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Abstract

This thesis concerns the problem of detecting and imaging re�ectors in complex
scattering media. These are media with small scale inhomogeneities that are not
known and cannot be estimated in detail. We usually refer to them as clutter and
model them as a random process. Imaging means that we are primarily interested
in reconstructing the shape of the re�ector and not its actual physical properties.
Our data is the array response matrix collected by sending short pulses from each
array element and then recording the medium response at the array receivers. The
challenge when imaging in clutter is that the array data are noisy, i.e., the echoes
from the re�ectors that we wish to image are immersed in the multiple re�ections
of the waves by the medium inhomogeneities.

Coherent interferometry (CINT) is a methodology that has been developed for
imaging in such media. The main idea in CINT is to image by back-propagating
cross correlations of the data over appropriate space-frequency windows. The size
of the windows basically determines the area over which the data are coherent.
It depends on the medium heterogeneities and the distance that the waves have
traveled in the multiple scattering environment.

Here we rely on a windowed beamformer energy functional that has been shown
to be equivalent to CINT for the appropriate choice of window functions. This is a
quadratic imaging function that involves only time gating and time delaying signals
in emission and in reception. In this form, coherent interferometric imaging can be
implemented ef�ciently both in hardware and software, with a computational cost
comparable to the usual beamforming and migration imaging methods.

Moreover, we consider different type of window functions that can be interpreted
as �lters that enhance the coherent part of the data prior to imaging. This leads to
imaging results with improved signal to noise ratio.
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1 Introduction

This thesis concerns imaging, a research area that belongs in the �eld of inverse
problems. Inverse problems are in general ill-posed, which means that they do
not admit a unique solution. To regularize the problem one can add some a-priori
information about the unknown properties of the object to be imaged. One such
type of information could be that we seek to �nd small inhomogeneities that have
signi�cantly different properties from those of the surrounding medium. In medical
imaging those small inhomogeneities may represent small tumors at an early stage.

Ultrasound is used with a great success in the diagnosis of abnormalities in soft
tissue structures in the human body. It is non-invasive and cheap. In certain ap-
plications such as fetal imaging, it is the only modality considered safe. Ultrasound
propagates fast and can be processed fast enough to enable imaging of moving or-
gans as well, such as the heart. It has also been proven that ultrasound is a very
useful tool for locating tumors. Cross-sectional images are made in real time with
the B-mode scan technique by current scanners. A high image quality is obtained by
employing linear and phased array transducers, and by post-processing the envelope
detected signal from the transducer. But the ultrasound image still lacks contrast
and resolution compared to x-ray and NMR (nuclear magnetic resonance) images.
In imaging resolution is de�ned as the minimum distance by which two point objects
have to be separated in order to be distinguishable from each other.

Although several numerical techniques have been theoretically developed for get-
ting images with better resolution and signal to noise ratio, they are not always
adopted in commercial medical equipment for several reasons. Robustness and ea-
siness in hardware/software implementation is always an issue. Such a technique is
coherent interferometric imaging. We will refer to this method as CINT. Coherent
interferometric imaging is based on the propagation of the local space-time cross
correlations of array data and was introduced in order to improve the performance
of back-propagation or beamforming when imaging is carried out in background me-
dium with unknown small scale inhomogeneities [13, 14, 10]. This method has been
shown to be e�ective and is well founded theoretically. However, the CINT functio-
nal is computational expensive and therefore di�cult to use in practice. A windowed
beamformer energy function has been shown to be equivalent to CINT and is ex-
pected to have a much lower computational cost [9]. In this thesis we will explore
this functional and asses its performance with extensive numerical simulations.

Speci�cally we consider an active array imaging problem that consists in de-
tecting the presence and determining the location of small re�ectors by sending
probing signals from one or more sources at the array and recording the scattered
echoes. A typical setup is shown in Figure 1.1, where the re�ectors are assumed to
be in a bounded domain D.

The transmitter located at ~xs emits a pulse f(t), whose Fourier transform f̂(ω) is
supported in the frequency interval centered at ω0 with a bandwidth B. Assuming a
point source behavior, this creates a spherical wave that propagates in the medium
and interacts with the re�ectors to be imaged. The backscattered �eld P (~xs, ~xr, t)
is recorded at all receiver locations ~xr, for r = 1, . . . , Nr, over some time window t ∈
[t0, T ]. By repeating the same process for all transmitter locations ~xs, s = 1, . . . , N
we collect the array response matrix P (~xs, ~xr, t), s = 1, . . . , Ns, r = 1, . . . , Nr. We
refer to P (~xs, ~xr, t) as the time traces, as in the context of geophysical applications [7].
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~xs

~xr ~y

D

Array of transducers

Figure 1.1: Schematic for imaging distributed re�ectors in region D.

The imaging problem consists in estimating the support of the re�ectors in the dom-
ain D. This is an easier problem and often can be addressed as a �rst step of the
full inverse problem in which we seek to determine not only the size and shape but
also the actual physical properties of the re�ectors.

We illustrate in Figure 1.2 snapshots of the solution of the wave equation during
the data acquisition process. In a �rst step as shown on the left the spherical
wave originating from the source propagates into the medium. In this example the
background medium is homogeneous and therefore the wave propagates freely until
it encounters the scatterer. On the right panel in Figure 1.2 we see a snapshot of the
solution at a later time where the direct (ballistic) wave has left the computational
domain and the echoes due to three small re�ectors are visible. These are the echoes
that are recorded on the array and will be used as data to solve the imaging problem.

 

 

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.05

0.1

0.15

0.2

0.25

0.3

 

 

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

0.05

0.1

0.15

0.2

 

 

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80 0

1

2

3

4

5

6

7

8

x 10
−3

Figure 1.2: Snapshots of the absolute value of the pressure �eld in the computa-
tional domain. From left to right: a pulse is send from the central array element,
the incident wave propagates in the medium and when it leaves the computational
domain (absorbed by the PML) the echoes from the scatterers are shown (right
plot). The scattered echoes propagate back towards the array and are recorded at
all array elements.

To be able to simulate the human soft tissue we will use a medium whose pro-
pagation sound speed is not constant but has �uctuations on a certain scale. These
sound speed �uctuations will produce their own echoes and this will impede the ima-
ging process. Although the strength of the �uctuations is small their e�ect on the
wave accumulates and becomes order one over long propagation distances. Since
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the medium inhomogeneities are unknown and cannot be estimated in detail we
model them as a random process. The challenge in imaging is to produce reliable
statistically stable images of the re�ectors in such media. Statistical stability means
that the image is independent of the particular realization of the background �uctu-
ations considered. CINT and the windowed beamformer energy (WBE) functional
are statistical stable imaging methods as shown in [9, 10].

This thesis is organized as follows: In Section 2 we formulate the array imaging
problem and in Section 3 the numerical setup is described. In Section 4 we review
the simplest form of imaging with Kirchhoff migration and discuss its limitations
when imaging in clutter. We consider coherent interferometric imaging in Section
5 and we illustrate with numerical results the statistical stability of the method,
as well as the role of the smoothing parameters. In Section 6 a di�erent approach
to array imaging using a windowed energy beamfomer (WBE) is presented. The
connection between WBE and CINT is described in Section 6.2. The equivalence of
the two methods is shown through some numerical results. In Section 6.3 we present
the algorithm for WBE imaging. The performance of WBE is compared to that of
CINT in Section 6.4 using di�erent parameters' values for the imaging methods.
In Section 7 we address the multiple scattering problem in strong cluttered media.
We introduce in Section 7.2 a single scattering �lter applied in WBE in a simpler
form than the one proposed in [2, 3]. In Section 7.3 the implementation of the �lter
is discussed and in Section 7.4 we test the e�ciency of the �lter when imaging in
strong cluttered media. We end with a summary in Section 8.
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2 The array imaging problem

In this section we want to describe the array imaging problem in detail. We
begin with the basics of the wave propagation problem. Then we derive a model
that describes the relation between the re�ectivity and the recorded pressure �eld
using the Born approximation and �nally the Kirchhoff Migration imaging function
is introduced.

scatterer
~xs

~xr

unknown medium

receiver

source

Figure 2.1: The array imaging problem. A source located at ~xs sends a probing
pulse and the echoes are recorded at all array elements ~xr, r = 1, 2, . . . , N .

2.1 The wave equation

In this section we present a few basic facts about the wave equation and wave
propagation. The propagation of sound waves is modeled by a �rst order system
of equations driven by a force ~F(t, ~x) exerted by an acoustic source. The resulting
pressure �eld p(t, ~x) and the particle velocity ~v(t, ~x) satisfy the equations of conser-
vation of momentum

%(~x)
∂~v(t, ~x)

∂t
+∇p(t, ~x) = ~F(t, ~x), (2.1)

and the conservation of mass

∂p(t, ~x)

∂t
+K(~x)∇ · ~v(t, ~x) = 0, (2.2)

for t > 0 and ~x ∈ Rn. Where K(~x) is the bulk modulus and %(~x) is the mass density
of the medium. The force ~F(t, ~x) is supported at t > 0 and the medium for t ≤ 0 is
in its equilibrium state,

p(t, ~x) = 0, ~v(t, ~x) = 0, t ≤ 0.

When taking the time derivative in (2.2) and substituting (2.1), the �rst order system
(2.1-2.2) reduces to a second order equation for the pressure �eld. We obtain that
p(t, ~x) satis�es

%(~x)

K(~x)

∂2p(t, ~x)

∂t2
− %(~x)∇ ·

[∇p(t, ~x)

%(~x)

]
= −%(~x)∇ ·

[
~F(t, ~x)

%(~x)

]
, t > 0, ~x ∈ Rn,

(2.3)
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with initial condition

p(0, ~x) =
∂p(0, ~x)

∂t
= 0. (2.4)

Under the assumption that the density % is constant from (2.4) we have the canonical
form of the wave equation

1

c2(~x)

∂2p(t, ~x)

∂t2
−∆p(t, ~x) = F (t, ~x), ~x ∈ Rn, t > 0, (2.5)

with wave speed

c(~x) =

√
K(~x)

%
,

and source density
F (t, ~x) = −∇ · ~F(t, ~x).

