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Interpreting Data Anomalies: From Descriptive to

Predictive Explanations

Abstract

In many data exploratory tasks, abnormal and rarely occurring patterns called
anomalies (outliers, novelties) are more interesting than the prevalent ones. For
instance, they could represent systematic errors, frauds in bank transactions, in-
trusions in network and system monitoring or other interesting phenomena. Nu-
merous algorithms have been proposed for detecting anomalies. Unfortunately,
unsupervised detectors in general, do not explain why a given sample (record) was
labelled as an anomaly and thus diagnose its root causes.

Anomaly explanations often take the form of feature subsets of significantly
lower dimensionality compared to the original feature space. By examining only
the features of an explaining subspace su⇥ces to determine whether a sample is
an anomaly or not according to a detector. Explanations can be categorized as (i)
descriptive in the sense that they explain the samples used to train the detector
and (ii) predictive that generalize to unseen data. In this thesis we experimentally
evaluate the main descriptive explanation methods proposed in the literature, as
well as, introduce the first predictive explanation method that is inspired by recent
advances in Automated Machine Learning systems (AutoML).

In the first part of our thesis, we present a thorough evaluation framework of
unsupervised explanation algorithms for individual and groups of anomalies aiming
to uncover several missing insights from the literature such as: (a) Is it e⇤ective
to combine any explanation algorithm with any o⇤-the-shelf outlier detector? (b)
How is the behavior of an outlier detection and explanation pipeline a⇤ected by
the number or the correlation of features in a dataset? and (c) What is the
quality of summaries in the presence of outliers explained by subspaces of di⇤erent
dimensionality? A major drawback of the descriptive explanation methods stems
from the fact that they should be recomputed for every new batch of data.

To address this limitation, in the second part of our thesis, we present the design
and experimental evaluation of the PROTEUS AutoML pipeline. PROTEUS
produces global, predictive explanations using a surrogate model, specifically de-
signed for feature selection on imbalanced datasets in order to best approximate
the decision surface of any unsupervised detector. Computational experiments
confirm the e⇥cacy and robustness of PROTEUS to produce predictive explana-
tions for di⇤erent families of anomaly detectors as well as its reliability to estimate
their predictive performance in unseen data.
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Chapter 1

Introduction

Detection of “anomalous” samples (records, instances), called anomaly detection, is
an important problem in machine learning. Detecting and diagnosing data anoma-
lies 1 are important tasks in data processing pipelines used to build industrial-
strength Machine Learning (ML) systems [66]. In scientific and industrial moni-
toring applications, anomaly detection is often the ultimate goal of data analysis
as it enables the identification of anomalous samples that may indicate mislabelled
data, catastrophic measurements or data entry errors, bugs in data wrangling and
preprocessing software, a system that is under attack, about to fail, or other inter-
esting phenomena that decrease the accuracy of the predictive models constructed
downstream [63, 91].

Numerous unsupervised algorithms of various outlyingness criteria such as
IF (isolation-based) [49], LOF (density-based) [10], LODA (projection-based) [65],
ABOD (angle-based) [45]) to detect anomalies (hereafter detectors) have been
proposed. The most advanced ones detect anomalies in a multi-dimensional fash-
ion, simultaneously considering all feature values to call an anomaly. Unfortu-
nately, detectors, in general, do not explain why a sample was considered as ab-
normal, leaving human analysts with no guidance about their root causes [2],
insight to take corrective actions, or remedy their e⇤ect [52] (e.g. by repairing
data errors or retraining the predictive models for concept drifts).

Several methods for explaining anomalies have been proposed, hereafter
explainers. The explanations often take the form of a subset of features called
a subspace in the literature. The idea is that by examining only the explaining
features su�ces to determine whether the sample is an anomaly or not according to
the detector. To illustrate, assume that we have a three dimensional dataset with
features F1, F2 and F3 and that we would like to explain the identified anomalous
points o1 and o2 depicted by a black circle and a black square in Figure 1.1-a). In
the full feature space of the dataset, o1 exhibits a small deviation from most of the
other points in the dataset while o2 looks like an inlier (normal point) although
it exhibits a significant outlyingness when considering the subspace {F2, F3} (see

1In this work we refer to anomalies and outliers interchangeably

1
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Figure 1.1: A 3d dataset with three 1d and 2d subspaces

Figure 1.1-d). We refer to the former case as full space outliers and to the latter
as subspace outliers. In both cases, we are interested in explaining under which
subspaces, called explaining subspaces, the given points exhibit high outlyingness.
None of the 1d subspaces {F1}, {F2} and {F3} explain the outlyingness of the two
points (see Figure 1.1-b). The same is true for the 2d subspace {F1, F3} (see Figure
1.1-e). Subspace {F1, F2} explains the outlyingness of o1 only (see Figure 1.1-c),
while {F2, F3} explains the outlyingness of both points (see Figure 1.1-d). We can
observe that outlyingness of o1 is higher in {F1, F2} than in {F2, F3}. Features
contained into the explanation of an outlier are called relevant. For instance, F1

and F2 are relevant to the explanation of o2.

Existing methods can be categorized to those that provide local explanations
(point-based) that pertain to a single sample, or global explanations (a.k.a.
explanation summarization) to simultaneously explain all training samples. The
latter are important in order to reduce the burden of human analysts having to
have to inspect possibly di⇤erent explanations for each anomaly. An example of
a local explanation for point o1 is the subspace {F1, F2} in Figure 1.1-c), while
{F2, F3} is a global explanation (see Figure 1.1-d)) . Explainers may be specific
to a detection algorithm or detector-agnostic, hence applicable post-hoc to any
detection algorithm. As reported by several independent experimental studies
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[27, 18, 11], there is no detector outperforming all others on all possible datasets.
Hence, researchers cannot just design a specific explainer for the optimal detector;
it may thus be preferable to design optimal agnostic explainers. Explainers may
also be categorized as descriptive in the sense that they explain the samples
used to train the detector. Explainers that return explanations that generalize to
unseen data are predictive ones. The importance of predictive explanations has
been recognised in Explainable AI [57] to avoid recomputing explanations on every
new batch of data.

In the first part of our thesis, we evaluate two point explanation algorithms,
RefOut [38] and Beam [62], that rank subspaces best explaining the outlyingness
of individual data points, and two explanation summarization algorithms, LookOut
[29] and HICS [36], that rank subspaces best explaining the outlyingness of the
majority of the outlier points. Although there exist several e⇤orts for benchmark-
ing outlier detectors in batch [18, 11, 25, 81] and stream [82, 48, 23] processing
settings, outlier explanation and summarization algorithms have not yet been thor-
oughly evaluated under realistic assumptions. To the best of our knowledge, this
is the first comprehensive and detailed evaluation of existing algorithms aiming to
uncover several insights missing from the existing literature. More precisely, our
evaluation yields the following major findings:

1. Is it e⇥ective to combine any explanation algorithm with any o⇥-the-shelf
outlier detector? The majority of explanation mechanisms rely on existing detec-
tors to assess the outlyingness of points in specific feature subspaces. A critical
factor of their e⇤ectiveness not yet thoroughly evaluated, is how well detectors
score outliers in projections or augmentations of the subspaces considered by the
search strategy of explainers. A detector is usually expected to highly score outliers
when its outlyingness criterion is better suited to the underlying data distribution
(e.g., LOF for density-based outliers). Surprisingly enough ABOD (angle-based
detector) proved to be more e⇤ective than LOF for density-based subspace outliers
when used with (i) LookOut in datasets highly contaminated with outliers and (ii)
Beam in high dimensional explanations.

2. How is the behavior of an outlier detection and explanation pipeline a⇥ected
by the number of features or their correlation in a dataset? Algorithms achieve
di⇥erent tradeo⇥s between e⇥ciency and e⇤ectiveness depending on (i) the di-
mensionality of explanations, and (ii) the ratio of features in the dataset which
are relevant to the outliers. For full space outliers (100% feature relevance ratio),
state-wise search employed by Beam and exhaustive search implemented by Look-
Out achieve the best tradeo⇤. However, their e⇥ciency significantly decreases in
high dimensional datasets. For subspace outliers, random subspace projection em-
ployed by RefOut provides a good tradeo⇤ for a medium ratio of relevant features
(35% and 21%) while state-wise search of Beam is the only e⇤ective solution for
high dimensional explanations (3d-4d) and datasets (i.e., < 12% ratio of relevant
features). When outliers are hidden in subspaces with correlated features in high
dimensional datasets, HiCS seems to be the only viable option.

3. What is the quality of summaries in the presence of outliers explained
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by subspaces of di⇥erent dimensionality? As the objective of summarization is
to discover subspaces where the majority of the outliers seem to deviate w.r.t.
inliers, we showed that existing algorithms do not provide guarantees regarding (i)
the coverage of the points to be explained; (ii) the overlap or the equivalence of
subspaces in the explanation summaries. These properties are essential given that
the optimal explanation dimensionality of points is not known in advance.

In the second part of our thesis, we focus on the concept of predictive expla-
nations and propose the first methodology to produce global, predictive
explanations calledPROTEUS2. PROTEUS is additionally agnostic, applicable
to any detector. Some notable representatives of prior work on agnostic explainers
is the CA-Lasso [56] and the SHAP [51]. LODA [65] is an example of a specific
explainer. However, all of the aforementioned explainers are both local and de-
scriptive. To that end, we developed PROTEUS, an AutoML pipeline specifically
designed to produce surrogate models in this context. It contributes the following
design choices:
(1) By definition, anomalies are rare, making it di⇥cult to approximate the de-
tector’s decision boundary around the positive class. To improve performance,
PROTEUS oversamples the rare class, i.e., the anomalies. In contrast to standard
oversampling where pseudo-samples are assumed to belong to the minority class
[32], PROTEUS uses the detector to label the pseudo-samples.
(2) To select features, PROTEUS employs several feature selection algorithms that
are suitable for high-dimensional data and small-sample sizes. Importantly, such
algorithms deal with removing not only irrelevant, but also redundant features
[84]. This is in contrast to Feature Importance as calculated by Random Forests
for example [22].
(3) To produce the best surrogate model, PROTEUS tries multiple combina-
tions of feature selection and binary classification algorithms tuning their hyper-
parameters, called configurations. The best configuration found is employed to
produce the final surrogate model. For the moment, a simple grid-search is em-
ployed.
(4) To identify the best configuration, PROTEUS needs to accurately estimate the
out-of-sample performance of each configuration. To this end, it employs a special
variant of Cross-Validation (CV), namely a group-based, stratified, repeated, K-
fold CV with Bootstrap Bias Correction (BBC) [87]. This variant addresses the
issues of over-sampling, multiple tries of configurations, low sample size, and im-
balancing of the anomaly class. Experiments show that it provides better estimates
than standard alternatives.

Together, the above design choices guarantee that PROTEUS will (a) identify
a high-performing surrogate model with few features, provided there is one, and (b)
will accurately estimate its out-of-sample performance in predicting the anomaly
detector’s behavior. The above statements are supported by experiments on several
real and synthetic datasets. Unlike ad-hoc or detector-specific feature importance

2Proteus or � �⇥⇤⌅⇧́⌃ in Greek, means ‘first’ and is a minor sea God and son of Poseidon.
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methods proposed in the literature, our experiments also demonstrate PROTEUS
robustness to increasing data dimensionality.
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Chapter 2

Unsupervised Anomaly

Detectors

Several methods have been proposed in the literature to measure the abnormality
of a data point in a dataset. In this thesis, we survey four unsupervised methods
that are widely used for detecting outliers in datasets with multiple numerical1

features [18, 11, 25, 81]. We should also stress that in this work, we did not
include algorithms that run exclusively in stream mode [42, 78, 28].

The outlyingness criteria underlying each method have respective strengths
and weaknesses w.r.t. the characteristics of the datasets (e.g., dimensionality) and
outliers (e.g., highly clustered or not).

