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Set Cover-based Results Caching for Best Match Retrieval Models

Papadakis Myron

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Modern Web Search Engines (WSEs) employ various techniques in order to reduce response

times, processing load and hardware requirements. Query evaluation in WSEs requires

processing (retrieving and ranking) a large amount of data of its underlying index, especially

when query terms have long posting lists. One of the most effective techniques for enhancing

the performance of a WSE is the use of caching, which can be divided into two main

categories: Results Caching (for short RC) and Posting List Caching (for short, PLC).

Results caching allows answering queries that have been previously submitted at almost

no cost, without accessing the main index of the WSE, since future requests for the same

queries are served immediately by the cache. On the other hand, posting lists caching

promises higher cache hit ratios but it does not avoid the query evaluation costs.

In this thesis, we propose and experimentally evaluate a novel results caching technique,

called SCRC (Set Cover Results Cache), which bridges the gap between results caching and

posting lists caching: identical queries are captured as in plain results caching while combi-

nations of cached sub-queries are exploited as in posting lists caching and therefore SCRC

can be considered as a generalization of posting lists caching. We reduce the problem of

finding the appropriate cached sub-queries, to the exact set cover problem, and we adopt

a greedy algorithm for solving it approximately. The correctness of this query evaluation

approach is guaranteed if the scoring function of the retrieval model is additively decom-

posable and we prove that several best-match retrieval models (e.g VSM, Okapi BM25 as

well as hybrid retrieval models) which are traditionally used in Information Retrieval and

WSEs rely on such scoring functions.

To estimate the practical impact of our approach, we analyzed streams of queries sub-

mitted to real world WSEs (Excite, AllTheWeb, Altavista) with metrics that we defined and

our findings indicate that approximately 35% of these queries can be formulated as a disjoint

union of the rest submitted queries. Subsequently, we proposed and evaluated several cache
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filling strategies for maximizing the speed up obtained by the SCRC. Furthermore and since

most users examine only the first pages of results, we proposed a variation of SCRC called

Top-K SCRC, which stores only the top-K results of each cached query, and we defined

metrics for characterizing the quality of the composed top-K answer.

The above techniques were comparatively evaluated over the Mitos WSE and over two

versions of its index: one based on an index represented in an Object-Relational DBMS

and another based on an Inverted File. The results over this indices showed that in best-

match retrieval models the SCRC achieves a speedup which is two times higher than the

one obtained by the RC and three times higher than the one obtained by the PLC.

Supervisor: Yannis Tzitzikas

Assistant Professor
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Proswrin  Apoj keush (Caching) apotelesm�twn gia Montèla

An�kthshc Bèltistou Tairi�smatoc basismènh sthn K�luyh

Sunìlwn

Papad�khc MÔrwn

Metaptuqiak  ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

Oi mhqanèc anaz thshc tou pagkìsmiou stoÔ qrhsimopoioÔn di�forec teqnikèc gia na mei¸-

soun touc qrìnouc apìkrishc, to kìstoc thc epexergasÐac eperwt sewn kai tic apait seic

se ulikì. Genik�, h apotÐmhsh miac eper¸thshc apaiteÐ thn epexergasÐa (an�kthsh kai dia-

b�jmish) meg�lou ìgkou dedomènwn tou eurethrÐou thc mhqan c, idiaÐtera ìtan oi ìroi thc

eper¸thshc èqoun meg�lec lÐstec emf�nishc. 'Enac apì touc pio apotelesmatikoÔc trìpouc

beltÐwshc thc apìdoshc miac mhqan c eÐnai h qr sh teqnik¸n caching oi opoÐec diakrÐnontai

se dÔo meg�lec kathgorÐec: caches apotelesm�twn (Result Caches, gia suntomÐa RC), kai

caches ìrwn eurethrÐou (Posting Lists Caches, gia suntomÐa PLC). Mia RC mac epitrèpei na

apant�me polÔ gr gora - kai qwrÐc na qrei�zetai na anatrèxoume sto euret rio - eperwt seic

pou èqoun upoblhjeÐ autoÔsiec sto pareljìn. Apì thn �llh, mÐa PLC epitugq�nei uyhlìtero

posostì epituq¸n episkèyewn (hits), wstìso den apofeÔgei to kìstoc thc apotÐmhshc twn

eperwt sewn.

H paroÔsa metaptuqiak  ergasÐa eis�gei mia nèa teqnik  caching pou onom�zetai SCRC

(Set Cover Results Cache) h opoÐa sundu�zei ta atoÔ thc RC kai thc PLC. Sugkekrimè-

na, gia k�je eper¸thsh pou upob�lletai e�n h SCRC perièqei mia isodÔnamh eper¸thsh

tìte h ap�nthsh thc epistrèfetai �mesa (ìpwc se mia ResultCache), diaforetik� epiqeireÐtai

apotÐmhsh sundu�zontac tic apant seic �llwn cached (upo-)eperwt sewn, ek toÔtou apoteleÐ

genÐkeush thc PLC. An�goume th diadikasÐa eÔreshc twn pio kat�llhlwn cached upoerwt -

sewn sthn epÐlush tou probl matoc �AkriboÔc K�luyhc Sunìlwn� (Exact Set Cover Prob-

lem) kai qrhsimopoioÔme ènan �plhsto (greedy) algìrijmo gia thn proseggistik  epÐlush

tou. H orjìthta twn apotelesm�twn pou prokÔptoun apì aut  thn diadikasÐa apotÐmhshc

eperwt sewn, exart�tai apì to e�n h sun�rthsh bajmolìghshc eÐnai ajroistik� aposunjès-

imh (additively decomposable) , kai deÐqnoume ìti arket� montèla an�kthshc pou paradosiak�
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èqoun qrhsimopoihjeÐ sthn An�kthsh PlhroforÐac kai stic mhqanèc anaz thshc (p.q. dianus-

matikì montèlo, Okapi BM25 kaj¸c kai ubridik� montèla an�kthshc) basÐzontai se tètoiec

sunart seic diab�jmishc. Gia na ektim soume thn apodotikìthta thc proteinìmenhc cache

se pragmatikèc sunj kec, analÔsame roèc eperwt sewn (query logs) pragmatik¸n mhqan¸n

anaz thshc (Excite, Altavista, AllTheWeb) me mètra pou orÐsame, kai ta apotelèsmata èdeixan

ìti perÐ to 35% twn eperwt sewn mporoÔn na ekfrastoÔn wc ènwsh ìrwn �llwn upobeblh-

mènwn eperwt sewn. B�sei aut¸n twn stoiqeÐwn proteÐname kai axiolog same teqnikèc gemÐs-

matoc thc cache gia aÔxhsh thc epit�qunshc pou epitugq�nei h SCRC. Epiprosjètwc, kai gia

na axiopoi soume to gegonìc ìti h pleionìthta twn qrhst¸n exet�zei mìno tic pr¸tec selÐdec

apotelesm�twn, orÐsame kai mia parallag  thc SCRC, thn Top-K SCRC, h opoÐa apojhkeÔei

mìno ta K korufaÐa apotelèsmata twn apant sewn kai orÐsame mètra gia ton qarakthrismì

thc poiìthtac twn Top-K apant sewn pou prokÔptoun apì ton sunduasmì upoerwthm�twn.

Oi parap�nw teqnikèc axiolog jhkan sugkritik� sth mhqan  anaz thshc MÐtoc kai se dÔo

ekdìseic tou eurethrÐou thc: mÐa pou basÐzetai se èna Antikeimeno-Sqesiakì SÔsthma Di-

aqeÐrishc B�sewn Dedomènwn (Object-Relational DBMS), kai mÐa pou basÐzetai se anestram-

mèna arqeÐo (inverted file). Ta apotelèsmata èdeixan ìti se montèla bèltistou tairi�smatoc

h SCRC epitugq�nei th dipl�sia mèsh epit�qunsh se sqèsh me th RC, kai thn tripl�sia mèsh

epit�qunsh se sqèsh me thn PLC.

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c
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Chapter 1

Introduction

Modern Web Search Engines (WSEs) receive millions of queries in a daily basis from

different users therefore they are usually implemented on thousands of clusters and em-

ploy various techniques in order to reduce response times, processing load and hardware

requirements.

In order to make clear the major query processing costs associated with the evaluation

of a query, in this chapter we describe in brief the structure of the typical inverted index

and the typical search process in a WSE.

1.1 Inverted File

WSEs and information retrieval systems in general, are based on pre-computed indexes

for offering fast word-based access. An inverted index (or inverted file) is a data structure for

finding efficiently the documents that contain a particular term and consists of the vocabulary

T and the occurrences (posting file). The vocabulary contains all the distinct terms which are

extracted from the crawled documents. For each term t ∈ T , the vocabulary also stores the

number of documents that contain t (df(t)) and a pointer to the start of the corresponding

posting list. Each term ti ∈ T , i = {0, 1, . . . , m} is associated with a posting list I(ti).

The document frequency df(t) of a term t corresponds to the length of its inverted list. A

posting list contains a set of document entries {〈d1, tfd1,t〉, 〈d2, tfd2,t〉, . . . , 〈dn, tfdn,t〉}, where

dn is the largest document identifier in the set of postings, since entries are usually sorted

by increasing document order. Each entry 〈d, tfdi,t〉 in I(t) contains the identifier of each
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document di that contains t (a unique serial number, known as the document identifier,

docID) and optionally additional information, such as the frequency of the term in the

document (tfdi,t) and the positions of the occurrences. The occurrences stored in the posting

file in turn refer to entries in the document file, which is also kept in secondary storage. The

set of all these lists I = {I(t0), I(t1), . . . , I(tm)} , m = |T | forms the inverted index.

Figure 1.1 shows the structure of a typical inverted index. The terms in the vocabulary

are sorted alphabetically and each posting list is sorted by the document identifier.

Ma
in 
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Space requirement )(nOin words text of size :n

Figure 1.1: Inverted Index

The space required for the vocabulary is small and it can be retained in the main

memory. According to Heap’s law [23, 8] which estimates the vocabulary size as a function

of collection size, the vocabulary grows as O(nβ), where β is constant between 0.4 and 0.6

and n the size of the text in words. Hence, the space required for the vocabulary is O(
√

n).

However, the occurrences are too large to fit the main memory and they are normally

stored on the disk. Since each word appearing in the text is referenced once in that structure

(if positions are kept), the extra space is O(n).

1.2 The problem

Assume that a user submits a query q = {t0, t1, . . . , tn} to the WSE.

• Query Pre-processing: The query is decomposed into its distinct terms. Frequent

words which are not useful for retrieval (i.e articles), namely stopwords are usually
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discarded, while all letters are reduced to lower case. Moreover, stemming of the

query terms eliminates grammatical variations of the same word by reducing it to a

word root (stem). For example, a stemming algorithm reduces the words “fishing”,

“fished”, “fish”, and “fisher” to the root word “fish”.

• Vocabulary Search: Each term ti ∈ q is fetched from the vocabulary.

• Retrieval of occurrences: The posting lists I(t0),. . . I(tn) of the query terms are

retrieved from the posting file.

• Manipulation of occurrences: The posting lists of the terms are then processed

i.e to extract the matching documents and merge the posting lists, to measure the

relative importance of terms in both the indexed documents as in the queries.

• Document Scoring: The scoring function of the retrieval model (i.e Okapi BM25,

VSM) that the search engine uses, computes and assigns scores to the matching doc-

uments in order to indicate their relevance (closeness) to the given query and rank

the results. The higher the similarity score assigned to a document, the greater the

estimated likelihood that a human would judge it to be relevant.

• Sorting and presenting results to the user: Matching documents are sorted in

decreasing order with respect to their assigned score. The document identifiers are

then used to retrieve the corresponding titles and URLs of these documents from the

document index. For each document a small summary of the document is generated

(called snippet) in order to give a succinct explanation to the user of why the document

matches the query.

Ranking is based on scoring functions and in most best match retrieval models (i.e Okapi

BM25, VSM) every document containing at least one of the query terms is considered a

candidate and is assigned a score indicating its similarity with the incoming query, hence

a query may match a huge number of documents. Moreover, ranked queries are usually

expressed in natural language and can therefore contain a large number of terms. Adding

more terms results in more disk accesses. Hence, even for a single query the WSE has to

access the index, traverse a large number of inverted lists and process a large amount of
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various data, especially for terms with long posting lists, which increases the response time

of the WSE.

Caching is a well known technique that can be used to accelerate the access to frequently

used data. Accessing data in memory is much faster than accessing data on disk. In

many contexts, such as Web Search Engines (WSEs) a significant fraction of user queries

and query terms are very popular and are re-submitted many times by different users. A

search engine can take advantage of this behavior by caching these frequently accessed

data. Results caching (caching queries and their answers) and posting lists caching (caching

terms and their posting lists) are the state of-the-art caching techniques in WSEs. In this

thesis, we introduce a new caching scheme, namely SCRC which leverages the advantages

of the former approaches. The core idea of the SCRC, is to exploit cached sub-queries for

answering the incoming queries, if there is not an identical query in the cache. For example,

consider that we have cached the answers of the queries q1=“barack obama”, q2=“facebook”,

q3=“popularity” in a results cache (RC or SCRC) or the terms of these queries and their

corresponding posting lists in a posting lists cache (PLC). Then, in a SCRC we can answer

from the cache queries of the form: “barack obama popularity”, “barack obama facebook”,

and “barack obama facebook popularity”, and we can also speedup the evaluation of queries

like “barack obama inauguration”. A results cache cannot answer any of the former queries,

since there are not any identical cached queries. A posting lists cache can also answer the

former queries but at the expense of a higher cost, since their query evaluation cannot be

avoided.

1.3 Contribution of this thesis

In a nutshell, the key contributions of our work are:

• a survey of the related work of caching in web search engines

• a novel results caching scheme that leverages the advantages of results caching and

posting lists caching and is based on cached subqueries

• the notion of decomposable scoring functions which determines the applicability of the

proposed caching scheme and an analysis of several best-match retrieval models (i.e
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VSM, Okapi BM25 and hybrid retrieval models) that rely on such scoring functions

• a thorough analysis of query logs of real WSEs which shows that the proposed approach

achieves up to 30% higher hit rates than a plain results cache

• several static cache filling policies, which aim at maximizing the hit rate obtained by

a SCRC that caches the complete answers of the queries

• a variation of the SCRC (Top-K SCRC) where only the top-K answers are stored in

the cache and metrics for measuring the accuracy of answers derived through set cover

hits

• a thorough comparative experimental results over real query sets which shows that a

Top-K SCRC is 2 times faster than a plain Top-K RC

1.4 Organization of this thesis

This thesis is organized as follows.

Chapter 2 discusses related work and provides an overview of the current state-of-the-

art approaches for caching in Web Search Engines.

In Chapter 3, we introduce a novel caching scheme for results caching, namely SCRC.

We explain how the set cover problem relates to query evaluation in WSEs and we describe

the complete evaluation process in the presence of a SCRC.

In Chapter 4, we provide a thorough analysis of query logs of real WSEs (Excite,

AllTheWeb, AltaVista) and show the benefits of set cover-based results caching in WSEs.

We evaluate the proposed approach over the Mitos search engine and present our results.

Chapter 5 concludes this thesis and identifies issues that are worth further research.
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Chapter 2

Related Work

2.1 Caching in Web Search Engines

Caching of results of search engines as an optimization technique was firstly noted by

Brin and Page [14] in their description of the prototype Google search engine. There are

several kinds of information that can be cached by a Web search Engine. Results caching

[34, 47, 31, 21, 7, 44, 22, 42, 32, 6] and posting lists caching [48, 42, 32, 7, 6] are the state

of the art caching techniques in current Web Search Engines. Independently of what the

cached elements are (query results or posting lists), caching policies can be either static or

dynamic.

In this section we provide an overview of the related work. We have to note that

there is a large body of work that has been devoted to query optimization techniques for

improving the performance of WSEs, such as early termination techniques [39, 3, 2] and

index pruning [45, 12, 13, 20, 35]. However, these works do not consider caching and they

are not considered implicitly relevant to the scope of this thesis. Instead, they can be

considered as complementary to caching in search engines.

2.1.1 Results Caching

Caching user queries and their answers, namely results caching (RC), is one of the most

popular and effective techniques for improving the efficiency of large scale WSEs. Motivation

for caching query results arises from the significant locality in user queries [34, 47]. About
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30% to 40% of queries are repeated queries that have been re-submitted in the past and are

shared by many different users [47]. Moreover, it has been shown that the query repetition

frequency follows a Zipf distribution [47]. Query results caching can be implemented at

various points of the network, such as the client side, on a proxy or on the server side.

However, due to the high level sharing of popular queries among different users in web

search engines most studies so far for caching results in WSEs have focused on the design

and implementation of server-side caches [34, 29, 21].

A results cache stores usually the top-K results (or even all the results) of previously

submitted queries. Consider that even a single term query may involve millions of relevant

documents in its posting list. Caching queries and their pre-computed results avoids totally

query evaluation. A lot of queries can be filtered out by a results cache, thus avoiding

the expensive I/O operations of query evaluation. There are several formats that a cached

answer may have. A simple format of an answer comprises the title, the URL and a snippet

for each matching document (html cache). Alternatively, a results cache can store only the

document identifiers of the matching documents for each query (docId cache) in order to

allow the accommodation of greater number of cache entries. Compression techniques can

be used to further reduce the size of the cache. However, the latter format implies that

additional processing has to be payed for presenting the results in a consistent way to the

user. The major weakness of plain results caching is that it speeds up the query evaluation

of a query q if and only if it contains an identical query q′ ≡ q and the results pertaining to

it.

Static Caching: Static results caching exploits the locality of reference in a query stream

and it is based on historical information. A static results cache is usually initialized by the

most frequent queries, using the query log of the search engine. The cache content remains

unchanged until the next update of the cache. However, it should be periodically updated

in order to retain high hit rates. The rationale behind static caching is the presence of high

locality of queries submitted by users to a search engine. Moreover, static caching is robust

over time, because the distribution of frequent queries changes very slowly [6]. Despite the

fact that query frequency is the major feature for filling a static results cache, several other

features have been proposed [36, 7, 22].
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Dynamic results caching: In a dynamic results cache, the cache content changes dy-

namically with respect to the query traffic. Several queries retain popular just for a short

time interval. Consider for example that a very significant event occurs, such as a big earth-

quake or a terroristic attack (e.g 11 September). Queries submitted acquiring information

about this event will be very frequent, since users will be interested in finding out more

information, but these queries will probably be very popular just for a short period. Static

caching cannot address sudden changes in user queries. Dynamic caching addresses this

problem, by replacing cache entries according to the sequence of requests (queries). Central

to the success of any dynamic cache is its eviction policy; the cache must decide which cache

entry it must evict upon a cache miss. A very simple but very effective strategy in dynamic

caching which has been traditionally used in WSEs is to evict the least recently used (LRU)

item from the cache.

