fm and ? denotes convolution.

4.1.1 Deterministic Part

Preliminary Analysis

Recorded speech contains various types of sounds, hence, it is usual to separate a speech file into

speech and nonspeech regions and for the speech regions a further discrimination is performed
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between voiced and unvoiced segments. Then, fundamental frequency estimation is performed for

voiced segments. The detection of speech/non-speech and voiced/unvoiced segments is performed

in a frame-by-frame procedure. The energy of each frame is first computed and if this is above a

threshold Be, then, it is assigned as speech, otherwise it is assigned as nonspeech (silence, in our

case). In Table 4.1.1, parameter values used in our implementation of the A/S speech system are

provided. For the voiced/unvoiced decision, speech signal is lowpass filtered with cutoff frequency

Fv and the following condition is tested. If the energy (measured by the standard deviation of

the speech samples) of the speech frame minus the energy of the smoothed speech frame is below

Bd and if the energy of the smoothed signal is above Bs, then, the frame is assigned as voiced,

otherwise, it is assigned as unvoiced. The frame duration was set to 30ms while the time-step

was set to 5ms. Finally, in order to eliminate isolated decisions, a median filter is applied to the

estimated decisions. An adequate order for the median filter was found to be 5.

Parameter Value (dB) Parameter Value (Hz) Parameter Value (#)

Be −60 Fv 1000 Kf 3

Bd 10 Fm 1500 Ke 4

Bs −50 FM 5500Hz

Bm −55

Table 4.1: Various parameter values used in the implementation of the analysis step.

Pitch Estimation

A novel fundamental frequency estimator based on time-domain information is derived. It is

inspired from the visual inspection of voiced signals and how human eye (not ear) understands

and “measures” the pitch period. Indeed, speech can be viewed as the output of a filter, which

represents the vocal tract, excited by the glottal flow derivative. Thus, the proposed pitch

estimator searches for the local minima of speech which are related with the minima of the

glottal flow derivative waveform. As it will be shown, the suggested pitch estimation algorithm

eliminates doubling or halving problems especially at the beginning or ending of the voiced

segment. Note also that the accuracy of the estimated pitch period is not crucial in our A/S

speech system since QHM is able to correct small frequency mismatch errors.

The description of the algorithm is as follows1. As a first step, and for each voiced segment

the minimum value of the smoothed signal is found. The assumption here is that around the

1Note that the estimation of pitch period is performed on the smoothed speech signal.
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minimum value the signal is more stationary and, thus, the estimation of pitch period is more

robust. Next, using the autocorrelation function around the minimum value an estimate of the

pitch period is found. Moving forward (or backward) using as a step the locally estimated pitch

period, the next (or previous) local minimum is searched. The search is performed in a region of

5ms and 3.5ms for male and female voices, respectively. Finally, we move to the next expected

minimum value of the signal and continue in this way until the end (forward) or the beginning

(backward) of the voiced segment is reached. Figure 4.1 shows a particular instant of the pitch

estimation algorithm. Fundamental frequency at a point is computed as a weighted sum of the

reciprocals of the two closest to the point pitch periods. Finally, fundamental frequency is passed

through a median filter to smooth out perturbations of the computed fundamental frequency.
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Figure 4.1: The pitch estimation algorithm take advantage of speech production mechanism and
tries to find local minima around a defined area. These local minima are attributed to local
minima of the glottal flow derivative waveform.

Initialization Step: QHM

Within the lth frame which is centered at time instant tl, the deterministic component is modeled

by QHM as

hlq(t) =

Kl∑
k=−Kl

(alk + tblk)e
j2πkf l0tw(t), t ∈ [−Tl, Tl] (4.4)
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where f l0 is the fundamental frequency of lth frame estimated at the previous step. Kl specifies

the order of the model, i.e., the number of harmonics which is given by Kl = bFM
f l0
c where FM

is the maximum voiced frequency and b·c denotes the floor operator. The window is typically a

Hamming window with support in the symmetric interval [−Tl, Tl]. The window length depends

on the local pitch period and it is equal to three pitch periods. We found that this is a good

compromise between the necessary samples for robust estimation of the sinusoidal components

and the non-stationary character of speech signals.

Since mistakes may take place in the estimation of the fundamental frequency, the kth har-

monic may have a frequency error which is k times the estimation error of the fundamental

frequency. This may lead to problems in the parameter estimation as well in the determination

of the frequency tracks. Thus, once an initial estimation of the frequency mismatch is obtained

for the kth harmonic from ρl2,k, then the local fundamental frequency, f l0, can be updated using

the first Kf harmonics by

f l0 = f l0 + ∆f l0 = f l0 +
1

Kf

Kf∑
k=1

ρl2,k
k

(4.5)

where Kf is a small integer value. In our implementation, we set Kf to be 3 as Table 4.1.1 reports.

Then, the input signal can be modeled again by QHM using now the updated fundamental

frequency. Figure 4.2 shows a frame of speech in time-domain and in frequency-domain as well

the analysis frequencies before and after applying the correction of fundamental frequency. For

the particular frame shown in Figure 4.2, the initial estimate of the fundamental frequency

(circles) is not accurate, but, after correcting fundamental frequency (stars) the frequency values

are correct and meaningful. However, there are frames (especially at the boundaries of voiced

segments) where the update of the fundamental frequency results in lower accuracy in terms of

reconstruction error. Thus, we suggest keeping the updated fundamental frequency only if the

reconstruction error is improved.

The instantaneous components are estimated at time-instant tl from the parameters of QHM

as in the AM-FM decomposition algorithm. Hence,

f̂k(tl) = kf l0 +
ρl2,k
2π

(4.6a)

Âk(tl) = |alk| (4.6b)

φ̂k(tl) = ∠alk (4.6c)
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Figure 4.2: Upper plot: A speech frame of three pitch periods. Lower plot: Spectrum of the
upper frame, the analysis frequencies (circles) and the refined analysis frequencies (stars). The
refinement is performed using one iteration of QHM.