Density-Based methods, such as Local Outlier Factor (LOF) [10] take into
account the local density of points when searching for outliers. An example of
outliers detected by LOF is illustrated in Figure 2.1-a). The point o1 is considered
to be an outlier as it lies on a sparse area while its nearest neighbors lie on dense
areas. The distance of a point p from o is computed using the following reachability
distance (reach-dist):

reach-distk(p� o) = max{k-dist(o), d(p, o)}

where k-dist(o) is the distance of o to its kth nearest neighbor and d(p, o) is the
direct distance (e.g., Euclidean) between the two points. LOF computes the local
reachability density of a point p as the inverse of the average reachability distance
of p from its k-nearest neighbors (kNN):

lrdk(p) = 1/(meano�kNN (p)reach-distk(p� o))

Finally, the density of a point is compared to the average local reachability density
of its neighbors to obtain a score:

LOFk(p) = meano�kNN (p)
lrdk(o)

lrdk(p)

1Anomaly detection methods for categorical data [79] are outside the scope of this work.

7
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Figure 2.1: Examples of outliers in di⇤erent subspaces detected by (a) LOF, (b)
Fast ABOD and (c) iForest

LOF’s time complexity for training is O(1) since there is no training step and O(n2)
for prediction, where n is the number of points in a dataset. Inliers obtain scores
around 1 while outliers obtain scores significantly larger than 1. LOF distinguishes
e⇤ectively outliers from inliers in regions of varying density where outliers lie on
highly sparse areas far from dense clusters.

Isolation-Based methods estimate the probability of a point to be an outlier
on the basis of the number of partitions needed to isolate it from the other points
in a dataset. The less partitions needed to isolate, the more likely a data point is
to be an outlier. For instance, in Figure 2.1-c) the point o1 is an outlier as it needs
less partitions to be isolated compared to the inlier o2.

Isolation Forest (iForest) [49] exploits this property using a forest of random
trees built on samples of the dataset by uniformly selecting features and their split
values. The outlyingness score of a data point is then computed by averaging over
all trees the path length from the root to the leaf node with the data point:

s(x, n) = 2
⇥E(h(x))

c(n)

The score assigned to points is normalized within the range [0,1], with anomalies
getting a score close to 1. iForest has a small memory-footprint (O(tn)), where t

is the number of trees and n is the subsample size. It achieves a sublinear time-
complexity (O(tnlogn)) for training by exploiting subsampling and by eliminating
the heavy cost of distance computation and (O(tlogn)) for prediction. Being ag-
nostic to the distances (or densities) of points, iForest is able to detect anomalies
e⇤ectively even if they are lying on less dense areas than the majority of the points.

Angle-Based methods compute for each given point, the angles to other data
points N . The Angle Based Outlier Detector (ABOD) [45] uses the variance of
these angles as an outlyingness score. For example, as we can see in Figure 2.1-
b), o1 is an outlier as its neighbors are located in similar directions (small angle
variance), but o2 is an inlier as it is surrounded by its neighbors in various directions
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(high angle variance). The ABOD score for a given point o1 and any pair of points
x1, x2 is computed as:

ABOD(o1) = Var
x1,x2�N

�
⇥⇤⇤⌅x1o1,

⇤⇤⌅
x2o1⇧

⌃⇤⇤⌅x1o1⌃2 · ⌃⇤⇤⌅x2o1⌃

⇥

ABOD’s time complexity for training is O(1) since there is no training step and
O(N3) for prediction. Due to ABOD’s high computational cost, we are focusing on
the e⇥cient variant of the original algorithm, called Fast ABOD, which computes
the angles of a particular point only to its k-nearest neighbors. Small angle variance
results high ABOD score indicating high outlyingness. Intuitively, a point is more
likely to be an outlier when it lies on the borders of the data distribution. ABOD
avoids to compute the distance between points, hence it is a suitable detector for
high dimensional datasets.

Projection-based histogram ensemble detectors like LODA [65], constructs
an ensemble of t one-dimensional histogram density estimators. Each density
estimator, pj , j = 1, . . . , t is constructed as follows. First, a projection vector wj

is initialized as the d-dimensional zero vector, then k =
⌥
d features are selected at

random, and finally those positions in wj are replaced by standard normal random
variates. Each training sample xi is then projected to the real line as w

T
j xi, and

a fixed-width histogram density estimator pj is estimated via the method of Birgé
and Rozenholc [8]. To compute the anomaly score of a test sample x

⇤
i, LODA

computes the average log density:

f (x ⇤
i ) =

1

t

t⇤

j=1

log pj(w
T
j x

⇤
i)

Averaging the scores of individual histograms over all anomalous test samples can
be used to sort features in decreasing order, which means that features in which
anomalous samples deviates the most should be the first. A significant advantage
of LODA compared to LOF and iForest is that it can handle missing variables.
LODA’s time complexity given E histograms with b bins, is O(nt(d⇥

1
2 + b)) for

training and O(t(d⇥
1
2 + b)) for prediction where n is the number of points in the

dataset and d its dimensionality.
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Chapter 3

Related Work

In this section, we first give the definitions of anomaly detection and explana-
tion and briefly survey various categories of related work on the explanation of
anomalies.

Unsupervised Anomaly Detectors. Let D = {x1, . . . , xn} be a dataset of
n samples, where each sample xi � Rd. An Anomaly Detector A is a function
that accepts a dataset D and produces an Anomaly Detector Model ŶA. An
Anomaly Detector (Classification) Model ŶA is a function Rd ⌅ {0, 1}. The
value ŶA(x) = 1, semantically denotes the identification of an anomalous sample.
We note that many anomaly detection algorithms may output models that return
“anomalousness” (numerical) scores instead of binary decisions. These models can
be converted to classification models by thresholding the scores by some value t.
Typically, t is set to the expected ratio of anomalies in the dataset [11]. Statistical
techniques have been proposed [92] to fine-tune threshold t.

Definition 1. The (descriptive) explanation eD(ai) of an anomaly ai � D, is a
subset of features eD(ai) = {fij | j = 1, . . . , k}, where k  d, that captures most
of ai’s anomalousness, i.e.,

ŶA(ai) =

⌅
1, i⇤ score(ai[eD(ai)]) > t

0, i⇤ score(ai[eD(ai)]) ⌦ t
(3.1)

where [·] denotes the projection of ai over the features eD(ai) composing its expla-
nation.

Such explanations are called descriptive as they are computed for every set of
anomalies and normal points. In order to make explanations also discriminative
for a new batch of data, we need to transform the unsupervised anomaly detection
into a supervised classification problem. To this end, we can train a classification
algorithm c(X, ŶA(X)) where X � Rn◊d is the multi-dimensional data points and
ŶA(X) � {0, 1} their labels as predicted by detector A. We should stress that the
quality of the predictive model strongly depends on the quality of the unsupervised
detector to separate anomalies from normal points.

11
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Definition 2. The (predictive) explanation eP (X), is a minimal subset of features
that leads to an optimal predictive model on the outcome of an anomaly detector
w.r.t. a performance metric Perf, i.e., ¬↵e⇤p(X) � ep(X) such that:

Perf(c(X[ep(X)], ŶA(X)) ⌦ Perf(c(X[e⇤p(X)], ŶA(X))

In chapter 7 we explain and justify the performance metric we used for assessing
the quality of a predictive explanation.

We now present various works for explaining data anomalies in unsupervised
and supervised settings, partially inspired by [52]. We should stress that explana-
tion of anomalies in temporal data is beyond the scope of this work [24, 7].

3.1 Explaining Outliers in Query Answers

Scorpion [89] was the first system for explaining outliers in the result of group-
by queries. Given a set of outliers spotted by analysts on the results of queries,
the system searches for a logical formulae that describes a set of tuples that con-
tribute most to the excessively high or low aggregate value of a specific group. It
is hard to extend this work for explaining outliers recognized by o⇤-the-self de-
tectors. Furthermore, empirical explanations for data points that violate specific
data quality constraints (i.e., inconsistencies w.r.t. domain-specific rules) have
been studied in [16]. A glitch explanation is a collection of values of features that
have statistically significant propensity signatures. In our work, we are interested
in a quantitative form of data anomalies frequently encountered in transaction or
measurement-based datasets, i.e., outliers in numerical features for which quality
constraints are di⇥cult or impossible to obtain. Finally, an interactive explanation
discovery system has been proposed [69]. It relies on a set of explanation templates
given by analysts that need to be precomputed in a given dataset. Neither of the
previous methods satisfy our requirements for explaining data anomalies in a way
that is both domain and detector agnostic without making strong assumptions
regarding how the input datasets have been processed.

3.2 Explaining Outliers in Temporal Data

MacroBase [1] enables e⇥cient, accurate, and modular analyses that highlight and
aggregate important and unusual behavior in fast data. It introduces an operator
for explaining outliers in a data stream based on the categorical features rather
than the numerical features used to actually detect outliers. In contrast to the
notion of relevant subspaces, the explanation of continuous outliers consists of
conjunctions of categorical features whose values cover most of the outliers de-
tected by a density-based method called MAD. ExplainIT [35] is a recent system
for unsupervised root-cause analysis of time series that shares similar motivations
with MacroBase. It empowers a declarative interface (SQL based) for specifying
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a large number of cause hypothesis that need to be tested and ranked to assist
analysts with a reduced number of causal dependencies that have to exploit re-
garding an observed phenomenon. The use of causal models for explaining data
outlyingness is an interesting idea that we plan to study in the future by lever-
aging our previous work on scalable algorithms for causal feature discovery [85].
Finally, EXstream [93] is a system providing high-quality explanations for anoma-
lous behaviors of streaming data that analysts annotate using CEP-based moni-
toring results. Explanations take the form of logical formulae in CNF involving
relational predicates (i.e., =, <, ⌦) over feature values computed for time series.
Authors formalize the problem of optimally explaining anomalies in CEP as an
information reward maximization problem. In this respect, an entropy-based dis-
tance function of time series is used to measure the contribution in the reward
of each feature. As the reward function is sub-modular, greedy approximation
techniques could be used as in the case of LookOut [29]. Computing explanations
based on single-feature rewards bears similarity with the univariate feature selec-
tion problem while computing subspace based outlier explanations is closer to the
more complex problem of multivariate feature selection [85].

3.3 Explainable Anomaly Detectors

Given that unsupervised detectors assess the abnormality of multidimensional data
on various feature subspaces, they can also report as explanations which subspaces
contributed the most to the score of a point. A first example of such explainable
outlier detectors is LODA [65] which computes the anomaly score of a data point
as the average log density over an ensemble of one-dimensional histogram density
estimators. Given that each histogram with sparse projections provide an anomaly
score on a randomly generated subspace, LODA explains the scores by ranking the
features according to their contribution to point’s anomalousness.

LODI [15] and LOGP [14] seek an optimal subspace in which an outlier is
maximally separated from its neighbors. Both works perform a dimensionality
reduction technique and measure the outlyingness in a low-dimensional subspace
capable of preserving the locality around the neighbors while at the same time
maximizing the distance from the candidate point. Then, the top-k features with
the largest absolute coe⇥cient from the eigenvector with the largest eigenvalue are
selected and returned as explanation of a candidate point.

[72] proposes an interactive explanation method that can be instantiated for
any anomaly detection scheme based on density estimation. [43] introduced a
method to detect outliers in axis-parallel subspaces, called SOD, that computes
the anomaly score of a point in a hyperplane w.r.t. to nearest neighbors in the
full space. SOD hyperplanes that contribute most in the anomaly scores could be
used as explanations. CMI [9] and HiCS [37] rely on statistical methods to select
subspaces of high-dimensional datasets, where anomalies exhibit a high deviation
from normal points. Both consider highly contrasting subspaces as explanations



14 CHAPTER 3. RELATED WORK

of all possible anomalies in a dataset.
The aforementioned works mostly explain anomalies as a byproduct of the

unsupervised detection method. Given that independent experimental evaluations
showed that no detector outperforms all others for all possible datasets [26, 11, 18,
27], in our work we focus on learning the decision boundary of any unsupervised
anomaly detector using the available ground truth. In contrast to the descriptive
explanations provided by the aforementioned works, Proteus targets predictive
explanations that could be successfully also for unseen data.