Let us consider a linear array A which has N ≥ 1 elements. We assume here that
these elements will act as transmitters and receivers. That means that the sources
(transmitters) and the receivers are collocated, an assumption made for simplicity
which is not necessary in practice. The sources may emit simultaneously, but we
assume in the following that the excitation is emitted from one source at a time.
Let us further suppose that the sources are small and can be assumed to have a
point-like support at location ~xs ∈ A, for s = 1, . . . , N .

F (t,xs) = f(t)δ(~x− ~xs). (2.6)

The receivers are also point-like transducers located at ~xr ∈ A, for r = 1, . . . , N .
What we seek to reconstruct in imaging is the re�ectivity of the medium, denoted

ρ, which is a perturbation of the medium velocity resulting in the following change

1

c2(~x)
 

1

c2(~x)
+
ρ(~x)

c2
0

.

Here c(~x) is the assumed known wave speed in the background medium which hosts
the perturbation ρ(~x) that we wish to estimate.

To emphasize the dependence of the waves to the source location, we denote the
pressure �eld due to source (2.6) by p(t, ~x;~xs). It satis�es

1

c2(~x)

∂2p(t, ~x;~xs)

∂t2
−∆~xp(t, ~x;~xs) = −ρ(~x)

c2
0

∂2p(t, ~x;~xs)

∂t2
+ f(t)δ(~x− ~xs), t > 0,

(2.7)
with initial condition

p(0, ~x;~xs) =
∂

∂t
p(0, ~x;~xs) = 0.

Let us further assume that the background medium contains some small scale
inhomogeneities. Due to band-limited array data it is impossible to recover all these
�uctuations in detail as part of the imaging process. This motivates us to separate
the wave speed in two parts. The �rst part is the clutter or micro-structure which is
the unknown part of c(~x) which we will not recover in imaging and the second part
is the perturbation which can be recovered in imaging, lets call this the re�ectivity.
We can write now, our model for the velocity in the medium,

1

c2(~x)
=

1

c2
0

[1 + µ(~x)] +
ρ(~x)

c2
0

(2.8)
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where c0 is a reference speed, ρ(~x) the re�ectivity and µ(~x) the perturbation that
represents the clutter.

(a) Homogeneous medium.

time

0 10 20 30 40 50 60 70 80
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−20

0
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(b) Inhomogeneous medium.
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−40

−20

0

20
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Figure 2.2: Traces received in (a) homogeneous and (b) inhomogeneous back-
ground, when signal f(t) is sent from the central array element. The vertical axis is
the receiver location, scaled by λ0. The horizontal axis is time in µsec.

A very important factor in imaging is the scaling. We use it to classify different
imaging regimes based on the relation between the length scales of the problem.
The reference scale we usually use is the central wavelength λ0 which is de�ned by

λ0 = c0/f0

where c0 is the reference wave speed and f0 the central frequency of the probing
wave send by the source.

We de�ne as L the range scale which is the typical distance from the array to
the imaging region. We call also range the main direction of propagation of the
waves. In this thesis we are interesed in far-�eld imaging, that means L � λ0.
The direction orthogonal to the range direction is called cross-range. This is the
direction in which the array lies on. In two dimensions the array is linear while
in three dimensions the arrays are usually planar. As we will see, the resolution
in imaging is highly dependent on the range and the array size. The size of the
array in the cross-range direction is called also aperture size and we denote it by
a. We say that the arrays are small when a � L, and large when a ≥ L. The
imaging process can be done with full aperture or partial aperture. In the �rst case
the imaging region is surrounded by the array while in the second one the array lies
on one side of the imaging window IW. The imaging window is the region of interest
that contains the re�ectors to be imaged. Typically in imaging we discretize the IW

and create an image by associating a value of an imaging functional to each point
of the IW.

In random media we need a reference scale to describe the inhomogeneities. This
scale will be the scale at which the medium �uctuates, so called the correlation length
and denoted Cl. It is obvious that the inhomogeneities are not all of the same size,
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so for complex media we can have different length scales Cl. Here we will consider
rather simple media that can be described by one length scale Cl. We suppose
moreover that the medium varies on the same scale in all directions. This is an
isotropic medium.

Another important quantity for imaging is the bandwidth B. When the central
frequency f0 is of the same order as the bandwidth B, we say that we have a
broadband signal f(t).

2.2 The Born approximation

At this point we want to derive an explicit relation between the source F (t, ~x)
and the wave �eld p(t, ~x). To do so, we need to invert the wave operator in (2.5),
which we denote by T. It is a linear operator de�ned on the vector space of twice
continuously differentiable functions of t and ~x. Equation (2.5) becomes Tp = F ,
and it has a unique solution

p = T−1F. (2.9)

The inverse of the operator is an integral operator with kernel given by the causal
Green's function

G0(t, ~x, ~y) =
1

4π|~x− ~y|δ
(
t− |~x− ~y|

c0

)
, t > 0 (2.10)

under the assumption that the wave speed is constant in the medium c(~x) = c0.
The equation (2.9) has the explicit form

p(t, ~x) =

∫ t

0

ds

∫
Rn

d~y F (s, ~y)G(t− s, ~y, ~x), (2.11)

known as Duhamel's principle. The causal Green's function satis�es

1

c2(~x)

∂2G(t, ~x, ~y)

∂t2
−∆~xG(t, ~x, ~y) = δ(~x− ~y)δ(t), ~x, ~y ∈ Rn, t > 0,

G(t, ~x, ~y) = 0, t < 0,

where ∆~x is the Laplacian operator in the variable ~x, and δ is the Dirac distribution.
Since both the Green's function and the source are supported at positive time we
have∫ t

0

ds F (s, ~y)G(t− s), ~x, ~y) =

∫ +∞

−∞
ds F (s, ~y)G(t− s, ~y, ~x) = F (t, ~y) ∗tG(t, ~x, ~y)

so we can rewrite the equation (2.11) as a time convolution

p(t, ~x) =

∫
Rn

d~y F (t, ~y) ∗t G(t, ~y, ~x). (2.12)

Often it is not easy to deal with convolutions. A way to avoid time convolutions is to
work in the frequency domain using the Fourier transform. The Fourier transform
of the pressure �led is de�ned as

p̂(ω, ~x) =

∫ +∞

−∞
dt p(t, ~x)eiωt,
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and the inverse Fourier transform is

p(t, ~x) =

∫ +∞

−∞

dω

2π
p̂(ω, ~x)e−iωt.

The advantage of working in the Fourier domain is that time convolutions become
products and the equation (2.12) simpli�es to

p̂(ω, ~x) =

∫
Rn

d~y F̂ (ω, ~y)Ĝ(ω, ~y, ~x),

where Ĝ(ω, ~y, ~x) is the Fourier transform of the Green's function,

Ĝ(ω, ~y, ~x) =

∫ +∞

−∞
dt G(t, ~y, ~x)eiωt,

which is the solution of the Helmholtz equation(
∆~x +

ω2

c2(~x)

)
Ĝ(ω, ~x, ~y) = −δ(~x− ~y), (2.13)

with the Sommerfeld radiation condition at in�nity (assuming that the medium is
homogeneous with velocity c0 outside a compact region)

lim
|~x−~y|→∞

|~x− ~y|(n−1)/2

(
(~x− ~y)

|~x− ~y| · ∇~x − i
ω

c0

)
Ĝ(ω, ~x, ~y) = 0. (2.14)

The variable ω here is the angular frequency and it is related to the frequency f by

ω = 2πf.

Often we refer to ω as frequency. We also relate the angular frequency ω to the
wavelength λ = c0/f using a reference wave speed c0,

k =
ω

c0

=
2π

λ
,

where k is de�ned as the wavenumber.
In the analysis of imaging functions we will need to switch the role of sources

and receivers. The reciprocity of the Green's function will allow us to do so. The
reciprocity relation

Ĝ(ω, ~x, ~y) = Ĝ(ω, ~y, ~x) (2.15)

expresses the fact that the wave �eld recorded at ~x due to a point source ~y is the
same as the wave �eld recorded at point ~y, due to a point source ~x.

Now we can rewrite the pressure �eld equation (2.7) using the Green's function

p(t, ~x, ~xs) = f(t) ?t G(t, ~x, ~xs)−
∫
IW

d~y
ρ(~y)

c2
0

∂2p(t, ~y, ~xs)

∂t2
?t G(t, ~x, ~y). (2.16)

In this equation, ~x stands for any point and we want now to evaluate this at
~x = ~xr, the receiver locations for r = 1, . . . , Nr. From the above equation, the
term f(t) ?t G(t, ~x, ~xs) is the direct wave that does not interact with the re�ectivity
and we can remove it by windowing. This is possible assuming that the re�ectors
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to imaged are not very close to the array. As wee can see, the dependence of the
pressure �eld p(t, ~x, ~xr) on the re�ectivity ρ is nonlinear. To simplify the problem,
the following linearization, called the Born approximation of the pressure �eld, is
widely used in imaging.

We will begin with the Fourier transform of (2.16),

p̂sc(ω, ~x, ~xs) = k2

∫
IW

d~y ρ(~y)
[
p̂inc(ω, ~y, ~xs) + p̂sc(ω, ~y, ~xs)

]
Ĝ(ω, ~x, ~y), (2.17)

where we have split the pressure �eld in two parts. The �rst part

p̂inc(ω, ~y, ~xs) = f̂(ω)Ĝ(ω, ~x, ~xs)

is the incident wave which has not interacted with ρ and the second part

p̂sc(ω, ~y, ~x) = p̂(ω, ~x, ~y)− p̂inc(ω, ~x, ~y)

is the scattered �eld. Substituting now p̂sc in the right hand side of (2.17) we obtain
the Born series. The Born approximation is just the �rst term of the series

p̂Born(ω, ~x, ~xs) = k2

∫
IW

d~y ρ(~y)p̂inc(ω, ~y, ~xs)Ĝ(ω, ~x, ~y)

= k2f̂(ω)

∫
IW

d~y ρ(~y)Ĝ(ω, ~xs, ~y)Ĝ(ω, ~y, ~x). (2.18)

In homogeneous media a suf�cient condition, for the Born approximation to hold,
is that either the support of ρ is very small or ρ itself is small. We de�ne the mean
square re�ectivity as [

〈ρ2〉
]1/2

=
3

4πR3

∫
BR(~y?)

d~yρ2(~y),

where R is the radius of the ball BR(~y?) ⊂ R3 centered at ~y?, which contains the
support of ρ. The condition is (

R

λ

)2 [
〈ρ2〉

]1/2 � 1, (2.19)

whereR is small with respect to the wavelength λ and/or the mean square re�ectivity
is small. For a detailed analysis we refer to [23].

