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1. Fundamental Concepts of Quantum Field Theory (QFT)Intro

We begin our introduction with fundamental concepts of QFT which will be necessary

to understand the topics discussed later in this thesis. The first two subsections will

introduce the concepts of renormalization and the renormalization group (RG). The

book of Peskin and Schroeder “An introduction to Quantum Field Theory” is an

excellent starting point to introduce these topics. [1]

1.1 Renormalizationas0

In QFT particles are not the most fundamental objects which describe a given system.

Instead, we reduce the description to that of underlying quantum fields. The particles

can then be thought of as excited states of these fields. There are some key advantages

to that description, with the most important being arguably that we can study the

creation and annihilation of particles. The physically relevant quantities in QFT are

the correlation functions:

⟨0|T (φ(x)φ(y))|0⟩ , T (φ(x)φ(y)) = Θ(x0 − y0)φ(x)φ(y) + Θ(y0 − x0)φ(y)φ(x)

(1.1) as01

This quantity for example, which is known as the two point function, describes

the probability amplitude of a field φ to propagate from the space-time event x to the

space-time event y and it appears often in QFT calculations. In general, we can take

correlation functions in any state, but the simples ones are the vacuum correlation

functions, taken either at the free vacuum state |0⟩, or the interacting vacuum state

|Ω⟩.

The calculations become more complicated when one considers interacting QFTs.

Delving into details would require multiple semesters worth of advanced undergradu-

ate or graduate level physics to explain. For the purposes of understanding this thesis,

it is sufficient to know that in most cases we are limited to perturbative techniques

to study an interacting system. The usual approach is to expand the interacting

part of the correlation function in powers of the coupling constants. These are the

famous Feynman diagrams, which are a tool of expressing complicated integrals in

a concise diagrammatic way. Each diagram comes with a set of rules that describe

what the different lines and vertexes of a diagram correspond to. Of course, as we

will discuss in later subsections, when the coupling constant is not sufficiently small

to be considered a perturbation, as in the case of QCD, these methods fall apart.

To motivate the need of renormalization, consider as an example the so-called

one-loop correction (the first non-trivial perturbative correction to the correlation

function) for an interacting Lagrangian given by:

L =
1

2
(∂φ)2 − 1

2
m2

0φ
2 − λ0

4!
φ4 (1.2) as02
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One of the Feynman diagrams we would have to evaluate to study a one-loop cor-

rection to the scattering φ1φ2 → φ3φ4 would be the following:

The Feynman rules of the theory instruct us to integrate over all possible values of

the internal momenta appearing in the diagram, which in our case is just k. These

lines are interpreted as virtual particles. However, if we follow the rules for the free

scalar propagators, i.e. the rules associated with the lines in the above diagram, we

would find out that the integral diverges when k takes large values. This is a case of

a UV divergence and as one might guess, these divergences appear a lot in QFT.

To make matters worse, even if all of the real particles’ momenta p1 − p4 took

small values, the virtual particles are still allowed to be created with arbitrarily

large momenta. These divergences are problematic, because the emerging correla-

tion functions would be infinite, which is contrary to our physical interpretation of

them being associated with probability amplitudes. Renormalization is our way of

dealing with these divergences and obtaining the physical information hidden behind

the emerging infinities.

There are various techniques to make these infinities disappear, each with their

advantages and disadvantages. In our case, the technique we will be using is the

addition of counterterms in our Lagrangian. The physical argument for this method

is that the coupling constants m0 and λ0 appearing in the equations are not neces-

sarily the physical ones that we measure in our lab. The couplings appearing in the

Lagrangian of (1.2) are called bare couplings and usually they are denoted with an

index of 0. This choice of indexing is to distinguish them from the physical couplings,

usually called dressed, which will appear without an index of 0.

To renormalize the Lagrangian via counterterms:

• We adopt a finite UV momentum cutoff Λ, ie we allow the momentum k to

take values up to Λ. Now the integral over k is not divergent, or as it is usually

called, it is regulated.
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• We express the bare couplings g0,i that appear in our Lagrangian (in our case

i takes 2 values, with the first being associated with m0 and the second with

λ0) as:

g0,i = gi − δgi (1.3) as03

The terms δgi are called counterterms and the dressed couplings gi are the

physical observables that we measure in the lab.

• This is the most important step. Since the counterterms are arbitrary, we select

them so that they cancel out the emerging infinities in the limit where Λ → ∞.

Now when we take that limit the regulated integral becomes finite.

• We evaluate the finite part of the integral, which has now become renormalized.

There is a perplexing conceptual observation which emerges upon describing the

aforementioned process. The energy scale of the scattering we discussed is derived

through the momenta of the external particles. We can think of the energy scale as an

order of magnitude estimate for the energies we would expect to appear in the system.

Renormalization would seem to imply that virtual particles whose momentum lies

outside of the system’s energy scale do not affect the physics of the system we are

studying significantly. The renormalization group will help us understand this feature

of QFT.

1.2 The Renormalization Group (RG)as2

A useful quantity in QFT is the generating functional of vacuum correlation func-

tions. In d-dimensional Minkowski space-time we have:

Z[J ] ≡
∫

Dφ ei
∫
L[φ;gi]+J(x)φ(x)dxd

, Dφ ≡
∞∏
k=0

dφ(k) (1.4) as20

Note that the momentum is in general a non integer. The product in (1.4) is a prod-

uct over all possible momenta. The generating functionals offer a convenient way

of studying correlation functions through functional differentiation. The momentum

cutoff Λ we discussed in the previous section would translate to us integrating over

momenta with |k| < Λ.

To study the effect of high energy virtual particles in our system we can explic-

itly integrate over momenta with values close to the cutoff and obtain an effective

description of our system at lower energies. The comparison of the new generating

functional with the old will uncover the effect of the high energy momenta. For

simplicity we will also set:

J(x) ≡ 0, (1.5) as21

– 4 –



and we will study the specific example of the Lagrangian in the previous subsection.

Of course it is straightforward, to generalize the following calculations to any renor-

malizable Lagrangian by expressing any arbitrary analytic potential V (φ) as a power

series in powers of φ.

We begin by bringing the generating functional to Euclidean form:

ZE[0] ≡
∫

[Dφ]Λ e−
∫
dxd

E( 1
2
(∂Eφ)2+ 1

2
m2

0φ
2+

λ0
4!

φ4) , [Dφ]Λ ≡
Λ∏

k=0

dφ(k) (1.6) as22

Henceforth we will drop the index E for convenience. We have to decompose the

scalar field into high energy and low energy modes. To do that consider a real

number b, with 0 < b < 1 and define:

χ(k) ≡
{
φ(k) , bΛ ≤ k < Λ,

0 , else
(1.7) as23

ϕ(k) ≡
{
φ(k) , k < bΛ,

0 , else
(1.8) as24

Using the definitions in (1.7) and (1.8) we may identify the high energy modes with

χ and the low energy modes with ϕ. Now we can write:

φ = ϕ+ χ , [Dϕ]bΛ ≡
bΛ∏
k=0

dϕ(k) , Dχ ≡
Λ∏

k=bΛ

dχ(k) (1.9) as25

and we rewrite (1.6) as follows:

Z[0] ≡
∫

[Dϕ]bΛ e−
∫
dxdLeff [ϕ;gi], (1.10) as26

with:

e−
∫
Leff [ϕ;gi]dx

d ≡ e−
∫
L[ϕ;gi]

∫
Dχ e−(

∫
L[χ;gi]+LI [ϕ,χ;gi])dxd

, (1.11) as27

with the Lagrangian LI containing all terms that include both the high and the low

energy modes.

Upon integrating out the higher energy modes, we observe that the resulting

effective Lagrangian takes the following form:

Leff [ϕ; gi] =
1

2
(1 + ∆α)(∂ϕ)2 +

1

2
(m2 +∆m2)ϕ2 +

1

4!
(λ+∆λ)ϕ4 + ... (1.12) as28

The integration of the high energy modes will generate corrections to all possible

powers of ϕ, ∂ϕ and their products. Essentially, the effect of the higher energy

modes has been absorbed into the coupling constants and now we have an effective
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description of the system for lower energies.

Let us now compare the partition functions of (1.6) and (1.10). On one hand we

have equation (1.6):

Z[0] =

∫
[Dφ]Λe−

∫
dxdL[φ;gi] (1.13) as29

On the other hand we have (1.10):

Z[0] =

∫
[Dϕ]bΛe−

∫
dxdLeff [ϕ;gi] (1.14) as210

By performing the rescaling:

k′ =
k

b
, x′ = xb (1.15) as211

in (1.14), we can write ϕ = φ and match the cutoffs. Equation (1.14) becomes:

Z[0] =

∫
[Dφ]Λe−

∫
dxdb−d( 1

2
(1+∆α)b2(∂φ)2+ 1

2
(m2+∆m2)φ2+ 1

4!
(λ+∆λ)φ4+...) (1.16) as212

But now we can rescale the scalar and adopt new coupling constants in the effective

Lagrangian, in order to obtain correlation functions of the same form as those that

we would obtain from the original Lagrangian:

φ′ =
√

(1 + ∆α)b2−dφ , m′2 =
m2 +∆m2

b2(1 + ∆α)
,

λ′ =
λ+∆λ

(1 + ∆α)2b4−d
, ... (1.17) as213

To summarize, we saw that the process of integrating out the high energy mo-

mentum modes and rescaling momenta is analogous to a rescaling of the Lagrangian.

In the limit b → 1 this transformation is continuous. If we repeat this process an

arbitrary number of times, we can think of its effects as a flow over all possible cou-

pling constants. For historical reasons we call this transformation of the Lagrangian

“The Renormalization Group”, although it is not a group with its strict mathemat-

ical definition.

Let us return to the observation that motivated the study of RG flows, i.e., that

the high energy modes of the virtual particles seem to be negligible in perturbative

QFT corrections. We learned that the effect of these higher energy modes has been

absorbed in the coupling constants that describe our system at the given energy

scale. In a sense, we can think of the coupling constants as functions of the system’s
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energy scale. All the energy modes which lie far beyond the system’s energy scale

can be integrated through the Renormalization Group until we reach an effective

description applicable to our system’s energy scales.

Let us examine systematically how we can obtain the RG equations through

which we can express a coupling constant as a function of the system’s energy scale.

Based on what we learned about the RG we saw that an infinitesimal variation of

the cutoff given by:

Λ → Λ + δΛ, (1.18) as214

corresponds to the following changes in the fields and the coupling constants:

φ→ (1 + δη)φ , gj → gj + δgj (1.19) as215

The index j ranges over all possible coupling constants. An interacting n-point

correlation function, i.e.:

G(n)({xi}) ≡ ⟨Ω|T (φ(x1)φ(x2)...φ(xn)) |Ω⟩ , i = 1, 2, · · · , n (1.20) as216

would transform (according to the first transformation in (1.19)) as:

G(n)({xi}) → (1 + nδη)G(n)({xi}) (1.21) as217

If we consider that G should be a function of the cutoff and the coupling constants

we can write:

dG(n) =
∂G(n)

∂Λ
δΛ +

∂G(n)

∂gj
δgj = nδηG(n) (1.22) as218

Defining:

βj(gj) ≡
Λ

δΛ
δgj , γ(gj) ≡ − Λ

δΛ
δη (1.23) as219

we obtain the Callan-Symanzik equation:[
Λ
∂

∂Λ
+ βj

∂

∂gj
+ nγ

]
G(n)({xi}; Λ, gj) = 0 (1.24) as220

The dimensionless quantities in (1.23) are called the β and γ functions. Since the

n-point function is renormalized they are independent of the cutoff and they depend

only upon the coupling constants.

Finally, let us consider what can happen when a Lagrangian transforms under

the RG. Starting from an arbitrary point in the space of coupling constants, there

are two possible outcomes:

• The process does not converge. This case is not interesting.
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• The process converges to a fixed point of the flow, meaning a point that is

invariant under an RG transformation.

As we can see from equation (1.15), for a fixed point to remain invariant under an

RG transformation x must be either 0 or ∞. This means that our system has no

characteristic length or energy scale. Moreover, the fixed points of a RG transfor-

mation are characterized by conformal symmetry, a symmetry in the scaling of the

coordinates in a way that preserves angles.

Finally, let us return to (1.12) and consider what happens near a fixed point.

The different powers of φ, ∂φ and their products are often called operators. If we

denote them with O(x), then the interacting part of the action can be expressed as:

SI [φ] ∝
∫
dxdgiOi(x) (1.25) as221

Since the action remains invariant we observe that if the operators scale as:

Oi(x) → b−∆+,iOi(x) (1.26) as222

then the coupling constants must scale as:

gi → b−∆−,igi , ∆−,i ≡ d−∆+,i (1.27) as223

The operators can then be classified according to the value of the corresponding ∆+

as follows:

• If ∆− > 0 the operator is called relevant. According to (1.27) we see that this

operator moves away from the fixed point as we move to the IR (b → 0) and

therefore it will end up describing different long distance physics.

• If ∆− < 0 the operator is called irrelevant. According to (1.27) we see that this

operator moves towards the fixed point and therefore it will end up describing

the same long distance physics.