3.4 Post-hoc Anomaly Explainers

The primary focus of these methods is to specify a subset of features such that a
data point may obtain a high anomaly score when projected onto these subspaces.
Some authors have referred to this explanation task as “outlying aspects mining”
[20, 61].

The following works perform local explanations aiming to explain individual
anomalies. The seminal work [40] first introduced the problem of explaining in-
dividual outliers with “Intentional knowledge” under the form of minimal feature
subspaces in which they show the greatest deviation from inliers. To find optimal
subspaces, [46] formulates a constraint programming problem to maximize di⇤er-
ences between neighborhood densities of known outliers and inliers. [39] employs a
search strategy aiming to find a subspace which maximizes di⇤erences in anomaly
score distributions of all points across subspaces while [56] measures the separa-
bility between outlier and inliers as the classification accuracy between the two
classes, and then apply supervised feature selection methods to produce a local
explanation. OAMiner [20] finds the most outlying subspace where the data point
is ranked highest in terms of a probability density measure and OARank [61] ranks
features based on their potential contribution toward the anomalousness of a data
point.

Extending earlier work [3] on explaining individual outliers, [4, 5] focus on
explaining groups of anomalies for categorical data using contextual rule based
explanations. Authors search for <context, feature> pairs, where the (single)
feature can di⇤erentiate as many outliers as possible from inliers that share the
same context. The outlyingness score for a data point in a subspace is calculated
based on the frequency of the value that the outlier takes in the subspace. It tries
to find subspaces E and S such that the outlier is frequent in one and much less
frequent than expected in the other. To avoid searching exhaustively all such rules,
the method takes two parameters, and, to constrain the frequencies of the given
data point in subspaces E and S, respectively. Similarly, [94] describes anomalies
grouped in time. They construct explanatory Conjunctive Normal Form rules
using features with low segmentation entropy, which quantifies how intermixed
normal and anomalous points are. They heuristically discard highly correlated
features from the rules to get minimal explanations. The previous related work
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assumes that outliers are scattered and strive to explain them individually rather
than to summarize the explanation of a collection of outliers.

The following works perform explanation summarization aiming to explain a
set of anomalies collectively rather than individually. LookOut [29] exploits a
submodular optimization function to ensure concise summarization. xPACS [52]
groups anomalies by generating sequential feature-based explanations providing a
ranked list of feature-value pairs that are incrementally revealed until the human
expert reaches a satisfactory level of confidence. In contrast to the interactive
explanations provided by xPACS, Proteus provides global feature subspaces that
could potentially explain even out-of-sample anomalies.

3.5 Visual, Interactive Exploration of Outliers

VSOutlier [12] is a system for supporting interactive exploration of outliers in Big
Data streams. It integrates various distance-based continuous detectors of out-
liers [82, 48] and provides a rich set of interactive interfaces to explore outliers in
real time. While such visualizations may provide a simple context to understand
outliers, they do not o⇤er clues to explain abnormality in high-dimensional data.
Human analysts are not assisted to choose 2d plots that are actually projections
of high dimensionality subspaces relevant to the outliers of interest. A framework
of sequential feature explanations (SFEs) of data anomalies has been presented
in [73]. An SFE of an anomaly is a sequence of features, which are presented
to the analyst in order until the information contained in the highlighted fea-
tures is enough for the analyst to make a confident judgement about the anomaly.
Authors formalize the problem of optimizing SFEs for a particular density-based
outlier detector and present both greedy algorithms and an optimal algorithm
(based on branch-and-bound search) for SFEs. Rather than presenting to analysts
interactively the features of a relevant subspace per given outlier, we are focusing
in this work on algorithms summarizing explanations of a set of given points to
reduce the burden of analysts.

3.6 Explaining Black-box Predictors

Several methods have been recently proposed to explain why a supervised model
predicted a particular label for a particular example [21, 41, 58, 67]. LIME [67]
constructs a linear interpretable model that is locally faithful to the predictor. In
this respect, it draws uniformly at random (where the number of such draws is
also uniformly sampled) pseudo-samples per every point to be explained. Note
that LIME let the black-box classifier label the generated pseudo-samples. To
the best of our knowledge, LIME has not been successfully used for imbalanced
neighborhoods [88]. Other works [21, 41] explain the model by perturbing the
features to quantify their influence on predictions. However, these works do not
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aim to explain multiple examples collectively, as the global explanation problem
studied in our work.

Other works aim to produce explanations in the form of feature relevance
scores, which indicate the relative importance of each feature to the classification
decision. Such scores have been computed by comparing the di⇤erence between a
classifier’s prediction score and the score when a feature is assumed to be unob-
served [68], or by considering the local gradient of the classifier’s prediction score
with respect to the features for a particular example [6].

[75, 76] considered how to score features in a way that takes into account the
joint influence of feature subsets on the classification score, which usually requires
approximations due to the exponential number of such subsets.

The aforementioned works require as input a supervised model rather than an
unsupervised anomaly detector. However, in real application settings it is di⇥cult
or even impossible to label data as anomalous or normal examples [26]. More-
over, Proteus provides global explanations returned by standard feature selection
algorithms after learning the decision boundary of the unsupervised detector.

3.7 Evaluation of Explainers

Existing approaches for evaluating explanation methods in both supervised and
unsupervised settings are typically quite limited in their scope. Often evaluations
are limited to visualizations or illustrations of several example explanations [6, 14]
or to test whether a computed explanation collectively conforms to some known
concept in the dataset [6], often for synthetically generated data. [72] proposes a
larger scale quantitative evaluation methodology for anomaly explanations regard-
ing sequential feature explanation methods. Compared to this study, in our work
we assess the predictive performance of a classifier given an explanation along with
the correctness of the learned features of the explanation.

3.8 Imbalanced Learning

One of the main challenges in supervised anomaly detection, is class imbalance:
anomalies are largely underrepresented compared to normal examples. In the
following we position Proteus w.r.t. the main imbalanced learning methods [32].
The imbalanced learning problem is concerned with the performance of learning
algorithms in the presence of underrepresented data and severe class distribution
skews. We follow the same categorization of imbalanced learning methods as in
[32].

Random oversampling augments the original dataset by replicating examples
from the minority class, while random undersampling removes a random set of
majority class examples. Random oversampling may lead to overfitting [55] while
undersampling may eliminate useful examples leading to a worse performance.
Proteus pipelines do not perform random under/over-sampling. The synthetic
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minority oversampling technique (SMOTE) [13] generates new minority class ex-
amples from the line segments that join the k minority-class nearest neighbors.
Our pipeline generates synthetic examples close to the original minority examples
by adding gaussian noise. SVM SMOTE [60] is a SMOTE variant that generates
the synthetic examples concentrated in the most critical area, i.e., the boundary
discovered by fitting an SVM classifier. Borderline-SMOTE [30] seeks to over-
sample the minority class instances in the borderline areas, by defining a set of
“Danger” examples. Adaptive Synthetic Sampling (ADASYN) [31] algorithm uses
a density distribution as a criterion to automatically decide the number of synthetic
examples that need to be generated for each minority example. In comparison to
the aforementioned works, Proteus performs a supervised synthetic minority over-
sampling ensuring that new data points are anomalies according to the decision
boundary of an unsupervised detector that is currently explained. In addition, we
proposed a method to avoid information leakage in the cross validation protocol
when synthetic oversampling is applied.
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Chapter 4

Unsupervised Anomaly

Explainers

We are primarily interested in unsupervised algorithms that are both domain-
agnostic (i.e., suitable for datasets from various domains) and detector-agnostic
(i.e., they can be employed to explain outliers produced by any o⇤-the-self detec-
tor). We did not include [44, 70] in our testbed as the explanation is a byproduct of
the detection process and thus they do not fulfil the detector-agnostic requirement.

4.1 Point Explanation Algorithms

The objective of a point explanation algorithm is to discover the subspaces that
best explain the outlyingness of a multi-dimensional point, i.e. the feature sets
where this point deviates most in the dataset. Such subspaces are called relevant
w.r.t. to the explanation of an outlier. Point explanation algorithms essentially
rely on a search strategy for exploring feature subspaces in a dataset and an out-
lyingness criterion. The main challenge is that no interesting monotonic property
holds for most outlyingness criteria [62], which prevents us to e⇤ectively prune the
exponential space of feature sets (2d) w.r.t. data dimensionality (d). Using the
detectors presented previously, an outlier discovered in low-dimensional subspaces
may become invisible, i.e., masked by inliers in high-dimensional subspaces and
vice versa.

RefOut [38] is a sampling based algorithm which employs a stage-wise tech-
nique exploiting random subspace projections to find relevant subspaces of a fixed
dimensionality. The main algorithmic steps of RefOut are illustrated in Figure 4.1.
Initially, RefOut builds a random pool of size n with random subspace projections
drawn from the full feature space of the dataset. In the example of Figure 4.1,
we depict a pool of size 4 that contains 3d random subspaces (i.e, 50% of the 6d
dataset). Using an o⇤-the-self detector, the to-be-explained outlier p1 is scored in
each subspace of the pool. To avoid dimensionality bias when scoring subspaces,
the score of a point p in a subspace s, denoted as score(ps) is standardized using

21
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Figure 4.1: RefOut steps to find 2d subspaces from a 6d dataset to explain the
point p1

Z-score as follows:

score(ps)
⇤ =

score(ps)⇤ scores⇧
V ar(scores)

RefOut follows a stage-wise technique. In stage 1, RefOut assesses every single
feature in the pool. In other words, in this stage it collects the best univariate
subspaces. In our example, for the feature F1 RefOut partitions the pool into
two populations of random subspaces w.r.t. whether they contain or not the
feature F1. To assess the importance of a feature for explaining the outlyingness
of the point p1, RefOut quantifies the discrepancy of score populations between
the two partitions under the hypothesis that they have equal means. To test this
hypothesis, the two-sample Welch’s t-test1 is employed as the two samples may
have unequal variances and/or unequal sample sizes. The partitioning is repeated
for every feature in the pool and the top-k ones with the highest discrepancy
are kept; in our example we kept only {F1} for simplicity. In stage 2, RefOut
applies the same partitioning and scoring process for 2d subspaces by taking the
Cartesian product of the top-k subspaces from the previous stage with all the

1https://en.wikipedia.org/wiki/Welch’s_t-test
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univariate subspaces drawn from the pool. In our example, since we are interested
in 2d explanations the process stops at stage 2 and the best subspace ({F1, F3}) is
returned as explanation of point p1. When multiple outliers have to be explained,
RefOut searches for relevant subspaces for every point individually.

To sum up, the core idea of RefOut is to make subspace selection adaptive
to the outlyingness score of each point and flexible w.r.t. di⇤erent detectors. It
relies on a pool of random subspace projections to assess the important features,
that may contribute to the detection of relevant subspaces for a specific point. As
feature importance is measured via the discrepancy of outlyingness score distri-
butions, RefOut’s e⇤ectiveness depends strongly on the ability of an o⇤-the-self
outlier detector to assign high scores to outliers. In particular, RefOut makes the
assumption that outliers explained in low-dimensional subspaces exhibit a signifi-
cant outlyingness also in their high-dimensional supersets.

Beam [62] is a stage-wise greedy algorithm that takes as input a particular
point and returns the subspaces, up to a given dimensionality, that best explain
its outlyingness. Although the maximum dimensionality of subspaces returned by
Beam is predefined, the algorithm may output subspaces of varying dimensional-
ity. Beam maintains two lists: (i) a global list of the best subspaces considered
as relevant across stages, (ii) a stage list with the best subspaces in each stage.
The main algorithmic steps of Beam are illustrated in Figure 4.2 via an example
requesting to explain the outlyingness of a point p1 of a 6d dataset with up to 3d
subspaces. Using an outlier detector, Beam scores exhaustively in stage 1 all the
15 2d subspaces drawn from the 6 features space of the dataset for the point p1.
Then, the top-k scored 2d subspaces will be inserted both into the stage list and
global list. In stage 2, the best 2d subspaces kept in stage list will be combined
with other features to form 3d subspaces as depicted in Figure 4.2. The top-k 3d
subspaces are then kept in the stage list, while the global list is updated with the
3d subspaces with higher scores for p1 than the 2d subspaces previously computed.
As we required 3d explanations in our example, the process will stop at stage 2.
The global list is then returned as the result of the algorithm.