2.3 Pulse model and propagation

We model the pulse f(t) as a base-band pulse fB(t) modulated by a harmonic
signal at central frequency f0 = ω0

2π
,

f(t) = cos(ω0t)fB(t).

In the frequency domain we have

f̂(ω) =

∫ +∞

−∞
dω f(t)eiωt

=
1

2

[
f̂B(ω − ω0) + f̂B(ω + ω0)

]
.
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Because the Fourier transform f̂B(ω) is supported at ω ∈ [−πB, πB], the signal
fB(t) is called base-band. Then, the frequencies f = ω/2π in the support of f̂(ω)
lie in the interval centered at f0, of bandwidth B

f ∈ [f0 −B/2, f0 +B/2] ∪ [−f0 −B/2,−f0 +B/2] .

0 1 2 3 4 5

−5

0

5

The pulse

Time

−10 −5 0 5 10
−50

−40

−30

−20

−10

0

Frequency (kHz)

d
b

Figure 2.3: The pulse in the time (top) and in the frequency (bottom) domain.

The convolution of the pulse with the Green's function in smooth media is given
by

f(t) ?t G(t, ~x, ~y) ≈ α(~x, ~y)

∫ +∞

−∞

dω

2π
f̂(ω)eiωτ(~x,~y)−iωt

= α(~x, ~y)f [t− τ(~x, ~y)] .

The time delays are the travel times τ(~x, ~y). The pulse retains its shape as it travels
through the medium, but its strength diminishes because the amplitude α(~x, ~y)
decays due to geometrical spreading of the wave.

2.4 The forward map

The Born data model in the frequency domain is

P̂ (ω, ~xr, ~xs) ≈ k2f̂(ω)

∫
IW

d~y ρ(~y)Ĝ(ω, ~xr, ~y)Ĝ(ω, ~y, ~xs).

The forward mapM : L2(IW)→ P takes square integrable re�ectivity functions
ρ to functions in the data space

P =

{
P̂ (ω, ~xr, ~xs) ∈ C,

Nr∑
r=1

Ns∑
s=1

∫
|ω±ω0|≤πB

dω|P̂ (ω, ~xr, ~xs)|2 <∞
}
, (2.20)

with complex inner product

〈P̂ , R̂〉 =

∫
|ω±ω0|≤πB

dω
Nr∑
r=1

Ns∑
s=1

P̂ (ω, ~xr, ~xs)R̂(ω, ~xr, ~xs), ∀P̂ , R̂ ∈ P,

10



and induced norm

||P̂ ||P =

√
〈P̂ , P̂ 〉 =

[
Nr∑
r=1

Ns∑
s=1

∫
|ω±ω0|≤πB

dω
∣∣∣P̂ (ω, ~xr, ~xs)

∣∣∣2]1/2

.

Here P̂ (ω, ~xr, ~xs) are the Fourier transforms of the time traces, the entries in the
array response matrix

P(t) = {P (t, ~xr, ~xs)} , t ∈ (0, T ], ~xr, ~xs ∈ A, r = 1, . . . , Nr, s = 1, . . . , Ns.

The map itself is given by

[Mρ](ω, ~xr, ~xs) = k2f̂(ω)

∫
IW

d~y ρ(~y)Ĝ(ω, ~xr, ~y)Ĝ(ω, ~y, ~xs) (2.21)

which assumes that both the Fourier transform of the pulse f̂(ω) and the Green's
function are known.

2.5 Imaging with active arrays

In imaging with active arrays the estimation of the unknown re�ectivity ρ is
computed by a minimizer of

O(ρ) = ‖P̂ −Mρ‖2
P

=

∫
|ω±ω0|≤πB

dω
Nr∑
r=1

Ns∑
s=1

∣∣∣P̂ (ω, ~xr, ~xs)− [Mρ] (ω, ~xr, ~xs)
∣∣∣2

and satis�es the normal equations

[M?Mρ] (~yS) =
[
M?P̂

]
(~yS), ∀~yS ∈ IW

where the adjoint operator has the explicit expression

[
M?P̂

]
(~yS) =

∫
|ω±ω0|≤πB

dω k2f̂(ω)
Nr∑
r=1

Ns∑
s=1

P̂ (ω, ~xr, ~xs)Ĝ(ω, ~yS, ~xr)Ĝ(ω, ~yS, ~xs)

(2.22)
and

ρ(~yS) ∼
[
M?P̂

]
(~yS).

The meaning of the symbol ∼ here is that large values of the right-side correspond

to points in the vicinity of the support of ρ. Thus we may think of
[
M?P̂

]
(~yS) as

an imaging function.
Backpropagation or Kirchhoff-Migration (KM) is the exactly this imaging function

I(~yS) =

∫
|ω±ω0|≤πB

dω

2π

Nr∑
r=1

Ns∑
s=1

P̂ (ω, ~xr, ~xs)Ĝ(ω, ~yS, ~xr)Ĝ(ω, ~yS, ~xs). (2.23)
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3 Numerical simulations setup

We present in this section the general setup for our numerical simulations.
Figure 3.1 shows the two con�gurations that we will use in our numerical simulations.
The dimensions are given in terms of the central wavelength λ0. We use an array
A of Ns = Nr = N = 128 elements at a distance h = λ0/2 from each other. The
object to be imaged is at range L and at zero cross-range, measured with respect
to the center of the array. When the single object is replaced by three re�ectors we
talk about the center of mass of those three objects. The objects to be imaged are
modelled as square scatterers. We will use different re�ectivity and different side
lengths to make the scatterers weaker or stronger. We will precise the parameters
used when we show the numerical results.

absorbing medium

80λ0

100λ0

α
L

array

(a)

absorbing medium

80λ0

100λ0

α
L

array

(b)

Figure 3.1: The computational setup. The dimensions of the problem are given in
terms of the central wavelength λ0.

A probing pulse is emitted by a source and the echoes are recorded by all the
receivers simultaneously. We do not send the pulse simultaneously from all the
sources but we probe the medium by a single source at a time. All the sources send
the same pulse f(t), which is the time derivative of a sinc function with central
frequency f0 = 3MHz as used in [3] and bandwidth B = [2, 4]MHz (measured at
10dB). With a propagation speed of c0 = 3km/s the central wavelength is λ0 = 1mm.

To model the inhomogeneities of the background medium, the index of refraction
n(~x) = c0/c(~x) is assumed to be a statistically homogeneous process so that

n2(~x) = 1 + σ0µ

(
~x

Cl

)
,

where Cl is the correlation length and σ0 the standard deviation of the �uctuations
of n2(~x). The �uctuations in the sound speed c(~x) are modeled using random
Fourier series with mean c0 = 3km/s and a Gaussian correlation function. A typical
realisation of the �uctuations is shown in Figure 3.2 where the correlation length is
Cl = 0.18λ0 and the strength of the �uctuations σ0 = 3%.
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Figure 3.2: A typical realization of the random sound speed c(x). The dimensions
are given in terms of the central wavelength λ0.

To generate the array data we solve the acoustic wave equation, formulated as
a �rst order in time velocity-pressure system, using a mixed �nite element method
[4, 5]. The propagation medium is considered to be in�nite in all directions and in the
numerical computations a perfectly matched absorbing layer (PML) [6] surrounds
the physical domain as shown in Figure 3.1.
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4 Kirchhoff migration imaging

Due to the least square approach we obtained the imaging function (2.23), which
assumes that we know the background medium in order to compute the re�ectivity.
Thus if we replace the Green's function Ĝ in (2.23) by the Green's function Ĝ0

which is the Green's function in the synthetic background medium that represent
our guess of the true one, the result is the following Kirchhoff migration, also caller
reverse time migration functional

IM(~yS) =

∫
|ω±ω0|≤πB

dω

2π

Nr∑
r=1

Ns∑
s=1

P̂ (ω, ~xr, ~xs)Ĝ0(ω, ~yS, ~xr)Ĝ0(ω, ~yS, ~xs)

≈
∫
|ω±ω0|≤πB

dω

2π

Nr∑
r=1

Ns∑
s=1

P̂ (ω, ~xr, ~xs)α(~yS, ~xr)α(~yS, ~xs)e
iω[τ(~yS ,~xr)+τ(~yS ,~xs)]

=
Nr∑
r=1

Ns∑
s=1

P
(
τ(~yS, ~xr) + τ(~yS, ~xs), ~xr, ~xs

)
α(~yS, ~xr)α(~yS, ~xs).

Here we used as Ĝ0 the Green's function in the reference homogeneous medium. Neg-
lecting now the geometrical spreading factors α(~yS, ~xr) and α(~yS, ~xs) from IM(~yS)
we obtain a simpli�ed version of KM.

Kirchhoff migration forms an image by propagating numerically, or migrating
the entries in P(t) to yS ∈ D, and then summing over sources and receivers,

IKM(yS) =
∑
r,s

P
(
τ(xr,y

S) + τ(xs,y
S),xr,xs

)
.

Equivalently, in the frequency domain we have

IKM(yS) =
∑
r,s

∫ +∞

−∞
dω P̂ (xr,xs, ω) exp

{
−iω

[
τ(xr,y

S) + τ(xs,y
S)
]}
.

The migration is done with the travel times τ(xr,y
S) + τ(xs,y

S) of the waves
from the source at xs to the search point yS and then back to the receiver at xr. If
the medium is homogeneous , τ(x,y) = |x − y|/c0, with c0 the propagation speed.
In smoothly varying media with propagation speed c(x), the travel time is given by

τ(x,y) = min

∫
1

c (X (s))
ds

where the minimum is over all paths X that start at x and end at y.
The KM functionals and their variants have been widely used in many applicati-

ons such as non-destructive testing, seismic imaging and radar. In some applications
such as in radar the background medium is homogeneous, but migration can be ap-
plied more generally in media with smooth velocity background.

Kirchhoff migration works well in homogeneous or smooth media where the waves
are scattered signi�cantly only at the re�ectors which we want to image. The arrival
times of the echoes are easy to identify as we can see from the time traces which
are clean, being everywhere equal to zero except in the vicinity of the arrival times
corresponding to the echoes from the re�ectors (see Figure 2.2). In this case the
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Kirchhoff migration functional peaks at the search points that have travel times
near these arrival times.

