
University of Crete

Master Thesis

Coupled Accelerating Airy Waves
in Fiber Optics

Author:

Gkoutsoulas Michail

Supervisor:

Efremidis Nikolaos

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Department of Applied Mathematics

November 12, 2015

http://www.uoc.gr
http://www.tem.uoc.gr/~nefrem/
http://fourier.math.uoc.gr/tmem/


“The most exciting phrase to hear in science, the one that heralds new dis-

coveries, is not ’Eureka!’ but ’That’s funny...’.”

Isaac Asimov
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More than three decades ago Berry and Balazs proposed theoretically that the

Schrödinger equation describing a free particle admits a nonspreading Airy wave

packet solution. This Airy packet corresponds to a family of orbits represented by

a parabola. Although the most exotic feature of this Airy packet sparked the idea

behind this thesis; to copropagate signal pulse along with an accelerating Airy

(control) pulse. Our goal was to show that depending on Airy′ s parameters we

can control the evolution of the spectrum and the temporal location of the signal

pulse. So by properly assuming an Airy pulse we can accelerate or decelerate a

signal pulse while we can manipulate the signal pulse to follow Airy′ s parabolic

trajectory. The corresponding simulations both in the real and in the spectral

space were discussed.
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Chapter 1

General Introduction about

Optical Fibers

1.1 Brief Historical Perspective

Though the very important discovery that light’s guidance is due to the total

reflection inside an optic fibre was made in the early 1900, technical problems

didn’t made easy to create efficient enough optic fibres in order to study relative

to the optics physical phenomena. The complexity of nonlinear phenomena was

added to the technical problems making the creation of less lossy optic fibres

urgent. Although uncladded fibers were built from 1920’s it wasn’t until 1957

when van Heel and Hopkins and Kapany proposed that the usage of dielectric

cladding was essential in the optics field. [1–3]

A very important contribution to the field of fiber optics was made when it

was suggested the existence of soliton-like pulses as an interaction between the

dispersive and nonlinear effects [4] while they propagate in optic fibres . This had

a radical contribution in the generation and control of ultra short pulses . Pulse

compression along with optical-switching methods were developed in the 1980s

and lead to the exploitation of nonlinear effects developed in fiber optics.[5–9]

Later the usage of rare-earth elements in optic fibers contribute significantly

in the growth of optic amplifiers that lead to the generation of a new type of

amplifiers with specific advantages. Optical fibers doped with Erbium were in

particular interest because they operate in the wavelength region 1.55 µm and

thus are significantly important for fiber optic lightwave systems [10]. Although

the innovative breakthrough, that doped optic fibers led to the employment of

two nonlinear effects named Raman scattering and four-wave mixing, that occur

1



Chapter 1. Propagation in Optic Fibres 2

in optic fibers, led to one very special category of amplifiers which is independent

of rare-earth elements and created in the early 2000. It’s special characteristic

is that it can operate in any spectral region. That was very important for the

telecommunication companies because since then the only optic fibres that existed

were able to operate in a very specific spectral region [11].

The creation of such very efficient amplifiers made it easier to study more

complex phenomena than optical solitons such as dispersion managed solitons and

dissipative solitons [12–15]. The development of new fibers where the structural

changes affect both their dispersive and nonlinear properties was crucial impor-

tance to the growth of fibres which have two wavelengths where the group velocity

dispersion is equal to zero. That changes in the group velocity dispersion are very

important if someone consider the critical role of (GVD) in the propagation of

pulses; different spectral components of the beam travel at different speeds which

leads to the pulse broadening.

1.2 Propagation in Optic Fibers

In order to describe at first and then to understand the nonlinear phenomena

in optical fibers, we should consider the theory of electromagnetic wave propaga-

tion in dispersive nonlinear media. Later we will show the equations that govern

the wave propagation in single-mode fibers. Beginning from Maxwell’s equations

and using the theory of pulse propagation in non dispersive media under the slow

varying envelope approximation we will show how under particular assumptions

Maxwell’s equations lead to Non Linear Schrödinger equation.

1.2.1 Maxwell’s Equations

As we already know the equations that govern both all the electromagnetic

phenomena and the propagation of optical beams in fibers are Maxwell’s Equations

and can be written in the following form [16]

O× E = −∂B

∂t
(1.1)

O×H = J +
∂D

∂t
(1.2)

O ·D = ρf (1.3)

O ·B = 0 (1.4)
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where E and H are electric and magnetic field vectors respectively and D, B are

the corresponding electric and magnetic flux densities. The current density vector

J and the charge density ρf represent the sources for the electromagnetic field. In

the absence of free charges in a medium such as optical fibers J=0 and ρf=0 too.

The flux densities D and B arise in response to the electric and magnetic

fields E and H propagating inside the medium and are related to them through

the constitutive relations

D = ε0E + P (1.5)

B = µ0H + M (1.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P and M

are the induced electric and magnetic polarizations. For a non-magnetic medium

such as optic fibers, M = 0.

We can use Maxwell’s equations to derive the wave equation that describes

light propagation in optical fibers. Wave equation can be obtained simply by

taking the curl of Eq. (1.1) and using Eqs. (1.2),(1.3),(1.4)

O×O×E = O×
(
−∂B

∂t

)
= O×

(
−∂ (µ0H + M)

∂t

)
= O×

(
−µ0

∂H

∂t
− ∂M

∂t

)
=

= −O×Hµ0
∂

∂t
−O×∂M

∂t
= −

(
J +

∂D

∂t

)
µ0
∂

∂t
= −µ0

∂2D

∂t2
= −µ0ε0

∂2E

∂t2
−µ0

∂2P

∂t2

By assuming µ0ε0 = − 1
c2

we finally obtain that

O× O× E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
(1.7)

where c is the speed of light in vacuum. To complete the description, a relation

between the induced polarization P and the electric field E is needed. If we include

only the third-order nonlinear effects governed by χ(3), the induced polarization

consists of two parts such that [17–19].

P (r, t) = PL (r, t) + PNL (r, t) (1.8)

where the linear PL and the nonlinear part PNL are related to the electric field

by the general relations
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PL (r, t) = ε0

∫ t

−∞
χ(1)(t−t′) · E (r, t′) dt′ (1.9)

PNL (r, t) = ε0

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3

× χ(3) (t− t1, t− t2, t− t3)
...E (r, t1) E (r, t2) E (r, t3)

(1.10)

The relations are valid in the electric-dipole approximation and assume that the

medium response is local.

Equations (1.7)-(1.10) can describe in general the third-order nonlinear effects

in optical fibers. However due to their complexity, several approximations are

needed. A significant simplification is to treat the nonlinear polarization PNL in

Eq. (1.8) as small perturbation to the total induced polarization. This is because

the nonlinear effects are relatively weak in silica fibers. So to begin with we can

set PNL = 0. Because Eq. (1.7) is then linear in E, it is useful to write in the

frequency domain as

O× O× Ẽ (r, ω) = ε (ω)
ω2

c2
Ẽ (r, ω) (1.11)

where Ẽ (r, ω) is the Fourier transform of E (r, t) defined as

Ẽ (r, ω) =

∫ ∞
∞

E (r, t) exp(iωt)dt (1.12)

The frequency-dependent dielectric constant appearing in Eq. (1.11) is defined as

ε (ω) = 1 + χ̃(1) (ω) (1.13)

where χ̃1(ω) is the Fourier transform of χ1(t). As χ̃1(ω) is in general complex, so

is ε (ω). It’s real and imaginary parts can be related to the refractive index n (ω)

and the absorption coefficient α (ω) by using the definition

ε = (n+ iac/2ω)2 . (1.14)
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From Eqs. (1.13),(1.14), n and α are related to χ(1) by the relations

n (ω) = 1 +
1

2
Re
[
χ̃(1) (ω)

]
(1.15)

α (ω) =
ω

nc
Im
[
χ̃(1) (ω)

]
, (1.16)

where Re and Im stand for the real and imaginary parts, respectively.

Two further simplifications can be made before solving Eq. (1.11). First,

because of low optical losses in fibers in the wavelength region of interest, the

imaginary part ε (ω) is small in comparison to the real part. Thus, we can replace

ε (ω) by n2 (ω) and include fiber loss in a perturbative manner. Second, as n (ω)

is often independent of the spatial coordinates in both the core and cladding of

step-index fiber one can prove that

O× O× E = O (O · E)− O2E

From Eq. (1.3) we can obtain that OD = ε0O · E = ρf . But O (ρf ) = 0 so we can

finally obtain the following that

O× O× E = O (O · E)− O2E = −O (ρf )− O2E = −O2E (1.17)

So by direct substituting Eq. (1.17) to Eq. (1.11) we can obtain an equation at

the following form

O2Ẽ + n2 (ω)
ω2

c2
Ẽ = 0 (1.18)

1.3 Pulse-Propagation Equation

The study of most nonlinear effects in optical fibers involves the use of short

pulses. When such optical pulses propagate inside a fiber, both dispersive and

nonlinear effects influence their shapes and spectra. In this section we derive a

basic equation that governs propagation of optical pulses in nonlinear dispersive

fibers. The starting point is the wave Equation Eq. (1.7), (1.8).
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O× O× E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2

P (r, t) = PL (r, t) + PNL (r, t)

and recalling that O× O× E = −O2E we finally have

− O2E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
⇒ O2E− 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
⇒ O2E− 1

c2

∂2E

∂t2
=

= µ0
∂2PL

∂t2
+ µ0

∂2PNL

∂t2

So at last we have shown that the equation that governs propagation of opticl

pulses in nonlinear dispersive fibers is:

O2E− 1

c2

∂2E

∂t2
= µ0

∂2PL

∂t2
+ µ0

∂2PNL

∂t2
(1.19)

1.4 Nonlinear Pulse Propagation

Due to it’s complexity equation Eq. (1.19) needs some more simplifications to

be made before it is actually been solved. To begin with PNL, is treated as a small

perturbation to P. This is justified because nonlinear changes in the refractive

index are very small in practise. Second, the optical field is assumed to maintain

its polarization along the fiber length so that a scalar approach is valid. Although

in practise this is not really the case, such an approximation seems to work quite

well in practice. In the slowly varying envelope approximation adopted here, it is

useful to separate the rapidly varying part of the electric field by writing it in the

form

E (r, t) =
1

2
x̂ [E (r, t) exp (−iω0t) + c.c] (1.20)

where x̂ is the polarization unit vector and E (r, t) is a slowly varying function of

time. The polarization components PL and PNL can also be expressed in a similar

way by writing
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PL (r, t) =
1

2
x̂ [PL (r, t) exp (−iω0t) + c.c] (1.21)

PNL (r, t) =
1

2
x̂ [PNL (r, t) exp (−iω0t) + c.c] (1.22)

To obtain the wave equation for the slowly varying amplitude E (r, t), it is

more convenient to work in the Fourier domain. This is generally not possible

as Eq. (1.19) is nonlinear because of the intensity dependence of the dielectric

constant. In one approach εNL is treated as as constant during the derivation of

the propagation equation. The approach is justified in view of the slowly vary-

ing envelope approximation and the perturbative nature of PNL. We begin from

Eq. (1.20) while using Eq. (1.22) to direct substitute them to Eq. (1.19) while for

the Fourier transform of E (r, t) we obtain the following formation

Ẽ (r, ω − ω0) =

∫ ∞
−∞

E (r, t) exp [i (ω − ω0) t] dt (1.23)

is found to satisfy the Helmholtz equation:

O2Ẽ + ε (ω) k2
0Ẽ = 0 (1.24)

where k0 = ω
c

and ε (ω) is the dielectric constant. The dielectric constant can be

used to define the refractive index n̂ and the absorption coefficient α̂. However,

both n̂ and α̂ become intensity dependent because of the nonlinear dependence of

the dielectric constant to the intensity of the refractive index.

To solve Equation Eq. (1.24) we will use the method of separation of variables

while we assume a solution in the following form:

Ẽ (r, ω − ω0) = F (x, y) Ã (z, ω − ω0) exp (iβ0z) , (1.25)

where Ã (z, ω) is a slowly varying function of z and β0 is the wave number to

be determined later. After direct substitution of Eq. (1.25) to Eq. (1.24) we have:

O2Ẽ =
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
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=
∂2F

∂x2
Ã (z, ω − ω0) exp (iβ0z)

+
∂2F

∂y2
Ã (z, ω − ω0) exp (iβ0z)

+
∂2Ã

∂z2
F (x, y) exp (iβ0z)

+2iβ0
∂Ã

∂z
F (x, y) exp (iβ0z)− β2

0F (x, y) Ã (z, ω − ω0) exp (iβ0z)

After we have done all these calculations we can now return to Eq. (1.24)

equation to direct substitute and simplify our equations a bit.

∂2F

∂x2
+
∂2F

∂y2
+
[
ε (ω) k2

0 − β̃02
]
F = 0 (1.26)

∂2Ã

∂z2
+ 2iβ0

∂Ã

∂z
+
(
β̃2 − β2

0

)
Ã = 0 (1.27)

where in Eq. (1.27) we should neglect the second derivative ∂2Ã/∂z2 since ˜A (z, ω)

is assumed to be a slowly varying function of z. The dielectric constant ε (ω) in

Eq. (1.26) can be approximated by

ε = (n+ ∆n)2 ≈ n2 + 2n∆n (1.28)

where ∆n is a small perturbation.

Equation (1.26) can be solved using first-order perturbation theory [20]. To

begin with we will substitute ε with n2 and obtain the modal distribution F (x, y)

and the corresponding wave number β (ω). Next, by including the effect of ∆n in

Eq. (1.26) while using the first-order perturbation theory someone can conclude

that ∆n does not affect the modal distribution F (x, y). However the eigenvalue

β̃ becomes

β̃ (ω) = β (ω) + ∆β (ω) (1.29)

Using Eqs. (1.20) and Eq. (1.25) the electric field E (r, t) can be written as

E (r, t) =
1

2
x̂ {F (x, y)A (z, t) exp [i (β0z − ω0t)] + c.c} , (1.30)
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whereA(z, t) is the slowly varying pulse envelope . The Fourier transform Ã (z, ω − ω0)

of A(z, t) satisfies Eq. (1.27) which can be written as

2iβ0
∂Ã

∂z
+
(
β2 − β2

0

)
Ã = 0⇒ 2β0

∂Ã

∂z
= i
(
β̃2 − β2

0

)
Ã

which under the assumption β̃2 − β2
0 ≈ 2β0

(
β̃ − β0

)
can be written as

∂Ã

∂z
=

i

2β0

[
2β0

(
β̃ − β0

)]
Ã

which using Eq. (1.29)can be written in the following form

∂Ã

∂z
= i [β (ω) + ∆β (ω)− β0] Ã (1.31)

From this last equation someone can conclude that each spectral component

within the pulse envelope acquires, as it propagates, down the fiber, a phase shift

whose magnitude is both frequency and intensity dependent.