In a nutshell, Beam is a stage-wise greedy algorithm that exploits the top-k
best relevant subspaces returned by early stages to search for relevant subspaces
in latter stages. Hence, its e⇤ectiveness depends strongly on whether a given point
obtains a high outlyingness score in lower projections of the relevant subspace(s)
that should be finally returned. In order to make a fair comparison with RefOut, we
report only the best subspaces from the stage list in the final stage i.e., subspaces
of predefined maximum dimensionality. We call this variation BeamFX .

4.2 Explanation Summarization Algorithms

The objective of an explanation summarization algorithm is to discover for a set
of outlier points, the subspaces that distinguish as many outliers from inliers as
possible. Explanation summarization algorithms also rely on a search strategy to
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Figure 4.2: Beam steps to find subspaces up to 3 dimensions from a 6d dataset to
explain the point p1

explore feature subspaces in a dataset. The main di⇤erence is that the outlying-
ness criterion is applied collectively for all outliers rather than individually. The
additional challenge stems from the fact that some outliers may be explained by
subspaces of di⇤erent dimensionality or in an extreme case all outliers could be
explained by di⇤erent subspaces.

LookOut [29] searches exhaustively subspaces of fixed dimensionality and re-
turns those that exhibit a certain utility. LookOut was genuinely used to obtain 2d
subspaces that can be easily visualized in order to explain a set of outliers. How-
ever, we used the algorithm to explore subspaces of high dimensionality as well.
LookOut formalizes explanation summarization as maximization problem using
an objective function equipped with the following properties: (i) non-negative ,
(ii) non-decreasing and iii) sub-modular. As submodular optimization is known
to be an NP-hard problem, greedy approximation techniques are used (e.g.,
with a 63% approximation guarantee [59]). The main algorithmic steps of Look-
Out are depicted via an example in Figure 4.3. Given (i) a set of outlier points
P = {p1, p2, p3} and (ii) a number of top-k explanation summaries (i.e., the bud-
get of the computation), LookOut constructs a subspace list Slist with the top-k
subspaces that maximize the scores of the three points i.e., they provide a concise
summary. Initially, LookOut employs an o⇤-the-self outlier detector to score all
outliers in the three possible 2d subspaces drawn from the 3d feature space of



4.2. EXPLANATION SUMMARIZATION ALGORITHMS 25

Figure 4.3: LookOut steps to find 2d subspaces from a 3d dataset with budget b
= 2 (bold values indicate the highest scores per table row)

the dataset. LookOut’s objective function for concise summarization is defined as
follows:

f(Slist) =
⇤

pi�P
max

sj�Slist

scorei,j

where scorei,j represents the outlier score that point pi received in subspace sj .
Then, to assess utility of a subspace s to the Slist, LookOut examines its marginal
gain computed as:

⇧f (s|Slist) = f(Slist � s)⇤ f(Slist)

In our example of Figure 4.3, Slist is initially empty and subspace {F1, F2} is
inserted during the first iteration as all three points obtain their best outlyingness
score in this subspace. During the second iteration, LookOut examines which of
the two remaining subspaces {F1, F3} and {F2, F3} provide the greatest marginal
gain for Slist. In our example, {F1, F3} has a higher marginal gain than {F2, F3}
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Figure 4.4: Data distribution in augmented/projected subspaces of HiCS Datasets

as its maximizes p3’s score, while p1 and p2 scores are already maximized by
{F1, F2}. The two subspaces are compared w.r.t. the maximum scores of every
point currently in Slist. As the budget in our example is 2 i.e., the number of
subspaces that will be included in explanation, the process stops and the Slist is
returned as a summary of the subspaces explaining the points given as input.

In a nutshell, LookOut returns the top-k subspaces of fixed dimensionality
that concisely explain multiple outliers. A subspace is considered a good summary
candidate at a certain iteration step if it maximizes the overall score for at least
one outlier. Hence, LookOut’s e⇤ectiveness strongly depends on the ability of an
o⇤-the-self outlier detector to highly score outliers in their relevant subspaces.

High Contrast Subspaces (HiCS) [36] relies on a subspace search strategy that
exploits combinations of correlated features called high contrast subspaces. The
underlying intuition is that high contrast subspaces have many empty regions and
few very dense regions, thus they are good candidates for separating outliers from
inliers. Figures 4.4-a) to -c) illustrate three subspaces with correlated features
({F0, F1}, {F0, F1, F8} and {F11, F12, F13}) while Figure 4.4-d) a subspace
with non correlated features ({F11, F12}). Subspace contrast in HiCS is measured
using two-sample statistical tests2 which are applied to the raw feature values

2The Welch’s t-test or the Kolmogorov-Smirnov test.
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under the null hypothesis that both samples originate from the same underlying
probability density function. To enhance statistical precision, HiCS performs the
statistical test for several Monte Carlo iterations and the average score is computed
per subspace.

HiCS searches for high contrast subspaces via a stage-wise technique. In the
first stage, it scores exhaustively all the 2d subspaces and selects the top-k based
on their contrast. In next stage, the best 2d subspaces, are used to construct 3d
subspaces scored again based on their contrast. The same procedure is repeated
for several stages until reaching the full feature space d of a d-dimensional dataset;
hence, the algorithm may retrieve subspaces of varying dimensionality. HiCS has
been originally evaluated with LOF, but in principle any other o⇤-the-self detector
could be employed. In order to make a fair comparison with LookOut, we force
HiCS to return subspaces of fixed dimensionality up to a predefined stage. We call
this variation HiCSFX .

To conclude, HiCS is a best e⇤ort algorithm that exploits subspaces with cor-
related features to discover summaries of varying dimensionality. Although the
assumption that outliers are more likely to appear in combinations of correlated
features seems e⇤ective for highly clustered anomalies, correlated subspaces may
not always explain outliers, as depicted in Figure 1.1-e). The main novelty of HiCS
lies in the decoupling of the subspace search strategy from the scores assigned by
an o⇤-the-self detector to a set of outliers.
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Chapter 5

Benchmarking Environment

The algorithms along with the datasets used in our testbed are available in our
GitHub repository1 to ensure repeatability of our experiments. Regarding outlier
detectors, we used the implementation of LOF and iForest from Scikit-learn [64]
and Fast ABOD from PyOD [95]. We have implemented LookOut, RefOut and
Beam in java and modified HiCS implementation from ELKI [71]. Our primary
concern in this work is the correctness of the implemented explanation algorithms.
All experiments were performed in a Windows personal computer with a 4 core
Intel i7 processor and 16GB of main memory.

5.1 Pipelines of Executed Algorithms

As illustrated in Figure 5.1, given (i) a dataset, (ii) a set of outliers (points of
interest) and (iii) a target dimensionality to explain them, we execute all the
possible pairs of explanation and detection algorithms. Each executed pipeline
results to a list of fixed -dimensionality subspaces considered as relevant to each
point of interest. The e⇤ectiveness of each pipeline is assessed using the relevant
subspace(s) per point available in the ground truth of each dataset and the metric
that we define in Section 5.3.

Regarding the hyper-parameters of the outlier detectors, we ensure that they
are able to identify all the outlier points in their relevant subspace(s) provided
in the ground truth. For LOF we use k = 15 and for Fast ABOD k = 10.
We run iForest for 10 repetitions to reduce the variance of outlyingness scores
and the average score is computed for every point, using t = 100 trees and
sub ⇤ sample size = 256. Regarding the hyper-parameters of the explainers, for
HiCS we use candidateCutO⇥ = 400 , a = 0.1, Monte Carlo Iterations = 100 and
Welch’s t-test is performed. For LookOut we use budget = 100. For Beam we
use beam ⇤ width = 100. For RefOut we use poolsize = 100, beam ⇤ width = 100,
the random subspace dimensionality is set to 70% of dataset’s dimensionality and

1https://git.io/JvuO6
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Figure 5.1: Pipelines of outlier detectors & explainers

Welch’s t-test is performed. For HiCS, Beam and RefOut we return the top-100
subspaces as the final result.

5.2 Real and Synthetic Datasets

In this section we describe the real and synthetic datasets used in our testbed. To
reduce confounding factors in the experimental evaluation of the algorithms, the
selected datasets are mainly contaminated with density-based outliers. Outliers
of this type can be detected by LOF but under certain conditions also by other
detectors like ABOD and iForest (see Section 6). The main characteristics of our

Characteristics Real Datasets (# 3) Synthetic Datasets (# 5)

Outlier Type Full Space Subspace
Explanation Dimensionality 2-4 d 2-5 d

% Contamination with Outliers 10% 2, 3.4, 5.9, 10, 14.3 %
# Relevant Subspaces 60 (A), 151 (B), 249 (C) 4, 7, 12, 22, 31
# Relevant Subspaces per Outlier 3 (1 per dimensionality) 1 (91% outliers), 2 (9% outliers)
# Outliers per Relevant Subspace 1 (A), 1.13 (B), 1.45 (C) 5
% Relevant Feature Ratio 100% 35, 21, 12, 7, 5 %
Outlier Visibility w.r.t. Relevant Subspaces Projections / Augmentations Augmentations

Table 5.1: Characteristics of real and synthetic datasets
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datasets are summarized in Table 5.1. To compute the relevant feature ratio for
subspace outliers we took the fraction of the highest dimensional relevant subspace
that explains a portion of the outliers over the total number of features in the
dataset. Note that for full space outliers this ratio is 100% as all features are
considered relevant.

Breast, Breast Diagnostic and Electricity Meter are real-world datasets widely
used to benchmark ML methods for anomaly detection [19]. To facilitate compar-
ison with already published results, we used the version of these datasets2 made
available by the authors of RefOut algorithm [38]. Specifically, Breast (A) con-
tains 198 points, 31 features and 20 outliers, Breast Diagnostic (B) contains 569
points, 30 features and 57 outliers and Electricity (C) contains 1205 samples, 23
features and 121 outliers. The ground truth provided per dataset contains the
outliers detected by LOF resulting 10% contamination with outliers. Note that
the experiments in [38] revealed that the reported outliers are full space. To ob-
tain the best subspaces explaining them3, we followed the method as described
in [38] by performing an exhaustive search from 2 up to 4 dimensions for every
dataset using LOF and keeping the top scored subspace per outlier at the corre-
sponding dimension. We started from 2 dimensions as the initial step of HiCS and
Beam perform an exhaustive search in 2d subspaces. We should stress that outliers
are identifiable by LOF in both lower dimensional projections and augmentations
(i.e., supersets) of the relevant subspaces. These datasets are challenging for sum-
marization algorithms (HiCS and LookOut) as the relevant subspaces can best
explain one outlier on average, e.g., for Electricity there are 1.43 outliers explained
per relevant subspace (see Table 5.1).

HiCS synthetic datasets4 were created by the authors of the HiCS [36] algo-
rithm featuring subspace outliers. They initially splitted the datasets into 2d up
to 5d subspaces, and generated high density clusters in each subspace. Then, they
randomly picked 5 points and modified them to deviate from all clusters in each
subspace. From these datasets we picked the dataset with the maximum dimen-
sionality (100d) and splitted it into five sub-datasets from 14 up to 100 dimensions.
The ratio of relevant features is depicted in Table 5.1 ordered from low (14d) to
high (100d) number of features. Note that every dataset contains 1000 points. As
illustrated in Figure 5.2 and Table 5.1, this split produced datasets of increasing
(i) data dimensionality (i.e., number of features), (ii) number of relevant subspaces
of di⇤erent dimensionality and (iii) contamination with outliers. In HiCS datasets,
the relevant subspaces and the outliers were given but there was no association
between them. To identify the relevant subspace per outlier, we run LOF and
keep the top-5 outliers with the highest scores per relevant subspace. The so ob-
tained ground truth is aligned with the original contamination of the dataset with
5 points deviating in each relevant subspace that can be easily detected by LOF.