We will �rst illustrate on some numerical examples the performance of KM ima-
ging in homogeneous and inhomogeneous random media.
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Figure 4.1: The Kirchhoff migration image of three re�ectors in a homogeneous
background.

When the background medium in which we wish to image has inhomogeneities
this will drastically affect the wave propagation. As we can see in Figure 2.2 the time
traces are not clean as in the previous case and the arrival times of the echoes are not
easy to identify any more. Now the waves are scattered by the inhomogeneities of
the medium and the time traces have a lot of delay spread or coda. The Kirchhoff
migration images obtained in this case are not only noisy but also unstable with
respect the realization of the medium inhomogeneities.
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Figure 4.2: Kirchhoff migration images for three di�erent realizations of the clut-
ter, with the same statistical characteristics.

The stability of the images when imaging with Kirchhoff migration is also affected
by the scatterers size and the scatterers re�ectivity as we see in Figure 4.3 and
Figure 4.4, respectively.

The index of refraction n(~x) = c0/c(~x) in the objects we want to image is de�ned

as n(~x) =
c0

c0 + ρ
, where ρ = 0.2, 0.4, 0.6. This is for the Figure 4.4. In the other

�gures we use ρ = 0.4.
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Figure 4.3: Kirchhoff migration images for the same realization of the clutter.
The scatterers have the same re�ectivity. Left:The scatterers size is 1λ0. Right:The
scatterers size is 2λ0.
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Figure 4.4: Kirchhoff migration images for the same realization of the clutter. The
scatterers have the same size. The re�ectivity of the scatterers increases from left
to the right.

To make imaging work in clutter we need an ef�cient technique for compressing
the delay spread in the traces. We consider this in the next section.
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5 Coherent interferometry

An effective way to reduce the delay spread in the traces is to correlate them and
obtain the interferograms

P (xr,xs, ·) ∗t P (xr′ ,xs − ·)(t) =

∫
dt ′P (xr,xs, t

′) ∗t P (xr′ ,xs, t
′ − t)

=
1

2π

∫
dω P̂ (xr,xs, ω)P̂ (xr′xs, ω)e−iωt

where the bar indicates complex conjugate. Also for simplicity we take the noisy
traces produced with illumination from a single source located at xs.

The migration of the interferograms to the search points yS is done with the
travel times computed in a smooth background that we assume is known. The
interferometric imaging function is

IINT(yS) =
∑
xrxr′

P (xr,xs, ·) ∗t P (xr′ ,xs − ·) |τ(xr,yS)−τ(xr′ ,y
S) .

We evaluate the interferograms at the difference of the travel time because it will
have a peak at the lag time when yS is near a re�ector. In the frequency domain
the imaging function becomes

IINT(yS) =

∫ +∞

−∞
dω

∣∣∣∣∣
Nr∑
r=1

P̂ (xr,xs, ω) exp
{
−iω[τ(xr,y

S) + τ(xs,y
S)]
}∣∣∣∣∣

2

.

If we have a very large array or multiple arrays that allow us to do geometric
triangulation IINT can provide range resolution in clutter. Otherwise, IINT does not
provide any range resolution [11, 12]. In order to recover range resolution, a coherent
interferometric imaging (CINT) functional that uses all the residual coherence in the
data was introduced [12].

The �uctuations in the background sound speed introduces random �uctuations
in the phases of the recorded waves. Therefore when we back-propagate numerically
the data in a homogeneous medium, the phase terms do not compensate each other.
This leads to noise and instabilities in the image. The idea in order to mitigate
this effect is to back-propagate windowed space-frequency correlations of the data.
In IINT the recorded traces P̂ (xr,xs, ω) are treated as if they are uncorrelated at
different frequencies. CINT exploits the correlations of P̂ (xr,xs, ω) and P̂ (xr,xs, ω

′)
at different frequencies and at different receivers. As a consequence, even with a
small array, CINT provides good range resolution.

The coherent interferometric functional is given by

ICINT(yS ; Ωd, kd) =

∫ ∫
|ω−ω′|≤Ωd

dω dω ′
Nr∑
r=1

Nr∑
r′=1

|xr−xr′ |≤Xd(ω+ω
′

2 )

P̂ (xr,xs, ω)P̂ (xr′ ,xs, ω′)

exp
{
−i
[
ω
(
τ(xr,y

S) + τ(xs,y
S)
)
− ω′

(
τ(xr′ ,y

S) + τ(xs,y
S)
)]}

.

(5.1)
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Figure 5.1: CINT images for three different realizations of the clutter, with the
same statistical characteristics.

As we can see in Figure 5.1 the images we get with CINT are statistically stable
and they do not depend on the realization of the clutter.

There are two characteristic coherence parameters in the data P̂ (xr,xs, ω), the
decoherence frequency Ωd which is the difference in the frequencies ω and ω′ over
which P̂ (xr,xs, ω) and P̂ (xr,xs, ω

′) become uncorrelated, and the decoherence length
Xd that is the difference in receiver locations xr and xr′ over which P̂ (xr′ ,xs, ω) and
P̂ (xr,xs, ω) become uncorrelated. The idea behind the CINT functional is that, at
nearby frequencies ω, ω′ and at nearby locations xr,xr′ , the random phase shifts of

the data P̂ (xr,xs, ω), P̂ (xr′ ,xs, ω′) are correlated, so they can approximately cancel

each other in the product P̂ (xr,xs, ω)P̂ (xr′ ,xs, ω′). Thus we can say that the data
are coherent. In this case the back-propagation in the homogeneous medium will
be stable. The CINT imaging function keeps the pairs (xr, ω) and (xr′ , ω

′) for
which the data are coherent and disregards the pairs that do not carry any coherent
information. It then appears that the cut-off parameters Ωd and Xd should be of
the order of frequency and the spatial correlation length of the recorded data.

The decoherence frequency Ωd depends on the clutter and the range L of the
re�ectors and when there is signi�cant delay spread in the traces it can be much
smaller than the bandwidth B. The decoherence length Xd is also determined by the
clutter and the range L but it depends on the frequency as well. It can be estimated
by

Xd(ω) =
c0

ωkd
=
c0L

ωae

where ae is the effective aperture in time reversal, and the dimensionless parameter
kd quanti�es the uncertainty in the direction of arrival of the echoes in clutter. The
estimation of those parameters is possible and it is not a simple task, it is best done
adaptively [14]. Depending on the parameters Ωd and Xd, we get different trade-offs
between stability and resolution.
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Xd = a,Ωd = B
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Xd = X ∗d ,Ωd = Ω∗d
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Xd < X ∗d ,Ωd < Ω∗d
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Figure 5.2: Coherent interferometry images in random media for different values
of the parameters Xd and Ωd.

Here we demonstrate with numerical simulations that the optimal decoherence
parameters X ∗d ,Ω∗d exist, by displaying in Figure 5.2 the images for Xd,Ωd larger,
equal and smaller than X ∗d ,Ω∗d, respectively. Note that ICINT is equal to the square
of the Kirchhoff migration functional IKM when Ωd = B and Xd = a, that is when,
there is no smoothing to account for the reduced coherence in the data. When
the values of Xd and Ωd are smaller than the optimal ones, the estimated image is
over-smoothed, that is, blurrier that the optimal image.

In the following �gures we show the e�ect of the parameters Xd and Ωd, respecti-
vely, in the image resolution.
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Figure 5.3: Coherent Interferometry: The effect of Xd on image resolution. The
value of Ωd is �xed and Xd decreases from left to right with the optimal in the
middle.
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Xd = X ∗d ,Ωd = B
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Figure 5.4: Coherent Interferometry: The effect of Ωd on image resolution. The
value of Xd is �xed and Ωd decreases from left to right with the optimal in the
middle.

Lets note that when we have full array data traces, that means, we probe the
medium from each one of the array's element, the CINT function is

ICINT(yS ; Ωd, kd) =

∫ ∫
|ω−ω′|≤Ωd

dω dω ′
Nr∑
r=1

Nr∑
r′=1

|xr−xr′ |≤Xd(ω+ω
′

2 )

Ns∑
s=1

Ns∑
s′=1

|xs−xs′ |≤Xd(ω+ω
′

2 )

P̂ (xr,xs, ω)P̂ (xr′ ,xs′ , ω′)

× exp
{
−i
[
ω
(
τ(xr,y

S) + τ(xs,y
S)
)
− ω′

(
τ(xr′ ,y

S) + τ(xs′ ,y
S)
)]}
(5.2)

this will be useful in the next section.
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6 Pixel scanning image formation with windowed

energy beamformer

An alternative approach to array imaging that may be implemented ef�ciently
in hardware is to form the image by beamforming to each point in the imaging
window IW and compute the image pixel by pixel. The array uses successive multiple
illuminations to beamform to each pixel yS ∈ IW, records the echoes and then
synchronizes and adds them over the array to compute the value of the image at
yS . The synchronization is done with time delays computed relative to yS and the
summation superposes coherently echoes from a possible scatter at yS , which is
called beamforming in reception.

Let yS be an arbitrary pixel in IW, at which we form the image. The array
beamforms at yS by emitting from its sources delayed pulses. The delays are com-
puted so that all the pulses arrive at yS at the same time. The beamforming can
involve all the sources at once, or it can work with sub-apertures. The sources can
also be weighted to control focusing of the beam at yS . After beamforming, the
array receives the echoes from scattering in the vicinity of yS .

Let us suppose that the array is linear in the two-dimensional case, or square
planar in three dimensions. This allows us to introduce a system of coordinates
with range axis originating from the array in the orthogonal direction. The sensor
locations are ~xr = (xr, 0), with xr in the array aperture A ⊂ R2 for r = 1, . . . , N .
The aperture A is a line segment of length a in the two dimensions.

We model the sub-apertures and the sensor weights used in beamforming with
a function ψ(ξ) of dimensionless arguments in Rn and support ξ ∈ [−1/2, 1/2] for
n = 1 or ξ ∈ [−1/2, 1/2] × [−1/2, 1/2] for n = 2. The size of the sub-aperture is
determined by the length X in the scaled version of ψ,

ψX (x) = ψ(
x

X ).