• If ∆− = 0 the operator is called marginal. This case is a little more com-

plicated, as the behavior of the operators depends on higher order quantum

corrections. It could be marginally relevant or marginally irrelevant (i.e be-

having like a relevant or irrelevant operator). In the special case where all

quantum corrections vanish, it corresponds to our fixed point being part of a

higher dimensional surface of fixed points. The RG will take us to another of

these points.
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2. Holographyholog

2.1 A brief introduction to holographyas1

The holographic principle is an axiom that was proposed by Gerard ’t Hooft [2] and

Leonard Susskind [3] in the 1990s. What started as an attempt to provide a quan-

tum description of gravity and explain thermodynamical properties of black holes

has evolved to a viable method of studying strongly coupled QFTs. As we discussed

in previous subsections, the correlation functions of a QFT, are usually calculated

using perturbative methods. However, this is impossible when the QFT is strongly

coupled because the expansion parameter (the coupling constant) is not sufficiently

small to be considered a perturbation.

The situation is further complicated when one considers what we learned from

the study of the RG, ie, that in general, the coupling constant depends on the energy

scale of the system. Although perturbative approaches may be applicable in certain

energy scales, the same cannot be stated in the high energy (UV) limit or the low

energy (IR) limit. This has led physicists to primarily use numerical approaches to

study systems described by strongly coupled QFTs. One such example which has

applications in QCD is to use a lattice, but even these numerical methods have their

limitations. A great amount of computational strength is required and there are still

cases where these methods fall apart [4].

In order to understand the holographic principle consider a d+1 dimensional

space-time, described by a gravitational theory (bulk/gauge theory). The additional

dimension, usually called the holographic dimension, ranges to infinity, where the

space-time’s d-dimensional boundary is located. Then, the holographic principle

postulates that the dynamics of the bulk can be described by a QFT defined on

that boundary (boundary theory). Essentially, it is as if the gravitational physics

of the bulk space-time are encoded as a hologram on the boundary, hence the name

holographic principle.

The duality becomes especially useful when one considers CFTs with a large

number of colors, which corresponds to a SU(N) gauge group in the large N limit

for reasons that will soon become apparent. According to the holographic principle,

the ground state of these CFTs corresponds to an AdS space-time [5]. The AdS/CFT

correspondence is the most known and studied case of a holographic correspondence.

AdS/CFT is an especially useful duality because the relation between the grav-

itational and the field theoretical description is a strong-weak one. To demonstrate
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that, we begin from the one-loop β function [6]:

∂gYM

∂ log(Λ)
= −11

3
N
g3YM

(4π)2
+O(g5YM) (2.1) a1

In order for the two sides of the equation to scale the same way to leading order in

gYM , we see that the following coupling must be kept constant:

λ = Ng2YM (2.2) a2

The coupling λ is called the t’Hooft coupling. A useful feature of the holographic

principle is that the curvature radius of AdS scales as:

R = lsλ
1
4 , (2.3) a2a

where ls is the natural length scale of string theory. We can perform perturbative

gravitational calculations only when R ≫ ls, because then the space-time is asymp-

totically flat. But according to (2.3), this means that the t’Hooft coupling must

be large, and therefore, the CFT must be strongly coupled. This confirms that the

duality is a strong-weak one, which is the key advantage of AdS/CFT. In the large

N-limit, computations that would be impossible in the QFT side of the duality be-

come easy in the gravitational side and vice versa.

There is a fair amount of skepticism that should be present when one first learns

of the holographic principle, since it is a conjecture. To ease these concerns, it should

be mentioned that the theory does more than simply providing us with insight into

the workings of strongly interacting systems via the study of toy models. There

are plenty of examples across many different areas of physics that are in qualitative

agreement with the holographic principle [7].

Perhaps, the most known is the entropy of a black hole. Bekenstein originally

predicted and Hawking later confirmed that the entropy of a black hole is propor-

tional to its area rather than its volume [8][9], which is in contrast to what would

have been expected of a physical system. However, this perplexing relation is in total

agreement with the holographic description, according to which the thermodynam-

ical properties of black holes are encoded on their boundary, making the scaling of

their entropy with their surface area appear natural.

Finally, since the holographic principle offers us with an inherently quantum

mechanical description of gravity, it is natural to compare it with string theory. The

key advantage of holography when compared to perturbative string theory, is that it

allows us to create a non-perturbative theory of quantum gravity.
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2.2 AdS space-timeAdS

The importance of AdS/CFT necessitates a brief overview of the most important

features of AdS space-time. AdS is a maximally symmetric space-time with constant

negative scalar curvature. To visualize it, consider a “d+2”-dimensional hyperboloid

embedded in a “d+3”-dimensional space. This is described from the metric:

ds2 = −dX2
0 − dX2

d+2 +
d∑

i=1

dX2
i + dX2

d+1 ,
Xj ∈ (−∞,∞),

j = 0, 1, · · · , d+ 2
(2.4) AdS0

along with the condition

X2
0 +X2

d+2 −
d∑

i=1

X2
i −X2

d+1 = L2 (2.5) AdS01

We can change coordinates via:

X0 =
r

2

[
1 +

1

r2
(
L2 + x⃗2 − t2

)]
, Xi =

L

r
xi

Xd+1 =
r

2

[
1− 1

r2
(
L2 − x⃗2 + t2

)]
, Xd+2 =

L

r
t (2.6) AdS02

to obtain the metric of the “d+2”-dimensional AdS space-time, in what is usually

referred to as Poincare coordinates:

ds2 =
L2

r2
[
dr2 − dt2 + dx⃗2

]
, r ∈ (0,∞) (2.7) AdS1

with dx⃗ being a d-dimensional vector of spatial coordinates. The Poincare coordi-

nates cover only half of AdS, but the other half can be readily obtained by changing

the sign of r. The Ricci tensor and the scalar curvature for a d-dimensional AdS

space-time are given by:

Rµν = −d− 1

L2
gµν , R = −d(d− 1)

L2
(2.8) AdS2

We can see two important features of AdS space-time from the metric in (2.7):

• The first feature is that for a given radial slice r = const, the metric becomes

Minkowski. This is an important feature for holography, because the vevs

defined on these submanifolds are well defined.
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• The second feature is that this metric displays conformal symmetry. This par-

tially motivates the AdS/CFT correspondence. We can see that as a symmetry

of the metric in the scaling:

(r, t, xi) → (αr, αt, αxi) , α > 0 (2.9) AdS3

Finally, another property of AdS worth discussing is its conformal boundary.

We may parametrize the metric of AdS in a conformal way, such that the point at

radial infinity becomes mapped in a compactified manifold. The boundary of the

compactified manifold is called the conformal boundary of AdS. This is easier to see

using an alternative form for the metric, where the coordinates are called the global

coordinates of AdS:

ds2 = L2(−cosh2ρdτ 2 + dρ2 + sinh2ρdΩ2
d) , ρ ∈ (0,∞) , τ ∈ [0, 2π) (2.10) AdS31

Under the transformation:

tanθ = sinh ρ, (2.11) AdS32

the metric takes the form:

ds2 =
L2

cos2θ

(
−dτ 2 + dθ2 + sin2θdΩ2

d

)
(2.12) AdS4

The radial dimension has been compactified through θ, which now takes values in θ ∈
[0, π

2
). Now we can perform a conformal transformation to the metric by multiplying

with L2

cos2θ
:

ds̃2 = −dτ 2 + dθ2 + sin2θdΩ2
d (2.13) AdS5

We have arrived at the metric of Einstein’s static universe, however θ ∈ [0, π
2
)

rather than θin[0, π). The equator θ = π
2
is a boundary of AdS. Through this

comparison we can define Asymptotically AdS space-times, as the space-times which

are conformal to space-times isomorphic to half of Einstein’s static universe. In the

case of the Poincare coordinate system, the boundary is at r = 0. This is where the

boundary CFT is located in the AdS/CFT correspondence.

2.3 The Holographic Dictionary and Holographic RG Flowsaas2

We can now discuss specifically the relation between the two descriptions of the

holographic duality. This relation is usually referred to as the Holographic Dictionary

or the Gubser-Klebanov-Polyakov [10] and Witten [11] formula. Assume that we have

an operator O of a QFT residing on the d-dimensional boundary of a space-time.

The conformal dimension of O is ∆ and the operator is coupled to a scalar source

φ0. Then, the Holographic Dictionary states that:

ZQFT [φ0] = Zstring

[
r∆−dφ(xµ, r)|r=0

]
≡ Zstring [φ0] , (2.14) Dict1
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where ZQFT and Zstring are the generating functionals of the QFT and the string/gravitational

theory respectively. We see that the scalar source φ0 acts as a boundary condition

imposed on the space-time’s boundary.

The generating functional of the QFT is:

ZQFT [φ0] = ⟨exp(i
∫
ddxφ0O)⟩ (2.15) Dict2

As we discussed in previous sections, the generating functional can be used to obtain

correlation functions through functional differentiations. For example, the two-point

function of O can be obtained by:

⟨O(x)O(y)⟩ = δ2lnZQFT [φ0]

δφ(x)δφ(y)
|φ0=0 (2.16) Dict3

The Holographic Dictionary is useful because when the QFT is strongly coupled,

the calculation of ZQFT is not practical. Instead, we can use equation (2.14) and use

the gravitational generating functional. In the case of AdS/CFT the gravitational

generating functional is obtained through the classical gravity action:

Zstring = exp(iSon−shell[φ0, g]) (2.17) Dict4

and since the gravitational theory is weakly curved for strongly coupled QFTs, the

calculation of the on-shell action is easy. The only difficulty arises due to the IR

divergences of the gravitational theory, which are associated with the infinite volyme

of space-time. Therefore, the action must be renormalized. Through the holographic

correspondence, the interpretation of these IR divergences is that they correspond

to UV divergences of the QFT.

In the context of the AdS/CFT correspondence, the study of RG flows has an

interesting translation. According to the holographic principle, the RG flows of the

CFT correspond to the evolution of the bulk fields in the holographic dimension.

The reason is that the Hamilton-Jacobi equations for the gravitational theory can

be recast in the form of RG flow equations for the QFT, which asymptotically take

the standard Callan-Symanzik form ([12]-[19]). This observation indicates that the

radial/holographic dimension r is related to the energy scale of the CFT, with the

UV corresponding to the limit where r → 0 and the IR to the limit where r → ∞.

There are many reasons one would want to study RG flows. Being inherently

linked to renormalization, they are useful for the study of a QFT’s UV and IR

limits. RG flows can also be used to study phase transitions and critical phenomena.
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Of course, if one accepts the holographic principle, they can be useful for studying

properties of quantum gravity [20]. Finally, there have been recent developments in

machine learning algorithms that can study RG flows [21].

2.4 The dilaton action and the Equations of Motion (EsOM)as3

The standard action used to describe RG flows, from the ordinary solutions ([13]-[17])

to the exotic ones ([18],[19]), is the Einstein-dilaton theory in (3+1)-dimensions. It

is the simplest action that can drive an RG flow, being a two-derivative action with

a single scalar.

Specifically, the action we are using is1:

S[g, φ] =M2

∫
d3xdr

√
|g|
(
R(g) − 1

2
∂µφ∂

µφ− V (φ)

)
+ SGHY (2.18) ga1

where SGHY is the Gibbons-Hawking-York boundary term and can be written as:

SGHY = 2M2

[∫
d3x

√
γK

]
UV

(2.19) ga2

We work in 4 dimensions, because the exotic RG flows were found during a study

of squashed S3. As we will see in section 4, γij is the induced metric on the r = 0

boundary of AdS, whereas K is the trace of the extrinsic curvature. It is convenient

to switch the action to Euclidean form by changing the signature of the metric:

SE[g, φ] ≡ −S = −M2

∫
d3xdr

√
g

(
R(g) − 1

2
∂µφ∂

µφ− V (φ)

)
− SGHY (2.20) ga2a

Varying this action with respect to the metric gµν and the scalar φ we obtain

the following equations of motion:

Gµν −
1

2

[
∂µφ∂νφ− 1

2
gµν∂αφ∂

αφ

]
+
gµν
2
V = 0 (2.21) d15

1
√
g
∂µ (

√
ggµν∂νφ)−

δV

δϕ
= 0, (2.22) d16

where G is the Einstein Tensor.

It is convenient to express the metric in the following form:

ds2 =
ℓ2

r2
dr2 +

ℓ2

r2
ĝij(r, x

i)dxidxj (2.23) d16a

1For the rest of this thesis unless specified we will adopt the usual notation of Greek indices

taking the values 0-3 and Latin indices taking the values 1-3. The coordinate x0 is the radial

coordinate.
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This coordinate system is known as the Fefferman-Graham system and it can describe

any asymptotically AdS space-time. The boundary metric ĝij has a regular expansion

if it is odd-dimensional:

ĝij(r, x
i) =

∞∑
m=0

ĝ
(m)
ij (xi)rm (2.24) d16b

More details abount this coordinate system are presented in Appendix (A.1).