2https://www.ipd.kit.edu/~muellere/RefOut/
3We discovered that the subspaces originally reported by the authors of RefOut were not

optimal for most outliers.
4https://www.ipd.kit.edu/~muellere/HiCS/
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Figure 5.2: Dimensionality of subspaces relevant to outliers and contamination
ratio of HiCS datasets

An example of a 2d and a 3d relevant subspace is illustrated in Figures 4.4-a) and
-c).

Note that the vast majority (� 91%) of outliers in HiCS datasets is explained by
one subspace and few outliers (� 9%) by two di⇤erent subspaces. These subspaces
follow the properties: (i) they are disjoint in terms of features, (ii) each subspace
can explain exactly five outlier points, (iii) they have highly correlated features,
(iv) outliers are identifiable by the detectors in augmented subspaces, i.e., supersets
of the relevant features (see example of Figures 4.4-a) and -b) and (v) outliers
are mixed with inliers in lower dimensional projections of relevant subspaces (see
example of Figures 4.4-c) and -d). Note that all outliers in HiCS datasets can be
discovered by the three detectors used in our testbed.

5.3 Evaluation Metric

In this section we present the metric used to evaluate the e⇤ectiveness of the 12
pairs of outlier detection and explanation algorithms (see Figure 5.1). Although
outlier explanations target human analysts, we have not conducted user studies
as our datasets are equipped with ground truth regarding which subspaces are
relevant to the outliers they contain.

We denote the set of points of interest as P , the set of the relevant subspaces per
point p � P as RELp, and the returned subspaces from an explanation algorithm
a to a point p as EXPa(p). As each outlier in our datasets has very few relevant
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subspaces (specifically 1-3), we selected the MAP metric penalizing detectors that
do not rank the relevant subspace(s) for an outlier within the top positions [77].
To compute MAP of an explainer a for a set of points P , we initially compute the
precision (see Eq. 5.1) which is used to compute the Average Precision (see Eq.
5.2). P@k(p) denotes the precision up to a k-th position of the returned subspaces
in EXPa(p). The Boolean function rel(k) indicates whether a subspace at the
k-th position of EXPa(p) is relevant or not. Then, MAP is computed using the
Average Precision of all points explained at a given dimensionality (see Eq. 5.3)
according to the ground truth. A high MAP value indicates that for several points,
the explainer was able to find and highly score their relevant subspaces using an
outlier detector. Compared to other metrics such as accuracy, precision or recall,
MAP better captures the scoring nature of outlier explanation algorithms: the
discovered relevant subspaces should be ranked at the top positions of the list of
candidates an algorithm considers.

Precisiona(p) =
|RELp ✏ EXPa(p)|

|EXPa(p)|
(5.1)

AvePa(p) =

⌃|EXPa(p)|
k=1 P@k(p) ⇣ rel(k)

|RELp|
(5.2)

MAPa(P ) =
1

|P |
⇤

p�P
AveP(p) (5.3)
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Chapter 6

Experiments and Insights

In this section we present our experiments for comparing point explanation and
summarization algorithms. Our testbed includes the real datasets used in the eval-
uation of RefOut [38] as well as the synthetic datasets used in the evaluation of
HiCS [36]. Both types of datasets were originally used to assess the e⇤ectiveness of
detecting outliers hidden in subspaces rather than the suitability of the subspaces
that led to the detection of those outliers. To the best of our knowledge, the
only study investigating recall and precision of the subspaces of varying dimen-
sionality retrieved by Beam was presented in [62]. In our testbed, we measure the
e⇥ectiveness and e�ciency of the four explanation algorithms when seeking for
explanations of increasing dimensionality (2d up to 5d) as this experiment reveals
useful insights when di⇤erent outlier detectors are used.

6.1 Evaluation of Point Explanation Algorithms

The experiments of this section aim to answer two questions: (a) Is it e⇤ective
to combine any explanation algorithm with any o⇤-the-shelf outlier detector? (b)
How is the behavior of outlier detection and explanation pipelines a⇤ected by the
number of features in a dataset? To answer these questions, we run Beam and
RefOut with LOF, Fast ABOD and iForest using the settings described in Section
5.1 for the synthetic and real-world datasets presented in Section 5.2. Figure
6.1 depicts for each dataset, the MAP (y-axis) of di⇤erent outlier detection and
explanation pipelines for explanations of increasing dimensionality (x-axis).

Figures 6.1-a) to -e) illustrate the MAP obtained in the five synthetic datasets
of our testbed. Starting from the 14 dimensions in Figure 6.1-a), we observe that
RefOut with LOF achieves optimal MAP as it retrieves and gives the highest score
to the relevant subspaces for all the outliers, regardless of the explanation dimen-
sionality. This is because (i) HiCS datasets contain highly clustered anomalies,
thus LOF is the most suitable detector and (ii) the pool of RefOut contains low
dimensional subspaces in which outliers can be more easily detected. Note that
Beam with LOF has lower MAP for high explanation dimensionality since it does

35
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Figure 6.1: Mean Average Precision (MAP) of Beam and RefOut in HiCS syn-
thetic datasets (a)-(e) and real-world datasets (f)-(h) for explanations of increasing
dimensionality (best viewed in color)

not retrieve all the relevant subspaces. Passing to 23 dimensions in Figure 6.1-b),
the e⇤ectiveness of every pipeline drops especially for high dimensional explana-
tions. RefOut with LOF seems to not be a⇤ected up to 3d explanations. An
interesting behavior observed in this plot is that Beam is more e⇤ective with Fast
ABOD and iForest than with LOF. This is due to the fact that the stage-wise
strategy of Beam requires to collect lower dimensional projections of the relevant
subspaces, so they could be formed in the final stage. Recall that in HiCS datasets,
outliers are not separated from inliers in lower projections of the relevant subspaces
(see Figure 4.4). According to complementary experiments not presented here due
to space restrictions, in the early stages of Beam, the score distributions of outliers
and inliers overlap less when Fast ABOD and iForest is used instead of LOF.

While the dimensionality of datasets increases, the same trends are observed in
Figures 6.1-c) to -e). In general, Beam is able to retrieve all relevant 2d subspaces
with the three detectors due to the exhaustive scoring of all feature pairs. However,
its e⇤ectiveness starts dropping when the dimensionality of explanations increases.
As the number of Beam stages increase, more subspaces need to be collected stage-
wise with smaller di⇤erences in their score. RefOut proves to be more sensitive
than Beam w.r.t. the number of features in the dataset D. As the dimensionality
of random subspace projections in the pool is proportional to D’s dimensionality,
it becomes more di⇥cult for RefOut to identify important features due to the
less distinguishable score populations in subspaces. Observe that none of the
algorithms seem to work for 4d explanations from 70 dimensions and higher and for
5d explanations from 23 dimensions and higher. Note that we run 10 times iForest



6.1. EVALUATION OF POINT EXPLANATION ALGORITHMS 37

Figure 6.2: Mean Average Precision (MAP) of HiCS and LookOut in HiCS syn-
thetic datasets (a)-(e) and real-world datasets (f)-(h) for explanations of increasing
dimensionality (best viewed in color)

(see Section 5.1) for every subspace considered by Beam up to 4d explanations for
70d and 100d datasets and Fast ABOD up to 4d explanations in 70d and up to
3d in 100d datasets. Specifically, to explain 100 outliers with 5d explanations in a
70d dataset, Beam needs to assess approximately 2.2M subspaces. In Section 6.3,
we demonstrate that Beam requires an e⇥cient detector such as LOF to assess a
significant amount of subspaces.

Figures 6.1-f) to -h) illustrate the MAP obtained in the three real-world datasets
of our testbed. Recall that in these datasets, the majority of the outliers are iden-
tifiable even in the full feature space. In general, Beam with LOF retrieves the
optimal subspace for every outlier point (MAP = 1), despite of the explanation
dimensionality. However, the e⇤ectiveness of Beam with Fast ABOD and iForest is
significantly lower. On the contrary, RefOut seems to have very low MAP regard-
less of the employed detector. This is because RefOut cannot distinguish which
features of full space outliers a⇤ect significantly the score populations generated
by the corresponding detector.

Lessons Learned. Depending on the dataset characteristics, outlier detectors
behave di⇤erently, a⇤ecting the e⇤ectiveness of explanation algorithms. A critical
factor is whether outliers are masked by inliers in lower dimensional projections
of the relevant subspaces (as in HiCS datasets). In this case, for datasets and
explanations of low dimensionality, RefOut’s random projection technique along
with a detector suitable for the nature of outliers (e.g., LOF for clustered outliers)
is preferred. For high dimensional datasets and low explanation dimensionality,
Beam’s stage-wise technique along with iForest or ABOD can e⇤ectively capture



38 CHAPTER 6. EXPERIMENTS AND INSIGHTS

the small deviation of outliers in the subspaces considered by early stages. None
of the algorithms seems to work for high explanation dimensionality (e.g., 4d and
5d) and high dataset dimensionality (e.g., 70d and 100d). When outliers are also
visible in the full feature space (as in real-world datasets) the random projection
technique exhibits poor MAP as it fails to find relevant features that significantly
a⇤ect the score distributions. In this case, a stage-wise technique coupled with a
suitable detector should be preferred regardless of the explanation dimensionality.

6.2 Evaluation of Summarization Algorithms

The experiments presented in this section aim to answer three questions: (a) Is
it e⇤ective to combine any explanation summarization algorithm with any outlier
detector?, (b) How is the behavior of outlier detection and explanation pipelines
a⇤ected by the number of features or their correlation in a dataset?, and (c) What
is the quality of summaries in the presence of outliers explained by subspaces of
di⇤erent dimensionality? To answer these questions, we run HiCS and LookOut
with LOF, Fast ABOD and iForest using the settings described in Section 5.1 for
the synthetic and real-world datasets presented in Section 5.2. Figure 6.2 depicts
per dataset the MAP (y-axis) of di⇤erent pairs of outlier detection and explanation
algorithms for explanations of increasing dimensionality (x-axis). Despite the fact
that HiCS does not use any detector to search candidate subspaces, it employs
a detector to rank the retrieved subspaces. Thus, its e⇤ectiveness should be also
evaluated for di⇤erent detectors.

Figures 6.2-a) to -e) show the MAP of di⇤erent algorithms for the five synthetic
datasets of our testbed. Starting from 14 dimensions in Figure 6.2-a), HiCS and
LookOut with LOF achieve optimal MAP regardless of the explanation dimen-
sionality. As dataset’s dimensionality and outlier ratio increase in Figures 6.2-b)
to -e), HiCS with LOF and Fast ABOD are the most e⇤ective because (i) small
groups of outliers are hidden within subspaces with correlated features and (ii)
outliers are highly clustered at the borders of data distribution, allowing LOF
and Fast ABOD to score their relevant subspaces at the top positions. The low-
est MAP value of HiCS is observed in the 39 dimensional dataset where some 4d
relevant subspaces do not contain highly correlated features. This drop clearly
demonstrates the strong dependency of HiCS on the feature correlation heuristic.

As we can see in Figures 6.2-b and -e) LookOut’s e⇤ectiveness significantly
drops as the explanation dimensionality increases in higher dimensional datasets.
One reason of this drop is related to the lower scores returned by the detectors
in high dimensional subspaces. An additional reason stems from the existence of
points exhibiting high outlyingness also in their augmented subspaces. Accord-
ing to complementary experiments, detectors (especially LOF and iForest) assign
higher scores to outliers in their augmented subspaces of dimensionality d than
to outliers explained exclusively in d. As the outlier ratio increases along with



6.3. ALGORITHMS RUNTIME & TRADEOFFS 39

dataset’s dimensionality, more outliers get high scores in their augmented sub-
spaces of a requested dimensionality. As a small fraction of outliers is explained
by high dimensional subspaces, LookOut mainly retrieves augmented subspaces of
outliers explained in lower dimensions that provide higher marginal gain. Observe
that LookOut with Fast ABOD starts performing better than with LOF for high
dataset dimensionality. Note that we run LookOut with LOF up to 4d explana-
tions in 100 dimensions and Fast ABOD and iForest only up to 3d explanations for
70 and 100 dimensions. Specifically, to explain the outliers with 4d explanations
in a 70d dataset, LookOut needs to assess 900K subspaces. In Section 6.3, we
demonstrate that LOF is the most e⇥cient detector when a significant amount of
subspaces need to be assessed.

