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Abstract

In the first chapters of this thesis we will start by introducing the experimental obser-
vations that motivated the idea that there is a relation between the magnetic moment
and the angular momentum and by the end of the chapter 2, we will have introduced
the equation of motion for one spin. In chapter 3, we will consider the structure of
a spin chain and we will describe the different types of interactions between them.
With these known, we will proceed to the discussion of the dynamics for a spin chain,
and in the end we will have modelled the continuum form of the equation of motion
and also the case when there are dissipative effects, another parameter that we should
consider when we talk about spin chain dynamics.

In chapter 4 we mainly discuss the Landau-Lifshitz equation (later noted as LL
Equation). We make some discussion about the basic ideas of this equation that
origin on the Homotopy Theory. Later on this chapter we present the Landau-Lifshitz
equation , the Laundau-Lifshitz-Gilbert Equation (later noted as LLG equation) and
we solve them analytically in order to obtain the domain wall solution. With this
chapter, the introductory part of the basic concepts and of the equations that will
concern as on the next chapters, has ended.

So with everything that were discussed before, we introduce Skyrmions. We
present the experiment where they were first observed and their configuration. In
the first part of this thesis, we introduced the different types of interaction between
spins, on a spin chain. Here, we are most interested in the Dzyaloshinskii-Moriya
interaction (later referred as DMI) and in which way it affects the configuration of
a magnetic skyrmion. Because, skyrmions are solutions of the LL equation, and the
DMI is an important interaction for the formation of this structure, we discuss the
existence of the DMI term on the LL equation and we present its domain wall solution.

Finally, we proceed with the micromagnetic simulations that were made for this
thesis. We study the dependence of the skyrmion’s diameter on different system
parameters such as the DMI parameter, of the DMI energy, the anisotropy parameter
K, of the anisotropy energy, the exchange parameter A, of the exchange energy, the
external field parameter, of an external magnetic field that is being applied on the
system. At last, we insert a dimensionless parameter on the problem, the parameter
ε that combines the DMI, the A and the K parameters studied before and we observe
how it affects the diameter of the skyrmion. All this observations are being done by
presenting graphs which we will discuss further on.

Περίληψη

Αυτή εργασία αποτελείται από δύο μέρη και έχει ως στόχο την μελέτη του

τρόπου που επηρεάζεται η διάμετρος συγκεκριμένων μαγνητικών δομών, που ονο-

μάζονται skyrmions,από διάφορες παραμέτρους του συστήματος.Στο πρώτο μέρος
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ήδη έχουμε αναφέρει την βασική έννοια του σπιν και θα συνεχίσουμε με την μελέτη

της σχέσης της μαγνητικής και της γωνιακής ροπής, όπως αυτή παρατηρήθηκε α-

πό το Einstein de Hass Effect το 1915. Η κατανόηση αυτής της σχέσης θα μας
βοηθήσει να εισάγουμε, στο δεύτερο κεφάλαιο, την εξίσωση κίνησης για ένα σπιν.

Στο κεφάλαιο 3, θεωρούμε μία αλυσίδα από σπινς και αναλύουμε τις διαφορετικού

τύπου αλληλεπιδράσεις που αναπτύσσονται μεταξύ τους. ΄Υστερα κάνουμε λόγο

για δυναμική της αλυσίδας των σπιν και στο τέλος του κεφαλαίου εισάγουμε την

συνεχή εξίσωση κίνησης, και την εξίσωση κίνησης με dissipative όρους.
Στο κεφάλαιο 4 θα συζητήσουμε την εξίσωση Landau-Lifshitz. Στην αρχή

θα εισάγουμε κάποιες βασικές έννοιες από την Θεωρία Ομοτοπίας. Αργότερα,

θα παρουσιάσουμε την εξίσωση Landau-Lifshitz (ή LL όπως θα εντοπίζεται στο
κείμενο) και την εξίσωση Landau-Lifshitz-Gilbert (ή LLG) και θα τις λύσουμε, με
αναλυτικές μεθόδους, με σκοπό να κατασκευάσουμε λύσεις μαγνητικού τείχους.

Στο δεύτερο μέρος της εργασίας, παρουσιάζουμε τα Skyrmions. Συγκεκριμένα,
θα κάνουμε μία αναφορά στα πειράματα που πραγματοποιήθηκαν και παρατηρήθη-

καν τα Skyrmions καθώς και θα αναλύσουμε τους διαφορετικούς σχηματισμούς
που αυτές οι δομές μπορεί να έχουν. ΄Επειτα, το ενδιαφέρον μας θα επικεντρωθεί

στην αλληλεπίδραση Dzyalozinskii- Moriya (ή όπως θα συμβολίζουμε στη συ-
νέχεια DMI) και στο πώς αυτός ο τύπος αλληλεπίδρασης επηρεάζει την μορφή των
Skyrmions. Δεδομένου ότι τα Skyrmions είναι λύσεις της εξίσωσης LL και ότι
η ύπαρξη της αλληλεπίδρασης DMI είναι σημαντική για την διαμόρφωσή τους, θα
χρειαστεί να μελετήσουμε την εξίσωση LL με τον όρο DMI και θα αποδείξουμε,
με αναλυτικές μεθόδους, την ύπαρξη μαγνητικού τείχους.

Στη συνέχεια, θα παρουσιάσουμε τα δεδομένα που εξήχθησαν από τις μαγνη-

τικές προσομοιώσεις που πραγματοποιήθηκαν, για τις ανάγκες αυτής της εργα-

σίας.Συγκεκριμένα, σε αυτές θα μελετηθεί η εξάρτηση της διαμέτρου των skyrmions
από διάφορες παραμέτρους του συστήματος, όπως οι παράμετροι DMI, Α της ε-
νέργειας ανταλλαγής, Κ της ενέργειας ανισοτροπίας, την παράμετρο εξωτερικού

πεδίου, όταν ένα εξωτερικό μαγνητικό πεδίο εφαρμόζεται στο σύστημα. Τέλος,

θα πραγματοποιήσουμε αδιαστατοποίηση στο σύστημα που επιλύεται από τις προ-

σομοιώσιες και θα εισάγουμε μία νέα παράμετρο, την e, η οποία συνδυάζει τις
παραμέτρους DMI,Α και Κ ώστε να μελετήσουμε τον τρόπο που η εισαγωγή αυ-
τής της νέας παραμέτρου επηρεάζει την διάμετρο των skyrmions.Τα συμπεράσματα
που εξάγουμε από τις προσομοιώσεις κατά το δεύτερο μέρος της εργασίας διατυ-

πώνονται με την βοήθεια διαγραμμάτων.

1 Introduction

In classical physics, a rotating object posseses a property known as angular momen-
tum. Angular momentum is a form of inertia, reflecting the objects size, shape, mass
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and rotational velocity. It is represented as a vector L pointing along the axis of
rotation.

Electrons have a ”built in” angular momentum, called spin. Spin manifests itself,
for example, in how a charged particle, such as an electron interacts with a magnetic
field. The concept of spin was introduced in 1925 by Ralph Kronig, and independently
by George Uhlenbeck and Samuel Goudsmit.

The total angular momentum J is the sum of the spin and the orbital angular
momentum, J = L + S. Conservation of angular momentum applies in general to L
and may not apply separately to L or S. That means that the spin-orbit interaction
allows angular momentum to transfer between L and S, while J remains constant.

Figure 1: (Left) ”Spin” angular momentum S is really orbital angular momentum of
the object at every point. (Right) Extrinsic orbital angular momentum L about an
axis. (Bottom) Momentum p and its radial position r from the axis. The total angular
momentum (spin plus orbital) is J. For a quantum particle the interpretations are
different; particle spin does not have the above interpretation.

Atomic and subatomic particles posses a corresponding property known as spin or
spin angular momentum. Protons, neutrons, whole nucleus and electrons all possess
spin and are often represented as tiny spinning balls (Figure 1). Although inaccurate,
this is not a bad way to think about spin, as long as we don’t take it to far. Several
key differences should be recognized.

• The particle is not actually spinning. The reason for that is that, in order for
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the spin to equal Sz = h̄
2
, the velocity of the electron should be much bigger

then the velocity of the light. Indeed,

Sz = Iω ≈ mα2ω ≈ mu =
h̄

2
≈ h̄⇒ u ≈ h̄

mα
≈ 1017 cm

sec
≈ 106c (1)

where α ≈ 10−17 cm the experimental upper bound of the radius of the electron.

• Spin, like mass, is a fundamental property of nature and does not arise from
more basic mechanisms.

• Spin interacts with electromagnetic fields whereas classical angular momentum
L interacts with gravitational fields.

• The magnitude of a spin is quantised, meaning that it can only take on a limited
set of discrete values. Unlike macroscopic angular momentum, spin can only be
measured discrete integer or half integer units (0, 1

2
, 1, 3

2
....). Protons, neutrons

and electrons all have spin equal to 1
2
. Nuclear spin is traditionally denoted by

the letter I, and electron denoted by the letter S. Electron spin has only one
value (1

2
), while proton spin has values ranging from I = 0 to I = 8. Particles

with half-integer spin like, protons and electrons, are called fermions. Particles
with integer spin are called bosons.

In the subatomic world governed by quantum mechanics, nuclei are better though
as ”fuzzy” ”probability waves” rather than ”solid objects”. Because of the Heisenberg
Uncertainty Principle, we cannot know the exact direction of a particles spin at any
point in time. However, we can measure and know with certainty some limited
properties about the spin, such as the component of its angular momentum along a
single direction. When a quantum property is potentially observable or measurable,
it is known as an eigenstate or spin state.

The number of eigenstates or spin states for a nuclei with spin I is given by

Number of nuclear spin states = 2I + 1

Hence for the 1H nucleus with only one electron and I = 1
2
, there are 2(1

2
) + 1 = 2

possible spin states. These states are commonly denoted by | + 1
2
> and | − 1

2
>

often reffered to ”spin up” and ”spin down”, respectively. In the absence of the
magnetic field B, the two spin states for the hydrogen are not observable and said to
be degenerate. If an external magnetic field B0 is applied, however, a quantum field
interaction occurs, allowing the two separable states to be measured and, as a result,
observed.
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2 Equation of motion for a spin

2.1 The magnetic moment

Now that we have made an introduction about what is a spin, we shall proceed, in
this section, by constructing the equation of motion and studying the dynamics of
one spin.

A key property determining the motion of a spin in a magnetic field is its magnetic
moment. Once this is known, the motion of the magnetic moment and energy of the
moment can be calculated. Actually, the spin of a particle with a charge and a mass
leads to a magnetic moment. An intuitive way to understand the magnetic moment
is to imagine a current loop lying in a plane. If the loop has a current I around an
elementary or vanishingly small oriented loop of area dS, then the magnetic moment
equals:

dµ = IdS (2)

and the magnetic moment has the units of Am2. The length of the vector dS is equal
to the area of the loop. The direction of the vector is normal to the loop and in a
sense determined by the direction of current around the elementary loop.

Figure 2: an elementary magnetic moment dµ = Ida, due to an elementary current
loop

This object is also equivalent to a magnetic dipole, so called because it behaves
analogously to an electric dipole (two electric charges, one positive and one negative,
separated by a small distance). It is therefore possible to imagine a magnetic dipole
as an object which consists of two magnetic monopoles of opposite magnetic charge
separated by a small distance in the same direction as the vector dS. The magnetic
moment dµ points normal to the plane of the loop of the current and therefore can be
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either associated with the charge which is going around the loop. For a loop of finite
size, we can calculate a magnetic moment µ by summing up the magnetic moments of
lots of equal infinitesimal current loops distributed throughout the area of the loop.

Figure 3: a magnetic moment µ =
∫
dµ = I

∫
dS (now viewed from above the plane

of the current loop) associated with a loop of current I can be considered by summing
up the magnetic moments of the lots of infinitesimal current loops

All the currents from neighbouring infinitesimal loops cancel, leaving only a cur-
rent running around the perimeter of the loop. Hence,

µ =
∫
dµ = I

∫
dS ⇒

⇒ µ = IAn̂

A current loop occurs because of the motion of one or more electrical charges.
All the charges that we will consider are associated with particles that have mass.
Therefore there is also orbital motion of mass as well as charge in all the current loops
and hence, the magnetic moment is always connected with the angular moment.

We have µ = IA, where I is the current defined by I = q
t

and A is the area enclosed
by the current, defined by A = πr2 and q the charge. So µ = q

t
πr2. If t = 2πr

u
is the

time of one rotation and m the mass of the particle, we obtain:

µ =
qu

2πr
πr2 ⇒ µ =

qu

2πrm
mπr2 (3)

But the angular momentum is L = r× p or L = mu · r. So

µ = q
2m
L

We set γ = q
2m

, the gyromagnetic ratio of the particle, and we have µ = γL.
Now the question is why this also holds true for the vectors.The more general case

is that of a volume current J in some finite region of space. In this case, the general
formula for the magnetic dipole moment of the configuration is

µ =
1

2

∫
r× Jd3r (4)
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If we further assume that the current density is due to a number of particles with
number density n, charge q, velocity v and mass m, then we have current density
J = nqv. So, from (4) we obtain:

µ = 1
2

∫
r× nqvd3r ⇒

⇒ µ = q
2m

∫
r× nmvd3r

But vρ = nmv, where ρ the mass density, thus the above integral can be written as:

µ = q
2m

∫
ρr× vd3r ⇒

⇒ µ = q
2m

L

2.2 Angular momentum and gyromagnetic ratio

In atoms, the magnetic moment µ associated with an orbiting electron lies along the
same direction as the angular momentum L of the electron and is proportional to it.

Thus we write
µ = γL (5)

where γ is a constant known as gyromagnetic ratio. The gyromagnetic ratio of a
particle or system is the ratio of its magnetic moment to its angular momentum. Its
S.I. unit is the radian per second per tesla (rad · sec−1 · T−1). The gyromagnetic
ratio can be negative or positive. The sign of the gyromagnetic ratio determines
the sense of precession, which we’ll discuss later on this chapter. In Figure 4, we
observe that while the magnetic moment (green line) shown there, are oriented the
same for both cases of γ,the spin angular momentum (black line) are in opposite
directions. Spin and magnetic moment are oriented in the same direction for γ > 0.
This relation between the magnetic moment and the angular moment is demonstrated
by Einstein de Hass effect , discovered in 1915, in which a ferromagnetic rod is sus-
pended vertically, along its axis, by a thin fibre (Figure 5). It is initially in rest and
unmagnetized, and is subsequently magnetized along its length by the application of
a vertical magnetic field. This vertical magnetization is due to the alignment of the
atomic magnetic moments and corresponds to net angular momentum. To conserve
total angular momentum, the rod begins turning about its axis in the opposite sense.
If the angular momentum of the rod is measured, the angular momentum associated
with the atomic magnetic moments, and hence the gyromagnetic ratio, can be de-
duced. The Einstein de Hass effect is a rotation induced by magnetization, but there
is also the reversed effect, known as Barnett Effect in which magnetization is induced
by rotation. Both phenomena demonstrate the magnetic moments associated with
angular momentum.
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Figure 4: Gyromagnetic ratio and preccesion

Figure 5: The Einstein-de Haas effect. A ferromagnetic rod is suspended from a thin
fibre. A coil is used to provide a magnetic field which magnetizes the ferromagnet
and produces a rotation. The experiment can be done resonantly, by periodically
reserving the current in the coil, and hence the magnetization in the ferromagnet,
and observing the angular response as a function of frequency.