To leverage the advantages of static and dynamic results caching, a results cache can be

split into a static and a dynamic segment [21, 7].

Previous Work on Caching in WSEs: In one of the earliest works regarding caching

in WSEs, Markatos [34] introduces caching query results as a technique to reduce the query

response time of a search engine. Using a log of almost one million queries submitted to the

Excite WSE, he studies query log distributions and shows the existence of high temporal lo-

cality in queries. He proposes that either static or dynamic caching at the search engine level

can be beneficial for WSEs. He compares the hit ratio obtained by applying a static policy

which selects the most frequent queries of a stream and four dynamic replacement policies -

LRU (Least Recently Used) and three variations (FBR, LRU/2, SLRU). He demonstrated

that warm, large caches of search results can attain hit ratios of close to 30%. Moreover, he

showed that static query result caching is a good choice for small cache sizes, but dynamic

caching is better for large cache sizes.

Luo et al. [33] also employ caching of result pages, and combine the answers of previously

submitted queries in order to form the answers of larger queries. However, their approach

is not realistic in modern WSEs, since they assume a boolean retrieval model. Current

WSEs use more sophisticated scoring functions for assigning similarity scores to matching

documents and each query term is assigned a non-binary weight, which in practice has a
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great impact on the ordering of the final results.

Fagni et al. [21] employ an hybrid results caching scheme, namely the Static Dynamic

Cache (SDC). The available cache space is split into two segments: a static segment and a

dynamic segment. The static segment is a readonly static results cache which keeps the most

frequent queries extracted from a past query log. The dynamic segment initially contains

queries that could not fit the static part of the cache and is used for capturing changes

in the query traffic. The rationale behind the SCD policy is addressing both frequent and

recent queries. Regarding the dynamic segment, the authors experimented with several

cache replacement policies (LRU, SRLU, FBR, 2-queue, PDC) and showed that there is

no need for adopting a complex eviction policy, since the most popular queries are already

captured by the static cache and therefore the LRU policy is the best choice for the dynamic

set, due to its simplicity. Authors also adopted an adaptive prefetching strategy along with

the SDC cache, and showed that devoting a large fraction of entries to the static segment

of the cache along with prefetching obtains the best hit rate.

R. Yates et al. [7] propose a general cache management policy for caching query results,

which is fully dynamic in contrast to the SDC cache [21]. They suggest the use of admission

policies in order to detect infrequent queries that will not probably be submitted in the

future and prevent them from preserving any cache space. Query characteristics are used

in order to estimate the benefit of a query. This policy uses two features based on the

query usage, the length of the query and the number of non-alphabetical characters in the

query, and one feature which is based on the frequency of the queries. The intuition is

that long queries or queries with many non-alphanumerical characters are not likely to be

popular. The usage of the past frequency of the queries gave higher hit rates opposed to

using stateless features.

2.1.1.1 Caching and Prefetching of query results

In the context of enhancing the performance of a Web search engine, several works have

studied in addition to results caching, prefetching of the query results in anticipation of user

requests [30, 29, 21]. Hence, in addition to storing results that are requested by users in

the cache, search engines may also prefetch additional pages of results (one page of results

usually contains 10 results) in order to prepare the cache to answer possible requests for
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following pages. Studies on user web search behavior report that at least 58% of the users

view the top-10 results, and that no more than 12% of the users view through more than 3

result pages [26, 43]. Moreover, at least 15% of the users ask for the second page of results

within a short time after submitting the query. Hence, when a user submits a query the

second and even the third page of results can be also cached, apart from the first one in

order to further increase the cache hit rate.

Lempel and Moran [29], introduce an improved caching policy for caching search engine

results, namely PDC (Probabilistic Driven Caching) which estimates a probability distri-

bution of all the possible queries that can be submitted to a WSE. They also introduce

prefetching for pages of query results that are likely to be requested shortly (i.e., when a

user requests a second or third page of results). The authors studied query log features

and the length of the search sessions over a log of seven million queries of the AltaVista

WSE, in order to assess the behavior of user during a search session. They showed that the

frequencies of queries in their log followed a power law and that prefetching of search engine

results can increase hit ratios by 50% for large caches and can double the hit ratios of small

caches.

2.1.1.2 Cost-aware results caching policies

Most of the previous works that we reported, have focused on maximizing the cache

hit ratio and the cost of each cached query is considered the same. Alternate approaches

have been proposed that consider the costs of evaluating each query and aim at maximizing

the benefits from caching, rather than maximizing the cache hit ratio [17, 22, 1]. In this

context, storing a query in the results cache considers the cost of computing its answer and

the success of the caching policy is measured through the achieved cost savings rather than

the cache hit rate.

Gan and Suel [22] study weighted results caching techniques, where the cost of evaluating

a query is estimated by the sum of the posting lists of its query terms, implying that the

dominant cost of its evaluation is the fetching of its posting lists from the index. They

propose eviction policies, which address both the frequency and the cost of each query.

Following the work of Fagni et al. [21], their experimental results show that a combination

of a static and a dynamic cache is the most efficient cache strategy. The best results were

11



2. RELATED WORK

obtained when devoting 80% of the total cache space in a static set in which the score for

each query is calculated as the product between the query frequency and an estimation of

the cost of solving the query, and 20% of the space to the dynamic set. The dynamic part

is implemented using the Landlord policy which assigns in each cached query a deadline

which is proportional to the cost of evaluating it. In the context of feature-based caching,

they extend the work of B.Yates et al. [7] and propose a set of new features (e.g. the query

length, the average number of clicks of each query) apart from the query frequency that are

likely to be considered useful in results caching.

Altingovde et al. [1] propose a cost-aware caching strategy for the static caching of

the query results in WSEs. The cost of each query is determined by its execution time,

which includes decompressing the postings of the query terms, computing the query and

document similarities and determining the top-K document identifiers in the final answer

set. The profit of each query is determined by the product of its frequency and its cost. The

experimental evaluation over a real log showed a reduction in the total query processing

times up to 3%.

2.1.2 Posting Lists Caching

An alternative approach is to cache individual query terms and their corresponding

posting lists, namely postings lists caching (PLC). Posting lists caching promises higher hit

rates than results caching, since terms repeat more significantly than queries [6]. On the

other hand, posting lists need more space, especially in huge document collections.

Typically, Web search engines dedicate an amount of their available memory to a cache

of posting lists, in order to retain terms that are frequency queried and reduce disk accesses

for fetching posting lists from the index during query evaluation. Posting lists caching (or

index caching) was firstly noted by Jónsson et al. [27] and by Brown et al. [16] but with a

different setup from that of current search engines.

Posting lists caching implies storing in main memory parts of the inverted index that

are frequently accessed and it is more advantageous in terms of cache utilization, since the

cached query terms can be combined for answering the incoming query. In practice, the

terms and their posting lists form a sort of a small in memory inverted index. Moreover,

these data can be kept compressed in order to reduce memory space and allow a larger
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fraction of terms and their corresponding posting lists to fit in the cache, resulting in higher

hit rates [48, 5]. Zhang et al. [48] combine various index compression techniques and list

caching and perform an evaluation of several inverted list compression algorithms. They

show that the benefits of this combination depends actually on the machine parameters such

as disk transfer rate, main memory, and CPU speed. B. Yates et al. [5] studied the benefits

of keeping compressed the postings in a posting list cache. Their results in a real system

showed that compression is always beneficial, resulting in lower response times of the WSE.

Since some terms are more beneficial than the others and due to memory limitations a

posting lists cache cannot retain the posting lists of all the terms (assuming that the size

of the main index is larger than the available main memory), several algorithms have been

proposed for selecting the most “profitable” terms and their full posting lists. As in result

caches, caching policies for posting lists can be either static or dynamic. Since posting lists

have varying length, caching them dynamically is not very efficient, due to the complexity

in terms of efficiency and space [6]. Efficient static caching policies have been studied by

B.Yates et al. in [6], [9]. In [9], authors consider as the most profitable terms, the terms

with the highest frequency as extracted from the WSE log (QTF algorithm).

In [6], authors propose a static caching algorithm of terms, called QTFDF which favors

terms with high frequency and short posting lists. The profit of a term t is proportional to

its occurrences in the query stream Qe and inversely proportional to the space occupied by

its posting lists. Moreover, this algorithm outperforms previous static caching policies (i.e

QTF ) and it is more effective than dynamic caching with, for example, LRU, LFU or the

dynamic version of the QTFDF . They showed that the drawback of the QTF algorithm is

that most of the frequent terms tend also to have long posting lists, and as a result, few

posting lists fit in cache. Authors also experimented with hybrid policies for combining the

advantages of static caching and dynamic caching of terms. Their results by using hybrid

policies, indicate that when the cache size is small their is a slight improvement in the cache

hit rate. However, as the cache size increases the performance of the QTFDF algorithm

levels the performance of the hybrid policy.
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2.1.3 Multi-level Caching

To leverage the advantages of results caching and posting lists caching, hybrid caches

have been proposed [42, 32, 9, 6].

A two-level caching system is proposed by Saraiva et al. [42] for caching query results and

inverted lists. The first level of the cache, caches frequent queries and their corresponding

query results, using the LRU eviction policy, while the second level caches the posting lists

of the query terms in order to avoid disk latency. Both cache levels are dynamic. Overall,

their caching strategy resulted in a threshold increase in the throughput of the system by a

factor of 3, while preserving the response time per query.

Figure 2.1: Search engine cache implementations (a) query results, (b) inverted lists and (c)
two-level (From Saraiva et al. [42])

B.Yates and Jean [9] propose a similar organization which suggests a results cache hold-

ing the precomputed answers of the most popular queries and a static posting lists cache

retaining the posting lists of the most popular query terms. Their results showed 7% reduc-

tion in the query evaluation time.

Long and Suel [32] extend the work of Saraiva et al. [42] and propose a three level

caching architecture to improve the query throughput of a search engine. The first level

of the cache stores previously computed query results, the second level of the cache stores
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inverted lists of popular terms, while the third level contains frequently occurring pairs of

terms and stores the intersection of their corresponding inverted lists on the disk which are

not captured by result and list caches in 2-level architectures. In their results they report a

75% reduction in disk blocks read at query time, with a cache equal to 2.5% of index size.

Figure 2.2 shows the architecture of the three level cache.

Figure 2.2: Three-level caching architecture with result caching at the query integrator, list
caching in the main memory of each node, and intersection caching on disk. (From Long
and Suel [32])

The impact of different caching policies in WSE is explored in [6]. Authors use a Yahoo!

query log to compare the effectiveness of results caching versus posting lists caching. They

show that posting lists caching offers higher hit ratios than results caching, and that static

caching of terms can be more effective than dynamic caching. They conclude that in order

to achieve optimal performance a cache should be divided into two parts, a results cache

and a posting lists cache, and in this context they try to find the optimal division of the

cache.

Skobeltsyn et al. [44] propose an architecture that combines results caching with index

pruning to reduce the query processing load of a WSE. Figure 2.3 illustrates this architecture.

Each query is firstly filtered out by the results cache. Upon a cache miss, the pruned index

is asked to answer the query. In case the pruned index cannot answer it, the main index

is in charge of query processing. Authors investigated both term and document pruning

approaches. The most interesting result from this study is how optimization techniques

that are employed by search engines impact each other. They show how results caching

impacts the query load that needs to be served from the main index, and therefore changes
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the effectiveness of index pruning, which attempts to serve some queries from a pruned

index.

Figure 2.3: Query processing scheme with the ResIn architecture. (From Skobeltsyn et al
[44])

2.1.4 Synopsis and Discussion

Summarizing, caching query results achieves lower hit ratios than posting lists caching,

since it is limited on answering only identical queries but it can be more efficient in terms

of performance, especially when query processing costs are high. Moreover, static caching

is robust over time, because the distribution of frequent queries changes very slowly.

On the other hand, posting lists caching promises higher cache hit ratios than results

caching, however it does not avoid query evaluation and query evaluation costs may be com-

putationally expensive especially in best-match retrieval models. Moreover, static caching

of terms and their corresponding posting lists can be more effective than dynamic caching.

Recent works show that in order to achieve optimal performance a cache should be

divided into two parts, a results cache and a posting lists cache.

In general, we could say that the selection of the “right” caching approach depends on

(a) the size of the entries to be cached, (b) the tasks whose evaluation we would like to

speed up, and (c) the usage scenario at hand. We could distinguish the following general

approaches:

• Analyze the frequencies of the tasks and their evaluation costs and from this analysis

design a caching mechanism. We could say that results caching falls into this category.
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• Break down tasks to subtasks whose evaluation can be cached and then exploit these

cached results by more tasks. We could say that posting lists caching falls into this

category (as well as approaches that store frequently occurring pairs of terms and the

intersection of their corresponding posting lists).

• Evaluate tasks by exploiting the cached results of “similar” tasks, if the extra cost

required is less than the cost of performing the task from scratch. In this work we

describe such approaches.
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Chapter 3

Set Cover Results Caching (SCRC)

In this chapter we introduce and describe in detail the Set Cover-based Results Cache.

The core idea of the SCRC, is to exploit cached sub-queries for answering the incoming

queries, aiming at maximizing the utilization of the cache. For example, if we have cached

the answers of the queries q1=“barack obama”, q2=“facebook”, q3=“popularity”, then we

answer from the cache queries of the form: “barack obama popularity”, “barack obama

facebook”, and “barack obama facebook popularity”, and we can also speedup the evaluation

of queries like “barack obama inauguration”. We reduce the problem of finding the “best”

cached sub-queries that are required for answering the incoming query, to the well know Set

Cover Problem and we adapt the corresponding algorithms to our needs.

We can say that SCRC bridges the gap between results caching and posting lists caching:

identical queries are treated as in plain results caching (i.e. their evaluation does not require

accessing the index), while combinations of cached sub-queries are exploited as in posting

lists caching (which can be considered as a special case of our approach). Our work is

different from what has been proposed in past in the sense that SCRC can preserve the

final ranking of the documents, and thus it can be used in best match retrieval models, like

Okapi BM25.

Section 3.1 introduces notations. In Section 3.2 we introduce the notion of decompos-

able scoring functions which determines the applicability of SCRC and we show that several

best-match retrieval models (i.e VSM, Okapi BM25 and hybrid retrieval models) rely on

such scoring functions. Section 3.3 discusses the set cover problem, and Section 3.4 explains

19



3. SET COVER RESULTS CACHING (SCRC)

how the set cover problem relates to the SCRC-based query evaluation and shows that de-

composability guarantees correctness. Subsequently, Section 3.5 focuses on the algorithmic

perspective of the SCRC-based query evaluation. Finally, Section 3.6 describes a variation

of the SCRC method where only the top-K answers are stored in the cache and introduces

metrics for measuring the accuracy of answers derived through set cover hits.

3.1 Notations

Let us first introduce some notations. The answer of a query q, denoted by Ans(q), is

defined as:

Ans(q) = { d ∈ Obj | Score(d, q) > 0}

where Score(d, q) quantifies the relevance of d to q, or/and the importance of d (i.e.

PageRank score). Table 3.1 introduces the notations that we use in the sequel.

3.2 Decomposable Scoring Functions

Here we introduce the notion of decomposable scoring functions which determines the

applicability of SCRC and we show that several best-match retrieval models (i.e VSM, Okapi

BM25 and hybrid retrieval models) rely on such scoring functions.

Def 3.2.1 (Decomposability)

Given a query q = {t0, t1, . . . , tn} of n terms, a scoring function Score(d, q) is decomposable

iff its value (the score of a document d w.r.t to q) is the sum of the individual term relevances,

i.e.:

Score(d, q) =
∑

t∈t(q)

Score(d, t)

2

Given a universe of elements U = {u1, u2, . . . , un} and a family C = {S1, . . . , Sk} of

subsets of U , C is partition of U , if
⋃

Si∈C Si = U and Si ∩Sj = ∅ for every i 6= j. It follows

easily by induction, that if C is a partition of t(q), then

Score(d, q) =
∑

qc∈C

Score(d, qc) (3.1)
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Symbol Meaning
Qe a bag of queries
Set(Qe) the set of the distinct queries of Qe

T the vocabulary of the inverted index, T = {t0, t1, . . . , tn}
Obj the set of all potential document identifiers (docIds)
N the total number of documents in the collection, i.e. |Obj|
I the inverted index, I = {I(t0), I(t1), . . . , I(tn)}
I(ti) the inverted list of term ti ∈ T
tfd,t the frequency of term t in document d
df(t) the document frequency of term t
idf(t) the inverse document frequency of term t
wd,t the weight of term t in document d
wq,t the weight of term t in query q
W (d) the norm of the document vector of d
W (q) the norm of the query vector of q
q a query submitted to the search engine, q ∈ Qe

t(d) the set of the distinct words of the document d
t(q) the set of the distinct words of the query q
Score(d, q) the score of document d w.r.t query q
g(d) the static quality score of document d, which is independent from any query q ∈ Q
pr(d) the pagerank score of document d
Sim(d, q) the similarity score of document d with respect to q
Simcos(d, q) the cosine of the angle of the document and query vectors (VSM score)
SimBM25(d, q) the score of the document d assigned by the Okapi BM25 retrieval model w.r.t q
Ans(q) the answer of the cache for the query q

Cache Notations
Qc all the cached queries
qc a query stored in the cache, qc ∈ Qc
Anscache(qc) the answer of the cache for the query qc

Table 3.1: Notations
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i.e. the score of a document d is the sum of the scores of d in the answers of the queries

in C. As it will be clarified later on, we are mainly interested in retrieval models which

are based on such scoring functions, because no post-processing is required for evaluating

queries through set cover hits.

3.2.1 Examples of Decomposable Scoring Functions

This section shows that several best-match retrieval models rely on decomposable scoring

functions.

TF-IDF Weighting schemes: Extensive experience in information retrieval research

over many years has clearly demonstrated that the optimal weighting comes from the use of

tf · idf weighting schemes. Several tf · idf based scoring models widely used in the literature

(i.e in [45, 15]), use decomposable scoring functions for ranking the matching documents of

a query q.

The typical scoring function of the tf · idf weighting scheme is

Score(d, q) =
∑

t∈t(d)∩t(q)

tfd,t · idf(t)

This scoring function is decomposable, since it is trivial that it satisfies Def. 3.2.1.