At this point we can go back to the time domain by taking the inverse Fourier

transform of Eq. (1.31) and obtain the propagation equation for A (z, t). However,

as an exact functional form of β (ω) is rarely known, it is useful to expand β (ω)

in a Taylor series around the carrier frequency ω0 as

β (ω) = β0 + (ω − ω0) β1 +
1

2
(ω − ω0)2 β2 +

1

6
(ω − ω0)3 β3 + · · · , (1.32)

where β0 ≡ β (ω0) and the higher order terms are defined as

βm =

(
dmβ

dωm

)
ω=ω0

(1.33)

We can obtain a similar formula for ∆β (ω) can be written as

∆β (ω) = ∆β0 + (ω − ω0) ∆β1 +
1

2
(ω − ω0)2 ∆β2 +

1

6
(ω − ω0)3 ∆β3 + · · · , (1.34)

where ∆β0 = ∆β0 (ω0) and the higher order terms are defines as

∆βm =

(
dm∆β

dωm

)
ω=ω0

(1.35)
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After neglecting the cubic and the higher order terms in Eq. (1.32) and assume

that ∆β = ∆β0 Eq. (1.31) can be written as

∂Ã

∂z
= i

[
β0 + β1 (ω − ω0) +

1

2
β2 (ω − ω0)2 + ∆β − β0

]
Ã⇒

∂Ã

∂z
= i

[
β1 (ω − ω0) +

1

2
β2 (ω − ω0)2 + ∆β

]
Ã

so Eq. (1.31) can finally be written as

∂Ã

∂z
− i
[
β1 (ω − ω0) +

1

2
β2 (ω − ω0)2 + ∆β

]
Ã = 0, (1.36)

Calculating the inverse Fourier transform of A (z, t) we can obtain the following

equation:

A (z, t) =
1

2π

∫ ∞
−∞

Ã (z, ω − ω0) exp [−i (ω − ω0) t] dω. (1.37)

Using the inverse Fourier transform mentioned above someone can conclude that

firstly

F−1
{

(ω − ω0) Ã (z, ω − ω0)
}

= i
∂A (z, t)

∂t
(1.38)

F−1
{

(ω − ω0)2 Ã (z, ω − ω0)
}

= −∂
2A (z, t)

∂t2
(1.39)

Thus combining Eqs. (1.36) - (1.39) we obtain the propagation equation for A (z, t)

∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
= i∆β0A (1.40)

The ∆β0 term on the right side of the last equation includes the effects of

fiber loss and nonlinearity. Using β (ω) ≈ n (ω)ω/c and assuming that F (x, y)

does not vary much over the pulse bandwidth Eq. (1.40) can be written as

i
∂A

∂z
+ β1

∂A

∂t
+
β2

2

∂2A

∂t2
+
α

2
A = iγ (ω0) |A|2A, (1.41)

where in Eq. (1.41) the amplitude A is assumed to be normalized such that |A|2

represents the optical power. This equation is related to the nonlinear Schrödinger

(NLS) equation and it can be reduced to that form under certain conditions.

Eq. (1.41) includes the effects of fiber losses through α, of chromatic dispersion

through β1 and β2 and of nonlinearity through γ. By neglecting the contribution

of the third order dispersion term and under some more assumptions Eq. (1.41)
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can finally be written as

∂A

∂z
− iβ2

2

∂2A

∂t2
− iα

2
A+ γ (ω0) |A|2A = 0, (1.42)

To summarize the effects of the phenomena we mentioned just before, begin-

ning from parameter β1; pulse envelope moves at the group velocity vg ≡ 1/β1,

while the effects of group-velocity dispersion GVD are governed by β2. The β2

term can be positive or negative from which we can derive two different cases

as mention later the normal and anomalous dispersion whereas β2 is positive or

negative respectively. The right term in Eq. (1.41) is responsible for the nonlin-

ear phenomena we can observe and governs the self-phase modulation or simply

(SPM).

1.5 Nonlinear Effects

1.5.1 Chromatic Dispersion

Although Chromatic Dispersion is not a nonlinear phenomenon it has a huge

affect on how the nonlinear effects interact with the pulses through it’s propaga-

tion. Assuming that the propagation constant is called β. Applying the Taylor

series on β in respect of ω around a frequency ω0 where the pulse spectrum is

located we have:

β(ω) = β0 + β1 (ω − ω0) +
1

2
β2 (ω − ω0)2 (1.43)

Parameter β2 stands for group velocity dispersion and as we mention before it is

responsible for the broadening of the pulse. Eq. (1.1) becomes really important

when pulse’s wavelength is such that the group velocity dispersion equal to zero.

This wavelength is called zero− dispersion wavelength. Although β2 is equal to

zero, dispersion effects still exhibit at this region.

To understand better the propagation of the pulse at this regime we should

include in Eq. (1.1) the third order term. The β3 order that appears is called third

order dispersion (TOD) parameter. That kind of higher order effects can lead to

distort of ultra short pulses both in linear and nonlinear regimes[21],[22].

Non-linear effects taking place in the optic fibers can exhibit interestingly

enough properties depending on the sign of the β2 parameter. We can name

two cases. In the first one the group velocity dispersion parameter β2 is positive
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whereas in the second case β2 is negative. The first case is called the normal dis-

persion case while the second one is the anomalous. An important feature of Chro-

matic Dispersion is that different spectral components of the beam travel at dif-

ferent speeds. So in the normal dispersion regime the high frequency components

of the pulse(blue-shifted) travel slower than the low frequency components(red-

shifted) of the same pulse. On the other hand when the pulse propagates on the

anomalous regime the low frequency components tend to travel faster than the

high frequency components.

The anomalous dispersion regime is in particular interest because it is the

case in which the existence of solitons is supported as an interaction between

the dispersion and the nonlinear effects. Whereas our pulses propagate through

the normal or anomalous dispersion regime it is a common phenomenon that the

faster travelling pulse will walk through the slower moving pulse as a result of the

mismatch in their group velocities. As a result the group velocity dispersion plays

a critical role in such nonlinear phenomena [23] .

1.5.2 Raman Scattering Effect

While a category of elastic nonlinear effects can occur inside optical fibers

an other category of stimulated inelastic scattering exists . In contrast with the

elastic in the inelastic phenomena the optical field transfers part of its energy to

the nonlinear medium . Those inelastic phenomena are separated in two main

categories, the stimulated Raman scattering (SRS) and the stimulated Brillouin

scattering (SBS) depending on the type of photons that are participating. Thus

the optical photons participate in SRS and are in our particular interest while

acoustic photons participate in SBS. An other basic difference between SRS and

SBS is that SRS scatters light in both directions (forward and backward) while

SBS only in forward direction . A brief description of SRS can be given using

a quantum mechanical example. In this example a photon of the pump pulse is

annihilated to create a photon at a lower frequency (belonging to Stokes wave)

and a photon with the right energy and momentum to conserve the energy and

the momentum. SRS effect occurring inside optical fibers was used to develop new

types of amplifiers which did not require doped fibers as the amplifiers that were

used in the past .
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1.5.3 Optical Kerr Effect

The dependence of the refractive index of an optic fiber to the optical intensity

rises the Optical Kerr Effect [24], [25]. The nonlinear phase shift induced by an

intense high power pump beam is used to change the transmission of a weak

probe through a nonlinear medium. As a result phase modulation due to intensity

dependant refractive index gives birth to a variety of nonlinear effects such as Self

Phase modulation (SPM), Cross Phase Modulation (XPM) among others. At this

point we should point out that the optical Kerr Effect is only noticeable with the

use of very intense pump pulses [26],[27].

1.5.4 Self-Phase Modulation

The intensity dependence of the refractive index is responsible for many non-

linear effects where the most important of them is the SPM and the XPM. Self

induced modulation is related with the self induced phase shift that a pulse is

submitted to while it’s propagation in an optical fiber. Such as GVD so is SPM

related with pulse broadening as well the formation of solitons [28], [29] while

pulse propagates on the anomalous dispersion regime inside optic fibers. Here a

very beneficial example of the interaction between the Group Velocity Dispersion

and the Self-Phase Modulation is the copropagation of a soliton and an other

nondispersive pulse. As we are going to see in our simulations the compression of

the pulse is easy to archived in the anomalous dispersion regime where the linear

induced chirp of the chromatic dispersion is combined with the opposite sign of

the nonlinear induced chirp of the Self Phase Modulation.

1.5.5 Cross Phase Modulation

Another phenomenon powered from the Kerr effect is the Cross Phase Mod-

ulation [1]. While Self-Phase modulation is related to the self induced phase shift

of a pulse the Cross-Phase modulation is the induced phase shift that is due to

the reaction of two propagating pulses in the optic fiber and is a direct result of

different wavelengths, direction etc. It is well known that the cross phase mod-

ulation is responsible for asymmetric broadening of the co propagating pulses.

An other common thing about XPM is that for pulses with equal intensities but

with different wavelengths the effect of the XPM on the nonlinear phase shift is

twice the effect of SPM. An important feature of XPM is that the pulses need to
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travel with the same group velocities , otherwise XPM will not be able to affect

on the co-propagating pulses and the pulses will just slide past each other while

propagating.

0 4.99

6.19 9.99

Figure 1.1: In the upper row we depict the evolution of two fundamental
solitons propagating in the anomalous dispersion regime until they met up. An
initial chirp was given to see how they will react if we stimulate a collision
between them. In the lower row we show the evolution of those two solitons
after they collide. It is clear that the difference in the group velocity makes

possible the pass by of the chirped one through the other.

1.6 Numerical Methods

The NLS equation i.e.Eq. (1.41) is a nonlinear partial differential equation

and a lot of research has been done to obtain analytic solutions. Although in

some cases due to its complexity an analytic solution is not always possible. As a

result a numerical approximation of the problem is often necessary. A numerical

approach also will help us understand the corresponding nonlinear effects in optical

fibers. For this reason a variety of numerical methods have been developed [30–

60]. Those numerical methods are separated in two major categories; the finite-

difference methods and the pseudospectral methods.
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While each method has its advantages and disadvantages compared with the

other the pseudospectral split-step Fourier method has been more popular to solve

the pulse propagation problem in nonlinear dispersive media. The reason for the

success of this method is due to its speed compared with finite-difference method.

This advantage occurs to the speed of the finite-Fourier transform (FFT) algorithm

[61].

1.6.1 Split-Step Fourier Method

To determine how the split-step Fourier method [32], [33] works it will be

useful to begin from a linear equation rather than Eq. (1.42) which is nonlinear.

So we will begin with an equation in the following form

∂u

∂z
= (L+M)u (1.44)

The exact solution of Eq. (1.44) over a distance h can be written in the

following form

u (x, h) = eh(L+M)u (x, 0) , (1.45)

Now we consider two split equations

vt = Lv (1.46)

and

vt = Mv (1.47)

whose solutions can be written ehLv (x, 0) and ehMv (x, 0). The complexity of

Eq. (1.44) may not help us to obtain a solution although the split equations gave

us the ability to approximate the the factor eh(L+M) by a sequence of split operators

as

eh(L+M) = eβnhMeαnhL · · · eβ1hMeα1hL (1.48)

where coefficients αj and βj are constants. Expanding the factor eh(L+M) through

Taylor series we obtain the following result

eh(L+M) = 1 + h (L+M) +
1

2
h2 (L+M)2 + · · · (1.49)
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As anyone can see the simplest split-step scheme is when we take α1 = β1 = 1 and

other coefficients to be zero. In this case we get the first order splitting.

S1 (h) = ehMehL = eh(L+M) +O
(
h2
)

(1.50)

A slightly more complex case would be the second order splitting. Thus the

values of the coefficients αj and βj would change. In order to determine those

coefficients we are going to follow the procedure below. Firstly for the second

order splitting we assume that we have at most 4 coefficients that may differ

from zero: α1, α2, β1, β2 while all the other αj, βj will be equal to zero. More

specifically Eq. (1.50) will obtain the following form

eh(L+M) = eβ2hMeα2hLeβ1hMeα1hL (1.51)

Now by expanding each term through Taylor series we have firstly for eβ2hM

eβ2hM ≈ 1 + hβ2M +
h2

2
β2

2M
2 +O

(
h3
)

secondly for eα2hL

eα2hL ≈ 1 + hα2L+
h2

2
α2

2L
2 +O

(
h3
)

while similar equations are arising for β1, α1 respectively. So if we now calculate

the products eβ2hMeα2hL, first, and then, eβ1hMeα1hL we will have

eβ2hMeα2hL = 1 + hα2L =
h2

2
α2

2L
2 + hβ2M + h2β2Mα2L+

h2

2
β2

2M +O
(
h3
)

while a similar equation occurs when we follow the relative procedure for the

eβ1hMeα1hL product.

eβ1hMeα1hL = 1 + hα1L+
h2

2
α2

1L
2 + hβ1M + h2β1Mα1L+

h2

2
β2

1M
2 +O

(
h3
)

Now by substituting back to Eq. (1.51) the products that we have calculated just

before we obtain that

eβ2hMeα2hLeβ1hMeα1hL

=

(
1 + hβ2M +

h2

2
β2

2M
2 +O

(
h3
))(

1 + hα2L+
h2

2
α2

2L
2 +O

(
h3
))
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= 1 + hα2L+
h2

2
α2

2L
2 + hβ2M + h2β2Mα2L+

h2

2
β2

2M
2 + hα1L+

h2α1α2L
2 + h2α1β2LM +

h2

2
α2

1L
2 + hβ1M + h2β1Mα2L+ h2β1β2M

2

+ h2β1Mα1L+
h2

2
β2

1M
2

= 1 + h (α2L+ β2M + α1L+ β1M) +
h2

2

{
α2

2L+ 2β2Mα2L
}

+
h2

2

{
β2

2M
2 + 2α1α2L

2 + 2α1β2LM + α2
1L

2 + 2β1α2ML
}

+
h2

2

{
+2β1β2M

2 + 2β1α1ML+ β2
1M

2
}

(1.52)

Now by comparing Eq. (1.51) witg Eq. (1.49) we are able to export a system of

equations that will lead us to α1, β1, α2, β2 coefficients. More analytically

(α2 + α1)2 = 1

(β2 + β1)2 = 1

β2α2 + β1α2 + β1α1 =
1

2

α1β2 =
1

2

We can easily conclude that β2 = 1, β1 = 0 and α2 = α1 = 1
2

which leads finally

to

S2 (h) = e
1
2
hLehMe

1
2
hL = eh(L+M) +O

(
h3
)

(1.53)

It is easy to understand that the complexity of higher order split-step will

make the algebra much more difficult. A more efficient way was proposed by

Yoshida . The idea is to symmetrically assemble a few lower-order schemes together

to obtain a higher-order one. Specifically to obtain a fourth-order split-step scheme

S4 (h), we express S4 (h) as a symmetric product of three second-order schemes:

S4 (h) = S2 (c1h)S2 (c0h)S1 (c2h) (1.54)



Chapter 1. Split-Step Fourier Method 18

where c0, c1 are real constants. To determine c0 and c1 , we use a standard formula

eXeY eX = e2X+Y+ 1
6

[Y,Y,X]− 1
6

[X,X,Y ]+···, (1.55)

where X and Y are any operators [X, Y ] ≡ XY −Y X, [X,X, Y ] ≡ [X, [X, Y ]] , etc..