We denote by PI(xs)(t,xr;y
S) the echoes received at xr ∈ A after beamforming

from the sub-aperture centered at xs ∈ A on the pixel yS . Its expression is

PI(xs)(t,xr; ~y
S) =

N∑
σ=1

ψX (xs − xσ)P (t+ τ(xσ, ~y
S)− τ(xs, ~y

S), ~xr, ~xσ) (6.1)

where we changed slightly the notation of the travel time τ(xs, ~y
S) from ~xs = (xs, 0)

to ~yS, to emphasize its dependence on the cross-range source coordinate xs. For
simplicity we assume that the array plays the dual role of sources and receivers. All
the indices s, σ, r and ρ take values in the set {1, 2, . . . , N}. We use now that the
sources are indexed by s and σ and the receivers by r and ρ. The relative delays
τ(xσ, ~y

S)−τ(xs, ~y
S) are used in (6.1) to synchronize the arrivals at ~yS of the signals

from all the sources in the support of ψX , with center at xs. This is the delay-and-
sum (DAS) beamforming process [24, 20], whose performance depends on the choice
of the window function ψX , the frequency band of the probing pulse f(t), and the
medium through which the waves propagate.

In smooth and known media the range resolution is determined by the precision
with which the system can estimate travel times, that is by the pulse width. The
larger the bandwidth, the shorter the time width of the pulse and the better the
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resolution of the beamformer. The cross-range resolution is determined by the carrier
wavelength λ0, the range L of the pixel ~yS and the window function ψX . The local
beamforming in reception consists of synchronizing by travel time delays the received
echoes PI(xs)(t,xr; ~y

S) and adding them over the receivers in sub-apertures centered
at xr, with uniform or variable weights. We denote the result by PR(xr),I(xs)(t, ; ~y

S)
and write its mathematical model as follows

PR(xr),I(xs)(t; ~y
S) =

N∑
ρ=1

ψX (xρ − xr)PI(xs)(t+ τ(xρ, ~y
S)− τ(xr, ~y

S),xρ; ~y
S). (6.2)

In general, the weights and sub-apertures may be different in reception than in
emission. Note, the smaller X is, the more smoothing at the expense of resolution.
We compute now the energy of PR(xr),I(xs)(t; ~y

S) over a properly chosen time window
function φT and sum over the sub-apertures to form the windowed beamformer
energy (WBE) imaging function:

IWBE(~yS; T ,X ) =
∑
s,r

∫
dt

2π

∣∣φT (t− τ(xr, ~y
S)− τ(xs, ~y

S)
)
PR(xr),I(xs)(t; ~y

S)
∣∣2 .
(6.3)

The time window function is of the form

φT (t) = T −1/2φ

(
t

T

)
.

It is the scaled version of a function φ(u) of dimensionless argument that is supported
in the interval |u| ≤ 1/2, with normalization so that∫ +∞

−∞

dt

2π
φ2
T (t) =

∫ +∞

−∞

du

2π
φ2(u).

For example, one may take φ(u) = 1[−1/2,1/2](u) which is equal to one when
|u| ≤ 1/2 and 0 otherwise. We take φ(u) to be a Gaussian function. The time
window function φT is used in (6.3) to evaluate the energy received at xr, over the
time interval of length T , centered at the travel time τ(xr, ~y

S)+τ(xs, ~y
S), when the

illumination is from the source at xs. The time T may be chosen small, comparable
to the pulse width in homogeneous media. In cluttered media, T may be larger so
as to account for the pulse delay spread, that is the arrival of the multiply scattered
waves from the clutter.

6.1 Transformation of IWBE into back-propagated local cross-
correlations

First, we change variables in the time integral in (6.3)

t t+ τ(xr, ~y
S) + τ(xs, ~y

S)

and using Parseval's identity obtain

22



IWBE(~yS; T ,X ) =
∑
s,r

∫
dt

2π

∣∣PT ,X (t,xr,xs; ~y
S)
∣∣2

=
∑
s,r

∫
dω

∣∣∣P̂T ,X (ω,xr,xs; ~y
S)
∣∣∣2 . (6.4)

Here we have de�ned

PT ,X (t,xr,xs; ~y
S) = φT (t)PR(xr),I(xs)(t+ τ(xr, ~y

S) + τ(xs, ~y
S); ~yS)

and we recall from equations (6.1) and (6.2) that

PR(xr),I(xs)(t+ τ(xr, ~y
S) + τ(xs, ~y

S); ~yS) =
∑
ρ,σ

ψX (xσ − xs)ψX (xρ − xr)

×P (t+ τ(xρ, ~y
S) + τ(xσ, ~y

S), ~xρ, ~xσ).

In the frequency domain we have the convolution

P̂T ,X (ω, ~xr, ~xs; ~y
S) =

∫
dω ′

2π
φ̂T (ω − ω′)

∑
ρ,σ

ψX (xσ − xs)ψX (xρ − xr)

×P̂ (ω′, ~xρ, ~xσ) exp
{
−iω′

[
τ(xρ, ~y

S) + τ(xσ, ~y
S))
]}

and the imaging function becomes

IWBE(~yS; T ,X ) =
∑
s,r

∑
ρ,ρ′

ψX (xρ − xr)ψX (xρ′ − xr)
∑
σ,σ′

ψX (xσ − xs)ψX (xσ′ − xs)

×
∫

dω

∫
dω ′

2π

∫
dω ′′

2π
φ̂T (ω − ω′)φ̂T (ω − ω′′)P̂ (ω′, ~xρ, ~xσ)P̂ (ω′′, ~xρ′ , ~xσ′)

× exp
{
−iω′

[
τ(xρ, ~y

S) + τ(xσ, ~y
S)
]

+ iω′′
[
τ(xρ′ , ~y

S) + τ(xσ′ , ~y
S)
]}
. (6.5)

Now we use the convolution identity∫
dω

2π
φ̂T (ω − ω′)φ̂T (ω − ω′′) =

∫
dt |φT (t)|2 ei(ω′′−ω′)t =

∫
dt |φ(t)|2 eiT ωt.

If we de�ne the new frequency window function Φ by

Φ(t) = |φ(t)|2, Φ̂(ω) =

∫
dt |φ(t)|2eiωt, (6.6)

then we have ∫
dω

2π
φ̂T (ω − ω′)φ̂T (ω − ω′′) = Φ̂ [T (ω′′ − ω′)] .

We also introduce the spatial window function Ψ de�ned by
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Ψ

(
xρ′ − xρ
X

)
=

∑
r

ψX (xρ − xr)ψX (xρ′ − xr)

=
∑
r

ψ

(
xρ − xr
X

)
ψ

(
xρ′ − xρ
X +

xρ − xr
X

)
. (6.7)

With this notations we obtain the following expression of the windowed beamformer
energy function

IWBE(~yS; T ,X ) =
1

2π

∫
dω

∫
dω ′Φ̂ [T (ω′ − ω)]

∑
ρ,ρ′

Ψ

(
xρ′ − xρ
X

)
×
∑
σ,σ′

Ψ

(
xσ′ − xσ
X

)
P̂ (ω, ~xρ, ~xσ)P̂ (ω′, ~xρ′ , ~xσ′)

× exp
{
−iω

[
τ(xρ, ~y

S) + τ(xσ, ~y
S)
]

+ iω′
[
τ(xρ′ , ~y

S) + τ(xσ′ , ~y
S)
]}
. (6.8)

6.2 Connection between the IWBE and the ICINT imaging

function.

Let us introduce another expression of the CINT imaging function, so that it is
easier to compare it with the windowed beamformer energy imaging function. We
rewrite the ICINT imaging function as:

ICINT(~yS; T C ,XC) =
1

2π

∫
dω

∫
dω ′Φ̂C

[
T C(ω′′ − ω′)

]∑
ρ,ρ′

ΨC

(
xρ′ − xρ

XC
(
ω+ω′

2

))

×
∑
σ,σ′

ΨC

(
xσ′ − xσ

XC
(
ω+ω′

2

)) P̂ (ω, ~xρ, ~xσ)P̂ (ω′, ~xρ′ , ~xσ′)

× exp
{
−iω

[
τ(xρ, ~y

S) + τ(xσ, ~y
S)
]

+ iω′
[
τ(xρ′ , ~y

S) + τ(xσ′ , ~y
S)
]}
.

(6.9)

Here Φ̂C and ΨC are the frequency and the spatial window functions of dimensionless
arguments and �nite support. These window functions do not need to be the same
as in (6.6) and (6.7), although we show that it is desirable that they are. The
threshold parameters T C and XC scale the support of the window functions and we
may let XC vary with frequency, as in the equation (6.9). One can see the analogy
between the equation (5.2) and equation (6.9).

Now we can relate the pixel scanning windowed beamformer energy function
IWBE to ICINT. We have

ICINT(~yS; T C ,XC) = IWBE(~yS; T ,X ),

if T C = T , XC(ω) = X for all ω in the bandwidth of the pulse, and if the window
functions ΦC and ΨC in CINT satisfy

Φ̂C(ω̃) =

∫
du |φ(u)|2eiω̃u =

∫
dω̃′

2π
φ̂(ω̃ + ω̃′)φ̂(ω̃′),
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and

ΨC

(
xρ′ − xρ
X

)
=
∑
r

ψ

(
xρ − xr
X

)
ψ

(
xρ′ − xρ
X +

xρ − xr
X

)
.

That means that ICINT and IWBE are mathematically equivalent only if the sensor
threshold does not vary over the bandwidth

(
XC(ω) = X

)
. Then the results in [14,

16] indicate that ICINT and therefore IWBE is stable with respect to the realizations
of the clutter if the thresholding parameters satisfy the bounds

1

T ≤ Ωd, X ≤ Xd(ω)

for all ω in the pulse bandwidth.
In the Figure 6.1 are illustrated images of the same cluttered media with di�erent

values of the smoothing parameters for both imaging functions, ICINT and IWBE,
to show their equivalence. From this point on we use a slightly di�erent numerical
setup. We probe the medium using 26 sources and record the echoes on the collo-
cated receivers, this is Ns = Nr = 26. The array aperture is the same as before but
the density of the elements on the array is changed. The distance between the used
elements is now 2.5λ0 instead of 0.5λ0.
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(a) Coherent interferometry images.
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(b) Window beam-forming images.

Figure 6.1: The equivalence of the windowed beamformer energy imaging function
to the coherent interferometric imaging function for different values of the smoothing
parameters.