15



Figure 6: Hydrogen Atom

Before we proceed further, we shall perform a quick calculation to estimate the
size of atomic magnetic moments and thus deduce the size of gyromagnetic ratio
γ. Let us consider an electron performing a circular orbit around the nucleus of a
hydrogen atom, as shown in the figure. The current I around the atom is I = − e

τ
,

where τ = 2πr
v

, is the orbital period, v = |v| is the speed and r is the radius of the
circular orbit. The magnitude of the angular momentum µ of the electron, mevr
must equal h̄ in the ground state so that the magnetic moment of the electron is

µ = πr2I⇒ µ =
eh̄

2me

≡ −µB (6)

where µB is the Bohr magneton, defined by

µB = eh̄
2me

This is a convenient unit for describing the size of atomic magnetic moments and takes
the value 9.274x1024 Am2. Note that sign of the magnetic moment in (4) is negative.
Because of the negative charge of the electron, its magnetic moment is antiparallel to
its angular momentum. The gyromagnetic ratio for the electron is γ = − e

2me
. The

Larmor frequency is then ωL = |γ|B = eB
2me

[2].
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2.3 Equation of motion

Now we can relate the time derivative of the angular momentum L to the torque,
in order to derive the equation of motion. In the presence of a magnetic field, the
torque is the cross product of the magnetic moment µ and the magnetic field that
we apply, and we symbolize by B. Because the angular momentum is proportional
to the magnetic moment, we can write down a first order differential equation of the
magnetic moment which describes the motion of one spin

dµ

dt
= γµ×B (7)

It’s easy to see how we conclude this equation. We proved on the previous section
that the magnetic moment µ and the angular momentum L are propotional.

In this point, let us define the torque. For this we need to talk about the precession
[2].

Again, we consider a magnetic moment µ in a magnetic field B as shown in Figure
7. The energy of the magnetic moment is given by

E = −µ ·B

so the energy is minimized when the magnetic moment is aligned with the magnetic
field. We define a torque with magnitude

τ =
∂E

∂ψ
= µB sinψ = µ×B (8)

The direction of the torque should be perpendicular to both µ (as its magnitude
should remain constant) and B as the energy, and thus the angle ψ between them,
should be conserved. The sign of the energy is chosen so as the force derived from
the energy be F = −∇E. Also, dL

dt
=
∑
τ . So, we obtain dL

dt
= τ = µ×B.

Before we proceed further, we have to notice something about the magnetic mo-
ment µ. From (7) we understand that the change in µ over time is perpendicular to
both µ and B. Rather than turning µ towards B, the magnetic field causes the direc-
tion of µ to precess around B. This equation also implies that |µ| is time-independent.
Let us imagine a top spinning with its axis inclined to the vertical. The weight of
the top, acting downwards, exerts a (horizontal) torque on the top. If it were not
spinning it would just fall over. But because it is spinning, it has angular momentum
parallel to its spinning axis, and the torque causes the axis of the spinning top to
move parallel to the torque, in a horizontal plane. The spinning top precesses.
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Figure 7: A magnetic moment µ in a magnetic field B has energy equal to
−µ ·B = −µB cos θ

We will solve the equation of motion for the case B = (0, 0, B) [2]. We have the
system of differential equations

dµx
dt

= γµyB

dµy
dt

= −γµxB

dµz
dt

= 0

(9)

From the first two equations of (9) we obtain

µ̈x + γ2B2µx = 0

with solution
µx = c1 cos γBt+ c2 sin γBt

for c1 and c2 arbitrary constant values. So from the second equation, we obtain the
solution

µy = c3 sin γBt+ c4 cos γBt

for c3 and c4 arbitrary constant values. If we assume that µx(0) = 0 = µy(0) we take

µx = c1 cos γBt

and
µy = c3 sin γBt

Now, a magnetic moment µ in a magnetic field B precesses around the magnetic
field at the Larmor precession frequency,γB. The magnetic field B lies among the
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z-axis and the magnetic moment is initially in the xz-plane at an angle θ to B. The
magnetic moment precesses around a cone at semi-angle θ. Therefore, we take

µz(t) = |µ| cos θ

where |µ| =
√
µ2
x + µ2

y + µ2
z. Finally we have the solution for the equation of motion

µx = |µ| sin θ cos γBt

µy = |µ| sin θ sin γBt

µz = |µ| cos θ

(10)

Now if we assume an atom with a magnetic moment (due to the spin of an electron)
S = (S1, S2, S3) in an external field h = (0, 0, h). The equation of motion is

dS

dt
= S × h (11)

We will prove that S ·S = S2
1 + S2

2 + S2
3 = const., that is, the equation preserves the

length |S|. Indeed

d

dt
(S · S) = S · dS

dt
+
dS

dt
· S = S · (S × h) + (S × h) · S = 0.

3 A spin chain

In this section we will discuss the magnetic interaction which can be important in
allowing the magnetic moments in a solid to communicate with each other and poten-
tially to produce long range order. There are different types of magnetic interaction
such as direct exchange, indirect exchange in ionic solids (superexchange), indirect
exchange in metals, double exchange and anisotropic exchange interaction. In this
section we will discuss the exchange and the anisotropy interaction.

3.1 Exchange Interaction

Exchange Interactions lie at the heart of the phenomenon of long range magnetic
order. The exchange effect is subtle and not a little mysterious, since it seems sur-
prising that one has to go to the bother of thinking about exchange operators and
identical particles when all one is dealing with is a bar magnet and a pile of iron fil-
ings. Exchange interactions are nothing more than electrostatic interactions, arising
because charges of the same sign cost energy when they are closer together and save
energy when they are apart.
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We consider a simple model with just two electrons which have spatial coordinates
r1 and r2, respectively. The wave function for the joint state can be written as a
product of single electron states, so that if the first electron is in state ψα(r1) and
the second electron is in state ψβ(r2), then the joint wave function in ψα(r1)ψβ(r2).
However, this product state does not obey exchange symmetry, since if we exchange
the two electrons, we get ψα(r2)ψβ(r1), which is not a multiple of what we started
with. Therefore, the only states which we are allowed to make are symmetrized or
antisymmetrized product states which behave properly under the operation of particle
exchange.

For electrons, the overall wave function must be antisymmetric so the spin part
of the wave function must either be an antisymmetric singlet state xS(S = 0), in the
case of a symmetric spatial state and a symmetric triplet state xT (S = 1), in the case
of an antisymmetric spatial state. Therefore, we can write the wave function for the
singlet case ΨS and the triplet case ΨT as

ΨS =
1√
2

[ψα(r1)ψβ(r2) + ψα(r2)ψβ(r1)]

ΨT =
1√
2

[ψα(r1)ψβ(r2)− ψα(r2)ψβ(r1)]
(12)

The energies of the two possible states are

ES =
∫

Ψ∗SHΨ̂Sdr1dr2

ET =
∫

Ψ∗THΨ̂Tdr1dr2

with the assumption that the spin parts of the wave function ΨS and ΨT are normal-
ized. The difference between the two energies is

ES − ET = 2

∫
Ψ∗α(r1)ĤΨα(r2)Ψ∗β(r2)Ψβ(r1)dr1dr2

Hence the effective Hamiltonian describing the system is

Ĥ =
1

4
(ES + 3ET )− (ES − ET )S1 · S2.

The exchange constant or exchange integral J is defined as

J =
ES − ET

2
=

∫
Ψ∗α(r1)ĤΨα(r2)Ψ∗β(r2)Ψβ(r1)dr1dr2

and hence we may omit the constant term in the Hamiltonian and write the spin-
dependent term as

Ĥ = −2JS1 · S2.

We consider the following cases.
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• If J > 0 then ES > ET and the triplet state S = 1 is favoured.

• If J < 0 then ES < ET and the singlet state S = 0 is favoured.

It was recognized in the early days of quantum mechanics that interactions such
as in the equations before, probably apply between all neighbouring atoms. This
motivates the Hamiltonian of the Heisenberg model

Ĥ = −
∑
ij

JijSi · Sj (13)

where Jij is the constant between the ith and the jth spins. The factor of 2 is omitted
because the summation includes each pair of spins twice. Another way of writing the
above equation is the following

Ĥ = 2
∑

i>j JijSi · Sj

where the i > j avoids the ”double counting” and hence the factor of two returns.
Often, it is a good approximation to take Jij to be equal to a constant J for nearest
neighbours and Eq. (13) can be written in the form

Eex = −J
∑
i

Si · Si+1 (14)

and to be zero otherwise. If the two electrons are on the same atom the exchange inte-
gral is usually positive. This stabilizes the triplet state, and ensures an antisymmetric
spatial state which minimizes the Coulomb repulsion between the two electrons by
keeping them apart. This is consistent with Hund’s first rule.

When the electrons are on neighbouring atoms, the situation is very different.
Any joint state will be a combination of a state centred on one atom and a state
centred on the other atom. It is worth remembering that the energy of a particle in a
one dimensional box of length L is proportional to L−2. This is a kinetic energy and
hence demonstrates that there is a large kinetic energy associated with being squized
into a small box. The electrons therefore can save kinetic energy by forming bonds
because this allows them to wander around both atoms rather than just one. The
correct states to consider now are not atomic orbitals but molecular orbitals. These
can be bonding or spatially symmetric, or andibonding-spatially antisymmetric, with
the andibonding orbitals more energetically costly. This is because the antibomding
orbital has a greater curvature and hence a larger kinetic energy. This favours singlet
(antisymmetric) states and the exchange integral, therefore, is expected to be negative
[2].
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3.2 Anisotropic Exchange Interaction

Let us start by discussing an interaction between electrons, this is the Indirect Ex-
change in ionic Solids or otherwise Superexchange, or even Kramers-Anderson Su-
perexchange.

Superexchange or Kramers-Anderson Superexchange is the strong antiferromag-
netic coupling between two next to nearest neighbour cations through a non magnetic
anion. It differs from direct exchange, where there is a coupling between nearest
neighbour cations not involving an intermediary anion. Superexchange is the result
of the electrons having come from the same donor atom and being coupled with the
receiving ions’ spins. If the two next to nearest neighbour positive ions are connected
at 90 degrees to the bridging non magnetic anion, then the interaction can be a
ferromagnetic interaction.

In the Anisotropic Exchange Interaction it is the spin orbit interaction that
plays the role of the non magnetic anion, in the Superexchange interaction. Fur-
thermore, in this type of interaction, the excited state is not connected with the non
magnetic anion but it is produced by the spin orbit interaction in one of the magnetic
ions. There is then an exchange interaction between the excited state of one anion
and the ground state of the other ion. This is what we call as anisotropic exchange
interaction or Dzyaloshinsky-Moriya interaction (DM).

When acting between two spins S1 and S2 it leads to a term in the Hamiltonian:

ĤDM = −D · (S1 × S2) (15)

The vector D vanishes when the crystal field has an inversion symmetry with
respect to the center between the two magnetic ions. However, in general D may not
vanish and then will lie parallel or perpendicular to the line connecting the two spins,
depending on the symmetry. The form of the interaction is such that it tries to force
S1 and S2 to be at right angles in a plane perpendicular to the vector D in such an
orientation as to ensure that the energy is negative. Its effect is therefore very often
to slightly rotate the spins by a small angle. It commonly occurs in antiferromagnets
and then in a small ferromagnetic component of the moments which is produced
perpendicular to the spin axis of the antiferromagnet. The effect is known as weak
ferromagnetism.

It’s interesting to compare the Hamiltonian of the Heisenberg model (13) with
equation (15) that we derive above. Hence, let’s consider the Hamiltonian of the
symmetric Heisenberg exchange Interaction (13) which contains the dot product of the
two spins S1 and S2. The energy is lowest if they have a collinear orientation (parallel
for ferromagnetic case, antiparallel for the antiferromagnetic case with the sign of J
reversed). Any deviation from the parallel (antiparallel, respectively) configuration
is associated with an energy ”penalty”. So, if we suppose S1 is fixed and S2 has an
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angle with S1 we will see that the energy penalty remains the same, regardless if
the deviation from collinearity is to this side or the other, hence, the interaction is
symmetric. On the other hand, we see the DM interaction. The Hamiltonian (15)
contains the cross product S1 × S1 which is a vector perpendicular to S1 and S2,
times the DM vector D. This tells us that energy can be gained by introducing an
angle between S1 and S2. However, this time, the deviation from collinearity has to
be in the right direction while the opposite direction is energetically costly,thus one
particular sense of spin rotation is favoured. So, as a result, DM interaction is an
asymmetric interaction [2].

Now, we are ready to present the equation of motion for a spin chain.

3.3 Magnetocrystalline anisotropy

Due to the symmetries of the crystal structure of materials, the magnetic energy may
depend on the orientation of the spin vectors in space. We model this effect by an
additional energy term that is called the magnetocrystalline anisotropy (or simply,
the anisotropy). For example,

Ean = K
∑
i

[
1− (Si,3)2

]
(16)

where Si,3 is the third spin components at site i. This is called a single-ion anisotropy
term because it depends only on the spin at each single site. It is an anisotropy term
of the easy-axis type, that is, the third spin axis is energetically favoured [2].

3.4 Dynamics for a spin chain

The magnetic energy of the spin chain is the sum of the components that we show in
the previous sections

E = Eex + EDM + Ean. (17)

Let us assume a model with the exchange and anisotropy energy only. For the
exchange energy, we obtain a minimum if all spins are aligned, Si = S0 where S0 =
±(0, 0, s) is a constant vector. Indeed,if we assume that Si ‖ Si+1 then, from the
definition of the dot product we get: Si · Si+1 = |Si| · |Si+1| cos θ, where θ is the
angle between Si and Si+1, and we have that θ = 0. Therefore, we have that
Si ·Si+1 = |Si|·|Si+1| and if we take the sum, for all i, we have that: J

∑
i |Si|·|Si+1|

is the maximum and −J
∑

i |Si| · |Si+1| is the minimum Eex that we can obtain. The
anisotropy energy has a minimum when S0 = ±(0, 0, s). It is not difficult to prove
why this is right. We want the vector to preserve the length, i.e |S0| = s. Specifically,
we want the Si,z, which is the zth component of the vector S0. A possible choice could
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be (s,0,0), a second one could be the vector (0,s,0) and a final one (0,0,s). For the first
two choices, we would get that Ean = 0. But, could that be lower than zero? We see
that from the final choice we get Ean = −κs2 < 0. But we haven’t excluded all the
possibilities for the vector (0,0,s). This is because, a vector is, also, determined by its
direction. As a result, we obtain two possible choices:(0,0,s) and (0,0,-s). Eventually,
for the choice (0,0,-s), we get a minimum value for the Eex. We conclude that the
total energy has a minimum for the two uniform configurations Si = ±(0, 0, s).