One major problem with QHM is the existence of components with very low energy and in par-

ticular when this is combined with high noise level because of the speech production mechanism

(frictions etc.). For instance, nasal phonemes have antiformants which result in frequency bands

with low amplitude. Also there are phonemes with high friction and high noise levels at some fre-

quency bands. In these cases, the assumption of existence of time-varying sinusoids is very weak

and causes problems in the QHM estimation procedure such as incorrect frequency mismatch es-

timation as well matrix ill-conditioning during the LS estimation. To cope with these problems,

we check for two conditions for each harmonic before applying (4.6). First, the amplitude of kth

harmonic should be at most Bm (dB) less than the highest amplitude of the frame and second,

the frequency correction term for each harmonic (i.e.
ρl2,k
2π ) should be at most

f l0
2 . If these two

conditions are not satisfied for a sinusoidal component, then we assume that it does not exists.

Finally, the interpolation of the instantaneous components (amplitudes, frequencies, phases) is

exactly the same as it is described in the development of the AM-FM decomposition algorithm.

Adaptation Step: aQHM

In the adaptation step, the analysis is performed on the time-varying basis functions which use

the estimated instantaneous phase. In this way, the signal is projected in functions that are
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adapted to the signal.

hla(t) =
∑
k∈Al

(alk + tblk)e
j(φ̂k(tl−t)−φ̂k(tl))w(t), t ∈ [−Tl, Tl] (4.7)

where Al is a set which contains the index of the time-varying components that exists at time-

instant tl. Note that the instantaneous components have been determined at the initialization step

and their duration cannot be changed at the adaptive step. This means that the conditions used

for the amplitudes are frequencies at the initialization step are adequate for robust estimation of

the instantaneous components. Finally, caution should be put for frames where some components

are born or die. In such cases, the instantaneous frequency is expanded with a constant value

which equals to the boundary frequency value. This is shown in Figure 4.3 where the estimated

frequency trajectories (lines with circles) are depicted and if a component is born or die within

the frame then it is continuously expanded (dashed lines).
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Figure 4.3: Five frequency tracks within a voiced frame. Second and forth trajectories are dying
during the frame while third frequency trajectory is born.

4.1.2 Stochastic Part

Unvoiced segments are modeled frame-by-frame as frequency-modulated Gaussian noise. The

frequency modulation is modeled by an AR filter whose parameters are estimated from linear

prediction (LP) analysis. A Hamming window of duration 30ms and time-step of 5ms is used for

the analysis of both unvoiced and voiced frames. For voiced segments, whatever is not modeled by

the deterministic part, it belongs to the stochastic part. Also remember that the residual signal

between speech and reconstructed deterministic part is highpass filtered at cutoff frequency Fm.
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Stochastic part for one frame is then modeled as

sls(t) = el(t)[ul(t) ? ql(t)] (4.8)

where ul(t) denotes Gaussian noise process filtered by a time-varying AR filter with impulse

response ql(t) while el(t) is the time-domain envelope. As concerns the frequency modulation,

the estimation of the AR filter is performed by LP analysis as in unvoiced segments, while the

time-domain envelope, which is very important for the fusion of the two components, is an energy-

based envelope represented as a sum of sinusoids. In [75], various time-domain envelopes such

as triangular envelope [32], Hilbert-based envelope [84] and energy-based envelope were tested.

Listening tests showed that the energy-based envelope outperformed all the other considered

envelopes.

The idea behind the energy envelope is to compute the energy variation of the stochastic

component and model it as a low-order sum of sinusoids. The energy envelope of the stochastic

part is computed by a local mean average of the absolute stochastic part. Mathematically, energy

envelope is given by

e(t) =

∫ t+To

t−To
|ss(τ)|dτ (4.9)

where To is 1ms. Time-domain envelope for frame l is then approximated by a sum of sinusoids

as

êl(t) =

Ke∑
k=−Ke

dlke
j2πζlkt (4.10)

where Ke is the number of harmonics which is a small integer, while frequencies, ζ lk, and complex

amplitudes, dlk, are computed by peak picking the spectrum of the time envelope as in sinusoidal

model. An instance of an estimated energy envelope is depicted in Figure 4.4 for the stochastic

part of a voiced frame. Figure 4.4(a) shows the energy envelope (solid line) computed by (4.9)

as well the reconstructed energy envelope (dashed line) from (4.10). While, in Figure 4.4(b), the

frequency contents of the frame as well the estimated frequency envelope are depicted.

4.2 Synthesis

In the synthesis step, the deterministic part is resynthesized as a sum of time-varying sinusoids.

Note that this synthesis method is preferred from overlap-add (OLA) method because the time-

varying frequency trajectories were already used by aQHM in the analysis step. In the case when
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Figure 4.4: Upper plot: A frame of the stochastic part, its energy time-envelope and the es-
timated time-envelope. The envelope has pitch synchronous behavior. Lower plot: Frequency
representation for the upper frame and its AR modeling

a sinusoidal component is born or dying, the instantaneous amplitude vanishes linearly until the

next analysis time-instant while instantaneous frequency remains constant until the component

vanishes.

The stochastic part is resynthesized using OLA method. For each frame, white noise is

passed through the AR filter to obtain the frequency modulation of the stochastic part. Then,

the energy envelope is computed from (4.10) and its multiplication with the frequency-modulated

noise provides the reconstructed stochastic frame.

4.3 Evaluation

The overall performance of the A/S speech system is shown in Figures 4.5–4.9. The original

speech sentence uttered by a male speaker (Figure 4.5), the reconstructed speech (Figure 4.6),

the reconstruction of the deterministic part (Figure 4.7) as well the stochastic part and its recon-

struction (Figures 4.8 and 4.9, respectively) are shown in both time and frequency domains. The

time-step used in the analysis of the deterministic part is 5ms. Evidently, the reconstruction of
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speech is very close to the original speech in both domains.
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Figure 4.5: A speech sentence uttered by a male speaker in both time (a) and frequency (b).
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Figure 4.6: The reconstruction of the speech signal shown in Figure 4.5 in both domains.