In practice, modern WSEs use more sophisticated scoring functions which consider also

the use of document normalization factors and other text statistics. Document length nor-

malization is significant for effective retrieval, since long documents have usually a much

larger term set than short documents, which makes long documents more likely to be re-

trieved than short documents.

The Okapi BM25 model and the Vector Space Model have been the most successful

term weighing ranking functions in Information Retrieval. Next, we show that their scoring

functions are decomposable.

The Okapi BM25 Model: The Okapi BM25 model [41] which is based on earlier work

on probabilistic inferencing in Information Retrieval (IR) [40] uses the following ranking

function:
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SimBM25(d, q) =
∑

t∈t(q)

idf(t) ∗ tfd,t ∗ (k1 + 1)

tfd,t + k1 ∗ (1− b + b ∗ |d|
avgdl )

where

• tfd,t is the frequency of the term t in the document d,

• |d| is the length of the document d in words,

• avgdl is the average document length in the text collection from which documents are

drawn,

• k1 and b are free parameters, usually chosen as k1 = 2.0 and b = 0.75.

The inverse document frequency idf(t) of the query term t is computed as:

idf(t) = log
N − df(t) + 0.5

df(t) + 0.5

where N = |Obj|. Thus the idf of a rare term is high, whereas the idf of a frequent term is

likely to be low.

The scoring function of Okapi BM25 is decomposable, since Def. 3.2.1 holds. It holds

because each addend corresponding to one query term, does not contain any quantity that

depends on a different query term. The proof is trivial:

SimBM25(d, q) =
∑

t∈t(q)

idf(t) ∗ tfd,t ∗ (k1 + 1)

tfd,t + k1 ∗ (1− b + b ∗ |d|
avgdl )

= idf(t1) ∗ tfd,t1 ∗ (k1 + 1)

tfd,t1 + k1 ∗ (1− b + b ∗ |d|
avgdl )

+

idf(t2) ∗ tfd,t2 ∗ (k1 + 1)

tfd,t2 + k1 ∗ (1− b + b ∗ |d|
avgdl )

+

. . . +

idf(tn) ∗ tfd,tn ∗ (k1 + 1)

tfd,tn + k1 ∗ (1− b + b ∗ |d|
avgdl )

= SimBM25(d, t1) + SimBM25(d, t2) + . . . + SimBM25(d, tn)

=
∑

t∈t(q)

SimBM25(d, t)
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The Vector Space Model: In contrast, the typical scoring function of the Vector Space

Model (VSM) is not decomposable. In this model, both documents and queries are repre-

sented as vectors and the similarity measure is derived from the geometrical relationship

(cosine of angle) of these vectors.

Each document d is represented by a weighted vector of keywords extracted from the

document, where each weight represents the importance of a keyword in the document and

within the whole document collection, specifically wd,t = tfd,t ∗ idf(t), i.e:

−→
d = {wd,t1 , wd,t2 , . . . , wd,tn}

Each query q is represented also by a vector with associated weights representing the im-

portance of the keywords in the query, i.e:

−→q = {wd,t1 , wd,t2 , . . . , wd,tn}

The relevance between a document d and a query q equals the cosine of the angle of their

vectors, denoted by Simcos(d, q), and is computed by:

Simcos(d, q) =

∑
t∈t(d)∩t(q) wd,t · wq,t

Wq ·Wd

where wx,t is the weight of word t in document or query x , i.e wx,t = tfx,t · log( N
df(t)), while

Wq and Wd denote the Euclidean norms of the query q and document d vectors respectively,

i.e. Wq =
√∑

t∈t(q) w2
q,t and Wd =

√∑
t∈t(d) w2

d,t.

This function is not decomposable, since Def. 3.2.1 does not hold. The score of a query q

w.r.t to a document d is not equal to the sum of its individual term relevances. The reason

is the presence of the Wq term in the denominator, which is query-dependent. This means

that in the general case:

Simcos(d, q) 6=
∑

t∈t(q)

Simcos(d, t)

The proof is given at the Appendix (A.1).

However, the term Wq can be neglected since it does not affect the relative ordering

of the documents, nor the retrieval effectiveness [49]. Let Sim′
cos(d, q) denote the score

assigned to a document d w.r.t q according to the modified version.
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Sim′
cos(d, q) =

∑
t∈t(d)∩t(q) wd,t · wq,t

Wd

This variation results in a scoring function which is decomposable, because the denominator

does not depend on any query term. The proof is trivial:

Sim′
cos(d, q) =

∑
t∈t(d)∩t(q) wd,t · wq,t

Wd

=
∑

t∈t(d)∩t(q)

wd,t · wq,t

Wd

=
∑

t∈t(d)∩t(q)

Sim′
cos(d, t)

Let us now consider the case, where we do not want to ignore the query norm Wq.

This scoring function is what we call semi-decomposable. We call a scoring function semi-

decomposable, if it holds:

Score(d, q) = ⊗(f(X),
∑

t∈t(q)

Score(d, t))

where X is a parameter set containing d and/or q and f(X) is a function over its elements

(d or q), and ⊗ stands for one or more arithmetic operations. Such functions require a post-

processing for determining the final score of a document. For obtaining the value of f(X)

we may have to fetch information from the index, if X includes d. Otherwise, the index

does not need to be consulted.

Returning to the VSM, X = q, ⊗ = · and f(q) = 1
Wq

. Hence the typical scoring function

of the Vector Space Model can be expressed as:

Simcos(d, q) =
1

Wq
·

∑

t∈t(d)∩t(q)

(
wd,t · wq,t

Wd
)

Hybrid Ranking: In modern WSEs, the final score Score(d, q) of a document d usually

depends on both the query-dependent score (similarity score) and the query-independent

score, and we call such scoring functions hybrid. The query-independent score g(d) of a

document d is estimated by using various techniques (e.g. link analysis or query log mining)

which quantify the importance of d, and this is done off-line.
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Hybrid scoring functions usually have the form of a linear function of the form:

Score(d, q) = a ∗ g(d) + (1− a) ∗ Sim(d, q) (3.2)

where g(d) denotes the query-independent score of d and 0 ≤ a ≤ 1. The query-independent

factors g(·) are precomputed offline and are stored either in the main memory or in the disk

if the main memory is not enough. It follows from the form of Eq. (3.2), that if Sim() is

decomposable then Score(d, q) is semi-decomposable. The proof is trivial since:

Score(d, q) = a ∗ g(d) + (1− a) ∗ Sim(d, q)
(Def.3.2.1)

= a ∗ g(d) + (1− a) ∗
∑

t∈t(q)

Sim(d, t)

The resulting scoring function is consistent with the definition of semi-decomposable scoring

functions with X = {d} and f(d) = g(d).

If Sim() is semi-decomposable then Score(d, q) is also semi-decomposable, but the post-

processing operands and operations are more. For example, if Sim() stands for the typical

scoring function of the VSM (without discarding Wd), then X = {d, q}, f(d) = g(d) and

f(q) = 1
Wq

. i.e,

Score(d, q) = a ∗ g(d) + (1− a) ∗

 1

Wq
∗

∑

t∈t(d)∩t(q)

(
wd,t · wq,t

Wd

)


However, even if the score is not a linear combination of the query-dependent score

and the query-independent score, the scoring function can be decomposable, if the query-

dependent score is decomposable. For instance, in [44], the relevance score of a document d

w.r.t to query q is computed by the following formula:

Score(d, q) =
∑

t∈t(q)

(bm25(d, t) + w
pr(d)

pr(d) + k
)

where bm25(t, d) is the non-normalized BM25 score of the document d for a term t, pr(d) is

the query independent score of the document d and w, k are constants that determine the

weight of pr(d). This is decomposable because the score of the document equals the sum of
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the scores of its individual query terms.

Score(d, q) =
∑

t∈t(q)

Score(d, q)

and this holds because (as in Okapi BM25) each addend corresponding to one query term,

does not contain any quantity that depends on a different query term.

In the context of the Mitos WSE, we have developed an hybrid retrieval model, which

is a combination of boolean plus similarity ranking (i.e Okapi BM25, VSM) and favors

documents that contain all the terms of the query q (but does not exclude documents that

do not contain all the terms of q).

The hybrid score of a document d w.r.t q, denoted by ScoreHybrid(d, q) is computed by:

ScoreHybrid(d, q) = Sim(d, q) + freq(d, q) (3.3)

where freq(d, q) is the number of terms of q that document d contains. Clearly, if we want

to include in Ans(q) only those documents containing all the query terms of q, then we

consider only those documents whose score is greater or equal than |t(q)|.
If |t(d) ∩ t(q)| < |t(d′) ∩ t(q)|, then ScoreHybrid(d, q) < ScoreHybrid(d′, q), since

Sim(d, q) ∈ [0, 1].

If Sim() is decomposable, then this scoring function is also decomposable since Def.

3.2.1 holds. The proof is trivial:

ScoreHybrid(d, q) = Sim(d, q) + freq(d, q)
(Def.3.2.1)

=
∑

t∈t(q)

Sim(d, t) +
∑

t∈t(q)

freq(d, t)

=
∑

t∈t(q)

[Sim(d, t) + freq(d, t)]

=
∑

t∈t(q)

ScoreHybrid(d, t)

If Sim() is semi-decomposable, then this hybrid scoring is also semi-decomposable.

3.3 Set Cover Problem

This section describes the set cover problem and some variations which are useful for

the problem at hand.
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Def 3.3.1 (Set Cover Problem)

Given a universe U = {u1, u2, . . . , un} of elements and a family F = {S1, . . . , Sk} of subsets

of U , a set cover is the minimum in size subfamily C of F such that
⋃

Si∈C Si = U .

The set cover problem is one of the oldest and most studied problems in the area of

combinatorial optimization. However note that a set cover is not necessarily a partition.

As it will be clarified later on, we are interested in finding exact set covers, where an exact

cover is a family of subsets of U that cover U however there is the extra constraint that all

sets of C should be pairwise disjoint. An example demonstrating the difference between a

plain set cover and an exact set cover follows (Ex. 3.3.1).

Example 3.3.1 Figure 3.1 shows an instance of the set covering problem.

1 2

4

6

3

5

S1

S2

87

109

S3

S4

Figure 3.1: Plain Set Cover Vs Exact Set Cover

In this example U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the family of subsets of U is F =

{S1, S2, S3, S4}. The set cover in this example is C = {S1, S2}, since
⋃

Si∈C

Si = S1 ∪ S2

= {1, 2, 3, 4, 5, 6} ∪ {5, 6, 7, 8, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= U

and |U | is minimal. However, C is not an exact set cover, since sets S1 and S2 are not

disjoint.
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An exact set cover is C ′ = {S1, S3, S4}, since

⋃

Si∈C′
Si = S1 ∪ S3 ∪ S4

= {1, 2, 3, 4, 5, 6} ∪ {7, 8} ∪ {9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= U

and S1 ∩ S3 = ∅, S1 ∩ S4 = ∅, and S3 ∩ S4 = ∅. ¦

Def 3.3.2 (Exact Set Cover)

We shall say that a family of sets C = {S1, . . . , Sk} is an exact set cover, for short ESC, if

∪Si∈C = U and Si ∩ Sj = ∅ for every i 6= j.

Note that the formulation of the exact set cover problem does not have any kind of

minimality constraint. It is actually a decision problem (to find an exact cover or else

determine none exists) and it is NP-complete [28].

We shall now introduce the notion of a partial exact set cover.

Def 3.3.3 (Partial Exact Set Cover)

We shall say that a family of sets C = {S1, . . . , Sk} is a partial exact set cover, for short

PESC, if ∪Si∈C ⊂ U and Si ∩ Sj = ∅ for every i 6= j.

Obviously a PESC is neither a set cover, nor an exact set cover.

3.4 Decomposability, Exact Set Covers and SCRC

In this section we discuss how SCRC is related to the set cover problem. Let Qc denote

the queries whose answers have been cached, and let q be the incoming query. Let first

define what we call lower queries.

Def 3.4.1 (Lower Query) A query qc is a lower query of q if t(qc) ⊂ t(q). We can define

the set of cached lower queries as Lower(q) = {qc ∈ Qc | t(qc) ⊂ t(q)}

Let q = {t0, t1, . . . , tn} be the new arrived query. If the cache contains an identical query

qc, i.e. a query such that t(qc) = t(q), then Ans(q) = Anscache(qc). We use a canonical
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representation of queries, i.e. words sorted lexicographically, in order to be invariant to the

order of words. If not, we can try to exploit the “closest” to q sub-queries that are cached.

The set cover problem or the exact set cover problem as described in the previous section

is related to our problem as follows:

• U corresponds to the terms of q, i.e. U = t(q), while

• F consists of the lower cached queries, i.e. F = Lower(q).

Let C be an exact set cover of t(q) corresponding to queries stored in the cache. We

shall now define AnsC(q) and ScoreC(d):

AnsC(q) = ∪qc∈CAns(qc)

ScoreC(d, q) =
∑

qc∈C

Score(d, qc)

i.e. AnsC(q) is the union of the documents in the answers of the queries in C, while for a

document d ∈ AnsC(q) the quantity ScoreC(d, q) is the sum of the scores that d received in

the answers of C.

This is the core idea of the SCRC query evaluation method. To prove its correctness

we need to prove that with this method (a) we will obtain the correct documents, and (b)

each of these documents will have the correct score. Formally, we have to prove that (a)

Ans(q) = AnsC(q), and (b) for each d ∈ Ans(q) it holds Score(d, q) = ScoreC(d, q).

If the scoring function Score() is decomposable then (b) certainly holds. Let’s now prove

(a), i.e that we will get the same set of objects.

Def 3.4.2 We say that a retrieval model is term-monotonic if it satisfies the following

property: if t(q) ⊆ t(q′) ⇒ Ans(q) ⊆ Ans(q′).

Recall that Ans(q) = { d ∈ Obj | Score(d, q) > 0} and note that here we treat answers

as sets (we ignore the ranking of its elements).

Lemma 3.4.1 If a scoring function assigns a positive score to a document if it contains at

least one query term, i.e. if t(d) ∩ t(q) 6= ∅ ⇒ Score(d, q) > 0, then the scoring function is

term-monotonic.
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It is not hard to see that the Vector Space Model as well as the Okapi BM25 model

are term-monotonic. In general all widely used best match retrieval models are based on

term-monotonic scoring functions.

Returning to the problem at hand, term monotonicity guarantees that Ans(q) = AnsC(qc)

since t(q) = ∪qc∈Ct(qc).

Lemma 3.4.2 If C and C ′ are two exact set covers of t(q) and the scoring function is

term-monotonic and decomposable, then AnsC(q) = AnsC′(q) and for each d ∈ Ans(q) it

holds ScoreC(d, q) = ScoreC′(d, q).

Next, we provide an example (Example 3.4.1).

Example 3.4.1 Consider the following simple document collection:

d1 = “barack obama”, d2 = “nobel”, d3 = “nobel prize”, d4 = “prize”

and the following cache.

Qc Cached Answer

qc1=“barack obama” Anscache(qc1) = {(d2, 2.0)}
qc2=“nobel” Anscache(qc2) = {(d1, 1.0), (d3, 1.0)}
qc3=“nobel prize” Anscache(qc3) = {(d3, 2.0), (d1, 1.0), (d4, 1.0)}
qc4=“prize” Anscache(qc4) = {(d3, 1.0), (d4, 1.0)}

Assume that the query q= “barack obama nobel prize” is submitted to the WSE and for

simplicity consider a decomposable scoring function assigning scores to the documents via

the following formula:

Score(d, q) =
∑

t∈t(q)∩t(d)

freq(t, d)

where freq(t, d) is the frequency of term t in document d.

In this example, we see that there are 2 exact set covers: C1 = {qc1 , qc3} and C2 =

{qc1 , qc2 , qc4}.
By using C1 we obtain the following answer:

AnsC1(q) =
⋃

qc∈C1

Anscache(qc) = {d2, d3, d4, d1}.

31



3. SET COVER RESULTS CACHING (SCRC)

The scores of the documents are: ScoreC1(d2) = 2.0, ScoreC1(d3) = 2.0, ScoreC1(d4) =

1.0, ScoreC1(d1) = 1.0.

Hence, AnsC1(q) = {(d2, 2.0), (d3, 2.0), (d4, 1.0), (d1, 1.0)}.
By using C2 we obtain the following answer:

AnsC2(q) =
⋃

qc∈C2

Anscache(qc) = {d2, d3, d4, d1}

The scores of the documents are: ScoreC2(d2) = 2.0, ScoreC2(d3) = 1.0+1.0 = 2.0, ScoreC2(d4) =

1.0, ScoreC2(d1) = 1.0.

Hence, AnsC2(q) = {(d2, 2.0), (d3, 2.0), (d4, 1.0), (d1, 1.0)}, which is the same as AnsC1(q).

¦
Finally, we have to note that if documents are globally ranked by a query-independent

score (i.e Pagerank score) then a plain set cover (not necessarily a partition) is sufficient for

the correct computation of the final scores of the documents.

3.5 Algorithms

3.5.1 Finding Cached SubQueries

Regarding the cost for finding the lower queries of the incoming query we can identify

two approaches, the scan-based and the hash-based. According to the scan-based we scan

the entire Qc, in order to examine if each cached query is a lower query of the incoming

query, so if |Qc| is high then this technique turns out inefficient. An alternative approach

(the one we used in our experiments) is to have a hash-based cache and to perform 2|t(q)|−2

lookups, i.e. one for every possible subset of t(q) (we subtract 2 due to q itself and the

empty set). This approach is faster than the scan-based if |Qc| is high and |t(q)| is low (e.g.

for |t(q)| = 3 it requires 6 lookups). More precisely, we choose the hash-based approach

if the required lookups are less than |Qc|, i.e. if |t(q)| < log(|Qc| + 2) (e.g. if |Qc| = 30,

then the hash-based approach is preferable when |t(q)| < 5). We tested experimentally the

benefits of these approaches using a trace of queries submitted to the Excite WSE, where

|Qe| = 37, 096. Then we classified all the queries according to their length.

We created a cache holding 104 queries (i.e. |Qc| = 104) and we examined the efficiency

of the above approaches by investigating the lower queries of each query. Each approach
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was tested against queries composed of X or more terms, 1 ≤ X ≤ 10. Table 3.2 shows the

average execution times for finding the lower queries of a query, i.e column X = 1, shows

the average execution time of both approaches for those queries q ∈ Qe, where |t(q)| ≥ 1.