This formula can be obtained by repeated application of the Baker-Campbell-

Hausdorff formula for the operator eXeY :

eXeY = eX+Y+ 1
2

[X,Y ]+ 1
12

([X,X,Y ]+[Y,Y,X])+ 1
24

[X,Y,Y,X]+··· (1.56)

Now we can express S2 in the following form

S2 (h) = eh(L+M)+h3A3+h5A5+··· (1.57)

where

A3 =
1

12
[M,M,L]− 1

24
[L,L,M ] (1.58)

Combining Eqs. (1.51), (1.54) we obtain the following formation for Eq. (1.51):

S4 (h) = ec1h(L+M)+c31h
3A3ec0h(L+M)+c30h

3A3ec1h(L+M)+c31h
3A3

which leads to

S4 (h) = e(2c1+c0)h(L+M)+(2c31+c30)h3A3+O(h5) (1.59)

From this last formula we obtain two equations from which we will export a solu-

tion for both c0 and c1

c0 + 2c1 = 1, ‘c3
0 + 2c3

1 = 0 (1.60)

thus by direct substituting c0 = 1− 2c1 we obtain for the third order equation

(1− 2c1)3 + 2c3
1 = 0⇒ −6c3

1 + 12c2
1 − 6c1 + 1 = 0⇒ c1 =

1

2− 2
1
3

If this scheme is unfolded into a product of individual split operators of the

form Eq. (1.48) then this fourth-order scheme is such that n=4 and

α1 =
1

2
c1, α2 =

1

2
(1− c1), α3 =

1

2
(1− c1), α4 =

1

2
c1

β1 = c1, β2 = 1− 2c1, β3 = c1, β4 = 0 (1.61)

Similarly higher order split-steps can occur although that would not mean that
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those schemes are necessarily better. Moreover as we have seen even from the

fourth-order scheme the algebra teens to be complicated enough. As a result the

complexity of the calculation in higher order schemes along with the high accuracy

of second-order makes higher order seems less attractive.

So as we mentioned before at the beginning of this subsection the example

we used referred to a linear equation. In the case of a nonlinear equation as for

example Eq. (1.42) we consider that

ut = M (u) +N (u) (1.62)

where at least on of the operators M , N , is nonlinear in u, where M is a differential

operator that includes the dispersion and losses terms within a linear medium and

N is a nonlinear operator that accounts for the the effect of fiber nonlinearities on

pulse propagation. More analytically

M = −iβ2

2

∂2

∂T 2
− α

2
(1.63)

N = iγ |u|2 (1.64)

In general dispersion and nonlinear effects act together along the fiber. The

approximation behind the split-step Fourier method is that we assume the disper-

sive and nonlinear effects act independently during the propagation of the optical

field in a small distance h. Thus propagation from z to z + h is obtained in two

steps. In the first step, nonlinearity acts alone and M = 0 in Eq. (1.57). In the

second step, dispersion acts alone, and N = 0 in Eq. (1.57). As we have done in

the linear case we begin by splitting Eq. (1.57) in two equations which need to be

solved

vt = M (v) (1.65)

and

vt = N (v) (1.66)

The idea behind the split-step methods to solve nonlinear equations is ac-

tually a common practise which let us to formally extend the previous split-step

schemes we have shown for linear equations directly to nonlinear equations. For

example the extension of the Strang splitting scheme (second-order scheme) is

that starting from the initial condition u (x, 0), we first integrate the M-operator
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equation Eq. (1.65) by half h/2 to get an intermediate solution v1 (x). Then start-

ing from v1 (x), we integrate the N-operator Eq. (1.66) by one step h to get an

other intermediate solution v2 (x). Lastly, starting from v2 (x) , we integrate the

M-operator again by half a step h/2. The resulting function is then our numeri-

cal approximation S2 (x)u (x, 0) for the nonlinear solution u (x, h). Extension for

higher order schemes such as S4 (x) is similar.

The main advantage of the split-step Fourier method is its implementation

is very easy in practise. We show the algebra for second and fourth order split-

step methods as for higher order schemes the algebra seems to be more and more

complex. Although higher order schemes would be more useful to archive better

computational efficiency. Also the use of an adaptive step size along z can also

be very helpful but only for certain problems. Another advantage is that they

preserve some important properties of the original propagation equations. For

instance as |u2| is a constant we can conclude that
∫
|u2| dx is a conserved quantity

in the implementation of the split-step methods because each split-step operator

integration is power invariant. This power conservation can be important for the

long-time evolution simulations.

The split-step methods are particularly suitable for NLS-type equations. Be-

sides the fact that the split-step Fourier method was first used in the early 70’s

and other methods such as Finite-Difference Methods were applied too, the advan-

tages of the split-step schemes such as the ease of the implementation along with

the variety of the optical problems that it can be applied give a main advantage

to split-step schemes comparing with other numerical methods. Although an ap-

propriate choice of step size z along with x are essential to maintain the required

accuracy.



Chapter 2

Self-accelerating Airy waves in

Optics

2.1 The Infinite-Energy Airy Waves

We begin by assuming the (1+1)D free particle Schrödinger equation in the

following form:

i
∂u

∂ξ
+

1

2

∂2u

∂s2
= 0 (2.1)

where s = x/x0 represents a dimensionless transverse coordinate, x0 is an arbitrary

transverse scale, ξ = z/kx2
0 is a normalized propagation distance (with respect to

the Rayleigh range), k = 2πn/λ0 is the wavenumber of the optical wave. As

Berry and Balazs [62] have shown the Airy function constitutes a solution with

nonspreading properties through time. By nonspreading properties we mean the

exotic feature of Airy to propagate without any changes at its formation as well

as the ability to freely accelerate in free space. So by rewriting Eq. (2.1) in

an other formation our target is to show that Airy corresponds to one solution

of the NLS while it preserves its non dispersive feature or more formally that

u (s, ξ = 0) = Ai(s) .

i
∂u

∂ξ
= −1

2

∂2u

∂s2
⇒ ∂u

∂ξ
= i

1

2

∂2u

∂s2
⇒ uξ =

i

2
uss

To continue we calculate the Fourier transform of uss, with , which is equal to:

F
{
i

2
uss

}
=
i

2
(−ik)2F {u} =

−ik2

2
F {u}

21
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and thus

F {uξ} =
−i
2
k2F {u} ⇒ F {u(k, ξ)} = e

−i
2
k2ξF {u(k, 0)}

Now from F {u(k, ξ)} by applying the inverse Fourier transform we will jump from

Fourier space(k, ξ) to real space variables(s, ξ) and finally

u(s, ξ) = F−1 {F {u(k, ξ)}} = F−1
{
e
−i
2
k2ξF {u(k, 0)}

}

=

∫
dk

2π
e
−i
2
k2ξeiksF {u(k, 0)}

By definition we know that Airy function is equal to

Ai(s) =

∫
dp

2π
eip

3/3eips ⇒ F {Ai(s)} =

∫
dse−iksAi(s)&

=

∫
dse−iks

∫
dp

2π
eipseip

3/3 =

∫
dsei(p−k)s

∫
dp

2π
eip

3/3 = eik
3/3 = F {u(k, 0)}

So now after we have calculated the F {u(k, 0)} we can compute u(s, ξ).

u(s, ξ) =

∫
dk

2π
F {u(k, 0)} e

−i
2
k2ξeiks =

∫
dk

2π
ei(

k3

3
− k

2

2
ξ+ks)

After that we would like to transform this 3rd order polynomial to a canonical

form. Thus we are going to follow the procedure below: We assume k = K + ξ/2,

and by substituting this to our initial 3rd order polynomial

k3

3
− k2

2
ξ + ks

we have the following:

(K + ξ/2)3

3
− (K + ξ/2)2

ξ/2
+ (K + ξ/2)s

=
K3

3
+
K2ξ

2
+
Kξ2

4
+
ξ3

24
− K2ξ

2
− Kξ2

2
− ξ3

8
+Ks+

ξs

2
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=
K3

3
− Kξ2

4
− ξ3

12
+Ks

ξs

2
=
K3

3
+K(s− ξ2

4
) +

ξs

2
− ξ3

12

To sum up we have conclude that(
k3

3
− k2

2
ξ + ks

)
=
K3

3
+K

(
s− ξ2

4

)
+
ξs

2
− ξ3

12

and by substituting this last equation to

u(s, ξ) =

∫
dk

2π
ei(

k3

3
− k

2

2
ξ+ks)

we have that

u(s, ξ) =

∫
dK

2π
ei(K

3/3+K(s−ξ2/4)+ξs/2−ξ3/12)

= ei(ξs/2−ξ
3/12)

∫
dK

2π
ei(K

3/3+K(s−ξ2/4) = ei(ξs/2−ξ
3/12)Ai(s− (ξ/2)2)

and finally we have

u(s, ξ) = Ai

[
s−

(
ξ

2

)2
]

exp

(
is
ξ

2
− iξ3

12

)
(2.2)

From Eq. (2.2) we can can easily observe the nondispersive identity of the Airy

solution since u(s, ξ = 0) = Ai(s) as well as the acceleration of an Airy wave packet

while it propagates through ξ. From ( ξ
2
)2 we can justify the ballistic trajectory of

Airy.

As Berry and Balazs supposed the acceleration feature of a diffraction free

Airy wave packet does not slur over Ehrenfest’s theorem which describes the mo-

tion of the center of the gravity of a wave packet, [62–70] and that is because the

Airy function is not square integrable which means that the center of mass cannot

be defined. An ideal example of infinite energy Airy beam would be a free-falling

particle which is constantly been accelerated from earth’s gravitational field while

neither friction or other obstacles stop it’s momentum [63].
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Figure 2.1: (a)In the figure above it is obvious both the acceleration and the
ballistic trajectory of a diffraction free Airy wave while it propagates through ξ.
(b)In this figure we depict the intensity profile of an infinite-energy Airy wave.

2.2 The Finite Energy Airy Waves

The main issue that we have to face with the infinite energy Airy waves are

that they are not observable in practice. One way to make it physically observable

is to induce an exponential function so as to be multiplied with the Airy function,

in the following formation:

u(s, 0) = Ai(s) exp(as) (2.3)

where a > 0 is the decay factor which should be positive so as to preserve finite

energy Airy′ s tail, which is necessary for the realistic representation of such waves.

As we mentioned before the decay factor is necessary so as the positive branch of

the Airy function to decay fast enough in order to archive convergence of Eq. (2.3).

Now we have to prove that even the the truncated Airy function we assumed

in Eq. (2.3) is also a non dispersive solution of Eq. (2.1). Following the same steps

as before we only have to calculate again the Fourier transformation of the new
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initial function given by Eq. (2.3).

F {u(s, 0)} = F {Ai(s) exp(as)} =

∫
dse−iks Ai(s) exp(as)

=

∫
dse−iks

∫
dp

2π
eis(p+a)eip

3/3 =

∫
dseis(−k+p+a)

∫
dp

2π
eip

3/3 = e
(a+ik)3

3

⇒ u(s, ξ) =

∫
dk

2π
F {u(k, 0)} e

−i
2
k2ξeiks =

∫
dk

2π
e

(a+ik)3

3 e
−i
2
k2ξeiks

we assume k + ia = K so the last integral is transformed to:∫
dk

2π
ei[

K3

3
− (K−ia)2

2
ξ+(K−ia)s]

From this last equation we extract the following:

K3

3
− (K − ia)2

2
ξ + (K − ia)s (2.4)

Now we assume

K = K1 +
ξ

2

and Eq. (2.4) becomes:

[K1 + ξ
2
]3

3
−

[K1 + ξ
2
− ia]2

2
ξ + [K1 +

ξ

2
− ia]2s

=
K3

1

3
+
K2

1ξ

2
+
K1ξ

2

4
+
xi3

24
+
a2ξ

2
+
iaξ2

2
+iaK1ξ−

ξ3

8
−K1ξ

2

2
−K1ξ

2

2
+K1s+

ξs

2
−ias

=
K3

1

3
+K2

1ξ −
K1ξ

2

4
+ iaK1ξ +K1s−

xi3

12
+]
ξs

2
+
a2ξ

2
+
iaξ2

2
− ias

=
K3

1

3
+K1

(
s+ iaξ −

(
ξ

2

)2
)
− ξ3

12
+
ξs

2
+
a2ξ

2
+
iaξ2

2
− ias

Thus

u(s, ξ) =

∫
dK1

2π
ei[

K3
1
3

+K1(s+iaξ− ξ
2

2
)+as−aξ

2

2
− iξ

3

12
+ia2 ξ

2
+is ξ

2
]

= eas−
aξ2

2
− iξ

3

12
+ia2 ξ

2
+is ξ

2

∫
dK1

2π
ei[

K3
1
3

+K1(s−( ξ
2

)2+iaξ]

= e

(
as−aξ

2

2
− iξ

3

12
+ia2 ξ

2
+is ξ

2

)
Ai

(
s−

(
ξ

2

)2

+ iaξ

)
(2.5)
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At this point it is important to mention that if we directly substitute α = 0, at

Eq. (2.5) we will end up with exactly the same solution as in the Infinite Power Airy

beam case. Although the most important parameter that we should make clear in

this finite energy Airy wave is that despite the truncation function we have induced

the Airy wave still freely accelerates even in free space for example in the absence

of any potential that could lead to acceleration of the beam. As we observed in

the infinite power Airy wave case, in this case too the term ( ξ
2
)2 indicates the

acceleration of the Airy wave in free space through a parabolic trajectory [71]. At

this point we should mention that Airy′ s diffraction that is noticed in Fig. 2.2 in

comparison with Fig. 2.1 is due to the truncation function that we added.
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Figure 2.2: In figure (a) we depict the dynamics of a Finite Energy Airy
wave when a = 0.1 while in figure (b)it’s illustrated the profile energy of the

corresponding truncated Airy wave

2.3 Creation of Caustics in periodic lattices ;

fold or cusp

Nikolaos K. Efremidis and Ioannis D. Chremmos have shown the that beams

with power law phases produce curved caustics which are associated with the fold

and cusp type catastrophes [72]. Moreover they proved that a 2nd order power



Chapter 2. Creation of Caustics in periodic lattices; fold or cusp 27

law phase is able of self-focusing but with some spherical aberrations. But the

most important aspect of those studies shows that if we construct the initial phase

or wavefront of the beam we can have predefined trajectories with pure power law

caustics along with aberration free focusing waves. A typical example is the Airy

function that constitutes the only one dimensional dispersion free solution of the