Figures 6.2-f) to -h) illustrate the MAP obtained in the three real-world datasets
of our testbed. HiCS has poor MAP regardless of the explanation dimensionality
or the detector used. This is because outliers are not contained in subspaces with
highly correlated features. LookOut with LOF (used to identify the outliers) is the
most e⇤ective as it is able to retrieve almost all relevant subspaces even when they
maximally explain one outlier. On the contrary, LookOut with iForest and Fast
ABOD exhibit poor performance as they are not able to highly score the relevant
subspaces.

Lessons Learned. The fact that relevant subspaces may be formed by highly
correlated features could be exploited to avoid a blind search of subspaces. When
datasets exhibit strong feature correlation in relevant subspaces, HiCS exploits
this heuristic and provides the best performance regardless of the dataset’s or
explanation’s dimensionality. It only depends on the ability of LOF or Fast ABOD
to highly rank the retrieved subspaces. LookOut is as e⇤ective as HiCS in the
synthetic datasets for low dataset dimensionality (e.g. 14d). When subspaces
are formed by uncorrelated features, LookOut is a better alternative. However,
LookOut is heavily impacted by the varying dimensionality of subspaces explaining
di⇤erent outliers. Indeed, the utility of subspaces in LookOut is defined exclusively
in terms of their scores, without considering any semantic property of explanations
such as the coverage of the points to be explained, or the overlap or the equivalence
of subspaces in the explanation summaries.

6.3 Algorithms RunTime & Tradeo�s

In this section we report the execution time of the two point explanation and the
two summarization algorithms we evaluated their e⇤ectiveness in Sections 6.1 and
6.2. In this respect, we are using the same synthetic (up to HiCS 39d) and real
(Electricity 23d) datasets containing a similar amount of samples (� 1000). We
demonstrate the execution time only for Electricity real dataset as it contains the
highest number of samples exhibiting the same behavioral trends as the other two
real datasets. Recall that as we are looking for explanations of fixed dimensionality
(2d up to 5d) the ratio of relevant features decreases as dataset’s dimensionality
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increases.

Outlier Detection. Unlike HiCS, subspace search in explanation algorithms like
Beam, RefOut and LookOut, heavily depends on the e⇥ciency (and e⇤ectiveness)
of used o⇤-the-self detectors. According to the performance curves of detection
and explanation pipelines depicted in Figure 6.3, LOF is the fastest followed by
iForest and Fast ABOD across all datasets and explanation algorithms. This is
due to low number of samples (� 1000) despite the fact that iForest has the lowest
time complexity. A similar result has been reported in [18] for the same hyper-
parameter settings as those used in our testbed (see Section 5.1). Note that for
iForest we report the average time out of 10 repetitions per subspace. Specifically,
to score a single subspace LOF needed 0.05, iForest 0.2 and Fast ABOD 2 seconds
approximately.

Point Explanation. The runtime of pipelines involving Beam, RefOut are il-
lustrated in Figures 6.3-a) to -d). Critical factors a⇤ecting Beam’s e⇥ciency are:
(i) the requested explanation dimensionality (more stages to be built), (ii) the
dataset’s dimensionality (more subspaces to be assessed per stage), (iii) the e⇥-
ciency of the employed detector and (iv) the number of outliers to explain (the
process is repeated per outlier). However, due to its random sampling technique,
RefOut’s runtime is relatively stable regardless of the explanation or dataset’s di-
mensionality. Note that up to 39d datasets and 2d explanations, RefOut and Beam
with LOF need almost the same time to assess a similar amount of subspaces. Re-
fOut with LOF outperforms Beam with LOF from 1 (in real datasets) up to 3
orders (in synthetic datasets) of magnitude for 39d datasets and 5d explanations.

Explanation Summarization. The runtime of pipelines involving LookOut and
HiCS are illustrated in Figures 6.3-e) to -h). The critical factors a⇤ecting Look-
Out’s e⇥ciency are: (i) dataset’s and explanation dimensionality (exhaustive sub-
space search) and (ii) the e⇥ciency of the employed detector. On the other hand,
by decoupling subspace search from outlier scoring, the critical factor of HiCS
e⇥ciency is only the explanation dimensionality (more subspaces to be assessed
per stage). Thus, HiCS exhibits similar running times when executed with LOF,
iForest and Fast ABOD (used only to rank the discovered subspaces). Surpris-
ingly, LookOut with LOF1 outperforms all HiCS pipelines up to 4d explanations
(by 1 order of magnitude in 2d). For the size of datasets used in our experiments,
HiCS statistical tests to assess feature correlation prove to be more costly than
LOF distance calculation of points to assess their outlyingness. Performance gains
of LookOut with LOF drop as we increase the number of features along with ex-
planation dimensionality, leading HiCS to outperform LookOut in the 39d dataset
for 5d explanations.

Table 6.1 demonstrates the point explanation and summarization algorithms
along with their corresponding detector that exhibit the best tradeo⇤ between ef-
fectiveness (according to Figures 6.1 and 6.2) and e⇥ciency (according to Figure

1LookOut has been experimentally evaluated by its authors [29] only with iForest and 2d
explanations.
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Figure 6.3: Runtime of detection and explanation pipelines (best viewed in color)

6.3) from 2d up to 5d explanations across decreasing relevant feature ratios. For
every cell we take the top pair of algorithms according to their e⇥ciency and ef-
fectiveness in pareto order. We prioritize generic algorithms like LookOut over
algorithms like HiCS that work under specific conditions. For instance, LookOut
with LOF is slightly less e⇤ective than HiCS with LOF in Figure 6.2-c), while
they have the same execution time in Figure 6.3-g). In cells 2d and 3d with a
12% ratio, we consider that LookOut achieves a better tradeo⇤ since it is more
generic than HiCS. When point explanation or summarization algorithms exhibit
zero e⇤ectiveness in all executed pipelines for a particular dataset and explana-
tion dimensionality, no top pair is reported. For instance, for 5d and 21% or
12% ratios only one pair for detection and summarization algorithms is reported
(HiCS with LOF) as no point explanation algorithm succeeds to return relevant
5d explanations. The main conclusions drawn from Table 6.1 are:

1. State-wise subspace search employed by Beam achieves the best tradeo⇤
for full space outliers. Both its e⇤ectiveness and e⇥ciency significantly decrease
for subspace outliers as the ratio of relevant features decreases. However, it is the
only option for high explanation dimensionality (3d - 4d) and low relevant feature
ratio (< 12%).

2. Random subspace projection employed by RefOut provides a good tradeo⇤
for subspace outliers with a medium ratio of relevant features (35% and 21%). Its
e⇤ectiveness drops to zero as the explanation dimensionality becomes greater than
3d (for 21% ratio).

3. Exhaustive subspace search employed by LookOut exhibits top e⇤ectiveness
and e⇥ciency for full space outliers regardless of the explanation dimensionality,
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Explanation
Dimensionality

Relevant Features Ratio

100% 35% 21% 12%

2d
Beam LOF

LookOut LOF
RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

3d
Beam LOF

LookOut LOF
RefOut LOF
LookOut LOF

RefOut LOF
LookOut LOF

Beam Fast Abod
LookOut LOF

4d
Beam LOF

LookOut LOF
RefOut LOF
LookOut LOF

Beam iForest
HiCS LOF

Beam iForest
HiCS LOF

5d
Beam LOF

LookOut LOF
RefOut LOF
LookOut LOF

HiCS LOF HiCS LOF

Table 6.1: Tradeo⇤s of outlier detection and explanation algorithms

as well as, for subspace outliers up to 3d. Its e⇤ectiveness significantly drops for
subspace outliers explained by subspaces greater than 3d (for 21% ratio).

4. Correlation heuristic exploited by HiCS achieves the best tradeo⇤ for 4d-
5d explanations especially when the relevant feature ratio is low. This heuristic
however, strongly depends on the data distribution as highly clustered outliers
may are not always be visible in correlated features.



Part II

PROTEUS: Predictive
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Chapter 7

PROTEUS AutoML pipelines

Figure 7.1 illustrates the main steps of the pipelines automatically generated by
PROTEUS. We proceed with explaining each step as well as the underlying design
choices.

Producing Predictive Explanations as a Supervised Task. First, the
anomaly detector runs in dataset D for producing the anomaly scores which are
then transformed into binary labels (anomaly or not) in dataset D⇤. Producing a
surrogate model of lower dimensionality becomes a supervised, binary classifica-
tion task with feature selection, where the outcome is the label of the unsupervised
detector. We note that data are standardized for subsequent steps so that the stan-
dard deviation of each feature is 1.

Oversampling. D
⇤ is expected to be highly imbalanced (w.r.t. the outcome),

as anomalies are rare. Imbalanced datasets are statistically challenging for any
ML classifier. One technique to alleviate the problem is oversampling the minority
class. We focus on synthetic minority oversampling, i.e., the samples are perturbed
by adding noise to the values of the features, creating new points called pseudo-
samples. In standard (unsupervised) oversampling, for small enough perturbations
the pseudo-samples are assumed to remain in the minority class. An assumption
that strongly depends on the definition of what is considered “small-enough”.
However, in this context, one can take advantage that the detector model pro-
duced in the first step is available to query regarding the label of a pseudo-sample.
In other words, PROTEUS oversampling is supervised. Intuitively, oversampling
probes the region around the anomalies and perturbs these points to examine if
they cross the detector’s decision boundary or not. It thus e⇤ectively increases
the available sample size for the classification, potentially increasing the quality
of the approximation with the surrogate model. For each anomalous sample a it
produces ps pseudo-samples per anomaly by adding a perturbation vector p to a:
a
⇤ � a+p. Each p follows a multi-variate (d-dimensional) normal distribution with

zero mean and an isotropic, diagonal, covariance matrix �I; � is a hyper-parameter
of the algorithm which we set to 0.1 for all the computational experiments. If a⇤ is
labelled as an anomaly (i.e., ŶA(a⇤) = 1) it is appended to the oversampled dataset
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Figure 7.1: Proteus AutoML Pipeline for Anomaly Detection and Explanation

Daug, otherwise, another pseudo-sample is produced.

Choosing the Performance Metric. The quality of performance of a predic-
tive explanation requires metrics that are insensitive to the class distribution as
anomalies are rare. In PROTEUS we optimize the area under the Receiver Op-
erating Characteristic curve (AUC) which is a widely-used evaluation metric in
anomaly detection, independent of the class distribution. Given a minimal subset
of features and a classifier c, AUC equals the probability that an anomalous sam-
ple will get a higher score by c than an inlier. Discovering such minimal subset
is a challenging task as the search space is exponential and features in the input
dataset may be both irrelevant or redundant w.r.t. to the predictive outcome. As
we describe later in this chapter, in this work we rely on e⇤ective and e⇥cient
feature selection algorithms [47, 86, 80] to extract predictive explanations.

Hyper-Parameter Optimization Space. To produce small-sized explanations,
PROTEUS relies on feature selection algorithms, while to produce the surrogate
model, a classifier is required. Most classification algorithms also accept a set of
hyper-parameter values that also need to be tuned. We will call a combination of
feature selection and classification algorithms and their hyper-parameters values
as a configuration. Each configuration is a pipeline that accepts a dataset and
produces a classification model and corresponding selected features. PROTEUS
searches the configuration space for the one that leads to an optimal model by
performing a simple grid search [33]. The search space of configurations is formed
by the Cartesian product F◊C (see Figure 7.1) where F (C, respectively) is the set
of all feature selection (classification) algorithms with bounded hyper-parameter
values.

As our choices for feature selection algorithms, we include the Statistical Equiv-
alent Signatures (SES) [47], Forward-Backward with Early Dropping (FBED) [86],
and Lasso [80]. All of them guarantee to return the optimal feature subset (Markov
Blanket in Bayesian Networks) under certain broad (but di⇤erent for each algo-
rithm) conditions, removing not only irrelevant, but also redundant features. In
general, SES and FBED tend to return smaller feature subsets than Lasso, with a
small drop in predictive performance [86].