Regarding the hash-based approach the execution times include also the cost for generating

the subsets of q and the look-up in the cache.

t(q) ≥ X
X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9 X = 10

Queries (|Qe|) 37,096 24,814 9,819 3,100 930 308 118 47 21 5

Approach Average Time to find lower queries (ms)
Hash-Based 0.027 0.051 0.105 0.261 0.654 1.57 3.57 7.97 15.6 56.2
Scan-based 90.4 119.24 153.64 198.71 192.84 210.2 229.60 244.0 264.0 309.4

Table 3.2: Strategies for finding lower queries

Firstly, we observe that the hash-based approach substantially outperforms in all cases

the scan-based approach. The pure efficiency of the scan-based approach relies on the fact

that it always has to scan all the cached queries. This is also demonstrated in Algorithm

2. Regarding the hash-based approach we observe that its execution time increases as the

number of the query terms increases but in practise, |t(q)| is usually less than 5.

3.5.2 Finding Exact Set Covers

Set-covering is an NP-Hard problem to solve. A greedy set cover algorithm which

achieves logarithmic approximation solution is described in [19]. At the appendix of this the-

sis we provide this algorithm along with an example (A.2). Below we introduce a variation

of the algorithm presented in [19] for finding exact covers. The greedy algorithm chooses

sets according to one rule: at each stage choose the set which contains the largest number

of uncovered elements. Repeat until all elements are covered. A greedy algorithm always

makes the choice that looks best at the moment. That is, it makes a locally optimal choice

in the hope that this choice will lead to a globally optimal solution. The greedy algorithm,

called EfficientGreedyExactSetCover, is presented next (Algorithm 1).

Running Time. For the problem at hand, Alg. 1 is called as

EfficientGreedyExactSetCover(Qc, q). Let’s start from the time required to produce the

lower queries of the incoming query q. This can be done using Alg. Lower(Qc, q) (Alg. 2).

The maximum number iterations of this algorithm is min(2|t(q)|−2, |Qc|), since the set of the
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lower queries of q can be computed either by a hash-based lookup method, or by scanning

the entire Qc. Recall that in this algorithm Qc is implemented as a hash data structure.

By using a priority queue (implemented as a max heap) for storing the lower queries

(i.e. F ), the insertion of each Fi ∈ F requires O(log |F |) time, where |F | ≤ 2|t(q)| − 2.

Although the maximum iterations are min(2|t(q)|−2, |Qc|), the insertions in the heap are

|F | (since there are maximum |F | lower queries), so the time complexity of Algorithm 2 is

O(min(2|t(q)| − 2, |Qc|) ∗ log |F |).
Alg. Lower(Qc, q) (Alg. 2) is invoked in line 2 of Alg. 1. The main loop of Alg. 1, is

executed at most |t(q)| times, where at each iteration F.removeMax() is invoked in order

to find the Fi ∈ F that maximizes |Fi ∩ U |. To find and remove the Fi that maximizes

the above expression, we just have to remove the root element from the heap and finding

the max element in the heap requires O(1) time. However for removing it, and thus keep

up-to-date the heap, requires O(log |F |) time. So the cost of the main loop is

O(|t(q)| log |F |)

It follows that the total complexity of Algorithm 1 is O(log |F |∗(|t(q)|+min(|F |, |Qc|))),
where |t(q)| is in practice less than 5 and |F | ≤ 2|t(q)| − 2.

Algorithm 1 returns either an exact set cover (ESC) or a partial set cover (PESC) (the

latter is not a set cover).

If an exact set cover is returned, then we need to merge and process accordingly the

answers of the sub-queries belonging to the set cover in order to produce the final answer.

If a partial exact set cover is returned, then we also have to access the main index in

order to retrieve the posting lists of the missing terms. It follows that a PESC C can

be extended to become an exact set cover. To the problem at hand, if C is a PESC and

Cterms = ∪Si∈C , then we shall use Rem(q) to denote the remainder terms of q, where

Rem(q) = t(q) \ Cterms, where Cterms denotes the terms of the returned cached queries.

Clearly, if C is an exact set cover, then Rem(q) = ∅. This means if C is a PESC consisting

of cached queries, we can compute the answer of q by accessing the main index in order to

retrieve the posting lists of the missing terms in Rem(q).

In the sequel we shall use the abbreviations q = ESC(qset), qset ⊂ Qe \ {q} to denote

that qset is an exact set cover of q found by the greedy algorithm and q = PESC(qset), to
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Algorithm 1 EfficientGreedyExactSetCover(Qc, q)

1: C ← ∅; U ← t(q); V isited ← ∅
2: F ← Lower(Qc, q)
3: while U 6= ∅ do
4: S ← F.removeMax() . Top-node of the heap
5: // If S cannot lead to an exact set cover:
6: if ((S 6= null) and (S ∩ V isited 6= ∅)) then
7: continue . Skip this iteration
8: end if
9: if (S = null) then . The heap is empty

10: if (C = ∅) then
11: return (null,NOTHING) . Nothing found
12: else
13: return (C, PESC) . Partial exact set cover found
14: end if
15: else
16: C ← C ∪ {S}
17: U ← U − S
18: V isited ← V isited ∪ S
19: end if
20: end while
21: return (C,ESC) . Exact set cover found

Algorithm 2 Lower(Qc, q)

1: F ← ∅; . F is a max heap
2: if ( |t(q)| < log(|Qc|+ 2) ) then . Hash-based lookup
3: SubQueries ← P (q) \ {t(q), {}} . P (q): Powerset of q
4: for (each Pi ∈ SubQueries) do
5: if (Pi ∈ Qc) then . Access through Hash
6: F.insert(|Pi|, Pi) . Insert Pi in the heap
7: end if
8: end for
9: else . Scan-based approach

10: for each qc ∈ Qc do
11: if (qc ⊂ q) then
12: F.insert(|t(qc)|, qc) . Insert qc in the heap
13: end if
14: end for
15: end if
16: return F
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denote that qset is a partial exact set cover of q found by the greedy algorithm. In the latter

case, we consider PESC(qset) to be a partial set cover, if @ qset′ such that q = ESC(qset′),

qset′ ⊂ Qe \ {q}.

3.5.3 Cache Structure

Regarding the cache structure, the cache stores the document id and the relevance score

for each document in a cached answer. There is no need for storing anything more. Table

3.3 shows the cache structure, which is the same as the structure of a RC.

SCRC Cache structure
Qc Answer
qc0 Anscache(qc0) = {(di, Score(di, qc0)), . . .}
. . . . . .
qcn Anscache(qcn) = {(di, Score(di, qcn)), . . .}

Table 3.3: SCRC Cache Structure

Regarding semi-decomposable scoring functions, the SCRC structure does not need to

change at all. The score of each document in a cached answer is its decomposable query-

dependent score.

3.5.4 Query Evaluation

Now we describe how we exploit the cache for answering the incoming query. The basic

idea of SCRC is the following: if there is not an identical query in the cache, check if the

terms of the cached queries can cover (totally or partially) the terms of the incoming query.

In case of a partial exact set cover fetch the missing posting lists from the index.

Let q be the incoming query, and let C be the family of sets returned by

EfficientGreedyExactSetCover(q, Qc). If C is an exact set cover (ESC), then the answer

is provided by the cache. If C is a partial exact set cover (PESC) then we have to forward

the remainder of the query Rem(q) to the main index in order to construct the final answer

of q. If C is null, then q must be forwarded to the main index and it will be evaluated

from the scratch. The complete evaluation process for retrieval models using decomposable

scoring functions is described by Algorithm 3.
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Algorithm 3 getAnswer(Qc, q)

1: if (Qc.get(q) 6= null) then . identical hit
2: return Qc.get(q)
3: else
4: (C, note) ← EfficientGreedyExactSetCover(q, Qc)
5: if (note = null) then
6: return null . should be processed from the main index
7: end if
8: if (note = ESC) then
9: AnsC(q) ← ⋃

qc∈C Anscache(qc)
10: end if
11: if (note = PESC) then
12: PartialAnswer ← ⋃

qc∈C Anscache(qc)
13: CTerms ← ⋃

qc∈C t(qc)
14: Rem(q) ← t(q) \ CTerms . remainder of q
15: C ← C ∪ {Rem(q)}
16: AnsC(q) ← Union(PartialAnswer,Ans(Rem(q))
17: end if
18: for each d ∈ AnsC(q) do
19: Set ScoreC(d, q) ← ∑

qc∈C Score(d, qc)
20: end for
21: Sort AnsC(q) wrt ScoreC(·, q)
22: return AnsC(q)
23: end if
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Regarding semi-decomposable scoring functions only line 19 of Algorithm 3 needs to

change, since in order to assign the final score to each matching document d w.r.t a query

q, we must post-process the ScoreC(d, q), as computed by the cache. Note that the post-

processing operations and operands depend on the form of the scoring function, as we

described in Section 3.2.

Furthermore, we have to note also that by forcing AND semantics in order to consider

only those documents containing all the query terms of the incoming query q (as perhaps

some commercial WSEs do), this does not affect the SCRC structure. In this case, a

document d will be included in Anscache(qc) of a cached query qc iff d contains all the query

terms of qc. Consequently, if C is an ESC of the query terms of q, then d will be included

in AnsC(q), iff d appears in all the cached answers of C. Regarding the query evaluation

algorithm, we need only change the union operation for obtaining the matching documents

of the incoming query to an intersection operation (lines 9, 12 and 16 of Alg. 3) in order to

retain only those documents that appear in all the cached answers. This variation does not

affect the query evaluation cost, since in the first case we retain in Ans(q) only once those

documents appearing in more than one cached answers (the answers are sets), while in the

second case, we must retain only those documents that appear in all the cached answers.

A second way to consider only those documents containing all the query terms of the

incoming query q is through the use of the decomposable hybrid scoring function (Eq. 3.3)

described in Section 3.2 and consider only those documents whose score is greater or equal

than |t(q)|. This restriction guarantees that only those documents containing all the query

terms of q, will be included in Ans(q), since (at least) 1 unit is added for each query term

of q that d contains. In this case, we do not have to change the query evaluation algorithm

(Alg. 3) at all.

3.6 Top -K SCRC

Most of the RC approaches cache top-K results (for K ranging some hundreds). In this

section we present an extension of the SCRC for caching the top-K results of a query (for

K ranging some hundreds). If in a SCRC we store only the top-K documents of the cached

queries, then an “identical hit” will return the correct top-K result. However a “set cover
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hit” will not necessarily return the correct top-K result.

Consider a submitted query q, let C be a set cover of q found in the cache and let B be

the documents appearing in the answers of the queries in C, i.e. B = ∪qc∈CAnscache(qc).

Let’s first investigate the two extremes: if a document b appears in the answers of all

queries in C, then the final score of b will be the correct one, while if b does not appear in

any cached answer of the queries in C (i.e. if b 6∈ B), then b will not appear in the final

answer. Now suppose that b appears in some of the answers of the queries in C. That

document will get a score smaller than what it deserves if a best match retrieval model is

employed (in query independent ranking models its score will be correct), and this happens

if the position of b at the full answer of a cached query in C, say qc, is the position k + 1

or a greater position. However we can compute an upper bound of the score that b can

have by assuming that in those answers where b is absent, b could take at most the score

of the last element. It follows that for each b ∈ B we have its certain score, denoted by

scorecertain(b) (which is Sim(b, q) as computed by the cache), and an upper bound for its

missed score, say scoreup
miss(b). If C ′ (C ′ ⊂ C) is the set of queries which do not have

b in their answers, then scoreup
miss(b) =

∑
qc∈C′ min{ scorecertain(b′) | b′ ∈ Anscache(qc)}.

If scoreup
miss(b) = 0 then this means that b is present in the answers of all subqueries so

we know its certain score. Let scoreup(b) denote the upper bound of the score of b, i.e.

scoreup(b) = scorecertain(b) + scoreup
miss(b). In general it holds

scorecertain(b) ≤ score(b) ≤ scoreup(b)

We can exploit the upper bounds of the missed scores as well as the scores of the missed

documents for ordering the documents and for identifying which proportion of the top-K

answer computed by a set cover hit is guaranteed to be accurate. We can identify two

proportions each described by an integer ranging [1..K], the exact top-Kex set and the

correct relative order top-Kro part, which are the biggest integers that satisfy the equations:

Set(top(Kex)(Anscache(q))) = Set(top(Kex)(Ans(q)))

top(Kro)(Anscache(q)) = top(Kro)(Ans(q)|B)

where Ans(q)|B denotes the restriction of Ans(q) on B. The first ensures that the first

Kex are definitely the highest scored elements, while the second ensures that the first Kro
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elements have the right relative order. Clearly it holds always that Kro ≤ |C| ∗ K. For

the computation of Kex we have to scan all elements of B which are at most |C| ∗K if the

answers in all set covers are pairwise disjoint. However, the last element of each answer list

can never exceed Missingup. The count of these lists is |C|, thus there are |C| elements

that have certain score less than Missingup. Thus, the maximum value of Kex is |B| − |C|
= |C| ∗K − |C| = |C| ∗ (K − 1).

Let Foundup(B) be the maximum scoreup(b) for all b in B. Let Missingup be the

maximum score that a b 6∈ B can have, which is at most equal to the sum of the scores of

the last elements in the answers of the queries C, Formally:

Missingup =
∑

qc∈C

min{ scorecertain(b) | b ∈ Anscache(qc)}

Foundup(B) = max{ scoreup(b) | b ∈ B}

and obviously Missingup ≤ Foundup(B). The values Kex and Kro can now be computed in

a simple and efficient manner. We order the objects in B in descending order with respect

to their certain scores. Subsequently we start from the first and we proceed as long as the

certain score of the current element is greater than or equal to Foundup(B \X) where X is

the set of elements visited so far including the current (so at the beginning X is a singleton

holding the element with the maximum certain score). The position reached is the Kro that

we are looking for. To find Kex we start again from the start of the list and we proceed as

long as the certain score of the current element is greater than or equal to Missingup. The

position reached is the Kex that we are looking for. The above procedure is very fast as

no extra index/disc access is required. The ability to compute the above portions, allows

implementing various policies, e.g. if Kex or Kro are less than a pre-specified number, a

policy could be to evaluate the query from scratch. Next we prove the correctness of the

Top-K SCRC (Prop. 3.6.1) and we provide several examples (Examples 3.6.1, 3.6.2, 3.6.3).

Prop 3.6.1 The computation of the values Kex and Kro is correct.

Proof:

(Kex)

Let 〈e1, e2, e3, e4〉 be the ordering of document w.r.t their certain score. We start from the

start and we proceed as long as scorecert(ei) ≥ Missingup. Recall that Missingup is the
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maximum score that an unknown document, say e′, can have. It follows that scorecert(ei) ≥
score(e′). Since score(ei) ≥ scorecert(ei), it follows that score(ei) ≥ score(e′). It is therefore

obvious that Set(top(Kex)(Anscache(q))) are certainly the Kex most highly scored elements

of Ans(q).

(Kro)

We start from the start of the list and we proceed as long as scorecert(ei) ≥ Foundup(B \V )

where V are the visited elements of the list so far. This means that we proceed as long the

following inequalities hold:

scorecert(e1) ≥ Foundup({e2, e3, e4})

scorecert(e2) ≥ Foundup({e3, e4})

scorecert(e3) ≥ Foundup({e4})

scorecert(e4) ≥ Foundup(∅)

Recall that Foundup(X) is the maximum upper bound of the scores of the elements in X.

So if the first inequality holds then this means that it is impossible that one of {e2, e3, e4}
has a score that is greater than scorecert(e1). Let’s assume that the first two (of the four)

inequalities hold. They imply that score(e1) ≥ score(e2) ≥ score(e3). So the relative order

of {e1, e2, e3} is correct, i.e. as in Ans(q)|{e1,e2,e3}.

¦

Example 3.6.1

Assume the following top-4 SCRC

Qc Cached answers

qc1 Anscache(”b c”) = {(d2, 0.8), (d1, 0.4), (d3, 0.3), (d4, 0.2)}
qc2 Anscache(”a”) = {(d1, 0.6), (d3, 0.4), (d2, 0.2), (d5, 0.1)}

and a newly arrived query q = “a b c”. There is a “set cover hit”, C = {qc1 , qc2}, and

B = ∪qc∈CAnscache(qc) = {d1, d2, d3, d4, d5}. The certain, missed and upper bound scores

are shown next:
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score

di certain up miss up

d1 1.0 0 1.0

d2 1.0 0 1.0

d3 0.7 0 0.7

d4 0.2 0.1 0.3

d5 0.1 0.2 0.3

It follows that

Missingup = 0.1 + 0.2 = 0.3 (the sum of the last scores)

Foundup(B) = 1.0 (that of d1 or d2)

By ordering B in descending order w.r.t their certain scores we get:

B = 〈(d1, 1.0), (d2, 1.0), (d3, 0.7), (d4, 0.2), (d5, 0.1)〉

To find Kro we proceed as long the following inequalities hold:

scorecert(d1) = 1.0 ≥ Foundup({d2, d3, d4, d5}) = 1.0

scorecert(d2) = 1.0 ≥ Foundup({d3, d4, d5}) = 0.7

scorecert(d3) = 0.7 ≥ Foundup({d4, d5}) = 0.3

scorecert(d4) = 0.2 ≥ Foundup({d5}) = 0.3

scorecert(d5) = 0.1. ≥ Foundup(∅) = 0

Notice that the first three hold, so Kro = 4. Kex equals 3 as the first three documents have

score ≥ Missingup = 0.3.