Schrödinger equation [62] which have parabolic trajectory as well. As it is shown

[71, 73] an exponentially apodized function multiplied to Airy ends up with a finite

energy Airy beam with reduced nondispersive features. Although this does not

consist a major problem as Airy does not distort abruptly. Curved light waves

like Airy beam which follows a parabolic trajectory highlighted new potentials in

particle manipulation [74], filament generation [75],plasmonics [76, 77], and near

field imaging [78], and optical bullet formation [79, 80]

Light beams can follow different families of curved trajectories including the

general power law [81, 82]. This feature of light beams is responsible for the loss

in Airy′ s dispersion free character. Trajectories like the ones we have described

above can be analysed through the catastrophe theory [83, 84]. If we consider the

coupled mode theory equation

iu̇n + κ (un−1 + un+1) = 0 (2.6)

which consists the one-dimensional potential free discrete Schrödinger equation,

where u̇n = dun
dz

z is the propagation direction and κ is the coupling coefficient

between adjacent waveguides. The solution of Eq. (2.6) can be written in the

following form:

u(x, z) =
1

2π

∫ ∞
−∞

∫ 2π

0

A(ξ)eiΨdqdξ (2.7)

where Ψ = ϕ(ξ) + q(x− ξ) + 2κ cos(q)z. Applying a stationary phase method to

Eq. (2.6) on the integration variable q, ξ, we result in the ray equation

x = ξ + 2κ sin(q(ξ))z (2.8)

where q(ξ) = ϕ′(ξ). Along the caustic trajectory, the phase should be stationary

to the higher than first order to variations of the initial wavefront. Requiring

second order stationary ΨξξΨqq −Ψ2
qξ = 0. More analytically we have:
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Ψξ = ϕ′(ξ)− q ⇒ Ψξξ = ϕ′′(ξ)

Ψq = (x− ξ)− 2κ sin(q)z, Ψqq = −2κ cos(q)z, Ψqξ = −1 (2.9)

ΨξξΨqq −Ψqξ = −2κz cos(q)ϕ′′(ξ)− 1

but q(ξ) = ϕ′(ξ)

So we have

ΨξξΨqq −Ψqξ = −2κz cos(q(ξ))q′(ξ)− 1 = 0 (2.10)

Then we assume ϕ(ξ) = −α(−ξ)βH(−ξ)/β, thus, q(ξ) = α(−ξ)β−1H(−ξ)
From Eq. (2.8) we have

x = ξ + 2κz sin(q(ξ))⇒ z =
−1

2κ cos(q(ξ)q′(ξ)

but

q(ξ) = α(−ξ)β−1H(−ξ)⇒ q′(ξ) = −α(β − 1)(−ξ)β−2H(−ξ)

Now by substituting q′(ξ) to z we have

z =
−1

2κ cos(a(−ξ)β−1α(β − 1)(−ξ)β−2
=

(−ξ)2−β

2α(β − 1)κ cos(a(−ξ)β−1)

So by substituting z to x we finally have

x = ξ +
2κ sin(a(−ξ)β−1(−ξ)2−β

2α(β − 1)κ cos(α(−ξ))β−1
= ξ +

tan(α(−ξ)β−1

α(β − 1)(−ξ)β−2
(2.11)

Then by assuming

0 < q(ξ) <
π

2
⇒ α(−ξ0)β−1 <

π

2
⇒ (−ξ0)β−1 <

π

2α
⇒ ξ0 < −[

π

2α
]

1
β−1 (2.12)
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From Eq. (2.11)we have

x = ξ +
tan(α(−ξ)β−1)

α(β − 1)(−ξ)β−2
, but, tan(α(−ξ)β−1) ≈ α(−ξ)β−1 (2.13)

As a result Eq. (2.11) becomes

x = ξ +
α(−ξ)β−1

α(β − 1)(−ξ)β−2
= ξ − −ξ

β − 1
=
ξβ − ξ − ξ
β − 1

=
ξ(β − 2)

β − 1
(2.14)

As we found before

z =
−ξ2−β

2ακ(β − 1) cos(α(−ξ)β−1)

but cos(α(−ξ)β−1) ≈ 1, as a result

z =
(−ξ)2−β

2α(β − 1)κ
(2.15)

But from Eq. (2.14) we have that ξ =
(
x(β−1)
β−2

)β−2

⇒ (−ξ)2−β =
(
−x(β−1)
β−2

)2−β

So by substituting (−ξ)2−β =
(
−x(β−1)
β−2

)2−β
to Eq. (2.15) we have

z =

(
−x(β−1)
β−2

)2−β

2ακ(β − 1)
⇒ 2zα(β − 1)κ =

(
−x(β − 1)

β − 2

)2−β

⇒ [2zα(β − 1)κ)]
1

2−β =
−x(β − 1)

β − 2

⇒ x(β − 1)

2− β
= [2zα(β − 1)κ)]

1
2−β

x = [(2− β)(β − 1)] [2ακz(β − 1)]
1

2−β (2.16)

which is finally the final formation of the caustic trajectory for small values of

(ξ, x).

As we can conclude from equation Eq. (2.16) both the parabolic trajectory

and the acceleration x′′(z) of the Airy beam are obvious. Also we can see that as

z is getting bigger the acceleration dicreases gradually resulting to the caustic to

approach the asymptotic in the following formation: x = ξ0 + 2κz.

Moreover we have seen that waves which have exponent phase 1 < β < 2 lead

to a caustic that in terms of catastrophe theory is called a ”fold”. On the other
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hand waves with exponent phase β > 2 we can observe radical changes at caustic’s

trajectory which is now can be called as a ”cusp”.

As we have mentioned before by redesigning the initial phase we can produce

different types of caustic trajectories.

We assume x = γzδ while x = ξ + 2κzsin(q(ξ)). Using ξ = f(z) = zf ′(z) we can

calculate q(ξ) by following the steps described below.

ξ = f(z)− zf ′(z) = γzδ − zδγzδ−1 = γzδ − δγzδ = γzδ(1− δ)

From Eq. (2.8) we know that x = ξ + 2κz sin(q(ξ)) ⇒ γzδ = γzdelta(1 − δ) +

2κz sin(q(ξ))⇒ δγzδ = 2κz sin(q(ξ))⇒ q(ξ) = arcsin

[
δγ
2κ

(
ξ

(1−δ)γ

) δ−1
δ

]

q(ξ) = arcsin

[
δγ

1
δ

2κ

](
ξ

1− δ

) δ−1
δ

(2.17)

The optical wavefront that generates the caustic extends from ξ0 to 0 where

q(ξ0) = π
2

From this last equation we have

q(ξ0) =
π

2
⇒ arcsin

[
δγ

1
δ

2κ

](
ξ0

1− δ

) δ−1
δ

=
π

2
⇒ π

2

δγ
1
δ

2κ

(
ξ0

1− δ

) δ−1
δ

=
π

2

⇒ γ
1
δ =

2κ

δ

[
(1− δ)
ξ0

] δ−1
δ

γ =

(
2κ

δ

)δ [
1− δ
ξ0

]δ−1

(2.18)

Now if we go back to our initial power law caustic trajectory equation x = γzδ

and substitute γ from Eq. (2.18) then we have

zδ =
1

γ
=

 1(
2κ
δ

)δ [1−δ
ξ0

]δ−1

 =
−ξ0δ

2κ(δ − 1)
(2.19)
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2.4 Design of Airy trajectory under the usage of

Linear Index Potential

As shown in [85], an optically induced linear index potential is capable of

enhancement or reduction of Airy beam acceleration trajectory which can be real-

ized by changing the index gradient transversely . In this section we will present

the formation of linear longitiudinal (z - axis) index potential that we assumed in

order to design the trajectory that the Airy wave follows.

iuz +
1

2
uxx −

d(z)x

2
u = 0 (2.20)

where d(z)x
2

is the transversely linear index potential with a gradient d(z). After

we transform Eq. (2.19) to Fourier space we have the following:

û =

∫ ∞
−∞

e−ikxu(x)dx⇒ ∂û

∂k
=

∫ ∞
−∞
−ixe−ikxu(x)dx

= −i
∫ ∞
−∞

xe−ikxu(x)dx⇒ ∂û

∂k
i⇒ ∂û

∂k
i = F {xu(x)}

As a result Eq. (2.19) is transformed to:

iûz +
(−ik)2

2
û− id(z))

2
ûk = 0⇒ −uz −

ik2û

2
+
d(z)

2
ûk = 0

which is finally equal to:

û− d(z)

2
ûk = −ik

2

2
û (2.21)

which can be modified to the following formation which consist the characteristic

system
dz

1
= − dk(

dz
2

) = − dû(
i
2
k2û
) (2.22)

To solve the system above we will begin with :

dz

1
= − dk(

dz
2

) ⇒ −1

2
d(z)dz = dk

⇒
∫ κ(z)

κ

dk = −1

2

∫ z

0

d(s)ds⇒ κ(z) = κ− 1

2
D(z)

where D(z) =
∫ z

0
d(s)ds



Chapter 2. Design of Airy trajectory under the usage of Linear Index
Potential 32

Next we are going to solve the other set of equations:

dz

1
= − dû(

ik2u
2

) ⇒ (
−ik2

2

)
dz =

dû

û
⇒ dz

1
= − dû(

ik2u
2

) ⇒ (
−ik2

2

)
dz =

dû

û

⇒
∫ û(k,z)

û(k,0)

dû

û
= − i

2

∫ z

0

κ2(s)ds⇒ ln û(κ, z)− ln û(κ, 0) = − i
2

∫ z

0

κ2(s)ds⇒

⇒ eln û(κ,z)−ln û(κ,0) = e
i
2

∫ z
0 κ

2(s)ds ⇒ û(κ, z) = û(κ, 0)e
i
2

∫ z
0 κ

2(s)ds

from where we finally conclude to

u(x, z) =
1

2π

∫ ∞
−∞

û(k, 0)e−
i
2

∫ z
0 κ(s)2ds)eiκ(z)xdk (2.23)

We now assume an Airy type initial condition in the following formation:

u(x, z = 0) = Ai(γ
1
3x) (2.24)

where γ is the width of the Airy wave. After calculating the Fourier transform

of Eq. (2.24) we conclude to the following equation:

Ai(γ
1
3x) =

∫
dp

2π
eipγ

1
3 xei

p3

3 ,⇒ F
{

Ai(γ
1
3x)
}

=

∫
dx(3γ)−1e−ikγ

1
3 xAi(γ

1
3 x) =

=

∫
1

3γ
dxe−ikxγ

1
3

∫
dp

2π
eipxγ

1
3 e

ip3

3

∫
dx

1

3γ
ei(p−k)xγ

1
3

∫
dp

2π
e
ip3

3 = exp

[
ik3

3γ

]
1

γ
1
3

which finally concludes to:

û(k, z = 0) =
1

γ
1
3

exp

[
ik3

3γ

]
(2.25)

So if we substitute Eq. (2.24) to Eq. (2.22) we have

u(x, z) =
1

2π

∫ ∞
−∞

1

γ
1
3

e
ik3

3γ
− i

2

∫ z
0 κ(s)2ds+iκ(z)xdk =

1

2π

∫ ∞
−∞

1

γ
1
3

e

[
k3

3γ
− 1

2

∫ z
0 κ(s)2ds+k(z)x

]
dk
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So we have
k3

3γ
− 1

2

∫ z

0

κ(s)2ds+ κ(z)x (2.26)

where we assume F2(z) =
∫ z

0
D2(s)ds and F1(z) =

∫ z
0
D(s)ds. Finally we assume

κ(s) = k − D(z)
2

and Eq. (2.25) becomes

k3

3γ
− 1

2

∫ z

0

(
k2 − kD(s) +

D2(s)

4

)
ds+

(
k − D(s)

2

)
x⇒

⇒ k3

3γ
− 1

2

[∫ z

0

k2ds− k
∫ z

0

D(s)ds+
1

4

∫ z

0

D2(s)ds

]
+

(
k − 1

2
D(z)

)
x

=
k3

3γ
− 1

2

[(∫ z

0

k2ds− kF1(z) +
1

4
F2(z)

)]
+

(
k − 1

2
D(z)

)
x

⇒ k3

3γ
− 1

2

[
k2z − kF1(z) +

1

4
F2(z)

]
+

(
k − 1

2
D(z)

)
x

k3

3γ
− 1

2
k2z +

kF1(z)

2
− F2(z)

8
+

(
k − 1

2
D(z)

)
(2.27)

where we assume k = E + z
2
γ and Eq. (2.26) becomes

1

3γ

(
E +

z

2
γ
)3

− 1

2

(
E +

z

2
γ
)2

z +
1

2

(
E +

z

2
γ
)
F1(z)− 1

8
F2(z)

+

(
E +

z −D(z)

2

)
x+

1

3γ

(
E3 +

3

2
E2zγ +

3

4
Ez2γ2 +

z3

8
γ3

)

− 1

2

(
E2 + zγE +

z2

4
γ2

)
z +

1

2

(
E +

z

2
γ
)
F1(z)− 1

8
F2(z)

+

(
E +

zγ −D(z)

2

)
x =

E3

3γ
+

1

2
E2z +

1

4
Ez2γ +

z3

24
γ +

z3

24
γ2

−1

2
E2z − z2γE

2
− z3

8
γ2 +

1

2
EF1(z) +

zγ

4
F1z −

1

8
F2(z) +

(
E +

zγ −D(z)

2

)
x
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=
E3

3γ
− 1

4
Ez2γ − 2z3

24
γ2 +

1

2
EF1(z) +

zγ

4
F1(z)− 1

8
F2(z) + Ex+

(
zγ −D(z)

2

)
x

φ = i
γF1(z)z

4
− iD(z)x

2
− iF2(z)

8
+ i

γzx

2
− iγ

2z3

12
(2.28)

µ(x, z) =
F1(z)

2
+ x− γz2

4
(2.29)

Airy′ s trajectory is provided by µ(x, z) = 0 ⇒

x = −F1(z)

2
+
γz2

4
(2.30)

2.5 Airy’s Self-Healing properties

Beyond the free acceleration of an Airy beam an other exotic property of any

diffraction free beam is it’s ability to self-reconstruct through propagation. This

property gets more and more important if the propagation of the beam is taking

place through inhomogeneous media [72, 86]. It is also important to know under

what circumstances this self-healing takes place. For example how the beam’s

wavelength, acceleration, intensity affect the self healing characteristic of a beam.