4.3.1 Listening Examples

The best way to evaluate the performance of an A/S speech system is to listen to the reconstructed

signals. Table 4.2 presents speech examples from various databases of both male and female speak-

ers. The proposed A/S speech system denoted by aQHM is compared with the SM of McAulay

and Quatieri [1], the HNM of Stylianou [32] and the STRAIGHT of Kuwahara [85]. Further exam-

ples and possibly updates can be found in www.csd.uoc.gr/~pantazis/source/thesis/variousModels.html.
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Figure 4.7: The reconstruction of the deterministic part of the signal shown in Figure 4.5 in both
domains.

Original aQHM HNM SM STRAIGHT

Male 1

Male 2

Female 1

Female 2

Table 4.2: Analysis/Synthesis of speech signals using various methods.

4.4 Conclusion

In this Chapter, we developed an A/S speech system based on a hybrid representation of speech.

Thus, speech was separated into a deterministic part and into a stochastic part. The deterministic

part was modeled as a sum of time-varying sinusoids whose instantaneous components were

estimated using aQHM. Initialization of aQHM was provided by QHM whose initial frequency

estimates were obtained from a novel fundamental frequency estimator. The stochastic part was

modeled as time- and frequency-modulated noise. Time-modulation is achieved using an energy-

based envelope. Listening tests showed that the resynthesized speech was indistinguishable from

the the original signal for both male and female speakers.
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Figure 4.8: The stochastic part (i.e. the residual signal) of the signal shown in Figure 4.5 in both
domains.
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Figure 4.9: The reconstruction of the stochastic part of the above Figure in both domains.
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Chapter 5

Vocal Tremor Estimation

Voice quality assessment is another area of speech processing where the accurate representation of

speech is of high importance. Indeed, high-resolution speech analysis in both time and frequency

may reveal interesting properties about the physiology of vocal organs such as vocal folds. In

this Chapter, we suggest applying the developed AM-FM decomposition algorithm presented in

Chapter 3 for voice quality assessment. More specifically, we apply the decomposition algorithm

for the extraction of acoustic vocal tremor characteristics. In the following, the definition of vocal

tremor as well its prominent acoustic characteristics are provided. Then, a three step algorithm

based primarily on the suggested AM-FM decomposition algorithm which estimates the vocal

tremor attributes is constructed. Results indicate that the proposed method is able to accurately

extract the time-varying attributes of vocal tremor.

5.1 Introduction

Typically, tremor in phonation is defined as modulations of the fundamental frequency and mod-

ulations of the amplitude due to the inability of humans to keep constant the tension of their

vocal folds [86]. This phenomenon affects the glottal cycle in voiced speech making the funda-

mental frequency and the amplitude to vary stochastically. Vocal tremor should not be confused

with jitter or shimmer which are also defined as modulations of the fundamental frequency and

of the amplitude, respectively. Vocal tremor refers to modulations whose modulation frequencies

are slow (i.e. below 20Hz) while jitter and shimmer refer to cycle-to-cycle modulations which

are faster (i.e. modulation frequency is around the half of the local fundamental frequency).

Vocal tremor is usually categorized into the physiological tremor which is a slow natural mod-
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ulation of glottal cycle and the pathological tremor which is attributed to neurological diseases

such as Parkinson or tremor of the limbs [87], [88]. Most importantly, while physiological tremor

makes speech sound more natural and possibly more individual, pathological tremor may influ-

ence the quality of patients voice, hence, may influence the ability of patient’s communication.

Moreover, while pathological tremor is characterized by stronger periodical patterns —a property

that vibrato singing style has, too—, physiological tremor is more stochastic [87]. The analysis

of physiological tremor is of great importance since vocal tremor in normophonic speakers may

be an early sign of a neurological disease [89], [90]. Thus, it is useful to develop an estimation al-

gorithm that is able to measure or extract features of vocal tremor even for normal voices. In the

literature, acoustic analysis of tremor is usually based on the accurate estimation of fundamental

frequency and then the characterization of the variations of fundamental frequency is performed

[91], [88]. Modulation frequency which models the periodicity of vocal tremor and modulation

level which models the strength of vocal tremor are the prominent acoustic attributes that are

extracted from the instantaneous fundamental frequency [91], [88].

The objective of this Chapter is to present and validate a novel method for the estimation of

the vocal tremor on sustained vowels uttered by normophonic subjects. The proposed method

assumes speech as a sum of time-varying sinusoids (i.e. SM) whose instantaneous amplitude and

instantaneous frequency are estimated using the suggested AM-FM decomposition algorithm

based on aQHM. Then, the second step of the algorithm is to reveal the higher frequency modu-

lations, hence, we subtract from the analyzed instantaneous component the very slow modulations

(< 2Hz), which are attributed to sources like the cardiac rhythm. This is achieved by filtering

the instantaneous component using a Savinzky-Golay smoothing filter [92]. The final step is to

estimate the modulation frequency and the modulation level which are assumed time-varying

attributes due to the fact that modulations are primarily non-stationary. Thus, the estimation

of these vocal tremor attributes is performed using again the proposed AM-FM decomposition

algorithm.

5.2 Extraction of Vocal Tremor Characteristics

In the following subsections, each step of the vocal tremor extraction algorithm is described in

detail.
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5.2.1 Step 1: Estimation of Instantaneous Components of Speech

Considering speech as a superposition of time-varying sinusoids, the algorithm presented in Sec-

tion 3.5 is applied for the estimation of the instantaneous components of speech. We remind that

the AM-FM decomposition algorithm is initialized by QHM. QHM also needs a rough estimate

of the analysis frequencies. These are assumed as integer multiples of an estimated fundamental

frequency. The fundamental frequency of the first frame can be computed using the autocor-

relation function. Then, in the adaptation step, the use of aQHM refines the estimation of the

instantaneous components. Note that time resolution of aQHM is primarily determined by the

time-step of the algorithm while frequency resolution is determined by the window type and

window length. For vocal tremor analysis, we choose a time-step of 5ms and Hamming window

as window function. The window duration has been chosen to be three times the pitch period.

Please note that for vocal tremor, all the speech material comes from sustained vowel phonations.