6.3 The algorithm

In this section we summarize the algorithm used for the implementation of the
windowed beamformer energy imaging functional. We start the computation from
the array response matrix, which is an Nr ×Ns ×Nt matrix

P(t) = (P (t, ~xr, ~xs))r,s=1,...,N , t ∈ (0, tf ]

1. First we perform a smoothing in the edges of P in variables ~xr and ~xs with a
Gaussian like function.

2. For each point ~yS in the image we compute the window of the data in the
vicinity of the travel time τ(~xr, ~y

S) + τ(~xs, ~y
S). This is compute

PT (t, ~xr, ~xs; ~y
S) = φT

(
t− τ(~xr, ~y

S)− τ(~xs, ~y
S)
)
P (t, ~xr, ~xs)
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To reduce memory requirements we do not save the whole object, we shift this
object to zero. For each point ~yS we compute

P̃T (t, ~xr, ~xs; ~y
S) = PT

(
t− τ(~xr, ~y

S)− τ(~xs, ~y
S), ~xr, ~xs; ~y

S
)

(6.10)

The dimension of P̃T in time is NT , which is the size of the window function
φT . Now we do the Fourier transform of P̃T (t, ~xr, ~xs; ~y

S) in time and we save

P̂T (ω, ~xr, ~xs; ~y
S) = FFT

(
P̃T (t, ~xr, ~xs; ~y

S)
)

The size of P̂T is NT ×Nr×Ns×NI ,where NI is the number of points in the
image window.

3. Now we compute the 2d Fourier transform of P̂T (ω, ~xr, ~xs; ~y
S) in the variables

~xr and ~xs. Lets call the resulting matrix

Q̂T (ω, kr, ks; ~y
S) = FFT2

(
P̂T (ω, ~xr, ~xs; ~y

S)
)

4. After, we multiply the matrix Q̂T , in Fourier domain, with the window function
ψX . Here X is chosen to be independent of frequency and we take X = X (ω0)

Q̃T (ω, kr, ks; ~y
S) = Q̂T (ω, kr, ks; ~y

S)ψ̂X (kr)ψ̂X (ks)

5. The windowed beamformer energy image is the L2 norm of Q̃T (ω, kr, ks; ~y
S),

that is

IWBE(~yS) =
∑
kr

∑
ks

∫
dω

∣∣∣Q̃T (ω, kr, ks; ~y
S)
∣∣∣2 (6.11)

6.4 Code performance and memory usage

As shown previously, the windowed beamformer energy function, with a proper set
of smoothing parameters, can be equivalent to the coherent interferometric imaging
function. The numerical results we presented in Figure 6.1 con�rm this equivalence.
Although the images we obtain by both methods are almost identical, an analysis of
the performance for both methods shows that WBE can be computed much faster.
It is also easy to see that WBE requires more memory then CINT.

The performance of WBE and CINT has been investigated for different values
of the smoothing parameters. The performance tests have been addressed in the
same computer, both imaging methods are written in Matlab®. We observed the
computational time each imaging method needed to form the image and also the
memory each method used during the computation. We present the results of those
tests in the following �gures.

First we observe that the computational time is not affected by the value of the
cross-range smoothing parameter.
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(b) CINT imaging function.

Figure 6.2: Mean computational times in seconds for three different values of
cross-range smoothing parameter κd = 0.05, 0.005, 0.0025.

We have to note here that the dimensionless parameter κd is used to compute
the decoherence length X . The decoherence length X when using the windowed
beamformer energy imaging function is given by X = c0

ω0κd
and the corresponding

values that X takes in Figure 6.2a are: X = 3.1831mm, X = 31.831mm, X =
63.662mm. The decoherence length used in the coherent interferometric function in
Figure 6.2b is frequency dependent and its values are: X (ω) ∈ [2.3873, 4.7746]mm,
X (ω) ∈ [23.8732, 47.7465]mm, X (ω) ∈ [47.7465, 95.4930]mm, calculated using the

expression X (ω) =
c0

ωκd
.

Although the value of the cross-range smoothing parameter does not affect the
performance of the methods, the value of the range smoothing parameter affects the
computational times, as is shown in Figure 6.3.
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Figure 6.3: Mean computational times in seconds for four different values of the
range smoothing parameters T and Ωd.

The time windows we used in Figure 6.3a are: T = 0.1155µsec, T = 1.5856µsec,
T = 2.6356µsec and T = 4.2107µsec. The decoherence frequencies used in Fi-
gure 6.3b are: Ωd = [2, 4]MHz, Ωd = [2.5, 3.5]MHz, Ωd = [2.75, 3.25]MHz and
Ωd = [2.8, 3.2]MHz.

In WBE, the bigger the size T of the time window, the smoother the image and
the greater the computational time required. In CINT, the smaller the decoherence
frequency Ωd, the smoother the image and the lesser the computational time.

Comparing Figure 6.2a to Figure 6.2b and Figure 6.3a to Figure 6.3b we deduce
that CINT is computationally ten times more expensive that the windowed beam-
former energy function. The di�erence of computational times between the two
methods is remarkable. The windowed beamformer energy function can be imple-
mented e�ciently both in hardware and software, that is, at a computational cost
that is comparable to the usual beamforming and migration imaging methods. The
performance of the Kirchho� migration imaging function was also explored and we
found that the mean computational time required was 18.3 seconds.
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In our setups we found that the memory required by both methods was compa-
rable, although we have to note that the required memory by WBE increases faster
than the required memory by CINT when we try to image with larger arrays or/and
more points in the imaging window. Let us explain further.

In the implementation of the windowed beamformer energy imaging function, the
biggest matrix we have to save is the matrix P̂T of dimensions NT ×Nr ×Ns ×NI ,
where NT is the discretization of the time window, Nr, Ns is the number receivers
and sources we use and NI is the number of pixels in the image window.

In the implementation of CINT, the biggest matrix we save has dimensions NB×
NΩd × NI , where NB is the number of frequencies in the available bandwidth and
NΩd the corresponding ones in Ωd. Since B > Ωd we also have NB > NΩd . We note
however that CINT can be implemented without using this matrix in which case the
only memory required is that for saving the array response matrix and its Fourier
transform (this will increase the computational time).

In the shown images, the number of pixels is NI = 3600 for all the methods.
The number of sensors used is Nr = Ns = 26. The length of the time window we
used in WBE takes values in the interval NT ∈ [41, 401]. The number of frequencies
in the whole bandwidth is NB = 149 and the number of frequencies used by the
coherent interferometric imaging functional is NΩd = b149

n
c, for di�erent values of

n = 1, 2, 4, 5, as shown in Figure 6.3.
Note that, to save a double-precision array of dimensions 1 × 1 the required

memory is 8Bytes.
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7 Multiple scattering, strong clutter and �ltering

When imaging in unknown strongly scattering media with sound waves, an im-
portant issue is the multiple scattering of the waves by the medium heterogeneities.
In most imaging techniques, including those that have been considered in this thesis,
the data are collected in the following way: One or more transducers in the array
emit a sound wave to the media to be imaged. The incident wave is re�ected by the
medium heterogeneities and the backscattered echoes are recorded by all sensors
on the array. The backscattered wave contains two contributions: (i) The single
scattering contribution, in which the incident wave has undergone one scattering
event before coming back to the sensors. This is the contribution which we usu-
ally take in account in imaging by exploiting the relation between the arrival time
of the echo and the distance between the scatterer and the sensors. Therefore an
image of the medium's re�ectivity can be formed from the recorded signals. (ii)The
multiple scattering contribution, in which the wave undergoes several scattering
events before being recorded to the sensors. Multiple scattering takes place when
the medium heterogeneities are strong. These multiple scattered waves may arrive
at the array long before and after the direct echoes from the scatterers. Because of
multiple scattering there is not any more a direct relation between travel time and
depth, which makes the localization of the echoes impossible above a few scattering
mean-free paths. In this case the wave loses its coherence. The imaging techniques
we used previously, namely Kirchhoff migration, WBE and CINT rely on a single
scattering assumption, like most of the wide used techniques. Multiple scattering
is a big issue in techniques based on the �rst Born approximation. This entails the
need of carefully designed data �lters, which will be able to decrease the multiple
scattering e�ect.

7.1 State of the art and available methodology

A �lter for removing contributions of multiple backscattered waves by randomly
layered media was proposed and studied in [8]. It is an ef�cient �lter, but since it
relies on the layered structure of the random medium it does not generalize to other
types of clutter. A more general �lter that relies on the Local Cosine Transform
(LCT) of the array response matrix was proposed in [17] and analyzed in [1]. In this
case the time window that contains the coherent scattered �eld from the re�ectors
to be imaged is found by looking at the behavior of the largest singular values of
the matrix of the local cosine coe�cients. In windows that contain only clutter
echoes the largest singular values are clustered together while in the windows that
contain re�ections from a coherent scatterer the largest singular value (possibly two)
behaves di�erently from the other ones, especially for the lower frequencies. This
allows for detecting the window that contains the coherent echoes. Filtering is then
preformed by projecting the data on the subspace generated by the singular vectors
corresponding to those larger singular values that behave di�erently from the rest.
This LCT based methodology is a robust time-frequency selection procedure that is
adaptive and data driven.

In [2, 3] the authors proposed another approach for dealing with multiple scat-
tering. The �lter they designed seeks to separate single from multiple scattering
waves by performing a rotation of the response matrix followed by a projection. It
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has been shown that the single scattering part of the data in the frequency domain
is approximately a Hankel matrix. After the rotation the �ltering is carried out by
a projection on the space of certain rank one matrices. The single scattering �lter
plays no role when imaging with Kirchhoff migration but good results can be obtai-
ned by applying the DORT method to the �ltered data. DORT is an acronym that
stands for Decomposition de l'Operateur de Retournement Temporel. The DORT
method [21] consists in computing the singular value decomposition of the array
response matrix in the frequency domain. In the case of small point-like scatterers
that are far apart from each other, it can be shown that there is an one-to-one
correspondence between the signi�cant singular values of the array response matrix
and the scatterers. Selective focusing to each one of the scatterers can be achieved
by backpropagating one by one the singular vectors corresponding to the signi�cant
singular values. In the case of the single scattering �lter, DORT is applied on the
�ltered array response matrix.