¦

Example 3.6.2

Assume the following top-4 SCRC

Qc Cached answers

qc1 Anscache(”b c”) = {(d1, 0.9), (d2, 0.9), (d3, 0.8), (d4, 0.1)}
qc2 Anscache(”a”) = {(d5, 0.9), (d6, 0.8), (d7, 0.1)}
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and a newly arrived query q = “a b c”. There is a “set cover hit”, C = {qc1 , qc2}, and

B = ∪qc∈CAnscache(qc) = {d1, d2, d3, d4, d5, d6, d7}. The certain, missed and upper bound

scores are shown next:

score

di certain up miss up

d1 0.9 0.1 1.0

d2 0.9 0.1 1.0

d3 0.8 0.1 0.9

d4 0.1 0.1 0.2

d5 0.9 0.1 1.0

d6 0.8 0.1 0.9

d7 0.1 0.1 0.2

Missingup = 0.1 + 0.1 = 0.2 (the sum of the last scores)

Foundup(B) = 1.0 (that of d1 or d2 or d5)

By ordering B in descending order w.r.t their certain scores we get:

B = 〈(d1, 0.9), (d2, 0.9), (d5, 0.9), (d3, 0.8), (d6, 0.8), (d4, 0.1), (d7, 0.1)〉

To find Kro we proceed as long the following inequalities hold:

scorecert(d1) = 0.9 ≥ Foundup({d2, d5, d3, d6, d4, d7}) = 1.0

Notice that the 1st inequality does not hold, so Kro = 0. Kex equals 5 as the first five

documents have score ≥ Missingup = 0.2. ¦

Example 3.6.3

Assume the following top-4 SCRC

Qc Cached answers

qc1 Anscache(”b c”) = {(d1, 0.9), (d2, 0.8), (d3, 0.7), (d4, 0.1)}
qc2 Anscache(”a”) = {(d5, 0.6), (d6, 0.5), (d7, 0.1)}
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and a newly arrived query q = “a b c”. There is a “set cover hit”, C = {qc1 , qc2}, and

B = ∪qc∈CAnscache(qc) = {d1, d2, d3, d4, d5, d6, d7}. The certain, missed and upper bound

scores are shown next:

score

di certain up miss up

d1 0.9 0.1 1.0

d2 0.8 0.1 0.9

d3 0.7 0.1 0.8

d4 0.1 0.1 0.2

d5 0.6 0.1 0.7

d6 0.5 0.1 0.6

d7 0.1 0.1 0.2

Missingup = 0.1 + 0.1 = 0.2 (the sum of the last scores)

Foundup(B) = 1.0 (that of d1)

By ordering B in descending order w.r.t their certain scores we get:

B = 〈(d1, 0.9), (d2, 0.8), (d3, 0.7), (d5, 0.6), (d6, 0.5), (d4, 0.1), (d7, 0.1)〉

To find Kro we proceed as long the following inequalities hold:

scorecert(d1) = 0.9 ≥ Foundup({d2, d3, d5, d6, d4, d7}) = 0.9

scorecert(d2) = 0.8 ≥ Foundup({d3, d5, d6, d4, d7}) = 0.8

scorecert(d3) = 0.7 ≥ Foundup({d5, d6, d4, d7}) = 0.7

scorecert(d5) = 0.6 ≥ Foundup({d6, d4, d7}) = 0.6

scorecert(d6) = 0.5 ≥ Foundup({d4, d7}) = 0.2

scorecert(d4) = 0.1 ≥ Foundup({d7}) = 0.2

scorecert(d7) = 0.1 ≥ Foundup({∅}) = 0.0

Kro equals to 6 since the first five inequalities hold. Kex equals 5 as the first five documents

have score ≥ Missingup = 0.2. ¦
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Chapter 4

Experimental Evaluation

4.1 Query Log Analysis

Typically, Web Search Engines retain logs of user queries, which register the history of

the submitted queries among other data. The analysis of search engine logs has focused

on how searchers use the search engines on the Web in order to satisfy their information

needs and lies in the research area of the Web Usage Mining [46, 18, 4]. Web usage mining

is the application of data mining techniques to discover usage patterns from Web data, in

order to understand and serve the needs of Web based applications. Some users might be

looking at only textual data whereas some others might want to get multimedia data. There

has been a large body of work that has been devoted to the analysis of WSE query logs

[24, 26, 43, 25, 11] and how users interact with search engines.

In WSEs, query logs constitute a valuable source for designing and evaluating efficient

caching policies. Due to the high locality in user queries that logs reveal [34, 47], knowledge

about previously submitted queries allows identifying the most frequent queries and cache

their results, which is also our focus. Moreover, knowledge about the number of pages of

results that a user is interested in, allows defining the optimal number of cached results.

Although the query logs of all WSEs do not obey a strict format and each search engine

retains various information for each submitted query, typically each request for a query is a

record containing:

• the query as it was submitted by the user, including any advanced query operators
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• a unique user id (to preserve the anonymity of the IP address of the user), assigned

to the user who submitted the query

• the date or timestamp of the submitted query

• the requested page of results (e.g the first page, the second page)

In this context, in order to verify the benefits of set cover-based results caching we

conducted an analysis over seven real query logs of three different WSE’s. Our aim was

to identify the proportion and the characteristics of the queries in a real logs that can be

formulated as the disjoint union of the rest queries. For reason of brevity, we will call such

queries in the sequel as set cover queries.

4.1.1 The Query Logs

Firstly, we describe the query logs that we used in our analysis. More particularly, we

analyzed characteristics using query logs of:

• the Excite 1 WSE,

• the Altavista 2 WSE and,

• the AllTheWeb 3 WSE

reported in Table 4.1. All queries contained in these logs were firstly preprocessed by re-

moving empty queries or queries containing any special characters or punctuation marks

like phrase queries and urls 4. For all the remaining queries, we converted all the query

terms to lowercase and reordered them in alphabetical order, while stopwords (i.e articles,

pronounces) were removed. We also removed requests for further result pages (traditionally

considered as duplicate queries). Although such requests are beneficial for WSEs for deter-

mining the number of results that the user visited, they skew the results in analyzing how

the user searched on system. For instance, it is difficult to discriminate whether a recorded

request corresponds to a visit to the second page of results, or to a retyping and resubmission
1www.excite.com
2www.altavista.com
3www.alltheweb.com
4For instance, we eliminated queries containing any of the punctuation or special characters: ‘.’, ‘:’, ‘;’,

‘,’, ‘?’, ‘!’, ‘ ’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, ‘”’, ‘/’, ‘\’, ‘+’, ‘-’, ‘∗’, ‘#’, ‘&’, ‘@’, ‘%’
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of the query. This happens because when a user submits a query, views a document and

then returns to the search engine, most of the search engines log this second visit with the

same user identification and query, but with a new time (i.e. the time of the second visit).

In order to be consistent in the analysis of all the query logs we discarded all the duplicate

queries for each user. To identify the duplicate queries submitted by each user we use the

user id field of each record in the logs.

Query Log Date Queries (|Qe|)
Excite March 13, 1997 36,923
Excite Sept. 19, 1997 392,503
Excite Dec. 20, 1999 1,125,691
Excite May 4, 2001 479,669
Altavista Sep. 9, 2002 1,154,598
AllTheWeb Feb 6, 2001 462,678
AllTheWeb May. 28, 2002 764,045

Table 4.1: Query Logs

4.1.2 Query Stream Metrics

To characterize a stream Qe we introduce four metrics. In their formulas we treat Qe

as a bag of queries (i.e. duplicates are allowed). Whenever we want to refer to the set of

distinct queries of Qe, we will write Set(Qe).

• The Average Query Length (AV GQLEN) is defined as:

AV GQLEN(Qe) =

∑
q∈Qe

|t(q)|
|Qe|

• The Identical Query Ratio (IQR) is defined as the ratio of the identical queries in the

query stream:

IQR(Qe) = 1− |Set(Qe)|
|Qe|

Clearly, if all queries of Qe are distinct, then IQR(Qe) = 0. If Qe consists of one

repeated query, then IQR(Qe) approaches 1 (specifically, IQR(Qe) = 1− 1
|Qe|).
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• To characterize a stream with respect to its density of partial exact set covers we

introduce the Partial Set Cover Density (PESCD) which is the proportion of the

queries in Qe whose terms can be covered partially by the rest queries in Qe:

PESCD(Qe) =
|{q ∈ Qe | q = PESC(qset), qset ⊆ Set(Qe) \ {q}}|

|Qe|

• To characterize a stream with respect to the probability of having an exact set cover,

we introduce the Set Cover Density (SCD) which is the proportion of the queries in

Qe whose terms can be covered exactly by the rest queries in Qe:

SCD(Qe) =
|{q ∈ Qe | q = ESC(qset), qset ⊆ Set(Qe) \ {q}}|

|Qe|

The nominator in PESCD(Qe) and SCD(Qe) metrics contains the condition qset ⊆
Set(Qe) \ {q}, because we do not want to count identical hits.

Note that for a query stream Qe, the sum of the IQR(Qe), the PESCD(Qe) and the

SCD(Qe) values does not need to be equal to 1 (100%). For instance, if Qe = {q1 =

“a b c”, q2 = “a b”, q3 = “c”, q4 = “a b c”, q5 = “b”}, then IQR(Qe) = 2/5 = 0.4,

PESCD(Qe) = 3/5 = 0.6, and SCD(Qe) = 2/5 = 0.4. Hence, in this case IQR(Qe) +

PESCD(Qe) + SCD(Qe) = 1.4 > 1.

On the other hand if Qe contains only distinct queries, then the sum of the values

of these query stream metrics cannot exceed 1. It can be at most 1, if all the queries

have either an ESC or a PESC. For instance, if Qe = {q1 = “a b c”, q2 = “a b”, q3 =

“c”}, then IQR(Qe) = 0, PESCD(Qe) = 2/3, and SCD = 1/3. Hence, in this case

IQR(Qe) + PESCD(Qe) + SCD(Qe) = 1.

4.1.3 Query Length Analysis

Firstly, we measured the length in words of the queries over the logs. Our aim is not to

provide a thorough analysis of the users web search behavior, since there are several studies

that have analyzed the queries that users submit to search engines as well as the length of

search sessions [43, 26, 34]. Instead, we conduct the following analysis in order to compare
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the query length level of the original queries with the one of the set cover queries, which we

describe in the next section.

Figure 4.1 shows the length of the queries over all the used query logs. Regarding the

logs of the Excite WSE (Figure 4.1(a), (b), (c) and (d)) and the AllTheWeb WSE (Figure

4.1 (e) and (f)), we observe that:

• 25% - 30% are single term queries

• about 40% are 2 - term queries

• 20% are 3 - term queries

• 10% consist of more than 3 terms

Regarding the Altavista query log (Figure 4.1(g)) we observe that:

• about 20% are single term queries

• 30% are 2 - term queries

• 20% are 3 - term queries

• 30% consist of more than 3 terms

Table 4.2 shows the average query length for each of these logs. On the average, a

query contains 2.26 terms, which is consistent with previous studies. This analysis verifies

that users use few words in their queries, and shows that the hash-based approach that we

described in Section 3.5.1 is the most appropriate for exploiting the cached subqueries.

Query Log Date |Qe| AV GQLEN(Qe)
Excite March 13, 1997 36,923 2.03
Excite Sept. 19, 1997 392,503 2.16
Excite Dec. 20, 1999 1,125,691 2.25
Excite May 4, 2001 479,669 2.16
Altavista Sep. 9, 2002 1,154,598 2.88
AllTheWeb Feb. 6, 2001 462,678 2.25
AllTheWeb May. 28, 2002 764,045 2.11

Table 4.2: Average query length of the queries over the logs
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Figure 4.1: Query length in the logs
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4.1.4 Analysis of Set Cover Queries

Now we extend our analysis in order to examine the characteristics of the set cover

queries. For identifying the set cover queries over all the logs we used the greedy algorithm

for exact set covers (Alg. 1) presented in Section 3.5.2.

In Section 4.1.4.1 we measure the set cover density over the logs. Then, in Section

4.1.4.2, we analyze the length of these queries and in Section 4.1.4.3 we examine the size

of the cover of these queries. Finally, in Section 4.1.4.4, we examine the benefits of our

approach over these logs, by comparing the cache hit rate of the SCRC and the RC.

4.1.4.1 Set Cover Density

To see what SCD values characterize real query streams, we computed this metric over

the logs. Table 4.3 reports the statistics for each of the logs. The PESC and SCD values

were obtained by using the greedy algorithm (Alg .1).

Query Log Date |Qe| SCD(Qe) PESCD(Qe) IQR(Qe) AV GQLEN(Qe)
Excite March 13, 1997 36,923 10% 33.2% 52% 2.03
Excite Sept. 19, 1997 392,503 43.4% 22.2% 35.5% 2.16
Excite Dec. 20, 1999 1,125,691 54.1% 18.5% 38.8% 2.25
Excite May 4, 2001 479,669 41.4% 26.1% 29% 2.16
Altavista Sep. 9, 2002 1,154,598 39% 35.3% 22.6% 2.88
AllTheWeb Feb. 6, 2001 462,678 30.7% 35% 26% 2.25
AllTheWeb May. 28, 2002 764,045 42.6% 22.6% 25.2% 2.11

Table 4.3: Statistics of real query logs using Algorithm 1

The average SCD value over these query logs is 37%, the average PESCD value is

27.5% and the average IQR value is 33%.

Therefore, one out of three queries can be formulated exactly as a combination of the

terms of the rest queries and a lower proportion of these queries can be formulated partially

by the rest queries. We observe that the average PESCD value over these logs is lower than

the average SCD value by 10%. The value of the PESCD is lower, since as we reported

we consider a PESC(qset) to be a partial set cover, if @ qset′ such that q = ESC(qset′),

qset ⊂ Qc \ {q}. This means that we do not count these queries to the PESCD value,

despite the fact that when a query has an exact set cover, it surely has a partial set cover.
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The reason that we count them in this way is that in our context either an ESC or a PESC

will be returned for a given query.

We also used a non-greedy algorithm for counting the SCD values over these logs, which

examines all the combinations of the cached sub-queries of the incoming query. Our objective

was to verify that our algorithm does not lead to pure retrieval of exact set covers. The

results by using a non-greedy algorithm are presented in Table 4.4. Indeed, a non-greedy

algorithm offers at most 0.2%-0.6% more exact set covers than the greedy one.

Query Log Date |Qe| SCD(Qe)
Excite March 13, 1997 36,923 10.2%
Excite Sept. 19, 1997 392,503 44%
Excite Dec. 20, 1999 1,125,691 54.5%
Excite May 4, 2001 479,669 41.8%
Altavista Sep. 9, 2002 1,154,598 39.4%
AllTheWeb Feb. 6, 2001 462,678 31%
AllTheWeb May. 28, 2002 764,045 42.8%

Table 4.4: Statistics of real query logs using a non-greedy algorithm

4.1.4.2 Query Length

In this section we study the length in words of the set cover queries. We conducted this

analysis in order to examine if the characteristics of these queries are close to those of all the

queries. Figure 4.2 shows the query length distribution of the set cover queries over all the

query logs. Firstly, we observe that there are not significant deviations from the analysis

that we conducted over all the queries. More precisely, we observe that queries consisting

of 2 terms dominate again and there is just a small fraction of set cover queries that are

composed of more than 3 terms: We make the following observations:

• 50% - 55% of these queries are 2-term queries

• 30% of these queries are 3-term queries

• 10% - 15% of these queries are composed of more than 3 terms

Hence, queries that can be formulated as a disjoint union of the rest queries are also

short queries, since the vast majority of these queries have 2 terms.
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Figure 4.2: Length of the set cover queries
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Table 4.5 shows the average length of the set cover queries for each of these logs. On

the average, a set cover query contains 2.65 terms. We observe that this value is slightly

higher than the one obtained for all the queries of the logs. However, this is expected since

there cannot be a set cover query that consists of just a single term.

Query Log Date |Qe| AV GQLEN(Qe)
Excite March 13, 1997 36,923 2.52
Excite Sept. 19, 1997 392,503 2.70
Excite Dec. 20, 1999 1,125,691 2.68
Excite May 4, 2001 479,669 2.61
Altavista Sep. 9, 2002 1,154,598 2.79
AllTheWeb Feb. 6, 2001 462,678 2.66
AllTheWeb May. 28, 2002 764,045 2.62

Table 4.5: Average query length of the set cover queries over the logs

4.1.4.3 Set Cover Size

Now, we focus on the size of the cover of these queries. The cover size of a set cover query

is the number of the sub-queries which formulate it (which is independent of the number of

the query terms that each sub-query contains), e.g if C = {{a b c}, {d e, f}}, then the size

is 2.

Figure 4.3 shows the cover size of the set cover queries over the logs. We observe that

the majority of the queries (80% - 85%) have a cover size equal to 2. There is a very small

fraction of queries (10% - 13%) with cover size equal to 3 and an even lower fraction (3%)

of queries that have a cover size greater than 3 sets. Consequently, we see that the cover

size of the set cover queries is small.

4.1.4.4 Cache Hit Rate

In this section, we compare the hit rate of the RC and the SCRC. The value of the SCD

metric in a query stream is a good indicator for revealing how many queries can be covered

exactly by the rest queries and indicates the maximum number of set cover hits that a SCRC

can achieve. However, it cannot guarantee that all of these queries will be answered though

set cover hits.
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Figure 4.3: Size of the set cover queries over the query logs
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• For instance, if set cover queries are very popular then they will be cached (assuming

that the cache stores the most frequent queries) and they we will be answered by the

cache as identical hits, since we always firstly check for identical cached queries.

• Another reason that these queries may not be answered through the cache is due to

memory limitations. If all the lower queries of a set cover query are not cached, then

it cannot be answered exclusively through the cache.

Cache Metrics: We refine the metrics defined earlier in Section 4.1.2 in order to count

the number of identical or set cover hits that can be found over the cached queries Qc.

Specifically:

• The metric IQR(Qe, Qc) counts the number of the identical hits that can be found

over the cached queries Qc and is defined as:

IQR(Qe, Qc) =
|{q′ ≡ q | q ∈ Qe, q

′ ∈ Qc}|
|Qe|

• The metric PESCD(Qe, Qc) counts the number of the partial exact set covers that

can be found over the cached queries Qc and is defined as:

PESCD(Qe, Qc) =
|{q ∈ Qe | q = PESC(qset), qset ⊆ Qc \ {q}}|

|Qe|

• The metric SCD(Qe, Qc) counts the number of the exact set covers that can be found

over the cached queries Qc and is defined as:

SCD(Qe, Qc) =
|{q ∈ Qe | q = ESC(qset), qset ⊆ Qc \ {q}}|

|Qe|

The cache hit rate of the RC is equal to the proportion of the identical hits, while the

cache hit rate of the SCRC is equal to the proportion of the identical hits and the exact set

cover hits. Hence, for result caches of capacity |Qc| the cache hit rate of the RC is equal

to the IQR(Qe, Qc) value, while the cache hit rate of the SCRC is equal to the sum of the

IQR(Qe, Qc) and the SCD(Qe, Qc) values.

Since, the incoming query can be answered either by the cache through an identical hit

or by an exact set cover hit or by using a partial exact set cover, the sum of the values of

the cache metrics for a given cache size must always be less than 1.
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Experimental Results: In order to evaluate the performance of the RC and the SCRC

we computed their hit rate by partitioning each query log into two equal size parts: a

training set and a test set, as Markatos [34] 5. We use the training set to extract the most

popular queries and fill the caches and we use the test set to measure the cache hit rate. The

contents of both caches are static and do not change during the submission of the queries

contained in the test set.