2.5.1 Mathematical representation of Self-reconstructing

non-diffracting beams

To examine the self healing properties of a nondiffracting beam it was at-

tempted to locate an obstacle at z = 0 and see how the beam reacts. Of course

this phenomenon can be explained from Babinet’s principle [72, 87]. So if the non

diffracting beam is disturbed by a finite energy perturbation called ε(x, y) i.e.,

then the given input field will be φ (x, y, z = 0) = UND − ε (x, y, z = 0). Then we

recall the propagation equation

i
∂φ

∂ξ2
+

1

2

∂2φ

∂s2
= 0

where s = x
x0

, ξ = z
kx20

and k = 2πn
λ0

Now if we directly substitute our input non diffracting field to the propagating

equation it is easy to found −ikεz − 1
2
52
⊥ ε = 0⇒ iεz + 1

2k
52
⊥ ε = 0.

This means that perturbation ε diffracts very rapidly as it was expected while on

the other hand the nondiffracting wave remains invariant during propagation. As
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a result 0 limz→∞ ε(x, y, z) = 0 which leads to φ(x, y, z) = UND(x, y, z) as z →∞
which concludes to that the non diffracting waves so as the Airy remain their

undistorted properties.

2.6 Experimental methods for Self-healing prop-

erties of Nondiffracting Waves

To study those theoretical results mentioned above there is a number of ex-

periments that are designed in order to see in practise those self-healing properties.

To begin with a rectangular opaque obstacle used to block the Airy wave and see

how it’s self healing properties intrude to reconstruct Airy′ s undistorted propa-

gation. A first set of experiments is designed so as to block the first lobe of an

Airy accelerating wave. The first lobe is important because in there is included

a large percentage of the wave energy. The experiments show that Airy′ s self

healing properties are in this case strong enough to reconstruct the undistorted

propagation of the beam.

Figure 2.3: Self-healing of an Airy wave when it’s main lobe is blocked. Ob-
served intensity profile at (a) the input z=0, (b) z = 11 cm, and (c) z =30 cm.

The corresponding numerical simulations are shown in (d–f )

Figure 2.3b depicts the reformation of this Airy beam after a distance of

z = 11cm. The self-healing of this beam is apparent. The main lobe is reborn at
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the corner and persists undistorted up to a distance of 30 cm Fig. 2.3c. Though

an experiment that is designed to block a much bigger amount of Airy′ s energy

rather than the first lobe will be far more interesting. Thus an experiment wich

will lead us to very interesting results will be an experiment where we will block

the whole internal structure of the Airy wave Fig. 2.4a. Even in this case the self

healing properties of nondiffracting waves take place and the wave reconstruct its

intensity profile.

Figure 2.4: Self-healing of an Airy wave when all the internal lobes are blocked.
Observed intensity profiles at (a) the input z =0 and (b) z = 16 cm. The

corresponding numerical simulations are shown in (c) and (d)

Remarkably after z = 16 cm of propagation the wave self-heals and recon-

structs in detail its fine intensity structure as depicted in Fig. 2.4b.

Figure 2.4c, d shows the corresponding calculated intensity profiles for these same

distances.

Similar results occur when the obstacle is non symmetric. In this set of

experiments the first three lobes of an Airy wave have been blocked. In this

experiment apart from the arise of the self healing properties of non-diffracting

waves it seems that the initially blocked lobes are reborn even brighter when

compared to its surroundings. This is a clear manifestation of the nondiffracting

character of the Airy wave. [72, 88].
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2.7 The co-propagation of an Airy and a soliton

pulse.

2.7.1 Nonlinear’s effect contributions in the interaction of

Airy with other pulses.

Recently the ability to manipulate optical waves with the usage of optical

waves has been very promising while a lot of research has been done the last

years to make this perspective more and more effective [89–92]. Thus the XPM

nonlinearity is a very important variable in this exciting prospect. The existence

of two pulses in order to control light’s properties is ensured by the nature of

XPM which in simple words is describing a kind of interaction between the two

propagating pulses [1, 89]. This interaction is described while we induce third

order nonlinearities in group velocity dispersion approximation. More particularly

both the dynamics and the spectra of a signal can be manipulated by assuming

proper characteristics of the control pulse such as amplitude, pulse width and

walk-off between the signal and the pump pulse [89, 93, 94].

While we use a fundamental soliton for the signal the choice of the control

pulse should be more careful. It is proposed that nondispersive wave packets such

as Airy wave packet are able to control weaker in comparison with them signals

at the optical event horizon region [89, 95]. Airy wave packet is preferred because

compared with other nondispersive wave packets have a larger intensity due to its

self healing properties.

Naturally a dispersive wave packet will lose it’s intensity and would be dis-

formed after the interaction with a high power soliton. Thus the dispersive char-

acter of such beams make it harder to control the evolution copropagating soliton.

The advantage of Airy wave packet is due to it’s ability to maintain it’s intense

even after the reaction with the fundamental soliton. Thus the interaction of the

copropagating pulses will be increased.

Airy wave packets known as Self Accelerating Beams can propagate either on

linear or nonlinear regime [96–98] . The case where the Airy is nonlinear is of par-

ticular interest because of it’s high intensity non-dispersive pulse that is produced.

While in the case where both soliton and Airy pulses have the same wavelength a

lot of research has been done [99], in the case that the corresponding wavelengths

are different wasn’t investigated. A very recent study [89] shows that the Airy-

soliton interactions with different wavelengths differ in a fundamental way from
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what we observe in the case with the same wavelengths. More specifically while

in the case with the same wavelengths as we mentioned before the nondispersive

Airy wave packet gives us the possibility to obtain soliton manipulation, in the

case with different wavelengths Airy beam is not capable to walk-off the soliton

reconstructing an optical event horizon where Airy is frequence/time shifted.

Interestingly enough if Airy wave packet is substituted by an equal energy

Gaussian pulse to play the role of the pump pulse theGaussian-soliton interaction

is not strong enough compared with the Airy-soliton one, and that’s because Airy-

soliton interaction is carrying higher levels of induced XPM nonlinearity . Thus

the Airy wave packet has far more potentials in than the Gaussian in the field of

signals control.

Relative stimulations show that by letting the soliton pulse propagate at the

anomalous dispersion and the Airy wave packet in the normal we can observe the

creation of XPM nonlinearity which is due to the interaction between the two

pulses. The XPM acts by preventing as a natural barrier and does not let the

Airy pulse to overlap the soliton. Because of it’s dispersion free character Airy

tends to freely accelerate while it’s most energy is concentrated in the main lobe

which is very important because it helps Airy not to distort while it’s propagation.

Because of the interaction between the Airy pulse and the soliton the most of the

intensity of Airy reflects, leading to heavy effects on soliton. As we have seen in our

stimulations the signal pulse tends to accelerate and follow a parabolic trajectory

after the interaction with the Airy pulse.

The Airy pulse can also affect soliton’s spectra [97]. As we have seen in our

numerical results signal’s acceleration is translated as a shift of signal’s frequency

toward the blue. For the realisation of the Airy a truncation constant is necessary.

The smaller this constant is the higher power the Airy pulse carries. This aspect

is very important because the more powerful is the Airy the stronger will be it’s

effects on the copropagating pulse which in our case is a signal.

When the truncation constant was bigger than 0.2 Airy′ s total power was

lower than a Gaussian pulse with the same peak intensity while with such a trun-

cation constant oscillations in the trailing edge were significantly more, comparing

with a much smaller truncation coefficient. In spite the fact that a significantly

trunctated Airy pulse has less power than a Gaussian pulse with the same peak

intensity Airy is able to shift both the soliton and it’s spectrum components more

than a Gaussian is able to.

In Figure 2.5 we depict both a low and highly truncated Airy. In the first row
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we depict in figure (a) the propagation dynamics while in (b) is illustrated the

intensity profile for the truncated Airy for a = 0.01. In second row we show the

propagation dynamics in figure (c) while in (d) the corresponding intensity profile

is illustrated. We see that the highly truncated Airy creates oscillation in the

trailing edge which means that more energy is concentrated in this particular area

and thus the peak intensity of the Airy is less and thus the energy in the main lobe

is less compared with an Airy with a = 0.01. Thus the propagation of the Airy is

distorted while it propagates. The difference in the low truncated Airy is that the

peak intensity is concentrated in the main lobe, and thus Airy pulse retains it’s

shape and propagates following an accelerating trajectory.
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Figure 2.5: In the upper row we depict the propagation dynamics and the
intensity profile of an infinite energy Airy with a small truncating constant
a = 0.01 while in the second row we show the corresponding simulations for a

large truncation constant a = 0.1

2.7.2 The pair of Nonlinear Schrödinger Equations

At this section we will study the principals that govern the propagation of a

signal pulse along with an Airy pulse. Due to it’s guiding features we will also call
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Airy as a control pulse. Starting from the pair of NLS equation that govern the

propagation of two optical pulses in a dispersive nonlinear media we obtain the

two following equations

i
∂u

∂z
− βu

2

∂2u

∂t2
+
(
|u|2 + 2 |v|2

)
u = 0 (2.31)

i
∂v

∂z
− βv

2

∂2v

∂t2
+
(
|v|2 + 2 |u|2

)
v = 0 (2.32)

A slightly different system from Eqs. (2.31),(2.32) was first described by Man-

akov(1974) where z is the normalized distance along the waveguide and x is a

traverse coordinate. By assuming that u governs the propagation of an Airy-

(control) pulse while v governs the propagation of a signal pulse we can proceed

with the following analysis:

To begin with terms βu and βv referred to the group-velocity dispersions for the

u and v respectively.

Secondly for Eq. (2.31) terms
(
|u|2 + 2 |v|2

)
describe the nonlinear phenomena

that occur during the propagation. For this equation term |u|2 describes the SPM

while term 2 |v|2 is responsible for the XPM. Both of those nonlinear effects as

well as the Chromatic Dispersion have been described in Chapter 1.

On the other hand in Eq. (2.32) terms
(
2 |u|2 + |v|2

)
describe the nonlinear ef-

fects occur while the propagation and related to the signal pulse. In contrast

with Eq. (2.31) term 2 |u|2 is now related with the XPM while term |v|2 is now

responsible for the SPM.

2.7.3 The initial conditions used

To continue our analysis we will mention the equations which describe the

two copropagating pulses for u and v respectively.

u =
d2 Ai(d3t) exp(at)

0.535656
(2.33)

v = d4d5 sech((t− t0)d5) (2.34)

As we can see Eq. (2.33) describes an Airy pulse where d2 represents Airy′ s am-

plitude, d3 stands for Airy′ s acceleration as well as width factor while α is the

truncation coefficient which is necessary for the realization of the Airy. The con-

stant at the denominator is used for normalization purposes. Heading now to
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Eq. (2.34) where d4 represents signal’s pulse amplitude where d5 is responsible for

signal’s width, while t0 represents where the signal pulse is located.

While we always choose d2 in such a way that the Airy has a nonlinear for-

mation for d4 we distinguish two cases where in the first one Eq. (2.34) describes a

linear signal pulse while the other one a nonlinear signal pulse. Thus when d4 � 1

we assume a linear formation while when d4 ≈ 1 a nonlinear form. An other

essential point is t0. In the procedure that follows depending on the formation of

the Airy pulse we assumed, we locate the central of the signal pulse to be placed

at Airy′ s local maxima or minima points. So beginning from Airy′ s main lobe

where the first maximum is located we end up to Airy′ s second local minimum.

Finally depending on the sign of βu and βv we will distinguish four different

cases. As we have mentioned in the first Chapter when the group velocity dis-

persion parameter is positive then the pulses propagates in the normal dispersion

regime. On the other hand when this parameter is negative the pulse propagates

in the anomalous dispersion regime where the creation of solitons is proposed.

2.7.4 Following Chapters Overview

In Chapter 3 we emphasize on the case that both pulses propagate in the

normal dispersion regime under a self-defocusing nonlinearity. Basically as we

mentioned before we distinguish two cases; the linear and the nonlinear while we

assume every time a different focal point between the soliton and the Airy pulse.

Starting from the linear propagation and Airy′ s first maximum we will end up to

Airy′ s second minimum. Before we moved to the nonlinear propagation we test a

special focal point where our goal is to examine Airy′ s pushing properties. After

that moving to the nonlinear propagation where we begin again from Airy′ s first

maximum to end up with Airy′ s second minimum. The same procedure follows

with almost all the other cases .

In Chapter 4 Airy pulse propagates in the anomalous dispersion while the

signal pulse propagates in the normal dispersion regime . As we mentioned before

Airy propagating in the anomalous dispersion regime is not supposed to exhibit

Airy′ s affect on the signal pulse although when it comes to the examine Airy′ s

pushing properties we can see that the signal’s manipulation is obtainable both in

the linear and the nonlinear propagation.

In Chapter 5 Airy propagates in the normal dispersion regime while the signal

pulse propagates in the anomalous dispersion regime . These conditions let Airy

to exhibit its guiding features and manipulate the signal pulse so as to to follow
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a parabolic accelerating trajectory no matter the linear or nonlinear formation of

the signal pulse.

In Chapter 6 both pulses propagate in the anomalous dispersion regime . Thus

the corresponding nonlinear effects along with the intense enough signal pulse that

are taking place, make the affect of the Airy pulse on the signal pulse weak, that

Airy almost past through the soliton pulse. This phenomenon is observed while we

locate the center of the soliton pulse away from Airy′ s main lobe and especially

in the nonlinear propagating signal pulse where high intensity signal pulses are

interacting with the Airy pulse.



Chapter 3

Airy and signal evolution in the

normal dispersion regime

3.1 Linear signal evolution

We will begin with the case where both of our pulses propagate in the nor-

mal dispersion regime while we assumed a linear formation for the signal pulse.

At the same time as we mentioned in Chapter 2 we always assume a nonlinear

formation for the control pulse. Due to the fact that both pulses propagate in

the normal dispersion regime both βu and βv are positive. More analytically we

assume βu = 2 while βv = 1. So by numerically solving Eqs. (2.31),(2.32) while

using Eqs. (2.33),(2.34) for several values of t0 which consist Airy′ s critical points

(minima, maxima) we will now present the results we derive.

3.1.1 Signal localized at Airy’s first maximum

We will begin by localizing the beam at Airy′ s first maximum (t0 = −1.019).

Thus by recalling that βv is positive we can conclude that the signal pulse is lo-

cated at potential maximum point.