The single scattering �lter exploits the known deterministic dependence of the
single scattered �eld on the difference variable ~xs − ~xr. This relation implies that
the Fourier transform of the array response matrix is a Hankel matrix, that means
it is constant along the anti-diagonals. To illustrate this we plotted in Figure 7.1
the Fourier transform of the recorded data P̂ (ω, ~xs, ~xr) at the central frequency ω0

in the plane (~xs, ~xr). On the left we show the scattered �eld corresponding to three
scatterers in a homogeneous medium, while on the right we show the scattered �eld
in an inhomogeneous medium with multiple scattering. On the left plot we observe a
deterministic coherence along the anti-diagonals of the matrix P̂ (ω, ~xs, ~xr), whereas
on the right plot corresponding to inhomogeneous multiple scattering regime the
matrix P̂ (ω, ~xs, ~xr) seems to be random.
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Figure 7.1: Real part of the matrix P̂ (ω, ~xs, ~xr) obtained at frequency
ω0/2π = 3MHz.

An alternative way of implementing the single scattering �lter was proposed in
[25] where the rotation and the rank one projection is performed in a more ef�cient
way that does not disregard half of the array data as in [2, 3]. A more general �ltering
methodology that combines the LCT time-frequency selection procedure with a
selection of the direction of arrival of the coherent echoes was recently proposed
in [18]. In this approach the expected Hankel structure of the coherent scattered
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�eld is also exploited. More speci�cally, the method in [18] de�nes the Hankel matrix
that best approximates the data, and then uses plane wave decompositions of the
result to detect the direction of arrival of the desired coherent echoes. The additional
�ltering in the direction of arrival improves the signal to noise ratio especially in the
case of multiple re�ectors located at the same distance from the array.

7.2 The single scattering �lter

Let us re-write the single scattering �lter [2, 3] in an equivalent and arguably simpler
form. We divide the medium to be imaged in layers (slices) of thickness ∆L. For a
given depth level L (center of a slice) we �rst time-window the data

PT (t, ~xs, ~xr) = P (t, ~xs, ~xr)φ(t− c0T ) (7.1)

where φ is a cut-off function with width ∆T = 2∆L/c0 and T = 2L/c0. We set

PT (~xs, ~xr, t) =

∑
ρ,σ PT

(
t+ (xρ−xσ)2

4c0L
− (xr−xs)2

4c0L
, ~xρ, ~xσ

)
ψ1(xσ,xρ;xs,xr)∑

ρ,σ ψ1(xσ,xρ;xs,xr)

or, in frequency domain

P̂T (~xs, ~xr, ω) = e
i ω
4c0L

(xs−xr)2
∑

ρ,σ P̂T (xs,xr, ω)e
−i ω

4c0L
(xρ−xσ)2

ψ1(xσ,xρ;xs,xr)∑
ρ,σ ψ1(xσ,xρ;xs,xr)

(7.2)
Here ψ1 is a cut-off function which the authors at [3] take of the form

ψ1(xσ,xρ;xs,xr) = δ(xσ + xρ − xs − xr)

where δ is a Kronecker. With this choice of ψ1 we have in the paraxial regime

PT (~xs, ~xr, t) =

∑
ρ,σ PT

(
t+ |~xσ−~y0|+|~xρ−~y0|−|~xs−~y0|−|~xr−~y0|

c0
, ~xρ, ~xσ

)
ψ1(xσ,xρ;xs,xr)∑

ρ,σ ψ1(xσ,xρ;xs,xr)

(7.3)
where ~y0 = (0, L).

Let us now brie�y explain why this �lter enhances the single scattering compo-
nents of the data. The scattered �eld can be written as the sum of a single scattering
contribution P̂ S

T (ω, ~xs, ~xr) and a multiple scattering contribution P̂M
T (ω, ~xs, ~xr),

P̂T (ω, ~xs, ~xr) = P̂ S
T (ω, ~xs, ~xr) + P̂M

T (ω, ~xs, ~xr),

where the single scattering contribution is of the form,

P̂ S
T (ω, ~xs, ~xr) =

∫
IWL

d~y ρ(~y)
1

16π2|~y − ~xs||~y − ~xr|
e
i ω
c0

(|~y−~xs|+|~y−~xr|)

with IWL
the imaging window area corresponding to depth [L−∆L/2, L+ ∆L/2].

In the paraxial regime it reduces to

P̂ S
T (ω, ~xs, ~xr) = e

i ω
4c0L

(xs−xr)2
∫
IWL

d~y ρ(~y)
1

16π2L2
e
i ω
c0

2z+
(xs+xs

2 −y)
2

L


(7.4)
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where ~y = (y, z). We observe from (7.4) that the dependance on the difference
variable (xs − xr) of the single scattering contribution is known and is independent
of the re�ectivity. The �lter (7.1)-(7.3) leaves the single scattering contribution (7.4)
unchanged. Assuming that the multiple scattering contributions are random i.i.d
with mean zero, they are reduced by the application of the �lter by a factor of the
order

√
N with N the number of array elements assuming N = Ns = Nr.

7.3 Generalized windowed beamformer energy functional

We want now to generalize the windowed beamformer energy function so as to
include the single scattering �lter (or generalized formulations of it). For a search
point ~yS we �rst �lter the data as

P (~xs, ~xr, t; ~y
S) =

∑
σ,ρ

ψ(xσ,xρ;xs,xr)

×P
(
t+

∣∣~xσ − ~yS|+ |~xρ − ~yS| − |~xs − ~yS| − |~xr − ~yS∣∣
c0

, ~xρ, ~xσ

)
(7.5)

and we de�ne

IWBE(~yS) =
∑
s,r

∫
dt

∣∣∣∣φ(t− |~xs − ~yS| − |~xr − ~yS|c0

)
P (~xs, ~xr, t; ~y

S)

∣∣∣∣2 (7.6)

We consider spatial cut-off functions of the form

ψ(xσ,xρ;xs,xr) = ψ0(xρ − xr)ψ0(xσ − xs)ψ1(xσ + xρ − xs − xr) (7.7)

with even functions ψ0, ψ1. Note that one can use PT instead of the traces in (7.5)
where PT is de�ned as in (7.1) with L being the depth of ~yS. Therefore the �lter
(7.5) is similar to (7.3). Remark also that (7.6) is a generalization of the windowed
beamformer energy functional (6.4) and reduces to it for ψ1 = 1, ψ0 = ψX and
φ = φT .

The �lter's implementation

Here we want to explain the implementation of the generalized windowed be-
amformer energy function (7.6). To do so, we change adequately the algorithm
described in Section 6.3. The only step that is modi�ed is the 4th step in which Q̃T
is de�ned now as:

Q̃T (ω, kr, ks; ~y
S) = Q̂T (ω, kr, ks; ~y

S)Ψ̂(ks, kr) (7.8)

with Ψ̂(ks, kr) of the form

Ψ̂(ks, kr) = ψ̂(ks)ψ̂(kr)ξ̂(ks + kr) (7.9)

with

ψ̂(ks) = exp

(
−k2

s

β2

2

)
(7.10)
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and ξ̂ de�ned as

ξ̂(ks + kr) = exp

(
β2(ks + kr)

2

2(2− α2/β2)

)
. (7.11)

In our numerics we consider α to be non-zero but small and β = X (ω0) = X .
For α = 0 we recover the single scattering �lter and Ψ̂ becomes

Ψ̂(ks, kr) =

√
π

β2
exp

(
−k2

s

β2

2

)
exp

(
−k2

r

β2

2

)
exp

(
β2 (ks + kr)

2

4

)
=

√
π

β2
exp

(
−k2

s

β2

4

)
exp

(
−k2

r

β2

4

)
exp

(
β2

2
kskr

)
=

√
π

β2
exp

(
−β2 (ks − kr)2

4

)
(7.12)

For α 6= 0 the expression for Ψ̂ is

Ψ̂(ks, kr) =

√
π

β2 − 2α2
exp

(
−k2

r

β4 − α2β2

4β2 − 2α2

)
exp

(
−k2

s

β4 − α2β2

4β2 − 2α2

)
exp

(
krks

β4

2β2 − α2

)
.

(7.13)
The derivation of the expressions (7.12) and (7.13) is carried out in the Appendix
A.

7.4 Numerical results

To test the effect of the �lter we try to image objects embedded in stronger clutter.
To do so we increase the standard deviation of the �uctuations to σ = 4% instead
of σ = 3% we used in the previous realizations of the background medium.
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(a) WBE image.
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(b) WBE image with �lter.
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(c) The �lter's effect.

Figure 7.2: Windowed beamformer energy images and the single scattering �lter.

We illustrate in Figure 7.3 the results obtained for another realization of the
background medium with the same statistical characteristics as in Figure 7.2.
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(b) WBE image with �lter.
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(c) The �lter's effect.

Figure 7.3: Windowed beamformer energy images and the single scattering �lter.

The images shown on the left column in �gures 7.2 and 7.3 are obtained using the
IWBE imaging functional as de�ned in (6.11) while the images in the middle column
(WBE with �lter) are obtained with the same functional but using the modi�ed Q̃T
de�ned by (7.8) and Ψ̂ given by (7.13) with α = β

√
2 + 10−5, β = X = 2mm and

T = 1.05848µsec. As we can see, in both �gures, the images we obtain using the
windowed beamformer energy imagining functional (left image) are too noisy, and we
cannot distinguish the scatterers from the background's medium inhomogeneities.
By applying the single scattering �lter we observe a signi�cant improvement in the
signal to noisy ratio as the spurious peaks associated with the background's medium
inhomogeneities are dramatically reduced. In Figure 7.2c and Figure 7.3c the effect
of the single scattering �lter on the image is shown by plotting the difference of
the image obtained with WBE and the one obtained using WBE with the single
scattering �lter. The image is normalized by its maximal value. We can clearly see
that the �lter applied to the data leaves the single scattering components unchanged
as we remark by looking at the targets' area where the effect of the �lter is almost
zero. The �lter, however averages out the multiple scattering components of the
data. These results suggest that looking at the zeros of the di�erence between the
two images with and without the �lter may be a good way to detect the presence of
coherent scatters.
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(a) WBE image with �lter.
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(b) RWBE image with �lter.
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(c) WBE image with �lter.
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(d) RWBE image with �lter.

Figure 7.4: Windowed beam-forming IWBE and re�ned windowed beam-forming
IRWBE images for two different realizations of the background medium with the
same statistical characteristics.