Illustratively, Figure 5.1 shows the first five harmonics extracted from sustained vowel /a/

using the suggested AM-FM decomposition algorithm. The signal which is reconstructed from

the instantaneous components has SRER of about 32dB which proves that the analysis is very

accurate. Figure 5.1 also shows that the modulations of higher harmonics are more evident.
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Figure 5.1: First five instantaneous frequencies of a normophonic male speaker uttered the sus-
tained vowel /a/.
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5.2.2 Step 2: Removal of Very Slow Modulations

In the literature of vocal tremor analysis, the component associated to the fundamental frequency

is mainly processed. However, in our case, we have the opportunity to choose between any of

the estimated instantaneous components. Based on the voice production theory, vocal tremor

should have similar acoustic attributes for the different instantaneous components. Continuing

the analysis process, one instantaneous component is selected, its mean value is subtracted and

then the zero-mean instantaneous component is downsampled to 1000 Hz since only low frequency

modulations are of our interest. Then, very slow modulations, which refer to as trend and are

less than 2Hz, should be eliminated.

To remove the trend, we apply a smoothing operator. The smoothed instantaneous component

is computed using the Savinzky-Golay (S-G) filter [92], [93]. S-G smoothing filter essentially

performs a local polynomial regression on a distribution of equally spaced points to determine

the smoothed value for each point. The main advantage of this approach is that it tends to

preserve features of the distribution such as relative maxima, minima and width, which are

usually “flattened” by other adjacent averaging techniques like moving averages. The order of

the local polynomial used is 4 while the frame size is set to 1s (1000 samples). Figure 5.2(a)

shows the instantaneous component (solid line) as well its smoothed version (dashed line) for

a sustained vowel. Figure 5.2(b) implies that S-G filter captures the frequencies that are less

than 2Hz. Then, the smoothed instantaneous component is subtracted from the unsmoothed

in order to reveal the remaining modulations of the component (see Figure 5.3(a)). Note that

using different parameters for the S-G filter the smoothed signal will capture more or less of the

signal’s frequencies.

5.2.3 Step 3: Extracting Vocal Tremor Characteristics

The final step of the vocal tremor extraction algorithm is the modeling and estimation of the

remaining modulations. As already stated, these modulations are non-stationary, hence, FFT-

based approaches are not appropriate for this task. We suggest modeling the remaining non-

stationary modulations as a mono-component AM-FM signal. Mathematically, it is given by

x(t) = m(t)cos(ψ(t)) (5.1)

where x(t) are the remaining modulations of the instantaneous component, m(t) is the instanta-

neous amplitude while ψ(t) corresponds to the instantaneous phase. Please note that an appro-
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Figure 5.2: (a) First harmonic of Figure 5.1 without its mean value (continuous line) and its
smoothed version (dashed line) are shown. (b) Fourier transform of signals in (a). S-G smoothing
filter captures the frequencies that are below 2Hz.

priate scaling of m(t) will correspond to the modulation level of the vocal tremor. The scaling

factor of the modulation level is equal to the mean value of the analyzed instantaneous com-

ponent which has been subtracted at Step 2. Once again, instantaneous frequency is given by

ζ(t) = 1
2π

dψ(t)
dt and corresponds to the modulation frequency of the vocal tremor.

The proposed AM-FM decomposition algorithm is again applied for the estimation of the

instantaneous components, m(t) and ζ(t). The initial frequency of the first frame was computed

by the largest peak of the FFT of the first frame while time-step is set to 1ms (i.e. one sample).

Hamming window is used as analysis window and its duration is set to 0.6s. Figure 5.3 shows

the reconstructed signal (dashed line) obtained from the AM-FM decomposition algorithm in

both time and frequency domains. The SRER for this particular example is 7.3dB while the

number of adaptations of the AM-FM decomposition algorithm is 3. Figure 5.3 indicates that the

decomposition algorithm adapts to the non-stationary modulations of the signal. The estimated

modulation frequency as well the estimated modulation level are shown in Figure 5.4. In this

example, modulation frequency takes values between 2Hz and 13Hz while modulation level is

between 0.15 and 0.55 which are typical values for normophonic speakers.

Finally, an important feature of the proposed method is that any of the instantaneous com-

ponents can be analyzed. Figure 5.5 shows the instantaneous amplitude of the 4th harmonic
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Figure 5.3: (a) Instantaneous component after subtracting its smoothed version (continuous line)
and the reconstruction after applying the AM-FM decomposition algorithm (dashed line). (b)
Fourier transforms of the components in (a).
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Figure 5.4: (a) Modulation frequency of the signal in Figure 5.3. (b) Modulation level of the
same signal. Note that neither modulation frequency nor modulation level have constant values
during the phonation.

(solid line) for the same sustained vowel as well its reconstruction (dashed line) while Figure 5.6

shows the estimated modulation frequency and modulation level. Interestingly, both modulation

frequency and modulation level differs from that of Figure 5.4 which indicate that different at-
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Figure 5.5: Similar to Figure 5.3 but for the instantaneous amplitude of the 4th harmonic. Note
that the proposed vocal tremor extraction algorithm can be applied to any of the instantaneous
component.
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Figure 5.6: Similar to Figure 5.4 but for the instantaneous component of Figure 5.5. Similar-
ities and differences can be found between the modulation frequency and modulation level of
instantaneous components.

tributes of vocal tremor are obtained whenever different instantaneous components are analyzed.

This is in contrary to the basic (and simplistic however) voice production theory and therefore

requires further investigation.
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5.3 Large-scale Results

The method is validated on a database of normal voices developed in our recording lab. 11 male

and 5 female healthy subjects whose age varies between 23 and 45 were participated. Sustained

vowels /a/, /e/, /i/, /o/ and /ou/ have been recorded at 48kHz and then downsampled at

16kHz. The duration of sustained vowels varies from 2s to 8s depending primarily on the speaker.

Extended tests on the database confirmed the ability of AM-FM decomposition algorithm to

extract the instantaneous components of the signals accurately. This was quantified by measuring

the modeling error through SRER. Indeed, average SRER for the total database is computed to

be 30.7dB. Moreover, visual inspection of the analyzed instantaneous components shows that

the suggested AM-FM decomposition algorithm at Step 3 captures adequately the remaining

modulations. The average SRER is 4.8dB for the reconstruction of the instantaneous components

(Step 3).