The scalar equation (2.22) may be expanded in terms of the metric ĝµν :

1
√
g
∂r(

√
ggrrφ′) +

1
√
g
∂i(

√
ggij∂jφ)−

δV

δφ
= 0 ⇒ (2.25) d18

r2

ℓ2
φ′∂r log (

√
g) + ∂r(

r2

ℓ2
φ′) +

r4

ℓ4
√
ĝ
∂i(

ℓ2

r2

√
ĝĝij∂jφ)−

δV

δφ
= 0 (2.26) d19

The square root of the determinant is a scalar density with a vanishing covariant

derivative. Therefore, using the Christoffel Symbols of Appendix (A) we have:

∂r log(
√
g) = Γ α

αr = −4

r
+

1

2
Tr[ĝ−1ĝ′], (2.27) d20

and thus, the scalar equation takes the following form:

r2φ′′ − 2rφ′ +
r2

2
Tr[ĝ−1ĝ′]φ′ + r22ĝφ− ℓ2

δV

δφ
= 0 (2.28) d21

The trace-inverted Einstein equations are:

Rµν =
1

2
∂µφ∂νφ+

V

2
gµν (2.29) d24

because

R =
1

2
(∂φ)2 + 2V (2.30) d25

In components, they read:

Rrr =
1

2
(φ′)2 +

V

2

ℓ2

r2
(2.31) d26

Rir =
1

2
∂iφφ

′ (2.32) d27

Rij =
1

2
∂iφ∂jφ+

V

2

ℓ2

r2
ĝij (2.33) d28

We parametrize:

V = − 6

L2
+ δV (2.34) d29

Using the results in Appendix (A), the equations of motion can be written as:

r2

2
(φ′)2 +

ℓ2

2
δV = −r

2

2
Tr[ĝ−1ĝ′′] +

r2

4
Tr[ĝ−1ĝ′ĝ−1ĝ′] +

r

2
Tr[ĝ−1ĝ′] + 3

(
ℓ2

L2
− 1

)
(2.35) d30
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rĝik
[
∇̂kĝ

′
ij − ∇̂j ĝ

′
ik

]
= rφ′∂jφ (2.36) d31

r2

2
∂iφ∂jφ+

ℓ2δV

2
ĝij = r2R̂ij −

r2

2
ĝ′′ij +

r2

2
(ĝ′ĝ−1ĝ′)ij−

−r
2

4
Tr[ĝ−1ĝ′]ĝ′ij +

r

2
Tr[ĝ−1ĝ′]ĝij + rĝ′ij + 3

(
ℓ2

L2
− 1

)
ĝij (2.37) d33

In later parts, we will refer to the Einstein equations using the indexes of the Ricci

scalar component from which they are stemming from.

Finally, using equation (2.30), the on-shell action may be rewritten as:

Son−shell
E [g, φ] = −M2

∫
d3xdr

√
gV (φ)− 2M2

[∫
dx3

√
γK

]
r=ϵ

(2.38) d34

3. Perturbative solution near an extremum of the potentials4

To introduce the basic concepts and methodology which we will follow when we study

the exotic RG flows, we will first study a specific potential and a 3-dimensional met-

ric. The standard procedure was introduced by de Haro, Skenderis and Solodukhin in

[22]. We will solve the equations “order by order” in the radial coordinate r. Then,

we need to renormalize the action because, as we will see in section 4, the terms

appearing in the action will be divergent. The renormalization can be performed by

adding appropriate counterterms to the action, so that said divergences cancel each

other out. Finally, we will calculate the vev of the induced Stress-Energy Tensor on

the boundary.

Any potential which is analytical near one of its extremums can be expanded in

the general form:

V = V0 + V2φ
2 +O(φ3) (3.1) e1a

There are some convenient reparameterizations that we can perform for the coeffi-

cients V0 and V2. We may obtain V0 from the scalar-free limit. By comparison with

(2.34) we see that the scalar field limit corresponds to selecting:

V0 ≡ − 6

L2
= 2ΛAdS4 (3.2) e1b

One can easily verify that with this selection for V0 the Einstein-Hilbert term in

(2.38) is the expected one for a 4-dimensional AdS space-time. To justify the repa-

rameterization of V2 we turn our attention to (2.22). By selecting :

V2 ≡
m2

2
(3.3) e1c
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we see that equation (2.22) takes the familiar-looking form of the scalar equation:

2φ−m2φ+O(φ2) = 0 (3.4) e1d

Thus, the potential can be written as:

V = − 6

L2
+
m2

2
φ2 +O(φ3) (3.5) e1

To justify the perturbative expansion of the scalar, note that we are interested

in studying the RG flow starting near the UV fixed point, which has been shifted

at φ = 0. Since the UV regime of the QFT corresponds to the IR regime of AdS,

we are close to the boundary r → 0. Therefore, we will adopt expansions of the

following form for the quantities that appear in equations (2.28), (2.35)-(2.37) and

we will start to solve the equations “order by order” in r:

φ(r, x) =
∞∑
n=1
m=0

φn,m(x)r
n∆++m +

∞∑
n=1
m=0

φ̄n,m(x)r
n∆−+m +

∞∑
m=0

φm(x)r
m (3.6) e3

ĝij(r, x
µ) =

∞∑
n=1
m=0

g
(n,m)
ij (x)rn∆++m +

∞∑
n=1
m=0

ḡ
(n,m)
ij (x)rn∆−+m +

∞∑
n=0

g
(n)
ij (xµ)rn (3.7) e4

ĝij(r, xµ) =
∞∑
n=1
m=0

gij(n,m)(x)rn∆++m +
∞∑
n=1
m=0

ḡij(n,m)(x)rn∆−+m +
∞∑
n=0

gij(n)(xµ)rn (3.8) e6

R̂ij(r, x
µ) =

∞∑
n=1
m=0

R
(n,m)
ij (x)rn∆++m +

∞∑
n=1
m=0

R̄
(n,m)
ij (x)rn∆−+m +

∞∑
n=0

R
(n)
ij (xµ)rn (3.9) e5

Since, the single index 0 appears the most in the equations to follow, for con-

venience, every coefficient that corresponds to the r0 power will be denoted with a

subscript 0. The aforementioned coefficients are entirely constructed from the metric

g
(0)
ij .

3.1 The solution of the scalar equation to order O(r3).s4s1

We will begin from the scalar equation (2.28) up to orderO(φ2). In a later subsection,

we will see what would have been different had we kept higher orders of the scalar

in the potential. The indexes i and j will be omitted unless they are necessary. We

have:

r2φ′′ − 2rφ′ +
r2

2
ϕ′Tr[ĝ−1ĝ′] + r22ĝϕ−m2ℓ2φ+O(ϕ2) = 0 ⇒ (3.10) e7
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r2φ′′ − 2rφ′ +
r2

2
φ′Tr[ĝ−1ĝ′] + r2

(
1

2
Tr[ĝ−1∂iĝ]ĝ

ij∂jφ+ ∂iĝ
ij∂jφ+ (3.11) e8

+ ĝij∂i∂jφ

)
−m2ℓ2φ+O(φ2) = 0

In the last step, we performed the partial derivatives of the box operator with respect

to xi the same way we did in (2.26) using the logarithmic derivative of
√
g as in (2.27).

We will study separately the order O(r4) and thus, we begin with the equations up

to order O(r3, r∆±). Up to this order, we will not need the terms of the expansions

(3.6)-(3.8) that contain two indexes n and m.

2r2φ2 − 2r(φ1 + 2φ2r) +
r2

2
φ1Tr[g

−1
0 g(1)] + r220φ0−

−m2ℓ2(φ0 + φ1r + φ2r
2) +O(r3, r∆± , φ2) = 0 (3.12) e9

We are led to the following equations by regrouping the terms of (3.12) according

to their order in r:

−m2ℓ2φ0 = 0 ⇒ φ0 = 0 (3.13) e10

−2φ1 −m2ℓ2φ1 = 0 ⇒ (m2ℓ2 + 2)φ1 = 0 ⇒ φ1 = 0 (3.14) e11

2φ2 − 4φ2 −m2ℓ2φ2 +
1

2
φ1Tr[g−1

0 g(1)] +20φ0 = 0 ⇒

⇒ (m2ℓ2 + 2)φ2 = 0 ⇒ φ2 = 0 (3.15) e12

We set φ1 and φ2 equal to zero because we are not interested in integer values

for ∆±. We will see that this would have been the case when we revisit the scalar

equation to order O(r∆±+1).

3.2 The solution of the ij Einstein equation to order O(r3).s4s2

Since the φm contribution starts at least to order O(r4) we proceed with the solution

of the ij equation (2.37), solving up to order O(r4, r∆±). Similar to the scalar

equation, it is convenient to study the order O(r4) separately. For our choice of

potential, the ij equation becomes:

r2

2
∂iφ∂jφ+

m2ℓ2

2
φ2ĝij = r2R̂ij −

r2

2
ĝ′′ij +

r2

2
(ĝ′ĝ−1ĝ′)ij−

−r
2

4
Tr[ĝ−1ĝ′]ĝ′ij +

r

2
Tr[ĝ−1ĝ′]ĝij + rĝ′ij + 3

(
ℓ2

L2
− 1

)
ĝij +O(φ3) (3.16) e15

We substitute the relevant terms of the expansions (3.6)-(3.9) in (3.16) to obtain to

order O(r3, r∆± , ϕ3):

−r2Rij,0 = −r2g(2)ij +
r2

2
g
(1)
ik g

kl
0 g

(1)
lj −
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−r
2

4
Tr
[
g−1
0 g(1)

]
g
(1)
ij + r(g

(1)
ij + 2g

(2)
ij r)+ (3.17) e16

+
r

2
Tr
[(
g−1
0 + (g−1)(1)r

) (
g(1) + 2g(2)r

)]
(gij,0 + g

(1)
ij r)+

+3

(
ℓ2

L2
− 1

)(
ĝ0,ij + rg

(1)
ij + r2g

(2)
ij

)
+O(r3, r∆± , φ3)

The equation of order O(r1) is trivially satisfied as long as we set:

ℓ = L, (3.18) neq

therefore we immediately move to the equation of order O(r2), which reads:

g
(1)
ij +

1

2
Tr
[
g−1
0 g(1)

]
gij,0 = 0 (3.19) e19

By taking the trace of equation (3.19) with gij0 we have:

5Tr
[
g−1
0 g(1)

]
= 0 ⇒ g

(1)
ij = 0 (3.20) e20

In the last step we used the tracelessness of g
(1)
ij on (3.20). Since g

(1)
ij vanishes so does

R
(1)
ij .

The equation of order O(r3) in (3.17) is solved by trace inverting:

−Rij,0 = g
(2)
ij + Tr

[
g−1
0 g(2)

]
gij,0 ⇒ (3.21) e21

−R0 = 4Tr
[
g−1
0 g(2)

]
⇒ Tr

[
g−1
0 g(2)

]
= −R0

4
(3.22) e23

Therefore g
(2)
ij takes the form:

g
(2)
ij =

R0

4
gij,0 −Rij,0 (3.23) e24

We will not solve the O(r4) order equations yet, because there will be terms with

two indexes that we have not calculated. It is better to study the terms that appear

in equations (3.11) and (3.16) up to order O(r∆++3). The equations for the rn∆−+m

powers are readily obtained from those of the rn∆++m powers by switching ∆+ to

∆−, bared quantities to non-bared quantities and vice versa. Therefore we will not

study them separately but we will instead use the mapping described earlier. These

terms will be denoted by + (+ ↔ −).
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3.3 The solution of the scalar equation to order O(r∆±+3).s4s3

We substitute the expansions (3.6) -(3.8) in (3.11) up to terms that will contribute

to order O(r∆±+3).

∆+(∆+ − 1)φ1,0r
∆+ + (∆+ + 1)∆+φ1,1r

∆++1+

+(∆+ + 2)(∆+ + 1)φ1,2r
∆++2 − 2

(
∆+φ1,0r

∆+ + (∆+ + 1)φ1,1r
∆++1 +

+(∆+ + 2)φ1,2r
∆++2

)
+
r

2

(
∆+φ1,0r

∆+
)
Tr[g−1

0 2g(2)r]+

+r220(r
∆+φ1,0)−m2L2

(
φ1,0r

∆+ + φ1,1r
∆++1 + φ1,2r

∆++2
)

(3.24) e26

+(+ ↔ −) +O(φ2, r∆±+3, r2∆±) = 0

We are led to the following equations:

(∆2
+ − 3∆+ −m2L2)φ1,0 = 0 ⇒ ∆± =

3±
√
9 + 4m2L2

2
(3.25) e27

(∆2
+ −∆+ − 2−m2L2)φ1,1 = 0 ⇒ 2(∆+ − 1)φ1,1 = 0 ⇒

φ1,1 = φ̄1,1 = 0 (3.26) e28

(∆2
+ +∆+ − 2−m2L2)φ1,2 +∆+Tr[g

−1
0 g(2)]φ1,0 +20φ1,0 = 0 ⇒ (3.27) e29

φ1,2 = −∆+Tr[g
−1
0 g(2)]φ1,0 +20φ1,0

2(2∆+ − 1)
(3.28) e30

φ̄1,2 = −∆−Tr[g
−1
0 g(2)]φ̄1,0 +20φ̄1,0

2(2∆− − 1)
(3.29) e31

Equation (3.25) provides us with some useful properties of ∆±:

∆+ +∆− = 3 (3.30) ne1

∆2
+ − 3∆+ = ∆2

− − 3∆− = −∆+∆− = m2L2 (3.31) ne2

Before proceeding with the solution of the ij equation (3.16) to higher orders

we note that our justification for setting φ1 = 0 is correct. Indeed, equation (3.25)

has no dependency on any coefficients of the scalar expansion in (3.6) besides φ1,0

and φ̄1,0. Therefore, equation (3.25) is independent of us setting φ1 = 0. We see

that, had we not selected φ1 = 0 in equation (3.14) we would have integer values for

∆±, just as we had stated. This is also the reason why we selected φ1,1 = φ̄1,1 = 0.