Figure (3.1) depicts the relative stimulation where we can see the affect of the Airy

on the signal pulse as the signal is been manipulated to follow Airy′ s parabolic-

accelerating trajectory. Although as anyone can see a part of the spectral com-

ponents of the signal pulse still propagates invariant while an other spectral part

accelerates along with the Airy pulse. Figure 3.1(b)depicts the spectra of the sig-

nal pulse. Signal’s frequency is shifted towards the blue and that’s due to the

acceleration that the signal pulse is under. The split up that occurs between the

Airy and the signal pulse is due to the fact that the focal point is set at signal’s

43
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potential maximum. But at last the bigger the gradient is formed the more the

signal is accelerated.
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Figure 3.1: For the signal we assume: d4 = 0.00001,d5 = 2 as for the control
pulse : d2 = 2.5, d3 = 1 and a = 0.001. In the first column we show the
dynamics of the signal/ control pulse respectively, while in the second column we
show the corresponding spectra of the pulses. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

3.1.2 Signal localized at Airy’s first minimum

We will continue under the same initial conditions but the only change will

be the center of the signal pulse. Now we will test the case where t0 is located at

a local minimum point of Airy at t0 = −2.3482.

In Figure 3.2 as the central of the signal pulse is located at Airy′ s first minimum

and the dispersion coefficient of u is positive we conclude that the signal pulse is

located at a minimum point of the potential. Thus we expect the affect of Airy

on the signal to be more intense. This practically means that the Airy pulse will

be able to drag the signal pulse without the split-up that we observed in the case
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before. As we can see in (b), compared with the Figure 3.1, Airy is capable of

accelerating a lot more spectral components of the signal pulse although still a

small part of them propagates invariant.
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Figure 3.2: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. The inset in (a) shows the initial condition of the signal(green

shaded)/ control pulse. The signal is magnified for illustration purposes.

3.1.3 Signal localized at Airy’s second maximum

Now we will locate the center of the signal pulse at t0 = −3.227 a local max-

imum of Airy′ s function and the relative stimulations are presented in Fig. 3.3

where it is obvious that the more the center of the signal pulse is localized away

from Airy′ s first maximum the less the affect of the Airy is on the signal pulse.

Thus more and more signal’s components seem to ignore the acceleration and the

parabolic trajectory of Airy. As a result more and more signal’s components tend

to form a pulse which propagates invariant through z. Again the focal point is

located at a signal’s potential maximum. Thus the split-up which we observe in
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Figure 3.1 occurs again but this time more signal’s components propagate invari-

ant. Although Airy′s momentum is still able to manipulate part of the components

of the signal to form an accelerating combined pulse.
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Figure 3.3: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/ second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

3.1.4 Signal localized at Airy’s second minimum

Just before we close the Linear sub case we will present now the results we

got after locating the signal at t0 = −4.1309 .

In Figure 3.4 the center of the signal pulse is located at Airy′ s second minimum.

Thus it might the affect of the Airy on the signal pulse be weaker but the main lobe

of the signal pulse is caved at Airy′ s second minimum in a way that it tends to

follow an accelerating, parabolic trajectory. Although comparing with the relative

simulations of Figure 3.2, where the focal point is closer to Airy′ s main lobe, thus

this particular lobe contains higher levels of energy, and the acceleration of the
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pulse which is created in Figure 3.4 ,and can be observed from the gradient of the

signal pulse, is less. From Figure 3.4(b) that shows the spectra of the signal pulse

we can observe how the interaction between the signal and the control pulse affect

signal’s spectra. Signal pulse frequency experiences a shift towards the blue. The

fact that the focal point is set at signal’s potential minimum is essential for the

phenomena described above.
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Figure 3.4: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. The inset in (a) shows the initial condition of the signal(green

shaded)/ control pulse. The signal is magnified for illustration purposes.

3.1.5 Examining Airy’s pushing properties

To examine the ”pushing” properties of Airy′s function we will set t0 = 2.3842

and we will reduce Airy′ s acceleration.

Figure 3.5 shows that if we locate the center of the signal pulse to be after Airy′ s

main lobe, then we the affect of the Airy is much more intense. In this subcase

we can observe the pushing features of Airy as Airy pushes the signal pulse to

follow an accelerating trajectory from the moment that the control pulse collides
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with the signal pulse. Signal’s spectra is shifted towards the blue as a clear sign

of the acceleration of the signal’s pulse, while at the same time signal’s spectra is

compressed. In this subcase we reduced Airy′ s acceleration in order to make the

effects of Airy more noticeable to the signal pulse. Although a slower accelerating

Airy pulse may accelerate less the signal pulse, it may be easier to keep it in front

of Airy′ s main lobe rather than to pass by.
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Figure 3.5: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

Before we proceed with the evolution of a nonlinear signal we should point

out the advantage of the linear signal pulses against the nonlinear. Linear signals

due to their low intensity can interact with a control pulse in a way that is easier

for the control pulse to exhibit its own manipulating feature on the signal pulse.

This does not means in any case that a nonlinear signal pulse is inappropriate for

such dragging or pushing phenomena. Although as we will see in the chapter that

follows the results while we use a linear signal pulse are better in comparison with

those in the section of the nonlinear signal evolution.
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3.2 Nonlinear signal evolution

At this section we will present the results we got by examining the Nonlinear

case where the two initial conditions have the following form:

u =
d2 Ai(d3t) exp(at))

0.535656
(3.1)

v = d4d5 sech((t− t0)d5) (3.2)

As we have mentioned before u describes an Airy pulse where d2 represents

Airy′ s amplitude, d3 stands for Airy′ s acceleration as well as width factor, while

α is the truncation coefficient which is necessary for the realization of the Airy.

The constant at the denominator is used for normalization purposes. Heading

now to v where d4 represents signal’s pulse amplitude where d5 is responsible for

signal’s width, while t0 represents where the signal pulse is located.

At this point it is important to examine how the nonlinearity affects the results

we got above. As we mentioned before a nonlinear signal pulse will exhibit more

resistance to Airy′ s accelerating property and thus the effect of the Airy pulse on

the nonlinear signal pulse is not expected to be as intense as in the linear signal

propagation. The higher intensity signal pulse that we assumed may lead us to

more dispersive phenomena depending always the focal point that we examine.

To start with we will begin by examining our code by localizing the center of the

signal at Airy′ s first maximum and we will continue with the rest of the points

we tested before.

3.2.1 Signal localized at Airy’s first maximum

So by assuming t0 = −1.019 we locate the central of the signal pulse to be at

Airy′ s first maximum.

Thus in Figure 3.6 we can see simulations that are pretty close to the linear case

and that is because all the coefficients consisting u, v are the same with the linear

case except from the intensity of the signal pulse. The nonlinearity of the signal

pulse can lead to the creation of other pulses that propagate almost invariant. Even

from this first local point we can observe that slight difference between the linear

and nonlinear subcases. The fact that the focal point is set at signal’s potential

maximum along with the nonlinearity of the signal pulse leads to the split-up

between the copropagating pulses and enhances the dispersive phenomena that

are observed.
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Figure 3.6: For the signal pulse we assume: d4 = 1,d5 = 2 as for the control
pulse : d2 = 2.5,d3 = 1 and a = 0.005 . In the first column we show the
dynamics of the signal/ control pulse respectively, while in the second column
we show the corresponding spectra of the pulses. Thus the first/second row
corresponds to the signal/ control pulse. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

3.2.2 Signal localized at Airy’s first minimum

So after examining the first value for t0 we will now test our code for an other

value of t0. Now we will assume that t0 = −2.3482 and the results we got are

shown in Figure 3.7.

In Figure 3.7 the results after we have located the central of the signal pulse at

Airy′ s first minimum are shown. As we have seen before in the linear subcase the

first minimum seems to be a focal point were the intensity of Airy pulse seems

to have a big effect on the signal pulse and that is because this particular critical

point of Airy consists a signal’s potential minimum point. As we can observe

the gradient of the signal pulse in the spectral space is such that it is suggesting

hard acceleration. Although a part of the signal pulse seem to ignore Airy′ s
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accelerating feature and still propagating invariant. Despite that the focal point

is set at a signal’s potential minimum although the signal’s intensity is enough to

lead us to dispersive phenomena.
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Figure 3.7: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal (green shaded)/

control pulse. The signal is magnified for illustration purposes.

3.2.3 Signal localized at Airy’s second maximum

Continuing with the next point we will set t0 = −3.227 at Airy′ s second

maximum and the results we got are presented in the following figure. In Figure 3.8

we locate the central of the signal pulse at Airy′ s second maximum. If we observe

the dynamics of our simulation we will see that the signal pulse is heavily distorted

while the Airy pulse drugs part of the signal to Airy′s first minimum. Thus

the dragging effect of Airy is not as clear and that’s because both the nonlinear

effects and the ”nature” of the focal point doesn’t contribute to Airy′ s signal

pulse guiding potential. In this subcase the focal point is set a signal’s pulse
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potential maximum. Thus as we cleared out before the signal pulse tends to move

away from this focal point and cave itself at the first attractive focal point where

signal’s potential is minimum. Again a split-up between the copropagating pulses

is taking place along with heavy dispersion phenomena.
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Figure 3.8: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

3.2.4 Signal localized at Airy’s second minimum

Just before we close the nonlinear subcase we will present now the results we

got after locating the pulse at t0 = −4.1309 ; the second local minimum of Airy′ s

function while our results are shown in Figure 3.9.

In Figure 3.9 even from the dynamics of the signal pulse shown in (a) we can

see that other pulses that propagate invariant are created. In the spectra space

those pulses can be represented in a more clear way as the signal and the control

pulse propagate through z. The nonlinearity of the signal pulse along with the
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nonlinearity of the Airy creates radiation that is translated in pulses that can

not be drifted by the Airy pulse. As the center of the signal pulse is located at

Airy′ s second minimum away from Airy′ s center the affect of Airy on the signal

is expected to be less intense meaning that the signal pulse will exhibit some

resistance to Airy′ s guiding capability. Although even in that case components of

the signal pulse are clearly guided from Airy to follow a parabolic trajectory.
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Figure 3.9: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

3.2.5 Examining Airy’s pushing properties

To test again the ”pushing” properties of the Airy pulse in the nonlinear

propagation case we assume x0 > 0 and be centred at t0 = 2.3482 and the results

we got are depicted in the Figure that follows:

In Figure 3.10 we test again the pushing properties of Airy. More specifically we

locate the central of the signal pulse to be located after Airy′ s first maximum.
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Thus as we can see from our simulations the main lobe of Airy where the most of

Airy′ s energy is located will interact with the signal pulse, making the signal pulse

to follow Airy on a parabolic trajectory. At this point we should mention that in

this case too we slow down a bit Airy so as that the signal pulse will understand

the reaction of Airy . As a result the signal is continuously pushed from Airy′ s

main lobe. The reduction in Airy′ s acceleration is essential because in the case

that Airy was very fast it will eventually pass by the signal without effecting it at

all.
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Figure 3.10: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal probe(green

shaded)/ control pulse. The signal is magnified for illustration purposes.
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Airy/signal evolution in the

anomalous/normal dispersion

regime

4.1 Linear signal evolution

After we have tested the case that both of the pulses propagate in the normal

dispersion regime now we will proceed with the case that the Airy pulse propagates

in the anomalous while the signal pulse in the normal dispersion regime. In order

to make it clear we will write down the system of NLS equations that govern the

propagation of those two pulses while the initial conditions we used are following

next.

i
∂u

∂z
− βu

2

∂2u

∂t2
+ (|u|2 + 2|v|2)u = 0 (4.1)

i
∂v

∂z
− βv

2

∂2u

∂t2
+ (2|u|2 + |v|2)v = 0 (4.2)

where we substitute βu = −1 and βv = 1
2
. With regard to the initial conditions of

the system above we take:

u =
d2 Ai(d3t) exp(at))

0.535656
(4.3)

v = d4d5 sech((t− t0)d5) (4.4)

As we can see βu is negative which corresponds to anomalous dispersion while

βv is positive which corresponds to normal dispersion. The fact that Airy pulse

propagates in the anomalous dispersion regime indicates the creation of solitons

55
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as at this regime the creation of solitons is proposed . Thus an Airy pulse with

high intensity will lead to the creation of high intensity solitons. While for the

control pulse we assumed a nonlinear form, for the signal pulse we will begin with

a linear form and then we will proceed with the corresponding nonlinear.

4.1.1 Signal localized at Airy’s first maximum

So we will test again both linear and nonlinear cases beginning with the first

one. Now depending on the case the parameters d2, d3, d4, d5, x0 will change. To

start with we will locate the center of the signal pulse to be placed at Airy′ s first

maximum and the results we got are the following:

Z

(a) (b)

Z

T

(c)

∆ω

(d)

Figure 4.1: For the signal we assume: d4 = 0.00001,d5 = 1.5 as for the
control pulse : d2 = 0.8,d3 = 0.8 and a = 0.005. In the first column we show the
dynamics of the signal/ control pulse respectively, while in the second column
we show the corresponding spectra of the pulses. Thus the first/second row
corresponds to the signal/ control pulse. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

Figure 4.1 depicts the propagation of the two pulses we assumed in the real

and spectral space. The focal point is set at Airy′s first maximum and due to the
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positive sign of the dispersion coefficient of the signal pulse this focal point consists

a signal’s potential maximum. As a result the two pulses split-up and signal’s part

is totally ignoring Airy′ s acceleration and propagates invariant through z. On the

other hand an other part of the signal pulse remains in front of Airy′ s main lobe

and is constantly been pushed. Due to the anomalous dispersion regime that the

control pulse is propagating we can see Airy′ s frequency been shifted toward the

red while on the other hand the signal’s frequency is shifted toward the blue.

4.1.2 Signal localized at Airy’s first minimum

Now we will change the t0 parameter assuming that the center of the signal

is localized at an Airy′ s local minimum point. So we set t0 = −2.92982 and the

simulations we got using the same parameters above are the following:
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Figure 4.2: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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Figure 4.2 shows the evolution of the two copropagating pulses when the

signal pulse is located ate Airy′ s first minimum. As we can see even though a

part of the signal pulse is dragged from Airy the most intense part of the signal

pulse remains invariant under the effects of Airy. That is shown from the high

intensity pulses that are depicted in (b) while some components of the signal pulse

were caved and accelerated from Airy. This minimum point is a signal’s potential

minimum. That dissuade the two pulses from splitting-up and contributes to the

signal acceleration that is observed.

4.1.3 Signal localized at Airy’s second maximum

Now we will change the t0 parameter assuming that the center of the signal

is localized at an Airy′ s local maximum point. So we set t0 = −4.03 and the

simulations we got are the following:
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Figure 4.3: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. The inset in (a) shows the initial condition of the signal(green

shaded)/ control pulse. The signal is magnified for illustration purposes.
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In Figure 4.3 too, is clear that the intensity of the Airy pulse is not enough

to guide the signal pulse at a parabolic trajectory entirely. Thus as we have seen

before, some components of the signal pulse tend to accelerate with the Airy pulse

although the most intense components of the signal pulse propagate invariant.

