
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Hardware-Assisted Security Mechanisms for
Memory Vulnerabilities

by

George Christou

PhD Dissertation

Presented

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, July 2023

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Hardware-Assisted Security Mechanisms for Memory Vulnerabilities

PhD Dissertation Presented

by George Christou

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Author: Georgios Christou

Supervisor: Sotiris Ioannidis, Associate Professor, Technical University of Crete

Committee Member: Evangelos Markatos, Professor, University of Crete

Committee Member: Vassilis D. Papaefstathiou, Assistant Professor, University of Crete

Committee Member: Angelos Billas, Professor, University of Crete

Committee Member: Georgios Vasiliadis, Assistant Professor, Hellenic Mediterranean University

Committee Member: Polyvios Pratikakis, Assistant Professor, University of Crete

Committee Member: Nikos Vasilakis, Assistant Professor, Brown University

Department Chairman: Antonis Argyros, Professor, University of Crete

Heraklion, July 2023

Acknowledgments

I would like to thank my supervisor, Professor Sotiris Ioannidis for his immeasurable help

and guidance over the past decade. I also feel grateful to Professor Evangelos P. Markatos

for his support during my studies. I am also indebted to the remaining members of my

committee, Vassilis D. Papaefstathiou, Angelos Billas, Georgios Vasiliadis, Polyvios Pratikakis

and Nikos Vasilakis for their invaluable feedback and comments during my defense. I also

want to thank Vassilis Kemerlis, Nick Kossifidis and Elias Athanasopoulos for the success-

ful collaboration on publications included in this thesis.

I also want to thank past and present members of Distributed Computing Systems in

Foundation for Research and Technology Hellas (FORTH) and the Microprocessor and

Hardware Laboratory in Technical University of Crete for their support all these years.

Equivalently, I also feel grateful to the Computer Architecture and VLSI Systems (CARV)

laboratory members for providing equipment and assistance on many projects related to

this thesis and making me feel like a member of their laboratory.

Additionally, I want to thank the members of the RISC-V foundation, for their support

on my effort to include my research in the RISC-V architectural standards. At this point,

I want to convey my deepest regards to Vedvyas Shanbhogue for sharing his profound

knowledge on computer architecture during our joint work in the Shadow Stack and Land-

ing Pads Task Group.

Finally, I would like to thank my family and friends for their deep support.

vii

Abstract

Security is essential in today’s computing systems. Nearly every aspect of modern life is

associated with computing devices. This trend is not expected to slow down in the near fu-

ture, conversely, it is expected to continue expanding. Thus, it is important to ensure that

modern systems are secure against cyber-threats, especially considering that computing

devices are responsible even for life-critical tasks (e.g., medical devices, smart cars, etc.).

Security relies on checking various conditions during an application’s execution as well

as various computations on the application’s memory (e.g., hashing, cryptography, etc.). A

plethora of effective security mechanisms has been designed and implemented solely in

software. However, the additional security checks and operations are not cheap and cause

runtime performance overhead as well as increased power consumption. In an effort to

reduce the imposed overheads relaxed and lightweight s ecurity variations of these strate-

gies have been proposed, but they often prove ineffective and easy to bypass with new,

more sophisticated exploitation techniques. Researchers and industry providers strive to

find the golden ratio between security and overall functionality of the system. This is not

an easy task and it has been long proven that effective strategies relying only on software,

often fail to achieve both of these goals. Modern CPUs introduce progressively more ar-

chitectural extensions which aim to accelerate certain heavy operations. Thus, one could

argue that pushing parts of security mechanisms in the hardware domain is a promising

approach, in order to offer strong security guarantees with minimal runtime overhead.

In this dissertation, we explore the design of hardware assisted security mechanisms

in order to protect systems against common exploitation techniques. Our work can be di-

vided in two categories of mechanisms. First, we utilize architectural extensions already

present in commodity off the self hardware, even if they were not originally designed for

security purposes. Second, we design and implement our own hardware extensions that

aim to enhance the performance of promising security strategies which were originally im-

plemented solely in software. The techniques we explored prevent memory related vulner-

abilities from escalating to successful exploitation of the system. In summary, we present

a lightweight main memory encryption mechanism that leverages widely available cryp-

tographic accelerators and MMU components in order to prevent attackers with physi-

cal access from disclosing sensitive data. We then explore intra-process isolation through

leveraging hardware assisted user-level memory partition in order to preserve memory

safety in managed runtime environments when libraries written in non memory safe (or

type safe) languages are loaded. Furthermore, we design and implement cryptographi-

ix

cally resistant architecturally assisted Instruction Set Randomization in to prevent Code

Injection and Code Reuse attacks. Finally, we design and implement a complete, policy

agnostic Control Flow Graph based Control Flow Integrity instruction set and we discuss

how we adapted our work in order to form the specification for CFI in RISC-V architecture.

The evaluation of our work and the tendency of CPU providers to include architectural

extensions for security verifies that our approach is promising for defending against the

ever-expanding threat landscape.

Keywords: Architectural Extensions, Systems Security

Supervisor: Sotiris Ioannidis

Associate Professor

School of Electrical and Computer Engineering

Technical University of Crete

Περίληψη

Η ασφάλεια είναι πολύ σημαντική στα σημερινά υπολογιστικά συστήματα. Σχεδόν κάθε πτυχή

της καθημερινότητας συνοδεύεται με τη χρήση κάποιας υπολογιστικής συσκευής. Αυτή η τάση

δεν φαίνεται ότι θα σταματήσει σύντομα, αντιθέτως αναμένεται να ενισχυθεί. Επομένως είναι

σημαντικό τα υπολογιστικά συστήματα να είναι ασφαλή ενάντια σε κυβερνοεπιθέσεις, ειδικά αν

σκεφτεί κανείς ότι χρησιμοποιούνται ακόμα και για ζωτικής σημασίας εφαρμογές (π.χ. ιατρικές

συσκευές, έξυπνα αυτοκίνητα, κ.τ.λ.).

Η ασφάλεια συνήθως αποτελείται από διάφορους ελέγχους κατά τη διάρκεια εκτέλεσης μιας ε-

φαρμογής καθώς και διάφορους υπολογισμούς στην μνήμη της εφαρμογής (π.χ. κατακερματισμός,

κρυπτογραφία, και άλλα) Αρκετοί αποτελεσματικοί μηχανισμοί έχουν σχεδιαστεί και υλοποιηθεί

πλήρως σε λογισμικό. ΄Ομως, οι επιπλέον έλεγχοι και υπολογισμοί για την ασφάλεια δεν είναι φτη-

νοί υπολογιστικά και επιβραδύνουν σημαντικά το σύστημα και υπολογιστικά αλλά και από άποψη

κατανάλωσης ενέργειας. Σε μια προσπάθεια να μειωθεί η επιβάρυνση του συστήματος, έχουν

προταθεί μηχανισμοί με λιγότερο εντατικούς ελέγχους, όμως συνήθως αποδεικνύονται ανεπαρ-

κείς και εύκολα παραβιάσιμοι μέσω νέων εξελιγμένων επιθέσεων. Οι ερευνητές και η βιομηχανία

πασχίζουν να βρουν την χρυσή τομή μεταξύ ασφάλειας και λειτουργικότητας του συστήματος.

Αυτό δεν είναι εύκολο και έχει αποδειχθεί ότι στρατηγικές που βασίζονται αποκλειστικά σε λογι-

σμικό αποτυγχάνουν και στους δυο αυτούς στόχους. Οι σημερινοί επεξεργαστές περιλαμβάνουν

συνεχώς νέες τεχνολογίες που σκοπό έχουν να επιταχύνουν διάφορες απαιτητικές διεργασίες.

Επομένως, κάποιος θα μπορούσε να πει ότι το να υλοποιηθούν τμήματα ενός μηχανισμού ασφαλε-

ίας σε υλικό, θα μπορούσε να προσφέρει υψηλού επιπέδου ασφάλεια ενώ παράλληλα η επιβάρυνση

του συστήματος θα είναι ελάχιστη.

Σε αυτή τη διατριβή, εξερευνούμε τον σχεδιασμό αρχιτεκτονικά υποβοηθούμενων μηχανισμών

ασφαλείας προκειμένου να προστατεύσουμε ένα σύστημα από συνήθεις τεχνικές παραβίασης. Η

εργασία μας μπορεί να διαχωριστεί σε δυο κατηγορίες μηχανισμών. Στην πρώτη κατηγορία,

αξιοποιούμε για ασφάλεια, αρχιτεκτονικές επεκτάσεις που είναι ήδη παρούσες σε επεξεργαστές

του εμπορίου, ακόμα και αν ο αρχικός σκοπός τους ήταν διαφορετικός. Στη δεύτερη κατηγορία,

σχεδιάζουμε και υλοποιούμε δικές μας αρχιτεκτονικές επεκτάσεις έτσι ώστε να επιταχύνουμε

υποσχόμενες στρατηγικές ασφαλείας που έχουν σχεδιαστεί αρχικά μόνο με λογισμικό. Οι τεχνι-

κές που μελετήσαμε προλαμβάνουν την επιτυχή αξιοποίηση ευπαθειών μνήμης από επιτιθέμενους.

Περιληπτικά, παρουσιάζουμε ένα μηχανισμό κρυπτογράφησης κύριας μνήμης όπου αξιοποιούμε

κοινές αρχιτεκτονικές επεκτάσεις με σκοπό να αποτρέψουμε την κλοπή δεδομένων από επιτιθέμε-

νους με φυσική πρόσβαση στο σύστημα.΄Επειτα, μελετήσαμε την απομόνωση τμημάτων κώδικα

μιας διεργασίας μέσω ενός αξιοποίησης αρχιτεκτονικά υποστηριζόμενου μηχανισμού διαχείρισης

xi

μνήμης σε επίπεδο χρήστη, προκειμένου να διατηρήσουμε την ασφάλεια μνήμης σε περιβάλλοντα

εκτέλεσης με διαχείριση, όταν φορτώνουν βιβλιοθήκες γραμμένες σε γλώσσες χαμηλού επιπέδου.

Επιπροσθέτως, σχεδιάσαμε και υλοποιήσαμε ένα κρυπτογραφικά ασφαλές αρχιτεκτονικά υποστη-

ριζόμενο μηχανισμό τυχαιοποίησης συνόλου εντολών προκειμένου να προστατεύσουμε εφαρμο-

γές από επιθέσεις εισαγωγής κώδικα και επαναχρησιμοποίησης κώδικα Τέλος, σχεδιάσαμε και

υλοποιήσαμε μια επέκταση συνόλου εντολών για τον έλεγχο ακεραιότητας ροής εκτέλεσης, βα-

σισμένο σε γράφους ροής εκτέλεσης, παράλληλα μελετάμε την εφαρμογή αυτής της δουλειάς στα

πλαίσια των προδιαγραφών της αρχιτεκτονικής RISC-V. Η αξιολόγηση της δουλειάς μας καθώς

και η τάση των εταιρειών επεξεργαστών να συμπεριλαμβάνουν αρχιτεκτονικές επεκτάσεις για α-

σφάλεια, επαληθεύει ότι η πρακτική μας είναι πολλά υποσχόμενη στο να προστατεύει συστήματα

από το συνεχώς αυξανόμενο πεδίο απειλών.

Λέξεις Κλειδιά: Αρχιτεκτονικές Επεκτάσεις, Ασφάλεια Συστημάτων

Επόπτης: Σωτήρης Ιωαννίδης

Αναπληρωτής Καθηγητής

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πολυτεχνείο Κρήτης

Contents

Acknowledgments . vii

Abstract . ix

Table of Contents . xiii

List of Figures . xvii

List of Tables . xxi

1 Introduction . 1

1.1 Thesis Statement . 4

1.2 Contributions of this Dissertation . 5

1.3 Outline of Dissertation . 6

2 Background . 7

2.1 Buffer overflows - Code Injection Attacks . 7

2.1.1 Defences . 7

2.2 Return-to-libc . 8

2.2.1 Defences . 8

2.3 Code Reuse Attacks . 8

2.3.1 Gadgets . 9

2.3.2 Defences . 9

2.4 Buffer Over-read - Memory Disclosure . 10

2.4.1 Defences . 10

2.5 Physical Attacks . 10

2.5.1 Cold Boot Attacks . 10

2.5.2 DMA Attacks . 10

2.5.3 Defences . 11

3 Hardware mechanisms for security . 13

3.1 Protection Keys . 13

3.2 Virtual Addressing and memory segmentation 14

3.3 Protection rings . 14

3.4 Data Execution Prevention . 15

3.4.1 Supervisor Mode Execute/Access Prevention (SMEP and SMAP) . . . 15

3.4.2 Memory Protection Extensions . 16

3.5 Trusted Execution Environments . 17

3.5.1 TrustZone . 17

3.5.2 Software Guard Extensions . 18

xiii

3.6 Memory Encryption . 19

3.6.1 AMD EPYC Hardware Memory Encryption 19

3.6.2 Intel Total Memory Encryption (TME) 20

4 Memory Encryption . 23

4.1 Background . 24

4.1.1 AES-NI instructions. 24

4.1.2 Key schedule. 24

4.1.3 Intel PIN . 24

4.2 Threat model . 25

4.2.1 In-Scope Threats. 26

4.2.2 Out-of-Scope Threats. 26

4.3 Main Memory Encryption . 26

4.3.1 Full memory encryption . 27

4.3.2 Selective memory encryption. 30

4.3.3 Protecting memory from illegal access 30

4.3.4 Key Management . 31

4.4 Performance Evaluation . 32

4.4.1 Full Memory Encryption evaluation 32

4.4.2 Benchmarks . 34

4.4.3 Real-world applications. 34

4.4.4 Static Instrumentation . 36

4.4.5 Selective Memory Encryption . 37

4.5 Related Work . 39

4.6 Overview & Limitations . 41

5 Third party binary library isolation. 43

5.1 Background . 44

5.1.1 Node.js, V8, and NAN . 44

5.1.2 Restricting memory accesses . 45

5.1.3 Code reuse attack prevention . 47

5.1.4 System call restrictions . 47

5.2 BINWRAP Overview . 48

5.2.1 png-img: A Node.js Portable Network Graphics Library 48

5.2.2 Node.js Module Confinement with BINWRAP 49

5.3 Threat Model . 51

5.4 Design . 52

5.4.1 Isolation techniques . 53

5.4.2 System call extraction . 56

5.4.3 System call restriction . 57

5.5 Implementation . 58

5.5.1 Node and V8 API modifications . 58

5.5.2 Wrapper library . 58

5.5.3 System Call policies . 59

5.6 Evaluation . 60

5.6.1 Libraries and workloads . 60

5.6.2 Setup . 61

5.6.3 Evaluation set . 61

5.6.4 Security evaluation (Q1) . 63

5.6.5 System call set analysis (Q2) . 65

5.6.6 Performance Evaluation (Q3) . 66

5.7 Related Work . 68

5.7.1 Intra-process isolation . 68

5.8 Summary . 69

6 Architectural Support for Instruction Set Randomization 71

6.1 Background . 73

6.1.1 ISR . 73

6.2 Threat Model . 74

6.2.1 In-scope threats . 74

6.2.2 Out-of-scope threats . 75

6.3 AESASIST Design . 76

6.3.1 Encryption . 76

6.3.2 Hardware Support . 81

6.3.3 Operating System Support . 85

6.4 AESASIST Prototype Implementation . 86

6.4.1 Hardware Implementation . 86

6.4.2 Additional Hardware . 87

6.4.3 Kernel and Software Modifications . 87

6.4.4 Portability to Other Architectures . 88

6.5 Experimental Evaluation . 89

6.5.1 Security Evaluation . 89

6.5.2 Performance Evaluation . 90

6.6 Related Work . 94

6.6.1 Limitations of Existing Implementations 94

6.7 Summary . 97

7 Control-Flow Integrity . 99

7.1 Background . 100

7.2 Threat Model . 102

7.2.1 In-scope threats . 102

7.2.2 Out-of-scope threats . 102

7.3 Hardware-Enforced Control-Flow Integrity 103

7.4 Fine-grained CFI Instrumentation . 105

7.4.1 Finer Forward-Edge Granularity . 106

7.5 Implementation . 107

7.5.1 Memory Components . 108

7.5.2 CFI Pipeline . 108

7.6 Performance Evaluation . 109

7.6.1 Runtime Overhead . 110

7.6.2 Hardware Overhead . 111

7.6.3 Power Consumption . 111

7.7 Designing CFI in RISC-V Architecture . 111

7.7.1 Architecturally protected Shadow Stack 111

7.7.2 Instruction Extension . 113

7.7.3 CFI Context Specific Registers . 115

7.8 Related Work . 115

7.8.1 Active Set Control Flow Integrity . 116

7.8.2 Pointer Integrity (Cryptographically enforced CFI) 116

7.8.3 Intel Control Flow Enforcement Technology 117

7.8.4 Memory Tagging . 118

7.8.5 Dynamic Information Flow Tracking 118

7.9 Summary . 119

8 Future work and Conclusion . 121

8.1 Synopsis of Contributions . 121

8.2 Directions for Future Work and Research . 123

8.3 Conclusion . 124

Bibliography . 127

Appendices
A Publications . 145

List of Figures

3.1 Memory access privilege checks when using Memory Protection Keys. . . . 13

3.2 Protection rings in x86 processors By Hertzsprung at English Wikipedia, CC BY-

SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8950144 15

3.3 Overview of an ARM SoC with trustzone. CPU has both execution domains.

Flash and SRAM define trusted and untrusted regions. Peripherals can be

defined as trusted or untrusted in case of security concerns.Of course DMA

should also be constrained. 17

3.4 Reduced attack surface in Trusted Execution Environments. The protected

application only trusts the processor chip. 18

3.5 Overview of AMDs Secure Encrypted Virtualisation. 19

3.6 Overview of Intel Total Memory Encryption. 20

4.1 Data are always encrypted when residing in main memory or moving be-

tween the different components of the untrusted domain. 25

4.2 Subsequent store instructions have words encrypted as a bundle in the same

block and are then stored on main memory. 27

4.3 For sequential memory accesses, the block is decrypted once and the 2nd

word is retrieved from the same register instead of re-decrypting the same

block. 27

4.5 Portion of cryptographic operations in each SPEC benchmark. 33

4.7 Average latency per request when downloading different files from a Lighttpd

web server as a function of the requested file’s size. 35

4.8 Overheads of static and dynamic instrumentation with and without pre-

fetching for the different benchmarks. 37

4.9 Storing different portion of an array’s data to the heap. Data considered as

sensitive gets encrypted before sent to main memory. 38

4.10 Client is over a 1000 Mbps network. 38

4.11 Average latency for performing an SSL handshake during a client’s connec-

tion to a web server where the latter’s private key is considered as sensitive. . 38

5.1 Application of BINWRAP framework in Node.js environment. 53

5.2 Compilation order of BINWRAP native modules. 55

5.3 Classification of required system-calls. 56

xvii

5.4 Overview of the analysis for the evaluation set. 62

5.5 System call set size for the native module and the combined with the Node.js

API. 65

5.6 Runtime overhead when deploying BINWRAPB, BINWRAPL and BINWRAP. . 66

5.7 Packages that stress the micro aspect of BINWRAP. 67

6.1 AESASISTarchitecture. The operating system reads the key from the ELF bi-

nary (static encryption) or randomly generates a new key (dynamic encryp-

tion), saves the key in the process table, and stores the key of the running

process in the usrkey register. The processor decrypts each instruction (or

I-cache line in case of AES) using usrkey or oskey register, according to the

supervisor bit. 77

6.2 The ELF format of a statically encrypted executable file. The key is stored

in a new note section inside the ELF file, and all the code sections are en-

crypted with this key. 78

6.3 The AES extended AESASIST processor is between the AHB interface and

the I-cache controller. Each cache block is fetched, decrypted and then sent

to the I-cache. To support AES, a separate AES decryption unit is instanti-

ated in order to decrypt each block. 82

6.4 Alternative choices for the placement of the decryption unit in the AESASIST-

enabled processor. 84

6.6 Percentage of overhead of (a) XOR and (b) Transposition when using the

SPEC CPU2006 benchmark suite. We see that both ASIST implementations

have negligible runtime overhead compared to the vanilla system. 90

6.7 Percentage of overhead with AES when utilizing different I-cache sizes. We

see that AESASIST with AES imposes significant overhead when the I-cache

size is relatively small and thus the ASIST unit is invoked frequently. When

we increase the I-cache size, the runtime overhead is reduced to practical

margins. Note that the maximum I-cache size we used in our configurations,

is typical for modern commodity processors. 91

6.8 Percentage of overhead of lighttpd in all ISR modes. 93

6.9 Percentage of overhead of sqlite3 in all ISR modes. 93

7.2 The basic FSMs for the hardware-based CFI. For return instructions, the tar-

get Program Counter is compared with the top value of the stack everytime

a CheckPC instruction is received and the execution continues normally. . . 104

7.3 Examples of CFG representation based on the granularity offered by the CFI

strategy, our previous design offered the per-function CFG (center). Our re-

vised design offers per-indirect-call labels (right-most). 105

7.4 The extended FSM for Indirect Call States. A SetPCLabel instruction is re-

ceived, the appropriate memory modules are set, and the core enters a state

where only CheckLabel instructions are accepted. Once a CheckLabel in-

struction with the appropriate label is received, the execution returns to its

normal flow. 106

7.5 The runtime overhead measured with our implementation. 109

7.6 The runtime overhead added by using 1-10 labels on an empty function or

a function that increments a value. 110

List of Tables

4.1 Encryption cost in the two implementations, in terms of execution time and

power consumption. 37

4.2 Comparison of main memory encryption strategies 40

5.1 Third party libraries available in npm and applications using these libraries.

* C lines of code. ** Number of System Calls 62

5.2 Exploits . 63

5.3 Subsets of system calls that can be potentially misused to escape BINWRAP. 66

5.4 Comparison of MPK sandboxes. 1 Only addresses system call issues and is

based on Donky. 2 Is an API for MPK based sand boxes. 3 PKRU-safe does not

address MPK based sandbox issues i.e., system calls, stray unsafe instruc-

tions. 4 Cerberus does not prevent exploitation through sigreturn 68

6.1 Additional hardware used by AESASIST. We see that AESASIST adds just 0.6%–

0.7% more hardware with XOR decryption using a 32-bit key, while it adds

significantly more hardware (6.6%–6.9%) when using Transposition. When

using AES the overhead is slightly over 10% 87

6.4 Data and text page faults per second and percentage during execution when

running the SPEC CPU2006 benchmark suite. Text page faults rarely occur,

attributing to less than 5% of the total page faults in most benchmarks. This

explains the negligible overhead of the dynamic encryption approach. . . . 92

7.1 Instructions needed to support HCFI. 103

7.2 Comparison of CFI strategies for preventing Control-Flow hijacking attacks. 119

xxi

Chapter 1

Introduction

The current technology trend of introducing smart computing capabilities to every day

electronic devices, renders our society more vulnerable than ever before to cyber systems

exploitation. Since many systems are entirely software controlled, they must be protected

from adversaries, otherwise the dangers can be very serious. Exploitation of modern soft-

ware is undoubtedly still possible, despite many mitigation techniques that have been en-

abled in production systems. Even without exploiting software, adversaries can launch

powerful attacks and disclose sensitive information e.g. passwords, session cookies, etc.

residing in the memory. Moreover, the expansion of edge and cloud computing technolo-

gies has significantly broadened the trusted computing base of a cyber infrastructure and

consequently the attack surface.

More than a decade ago, exploiting software was as easy as just simply smashing the

stack [141]. An attacker could fill a vulnerable buffer located in the stack with their code,

write past the buffer smashing the stack boundaries, and changing the return address

(of the current stack frame) to point back to their code (usually located in the overwrit-

ten buffer). Today, this is not possible anymore due to non-executable data protection

(DEP) [17], but attackers can still exploit software. Advanced exploitation techniques,

based on code reuse, commonly known as Return-Oriented Programming (ROP) [159] and

Jump-Oriented Programming (JOP) [34], are so powerful that can potentially take advan-

tage of any vulnerability and transform it to a fully functional exploit. These techniques

do not introduce new code, but new functionality in the vulnerable program. Attackers

reuse existing parts of the program and build exploits that can work even when DEP is in

place. Thus, memory corruption bugs are still to this day an avenue for attackers to exploit

applications, gain control of the system or disclose sensitive information.

In an effort to prevent memory corruption exploitation at its roots, widely used high-

level languages, e.g. JavaScript, Rust, etc. rely on memory and type safety. However, mod-

ern software development relies heavily on third-party libraries. The heavy use of libraries

is particularly common in JavaScript applications [113, 135], and especially in those run-

ning on the Node.js platform [207], where developers have easy access to hundreds of

1

2 Chapter 1. Introduction

thousands of libraries through the node package manager (npm). The vast majority of the

libraries imported in a Node.js application are implemented in JavaScript and thus enjoy

the memory and type safety guarantees provided by a high-level programming language

and enforced by its runtime environment—at times, augmented with language-based pro-

tection techniques [193, 194]. However, not all application operations perform well when

written in high-level languages. Thus, it is common to also import a few libraries written

in low-level languages or provided only in binary form. These libraries, termed native add-

ons, implement either functionality not available yet in the pure high-level ecosystem or

components that need to be in low-level languages for performance and compatibility rea-

sons. Native add-ons interact with the rest of the program through a thin high-level layers

wrapping the library enough to expose runtime-specific naming and calling conventions.

Unfortunately, native add-ons are particularly dangerous to the rest of the application.

The complete lack of memory safety means that even a single line of memory-unsafe code

may compromise the application’s safety and security—that is, including those of the (safe

and secure) majority of the codebase. Native add-ons can additionally bypass the security

guarantees provided by the aforementioned language-based hardening and protection

techniques. The exploitation risks of native add-ons compound, as these components are

more likely to be targeted by malicious adversaries—exactly because of their vastly higher

insecurity and potential impact.

While memory corruption bugs are severe for the security of a system and can be even

exploited remotely, there are even techniques that can disclose information to attackers

that do not have any authorization to interact with the system. Rather, attackers can dis-

close sensitive data by launching powerful physical attacks on the system. Besides of the

(cold) data stored on secondary storage devices which are usually protected with encryp-

tion, sensitive data also reside on main memory (hot data), where they are typically in

clear-text. This allows for physical attacks on memory, that can disclose data used during

an application’s execution. More importantly, it is not only servers or desktops that are

under threat. According to [125], more than 40% of business users leave their laptops in

sleep or hibernation mode when traveling, leaving their private or corporate data, keys or

passwords residing in main memory unprotected. As a consequence, an adversary is able

to retrieve data from the main memory, including any stored sensitive data, e.g., session

keys, passwords, HTTP cookies, SSL key pairs, gaining this way access to online services,

bank accounts, etc.. Some of the typical methods adversaries utilize to steal data from

main memory are cold boot attacks [87, 89] and DMA attacks [182].

In this dissertation, we focus on techniques which aim to deny the building blocks

for successful exploitation of memory vulnerabilities, either physical or remote. In other

words, we do not try to eliminate memory vulnerabilities, rather, we aim to prevent their

meaningful exploitation i.e., an attacker will not be able to execute arbitrary code or ac-

cess sensitive data. To accomplish this, we recognise the enhanced security guarantees of

3

hardware-assisted security mechanisms. Hardware designed for security can be more ef-

fective against powerful attacks while minimizing the imposed runtime overhead required

by security checks and operations. Contrary to software only design, although a plethora

of mechanisms have been proposed and many of them are very effective in defending

against exploitation, they usually suffer from two issues. First, the security checks required

incur significant runtime overhead. Second, they can be bypassed, since the trusted com-

puting base is broad and attackers can target one of the many trusted components, e.g.

the Operating System, the firmware, etc.

We divide the work in this dissertation in two categories of techniques aiming to pro-

vide solutions for a variety of different security concerns in modern systems. Their com-

mon variables are that we utilise hardware to achieve our goals and that we aim to address

memory related exploitation techniques. The first, leverages hardware mechanisms al-

ready available in commodity off the self processors for security purposes.

Our first work in this category, aims to investigate whether it is possible to achieve

memory encryption with common architectural features at a reasonable performance cost.

In particular, we proposed the first of its kind software based memory encryption ap-

proach based on the AES-NI [98] and IOMMU [122] hardware features. Our design ensures

that sensitive data will remain encrypted in main memory at all times. Our approach is

based on commodity off-the-shelf hardware, and is totally transparent to legacy applica-

tions. With this mechanism we aim to protect sensitive information like passwords, se-

crets, and private data that can be easily exfiltrated from main memory by adversaries

with physical access.

Our second work in this category, is the design of a hybrid permission model which

aims at protecting managed runtime environments from possibly vulnerable native add-

ons. The permission model is applied all around a native add-on and is enforced through

a hybrid language-binary scheme that interposes on any accesses to sensitive resources

from any part of the library. A pair of program analysis components infer the add-on’s

permission set automatically, over both its binary and high-level sides. In order to confine

the execution of the third party native module we rely on Memory Protection Keys (MPK),

a feature available in the latest Intel CPUs [99].

Our second set of techniques, explores the design and implementation of in-house

hardware extensions (i.e., extending available open-source processors) and we aim to solve

code-injection as well as code-reuse attacks.

Our first approach was the design and implementation of AESASIST: an architecture

with both hardware and operating system support for Instruction Set Randomization (ISR).

Instruction Set Randomization (ISR) is able to protect against remote code injection at-

tacks, by randomizing the instruction set of each process. Thereby, even if an attacker

succeeds to inject code, it will fail to execute on the randomized processor. AESASIST ex-

tends a SPARC processor that is mapped onto a FPGA board and runs our modified Linux

4 Chapter 1. Introduction

kernel to support the new features. In particular, before executing a new user-level pro-

cess, the operating system loads its randomization key into a newly defined register and

the modified processor decodes the process’s instructions with this key. Besides that, AE-

SASIST uses a separate randomization key for the operating system, in order to protect the

base system against attacks that exploit kernel vulnerabilities to run arbitrary code with el-

evated privileges. Our design is heavily assisted by hardware and uses AES encryption in

order to offer resilience against cryptographic attacks and thus, raise the bar even against

Code Reuse Attacks.

Our second hardware extension aims to prevent Control-Flow Hijacking by enforc-

ing Control-Flow Integrity. Control-Flow Integrity (CFI) is a popular technique to defend

against State-of-the-Art exploits, by ensuring that every (indirect) control-flow transfer,

points to a legitimate address and it is part of the application’s Control-flow Graph (CFG).

In this work, we explored the implementation of a full-featured CFI-enabled Instruction

Set Architecture (ISA) on actual hardware. Our new instructions provide the finest possible

granularity for both intra-function and inter-function Control-Flow Integrity. Beyond the

academic work, we identified the challenges and lessons learned and we draw the official

specification for architecturally supported Control-Flow Integrity for the RISC-V architec-

ture [21]. This was not an easy task, since we had to identify and take into consideration

all the corner cases in general purpose software and preserve compatibility. In contrast,

most work in academia only considers a limited number of corner cases and it is espe-

cially hard to be adopted by the industry, without extensive modifications on the original

design.

1.1 Thesis Statement

The effectiveness of security mechanisms in thwarting cyber attacks relies on multiple

checks as well as the use of many tools (e.g., cryptography). These operations are not

cheap and thus impose significant runtime performance overhead. During the design of

a mechanism a usual concern is the trade-off between performance and security. Focus-

ing solely on security, often results in substantial slowdown, rendering the rather secure

application, impractical to use. The end result is that such mechanisms are eventually

abandoned. On the other hand, approaches that rely on relaxed policies in order to be

practical, often prove ineffective.