Finally, Table 5.1 reports the averages of fundamental frequency, µ(f0), of mean value, µ(mf),

and standard deviation, σ(mf), of modulation frequency and of mean value, µ(ml), and standard

deviation, σ(ml), of modulation level for male and female speakers uttering various vowels. It

is evident that the standard deviation of modulation frequency is higher for the male speakers

while the mean value of modulation frequency shows no tendency between the genders.

µ(f0) µ(mf) σ(mf) µ(ml) σ(ml)
(Hz) (Hz) (Hz) (%) (%)

M
al

e

/a/ 113 4.4 1.4 0.25 0.11
/e/ 116 4.3 1.2 0.28 0.13
/i/ 119 4.1 1.3 0.25 0.11
/o/ 121 6.2 1.7 0.22 0.09
/ou/ 122 8.0 2.0 0.20 0.08

F
em

a
le

/a/ 233 6.6 0.9 0.36 0.14
/e/ 228 9.3 0.9 0.33 0.14
/i/ 239 3.1 0.8 0.29 0.12
/o/ 235 4.7 0.9 0.27 0.10
/ou/ 236 3.4 0.8 0.27 0.10

Table 5.1: Summary of modulation features for five vowels and both genders.
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5.4 Conclusion

In this Chapter, we developed a method which is able to extract acoustic vocal tremor character-

istics such as modulation frequency and modulation level from sustained vowels. Due to the fact

that the analyzed signals have time-varying components, we applied the AM-FM decomposition

algorithm devepoled in Chapter 3. Thus, both the instantaneous components of speech and the

acoustic characteristics of vocal tremor were computed using the proposed AM-FM decomposi-

tion algorithm. Results indicated that the proposed method extracts in a robust and efficient

way the vocal tremor characteristics of speech.
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Chapter 6

Summary and Future Research

Directions

6.1 Summary

In this thesis, we developed and tested models and algorithms for the representation of time-

varying sinusoidal signals. For the estimation of the sinusoidal parameters, we reintroduced a

time-varying model with complex parameters referred to as QHM. Parameters of QHM contained

not only amplitude information but also frequency information. A proper decomposition of QHM

parameters revealed the frequency information which could be used for the estimation of the

frequency mismatch between the true frequencies and the provided frequencies. Thus, an iterative

algorithm referred to as iQHM for the estimation of sinusoidal parameters were proposed. The

region of convergence for iQHM is also provided. The performance of iQHM was tested under

noisy conditions and its statistical efficiency was shown. Furthermore, iQHM was tested in voiced

speech and its supremacy over HM was proved. An extension of QHM referred to as chirp QHM

(cQHM) which is able to capture linear evolution of the frequencies was also presented. cQHM is

a second-order polynomial of time with complex parameters. A similar to QHM decomposition

of the cQHM parameters revealed not only the frequency mismatch but also the chirp rate of the

analyzed signal.

However, in the case of fast frequency variations, we showed that QHM and cQHM refinement

of the frequencies could be obtained, but only up to a certain point. This estimation error was

due to the fact that the applied stationary or even chirp basis functions were not adequate to

model the input signal. In order to tackle with the non-stationary character of the analyzed
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signals, we suggested another extension of QHM referred to as adaptive QHM (aQHM). aQHM is

a model which uses non-parametric basis functions, thus, it could take into account any arbitrary

time-domain information. We showed that aQHM is able to adjust by successive adaptations its

basis functions to the local characteristics of the analyzed signal. Thus, the non-stationarity of

the signal was adequately modeled. Consequently, frequency estimation becomes less biased and

the signal representation more accurate.

Furthermore, aQHM suggests an adaptive algorithm for the decomposition of AM-FM signals.

Initialization of aQHM was provided by QHM which acted as a frequency tracker (i.e. QHM acted

as a Kalman filter). Results on synthetic AM-FM signals showed that the use of aQHM greatly

reduce the estimation error of the AM-FM components of the signals. We showed that very fast

frequency modulations can be estimated. Extended tests on voiced speech further validate the

use of aQHM as a model which addresses efficiently the non-stationary character of the analyzed

signals.

Since the application of aQHM in voiced speech analysis resulted in improvements at least in

terms of SRER, we developed an A/S speech system based on aQHM. The A/S speech system

decomposed speech into two parts; the deterministic part which accounted for the periodicities

of the signal and the stochastic part which accounted for the aperiodicities of the signal. The

deterministic part was then modeled by aQHM. Minor changes from the AM-FM decomposition

algorithm were needed for the estimation of the deterministic part. The stochastic part was

modeled as a time-modulated and frequency-modulated white noise. Results on resynthsis showed

that the reconstructed speech signals were indistinguishable from the original signals for both male

and female voices.

Finally, another application presented in this thesis concerns the voice quality assessment.

We developed a method which is able to extract vocal tremor attributes from sustained vow-

els. Since vocal tremor estimation involves the estimation of the time-varying characteristics

of speech signals, the proposed adaptive AM-FM decomposition algorithm was applied for the

estimation of the instantaneous components of speech. The AM-FM decomposition algorithm

was further applied for the extraction of the time-varying characteristics of vocal tremor, namely,

modulation frequency and modulation level, from the estimated instantaneous components. Re-

sults on normophonic speakers, which have more stochastic vocal tremor characteristics compared

to pathological subjects, showed that the suggested method is able to accurately estimate the

modulations attributed to vocal tremor.
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6.2 Future Research Directions

By no means this thesis is a complete presentation of the addressed problems. Presumably, there

are issues that should be further investigated. One such issue is the better understanding of

cQHM. Indeed, the convergence properties of cQHM should be further investigated as well the

behavior of cQHM on multi-component chirp signals should be thoroughly tested. Moreover,

not only QHM or cQHM but also any complex time-varying amplitude model contains frequency

information, and obviously, the frequency information depends on the parametric model. Thus, a

new class of models can be defined, investigate their properties and possibly used in applications.