Finally, we did not select φ1,0 = φ̄1,0 = 0 in (3.25) because these are the boundary

conditions through which we will express the rest of the scalar coefficients.
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3.4 The solution of the ij Einstein equation to order O(r∆±+3).s4s4

We may now proceed to (3.16) and study it up to order O(r∆±+3). We can use (3.31)

to eliminate the mass, and thus, the ij equation reads:

r2

2
∂iφ∂jφ− ∆+∆−

2
φ2ĝij = r2R̂ij −

r2

2
ĝ′′ij +

r2

2
(ĝ′ĝ−1ĝ′)ij−

−r
2

4
Tr[ĝ−1ĝ′]ĝ′ij +

r

2
Tr[ĝ−1ĝ′]ĝij + rĝ′ij +O(φ3) (3.32) e32

We substitute the terms of the expansions (3.6)-(3.9) that will contribute to order

O(r∆±+3):

−r2R(1,0)
ij r∆+ +

1

2

(
∆+(∆+ − 1)g

(1,0)
ij r∆++

+(∆+ + 1)∆+g
(1,1)
ij r∆++1 + (∆+ + 2)(∆+ + 1)g

(1,2)
ij r∆++2

)
−

−1

2

(
(2g

(2)
ik r

2 +∆+g
(1,0)
ik r∆+)gkl0 (2g

(2)
lj r

2 ++∆+g
(1,0)
lj r∆+)

)
+

+
1

4
Tr[(2g(2)r2 +∆+g

(1,0)r∆+)g−1
0 ]
(
2g

(2)
ij r

2 +∆+g
(1,0)
ij r∆+

)
− (3.33)

−
(
∆+g

(1,0)
ij r∆+ + (∆+ + 1)g

(1,1)
ij r∆++1 + (∆+ + 2)g

(1,2)
ij r∆++2

)
−

−1

2
Tr[
(
g−1
0 + (g−1)(2)r2 + (g−1)(1,0)r∆+

) (
2g(2)r2 +∆+g

(1,0)r∆++

+(∆+ + 1)g(1,1)r∆++1 + (∆+ + 2)g(1,2)r∆++2
)
](gij,0 + g

(2)
ij r

2+

+g
(1,0)
ij r∆+) + (+ ↔ −) +O(φ3, r∆±+3, r2∆±) = 0

We start from the equation of the terms which are of order O(r∆±+1). Following

the same process as in (3.19) and (3.20), we obtain:

1

2
(∆2

+ − 3∆+)g
(1,0)
ij − ∆+

2
Tr[g−1

0 g(1,0)]gij,0 = 0 ⇒ g
(1,0)
ij = ḡ

(1,0)
ij = 0 (3.34) e34

We reintroduce this result to (3.4) to simplify it. Note that R
(1,0)
ij vanishes as well.

Equation (3.4) takes the form:

1

2

(
(∆+ + 1)∆+g

(1,1)
ij r∆++1 + (∆+ + 2)(∆+ + 1)g

(1,2)
ij r∆++2

)
−

−
(
(∆+ + 1)g

(1,1)
ij r∆++1 + (∆+ + 2)g

(1,2)
ij r∆++2

)
− (3.35) e35

−1

2
Tr[g−1

0

(
(∆+ + 1)g(1,1)r∆++1 + (∆+ + 2)g(1,2)r∆++2

)
]gij,0+

+(+ ↔ −) +O(ϕ3, r∆±+3, r2∆±) = 0
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We have the two following equations for the orders O(r∆±+1) and O(r∆±+2):

1

2
(∆2

+ −∆+ − 2)g
(1,1)
ij − ∆+ + 1

2
Tr[g−1

0 g(1,1)]gij,0 = 0 ⇒

g
(1,1)
ij = ḡ

(1,1)
ij = 0 (3.36) e36

1

2
(∆2

+ +∆+ +−2)g
(1,2)
ij − ∆+ + 2

2
Tr[g−1

0 g(1,2)]gij,0 = 0 ⇒

g
(1,2)
ij = ḡ

(1,2)
ij = 0, (3.37) e37

where we solved the equations by trace inverting them and demanding that ∆± are

not integers. Before continuing with the scalar equation (3.32) to order O(r2∆±+1)

to find at which order the scalar affects the metric for the first time, we will study

the O(r4) order of the ij Einstein equation (3.32) and the scalar equation (3.11).

3.5 The O(r4) order of the scalar and the ij Einstein equations.s4s5

We substitute the relevant terms of the expansion (3.6) in the scalar equation (3.11):

6φ3r
3 − 6φ3r

3 +∆+∆−φ3 +O(φ2) = 0 ⇒ φ3 = 0 (3.38) e38

For the ij Einstein equation (3.32), the terms of the expansions (3.6)-(3.9) which are

contributing to order O(r4) are:

−∆+∆−

4
(φ1,0r

∆+ + φ̄1,0r
∆−)2gij,0 + 3r3g

(3)
ij − 3r3

2
Tr[g−1

0 g(3)]gij,0− (3.39) e39

−3r3g
(3)
ij ++O(φ3, r4) = 0 ⇒(

−∆+∆−φ1,0φ̄1,0 − 3Tr[g−1
0 g(3)]

)
gij,0 +O(φ3, r4) = 0 ⇒ (3.40) e40

Tr[g−1
0 g(3)] = −∆+∆−

3
φ1,0φ̄1,0 (3.41) e41

Equation (3.41) serves as a constraint between our four arbitrary boundary condi-

tions.

3.6 The solution of the ij Einstein equation to order O(r2∆±+2).s4s6

By substituting the terms of the expansions (3.6) - (3.8) which will contribute up to

order O(r2∆±+2) in (3.32) we obtain:

−∆+∆−

4
φ2
1,0gij,0r

2∆+ +
1

2

(
2∆+(2∆+ − 1)g

(2,0)
ij r2∆++

+(2∆+ + 1)2∆+g
(2,1)
ij r2∆++1

)
− 1

2
Tr
[
g−1
0

(
2∆+g

(2,0)r2∆++

+(2∆+ + 1)g(2,1)r2∆++1
)]
gij,0 − (2∆+g

(2,0)
ij r2∆++ (3.42) e43
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+(2∆+ + 1)g
(2,1)
ij r2∆++1) + (+ ↔ −) +O(ϕ3, r2∆++3, r3∆+) = 0

To order O(r2∆±+1) we have:

−∆+∆−

4
φ2
1,0gij,0 + (2∆2

+ − 3∆+)g
(2,0)
ij −∆+Tr[g

−1
0 g(2,0)]g0,ij = 0 (3.43) e44

We trace the equation with gij0 :

−3∆+∆−

4
φ2
1,0 + (2∆2

+ − 6∆+)Tr[g
−1
0 g(2,0)] = 0 ⇒ (3.44) e45

Tr[g−1
0 g(2,0)] =

3∆+(3−∆+)

8∆+(∆+ − 3)
φ2
1,0 = −3

8
φ2
1,0 (3.45) e46

Tr[g−1
0 ḡ(2,0)] = −3

8
φ̄2
1,0 (3.46) ne3

We substitute (3.45) in (3.43) to obtain:

−∆+∆−

4
φ2
1,0gij,0 + (2∆2

+ − 3∆+)g
(2,0)
ij +

3

8
∆+φ

2
1,0gij,0 = 0 ⇒ (3.47) e47

(2∆2
+ − 3∆+)g

(2,0)
ij = −

2∆2
+ − 3∆+

8
φ2
1,0gij,0 ⇒ (3.48) e48

g
(2,0)
ij = −1

8
φ2
1,0gij,0 (3.49) e49

ḡ
(2,0)
ij = −1

8
φ̄2
1,0gij,0 (3.50) e50

The terms that contribute to order O(r2∆++2) are:

(∆+ − 1)(2∆+ + 1)g
(2,1)
ij − 2∆+ + 1

2
Tr[g−1

0 g(2,1)]gij,0 = 0 (3.51) e51

By trace inverting and substituting the trace in equation (3.51) we have:

(2∆+ + 1)(∆+ − 5

2
)Tr[g

−1)
0 g(2,1)] = 0 ⇒ Tr[g−1

0 g(2,1)] = 0 ⇒ (3.52) e52

g
(2,1)
ij = ḡ

(2,1)
ij = 0 (3.53) e53

We will limit ourselves to operators whose conformal dimension ranges between:

2 > ∆+ > 1.5 ⇒ 1.5 > ∆− > 1, (3.54) e53a

which is why we are not interested in the case Tr[g−1
0 g(2,1)] ̸= 0. As we will see in

section (4), we do not need any additional orders to calculate the stress tensor as long

as we limit ourselves to operators with the aforementioned dimensions. Nevertheless,

we have to confirm that the other Einstein equations hold up to the order in r that

we have solved.
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3.7 The solution of the rr Einstein equation.s4s8

We proceed to the solution of the rr Einstein equation. By substituting the expan-

sions (3.6)-(3.8) we find out that most perturbation orders lead to identities of the

form 0 = 0. The rr Einstein equation reads:

r2

2
(φ′)2 − ∆+∆−

4
φ2 +

r2

2
Tr[ĝ−1ĝ′′]−

−r
2

4
Tr[ĝ−1ĝ′ĝ−1ĝ′]− r

2
Tr[ĝ−1ĝ′] +O(φ3) = 0 (3.55) e64

We insert the relevant terms of the expansions (3.6)-(3.8):

1

2

(
∆+φ1,0r

∆+ +∆−φ̄1,0r
∆−
)2 − ∆+∆−

4

(
φ1,0r

∆+ + φ̄1,0r
∆−
)2

+

+

(
1

2
Tr
[
g−1
0

(
2g(2)r2 + 6g(3)r3 + (2∆+)(2∆+ − 1)g(2,0)r2∆+

)]
− (3.56) e65

−1

2
Tr[g−1

0

(
2g(2)r2 + 3g(3)r3 + 2∆+g

(2,0)r2∆+) + (+ ↔ −)
)]

+

+O(φ3, r4, r∆±+3, r2∆±+2, r3∆±) = 0 ⇒

We regroup the terms according to their powers of r to obtain:

(
Tr[g−1

0 g(2)]− Tr[g−1
0 g(2)]

)
r2 +

(
∆+∆−

2
φ1,0φ̄1,0 +

3

2
Tr[g−1

0 g(3)]

)
r3+ (3.57) e66

+
[(2∆2

+ −∆+∆−

4
φ2
1,0 + 2∆+(∆+ − 1)Tr[g−1

0 g(2,0)]

)
r2∆+

+ (+ ↔ −)
]
+O(φ3, r4, r∆±+3, r2∆++2, r3∆+) = 0

The O(r3) order equation is satisfied as an identity. We may factor out the

conformal dimension in the O(r2∆±+1) order:

3

2

(
∆+∆−

3
φ1,0φ̄1,0 + Tr[g−1

0 g(3)]

)
r3+

+

[
(2∆2

+ − 2∆+)

(
3

8
φ2
1,0 + Tr[g−1

0 g(2,0)]

)
r2∆+ + (+ ↔ −)

]
+ (3.58) e67

+O(φ3, r4, r∆±+3, r2∆±+2, r3∆±) = 0

By substituting in (3.58) equations (3.41), (3.45) and (3.46) we find out that the

r3 and r2∆± order equations are also 0 = 0 identities.
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3.8 The solution of the rj Einstein equation.s4s9

We are left with the rj equation for which we shall repeat the process we followed

to solve the rr Einstein equation. However, we first have to express the covariant

derivatives in a convenient way to use our expansions (3.6)-(3.8):

rĝik
[
∇̂kĝ

′
ij − ∇̂j ĝ

′
ik

]
= rφ′∂jφ ⇒ (3.59) e68

rĝik
[
∂kĝ

′
ij − Γ̂ik

l
ĝ′lj − ∂j ĝ

′
ik + Γ̂ij

l
ĝ′lk

]
= rφ′∂jφ ⇒ (3.60) e69

rĝik
[
∂kĝ

′
ij − ∂j ĝ

′
ik +

1

2
ĝls (∂iĝsj + ∂j ĝsj − ∂sĝik) ĝ

′
lk−

−1

2
ĝls (∂iĝks + ∂kĝis − ∂sĝki) ĝ

′
lj

]
= rφ′∂jφ (3.61) e70

We substitute the terms of the expansions (3.6)-(3.8) that will contribute up to order

O(r2∆±+2): [
gik0 ∂k

(
2g

(2)
ij r

2 + 3g
(3)
ij r

3 + 2∆+g
(2,0)
ij r2∆+

)
−

−gik0 ∂j
(
2g

(2)
ik r

2 + 3g
(3)
ik r

3 + 2∆+g
(2,0)
ik r2∆+

)
+

+
1

2
gik0 g

ls
0

[
[s; ij]0

(
2g

(2)
lk r

2 + 3g
(3)
lk r

3 + 2∆+g
(2,0)
lk r2∆+

)
− (3.62) e71

−[s; ik]0

(
2g

(2)
lj r

2 + 3g
(3)
lj r

3 + 2∆+g
(2,0)
lj r2∆+

)]
−

−∆+φ1,0∂jφ1,0r
2∆+ + (+ ↔ −)

]
−
(
∆+φ1,0∂jφ̄1,0 +

+∆−φ̄1,0∂jφ1,0

)
r3 +O(φ3, r4, r∆±+3, r2∆±+2, r3∆±) = 0

We regroup the coefficients that appear according to their powers of r.(
2gik0 ∂kg

(2)
ij − 2gik0 ∂jg

(2)
ik + 2gik0 Γ0,ij

lg
(2)
lk − 2gik0 Γ0,ik

lg
(2)
lj

)
r2+(

3gik0 ∂kg
(3)
ij − 3gik0 ∂jg

(3)
ik + 3gik0 Γ0,ij

lg
(3)
lk − 3gik0 Γ0,ik

lg
(3)
lj −

−∆−φ̄1,0∂jφ1,0 −∆+φ1,0∂jφ̄1,0) r
3+

+
[(

2∆+g
ik
0 ∂kg

(2,0)
ij − 2∆+g

ik
0 ∂jg

(2,0)
ik + 2∆+g

ik
0 Γ0,ij

lg
(2,0)
lk −

−2∆+g
ik
0 Γ0,ik

lg
(2,0)
lj −∆+φ1,0∂jφ1,0

)
r2∆+ + (+ ↔ −)

]
+ (3.63) e72

+O(φ3, r4, r∆±+3, r2∆±+2, r3∆±) = 0

We will solve the equations “order by order” in r. The order r2 equation is:

2gik0

(
∂kg

(2)
ij − Γ0,ik

lg
(2)
lj − ∂jg

(2)
ik + Γ0,ij

lg
(2)
lk

)
= 0 ⇒ (3.64) e73
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gik0

(
∇0,kg

(2)
ij −∇0,jg

(2)
ik

)
= 0 ⇒ (3.65) e74

∇i
0g

(2)
ij = ∇i

0

(
g0,ijTr[g

−1
0 g(2)]

)
(3.66) e75

We substitute in the equation above the coefficient g
(2)
ij as it appears in equations

(3.22) and (3.23):

∇i
0

(
R0

4
g0,ij −R0,ij

)
= −∇i

0

(
R0

4
g0,ij

)
⇒ (3.67) e76

∇i
0

(
R0,ij −

R0

2
g0,ij

)
= 0 (3.68) e77

This is a Bianchi identity, therefore the 2nd order equation holds as an identity.