Next, we report our results for various cache sizes over the query logs. For each query

log that we use, we plot the cache hit rate of the RC and the SCRC. We also report for each

cache size, the values of the cache metrics which reflect the proportion of the identical hits,

the proportion of the exact set cover hits and the proportion of the partial exact set covers.

Note that we do not count the partial exact set covers in the cache hit rate of the SCRC.

Figure 4.4 shows the cache hit rate of the RC and the SCRC over the Excite (1997)

query log. In this stream, we observe that the SCRC attains 13.6% - 20.4% higher hit rates

than the RC.
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Figure 4.4: Hit Rate of the RC and the SCRC as a function of the Cache Size - Excite
(1997) log

Table 4.6 reports in detail the fraction of the identical hits, the exact set covers and the
5Fagni et. al [21] follow the same approach as Markatos[34], but they split the query log into a training

set that contains the 2/3 of the queries and the rest (1/3) constitute the test set.
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partial exact set covers that were obtained for each cache size. We observe that as the cache

size increases:

• the identical hits also increase

• the exact set cover hits also increase almost at the same rate as the identical hits

• the partial exact set covers decrease but at a lower rate

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
25,000 30.4% 13.6% 30.4%
50,000 31.6% 15.8% 29.6%
75,000 33.2% 17.1% 28.6%
100,000 34.9% 18.1% 27.4%
137,653 37.6% 20.4% 25.3%

Table 4.6: Fraction of identical hits, exact set cover hits and partial exact set cover hits over
the Excite (1997) query log

We continue our analysis using the Excite (1999) query log. Figure 4.5 shows the cache

hit rate of the RC and the SCRC over this log. We see that the SCRC attains 22% - 28%

higher hit rates than the RC, which is higher than the obtained hit rate in the Excite (1997)

log.
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Figure 4.5: Hit Rate of the RC and the SCRC as a function of the Cache Size - Excite
(1999) log
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Accordingly, Table 4.7 reports in detail the fraction of the identical hits, the exact set

covers and the partial exact set covers that were obtained for each cache size over the Excite

(1999) log. The fraction of the exact set cover hits are higher than in the Excite (1997) log

but the fraction of the partial exact set covers is hardly the same.

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
50,000 31% 22% 30%
100,000 32% 24% 28.8%
200,000 34.8% 25.2% 26.6%
371,756 39% 28% 22.2%

Table 4.7: Fraction of identical hits, exact set cover hits and partial exact set cover hits over
the Excite (1999) query log

Figure 4.6 shows the cache hit rate of the RC and the SCRC over the Excite (2001)

query log.

In this log, we observe that the SCRC attains 15% - 20.5% higher hit rates than the RC.
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Figure 4.6: Hit Rate of the RC and the SCRC as a function of the Cache Size - Excite
(2001) log

Table 4.8 shows the fraction of the identical hits, the exact set covers and the partial

exact set covers that were obtained for each cache size over the Excite (2001) log. The rate
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at which the identical and the exact set cover hits increase and the partial exact set covers

decrease is similar to those of the previous logs.

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
50,000 24% 15% 33.8%
100,000 27.1% 17.1% 32.4%
181,954 31% 20.5% 29.4%

Table 4.8: Fraction of identical hits, exact set cover hits and partial exact set cover hits over
the Excite (2001) query log

Now, we study the hit rate of the RC and the SCRC of the logs of the AllTheWeb WSE.

Figure 4.7 shows the cache hit rate of the RC and the SCRC over the AllTheWeb (2001)

query log. We see that the SCRC attains 9.1% - 14.6% higher hit rates than the RC.
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Figure 4.7: Hit Rate of the RC and the SCRC as a function of the Cache Size - AllTheWeb
(2001) log

Table 4.9 shows the fraction of the identical hits, the exact set cover hits and the partial

exact set covers that were obtained for each cache size over the AllTheWeb (2001) log.

In this log, we observe that the hit rate of the SCRC is lower than the one in the

previously examined logs of the Excite WSE. On the other hand, the fraction of the partial

exact set covers is higher than the one in the previous logs and remains almost stable for

60



4.1. QUERY LOG ANALYSIS

all cache sizes.

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
50,000 14.3% 9.1% 36.3%
100,000 16.6% 10.8% 36.9%
150,000 18.8% 13% 36.7%
183,000 20.4% 14.6% 36.4%

Table 4.9: Fraction of identical hits, exact set cover hits and partial exact set cover hits over
the AllTheWeb (2001) query log

Next, we study the hit rates over the second log of the AllTheWeb WSE. Figure 4.8

shows the cache hit rate of the RC and the SCRC over the AllTheWeb (2002) query log.

We see that the SCRC attains 18.8% - 25% higher hit rates than the RC.
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Figure 4.8: Hit Rate of the RC and the SCRC as a function of the Cache Size - AllTheWeb
(2002) log

Table 4.10 shows the fraction of the identical hits, the exact set cover hits and the partial

exact set covers that were obtained for each cache size over the AllTheWeb (2002) log.

Finally, we report our results over the log of the Altavista WSE. Figure 4.9 shows the

cache hit rate of the RC and the SCRC over the Altavista query log. We see that the SCRC

attains 14.4% - 20.5% higher hit rates than the RC.
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Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
50,000 18.4% 18.8% 33.5%
100,000 20.2% 20% 32.2%
200,000 23.6% 22.8% 29.8%
297,842 27.1% 24.9% 26.9%

Table 4.10: Fraction of identical hits, exact set cover hits and partial exact set cover hits
over the AllTheWeb (2002) query log
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Figure 4.9: Hit Rate of the RC and the SCRC as a function of the cache size - Altavista log
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Table 4.11 shows the fraction of the identical hits, the exact set cover hits and the partial

exact set covers that were obtained for each cache size over the Altavista log. It is worth

stating that in the particular query log the fraction of the partial exact set covers is the

highest among all the other logs.

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
50,000 16.1% 14.4% 38.1%
150,000 17.9% 16.1% 38.3%
300,000 20.5% 18.2% 38%
466,033 23.2% 20.5% 37.2%

Table 4.11: Fraction of identical hits, exact set cover hits and partial exact set cover hits
over the Altavista query log

4.1.5 Summary and Discussion

We studied and analyzed logs from 3 real web search engines. Our results indicate that

over all query logs there is a significant fraction of queries that can be covered (either totally

or partially) by the rest submitted queries. By exploring the characteristics of these queries,

we identified that most of these queries are on their majority short queries with few terms

(most of them are composed of 2 terms). We also measured the size of the exact set covers

for these queries and showed that most queries can be formulated through the disjoint union

of 2 other queries. Using trace driven simulations for various cache sizes we showed that the

SCRC outperformed the RC in all cases even when the cache size was set to a few cached

entries. More precisely, we showed a SCRC can deliver up to 30% higher hit rates than a

RC. Moreover, we showed that as the cache size increases, the fraction of the identical hits

and the exact set cover hits also increases (almost at the same rate), while the fraction of

the partial set covers is slightly decreased in most of the cases. For a given cache size, we

showed that about half of the queries can always be covered either totally (exact set cover)

or partially (partial exact set cover). This implies that even if there is not an exact set

cover, there is a significant fraction of queries that constitute partial exact set covers and

can potentially have a great impact on the performance of WSE by reducing the costs of

the query evaluation process.
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4.2 Experimental Evaluation over the Mitos WSE

In this section we describe the experiments that we have conducted over the Mitos WSE

[38] and report our results. The scope of this evaluation was to identify the benefits of the

SCRC in a real WSE. In Section 4.2.4, we consider the case where result caches store the

complete answers of the cached queries and we propose and evaluate several cache filling

strategies. Then, in Section 4.2.5.2, we consider the case where result caches store just the

top-K results of the queries.

4.2.1 Hardware and Software Environment

The first version of Mitos was developed as a student project in the IR course (CS463) by

undergraduate and graduate students of the Computer Science Department of the University

of Crete in three semesters (spring: 2006, 2007 and 2008).

Mitos has two releases: one based on a classical Inverted File index (as in Terrier),

and one based on an index represented in an Object-Relational DBMS. The index based

representation uses the HStore Object Relational representation described in [37]. This

representation uses the PostgresSQL (PSQL) hstore data type for storing terms and their

occurrences. More precisely, hstore is a data type for storing sets of (key,value) text pairs

in a single PSQL data field. In our case, the key is the document id d and the value is the

term frequency (tfd,t).

All experiments were carried out by running a single process on a desktop PC with a

Pentium IV 3.4 GHz processor, 2 GB main memory on top of Linux distribution.

4.2.2 Document Collection

Our document collection is a set of web pages crawled by the Mitos web crawler. The

index contains 240,108 distinct terms and the total postings of these terms are 5,039,486.

The total size of the pages is 5.6 GB, yielding a DBMS-based index of approximately 170

MB and an inverted file of 52 MB without positional information.
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4.2.3 Query Traces

Next, we describe both synthetic and real query traces that we used throughout the

experimental evaluation over the Mitos WSE.

4.2.3.1 Synthetic Query Traces

Seed Query Set. We used a seed query set for the generation of the synthetic query sets

comprising: 13 single word queries, 28 queries comprising two words, 1 query comprising

three words, 5 queries with 4 words, 2 queries with 5 words, 1 query with 8 words. All

the queries were normalized for case and white space and stopwords were evicted. The

evaluation queries yielded 110 total query terms, comprising 81 distinct terms. The average

query length of the evaluation queries is 2.2 terms. The maximum result set size of the

evaluation queries is 10,934 documents, the minimum result set size is 20 documents and

the average result set size is 4,063 documents.

In our experiments we used the following synthetic query traces:

(a) Query Set A: a stream of 104 queries randomly selected from the seed query set. This

query stream has neither exact set covers nor partial exact set covers at all.

(b) Query Set B, a stream of 104 random queries generated as follows: From the 50

evaluation queries of the seed query set we chose the queries containing 2 terms. Then,

for each query composed of 2 query terms, we generated 14 additional 3-term queries by

merging each 2-term query with a random query term, selected from the single term queries

and 14 additional 4-term queries by merging each 2-term query with another random 2-term

query. Thus, we ended up with a total of 78 distinct queries. Finally, from these 78 queries,

we produced a stream of 104 randomly selected queries.

(c) Query Set C: a stream of 104 random queries generated as follows: From the 50

evaluation queries of the seed query set we chose the queries containing 2 terms. Then, we

generated 5 additional 3-term queries by merging each 2-term query with a random single

term query, yielding totally 55 distinct queries. From this set of queries, we produced a

stream of 104 randomly selected queries.

(d) Query Set D: a stream of 104 queries, randomly generated by combining index terms

with characteristics more close to real query streams.
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In the sequel, we will use the abbreviations QA, QB, QC and QD to denote the set of

queries contained in Query Sets A, B, C and D respectively. Table 4.12 shows the values of

the metrics for these sets.

Query Set Metrics
|Qe| IQR(Qe) SCD(Qe) PESCD(Qe) AV GQLEN(Qe)

QA 10,000 99.5% 0% 20% 2.2
QB 10,000 99.2% 35.9% 8.2% 2.66
QC 10,000 99.4% 10% 13.8% 1.98
QD 10,000 35% 35% 45% 2.4

Table 4.12: Query Set Metrics of Synthetic Traces

4.2.3.2 Real Query Traces

Moreover, we used two real query sets. More precisely, we used a trace of queries issued

to the Altavista WSE on Sept. 9, 2002 and another trace of queries submitted to the Excite

WSE on Sept. 19, 1997. Since, we are not affiliated with any major WSE, we considered

only those queries of which all terms appear in the vocabulary of our index 6.

• AltaVista Set : From the original query set 70,710 queries remained, where 56.4% of

these queries are unique.

• Excite Set : From the original query set 50,000 queries remained , where 63.6% of these

queries are unique.

Table 4.13 shows the values of the metrics for the query sets. The characteristics of these

query sets are very similar to the characteristics of the real query logs (Table 4.3).

Query Set Metrics
|Qe| IQR(Qe) SCD(Qe) PESCD(Qe) AV GQLEN(Qe)

AltaVista 70,710 43.6% 35.3% 20.1% 2.0
Excite 50,000 36.4% 38.2% 38% 2.2

Table 4.13: Query Set Metrics of Real Traces

Figures 4.10 (a) and (b) show the distributions of the queries of the Altavista query set

and the Excite query set respectively. The x-axis represents the normalized frequency rank

of the query, that is the most frequent query appears closest to the y-axis. The y-axis is the
6The same approach for filtering the queries has been also employed in [32].
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normalized frequency for a given query. Both axes are on a log scale. The distribution of

the query frequencies of these sets follow power-law distributions and we observe that there

is a very long tail of queries that occur only once.
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Figure 4.10: The distribution of the queries

4.2.4 SCRC

In this section, we evaluate the performance of the SCRC when the cache stores the

complete answer of each cached query (all the results). We report results using the Okapi

BM25 weighting scheme. Results for other models which are based on decomposable scoring

functions are expected to be almost the same since the cache structure and the query

evaluation algorithm do not change at all and the index is consulted only upon a cache

miss.

4.2.4.1 Result Caches Filling

Regarding result caches (RC and SCRC), we fill them randomly. Experiments using

other cache filling policies are given in Section 4.2.4.4. Each element of Anscache(qc) in the

plain RC consists of pairs of the form (di, Score(di, qc)).

4.2.4.2 Posting List Cache Filling

Each uncompressed posting list I(t) of a term t in the posting lists cache consists of pairs

of the form (di, tfdi,t). We select the terms to be cached, using the QTFDF scheme. This is
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4. EXPERIMENTAL EVALUATION

motivated by the experiments that we have conducted. Specifically we experimented with

three different static (offline) caching strategies:

• QTF : the scheme proposed by Baeza-Yates and Saint-Jean [10] (referred as QTF in

[5]), which suggests caching the terms with the highest query-term frequencies.

• QTFDF : the scheme proposed by Baeza-Yates et al in [5], which suggests caching the

terms with the highest pop(t)
df(t) ratio, where pop(t) is the popularity of the term t in the

evaluation queries and df(t) is the document frequency of term t.

• MINDF : which selects the terms with the lowest document frequency. This means

that terms are selected for caching in ascending order of their document frequency.

Figures 4.11 (a-b) show the cache miss ratio of a static posting lists cache for various

cache sizes over query sets QB and QC respectively.

The QTF algorithm captures the repetition of the query terms but it does not consider

the document frequencies of the query terms (popular terms have also long posting lists).

Thus, few terms with their corresponding posting lists fit in the available cache space, thus

the cache miss ratio is still high. In our case, the MINDF outperforms the QTF algorithm,

since more terms fit the available cache space and terms do not present high repetition in

the evaluation sequence. The performance of the QTFDF algorithm is very similar to the

performance of the MINDF algorithm.
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Figure 4.11: Cache miss ratio of different posting lists caching policies
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4.2.4.3 Experimental Analysis

We measured the average query response time over QB and QC when the cache memory

size is equal to 2.5% of the index size for the following cases:

(a) No Cache (referred in figures as NCB, NCC),

(b) Posting List Cache (PLCB, PLCC) filled according to QTFDF scheme,

(c) Result Cache (RCB, RCC ), and

(d) SCRC (SCRCB, SCRCc).

We experimented with 2 ranking schemes:

• the Okapi BM25 model

• a global ranking model which assigns only static scores to the documents (i.e Pager-

ank scores). The score of each document d is simply its query-independent score

(Score(d, q) = g(d)).

We made experiments for both index representations:

Figure 4.12(a-b) shows the results for the DBMS index and the typical inverted file (IF)

index over the QB query set.

Figure 4.12(c-d) shows the corresponding results over the query stream QC .

The results show that the use of any caching mechanism always reduces the average

query response time of the Mitos WSE. SCRC offers a significant speed up when documents

are ranked according to the Okapi BM25 model. Tables 4.14 and 4.15 report the speedup

for each case. The speedup S is defined by the following formula:

S =
T1 − T2

T1
∗ 100

where T1 is the execution time to evaluate a query when no caching mechanism is applied

and T2 is the execution time when applying a caching mechanism.

Retrieval Model Speedup on Average Query Evaluation Time (QB)
DBMS IF

PLC RC SCRC PLC RC SCRC
Global Ranking 32.8% 59.3% 55.6% 49% 55.5% 35 %
Okapi BM25 15.2% 43.7% 96.4% 24% 40.5% 72%

Table 4.14: Speed up of PLC, RC and SCRC over QB
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Figure 4.12: Average response with cache size = 2.5% of the index size (for inverted files
and DBMS)

Retrieval Model Speedup on Average Query Evaluation Time (QC)
DBMS IF

PLC RC SCRC PLC RC SCRC
Global Ranking 25% 78.3% 75.3% 40% 62% 60%
Okapi BM25 28.6% 77.4% 95.9% 25.1% 56.7% 68.9%

Table 4.15: Speed up of PLC, RC and SCRC over QC
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We observe that SCRC achieves the highest speedup for the Okapi BM25 model, when

using the DBMS-index over both query sets (QB, QC). For instance, SCRC achieves speedup

ranging from 72% to 96%, while RC offers at most 80% and PLC at most 29% speedup.

Regarding, query-independent ranking (rows Global Ranking), RC slightly prevails, because

no scores have to be computed and the benefits of SCRC are compensated by its higher

cache miss time. Finally, it’s worth noticing the PLC is the slowest in all cases. We have

to stress that RC and SCRC outperformed PLC, even though in RC and SCRC the cached

queries were selected randomly, while in PLC using the QTFDF policy. Obviously, a non

random selection would further increase the relative benefits of RC and SCRC. The IQR of

the query set was high and this at first glance seems to favor RC (and thus SCRC). However

PLC also exploits the fact that the seed query set is small since it is based on QTFDF (which

exploits popularity) and the number of the distinct terms in the query stream is small. This

is evident also in Figure 4.11 where we can see that the miss ratio of PLC is very small

(specifically 0.022 over QB and 0.062 over QC for size 2.5% of the index size). Finally, we

have to mention that the benefits of the partial set cover hits were not very evident in our

experiments because queries contained very few words. However, the speedup is expected

to be higher for queries with several words.

4.2.4.4 Experiments for Various Cache Sizes

Now we report comparative results for SCRC and RC not with respect to cache size but

we respect to the number of the cached entries. We experimented with two query sets: QA

and QB, for Okapi BM25 retrieval model. Figures 4.13(c-d) show the average response time

for both query sets when the index is Inverted File based and DBMS-based respectively.