Another issue for further research is to restate aQHM to a more general framework which for

the author is as a post-processing step of any AM-FM demodulation algorithm. Indeed, in order

to use aQHM, an estimate of the instantaneous phase is needed and not only QHM but also any

AM-FM demodulation algorithm can be used. Thus, aQHM can be considered as a refinement

of any demodulation algorithm used in other areas of signal processing. Furthermore, aQHM

uses only the time-varying frequency information but it does not take into account any time-

varying amplitude information. Hence, a further study on the possibility of adding time-varying

amplitude information in aQHM should be performed.

As concerns the speech applications, the most interesting and challenging open question in

speech synthesis is how to perform speech modifications using the developed A/S speech system

based on aQHM. Since aQHM is able to represent voiced speech very accurately, we expect the

quality of the modifications to be high. Yet, the modification algorithm has to be developed.

Finally, in voice quality assessment, the application of the developed vocal tremor extraction

method to pathological cases should be investigated. Classification of the signals into physiolog-

ical and pathological using the attributes estimated by the proposed method may be a further

application. Moreover, vibrato signing could be analyzed by the proposed method, thus, another

application may be to measure the modulations due to vibrato and use them as a learning tool.
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Appendix A

Fast LS Computations

In sinusoidal representation, LS method for the estimation of complex amplitudes is slower com-

pared to FFT-based approaches putting a limitation to its use in real-time applications. Moreover,

improvements on the computation burden of QHM is crucial for its wide acceptance. Thus, in

any case, improving the computation cost of LS method is very important.

To proceed, discrete-time SM is given for a frame by

hs[n] =
K∑

k=−K
ake

j2πfkn/fsw[n], n = −N, ..., N (A.1)

while the discrete form of QHM is given for a frame by

hq[n] =
K∑

k=−K
(ak + nbk)e

j2πfkn/fsw[n], n = −N, ..., N (A.2)

LS solution for the unknown complex amplitudes of SM is given by

â = (EH0 W
HWE0)

−1EH0 W
HW s = R−10 s0 (A.3)

while the LS solution for the complex amplitudes and complex slopes of QHM is given by

 â

b̂

 = ([E0|E1]
HWHW [E0|E1])

−1[E0|E1]
HWHW s =

 R0 R1

RH1 R2

−1  s0

s1

 (A.4)

where R0 = EH0 W
HWE0, R1 = EH0 W

HWE1, R2 = EH1 W
HWE1, s0 = EH0 W

HW s and

s1 = EH1 W
HW s. Obviously, SM is a sub-case of QHM, hence, we concentrate mostly on the
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computation of the unknown parameters of QHM. Moreover, an important sub-case of both SM

and QHM is when the frequencies are integer multiples of a fundamental frequency. In such a

case, sub-matrices Rm, m = 0, 1, 2 are Toeplitz which results in faster element computation and

faster matrix inversion through Levinson-type algorithms.

A.1 Computations

The improvements in the LS computation of QHM parameters is threefold. Firstly, the compu-

tation of the elements of Rm, m = 0, 1, 2 is done manually, thus, there is no need for matrix

multiplication. Secondly, the computation of the elements of E0 is speed-up using trigonometric

identities. And, thirdly, fast inversion of the matrix is considered.

A.1.1 Faster Computation of Rm, m = 0, 1, 2

The elements of the submatrices R0, R1 and R2 are given by

(Rm)ik =
N∑

n=−N
w2[n]nmej2π(fk−fi)n, m = 0, 1, 2 (A.5)

In order to do the summation of the above equations, we have to consider what kind of window

is used. Typically, Hamming window is used but other options like rectangular or Hanning

windows can be applied. These three windows are parametrized into a general class of windows

given by

wa[n] = (1− a) + acos(πn/N) n = −N, ..., N − 1, N (A.6)

Table A.1 shows the relationship between various windows and parameter a. As (A.5) asserts,

the squared window is also necessary, thus,

w2
a[n] = ((1− a) + acos(πn/N))2 = a0 + a1(e

jπn/N + e−jπn/N ) + a2(e
j2πn/N + e−j2πn/N ) (A.7)

where a0 = (1− a)2 + a2/2, a1 = a(1− a) and a2 = a2/4.

a = 0 Rectangular

a = 0.5 Hanning

a = 0.46 Hamming

Table A.1: Different values of a provides various windows.
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Applying the squared window (A.7) to (A.5), we obtain

(Rm)ik = a0

N∑
n=−N

nm
[
ej2π(fk−fi)

]n
+ a1

N∑
n=−N

nm
[
ej2π(fk−fi+

1
2N

)
]n

+ a1

N∑
n=−N

nm
[
ej2π(fk−fi−

1
2N

)
]n

+ a2

N∑
n=−N

nm
[
ej2π(fk−fi+

1
N
)
]n

+ a2

N∑
n=−N

nm
[
ej2π(fk−fi−

1
N
)
]n

(A.8)

thus, the elements of matrices Ri have values that are sums of special series. Standard mathe-

matical identity about the sum of geometric series gives that
∑N

n=0 α
λn = 1−αλ(N+1)

1−αλ . Taking the

derivative with respect of λ, the elements of R1 show up, thus, they can be computed without

performing the summation. Similarly, taking one more derivative over lambda, the elements of

R2 can be computed. Hence, the elements of the matrices Ri are given by

(Rm)ik = a0gm (2π(fk − fi)) + a1gm

(
2π(fk − fi +

1

2N
)

)
+ a1gm

(
2π(fk − fi −

1

2N
)

)
+ a2gm

(
2π(fk − fi +

1

N
)

)
+ a2gm

(
2π(fk − fi −

1

N
)

) (A.9)

where the auxiliary functions g0(x), g1(x) and g2(x) are given by

g0(x) =

{
sin((2N+1)x/2)

sin(x/2) , x 6= 0

2N + 1, x = 0
(A.10)

g1(x) =

{
j sin(Nx)

2 sin2(x/2)
− jN cos((2N+1)x/2)

sin(x/2) , x 6= 0

0, x = 0
(A.11)

g2(x) =

{
N2 cos((N+1)x)+(N+1)2 cos(Nx)

2 sin2(x/2)
− sin((2N+1)x/2)

2 sin3(x/2)
, x 6= 0

N(N + 1)(2N + 1)/3, x = 0
(A.12)

Finally, due to the fact that the computations of trigonometric functions are expensive, the

computation of (A.9) can be speed up by considering the following identities

cos(θ + δ) = cos(θ)− [α cos(θ)− β sin(θ)] (A.13)

sin(θ + δ) = sin(θ)− [α sin(θ)− β cos(θ)] (A.14)

where α and β are precomputed coefficients given by α = 2 sin2(δ/2) and β = sin(δ). Hence,

the sines and cosines of one of the five terms in (A.9) are required and the remaining terms are
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computed using (A.13) and (A.14).