Regarding the hyper-parameters of feature selection algorithms, for SES we
used max conditioning set k � {2, 3}, and significance threshold a � {0.01, 0.05, 0.1},
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we run FBED forK � {0, 1, 3} iterations with significance threshold in {0.01, 0.05, 0.1}
and for Lasso we used ⇥ � {0.001, 0.01, 0.1, 0.2}.

As the decision boundary is rarely linear, we consider linear as well as non-linear
classifiers. Our selection considers two facts (a) the extensive experimental results
of [17], (b) the fact that deep neural network architectures are almost certain to
overfit in very low sample sizes, both in terms of total sample size and the size of
the rare class. The present selection of classifiers comprises of: (i) Support Vector
Machines where we used linear , polynomial of degree 2 and 3, and the rbf with
⇤ � {1, 2, 5} kernels, and cost penalty parameter C � {1, 5, 10}; (ii) Random Forest
with entropy split criterion, number of trees in {100, 300, 500} and minimum leaf
size in {1, 2, 3} and (iii) K-Nearest-Neighbors with K � {5, 10, 15}. The number of
pseudo-samples to create per anomaly, called ps is also tuned as a hyper-parameter
taking values in {0, 3, 10}. Of course, additional classifiers and feature selection
algorithms can be easily integrated in PROTEUS. In total, PROTEUS tried 600
configurations. Finally, as anomaly explanation targets human analysts, we limit
the number of features selected up to 10. To select these 10 features, we rank them
based on their score given by the corresponding feature selection algorithm (e.g.,
Lasso coe⇥cients) and pickup the top-10.
Estimating Performance for Tuning. What is considered as the optimal con-
figuration, out of all tried, is the one that leads to models with the highest expected
out-of-sample (unseen samples) predictive performance. It is important to estimate
this quantity accurately, i.e., with small variance. A smaller variance of estimation
increases the probability that the truly optimal configuration will be selected, and
thus improves the quality of the final model. Estimation is challenging when there
are only few anomalies in the dataset. Indicatively, the synthetic dataset used in
our experiments (see Section 8.1) contains 10 anomalies out of 867 samples.

To estimate the expected out-of-sample performance, PROTEUS employs a
Stratified, R-Repeated K-fold Cross Validation with Grouping protocol. We now
explain each part of the protocol. We assume that the reader is familiar with
the Standard K-fold Cross Validation (CV, hereafter). The Stratified CV is a
variant where the partitioning to folds is performed under the constraint that the
distribution of the classes in each fold is approximately the same as the one in the
full dataset [87]. Stratification reduces the variance of estimation for imbalanced
data and classes with very few samples (ibid). To further reduce the variance
of estimation we repeat the CV process multiple times R and take the average
(R-Repeated CV). Multiple repeats reduce the variance component due to the
stochasticity of the specific partitioning. Prior work has shown its benefits ibid.
Finally, we come to Grouping. By CV with Grouping we indicate a variant of CV
that handles grouped samples (a.k.a. as clustered samples in statistics, not to be
confused with clustering of samples). These are samples that are not independently
sampled and maybe correlated given the data distribution. Such samples are
repeated measurements on the same subject, as an example. In our context, an
anomaly and its pseudo-samples are grouped: information from a pseudo-sample in
the training set leaks to predicting the corresponding anomaly in the test fold. To
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avoid information leakage, CV with grouping partitions to folds with the constraint
that all samples of a group remain in the same fold. In our experiments, we set
the number of folds K = 10 and the repeats R = 5. Hence, each application of the
current version of PROTEUS trains (K · R ·# Configurations + 1) · ps = 90, 003
models.
Producing the Final Surrogate Model and Feature Subset. The final
model is trained using all available samples (the full Daug) with the best con-
figuration found, denoted with ⇥F ⌅

, C
⌅⇧ in Figure 7.1. This configuration also

produces the final subset selection (anomaly explanation). The reasoning is that
most algorithms (and hence, configurations) are expected to produce better qual-
ity models and improved feature selection with more available sample. The models
trained during the CV are only employed for selecting the optimal configuration
and providing estimates.
Estimating the Out-of-Sample Performance. We now consider how the per-
formance estimate of the final model is produced. Let us assume that 1000 configu-
rations are tried and the best found has a CV estimate of 0.90 AUC. Unfortunately,
the CV estimate of the best configuration is optimistic and should not be returned,
i.e., the actual AUC is expected to be lower. The reason is that our estimate is
the best out of 1000 tries [86, 34]. The phenomenon is conceptually similar to the
multiple hypothesis testing problem in statistics. In small sample sizes, the over-
optimism is particularly striking. Recent work shows that most AutoML tools do
not correct for this optimism [90]. In this respect, we apply the Bootstrap Bias
Correction (BBC, hereafter) to our CV estimates [87] that corrects for this opti-
mism. This leads to returning conservative estimates of performance on average.
As a final report, PROTEUS outputs three objects:
(1) A surrogate model of lower-dimensionality for classifying training or new
samples regarding their anomalousness. The model approximates the detector
model and could be used in its place to visualize, inspect, and interpret.
(2) An explanation of anomalies in the form of few selected features that can be
manually inspected (e.g., through visualization) to verify the detector’s decisions
and determine root causes.
(3) An accurate, out-of-sample estimate of performance. It can be used to
judge the quality of approximation and agreement between the detector and the
surrogate model.
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Experimental Evaluation

PROTEUS was implemented in Python 3.6 and evaluated on several synthetic
and real-world datasets as described below. The code and the datasets used in
our experiments are available in our GitHub repository1. All experiments were
performed in a Linux Desktop computer with a 4-core Intel i5 processor and 32GB
of memory.

8.1 Synthetic and Real Datasets

We focus on datasets where the samples are independent and identically distributed
(i.i.d.) and contain numerical features. We employ a synthetic dataset, where
anomalies have been simulated so that a minimal, global, predictive explanation
(feature subset) is both achievable and known. The presence of this gold-standard
allows us to evaluate how well PROTEUS identifies it. Specifically, we selected
randomly one of the 100-dimensional datasets introduced in [37]. Some anomalies
have been generated in a way that makes them outliers according to a subset of 2 of
these features, call it S2d, and some according to a subset with 3 (other) features,
call it S3d. Thus, the subset of these 5 features S = S2d � S3d forms the gold-
standard of global explanation for all anomalies. On this parent synthetic dataset,
we added irrelevant features with randomly selected values following a normal dis-
tribution with zero mean and standard deviation of one. We ended up with 5
synthetic datasets having 20, 40, 60, 80 and 100 dimensions. All of them contain
867 samples with 10 anomalies i.e., the anomaly ratio is ⌘ 1%. Such datasets
have been frequently used in the literature of anomaly explanation [56, 14, 39, 61],
because: (a) the features in an explaining subspace (e.g, S2d) are correlated so
feature cannot be selected independently; (b) anomalies are recognized as such
either in S2d or S3d, but in no other strict subset. Thus, only multivariate detec-
tion algorithms and corresponding models will achieve high performance. Hence,
PROTEUS must approximate a potentially more complex model.

1github link to be added
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Dat. Name #F #S A.R. IF LOF LODA
P. Synthetic 5 867 1% 0.96 1.0 0.92
W. Br. Cancer 30 377 5% 0.95 0.94 0.96
Ionosphere 33 358 36% 0.85 0.93 0.87
Arrhythmia 257 452 15% 0.80 0.74 0.75

Table 8.1: Characteristics of datasets and AUC performance of detectors during
training. We denote the parent synthetic dataset as P. Synthetic, the number of
features and samples as #F and #S and the anomaly ratio as A.R.

We additionally consider real-world datasets that are widely-used in the evalu-
ation of anomaly detectors. Specifically, we selected the Wisconsin-Breast Cancer,
Ionosphere and Arrhythmia, originally from the UCI Machine Learning repository,
as defined for anomaly detection purposes in Outlier Detection DataSets (ODDS)
repository2. They were chosen to ensure that the detectors employed achieve
reasonable performance, and thus explanation makes sense. The dataset char-
acteristics and detector performances are shown in Table 8.1. Wisconsin-Breast
Cancer and Ionosphere contain two classes. The minority classes in both datasets
are considered as anomalies. For Arrhythmia, eight sub-classes were merged to
form the anomaly class. Finally, we added irrelevant features following the pro-
cedure described in synthetic datasets constructing three additional datasets per
real-world dataset with 30%, 60% and 90% irrelevant feature ratio.

8.2 Experimental Setting

In our experiments, we selected three widely-used unsupervised anomaly detectors
that employ di⇤erent anomalousness criteria, namely Local Outlier Factor (LOF)
[10] as a representative of density-based, Isolation Forest (IF) [49] as a representa-
tive of isolation-based and Lightweight On-line Detector of Anomalies (LODA) [65]
as a representative of projection-based detectors. Regarding the hyper-parameters,
for IF we used 100 trees and 256 sub-sample size, for LOF we used K = 15 and
for LODA we used 100 projection vectors. To assess the predictive power of a sur-
rogate model produced by PROTEUS we stratified and splitted each dataset into
70% for training and 30% was held out for testing. In each dataset, the detectors
run on training and test set before adding irrelevant features. The anomaly thresh-
old t is set as the anomaly ratio for each dataset. The detectors performances are
demonstrated in Table 8.1.

2http://odds.cs.stonybrook.edu/
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8.3 Feature Importance Alternatives

We compare the original PROTEUS system, employing general-purpose feature
selection methods (call it PROTEUSfs), with the PROTEUS pipeline instantiated
only with feature importance methods from related explanation methods. We note
that these alternatives have been developed to provide descriptive explanations;
within the PROTEUS pipeline, they are coupled with a classification model, hyper-
parameter values are optimized, and they are turned into predictive explanations.

The research question to study is whether methods specifically developed for
explanations in the form of feature importance scores o⇥er additional advantages
over the general-purpose methods, everything else being equal (i.e,. the rest of the
PROTEUS pipeline). All alternative methods produce local explanations, i.e., for
individual samples. Importance scores for a given feature are calculated for each
sample (local scores). We compute the local scores only for the anomalous samples.
To incorporate them into PROTEUS and select features for global explanations,
the local scores are averaged out for each feature to produce a final feature impor-
tance score, as proposed in [50]. As a final feature selection, we select the top-K
features with the highest importance scores. In our experiments, K is set to 10,
which is the maximum number of features allowed to be selected by PROTEUSfs
and the feature importance methods. Regarding the hyper-parameters for the fea-
ture importance alternatives, we used the ones proposed by the respective authors.
We evaluate the following alternatives:
(1) Lightweight On-line Detector of Anomalies or LODA, hereafter, [65] is an
anomaly detector that also returns local feature importance scores. LODA is
included as it has shown an excellent trade-o⇤ between computational e⇥ciency
and anomaly detection performance as a detector [54]. As a feature importance
method is selected as a representative of a detector-specific explanation
method. As such, the results of its explanation method are shown only for the
experiments where LODA is also used as the detector. We should stress that
when comparing with LODA, the objective is to approximate its performance
as the explanation is strongly coupled to the detection process. The resulting
PROTEUS variant is called PROTEUSLODA.
(2) Kernel SHAP (stands for SHapley Additive exPlanations) [51] is a model-
agnostic method for local explanation of predictive models producing local feature
scores. It is considered state-of-the-art, having outperformed LIME [67]. As Kernel
SHAP does not produce a predictive model itself we consider it as a descriptive
method. We use the proposed kernel as in the original publication of SHAP. Kernel
SHAP is included as a representative of a model-agnostic feature importance
method, leading to the variant PROTEUSSHAP .
(3) CA-Lasso [56], is a representative of a model-agnostic, local feature
importance specifically pertaining to anomaly explanation. It selects k-
nearest neighbors for an outlier ai and k other random points. To overcome the
class imbalance, the authors oversample ai adding pseudo-samples around it, la-
belling them as anomalies by assumption, until the two classes are balanced. The
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explanation problem is then turned into binary classification solved with Lasso.
The feature importance of each feature for ai corresponds to the Lasso coe⇥-
cients. It is worth noting the similarities with the general PROTEUS approach:
the anomaly explanation problem is turned into binary classification using a classi-
fier that can also produce feature importance scores. The main di⇤erences are that
(a) PROTEUS directly addresses the global explanation problem, (b) oversampling
is supervised (by the detector), (c) numerous algorithms and hyper-parameter val-
ues are searched, (d) the out-of-sample (predictive) performance is estimated. The
resulting PROTEUS variant is called PROTEUSCA⇥Lasso .