Since we can locate the re�ectors using the single scattering �lter, the idea is
to make the �lter more ef�cient by taking appropriate windows in time. We use
a function φR to window the data time traces. The function φR is the indicator
function:

φR(t) = 1[T ′−∆T ′/2, T ′+∆T ′/2](t)

where T ′ = 2L′/c0 is the appropriate time for a given depth level L′ and ∆T ′ =
2∆L′/c0 is the size of the window in time in order to get a window in the range
direction of the size ∆L′. Instead of working with the traces P (~xs, ~xr, t) we use the
windowed data and set P (~xs, ~xr, t) = φR(t)P (~xs, ~xr, t) for every given depth level
L′ and ∆T ′. We de�ne the re�ned imaging function IRWBE as the sum of the WBE
images we obtain for every L′ and ∆T ′. Using this approach we obtained Figure 7.4b
and Figure 7.4d. Here we used three windows with a duration of ∆T ′ = 2.8296µsec
each and centered to the range of the targets which we assume that can be estimated
approximately from the initial IWBE image. We remark that the re�ned WBE image
allows us to improve the SNR for the scatterers that are further away from the array.

Until now the best images we obtained for the two realizations of the heavy
cluttered media are illustrated in Figure 7.4b and Figure 7.4d but they do not have
good resolution in cross-range. This is done in purpose. In a �rst step we need
to create images using a small value for X . The images will be stable but blurry
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in the cross-range direction. We do not worry about cross-range resolution in this
�rst step, we need however to localize the targets in range. After the localization in
range we �rst re�ne the resolution with the IRWBE. We can then further improve
the image by adjusting the smoothing parameters so as to determine the optimal
ones. The �nal images for the two different realizations of the heavy cluttered media
using the optimal smoothing parameters are shown in Figure 7.5.
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(a) Final WBE image.
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(b) Final WBE image.

Figure 7.5: Re�ned windowed beamformer energy IRWBE images obtained using
the optimal smoothing parameters for two different realizations of the background
medium with the same statistical characteristics.

The optimal smoothing parameters we used to form the images in Figure7.5 are
T = 3.15448µsec for smoothing in the range direction and X = 10mm for smoothing
in the cross-range direction.

Comparing now the Figure7.2a and the Figure7.3a with the correspondingly
Figure7.5a and Figure7.5b, one can observe a signi�cant improvement. The role
of the single scattering �lter as it was introduced in the imaging function IWBE,
as well as the re�ned IRWBE imaging and the optimization over the smoothing
parameters were crucial in the obtention of stable images with high resolution in
multiple scattering media.
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8 Summary and conclusions

We considered here the problem of imaging re�ectors embedded in inhomogene-
ous media with random �uctuations in the wave speed. The re�ectors that we are
seeking for are also an inhomogeneity in the medium. We assume that the back-
ground medium �uctuations are not known and cannot be estimated. Therefore
we model them as a random process. Our data is the array response matrix that
can be obtained by sending sequentially from each array element a short pulse and
then record the scattered echoes at all array elements. The waves propagate in
the background medium and interact with the medium inhomogeneities before and
after being scattered by the re�ectors that we wish to image. Therefore the ima-
ging problem is very challenging. To image we use a statistically stable imaging
functional called the windowed beamformer energy (WBE) functional. Statistical
stability here means that the imaging results do not depend on the particular re-
alization of the random medium �uctuations considered. The statistical stability
of WBE follows from the statistical stability of coherent interferometric (CINT)
imaging functional since WBE was shown to be equivalent to CINT. Compared to
CINT, the WBE functional is easier to implement both in software and in hardware.
Moreover, for typical values of the imaging parameters in medical ultrasound or the
non-destructive testing regime, creating an image with WBE is signi�cantly faster
than with CINT. In our examples WBE was 5 to 10 times faster than CINT. To
increase the e�ciency and robustness of the WBE functional we also incorporated a
�lter that aims to enhancing the single scattering component of the recorded echoes.
This means that artefacts due to the multiple scattering of the waves with the me-
dium inhomogeneities are signi�cantly reduced with the application of the �lter. We
show with numerical simulations carried out in ultrasound medical imaging regime
that the proposed �lter dramatically improves the signal to noise ratio of the image.

38



Appendices
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A The �lter

We want to generalize the implementation algorithm for the IWBE imaging functi-
onal so as to include a spatial cut-o� function of the form

ψ(xρ,xσ;xr,xs) = ψ0(xρ − xr)ψ0(xσ − xs)ψ1(xρ + xσ − xr − xs) (A.1)

For that let us de�ne in the Fourier domain a function

Ψ̂(ks, kr) = ψ̂(ks)ψ̂(kr)ξ̂(ks + kr) (A.2)

with ψ̂ a Gaussian,

ψ̂(ks) = exp

(
−k2

s

β2

2

)
(A.3)

and the function ξ̂ de�ned by

ξ̂(ks + kr) = exp

(
β2(ks + kr)

2

2(2− α2/β2)

)
(A.4)

and we consider a small and β = X (ω0) = X .
Let us consider the following convolution integral

I =

∫
dxρ

∫
dxσ u(xρ,xσ; t)ψ0(xr − xρ)ψ0(xs − xσ)ψ1(xr + xs − xρ − xσ) (A.5)

that appears in the IWBE functional. By replacing in (A.5) u, ψ0 and ψ1 by their
Fourier transforms we obtain

I =

∫
dxρ

∫
dxσ

∫
dωρ

∫
dωσ û(ωρ, ωσ)ei(ωρxρ+ωσxσ)

×
∫

dkr ψ̂0ψ0(kr)e
ikr(xr−xρ)

∫
dks ψ̂0(ks)e

iks(xs−xσ)

×
∫

dδ ψ̂1(δ)eiδ(xr+xs−xρ−xσ)

which can be re-written as

I =

∫
dωρ

∫
dωσ

∫
dkr

∫
dks

∫
dδ û(ωρ, ωσ)ψ̂0(kr)ψ̂0(ks)ψ̂1(δ)

×ei(krxr+ksxs+δxr+δxs)
∫

dxρ eixρ(ωρ−kr−δ)
∫

dxσ eixσ(ωσ−ks−δ).

From the last two Fourier integrals we get the delta functions δ(ωρ − kr − δ) and
δ(ωσ − ks − δ), so that ωρ = kr + δ and ωσ = ks + δ and I reduces to

I =

∫
dkr

∫
dks

∫
dδ û(kr + δ, ks + δ)ψ̂0(kr)ψ̂0(ks)ψ̂1(δ)ei(krxr+ksxs+δxr+δxs) (A.6)

For the single scattering �lter we have

ψ1(xr + xs − xρ − xσ) = δ(xr + xs − xρ − xσ) (A.7)
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and therefore in this case ψ̂1 = 1. So (A.6) becomes

I =

∫
dkr

∫
dks

∫
dδ û(kr + δ, ks + δ)ψ̂0(kr)ψ̂0(ks)

× exp (i [(kr + δ)xr + (ks + δ)xs])

=

∫
dk̃r

∫
dk̃sû(k̃r, k̃s) exp

(
i(k̃rxr + k̃sxs)

)
×
∫

dδ ψ̂0(k̃r − δ)ψ̂0(k̃s − δ) (A.8)

with k̃r = kr − δ and k̃s = ks − δ. This means that we can implement the �lter by
replacing in the 4th step of the algorithm ψ̂0(kr)ψ̂0(ks) by

ψ̃(kr, ks) =

∫
dδ ψ̂0(kr − δ)ψ̂0(ks − δ) (A.9)

which for the Gaussian ψ̂0 de�ned in (A.3) becomes

ψ̃(kr, ks) =

∫ +∞

−∞
ψ̂0(kr − δ)ψ̂0(ks − δ) dδ

=

∫ +∞

−∞
dδ exp

(
−β

2(kr − δ)2

2
− β2(ks − δ)2

2

)
= exp

(
−β

2k2
r

2
− β2k2

s

2

)∫ +∞

−∞
dδ exp

(
−β2

(
δ2 − δ(kr + ks)

))
= exp

(
−β

2k2
r

2
− β2k2

s

2

)
exp

(
β2(kr + ks)

2

4

) √
π

β

=

√
π

β
exp

(
−β

2k2
r

2
− β2k2

s

2

)
exp

(
β2(kr + ks)

2

4

)
=

√
π

β
exp

(
−β

2(kr − ks)2

4

)
(A.10)

In our numerical simulations we have considered a more general function ψ1

instead of (A.7). Speci�cally, we take a Gaussian function that decays away from
the diagonal. In this case the Fourier transform of ψ1 is of the form

ψ̂1(δ) = exp

(
−α

2δ2

2

)
(A.11)

with α small. Note that for α = 0 we recover the function (A.7). For a Gaussian ψ̂1

as in (A.11), (A.8) becomes

I =

∫
dkr

∫
dks

∫
dδ û(kr + δ, ks + δ)ψ̂0(kr)ψ̂0(ks)

× exp (i [(kr + δ)xr + (ks + δ)xs]) exp

(
−α

2δ2

2

)
=

∫
dk̃r

∫
dk̃s û(k̃r, k̃s) exp

(
i(k̃rxr + k̃sxs)

)
×
∫

dδ ψ̂0(k̃r − δ)ψ̂0(k̃s − δ) exp

(
−α

2δ2

2

)
(A.12)
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This means that we can implement the �lter by replacing in the 4th step of the
algorithm ψ̂0(kr)ψ̂0(ks) by

ψ̃(kr, ks) =

∫
dδ ψ̂0(kr − δ)ψ̂0(ks − δ) exp

(
−α

2δ2

2

)
(A.13)

which for the Gaussian ψ̂0 de�ned in (A.3) becomes

ψ̃(kr, ks) =

∫ +∞

−∞
dδ exp

(
−β

2

2

(
k2
r + k2

s − 2δ(kr + ks) + δ2(2− α2

β2
)

))

=

√
π

β2 − 2α2
exp

(
−β

2k2
r

2
− β2k2

s

2

)
exp

β2(kr + ks)
2

2
(

2− α2

β2

)


=

√
π

β2 − 2α2
exp

(
−β

2

2

1− η
2− ηk

2
r −

β2

2

1− η
2− ηk

2
s +

β2

2

2

2− ηkrks
)
(A.14)

with η = α2

β2 . In the numerics we take η = 2 + ε with ε > 0 small.
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