The r3 order equation is:

3gik0

(
∂kg

(3)
ij − Γ0,ik

lg
(3)
lj − Γ0,jk

lg
(3)
li − ∂jg

(3)
ik + Γ0,ij

lg
(3)
lk + (3.69) e78

+Γ0,jk
lg

(3)
li

)
= ∆−φ̄1,0∂jφ1,0 +∆+φ1,0∂jφ̄1,0 ⇒

∇i
0g

(3)
ij = ∇i

0

(
g0,ijTr[g

−1
0 g(3)]

)
+

∆−φ̄1,0∂jφ1,0 +∆+φ1,0∂jφ̄1,0

3
(3.70) e79

Therefore, by substituting the trace of g
(3)
ij written in (3.41) we obtain:

∇i
0g

(3)
ij = −∆+∆−

3
∇i

0 (g0,ijφ1,0φ̄1,0) +
∆−φ̄1,0∂jφ1,0 +∆+φ1,0∂jφ̄1,0

3
⇒ (3.71) e80

∇i
0g

(3)
ij = −∆+∆− −∆−

3
∇i

0 (g0,ijφ1,0φ̄1,0) +
∆+ −∆−

3
φ1,0∂jφ̄1,0 ⇒ (3.72) e81

∇̂i
0

[
3g

(3)
ij − (∆2

− − 2∆−)g0,ijφ̄1,0φ1,0

]
= (2∆+ − 3)φ1,0∂jφ̄1,0 ⇒ (3.73) e81b

∇̂i
0

[
3g

(3)
ij − (∆2

− − 2∆−)g0,ijφ̄1,0φ1,0

]
= ⟨O⟩∂jφ̄1,0 (3.74) e81a

We can already see which must be the form of the stress-tensor by demanding that

the Ward identity is satisfied, however, it is better to follow the usual approach of

deriving the Stress-Tensor from the action and to use (3.70) as a verification check.

Finally, the r2∆+ order equation is:

2∆+g
ik
0

(
∂kg

(2,0)
ij − Γ0,ik

lg
(2,0)
lj − Γ0,jk

lg
(2,0)
li − ∂jg

(2,0)
ik + Γ0,ij

lg
(2,0)
lk + (3.75) e82

+Γ0,jk
lg

(2,0)
li

)
= ∆+φ1,0∂jφ1,0 ⇒

∇i
0g

(2,0)
ij = ∇i

0

(
g
(0)
ij Tr[g

−1
0 g(2,0)]

)
+
φ1,0∂jφ1,0

2
(3.76) e83
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We substitute the metric coefficient g
(2,0)
ij as it appears in equations (3.45) and (3.49)

to obtain:

−1

8
∇i

0

(
φ2
1,0g0,ij

)
= −3

8
∇i

0

(
g0,ijφ

2
1,0

)
+
φ1,0∂jφ1,0

2
⇒ (3.77) e84

1

4
∂j
(
φ2
1,0

)
=
φ1,0∂jφ1,0

2
⇒ (3.78) e85

φ1,0∂jφ1,0

2
=
φ1,0∂jφ1,0

2
(3.79) e86

We see that equation (3.79) is satisfied as an identity and similarly, the equation for

ḡ
(2,0)
ij holds as well:

∇i
0ḡ

(2,0)
ij = ∇i

0

(
g0,ijTr[g

−1
0 ḡ(2,0)]

)
+
φ̄1,0∂jφ̄1,0

2
⇒ 0 = 0 (3.80) e87

3.9 A potential of cubic order in φ.s4s10

Before proceeding to the calculation of the stress energy tensor it is a good idea to

consider what would have happened had we kept cubic terms of the scalar in our

potential. Assume that:

V = − 6

L2
+
m2

2
φ2 +

V3
3L2

φ3 +O(φ4) (3.81) e88

Equation (2.28) shows us that in the scalar equation, there would be an extra term:

−ℓ2 δV
δφ

→ − ℓ2

L2
V3φ

2 +O(φ3) (3.82) e89

We expand the scalar according to (3.6):

−ℓ2 δV
δφ

→ − ℓ2

L2
V3
(
φ2
0 + 2φ0φ1r +

(
2φ0φ2 + φ2

1

)
r2
)
−

− ℓ2

L2
V3 (2φ0φ3 + 2φ1φ2 + 2φ1,0φ̄1,0) r

3 − ℓ2

L2
V3
[
2φ1,0φ0r

∆+ +

+(2φ0φ1,1 + 2φ1φ1,0)r
∆++1 + (2φ0φ1,2 + 2φ1φ1,1 + 2φ2φ1,0φ) r

∆++2

+(2φ0φ1,3 + 2φ1φ1,2 + 2φ2 + 2φ3φ1,0 + 2φ2,0φ̄1,0)r
∆++3 + (+ ↔ −)

]
+

+O(φ3, r4, r∆±+4, r2∆±) (3.83) e89a

Now equation (3.13) becomes:

−m2L2φ0 − V3φ
2
0 = 0 ⇒ (3.84) e90

φ0

(
m2L2 + V3φ0

)
= 0 (3.85) e91
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It looks like φ0 could take the non-trivial value:

φ0 = −m
2L2

V3
(3.86) e92

However, this corresponds to a different fixed point from the one we started and

to be consistent with our assumptions we need to take φ0 = 0. As we can see from

(3.83), the corrections in most of the orders of r will vanish with a few exceptions.

The non-trivial corrections are:

−ℓ2 δV
δφ

→ −2
ℓ2

L2
V3
(
φ1,0φ̄1,0r

3 +
[
(φ3φ1,0 + φ2,0φ̄1,0)r

∆++3+ (3.87) e93

+(+ ↔ −)]) +O(φ3, r4, r∆±+4, r2∆±)

We see that the first terms that would be corrected in the scalar expansion would

be φ3 and φ1,3. However, the terms containing a potential in the on-shell action are

quadratic or cubic in the scalar for a cubic potential. We see that any combination

of the existing scalar terms or the corrected ones will be of greater order than the

terms we have omitted, which are of order O(φ4, r4, r∆±+3, r2∆±+2, r3∆±). Therefore,

from the scalar’s point of view, the Stress-Tensor is unaffected by potentials with

greater powers of the scalar than φ2. However, before concluding that a potential

with a cubic scalar term would leave the Stress-Tensor unaffected, we have to see

the corrections in the ij equation, because through that equation we calculated the

metric coefficients.

The correction in the ij equation comes in the form of two extra terms:

δV

2
ℓ2ĝij →

(
m2ℓ2

4
(φ2 − φ2

old) +
V3ℓ

2

6L2
φ3

)
ĝij +O(φ4), (3.88) e99

where the scalar φold contains the coefficients we calculated ignoring the cubic term

in the potential. By inserting the new and old terms of the scalar, we obtain:

δV

2
ℓ2ĝij →

(
m2ℓ2

4

[
φ2
3r

6 + 2φ3φ1,0r
∆++3 + (+ ↔ −)

]
+

+O(φ4, r7, r∆±+4, r2∆±+3, r3∆±)+

+
V3ℓ

2

6L2

[
6φ3φ1,0φ̄1,0r

6 +
(
3φ2

1,0φ̄1,0r
∆++3 + (+ ↔ −)

)])
ĝij (3.89) e100

We see that the first corrections to the metric coefficients will be at g
(6)
ij , g

(1,3)
ij and

ḡ
(1,3)
ij . However, as we can see from their order in r, all corrections lie after the terms

required for the Stress-Energy tensor. Therefore, a cubic potential would not alter

the results of this analysis in a physically meaningful way.
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4. The On shell action.s5

We now move to the on-shell action, which we had already written in (2.38), but

we will reproduce it for convenience after we substitute the potential in (3.5) to see

explicitly the scalar:

Son−shell
E [g, φ] =M2

∫
d3xdr

√
g

(
6

L2
− m2

2
φ2 +O(φ3)

)
− SGHY (4.1) f3

The induced metric (at the boundary r = ϵ) is:

γij =
L2

ϵ2
ĝij(ϵ, x

i) (4.2) f4

Therefore the determinant γ is:

γ =

(
L2

ϵ2

)3

ĝ ⇒ √
γ =

(
L

ϵ

)3√
ĝ (4.3) f5

The vector which is orthogonal to the hypersurface r = ϵ has the form:

nρ = (A, 0, 0, 0) (4.4) f6

We normalize it using the metric gµν in (A.1):

nµgµνn
ν = 1 ⇒ A = ± r

L
(4.5) f7

The sign is selected to point toward the direction where nρ increases and thus we

take it to be positive.

The extrinsic curvature in terms of ĝij is given by:

Kij = −1

2
nρ∂ρgij = −

( r

2L
∂rγij

)
r=ϵ

= − ϵ

2L

[
∂r

(
L2

r2
ĝij

)]
r=ϵ

⇒ (4.6) new1

Kij =
L

ϵ2

[
ĝij −

ϵ

2
ĝ′ij(ϵ, x

i)
]

(4.7) new2

The extrinsic curvature’s trace is taken with γij :

K = γijKij =
1

L

[
3− ϵ

2
Tr[ĝ−1ĝ′(ϵ, xi)]

]
(4.8) f10

Therefore, the Euclidean action takes the form:

Son−shell
E [ĝ, φ] =M2L2

∫
d3xdr

1

r4

√
ĝ

(
6− m2L2

2
φ2 +O(φ3)

)
− (4.9) f12

−2M2L2

[∫
d3x

1

r3

√
ĝ(3− r

2
Tr[ĝ−1ĝ′])

]
r=ϵ

⇒
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Son−shell
E [ĝ, φ] =M2L2

∫
d3xdr

√
ĝ

r4

(
6 +

∆+∆−

2
φ2 +O(φ3)

)
− (4.10) f13

−M2L2

[∫
d3x

√
ĝ

r3
(6− rTr[ĝ−1ĝ′]))

]
r=ϵ

We expand the determinant of the metric in powers of r variationally to identify

the counterterms that need to be added for the renormalization of the action. We

define:

ĝij = g0,ij + δĝij = g0,ik(δ
k
j + gkl0 δĝlj) (4.11) f14

and: √
ĝ =

√
g0

√
I + g−1

0 δĝ (4.12) f15

The term δĝ contains all the powers of r. Therefore we rewrite (4.12) as follows:

√
ĝ =

√
g0

(
1 +

1

2
Tr[g−1

0 δĝ] +O
(
(g−1

0 δĝ)2
))

(4.13) f17

There is no reason to go beyond the first order in δg since higher powers would

produce terms that vanish at r → 0. Therefore we obtain:

√
ĝ =

√
g0

(
1 +

1

2
Tr[g−1

0 g(2)]r2 +
1

2
Tr[g−1

0 g(3)]r3 ++ (4.14) f18

+
1

2
Tr[g−1

0 ḡ(2,0)]r2∆−

)
+O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±)

We see that as long as we limit ourselves to dimensions 2 > ∆+ > 1.5 and

1.5 > ∆− > 1 , all of the neglected terms will not contribute to the counterterms.