8.3.1 PROTEUS Performance Estimation

The objective of this experiment is to assess the e⇤ect of PROTEUS design choices,
specifically the BBC and Grouping, to provide an accurate performance estimation.
Figure 8.1 depicts the train estimates and test performance when PROTEUS is
employed with the design choices described in Section 7, i.e., BBC and CV with
Grouping. The dashed black diagonal line indicates the zero bias: points above
the diagonal indicate underestimation (negative bias) and below overestimation
(optimistic bias). To show the accuracy of the estimation of PROTEUS design
choices, we fit a loess curve3 on train and test performances for every combination
(258 in total) of datasets (synthetic and real), detectors (IF, LOF and LODA)
and feature selection methods (general purpose and feature importance methods).
Ideally, we would want the loess curve to fit exactly the diagonal. Observe that
with lower AUC performances PROTEUS tends to overestimate while with higher
performances PROTEUS returns a more conservative estimation. In both cases,
the points are close to the ideal diagonal line.

To further show the e⇥cacy of the proposed design choices to provide an accu-
rate performance estimation, in Figure 8.2 we compare the loess curves for train
and test estimates for (i) BBC and Grouping (our design choices), (ii) no BBC
(i.e., CV estimate) and Grouping (iii) BBC and no Grouping and (iv) no BBC
and no Grouping. To quantify the bias for each of the four alternatives, we use
the Residual Sum of Squares (RSS) to measure the discrepancy between the train
and test performance. When PROTEUS is employed with BBC and Grouping (i),
it gives the most accurate estimation of out-of-sample performance (with RSS(i)
= 0.05) than when using any of the three alternative design choices (with RSS(ii)
= 0.88, RSS(iii) = 0.11 and RSS(iv) = 0.25).

8.4 Relevant Features Identification Accuracy

The goal of this experiment is to verify whether the features discovered during the
training phase by PROTEUSfs and the feature importance alternatives are part
of the gold-standard feature subset S. For this experiment we used the synthetic

3https://en.wikipedia.org/wiki/Local regression
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Figure 8.1: Bias between train and test AUC performances as reported by PRO-
TEUS implemented with BBC and CV with grouping. Each point represents the
performance for a particular pipeline, e.g. when PROTEUS explains LOF in Ar-
rhythmia using the general-purpose feature selection methods. A more general
bias trend is captured by fitting a loess curve to the obtained performances

datasets. To assess the quality of the global explanation E in terms of features, we
compute precision(S,E) = |S ⇧ E|

|E| and recall(S,E) = |S ⇧ E|
|S| . As we select the

top-10 features to form the explanation and S contains 5 features, the precision for
the feature importance alternative methods will be up to 0.5. The recall and preci-
sion curves are depicted in Figure 8.3. General-purpose feature selection methods
employed by PROTEUSfs exhibit the highest precision never dropping below 0.5,
independently of the employed detector or dataset dimensionality. We observed
that precision is 0.5 when Lasso is selected and higher when FBED is selected. We
should stress that SES was never selected by PROTEUS for the synthetic datasets.
FBED removed most of the irrelevant features leading to a predictive model with
less than 10 features to approximate the decision boundary of the corresponding
detector. PROTEUSfs achieves almost optimal recall regardless of the dimension-
ality and the employed detector. A slight drop in recall is observed when the
precision higher than 0.8 (achieved only by FBED), while recall is optimal when
Lasso is selected. Moreover, PROTEUSfs general-purpose methods are robust to
increasing data dimensionality and irrelevant feature ratio where CA-Lasso and
SHAP seem to be particularly sensitive.
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Figure 8.2: Bias between train and test AUC performance as reported by PRO-
TEUS implemented with 4 alternatives

8.5 PROTEUS Generalization Performance

The objective of this experiment is to assess the generalization performance of
PROTEUS without (PROTEUSfull ) and with feature selection (PROTEUSfs) as
well as with the various feature importance alternatives, (PROTEUSCA⇥Lasso ,
PROTEUSSHAP , PROTEUSLODA). Figure 8.4 depicts the AUC performance for
each method in test set. Regarding the synthetic datasets, PROTEUSfs achieves
very high AUC across the increasing data dimensionality with a minimum of 0.96.
CA-Lasso and SHAP instead exhibit lower performances as they do not retrieve,
as showed in the previous experiment, many of the relevant features. Observe that
in the synthetic dataset PROTEUSfs generalizes better than PROTEUSfull , i.e.,
when using all the available features.

Regarding the real datasets, similar trends are observed with PROTEUSfs
achieving consistently a very high generalization performance with a minimum of
0.8 in Arrhythmia in the presence of 2,570 dimensions and 90% irrelevant feature
ratio. PROTEUSfs seems to approximate in a detector-agnostic manner, the op-
timal performance of LODA’s feature importance method when LODA is used as
the detection algorithm. This is due to the fact that LODA’s explanations are
tailored to its detection algorithm; however, if LODA’s detection performance was
poor in a dataset, the provided explanation would be of less value for the ana-
lysts. Moreover, Figure 8.5 demonstrates the e⇤ect of the proposed oversampling
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Figure 8.3: Precision and Recall performance of discovered features when explain-
ing IF, LOF and LODA on synthetic datasets w.r.t. increasing data dimensionality
(irrelevant feature ratio)

approach on generalization performance of PROTEUSfs w.r.t. the increasing num-
ber of pseudo-samples per anomaly for the real datasets. For Breast Cancer the
oversampling does not increase the performance due to the “ceiling e⇤ect”. For
Ionosphere and Arrhythmia we observe that the performance is increased when
explaining LODA.

In a nutshell, the general-purpose feature selection methods employed by PROTEUSfs ,
are able to discover the relevant features leading to predictive models with very
high performance regardless of the data dimensionality (and the increasing rele-
vant feature ratio) and capture accurately the decision boundary of every employed
unsupervised detector. A scatter plot of the Wisconsin-Breast Cancer dataset over
two 2-dimensional explanations produced by PROTEUSfs for LODA’s and LOF’s
decision boundary are demonstrated in Figures 8.6a and 8.6b respectively.

8.6 PROTEUS E⇤ciency

In this experiment, we demonstrate the execution time of PROTEUS pipeline as
well as its general-purpose feature selection methods. In Figure 8.7, we compare
the runtime of PROTEUS AutoML pipeline to produce the predictive explanation
including all the procedures involved in Figure 7.1 with the unsupervised summa-
rization anomaly explanation algorithms evaluated in Part I of our work. Note
that the comparisons were performed for 5d explanations which was the upper



56 CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.4: AUC test performance averaged over the three detectors on synthetic
and real datasets w.r.t. increasing dimensionality (irrelevant feature ratio)

limit of our comparative evaluation of Part I. Unlike all other explanation meth-
ods, PROTEUS exhibits an almost constant execution time as the dimensionality
of synthetic data increases. However, PROTEUS is three times slower on average
than HiCS. On the contrary, PROTEUS is significantly faster than LookOut that
performs an exhaustive search, especially in higher data and explanation dimen-
sionality. The major di⇤erence between a descriptive and an AutoML explainer
such as PROTEUS is that the former’s execution time is highly tailored to the
data and explanation dimensionality, while the latter depends mainly on the num-
ber of configurations used to find the most suitable pipeline for a given dataset.
To conclude, the major advantage of PROTEUS stems from the fact there is no
need to recompute the explanation for every new batch of data, avoiding that way
additional computational costs.

Figure 8.8 depicts the runtime comparison between the general-purpose feature
selection algorithms employed by PROTEUS and the ad-hoc feature importance
methods. The general-purpose feature selection algorithms require less than two
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Figure 8.5: E⇤ect of increasing pseudo-sample size per anomaly on AUC test
performance

(a) (b)

Figure 8.6: Subspaces Explaining Anomalies in Cancer Data

seconds on average in 100-dimensions to select features, exhibiting a steady ex-
ecution time, while SHAP’s cost is particularly sensitive as data dimensionality
increases.
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Figure 8.7: Total execution time of PROTEUS, HiCS and LookOut on synthetic
datasets

Figure 8.8: Average execution time of feature selection and importance methods
on synthetic datasets
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Conclusion and Future Work

In this thesis, we focused on the explanation of data anomalies. In the first part,
we demonstrated a thorough evaluation of unsupervised anomaly explainers ad-
dressing several missing insights regarding the performance of existing anomaly
explanation and summarization algorithms under realistic settings. We under-
lined the main challenge that stems from the lack of inherent pruning properties
to e⇤ectively search the exponential space. Existing subspace search strategies
exploit the distributional characteristics either: (i) of data such as features cor-
relation in subspaces (HiCS [36]) or (ii) of scores given by an anomaly detector
in subspaces (LookOut [29], Beam [62] and RefOut [38]). The former strategy is
e⇤ective when highly clustered anomalies over correlated features are contained in
datasets regardless of their dimensionality, while the latter is e⇤ective in low ex-
planation dimensionality where the anomaly detectors can discriminate accurately
the anomalies from the inliers. It remains open to assess whether the low dimen-
sional subspaces retrieved by an explainer are projections of a high dimensional
subspace fully explaining a specific point.

We should additionally note that the detection of anomalies in LOF, ABOD
and iForest, is actually decoupled from the search of subspaces likely to contain
them. HiCS, RefOut and Beam instead are explaining anomaly detectors that rely
on per-subspace measures to quantify the explanation quality of subspaces. We are
planning to extend our testbed with recent works [83] taking into account the rela-
tionship between subspaces using a dimension-based measure of their explanation
quality. Moreover, in case of recurring anomaly patterns, it is also interesting to
benchmark group-based explanation summarization techniques [53]. Another in-
teresting aspect would be to investigate anomaly explanation in stream processing
settings such as LODA [65].

At the second part of this thesis, we proposed the first methodology for pro-
ducing predictive, global anomaly explanations in a detector-agnostic fashion. In
particular, we show how with adequate design choices regarding rare class over-
sampling as well as unbiased performance estimation of ML pipelines, generating
predictive, global anomaly explanations boils down to an AutoML problem. As
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yielded from our experiments, PROTEUS is not only able to discover explaining
subspaces of features relevant to anomalies, but it can also construct predictive
models that approximate e⇤ectively and robustly the decision boundary of popular
unsupervised detectors (e.g., IF, LOF, LODA).

As future work, we plan to make PROTEUS more e⇥cient by leveraging au-
tomatic approaches that can optimize the performance of any given learning algo-
rithm to the problem at hand [74]. Another computational cuto⇤ to consider is the
Bootstrap Bias Corrected with Dropping Cross-Validation (BBCD-CV) protocol
[87]. This protocol can lead to substantial computational savings as numerous
configurations can be dropped after just a few folds before completing the full
K-fold CV on them. Moreover, it would be interesting to approximate the deci-
sion boundary of a detector directly from the provided anomaly scores rather than
converting them to binary labels. Hence, one could transform the explanation
problem into regression with feature selection.
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[43] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier
detection in axis-parallel subspaces of high dimensional data. In Thanaruk



BIBLIOGRAPHY 67

Theeramunkong, Boonserm Kijsirikul, Nick Cercone, and Tu Bao Ho, editors,
Advances in Knowledge Discovery and Data Mining, 13th Pacific-Asia Con-
ference, PAKDD 2009, Bangkok, Thailand, April 27-30, 2009, Proceedings,
volume 5476 of Lecture Notes in Computer Science, pages 831–838. Springer,
2009.
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[64] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jacob VanderPlas, Alexandre Passos, David Cour-
napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. Scikit-
learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, 2011.
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