One approach that can enhance the security offered as well as minimize the perfor-

mance impact is the design of hardware that assists the security mechanism. With spe-

cialised hardware, many checks can be grouped under a single machine instruction and

many primitives (e.g. cryptography) can be accelerated through hardware components.

Moreover, hardware is immutable and thus security mechanisms become harder to by-

pass or disable. However, designing hardware for security is not an easy process and re-

1.2. Contributions of this Dissertation 5

quires careful planning on what parts of the mechanism can be pushed in the hardware

domain, considering the circuity area overhead. Beyond hardware additions, the overlay-

ing hardware-software interface must be designed in order for applications to deploy the

mechanism. Finally, it is important to preserve functionality and restrict corner cases as

less as possible.

This dissertation verifies that hardware-assisted security mechanisms can successfully

prevent a plethora of exploitation techniques while keeping the runtime performance im-

pact within practical limits. We accomplish this, by designing and implementing hardware

assisted strategies which prevent memory vulnerabilities from escalating to full-fledged sys-

tem exploitation.

1.2 Contributions of this Dissertation

The key contributions of this dissertation are the following:

• We present a memory encryption approach, which ensures that sensitive data will

remain encrypted in main memory at all times. Our approach is based on commod-

ity off-the-shelf hardware, and is totally transparent to legacy applications. To ac-

commodate different applications needs, we have built two versions of main mem-

ory encryption: Full and Selective Memory Encryption. Additionally, we provide a

new memory allocation library that allows programmers to manage granular sensi-

tive memory regions according to the specific requirements of each application. We

conduct an extensive quantitative evaluation and characterization of the overheads

of memory encryption, using both micro-benchmarks and real-world application

workloads. Our results show, that even though our scheme introduces overhead

when applied in micro workloads, it imposes low overheads and can be viable in

real-world, server applications.

• We design a new hybrid permission model aimed at protecting both a binary add-

on core and its language-specific wrapper in the Node.js [142] managed-runtime

environment. The permission model is applied all around a native add-on and is

enforced through a hybrid language-binary scheme that interposes on any accesses

to sensitive resources from any part of the library. A pair of program analysis com-

ponents infer the add-on’s permission set automatically, over both its binary and

JavaScript sides. Applied to a wide variety of native add-ons, we show that our frame-

work reduces access to sensitive resources, defends against real-world exploits, and

imposes modest overhead.

• We present the design and implementation of AESASIST: an architecture with both

hardware and operating system support for Instruction Set Randomization. AESASIST

6 Chapter 1. Introduction

uses our extended SPARC processor [68] that is mapped onto a FPGA board and runs

our modified Linux kernel to support the new features. Our evaluation shows that

AESASIST can transparently protect both user-land applications and the operating

system kernel from code injection and code reuse attacks. In our design the instruc-

tions are encrypted using the AES algorithm. However we keep the overhead within

acceptable margins, due to efficiently leveraging the spatial locality of code through

modern instruction cache configurations.

• We explore the implementation of a full-featured policy agnostic Control-Flow In-

tegrity(CFI) Instruction Set Architecture (ISA) on actual hardware. Our new instruc-

tions provide the finest possible granularity for both intra-function and inter-function

Control-Flow Integrity. We implement hardware-based CFI by modifying a SPARC

SoC [68] and evaluate the prototype on an FPGA board by running SPECInt bench-

marks instrumented with a fine-grained CFI policy. Our design can effectively pro-

tect applications from code-reuse attacks, while imposing negligible runtime perfor-

mance overhead.

1.3 Outline of Dissertation

The report is organized as follows Chapter 2 presents an overview of the attacks we pre-

vent with the strategies presented in this dissertation as well as discuss the efficacy of the

counter measures deployed so far. We focus on attacks that target memory related vulner-

abilities which can be exploited due to physical or remote access. Chapter 3, contains an

overview of various security related architectural extensions that have been included in

general purpose CPUs. Chapter 4 presents the design, implementation and evaluation of

a main memory encryption scheme that relies on IOMMU and cryptographic instruction

set in order to prevent physical attacks. Chapter 5 covers the design and implementation

of a Memory Protection Keys (MPK) based framework for isolating the execution of un-

trusted third-party libraries in managed runtime environments. Chapter 6 describes the

design, implementation and evaluation of a cryptographic attack resistant Instruction Set

Randomization architectural extension that prevents both Code Injection and Code Reuse

attacks. Chapter 7 explores the design, implementation and evaluation of a complete, pol-

icy agnostic Control-Flow Integrity Instruction Set that can prevent control-flow hijacking.

We also discuss the adaptation of our work in RISC-V architecture. Finally, chapter 8 con-

cludes this dissertation and provides directives for future research.

Chapter 2

Background

2.1 Buffer overflows - Code Injection Attacks

Buffer overflows are one of the most common low-level software bugs exploited by adver-

saries. During a buffer overflow, a program writes data to a buffer, overruns the allocation

boundaries and overwrites adjacent memory location. This behaviour is a well-known

security exploit. Code injection attacks enables an attacker to execute malicious code

through the exploitation of a software vulnerability. Arbitrary code execution is also pos-

sible through the modification of non-control-data [47]. Despite considerable research ef-

forts [57,59,191], buffer overflow vulnerabilities remain a major security threat [48]. Other

vulnerabilities that allow the corruption of critical data are format-string errors [55] and

integer overflows [197]. These attacks are not limited to only the binary level. Attackers

have also exploited vulnerabilities in the input validation of web scripts in order to exe-

cute malicious high-level code (e.g. SQL scripts, JavaScript, etc.) on the target system.

2.1.1 Defences

Stack canaries [54] is a mechanism, deployed to detect modifications on the stack by plac-

ing a unique label before any sensitive data, like the return address, however, an attacker

can easily bypass this security feature by overwriting it bit by bit and observing the results.

Other attack techniques overwrite the control-flow variables through data pointers that re-

fer to adjacent local variables, effectively avoiding to corrupt the canary value [150]. Code-

injection attacks at the binary level have been effectively prevented however through W⊕X

policy (i.e. a memory page cannot be writable and executable at the same time). Thus, any

attempt to direct the execution on a page with data will result in General Protection Fault

(GPF). Respectively, the same will happen if due to a buffer overflow a store operation tar-

gets an address inside a page containing code. Many modern processors support a feature

called Data Execution Prevention (DEP), which system software leverages in order to mark

pages containing the stack and heap as non-executable. In applications written in high-

level languages, input sanitization and validation techniques have been proposed in order

7

8 Chapter 2. Background

to prevent script based code injection attacks [163].

2.2 Return-to-libc

Since Data Execution Prevention prevents the execution of injected malicious code, mod-

ern attacks do not depend on injecting malicious code. As a result, attackers sifted the

focus to using code already present in executable address space for their nefarious pur-

poses. A ”return-to-libc” attack relies on overwriting a return address on the call stack,

with an address of a subroutine already present in the process’ memory, as well as filling

the stack with the appropriate function arguments. In many programs, a vast majority of

system libraries are loaded with the application, giving the attacker a plethora of functions

to be used in order to achieve system compromisation.

2.2.1 Defences

By deploying Address Space Layout Randomization (ASLR) [187] this type of attack is un-

likely to succeed. ASLR is available in most operating systems (Linux, Windows, OSX). This

technique randomly shuffles the sections positions of an executable such as heap, stack

and libraries in the process’ address space at every execution. Thus, in order to replace

a return address in a meaningful way, an adversary must guess the address of the subrou-

tine to be used. The number of possible addresses in 64-bit systems renders this guess

impossible.

However, an attacker can still bypass this security mechanism by disclosing the base

address of a loaded library. This can be accomplished through leaking a pointer, pointing

to the library through a memory leak or buffer over-read. Then, the attacker can calculate

the desired function’s location using the leaked address.

2.3 Code Reuse Attacks

Code Reuse Attacks (CRAs) rely on executing code already present in the vulnerable ap-

plication. The most known CRA is Return-Oriented Programming. Return-oriented pro-

gramming (ROP) is a software exploitation technique that focuses on hijacking the control-

flow of the target program in order to force it outside the normal instruction execution se-

quence. It affects many common used processor architectures including x86, ARM [110]

and SPARC [38] It’s a more advanced version of stack-smashing, in that it utilizes vulner-

abilities that modify the stack in order to overwrite the return address stored within. The

new return address is then used to change the control-flow of the executable to the at-

tacker’s desired path. Other variances include Jump-Oriented Programming [35] where

the attacker overrides function pointers residing in the stack or the heap and Counterfeit

2.3. Code Reuse Attacks 9

Object Oriented Programming, which is specific to C++ applications [166]. These tech-

niques can be combined in order to amplify the chances of a successful exploitation.

Since the attacker now has control over the stack, and subsequently Control-Flow vari-

ables, the execution can be diverted to any address containing code (i.e. is executable).

The logical next step is to identify useful code and divert the control-flow accordingly. The

identified pieces of code are called gadgets.

2.3.1 Gadgets

Gadgets are small sequences of instructions that typically end with a return instruction.

They provide a plethora of functionalities like pushing items to the stack from certain reg-

isters, executing arithmetic and logical operations, performing memory operations, etc.

They can be used by the attacker to achieve a desired functionality, like setting the envi-

ronment to execute a call to a certain function.

The attacker chains these gadgets together by pushing the address of each to the stack,

through a stack related vulnerability like a buffer overflow. Since gadgets end with a return

instruction, at the end of its execution, a gadget will jump to the next address pushed to

the stack. The attacker can identify what functionality a gadget will provide either by disas-

sembling the program, or, if the binary is not available for analysis, by observing the effects

each gadget has on the stack and the control-flow in general, as demonstrated by Bittau

et al. in Hacking Blind [31]. In CISC processors, gadgets are more common, since the at-

tacker can point execution to any byte of an instruction, hence causing the interpretation

of an instruction to shift away from its original functionality.

2.3.2 Defences

A lot of mechanisms have been proposed in order to counter these types of attacks, how-

ever they either impose significant performance overheads or rely on relaxed schemes that

only raise the bar for attackers. Safestack [120] separates the data and the return addresses

on the original stack, and puts the former in the unsafe stack and the latter in the safe stack.

The base address of the safe stack is random, thus the security of the is based on informa-

tion hiding. However, it has been proven that by forcing an application to spawn many

threads and consequently safe stacks an attacker can decrease the entropy of the safe stack

addresses [74]. Other than protecting sensitive control flow values from being overwritten

other schemes aim to eliminate buffer overflows in binaries. Memory safe languages aim

to detect/prevent memory access vulnerabilities. For example, Java runtime dynamically

checks array bounds. On the other hand, Rust programming language [93] eliminates pos-

sible memory corruptions through static analysis. While memory safe languages are an

appealing way to eliminate software bugs, complex low-level software need to be written

in assembly or C which are not memory safe. Moreover, rewriting every legacy software

10 Chapter 2. Background

and libraries in a new language requires a massive amount of software developing effort.

2.4 Buffer Over-read - Memory Disclosure

Another avenue of exploiting memory corruption vulnerabilities is buffer over-read at-

tacks. Herein, the attacker does not target control-flow variables, rather disclosing mem-

ory containing sensitive data. For example, given an application that utilises cryptographic

libraries to encrypt network communication, an attacker could exploit a memory corrup-

tion vulnerability, read beyond a buffers boundaries and disclose the cryptographic keys

of the application [66]. A similar scenario could target session IDs in a web browser sce-

nario.

2.4.1 Defences

A common defence strategy is Intra-process isolation, operating systems focus on process

isolation (virtual memory, etc.) to prevent process’s from arbitrarily interfering with be-

tween them. Intra-process isolation, is required in applications that need to isolate com-

ponents in the same process. For example, web browsers isolate the execution of different

pages in order to prevent malicious pages from accessing sensitive data. A notable fam-

ily of Intra-process isolation techniques is Software Fault Isolation (SFI), SFI instruments

memory operations in order restrict memory access beyond a designated area. Other

instrumentation approaches ensure that out-of-bound pointers are transformed into in-

bound. Research efforts focus on in-process techniques, that offer isolation guarantees

with minimum cost [28, 186].

2.5 Physical Attacks

2.5.1 Cold Boot Attacks

In a cold boot attack [87, 89, 201], the data remanence effect of RAM is exploited by the

adversary to extract the data from the memory. There are two ways of achieving this: (i)

an attacker can freeze the RAM modules using a refrigerant [85] which then physically

removes from the victim’s device and inserts them into a device that is capable to read

the contents of the RAM; (ii) an attacker can perform a warm boot by running specific

attack tools, and retrieve the contents of the residual memory [43]. In this type of side-

channel attack, the attacker is able to retrieve encryption keys and sensitive data from

a running operating system even when the user session is locked. As has been shown

in [172], modern SRAM chips can retain about 80% of their data for up to a minute at

temperatures below -20 degrees Celsius.

2.5. Physical Attacks 11

2.5.2 DMA Attacks

This type of attacks leverage the ability of a DMA interface to allow a peripheral to di-

rectly access arbitrary memory regions, and read memory contents without any super-

vision from the processor or the OS. More specifically, an attacker can program a DMA-

capable peripheral to manipulate the DMA controller and read sensitive data stored in

memory [58, 181]. This type of attack can be carried out over different IO buses, such as

the Firewire, PCI Express or Thunderbolt.

2.5.3 Defences

Markuze et al. [123] leveraged the IOMMU in order to restrict device access to a set of

shadow DMA buffers that are never unmapped, and it copies DMAed data to/from these

buffers.

12

Chapter 3

Hardware mechanisms for security

Hardware assisted security mechanisms are not a novel concept, rather, a notion that ex-

ists even in very early computing systems. However, in the last decade the number of

architectural extensions for security is increasing. This is due to the fact that computing

systems are involved in life safety aspects of human lives, as well as the trend to optimise

the performance of systems through hardware acceleration. In this section, we present an

overview of several hardware-assisted mechanisms relevant to this dissertation.

3.1 Protection Keys

Figure 3.1: Memory access privilege checks when using Memory Protection Keys.
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-
processor-scalable-family-technical-overview.html

Protection Keys is a relatively common architectural feature, first introduced in IBM

System/360. Today, IBM storage protection keys [96] are part of Z architecture systems.

A protection key is assigned to each virtual page and represents the access authority re-

quired for each context. An authority mask register is used for specifying the access rights

of each context. IA-64 protection keys [97] are designed to restrict permissions on memory

by tagging each virtual page with a unique domain identifier. IBM extended protection

keys architecture with 16 Protection Key Registers used as a cache for the access rights

13

14 Chapter 3. Hardware mechanisms for security

on the protection domains required by a process. During memory accesses, if a key is

found during memory translation, it is looked up in the available protection key registers

to check the access rights. ARM memory domains [19] offer multiple sand-boxes to a pro-

cess. There can be 16 memory domains in each process, and a domain access control

register (DACR) defines the access rights on each domain. DACR is a privileged register,

and thus, domain switches are handled by the supervisor level. In chapter 5 we presented

how we leveraged Intel’s implementation of Protection Keys [99] in order to isolate the

execution of untrusted native library code in Node.js applications.

3.2 Virtual Addressing and memory segmentation

Almost every widely used system relies on virtual addressing. This constrains applications

from interfering with each other’s data. Different applications can reference the same

virtual address but it will be translated to a different physical address according to each

application’s page table. Moreover, in x86 processors it was possible to isolate different

parts of an application using segments. Thus, different parts of code residing within the

address space of the same application cannot reference the whole application’s memory

layout. A typical use of this feature in applications with cryptographic operations is isolat-

ing the cryptographic keys from functions responsible for handling user input. Even if a

buffer over-read is possible in the code which handles the user input, due to the segmenta-

tion feature an attacker will not be able to read the cryptographic keys. In modern x86 64

Intel processors memory segmentation is considered deprecated and it is not supported

anymore.

3.3 Protection rings

CPUs support isolation between the operating system and the applications running on it.

The operating system is allowed to take full control on the machines’ resources and ap-

plications. On the other hand, applications run with lower privileges in order to restrain

them from controlling the rest of the machine without supervision. Common RISC archi-

tectures, like ARM and SPARC, provide only two levels of isolation, which are controlled

through the supervisor bit. The supervisor bit is set when the processor executes operat-

ing system’s code and unset when the processor is occupied by an application. Several

machine instructions, controlling machine specific and processor control registers, can

only be executed if the supervisor bit is set. CPUs with x86 architecture include many

different levels of privileges (protection rings) in order to isolate device drivers and also

enable hardware assisted virtualisation. The operating system always executes at ring 0

(figure 3.2).

3.4. Data Execution Prevention 15

Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device drivers

Applications

Device drivers

Least privileged

Most privileged

Figure 3.2: Protection rings in x86 processors By Hertzsprung at English Wikipedia, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8950144

3.4 Data Execution Prevention

Data Execution Prevention (DEP) is a hardware feature which halts an application if the

control-flow targets data. This mechanism raised the bar for potential adversaries, since

placing malicious code as data in the application’s memory and then pointing the program

counter to it, is not possible anymore. Thus, attackers can only rely on existing code in the

application in order to achieve exploitation. Code-Reuse Attacks are a sophisticated set of

exploitation techniques that can bypass this mechanism.

DEP has different acronyms depending on the processors’ brand [2]. In Intel proces-

sors it is referred to as XD bit (eXecute Disable). The feature is controlled through the most

significant bit of a 64-bit page table entry. When this bit is set to 0, the page is assumed

to hold code and can be executed. If the value is 1 the page cannot be executed since it

holds data. AMD uses the same approach under the name Enhanced Virus Protection. In

ARM architectures it is part of the page table entry format as XN bit (eXecute Never) and is

placed in the page descriptor. In SPARC V8 this mechanism is used through the Reference

MMU which has permission policies of Read Only, Read/Write and Read/Write/Execute

in page table entries.

3.4.1 Supervisor Mode Execute/Access Prevention (SMEP and SMAP)

In order to increase the granularity of the protection ring system present in x86 processors,

in recent iterations of Intel processors, more policies have been added towards ensuring

the security of a system raising the bar against potential supervisor level vulnerabilities.

16 Chapter 3. Hardware mechanisms for security

SMEP enforces that the operating system cannot execute user-level code, instead the CPU

must switch to a higher ring level first, otherwise the CPU faults. SMAP is complementary

to SMEP as it protects user-space data from being accessed from kernel code.

3.4.2 Memory Protection Extensions

Memory Protection eXtensions (MPX) is a feature introduced in Intel processors in 2015,

Linux supports this feature since kernel version 3.19. Software deploying these extensions

is fortified by associating every pointer with a lower and an upper bound. Thus, every

time a pointer is dereferenced, its associated bounds are checked. If the address stored in

the pointer is out of the specified bounds, a bound violation exception is raised. Since the

majority of exploits depend on buffer overflows, this mechanism can effectively disclose

many possible security vulnerabilities in an application.

Setting and checking the bounds is done using special MPX instructions. To deploy

this feature, the application’s source code must be patched with compiler intrinsics, in

order to pair pointer dereferences with bound initializing and bound checking instruc-

tions. Bound checking takes as operants the pointer and a special register which holds

the pointer’s bounds. In order to support a large number of associated bounds, a Bounds

Table residing in main memory is used. The functionality of the Bounds Table is similar to

paging. The operating system stores the address of each application’s Bounds Table in the

Bounds Directory. When a pointer’s bounds are not in one of the special bounds registers

they are loaded from the bounds table. In summary, MPX extends the processor with four

128-bit bound registers, each storing a 64-bit lower bound and a 64-bit upper bound. MPX

instructions are used for setting the upper and lower bounds, propagating them, moving

to or from the bounds table.

The appealing security guarantees of this feature however impose a relatively high run-

time overhead. If the bounds checked are not in a register, the bounds of the soon to be

dereferenced pointer must be moved from the Bounds Table in one of the bounds regis-

ters. This operation is relatively expensive since the pointer address must be looked up

in the Bounds Table, a process similar to a TLB miss. Additionally, bounds associated to

each pointer impose significant stress to the processor’s cache system. On average, MPX

deployment using ICC imposed 50% overhead in SPEC benchmarks [3].

In 2018 GCC and Linux proposed to remove the support for Intel MPX [70, 117]. These

decisions were made due to serious concerns regarding the effectiveness of MPX [139].

Even though Intel MPX is a hardware-software co-design the overhead imposed was pro-

hibitive. Temporal memory safety was not provided, thus multithreading was not sup-

ported. Compilers had to be designed in order to explicitly synchronise the memory bounds.

Several programming idioms cannot be used due to the restrictions on the allowed mem-

ory layout. Thus, application developers had to substantially refactor the source code in

3.5. Trusted Execution Environments 17

Non-secure

Peripheral B

Secure

Peripheral A

Flash

AHB5 Interconnect

SRAM

CPU

Non-

Secure

DMA

Figure 3.3: Overview of an ARM SoC with trustzone. CPU has both execution do-
mains. Flash and SRAM define trusted and untrusted regions. Peripher-
als can be defined as trusted or untrusted in case of security concerns.Of
course DMA should also be constrained.

order to deploy Intel MPX.

Prior to its introduction in Intel processors, bound checking was a well studied tech-

nique in the literature. Software only implementations (e.g. [23], [51]) had several draw-

backs which made them not appealing for use. Non-trivial changes were required in the

source code, the violation detection was limited and also the runtime overhead was very

high. Hardware approaches like Hardbound [64] and CHERI’s [203] processor pointer

bound checking system, are based upon the concept of Fat Pointers. Herein, each pointer’s

value is associated with metadata, like the base address and the length, in order to verify

that when the pointer changes it remains within the bounds. These hardware approaches

achieved better granularity and at the same time the overhead introduced was within ac-

ceptable margins.

3.5 Trusted Execution Environments

3.5.1 TrustZone

The TrustZone feature is available in ARM processors [1]. This feature enables the sepa-

ration of execution domain to the trusted and the untrusted one. The trusted execution

18 Chapter 3. Hardware mechanisms for security

domain is reserved for the trusted system code, while third party applications are executed

in the untrusted domain. This separation extends to memory and peripherals in order to

achieve system wide security, e.g. a DMA capable peripheral is forbidden access to mem-

ory areas owned by trusted execution domain software.

3.5.2 Software Guard Extensions

Figure 3.4: Reduced attack surface in Trusted Execution Environments.
The protected application only trusts the processor chip.
https://software.intel.com/content/www/us/en/develop/articles/intel-
software-guard-extensions-tutorial-part-1-foundation.html

Software Guard eXtensions (SGX) was proposed in 2013 and introduced in Intel’s Sky-

lake micro-architecture in 2015. Its security guarantees provide isolation between parts of

a user-level application, with the further enhancement of preserving the isolation even if

the drivers, operating system and BIOS are compromised 3.4. Effectively, the Trusted Com-

puting Base is reduced to only the processor’s hardware. Using this mechanism, develop-

ers can define code and data to be protected by encapsulating them in an entity called an

enclave. SGX machine code instructions are used to create and initialize an enclave and

move code and data in it. The underlying hardware provides confidentiality and integrity

to the enclave. Enclave data residing in the main memory are encrypted. When moved to

the processor chip, they are decrypted and checked for integrity. The component respon-

sible for those operations is the Memory Encryption Engine [88]. The MEE prevents replay

attacks, verifying that the data read back to the CPU from the SGX’s DRAM region are the

same that were most recently written. Integrity and freshness are ensured using Merkle

trees. Thus, even if a passive attacker snoops the bus between the processor and the main

memory, the data acquired will be useless. In the case an active attacker overwrites SGX

memory regions, the MEE will detect the forgery. Initially, the size allocated for enclaves

was limited to 128MB. The next version of SGX (2.0) supports dynamic memory allocation

3.6. Memory Encryption 19

and also removes the restriction of 128MB enclave storage size in memory. Additionally, a

Seal Key, unique to each processor can be used in order to store the whole enclave when

the application is terminated for future use. Another selling point for SGX is secure remote

computation [16]. A user who wants to use a remote computation service, can verify that

the software running in the remote enclave is legitimate and that the data sent to the re-

mote host will not be accessible by the remote host owner. Thus, the user trusts only the

author of the software running in the enclave and the processor’s manufacturer (i.e. Intel).

The rest of the infrastructure and the owner ca be untrusted.

3.6 Memory Encryption

In chapter 4 we present how we leverage AES-NI in order to provide full main-memory

encryption for application’s data. These strategies have been proven effective in thwarting

physical attacks and thus, they have been recently introduced with hardware acceleration

in commodity off the self processors.

Figure 3.5: Overview of AMDs Secure Encrypted Virtualisation.

3.6.1 AMD EPYC Hardware Memory Encryption

AMD introduced a hardware framework [15] that can provide encryption for in-memory

data, at page granularity. The additional hardware includes an AES-128 encryption engine,

embedded in the memory controller and a secure processor that is responsible for the key

generation and management. Whenever a key is available, main memory data will be en-

crypted in main memory and decrypted before being loaded in the processor cacheFig. 3.5.

These mechanisms can prevent information disclosure from attackers that snoop memory

20 Chapter 3. Hardware mechanisms for security

traffic, or can even launch cold boot attacks in order to retrieve the contents of the main

memory.

Another mechanism included in this framework is Secure Encrypted Virtualisation

(SEV). Herein, each guest virtual machine is encrypted with different key in order to pro-

vide stronger isolation. Each guest OS can indicate which pages should be encrypted 3.5.

Finally Encrypted State (ES) mechanism, encrypts the execution state (register contents,

etc.) of a VM when it stops from executing. Thus, even a malicious hypervisor, will not be

able to retrieve sensitive information. According to AMD this mechanism can even detect

malicious modifications of the Encrypted State.

3.6.2 Intel Total Memory Encryption (TME)

Figure 3.6: Overview of Intel Total Memory Encryption.

In 2019 Intel published a summary of a proposed memory encryption scheme [100].

This architectural extension is very similar to what we present in section (§4) Intel TME is

effective against hardware or physical attacks on system memory, for example cold boot

attacks. The main memory of the system is encrypted with a single transient key Fig. 3.6.

All memory data passing to and from the CPU are encrypted. These include, customer

credentials, encryption keys, and other IP or personal information. The encryption key

used for memory encryption is generated using a hardened random number generator in

the CPU and is never exposed to software. This allows existing software to run unmodified,

while better protecting memory. In order to allow benign DMA use scenarios (e.g., PCI

devices), Intel TME can be configured through the BIOS to specify a physical address range

to remain unencrypted.

3.6. Memory Encryption 21

,,

,,,,

22

Chapter 4

Memory Encryption

In this chapter, we present a lightweight, main memory encryption scheme, able to run

on off-the-self hardware and support legacy applications. Our implementation is based

on Intel’s dynamic instrumentation tool called PIN [27], which provides the run-time en-

vironment, and supports legacy applications without any code modification. With our ap-

proach, application data are always encrypted in main memory, using a 128-bit AES key,

which is randomly generated every time the application is launched to make it resistant

against key guessing attacks [127]. To cope with the computational overhead of memory

encryption, we leverage the Advanced Encryption Standard Instruction Set, which is cur-

rently available in the majority of modern microprocessors. Finally, we experimentally

quantify the cost of keeping sensitive data secure in practical, real-world scenarios and we

respond to the following questions:

• Which are the different possible implementations (dynamic & static instrumenta-

tion) and what are the performance implications of each one of them?

• What is the performance cost for the different memory encryption strategies: full &

selective memory encryption)?

• What is the power consumption of the different approaches?

• What are the actual overheads of real-world applications, like web or SQL servers,

when always keeping their memory contents encrypted?

• How can one reduce the overheads by adopting a more selective/relaxed strategy as

opposed to a full memory encryption?

The goal of our approach is to secure hot data of running processes by deploying main

memory encryption. To achieve this, we use binary instrumentation to ensure that all data

will be stored in main memory encrypted.

23

24 Chapter 4. Memory Encryption

4.1 Background

4.1.1 AES-NI instructions.

Intel’s Advanced Encryption Standard New Instructions (AES-NI) [98], is an extension to

the x86 instruction set architecture for microprocessors of Intel and AMD. The main pur-

pose of this instruction set is to improve the speed of applications that perform encryption

and decryption using AES. The AES algorithm works by encrypting a fixed block size of 128

bits of plain text in several rounds to produce the final encrypted cipher text. The number

of used rounds (i.e. 10, 12, or 14) depends on the key length: 128bit, 192bit, or 256bit. Each

round performs a sequence of steps on the input state, which is then passed to the follow-

ing round. Each round is encrypted using a sub-key called round key, which is generated

using a key schedule. AES-NI can accelerate the performance of an implementation of AES

by 3x to 10x over the traditional software implementation.

The instructions mentioned above work on two operands, the AES state and an AES

round key that is used to scramble the state. Each of these instructions performs an entire

AES round with a single instruction, exclusively on the processor without involving RAM.

Instead of using memory locations for these operands, the AES instructions work on XMM

registers. On 64-bit systems there are sixteen 128-bit XMM registers xmm0 to xmm15. AES

states and round keys fit exactly into one XMM register as they are 128 bits long. This way,

AES-NI eliminates the need for AES lookup tables, which have been a source of cache-

related timing side channel vulnerabilities [143, 190].

4.1.2 Key schedule.

To defend against cryptanalysis, algorithms like AES and other block ciphers employ a

concept called key schedule in which a different key is used for each round of encryption.

Particularly in AES, only the first round uses the original secret key; each of the subsequent

rounds uses a different key that is generated every time by permuting the previous rounds’

key. Traditionally in software AES implementations, all 20 keys of the key schedules (en-

cryption and decryption) are precomputed and stored in RAM for performance purposes.

However, in our case such approach would allow local attackers to easily exfiltrate the keys

from the memory by employing physical attacks (e.g. a cold boot attack).

4.1.3 Intel PIN

In this work, in order to keep the data residing in main memory always encrypted we in-

strument the memory access- ing operations and we enhance them with the appropriate

AES-NI instructions. To implement this instrumentation, we use the execution environ-

ment of the Intel’s dynamic binary instrumentation tool PIN [27]. We chose to use this tool

due to its high-versatility and support to multiple architectures (x86, x64, ARM, and more).

4.2. Threat model 25

Crypto
EngineCaches

Processor Core

Crypto
EngineCaches

Processor 1 Processor N

Trusted
Domain

Untrusted
Domain

Chipset

DMA Engine

Northbridge
(memory controller hub)

Memory
Bus PCI

Express
RAM

Southbridge
(I/O controller hub)

Keyboard
MouseEthernet

Disk

Processor Core

Figure 4.1: Data are always encrypted when residing in main memory or moving be-
tween the different components of the untrusted domain.

In addition, PIN enables the developer to inspect and tamper an application’s original in-

structions and operates entirely in user space. It disassembles the original instructions of

the application and compiles them along with the instrumentation in a just-in-time man-

ner. The instrumented code is then stored and executed in a code cache structure.

4.2 Threat model

In the literature the typical threat model for data memory encryption involves hardware

and/or software attacks. In this work we assume attackers that aim to steal secret infor-

mation. These hardware attacks may be motivated by financial gain, e.g. capturing credit

card PIN numbers, corporate espionage, intelligence stealing from government or military

infrastructures, etc.

Our main assumptions, which are in line with the related literature [92], are that the

processor provides a secure region, within which sensitive information can reside. As we

see in Figure 4.1, all components outside of the processor are assumed to be vulnerable,

including RAM and its interconnections, like the data and memory bus, I/O devices, etc.

We assume however that the operating system kernel is trusted. This is a reasonable as-

sumption, since an adversary capable of controlling the operating system can cause more

significant damage than just eavesdropping sensitive data. The core idea of main memory

encryption related techniques is to avoid potential data breaches, and make any adversary

with the above properties unable of observing, deleting, replacing or modifying any piece

of data existing in a victim system.