The equations of motion for the spins have the following form

Ṡk(t) = Sk ×
∂E

∂Sk
, k = 1, 2, ...., N − 1. (18)

For the energy in Eq. (17), we calculate

∂Eex

∂ ~Si
=

∂

∂ ~Si
(−J

∑
i

~Si · ~Si+1) = −J(Sk+1 + Sk−1)

and
∂Ean

∂ ~Si
=

∂

∂ ~Si
(−K

∑
i

(si,z)
2) = −K

∑
i

2(si,z) ·
∂si,z

∂ ~Si
= −2Ksi,z.

Finally, we substitute the results in the equation of motion (18) and we obtain

∂E

∂ ~Si
= −[J(Sk+1 + Sk1) + 2Ksi,z]

and
Ṡk(t) = JSk × (Sk+1 + Sk−1), k = 1, 2, ...., N − 1. (19)

Let us prove that the uniform configuration ~Si = ±(0, 0, s) satisfies the equation
of motion. If we substitute the vector ±(0, 0, s) in ∂E

∂ ~Si
= −(J(Sk+1 + Sk1) + 2Ksi,z),

we obtain ∂E
∂Si

= −(2Js+ 2Ks). So if we compute the cross product ~Si × ∂E

∂ ~Si
we end

up with
d~Si
dt

= 0.

The energy is conserved under the equation of motion

3.5 Continuum form of the equation of motion

We will write the continuum form of the equation of motion for a spin chain, if we

have the approximation
~Si+1−~Si−1

α2 ≈ ∂2~S
∂x2

, where α is defined as the distance between
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neighbours spins, and we define as x = iα, the position of the ith spin and with ~S(x)

we define ~Si = ~S(xi) the continuum magnetic field.
We know that dSi

dt
= Si × J(Si−1 + Si+1). If we assume that α is small, and we

write the Taylor expansion, for x = iα, we obtain, for Si = S(xi, t).

~Si+1(t) + ~Si−1(t) = 2 ~S(x, t) + α2∂
2 ~S(x, t)

∂x2
+ . . .

where the rest of the terms are of higher order and they are neglected. We obtain

~Si+1(t) + ~Si−1(t)

2α2
=

~S(x, t)

α2
+

1

2

∂2 ~S(x, t)

∂x2
.

Taking the limit α→ 0, we get

d~S

dt
= ~S × J ~S + ~S × ∂2~S

∂x2
⇒ d~S

dt
= ~S × ∂2~S

∂x2
.

3.6 Dissipative effects

The equation

Ṡk = Sk × Fk +
α

s
Sk × Ṡk, F =

∂E

∂Sk
(20)

is dissipative and α is a dissipation parameter.
Let us write explicitly the time derivative for every spin

Ṡk =
α

s

∑
k

Sk × (Fk + Ṡk) (21)

because from the properties of the cross product we have that:

A× (B + C) = A×B + A×C

we can prove that the energy is decreasing under the equation of motion.

∂E

∂t
=

∂E

∂Sk

∂Sk
∂t

= −Fk(
∂Sk
∂t

) = −Fk(Sk × Fk +
α

s
Sk × Ṡk) =

= −Fk(Sk × Fk)− Fk(
α

s
Sk × Ṡk) = −α

s
Fk(Sk × Ṡk) ≤ 0
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4 The Landau-Lifshitz equation

4.1 Solitons: An introduction

Let us continue by introducing a new term that is going to be very useful, especially
on the second part of the thesis. We will make a quick introduction in particles named
Solitons [4].

In the 1960s and early 1970s a novel approach to quantum field theory developed
and became popular. Physicists and mathematicians began to seriously study the
classical field equations as candidates for particles of the theory. These particles had
not been recognized before, they are different from the elementary particles such as
electrons and protons that arise from the quantization of the wave-like excitations of
the fields. Their properties are largely determines by the classical equations, althought
a systematic treatment of quantum corrections is possible.

A characteristic feature of the new, particle-like solutions is their topological struc-
ture, which differs from the vacuum. If one supposes the quantum excitations about
the vacuum are associated with smooth deformations of the field, then such excita-
tions do not change the topology. So the usual elementary particles of quantum field
theory, such as the photon, have no topological structure. The new particles owe their
stability to their topological distinctivness. Although they are often of large energy,
they can not simply decay into a number of elementary particles.

In many cases, the topological character of the field is captured by a single integer
N, called the topological charge. This is usually a topological degree, or generalized
winding charge. The topological charge N can be identified as the net number of the
new type of particle, with the energy increasing as |N | increases. The basic particle
has N = 1. The minimal energy field confihuration with N = 1 is a classically stable
solution, as it can not decay into a topologically trivial field. The energy density is
smooth, and concentraded in some finite region of space. Such a field configuration is
called a topological soliton or just Soliton. The ending ”-on” indicates the particle-
like nature of the solution. There is usually a reflection symmetry reversing the sign
of N, and hence there is an antisoliton with N = −1. Soliton and anti-soliton pairs
can annihilate or be pair-produced. Field configurations with N > 1 are interpreted
as multi-soliton state. Sometimes it is energetically favourable for these to decay into
N well seperated charge 1 solitons. Alternatively the can relax to a classical bound
state of N solitons.

The interesting part is that solitons are classified, in field theory. But in order
to understan this classification, and espacially to understand their stability, it is
important to remember some concepts from topology. There are two basic techniques
for classifying solitons in theories with scalar fields. The first is homotopy theory, and
the second is topological degree theory, which can sometimes be used to calculate a
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homotopy class. Topological degree is a special case of homology ideas. In gauge
theory, the Chern numbers classify solitons.

4.2 Homotopy Theory

Let X and Y be two manifolds without boundary, and consider the continuous maps
between them, ψ : X 7→ Y . Often it is helpful to identify base points x0 ∈ X and
y0 ∈ Y and require Ψ(x0) = y0. Then Ψ is a based map. A based map Ψ0 : X 7→ Y is
said to be homotopic to another such map Ψ1 if Ψ0 can be continuously deformed into
Ψ1. Precisly, Ψ0 is homotopic to Ψ1 if there is a continuous map 	 : X × [0, 1] 7→ Y ,
with ”time” τ parametrizing the interval [0, 1], such that 	|τ=0 = Ψ0 and 	|τ=1 = Ψ1

and 	(§′, τ) = Ψ0 for all τ .
”Homotopic” is an equivalence relation because:

• it is symmetric: Ψ0 homotopic to Ψ1 implies that Ψ1 is homotopic to Ψ0, because
the time flow can be reversed.

• it is transitive: Ψ0 homotopic to Ψ1 and Ψ1 homotopic to Ψ2 implies that Ψ0

homotopic to Ψ2, because time intervals can be adjoined and then rescaled.

• it is reflexive: obviously, Ψ0 is homotopic to itself.

Thus the maps Psi can be classified into homotopy classes. One class is the constant
class, consisting of the maps homotopic to the constant map Ψ for which Ψx = y0 for
all x.

One can say more about homotopy classes if X is a sphere. The n-sphere Sn is
the set of points in Rn+1 at unit distance from the origin. We shall be especially
interested in the cases S1 the circle, which is also the manifold of the group U(1),
S2 the usual sphere, adn S3 the unit sphere in four dimensions, which is also the
manifold of the group SU(2).

The set of homotopy classes of based maps Ψ : Sn 7→ Y is denoted by πn(Y ). We
take as base points the North pole p in Sn, that is the point (0, 0, ....., 0, 1) ∈ Rn+1,
and some chosedn point y0 ∈ Y . (In R2 the usual choise of a base point is (1,0)). For
n ≥ 1, the set πn(Y ) forms a group, the n-th homotopy group of Y. The constraction,
for π1(Y ), is schematically as in figure below.

A map S1 7→ Y , and also its image in Y, is called a loop. Ψ0andΨ1 are two based
loops in Y. Their composition Ψ0 ·Ψ1 is the loop Ψ obtained by following Ψ0 by Ψ1.
The composition is associative,

Ψ0 · (Ψ1 ·Ψ2) = (Ψ0 ·Ψ1) ·Ψ2 (22)
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Figure 8: Sketch illustrating the composition of two maps involved in the construc-
tion of π1(Y )

and each of these is the loop Ψ0 followed by Ψ1 followed by Ψ2. The class of the
constant map S1 7→ y0 is the identity element of the group π1(Y ). When composed
with another map Ψ, the class of Ψ is unchanged. The inverse of Ψ is Ψ traversed
in the opposite direction, which composes with Ψ to give a loop in the constant
class.Note that π1 is generally non-avelian, since the composition of loops Ψ0 · Ψ1 is
not necessarily homotopic to Ψ1 ·Ψ0. π1 is known as the fundamental group of Y.

There are a lot more that can be discussed about this type of group but we are
not going to talk about everything here.

In general, the conclusion is that homotopy theory can be applied directly to a
scalar field theory of the type governed by the Lagrangian L = 1

2

∫
X

(∂0φl∂0φmH
(lm)−

hij∂iφl∂jφmH
lm)
√
dethddx where φ : R ×X 7→ Y and locally the field is represented

by φ(t, x) = (φ1(t, x), ..., φn(t, x)), (φ1, .., φn) are coordinates on Y, and Hlm(φ1, .., φn)
a metric to define the Lagrangian above.

If the field (strongly) satisfies the dynamical field equation then it is continuous in
space and time. The homotopy class is a topological, conserved quantity. Homotopy
theory can also be applied to field theories defined in Rd, but here the boundary
conditions play a crucial role [4].

4.3 Topological number

Topological degree [4] is a more limited, but also more refined tool than homotopy
theory, and it allows the calculation of the homotopy class of a map in certain circum-
stances. It is useful because it occurs in various ways in field theories with solitons.
Often, the topological aspect of a soliton is entirely captured by the degree of a map
directly related to the soliton field. However, the more general homotopy theory ideas
are in the background, and can be brought into action where necessary.
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The topological degree is defined for a map Ψ between two closed manifolds of the
same dimension, Ψ : X 7→ Y . Let dim X=dim Y=d. Both X and Y must be oriented,
and the map should be differentiable everywhere, with continuous derivatives. To
avoid trivial difficulties, we suppose X is connected. We may as well suppose that
Y is also connected since the image of X will always lie in one of the connected
components of Y.

We need next to suppose that a normalized volume form Ω is defined on Y .
Locally, this maps an oriented frame of tangent vectors at each point of Y to the
reals, and preferably the positive reals. If Y is a Riemannian manifold, the Hodge
dual of a positive function on Y is such a volume form. The normalization condition
is ∫

Y

Ω = 1 (23)

Now consider Ψ∗(Ω), the pull-back of Ω to X using the map Ψ.In terms of local
coordinates, if Ω = β(y)dy1 ∧ dy2 ∧ ∧ dyd, and Ψ is represented by functions of y(x),
then

Ψ∗(Ω) = β(y(x))
∂ψ1

∂xj
dxj∧∂ψ

2

∂xk
dxk∧....∧∂ψ

d

∂xl
dxl = β(y(x))det(

∂ψi

∂xj
)dx1∧dx2∧....∧dxd

(24)
Now define

degΨ =

∫
X

Ψ∗(Ω) (25)

This integral occurs naturally in various field theories. degΨ is called the topological
degree of the map Ψ, and is an integer. The topological degree is a homotopy invariant
of Ψ , simply because an integer can not change under a continuous deformation. It is
also independent of the choice of Ω, because the difference of two normalized volume
forms on Y is a d-form whose integral is zero, and hence an exact form. The pull-
back of the difference is therefore exact on X, and integrates to zero. For example,
for a map Ψ : S1 7→ S1 the degree is equal to the winding number. This is verified
by choosing the volume form 1

2π
dθ on S1, and noting that for the map given by the

function f(θ) (25) reduces to

degΨ =
1

2π

∫ 2π

0

df

dθ
dθ =

1

2π
(f(2π)− f(0)) = k (26)

We will not work specifically on this, but it is important to know that these
basic concepts that were discussed above and more can help as investigate whether a
particular field theory has a required topological structure for topological solitons to
exist.
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4.4 The Landau-Lifshitz Equation

Now we are ready to make a breef introduction on the Landau-Lifshitz (LL) Equation
[3] and discuss those properties of very simple quantum magnetic systems which are
within the scope of the macroscopic theory of magnetic solitons.

The principal assumption of the macroscopic theory of ferromagnetism is that the
state of a magnetic crystal is unambiguously describable by the magnetization vector
M, and thus the dynamics kinetics of a ferromagnet is dictated by variations in its
magnetization.

Static and dynamical properties of the magnetization M (x, t) are described by
the Landau-Lifshitz equation

∂M

∂t
= −γM × F (27)

The effective magnetic field F is equal to the variational derivative of the magnetic
crystal energy with respect to the vector M ,

F = − δE

δM
(28)

In the equation (27) we noticed the term

M × F = 0 (29)

where F is the effective field, as we defined in (28). This field is made up from four
parts

• The externally applied magnetic field.

• The magnetic field due to the magnetisation of the medium.

• A magnetic field which represents the effect of anisotropy, the anisotropy field,
Bα.

• A magnetic field which represents the effect of exchange, the exchange field,
Bex.