Thus a high power pulse is emitted as we can see in (b) while the lower intensity

components of the pulse differentiated from the high power signal pulse following

a parabolic trajectory. The fact that the focal point is set a signal’s potential

maximum leads to the split-up that the two pulses are facing along with heavy

dispersion phenomena.

4.1.4 Signal localized at Airy’s second minimum

Just before we close the linear subcase we will present now the results we got

after locating the signal at x0 = −5.0977 ; the second local minimum of Airy′ s

function:
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Figure 4.4: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the probe(green shaded)/

Airy pulse. The signal is magnified for illustration purposes.
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In Figure 4.4 we can clearly see that depending on how far we locate the

central of the signal pulse from Airy′ s first maximum the less is the effect of Airy

on the signal pulse. Thus the main lobe of Airy where the most of the Airy pulse

energy is concentrated will be far enough to avoid to react with the signal pulse.

Although again some components of the signal pulse are dragged from Airy, the

biggest part of the signal pulse propagates invariant ignoring in practise Airy′ s

accelearation. Thus a high intensity pulse is formed and propagating invariant as

we can see from the spectral space of the signal pulse.

4.1.5 Examining Airy’s pushing properties

In this case it worth to examine the ”pushing” properties of the Airy pulse

firstly for the linear case placing t0 at t0 = 2.043.
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Figure 4.5: For the signal we assume: d4 = 0.00001 and d5 = 2 as for the
control pulse : d2 = 2.5, d3 = 0.65, a = 0.001. In the first column we show the
dynamics of the signal/ control pulse respectively, while in the second column we
show the corresponding spectra of the pulses. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.



Chapter 4. Nonlinear signal evolution 61

In this subcase we substitute βu = −2 and βv = 1 in Eqs. 4.1-4.2.

In Figure 4.5 we can see that due to the fact that Airy propagates in the anomalous

dispersion regime in (c) there are some soliton emitted and that’s due to the

intensity of Airy. Although the intensity of the Airy pulse is enough that when it

interacts with the signal pulse the main lobe of Airy constantly pushes the signal

pulse which is as we can see in (a) follows a parabolic accelerating trajectory. As

for the frequency of the signal pulse is shifted towards the blue as a clear sign of

the acceleration that the signal pulse is under. Despite the fact that Airy was not

capable of guiding the signal pulse effectively enough as we saw in the focal points

we tested before at this point it exhibits clearly its manipulating features.

4.2 Nonlinear signal evolution

Now proceeding with the nonlinear subcase a question arise; how the non-

linearity will effect the copropagation of the two pulses. For this case we assumed

βu = −1 and βv = 1. The form of the initial conditions remains the same as before

while some coefficients that regulate the type of the signal pulse and characteristics

of the Airy were changed.

u =
d2 Ai(d3t) exp(at))

0.535656
(4.5)

v = d4d5 sech((t− t0)d5) (4.6)

As we have mentioned before u describes an Airy pulse where d2 represents Airy′ s

amplitude, d3 stands for Airy′ s acceleration as well as width factor, while α is

the truncation coefficient which is necessary for the realization of the Airy. The

constant at the denominator is used for normalization purposes. Heading now to

v where d4 represents signal’s pulse amplitude and d5 is responsible for signal’s

width, while t0 represents where the signal’s center is located.

4.2.1 Signal localized at Airy’s first maximum

So as we mentioned in the beginning we will start by locating beam at

t0 = −1.2891, Airy′ s first maximum. In Figure 4.6 we depict the real and the

spectral space of the signal and the Airy pulse. It is obvious that the nonlinear

form of the signal pulse makes signal pulses more intense, thus the reaction with

the Airy pulse will not be such that the signal to follow the parabolic trajectory of

Airy. In (a) the signal pulse is been diffracted under the existence of the nonlinear
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effects. In comparison with the previous case where even part of the signal pulse

pulse seemed to be accelerated from Airy in this case due to the strong nonlinear

character of the signal pulse such phenomena are absent. Furthermore the loca-

tion of the focal point at signal’s potential maximum hampers the guidance of the

signal pulse to a parabolic-accelerating trajectory.
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Figure 4.6: For the signal we assume: d4 = 1, d5 = 0.8 as for the control pulse
: d2 = 0.8, d3 = 0.8 and a = 0.005. In the first column we show the dynamics
of the signal/ control pulse respectively, while in the second column we show
the corresponding spectra of the pulses. Thus the first/second row corresponds
to the signal/ control pulse. The inset in (a) shows the initial condition of
the signal(green shaded)/ control pulse. The signal is magnified for illustration

purposes.

4.2.2 Signal localized at Airy’s first minimum

To continue we then tested the case that the t0 is located at Airy′ s first

minimum. In Figure 4.7 we depict the results we got at this focal point . As

before the nonlinear formation of the signal pulse is of crucial importance as this

is the main reason for the inability of the Airy pulse to drag the signal pulse at
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its own parabolic trajectory. In (c) due to the propagation of the Airy in the

anomalous dispersion regime the creation of solitons has an advantage.
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Figure 4.7: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The probe is magnified for illustration purposes.

4.2.3 Signa localized at Airy’s second maximum

Proceeding with the next point we will locate the center of the signal at Airy′ s

second maximum by setting t0 = −4.043. Figure 4.8 shows the corresponding

simulations. Recalling that the signal pulse propagates in the normal dispersion

regime we conclude that this point is signal’s potential maximum again. Thus the

signal pulse tends to be attracted from a point which its potential is getting

minimized ; Airy′ s first minimum. Thus part of the signal pulse is been attracted

by Airy′ s second lobe and been dragged through z. Although the most of the signal

pulse ignores the acceleration of the Airy pulse and propagates almost invariant.

The components of the signal pulse that propagates invariant form intense enough
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pulses that resist Airy′s acceleration.This phenomena will not be different if we

assumed an Airy pulse with higher nonlinearity because as Airy evolves in the

nonlinear regime that would lead to soliton creation and as a result a less effective

Airy at last.

Z

(a) (b)

Z

T

(c)

∆ω

(d)

Figure 4.8: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

4.2.4 Signal localized at Airy’s second minimum

Before we close the nonlinear subcase we will localize the center of the beam

at Airy′ s second minimum .

In Figure 4.9 the relative simulations are shown. As anyone can conclude Airy in

not capable of dragging the signal pulse due to signal’s high nonlinearity. This

nonlinearity acts like a preventing factor. The intensity of the signal pulse is

such that Airy pass by the signal pulse without been able to accelerate even some

components of the signal. Only a small fract of the signal pulse is drifted by
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the Airy pulse and is propagating along with Airy′ s first attractive point ; the

second lobe. Again an Airy with higher nonlinearity would not make the difference

because the nonlinear regime that Airy propagates would just emit solitons from

the high intensity of the Airy pulse.
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Figure 4.9: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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4.2.5 Examining Airy’s pushing properties

To close all the subcases of the nonlinear subcase we will now examine the

pushing properties of Airy function localizing the t0 variable at t0 = 2.043 under

the following initial condition:

u =
d2 Ai(d3t) exp(at))

0.535656
(4.7)

v = d4d5 sech((t− t0)d5) (4.8)

while βu = −2 and βv = 1
2

and the results we got are the following:
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Figure 4.10: For the signal we assume: d4 = 1 and d5 = 1 as for the control
pulse: d2 = 2.5, d3 = 1.2, a = 0.001. In the first column we show the dynamics
of the signal/ control pulse respectively, while in the second column we show
the corresponding spectra of the pulses. Thus the first/second row corresponds
to the signal/ control pulse. The inset in (a) shows the initial condition of the
signal (green shaded)/ control pulse. The signal is magnified for illustration

purposes.
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Figure 4.10 shows our simulations after we have tested the pushing properties

of the Airy pulse while it propagates in the anomalous dispersion regime. The

copropagating signal pulse propagates in the normal dispersion regime. Despite

the fact that in the cases that we locate the focal point of the signal pulse to be

located before Airy′ s main lobe, the results we got were not promising, although

in this case where signal’s focal point is located after Airy′ s main lobe we can see

that Airy forces the signal pulse to follow a parabolic trajectory while it accelerates

along with Airy through z. In the spectral space (b) the acceleration of the signal

pulse becomes evident from the gradient of the pulse. In the spectral domain of

the signal pulse (b) the frequency of the signal pulse is shifted toward the blue.
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Airy/signal evolution in the

normal/anomalous dispersion

regime

5.1 Linear signal evolution

After examining both First and Second Cases we will continue with the next;

the Third Case. To begin with we will mention again the pair of NLS we are

going to solve generally and then by substituting all the depending variables we

will finally conclude to our Third Case which will be categorized in two subcases

depending on the linearity or nonlinearity of the signal pulse.

i
∂u

∂z
− βu

2

∂2u

∂t2
+ (|u|2 + 2|v|2)u = 0 (5.1)

i
∂u

∂z
− βu

2

∂2u

∂t2
+ (2|u|2 + |v|2)v = 0 (5.2)

where βu = 1 and βv = −1
2

.

In this case we assumed the following initial conditions for the functions u

and v respectively:

u =
d2 Ai(d3t) exp(at))

0.535656
(5.3)

v = d4 exp
(
−(t− t0)2/d2

5

)
(5.4)

To start with we assume a linear signal pulse to copropagate along with a nonlinear

Airy pulse. In comparison with the previous cases we now use a Gaussian linear

signal pulse represented by exp(−x)2 instead of sech(x) we assumed before.

68
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5.1.1 Signal localized at Airy’s first maximum

As Airy evolves in the normal and the signal pulse in the anomalous dispersion

regime this focal point consists a signal’s potential minimum. This means that

this point is ideal to cave the signal pulse in Airy′ s main lobe and drag it through

z.
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Figure 5.1: For the signal we assume: d4 = 0.00001 and d5 = 0.651 as for
the control pulse we set : d2 = 2, d3 = 1.2, a = 0.0001. In the first column we
show the dynamics of the signal/ control pulse respectively, while in the second
column we show the corresponding spectra of the pulses. Thus the first/second
row corresponds to the signal/ control pulse. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

Beginning from Airy′ s first maximum we locate the focal point of the signal

pulse to be placed at t0 = −0.8789. Now Airy is propagating at the normal dis-

persion regime while the signal pulse is propagating at the anomalous dispersion

regime and as a result Airy′ s first maximum consists a signal’s potential minimum

point. As a result the regime where Airy propagates allow to express it’s dynamics

without producing solitons as in the previous case, while in the anomalous disper-

sion regime that the signal pulse is evolving the creation of soliton is proposed.
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What we should mention in Figure 5.1 is that as the signal pulse propagates in the

anomalous dispersion regime, red shifted phenomenon occurs for the frequency of

the signal pulse as we can see in (b) as the spectral components of the signal pulse

are accelerating toward the left side . The signal pulse is caved in Airy′ s main

lobe and it’s dragged as long as the two pulses co-propagate.

5.1.2 Signal localized at Airy’s first minimum

Proceeding with the next focal point we will use the initial conditions we show

above but using an other value of variable t0. Now we will set t0 = −1.9336 in order

to locate the center of the signal pulse at Airy′ s first minimum, which consists a

signal’s potential maximum point, and the simulations we got are the the following

:
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Figure 5.2: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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Continuing with this focal point which simulations presented in Figure 5.2 by

comparing (a) and (b) the real and spectral spaces we can see that due to the fact

that the signal pulse propagates in the anomalous dispersion regime there are high

power pulses that are created which remain invariant as the signal pulse interacts

with the Airy pulse . Although Airy′ s intensity is capable of drifting away with

the less intense spectral components of the signal pulse that are attracted by sig-

nal’s potential minimum (Airy′ s main lobe) and guide them through a parabolic-

accelerating trajectory.

5.1.3 Signal localized at Airy’s second maximum

To continue with the next focal point we will locate the center of the signal

pulse at Airy′ s second maximum by assuming t0 = −2.6367. As we can see in

Figure 5.3 Airy′ s intensity is such that the signal pulse is caved in Airy′ s second

maximum and it’s dragged. Due to the fact that the signal pulse evolves in the

anomalous dispersion regime this second maximum point consists an attractive

point as it is a signal’s potential minimum. In (b) signal’s frequency accelerated

to the left experiencing the red-shifted phenomenon.
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Figure 5.3: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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5.1.4 Signal localized at Airy’s second minimum

In order to close the linear subcase of the Third Case we will locate the

center of the beam at Airy′ s second minimum by substituting t0 = −3.2477 and

we got the following results:
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Figure 5.4: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

In Figure 5.4 we depict our simulations for placing the center of the signal

pulse at Airy′ s second minimum. Part of the signal pulse is caved at this focal

point although the signal pulse tends to reach Airy′ s main lobe and be dragged.

Although because this particular lobe that the signal pulse is located at is less

effective than the others because its lack of energy, thus the signal pulse tends to

emit high intensity pulses that propagate invariant, ignoring Airy′ s acceleration.

Furthermore the fact that this focal point is a signal’s potential maximum point

contributes to the split-up between the two copropagating pulses.
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5.1.5 Examining Airy’s dragging properties

To close the linear subcase of the Third Case we will locate the beam between

the first maximum and the first minimum of Airy′ s function. More specifically we

will set t0 = −1.2305 and the results we got are depicted in Figure 5.5.

In the dynamics of this case we can see that the signal pulse is attracted by Airy′ s

main lobe and is dragged from there, forced to follow an accelerating parabolic

trajectory. By placing the signal pulse so close to it’s potential minimum point

we achieve that the signal pulse will jump fast enough to it’s closest potential

minimum point (Airy′ s main lobe) and forced to follow a parabolic-accelerating

trajectory.
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Figure 5.5: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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5.2 Nonlinear signal evolution

Proceeding with the nonlinear subcase of the third case we will assume a

nonlinear formation of the signal pulse and see how this nonlinearity will affect

the results we got above.

5.2.1 Signal localized at Airy’s first maximum

We will begin this subcase by locating the central of the signal pulse at Airy′ s

first maximum assuming t0 = −0.8789 and the simulations we got are the follow-

ing:
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Figure 5.6: For the signal we assume: d4 = 0.8 and d5 = 0.651 as for the
control pulse we set : d2 = 2, d3 = 1.2, a = 0.001. In the first column we
show the dynamics of the signal/ control pulse respectively, while in the second
column we show the corresponding spectra of the pulses. Thus the first/second
row corresponds to the signal/ control pulse. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

In Figure 5.6 the propagation of the signal and the Airy pulse are depicted

both in the real and the spectral space. For the control pulse we assumed an
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intense nonlinear Airy pule. In this way we create a high intensity Airy pulse

which will be able to guide the signal pulse in a parabolic trajectory as seen in

(a) along with a significant acceleration as seen from the gradient formed in the

spectral space of the signal pulse (b). Although some high intensity components

of the signal pulse due to high nonlinearity tend to propagate invariant forming

high intensity pulses that ignore Airy′ s acceleration.