26 Chapter 4. Memory Encryption

4.2.1 In-Scope Threats.

We assume that the adversary has physical access to the victim’s system where sensitive

information is stored, and that the machine can be exposed to physical hardware attacks,

like cold boot attacks ,bus monitoring attacks, and DMA attacks.

4.2.2 Out-of-Scope Threats.

Apart from the above attacks, obviously there are many more threats for the data residing

in memory, that fall outside the scope of this paper.

Memory disclosure attacks.

This type of attacks aim to compromise the software, accessing this way possible secrets

and passwords. Such attacks exploit a software vulnerability to install malicious code. Al-

though this type of attacks are quite common and important to consider, this paper fo-

cuses on attacks that do not rely on running compromised software.

Side-channel Attacks.

Such type of attacks aim to extract sensitive information by exploiting physical proper-

ties (like timing information or power consumption) of the cryptographic implementation.

These attacks usually have a limited accuracy and require a relatively high level of sophis-

tication, especially when the attacker cannot run arbitrary code on the device, therefore

they fall beyond the threat model of this work.

Sophisticated Physical Attacks.

It is hard to defend against every type of physical attacks. Indeed, there are several Ad-

vanced Persistent Threats (APTs), usually deployed for corporate espionage, intelligence

stealing from governmental or military infrastructures etc., which under specific circum-

stances, can achieve severe data breaches. However, such attacks require specialized equip-

ment and can often take several months even when carried out by a skilled attacker.

4.3 Main Memory Encryption

In this section, we describe our main memory encryption strategy, for securing the data

of running applications. We instrument the load and store instructions of several bench-

marks and real world applications. By using the provided rich API of PIN, we instrument

the original load and store instructions of an application’s binary. Specifically, we insert

a callback to intercept each of the original instructions and we instrument the ones that

4.3. Main Memory Encryption 27

Yes

No

Store word
<W_i> to mem

64bit temp register
128bit register 128bit register

Store to
memory

Trusted
Domain

Untrusted
Domain

encrypt

is (prev==NULL?)

prev <W_i>prev=W_i

Figure 4.2:
Subsequent store instructions have words
encrypted as a bundle in the same block
and are then stored on main memory.

Trusted
Domain

Untrusted
Domain

Yes

No

Load to
register

128bit register

128bit register

addr_reg

Pair of 64bit registers

data_reg
Word

2

Word
1

Choose 1
else choose 0

0
1

Load word with
address <addr_i>

Word
1

Word
2

is (addr_reg==addr_i?)

decrypt

Figure 4.3:
For sequential memory accesses, the block
is decrypted once and the 2nd word is
retrieved from the same register instead
of re-decrypting the same block.

load or store data from or to main memory respectively. After intercepting these instruc-

tions we extract the data from the utilized register and, by leveraging the described above

AES-NI instructions, we apply encryption or decryption depending on the instrumented

instruction. Finally, the outcome of these cryptographic operations replaces the original

register’s value and the instruction is ready to continue its operation.

The instrumentation of load and store instructions can be implemented in two ways,

either (i) statically: by instrumenting the memory operations on the binary level, or (ii)

dynamically: by running the corresponding binary executable on top of a dynamic instru-

mentation tool.

The static instrumentation of the binary executable offers better performance, how-

ever requires the static instrumentation of all linked shared libraries as well. On the other

hand, dynamic instrumentation is able to handle complex run-time code manipulation

cases, such as dynamically generated (JIT), obfuscated or even self-modifying code. Thus,

even though dynamic instrumentation has an extra performance overhead (as we will see

in Section 4.4), it is considered more flexible and supports both shared libraries and run-

time generated code.

4.3.1 Full memory encryption

An important design decision, when applying memory encryption, is how to encrypt the

data. In 64-bit architectures memory operations operate up to 64-bit words. However, the

AES algorithm operates in block units, where each block is 128 bits. Hence, during each

memory operation we need to collect 128-bit aligned data. This is accomplished by mak-

28 Chapter 4. Memory Encryption

ing use of two xmm registers, one as a load buffer and another as a store buffer. In case

of multiple encryptions, this register helps us temporarily keep data until the next store

instruction targeting adjacent data is issued. The sequential store instructions, as can be

seen in Figure 4.2, will get a couple of words encrypted in the same block and then the

block will proceed to be stored in the main memory. In case of decryption, this register

allows us to pre-fetch data during sequential memory accesses. This way, as seen in Fig-

ure 4.3, when a process loads a word and then loads its very next one, it will retrieve it

directly from the register instead of decrypting again the same block. This solution has

the additional benefit of hiding some decryption latency when consecutive words are ac-

cessed.

We note that it could be possible to operate on multiple blocks (> 128 bits). This

approach may benefit from less encryptions and decryptions in sequential memory ac-

cesses, which would improve the performance of programs that exhibit cache locality and

reduce their overall execution time. However, it would also require quite extensive buffer-

ing, which would result to massive utilization of registers. The data will need to be in the

registers for an unknown period of time, until they reach the proper size of the block. More

importantly, applications will have performance gains solely in the case of sequential data

accesses, while in the case of random memory accesses, a large part of the decrypted data

will remain underused and will be quickly evicted from the registers. Using the above

encryption scheme, all data placed in the memory are encrypted, however they are still

not well-protected. Given that each block is encrypted separately, an attacker is able to

identify identical cipher-text blocks that yield identical plain-text blocks, after scanning

the entire memory. These unprotected data patterns allow trivial attacks available in the

adversary’s tool-chest even in the single-snapshot scenario of the cold boot attack. To

remedy this issue, we use a stream cipher encryption mode of operation instead of block

cipher. In our case, since applications may need to randomly access non-sequential single

blocks need to be decrypted separately. To obtain this random access property during de-

cryption, we employ the CTR mode of operation by using a per-session random nonce and

a per-block counter. This way, we turn the block ciphers into a stream cipher, eliminating

the potential appearance of patterns.

Handling system calls.

Applications often perform specific operations that only the operating system’s kernel has

the privilege to execute. For instance, hardware-related operations (e.g. accessing a hard

disk drive), or communication with integral kernel services, such as process scheduling.

The request of such privileged applications (i.e. system call) usually is followed by appli-

cation user data and parameters that need to be passed to the kernel. In our case, all of

the data passed from user to kernel space are encrypted. In order to access the data, the

4.3. Main Memory Encryption 29

kernel obtains the proper process key (see Section 4.3.4 below), and decrypts the param-

eters before and respectively, encrypts any results after executing the system call. There

are system calls that are so frequently used from user-space applications, that can domi-

nate the overall performance. To avoid the expensive performance penalty of system calls

and context-switches, the kernel uses a virtual dynamic shared object (vDSO) mechanism.

In particular, selected kernel space routines (e.g. gettimeofday(2)) are mapped into the

address space of user-space applications by the kernel, enhancing thus the performance

of these applications. Given that there is no switch to the kernel space, in our case, vDSO

is treated like any other shared library object i.e. having its store and load instructions

cryptographically instrumented.

Signals and non-local jumps.

Another case we need to take into account is signals. When a signal arrives at an appli-

cation, the used registers and the processor’s state must be stored for the execution to

smoothly continue afterwards from the current state. In our case, the specific registers

may contain sensitive data that we cannot risk to be spilled in memory in plain-text. To

overcome this, we modified the kernel by using the proper process key, to encrypt their

contents before saving them to sigcontext structure. When the specific execution con-

tinues, the loaded values are decrypted before restored back to the registers. In a similar

manner, we deal with the case of non-local jumps (i.e. setjmp/longjmp). Specifically, in

case of setjmp, the data from the utilized general purpose registers are being encrypted

before stored in a jump buffer in memory. On the other hand, in case of longjmp the data

are decrypted after being restored from the jump buffer to the registers right before the

application jumps to the return address set by the setjmp.

Handling context switches.

Typically the CPU loads data at run-time in its registers in order to perform its computa-

tions. When context switch take place, all the previously used data from the registers are

moved onto the stack, which resides in main memory. Considering that there are cases

where this data may be sensitive, sensitive information may be present unencrypted in

main memory, if these evictions are left unhandled. In our case, these evictions may swap

out to sensitive states of AES stored in XMM registers, even though they were implemented

to run solely on CPU. We modified the kernel’s typical context switch procedure to encrypt

the content of XMM registers before they get evicted and decrypt them after the process is

switched back. We achieve this by encrypting and decrypting the contents, right before

and right after FXSAVE (i.e. store to register) and FXRSTOR(i.e. restore from register) instruc-

tions respectively.

30 Chapter 4. Memory Encryption

4.3.2 Selective memory encryption.

Having all memory encrypted provides the best protection for all applications. However,

our experiments in Section 4.4 show that the overhead, in terms of performance, can in-

crease significantly. To lower the performance overhead of FME, we propose the encryp-

tion only for memory regions that contain secret or sensitive data. This approach could

result in much lower overheads during execution, proportional to the size of the data that

need to be protected from memory attacks. Unfortunately, though, the exact location of

sensitive data in memory is very difficult to be known in advance. Instead, it will require

the developer to define the exact memory regions, the sensitive data will later reside in.

One solution would be to use #pragma directives to provide additional information about

which variables will be encrypted. However, this would restrict memory encryption to

static variables only and does not offer much flexibility to the developer. To address this

issue, we implement a secure memory allocator, namely smalloc, to dynamically allocate

arbitrary size of memory from the heap. In order to have an integral number of blocks, the

memory is allocated in multiples of 128 bits. Any data written in this portion of memory

allocated with this allocator will always be encrypted. To achieve this, smalloc taints the

memory regions it allocates to ensure that the corresponding memory addresses have to

be encrypted or decrypted when accessed. For instance, during load operations we can

determine if the loaded data originate from smalloc and thus must be decrypted before

being read. The metadata of smalloc are a structure for each allocation to note the starting

memory address that the segment begins along with its allocated size to denote the total

length of the tainted area.

De-allocated memory pages

Memory pages that have been de-allocated after being allocated by an application han-

dling sensitive data may contain left-overs. These may be readable by attackers, enabling

them to retrieve parts or even the entirety of the sensitive information. Even though Linux

has a kernel thread responsible for zeroing-out the freed pages, due to internal perfor-

mance optimizations, there is no guarantee when this will occur. In traditional systems

this could pose privacy risks as one may get to read a region of memory that contains sen-

sitive data. In our case, after memory allocation, all sensitive data are encrypted before

being placed in the heap. Therefore, sensitive memory disclosure is not possible, as an

adversary will read cipher-text bytes.

4.3.3 Protecting memory from illegal access

After ensuring the confidentiality of written-through data, a problem that may arise is the

case of DMA attacks, where it is possible not only to read data from memory, but also to

4.3. Main Memory Encryption 31

write. As a consequence, an attacker could inject the OS with malicious code. To mit-

igate this issue, leverage the Input-Output Memory Management Unit (IOMMU) [122].

The major x86 ISA manufacturers ship their CPUs with this feature supported (see Intel

VT-d [11] and AMD-V [12]) The IOMMU is an IO mapping mechanism, which translates

device-visible virtual addresses to physical addresses using, OS-provided mappings. Be-

sides, it also provides memory protection, where memory is protected either from ma-

licious devices that attempt to perform DMA attacks or from faulty devices that initiate

errant memory transfers. This protection is achieved by enabling the OS to restrict who

can access what memory region. As a result, a device cannot read or write to memory that

has not been explicitly allocated or mapped to it. In our case, IOMMU is properly config-

ured in order to forbid any access to in-memory kernel or application data. After the DMA

transaction is complete, the OS destroys the mapping, restricting further access to the de-

vice. Since the OS controls the DMA mapping, sensitive physical memory addresses will

not get mapped for the DMA, preventing an attacker from reading or writing.

4.3.4 Key Management

In this section we describe how we protect the AES secret keys that are used for encryp-

tion and decryption, against all attacks within our threat-model (described in Section 4.2).

Previous works have shown that it is sufficient to prevent sensitive data and algorithmic

state from leaking to RAM by implementing the cryptographic operations using on-chip

memory [50, 129].

In our approach, each process is assigned with a different key, that is stored in the

Process Control Block (PCB) structure. The PCB contains all the information needed to

manage a particular process, and is placed at the beginning of the kernel stack of the pro-

cess. Still, since the kernel memory is vulnerable to cold boot attacks, each process key is

encrypted before it is stored in the PCB. The process keys are encrypted using a master

key which is stored, similar to Tresor [129], inside a pair of debug registers. We modify the

kernel to utilize these debug registers and, by using the master key, encrypt/decrypt the

appropriate process key, avoiding to store any key in main memory and possible side chan-

nel attacks. The reason we utilize debug registers is that, by default, they can be accessed

only from ring 0 privileged level. Thus, they cannot be reached by malicious user-level

applications and more importantly, they are not used in procedures like context switch,

setjmp/longjmp or signal handling. Additionally, we have modified the ptrace system call

to respond with EBUSY error to any application that may request the particular registers,

preventing them from being accessed from user level.

We need to note at this point, that there are studies questioning such use of debug reg-

isters to store secrets [32]. An attacker is able to inject and execute code in ring 0 privilege

level by deploying a DMA attack, and consequently, disclose the secrets stored in the de-

32 Chapter 4. Memory Encryption

bug registers. In our case, by leveraging IOMMU, we prevent illegal memory injections

and as a result, we eliminate the possibility of such attacks.

Bootstrapping

The master key that encrypts the process keys inside PCB is randomly generated at boot

time. To achieve that, we modified the kernel to use RDRAND instruction to perform on-chip

hardware random number generation and create the next master key. The new master

key must be present to every core of the processor. The core responsible for the master

key generation (core with ID 0), also distributes it across the rest of the cores through the

Memory Type Range Registers (MTRR), which are visible to all cores. The rest of the cores

will spin on a shared variable till core 0 sets the value to true denoting that the new key has

been generated and placed in the MTRR. After that, each core can obtain the key, store it in

its local debug registers, and finally increment atomically a shared counter. By monitoring

this shared counter, core 0 knows how many of the cores have acquired the new key. When

all cores have the master key, it immediately cleans the key from the MTRR registers and the

boot process continues normally.

There are cases where data from the memory need to be swapped-out from memory

and stored in the disk. Such data, would not be able to get decrypted after boot if it gets

stored encrypted with the current master key. In these cases however, we assume that the

users have deployed not only memory encryption but also full disk encryption (FDE). This

means that the data will get encrypted with the FDE’s key, before being swapped to disk.

4.4 Performance Evaluation

In this section, we evaluate the performance of both our proposed main memory encryp-

tion strategies: Full Memory Encryption (FME) and Selective Memory Encryption (SME).

Below we present our methodology and our setup, as well as our findings. To perform the

experimental evaluation we use two different hardware platforms: For the performance

measurements we used a server that is equipped with two six-core Intel Xeon E5-2620 op-

erating at 2.00GHz, with 15MB L2 cache each. The server contains 8GB RAM and an Intel

82567 1GbE network interface.

4.4.1 Full Memory Encryption evaluation

At first, we measure the overhead imposed for encrypting all data stored in main memory.

This evaluation, determines the cost of the most intensive but secure strategy, where every

single byte written in memory is encrypted and respectively decrypted before it is read.

Regarding our memory encryption approach, we insert callback functions to PIN, thus

intercepting each of the original instructions and we instrument the ones that either load

4.4. Performance Evaluation 33

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

401.bzip2

403.gcc

429.m
cf

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

O
v
e
rh

e
a
d

PIN
PIN+Encryption

(a) Runtime overhead of dynamic
instrumentation using the SPEC suite.

10
0

10
1

10
2

401.bzip2

403.gcc

429.mcf

456.hmmer

458.sjeng

462.libquantum

464.h264ref

In
s
tr

u
c
ti
o
n
s
 p

e
r

m
e
m

o
ry

 a
c
c
e
s
s vanilla

with encryption

(b) Number of instructions per memory
access with and without memory
encryption (vanilla).

0%

20%

40%

60%

80%

100%

401.bzip

403.gcc

429.mcf

456.hmmer

458.sjeng

462.libquantum

464.h264ref

P
o

rt
io

n
 (

%
)

encryptions decryptions

Figure 4.5: Portion of cryptographic operations in each SPEC benchmark.

or store data from or to the main memory. We then extract the data from the utilized reg-

ister and we apply encryption or decryption depending on the instrumented instruction.

Both encryption and decryption are performed using the AES-NI instructions. The output

of these cryptographic operations replaces the original register’s value and the program

continues its execution to the next instruction.

To evaluate the performance of our approach along with the overhead imposed by the

binary instrumentation, we measure the performance of (i) a vanilla application (listed as

Native), (ii) a dynamic instrumentation of the application’s store and load instructions us-

ing PIN (listed as PIN), and finally (iii) our approach: encryption with AES using dynamic

instrumentation (listed as PIN+Encryption). To measure the plain instrumentation over-

head produced by PIN (case (ii)), we perform memory instruction instrumentation with

empty function calls, instead of any cryptographic operation.

34 Chapter 4. Memory Encryption

4.4.2 Benchmarks

In the first experiment, we measure the performance of FME using several representative

benchmarks, extracted from the SPEC CPU2006 suite (CINT2006). These benchmarks are

comprised of several computational and memory intensive applications aiming to stress

both CPU and main memory usage. In Figure 4.5, we see the portion of cryptographic op-

erations in each benchmark and in Figure 6.6, the slowdown of a simple dynamic instru-

mentation of the application’s load and store instructions (PIN). This number provides

us with a baseline for the overhead introduced by the PIN tool. In the same figure, we

present the results of the instrumentation with the appropriate AES-NI instructions to en-

crypt or decrypt every chunk of memory that is stored in or loaded from the main memory

(PIN+Encryption).

As we observe, the run-time overhead of simply instrumenting the application’s load

and store instructions reaches up to 6 times slowdown for h264ref benchmark, while the

additional overhead when adding encryption reaches up to 10 times slowdown. The major

slowdown in performance arises from the fact that the data are encrypted and decrypted

even when residing in the cache. As the caches in x86 architecture are not addressable,

data can reside there in clear-text, without the concern of being leaked. Unfortunately,

as it is not possible to check if specific data are cached or not, we cannot benefit from

memory locality. In Figure 4.4b, we measure the instructions per memory access with and

without our memory encryption approach. The average encryption cost is an additional

14-18 instructions. This number is not constant; it depends on the benchmark’s synthesis

of memory accesses and how sequentially the data are being accessed. Due to our pre-

fetching mechanism (described in Figures 4.2 and 4.3): (i) in case of store, encryption

takes place only every 2 words (load from register previous word and encrypt the pair - 28

instr.), when (ii) in case of load, the word can be fetched directly from register (8 instr.) or

retrieved after decrypting a block (then the unneeded second word has to be stored in the

register - 26 instr.).

4.4.3 Real-world applications.

Additionally, we evaluate our approach in a real scenario using two real-world applica-

tions. The first, is the SQLite3 relational database management system. We used the

C/C++ SQLite interface to implement a simple benchmark that reads a large, 60 MBytes,

tab-separated file including 1,000,000 rows of data and updates a table’s entries with the

respective values. Figure 4.6a shows the achieved throughput, while Figure 4.6b shows the

slowdown when inserting data into the database as a function of the number of insertions.

As expected, the more rows the benchmark updates, the higher the imposed overhead be-

comes, since the number of memory encryptions increases. In contrast to that, the cost

of the instruction instrumentation (PIN) is always proportional to the number of the table

4.4. Performance Evaluation 35

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

100050025012510080604020105

T
h

ro
u

g
h

p
u

t
(r

o
w

s
/s

e
c
)

Table Insertions (x1000)

PIN+Encryption
PIN

Native

(a) Achieved throughput when
inserting 1M rows into the
database.

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

100050025012510080604020105

O
v
e

rh
e

a
d

Table Insertions (x1000)

PIN+Encryption
PIN

(b) Slowdown when inserting
1M rows into the database.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 100 1000

R
e

q
u

e
s
ts

 p
e

r
s
e

c
 (

#
/s

e
c
)

Rate (Mbit/sec)

Native
PIN

PIN+Encryption

(c) Req/sec when downloading
a file of 1522 bytes using differ-
ent transfer rates.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(a) Client is over a 10 Mbps net-
work.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(b) Client is over a 100 Mbps
network.

10
-2

10
-1

10
0

10
1

10
2

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(c) Client is over a 1000 Mbps
network.

Figure 4.7: Average latency per request when downloading different files from a
Lighttpd web server as a function of the requested file’s size.

insert instructions, resulting to almost linear overhead to the application.

As a second real-world application, we ran the Lighttpd web server both as a vanilla

system and with the two versions of dynamic instrumentation In the first experiment, we

used a separate machine located on the same local network to repeatedly download a file

of 1522 bytes. We synthetically limit the rate of the client’s network line to three different

network transfer rates: 10, 100 and 1000 Mbit/sec. As can be seen in Figure 6.8, when the

bandwidth for the client is 10 Mbit/sec, the memory encryption overhead is almost hid-

den by the network latency. As a result, the user faces a negligible slowdown of 0.17% for

having FME enabled when the cost for the instrumentation is an additional 0.4%. On the

other hand, the corresponding overhead for encryption at the higher rate of 1000 Mbit/sec

reaches up to 43.7%. Our results indicate that in real-world applications over the Internet

the cost for keeping a web server’s memory fully encrypted is practically tolerated.

We conduct follow up experiments modifying the usage scenario in the following way.

We use the same machine and the same three different network transfer rates to repeat-

edly download 9 files of different sizes, ranging from 1 KB to 256 MB. We then measure the

average requests per second performed for each file. To make this experiment as realistic

36 Chapter 4. Memory Encryption

as possible, we use the most representative workloads found in production web servers.

Such workloads include queries for short snippets of HTML (about 1 KB), e.g. user up-

dates in micro-blogging services like Twitter or Tumblr, or portions of articles found in

wikis (2.8 KB on average). Other workloads include photo objects of 25 KB size on average,

used in photo-sharing sites that serve thumbnails. In general, as reported in [65], the most

common file size is between 2-4 KB and regard HTML files, while 95% of all files are less

than 64 KB in size. In Figures 4.7a, 4.7b and 4.7c we present our results for the same exper-

iment in the network transfer rates used above: 10 Mbps, 100 Mbps and 1000 Mbps. We

immediately notice that in the case of 10 Mbps, the slowdown introduced from the mem-

ory encryption is close to zero, regardless the size of the downloaded file. In case of higher

rates (i.e. 100 and 1000 Mbps) we observe that bigger files produce higher latency and as a

consequence, hide the memory encryption cost. The average performance overhead im-

posed by encryption as calculated from the results in Figure 4.7 is 17%.

4.4.4 Static Instrumentation

The alternative of dynamic instrumentation is to statically parse the executable and in-

strument the load and store instructions. Although this approach requires the instrumen-

tation of all linked shared libraries as well, it is able to provide significantly better perfor-

mance. In the following experiment, we measure the performance, and more specifically,

compare the execution time of the two different approaches. We use a very simple ap-

plication which copies an array of 512 MB size, along with two secure versions of it: The

first version, encrypts the array contents before storing them on main memory by dynam-

ically instrumenting the store and load instructions using PIN. The second one statically

encrypts the array’s cells by utilizing in-line AES-NI assembly instructions. In the first

two columns of Table 4.1 we can see the execution time of each approach as well as the

imposed latency overhead compared to the unsecured native application and its binary

instrumented version respectively. We observe, that the application with the dynamically

instrumented encrypt/decrypt operations on the load and store instructions is 9.56 times

slower than the plain instrumentation. Additionally, the static memory encryption makes

the application 4.29 times slower compared to the insecure version.

Next, we statically instrument the same benchmarks of SPEC suite as previously and

we perform main memory encryption measuring again the run-time overhead. In fig-

ure 4.8, we compare the overhead imposed by static and dynamic instrumentation and

also the performance improvement of the use of pre-fetching in both cases. As expected

static instrumentation performs better (almost 1.7x) than dynamic. In addition, we see

that our pre-fetching mechanism, by reducing the number of cryptographic operations in

sequential memory accesses, significantly reduces also the performance of our approach

4.4. Performance Evaluation 37

Table 4.1: Encryption cost in the two implementations, in terms of execution time
and power consumption.

Type
Execution
Time (sec)

Overhead
Energy Efficiency
(Joules/mbit)

Overhead

Dynamic
PIN 2.064999 - 0.03983 -
PIN+Encryption 19.73596 9.56x 0.52276 13.12339x

Static
Native 0.406917 - 0.00849 -
Native+Encryption 1.745001 4.29x 0.03072 3.61776x

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

10
4
x

401.bzip2

403.gcc

429.m
cf

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

O
v
e
rh

e
a
d

Static (w/o Prefetch)
Static (Prefetch)

Dynamic (w/o Prefetch)
Dynamic (Prefetch)

Figure 4.8: Overheads of static and dynamic instrumentation with and without pre-
fetching for the different benchmarks.

(4.9x on average).

4.4.5 Selective Memory Encryption

Contrary to Full Memory Encryption one may prefer to follow a more Selective Memory

Encryption (SME) strategy to reduce the imposed overhead. To evaluate this strategy, we

implemented a smalloc prototype, to explicitly mark some data as sensitive and only en-

crypt this data before storing them to memory. Additionally we created a custom bench-

mark which copies different sized chunks of data from a large array to the heap. Figure 4.9a

shows the results for execution time as a function of the portion of data considered as sen-

sitive. The execution time when native applications use smallocwithout instrumentation

increases with the percentage of sensitive data. On the other hand, the cost of instrumen-

tation is also increasing but not as rapidly since it does not depend on the data being

stored in memory. Hence, as can be seen in Figure 4.9b the instrumentation overhead

38 Chapter 4. Memory Encryption

10
-2

10
0

10
2

10
4

10
6

 0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Portion of of s-malloc (%)

PIN+Encryption
PIN

Native

(a) Execution time as a function of the por-
tion of sensitive data.

10
0
x

10
1
x

10
2
x

10
3
x

10
4
x

10
5
x

10
6
x

 0 20 40 60 80 100

O
v
e
rh

e
a
d

Percentage of s-malloc (%)

PIN+Encryption
PIN

(b) Overhead over native as a function of the
portion of sensitive data.

Figure 4.9: Storing different portion of an array’s data to the heap. Data considered as
sensitive gets encrypted before sent to main memory.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a

te
n

c
y
 (

s
e

c
)

File size (KB)

PIN+Encryption
PIN

Native

(a) Client is over a 10 Mbps
network.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a

te
n

c
y
 (

s
e

c
)

File size (KB)

PIN+Encryption
PIN

Native

(b) Client is over a 100 Mbps
network.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a

te
n

c
y
 (

s
e

c
)

File size (KB)

PIN+Encryption
PIN

Native

Figure 4.10:
Client is over a 1000 Mbps network.

Figure 4.11: Average latency for performing an SSL handshake during a client’s connec-
tion to a web server where the latter’s private key is considered as sensitive.

over native is actually decreasing as the percentage of data increases. Furthermore, the

overhead caused by the memory encryption follows a logarithmic growth with the increas-

ing percentage of data being encrypted. Thus, in case of a chunk of data including 10% of

sensitive information, the cost to guarantee its confidentiality is latency 24.90 times higher

than the unencrypted case.

In our macro-benchmarks, we used the Lighttpd web server as a real world applica-

tion and the popular Apache HTTP server benchmarking tool of ApacheBench (ab). Web

services are a good case of a single physical machine serving multiple users who need to

be assured that sessions will be secure during their online transactions. Consequently, we

can state that the keys used from the web service during the HTTPS protocol are highly

4.5. Related Work 39

sensitive, and in need of protection against unauthorized access.

4.5 Related Work

There are various approaches proposed, implemented either in software or hardware, aim-

ing to defend against cold-boot attacks in both academia and industry.

Halderman et al. described cold boot attacks [90], and also discussed some forms of

mitigation. Mitigations included deleting sensitive data and keys from memory when an

encrypted drive is unmounted, obfuscation techniques, and hardware modifications such

as intrusion-detection sensors or encased RAM. However, the authors, eventually admit

that these solutions do not constitute complete countermeasures, applicable to general-

purpose hardware.

Nagarajan et al. [130] propose compiler-assisted memory encryption for embedded

processors, based on a number of assumptions and some limited hardware support. The

proposed compiler, supports memory encryption by introducing special instructions to

calculate One Time Pads prior to loads and stores. In addition, it assumes the existence

of additional process-unique registers used to store the counters. Memory areas for the

unique key and global counter is also provided inside the CPU as well as the existence

of a cryptographic unit. In [206], the authors assume a powerful attacker with physical

access to the machine and able to launch DMA, bus snooping and cold boot attacks in

order to disclosure sensitive data residing in the main memory. Their approach focuses

on encrypting sensitive data and code residing in the main memory and decrypting and

locking them when moved in the cache. Contrary to our approach, their work is tightly

woven with ARM specific features, e.g., cache locking and TrustZone.

Towards the same direction, Sentry [50], uses ARM-specific mechanisms in smartphones

and tablets to keep sensitive application code and data on the SoC rather than on DRAM.

They observe that sensitive state data only need to be encrypted when the device is screen-

locked. Consequently, Sentry decrypts and encrypts the memory pages of sensitive ap-

plications as they are paged in and out, thus avoiding leakage of sensitive information

to DRAM when the device is screen-locked. AESSE [128] was designed to provide Full

Disk Encryption (FDE) and protect the required keys by storing the encryption key in the

Streaming SIMD Extension (SSE) registers of the CPU, while access to these registers is

disabled for user-level code. The authors however, admit that many common applica-

tions (like multimedia applications e.g. OpenGL) heavily utilise SSE registers and therefore

there is a significant collision with AESSE. TRESOR [129] is a kernel module and successor

of AESSE. Instead of the SSE registers it utilizes the debug registers to store the encryption

key. In addition, similar to our approach, it leverages AES-NI instruction set to eliminate

cold boot attacks achieving this way far better performance than the AESSE.

Loop-Amnesia [170], similar to TRESOR, is a kernel-based disk encryption mechanism

40 Chapter 4. Memory Encryption

which aims to eliminate cold boot attacks. To achieve this goal, it leverages on the ubiquity

of model-specific registers (or MSRs) of modern CPU architectures, to store the encryption

keys there rather than in RAM. Thus, data are unreadable to a perpetrator of a cold-boot

attack. Currently however, it does not support the AES-NI instruction set.

PrivateCore’s commercial product, namely vCage [153], relies on a trusted hypervisor

to implement FME for commodity hardware by executing guest VMs entirely in-cache and

encrypting their data before they get evicted to main memory. Although it is more cloud-

oriented, vCage shares with our approach similar resistance to the same type of physical

attacks.

Trustwave’s BitArmor [124], is a commercial solution that claims to be resistant against

cold boot attacks. BitArmor aims to shield the system as soon as abnormal environment

conditions are detected. More specifically, it uses temperature sensors and in case a sud-

den temperature drop is detected it initializes a memory wiping process. As demonstrated

in a recent study [86], this approach raises the bar, but it cannot prevent the attack.

In [183], the authors propose an architecture for a Trusted Processor Model (TPM).

This architecture includes a monolithic processor, which integrates several architectural

mechanisms into a conventional architecture. Their approach includes memory integrity

verification on off-chip data, memory encryption, and secure context management. Re-

garding memory encryption, it uses AES to encrypt and decrypt off-chip memory on a

L2 cache block granularity. Finally, Intel provides processors with Software Guard Exten-

sions (SGX) [101]. These extensions enable applications to encrypt specific data by placing

them inside secure memory regions, called enclaves. The data that reside in enclaves are

protected even in the presence of highly privileged malware. SGX however, requires com-

plete redesign of an application in order to be leveraged (e.g., separate the safe and unsafe

parts). However, our approach can can benefit our apporach and can be used to provide

us with a protected area of storing the secret keys that are used to encrypt the full applica-

tion’s data.