Notice that in both figures the plots of RC and SCRC that correspond to query set QA

almost coincide. RC is slightly faster as expected since the miss time in the SCRC is higher

than in the RC cache and SCD(QA) = 0. Over QB, SCRC is faster in all cases.

4.2.4.5 Cache Filling Strategies

Here we describe methods that take as input a query log and fill a SCRC. These methods

are appropriate for caches hosting all the results of a query. Our objective is to maximize

the average query response speedup. Given a query log Qe, we can identify the following
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Figure 4.13: Average response time wrt number of cache entries

strategies for populating Qc:

• RC-like

Select the queries with the highest frequency. Order the queries of Set(Qe) with re-

spect to their frequency and fill the cache starting from the queries with the highest

frequency. The frequency of a query q in a stream Qe is defined as

freq(q,Qe) =
|{q′ ∈ Qe | q′ ≡ q}|

|Qe|
This policy aims at maximizing the gain from identical hits.

• PLC-like

Given two queries q, q′ ∈ Set(Qe) we shall write q v q′ if t(q) ⊂ t(q′). One policy is

to order the queries with respect to v, i.e. define a partial order (Set(Qe),v). Then

start filling the cache by traversing the Hasse Diagram of (Set(Qe),v) starting from

the minimal elements and going upwards level-wise. It is like performing a Breadth-

First-Search starting from the minimal elements (an example is given later on). It is

not hard to see that this policy aims at maximizing the gain from set cover hits. For

instance if all minimal elements of (Set(Qe),v) are placed in the cache, then every

query in Qe can be answered either by an identical hit or a set cover hit. If a query

stream comprises a lot of single word queries, and only these are placed in the cache,

then the resulting cache would be like a PLC.
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• FreqByAnswerSize

Order the queries of Set(Qe) with respect to their profit and fill the cache starting

from the queries with the highest profit. The profit of a query q in a stream Qe is

defined as

FreqByAnswerSize(q,Qe) =
freq(q, Qe)
|Ans(q)|

This policy aims at utilizing the cache space effectively and maximizing the gain from

identical hits.

• SiPoCo

We need a more sophisticated policy which should increase the probability of identical

hits and of set cover hits. At the same time it should demote queries whose answers are

big and thus waste a lot of cache space. Now to promote queries that can contribute

to set covers, we define a measure, called SiPoCo (from Size, Popularity, Coverage),

as:

SiPoCo(q) =
∑

{ FreqByAnswerSize(q′) | q v q′}

So we count the value also of the queries to which q could contribute to.

As an example, consider a stream Qe where the elements of Set(Qe) are those listed in the

first column of Table 4.16.

q freq(q) |Ans(q)| FreqByAnswerSize(q) SiPoCo(q)
q1: {a} 2 10 0.2 0.2 + 0.2 +0.1 + 0.4 + 0.25 = 1.15
q2: {d} 2 20 0.1 0.1 + 0.25 = 0.35
q3: {a, b} 2 10 0.2 0.2 + 0.4 = 0.6
q4: {a, c} 2 20 0.1 0.1 + 0.4 + 0.25 = 0.75
q5: {a, b, c} 4 10 0.4 0.4
q6: {a, c, d} 5 20 0.25 0.25

Table 4.16: Cache Filling Strategies - An example

Below we see the ordering derived by each criterion (Freq, PLC-like, FreqByAnswerSize,

SiPoCo):
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Freq : 〈q6, q5, {q4, q3, q1, q2}〉
= 〈{a, c, d}, {a, b, c}, {{a, c}, {a, b}, {a}, {d}}〉

PLC − like : 〈{q1, q2}, {q3, q4, q6}, q5}
= 〈{{a}, {d}}, {{a, b}, {a, c}, {a, c, d}}, {a, b, c}}〉

FreqByAnswerSize : 〈q5, q6, {q3, q1}, {q4, q2}〉
= 〈{a, b, c}, {a, c, d}, {{a, b}, {a}}, {{a, c}, {d}}〉

SiPoCo : 〈q1, q4, q3, q5, q2, q6〉
= 〈{a}, {a, c}, {a, b}, {a, b, c}, {d}, {a, c, d}〉

Firstly, we observe that each cache filling strategy produces a different ordering of the

queries. At a first glance, the PLC-like strategy tends to promote short term queries.

Strictly speaking, the SiPoCo strategy does not guarantee that queries contributing to set

covers will be ranked in the first positions. For instance, in the above query stream queries

q2 and q4 cover query q6, but they are not ranked both in the first positions of the ordered

list that SiPoCo produces. More, notice that a query with the highest freq(q)/|Ans(q)|
ratio will be always ranked first by the FreqByAnswerSize strategy (in our example query

q5), but this is not the case for the SiPoCo. In the above example, q6 is ranked in the last

position of the list produced by the SIPOCO strategy. Query q5 does not contribute to set

covers and is ranked lower in the final ordering than other queries.

Here we report some experiments of non-random cache filling policies using the Okapi

BM25 retrieval model. We filled the caches using the above filling policies. Regarding the

RC, we fill it using the most frequent queries.

Figure 4.14 shows the average response times of the Mitos WSE when employing these

techniques.

We observe that the most beneficial cache filling strategy for the SCRC is the SIPOCO

strategy, because it captures both identical and set cover hits. When employing this policy,

SCRC is up to 3 times faster than RC (for large cache sizes) and up to 4 times faster than

PLC on the Okapi BM25 model.
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Cache Filling Strategies
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Figure 4.14: Cache Filling Strategies - Average Response Times

Table 4.17 reports in detail the fraction of the identical hits, the partial exact set cover

hits (PESCD) and the exact set cover hits (SCD) that each cache filling strategy achieves

for each cache size. (The statistics of the plain results cache are depicted in the last row of

each sub-table.)

From Table 4.17, we observe that the FreqByAnswerSize strategy achieves the highest

number of identical hits since it allows the cache to host the maximum number of queries

with their answers. Its drawback is that it ignores queries that are likely to contribute to

set covers. More, we observe that even though the number of repeated queries is very high,

the RC − LIKE strategy is always less effective than the PLC − LIKE and the SiPoCo

strategy. This is expected, since the RC−LIKE strategy does not exploit set cover queries,

and does not consider the size of the query answers as a criterion. Thus, it does not exploit

suitably the available cache space. We also observe that the PLC −LIKE strategy always

achieves the max number of partial set covers. However, it does not consider at all the

frequency of the queries and for this reason its efficiency in answering identical queries is

very limited. Finally, we see that the SiPoCo strategy leverages the advantages of the

former strategies, since it captures a large fraction of identical queries and can answer also

a sufficient fraction of queries derived through set cover hits.
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Metrics
M = 10 MB

Policy IQR(Qe, ·) PESCD(Qe, ·) SCD(Qe, ·)
Random 5.6% 6.79% 0.11%
RC-like 11.05% 11.45% 1.45%
PLC-like 9.74% 52.6% 18.69%
FreqByAnswerSize 19.13% 41.95% 3.89%
SiPoCo 12.1% 19.25% 30.61%
RC 11.05% - -

M = 50 MB
Policy IQR(Qe, ·) PESCD(Qe, ·) SCD(Qe, ·)
Random 27.61% 21.22% 1.49%
RC-like 39.56% 22.50% 2.0%
PLC-like 27.78% 42.81% 29.66%
FreqByAnswerSize 52.3% 29.53% 8.71%
SiPoCo 50.18% 26% 21.07%
RC 39.56% - -

M = 100 MB
Policy IQR(Qe, ·) PESCD(Qe, ·) SCD(Qe, ·)
Random 47.31% 22.62% 3.65%
RC-like 47.31% 22.62% 3.65%
PLC-like 48.01% 32.58% 19.66%
FreqByAnswerSize 75.38% 15.12% 6.61%
SiPoCo 74.45% 12.88% 11.78%
RC 47.31% - -

Table 4.17: Cache Filling Strategies: Comparative Evaluation of cache metrics over QD
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4.2.5 Top-K SCRC

Motivated by the fact that most users view only the first pages of results when submitting

a query in a WSE, we now describe the comparative evaluation of a Top-K SCRC with a

Top-K RC, where only the top-K answers are cached. For this evaluation, we used the

real query traces in order to validate our results. Preliminary experiments showed that

the performance gain achieved either by a SCRC or a RC is roughly the same in both

releases (dbms-based release and inverted file release), so we report results obtained from

the dbms-based release of Mitos .

Performance Measures: To make the results comparable all implementations take

as input a Max Cache Memory parameter M . Since the exact costs for the evaluation of

a query rely on the internal design and hardware environment of the WSE, we used two

measures to estimate the efficiency of the caching mechanisms.

• Cache Hit Ratio: the fraction of the queries that can be answered by the cache. This

measure has the advantage of being independent of both the software and the hardware

environment.

• Average Query Execution Time: the average response time of the Mitos WSE for

evaluating a query.

In all experiments presented in this section we used the Okapi BM25 weighting scheme.

4.2.5.1 Result Caches Filling

Regarding the initialization of the caches, we follow the same strategy as the one de-

scribed in Section 4.1.4.4. We split each query trace into 2 parts: a training set and a test

set. The training set is used for filling the caches with the most frequent queries and their

top-K answers (K = 100). The test set is used for submitting these queries to the Mitos

WSE and evaluating the performance of the RC and the SCRC. In both caches, each element

in a cached answer (denoted by Anscache(qc)) consists of pairs of the form (di, Score(di, qc));

hence, both caches retain the same content.
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4.2.5.2 Experimental Analysis

The first kind of experiments aims to assess the hit rate of each caching mechanism and

the second kind of experiments aims to measure the average query execution time when the

WSE employs either the SCRC or the RC.

Recall that in a RC, a query is considered to be a cache hit, iff there is an identical

query in the cache. In a SCRC, a query is considered to be a cache hit, iff there is either an

identical query in the cache or a set cover of the query in the cache. Figures 4.15 (a) and

(b) illustrate the cache hit rate of the RC and the SCRC over the Altavista and the Excite

query set respectively.
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Figure 4.15: Top-K SCRC Vs Top-K RC: Hit Rate as a function of the Cache Size

We observe that as the cache capacity increases, the hit rate of the RC and the SCRC also

increase. Over all query sets, the SCRC achieves higher hit rates, since always a significant

fraction of the submitted queries are resolved by the SCRC as set cover hits. More precisely,

over the Altavista query set, the SCRC answers 16.8% more queries than the RC. Over the

Excite query set, the SCRC achieves up to 20% higher hit rates than the RC. Note that in

the SCRC case, although partial exact set covers (PESC) are considered as misses (since
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we must access also the main index), they are likely to contribute to the reduction of the

average response time per query as we verify in the next section.

Next we report the average query response times of the Mitos WSE when it employs

either the RC or the SCRC for various cache sizes over the Altavista query set and the

Excite query set. We conducted this second kind of experiments in order to verify that

the higher hit rate of the SCRC also results to lower query response times of the WSE.

Whenever a query cannot be answered by the cache, then the cache reports a miss and the

query is fully evaluated from the main index.

Altavista query set: Figure 4.16 illustrates the average query response time of the Mitos

WSE when employing the RC and the SCRC over the Altavista set. The first column depicts

the average query evaluation time by using the answer of the index (no cache). The second

and the third column show the average response time of Mitos when using the RC and the

SCRC respectively.
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Figure 4.16: Average query response time over the Altavista query set (in ms)

Firstly, we observe that the use of any caching mechanism (either the RC or the SCRC)

always reduces the average query response time of the WSE. Moreover, we observe that

the SCRC outperforms the RC in all cases, even when the cache size is very small. As the

cache size increases the speedup obtained by the SCRC compared to the RC also increases
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significantly. When the cache size is medium (i.e M = 5 MB), SCRC is at least 2 times

faster than the RC. When the cache size is large (i.e M = 10 MB, M = 15 MB), SCRC is

4 times faster than the RC.

Table 4.18 shows in detail the fraction of the identical queries, the exact set covers and

the partial exact set covers for each cache size. As in the analysis in Section 4.1.4.4, we

observe that as the cache size increases: the fraction of the identical hits and the exact set

cover hits increase and the fraction of the partial exact set covers decrease. Recall that a

RC and a SCRC achieve the same fraction of identical hits.

Moreover, we observe that as the number of the exact set cover hits increase, the aver-

age query execution time decreases, despite the fact that the fraction of the partial exact

set covers also decreases. This verifies that the use of the exact set covers for the query

evaluation process is much more beneficial than the use of the partial exact set covers.

Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
0.25 MB 37.5% 2.5% 23.3%
0.5 MB 45.7% 4.6% 20.4%
1 MB 52.5% 8.8% 22.6%
5 MB 60.2% 14% 17.7%
10 MB 63% 14.4% 15.9%
20 MB 67% 16.8% 12.1%

Table 4.18: Fraction of identical hits, exact set cover hits and partial exact set cover hits
over query set Altavista

This is also evident in Table 4.19, where we report the average query execution time (in

milliseconds) to answer a query of the Altavista query set through:

• the index

• an identical cached query

• an exact set cover (ESC)

• a partial exact set cover (PESC)

As expected, the time to answer a query q through an identical cached query q′ ≡ q is almost

negligible (150 microseconds). The average time for obtaining the answer of q through an

exact set cover (ESC) is less than 1.5 ms, which is also very fast. We also observe that

as the cache size increases, the average time to derive an answer through the use of partial

exact set covers (PESC) decreases but their benefits are higher. This can be explained by
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the fact that when the cache increases the size of these partial exact set covers also increase,

and this results in acquiring shorter queries (as remainders) from the main index.

Cache Size Index Identical hit ESC hit PESC
0.25 MB 82.0 0.00139 1.07 79.2
0.5 MB 85.3 0.00146 1.14 66.7
1 MB 86.7 0.00151 1.2 53.6
5 MB 84.4 0.00162 1.19 42.6
10 MB 81.0 0.00168 1.14 39.4

Table 4.19: Average execution times (in ms) to answer a query through: the index, an
identical cached query, an exact set cover hit (ESC) or a partial exact set cover (PESC)
over the Altavista query set

Table 4.20 shows in detail the average execution time (in microseconds) spent for an-

swering a query through a set cover hit. We report the execution time which is spent in

order to:

• produce the lower queries of the incoming query and check in the cache if they exist

(Lower Time),

• execute the greedy algorithm for returning a set cover (Greedy Time),

• aggregate the answers of the cached queries that constitute the set cover (Aggregation

Time),

• estimate the minimum accuracy of the composed top-K answer (Accuracy Time)

We observe that most of the time is spent on aggregating the answers of the cached sub-

queries that cover the incoming query. The average time for generating the sub-queries

of each query (using the hash-based approach presented in Section 3.5.1) and examining

if the cache contains them is approximately 45 microseconds. The time that the greedy

algorithm requires is approximately 16 microseconds. The average time to aggregate the

answers of the cached queries is almost 1 ms (1000 microseconds). Finally, the time spent

on estimating the minimum accuracy of the composed top-K answer (Kex and Kro values)

is 45 microseconds.

Excite query set: Figures 4.17 illustrates the average query response time of the Mitos

WSE when employing the RC and the SCRC over the Excite query set.

We experimented also with very small cache sizes in order to verify that the benefits of
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Cache Size Lower Time Greedy Time Aggregation Time Accuracy Time
0.25 MB 47.4 9.3 979 44
0.5 MB 49.0 13.2 1038.0 46.8
1 MB 46.3 16.9 1096.4 46.05
5 MB 40.8 20.1 1096.6 40.1
10 MB 39.0 17.2 1052.9 39.4

Table 4.20: Detailed execution times (in microseconds) for deriving the answer of a query
through a set cover hit over the Altavista query set
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Figure 4.17: Average query response time over the Excite query set

the SCRC are also evident and are not compensated by its higher miss time, compared to

the SCRC. Again the SCRC is faster than the RC in all cases, even when the cache size is

very small. As the cache size increases the speedup obtained by the SCRC compared to the

RC also increases. When the cache size is medium (i.e M = 5 MB), SCRC is 2 times faster

than the RC. When the cache size is larger (i.e M = 15 MB), SCRC is 3 times faster than

the RC.

Table 4.21 shows in detail the fraction of the identical queries, the exact set covers and

the partial exact set covers for each cache size.

Table 4.22 reports in detail the average query execution time (in milliseconds) to answer

a query of the Excite query set through:

• the index
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Cache Size IQR(Qe, ·) SCD(Qe, ·) PESCD(Qe, ·)
0.5 MB 19.8% 7.2% 32.4%
1 MB 26.3% 9.6% 30%
2.5 MB 33.8% 13% 25.4%
5 MB 36.6% 15% 24%
10 MB 41.8% 17% 22.5%
15 MB 44.7% 20% 21.1%

Table 4.21: Fraction of identical hits, exact set cover hits and partial exact set cover hits
over the Excite query set

• an identical cached query

• an exact set cover (ESC)

• a partial exact set cover (PESC)

As before, we observe that returning the answer of an identical cached query requires

just a few microseconds and returning the answer through an exact set cover hit is hardly

1 ms. Moreover, when the cache size is large, returning the answer through a partial exact

set requires 50% less time than evaluating it from the main index.

Cache Size Index Identical hit ESC hit PESC
0.5 MB 97.7 0.00125 0.909 69
1 MB 96.9 0.00130 0.972 69
2.5 MB 95.3 0.00132 0.958 54.9
5 MB 93.5 0.00137 0.956 52.3
10 MB 91.8 0.00141 0.933 48.6
15 MB 92.0 0.00145 0.914 43.6

Table 4.22: Average execution times (in ms) to answer a query through: the index, an
identical cached query, an exact set cover hit (ESC) or a partial exact set cover (PESC)
over the Excite query set

Table 4.23 reports in detail the average time (in microseconds) spent to answer a query

through a set cover hit. The results are very similar as those in the Altavista set. Most of

the time for exploiting a set cover is consumed over aggregating the answers of the cached

subqueries of the incoming query.

83



4. EXPERIMENTAL EVALUATION

Cache Size Lower Time Greedy Time Aggregation Time Accuracy Time
0.5 MB 64 14 764 67
1 MB 76 16.7 828 52
2.5 MB 58 20.5 828.5 51
5 MB 60 19.5 827 50.4
10 MB 44.1 18.2 824 47
15 MB 37.7 16.9 815 45

Table 4.23: Detailed execution times (in microseconds) for deriving the answer of a query
through a set cover hit over the Excite query set

4.2.5.3 Estimating the accuracy of the composed top-K answer

We also measured the accuracy of the composed top-K answers for those queries that

were answered through set cover hits, when M is set to 10 MB; results for other values

of M are very similar. For measuring the accuracy of these answers we used two different

approaches, as we describe next.