A.1.2 Faster computation of E0

Once again, the most time-consuming part for the computation of the elements of matrix E0 is

the computation of sines and cosines. Indeed, the elements of E0 equals to (E0)kn = ej2πfkn/fs =

cos(2πfkn/fs) + j sin(2πfkn/fs). Obviously, having computed matrix E0, the elements of E1 are

given by (E1)nk = n(E0)nk. In this case, the computational speed up stems from the fact that

the solution zk[n] of the following second-order difference equation

zk[n]− 2 cos(2πfk/fs)zk[n− 1] + zk[n− 2] = 0, n = 3, 4, . . . (A.15)

with initial conditions zk[1] = cos(2πfk/fs) ans zk[2] = cos(4πfk/fs) is given by

zk[n] = cos(2πfk/fsn), n = 1, 2, . . . (A.16)

Similarly, using zk[1] = sin(2πfk/fs) and zk[2] = sin(4πfk/fs) as initial conditions, the difference

equation has solution given by

zk[n] = sin(2πfk/fsn), n = 1, 2, . . . (A.17)

Thus, using the above iterative equation, the computation of each trigonometric function is

replaced by one multiplication and two additions.

A.1.3 Step 3: Matrix Inversion

Up to now, no approximation or discretization was performed and the LS solution has no ad-

ditional error. However, if we allow small errors, we can achieve faster inversion for the matrix

by discarding elements away from the diagonal. This approximation is valid because sinusoids

which are away from each other has little or no interference. Thus, if we keep K0 diagonals, the

inversion is speed up significantly.

A.2 Evaluation

In this Section, the performance of the improvements is tested in both complexity and execution

time. Complexity is important to understand how the computation scales as the number of
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components or the window duration is increased. On the other hand, execution time is important

because it says exactly the time needed for the parameter estimation.

A.2.1 Complexity

Without any improvement, the total computation cost of LS estimation is O(NK2 +K3 +NK),

considering that W is diagonal. The term O(NK2) stems from the computation of Rm, m =

0, 1, 2, while the term O(K3) stems from the inversion of the matrix. The term O(NK) stems

from the computation of s0 and s1. After the first improvement, each element of Rm is computed

in constant time, thus, reducing the overall complexity to O(K2 + K3 + NK). Adding the

second improvement, we achieve to compute the sequences sin(2πfk/fsn) and cos(2πfk/fsn)

using approximately 8NK multiplications (2 multiplications per element of E0). This operation

does not improve the complexity, but as we will see shortly, it greatly reduce the execution time.

As concerns the matrix inversion, in the case of SM where the frequencies are harmonically-

related, matrix R0 has Toeplitz structure. Thus, its inversion through Levinson-type algorithms

has complexity O(K2). In any other case, the matrix inversion remains of order O(K3). However,

if we allowed the “diagonalization” of the matrix to be inverted, then, the complexity is reduced to

O(K2
0K). Totally, the complexity was reduced from O((NK+K2+N)K) to O((K+K2

0 +N)K).

A.2.2 Execution Time

We test the performance of the computational improvements using synthetic signals. Synthetic

signals are given by

s[n] =
K∑
k=1

cos(2πfk/fsn), n = −N, ..., N (A.18)

where fs = 16000 which is a typical value for the sampling frequency. Parameters K and N

take values K = 10, 20, . . . , 50 and N = 150, 175, . . . , 250, respectively. For the special case of

harmonic frequencies, fk = kf0, k = 0, . . .K, fundamental frequency, f0, is chosen uniformly

from the interval [80, 280]Hz while for the general case, we choose the frequencies uniformly in

[80, fs/2− 80]Hz, under the conditions that every two frequencies should be at least 80Hz apart

and that fk−1 < fk.

The computer used for the experiments was equipped with: Intel Core 2 6600 CPU @ 2.4

GHz and 2GB RAM. Note that only one CPU was used to ensure accuracy of the results. The

operating systems was Windows XP Professional 32 bit. In Tables A.2 and A.3, the average

execution time for each improvement is shown. Note that the average was taken over 1000 runs.
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In Table A.3 the Signal-to-Noise Ratio (SNR) is also reported since approximations take place.

Obviously, the computational gain up to 2nd improvement is 77% for the harmonic case of SM

while it is 66% for the general case of SM. The respective computational gain for QHM is 34%

for the harmonic case while it is 30% for the general case. The difference in the performance

between the harmonic and the general case stems from the fact that matrices Rm, m = 0, 1, 2 are

Toeplitz in the former case. When the third improvement takes place, the computational gain

is further improved without significant loss of SNR from turning Rm, m = 0, 1, 2 into diagonal

matrices.

SM QHM
kf0 fk kf0 fk

No improvement 4.205 ms 4.257 ms 10.871 ms 10.929 ms

1st improvement 2.467 ms 4.227 ms 4.930 ms 8.618 ms

2nd improvement 0.967 ms 2.792 ms 3.653 ms 7.676 ms

Table A.2: Average CPU time of the first and second improvement.

SM
CPU time SNR

kf0 fk kf0 fk

No improvement 4.205 ms 4.257 278 dB 272 dB

3rd improvement (3) 0.810 ms 0.923 ms 88 dB 83 dB

3rd improvement (5) 0.813 ms 0.955 ms 105 dB 109 dB

3rd improvement (7) 0.839 ms 1.024 ms 117 dB 124 dB

Table A.3: Average CPU time and SNR of the third improvement. The number in the parentheses
denotes how many diagonals have been used.