Table 4.2: Comparison of main memory encryption strategies
Technique Level DMA attacks Cold-boot attacks Commodity hardware Runtime Overhead Platform

Compiler Encryption based [130] Compiler No Yes No High x86
CaSE [206] Hardware Yes Yes Yes Medium ARM
Sentry [50] Hardware Yes Yes Yes Medium ARM
AESSE [128] Software No Yes Yes High x86
TRESOR [129] Kernel No Yes Yes High x86
Loop-Amnesia [170] Kernel No Yes Yes High Generic
vCage [153] Hypervisor Yes Yes Yes Low x86
BitArmor [124] Physical No Partial No N/A Generic
AEGIS [183] Hardware Yes Yes No Medium N/A

This work Software Yes Yes Yes High Generic

4.6. Overview & Limitations 41

4.6 Overview & Limitations

In this work we designed main memory encryption for running processes and we set out

to explore the imposed overhead when following different strategies (full Vs. selective

memory encryption - dynamic instrumentation Vs. static patching). Contrary to related

approaches, our work can be directly applied to commodity systems with AES-NI and

IOMMU. Our performance analysis uses both benchmarks and real world applications.

The evaluation shows that the average overhead of the encryption cost in real-world appli-

cations was 17% and 27% for HTTP and HTTPS respectively.

A major limitation of memory encryption approaches arises in cases where shared

memory is deployed across different processes. To communicate correctly, processes have

to maintain the same secret key, or use a different secret key which will be used separately

for encrypting and decrypting the contents of the shared memory. To deal with such cases,

the OS kernel should be responsible for creating different secret keys for each memory seg-

ment that is instantiated and attach it to each participant process. Similar inconveniences

also arise for devices that allow data transfers via DMA. The exchanged data have to be

unencrypted, since the connected devices are not aware of the encryption scheme. As it is

easy to overcome these scenarios in hardware-based implementations (e.g. by performing

the corresponding cipher operations at the I/O bus), it is not straightforward to provide a

solution in software-only approaches. In some cases, where the device already provides a

programmable interface (e.g. Endage DAG network cards, general-purpose graphics cards,

etc.), it would be possible to implement the encryption and decryption operations on the

device and pre-share the secret key.

At this point we should note that after our approach was published, the two major

CPU providers (Intel and AMD), presented their own architectural extensions for mem-

ory encryption in order to address the attacks we presented in this work. AMD proposed

Secure Encrypted Virtualization (SEV) [15] in 2018 which supports running encrypted vir-

tual machines. Each encrypted VM is associated with a unique encryption key in order

to prevent other guest VMs and attackers with physical access from accessing its data. In-

tel, proposed in 2019 Total Memory Encryption (TME) [100]. TME encrypts a computer’s

entire memory with a single transient key. All memory data passing to and from the CPU

is encrypted in order to prevent physical attacks from disclosing sensitive data. We pro-

vide more details of these mechanisms in chapter 3. The introduction of these architec-

tural extensions highlights the importance of the work presented in this chapter. Further-

more, these extensions are an even more hardware accelerated version of our work and

thus demonstrates the thesis statement of this dissertation regarding the advantages of

hardware-assisted security.

42

Chapter 5

Third party binary library isolation.

In the previous chapter we deployed hardware acceleration for advanced encryption stan-

dard (AES-NI) as well as IOMMU in order to prevent physical attacks which aim to steal

sensitive data from a system. While, physical attacks are a major threat for modern sys-

tems, it is not the only avenue for exploition, since most of today’s systems are connected

to a network. Thus, attackers are able to launch powerful attacks remotely. This can be ac-

complished by exploiting vulnerabilities present in modern software, allowing an attacker

to access sensitive data or even take full control of the system.

In this chapter, we aim to prevent software exploitation by isolating the execution of

possibly vulnerable code that developers include in their applications. In this work, we

used a JavaScript runtime environment as a use-case to apply our design. Modern soft-

ware development relies heavily on third-party libraries. The heavy use of libraries is par-

ticularly common in JavaScript applications [113, 135], and especially in those running

on the Node.js platform [207], where developers have easy access to hundreds of thou-

sands of libraries through the node package manager (npm). The vast majority of the

libraries imported in a Node.js application are implemented in JavaScript and thus en-

joy the memory safety guarantee provided by a high-level programming language and en-

forced by its runtime environment—at times, augmented with language-based protection

techniques [14, 62, 121, 188, 193, 194].

Often, however, Node.js applications also import a few libraries written in low-level

languages or provided only in binary form. These libraries, termed native add-ons, im-

plement either functionality not available yet in the pure-JavaScript ecosystem or compo-

nents that need to be in low-level languages for performance and compatibility reasons.

Native add-ons interact with the rest of the program through a thin JavaScript layer wrap-

ping the library enough to expose Node-specific naming and calling conventions.

Unfortunately, native add-ons are particularly dangerous to the rest of the application—

for example, over 20 CVEs are reported for a single string-interpolation add-on [178]. The

complete lack of memory safety means that even a single line of memory-unsafe code may

compromise the application’s safety and security—that is, including those of the (safe and

43

44 Chapter 5. Third party binary library isolation.

secure) majority of the codebase. Native add-ons can additionally bypass the security

guarantees provided by the aforementioned language-based hardening and protection

techniques. The exploitation risks of native add-ons compound, as these components are

more likely to be targeted by adversaries—exactly because of their vastly higher insecurity

and potential impact.

In this work, we developed BINWRAP a hybrid language-binary framework for protect-

ing against the few native add-ons present in modern Node.js applications. We developed

a fine-grained read-write permission model applied at the boundaries of native add-ons,

offering a unified view and isolation of privilege cutting across the barrier between the

language wrapper and the binary core. To achieve this we leverage the protection keys

hardware feature, in order to isolate the execution of un-trusted libraries.

Two enforcement components enforce these permissions across language-binary bar-

rier during the execution of the program, protecting both sides of a native addon:

• Language-level interposition protects against unauthorized use of the language-level

bindings, and

• Binary-level indirection wraps the entire library and checks permissions to outside

interfaces.

The evaluation of our framework proves that BINWRAP can effectively protect real-

world applications when real-world vulnerabilities are exploited within the loaded native

modules. BINWRAP is an efficient solution, imposing 3.17% performance impact on aver-

age. BINWRAP is a scalable and practical solution since our design choices were directly

influenced by the NPM ecosystem norms.

5.1 Background

This section presents background information on Node.js runtime, V8 JavaScript engine (§5.1.1),

on restricting memory accesses (§5.1.2), on code reuse attack prevention (§5.1.3), and on

system call restrictions (§5.1.4).

5.1.1 Node.js, V8, and NAN

Node.js is a runtime environment for executing JS code, outside the context of a web

browser, which primarily targets server-side applications [142]. Internally, Node.js lever-

ages the V8 JS engine [81]. V8 parses JS code and converts that to an AST (abstract syn-

tax tree), which can later be “lowered” to V8-specific bytecode that, in turn, can be inter-

preted with the Ignition interpreter [79]; moreover, JS code (in AST or bytecode form) can

be compiled to machine code using the (optimizing) TurboFan or (non-optimizing) Spark-

Plug compiler [80].

5.1. Background 45

V8 follows a hierarchical (virtual) memory organization scheme that is primarily geared

towards garbage collection (GC). Irrespective of how JS code is executed atop V8 (inter-

preted vs. compiled), JS programs are represented by a so-called resident set, which is the

collection of memory pages that V8 allocates to facilitate the execution of the respective

program. The resident set is further divided to memory (sub)regions that correspond to

the runtime (execution) stack of the JS program, as well as the heap. The latter is designed

with aggressive GC in mind, and, to this end, is partitioned to multiple (semi-)spaces,

which are object allocation arenas that host short- and long-lived objects, in a way that

makes GC performant and effective [76].

The heap region also includes special SLAB-like [36] areas (or spaces), to support the

fast allocation of special, typed objects, “large” (mmap-ed) objects, as well as jitted code [77].

Lastly, V8 uses pointer tagging to differentiate between plain data and pointer values,

while (dynamically-allocated) JS objects are represented by opaque handles and accessed/-

modified via specific accessor functions.

Node.js is built around V8 (both are implemented in C/C++) and provides a rich set

of APIs (i.e., the Node-API [137], but also, among others, the V8 API [82]) to JS applica-

tions. Most importantly, however, Node.js allows JS programs to load native add-ons (mod-

ules written in C, C++, ASM, etc.), Typically, JS applications leverage add-ons to: (1) per-

form compute-intensive tasks using highly-optimized C, C++, or even handwritten-ASM

code [107]; (2) have access to other (dynamically-loaded) system libraries [152]; (3) inter-

act freely with the underlying OS kernel via the system call (syscall) interface, and utilize

system services for which JS abstractions are not available [138]; or even (4) perform com-

putations on specialized hardware, like GPUs and TPUs [103].

Add-ons may export functions, and objects, to JS code, directly invoke JS functions

passed as callbacks, and even wrap C++ objects/classes in a way that enables their in-

stantiation directly from JS code (e.g., using the new operator). The interoperability be-

tween JS and native, C/C++ code is directly facilitated by V8’s native code bindings. More

specifically, by leveraging any Node API, or even the more esoteric V8 API [82], add-ons

can (un)marshal function arguments and return values to/from JS code, invoke JS code

(mostly asynchronously), raise (and handle) exceptions, access/pass objects in JS scope,

perform JS-to-C/C++ type conversion, and more [137]. Another API designed for Node.js

has started providing the NAN (Native Abstractions for Node.js) API [136] as a portable,

stable API for add-on development, given that both the Node-API and V8 API are version-

and platform-dependent (and therefore hinder the portability on add-on code).

5.1.2 Restricting memory accesses

We restrict the memory view of the native module code by leveraging Intel’s Memory Pro-

tection Keys (MPK) [99]. BINWRAP offloads the execution of native functions to a different

46 Chapter 5. Third party binary library isolation.

thread. By leveraging Intel MPK we are able to restrict the memory access rights of the

thread responsible for executing native functions. Thus, the exploitation of a memory vul-

nerability in the native module will not affect the rest of the application.

Intel MPK

Intel Memory Protection Keys offer the ability to userspace processes to change access

permissions on groups of pages. Each page group is associated with a unique key. An

application can have up to 16-page groups. The access rights for each page group are

mapped in a thread-local and user-accessible register called protection keys rights register

(for user) %pkru. Since %pkru register is thread-specific, MPK supports per thread view of

the process’s memory. For example, different application threads have different access

rights configured for each key in their %pkru register.

The key benefits of MPK over page table permissions are performance and the ability

to configure different memory permissions to each thread running in the process. The

access rights supported by the page groups are read, write, read-only, and no access. Data

accesses on memory pages associated with protection keys are checked both against the

access rights defined in the %pkru register, as well as the permissions in the page table.

Instruction fetching is checked through the permissions in the page table.

If a memory page is executable in the page table but configured with no access in

%pkru, the memory page is treated as execute-only. This occurs since any data access will

result in a mismatch between the rights defined in the page table and the %pkru register.

Linux support execute only memory pages by leveraging MPK. A call to mprotectwith only

PROT EXEC specified as permissions will result in the allocation of a protection key which

will be associated with the memory pages passed to mprotect. Next, the %pkru register

will be set to DISABLE ACCESS for the newly allocated protection key, while the page table

rights will be set to executable and readable. Any access to execute only pages except for

instruction fetching will result in a memory violation exception.

For associating a memory page (or range of memory pages) with a protection key, the

Linux kernel implements the pkey mprotect system call. In a similar manner as the tra-

ditional mprotect system call, it will also set the access rights passed as an argument in

the %pkru register. The access rights in the %pkru register can be modified with the wrpkru

x86 instruction. Since %pkru register is user-accessible, modifying the access rights does

not impose significant latency, and it is much faster than invoking memory management

system calls (e.g., mprotect). Finally, rdpkru instructions returns the contents of the exe-

cuting thread’s %pkru register.

5.1. Background 47

5.1.3 Code reuse attack prevention

Native modules need to execute Node.js and V8 API functions for benign reasons (e.g.,

JavaScript object allocation). During API invocations, we need to re-enable memory ac-

cesses in the API’s function prologue and disable them upon return. Since we can operate

on source code level, we ensure that there no occurrences of instructions that can rein-

state memory accesses in the native module. However, an attacker could launch a Code

Reuse Attack (CRA) that first re-enables memory access and then copies data to an acces-

sible area. To prevent these attacks, we again utilize MPK and also rely on Address Space

Randomization Layout (ASLR) to hide the location of the trusted code (Node.js) from the

untrusted part (native module). With this technique native modules can call Node API

functions without ever knowing their real address. In BINWRAPB we link the native mod-

ule with a wrapper library that interposes each API function required by the native module.

The interposition functions call the actual API functions; however, the memory region they

reside is configured as execute-only and thus, the actual address of the API functions is not

visible from the native module thread.

5.1.4 System call restrictions

Native modules also execute several system calls for benign reasons. An attacker can mis-

use these system calls to bypass BINWRAPB sandbox. In BINWRAPB, we deploy two tech-

niques to restrict system call execution. The first technique relies on finding the actual

set of system calls required for the execution of the native module. To extract this set, we

deploy Sysfilter [63]. Sysfilter is a static binary analysis framework that extracts an appli-

cation’s set of system calls. The enforcement submodule of Sysfilter produces a BPF filter

that can be used with seccomp-bpf [118] to deny the execution of system calls not present

in the set.

SecComp

SecComp is a kernel mechanism that can restrict the system calls an application can ex-

ecute. Since version 3.5 Linux kernel supports SECure COMPuting with Berkeley Packet

Filter (seccomp-BPF). The filter rules, allow or deny system calls based on system call num-

bers and arguments. The applied filter can only be replaced by a more restrictive filter and

cannot be removed. The filters applied are per-thread, and thus we can restrict system

calls only to the native module thread. However, seccomb-bpf cannot dereference pointer

arguments.

Our second technique aims to restrict system calls that attackers can misuse and are

present in the system call set required by the native module. For these cases we remove

any implicit and explicit syscall and sysenter instructions from the native module code

48 Chapter 5. Third party binary library isolation.

and we only allow system calls through libc library. Finally, we interpose libc functions

that wrap system calls required by native modules in order to filter their arguments.

5.2 BINWRAP Overview

We use an image processing library (§5.2.1) to illustrate the problem of a Node.js “module”

containing vulnerabilities both on the JS and the native (i.e., add-on) part(s) of its code,

and then outline how BINWRAP addresses the respective problems (§5.2.2).

5.2.1 png-img: A Node.js Portable Network Graphics Library

Consider a Node.js application that creates PNG image objects from a supplied input

buffer. More specifically, the developer provides a buffer to a Node.js library (png-img),

implemented (partially) in native, add-on code, which contains raw image data. In addi-

tion, assume that the size of the input data is not checked to ensure they fit into the buffer

in question, and hence a memory error can occur (e.g., a “buffer overflow”).

Such errors are a common attack vector when code written in memory- and type-

unsafe languages, like C, C++, Objective-C, and assembly (ASM) [195], is involved, and

they typically manifest by exploiting missing sanitization logic, pointer arithmetic bugs,

invalid type casts, etc.—i.e., bugs in code that trigger spatial [131] or temporal [132] mem-

ory safety violations, enabling attackers to corrupt or leak contents inside the (virtual)

address space of victim programs. The code snippet below corresponds to the relevant

application fragment of our example.

1 const fs = require(’fs’);

2 const PngImg = require(’png-img’);

3 let buf = fs.readFileSync(’./img.png’);

4 let img = new PngImg(buf);

First, the developer loads the library png-img (ln. 2) to add image processing capabili-

ties in their application. Consequently, they load raw (image) data into buf, using the fs

module (ln. 4). Finally, the buf object is passed to the PngImg constructor for generating

img, i.e., the PNG image object.

1 const PngImgImpl =

2 require(’./build/Release/png_img’).PngImg;

3
4 module.exports = class PngImg {

5 constructor(rawImg) {

6 this.img_ = new PngImgImpl(rawImg);

7 }

8 }

In the snippet above, we zoom into the step(s) performed by png-img, after the devel-

oper imports the library to the application. png-img uses NAN to link a native function

5.2. BINWRAP Overview 49

(written in C, C++, etc.) with the PngImgImpl object (ln. 1–2). Every time the png-img con-

structor in invoked, the buffer object, which contains the raw (image) data, is passed to

the native function (ln. 4–7).

Since the add-on is written in a memory- and type-unsafe language, it may contain

bugs (e.g., a buffer overflow, ln. 6) that trigger memory errors [195]. More importantly,

given that the raw image data are of unknown provenance, attackers may provide specially-

crafted inputs that exploit the underlying memory errors, potentially resulting in arbitrary

memory read (disclosure, leak) and arbitrary memory write (“write-what-where”) primi-

tives [154].

In real-world settings, attackers primarily aim for tampering-with control data (e.g., re-

turn addresses, function pointers, dynamic dispatch tables) [112], as these facilitate hi-

jacking the control flow of the program and performing arbitrary code execution [141]—

typically via means of code reuse [40]: i.e., the attacker executes benign program code, in

an “out-of-context” manner, by tampering-with control data; a wide range of code-reuse

attack techniques has been proposed and developed thus far [35,44], enabling access con-

trol and policy enforcement bypasses, privilege elevation, and sensitive data leakage [185].

Considering these facts, we found a relevant vulnerability of png-img documented in

National Vulnerability Database [126].

1
2 void PngImg::InitStorage_() {

3 rowPtrs_.resize(.height, nullptr);

4 data_ = new png_byte[.height * .rowbytes];

5
6 for(size_t i = 0; i < .height; ++i) {

7 rowPtrs_[i] = data_ + i * .rowbytes;

8 }

9 }

The vulnerability here is that height and rowbytes variables are 32-bit integers and

thus can be overflowed. An attacker could trigger this overflow in order to cause an in-

adequately sized memory allocation. Subsequently, image data will overwrite adjacent

memory regions. As we discuss in 5.6, this arbitrary memory write can be leveraged by an

attacker in order to take over the control of the application.

5.2.2 Node.js Module Confinement with BINWRAP

To harden the respective Node.js application against vulnerabilities in png-img, we ap-

ply BINWRAP both at the JS and the native part(s) of the library. More specifically, BIN-

WRAP comes bundled with a set of tools for performing static and dynamic analyses, and

policy enforcement, at the level of native, binary code (BINWRAPB), as well on JS code

(BINWRAPL). (The latter typically wraps the add-on code and provides a high-level API

50 Chapter 5. Third party binary library isolation.

for interfacing with Node.js-based application code.) We envision BINWRAPB as the set

of binary-focused methods and techniques that is to be applied during library installa-

tion time, whereas BINWRAPL is the {load, run}-time counterpart, targeting the JS wrapper

code.

BINWRAPB

BINWRAPB consists of a set of memory isolation and code confinement techniques, tai-

lored to the runtime environment of Node.js, which aim at restringing the execution, and

the side effects, of unsafe add-on code in part(s) of the corresponding virtual address

space (VAS). More specifically, the execution of native add-on code is dispatched to a spe-

cial (Node.js) execution thread, which has a restricted memory view of the virtual address

space, by leveraging Intel’s MPK (Memory Protection Keys) technology [99]. The benefits

of this intra-VAS isolation are twofold: first, memory errors in png-img’s native code can-

not be used to tamper-with the data of the Node.js runtime —i.e., BINWRAPBprovides data

confidentiality/integrity against (arbitrary) memory disclosure/corruption vulnerabilities

in unsafe library code; and, second, any potential reuse of code is limited to re-using func-

tionality that exists in png-img only—i.e., BINWRAPB prevents code-reuse-based, control-

flow hijacking attacks, which originate from the native library, from re-using functionality

that exists in the code of Node.js itself or that of any other library in the same VAS.

In addition to the above, a seccomp-BPFfilter is installed in the special execution thread

to further restrict the interactions of the latter with the OS, in case the control-flow of the

native (library) code is tampered-with (despite being sandboxed). BINWRAPB automati-

cally extracts the set of system calls (syscalls) required by the native code, and comple-

ments that set with syscalls that may result from the invocation of Node.js functionality

via NAN (i.e., the native code invokes Node.js code via the NAN API), as well as the invoca-

tion of V8 APIs, or libc (and other system libraries) APIs.

At runtime, if JS code needs to invoke a native function that belongs to png-img, via

NAN, BINWRAPB dispatches the execution of that function to the special thread, which

executes the unsafe code under a restricted memory view that is HW-enforced by Intel

MPK. Note that the unsafe code may in turn invoke APIs that belong to Node.js, V8, libc,

or any other system library. In such cases, the control flows to the target (API) entry points

(and back) via special gateways, which alter the memory view(s) of the code accordingly.

The required analyses for all the above (i.e., gateway generation, syscall extraction) are

performed statically during the installation of a Node.js library/module that contains na-

tive code, and need only to be repeated if the respective code is updated. Lastly, our tech-

niques are complete and have minimal requirements (i.e., access to symbols) for increased

precision.

5.3. Threat Model 51

BINWRAPL

BINWRAPL consists of both a static and a dynamic part. By running the static analyzer on

the JS wrapper code of png-img (i.e., index.js), at load-time, we get the following (RWX-

like) JSON report that summarizes the developer-intended access permissions regarding

the various JS objects involved.

1 "/node_modules/png_img/index.js": {

2 "module": "r",

3 "module.exports": "w",

4 "require": "rx",

5 "require('./build/Release/png_img ')": "ir",

6 "require('./build/Release/png_img ').PngImg": "rx"

7 }

Armed with the above access map, BINWRAPL traces object accesses at runtime and

blocks any attempt to access an object in a way that is not compatible with the extracted

policy, thereby further locking the interaction of png-imgwith the Node.js application that

uses it.

5.3 Threat Model

Our threat model assumes that the adversarial capabilities allow the exploitation of mem-

ory bugs in benign native modules. An attacker therefore, can leverage memory corrup-

tion vulnerabilities in order to develop arbitrary memory read and write primitives. The

exploitation of these vulnerabilities can be used in order to access sensitive data and even

perform Code Reuse Attacks. We do not consider malicious native modules that will ac-

tively try to evade our hardening mechanisms. Moreover, we assume that the high-level

language part of the library is restricted through existing languages based mechanisms

e.g., MIR. Node.js runtime, as well as system libraries are considered trusted and free of

vulnerabilities. Finally, we consider side-channel attacks and hardware faults as out of

scope.

In order for BINWRAP to protect Node.js runtime environment from these cases, the

following OS and hardware features are required. The OS must include Seccomp BPF in

order to enable system call filtering. We also consider that WX̂ policy is enforced and that

the native module does not include self-modifying code. Moreover, Node.js, system li-

braries and the native module leverage Address Space Layout Randomization (ASLR). Our

framework does not interfere with any other possibly deployed security mechanisms e.g.,

AppArmor, RELRO, etc.. Rather, thse mechanisms can further enhance the protection of-

fered by BINWRAP. The hardware must include Memory Protection Keys or a mechanism

that offers equivalent capabilities. While our required hardware feature cannot be con-

52 Chapter 5. Third party binary library isolation.

sidered as standard as our OS prerequisites, it is part of latest Intel’s server CPU series.

Moreover, MPK functionality can be emulated through memory tagging which is widely

available in ARMs latest processor series [18].

Our techniques aim to address three challenges:

• Prevent the native module thread from accessing memory outside of the native mod-

ule’s loaded address range and its heap-allocated memory.

• Prevent the native module thread from executing CRA gadgets outside of the native

module’s .text area.

• Prevent the native thread from misusing system calls.

We consider the Node.js JavaScript runtime environment and our customized native

module layer (NAN) as the trusted part of the application. We consider the source code of

the native module as the untrusted part of the application. We deploy many techniques to

ensure that any exploitation attempts targeting the native module code will be confined

within its bounds and will not affect the whole application.

5.4 Design

The key idea behind the design of BINWRAP is to separate the runtime execution of the un-

trusted component from the rest of the application. Runtime separation is achieved using

different execution threads for the two trust domains, while isolating the thread responsi-

ble for executing the untrusted component—effectively, limiting its memory visibility and

system-call execution capabilities. BINWRAP limits the memory visibility of the untrusted

component by creating a dedicated memory view for the untrusted thread. Also it limits

access to the system calls available to the untrusted component, by wrapping and filtering

system calls in the untrusted thread.

This section describes BINWRAP’s mechanism for isolating the execution of untrusted

native components. Fig. 5.1 presents BINWRAP’s wrapping. BINWRAP first compiles the

source code of the untrusted component and then statically analyzes the resulting binary

—a .so shared object. We prefer analyzing over the source code since we can find the com-

plete set of external symbols required, for instance calling printf will also execute other

libc functions e.g.,write, etc. This analysis aims at extracting (1) the full set of system calls

necessary for the execution of the native component, and (2) the set of Node.js-internal

API calls used by the native component, e.g., v8::External::New(v8::Isolate*, void*),

v8::Object::Set-

InternalField(int, v8::Local<v8::Value>), etc..

BINWRAP then creates a custom instance of a Node.js API layering library—loaded dur-

ing the initialization of the native component. This BINWRAP-infused library sets up ap-

5.4. Design 53

JSJS

 Native

With BinWrapWithout BINWRAP

System
Calls

API
Calls

App

API
Calls

System
Calls

JS

Figure 5.1: Application of BINWRAP framework in Node.js environment.

propriate seccomp filters for the set of system calls extracted in the previous step. BIN-

WRAP then recompiles the native component, linking against the library instance, thus

injecting the filter into the native component.

5.4.1 Isolation techniques

Native function execution

Native modules utilize the Native Abstractions for Node (NAN) package to wrap native

functions. Native functions are invoked through callback info objects. In BINWRAP we

handle these callback info objects to the restricted thread. This thread is initialized during

the first time a native function is executed. The Node.js process thread that dispatched

the callback info object to the native function thread will block until the native function

returns. After the native function returns, the main thread will be unblocked. We used a

shared variable as the synchronisation primitive between the two threads. The separate

threads design enables BINWRAP to leverage thread specific mechanisms (i.e., MPK and

seccomp) in order to isolate the execution of native libraries.

Data access filtering

BINWRAP restricts the memory accesses of third party libraries in Node.js. Since we decou-

ple the execution of untrusted code by creating a new thread, we can prohibit arbitrary

accesses to sensitive data stored in Node’s memory by leveraging Intel’s Memory Protec-

tion Keys (MPK) technology [99]. During the initialization of the native module thread,

54 Chapter 5. Third party binary library isolation.

we associate a protection key with the pages that may contain sensitive data. These data

include all the memory allocated and managed by the V8 JavaScript engine. The native

module thread will initially change the rights associated to no access on the protection

key associated with Node’s allocated pages. The native module address ranges and allo-

cated memory is excluded by this set. Subsequent memory allocations for expanding V8

memory pool are also associated with Node’s protection key. Finally, we ensured that there

is no explicit data sharing between Node and native modules (e.g., globals) by analyzing

the symbol table of the top 500 popular native module.

An obvious limitation of protection keys is that only 16 are available and thus only 16

different views on memory can be supported. This issue has been addressed by the litera-

ture through virtualising memory protection keys. In libmpk [146] the authors implement

a software abstraction for MPK that virtualises the hardware protection keys. Another so-

lution is grouping sets of native modules under the same protection key. In this approach

however, a vulnerable module could also affect the other modules in the set.

Node.js and V8 export a large API set of functions in order to allow native modules

to perform various tasks (e.g., object allocation and management, type conversions, etc.).

Since Node.js is part of the trusted domain when the native thread executes Node API

functions, the access rights on Node’s data should be re-enabled. In our framework, we

modified the API functions to change the rights for the protection key to allow memory

operations. We reimpose restrictions before an API function returns back to the native

module. During every API call we store the previous contents of pkru register in API’s

function stack variable. During returns, the pkru will be modified only if the previous

rights stored in the stack restrict memory accesses (execution returns to native module).

This design choice stems from the fact that API calls may be nested.

An attacker could access sensitive data by harvesting stale data in deallocated stack

frames after API functions execution. During the execution of the trusted part, the thread

can access any data, and Node API functions can copy data in the stack (as function argu-

ments, etc.). After the function returns, the residual data can be accessed without restric-

tions. To prevent this, the native execution thread zeroes out the deallocated stack frames

before returning back to the native module, effectively deleting residual data.

Preventing Code Reuse

An attacker could launch a code reuse attack targeting instruction snippets that remove

the restrictions i.e., wrpkru and fetch data to memory areas accessible by the native mod-

ule. These instruction sequences are present in the trusted code since the data access

restrictions must be lifted during the execution of the trusted part. These instructions can

also be implicitly present in the untrusted part since x86 instructions have variable length.

Moreover, xrstor instruction can be leveraged to restore a crafted register state with mod-

5.4. Design 55

ified pkru in order to allow access on restricted memory. In order to prevent an attacker

from using the unlocking functions, we again utilize MPK and also rely on Address Space

Layout Randomization (ASLR) to hide the location of the trusted code (Node.js) from the

untrusted part (native module). The key idea of this technique is that the native module

can call Node.js API functions without ever knowing their address.

wrapper.so

Compile and
link with
wrapper

C/C++

BinWrap
NAN
B

inW
rap

N
ative M

odule

Figure 5.2: Compilation order of BINWRAP native modules.

We designed a custom linking procedure to hide Node API and library locations from

the untrusted part. Initially, we extract all the API and library functions needed by the

native module from the module’s shared object .plt section, along with the offset in the

.got section. Then, we create a new wrapper shared object which contains a wrapper

function for every Node.js API and library function required by the native module. We

link the wrapper library to the native module and manually resolve the native modules dy-

namic symbols to point at the wrappers (at load time). Next, we utilize the capability from

MPK to mark the wrapper functions as execute only. Thus, arbitrary reads will fail to reveal

API and library locations finally, ASLR also ensures that the address of Node.js and linked

libraries is different on separate executions. Fig. 5.2 presents a high-level overview of BIN-

WRAP modules compilation procedure. Finally, the wrapper library implements dynamic

symbol interposition to filter system calls that can bypass the native module sandbox if

misused.

To prevent attacks targeting implicit xrstor and wrpkru instructions, we scan the bi-

nary with ROPgadget tool [161]. We vet any occurence of these instructions in a similar

manner as G-free [140]. Since we can also operate on the source level of the native mod-

ule, we do not only rely on Static Binary Instrumentation (SBI) to vet unsafe instructions,

rather we can transform the source code to prevent unsafe instructions from being emit-

ted in the final binary. Our analysis on the top 500 native modules with ROPgadget tool

found no implicit occurrences of xrstor and wrpkru instructions. The chances of implicit

occurrence are low since both of these instructions are more than 3-bytes. We do not need

56 Chapter 5. Third party binary library isolation.

to vet unsafe instructions in Node.js or the linked libraries (e.g., libc), since we wrap all

the dynamically linked symbols with execute only wrappers in order to hide their actual

location in the memory.

5.4.2 System call extraction

Operating System

V8 APINode API

NAN

Native Code

Figure 5.3: Classification of required system-calls.

Native modules often depend on system calls for key functionality available by the

operating system. There are two avenues native modules issue system calls. First, sys-

tem calls are by default available directly to the native component—e.g., component calls

mmap for mapping memory. Second, they are available indirectly, through Node.js-internal

APIs that the component uses—e.g., component calls v8::External::New(v8::Isolate*,

void*) from Node core, which internally calls brk system call. Since native components

make extensive use of Node.js-internal APIs, the resulting combined set of system calls

used by the native component may be large. Both of these classes can be used as a means

for an attacker to cross the protection boundary, effectively bypassing BINWRAP’s enforce-

ment mechanism [52, 196].