The magnetic crystal energy E is assumed to be a functional of M and its spatial
derivatives,

E =

∫
w(M ,

M

∂xκ
)d3x (30)

where i,k are the coordinate indices (i, k = 1, 2, 3). Equation (30) gives the magnetic
energy of a three-dimensional crystal.
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The magnetization vector obeys the local constraint M 2 = const. This statement
is consistent with the assumption that the length of the vector M in a ferromagnet
represents its equilibrium characteristic. In the ground state the value ofM coincides
with the so-called spontaneous magnetization M0 = 2µ0s

α3 , where s is the atomic spin.
The quantum ferromagnetic theory proceeds from the formulation of the spin

Hamiltonian for the magnetic material under consideration. We shall use as the
quantum model of the magnetic material a system of localized electronic spins with
the exchange Heisenberg Hamiltonian, as we’ve seen in previous section

H =
1

2

∑
n6=m

JnmSn · Sm (31)

where n and m are the vectorial numbers of the crystal lattice sites. Sn is the
spin operator of the n-th site, and Jnm are the so called exchange integrals. Below
we shall only allow for the exchange interaction between nearest neighbours in the
lattice. Assuming that the exchange integrals are positive, we obtain a model of
an isotropic ferromagnet. If we do not include the assumption that the exchange
integral in expression (47) is isotropic, we obtain the so-called XYZ model with the
Hamiltonian

H = −1

2

∑
n,n0

(J1S
x
nS

x
n+n0

+ J2S
y
nS

y
n+n0

+ J3S
z
nS

z
n+n0

) (32)

where n0 labels the nearest neighbours of each lattice site.
There are various ways to proceed from Hamiltonian (31) or (32) to the macro-

scopic theory. The simplest way is to assume the the spin S is a classical vector and
to formulate for it equations of motion which are consistent with Hamiltonians (31)
and (32). From (32) we find that the interaction of the spins is equivalent to the
action of a certain effective magnetic field F given by

F =
2µ0

h̄

∑
n

Sn · F ,
2m0

h̄
F κ = −1

2

∑
n0

(Sκn+n0
+ Sκn−n0

) =
∂F
∂Sκn

(33)

κ = 1, 2, 3. The dynamics of the vector S in a magnetic field is described by the
equation of motion

h̄
dSn
dt

= −2µ0Sn × F (34)

Equations (32),(33),(34) enable a smooth transition to a macroscopic description
of the dynamics of a ferromagnet in the long-wevelength approximation. In order
to introduce a continuous description of the magnetization, we define the magnetic
moment of a unit volume, M , in terms of the average spin of the lattice site,

Mn = −2µ0

α3
< Sn >= −2µ0

α3
S(xn), Sn 7→ −

α3

2µ0

M (xn) (35)
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where α is the interaction distance.
If the angle between adjacent spin vectors is small, then the vectors S(x) and

M(x) can be regarded as continuous functions of the x coordinate, and we can write
the following expansion:

Mn+n0 = M (xn) + xi(n0)
∂M

∂xi
+

1

2
xi(n0)xκ(n0)

∂2M

∂xi∂xκ
+ ... (36)

4.5 Magnetic domain wall

Ferromagnetodynamics is the study of the way in which the magnetisation of a fer-
romagnet can be changed in both space and time. Experimentally, the subject really
began just after 1930, when the idea of ferromagnetic domains was very new and very
little was known about the way in which the magnetisation could change with time.

Around 1950, it became possible to discuss the experimental work from the point
of view of existing theory. At the same time, the closely related fields of magnetic res-
onance and spin waves were undergoing rapid development. Magnetic resonance and
spin waves involve changes in the magnetisation which are relatively small compared
to the magnetisation itself and the time scales involved are usually shorter than 10−9 s.
Ferromagnetodynamics, on the other hand, is concerned with very large changes in
the magnetisation, a complete reversal for example, occurring over distances which
may be well under 10−6 m but the time scales involved are usually longer than 10−9 s.

The concept of magnetic domains, which was introduced by Pierre Weiss in his
famous paper on the molecular field theory of ferromagnetism (Weiss, 1907) was not
taken up by experimentalists until Barkhausen published his work in 1919. This work
showed that the magnetisation could change in a very discontinuous way, giving rise
to the well known ’Barkhausen effect’. Two papers by van der Pol (1920), which
can be found among his selected scientific papers (Bremmer and Bouwkamp, 1960)
give considerable insight into the way in which the domain concept began to be
introduced into ferromagnetism. The model was one in which the demagnetised state
was a disordered array of very small regions, the domains, within the material and
magnetisation due to an applied field involved these domains forming thread like
chains, each domain in the thread having its magnetisation flipped around to point
along the direction of the thread, which was the direction of the applied field.

Very strong experimental evidence for this model was given by de Waard (1927),
who made calculations of the way in which the magnetisation of such ensembles
of domains would vary with the applied field and then compared his models with
experiment. The most surprising development of all was in 1931 when Francis Bitter
published the results of his first ’Bitter pattern’ observations (Erber and Fowler,
1969). The patterns were interpreted as further evidence for thread like domains.

32



Landau and Lifshitz (1935) introduced the idea that the magnetisation could
change by a movement of the boundary between domains, that domains magnetised in
the direction of the applied field would expand at the expense of domains magnetised
against the applied field. We find this idea being taken up rapidly, first at a meeting in
Göttingen in 1937 (Becker, 1938) and then by Kondorsky (1938) and by Brown (1939).
However, as so often happens, and this is certainly the case in ferromagnetodynarnics
today, the experimentalists were leading the theoreticians because it was not Landau
and Lifshitz who were the common reference of the last three cited authors but
Sixtus and Tonks and their experiments. These experiments mark the real beginning
of ferromagnetodynamics.

Figure 9: The domain wall proposed by Landau and Lifshitz (1935). Between two
domains in an infinite material having an easy direction along z. The elementary or
atomic magnetic moments are of constant magnitude and rotate in (x, z) as we go
along y from one domain to the other

The paper by Landau and Lifshitz (1935), had not only introduced the idea of
domain wall motion but had dealt with the atomic scale structure of a particularly
simple domain wall. This is shown in figure 10 and represents the solution obtained
by Landau and Lifshitz for the wall between two domains in a material which has
only one preferred direction of magnetisation, the z-axis in figure 10. Landau and
Lifshitz showed that one possible solution to the problem of the wall structure is that
the atomic magnetic moments should rotate about the normal to the plane of the wall
and that they should always lie in the plane of the wall as they rotate. The magnitude
of the elementary magnetic moments is the same everywhere, the direction changes.
The distance over which this rotation takes place depends, of course, upon the only
material being considered but in the majority of materials the rotation is more or less
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completed over about one hundred atomic spacings.
In order to understand the conclusions of Landau- Lifshitz, we should first study

the experements that happened by Sixtus and Tonks.
These experiments are described in a series of five papers: Sixtus and Tonks

(1931, 1932), Tonks and Sixtus (1933a, 1933b) and Sixtus (1935). Some further work
was reported by Sixtus at the 1937 meeting in Göttingen (Becker,1938), which was
referred to in the previous section.

The apparatus is shown in figure 11. This was centred around a nickel-iron alloy
wire. The alloy was chosen so that when the wire was put in tension, the magne-
tostriction acted with the shape anisotropy of the wire to make the remnant state
one single ferromagnetic domain with its magnetisation directed along the axis of the
wire. This remnant state was achieved in the experiment by applying a large bias
field, using the bias field coil shown. The bias field was then reduced, through zero, to
be applied in the reverse direction but only increased to a small value so that it was
below the value required to reverse the magnetisation of the wire by the spontaneous
nucleation of a reverse domain.

Magnetic reversal of the wire was then achieved in a controlled way by passing
a current through the nucleating field coil, shown in figure 11, so that the reverse
bias field was increased in magnitude in that region of the wire. In later experiments
this nucleation of a reverse, or seed, domain was done in a more definite manner
by using a pulse of current through the nucleating field coil. The nucleated reverse
domain then expanded, under the influence of the small applied bias field, and the
propagation of one end of this expanding domain along the wire could be observed
by means of the voltage pulses which were induced in the two pick-up coils shown
in figure 11. By measuring the time difference between the two pulses, for various
spacings and positions of the two coils, it was possible to work out the velocity of
propagation of the domain boundary. The velocity was found to depend upon the
applied bias field and the stress in the wire. It did not vary along the length of the
wire. Some typical results are shown in figure 12. The striking point about the results
shown in figure 12 is the very linear relationship between the velocity and the applied
field. This does, however, only apply over a very small range of applied field because
quite a large field, Bo, must be applied before any propagation can be observed. The
maximum field that can be used is the one which would cause spontaneous reversal
and this was found to be not very much greater than B0. This linear relationship was
expected by Sixtus and Tonks because they considered that the only resistance to the
motion of the magnetic discontinuity would come from the coercivity of the material,
which would explain B0, and then from the eddy-current loss induced in the wire by
the moving magnetic discontinuity which would give rise to a viscous damping term,
linear in velocity.

In order to compare their experimental results with theory, Sixtus and Tonks
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Figure 10: The apparatus used by Sixtus and Tonks (1931). The magnetisation of a
nickel-iron wire reverses by the propagation of a domain boundary of the kind shown
inset
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Figure 11: Typical results copied from Sixtus and Tonks (1931) for a 14/86, Ni/Fe,
wire, 380/Lm in diameter, under tension. The tensile stress is shown

needed some model of the moving domain wall. This was inferred from the wave
form of the voltage pulse induced in the pick-up coils as the domain wall passed
through and the conclusion was that the boundary was a cone-like one, as shown
inset in figure 11. We thus see that Sixtus and Tonks were proposing that a change
in the magnetisation would take place by domain wall motion some years before the
domain wall model had developed. In figure 11, the angle of the cone-like boundary
has been exaggerated for clarity. The cone does, in fact, occupy a length of wire
which is many times its diameter.

More detail may be seen if we consider a recent application of the technique
developed by Sixtus and Tonks. O’Handley (1975) has used the technique to study
domain wall kinetics in wire samples of the ferromagnetic glass Fe76P12C7Cr4.5B0.5

and his results are shown in figure 13. By observing the waveform of the voltage pulse
induced in his pick-up coils, O’Handley was able to see that the length of the cone
discontinuity was almost constant, independent of velocity and position, at 25 mm,
over 200 times the diameter of the wire.

Figure 13 shows the same general features as figure 12. There is a very small
positive intercept, Bo, when we extrapolate the linear velocity-applied field points
back. The results can be expressed by the relationship

νn = µw(B −B0) (37)

where νn is the velocity of the conical domain wall normal to its surface, B is the
applied field, B0 has been discussed above and µw is what we would now call a
domain wall mobility. Equation 78 is going to come up again and again throughout
this book because so many experimental results may be expressed in this way.

36



Figure 12: Results copied from O’Handley (1975) for a wire of the ferromagnetic
glass Fe76P12C7Cr4.sBo.s, 115 (Lm in diameter

The normal velocity of the wall, νn, is, of course, much smaller than the velocity
observed in the Sixtus and Tonks experiment because of the very small cone angle
of the moving magnetic discontinuity. The value for µw in the case of O’Handley’s
experiments, shown in figure 13 is 2.7 x 10 4 (m/s) per T and he was able to obtain
reasonable agreement with the theory of wall motion for insulating magnetic mate-
rials. Sixtus and Tonks were not able to get very good agreement with their own
ideas for an eddy-current damping model but this was mainly because, while they
had made the quite new and correct proposal that the magnetisation was changing
by wall motion, they had not got any clear model for the structure of the wall itself
[1].

4.6 Domain wall solution

Now we are ready to discuss the structure of the Landau-Lifshitz Wall [1]. Let’s
suppose that we have a picture frame sample, 1mm thick and a few mm wide, and
has a very narrow domain boundary between two domains which are both saturated
along the z-axis, in opposite directions, this being the easy direction of magnetization.

In such a situation, there is no normal component of M at the surface of the
sample, which we must imagine as either infinitely long or as a closed frame, except
at the very small area where the domain wall meets in equation

H = (
1

4π
)grad(

∫
ν

divM

riκ
dν +

∫
s

M · ν
riκ

ds) (38)
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Figure 13: When the magnetization lies in-plane within the domains there is no
surface divergence of M except over the small region where the domain wall cuts of
surface.

from the equation of the magnetostatic field

B = µ0(H +M ) (39)

would be negligible.
If we know invoke the second condition imposed by Landau and Lifshitz, that the

magnetization M , rotates in (x, z) with constant amplitude as we go along the y-axis
from one domain into the other. The first integral in equation (38) then vanishes
because divM = 0.

Because M has only x and z components, so does the total field vector, F . These
are given by

Fx = −(
2Ku

Ms

2

)Mx + (
2A

M2
s

)∇2Mx + µ0Mx (40)

and

Fz = (
2A

M2
s

)∇2Mz + µ0Mz (41)

which follow from

Bex = (
2A

Ms

2

)∇2M , B = µ0M (42)

and

(Bα)x = −2Ku
Mx

M2
s

, (Bα)y = −2Ku
My

M2
s

, (Bα)z = 0. (43)
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We observe that equation (29) has on a y-component

A

M2
s

(Mz
d2Mx

dy2
−Mx

d2Mz

dy2
)− Ku

M2
s

MzMx = 0 (44)

which is an ode because M is a function of y only. Because we assume that M
has a constant magnitude, Ms (which is called Saturation Magnetization and it is the
maximum magnetic moment per unit volume of a magnetic field) and simply rotates
in (x,z) as we cross the wall, the components of M may be written

Mx = Ms sin θ (45)

Mz = Ms cos θ (46)

and substituted into equation (44) to give the very simple non-linear differential
equation for θ

d2θ

dy2
− Ku

A
sin θ cos θ = 0 (47)

In order to solve (47) we let dθ
dy

= u and the variables separate in the equation to give

udu = (
Ku

A
) sin θ cos θ (48)

Equation (48) integrates directly to give

u2 = (
Ku

A
) sin2 θ + C1 (49)

and if we choose y = 0 to be the central plane of the wall, the constant of integration,
C1 is zero. This follows because θ becomes constant an 0 or π, and u = dθ

dy
tends

to zero, as we move well into the magnetically satured domains which means that
y 7→ ±∞. Taking the square root of (49) to get u = dθ

dy
, the variables again separate

to give
( A
Ku

)2dθ

sin θ
= dy (50)

and this equation integrates directly to give

y = (
A

Ku

)2 ln(± tan
θ

2
) + C2 (51)

The choice of sign indicates that the domain wall may have either a clockwise or an
anticlockwise screw-sense associates with the rotation of M in (x,z). That means
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that θ may equal ±π
2

at y = 0. This latter boundary condition makes the constant of
integration in equation (51) equal to zero and in the end the equation may be written

± tan(
θ

2
) = exp

y

∆
(52)

where ∆ = ( A
Ku

)
1
2 , the wall-width parameter. Finally, if we use the trigonometric

relationships between cos θ,sin θ and tan θ we obtain

Mz = −Ms tanh
y

∆
, Mx = ±Ms sech

y

∆
(53)

to define the static structure of the Landau- Lifshitz domain wall. In the figure below
we see the plot of the equation (53). We will descuss this again on a later section.

Figure 14: The variation of Mz

Ms
with y

∆
for the LL wall.

We observe that the LL wall occupies a width of about 2∆ and the rate of change
of Mz,

dMz

dy
, is −Ms

δ
over quite a distance about the center of the wall.

In conclusion, we have given an analytical description of the LL domain wall
and we found that indeed these kind of solutions could be expected in practice in
the picture frame type sample shown in figure 14, where M lies in the plane of the
sample.