For the scalar field, the expansion is:

φ2 =
(
φ1,0r

∆+ + (+ ↔ −) +O(φ3, r4, r∆±+2, r2∆± , r3∆±)
)2 ⇒ (4.15) f19

φ2 = 2φ1,0φ̄1,0r
3 + φ̄2

1,0r
2∆− +O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±) (4.16) f20

Similar to the metric, we see that the neglected terms will not contribute to the

counterterms. We substitute the expansions of (4.14) and (4.16) in the integrals of

(4.10) to obtain:

Son−shell
E [ĝ, φ] =M2L2

∫
d3xdr

√
g0

r4

[(
1 +

1

2
Tr[g−1

0 g(2)]r2+
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+
1

2
Tr[g−1

0 g(3)]r3 +
1

2
Tr[g−1

0 ḡ(2,0)]r2∆−

)(
6 +

∆+∆−

2
(2φ1,0φ̄1,0r

3 +

+φ̄2
1,0r

2∆−)

)
+O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±)

]
− (4.17) f21

−M2L2

[ ∫
d3x

√
g0

r3

((
1 +

1

2
Tr[g−1

0 g(2)]r2 +
1

2
Tr[g−1

0 g(3)]r3+

+
1

2
Tr[g−1

0 ḡ(2,0)]r2∆−

)(
6− 2Tr[g−1

0 g(2)]r2 − 3Tr[g−1
0 g(3)]r3 −

− 2∆−Tr[g
−1
0 ḡ(2,0)]r2∆−

))
+O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±)

]
r=ϵ

We regroup terms and perform the appropriate multiplications to obtain:

Son−shell
E [ĝ, φ] =M2L2

∫
d3xdr

√
g0

r4

[
6 + 3Tr[g−1

0 g(2)]r2 +

+
(
3Tr[g−1

0 g(3)] + ∆+∆−φ1,0φ̄1,0

)
r3 +

(
3Tr[g−1

0 ḡ(2,0)] + (4.18) f22

+
∆+∆−

2
φ̄2
1,0

)
r2∆− +O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±)

]
−

−M2L2

[ ∫
d3x

√
g0

r3

(
6 + Tr[g−1

0 g(2)]r2 + (3− 2∆−)Tr[g
−1
0 ḡ(2,0)]r2∆− +

+O(φ3, r4, r∆±+3, r2∆+ , r2∆−+2, r3∆±)

)]
r=ϵ

And finally we distribute the factors of r and use (3.41) and (3.46) to simplify the

integrals:

Son−shell
E [ĝ, φ] =M2L2

∫
d3x

∫ rIR

ϵ

dr
√
g0
[
6r−4 + 3Tr[g−1

0 g(2)]r−2+

+

(
3− 4∆+∆−

3

)
Tr[g−1

0 ḡ(2,0)]r2∆−−4+ (4.19)

+ O(φ3, r0, r∆±−1, r2∆+−4, r2∆−−2, r3∆±−4)
]
− f23

−M2L2

∫
d3x

√
g0
(
6ϵ−3 + Tr[g−1

0 g(2)]ϵ−1 + (3− 2∆+)Tr[g
−1
0 g(2,0)]ϵ2∆+−3+

+ (3− 2∆−)Tr[g
−1
0 ḡ(2,0)]ϵ2∆−−3 +O(φ3, ϵ1, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3)

)
We integrate over r and separate the infrared from the ultraviolet part of the action.

SIR will denote the action that contains all powers of the infrared endpoint rIR:

Son−shell
E [ĝ, φ] = SIR +M2L2

∫
d3x

√
g0
[
2ϵ−3 + 3Tr[g−1

0 g(2)]ϵ−1−
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−
(
4∆2

− − 12∆− + 9

3(2∆− − 3)

)
Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3+ (4.20)

+O(φ3, ϵ, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3)
]
− f24

−M2L2

∫
d3x

√
g0
(
6ϵ−3 + Tr[g−1

0 g(2)]ϵ−1 + (3− 2∆−)Tr[g
−1
0 ḡ(2,0)]ϵ2∆−−3+

+ O(φ3, ϵ, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3)
)

We combine the integrals and regroup the terms to obtain:

Son−shell
E [ĝ, φ] = SIR +M2L2

∫
d3x

√
g0
[
−4ϵ−3 + 2Tr[g−1

0 g(2)]ϵ−1+

+
2

3
(2∆− − 3)Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3 +O(φ3, ϵ, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3)

]
(4.21) f25

4.1 The renormalization of the on-shell actions5s1

To obtain the renormalized action we must add counterterms for the divergences and

take the limit ϵ → 0. However, the counterterms must be expressed in terms of the

induced metric. We will do that order by order in ϵ up to terms that vanish in the

limit ϵ → 0. Using equation (3.9) we see that the induced metric’s determinant up

to finite terms in the limit ϵ→ 0 is:

√
γ =

(
L3

r3

)√
ĝ = L3√g0(r−3 +

1

2
Tr[g−1

0 g(2)]r−1 +
1

2
Tr[g−1

0 g(3)] +

1

2
Tr[g−1

0 ḡ(2,0)]r2∆−−3

)
+O(φ3, r, r∆±+1, r2∆+−3, r2∆−−1, r3∆±−3) ⇒ (4.22) f26

−4M2L2√g0ϵ−3 = −4M2

L

√
γ + 2M2L2√g0Tr[g−1

0 g(2)]ϵ−1+

+2M2L2√g0Tr[g−1
0 g(3)] + 2M2L2√g0Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3+

+O(φ3, ϵ, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3) (4.23) nf1

We can now express the leading singularity in (4.21) in terms of γ. The action in

the limit ϵ→ 0 becomes:

lim
ϵ→0

(
Son−shell
E [ĝ, φ]

)
= SIR + lim

ϵ→0

(
M2L2

∫
d3x

(
− 4

L3

√
γ

)
+

+
√
g0

[
4Tr[g−1

0 g(2)]ϵ−1 + 2Tr[g−1
0 g(3)] +

4∆−

3
Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3

])
(4.24) f28

And using (3.22) we have:

lim
ϵ→0

(
Son−shell
E [ĝ, φ]

)
= SIR + lim

ϵ→0

(
M2L2

∫
d3x

(
− 4

L3

√
γ

)
+
√
g0
[
−R0ϵ

−1+
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+2Tr[g−1
0 g(3)] +

4∆−

3
Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3

])
(4.25) f29

Since the Ricci scalar and Ricci tensor of the metric ĝij contain no derivatives

with respect to r, expressing them in terms of the induced metric is a matter of

scaling. Each term in the definition of the Ricci tensor is a product of one inverse

metric and one metric, therefore the scaling is:

R̂ij = Rij[γ] ⇒ R[γ] =
r2

L2
R̂ (4.26) f30

We will express the next singularity in terms of γij:

√
γR[γ] = L

√
g0

(
r−3 +

1

2
Tr[g−1

0 g(2)]r−1 +
1

2
Tr[g−1

0 g(3)] +

+
1

2
Tr[g−1

0 ḡ(2,0)]r2∆−−3

)
r2R̂ +O(φ3, r, r∆± , r2∆+−3, r2∆−−1, r3∆±−3) ⇒ (4.27) f31

√
γR[γ] =

L

r

√
g0R0 +O(φ3, r, r∆± , r2∆+−3, r2∆−−1, r3∆±−3) ⇒ (4.28) f32

−M2L
√
γR[γ] = −M2L21

ϵ

√
g0R[g0]+O(φ3, ϵ, ϵ∆±+1, ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3) (4.29) nf2

Using (4.29), the action takes the form:

lim
ϵ→0

(
Son−shell
E [ĝ, φ]

)
= SIR + lim

ϵ→0

(
M2L2

∫
d3x

(
− 4

L3

√
γ − 1

L

√
γR[γ]

)
+

√
g0

[
2Tr[g−1

0 g(3)] +
4∆−

3
Tr[g−1

0 ḡ(2,0)]ϵ2∆−−3

])
(4.30) f34

To express the final divergence in terms of the induced metric at the boundary,

we use equation and (3.46):

lim
ϵ→0

(
Son−shell
E [ĝ, φ]

)
= SIR + lim

ϵ→0

(
M2L2

∫
d3x

(
− 4

L3

√
γ − 1

L

√
γR[γ]

)
+

√
g0

[
2Tr[g−1

0 g(3)]− ∆−

2
φ̄2
1,0ϵ

2∆−−3

])
(4.31) f36

We have to study the following product in the limit ϵ → 0. Using (4.16) and (4.22)

we find:
√
γφ2 = L3√g0

(
r−3 +

1

2
Tr[g−1

0 g(2)]r−1 +
1

2
Tr[g−1

0 g(3)]+
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+
1

2
Tr[g−1

0 g(2,0)]r2∆−−3

)(
2φ1,0φ̄1,0r

3 + φ̄2
1,0r

2∆−
)
+ (4.32) f37

+O(φ3, r, r∆± , r2∆+−3, r2∆−−1, r3∆±−3)

By performing the multiplication and dropping the terms that vanish when ϵ → 0

we have: √
γφ2 = L3√g0

(
2φ1,0φ̄1,0 + φ̄2

1,0r
2∆−−3

)
+ (4.33) f38

+O(φ3, r, r∆± , r2∆+−3, r2∆−−1, r3∆±−3) ⇒

−∆−

2
M2L2√g0φ̄2

1,0ϵ
2∆−−3 = −∆−

2

M2

L

√
γφ2 +∆−M

2L2√g0φ1,0φ̄1,0 (4.34) f39

+O(φ3, ϵ, ϵ∆± , ϵ2∆+−3, ϵ2∆−−1, ϵ3∆±−3)

Therefore, by defining:

Sreg[ĝ, φ] ≡ lim
ϵ→0

(
Son−shell
E [ĝ, φ]

)
(4.35) f39a

the regulated action takes the form:

Sreg[ĝ, φ] = lim
ϵ→0

(
M2L2

∫
d3x

√
γ

(
− 4

L3
− 1

L
R[γ]− ∆−

2L3
φ2

)
+ (4.36) f40

+
√
g0
[
2Tr[g−1

0 g(3)] + ∆−φ1,0φ̄1,0

])
+ SIR

We can identify, the counterterm action from (4.36):

Sct =M2L2

∫
dx3

√
γ

(
4

L3
+
R[γ]

L
+

∆−

2L3
φ2

)
(4.37) f41

And we have completed the renormalization of the action:

Sren = lim
ϵ→0

(Sct + Sreg) = SIR+M2L2

∫
d3x

√
g0
(
2Tr[g−1

0 g(3)] + ∆−φ1,0φ̄1,0

)
(4.38) f42

4.2 The Stress-Energy Tensors5s2

The expected value of the Stress-Energy Tensor is given by:

⟨Tij⟩ =
2

√
g0

δSren

δgij0
= lim

ϵ→0

2√
ĝ

δSren

δĝij
= lim

ϵ→0

(
L

ϵ

2
√
γ

δSren

δγij

)
(4.39) f53

We may freely move from one expression to the next because the renormalized

action contains no divergences. Furthermore, we shall return to the original expres-

sion of the supergravity action in (4.1), to avoid implicit dependencies between the

remaining parameters.
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The renormalized action contains two contributions, one from the supergravity

action and one from the counterterm action. The bulk action does not contribute

because by definition its variation with respect to the metric produces the equations

of motion and since the on-shell action is evaluated for the solutions to these equa-

tions, the bulk term vanishes. We begin by examining the contribution of the GHY

term. Using:
δK

δγij
=

1

2
Kij (4.40) f53a

we obtain:

TGHY,ij = lim
ϵ→0

(
L

ϵ

2
√
γ

δSGHY

δγij

)
=

= −4M2L lim
ϵ→0

(
1

ϵ

(
−1

2
Kγij +Kij −

1

2
Kij

))
⇒ (4.41) f58

TGHY,ij = −2M2L2 lim
ϵ→0

(
1

Lϵ
(Kij −Kγij)

)
(4.42) f59

Using (4.2), (4.7) and (4.8) we express TGHY in terms of the metric ĝij:

TGHY,ij = −2M2L2 lim
ϵ→0

(
1

Lϵ

(
ϵ

2L

[
2
L2

ϵ3
ĝij −

L2

ϵ2
ĝ′ij

]
−

− 1

L

[
3− ϵ

2
Tr[ĝ−1ĝ′]

] L2

ϵ2
gij

))
(4.43) f60

We rearrange the terms to obtain:

TGHY,ij =M2L2 lim
ϵ→0

(
4

ϵ3
ĝij +

1

ϵ3
ϵĝ′ij −

1

ϵ3
Tr[ĝ−1ϵĝ′]ĝij

)
(4.44) f61

The contribution of the counterterm action comes from the action in (4.37):

Tct,ij = lim
ϵ→0

(
L

ϵ

2
√
γ

δSct

δγij

)
=

= 2M2L2 lim
ϵ→0

(
L

ϵ

(
−1

2
γij

(
4

L3
+
R[γ]

L
+

∆−

2L3
φ2

)
+
Rij[γ]

L

))
(4.45) f62

We use (4.2) and (4.26) to express the counterterm contribution in terms of the

metric ĝij:

Tct,ij = 2M2L2 lim
ϵ→0

(
L

ϵ

(
− L2

2ϵ2
ĝij

(
4

L3
+
ϵ2R̂

L3
+

∆−

2L3
φ2

)
+
R̂ij

L

))
(4.46) f63

We then rearrange the resulting terms to obtain:

Tct,ij =M2L2 lim
ϵ→0

(
2

ϵ

(
R̂ij −

1

2
R̂ĝij

)
− 4

ϵ3
ĝij −

∆−

2ϵ3
φ2ĝij

)
(4.47) f64
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We can now obtain the expected value of the Stress-Energy tensor by adding the two

contributions:

⟨Tij⟩ = Tct,ij + TGHY,ij =M2L2 lim
ϵ→0

(
2

ϵ

(
R̂ij −

1

2
R̂ĝij

)
− ∆−

2ϵ3
φ2ĝij+ (4.48) f65

+
1

ϵ3
ϵĝ′ij −

1

ϵ3
Tr[ĝ−1ϵĝ′]ĝij

)
We use the expansions (3.6)- (3.9) up to finite terms. If the renormalization was

correct we will see the divergent terms cancel each other out. For this reason, we

will not write explicitly the limit of ϵ going to zero:

⟨Tij⟩ =M2L2

(
2ϵ−1

(
R0,ij −

1

2
R0g0,ij

)
− ∆−

2
φ̄2
1,0g0,ijϵ

2∆−−3− (4.49) f66

−∆−φ1,0φ̄1,0g0,ij + 2ϵ−1g
(2)
ij + 3g

(3)
ij + 2∆−ϵ

2∆−−3ḡ
(2,0)
ij −

−2ϵ−1Tr[g−1
0 g(2)]g0,ij − 3Tr[g−1

0 g(3)]g0,ij − 2∆−ϵ
2∆−−3Tr[g−1

0 ḡ(2,0)]g0,ij
)

We regroup the divergences and use (3.22), (3.41) and (3.46):

⟨Tij⟩ =M2L2

(
2ϵ−1

(
g
(2)
ij −

(
R0

4
g0,ij −R0,ij

))
+ (4.50) f67

+3g
(3)
ij − (∆2

− − 2∆−)φ1,0φ̄1,0g0,ij

+2∆−ϵ
2∆−−3

(
ḡ
(2,0)
ij −

(
−1

8
φ̄2
1,0g0,ij

)))
Finally, we use (3.23) and (3.50) to eliminate the divergences. The expected value

of the Stress-Tensor is:

⟨Tij⟩ =M2L2
(
3g

(3)
ij − (∆2

− − 2∆−)φ1,0φ̄1,0g0,ij

)
(4.51) f68

Indeed, its trace can be expressed through (3.41) :

⟨T i
i ⟩ =M2L2

(
3∆− − 2∆2

−
)
φ1,0φ̄1,0 ⇒ (4.52) f69a

⟨T i
i ⟩ =M2L2∆−(2∆+ − 3)φ1,0φ̄1,0 = ∆−φ̄1,0⟨O⟩ (4.53) f69

And it satisfies the Ward identity as we can see from (3.74).
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5. Discussion of the Exotic RG flowsConclusion

5.1 The properties of the exotic solutionssc1

We are ready to begin discussing exotic RG flows. One such example comes in the

from of the Bergman metric discussed in [23]. We can express it in FG coordinates

as:

ds2 =
du2

ℓ2u2
+

1

2ℓ2u2
√
2

(
(dψ + cosθdϕ)2 + u

√
2(dθ2 + sin2 θdϕ2)

)(
1 +O(u

√
2)
)

(5.1) C0a

Using the coordinate transformation:

r = u
√
2 (5.2) Ctra

we can bring the metric to the familiar FG form with integer powers:

ds2 =
ℓ̃2

r2
dr2 +

ℓ̃2

r2
(
(dψ + cosθdϕ)2 + r(dθ2 + sin2 θdϕ2)

)
(1 +O(r)) , ℓ̃ =

1√
2ℓ
(5.3) C0b

We see that the metric is exotic in the sense that the boundary metric becomes de-

generate when r → 0. The boundary metric is one-dimensional, meaning that it has

only one non-zero eigenvalues and two zero eigenvalues.

Of course this makes the calculation of vevs non trivial, because the boundary

inverse metric is ill-defined and the determinant cannot be expanded variationally

using the method described in section 4. To understand these properties we would

need to somehow modify the FG expansion so that it can consistently describe met-

rics with degenerate boundaries. We would also want to find the dual description of

these degeneracies in the context of the boundary QFT.

Another example of exotic RG flows was studied in [19]. A summary of the

process followed to find these exotic solutions is presented in Appendix (B). We will

reproduce for convenience the asymptotic form of the metrics in (B.36) and (B.48),

which govern the exotic RG flows:

ds2 =
ℓ̃2dr2

r2
+
ℓ̃2

r2

(
16

ℓ̃4T 2
(2)0

(dψ + cos θdϕ)2 +
4

ℓ̃2T(2)0
rdΩ2

)
(1 +O(r)) , ℓ̃ =

ℓ√
2

(5.4) C1

ds2 =
ℓ̃2

r2
dr2 +

ℓ̃2

r2

(
ℓ̃2T̃(1)0

4
(dψ + cos θdϕ)2 − r2dΩ2

)
(1 +O(r)) , ℓ̃ =

ℓ√
3

(5.5) C2

The expansions of the corresponding scalar fields are respectively:

φ = φ0 + r
1

ν± (1 + . . .) , ν± =
1

1±
√

(∆+−1)(∆+−2)
2

(5.6) C1a
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φ = φ0 + r
2
α̃ (1 + . . .) , α̃ = −3 +

√
9− 12∆+∆−

∆+∆−
, ∆+ > 3, (5.7) C2a

Again, we see that the boundary metric is one-dimensional and the rest of the

dimensions appear at higher perturbative orders. This does not allow us to have a

regular expansion for the inverse metric, thus hindering their analysis and the cal-

culation of the corresponding Stress-Energy tensor. Furthermore, in the case of the

metric in (5.4), the missing dimensions appear at the first perturbative order in r,

which was not present when studying a regular metric.

A more general form of the FG expansion was discussed in [23], with the gen-

eralization being that the g0 boundary metric depends on r as well. This approach

however has some problems, as the author pointed out. As we discussed previously,

since the determinant of g0 in general could vanish in the limit r → 0 (in fact, in both

of our cases it does), the inverse of the boundary metric is ill-defined. Moreover, the

resulting action cannot be reformulated in a covariant way, meaning that it is not

renormalisable.

Although such an approach does not seem to be able to solve our problem, it

was useful since it highlighted some key features that must be present in the ap-

proach that will eventually solve the problem. One is that we need a way to be able

to somehow have a non-zero contribution to first order in r. This feature could be

incorporated using an approach where the metric g0 has an explicit r dependence.

However, there should be caution when using the inverse metric in the equations,

because it is divergent in the r → 0 limit. The same caution should be present when

using perturbative expansions of the metric since the determinant of g0 vanishes in

the r → 0 limit. Finally, the method should permit the covariant reformulation of

the action, because otherwise, renormalization is impossible.

5.2 A possible solutionsc2

A possible solution to this problem is to use a Kaluza/Klein-like ansatz for the metric

of the following form2:

ds2 =
ℓ̃2

r2

[
dr2 + rnB̂αβ(r, x

M)dxαdxβ+

+Ĉij(r, x
µ)(dxj + Âj

β(r, x
M)dxβ)(dxi + Âα

i
(r, xM)dxα)

]
, (5.8) C4

2For this subsection we change our index notation, because we will need to refer to separate

blocks of the metric. The convention we are adopting is as follows: Upper case Greek indexes take

the values 1, 2, · · · , d. The Latin indexes take the values 1, 2, · · · , d1. Finally, lower case Greek

indexes αβ take the values d1+1, d1+2, · · · , d.
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where the metrics B̂αβ, Ĉij and the ”vectors” Âj
β , Âα

i
have now regular FG expan-

sions. Usually, the factor rn multiplying B̂µν would be omitted, however, the case of

the exotic RG flows demands that the two parts of the metric scale at different rates

with respect to r.

In the case of the exotic solutions of the Squashed S3 there exists a single fiber,

therefore the metric Ĉij is one-dimensional and n takes the values 1 for the ν± so-

lutions and 2 for B3. However, we will study the most general case in the sequel,

where Ĉij is d1-dimensional and B̂ij is d2-dimensional, with the dimensions satisfy-

ing d1 + d2 = d. One important simplification comes in the form of the cylinder

condition, which is usually implemented in such systems. According to this condi-

tion, the metric does not depend on the fibered coordinates of the d1 × d1 block

[24]. Through the cylinder condition (which holds at least for the lowest order of

the exotic solutions) partial derivatives with respect to the fibered coordinates vanish.

In matrix representation, we have:

ĝMN =

(
Ĉij ĈijÂ

j
β

Âα

i
Ĉij r

nB̂αβ + Âα

i
ĈijÂ

j
β

)
(5.9) ex3

The inverse metric according to the ansatz is:

ĝMN =

(
Ĉij + Âi

αB̂
αβÂβ

j
r−n −Âi

αB̂
αβr−n

−B̂αβÂβ

j
r−n r−nB̂αβ

)
(5.10) ex4

This ansatz has many promising attributes. For one, it is the most general form of

many fibered metrics, for example, the metrics discussed in [25] and [26]. The sec-

ond strength it offers is that it allows us to isolate the divergent parts of the metric

and study them separately. Therefore, we do not need to worry about using g−1
0 ,

because the divergences have been absorbed in the equations. Instead, we will use

the inverses of the matrices C and B, which are well-defined.

Another strength is that by construction we have a contribution in the r1 order

from the term rnB̂αβ. In short, the proposed generalization to the FG expansion is

to use independent expansions for each of the blocks of the metric. The determinant

of g seems initially difficult to handle, however, this is not the case. The problem

can be solved by implementing a math theorem presented in [27], which allows us to

express the determinant in terms of the determinants of B and C. The only possible

issue is the covariant reformulation of the action. This is an issue that will be dealt

with once the equations of motion have been solved.
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To summarize how one would study such a metric, the standard procedure

demonstrated in section (3) can be repeated for each block independently, allow-

ing us to impose boundary conditions on each of them. Instead of a system of 4

equations, we would have 8. One scalar equation, one equation for the trace of g,

corresponding to the rr equation, 2 for the conservation of each square matrix, corre-

sponding to the rj equations and 4 for the coefficients of each block, corresponding

to the ij equations. Using symmetry arguments, the equations for the coefficients

of the iα and αi blocks would not be independent, leaving us with a system of 7

independent equations.

The challenge comes in the form of finding the Ricci tensor elements for this

metric and expressing them in terms of the quantities appearing in the equations.

This endeavor can be slightly simplified by noting that we have already calculated

the Ricci tensor elements for a metric in FG form in Appendix (A). One must simply

take all combinations of indexes belonging to each block and be extra careful when

using the inverse metric in products and traces.

Finally, one good correspondence check when one finishes the calculations would

be to set d1 = n = 0, d2 = d and set all matrices besides B to zero. The results

should correspond to those of a regular FG expansion. The same is not true for

letting only C be non-zero, because of the cylinder condition. One would have to

calculate the full equations of motion, without using the cylinder condition if they

want to use C as a correspondence check. This problem will be continued and solved

in the future.

Acknowledgements

I want to thank my supervisor Elias Kiritsis for his guidance and his instructive

comments.

– 40 –



Appendix

A. The Fefferman-Graham Coordinate SystemFG

An asymptotically AdS 3+1 dimensional metric gµν expressed in Fefferman -Graham

coordinates has the following form:

ds2 =
ℓ2

r2
dr2 +

ℓ2

r2
ĝij(r, x

i)dxidxj (A.1) FG1

where the boundary metric has a regular expansion if it is odd-dimensional:

ĝij(r, x
i) =

∞∑
m=0

ĝ
(m)
ij (xi)rm (A.2) FG2

Usually, an additional logarithmic term is required for even-dimensional metrics, but

this is beyond the scope of this thesis since our metric is 3+1 dimensional. The

expansion may have corrections to account for scalar sources coupled to gravity. If

one is interested in such cases, the expansion of ĝij becomes:

ĝij(r, x
i) =

∞∑
n=1
m=0

g
(n,m)
ij (xi)rn∆++m +

∞∑
n=1
m=0

ḡ
(n,m)
ij (xi)rn∆−+m +

∞∑
n=0

g
(n)
ij (xi)rn, (A.3) FG3

where ∆+ is the dimension of the dual operator and ∆− is defined as ∆− = d−∆+.