To extract the full set of system calls a native module requires, we use an intra-procedural,

flow-sensitive binary analysis. We analyse each native module in order to extract both the

directly included system calls, as well as the system calls inherited through V8 and Node.js

API functions (dashed arrow) Fig 5.3.

5.4. Design 57

Direct System Calls

The analysis first receives as input the shared native component, i.e., a .node file. It pro-

ceeds to resolve dependencies to shared libraries, and then (over-)approximates function-

call graph (FCG) of the native component. This approximation is constructed over all ob-

jects in the scope of the component and its dependencies. The analysis then performs a

set of analyses atop the FCG to extract a tight (but safe) set of developer-intended system

calls.

Inherited System Calls

To identify the Node.js-internal API functions used by the native component, we first anal-

yse the native module’s shared object symbol table. We then uses each function symbol

as entry point for analyzing the Node.js executable and identify the reachable system calls.

The analysis trades soundness for completeness, in that system calls performed by the

native component will exist in the extracted set—but not all extracted system calls are ex-

pected to be used in every (or, indeed, any) execution of the native component. The set

of extracted calls includes system calls directly used by the native component, calls used

by Node.js-internal APIs during that execution, system calls in libc, and any other shared

libraries loaded dynamically.

5.4.3 System call restriction

BINWRAP uses the extracted system-call set to create a filter containing the complete set

of system calls that may be executed by the native thread. Given a set of allowed system-

call numbers, BINWRAP’s enforcement tool first converts them to a BPF program and then

uses seccomp-BPF to execute, and thus enforce, this filter during the execution of the un-

safe thread. The core of the BPF filter’s logic is centered around conditionals that check the

system call number and non-pointer system call arguments. To inject the filter into the bi-

nary program, BINWRAP leverages BINWRAP-specific Node.js API templating. BINWRAP

provides custom templates of Node.js API libraries that contain placeholder segments in-

stantiated with custom filter instances. Different Node.js API custom wrappers—e.g., NAN,

N-API etc.—correspond to different templates. On the other hand system calls requiring

pointer argument filtering (described in 5.5.3) are interposed in the library wrapper object

through their respective libc function.

BINWRAP then instantiates each template (still as source code) using (1) information

extracted from the earlier static-analysis phase, and (2) additional hardcoded policies for

system calls than can be potentially misused. It then compiles the native component, link-

ing against the Node.js API instance, that contains the seccomp-BPF filter corresponding

to this native component and the Node.js, V8 and dynamic library interposition wrapper

58 Chapter 5. Third party binary library isolation.

object. Loading the compiled native component at runtime will result in the untrusted

thread executing the appropriate seccomp-BPF filter upon initialization.

5.5 Implementation

Our framework applies across the whole stack of a Node.js application. The JavaScript

code of the third party library is analyzed with BINWRAPL to extract the permission model

that will be enforced at runtime. Our NAN modifications add 200 lines of code for initial-

izing the native execution thread, the synchronization (i.e., the execution of native func-

tions) and the seccomp-bpf configuration. We chose NAN due to BINWRAPL compatibility,

however our implementation is directly applicable to N-API as well as Node.js.

Our wrapper library is generated using bash scripts and ranges between 240 and 600

lines of code depending on how many V8 and Node.js symbols are dynamically linked to

the native library.

5.5.1 Node and V8 API modifications

We modified any V8 and Node API function reachable through NAN API. We identified

the full set of these functions by analysing the test binaries shipped with NAN package.

Our analysis discovered 122 dynamic symbols that point to V8 and Node.js. We addition-

ally analysed the native modules that consist our evaluation set and found that they link

less than half of these functions i.e., around 50 symbols. The modifications are functions

that remove memory restrictions upon entry and reimpose them before the API function

returns to the native module.

5.5.2 Wrapper library

Wrapper libraries are generated using bash scripts and ranges between 240 and 600 lines of

code depending on how many V8 and Node.js symbols are dynamically linked to the native

library. The wrapper functions are pure (i.e. they do not create a stack frame) and consist

of two instructions implementing an indirect jump. mv and jmp. System calls with pointer

arguments that can be potentially misused are intercepted by preloading their libcwrap-

per. The wrapper includes a constructor method that will be the first function executed

when the native module is loaded. Each pure wrapper is patched by the constructor in

order to store the wrapped symbol’s address in the auxiliary register, which will be deref-

erenced during the indirect jump instruction. The native modules .got is configured to

point at the wrapper functions. Finally, the constructor maps the wrappers as execute

only. This will cause the allocation of a new memory protection key associated with the

pages containing the wrapper functions.

1 __attribute__ ((aligned(4096), pure))

5.5. Implementation 59

2 void

3 wrap_node_api_func(){

4 asm ("movq 0xdeadcafe , %rax; jmpq *%rax");

5 }

6 ...

7 static __attribute__((constructor)) void

8 init_method(void){

9 ...

10 mprotect((void*) wrap_node_api_func , 4096, PROT_WRITE);

11 rewrite_loc = wrap_node_api_func;

12 *rewrite_loc = &node_api_function << 16 | 0xb848;

13 ...

14 mprotect((void*) wrap_node_api_func , 4096, PROT_EXEC);

15 write_got = native_module_address +

16 node_api_func_got_entry;

17 *write_got = wrap_node_api_func;

18 ...

19 }

The constructor method first finds the location of the native module’s shared object in

the process memory map. Then, the addresses of each symbol are collected using dlsym.

The wrapper functions load an address in the auxiliary register %rax and then indirectly

jumps to that address with jmpq *%rax. The constructor then marks wrapper functions

as writable and patches the mov instructions in order to store the actual symbol’s address.

Then the native module’s GOT is patched to point at the wrapper functions. Finally, the

wrapper functions are configured as execute only.

5.5.3 System Call policies

Several system calls can be leveraged to bypass MPK based restrictions [164, 196]

Memory management

System calls that are used for memory management, like mmap, mprotect, munmap, brk, or

mremap, could be used to allocate executable memory, execute pkey set instructions or

move data to memory locations that can be accessed. Protection keys can also be wiped by

de-allocating and re-allocating the target memory region. In BINWRAP, we hook these sys-

tem calls and disallow them to target the protected domains as well as allocate executable

memory. We also disallow remapping executable pages since it is possible to form implicit

unsafe instructions on page boundaries. Using personality with READ IMPLIES EXEC an

attacker can render any subsequent allocated pages executable. None of the native mod-

ules required this system call, and thus we safely deny its execution. We finally disallow

userfaultfd, since it can enable arbitrary writes on MPK-protected pages [164].

60 Chapter 5. Third party binary library isolation.

Process and thread control

Another family of dangerous system calls is related to process creation (fork, exec, and

clone). These system calls create a new process that is either new (exec system calls), or

executed in the same address space. In clone the MPK configuration is inherited to the

new thread, and is thus safe. Fork system call however, can be combined with kill system

call in order to force the child process to produce a core dump which can be read by the

untrusted domain. We found that fork and exec are not required by native modules and

deny their execution. We also disable core dumps by configuring the application process

with (PR SET DUMPABLE, SUID DUMP DISABLE). This kernel utility also prohibits access to

procfs and thus prevents the misuse of file-related system calls. We also safely deny prctl

and set thread areawhich can remap thread-local storage.

Signal handling

During signal delivery, the kernel stores the register state (including pkru) on the stack.

When the signal handler finishes its execution, the register state is restored through rt sigreturn

system call. An attacker can craft a register state where pkru register allows memory access

and execute a sigreturn gadget in order to obtain universal access. There is no wrapper

for rt sigreturn in libc, since it is not supposed to be called by applications. However,

an attacker can call rt sigreturn through reusing syscall, sysenter instructions in the

.text area. In BINWRAP, we treat such instructions as unsafe, and we vet them. Thus,

there is no way for an attacker to call rt sigreturn.

5.6 Evaluation

To evaluate BINWRAP, we use a set of real-world native npm packages, investigating the

following questions:

• Q1 How effective is BINWRAP at defending against attacks that exploit real-world

vulnerabilities? (§5.6.4)

• Q2 How much BINWRAP reduces the set of system calls in the context of native mod-

ules, what is the set breakdown? (§5.6.5)

• Q3 How efficient and scalable are each of BINWRAP components? (§5.6.6)

5.6.1 Libraries and workloads

We evaluated each of BINWRAP components, testing the security guarantees and the run-

time overhead imposed. We investigate each one of the topics, answering a set of relevant

questions. To address Q1, we evaluate BINWRAP against exploits targeting vulnerabilities

5.6. Evaluation 61

in popular third-party libraries. The vulnerabilities were pulled from the Snyk [177] vul-

nerability database, and exploited by us. We found that BINWRAP successfully prevents

the exploitation of the selected vulnerable packages. To address Q2 and Q3, we evaluated

the overhead of BINWRAP using real world applications that stress individual components

and provide insights about the micro and macro aspects of the performance impact. Our

results indicate that BINWRAP can offer strong security guarantees to JavaScript applica-

tions that utilise third-party native libraries, while imposing an average of 3.17% runtime

overhead.

To benchmark each package and application, we tried to execute the test suite that

was provided by the developers. If the application developer did not provide any test suite,

we used the example code provided in the repository for our evaluation. All of the third-

party libraries used in the evaluation ship with npm based test suites. We used two sets

of benchmarks during our evaluation. The first and major set consists of benchmarks

that implement the behaviour of an actual application that uses the third party library

(npm packages and applications), i.e., executing mostly JavaScript code and offloading

heavy computations on the native module. The second set consists of benchmarks that

execute native functions in tight loops, thus stressing the cross-domain transition of our

framework. The first set is suitable for presenting the performance impact of BINWRAP in

real-world applications, while the second is suitable for measuring the micro aspects of

the runtime overhead.

5.6.2 Setup

Our system is configured with an Intel Core i9-10900 CPU with 32GB RAM and runs Linux

version 5.4.0-84. We implemented our modifications on Node version 8.9.4. BINWRAP

does not require any kernel modifications to run and only needs MPK and seccomp-bpf

to be available on the system. Since we run our benchmarks in the latest Ubuntu distribu-

tion, we had to recompile each library that Node.js loads dynamically to remove Intel CET

instrumentation, which is added by default in most packages. Intel CET uses a customized

.plt section that is not supported by sysfilter. Disabling CET does not affect the security

of the system, since hardware support is not available in our system’s processor and CET

instructions are treated as NOPs. Finally, we disabled cstates and Intel turbo boost and

locked the clock frequency at 2.8GHz.

5.6.3 Evaluation set

To find a representative set of libraries to evaluate BINWRAP, we analysed the entire NPM

ecosystem. The goal of this analysis was to find applications covering the following cri-

teria. The applications have (i) large number of dependents, (ii) compatibility with our

tool, and (iii) security exigency. It is also of critical importance that the npm package is

62 Chapter 5. Third party binary library isolation.

Table 5.1: Third party libraries available in npm and applications using these li-
braries. * C lines of code. ** Number of System Calls

Name Description Dependents CLoC* NoSC** Test Type

node-sass Style sheet preprocessor 8457 37365 93 Macro
bip32 Bitcoin wallet client 632 5559 82 Macro
xml.js Xml and Sax parser 344 170K 93 Macro
iconv Text recoding 329 96967 91 Micro
zeroMQ Networking library 323 8131 114 Macro/Micro
node-ref Memory Buffer Utilities 289 6900 91 Macro
tiny-secp256k1 Optimised library for ECDA 187 24511 82 Macro
heap-dump V8 heap dump 173 6395 91 Macro
ttf2woff2 TTF to WOFF2 converter 155 28185 91 Macro
pty.js Pseudo terminal for Node 128 6999 93 Macro
blake2 Hash function library 19 26207 91 Macro
pngImg Png Image processing library 6 66244 93 Macro
picha jpeg Encoder/Decoder 4 7522 92 Macro
statvfs File system information 3 6463 93 Micro
mtrace Native memory tracing and logging 3 6263 91 Micro
node-uriparser Native library for URI parsing 3 8111 90 Macro/Micro
node-hll-native Hyper log log algorithm 2 6663 91 Macro/Micro
syncrunner Return output from binary execution 2 10363 91 Micro
node-fs-ext File system utilities 0 6863 95 Micro
node-delta Delta compression algorithm 0 6680 82 Macro

Video Thumb Grid Video thumb grid generation using picha na 7522 92 Application
Manta Minnow Storage utilization agent for Manta project, uses statvfs na 6463 91 Application

8150

5073

1113

400

3077

792 3168

554 159

400

0 2000 4000 6000 8000
Relevant Subset No Direct NaN Dependency Could Not Install

Could Not Run Duplicate Packets Other PL/Platform Evaluation Set

Figure 5.4: Overview of the analysis for the evaluation set.

not corrupted and can run successfully in the base-line case (i.e., unmodified, without

BINWRAP).

We took multiple steps to get from the 1,508,366 libraries to the 20 in the evaluation

set. First, we found all the libraries that have NAN as a dependency, i.e., 5.073 packages.

We only consider packages that can be installed without manual effort (4.201 packages)

while we remove duplicates (3.508 packages). Next, we selected packages shipped with

test cases that could run out of the box (400 packages). Finally, we reduced our set to 20

based on our criteria.

The evaluation set includes packages that do not have large number of dependents.

For example uriparser and node-hll-native have under 5 dependents. However, these li-

braries are shipped with tests that are suitable for benchmarking the micro aspects of BIN-

WRAP (i.e., tight oops executing third-party library functions). On the other hand statvfs

and picha are required by Manta Minnow and Video Thump Grid respectively, which are

5.6. Evaluation 63

Table 5.2: Exploits

CVE Type Module Result

CVE-2018-11499 Use-
After-
Free

node-sass Information
disclo-
sure

CVE-2018-18577 Heap
Buffer
Overflow

picha Arbitrary
Write

CVE-2019-3822 Stack
Buffer
Overflow

node-libcurl Code-
Reuse
Attack

CVE-2020-28248 Heap
buffer
Overflow

png-img Code-
Reuse
Attack

complete Node.js applications and offer insights with regards to performance in real-world

scenarios. With regards to node-fs-ext, syncrunner, node-delta and mtrace where

chosen to diversify the different types of libraries in our set (i.e., we could choose more

popular parser packages, but this would result in a set of libraries with similar behaviour).

Finally, png-img is also used in our security evaluation, since it contained known vulnera-

bilities.

5.6.4 Security evaluation (Q1)

To assess the security of BINWRAP we implemented exploits for four distinct CVEs. We

analyzed vulnerabilities reported in Snyk.io [177] database for npm packages. These vul-

nerabilities occur from memory bugs in the shared object that ships with npm packages.

To evaluate the security of BINWRAP, we exploited these vulnerabilities and bypass the

boundaries of the untrusted part. We present an overview of the exploits in Table 5.2.

1 std::string exp_src = exp->to_string (ctx.c_options);

2 Selector_List_Obj sel = Parser::parse_selector

3 (exp_src.c_str(), ctx, traces);

4 parsedSelectors.push_back(sel);

CVE-2018-11499 Is an information disclosure attack that exploits a use-after-free vulner-

ability. The vulnerability was present in node-sass package until version 3.5.5. The use-

after-free occurs due to lack of exception safety in a loop. In the above code example,

exp src is allocated in the stack, while parse selector stores a pointer in a memory buffer.

If the parse selector throws an exception, the stack is unwinded and the exp src buffer is

deallocated. During the construction of the exception message, the exception handler

de-references the freed memory region. Our exploit manages to leak pointers to heap ad-

dresses, which can be used to perform arbitrary reads. With BINWRAP, any attempt to

64 Chapter 5. Third party binary library isolation.

read beyond the memory allocated for libsass fails due to the restrictions imposed using

memory protection keys.

CVE-2018-18577 Is a heap buffer overflow vulnerability enabling arbitrary writes. The

exploit is present in libtiff that picha npm package, loads for processing tagged image

file format files. The bug stems from the fact that, libtiff ignores the size of the desti-

nation buffer when decompressing JBIG compressed images. Thus, an attacker can write

arbitrary amounts of decoded data in the destination buffer. With BINWRAP, we are able

to prevent this exploit from overwriting data that do not belong to the native module’s

memory address ranges. In this scenario, an attacker could replace sensitive data used by

the JavaScript part of the application. Since these areas are not accessible by the thread

executing libtiff’s code, when a store instruction targets a memory address beyond its

visibility, a memory violation exception is raised.

CVE-2019-3822 Is a stack buffer overflow that can lead to the execution of a ROP gadget

chain. The node-libcurl npm package links to libcurl library, which had a stack buffer

overflow vulnerability from version 7.36.0 to 7.64.0. The vulnerability is due to the fact

that during an NTLM negotiation, libcurl sends a message to the server containing the

server’s original response. If that response is large enough, it leads to a stack buffer over-

flow. In our version, the response buffer was statically allocated with 1024 bytes. The re-

sponse buffer is base64 decoded and also memcpy is used instead of strcpy (making it easier

to exploit, since copies will not stop when zero is encountered). We used Ropper [162] to

create a ROP chain that loads the command we want to pass to system libc function and

execute it. This exploit does not work when BINWRAP is deployed, since system function

will end-up executing execl system call. In every native module we analysed with sysfilter,

execl system call was not present in the system call set that the native module might need

to execute (for benign reasons), thus the execution of execl fails.

CVE-2020-28248 This vulnerability leads to an under-allocated buffer due to an integer

overflow in a memory initialization function. The exploit is present in png-img npm pack-

age in all versions up to 3.1.0. This condition introduces a heap-based buffer overflow that

can be exploited using a specially crafted png file.

1 void PngImg::InitStorage_() {

2 rowPtrs_.resize(.height, nullptr);

3 data_ = new png_byte[.height * .rowbytes];

4 for(size_t i = 0; i < .height; ++i) {

5 rowPtrs_[i] = data_ + i * .rowbytes;

6 }

7 }

The InitStorage function height and rowbytes are 32-bit integers, thus this calcula-

tion can easily overflow and allocate an inadequately sized region. Data from the decoded

image may then be written past the end of the buffer. Library libpng registers a callback

5.6. Evaluation 65

function in a struct for reporting errors. The inadequately sized buffer is in the lower ad-

dressed region of the struct containing the error callback function. This vulnerability can

be used to overwrite the callback In our exploit we overwrite the error callback with the

address of system function. Similar to CVE-2019-3822 this exploit does not work with

BINWRAP deployment, due to system call filtering.

5.6.5 System call set analysis (Q2)

N
um

be
r o

f s
ys

te
m

 c
al

ls

0

25

50

75

100

125

no
de

-sa
ss

bip
32 zm

q ref

lib
xm

ljs

ttf2
woff

2
pty

.js

tin
y-s

ecp
25

6k
1

pn
g-i

mg

he
ad

um
p
bla

ke
2
ico

nv

hll
-na

tiv
e

syn
cru

nn
er

uri
pa

rse
r

no
de

-fs
-ex

t

mtra
ce

no
de

-de
lta

sta
tvf

s
pic

ha

Node API + Native Native module

Figure 5.5: System call set size for the native module and the combined with the
Node.js API.

We analysed 20 native modules with sysfilter to (i) extract the set of system calls re-

quired by the native module and to (ii) extract the system calls required through Node.js

API functions. We found that Node API functions require the same 62 system calls in all

native modules. In some native modules, like node-sass or zeromq, the system call sets

also contained inotify rm watch and epoll ctl. We found that the native module shared

object requires mostly the same system calls as the Node.js API functions. The number of

system calls inherited from Node.js range from 2 (zeroMQ) to 35 (node-delta). As we can

see in Fig. 5.5 we can safely block more than 2/3 of the available system calls in most cases,

except zeroMQwhich requires 114 system calls due to handling sockets.

Table 5.3 presents the system calls prone to be misused within the native module for

escaping the sandbox. These system calls are hooked within the native module wrapper

to filter the arguments passed as discussed in subsection (§5.5.3). Thus, we can prevent

66 Chapter 5. Third party binary library isolation.

Table 5.3: Subsets of system calls that can be potentially misused to escape BINWRAP.

Type Subset

Memory Management mmap, mprotect, munmap, brk,
mremap, madvise, shmget, shmat

Process control clone, exit, kill, vfork,
File related read, write, close, pread,

pwrite, readv, writev
Signal handling rt sigaction, rt sigreturn

the misuse of these system calls while not affecting the correctness of the execution. By

deploying Sysfilter we can safely deny 2/3 of the available system calls and significantly

reduce the attack surface.

5.6.6 Performance Evaluation (Q3)

In this section, we present the performance impact of BINWRAP when enabled on third

party libraries. We compare the runtime performance of BINWRAP against the unmodified

version of Node.js runtime environment. We breakdown BINWRAP in 3 different parts to

measure the performance overhead. The parts are the (i) native function sandbox, the (iii)

dynamic analysis privilege checks, and the (iii) combined impact on performance.

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

bip
32

js2
xm

l

ttf2
woff

2
pty

.js

tin
y-s

ecp
25

6k
1

pn
g-i

mg

he
ap

um
p
bla

ke
2

ico
nv

syn
cru

nn
er

no
de

-fs
-ex

t
pic

ha

mtra
ce

no
de

-de
lta

sta
tvf

s
zm

q ref

uri
pa

rse
r

jsu
mmari

ze

no
de

-sa
ss

Vide
o T

hu
mp G

rid

Man
ta

Minn
ow

BinWrap𝐵 BinWrap𝐿 BinWrap combined

Figure 5.6: Runtime overhead when deploying BINWRAPB, BINWRAPL and BINWRAP.

Macro benchmarks We evaluated BINWRAP by running the test suite provided by each

npm package. We run npm test command 100 times and measured the average execu-

5.6. Evaluation 67

tion time for the unmodified npm package and with BINWRAP enabled. The results indi-

cate that BINWRAP imposes minimal overhead. The typical workload is the execution of

JavaScript code with sporadic invocation of native functions. The overhead of the dynamic

enforcer of BINWRAP is bound to the size of the access rights extracted during the analy-

sis. The overhead originating from the modifications in the native module’s shared object

is related to the synchronisation between the Node and the native module thread. Since

pkey set instructions are executed in user-land, thus changing the rights during domain

switches imposes negligible overhead. Interposing system calls and Node.js API functions

is also lightweight since the number of extra instructions executed due to interposition is

small.

Micro benchmarks During domain transitions, the native module thread is unlocked and

executes the native function. The main thread waits for the native module thread to fin-

ish the callback execution. We evaluated several synchronisation algorithms to measure

the performance in this scenario. Our baseline micro benchmark is a function that incre-

ments a global variable, called 100M times. Next, we implemented the same scenario but

this time the process spawns a thread that will be responsible for incrementing the vari-

able. The new thread increments the variable once and then locks until the main thread

unlocks it. In a similar manner, the main thread will lock until the thread responsible for

incrementing the variable unlocks the synchronization variable. When utilising futex’s the

overhead compared to the benchmark without threads is 240x. When using inline assem-

bly memory operations to spin on the synchronization variable the overhead was reduced

to 80x.

0.00%

100.00%

200.00%

300.00%

Uriparser
(Benchmark)

node-hll-native
(Benchmark)

zmq (Stress)

BinWrap𝐵 BinWrap𝐿 BinWrap

Figure 5.7: Packages that stress the micro aspect of BINWRAP.

We also evaluated BINWRAP with test cases included in NPM packages that stress the

68 Chapter 5. Third party binary library isolation.

security mechanisms, we present the results in Fig. 5.7. In the case of uriparser the bench-

mark code is only two loops that parse a URL 2M times. The first loop uses the JavaScript

implementation of the parser, while the latter uses the natively implemented parser. The

majority of the code executed triggers the synchronization mechanism between the Node

and the native module thread. A similar scenario appears in node-hll-native. The bench-

mark implements a tight loop that executes a native hyperloglog function 50M times,

which only executes 300 instructions. Finally, ZeroMQ benchmark, consists of two in-

stances (sender and receiver) communicating with small (1KB) TCP packets. The receiver

expects 1M packets from the sender. In this case, both the synchronization and the sys-

tem call filtering components are stressed, however a lot of the overhead is amortised due

to the execution of network related system calls. On average BINWRAP imposes a perfor-

mance overhead of 3.17%..

5.7 Related Work

Table 5.4: Comparison of MPK sandboxes. 1 Only addresses system call issues and
is based on Donky. 2 Is an API for MPK based sand boxes. 3 PKRU-safe
does not address MPK based sandbox issues i.e., system calls, stray unsafe
instructions. 4 Cerberus does not prevent exploitation through sigreturn

Technique
In-
Process
Isolation

No Kernel
Modifica-
tions

System Call
Restriction

Unsafe
Instruction
Vetting

PKU
Pitfalls
Protec-
tion [52]

New PKU
Pitfalls
Protec-
tion [196]

Performance
Overhead

Erim [192] Yes No Partial Partial No No Low
Hodor [91] Yes No Partial Partial No No Moderate
Donky [165] Yes No Partial NA No No Low
Jenny [164] Yes1 No Complete Partial Yes Yes Moderate
Cerberus [196] Yes2 No Partial Partial Yes4 Yes Low
PKRU-
Safe [108]

Yes Yes3 No No No No Low

BinWrap Yes Yes Complete Complete Yes Yes Low

5.7.1 Intra-process isolation

Operating systems focus on process isolation (virtual memory, etc.) to prevent process’s

from arbitrarily interfering with between them. Intra-process isolation, is required in

applications that need to isolate components in the same process. For example, web

browsers isolate the execution of different pages in order to prevent malicious pages from

accessing sensitive data. A notable family of Intra-process isolation techniques is Soft-

ware Fault Isolation (SFI), SFI instruments memory operational in order to restrict mem-

ory access beyond a designated area. Other instrumentation approaches ensure that out-

5.8. Summary 69

of-bound pointers are transformed into in-bound. Research efforts focus on in-process

techniques, that offer isolation guarantees with minimum cost [28, 186].

Beyond software-only solutions for intra-process isolation, there are different mecha-

nisms in widely used architectures that can be leveraged for that purpose. BINWRAP uti-

lizes Memory Protection Keys from Intel to differentiate access rights on memory when

accessed from the trusted and untrusted parts of the Node.js applications. Several other

research efforts, also leverage MPK for intra-process isolation. ERIM [192] and Hodor [91]

introduce security domains in applications and protect sensitive data from being accessed

by untrusted components. The access rights are modified through call gates (ERIM) and

trampolines (Hodor). Moreover, binary inspection is used in order to vet occurrences of

MPK instructions. Regarding system calls ERIM only intercepts memory management sys-

tem calls, while Hodor denies any system call originating from untrusted domains by mod-

ifying the operating system. Unfortunately, recent publications [52,196] present attacks on

ERIM and Hodor, extended system call filtering with ptrace in ERIM solves some issues

but incurs substantial overhead [164].

Donky [165] is implemented on a RISC-V processor, enabling protection keys and user-

level interrupts. Domain transitions and memory management system calls are managed

by a per-process monitor. Only the monitor has access to the protection key registers.

Jenny [164] resolves several limitations of Donky, notably more complete system call fil-

tering. However, Jenny and Donky cannot be directly applied in x86 and require custom

hardware.

PKRU-Safe [108] polices inter-domain data flows in MPK based sandboxes. The au-

thors do not address any of the security issues presented in [52, 196] (i.e., system call mis-

use, stray MPK instructions). Thus, PKRU-Safe is orthogonal to BINWRAP and could be

deployed in order to enhance our memory restriction policies (i.e., what can be shared

between Node.js and native modules). Cerberus [196] aims to address the issues with

MPK-based sandboxes presented in [52] paper and present novel attacks. Cerberus is an

API, offering primitives for protecting other MPK sandboxes like Hodor and ERIM. System

calls are handled through a kernel-side monitor. However, since the security monitor is

implemented in the OS, it is not able to thwart sigreturn based attacks.

5.8 Summary

In this chapter we presented BINWRAP: a framework that applies across the whole stack of

Node.js applications in order to isolate the execution of potentially vulnerable third party

applications. We studied the Node.js ecosystem and understood how native add-ons are

used. We leveraged hardware assisted security mechanisms in order to enable strong isola-

tion guarantees. Next, we evaluated the security our framework against real-world exploits

in real-world applications. Finally, we evaluated in BINWRAP in terms of performance and

70 Chapter 5. Third party binary library isolation.

presented an average overhead of 3.17%, proving the statement of this thesis regarding the

benefits of hardware approaches in defending modern threat landscapes. We believe that

BINWRAP is a practical framework that can protect Node.js applications in the presence of

unsafe native libraries.

Chapter 6

Architectural Support for Instruction
Set Randomization

In chapters 4 and 5 we presented how architectural features in commodity processors can

be leveraged in order to make applications and systems resilient against exploitation. Par-

ticularly in chapter 5, we show how we can isolate vulnerable code, written in low-level

languages, lacking of memory-safety guarantees. In this chapter, we aim to prevent mem-

ory corruption vulnerabilities from escalating to full-fledged arbitrary code execution ex-

ploits in non memory safe or type safe applications. We achieve this by designing and im-

plementing architecturally supported Instruction Set Randomization in an open source

Sparc V8 processor.

In this work, we extended our previous work [144] with AES and design AESASIST. The

AES algorithm, requires significantly more modifications on the processor architecture,

however, offers enhanced protection compared to XOR and Transposition. XOR and Trans-

position require minimal resources in the processor die, however they are vulnerable to

key guessing attacks and cryptanalysis.

We compare two techniques for encrypting the executable code: (i) statically, by adding

a new section in ELF that contains the key that has been used to encrypt all code sections

of the binary file, using a binary transformation tool; and (ii) dynamically, by generating

a random key at load time and encrypting with this key at the page fault handler all the

executable memory mapped pages. The dynamic encryption approach supports dynam-

ically linked shared libraries, whereas static encryption requires statically linked binaries.

We discuss and evaluate the advantages of each approach in terms of security and per-

formance. Finally, our modified processor can also encrypt the return address at each

function call, and decrypt it right before returning to the caller. By doing so, AESASIST is

capable to protect against ROP attacks, by (i) preventing gadget discovery, via the use of

strong encryption schemes (i.e., AES) [39, 169], and by (ii) limiting the discovery of call-

preceded code locations, via the encryption of the return addresses [42].

To demonstrate the feasibility of our approach we present the prototype implementa-

71

72 Chapter 6. Architectural Support for Instruction Set Randomization

tion of AESASIST by modifying the Leon3 SPARC V8 processor [4], a 32-bit open-source

synthesizable processor [68]. We also modified the Linux kernel 3.8 to support the imple-

mented hardware features for ISR and evaluate our prototype. Our experimental evalua-

tion results show that AESASIST is able to prevent code injection attacks practically with-

out any performance overhead, i.e., less than 1%, when using simple encryption schemes

such as XOR and Transposition; more secure ciphers, such as AES, introduce a slightly

higher overhead, about 10%, which are acceptable in real scenarios considering the bene-

fits in terms of security. Meanwhile, the hardware extensions add about 10% of additional

hardware to support all ISR modes of our design. Our results also indicate that the dy-

namic code encryption at the page fault handler does not impose significant overhead,

due to the low page fault rate for executable pages. This outcome makes our dynamic en-

cryption approach very appealing, as it is able to generate a different, random key at each

execution, transparently encrypt any executable program, and support shared libraries

with negligible overhead.