Mathematically guaranteed accuracy: Firstly, we estimated the minimum accuracy

of the composed top-K answer using the approach presented in Section 3.6. Recall that this

approach guarantees that the first Kex elements are definitely the highest scored elements,

and that the first Kro elements have the right relative order. For the rest of the elements in

the composed answer this approach cannot guarantee, despite the fact that they are likely

to be included among the top scored elements.

The distribution of the Kex and Kro values over the Altavista query set and the Excite

query set is illustrated in Figures 4.18 (a) and (b) respectively. The x-axis ranges [0..B],

where |B| is the result set size. The y-axis illustrates the proportion of the queries that are

answered through set cover hits and have the x value. Over these query sets, the average

Kex value is 43 and the average Kro value is 3.

Using the answer of the main index: Next, using the same configurations (same M

and K values) as before, we measured the actual accuracy of the composed top-K answer

using the main index. For each query, which was answered through a set cover hit from the

SCRC, we also evaluated it from the main index (by considering the first top-K results) and

we compared the returned answers for each query.
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Figure 4.18: Mathematically guaranteed accuracy of the composed top-K answer for set
cover hits

Figures 4.19 (a) and (b) show the accuracy of the composed top-K over the Altavista

and the Excite query set respectively when using the answer of the main index.
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Figure 4.19: Index-based accuracy of the composed top-K answer for set cover hits

The most important observation from this figure is the high level of accuracy that we

obtain when evaluating queries through set cover hits. More precisely, the average Kex

value is twice as double in contrast to the previous approach (83 vs. 43). This means that

the answer through a set cover hit contains 80% of the top-scored documents. Moreover,

for almost all of these queries (99.7%), their answers contain at least the top-20 documents.

Furthermore, for 70% of these queries, their answers contain at least the top-75 matching

documents, when the answer is composed of 100 documents (K = 100). In addition, 38%
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of these answers contain all the top matching documents (100 docs). These results are

very encouraging since previous work [26, 43] on user’s web search behavior has revealed

that users are interested and view only the first pages (1-3) of results and ignore the rest.

Regarding the Kro values the obtained results are close to those of the previous approach,

but a smaller fraction of these answers have zero Kro values.

Recall also that the accuracy of the query answers we are examining refer only to those

queries that were answered from the cache as set cover hits (approximately 20% of all the

queries submitted to the WSE) and not for the whole query stream.
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Chapter 5

Concluding Remarks

We introduced SCRC, a novel scheme for results caching which bridges the gap between

results caching and posting lists caching and aims at maximizing the utilization of a results

cache. We proposed a query evaluation scheme where how upon a cache miss, the incoming

query can still be very quickly evaluated if it is a disjoint union of the cached queries. To

this end, we reduced the problem of finding the “best” cached sub-queries that are required

for answering the incoming query, to the well-known Set Cover Problem.

We introduced the notion of additively decomposable scoring functions which determines

the applicability of SCRC and we showed that several best-match retrieval models (e.g VSM,

Okapi BM25 and several hybrid retrieval models) which are traditionally used in Information

Retrieval and WSEs rely on such scoring functions.

Our study over real query logs of three different WSEs showed that there is a significant

fraction of queries in real query streams that can be formulated as the disjoint union of the

rest queries. Our analysis and experimental results over these logs revealed that a SCRC

can deliver up to 30% higher hit rates than a plain RC.

We introduced and evaluated two flavors of the SCRC: one that stores the complete

answers of the queries and another that stores the top-K answers. Regarding the former,

we proposed and evaluated several static cache filling policies that maximize the speed up

obtained by a SCRC and showed that the SCRC is 2 times faster than a plain RC and 3

times than a posting lists cache. Motivated by the fact that most users examine only the

first pages of results, we introduced a variation of the SCRC, the Top-K SCRC and we
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defined metrics for characterizing the quality of the answers derived through set cover hits.

Our main results over real world query traces demonstrate the superiority of the SCRC

over the RC in best-matching retrieval models (i.e Okapi BM25, VSM). More concretely,

we showed that a Top-K SCRC is 2 times faster than a Top-K RC, while preserving the

quality of the answers. We also showed that as the cache size increases the relative speedup

of the RC against the SCRC also increases.

In bigger indexes the benefits of the SCRC are expected to be even higher, considering

that the cost of query processing is dominated by the cost of traversing the inverted lists,

which grow linearly with the collection size.
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Appendix

A.1 Proofs

Prop A.1.1

The typical scoring function of the Vector Space Model is not decomposable.

Proof:

We will prove this proposition by a counterexample. Consider a document collection that consists

of only one document d = “barack obama white house” and the query q = “barack obama”. We

will show that :

Simcos(d, “barack obama”) 6= Simcos(d, “barack”) + Simcos(d, “obama”)

Let’s first compute Simcos(d, q). The document d and the query q are represented by the following

weighted vectors
−→
d = {1, 1, 1, 1} −→q = {1, 0, 1, 0} considering that the weights in the vectors corre-

spond to the lexicographical order of the query terms. Here we have, Wd =
√∑

t∈t(d) w2
d,t =

√
4 = 2

and Wq =
√∑

t∈t(q) w2
q,t =

√
2.

The score of the document d w.r.t q is computed as

Simcos(d, q) =

∑
t∈t(d)∩t(q) wd,t · wq,t

Wq ·Wd
=

1 ∗ 1 + 0 + 1 ∗ 1 + 0√
2 ∗ 2

=
2

2 ∗ √2
=
√

2
2

Let’s now compute the similarity scores of the document d w.r.t query terms t1 = “barack”

and t2 = “obama” individually. The query vectors of terms t1 and t2 are
−→
t1 = {1, 0, 0, 0} and

−→
t2 = {0, 0, 1, 0} respectively. We have:

Simcos(d, t1) =

∑
t∈t(d)∩t1

wd,t · wq,t

Wq ·Wd
=

1 ∗ 1 + 0 + 0 + 0
1 ∗ 2

=
1
2

and

Simcos(d, t2) =

∑
t∈t(d)∩t2

wd,t · wq,t

Wq ·Wd
=

0 + 0 + 1 ∗ 1 + 0
1 ∗ 2

=
1
2
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Hence,

Simcos(d, “barack”) + Simcos(d, “obama”) =
1
2

+
1
2

= 1 6=
√

2
2

¦

A.2 Set Cover Problem

An instance (X,F) of the set covering problem, consists of a finite set X and a family F of subsets

of X, such that every element of X belongs to at least one subset in F : X =
⋃

S∈F S. We say that

a subset S ∈ F covers its elements. The problem is to find a minimum-size subset C ⊆ F whose

members all of X [19]:

X =
⋃

S∈C

S

The greedy algorithm for the set covering problem from [19] is presented next.

Algorithm 4 GREEDY-SET-COVER (X, F )

1: C ← ∅
2: U ← X
3: while U 6= ∅ do
4: select an S ∈ F that maximizes |S ∩ U |
5: U ← U − S
6: C ← C ∪ {S}
7: end while
8: return C

The greedy algorithm chooses sets according to one rule: at each stage it greedily chooses the

set S ∈ F which contains the largest number of uncovered elements. Repeat until all the elements

of U are covered.

Since each iteration of the while loop in lines 2-6 adds a set S ∈ F to the cover C, and S must

cover at least one of the as yet uncovered elements of X, it is clear that the maximum number of

iterations of the while loop is at most min(|X|, F |). The actual body of the loop can be implemented

in time O(|X||F |) and so the overall complexity of Algorithm 4 is O(|X||F |min(|X|, |F |)).
An algorithm that returns near-optimal solutions is called an approximation algorithm. We say

that an algorithm for a problem has an approximation ratio of p(n) if, for any input of size n, the

cost C of the solution produced by the algorithm is within a factor of p(n) of the cost C∗ of an

optimal solution: max
(

C
C∗ ≤ p(n)

)
. The cost of the set-covering is the size of C, which defines as

the number of sets it contains.
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According to [19], Algorithm 4 is a polynomial-time p(n)-approximation algorithm to the set

covering problem, with a logarithmic approximation ratio, where p(n) = H(max{|S| : S ∈ F}).
That is as the size of the size of the instance gets larger, the size of the approximate solution may

grow, relative to the size of an optimal solution.

Since, H(n) =
∑n

i=1
1
k ≤ ln(n) + 1, we have that

p(n) = H(max{|S| : S ∈ F}) ≤ H(|X|) ≤ ln |X|+ 1

Because the logarithm function grows rather slowly, however, this approximation algorithm may

nonetheless give useful results. Hence, the greedy algorithm returns a set cover that is not at most

ln(n) + 1 times larger than the optimal set cover. ¦
Next, we provide an example which shows an instance of the set covering. We show that the

greedy algorithm (Alg. 4) may not result in an optimal solution.

Example A.2.1 Figure 1 shows an instance of the set covering problem.

1 2 3

5

8

4 6

7 9

1110 12

S2

S1S3

S4

S6
S5

Figure 1: Set Cover Example

In this example X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and the family F = {S1, S2, S3, S4, S5, S6}
of subsets of X. The set cover in this example is C = {S1, S4, S5}, since

⋃

Si∈C

Si = {1, 2, 3, 4, 5, 6} ∪ {2, 5, 7, 8, 11} ∪ {3, 6, 9, 12}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
= X¦

The set cover in this example is C = {S3, S4, S5}. However, the greedy algorithm returns a

different set cover, which is not the optimal (the one with the minimum size).
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At the first iteration of the algorithm, it selects S1 = {1, 2, 3, 4, 5, 6}, since it is the set that covers

the most of the uncovered elements of X, which is six. Now X = {7, 8, 9, 10, 11, 12} and C ′ = {S1}
In the next iteration, the algorithm selects set S4 = {2, 5, 7, 8, 11} which covers 3 more elements (7, 8

and 11) and now X = {9, 10, 12} and C ′ = {S1, S4}. Next, the algorithm selects set S5 = {3, 6, 9, 12},
which covers 2 elements. Hence, now X = {10} and C ′ = {S1, S4, S5}. Finally, the algorithm selects

set S3 = {1, 4, 7, 10} and terminates. The returned set cover is C ′ = {S1, S4, S5, S3} 6= C.

A.2.1 Greedy Exact Set Cover

In our context, there is not any guarantee that Algorithm 1 will surely return an exact set cover

(ESC), even if one exists.

• The main reason that an ESC may not be returned is that the family F of the subsets of X

(recall that in our case F corresponds to the cached sub-queries of q and X to the query terms

of q) may not contain all the elements of X in order to form an exact set cover. Nevertheless,

a partial exact set cover (PESC) will be definitely returned.

• Another reason is the use of the greedy algorithm (Alg. 1). The greedy algorithm may

not return an ESC, even if one exists. However, we used also a non-greedy algorithm which

examines all the combinations of the cached sub-queries of the incoming query and we reported

in Section 4.1.4.1 that a non-greedy algorithm returns about 0.2% - 0.6% more exact set covers

than Algorithm 1 over all the logs.

• Another reason that we may “miss” an exact set cover is due to the exact set cover restriction

since, we are interested in set covers with pairwise disjoint subsets. For instance, if X =

{“a”, “b”, “c”, “d”} and F = {S1 = “a b c”, S2 = “a b”, S3 = “c d”}, then Algorithm 1 will

select S1, since it covers most of the elements of X, but in the next step it will terminate

(since either S2 or S3 are not pairwise disjoint with S1) and will return a partial exact set

cover (PESC). Instead, in the plain set cover problem where the sets of the cover may overlap

(there is no restriction for exact set covers), Algorithm 4 will find a plain set cover, by selecting

in order sets S1 and S3.

Next, we investigate the quality of the approximation returned by the greedy algorithm.

Let U be the query terms. Let Rem(U) be the uncovered elements of U if we run an exhaustive

exact set cover algorithm. If an exact set cover exists then obviously |Rem(U)| = 0. Recall that this

decision problem in NP-Complete.

Let RemF (U) be the uncovered elements of U if we run the greedy algorithm. We would like to

cover all elements of U as this allows answering the incoming query from cached queries. Therefore
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for evaluating the quality of approximation returned by the greedy algorithm, we could use the

following metric:

Z =
|RemG(U)| − |Rem(U)|

|U |
Clearly, Z = 0 if either both algorithms return an exact cover, or none of them returns an exact

cover but each of them leaves the same number of uncovered elements. If the greedy leaves more

uncovered elements then Z > 0. Obviously it also holds Z ≤ 1, and 1 is the worst value for Z (no

elements of U are covered). However we will refine the upper bound later on.

Let F = {S1, . . . , Sk} be the family of subsets of U (i.e. the lower queries in our problem). Now

suppose that there is an exact cover (so the exhaustive algorithms returns YES and the particular

exact cover). Below we will discuss the quality of approximation (using Z) of the greedy algorithm

for various cases:

• Singleton subqueries

If for each u ∈ U , there is an Si in F such that Si = {u} then Z = 0. The proof is trivial.

• If |U | = 2 then Z = 0.

The proof is trivial.

• Case |U | = 3

Here Z can be greater than zero. For example, let F = {{a, b}, {a}, {b, c}}. An ESC exists, but

the greedy could fail (if it selects {a, b} at its first iteration). Here we have Z = 1−2/3 = 1/3.

Let U = {a, b, c}. An ESC can be one of the following:

1. abc

2. ab c

3. a bc

4. ac b

5. a b c

In the case 1 and 5 greedy will not fail. In cases 2, 3, 4 it can fail (2: if F contains ac, 3: if F

contains ab, 4: if F contains ab). So in at most 3 out of the 5 cases it can fail, and in each such

case |RemG(U)| − |Rem(U)| would be 1. So the expected value of Z (if we assume that an

ESC always exists) is 2/5*0 + 3/5 * 1 = 3/5 = 0.6. Summarizing, for |U | = 3 the probability

that the greedy algorithm finds an ESC if it exists is 0.6 (assuming a uniform distribution).

Since from the query log analysis presented in previous chapter, we know the probabilities of

|U | = 1, |U | = 2 and |U | = 3 in real query logs, we can compute the expected Z for those parts
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of the query logs. Specifically, from the analysis of query logs we know that P (|U | ≤ 3) = 0.867.

For these queries the expected Z is E(Z) = P (|U | = 1) ∗ 0 + P (|U | = 2) ∗ 0 + P (|U | = 3) ∗ 0.6 =

0.277 ∗ 0 + 0.38 ∗ 0 + 0.21 ∗ 0.6 = 0.126.

Let’s now discuss the general case, that includes cases where |U | > 3. Since an ESC exists there

is certainly at least one subset of U . In this case the greedy algorithm will select the biggest. Let

m = max|Si| (note that 1 ≤ m ≤ |U |). If the greedy fails to find any other set, then this means that

Z = (|U | −m− 0)/|U | = (|U | −m)/|U | = 1− m
|U | .

Although we have proved for all cases where |U | ≤ 3 that if an ESC exists then the greedy

algorithm will cover at least d |U |2 e elements holds, it does not hold in the general case. In the general

case, it will cover |U | − m elements, where m = max|Si|. Consider the following counterexample

(Ex. A.2.2).

Example A.2.2 Assume U = {1, 2, 3, 4, 5, 6, 7} and F = {S1, S2, S3, S4}, where

S1 = {1, 4, 7}
S2 = {1, 2, 3}
S3 = {4, 5, 6}
S4 = {7}

An exact set cover C in this example is C = {S2, S3, S4}. However, the greedy algorithm will not

return it. It will select set S1 in its first iteration, since it covers most of the elements of U (3

elements) and then it will terminate, since all the remaining subsets are not pairwise disjoint with S1

(it holds that S1 ∩ Sj 6= ∅, for each j = 2, 3, 4). In this case, the greedy algorithm will cover m = 3

elements, hence Z = 1− 3
7 = 0.57 .

A.2.2 Decomposability and Exact Set Cover

In the following example, we show why a plain set cover would lead to the wrong computation of

the scores of the documents in the final answer Ans(q) of a query q in a best-match retrieval model.

Example A.2.3 Consider a document collection that consists of only one document d, where d =

“barack obama nobel prize”, and that the WSE uses the varied decomposable scoring function of

the Vector Space Model (the one described in Section 3.2 when ignoring Wq) for assigning scores to

the matching documents. The score of a document d w.r.t the query q is given by:

Sim′
cos(d, q) =

∑
t∈t(d)∩t(q) wd,t · wq,t

Wd
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Assume queries qc1=“barack obama” and qc2=“obama nobel prize”.

Let us compute the score of the document d for each of these queries. The vector of the document

d is
−→
d = {1, 1, 1, 1} and the vectors of the queries qc1 and qc2 are−→qc1 = {1, 0, 1, 0} and−→qc2 = {0, 1, 1, 1}

respectively. The score of the document d w.r.t to queries qc1 and qc2 is:

Sim′
cos(d, qc1) =

1 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0√
2

=
2√
2

=
√

2 = 1.41

Sim′
cos(d, qc2) =

1 ∗ 0 + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1√
2

=
3√
2

= 3 ∗
√

2
2

= 2.12

Hence, Ans(qc1) = {(d, 1.41)} and Ans(qc2) = {(d, 2.12)}.
Assume that the query q= “barack obama nobel prize” is submitted to the WSE. Then,

C = {qc1 , qc2} is a set cover of t(q), since t(qc1)
⋃

t(qc2) = t(q). However, C is not an exact set cover,

since t(qc1) ∩ t(qc2) 6= ∅. We now show why the score of the document d derived through the set

cover C is not equal to Sim′
cos(d, q). The vector of the query q is −→q = {1, 1, 1, 1} and the score of

the document d w.r.t to q is computed as:

Sim′
cos(d, q) =

1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1√
2

=
4√
2

= 4
√

2
2

= 2
√

2 = 2.852

Now we compute the score of the documents in Ans(q) using AnsC(q). As we described in

Section 3.4, the answer of q denoted by AnsC(q), is the union of the documents in the answers of

the queries in C, Hence, AnsC(q) = d. The score ScoreC(d, q) of a document d ∈ AnsC(q) is the

sum of the scores that d received in the answers of C. Hence, we have that:

ScoreC(d, q) =
∑

qc∈C

Score(d, qc) = 1.41 + 2.12 = 3.53 6= Sim′
cos(d, q)¦

¦
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