For the rest of this appendix, a hat denotes a quantity constructed from the met-

ric ĝij and a prime denotes a derivative with respect to r. The non-trivial Christoffel

symbols of gµν are:

Γrr
r = −1

r
, Γij

r = −1

2

(
ĝ′ij −

2

r
ĝij

)
, (A.4) FG4

Γrj
i =

1

2

(
(ĝ−1ĝ′)j i −

2

r
δj i

)
, Γij

k = Γ̂ij

k

The non-trivial independent components of the Riemann tensor are

Rr
ijr =

1

2

[
ĝ′′ij −

1

2
(ĝ′ĝ−1ĝ′)ij −

ĝ′ij
r

+
2

r2
ĝij

]
(A.5) FG5

Rr
ijk =

1

2

[
∇̂kĝ

′
ij − ∇̂j ĝ

′
ik

]
(A.6) FG6

Rl
ijk = R̂l

ijk +
1

4

[(
ĝ′ij −

2

r
ĝij

)(
(ĝ−1ĝ′)lk −

2

r
δlk

)
− (A.7) FG7

−
(
ĝ′ik −

2

r
ĝik

)(
(ĝ−1ĝ′)lj −

2

r
δlj

)]
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The non-trivial components of the Ricci tensor are:

Rij = R̂ij +
1

4

(
2(ĝ′ĝ−1ĝ′)ij − 2ĝ′′ij − Tr[ĝ−1ĝ′]ĝ′ij +

+
2

r
Tr[ĝ−1ĝ′]ĝij +

2(d− 1)

r
ĝ′ij −

4d

r2
ĝij

)
(A.8) FG8

Rrj =
1

2
ĝik
(
∇̂kĝ

′
ij − ∇̂j ĝ

′
ik

)
(A.9) FG9

Rrr = −1

2

(
Tr[ĝ−1ĝ′′]− 1

2
Tr[ĝ−1ĝ′ĝ−1ĝ′]− 1

r
Tr[ĝ−1ĝ′] +

2d

r2

)
(A.10) FG10

The Ricci curvature becomes:

R =
r2

ℓ2
R̂ +

1

4

r2

ℓ2

(
4d

r
Tr[ĝ−1ĝ′]− 4Tr[ĝ−1ĝ′′] +

+ 3Tr[ĝ−1ĝ′ĝ−1ĝ′]− (Tr[ĝ−1ĝ′])2 − 4d(d+ 1)

r2

)
(A.11) FG11

We may combine our results for the Ricci curvature and Ricci tensor, to obtain

the non-trivial elements of the Einstein tensor:

Grr = −1

2
R̂− 1

8

(
Tr[ĝ−1ĝ′ĝ−1ĝ′]− (Tr[ĝ−1ĝ′])2+

+
4(d− 1)

r
Tr[ĝ−1ĝ′]− 4d(d− 1)

r2

)
(A.12) FG12

Grj = Rrj (A.13) FG13

Gij = Ĝij +
1

8

(
4(ĝ′ĝ−1ĝ′)ij − 4ĝ′′ij − 2Tr[ĝ−1ĝ′]ĝ′ij −

4(d− 1)

r
Tr[ĝ−1ĝ′]ĝij + (A.14) FG14

+
4(d− 1)

r
ĝ′ij +

(
4Tr[ĝ−1ĝ′′]− 3Tr[ĝ−1ĝ′ĝ−1ĝ′] +

+ (Tr[ĝ−1ĝ′])2 +
4d(d− 1)

r2

)
ĝij

)
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B. A review of the Exotic RG FlowsRGF

In this appendix, we have collected the expansions of the exotic solutions we are

asked to describe up to the orders which will be relevant for the calculation of the

Stress-Energy Tensor. For more details, read [19]. For a potential of the form:

V (φ) = − 6

ℓ2
− ∆+∆−

2ℓ2
(φ− φ0)

2 +O
(
(φ− φ0)

3
)
, (B.1) RGF1

and the following ansatz for the bulk metric:

ds2 = du2 + L2
(
e2A1(u)(dψ + cosθdϕ)2 + e2A2(u)dΩ2

2

)
, (B.2) RGF2

the resulting equations of motion obtained variationally from the action in (2.20) are

(dots denote derivatives with respect to u and primes denote derivatives with respect

to r):

φ̈+ (Ȧ1 + 2Ȧ2)φ̇+ V ′(φ) = 0 (B.3) RGF3

4Ȧ2
2 + 8Ȧ1Ȧ2 +

1

L2
e2A1−4A2 − 4

L2
e−2A2 − φ̇2 + 2V (φ) = 0 (B.4) RGF4

4Ä2 + 4Ȧ2(Ȧ2 − Ȧ1) +
1

L2
e2A1−4A2 + φ̇2 = 0 (B.5) RGF5

Ä1 − Ä2 + (Ȧ1 − Ȧ2)(Ȧ1 + 2Ȧ2) +
1

L2
e−2A2 − 1

L2
e2A1−4A2 = 0 (B.6) RGF6

The conformal dimension of the operator takes the values 3
2
≤ ∆+ ≤ 3 when we are

at a maximum and ∆+ > 3 when we are at a minimum of the potential.

The equations can be expressed in terms of the following superpotentials:

W1(φ) ≡ −4Ȧ1 (B.7) RGF7

W2(φ) ≡ −4Ȧ2 (B.8) RGF8

T1(φ) ≡
4

L2
e2A1−4A2 (B.9) RGF9

T2(φ) ≡
4

L2
e−2A2 (B.10) RGF10

S ≡ φ̇ (B.11) RGF11

It is possible to show that the equation inside the parenthesis is not independent of

the rest, however for clarity’s sake we shall leave it here:

SS ′ − 1

4
S (W1 + 2W2)− V ′ = 0, (B.12) RGF12

W 2
2 + 2W1W2 + T1 − 4T2 − 4S2 + 8V = 0, (B.13) RGF13(
−4SW ′

2 +W 2
2 −W1W2 + T1 + 4S2 = 0

)
(B.14) RGF14

– 43 –



4(W ′
2 −W ′

1)S + (W1 −W2)(W1 + 2W2) + 4(T2 − T1) = 0, (B.15) RGF15

From the definitions of the T superpotentials, we may also obtain:

ST ′
1 = −1

2
(W1 − 2W2)T1 , ST ′

2 =
1

2
W2T2. (B.16) RGF16

Besides regular power series expansions, the superpotential may also contain de-

formations corresponding to non-analytic expansions, as long as they are subleading.

To solve the equations we define:

S = SL + δS , W1 = W1L + δW1 , W2 = W2L + δW2, (B.17) F12

T1 = T1L + δT1 , T2 = T2L + δT2, (B.18) RGF17

and introduce these redefinitions in the EsOM. The functions with an L index, are

assumed to satisfy the non-linear equations.

(SLδS)
′ − 1

4
SL (δW1 + 2δW2)−

1

4
δS (W1L + 2W2L) = 0, (B.19) RGF18

(W2L +W1L) δW2 +W2LδW1 +
1

2
δT1 − 2δT2 − 4SLδS = 0 (B.20) RGF19

(W2L −W1L)
′ δS + (δW2 − δW1)

′ SL +
1

4
(W1L −W2L) (δW1 + 2δW2) ,

+
1

4
(δW1 − δW2) (W1L + 2W2L) + δT2 − δT1 = 0, (B.21) RGF20

SLδT
′
1 + δST ′

1L +
1

2
((W1L − 2W2L)δT1 + (δW1 − 2δW2)T1L) = 0. (B.22) RGF21

SLδT
′
2 + δST ′

2L =
1

2
(W2LδT2 + δW2T2L) , (B.23) RGF22

We can solve first equations (B.19)-(B.21) in order to obtain δW1, δT1, δT2. After

that, we shall substitute the resulting expressions into equations (B.22), (B.23). We

will finally solve two differential equations for the functions δW2, δS.
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The ν± solutions

Defining:

x ≡ φ− φ0, (B.24) RGF24

and:

ν± =
1

1±
√

(∆+−1)(∆+−2)
2

(B.25) RGF24a

the expansions for the ν± solutions are:

Sν± =

√
2

ℓν±
x+

3V3ℓν±√
2(3− 2ν±)

x2+ (B.26) RGF25

+

4(2ν3±+27ν2±+66ν±−72)

ℓν±(12ν2±+33ν±−32)(12+ν±)
+ 4V4ℓν± − 9V 2

3 ℓ3ν3±
(3−2ν±)2

2
√
2(2− ν±)

x3 +O(x4)+

+
ℓ

8
√
2(2− ν±)

T(2)0x
1+ν± (1 +O(x)) +

C
8(2 + ν±)

x1+3ν± (1 +O(x))+

+(−3ℓν±D
8
√
2
x2ν±−1) (1 +O(x)) ,

W1,ν± =
4
√
2

ℓ
+

8
√
2(ν2± + ν± − 2)

(12ν2± + 33ν± − 32)ℓν±
x2 +O(x3) + Cx3ν± (1 +O(x)) , (B.27) RGF26

W2,ν± =
2
√
2

ℓ
+

4
√
2(ν3± + 14ν2± + 56ν± − 48)

(12 + ν±)(12ν2± + 33ν± − 32)ℓν±
x2 +O(x3)+ (B.28) RGF27

+
ℓ

4
√
2
T(2)0x

ν± (1 +O(x))− C
4
x3ν± (1 +O(x)) ,

T1,ν± =
8

ℓ2
+

16 (2ν± − 1)

(12ν2± + 33ν± − 32)ℓ2
x2 +O(x3)+ (B.29) RGF28

+T(2)0x
ν± (1 +O(x))−

√
2

ℓ
Cx3ν± (1 +O(x)) + (Dx2ν±) (1 +O(x)) ,

T2,ν± = T(2)0x
ν± (1 +O(x))−

√
2

3ν±ℓ(2 + ν±)
Cx2+3ν± (1 +O(x))+ (B.30) RGF29

+(Dx2ν±) (1 +O(x)) .

In the above expansions, C, D and T(2)0 are integration constants. The terms propor-

tional to D exist only when ν± ≥ 1, whereas the rest all exist simultaneously when

ν± > 0. The terms proportional to D are inside parentheses to emphasize this fact.

Specifically, we see from (B.25) that they exist for the ν− solution but not for the ν+
solution. Now we may find the expansion of the scalar from (B.11). In both cases,

it is:

φ = φ0 + e

√
2

ℓν±
(u−u0) (1 + . . .) (B.31) RGF30
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We may then use relations (B.9) and (B.10) to directly compute the exponentials

appearing in the metric ansatz. To leading order, we obtain:

e2A2 =
4

L2T(2)0
e−

√
2
u−u0

ℓ

(
1 +O

(
e
√
2
u−u0

ℓ

))
, (B.32) RGF31

e2A1 =
32

ℓ2L2T 2
(2)0

e−2
√
2
u−u0

ℓ

(
1 +O

(
e
√
2
u−u0

ℓ

))
. (B.33) RGF32

Which give the following form for the metric near φ0 (we define ℓ̃ = ℓ√
2
):

ds2 ≈ du2 +
32e−2

√
2
u−u0

ℓ

ℓ2T 2
(2)0

(
(dψ + cos θdϕ)2 +

ℓ2T(2)0
8

e
√
2
u−u0

ℓ dΩ2

)
⇒ (B.34) RGF33

ds2 ≈ ℓ2dz2

z2
+

32z2
√
2

0

ℓ2T 2
(2)0z

2
√
2

(
(dψ + cos θdϕ)2 +

ℓ2T(2)0
8

(
z

z0

)√
2

dΩ2

)
⇒ (B.35) RGF34

ds2 ≈ ℓ̃2dr2

r2
+
ℓ̃2

r2

(
16

ℓ̃4T 2
(2)0

(dψ + cos θdϕ)2 +
4

ℓ̃2T(2)0
rdΩ2

)
(B.36) RGF35

As we can see, this metric does not correspond to a standard FG boundary. The

different parts of the metric scale at different rates and the metric that would be ĝ

in the symbolism of appendix (A) is degenerate in the limit r → 0.
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The B3 solution

Similarly to the ν± solutions, by defining the constant α̃ as:

α̃ = −3 +
√
9− 12∆+∆−

∆+∆−
, ∆+ > 3, (B.37) RGF36

the expansions for the B3 solution are:

S = x

(
2
√
3

ℓα̃
+

√
3ℓα̃V3
α̃ + 6

x+O(x2)

)
+

ℓ

8
√
3(4 + 3α̃)

T̃(1)0x
1+α̃(1 +O(x))+ (B.38) EGF37

+
C

3(ã+ 2)
x1+

α̃
2 (1 +O(x)),

W1 = −4
√
3

ℓ
+

(2− α̃)(4 + α̃)(12α̃−2 +∆+∆−)

2
√
3(α̃− 4)(α̃ + 2)ℓ

x2 +O(x3)− (B.39) RGF38

−
ℓT̃(1)0

4
√
3
xα̃(1 +O(x))− 2

3
Cxα̃/2(1 +O(x)),

W2 =
2√
3ℓ

12α̃−2 +∆+∆−

α̃− 4
x2+O(x3)+

ℓT̃(1)0

4
√
3
xα̃(1+O(x))+Cxα̃/2(1+O(x)), (B.40) RGF39

T1 = T̃(1)0x
α̃(1 +O(x)) +

48− 36α̃ + 16α̃2 + 11α̃3

3
√
3(α̃ + 2)2(α̃− 4)ℓα̃

Cx2+
α̃
2 (1 +O(x)), (B.41) RGF40

T2 = −12

ℓ2
+

12α̃−2 +∆+∆−

ℓ2(4α̃−1 − 1)
x2 +O(x3)−

−
T̃(1)0
4

xα̃(1 +O(x))− 2
√
3

ℓ
Cxα̃/2(1 +O(x)). (B.42) RGF41

Again, from (B.11) we find the expansion of the scalar to leading order:

φ = φ0 + e
2
√
3

α̃
u−u0

ℓ (1 + . . .) , (B.43) RGF42

From (B.9) and (B.10) the exponentials are to leading order:

e2A2 = − ℓ2

3L2

(
1 +O(e

√
3
u−u0

ℓ )
)
, (B.44) RGF43

e2A1 =
ℓ4T̃(1)0
36L2

e2
√
3
u−u0

ℓ

(
1 +O(e

√
3
u−u0

L )
)
. (B.45) RGF44

Finally, the metric near φ0 is (we define ℓ̃ = ℓ√
3
):

ds2 ≈ du2 +
ℓ4T̃(1)0
36

e2
√
3
u−u0

ℓ (dψ + cos θdϕ)2 − ℓ2

3
dΩ2 ⇒ (B.46) RGF45
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ds2 ≈ ℓ2

3r2
dr2 +

ℓ4T̃(1)0
36r2

(dψ + cos θdϕ)2 − ℓ2

3
dΩ2 ⇒ (B.47) RGF46

ds2 ≈ ℓ̃2

r2
dr2 +

ℓ̃2

r2

(
ℓ̃2T̃(1)0

4
(dψ + cos θdϕ)2 − r2dΩ2

)
(B.48) RGF47

This metric has the same problems as the one in (B.36).
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