Overall, the main contributions of this work are:

• We extend our previous work, which was based on simple XOR and Transposition

techniques, by adding the AES cipher. By doing so, we can guarantee that an en-

cryption key cannot be derived even if the attacker has access to both the plaintext

and the ciphertext (e.g due to a memory leak). In addition, it can hinder any gadget

discovery—which actually is a pivotal step of code reuse attacks—that are based in

code pointer leaks in order to bypass ASLR and the exploitation of memory disclo-

sure vulnerabilities to map the text segment of a process; in both cases instructions

will be encrypted with a strong cryptography scheme that prevents any form of crypt-

analysis or bruteforce attacks.

• In order to enable AES, we replicated the cache line fill protocol and placed the ASIST

unit between the MMU and the instruction cache. This new MMU component is

responsible for decrypting the instructions block-wise before sending them to the

cache subsystem. This is a major contribution over the previous design, in which

the instructions where decrypted only after they were fetched from the cache, for

several reasons: First, it increases the performance due to spatial locality. Second,

the new component makes our design ISA-agnostic, hence more easily portable to

other architectures, such as CISC.

• We introduce a dynamic code encryption technique that can transparently encrypt

pages with executable code at the page fault handler, using a randomly-generated

key for each execution. This technique can support shared libraries and does not

impose significant overhead.

• In terms of performance evaluation, we performed extra experiments to see how the

6.1. Background 73

instruction cache size affects the performance of ISR, showing that when we increase

the cache size (to 32KB or 64KB) the runtime overhead of a multi-round, block, ci-

pher, such as AES is reduced to practical margins. Since we evaluate our design using

an FPGA we also offer measurements regarding the area overhead.

6.1 Background

6.1.1 ISR

Instruction set randomization (ISR) has been initially proposed as a countermeasure against

code injection attacks [24,104,151]. ISR randomizes the instruction set (ISA) of a processor

so that an attacker is not able to know the instruction set of the target machine to inject

or disclose code. Therefore, any injected code will fail to accomplish the desirable mali-

cious behavior, probably resulting in illegal instruction execution. To prevent successful

machine code injections, ISR techniques typically encrypt the instructions of a program

with a specific key. This key actually defines the valid instruction set for this program. The

processor decrypts at runtime every instruction of the respective process with the same

key. Only the correctly encrypted instructions will lead to the intended code after decryp-

tion. Any injected code that is not encrypted with the correct key will result in irrelevant or

invalid instructions. At the same time, code fragments, called gadgets, cannot be disclosed

in a decrypted form, hence not chained into a meaningful exploit (as it typically happens

in code-reuse attacks such as ROP [39] and JOP [34]).

Most of the early ISR implementations utilize binary transformation tools in order to

encrypt the text section of the target binaries. Running those binaries requires an emulator

which is responsible for decrypting the instructions at runtime [37, 104]. Other solutions

rely on dynamic binary instrumentation tools [95, 151]. Such approaches have several

limitations though: (i) They incur a significant runtime performance overhead due to the

software emulator or instrumentation tool. This overhead is often prohibitive for the wide

adoption of such techniques. (ii) Deployment is limited by the necessity of several tools,

like emulators, simulators and manual encryption of the programs that are protected with

ISR. (iii) They are vulnerable to code injection attacks into the underlying emulator or

instrumentation tools. More importantly, they do not protect against attacks targeting

kernel vulnerabilities [5–7, 45], which are becoming an increasingly attractive target for

attackers. (iv)Most ISR implementations are vulnerable to evasion attacks aiming to guess

the encryption key and bypass ISR protection [144, 179, 200].

74 Chapter 6. Architectural Support for Instruction Set Randomization

6.2 Threat Model

Our threat model includes any programming bugs or inadvertent design flaws in software,

that can be exploited by an active adversary in order to launch a code injection or code

reuse attack. The adversary does not have administrative access (i.e., superuser) and can

have either local or remote access to the system. We also consider a trusted operating sys-

tem and that the executable files cannot be accessed when stored on disk. The operating

system is also protected by our design against code reuse and code injection attacks. Any

hardware bugs or vulnerabilities that may arise due to hardware design choices (such as

Spectre [109] and Meltdown [119]) are outside of our threat model, as mitigation would

require orthogonal solutions for hardware reliability. Finally, we do not target denial-of-

service attacks, or side-channel attacks. Below, we list different type of attacks and de-

scribe how AESASIST can protect in each case.

6.2.1 In-scope threats

Remote and local machine code injection attacks.

The threat model we address in this work is the remote or local exploitation of any software

vulnerability that allows the diversion of the control flow to execute arbitrary, malicious in-

jected code. Moreover, we also prevent the attacks that rely on disclosing the text segment

of a process through memory disclosure vulnerabilities, i.e. Code Reuse Attacks. We ad-

dress vulnerabilities in the stack, heap, or BSS, i.e. any buffer overflow that overwrites

the return address, a function pointer, or any control data. We focus on protecting the

potentially vulnerable systems against, machine code injection attacks and text segment

disclosure.

Kernel vulnerabilities.

Remotely exploitable vulnerabilities on the operating system kernel [5–7,45] are becoming

an increasingly attractive target for attackers. Our threat model includes code injection

and code reuse attacks based on kernel vulnerabilities. We propose an architecture that

is capable of protecting the operating system kernel as well. Our design can also thwart

attacks that use a kernel vulnerability to run user-level code with elevated kernel privi-

leges [105].

Return-to-libc and Code Reuse Attacks.

Instead of injecting new code into a vulnerable program, an attacker can execute existing

code upon changing the control flow of a vulnerable system to perform the attack. This

can be done either by redirecting the execution to existing library functions, attacks typi-

6.2. Threat Model 75

cally known as return-to-libc attacks [133]; either by using existing instruction sequences

ending with a ret instruction (called gadgets), a technique known as return-oriented pro-

gramming (ROP) [39, 169]. These types of attacks can be also achieved by chaining gad-

gets with function pointers residing in the stack [35]. ISR was originally designed to pro-

tect a system against code injection attacks, and not to address return-to-libc and ROP

attacks [104]. However, ISR with strong encryption can prevent the discovery of usable

gadgets, which is the pivotal step of code reuse exploitation techniques. In the case where

an attacker has managed to disclose the text pages of a process: the text pages will be

encrypted using a different key for each process, prohibiting any gadget extraction (e.g.,

though cryptanalysis or brute-force attacks). Snow et al. [176] introduced the concept of

Just-In-Time-ROP attacks, in which even a single leak of a code pointer and the presence of

a memory disclosure vulnerability can be exploited by an attacker in order to map the text

segment of a process. This can be achieved by recursively scanning disclosed code pages

for more code pointers. A similar technique described by Bittau et al. [31] can circumvent

ASLR. Herein, an attacker will exploit available memory disclosure vulnerabilities in order

to bypass ASLR. Then, brute force will be used in order to find a ROP sequence that can

read the code pointed from the leaked code pointers and send them to the attacker (e.g.

write to socket). The attack has been demonstrated to complete within approximately

4,000 requests. Again, ISR makes it hard for an attacker to discover usable gadgets since

the text segments will be encrypted.

Key guessing attacks.

Existing ISR implementations are vulnerable to key guessing or key stealing attacks [179,

200]. This way, sophisticated attackers may be able to bypass the ISR protection mecha-

nism, by guessing the key and then injecting and executing code that is correctly encoded

with this key. In this work, we aim to design and implement ISR in a way that it will be

very difficult for attackers to guess or infer the code randomization key. To achieve this

goal, we extend our previous work [144] which was based on simple XOR and transpo-

sition techniques, by implementing AES; by doing so, an attacker with knowledge of both

the plain-text and cipher-text of instructions will not be able to reconstruct the encryption

key.

6.2.2 Out-of-scope threats

Transient execution attacks. Any vulnerabilities in hardware that can disclose protected

or inaccessible memory when successfully exploited, cannot be mitigated by AESASIST —

by being able to dump the whole memory, an attacker is able to retrieve the process key

and circumvent our mechanism. For instance, in the recently discovered Spectre [109]

and Meltdown [119] attacks, the instructions that are executed either speculatively or out-

76 Chapter 6. Architectural Support for Instruction Set Randomization

of-order, can cause cache modifications. An attacker that can control the cache and ob-

serve the effects of the transiently executed instructions, is capable to disclose otherwise

inaccessible memory and retrieve the process key that is used for code encryption. Our

mechanism is not designed to protect against such attacks, since they rely on architectural

choices rather than software bugs.

6.3 AESASIST Design

AESASIST consists of different modules and components across different layers of the

hardware, the operating system, and the user-space, as can be shown in Figure 6.1. Over-

all, the processor has been extended with two new registers: usrkey and oskey, which store

the keys of the running user-level process and operating system kernel’s code respectively.

Additionally, a new register asist mode is used in order to select the encryption algorithm.

The operating system keeps the key and the mode of each process in a respective field in

the process table, and stores the key and the mode of the next process that is scheduled for

execution in the usrkey and asist mode registers using the sta privileged SPARC instruction.

Moreover, the processor is modified to decrypt instructions before they are fetched from

RAM, using one of the above two keys, according to the supervisor bit.

6.3.1 Encryption

AESASIST offers three different algorithms for code encryption, namely XOR, Transposi-

tion, and AES. These algorithms have different performance and security characteristics,

as we will see in more detail in Section 6.3.1 and Section 6.5.2, and can be used to cover

different needs or requirements. We support two options for encrypting an executable

program: static and dynamic. In static encryption, the program is encrypted before each

execution with a pre-defined key. In dynamic encryption, a key is randomly generated at

the binary loader, and all code pages are encrypted with this key at the page fault handler

before they are mapped to the process’s address space.

The main advantage of static code encryption is that it has no runtime overhead for

XOR and Transposition, while imposing acceptable overhead when using AES. However,

this approach has several drawbacks. First, the same key is used for each execution, which

makes it susceptible to brute force attacks trying to guess this key. Second, each exe-

cutable file needs to be encrypted before running. Third, static encryption does not sup-

port shared libraries; all programs must be statically linked with all necessary libraries.

In contrast, dynamic encryption has a number of advantages: it generates a random key

at each execution so it cannot be easily guessed, it encrypts all executables transparently

without the need to run an encryption program, and it is able to support shared libraries.

The drawback of dynamic encryption is the runtime overhead to encrypt a code page

6.3. AESASIST Design 77

Process Table

Scheduler

Encrypted

Binary A

sta [%key] %asi, %addrcontext switch

Execute
Instruction

Decode
Instruction

Fetch
Register
Access

Memory Exception Write-back

MMU

I/O Bus

DDR
Controler

ASI

D-cache

I-cache

Decrypt

Encrypted

instructions

key

usrkey
register

Supervisor
key

data

Main

Memory
Encrypted

Binary B

Encrypted

Binary C

process A keyA process B keyB process C keyC

Encrypted

Application Binary A

execve()

load_elf_binary()

asist_modeA=static

keyA=read_key()

Unmodified

Application Binary B

execve()

load_elf_binary()

asist_modeB=dynamic

keyB=random_key()

Unmodified

Application Binary C

execve()

load_elf_binary()

asist_modeC=dynamic

keyC=random_key()

Disk

Disk Disk

CPU

text page fault

ASI registers

DQ

EN

oskey
register

DQ

EN

__do_fault()

if (text_fault && asist_modeB==dynamic) {

new_page=alloc_page_vma(...); //anonymous page

copy_encrypted(new_page, f_page, keyB, ...);

//copy, encrypt, and map new anonymous page

}

Unencrypted

instructions

Page fault handler:

Disk

Figure 6.1: AESASISTarchitecture. The operating system reads the key from the ELF
binary (static encryption) or randomly generates a new key (dynamic en-
cryption), saves the key in the process table, and stores the key of the run-
ning process in the usrkey register. The processor decrypts each instruc-
tion (or I-cache line in case of AES) using usrkey or oskey register, accord-
ing to the supervisor bit.

when it is loaded to memory at a code page fault. In Section 6.5 we show that due to

the low number of code page faults, dynamic encryption is very efficient.

78 Chapter 6. Architectural Support for Instruction Set Randomization

ELF header

Program header table

.text

Section header table

.note.asist

.init

.fini

.rodata

...

.data

.bss

...

ELF header

Program header table

.text

Section header table

.init

.fini

.rodata

...

.data

.bss

...

ELF file before the encryption ELF file after the encryption

New section

Encrypted section

.section ".note.asist", "a"

.p2align 2

.long 1f - 0f # name size

.long 3f - 2f # desc size

.long 0x2 # type
0: .asciz "ASIST" # name
1: .p2align 2
2: .long 0x01234567 # desc (key)
3: .p2align 2

Figure 6.2: The ELF format of a statically encrypted executable file. The key is stored
in a new note section inside the ELF file, and all the code sections are en-
crypted with this key.

Static Binary Encryption

To statically encrypt an ELF executable we extended objcopywith a new flag (---encrypt-code).

The encryption key can be provided by the user or randomly chosen by the tool. Figure 6.2

shows the modifications of a statically encrypted ELF binary. We add a new note section

(.note.asist) inside the encrypted ELF file that contains the program’s encryption key.

We also changed the ELF binary loader in the Linux kernel to read the note section from

the ELF, get the key, and store it in a new field (key) of the current process. In this operation

mode we set a new field per process (asist mode) to static. The key is stored in the process

table and is used by the kernel to set the usrkey hardware register each time this process is

scheduled for execution.

Our static encryption tool also finds and encrypts all the code sections in ELF. There-

fore, all needed libraries must be statically linked, to be properly encrypted. Moreover, it is

important to completely separate code from data into different sections by the linker. This

is because the encryption of any data, which are not decrypted by the modified processor,

will probably disrupt the program execution. Fortunately, many linkers are configured this

way. Similarly, compiler optimizations like jump tables, which are used to perform faster

switch statements with indirect jumps, should be also moved to a separate, non-code sec-

tion.

To address the issue of using the same key at all executions, which may facilitate a key

guessing attack, one approach could be to re-encrypt the binary after a process crash. An-

6.3. AESASIST Design 79

other approach could be to encrypt the original binary at the user-level part of execve(),

by randomly generating a new key and copying the binary into an encrypted one. Even

though this approach can occur considerable overheads due to the extra time needed

to copy and encrypt the entire binary at load time, we believe that this can be useful to

protect against attacks that probe applications continuously in order to find execution

traces that do not crash. By re-randomizing the binary code each time, the possibilities to

achieve text segment disclosure are diminished.

Dynamic Code Encryption

Our other approach is to dynamically encrypt a program’s code before it is loaded into the

process’s memory. This technique is based on the fact that every page with executable

code will be loaded from disk (or buffer cache) to the process’s address space through a

page fault, the first time it is accessed by the program. By encrypting the code page at this

point, AESASIST will dynamically encrypt only the code pages that are actually used by the

program at each execution.

To support this, the ELF binary loader is modified to randomly generate a new key,

which is stored into the process table. It also sets the asist mode field of the current pro-

cess to dynamic. The code encryption is performed by the page fault handler at a text page

fault, i.e.,, on a page containing executable code, if the process that is responsible for the

page fault uses dynamic encryption according to asist mode. Then, a new anonymous

page is allocated, and the code page fetched from disk (or buffer cache) is encrypted and

copied on this page using the process’s encryption key. The new page is finally mapped to

the process’s address space.

Moreover, we allocate an anonymous page, i.e.,, a page that is not backed by a file, and

copy the encrypted code on this page, so that the changes will not be stored at the original

binary file. Even though processes that run the same code could share the respective code

pages in physical memory, we have a separate copy of each page with executable code

for each process, as they have been encrypted with different keys. This may result in a

small memory overhead, but it is necessary in order to use a different key per process

and achieve better isolation. As shown from recent attacks [31] this approach can prevent

probed processes to be forced to use the same key every time they are restarted after being

crashed by the attacker.

In practice, the memory allocated for code, accounts only for a small fraction of the

total memory. Also, we notice that we can still benefit from buffer cache, as we copy the

cached page.

Finally, we also modified the fork() system call to randomly generate a new key for

the child process. When the modified fork() copies the parent process’s page table, it

omits copying its last layer so that the child’s code pages will not be mapped with pages

80 Chapter 6. Architectural Support for Instruction Set Randomization

encrypted with the parent’s key. To operate correctly, the dynamic encryption approach

requires a separation of code and data per each page. For this, we modify the linker to align

the ELF headers, data, and code sections to a new page, by adding the proper padding.

Shared Libraries

One approach to support shared libraries is to bind each page with a separate key, similar

to Polyglot [171]. By doing so, shared libraries are supported using a per-page regional

key. While this minimizes the memory overhead of having multiple copies of the same

page for different processes, it also has several drawbacks; for example, it complicates our

hardware, affects the context-switch time, and imposes additional overhead in order to

fetch the key for decrypting the instructions.

To overcome this, the code of a shared library in AESASIST is encrypted with each pro-

cess’s key on the respective page fault when loading a page to process’s address space, as

we explained above. In this way we have a separate copy of each shared library’s page for

each process. This is necessary in order to use a different key per process, which offers

better protection and isolation.

Self-Modifying Code

The design we presented does not support randomized programs with self-modifying code

or runtime code generation, i.e.,, programs that modify their code or generate and execute

new code. To support such programs, we added a new system call in Linux kernel, namely

asist encrypt(char *buf, int size). This system call encrypts the code of length size

that exists in the memory region starting from buf bytes length, using the current process’s

key that is stored in process table. We note that the buf buffer may still be vulnerable to

a code injection attack, e.g.,, due to a buffer overflow vulnerability in the program that

may lead to the injection of malicious code into buf. Then, this code will be correctly

encrypted using asist encrypt() and will be successfully executed. Like previous work

supporting ISR with self-modifying code [24], we believe that programs should carefully

use the asist encrypt() system call to avoid malicious code injection in buf. By doing so,

ISR can prevent even from JIT-Spraying attacks [33], where an attacker can overwrite JIT

code pages residing in the heap with pages that contain malicious code; similar to code in-

jection attacks, the attacker needs to provide encrypted code with the correct key in order

to execute arbitrary code.

Encryption Algorithms and Key Size

The simplest, and probably the fastest, encryption algorithm is to XOR each bit of the code

with the respective bit of the key. Since code is much larger than a typical key, the bits of the

6.3. AESASIST Design 81

key are reused. In our prototype we implemented XOR encryption with key sizes that can

range from 32-bit to 128-bit. Even though larger keys typically reduce the probability of

key guesses and key extraction attacks, still they can be easily exploited when the attacker

has knowledge of both the plain-text and cipher-text (e.g., due to a memory leak) [179,200].

A better solution, with slightly more overhead, is to use the Transposition cipher algorithm.

In Transposition the bits of a 32-bit word are shuffled using an 160-bit key. For each bit

of the encrypted word we choose one of the 32 bits of the original word based on the

respective bits of the key. That way, the cipher-text constitutes a permutation of the plain-

text. Even though the Transposition cipher provides better security than simple XOR, it is

vulnerable to anagramming.

To overcome all previous limitations, we have also implemented the AES algorithm.

AES can guarantee that even attackers with the knowledge of both the plain-text and the

cipher-text (e.g., due to a memory leak) cannot derive the encryption key. The implemen-

tation of a hardware-based AES for ISR though is not a trivial thing. One of the major dif-

ferences of AES compared to XOR and Transposition, is that it operates on 16-byte blocks.

Thus, in order to retrieve the plain-text even of a single instruction, we need to decrypt a

16-byte aligned block. Moreover, our AES decryption unit requires approximately 12 cy-

cles for decrypting each block instead of on-cycle decryption offered by the previous two

algorithms. Other challenges are related to the specific architecture of the Leon3 processor

that we used for the implementation of AESASIST. For instance, the I-cache communicates

with the memory interface using a 32-bit AHB bus, hence the cache lines fill at a rate of one

instruction per cycle. Moreover, Leon3 uses a critical word first policy, i.e., during a cache

miss the instruction which caused the miss will be fetched first instead of the first instruc-

tion of the cache line. Then it will be immediately forwarded to both the integer unit and

the I-cache. After that the rest of the cache line will be filled. In order to extend the pre-

vious design of AESASIST [144] to support the AES algorithm, we had to make significant

modifications. As we will see in Section 6.5.2, even when using a complex, multi-round,

symmetric encryption algorithm like AES, the impact on the performance is within accept-

able margins when configuring our prototype with a typical I-cache size. This is due to the

implementation of a dedicated AES decryption unit placed before the I-cache. Thus, we

can benefit from the I-cache locality in order to minimize instruction decryptions.

6.3.2 Hardware Support

Placement of the Decryption Unit

The placement of the decryption unit can add extra cycles on the execution pipeline or

even break runtime optimizations added by the processor. To avoid such performance

overheads, it is important to place the decryption unit as early as possible. We considered

two options for placing the decryption unit: before and after the I-cache.

82 Chapter 6. Architectural Support for Instruction Set Randomization

ASIST Icache to
memory signals

 ASIST
to Icache signals

AMBA
Bus

A
H

B
 in

terface

Instru
ctio

n
 C

ach
e

C
ontro

ller

M
ain M

em
o

ry

A
SIST C

on
tro

ller

Memory to
icache signals

Icache to
Memory signals

AES Decryption
Unit

D
ata C

ach
e

C
ontro

ller

Instruction
Cache

Data
 Cache

CPU
Core

Encrypted
Instructions, Key

Decrypted
Instructions, Ready

Figure 6.3: The AES extended AESASIST processor is between the AHB interface and
the I-cache controller. Each cache block is fetched, decrypted and then
sent to the I-cache. To support AES, a separate AES decryption unit is in-
stantiated in order to decrypt each block.

When the decryption unit is after the I-cache, the instructions remain encrypted inside

the cache and the decryption takes place every fetch cycle, as shown in Figure 6.4b. This

may add extra delays and increased power consumption—especially for complex cipher

algorithms such as AES—since it is located in the critical path of the processor. Moreover,

since the instructions are encrypted in the I-cache, it may jeopardize any pre-decoding

operations located after the instruction cache, such as trace cache [160]. If it is stored

encrypted in the I-cache, pre-decoding cannot be performed, which may decrease per-

formance. Some pre-decoding may be quite involving (e.g. Trace Cache would combine

instructions from multiple basic blocks into a large basic block).

When the decryption unit is located before the I-cache, it is accessed only on I-cache

misses, as shown in Figure 6.4a. Especially for AES decryption, this is essential, since we

need to decrypt a whole block (16-bytes) of instructions each time. Decrypting 16-byte

blocks at once can lead to reduced power consumption, as the instructions that are exe-

cuted frequently, e.g.,, in loops, reside decrypted in the I-cache. As shown in Section 6.5.2,

even with AES, the runtime overhead is acceptable due to the locality of the I-cache ac-

cesses.

To recap, we selected to place the decryption unit after the I-cache for cipher algo-

rithms that can be completed in one-cycle, such as XOR and Transposition. For more

complicated cipher algorithms, such as AES, the decryption is placed before the I-cache.

6.3. AESASIST Design 83

Architectural extensions

AESASISTrequires two extra registers to store the encryption keys: usrkey and oskey. These

registers are memory mapped using a new Address Space Identifier (ASI), and are acces-

sible only by the operating system through two privileged SPARC instructions: sta (store

word to alternate space) and lda (load word from alternate space). The operating system

sets the usrkey register using sta with the key of the user-level process that is scheduled for

execution before each context switch. In case of a 32-bit key, a single sta instruction can

store the entire key. For larger keys, more sta instructions are needed.

The AESASIST processor chooses between usrkey and oskey for decrypting instructions

based on the value of the Supervisor bit. The Supervisor bit is 0 when the processor exe-

cutes user-level code, so the usrkey is used for decryption, and it is 1 when the processor

executes kernel’s code (supervisor mode), so the oskey is selected. When a trap instruction

is executed (ta instruction in SPARC), control is transferred from user to kernel and the

Supervisor bit changes from 0 to 1; interrupts are treated similarly. Thus, the next instruc-

tions will be decrypted with oskey. Control is transferred back to user from kernel with

the return from trap instruction (rett in SPARC). Then the Supervisor bit becomes 0 and

the usrkey is used. The context switch is performed when the operating system runs, and

oskey is used for decryption. Then the proper key of the process that will run immediately

after rett is stored at usrkey.

Figure 6.3 presents a high level overview for ISR support when using the AES cipher

algorithm, and the corresponding MMU that is required. As we can see, every time the I-

cache requests an address, the AESASIST controller will request the 16 byte aligned mem-

ory block (four LS bits of the address equal to zero) from the AHB interface. This is essen-

tial since the I-cache deploys critical word first algorithm, i.e., the address which caused

the cache miss will be requested first. The AESASIST controller will request and fetch each

word of the cache line using the AHB protocol and fill a 128-bit buffer. When the whole

block is fetched the buffer is forwarded along with the decryption key to the AES decryp-

tion unit. The AES decryption unit we deployed expands the key on each round and re-

quires 12 cycle to decrypt each block. When the block of instructions is decrypted each in-

struction is forwarded to the I-cache controller in the same manner the vanilla processor’s

AHB interface would, hence we preserve the critical word first policy. While these extra

steps needed on each I-cache miss seem to impose significant performance overhead, our

evaluation results indicate that we can amortize a vast percentage of the overhead in most

cases due to the I-cache locality.

Decryption Algorithms and Key Size

Figure 6.5a shows the implementation of XOR decryption with 128-bit key. Since each en-

crypted instruction in our architecture is a 32-bit word, we need to select the proper 32-bit

84 Chapter 6. Architectural Support for Instruction Set Randomization

Instruction cache

Decryption

unit
Unencrypted

instruction

32 32 Instruction

Fetch

Unencrypted instructions

key
32

Encrypted

instruction

32
Unencrypted

instruction

Address

32

(a) Decryption before the I-cache

Instruction cache

Decryption

unit

Encrypted

instruction

32
Instruction

Fetch

Encrypted instructions

32

Encrypted

instruction

32

key

32

Unencrypted

instruction

Address

32

(b) Decryption after the I-cache

Figure 6.4: Alternative choices for the placement of the decryption unit in the
AESASIST-enabled processor.

part of the 128-bit key, the same part that was used in the encryption of this instruction.

Thus, we use the two last bits of the instruction’s address to select the correct 32-bit part

of the 128-bit key using a multiplexer, and finally decrypt the instruction. The same ap-

proach is used for XOR decryption with other key sizes, multiple of 32 bits. The implemen-

tation of decryption with Transposition, as shown in Figure 6.5b, requires more hardware.

This is because it needs 32 multiplexers, one per bit of the decrypted instruction. Each

multiplexer has 32 input lines with all the 32 bits of the encrypted instruction, to choose

the proper bit.

Using AES we have increased area overhead due to the fact that we added an AES de-

cryption unit in the processor. However, modern processors are equipped with cryptogra-

phy accelerators thus, we can safely consider it a useful addition. For AES key we utilize

the 128 least significant bits of the Transposition key. Our AES decryption unit, expands

the key per-round. It also has 5 select lines that define the selection of the input bit at

each position. The select lines of each multiplexer are part of the 160-bit key. Besides the

additional hardware, the runtime operation of Transposition is equally fast with XOR, as

it does not spend extra cycles. When using AES the runtime overhead is slightly increased

due to the complexity of the encryption algorithm, i.e. 12 cycles per 16 byte block instead

of on-cycle for XOR and trasposition. To dynamically select the decryption algorithm and

key size, we have added a memory mapped register: asist mode.

Return Address Encryption

Return address encryption was first introduced in the initial ASIST implementation [144],

as well as in other proposed mechanisms [69, 202], in order to prevent the disclosure of

the text pages location. Encryption in those mechanisms is applied to all code pointers. In

our new design, we are not only relying on code pointer obfuscation for preventing gadget

discovery; by encrypting the text segment with a strong encryption scheme (AES), even

the disclosure of code pointers is not sufficient for an attacker to discover usable gadgets.

Finally, in the case where an attack can be mounted without disclosing the text segment

of the process (e.g. indirect JIT-ROP), any binary obfuscation technique can be used along

6.3. AESASIST Design 85

Unencrypted

instruction

32

key

32

Encrypted

instruction

128

32 bit

32 bit

32 bit 32

32 bit
32

32

32

32

Offset

2

(a) Decryption using XOR with 128-bit key.
Based on the last two bits of the instruction’s
address (offset) we select the respective 32-bit
part of the 128-bit key for decryption.

Unencrypted

instruction

32

key

32

Encrypted

instruction

32
...

32

160

32
...

32

32
...

32

5

5

5

Bit 0

Bit 1

Bit 31

5 bit 5 bit ... 5 bit

160 bit

5 5 5

...

(b) Decryption using Transposition with 160-
bit key. The implementation needs 32 multi-
plexers with all the 32 bits of the encrypted in-
struction as input lines in each one.

with our ISR with strong encryption in order to provide sufficient protection. Such attacks

require extensive knowledge of the victim application in order to succeed [75].

6.3.3 Operating System Support

Kernel Modifications

In our prototype we modified the Linux kernel, and we ported our changes to 2.6.21 and

3.8 kernel versions. First, we added two new fields in the process table records (task struct

in Linux kernel): the process’s key and the asist mode. We initialize the process’s key to zero

and asist mode to dynamic, so each unencrypted program will be dynamically encrypted.

We changed the binary ELF loader to read the key of the executable ELF file, in case

it is statically encrypted, or generate a random key, in case of dynamic encryption, after

calling the execve() system call. Then, the loader stores the process’s key to the respective

process table record. We also changed the scheduler to store the key of the next process

that is scheduled to run in the usrkey register before each context switch. For this, we

added an sta instruction before the context switch to store a 32-bit key. For larger keys, the

number of sta instructions depends on key size.

To implement dynamic encryption and shared library support we modified the page

fault handler. For each page fault, we check whether it is related to code (text page fault)

and whether the process that caused the page fault uses dynamic code encryption. If so,

we allocate a new anonymous page that is not backed by any file. Upon the reception of

the requested page from disk (or buffer cache), we encrypt its data with process’s key and

copy it at the same step into the newly allocated page. Then, the new page is mapped into

the process’s address space.

86 Chapter 6. Architectural Support for Instruction Set Randomization

Kernel Encryption

To encrypt kernel’s code we used the same approach with static binary encryption. We

modified an uncompressed kernel image by (i) adding a new note section that contains

the kernel’s encryption key, and (ii) identifying and encrypting all code sections. We had

to separate code from data into different sections while building the kernel image. The

oskey register saves the key of kernel’s encrypted code. We also modified the bootloader

to read and store the kernel’s key into the oskey register with a sta instruction, just before

the kernel’s execution. Since oskey is initialized with zero, which has no effect in XOR

decryption that is also default, the unencrypted code of the bootloader can be successfully

executed in the randomized processor. In case of AES encryption, if the key is zero, our

decryption unit will not decrypt fetched instructions.

We decided to statically encrypt the kernel’s code so as to not add extra delay to the

boot process. Due to this, the key is decided at the time the kernel image is built and en-

crypted, and it cannot change without re-encryption. Another option would be to encrypt

the kernel’s code while booting, using a new key that is randomly generated per boot. This

option could delay to the boot process. Most systems typically use a compressed kernel

image that is decompressed while booting. Thus, we can encrypt the kernel’s code during

the kernel loading stage when the image is decompressed into memory. The routine that

decompresses and loads the kernel to memory must first generate a random key, then en-

crypt the kernel’s code along with decompression and store the key in the oskey register.

6.4 AESASIST Prototype Implementation

In this section we describe the AESASISTprototype, and present the results of the hard-

ware synthesis using a FPGA, in terms of additional hardware needed compared to the

unmodified processor. We also discuss how the proposed system can be ported to other

architectures and systems.