Appendix B

Relation of iQHM with

Gauss-Newton method

This Appendix shows the relation between iQHM and Gauss-Newton (GN) method for a mono-

component signal. To remind, a mono-component stationary signal is written in discrete domain

as

s[n] = A1e
j2πf1n/fsw[n], n = −N, ..., N (B.1)

where A1 is the complex amplitude, f1 is the frequency, fs is the sampling frequency while w[n]

is a symmetric window. We will show that the estimation provided by iQHM is equivalent with

“sequential GN method.

B.1 iQHM Method

In iQHM, an initial estimate of the frequency (denoted f
(0)
1 ) is provided. Then, at the ith

step (i = 0, 1, ...), complex amplitude, a
(i)
1 , and complex slope, b

(i)
1 are computed by a

(i)
1 =∑N

n=−N w2[n]s[n]e−j2πf
(i)
1 n∑N

n=−N w2[n]
and b

(i)
1 =

∑N
n=−N nw2[n]s[n]e−j2πf

(i)
1 n∑N

n=−N n2w2[n]
. The amplitude of the signal is given

by

A
(i)
1 = a

(i)
1 (B.2)

while frequency is updated as

f
(i+1)
1 = f

(i)
1 +

ρ
(i)
2,1

2π
(B.3)
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where ρ
(i)
2,1 can be written as

ρ
(i)
2,1 =

R{a(i)1 }I{b
(i)
1 } − I{a

(i)
1 }R{b

(i)
1 }

|a(i)1 |2
= R{−jā

(i)
1 b

(i)
1

|a(i)1 |2
} = R{−jb

(i)
1

a
(i)
1

} (B.4)

where R{·} and I{·} denote the real and imaginary parts of a complex number while ·̄ denote

conjugation. Thus, the update equation for the frequency becomes

f
(i+1)
1 = f

(i)
1 −R{

jb
(i)
1

2πa
(i)
1

} (B.5)

B.2 GN Method

On the other hand, given an initial estimate of the amplitude, A
(0)
1 , and of the frequency, f

(0)
1 ,

GN method has the following updating step (i = 0, 1, ...) A
(i+1)
1

f
(i+1)
1

 =

 A
(i)
1

f
(i)
1

+ (JHJ)−1JHr (B.6)

where J is a 2N + 1× 2 matrix given by

J =


w[−N ]ej2πf

(i)(−N) w[−N ]A
(i)
1 j2π(−N)ej2πf

(i)(−N)

...
...

w[N ]ej2πf
(i)N w[N ]A

(i)
1 j2πNej2πf

(i)N

 (B.7)

and r is a 2N + 1× 1 vector given by

r =


w[−N ]

(
s[−N ]−A(i)

1 ej2πf
(i(−N)

)
...

w[N ]
(
s[N ]−A(i)

1 ej2πf
(i)N
)

 (B.8)

Then, (B.6) equals to A
(i+1)
1

f
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} 
(B.9)
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which leads to

 A
(i+1)
1

f
(i+1)
1

 =


∑N
n=−N w2[n]s[n]e−j2πf
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1 n∑N
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}
 (B.10)

Note that the real operator is applied on the frequency update equation because frequency is a

real parameter.

B.3 Relation Between the Two Methods

Using the parameters from iQHM, GN iteration becomes

 A(i+1)

f
(i+1)
1

 =

 a
(i)
1

f
(i)
1 −R

{
jb

(i)
1

2πa
(i−1)
1

}  (B.11)

which shows that there is a delay of one step on the estimation of the complex amplitude of

the signal. However, if the estimation of the sinusoidal parameters in GN method is performed

sequentially, i.e. firstly update the complex amplitude given the frequency of the previous step

and then update the frequency given the updated complex amplitude, then, iQHM and GN

method are equivalent.
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Appendix C

Contributions of the Thesis

In this Appendix, we list the papers presented in conferences and showed in journals.

C.1 2008

1. Title: IMPROVING THE MODELING OF THE NOISE PART IN THE HARMONIC

PLUS NOISE MODEL OF SPEECH

Author: Yannis Pantazis and Yannis Stylianou

Journal: ICASSP

2. Title: ON THE ESTIMATION OF SPEECH HARMONIC MODEL

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: ISCA Tutorial and Research Workshop (ITRW) on ”Speech Analysis and Processing

for Knowledge Discovery

3. Title: ON THE PROPERTIES OF A TIME-VARYING QUASI-HARMONIC MODEL

OF SPEECH

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: INTERSPEECH

C.2 2009

1. Title: CHIRP RATE ESTIMATION OF SPEECH BASED ON A TIME-VARYING

QUASI-MODEL
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Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: ICASSP

2. Title: AM-FM ESTIMATION FOR SPEECH BASED ON A TIME-VARYING SINU-

SOIDAL MODEL

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: INTERSPEECH

3. Title: A NOVEL METHOD FOR THE EXTRACTION OF VOCAL TREMOR

Author: Yannis Pantazis, Maria Koutsogiannaki and Yannis Stylianou

Journal: MAVEBA

C.3 2010

1. Title: ON THE ROBUSTNESS OF THE QUASI-HARMONIC MODEL OF SPEECH

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: ICASSP

2. Title: ANALYSIS/SYNTHESIS OF SPEECH BASED ON AN ADAPTIVE QUASI-

HARMONIC PLUS NOISE MODEL

Author: Yannis Pantazis, Georgios Tzedakis, Olivier Rosec and Yannis Stylianou

Journal: ICASSP

3. Title: ITERATIVE ESTIMATION OF SINUSOIDAL SIGNAL PARAMETERS

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: IEEE Signal Processing Letters

4. Title: ADAPTIVE AM-FM SIGNAL DECOMPOSITION WITH APPLICATION TO

SPEECH ANALYSIS

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: IEEE Trans. on Audio, Speech and Language Processing
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5. Title: FAST LEAST-SQUARES SOLUTION FOR SINUSOIDAL, HARMONIC AND

QUASI-HARMONIC MODELS

Author: Georgios Tzedakis, Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: INTERSPEECH

6. Title: CORRESPONDENCE ON THE COMMENTS FOR “ITERATIVE ESTIMATION

OF SINUSOIDAL SIGNAL PARAMETERS”

Author: Yannis Pantazis, Olivier Rosec and Yannis Stylianou

Journal: IEEE Signal Processing Letters
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