4.7 Domain wall Solution - alternative method

We will solve, again analytically, the equation

∂M

∂t
= M × (

∂2M

∂x2
+Mzêz) (54)

applying a different method than before.
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We will apply spherical coordinates,

Mx = sin Θ cos Φ My = sin Θ sin Φ Mz = cos Θ (55)

We obtain the following

∂Mx

∂t
= cos Θ ·Θt cos Φ− sin Θ sin Φ · Φt

∂My

∂t
= cos Θ ·Θt sin Φ + sin Θ cos Φ · Φt

∂Mx

∂t
= − sin Θ ·Θt

(56)

Also

∂Mx

∂x
= cos Θ·Θx cos Φ−sin Θ sin Φ·Φx

∂My

∂x
= cos Θ·Θx sin Φ+sin Θ cos Φ·Φx

∂Mz

∂x
= − sin Θ·Θx

(57)
and

∂2Mx

∂x2
= − sin Θ · [cos Φ · (Θ2

x + Φ2
x) + sin Φ · Φxx] + cos Θ · [Θxx · cos Φ− 2Θx · Φx · sin Φ]

∂2My

∂x2
= − sin Θ · [− sin Φ · (Θ2

x + Φ2
x) + cos Φ · Φxx] + cos Θ · [Θxx · sin Φ + 2Θx · Φx · cos Φ]

∂2Mz

∂x2
= − cos Θ ·Θ2

x − sin Θ ·Θxx

(58)

or
∂2Mz

∂x2
+ Sz · êz = − cos Θ · [1−Θ2

x]− sin Θ ·Θxx (59)

Substituting all the above equations in (54) we get

Θt(x, t) = − sin Θ · Φxx − 2 · cos Θ ·Θx · Φx (60)

and

Φt(x, t) =
1

sin Θ
·Θxx − cos Θ · [1 + Φ2

x] (61)

Now let us assume Φ = 0. From Eq. (60), we get

Θt(x, t) = 0 (62)

and from (61), we get
Θxx(x, t) = cos Θ sin Θ. (63)
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Equation (63) is a second order nonlinear ODE of the form Θ′′ = f(Θ). We will solve
it by introducing the function

V (Θ) = Θx(x, t) (64)

such that

Θxx(x, t) =
dV

dΘ
· V (65)

and (63) gives

V · dV
dΘ

= cos Θ · sin Θ. (66)

This is a separable ODE with solution

V 2(Θ)

2
=

sin Θ2

2
+ C ⇒ V (Θ) = ± sin Θ + C. (67)

Substituting (67) in (64) , we get the ode

Θx = sin Θ + C. (68)

We are interested in localized solutions. These are obtained by requiring C = 0.
Then (68) is solved by separation of variables and we obtain

± tan
Θ

2
= ±ekx (69)

and if we keep the plus signs we observe that we get two cases:

• For x→ −∞ we get Θ = 0, so the solution is localized on the north pole

• For x→∞ we get Θ = π, so the solution is localized on the south pole

For tan Θ
2

= −ekx, we will have the following cases:

• For x→ −∞ we get Θ = 0, so the solution is localized on the north pole

• For x→ +∞ we get Θ = −π, so the solution is localized on the south pole

Also, for Θ = π
2

we get x = 0. So, we proved that there must be a magnetic wall that
unites the points between x = −∞ and x = +∞.

In magnetism, a domain wall is an interface separating magnetic domains, as
shown in the figure below. It is a transition between different magnetic moments
and usually undergoes an angular displacement of 90◦or 180◦. A domain wall is a
gradual reorientation of individual moments across a finite distance. The domain wall
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Figure 15: Domain wall (B) with gradual reorientation of the magnetic moments
between two 180◦ domains (A) and (C)

thickness depends on the anisotropy of the material, but on the average spans across
around 100-150 atoms.

The energy of a domain wall is simply the difference between the magnetic mo-
ments before and after the domain wall was created and its value is expressed as
energy per unit wall area.

The width of the domain wall varies due to the opposite energies that create it:
the magnetocrystaline anisotropy energy and the exchange energy, both of which tend
to be as low as possible so as to be in a more favorable energetic state. The anisotropy
energy is lowest when the individual magnetic moments are aligned with the crystal
lattice axes thus reducing the width of the domain wall. Conversely, the exchange
energy is reduced when the magnetic moments are aligned parallel to each other and
thus makes the wall thicker, due to the repulsion between them (where antiparallel
alignment would bring them closer, working to reduce the wall thickness). In the
end an equalibrium is reached between the two and the domain wall’s width is set as
such. An ideal domain wall would be fully independent of position, but the structures
are not ideal and so get stuck on inclusion sites within the medium, also known as
crystallographic defects. These include missing or different (foreign) atoms, oxides,
insulators and even stresses within the crystal. This prevents the formation of the
domain walls and also inhibits their propagation through the medium. Thus a greater
applied magnetic field is required to overcome these sites.

As we have seen above, the magnetic domain walls are exact solutions to classical
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nonlinear equations of magnets. We will discuss more on these type of equations on
the following paragraphs.

4.8 The Landau-Lifshitz-Gilbert Equation

In section 2, we introduced the equation (5) because we wanted to relate the magnetic
moment of a orbiting particle with his angular momentum, and the reason for that
was that, in atoms, the magnetic moment µ associated with an electron for example,
lies along the same direction as the angular momentum L of the electron and is
proportional to it. Later, we obtained the equation which described the motion of
one spin dµ

dt
= γµ × B, where we remember that γ is the gyromagnetic ratio, B is

the magnetic field that we apply and µ is the magnetic moment. Another way to see
this equation is as 1

γ
dµ
dt

= µ×B. Let’s try to read carefully this equation.
Equation of motion for one spin describes the uniform precession of the vector M

about the magnetic field, as shown in figure 7, and does not represent the expected
result that M and B should eventually become parallel to one another. For this
reason, Landau Lifshitz proposed the idea of adding a second term to the right hand
side of the equation 1

γ
d~µ
dt

= ~µ× ~B which had the direction of B−M and a magnitude
which fell to zero when B and M became parallel. Such a vector may be formed as
(B− (B ·M ) M

M2
s
) and the complete Landau Lifshitz equation is written

(
−1

|γ|
)
dM

dt
= (M ×B)− λ[B− (B ·M)

M

M2
s

] (70)

where λ is a positive constant having the same dimensions as M .Using γ instead of
−|γ|, we would have to make λ negative when γ positive. The final results would not
depend upon the sign of γ, this simply determines the sense of the precession, and
we shall avoid this complication.

Equation (70) represents M spiralling in toward B and eventually becoming par-
allel to B, whereupon both terms on the right hand side of the equation are zero.
The second term which has been added is thus a damping term upon the previous
purely precessional motion. Another form of the LL equation, found at a parer of
Galt (1952) is

dM

dt
= γ(M ×B)− λ

M2
s

(M ×M ×B) (71)

and this is the equation which is usually referred to as the Landau Lifshitz equation.
This equation has the advantage of making the equation apply for both signs of
γ but the disadvantage of obscuring the condition λ � Ms, which Landau Lishitz
underlined as essential to their original equation (70). The condition is λ � Ms

implied by the Landau and Lifshitz model in which the magnitude of M is constant
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and the damping comes from a very weak relativistic interaction. If λ no longer has
the same dimensions as M a comparison of their magnitudes is obscure.

Later on, Gilbert and Kelly (1955) proposed a different form of equation (70)

−1

γ

dM

dt
= M × (B− α

|γ|Ms

dM

dt
) (72)

which follows from equation (71) if we use the triple product identity,and introduce
the dimensionless damping constant α = λ

Ms
and neglect terms in α2. This is justified

because of the original assumption of Landau Lifshitz that λ�Ms[1].

4.9 Domain wall propagation

Now let us see more carefully the application of the LL equation to domain wall
motion.

Landau and Lifshitz applied their equation to the problem of domain wall motion
for the particularly simple case of the wall structure they had proposed. This is the
structure given here by equation (53). In order to avoid the complications of the
magnetostatic field, they continued to consider the case of an infinite medium and
also assumed that the wall structure remained almost identical to its previous static
structure, when it was moving. In other words, they assumed a rigid wall structure.

There is a very important point here. If we assume that the wall moves as a rigid
structure we have defined the space derivatives of M. They are already given by the
differential equation (47), which we solved to find this structure. If we now continue
and assume that the wall is moving with a constant velocity, we have defined the
time derivatives of M as well. We no longer have a differential equation to solve, the
problem becomes purely algebraic, as we shall see, and can be solved by considering
what is happening at any convenient point within the moving wall.

The other assumption which follows, once a rigid wall model is adopted, is that
the total magnetic field, F, previously given by equations (40) and (41), remains
antiparallel to M in the moving wall as it was in the stationary wall. We then only
need to consider the applied field, Bz, in our equations of motion. The situation is
illustrated in figure 16, where we again emphasise the kind of sample of material we
are dealing with. The magnetisation must lie in-plane and the sample thickness must
be very much greater than the wall width.

Let us now consider the sample, shown in figure 16, immersed in the applied field
Bz. The domain on the left, in figure 16, is magnetised in the same direction as the
applied field and consequently grows through the motion of the wall to the right with
velocity vy . Our diagram only shows M in the two domains and at the centre of the
wall.
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Figure 16: Coordinates used for the wall moving in an applied field Bz

We take the LL equation

−1

|γ|
dM

dt
= (M× F)− λ[F− (F ·M)

M

M2
s

] (73)

and, following the argument given above, we consider one convenient point within
the wall[1]. We choose the centre where Mx = Ms, My = 0. The total field,F, is now
made up from the field belonging to the previous static solution, M × F = 0, and
therefore drops out of equation (73), and the applied field, Bz. Equation (73) thus
has only two components

1

|γ|
dMy

dt
= MsBz (74)

and
1

|γ|
dMz

dt
= λBz (75)

Now, because λ << Ms in the Landau-Lifshitz model we can concentrate on
equation (74). This tells us that the proposal that the wall can move forward under
the influence of the applied fieldBz must involve the vector M developing a component
My, a component in the direction of motion. It is not possible to assume that the
wall is really rigid and that it maintains exactly the same form which it has when it
is stationary.

As shown in figure below, the magnetisation at the centre of the wall must tilt, to
satisfy equation (73), by the angle φ shown. Let us go back to equation (72) again,
with this modification, and see what happens.

Concentrating still on the centre of the wall, the vector M has components

Mx = Ms cosφ,My = Ms sinφ,Mz = 0

For the vector F, Landau and Lifshitz assumed that the parts of F due to exchange
and anisotropy remained antiparallel to M, as they were when φ was equal to zero.
This assumption made it possible to proceed with the calculation bringing in only
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Figure 17: The moving wall must develop a component of M which lies along the
direction of motion

the magnetostatic field and the applied field. They also assumed that Mz was still
given by the function plotted in figure 14.

If the sum of the exchange and anisotropy fields remains antiparallel to M, these
do not enter into equation (73). The magnetostatic field is a particularly simple one
to calculate in this case because the wall shown in figure 17 may be considered a thin
layer with its magnetisation tilted out of the plane by the angle φ. There will then be
no magnetic field due to the component of magnetisation normal to the plane, My,
because equation (38) would give Hy = −My for a thin layer so that equation (39)
would give By = 0. In the plane of such a thin layer there is no such demagnetising
effect and we have Bx = µ0Ms cosφ.

We conclude that the components of the total field F which should be substituted
into equation (73) for the case shown in figure 17 are

Fx = µ0Ms cosφ (76)

Fy = 0 (77)

Fz = Bz (78)

The components of equation (73) are now

− 1

|γ|
dMx

dt
= BzMs sinφ− µ0λMs cosφ sin2 φ (79)

− 1

|γ|
dMy

dt
= BzMs cosφ+ µ0λMs cos2 φ sinφ (80)

and

− 1

|γ|
dMz

dt
= −µ0M

2
s cosφ sinφ− λBz (81)

We now consider the wall moving forward at constant velocity. Concentrating
upon the centre of the wall, as before, M lies in (x, y) at the angle φ. As the wall
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moves forward, the vector M rotates about y and as it has constant magnitude, and
φ is constant for constant velocity, equations (79) and (78) are both zero on the left
hand side and both give

Bz = µ0λ cosφ sinφ (82)

The z-component of dM
dt

, on the other hand is given by

dMz

dt
=
Msvy

∆
(83)

because ∂Mz

∂y
= −Ms

∆
at the centre of the LL wall, as shown in figure 17. This may be

formally deduced from equation (46). Substituting (83) in (81) we obtain

vy = (
|γ|∆
Ms

)(λBz + µ0M
2
s sinφ cosφ) (84)

Equations (82) and (84) give as a picture of the domain wall moving forward at a
constant velocity vy, under the influence of a constant applied field Bz.Equation (82)
shows that the effect of Bz is to make M tilt out of the plane of the wall by an angle

φ =
1

2
arcsin

2Bz

µ0λ
(85)

where it comes into equilibrium with the total field and the effective field of the
second term in the Landau-Lifshitz equation, which we could call the damping field.
If we now substitute the equilibrium condition, (82) into equation (84) we obtain the
relationship between the velocity and the applied field as

vy = (
|γ|Ms∆

λ
)(1 +

λ2

M2
s

Bz) (86)

As expected, the problem has become purely algebraic since we assumed a given
wall structure and constant velocity.

Because the formulation of LL equation demanded λ << Ms we can rewrite
equation (86) as

vy =
|γ|Ms∆

λ
Bz (87)

which is often quoted result of Landau and Lifshitz, that the wall velocity is pro-
portional to the applied field.If we set the damping constant α = λ

Ms
we can also

write

vy = (
|γ|∆
α

)Bz (88)
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5 Skyrmions

In this section,we will discuss the basic theory about skyrmions. This will help us to
proceed to the next section where we will talk about the micromagnetic simulations.

Topological solitons are solutions of non-linear differential equations which cannot
be continuously deformed to a trivial solution. Examples of topological solitons can
be found in exactly solvable models and in recently observed magnetic structures
called skyrmions. Topological skyrmions always have received special interest from
physicists and mathematicians because of their stability [6].

A soliton wave is not only an interesting and elegant observation but the stability
of solitons attracts the attention of many. So as we observe, stability is a term that
will think a lot about. And there is a reason for that.

The basic objects of Classical Mechanics are stable particles, charecterized by a
non-zero mass, which live for ever. In contrast, at a fundamental level, elementary
particles such as electrons and protons are described using quantum field theory, where
they are thought of as wave-like excitations of an underlying field. It is however a
non-trivial in field theory to make these wave-like excitations stable. They would
generally dissipate similar to the disappearance of the waves in a pond once they are
created. In the year 1962,physicist Tony Skyrme prososed the idea that the particles
do not decay because they have a topological number, which can not be changed
by a continuous deformation of the underlying field.In mathematical terms, there
exists a topological integer that is unchanged. In topology, a donut, for example
is topologically equivalent to a cup, as they both contain one hole, and one can be
continuously deformed to the other. A sphere contains no hole and is topologically
different, and thus can not be deformed into a donut by continuous deformation.
Sometime back, in the year 1989, it was pointed out that topologically protected
systems may be relevant in condensed matter physics. Recently, there has been a
flurry of theoretical and experimental works showing that topological solitons can be
stabilized in chiral magnets in the form of a swirling spin texture called ”magnetic
skyrmion”. To be presice, this was first discovered in 2009.

A magnetic skyrmion is a topological soliton that is energetically stable. This
means that a skyrmion state is energetically favored by the system. So, on the
one hand skyrmions are fundamentally interesting because of their stability. On the
other hand skyrmions are technologically interesting. By making use of the stability
of the skyrmion configuration it might be possible to use skyrmions in a new kind of
information carrying device.

We consider a ferromagnetic material [6]. This has two phases: the paramagnetic
phase and the polarized phase. For temperatures above the Curie temperature the
magnetization is randomly distributed in the magnet. However, below the Curie
temperature the magnetization vectors are align in some direction. The two types
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are shown on the figure below.