6.4.1 Hardware Implementation

We implement AESASISTon Leon3 SPARC V8 processor [4], a 32-bit open-source synthe-

sizable processor [68]. Leon3 uses a single-issue, 7-stage pipeline, 8 register windows and

a 16 KB 2-way set associative D-cache. In order to study the overhead which will be im-

posed in a typical processor we also configured our Leon3 with 16 KB (2-way associative),

32 KB and 64 KB (4-way associative) I-cache sizes respectively. The cache has a single level

and is pure Harvard architecture. Finally, we synthesized and mapped the modified AE-

SASIST processors on a Xilinx XUPV5 ML509 FPGA board [204]. The FPGA has 256 MB

DDR2 SDRAM memory and operates at 80 MHz clock frequency. The source code of our

implementation is available at [71].

6.4. AESASIST Prototype Implementation 87

Table 6.1: Additional hardware used by AESASIST. We see that AESASIST adds just
0.6%–0.7% more hardware with XOR decryption using a 32-bit key, while it
adds significantly more hardware (6.6%–6.9%) when using Transposition.
When using AES the overhead is slightly over 10%

Synthesized Processor Flip Flops LUTs

Vanilla Leon3 9,227 16,986
XOR with 32-bit key 9,294 (0.73% increase) 17,090 (0.61% increase)

XOR with 128-bit key 9,486 (2.81% increase) 17,116 (0.77% increase)
Transposition with 160-bit key 9,838 (6.62% increase) 18,153 (6.87% increase)

AES with 128-bit key 10,207 (10.6% increase) 18,405 (8.3% increase)

6.4.2 Additional Hardware

Table 6.1 shows the results of the synthesis for three different hardware implementations

of AESASIST: (i) using XOR decryption with 32-bit and 128-bit keys respectively, (ii) us-

ing decryption with Transposition and a 160-bit key, and (iii) using AES decryption with

128-bit key. We also show the case for the unmodified Leon3 processor, as a baseline to

measure the additional hardware used by AESASIST to implement the ISR functionality

in each case. We see that AESASIST with XOR encryption and 32-bit key adds less than

1% of additional hardware, both in terms of additional flip flops (0.73%) and lookup ta-

bles (0.61%). When a larger key of 128 bits is used for encryption, we observe a slight in-

crease in the number of flip flops (2.81%) due to the larger registers needed to store the two

128-bit keys. The implementation of Transposition results in significantly more hardware

used, both for flip flops (6.62% increase) and lookup tables (6.87% increase). This is due

to the larger circuit used for the hardware implementation of Transposition, which con-

sists of 32 multiplexers with 32 input lines each, as we showed in Section 6.3.2. Finally, the

AES implementation results in approximately 10% more hardware, mostly due to its larger

complexity. Obviously, the extra hardware required can be decreased in cases where the

processors already contain cryptographic accelerators (such as the AES-NI [98] contained

in the majority of recent Intel and AMD CPUs). Such accelerators can be used directly by

our ISR implementation, thus amortizing a large percentage of the area overhead.

6.4.3 Kernel and Software Modifications

As we describe in Section 6.3.3, we have modified the Linux kernel and its tool-chain in

order to provide a full-featured SPARC workstation. In particular, we ported our Linux

kernel modifications in 3.8.0 kernel version. We built a cross compilation tool chain with

gcc version 4.7.2 and uClibc version 0.9.33.2 to cross compile the Linux kernel, libraries,

and user-level applications. Thus, all programs running in our system (both vanilla and

88 Chapter 6. Architectural Support for Instruction Set Randomization

AESASIST), including the vulnerable programs that we use for the security analysis, as

well as the benchmarks that we use for the performance evaluation, were cross compiled

on another PC. We created a new linker script to separate code and data for both static and

dynamic code encryption, and align headers, code, and data into separate pages in case

of dynamic encryption.

6.4.4 Portability to Other Architectures

Complex instruction set computer (CISC) and 64-bit architectures

In our current prototype, we have implemented the runtime decryption of instructions for

RISC architectures that use fixed-length instructions. Thus, porting the decryption func-

tionality in other RISC systems is straightforward. Moreover, our design does not require

any modification in the standard registers and data path, hence it can easily tailored to 64-

bit (or wider) architectures in which the instruction length is still 32-bit wide, e.g., SPARC,

RV64I, etc. In the case of larger instruction width, the only downside would be the num-

ber of instructions contained in each 16-byte encrypted block. CISC architectures, such

as x86, support variable-length instructions. In our design, we encrypt instructions per

16-byte blocks, thus we do not depend on the instruction length. Moreover, since the in-

structions are stored decrypted in the I-cache, we do not interfere with the split-line access

technique utilized in CISC architectures (i.e., when an instruction is split in two different

cache lines).

Regarding AESASIST’s hardware extensions, implementing new registers that are ac-

cessible by the operating system is straightforward in most architectures, including x86.

Encrypting the return address at each function call and decrypting it before returning de-

pends on the calling convention at each architecture. For instance, in x86 it can be im-

plemented by slightly modifying call and ret instructions. Finally, even though we have

implemented our prototype by modifying the Linux kernel, the same modifications (i.e.,

binary loader, the process scheduler and the page fault handler) can be made in other

operating systems as well.

Out-of-order execution

The Leon3 processor that we use for the implementation of AESASIST is a simple 7-stage

pipelined processor. As such, there are no options available to synthesize an out-of-order

core. Even though this prevents us from evaluating AESASIST in terms of performance

and circuit area overhead, still we believe that our design can be used in out-of-order exe-

cution cores without any modifications. This is due to the fact that AESASIST can decrypt

every instruction right before being stored in the I-cache, hence not modifying the proces-

sor core itself. In terms of performance overhead, we can extrapolate that the resulting

6.5. Experimental Evaluation 89

overheads will be similar with the in-order execution which are presented in Section 6.5.2.

The overhead of AESASIST highly correlates with the I-cache miss rate, rather than the

core’s architecture. In terms of area overhead, we can expect that our additional hardware

will be a lower percentage of the processor than the current, in-order, implementation of

AESASIST since out-of-order cores require more circuity area.

6.5 Experimental Evaluation

We now present the experimental evaluation of our AESASISTprototype in terms of secu-

rity and performance. As described in Section 6.4, our prototype is implemented on a

FPGA, running Linux kernel v2.6 or v3.8. For the security evaluation, we also configured

the networking of our base system and the corresponding Etherner adapter, in order to

enable remote exploitation attempts. We also install a ssh server in order to connect to

the Linux OS and execute the cross-compiled benchmark programs. The output of each

benchark is redirected to local files, thus avoiding any network delays.

6.5.1 Security Evaluation

Synthetic Attacks

In our first experiment, we use a vanilla v.2.6.21 kernel, which does not properly imple-

ment a non-executable stack on SPARC. We build a custom program with a typical stack-

based buffer overflow vulnerability, and we use a large command-line argument to inject

SPARC executable code into the program’s stack, which successfully executes after over-

writing the return address. We then use an AESASIST modified kernel without enabling

the return address encryption, and we run a statically encrypted version of the vulnerable

program with the same argument. In this case, the program is terminated with an illegal

instruction exception, as the unencrypted injected code cannot not be executed. Similarly,

we run an unencrypted version of the vulnerable program and relied on the page fault han-

dler for dynamic code encryption. Again, the injected code caused an illegal instruction

exception due to the ISR.

Real Attacks

To demonstrate the effectiveness of AESASIST at preventing real code injection attacks

that exploit user- or kernel-level vulnerabilities, we test attacks, shown in Table ??. The

first six attacks target buffer overflow vulnerabilities on user-level programs, while the last

three attacks, a NULL pointer dereference and two buffer overflow vulnerabilities in kernel

space.

In addition, we performe similar tests with other known vulnerable programs: Ettercap,

90 Chapter 6. Architectural Support for Instruction Set Randomization

0.9

0.95

1

1.05

1.1

O
ve
rh
ea
d
(%
)

vanilla static dynamic

(a) XOR

0.9

0.95

1

1.05

1.1

O
ve
rh
ea
d
(%

)

vanilla static dynamic

(b) Transposition

Figure 6.6: Percentage of overhead of (a) XOR and (b) Transposition when using the
SPEC CPU2006 benchmark suite. We see that both ASIST implementa-
tions have negligible runtime overhead compared to the vanilla system.

which is a packet capture tool, MariaDB database, sendmail, Light HTTPd and Null HTTPd

webservers. These programs were cross compiled with our toolchain and encrypted with

our extended objcopy tool. The injected shellcode is executed successfully only on the

vanilla system, while AESASIST always prevents the execution of the injected code and

results in an illegal instruction exception.

6.5.2 Performance Evaluation

To evaluate the performance of AESASIST, we run the SPEC CPU2006 benchmark suite and

two real world applications, in three different setups: (i) a vanilla Leon3 with unmodified

Linux kernel (namely Vanilla), (ii) AESASIST with static encryption (namely AESASIST-

Static), and (iii) AESASIST with dynamic code encryption (namely AESASIST-Dynamic).

Micro-Benchmarks

In our first benchmark, we run a representing subset of the integer benchmarks (CINT2006)

from the SPEC CPU2006 suite [180], which includes several CPU-intensive applications.

Figure 6.6 and Table ?? shows the slowdown of each benchmark when using AESASIST

with static and dynamic encryption respectively, compared to the vanilla system. We ob-

serve that both XOR and Transposition impose less than 3% slowdown in all benchmarks.

This is due to the hardware-based instruction decryption, which does not add any observ-

able delay. Moreover, the modified kernel performs only minor extra tasks, such as reading

the key from the executable file (for static encryption) or randomly generating a new key

6.5. Experimental Evaluation 91

0

0.5

1

1.5

p
er
lb
en

ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
er

sj
en

g

lib
q

h
2
6
4
re
f

O
ve
rh
ea
d
(%
)

32KB instruction cache

vanilla static dynamic

0

0.5

1

1.5

p
er
lb
en

ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
er

sj
en

g

lib
q

h
2
6
4
re
f

O
ve
rh
ea
d
(%
)

64KB instruction cache

vanilla static dynamic

0

0.5

1

1.5

p
er
lb
e
n
ch

b
zi
p
2

gc
c

m
cf

go
b
m
k

h
m
m
er

sj
en

g

lib
q

h
2
64

re
f

O
ve
rh
ea
d
(%
)

16KB instruction cache

vanilla static dynamic

Figure 6.7: Percentage of overhead with AES when utilizing different I-cache sizes.
We see that AESASIST with AES imposes significant overhead when the I-
cache size is relatively small and thus the ASIST unit is invoked frequently.
When we increase the I-cache size, the runtime overhead is reduced to
practical margins. Note that the maximum I-cache size we used in our
configurations, is typical for modern commodity processors.

(for dynamic encryption) once per each execution, while adding only one extra instruc-

tion before each context switch. We notice a slight deviation from the vanilla execution

time only for three of the benchmarks: gcc, sjeng, and h264ref. For these benchmarks,

we observe a slowdown of 1%–1.2% in static and 1%–1.5% in dynamic encryption, which

is probably due to the different linking configurations (statically linked versus dynamically

linked shared libraries).

One might expect that the dynamic encryption approach would experience a consid-

erable performance overhead due to the extra memory copy and extra work needed to

encrypt code pages at each text page fault. However, our results in Figure 6.6 indicate that

dynamic encryption performs equally well with static encryption. Thus, our proposed ap-

proach to dynamically encrypt program code at the page fault handler, does not seem to

add any extra overhead.

For the AES implementation, we observe in Figure 6.7 and Table ?? an increased over-

head; this is due to the fact that 1̃2 cycles are added on each I-cache miss. This overhead

is further exaggerated when using dynamic encryption. The performance impact when

using the default I-cache size (i.e. 16KB) is quite impractical for some of the benchmarks.

When using larger I-cache though, the performance impact of both static and dynamic

solutions drops significantly—for a 64 KB I-cache, only gcc and perlbench exceeded 10%

runtime overhead, due to their high I-cache miss rate. Thus, we can safely assume that

even when using AES encryption, ISR is a practical solution.

92 Chapter 6. Architectural Support for Instruction Set Randomization

Table 6.4: Data and text page faults per second and percentage during execution
when running the SPEC CPU2006 benchmark suite. Text page faults rarely
occur, attributing to less than 5% of the total page faults in most bench-
marks. This explains the negligible overhead of the dynamic encryption
approach.

Benchmark Data page faults rate Text page faults rate Data page faults (%) Text page faults (%)

400.perlbench 38.4964 1.97215 95.1267% 4.87329%
401.bzip2 44.3605 0.193831 99.565% 0.435044%
403.gcc 60.3235 3.93358 93.8784% 6.12164%
429.mcf 51.7769 0.0497679 99.904% 0.0960275%
445.gobmk 25.4735 0.905984 96.5656% 3.43442%
456.hmmer 0.0546246 0.0223249 70.9877% 29.0123%
458.sjeng 71.9751 0.0676988 99.906% 0.0939702%
462.libquantum 5.18675 0.0486765 99.0702% 0.929752%
464.h264ref 3.19614 0.0333707 98.9667% 1.03331%

To better understand the performance of this approach, we further instrumented the

Linux kernel to measure the data and text page faults of each process that uses the dy-

namic encryption mode. Table 6.4 shows the data and text page faults per second for each

benchmark. We see that all benchmarks have a very low rate of text page faults, and most

of them experience significantly less than one text page fault per second. Moreover, we

observe that the vast majority of page faults are for data pages, while only a small percent-

age of the total page faults are related to code. The negligible overhead with dynamic code

encryption at the page fault handler is due to two main reasons: (i) as we see in Table 6.4,

text page faults are very rare, and (ii) the overhead of the extra memory copy and page en-

cryption is significantly less that the page fault’s overhead for fetching the requested page

from disk. Note that in our setup we use a RAM file system instead of an actual disk, so a

production system may experience an even lower overhead. The very low page fault rate

for pages that contain executable code makes the dynamic encryption a very appealing ap-

proach, as it imposes practically zero runtime overhead, and at the same time it supports

shared libraries and transparently generates a new key at each program execution.

Real-world Applications

First, we run the lighttpd web server in a vanilla system and in the two encryption ap-

proaches (i.e., static and dynamic of AESASIST. Figure 6.8 shows the slowdown of the av-

erage download time for different file sizes. We see that AESASIST does not impose any

considerable delay, as the download time remains within 1% of the vanilla system for all

file sizes. We notice that both static and dynamic encryption implementations perform

equally good. We measure the page faults caused by lighttpd: 261 data page faults per

second, while only 0.013 text page fault per second. Moreover, most of these text page

faults occur during the first few milliseconds of the lighttpd execution, when the code is

6.5. Experimental Evaluation 93

0.9

1

1.1

1.2

1.3

1.4

1.5
O

ve
rh

ea
d

(%
)

vanilla static dynamic

Geometric Mean
Static: 0.3%
Dynamic: 1%

(a) Percentage of overhead when downloading
different files from a lighttpd Web server as a
function of the file size. We see that AESASIST
adds less than 1% delay for all file sizes.

0.9

1

1.1

1.2

1.3

1.4

1.5

O
ve

rh
ea

d
(%

)

vanilla static dynamic

Geometric Mean
Static: 17.5%
Dynamic: 20.4%

(b) Percentage of overhead when using AES
ASIST protected lighttpd downloading differ-
ent files from a lighttpd Web server as a func-
tion of the file size. We can see that for the typ-
ical size of HTTP responses the overhead per-
centage is 9%

Figure 6.8: Percentage of overhead of lighttpd in all ISR modes.

loaded into memory. When running lighttpd with AES encryption and a 64 KB I-cache

(Figure 6.8(b)), we notice that despite the overhead measured when using small datasets,

the overhead is reduced when the HTTP response size exceeds 2 KB. 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

128 256 512 1024 2048 4096 8192

O
ve

rh
ea

d
(%

)

vanilla static dynamic

Geometric Mean
Static: 0.5%
Dynamic: 0.4%

(a) Percentage of overhead when inserting data
into sqlite3 as a function of the number of inser-
tions. We see that AESASIST experiences less
than 1% slowdown even for very small datasets.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

128 256 512 1024 2048 4096 8192

O
ve

rh
ea

d
(%

)

vanilla static dynamic

Geometric Mean
Static: 22.6%
Dynamic: 20%

(b) Percentage of overhead when inserting data
into AES ASIST protected sqlite3 as a function
of the number of insertions.We see that AES AE-
SASIST experiences approximately 15% over-
head when using dynamic encryption.

Figure 6.9: Percentage of overhead of sqlite3 in all ISR modes.

Next, we run a sqlite3 database using the vanilla and the three AESASIST setups. To

evaluate sqlite3we implement a benchmark that reads a large text file and updates a SQL

table, using the C/C++ SQLite interface. Figure 6.9(a) shows the slowdown when inserting

data into the database as a function of the number of insertions. AESASIST imposes less

than 1% slowdown on the database’s operation for both static and dynamic approaches,

1The typical workload size for HTTP responses is well over 2 KB on average, except from MicroBlogs where
the average size is 1KB [116].

94 Chapter 6. Architectural Support for Instruction Set Randomization

even on small datasets that do not provide AESASIST with enough time to amortize the

encryption overhead. The same behaviour is noticed when we run sqlite3 with AES en-

cryption and a 64 KB I-cache (Figure 6.9(b)).

6.6 Related Work

Instruction Set Randomization. ISR was initially introduced as a generic defense against

code injections by Kc et al. [104] and Barrantes et al. [24,25]. To demonstrate ISR, they pro-

posed implementations with bochs [114] and Valgrind [134] respectively. Hu et al. [95]

implemented ISR with Strata SDT tool [167] using AES as a stronger encryption for in-

struction randomization. Boyd et al. [37] propose a selective ISR to reduce the runtime

overhead. Portokalidis and Keromytis [151] implemented ISR using Pin [27] with moder-

ate overhead and shared libraries support. In Section 6.6.1 we described in more detail all

the existing software-based ISR implementations and we compared them with AESASIST.

AESASIST addresses most of the limitations of the existing ISR approaches owing to its

simple and efficient hardware support. Polyglot [171] is similar with ASIST, but does not

offer dynamic encryption, hence blind ROP attacks are still possible. Shuffler [202] pro-

tects only user-space processes by periodically re-randomizing their address space layout.

The re-randomization is perfomed by a separate thread that runs in parallel, one for each

process. Morpheus [69] also uses code pointer obfuscation and instruction set randomiza-

tion.

ISR protects a system against any native code injection attacks. To accomplish this,

ISR uses per-process randomized instruction sets. This way, the attacker cannot inject

any meaningful code into the memory of the vulnerable program. The injected code will

not perform the intended malicious behavior and will probably crash after just a few in-

structions [24]. To apply the ISR idea, existing implementations first encrypt the binary

code of each program with the program’s secret key before it is loaded for execution. The

program’s key defines the mapping of the encrypted instructions to the real instructions

supported by the CPU. Then, at runtime, the randomized processor decrypts every in-

struction with the proper program’s key before execution. Injected instruction that have

not been correctly encrypted will result in irrelevant or invalid instructions after the oblig-

atory decryption. On the other hand, correctly encrypted code will be decrypted and exe-

cuted normally.

6.6.1 Limitations of Existing Implementations

Existing ISR Implementations use binary transformation tools, such as objcopy, to encrypt

the code of user-level programs. For runtime decryption they use emulators [114] or dy-

namic binary instrumentation [27, 134, 167]. In Table ?? we list and compare existing ISR

6.6. Related Work 95

implementations.

Kc et al. [104] implemented ISR by modifying the Bochs emulator using XOR with a

32-bit key in their prototype. The use of an emulator results in significant slowdown, up

to 290 times slower execution on CPU intensive applications. Barrantes et al. [24, 25] use

Valgrind [134] to decrypt applications’ code, which is encrypted with XOR and a random

key equal to the program’s length. This prototype supports shared libraries by copying

each randomized library per process, and offers an API for self-modifying code. How-

ever, the performance overhead with Valgrind is also very high, up to 2.9 times slower

than native execution. Hu et al. [95] implemented ISR with a software dynamic transla-

tion tool [167] using AES encryption with 128-bit key size. Dynamic translation results

in lower but still significant performance overhead, that is close to 17% on average and

as high as 250%. To reduce runtime overhead, Boyd et al. [37] proposed a selective ISR

that limits the emulated and randomized execution only to code sections that are more

likely to contain a vulnerability. Portokalidis and Keromytis [151] implemented ISR with

shared libraries support using Pin [27]. The runtime overhead ranges from 10% to 75% for

popular applications, while it has four-times slower execution when memory protection

is applied to Pin’s code.

Polyglot [171] is similar with ASIST, but does not offer dynamic encryption. Thus, at-

tackers can still launch blind ROP attacks, since the code will not be encrypted with dif-

ferent keys on each launch. Moreover, it uses a separate shared key cache inside the pro-

cessor, in order to support dynamic libraries, which increases the circuit area overhead of

the proposed mechanism significantly. Shuffler [202] proposes a mechanism that period-

ically re-randomizes the address space layout of a process. The proposed mechanism of-

fers adequate protection against control-flow attacks by continuously modifying the code

pointer addresses. However, it is not scalable because it requires a parallel thread to each

protected process, responsible for the re-randomization. Moreover, the proposed mech-

anism can protect only user-level applications. Morpheus [69] is a promising architec-

ture for thwarting the majority of control-flow attacks. Yet, it has been only implemented

and evaluated on gem5 simulator [30], with a single process context, using the system call

emulation capabilities of gem5, without any estimation of the area overhead of their de-

sign. The proposed mechanism requires extensive modifications of the original processor

by adding several hardware components, which may be impractical for low-powered or

resource-contraint devices (e.g. IoT devices, etc.), due to the extra substantial area over-

head Finally, the authors state that the latency of their mechanism will be prominent in

pipelined processors; this does not seem to be the case though, since every execution unit

of an out-of-order processor should be extended with an attack detector, imposing even

more area overhead in the final design. ARM recently launched processors with pointer

2Implemented in simulator, with system call emulation.

96 Chapter 6. Architectural Support for Instruction Set Randomization

authentication capabilities [115]. In this approach authentication codes are created for

every control-flow pointer, calculated with special instructions. If an adversary modifies

pointers residing in the stack, the modification will be detected by the authenticating in-

structions placed just before the control-flow transition instruction i.e. indirect jump, re-

turn. However, Google project zero reviewed the deployment of the PAC and found that

forging pointer authentication codes was possible [83].

Defenses against code injection attacks. Modern hardware platforms support non-

executable data protection, such as the No eXecute (NX) bit [148]. NX bit prevents data

from being executed, so it can protect against code inject attacks without performance

degradation. However, its effectiveness depends on its proper use by software. For in-

stance, an application may not set the NX bit on all data segments due to backwards com-

patibility constraints, self-modifying code and bad programming practices. We believe

that AESASIST can be used complementary to NX bit, in case that NX bit may not be ap-

plicable or can be bypassed. For instance, many ROP exploits use the code of mprotect()

to make executable pages with injected code, bypassing the NX bit protection. This way,

they can execute arbitrary code to implement the attack without the need of more specific

gadgets, which may not be easy to find, e.g.,, due to the use of ASLR. In contrast, these

exploits cannot execute injected code in a system using AESASIST, as this code will not be

correctly encrypted. Thus, AESASIST with ASLR provides a stronger defense.

Attacks demonstrated by Snow et al. [174] is also able to bypass NX bit and ASLR us-

ing ROP. First, it exploits a memory disclosure to map process’s memory layout, and then

it uses a disassembler to dynamically discover gadgets that can be used for the ROP at-

tack. AESASIST with ASLR, however, is able to prevent this attack: even if memory with

executable code leaks to the attacker, the instructions will be encrypted with a randomly-

generated key. This way, attacker will not be able to disassemble the code and find useful

gadgets. AESASIST ensures that key does not reside in process’s user space memory, while

the stronger variant which utilizes AES encryption algorithm, aims to avoid inferring the

key, even when the ciphertext and plaintext are known. SecVisor [168] protects the ker-

nel from code injection attacks using a hypervisor to prevent unauthorized code execu-

tion. While SecVisor focuses on kernel’s code integrity, AESASIST prevents the execution

of unauthorized code in both user and kernel level.

Defenses against buffer overflow attacks. StackGuard [57] uses canaries to protect

the stack, while PointGuard [56] encrypts all pointers while they reside in memory and de-

crypts them before they are loaded into a register. Both techniques are implemented with

compiler extensions, so they require program recompilation. In contrast, BinArmor [173]

protects existing binaries from buffer overflows, by discovering the data structures and

then rewriting the binary. CFI is a mechanism that aims to limit the locations where a

code pointer can point [10]. Many different policies have been proposed to reduce the

performance overheads and reduce the analysis required [61, 205]. However, it has been

6.7. Summary 97

shown that relaxed CFI policies are not sufficient against code-reuse attacks [53].

Other randomization-based defenses. ASLR [149] randomizes the memory layout of

a process at runtime or at compile time to protect against code-reuse attacks. Giuffrida

et al. [72] propose an approach with address space randomization to protect the operat-

ing system kernel. Bhatkar et al. [29] present randomization techniques for the addresses

of the stack, heap, dynamic libraries, routines and static data in an executable. Wartell

et al. [199] randomize the instruction addresses at each execution to address code-reuse

attacks. Jiang et al. [102] prevent code injections by randomizing the system call numbers.

6.7 Summary

To summarize this chapter, we designed, implemented and evaluated a a hardware-assisted

architecture for ISR support, namely AESASIST, which is able to protect both user- and

kernel-level processes transparently, without any program modifications. AESASIST uses

a combination of techniques to increase security and performance. In particular, it uti-

lizes highly secure cryptographic algorithms, i.e., AES, that can provide resilience against

different types of attacks (e.g., known cipher-text and plain-text, anagrams, etc.). More-

over, it takes advantage efficient caching strategies and spatial locality of code in order to

decrease the execution overheads. By doing so, it is able to decrease the excessive number

of decrypt operations—especially for block ciphers that operate on many bytes at once—

and improve the overall performance.

Our experimental evaluation shows that AESASIST imposes marginal overheads (less

than 1.5% for XOR and Transposition, and about 10% for AES), while it is able to pre-

vent attacks that exploit both user- and kernel-level memory vulnerabilities. Overall, our

work shows that AESASIST can address most of the limitations of existing software-based

ISR implementations, and can be easily ported to other hardware architectures to defend

against code injection attacks.

98 Chapter 6. Architectural Support for Instruction Set Randomization

,,,,,,

,,,,,,,,,,,,

Chapter 7

Control-Flow Integrity

In this chapter we present the design and implementation of fine grained Control-Flow

Integrity. We achieved this by extending the instruction set of Leon3 Sparc v8 processor

(same as 6). Particularly, in this work, we extended our previous hardware-assisted CFI

(HCFI) [49] in order to enhance its granularity and flexibility.

Control-Flow Integrity has been in the recent years a mechanism that all major ISAs

(x86, ARM, etc.) include as an extension. The experince and lessons learned through this

and our previous work are being applied in the RISC-V ISA [21], in order to shape the

official specification for CFI in RISC-V architecture. Trnasforming an academic work to an

industrial solution is not an easy task, since the design choices are much more restrained

in order to preserve functionality and compatibility.

The exploitation threats are constantly evolving. For instance, code-reuse attacks, such

as Return-Oriented Programming (ROP) [159] and Jump-Oriented Programming (JOP) [34]

can potentially take advantage of memory vulnerabilities and transform them to func-

tional exploits. These techniques do not require any code injections; instead, they re-use

existing parts of the program to build the necessary functionality without violating DEP.

According to reports, more than 80% of the vulnerabilities are exploited using code-reuse

attacks [156].

Code randomization techniques [145] are shuffling the location of the code, in order

to make code reuse attacks harder to achieve. Still, even a small information leak can re-

veal all of the process code and bypass any randomization scheme [175]. In the previous

chapter 6 we presented a randomization technique that does not randomize addresses,

rather the code of the application, in an attempt to prevent the disclosure of gadget loca-

tions. However, this strategy is not always effective, it has been proven that even without

the knowing the location of gadgets, attackers can still exploit vulnerable applications [31].

Instead of hiding the code, another way for stopping exploits is to prevent the execution

of any new functionality, by employing Control-Flow Integrity (CFI) techniques [9]. An

attacker cannot inject code or introduce any new functionality that is not part of the le-

gitimate control-flow graph (CFG). Unfortunately, the majority of existing CFI proposals

99

100 Chapter 7. Control-Flow Integrity

have still many open issues (related to accuracy and performance), that hinder its applica-

bility [22].

In this work, we enhanced the granularity and flexibility of our previous design [49]. In

our previous design we designed and implemented new hardware instructions dedicated

for CFI, and the deployed shadow memory within the processor core. In this work we in-

creased the granularity of CFI (especially in forward-edge situations); moreover we cover a

couple of intrinsic situations (including the instrumentation of fall-through functions and

indirect jumps, such as switch statements, within functions). Performance-wise, the im-

plementation in hardware is the optimal choice; our approach adds less than 1% average

runtime and 2% power overhead, making it suitable for embedded systems.

Overall, HCFI is a hardware design that offers a CFI solution that is (i) complete, since

it protects both forward and backward edges, (ii) fast, since the experienced overhead

is, on average, less than 1%, and (iii) more accurate, since it employs a full-functional

shadow stack implemented inside the processor core. Furthermore, we argue that HCFI

is the most complete hardware implementation of CFI so far, supporting many problem-

atic cases (such as setjmp/longjmp, recursion, fall-through functions and indirect jumps

within functions).

Furthermore, the design of HCFI forms the base for CFI in RISC-V architecture, i.e. the

design of the Shadow Stack and Landing Pads (SSLP) extension specification. Compared to

HCFI, SSLP is a complete design for Control-Flow Integrity which offers in-main-memory

shadow stacks for supporting multiple threads, supports user-level threads and offers pro-

tection across every privilege level of RISC-V (i.e., machine, supervisor and user).

7.1 Background

Control-Flow Integrity (CFI) [9] constraints all indirect branches in a control-flow graph

(CFG), which is determined statically before the program execution Fig. 7.1a. In essence,

this is achieved by setting a simple set of rules that a program execution flow must adhere

to:

1. A call-site “A” can call a function “B” only if the edge (the call itself) is part of the

Control-Flow Graph (CFG). This is called Forward-Edge CFI and can easily applied

to direct calls, as the only way to modify a direct call is to overwrite the code itself.

This is not the case for indirect calls though, where function pointers are typically

stored in data regions.

2. A function “B” can only return to the call-site “A” that actually called it, and no other

place in the code. This is called Backward-Edge CFI. Backward-edges are, in essence,

indirect calls, since they rely on a pointer (return address) to jump to their target.

An attacker cannot inject code (CFI requires that Data Execution Prevention is enabled)

7.1. Background 101

Indirect Call Site
A

Indirect Call Site
B

Indirect Call Site
C

Function 2

Function 1

Function 3

Function 4

(a) Example of an application CFG

Indirect Call Site A

Indirect Call Site B

Indirect Call Site
C

Function 2

Function 1

Function 3

Function 4

(b) Without CFI indirect jumps can any ad-
dress.

or introduce any new functionality that is not part of the legitimate control-flow graph

(CFG). The majority of existing CFI proposals have still many open issues (related to ac-

curacy and performance overhead), that hinder its applicability [22, 205]. For instance, it

is not always easy to compute the program’s CFG. This is mainly because the source code

might not always be available, while even if it does, dynamic code that might be intro-

duced at run-time or the heavy use of function pointers can lead to inconclusive target

resolution [22]. This problem has led researchers to develop CFI techniques that are based

on a relaxed approximation of the CFG [205], also known as coarse-grained CFI.