5.2.2 Signal localized at Airy’s first minimum

Now proceeding with the next point we will locate the center of the signal

at Airy′ s first minimum by assuming t0 = −1.9336, and we will present the

simulations we got:
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Figure 5.7: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

In Figure 5.7 we locate the focal point to be placed at Airy′ s first minimum.

Due to the fact that this focal point consists a signal’s potential maximum point the
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signal pulse tends to jump to a potential minimum point. The closest potential

minimum point is Airy′ s main lobe. As a result a part of the signal pulse is

attracted from Airy′ s main lobe and it is dragged through z. As we can see in

the spectral space part of the signal’s pulse that is dragged from Airy′ s main lobe

is shifted toward the red experiencing the red-shifting phenomenon due to the

anomalous dispersion that the signal is propagating.

5.2.3 Signal localized at Airy’s second maximum

This time we will locate the center of the signal pulse at Airy′ s second max-

imum assuming t0 = −2.6367 and we got the following simulations:
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Figure 5.8: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

In Figure 5.8 we depict the real and spectral space of the evolution of both

control and signal pulse. As we can see from (a) the signal pulse is forced to follow

a parabolic-accelerating trajectory due to the interaction between the Airy and
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the signal pulse. Moreover due to the fact that Airy′ s second maximum consists

a signal’s potential minimum point and thus the signal pulse is caved at this focal

point and is constantly been accelerated. The spectra space of the signal pulse is

shifted toward the red as a clear sign of the acceleration that the signal pulse is

under.

5.2.4 Signal localized at Airy ’s second minimum

Just before we close the nonlinear subcase of the Third Case we will localize

the center of the signal pulse at Airy′ s second minimum by setting t0 = −3.2477

and the results we got are the following:

Z

(a) (b)

Z

T

(c)

∆ω

(d)

Figure 5.9: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

Figure 5.9 shows the evolution of the copropagating pulses in the real and the

spectral space. As we can see from the real space of the signal pulse (a) part the

signal pulse is following the Airy at a parabolic trajectory but with some losses
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translated as high intensity pulses that differ from the parabolic trajectory and

forming invariant pulses that ignore Airy′ s acceleration and can be seen in (b).

This focal point consists a signal’s potential maximum. That means that the signal

pulse tends to jump to the closest potential minimum point in order to be dragged

from the Airy pulse. That’s why the split up between the two copropagating

pulses occurs. Due to the anomalous dispersion regime that the signal pulse is

propagating the frequency of the signal pulse is shifted toward the red as a clear

sign of the acceleration that the signal pulse is under.

5.2.5 Examining Airy’s dragging properties

To close the nonlinear subcase of the Third Case we will locate the signal

pulse between the first maximum and the first minimum of Airy.
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∆ω
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Figure 5.10: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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Figure 5.10 shows the results when the focal point is placed between the first

maximum and minimum of Airy. The nature of this focal point forces the signal

pulse to jump to the signal’s potential minimum (Airy′ s main lobe) in order to be

dragged from the Airy pulse. That transition due to the high nonlinearity of the

signal pulse is resulting some high intensity pulses that evolve invariant ignoring

Airy′ s acceleration. Although fron (b) we can see that most components of the

signal pulse are guided by the Airy pulse and signal’s frequency is shifted toward

the red.



Chapter 6

Airy and signal evolution in the

anomalous dispersion regime

6.1 Linear signal evolution

At this point and after having tested three cases there is only one case re-

maining to examine depending on the sign of the parameters βu and βv. Now in

Fourth Case we will examine the case that our system of NLS equations

i
∂u

∂z
− βu

2

∂2u

∂t2
+ (|u|2 + 2|v|2)u = 0. (6.1)

i
∂u

∂z
− βu

2

∂2u

∂t2
+ (2|u|2 + |v|2)v = 0 (6.2)

where variables βu and βv are both negative and βu = −1.5, βv = −0.55

Firstly we will need to mention the initial conditions we used in this case:

u =
d2 Ai(d3t) exp(at))

0.535656
(6.3)

v = d4d5 sech((t− t0)d5) (6.4)

To start with we will assume a linear signal pulse propagating along with a non-

linear Airy pulse and then in the next section we will test a nonlinear signal pulse

copropagating with an Airy pulse. Due to the fact that the signal and the Airy

pulse propagate in the anomalous dispersion regime the creation of solitons is sup-

ported.

As for the initial conditions Eqs. (6.3), (6.4) in this case too u describes an Airy

pulse where d2 represents Airy′ s amplitude, d3 stands for Airy′ s acceleration as

well as width factor, while α is the truncation coefficient which is necessary for the
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realization of the Airy. The constant at the denominator is used for normalization

purposes. Heading now to v where d4 represents signal’s pulse amplitude where

d5 is responsible for signal’s width, while t0 represents where the signal’s center

is located. Due to the fact that the signal pulse is evolving in the Anomalous

Dispersion regime the existence of solitons is supported.

6.1.1 Signal localized at Airy’s first maximum

So by assuming t0 = −1.035 we will locate the central of the signal pulse at

a signal’s potential minimum, and we will present you the results we got after

solving our system under the intial conditions above for the linear subcase of the

Fourth Case.

Z

(a) (b)

Z

T

(c)

∆ω

(d)

Figure 6.1: For the signal pulse we assume: d4 = 0.00001 and d5 = 2 as for
the control pulse we set: d2 = 1, d3 = 1, a = 0.001. In the first column we
show the dynamics of the signal/ control pulse respectively, while in the second
column we show the corresponding spectra of the pulses. Thus the first/second
row corresponds to the signal/ control pulse. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.
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In Figure 6.1 the central of the pulse is located at Airy′ s first maximum.

While the signal pulse is caved in Airy′ s main lobe and dragged the signal pulse is

splitting and a high intensity pulse is created. As we can see in (b) the high inten-

sity pulse which propagates invariant is depicted clearly along with the spectral

components of the signal pulse that are guided from Airy to follow a parabolic

trajectory and thus to be accelerated. Part of the signal’s frequency is shifted

toward the red as a clear sign of the acceleration of the signal pulse.

6.1.2 Signal localized at Airy’s first minimum

Continuing with the next value of t0 we will assume that t0 is located at a

local minimum of Airy function. So we setted t0 = −2.373 and the simulations we

got are the following:

Z
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(c)

∆ω

(d)

Figure 6.2: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.



Chapter 6. Signal localized at Airy′ s second maximum 84

In Figure 6.2 the central of the signal pulse is located at Airy′ s first minimum

point, just before the main lobe. Airy′ s main lobe attracts the signal pulse and

components of the signal pulse dragged from Airy′ s main lobe. However due to

the fact that this focal point consists a signal’s potential maximum point it is easy

to see that in (a) the two copropagating pulses split-up. A part of the soliton

pulse is caved in Airy′ s main lobe and forced to follow a parabolic- accelerating

trajectory. Although the most of the signal pulse ignores Airy′ s acceleration. In

(b) some spectral components of the signal pulse are accelerated thus we can see

a frequency shift to the left.

6.1.3 Signal localized at Airy’s second maximum

Just before we close the linear subcase we will assume t0 = −3.253 which is a

local maximum of ours Airy function and we will present now our results for this

case:
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(c)

∆ω

(d)

Figure 6.3: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal (green shaded)/

control pulse. The signal is magnified for illustration purposes.
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In Figure 6.3 we depict the propagation of a signal and an Airy pulse both

in the spectral and in the real space. This focal point consists a signal’s potential

minimum point. As a result part of the signal pulse is caved at Airy′ s second

maximum and been dragged through z. Although the fact that Airy is propagating

in the anomalous dispersion regime along with the fact that the signal propagates

in the anomalous dispersion regime too, means that Airy is not capable to exhibit

its dynamics to guide the signal pulse. Thus a high intensity pulse is evolving,

invariant ignoring in practise Airy′ s acceleration.

6.1.4 Signal localized at Airy’s second minimum

To close the linear subcase of the Fourth Case we will finally locate the

center of the signal pulse at Airy′ s second minimum and we got the following

results:
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(c)

∆ω

(d)

Figure 6.4: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.
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At this point we should remind that both pulses propagate in the anomalous

dispersion regime where the formation of solitons is proposed. Thus as we can

see in Figure 6.4 the more away from Airy′ s main lobe we place the center of the

signal pulse the less are the effects of Airy on this signal pulse. Thus what we

can see is an almost pass by of the Airy through the signal pulse and that’s due

to the high intensity of the signal pulse. Although during this pass by Airy drags

some components of the signal pulse as we can see in (b) and accelerates them

as frequency shift toward the red is noticable. Although the high intensity pulse

stands out us in the previous focal points.

6.2 Nonlinear signal evolution

We will now proceed with the nonlinear evolution of a signal pulse. We will

assume an other set of initial conditions and βu, βv and we will see how the

difference in the group velocity dispersion will affect the previous results along

with the nonlinearity we assumed for the signal pulse . Moreover we will assume

Eqs. (6.2)-(6.3) while βu = −1.2 and βv = −2 along with the other coefficients

that are specifying the features of the two pulses.

As for the initial conditions Eqs. (6.3), (6.4) in this case too u describes an Airy

pulse where d2 represents Airy′ s amplitude, d3 stands for Airy′ s acceleration as

well as width factor, while α is the truncation coefficient which is necessary for the

realization of the Airy. The constant at the denominator is used for normalization

purposes. Heading now to v where d4 represents signal’s pulse amplitude where

d5 is responsible for signal’s width, while t0 represents where the signal’s center is

located.

6.2.1 Signal localized at Airy’s first maximum

To start with we will locate the center of the signal at Airy′ s first maximum

by substituting t0 = −1.0124 and the results we got are the following:

In Figure 6.5 we depict our simulations for the nonlinear subacase of this fourth

case after we have locate the signal’s pulse center at Airy′ s first maximum. The

main difference in comparison with the linear subcase is that we have induced a

nonlinearity to the signal pulse. Due to this high nonlinearity of the signal pulse

the signal pulse interacts with the Airy pulse in a way that degenerates the Airy

pulse. Although some of the components of the signal pulse seem to be dragged

from the Airy pulse and forced to follow a parabolic-accelerating trajectory.
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Figure 6.5: For the signal we assume: d4 = 1 and d5 = 2, as for the control
pulse: d2 = 1, d3 = 1, a = 0.001. In the first column we show the dynamics
of the signal/ control pulse respectively, while in the second column we show
the corresponding spectra of the pulses. The inset in (a) shows the initial
condition of the signal(green shaded)/ control pulse. The signal is magnified for

illustration purposes.

6.2.2 Signal localized at Airy’s first minimum

Then for the next point we assume t0 = −2.3010 which is a local minimum

for our Airy function and the results we got are the following:

In Figure 6.6 the center of the signal pulse is placed just before Airy′ s main

lobe. After a while the signal pulse is attracted from Airy′ s main lobe and the

extraordinary phenomenon is that Airy is distorted in a way that Airy′ s main

lobe is no more propagating. Practically the Airy pulse pass through the signal

pulse which due to it’s high intensity and the anomalous dispersion regime that

is propagating develops full resistant to Airy′ s acceleration. Thus it propagates

invariant interacting with the Airy but no evidence proves the guidance of the

signal pulse by the Airy pulse.
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Figure 6.6: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

6.2.3 Signal localized at Airy’s second maximum

Just before we end the nonlinear subcase of the Fourth Case we will place

the center of the beam at Airy′ s second maximum at t0 = −3.2214.

In Figure 6.7 we depict the propagation of the signal and the control pulse both

in the real and the spectral space. Again the control pulse is facing a high power

soliton pulse that is kind of blocking Airy′ s accelerating features. Airy′ s main lobe

is interacting with the signal pulse without any further accelerating phenomena

taking place . The soliton pulse interact with the Airy in a way that forces Airy

to emit intense solitons under the contribution of the anomalous dispersion regime

that Airy is evolving too.
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Figure 6.7: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

6.2.4 Signal localized at Airy’s second minimum

To close this case too we will finally position the center of the signal at Airy′ s

second minimum by substituting t0 = −4.0977 and we got the following simula-

tions:

In Figure 6.8 the center of the signal pulse is locate at Airy′ s second mini-

mum. That means that due to the anomalous dispersion regime that the signal

pulse is evolving this particular focal point is charachterized as a signal’s potential

maximum point. As a result the signal pulse is attracted from this particular focal

point. The results in this focal point are not different. The high intensity signal

pulse that we assumed dominates in comparison with the incapable to exhibit its

dynamics Airy pulse. As a result the signal pulse evolves invariant totally ignoring
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Figure 6.8: In the first column we show the dynamics of the signal/ control
pulse respectively, while in the second column we show the corresponding spec-
tra of the pulses. Thus the first/second row corresponds to the signal/ control
pulse. The inset in (a) shows the initial condition of the signal(green shaded)/

control pulse. The signal is magnified for illustration purposes.

Airy′ s acceleration. This is a very characteristic case of a walk-off phenomena we

mentioned in Chapter 1.



Chapter 7

Conclusion

The purpose of this thesis is to examine how a signal’s guidance from an Airy

pulse is possible. We have tested a variety of cases were both of those pulses are

propagating in the same or different regime in order to conclude if this assumption

is possible and under what circumstances. The results that we have shown above

are sufficient enough to prove this argument while the exact propagating regime

along with exact specifications that characterize each pulse are defined clearly.

The guided pulse (signal) can be found to follow exactly the path of the guiding

pulse (Airy).

Beginning from the linear case where the signal pulse is in a linear formation

we assumed next a nonlinear formation for the Airy pulse depending the prop-

agation regime . Proceeding with a variety of focal points that place the signal

pulse in Airy′ s critical points. In particular interest is the regime that the signal

and the Airy pulse are evolving and that’s because signal’s potential minima or

maxima points are in direct correlation with the evolving regime. Some extra cases

were added where it was necessary to examine how the the signal pulse will react

with an Airy pulse if we place the signal after Airy′ s main lobe. The parabolic

trajectories that we observed are a clear sign of affect of Airy on the signal pulse.

What we can exclude from this work is that we can use an Airy pulse in

order to control the properties of a weak or even strong signal pulse. Signal’s

properties can vary as long as we vary Airy′ s parameters. Coefficients such as

Airy′ s amplitude, truncation coefficient and the relative phase, play an essential

role in the results we mentioned before.
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