Figure 18: The magnetic spin structure of a ferromagnet for different values of T

The magnetization in this latter phase can be characterized by a magnetization
profile, which is represented by m(x). This means that for every spatial variable x we
have a vector m pointing in some direction. The polarized phase in a ferromagnet is
a trivial phase where the magnetization is align throughout the system. Other types
of magnetization profiles occur in, for example, chiral magnets. There, non-trivial
magnetization profiles are formed that have a whirling structure. Spin textures, as
long as a skyrmion may be one of the structures shown below.

Figure 19: (a) Hedgehog,(b) Neel-Type skyrmion, (c) Bloch-Type skyrmion,
(d)antiskyrmion, (e)skyrmionium,(f) biskyrmion,(g) in-plane skyrmion,(h) skyrmion
in helical background, (i) chiral bobber, (j) comped anti-hedgehog

These whirling types of magnetization in a chiral magnet are induced by the
Dzyaloshinskii-Moriya interaction (DMI). The DM interaction is a microscopic char-
acteristic of interacting spins that occurs in a system that lacks inversion symmetry
and has a strong spin-orbit coupling. The DM interaction creates phases which have
a winding magnetic configuration.
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5.1 First observation of Skyrmions

Skyrmion spin structures were first observed in 2009, using neutron scattering [6].
This was the first time the A-phase, as it was called, in a chiral magnet was identified
as skyrmion phase. The A-phase is shown in figure 20 among two other chiral phases.
In the first experiment people used neutron scattering to observe the spontaneous
formation of a two-dimensional lattice of skyrmions in MnSi. The first observation
of a magnetic skyrmion structure has been made in the chiral ferromagnetic MnSi
which lacks of inversion symmetry. Due to this property it allows for non-inversion
symmetric magnetic structures to appear. A skyrmion is such a structure. In the

Figure 20: Different magnatic phases of MnSi

phase diagram of a ferromagnet there are two different phases. The spins are ordered
below the Curie temperature and above this temperature point the spins change
direction and become disordered. We expect to see the same two phases in the phase
diagram of MnSi, since this too is a ferromagnet.

We see five different phases when we look at the phase diagram of MnSi in figure
20. The most familiar phases are the polarized phase, which occurs for large mag-
netic fields and the paramagnetic phase, which appears above the Curie temperature.
Between these two phases, there are three additional phases which are not present
in a basic ferromagnet. These three phases are chiral phases. These chiral phases
occur due to the DMI, as explained in the previous section. There is a conical phase,
a helical phase and an A-phase. There is a strong exchange energy present in this
magnet which favors uniform magnetization. The weaker energy scale comes from the
DMI. This interaction favors twisted spin structures, such as the three chiral phases
we see in the figure. There are other interactions at play here, but they are negligible.
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The helical phase appears below the critical Curie temperature at small (or zero)
magnetic field. The magnetization in the helical phase precesses around an axis which
is perpendicular to the external magnetic field. The helical magnetization is shown
in figure 21. If the temperature is below the Curie temperature, and the external
magnetic field is increased a crossover to the conical phase happens.

Figure 21: The helical phase

The crossover between the helical phase and the conical phase occurs atBc1 > 0.1T
, when T < Tc.In the conical phase the magnetization obtains a component parallel
to the magnetic field. The angle of the cone continuously decreases to zero when the
magnetic field increases to a value of B = 0.55T , at which all spins allign. Below is
the magnetization profile of a conical phase.

Figure 22: The canonical phase, where the magnetization precesses around the prop-
agation vector, and has a component parallel to the external magnetic field.

It is important to see that at a magnetic field value of B > 0.55T the effect
of the DMI is very weak compared to the exchange energy scale. The ferromagnetic
energy scale dominates the magnetization and the DMI is negligible. So for a stronger
magnetic field we have a field polarized state as ground state.
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The A-phase occurs in a small region of the phase-diagram. The region for tem-
peratures just below Tc and for a magnetic field value around B = 0.2T . In this small
area a two dimensional hexagonal lattice of (anti-) skyrmions is the stable ground
state of the system. The magnetic field is perpendicular to the skyrmion lattice.

The individual skyrmion appearing in the lattice is a structure we have already
seen: recall figure19 (b). The magnetic structure is translationally invariant along
the direction of the magnetic field, which is perpendicular to the skyrmion structure.
The color in the picture indicates whether the spins are parallel (blue) or anti-parallel
(red) to the external magnetic field. Also, the skyrmion is rotationally symmetric if
we rotate around the axes parallel to the external magnetic field. We can imagine
skyrmion tubes could form if we translate the skyrmion structure along the magnetic
field.

Before the discovery of the skyrmion structure in 2009, the consensus was that
the A-phase was some kind of helix with a wave vector aligned perpendicular to the
applied field. By using neutron scattering this hypothesis is disproven, since there it
shows that the structure emerging in the A-phase is a hexagonal lattice. However,
using neutron scattering alone, it is not possible to deduce the magnetic structure of
the A-phase. Measurements of the topological Hall effect of the A-phase are necessary
to prove that the A-phase corresponds to a skyrmion structure. The topological Hall
effect is induced by the magnetic field of the skyrmions on conduction electrons. The
movement of a skyrmion leads to a change in the magnetic field produced by the
skyrmion and thus changes the electromagnetic induction. Then the induced electric
field gives an additional contribution to the Hall effect when skyrmions move.

5.2 Magnetic skyrmion configuration

A magnetic skyrmion is a topological object consisting of a skyrmion core, an outer domain,
and a domain wall that separates the skyrmion core from the outer domain [12].

A skyrmion is mainly characterized by three numbers: the skyrmion number
Qs,the vorticity number Qν , which is defined by the winding number of the spin
configurations projected into the x-y plane, and the helicity number Qh. The mag-
netization profile of a skyrmion can be described with:

m(r) = [sin θ(r) cosQνφ+Qh, sin θ(r) sin(Qνφ+Qh), cos θ(r)] (89)

where θ(r) is the radial function hat determines the z-component of m(r) [16].
The skyrmion configuration is physically stable [6]. This means that the spin

configuration of a skyrmion could minimize the energy of the system and therefore the
system favours this configuration. Moreover, small deformations of the system cannot
transform the spin structure to some trivial structure. This topological property is
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made explicit with a topological charge,or the skyrmion number Qs (also defined
sometimes by the symbol m, as used in the figure 25). The skyrmion number Qs can
be calculated with

Qs = − 1

4π

∫ ∫
[m(r)·(∂xm(r)×∂ym(r))]dxdy =

1

4π

∫ 0

π

sin θdθ

∫ 0

π

dφ =
Qν

2
[ lim
r 7→∞

cos θ(r)−cos θ(0)]

(90)
which is determined by the product of the vorticity number and the difference between
the spin direction of the core and the tail of the skyrmion. It is notable that the helicity
number does not contribute to the topological number, which is uniquely determined
by the type of the DMI.

Figure 24 shows how the topological charge works. It shows a skyrmion magne-
tization from the side. If we start wrapping this structure around a unit sphere we
go round once. This gives the skyrmion structure a winding number of 1. Depending
on whether the center of the skyrmion is parallel or anti-parallel with the external
magnetic field the skyrmion number either is 1 or -1.

In fact, chiral magnetic skyrmions are not limited to the case of topological charges
|Q| = 1, and could be of any topological charge. For example, the skyrmionium can
be regarded as a topological combination of a skyrmion with Q = +1 and a skyrmion
with Q = −1, which carries a net topological charge of Q = 0. The skyrmionnium
structure was first studied in a theoritical work by Bogdanov and Huber in 1999. It is
also referred to as the target skyrmion. The topological charge difference between the
skyrmionium with Q = 0 and the skyrmion with Q = +1 originates form their out-
of-plane spin textures. As other examples, the biskyrmion has a topological charge
of Q = −2, which can be formed in some materials such as chiral bulk or frustrated
magnets when two skyrmions with the same topological number (Q = −1 in this
case) are approaching to each other [19].

In order for someone to be able to completely characterize the spin texture, we
must calculate the vorticity number Qν and the helicity number Qh. These two
numbers are given by the following expressions

Qν =
1

2π

∮
C

dφ =
1

2π
[φ]φ=2π

φ=0

and
φ = Qνφ+Qh

In figure 23, we see different skyrmions’ configurations for different values of
skyrmion, vorticity and helicity numbers.
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Figure 23: Illustrations of 2D magnetic skyrmions with differnet topological charge,
vorticity number and helicity number (Qs,Qν ,Qh). The arrow denotes the spin direc-
tion and the out-of-plane spin component (mz) is represented by the color: red is out
of plane, white is in-plane and blue is into the plane

It should be noted for later that Qs is calculated over the whole magnetic element
considering in the simulations we will describe.It has been reported that the presence
of iDMI certifies the nonexistence of a complete uniform state. Micromagetically
iDMI imposes boundary conditions which lead to the tilt of the magnetization states
at the edges. For the arbitraty orientation of normal to edge (n), the boundary
condition is given by

dm

dn
=

d

2A
(ẑ× n)×m (91)

This condition tilts the magnetization states near the edges of the sample in a plane
normal to the surface. We will have the opportunity to discuss more on the magnetic
simulations later on this part.

If we would deform the skyrmion state to some trivial state we would end up with
the configuration shown in figure 27. Based on energy considerations this state is
not allowed (it costs a lot of energy). If we were to take a different magnetization, a
domain wall for example, and deform the state, we would be able to obtain a state
where all spins are aligned.
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Figure 24: Skyrmion wrapping around a sphere

Figure 25: A state which is not allowed due to energy considerations-hence the cross
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People categorize different skyrmion structures by their helicity and value of their
skyrmion number, depicted in figure 26. The helicity of a skyrmion depends on the
DMI that is induced and this depends on the direction in which inversion symmetry
is broken in the compound. The skyrmion structure we saw in MnSi corresponds to
the top right configuration in figure 26,m = 1 and γ = π

2
.

Figure 26: Several skyrmion structures with different skyrmion numbers m and he-
licity γ

Figure 27: Two typed of magnetic skyrmion texture
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We are more interested in to types of skyrmions:Neel type and Bloch type skyrmions,
which correspond to different symmetries of the interaction between spins (this can
be due to the underlying crystal lattice or to the presence of an interface), resulting to
different directions of rotation. As we see on the figure 27, in a Bloch type skyrmion,
the spins rotate in the tangential planes, that is, perpendicular to the radial direc-
tions, when moving from the core to the periphery ,while in the Neel type skyrmion,
the spins rotate in the radial planes from the core to the periphery. A skyrmion with
helicity number of π

2
or 3π

2
corresponds to the Bloch type skyrmion while a skyrmion

with helicity number of 0 or π corresponds to a Neel type skyrmion, when the vorticity
number of the skyrmion equals one [16].

5.3 Skyrmion State

The Skyrmion state is defined such that θ(r) changes from θ = π at the center to
θ = 0 at the boundary of the Skyrmion. Single-valuedness of the spin orientation
demands that the azimuthal angle is of the form φ = mα+γ, where m is the winding
number and γ the helicity parameter[7].

A magnetic Skyrmion is a swirling magnetic structure of spins. It is usually a
two-dimensional object, existing at interfaces between two materials or in magnetic
thin films. The topological properties depend on the geometry of the structure. The
two key characteristic geometrical properties are the vorticity and the helicity of
the structure, which are a characteristic of how the spin orientation ~n(~r) changes
over space. Note that for the lattice, the position ~r takes discrete values, while in
continuum models it is a continuous variable. The spin orientation at each point
~r ≡ (r, α) on the 2D plane is described in the spherical coordinates by specifying the
polar and azimuthal angles, θ(~r) and φ(~r), respectively. For the Skyrmion state,θ(~r)
is a function of the radial distance r only and φ(~r) is a function of the polar angle
α only, so that in the cartesian coordinates, the local magnetization vector is ~n(~r) =
(sin θ(r) cosφ(α), sin θ(r)sinφ(α), cosθ(r)), where m is a non-zero integer called the
winding number. Skyrmions and anti-Skyrmions are defined as those for which the
winding number is positive or negative, respectively. The helicity parameter γ takes
specific values for helical states. If γ = ±π

2
, then the helicity h = ±1 (the two signs

indicate left or right handedness), while for γ = 0 or γ = π, we have a radial spin
structure, as we have seen from Figure 26.
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5.4 Dzyaloshinskii-Moriya interaction in the LL equation

In this section we will introduce the Dzyaloshinskii-Moriya term in the LL equation[1].
For that, let us consider a ferromagnet described by the magnetization vector as a
function of space and time M = M(x, t), with constant magnitude |M| = Ms, where
Ms is called the saturation magnetization. Statics and dynamics of the magnetization
are governed by the dimensionless Laundau-Lifshitz equation

∂m

∂t
= −m× f (92)

where m = M
Ms

is the normalized magnetization,in component form m = (m1,m2,m3).

The variable t is the dimensionless time that is measured in units of t0 = 1
γ0µ0Ms

,
where γ0 is the gyromagnetostatic ratio as we have stated on the previous part, and
µ0 is the permeability of vacuum. The effective field f contains the interactions in
the material. We will assume a ferromagnet with exchange, an easy-axis anisotropy,
and a DMI interaction. We will consider configurations where the magnetization is
varying in only one space direction, that is, we assume m = m(x, t). The energy of
this system is

E(m) =

∫
[
(∂xm)2

2
] +

κ2

2
(1−m2

3) + λ(m× ∂xm) · ê1]dx (93)

where ê1 is the unit vector for the magnetization in the x direction. We measure

distance in units of exchange length lex =
√

2A
µ0M2

s
where A is the exchange constant.

There are two length scales in the model, lw =
√

2A
K

, where K is the anisotropy

constant, and lD = 2A
|D| ,where D is the DMI constant. The dimensionless parameters

appearing in the energy above are κ2 = 2K
µ0M

2
s

= ( lex
lw

)2, and λ = lex
lD

. We will consider

λ > 0. The case λ < 0 corresponds to the transformation x 7→ −x. The general form
of the DM term is given in terms of Lifshitz invariants

Ljk = (m× ∂jm)k (94)

In the energy (93) we have only kept the Lifshitz invariant L11 in the ê1 direction
corresponding to cubic DMI given by m · (∇ × m). Replacing L11 by L12 (inter-
facial DMI) or a linear combination of both, yields a model that is mathematically
equivalent except a rigid rotation around the ê3 axis.

The effective field in (92) is obtained by varying the energy

f = − δE
δm

= ∂2
xm + κ2m3ê3 − 2λê1 × ∂xm (95)
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The uniform (ferromagnetic) states m = (0, 0,±1) are the simplest time-independent
(static) solutions of the LL equation. For large anisotropy such that,

κ > κc ≡
π

2
λ (96)

the ferromagnetic configuration in the ground state of the system, while for κ < κc a
spiral configuration becomes the ground state. The period of the spiral increases for
increasing anisotropy and goes to infinity as κ 7→ κc.

Let us assume a material with κ > κc and we are looking for domain wall solutions
as excitations of the ferromagnetic ground state. A standard Bloch wall

m1 = 0,m2 = ± sech(kx),m3 = ± tanh kx (97)

for any combination of the signs, is a solution of (92) also in the presence of DMI
(λ 6= 0) as the contribution of the DM term on the right-hand-side of equation (92)
vanishes identically for these configurations. As the DMI is chiral, the walls with the
same signs for m2 and m3 in equation (97), have lower energy, for λ > 0. The walls
with opposite signs for m2 and m3 are energy maxima.

One can easily prove that traveling domain walls are not discribed by equation
(92), when the DMI is not included in the effective field (95). To see that let us
consider the total magnetization in the direction perpendicular to the film

M =

∫ ∞
−∞

m3dx (98)

in the sense of the Cauchy principle value and calculate its time derivative using
equation (92)

dM
dt

= −2λ

∫ ∞
−∞

m1∂xm3dx (99)

This result tells us that the exchange and anisotropy interactions are invariant with
respect to rotations around the third axis of the magnetization, and therefore the
total magnetization M is conserved in the absence of DMI, where λ = 0. Since
a propagating domain wall configuration is equivalent to expanding one domain in
favour of the other, for example, it favours the ”up” domain instead the ”down”
domain, thus changingM, domain wall propagation is not possible in a model where
the total magnetization M is preserved.

In a model with effective field described by equation (92), it is entirely due to
DMI that the symmetry is broken and the associated conservation law is not valid,
thus allowing for possibility of propagating domain walls. If we assume a rigid wall
connecting the south pole (m3 = −1) at x 7→ −∞ to the north pole (m3 = 1) at
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x 7→ +∞ and travelling with velocity v then we obtain that v = −1
2
dM
dt

and from
(99) we obtain

v = λ

∫ ∞
−∞

m1∂xm3dx (100)

This gives an upper bound for the speed

|c| ≤ 2λ (101)

More generally, a Lifshitz invariant L1κ gives rise to an integrand mκ∂xm3 in equation
(94). In particular, no non-trivial traveling domain wall solution is possible in the case
κ = 3 corresponding to a wire along ê3 with a cubic DMI and a stray-field induced
anisotropy.

Lastly, considering the conditions of the equations (100) and (101) we have, for
positive c, the ordering

0 <
v

2
< λ ≤ 2

π
κ (102)

5.5 Dzyaloshinskii-Moriya Interaction (DMI) in the configu-
ration of skyrmions

In the previous section, we introduced the DMI term on the LL equation. Also, in
the first part, we shared some information about what is this type of interaction.
As we will see in this section, the existence of DMI is crucial for the formation of a
skyrmion, along with some other mechanisms, sometimes working together.

Chirality is a form of assymetry of a system.If the atomic structure of a magnet
lacks inversion symmetry we call them chiral magnets. The chirality expresses itself
through the phase diagram which shows additional chiral phases. In this phases
the magnetization is whirled in some way, for example helical. What mechanism is
responsible for these additional phases?

In 1960 Dzyaloshinskii constructed a model to describe weak ferromagnetism.
Based on symmetries he introduced an assymmetrical term which later on was dubbed
the DMI. Moriya connected his name to this term when he found the mechanism
behind this interaction is partly based on spin-orbit coupling. So, DMI is induced by
a lack of inversion symmetry of the compound and strong spin-orbit coupling. Let
us see an example. A compound that lacks inversion symmetry is MnSi (magnanese
silicide). In the figure below, we see that inversion symmetry is broken in a unit cell.
Aside from lack of inversion symmetry, MnSi has a strong spin-orbit coupling.
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Figure 28: The atomic structure of MnSi. The circles represent atoms and the dashed
lines depict the boundaries of a unit cell. This structure lacks inversion symmetry on
a unit cell

Inversion symmetry can be broken in different directions leading to a different
induced DMI. In practice, this means that the magnetization is different. We consider
an example of just two spins here, must for the sake of simplicity. The DMI for two
spins has the following form:

HDM = −D12 · (S1 × S2) (103)

where S1 and S2 are the atomic spins.
In the next figure, there is a DMI emerging from the interplay of two atomic spins

with the neightboring atom having spin-orbit coupling in a thin film. The resulting
DMI points outwards from the plan of the atoms. The same mechanism is responsible
for the Interfacial DMI between a ferromagnetic thin layer and a non-magnetic leyer
with a large spin-orbit coupling. Here, at the interface between the two layers, the
tringle mechanism produces a DMI for the interfacial spins S1 and S2. The DMI
vector, D12, is perpendicular to the triangle.

Figure 29: iDMI for two spins

Starting with a ferromagnetic state where all spin are alligned: S1 ‖ S2, we
then assume a strong spin-orbit coupling present that induces a DMI. The resulting
magnetic structure depends on the direction of the D-vector, which in turn depends
on the way which the symmetry in the compound is broken. Different helicities are
obtained for different DMI.
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We call the vector joining the sites of the spins S1,S2 and R12. The energy of the
system is minimized if either R12 ⊥ D12 or R12 ‖ D12. If R12 ⊥ D12, the DMI tilts
S1 around D12, with respect to S2 [6].

For the interfacial DMI (iDMI) D12 can be written as D12 · (z×u12), where the z
and u12) are unit vectors, respectively perpendicular to the interface in the direction
of a amgnetic layer and pointing from site 1 to site 2. For D12 > 0 the DMI favours
anticlockwise rotations from S1 to S2 while D12 < 0 correspondes to the lower energy
for clockwise mangetization rotation. In coclusion, the DMI is a chiral interaction
that lowers or increases the energy of the spins depending on whether the rotation
from S1 to S2 around D12 in the clockwise or in the anticlockwise sense.If S1 and S2

are initially parallel, the effect of a strong DMI is to introduce a relative tilt around
D12. For a purely interfacial DMI, D is inversely proportional to the thickness of the
film. It is positive for anticlockwise rotations.

Figure 30: (a)Bulk DMI vector (white arrow) originate in a non-centrosymmetric
crystal because of the interaction of the ferromagnetic atoms.(b)Interfacial DMI vec-
tor (whitre arrow) in a ferromagnet/heavy metal bilayer

So that was a simple example for when we have two spins. For the case that we
study a Neel or a Bloch type skyrmion, the definition of the DMI is a little different.
There are two different types of DMI responsible for the stability of skyrmions. The
corresponding Hamiltonian term (HDMI) for the bulk DMI, which supports the Bloch-
type materials can be expressed in the form of:

HDMI = Dm(r) · [∇×m(r)] (104)

where m(r) represents the local magnetic moment orientation with |m(r) = 1|, and
D as always the DMI contant.
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The Neel type skyrmions are supported by the interfacial DMI (iDMI), as de-
scribed above, have attracted great attention, owing to the increased thermal sta-
bility and structural simplicity from the perspective of electronic applications. The
corresponding Hamiltonian term has the form of

HDMI = D[mz(r)∇ ·m(r)− (m(r) · ∇)mz(r)] (105)

where mz(r) is the z component of m(r).

5.6 Domain wall solution

We will compute the analytical solution of the equation, with DMI term

∂M

∂t
= M × [

∂2M

∂x2
+Mzêz + λêy × ∂xM ] (106)

We remember two cross product properties:

~A× ( ~B + ~C) = ~A× ~B + ~A× ~C

and
~A× λey × ∂x ~A = −Ay∂x ~A

So, besed on these properties, equation (106) takes the form

∂M

∂t
= M × (

∂2M

∂x2
+Mz êz)−My∂xM (107)

We substitute spherical coordinates

Mx = sin Θ cos Φ,My = sin Θ sin Φ,Mz = cos Θ

We have:

∂Mx

∂t
= cos Θ ·Θt · cos Φ− sin Θ · sin Φ · Φt

∂My

∂t
= cos Θ ·Θt · sin Φ + sin Θ · cos Φ · Φt

∂Mz

∂t
= − sin Θ ·Θt

(108)

and

∂Mx

∂x
= cos Θ ·Θx · cos Φ− sin Θ · sin Φ · Φx

∂My

∂x
= cos Θ ·Θx · sin Φ + sin Θ · cos Φ · Φx

∂Mz

∂x
= − sin Θ ·Θx

(109)
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We have

∂2Mx

∂x2
= − sin Θ[cos Φ(Θ2

x + Φ2
x) + sin Φ · Φxx] + cos Θ(Θxx cos Φ− 2ΘxΦx sin Φ)

∂2My

∂x2
= − sin Θ[− sin Φ(Θ2

x + Φ2
x) + cos Φ · Φx] + cos Θ(Θxx sin Φ + 2ΘxΦx cos Φ)

∂2Mz

∂x2
= − cos Θ ·Θ2

x − sin Θ ·Θxx

(110)

So, from (110) we obtain

∂2M

∂x2
+Mzêz = [− sin Θ[cos Φ(Θ2

x + Φ2
x) + sin Φ · Φxx] + cos Θ(Θxx cos Φ− 2ΘxΦx sin Φ)]êx

+ [sin Θ[− sin Φ(Θ2
x + Φ2

x) + cos Φ · Φx] + cos Θ[Θxx sin Φ + 2 cos Φ ·Θx · Φx]]êy

+ [cos Θ(1−Θ2
x)− sin Θ ·Θxx]êz.

and

M × (
∂2M

∂x2
+Mz êz) = [sin Θ sin Φ cos Θ− sin Φ ·Θxx + cos Θ sin Θ sin Φ · Φ2

x

− cos Θ sin Θ cos Φ · Φx − 2 · cos2 Θ cos Φ · ΦxΘx]êx

− [sin Θ cos Φ cos Θ− sin Θ cos Φ cos Θ ·Θ2
x − cos Φ ·Θxx

+ cos Θ sin Θ cos Φ · (Θ2
x + Φ2

x) + cos Θ sin Θ sin Φ · Φxx

+ 2 · cos2 Θ ·Θ·Φx · sin Φ]êy

+ [− sin2 Θ cos Φ sin Φ(Θ2
x + Φ2

x) + sin2 Θ cos2 Φ · Φx

+ sin Θ cos Φ cos Θ sin Φ ·Θxx + 2 sin Θ cos Θ cos Φ · Φx ·Θx]êz
(111)

Also we have

My∂xM = [sin Θ sin Φ cos Θ cos Φ ·Θx − sin2 Θ sin2 Φ · Φx]êx

+ [sin Θ sin2 Φ cos ΘΘx + sin2 Θ sin Φ cos Φ · Φx]êy

+ [− sin2 Θ sin ΦΘx]êz

(112)
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Finally, substituting the equations (111),(112) and (108) in (107), we obtain

cos Θ cos Φ ·Θt − sin Θ sin Φ · Φt = sin Θ sin Φ cos Θ(1− Φ2
x)− sin Φ ·Θxx − cos Θ sin Θ cos Φ · Φx

− 2 · cos2 Θ cos Φ · Φx cot Θx − sin Θ sin Φ cos Θ cos Φ ·Θx

+ sin2 Θ sin2 Φ · Φx

cos Θ sin Φ ·Θt + sin Θ cos Φ · Φt = − sin Θ cos Φ cos Θ(1 + Φ2
x + Φxx)

+ cos Φ(Θxx + λ sin Θ · ΦxΦx) + sin Φ cos Θ ·Θx(λ− 2 cos ΘΦx)

− sin Θ ·Θt = sin2 Θ(cos2 Φ · Φx

+ sin2 Φ · Φxx) + sin Θ ·Θx(2 cos Θ · Φx − λ)

(113)

From the last equation of (113) we have

Θt = sin Θ cos Φ sin Φ(Θ2
x + Φ2

x)− sin Θ cos Φ · Φx − cos Φ cos Θ sin ΦΘxx − 2 cos Θ cos Φ · Φx ·Θx

− sin Θ sin Φ ·Θx

(114)

Now if we multiply the first equation of (113) with − sin Φ and the second equation
with cos Φ and subtract them we get

Φt = − cos Θ + sin2 Φ cos Θ · Φ2
x + cos Θ cos Φ sin2 Φ · Φx

+ sin Θ sin3 Φ · Φx + cos2 ΦΘxx − cos2 Θ cos Φ · Φ2
x + cos Φ sin2 Φ cos Θ + cos2 Φ sin Θ sin Φ · Φx

(115)

Let us look for solutions with Φ = 0. Then we obtain

Θt = 0 (116)

This tells us that Θ is constant with respect to time t. and equation (115) gives

Θxx = cos Θ sin θ (117)

which as we have seen in the LL equation before it is solved by considering the function

V (Θ) = Θx(x, t)

and by substituting it on (149) we finally obtain

± tan
Θ

2
= ±c expx (118)

Now that we have also obtained the domain wall solution for the LL equation
with the DMI term we can notice that in this case we had to set Φ = 0 in order to
get the (118). While in the case of the domain wall solution for the LL equation, this
solution coulsd be obtained by setting Φ = C where C a random constant value and
not specifically 0.
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5.7 Axially symmetric Skyrmions

In this section, we will give the equations that describe the different regions of a
skyrmion with a big diameter [8].

We consider a two-dimensional ferromagnet on the xy-plane with exchange, DMI,
and anisotropy of the easy-axis type perpendicular to the plane. The micromagnetic
structure is described via the magnetization vector m = m(x, y) with a fixed magni-
tude normalized to unity, m2 = 1. The normalized form of the micromagnetic energy
is

Eε(m) =

∫
[
1

2
∂µm · ∂µm +

1

2
(1−m2

3) + εeDM ]dx (119)

A summation over repeated indices µ = 1, 2 is assumed.
Also, eDM = êµ · (∂µm ×m) models the bulk DM interaction and the interfacial

DM interaction form eDM = εµν êµ · (∂µm×m), where εµν is the totally antisymmetric
two-dimensional tensor. Here ê1, ê2, ê3 are the unit vectors for the magnetization in
the respective directions. Static magnetization configurations satisfy the LL equation

m× (∂µ∂µm +m3ê3 − 2εhDM) = 0 (120)

where the last term is the DM field with hDM = ê3× ∂µm in case of bulk interaction
or hDM = εµν ê3×∂νm in case of interfacial DM. In equations (119) and (120), lengths

are measured in units of the domain wall width lw =
√

A
K

, where A is the exchange

and K the anisotropy constant. The equation contains a single parameter

ε =
ls
lw

=
D

2
√
AK

(121)

defined via an additional length scale of this model ls = D
2K

, where D is the DM
parameter. We will refer to ε as the dimensionless DM parameter, which can also
be controlled by changing the anisotropy or the exchange parameter. The lowest
energy (ground) state is the spiral for ε > 2

π
and the ferromagnet state, which we are

interested in, for ε < 2
π
.

Let us consider the angles (Θ,Φ) for the spherical parametrization of the mag-
netization vector, and the polar coordinates (r, φ) for the film plane. We assume an
axially symmetric skyrmion with Φ = φ+φ0 and Θ = Θ(r). For a bulk DM term the
energy is minimized for φ0 = π

2
(Bloch skyrmion) and for interfacial DM interaction

we choose φ0 = 0 (Neel skyrmion). A value 0 < φ0 <
π
2

should be chosen if the DM
term is a combination of the bulk and interfacial terms.

The skyrmion profile arises as a local minimizer of the energy

Eε(m) = 2π

∫ ∞
0

[
1

2
(
dΘ

dr
)2 +

1

2
(1 +

1

r2
) sin2 Θ + ε(

dΘ

dr
+

1

2r
sin 2Θ)]rdr (122)
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of
m(r, φ) = (sin Θ cos(φ+φ0), sin Θ sin(φ+φ0), cos Θ) where Θ = Θ(r) satisfies the

equation

Θ′′ +
Θ′

r
− sin(2Θ)

2r2
− sin(2Θ)

2
+ 2ε

sin2(Θ)

r
= 0 (123)

with boundary conditions Θ(0) = π and limr 7→∞Θ(r) = 0. The same equation applies
to all types of skyrmions, Bloch or Néel for the respective DM terms.

5.8 Skyrmion profile

Let us study skyrmions with large radius R, defined by the equation

Θ(R) =
π

2
(124)

. The skyrmion profile exhibits three spatial regions [8]. The skyrmion core is the
region where the value of Θ is close to π. That means that the magnetization pointing
close to the south pole. The outer region (or far field) is where Θ is exponentially
close to zero and the magnetization pointing close to the north pole. The skyrmion
domain wall is the thin region that connects the core and the outer region.Using
assyptotic analysis we obtain the following results. Close to the skyrmion center, the
deviation of the skyrmion profile from π is linear with an exponentially small factor

Θ ≈ π − exp−R
√

2πRr, r � 1 (125)

As r increases, the deviation attains exponential growth. This is held in check by the
small factor throughout the skyrmion core, up ti approach to the domain wall

Θ ≈ π − 2

√
R

r
expr−R, 1� r � R (126)

The leading approximation of the skyrmion domain wall profile is independent of the
radius when the radius is large. Past the domain wall, in the far field, the behaviour
is similar to the one of skyrmions of small redius. We have

Θ ≈ 2

√
R

r
exp−(r−R) (127)
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6 Micromagnetic Simulations

Now that we have discussed the basics of the concept of skyrmions, we are ready to
study how their diameter increases or reduces and as a result their size, in relation
with the DMI, anisotropy (Eani) and exchange (Eex) energy.In the simulations that
we discuss below, we are interested in the stydy of Neel skyrmions. Therefore, we
study how the size of the skyrmion is affected by the variation of the iDMI (interfacial
DMI), because as we have discussed in previous sections, this is the interaction that
leads to the formation of a Neel skyrmion with radial chirality.

Micromagnetic simulations solve the LLG equation

dm

dt
= −|γ|m× F + α(m× dm

dt
) (128)

to obtain the stable magnetization configuration in a ferromagnetic material, where
γ is the gyromagnetic ratio and α is the Gilbert damping constant. F is the effective
magnetic field of the system which is given by:

F =
−1

µ0Ms

δEtotal
δm

(129)

where µ0 is the permeability in vacuum and Etotal is the magnetic energy of the system
which consists of various energy terms such as exchange (Eex), anisotropy (Eani) and
DMI (EDMI). Therefore, Etotal is

Etotal = Edemag + Eani + Eex + EDMI (130)

where Edemag is the demagnetization energy, Eex = −Ji,j(ŝi · ŝj), Eani = K(ŝi · ẑ)2

and EDMI = ~dij · (ŝi × ŝj) respectively.

6.1 The dependence of skyrmion diameter on the DM pa-
rameter

We remind once again that such whirling structures as skyrmions are induced by the
DMI, which is a macroscopic characteristic of interacting spins that lacks inversion
symmetry and that has a strong spin-orbit coupling.

The magnetic simulations were performed on thick multilayer structures with area
of 150nmx150nm, with saturation magnetization Ms = 106 A

m
, and exchange constant

A = 15.0×10−12 J
m

. The figure below shows formation of a typical Neel skyrmion from
a bubble domain state at the center of a ferromagnetic element (150nmx150nmx1nm).
The bubble domain state has two distinct spin configurations with the red and blue
areas representing the +z and -z spin directions, respectively. The somewhat white
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Figure 31: Skyrmion

area in the middle of the configuration has spins in the xy plane which represents
the width of the domain wall. As the simulation begins, the influence of the iDMI
starts realigning the spins into skyrmionic state where the change in spin direction
from +z to -z occurs continuously over a large area. The simulation ends when the
spin configuration of the skyrmion becomes stable.

We observe, from the figure below, that the increase of the diameter of the
skyrmion is analogous to the DMI increase. This is more clear if we recall how
we defined the DMI energy. Indeed, EDMI = dij · (si × sj). Let us think when is
this energy maximized. We obtain the maximum EDMI when the spins are aligned
perpendicular to each other (θ = π

2
), because of the cross product on the definition

of the DMI energy. That results an increasement on the diameter of the skyrmion.
So, as the DMI increases (becomes stronger), the spins are being perpendicular to
each other and the diameter of the skyrmion increases. For DMI values between
1.0× 10−3mJ

m2 and 1.4× 10−3mJ
m2 , there is no skyrmion observed by the simulations.

70



Figure 32: The skyrmion diameter as a function of the DM parameter D obtain by
numerical simulations.
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6.2 Dependence of skyrmion diameter on the anisotropy pa-
rameter

The magnetic anisotropy describes how an object’s magnetic properties can be differ-
ent depending on the direction. For most magnetically anisotropic materials, which
are 180◦ rotation apart. The line parallel to these direction is called the easy axis.
In other words, the easy axis is an energetically favourable direction of spontaneous
magnetization.

For the magnetic simulations the exchange constant A = 15.0 × 10−12 J
m

, the
DMI constant is D = 2.0 × 10−3 mJ

m−2 , Ms = 106 A
m

.From the figure down below we
observe that the skyrmion diameter is not analogous to the magnetic anisotropy but
decreases as the second one increases. Again, we have defined the anisotropy energy
as Eani = K(si · ẑ)2 and we observe that as this energy increases, the spins are
being aligned along the easy axis. This has as a result the reducing of the skyrmion
diameter.

Figure 33: Skyrmion diameter for various values of the anisotropy parameter K
obtained by numerical simulations.

An interesting part of this figure is for anisotropy between 0.92× 106 and 0.94×
106 J

m3 , where we observe that the skyrmion diameter reduces so, in the end there is no
skyrmion to be found by the simulation. In general, when the simulations do not find
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Figure 34: Size of the skyrmion with 0.942 anisotropy

a skyrmion structure, we need to control whether this is a numerical error or indeed
there is no skyrmion to be found. This can happen with many ways. The changing
on the boundary conditions of the initial problem is one of them. But this would
change the problem drastically and this is something we don’t want. Instead, at first
we proceed in the simulation by checking what is happening for a much smaller step
for values of anisotropy above 0.94× 106(0.942× 106, 0.944× 106, 0.946× 106, 0.948×
106, 0.949×106, 0.9492×106) and when there is no skyrmion to be found for values of
anisotropy above 0.9492× 106 we choose to change the number of cells.For the later
case, we remember that we started our simulations with an area of 150nmx150nm. So
the idea is that if we increase the number of cells, for instance, 300nmx300nm,while at
the same time reducing the discretization from 4.0×10−9 to 2.0×10−9, the simulation
will be done on a bigger sample. We observe that the skyrmion size still reduces for
values above 0.94 × 106 J

m3 , while later for values above 0.9492 × 106,working on a
bigger sample, there is no skyrmion. So this leads us to the initial thought of ours,
which was that there must be an error from the numerical method that had been held.
This error could be that, above the limit of 0.9492× 106 anisotropy , the diameter of
the skyrmion is very small, so the simulation is not able to detect whether there is a
skyrmion.
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6.3 Dependence of skyrmion diameter on an external field

In the figure below, we observe what is the change of the skyrmion size if we apply
an external magnetic field.

Figure 35: Size of the skyrmion in relation to the applied external magnetic field

We notice that as the external magnetic field becomes stronger, the size of the
skyrmion reduces. The explanation here is very simple, and it has to do with the
external field being applied. Moreover, if we apply an external magnetic field the
spins tend to align with it, on the direction that we are applying it. We need to be
a little careful here, because the application of the external magnetic field plays a
crucial role on the variation of the size of the skyrmion. In this specific case that we
study here and that is shown on the figure below, we apply an external field right
above the film. As a result this makes all spins being aligned on the direction of the
applied field, which is right above, on the z-axis, so the size of the skyrmion reduces.
Instead, if we had applied an external field left or right to the film, that would have
resulted the increase of the size of the skyrmion. But we didn’t study this case.
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6.4 Dependence of skyrmion’s diameter on the exchange pa-
rameter

Figure 36: Diameter of the skyrmion in relation to the exchange parameter A

The exchange energy is defined as Eex = −Aij(ŝi · ŝj). This is maximized when
the spins are aligned parallel (θ = π) to each other. As we increase the exchange
parameter A, the spins begin to align parallel to each other causing a reducing of the
size of the skyrmion as shown on the figure above. For the simulations, we worked
with DMI parameter D = 2.0 × 10−3 mJ

m−2 , Ms = 106 A
m

, and anisotropy parameter
K = 0.80x106 J

m3 .
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6.5 Dependence of the Skyrmion Radius on dimensionless
parameter ε

Figure 37: The radius of the skyrmion in relation to the dimensionless parameter ε

We assume a ferromagnetic material as a two-dimensional system lying on the
xy-plane. The micromagnetic structure is described via the magnetization vector
m = m(x, y) with a fixed magnitude normalized to unity, m2 = 1. The normalized
magnetic energy is

E(m) =

∫ (
∂µm · ∂µm

2
+

1−m2
3

2
+ εêµ · (∂µm×m)

)
dx (131)

where summation over repeated indices µ = 1, 2 is implied and ê1, ê2, ê3 are the unit
vectors for the magnetization in the respective directions. Static magnetization fields
are local minimizers of the E satisfying the normalized LL equation

m× h = 0

where the effective field is

h = ∂µ∂µm+m3ê3 − 2εêµ × ∂µm
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is minus the variational gradient of E = E(m). We measure legths in units of the

domain wall width lw =
√

A
K

and the equation contains a single parameter

ε =
ls
lw

=
D

2
√
AK

where ls = D
2K

. The ferromagnet state is for ε < 2
π
.

We consider angles (Θ,Φ) for the spherical parameterization of the magnetization
vector, and the polar coordinates (r, φ) for the film plane. We assume an axially
symmetric skyrmion with Φ = φ + π

2
and Θ = Θ(r), called Bloch skyrmion. Of

course, we could consider other types of skyrmions, for example Neel skyrmion where
Φ = φ with iDMI. The equation for the profile Θ = Θ(r) is

Θ′′ +
Θ′

r
− sin 2Θ

2r2
− sin 2Θ

2
+ 2ε

sin2 Θ

r
= 0 (132)

with boundary conditions Θ(0) = π and limr 7→∞Θ(r) = 0 is the same for all typed of
skyrmions, therefore the following calculations apply equally to all of them.

Now we can find the relation between the radius of the skyrmion with the param-
eter ε.

We have

ε(R) = −R ln(
R

α
) (133)

where α = 0.2065 and ε << 1.
We will present two equations for the radius R in relation to the parameter ε. The

first equation describes the a small radius of a skyrmion in relation to ε and it is

R(ε) =
−ε

ln( ε
β
)

(134)

where β = 0.72, R << 1 and in the graph is represented by the blue line. On the
other hand, the equation that describes large radius of skyrmions in relation to ε is

R(ε) =

√
δ

2
π
− ε

(135)

where δ = 0.3057, and in the graph is represented by the green line.
For the simulations we set the parameters: A = 15.0 × 10−12 J

m
,K = 0.92 ×

106 J
m3 , Ms = 106 A

m
. We check how the radius change for different values of the DMI

parameter, starting from the value 1.48 × 10−3 J
m2 to 2.18 × 10−3 J

m2 while making
sure to change the number of cells and the discretization value. Specifically, for
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small radius we change the discretization value for the specific values of the DMI
that give us small radius (from 1.48 × 10−3 until 1.90 × 103).For the discretization
we set 2.0 × 10−9,2.5 × 10−9 and 4.0 × 10−9. On the other hand, for the values of
the DMI that we get skyrmions with large radius, we changed the number of cells
(180nmx180nm, 200nmx200nm,300nmx300nm). The numerical results are noted by
the red line and dots on the graph. In conclusion we see that the numerical results
(red line and dots) are matching the analytical results (green and blue line). So
indeed, the equations (134) and (135) are representing the small and the large radius
of the skyrmions,respectively.

6.6 Concluding remarks

Based on the observations above, we conclude that the dependence of the skyrmion’s
size is different from the DMI parameter than it is from the others. At this point
we should note that, by radius we define the distance between the end of -z spin-
orientation (blue region of figure 30) to the center of z+ spin orientation (red region
of figure 30). We noticed so far that as we increase the DMI parameter of the system,
the size of the skyrmion tends to increase as well, and above the value 2.20 × 10−3,
the stable state is not a skyrmion, but stripe domains as shown on the figure 37
below. On the other hand,the dependence of the skyrmion’s diameter on anisotropy,

Figure 38: Skyrmion Diameter for D = 2.4× 10−3
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exchange and the external field parameters, are similar. Obviously, from the figures
above, we conclude that as we increase the values of these three parameters the size of
the skyrmion reduces, until there is no skyrmion to be found by the simulations.These
observations come directly by the simulation that have been made and their results
are shown up above.

At last, we make some observations for the parameter ε. We start with equation
(134). In order for the radius to be well defined we set the restriction ε > 0.72. We
notice that as ε→ 0 then R→ 0 while on the other hand, as ε→∞ then R diverges
to −∞. This behaviour was expected, as is shown from the figure 36. The blue line
that represents the small radius of skyrmions, tends to 0 for small values of ε while
for big values of ε, it gives as no valid description for what happens there, because,
as we defined, this equation shall describes only small radius. Now, from equation
(135) at first we take the restriction ε < 2

π
, because the radius must be positive and

real. We notice that as ε → 0 the radius tends to a constant value,
√

δπ
2
≈ 0.6929.

On the other hand, we notice that when ε → 2
π
, the radius R diverges to infinity.

Again, these two observations agree with the green line that is shown on figure 36,
and describes the behaviour of big radius. We can conclude some more information
from the radius of the skyrmion in relation to the ε parameter. If we substitute the
(133) on equation (134) we obtain that when K → +∞ the radius R goes to zero.
This agrees with the results that we discussed for the skyrmion’s diameter in relation
to the anisotropy parameter. Also, if we let D → 0 in equation (134) we obtain
that R → 0, which again we observe from figure 31. So, in conclusion, for very big
values of the anisotropy parameter K or for very small values of the parameter D, the
skyrmion’s size tends to zero.
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