Unfortunately, coarse-grained CFI has been demonstrated to exhibit weak security

guarantees and it is today well established that it can be bypassed [73]. Approximation of

the ideal CFG through code analysis is not always sound, therefore, at least for protecting

backward edges, the community has suggested shadow stacks [60] - secure memory that

stores all return address during function calls. Many research efforts have stressed that

shadow stacks are important for securing programs, even when we know the program’s

CFG with high accuracy [67]. A trivial case is when a function is called by multiple places

in the program. According to the CFG, all return locations are legitimate, however only

one is actually correct. Moreover, implementing fine grained CFI solely on software, in-

troduces prohibitive performance impact. In the original CFI proposal by Abadi [9], the

average performance was 21%. More recent approaches like SafeStack [111], are designed

to offer fine grained backward edge protection with minimal overhead. The applications

are instrumented during compilation in order to use a different, protected stack for storing

102 Chapter 7. Control-Flow Integrity

control flow variables used in backward edges. However, protecting memory regions using

software techniques has been proven ineffective against sophisticated attacks [41, 74].

To overcome there restrictions, hardware-assisted CFI implementations can provide

architecturally protected memory regions for storing control-flow variables, while at the

same time accelerate significantly any checks required during control-flow transitions;

this enables the use of fine-grained CFI even in low-powered devices.

7.2 Threat Model

7.2.1 In-scope threats

Our software and firmware threat model assumes that an attacker can exploit a vulnerabil-

ity, either a stack or heap overflow, or use-after-free, present in the target software binary.

This vulnerability can be used to overwrite key components of the running program like

return addresses, function pointers, or VTable pointers. We also consider that the attacker

has successfully bypassed ASLR, and has full knowledge of the memory layout, CFI is or-

thogonal to ASLR and does not interfere with it in any way.

Nevertheless, the system enforces that (i) the .text segment is non-writable, prevent-

ing the application’s code from being overwritten, and (ii) the data segments are non-

executable blocking the attacker from executing injected data with proper CFI annotation.

With regards to linking we assume that the binaries are configured with RELRO in order

to protect GOT and PLT sections from being written. For privileged modes we exclude ex-

tending the kernel/firmware using unverified/untrusted kernel/firmware extensions such

as drivers or modules that may disable the protections. We also consider that the tool

chain used for compiling the binary and libraries loaded by the binary are trusted and

will not emit malware behavior intentionally. For each privilege level, we assume that the

higher privilege levels are not exploited and that the code is trusted and does not include

malware.

7.2.2 Out-of-scope threats

We do not consider Data Oriented Programming (DOP) attacks [94] in our threat model. In

this attack scenario the attacker does not need to divert from the predefined control flow

graph of the application. Rather, the attacker overwrites (non-control) data in order to

change the CFI-compliant behavior of the application, e.g. change the arguments passed

to a system call. This exploitation technique is possible even in the theoretically most ac-

curate control flow integrity scheme. In some cases the attacker needs to also combine

DOP and code reuse attacks in order to achieve exploitation. Thus, Control Flow Integrity

can harden the application against exploitation, since an attacker has a limited set of valid

target functions and cannot dynamically select to execute unintended code blocks of the

7.3. Hardware-Enforced Control-Flow Integrity 103

Table 7.1: Instructions needed to support HCFI.

SetPC Pushes the current program counter (PC) in the shadow
stack

CheckPC Pops the shadow stack and compares the result with the
next PC

SetPCLabel Can push the PC onto the shadow stack and carries a label
used to verify forward edges which is stored in a dedicated
register (Label Register). Finally, it sets the requirement
the next instruction must be a CheckLabel

CheckLabel Carries a label that is compared to the one in the Label
Register

SJCFI Sets the environment for a future longjmp and acts as a
landing point for an executing one

LJCFI Signifies that a longjmp is underway

application. We also exclude techniques based on debugging, emulation and code injec-

tion using hooking techniques. Finally, side-channel techniques allowing arbitrary data

accesses are outside of the problem description CFI aims to solve.

7.3 Hardware-Enforced Control-Flow Integrity

HCFI enforces the set of CFI rules (described in Section 7.1) in hardware, while also pro-

vide workarounds for certain corner cases. More specifically, a valid call requires that the

call site and the destination have been previously acknowledged to be a valid pair in the

CFG. A simple way to avoid checking a list of valid pairs for every indirect call, is to group

valid pairs with a label. If the label of the source and the destination match, then the edge

is legal.

On the contrary, a valid return is typically simpler to validate. Whenever a call takes

place, the return address is pushed to the stack. If the address reached after a return,

matches the top of the stack, the return is valid. This is achieved by also pushing the re-

turn address to a new, hidden, stack (namely shadow stack), and comparing the return’s

target to the one stored at the top of the shadow stack. However, this is not the case for

the setjmp/longjmp case, in which a function does not necessarily return to its caller. In

particular, longjmp never returns to its caller but to its matching setjmp.

To support this functionality, the ISA is extended with new instructions (shown in Ta-

ble 7.1): two for the instrumentation of the backward edges, two for the forward edges,

and two for handling setjmp/longjmp cases. The instructions are strategically placed, so

as to wrap the Control-Flow edges. SetPC and SetPCLabel are paired with direct and in-

104 Chapter 7. Control-Flow Integrity

Normal
Execution

Flow

Label Register

 Label

Control
Flow

Violation

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

0

1

0

0

Indirect
Call

State

 Return
 Address

(a) FSM for indirect call instructions

Normal
Execution

Flow

Return
Address

Validation

Shadow Stack

0x1234

0xabcdc

0xbeef4

0xdeadc

0x1337c

0xcafec

….

Control
Flow

Violation

(b) FSM for return instructions

Figure 7.2: The basic FSMs for the hardware-based CFI. For return instructions, the
target Program Counter is compared with the top value of the stack every-
time a CheckPC instruction is received and the execution continues nor-
mally.

direct calls respectively, while CheckPC is paired with return instructions, and CheckLabel

is placed in function entry points, if the function is an indirect call target. Finally, SJCFI

and LJCFI are paired with the calls to setjmp and longjmp themselves. LJCFI is placed

immediately before the call to longjmp, while SJCFI is placed immediately after the call

to setjmp, so that it will be the first instruction executed after a return from setjmp, no

matter if setjmp or longjmpwas called.

Finally, given that the design of HCFI does not track stack frames, but specific ad-

dresses instead, recursion may result in the same address being pushed to the shadow

stack multiple times. From this observation, a very simple optimization can be imple-

mented; namely, not storing the address when it equals the top of the stack, but instead

marking the address at the top as recursive. This effectively negates the spacial require-

ments of immediate recursion. During CheckPC execution, if the top address in the shadow

stack is marked as recursive and is the same as the target of the return instruction it will

not be popped. If not, the top address will be popped and the target address will be com-

pared with the next top address in the shadow stack. If the two addresses are equal, the

execution will continue normally and the top of the shadow stack will be popped (if the

address was not marked as recursive). If the addresses are not equal, CheckPC will result

7.4. Fine-grained CFI Instrumentation 105

in a CFI violation.

7.4 Fine-grained CFI Instrumentation

Indirect Call
Site A

Indirect Call
Site B

Indirect Call
Site C

Function 2

Function 1

Function 3

Function 4

Indirect Call
Site A

Indirect Call
Site B

Indirect Call
Site C

Function 2

Function 1

Function 3

Function 4

Indirect Call
Site A

Indirect Call
Site B

Indirect Call
Site C

Function 2

Function 1

Function 3

Function 4

Landing Pads: Indirect Call Sites
can point only at function entries.
Call-sites can point to any
function entry.

Function Labels: A label is
assigned to each function. Same
labels are used in functions
targeted by the same set of
call-sites.

Call-site Labels: A label is
assigned to each call-site.
Checks are performed in the
function entry to ensure that the
origin is valid.

Figure 7.3: Examples of CFG representation based on the granularity offered by the
CFI strategy, our previous design offered the per-function CFG (center).
Our revised design offers per-indirect-call labels (right-most).

The instructions presented in Section 7.3 are created in order to enable a policy agnos-

tic CFI mechanism. Especially for the backward edges, they can easily support the finest

possible granularity: by using an architecturally protected shadow stack where only the

CFI instructions can modify values, we can ensure that a function will always return to

the original call site. However, for forward edges, the granularity is proportional to the

effort of analysis performed on the code of the executable. Ideally, every function in the

binary will be reachable by a minimum set of indirect call sites. We note that our design

can even support more relaxed forward-edge schemes, where indirect call sites can target

every function entry point, i.e. by using only one label in the whole binary — this can be

practical in cases, where extensive control flow analysis is not feasible.

To allow for finer granularity and flexibility Fig. 7.3, we make the following modifica-

tions to our initial design. Previously, every CheckLabel instruction was requiring the

Label Register to be set, and hold the correct label. Under the new design, an unset La-

bel Register, or one carrying an incorrect label, does not lead to a violation, as long as

the next instruction is also a CheckLabel. Also, the SetPCLabel instruction can now omit

pushing the PC to the shadow stack, depending on its arguments. Moreover, we allow the

106 Chapter 7. Control-Flow Integrity

Normal
Execution

Flow

Label Register

Return
Address

If (SetPC == 1)
Label

Control
Flow

Violation

Shadow Stack

0x1234

0xabcd0

0xbeef0

0xcafe0

….

0

1

0

0

Indirect
Call

State

Figure 7.4: The extended FSM for Indirect Call States. A SetPCLabel instruction
is received, the appropriate memory modules are set, and the core en-
ters a state where only CheckLabel instructions are accepted. Once a
CheckLabel instruction with the appropriate label is received, the execu-
tion returns to its normal flow.

instrumentation of indirect branching within the same function. Ignoring CheckLabel in-

structions does not raise security concerns, if the whole binary is instrumented properly.

Forward-edge transitions should only be checked during indirect call and branch instruc-

tions — during normal execution, the CheckLabel instructions do not need to make any

checks, since the control-flow is not influenced by data.

7.4.1 Finer Forward-Edge Granularity

When Control Flow Integrity was first introduced by Abadi et. al. [9], indirect call targets

with a common source had to be grouped together. For example, if a call site “A” indirectly

called a call target “B”, and a call site “C” could indirectly call “D” and “B”, then both call

sites “A” and “C”, as well as the call targets “B” and “D”, would have to share the same

label. This is a usual case in C++ applications where indirect calls, dereference virtual

table pointers. Target functions that are common between indirect call sites, will force the

use of the same label across a large portion of the application. Thus, the granularity of

forward-edge protections become significantly coarser.

In this work, we offer the option to set a unique label for each indirect call site, and

add as many CheckLabels in the call target as needed. The previous example can now be

instrumented with 2 labels in the “B” entry point (one for each indirect call-site). Call site

“A” and “C” will carry different labels in their CheckLabel instructions. This has the effect

7.5. Implementation 107

of not allowing call site “A” to jump to “D”, which was previously possible. This allows for

much finer forward-edge CFI on top of an already powerful design. Figure 7.4 presents the

operation of CheckLabel instruction.

Fall-through Functions

In many popular libraries, such as GNU libc, there are functions with overlapping code

sections [13]. In such cases, the execution of a function falls-through into another func-

tion’s entry point (without using branch instructions). If these functions are possible tar-

gets of indirect call instructions, they should be instrumented with CheckLabel instruc-

tions, otherwise even if the indirect transition is valid it will result to a CFI violation. Since

CheckLabels do not cause a CFI violation when the processor is not in indirect jump state,

they are just ignored during execution. Thus, when a function falls through, the execu-

tion of the inner function’s CheckLabel instructions will not result in a CFI violation. This

allows for fall-through functions to be instrumented like regular functions.

Intra-Function Forward-Edges

Most CFI schemes do not take into account indirect branches, targeting addresses within

the same function. For example, large switch statements are usually compiled to jump ta-

bles in order to reduce the code size of the binary. In these cases the address of each case

is stored in a jump table. At runtime, the result of the switch statement is used in an indi-

rect jump in order to dereference the jump table at the appropriate index. Thus, instead

of emitting absolute jumps for every possible statement result, the compiler emits a single

indirect jump that uses the statement result as an index in the jump table. In our design

we offer the capability to instrument those indirect jumps in order to ensure that the tar-

get address is the entry point of one of the cases. Each indirect jump will be instrumented

with a SetPCLabel instruction that will not push a return address in the shadow stack (i.e.

SetPC bit is ’0’), and the entry points of each case basic block will be instrumented with

the appropriate CheckLabel instruction. Every switch statement in the binary should use

a different label for better granularity.

7.5 Implementation

To implement the hardware-based CFI described in the previous sections, we extended the

Leon3 SPARC V8 processor, which is a 32-bit open-source synthesizable processor. Over-

all, the additions to the core can be grouped in the following two categories: (i) Memory

Components and (ii) CFI Pipeline.

108 Chapter 7. Control-Flow Integrity

7.5.1 Memory Components

The following new memory components are deployed in the Register File of the core:

• A 256*32 bit dual-port Block RAM was used for the Shadow Stack.

• A 256*8 bit single-port Block RAM was used for the setjmp and longjmp support

(SJLJRAM).

• A 18 bit register was used to store the label for forward edge validation (Label Regis-

ter).

• A 256*1 bit array helped us optimize recursive calls (Recursion Array).

7.5.2 CFI Pipeline

Our instructions enter the Integer Unit’s (IU) pipeline as usual, however they do not inter-

fere with it. We have developed a new pipeline within the IU (CFI Pipeline) that operates

in parallel and provides the functionality required everytime the instructions are decoded.

• SetPC first tops the Shadow Stack and compares it to the current Program Counter

(PC). If the memory addresses match, the Recursion Array is set; otherwise, the ad-

dress is pushed onto the shadow stack. In case the Shadow Stack is full a Full viola-

tion is raised.

• SetPCLabel is in essence two instructions, meaning that it acts exactly as a SetPC

and what could be described as a SetLabel. The SetPC functionality works only if

the 25th LS bit of the instruction is set. Regardless of the SetPC functionality, the

Label carried in its 18 LS bits is written to the Label Register, and the CFI Pipeline

transitions to the SetLabel state. This mandates that only CheckLabel instructions

can be executed, until one with the correct label is issued. If any other instruction is

issued, a Control Flow violation is raised.

• CheckLabel compares the Label carried in its 18 LS bits to the label stored in the Label

Register, if the CFI Pipeline is in the SetLabel state. Otherwise, it is ignored and acts

as a nop. If the comparison holds, the Label Register is reset and the pipeline transists

from SetLabel state to normal execution. If not, the execution continues, but if an

instruction other than checklabel is issued, a Control Flow violation will be raised.

• CheckPC first checks the Shadow Stack; if it is empty, an Empty violation is raised.

Otherwise, it tops the Shadow Stack, increments the value by four (one instruction)

and compares it to the next PC. If the addresses match and the equivalent recursion

bit is not set, the Shadow Stack is popped. If the addresses did not match but the

7.6. Performance Evaluation 109

recursion bit is set, the address is popped and another comparison is performed

with the next value. Again, if they match and the top value is not recursive, it is

popped. If the first comparison failed and the top address was not recursive, or if

both comparisons failed, a PC Mismatch violation is raised.

• SJCFI changes its functionality depending on whether the CFI Pipeline is in the

longjmp state. If it is not, it writes the current depth of the Shadow Stack to the

SJLJRAM. The address is provided by a label it carries on its 8 LS bits. Otherwise, it

uses the same label to read the address from the SJLJRAM and set the Shadow Stack

to that depth. The Shadow Stack will not allow an index higher than the current, so

that previously popped addresses cannot be abused. The CFI Pipeline returns to its

default state.

• LJCFI sets the pipeline in the longjmp state until an SJCFI instruction is executed.

7.6 Performance Evaluation

We synthesize and program our new design, based on the Leon3 soft-core, on a Xilinx

ml605-rev.e FPGA board. The FPGA has 1024 MB DDR3 SO-DIMM memory and the design

operates at 120 MHz clock frequency. Since we are targeting embedded systems, we run

all tests without an operating system present. We instrumented most of the SpecInt2000

suite and a few microprocessor benchmarks, namely Coremark, Dhrystone, and Matmul.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Figure 7.5: The runtime overhead measured with our implementation.

110 Chapter 7. Control-Flow Integrity

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4 5 6 7 8 9 10

increment empty

Figure 7.6: The runtime overhead added by using 1-10 labels on an empty function or
a function that increments a value.

7.6.1 Runtime Overhead

When instrumenting only calls (both direct and indirect) and returns, the average over-

head lies at a little under 1% as shown in Figure 7.5. In the case of gap benchmark, the

reported overhead is the result of a tight loop executing a multitude of indirect calls to

relatively small functions.

We also run two series of micro-benchmarks to see the effect of adding multiple labels

to a function. We did this by executing a tight loop with an indirect call to one of two func-

tions. The first was an empty function, which results in three assembly instructions. The

second was a function that incremented a global variable, this has a body of ten instruc-

tions. We added one to ten labels on the function entry points. With these benchmarks we

can find the maximum percentage of runtime overhead imposed when a function is called

indirectly with CFI instrumentation. We present our results in Figure 7.6. In our previous

design the maximum runtime overhead that could be imposed is the same as the overhead

reported for the empty function with only one label. The runtime overhead is relative to

the number of indirect call sites that can point to each function (i.e. the number of labels

in the entry point) and the number of instructions in the function. In large functions, CFI

instructions will account for a small percentage of the function’s code. Thus, we expect

that the performance overhead will be significantly less in real world applications. By also

instrumenting indirect jumps, the overhead can increase; even though this depends on

the total number of indirect branches that the program uses. For example, forward-edge

protection in the jump table implementation of switch statements, can be accomplished

7.7. Designing CFI in RISC-V Architecture 111

with the execution of just two additional instructions. In our new design, the granularity of

forward-edge can be adjusted, i.e., use the same labels in some indirect call sites in order

to reduce the number of labels in function entry points. Thus, application designers can

opt to reduce forward-edge granularity in order to favor performance.

7.6.2 Hardware Overhead

We implemented our design initially without longjmp support and the recursion optimiza-

tion. The resulting area overhead, as detailed by the reports of the Xilinx tools used to

synthesize the design, is very low, using an additional 0.65% registers and 0.81% LUTs

(look-up tables). The area overhead increases significantly to 2.52% registers and 2.55%

LUTs, when placing the longjmp support and the recursion optimization.

7.6.3 Power Consumption

We measure the power consumption of our design using the Xilinx XPower Analyzer tool.

For the unmodified design the tool reported 6072.11 mW power consumption. The re-

quired modifications for the CFI instructions increase the power consumption to 6149.32

mW. The full fledged design with CFI and SJ/LJ support has a power consumption of

6176.92 mW. The results indicate that the power consumption overhead is about 1.2%,

which increases to 1.7% when adding longjump support.

7.7 Designing CFI in RISC-V Architecture

While, HCFI is a promising strategy for CFI since it offers enhanced granularity, the design

requires radical changes in order to be applied in real-world general purpose architectures.

In this section we will discuss each one of the design choices proposed in order to upgrade

our academic work to an industry level architectural extension. Our design is at the time of

writing this dissertation a mature proposal for the Shadow Stack and Landing Pads (SSLP)

extension for RISC-V architecture.

7.7.1 Architecturally protected Shadow Stack

In our academic design we implemented the shadow stack as an in-core isolated memory

area that can be only accessed through the shadow stack instructions. In-core memory is a

very effective implementation both for security (since only shadow stack instructions can

access the stack) and performance (in-core memory has substantially less access time).

However, it is not a scalable solution (i.e., multiple threads), since it requires complete

flush and repopulation of the shadow stack, on every context switch. This would signifi-

cantly slow down the performance of context switching and subsequently the overall per-

112 Chapter 7. Control-Flow Integrity

formance of the system.

In SSLP, we introduced new encodings for memory page access rights in order to de-

fine shadow stack memory pages, i.e., shadow stacks are protected through page table

attributes. The access rights for the shadow stacks ensure that, the pages can be only mod-

ified through shadow stack control instructions. Regular store operations as well as in-

struction fetching will result in an access fault. In a similar manner, shadow stack instruc-

tions that target non-shadow stack pages will also result in access faults. In this proposal

we aim to offer CFI for each privilege level of the processor i.e., CFI protection in enabled

from machine mode up to user mode. This is contrary to our previous design that only

offered protection for the highest privilege level and targeted embedded devices.

Machine mode Shadow Stack

The machine mode for RISC-V is the most privileged execution level. This privilege level

is responsible for running the firmware of the processor as well as secure execution en-

vironments. Machine mode is also responsible for setting up the environment for least

privilege modes (e.g., Supervisor). Machine mode operates directly on physical memory

and thus we cannot deploy traditional page access rights to define shadow stack pages.

To achieve this we rely on Physical Memory Extension (PMP) RISC-V specification [158].

PMP defines a finite number of address range regions with individual access rights. The

regions can be locked after initialisation until the next reset in order to prevent attackers

from reconfiguring the access rights (e.g., through Code Reuse attacks).

In SSLP we deploy PMP, in order to define a region for shadow stacks. An issue with

PMP is that there are no available bits for encoding the access rights for a shadow stack

(i.e., Shadow Stack bit). To remedy this we reserved the encoding of non-readable, non-

executable, writable (i.e., R=0, W=1, X=0) as a shadow stack region. This encoding does

not make sense for any other purpose and thus can be safely used in our case. Finally, the

shadow stack region for the machine mode is inaccessible for Supervisor and User mode.

Supervisor mode Shadow Stack

The supervisor mode is responsible for initializing the Operating System. Usually Virtual

Addressing is available at this privilege level and we again use a similar definition for the

shadow stack pages as with machine mode i.e., R=0, W=1, X=0.

User mode Shadow Stack

For the user mode, the allocation of shadow stack pages is the responsibility of the Oper-

ating System. During the process initialization, if the ELF contains the backwards-edge

CFI flag, the operating system will allocate a shadow stack page and set the initial value

7.7. Designing CFI in RISC-V Architecture 113

for the shadow stack pointer register. The shadow stack is enabled specifically for each

application.

7.7.2 Instruction Extension

For designing the ISA extensions for RISC-V we had to take several factors into account

in order to preserve compliance with the ABI, backwards compatibility and also support

corner cases that we did not allow in our previous design.

A major issue we had to address, was the appropriate encoding space for these instruc-

tions. In our academic design we implemented CFI instructions in a new encoding space

i.e., CFI type. This design however is not applicable to RISC-V since applications with CFI

would result in executing illegal instructions if a processor does not have CFI support. A

suitable encoding space in order to avoid such scenario are instructions that are treated

as No Operation (NOPS) and not as illegal. In RISC-V there exists the hint encoding space

which does exactly that, i.e., hint instructions do not interfere with the micro-architectural

state in any way.

However, implementing the CFI instructions as hints would violate the definition of

hint instructions and thus this idea was again not suitable. Eventually, the appropriate

encoding space for implementing the CFI instructions is zimops. This encoding space is

defined as Maybe Operations and are treated as NOPs if no functionality is implemented.

The specification for zimops is not yet standard for RISC-V architecture, however the plan

is to be ratified by Q2 ’23.

Forward-edge CFI

For supporting the forward-edge control-flow integrity we designed label set and label

check instructions, tailored to RISC-V architecture. In contrast to SPARC V8 architecture

where we could encode 18-bit labels in each label set instruction, only 9 bits are available

for immediates in zimops instructions. In order to support a large number of labels, es-

pecially in the case of per-indirect-call site labels, we designed three similar instructions

that each set a different portion (low, mid, upper) of the label bits. With this approach we

are able to support up to 25-bit wide labels. Respectively, there are three different label

check instructions, one for each portion of the label. The label check procedure always

begins from the lower 9-bits and it is the only valid target for indirect jumps. This ensures

that during the function entry, all of the label bits will be checked. Another differentiation

from HCFI is that the expected landing pad state is set by the jalr (Jump and Link Regis-

ter) instruction. For functions that carry multiple labels, the compiler is responsible for

generating code that will point to the appropriate sequence of label check instructions.

To summarize, the instructions and modifications for forward-edge CFI are the follow-

ing:

114 Chapter 7. Control-Flow Integrity

• lpsll: Sets the 9 LS bits of the expected label.

• lpmll: Sets the bits between 8 and 15 of the expected label.

• lpull: Sets the bits between 16 and 23 of the expected label.

• jalr: Sets the state of the processor to expected landing pad. In this state only lpcll

instructions are valid for execution.

• lpcll: Checks the 9 LS bits of the label. If the bits are equal the expected landing

pad state is cleared. If the bits are not equal, the execution will result in an illegal

instruction exception

• lpcml: Checks the label bits between 8 and 15. If the bits are not equal, the execution

will result in an illegal instruction exception.

• lpcul: Checks the label bits between 16 and 23. If the bits are not equal, the execu-

tion will result in an illegal instruction exception.

Backwards-edge CFI

The backwards-edge CFI is enforced through a shadow stack in a similar manner as we

did in HCFI. Compared to HCFI, in SSLP the shadow stacks are stored in main memory

in order for our design to be scalable for multithreaded environments. Since there are no

delayed branches in RISC-V architecture the copies of the return addresses are stored dur-

ing function entry (in HCFI the copies were stored during the delay slot of indirect jumps).

Another, challenging design choice for RISC-V architecture was the reduction of the code

overhead of CFI instructions. Thus, it was decided that it was preferable to introduce a

pop and check instruction, which is not compatible to the definition of RISC architectures

(i.e., an instruction that loads from memory, increments a pointer and also utilizes com-

parison) but will be able to make use of the 16-bit instruction encoding (i.e., compressed

ISA) and thus significantly reduce the CFI instruction footprint in protected binaries.

For supporting setjump/longjump the respective library functions (e.g., libc) are modi-

fied in order to read the current shadow stack address during setjump and storing it in the

longjump context. Upon longjump, the shadow stack is unwinded to the address, stored

in the setjump struct.

Finally, we introduced an additional shadow stack instruction that can be used by ap-

plications that use user-level threads (i.e., threads are not managed by the Operating Sys-

tem but within the user-level process). For example Goroutines in Go language [78] are

lightweight threads that are managed directly by the Golang runtime in order to avoid the

cost of switching to the supervisor level.

To summarize, the instructions for backward-edge CFI are the following:

7.8. Related Work 115

• sspush: Stores the return address (either

x1 or

x5) in the address pointed by the shadow stack pointer and decrements the shadow

stack pointer by either 4 or 8 bytes (depending on the architecture).

• sspop: Loads the shadow copy of the return address and compares it with the return

address in the stack (usually register

x1). If the shadow stack copy is different than the stack value an illegal instruction

exception is raised. Finally, it increments the shadow stack pointer by 4 or 8 bytes.

• ssamoswap src, addr, dst: Atomically stores the value addr in src and loads the

previous value in dst.

7.7.3 CFI Context Specific Registers

Several CSRs are required in order to implement hardware CFI extension. These registers

are required for vital functions and ease of leverage by applications. For forward-edge we

defined the label register and the expected landing pad state. The label CSR is a supervisor

read-write register that holds the expected label of indirect branch targets. The Expected

Landing pad is an architectural state register that is set during indirect jump instructions

if the process has forward-edge CFI enabled. Additionally, Supervisor Previous Expected

Landing Pad and Machine Previous Expected Landing Pad, are defined in order to ensure

that if a trap is taken immediately after an indirect jump, the CFI state will be preserved

when the process continues its execution. For backwards-edge CFI we defined the Shadow

Stack Pointer CSR that hold the address of the current shadow stack. This CSR is an unpriv-

ileged read-write register.

Finally, we reserve fields in environment configuration and status registers in order

to declare the availability of CFI in each privilege level and track the status of CFI (e.g., ex-

pected landing pad state). Specifically, in Machine Environment Configuration register we

reserve bits that declare if CFI is enabled for use by supervisor mode. In Machine status

register we reserve two bits that declare if backwards-edge and forward-edge CFI are avail-

able for user mode, as well as two bits for the previous expected landing pad state. This

two bits are required in order to identify if during an interrupt (to supervisor or machine

mode), the interrupted application was executing an indirect branch and was expending

to check the validity of labels in the next issued instructions.

7.8 Related Work

CFI is the base of many proposed mitigation techniques in the literature. Most of them are

software-based, although there are some attempts for delivering CFI-aware processors. In

116 Chapter 7. Control-Flow Integrity

this section, we discuss a representative selection of CFI strategies proposed in the litera-

ture and the industry as well as their limitations.

7.8.1 Active Set Control Flow Integrity

Davi et al. [61] proposed HAFIX, a system for protecting backward edges based on active

set CFI. HAFIX is based on Active Set Control Flow Integrity, i.e. only functions that have

been called are available for return targets. HAFIX deploys dedicated, hidden memory

elements for storing critical information. Their implementation utilizes labels to mark

functions as active call sites. Labels are used as index in a bitmap, which dictates if a func-

tion is active or inactive. A return can only point to an active function. However, the

aforementioned design has the disadvantage of allowing the attacker to jump to any ac-

tive function [189]. This is important, since an attacker can use stack unwinding, to avoid

the execution of CFIDEL instructions and eventually mark every function as active, effec-

tively permitting jumps anywhere in the program. In our design we use an architecturally

protected shadow stack, a technique considered to be the state of the art for protecting

backward edges. Moreover, our design offers forward edge protection. HAFIX proposes

the use of software techniques for protecting forward-edges.

7.8.2 Pointer Integrity (Cryptographically enforced CFI)

ARM presented Pointer Authentication Code (PAC) [115]. This mechanism utilizes cryp-

tographic primitives (hashing) in order to verify that the control flow pointers are not

corrupted before using them. This mechanism utilizes cryptographic primitives: a keyed

message authentication code (mac) with a modifier. The modifier includes process con-

text, and in some instructions the stack pointer, in order to verify that the control flow

pointers are not corrupted before using them. The pointer authentication code (PAC) of

each control flow pointer is stored in the unused bits of the pointer. The number of oth-

erwise unused bits varies based on the size of the virtual address space. There are no free

bits when a 32-bit VA is used, 24 free bits in 40-bit VA, 16 in 24-bit VA and 9 when 59 bit VA

is used. Since there are fewer free bits with the larger VAs (beyond 32-bit), the strength of

the MAC entropy weakens as the VA size increases. PACs are calculated and authenticated

using custom instructions. These instructions have opcodes that are NOP on processors

that do not support PAC.

• PAC Pointer, &Pointer (usually in stack) : calculates a MAC using a process key

• AUTH Pointer, &Ppointer : authenticates the MAC using the process key

Each process has a unique modifier. Typically there is a set of static keys established

at boot time for code and data. Then each context has a context modifier which is mixed

7.8. Related Work 117

into the hash. The modifier is used in order to calculate and authenticate the control flow

pointers. This technique can protect both data and control pointers, however it requires

significant chip area and has non negligible runtime overhead. Moreover, it is not suitable

for 32-bit processors. Reserving unused address bits conflicts with several other exten-

sions - e.g. J-extension (pointer masking), future memory tagging extensions, etc. Finally,

there is an increase in power consumption due to the additional crypto operations.

A recent study from Googles project zero identified several vulnerabilities in this tech-

nology [84]. Moreover, it has been proven that micro-architectural side-channels can be

used in order to bypass this scheme [157]. Our design is not affected by micro-architectural

side-channels, since we do not rely on hiding any of the Control Flow metadata (e.g., la-

bels, pointer addresses, etc.). Thus, pointer authentication cannot offer similar levels of

protection with our design. Finally, the use of cryptographic primitives in PAC instructions

imposes significantly more overhead in terms of performance and area compared to our

design.

Recent revisions of ARM PAC are complemented with Branch Target Identification [20]

instructions in order to guard against execution of instructions that are not intended as

branch targets.

7.8.3 Intel Control Flow Enforcement Technology

In June 2016, Intel announced Control-flow Enforcement Technology [8] (CET). In CET

a shadow stack is defined in order to protect backward-edge control flow transfers in a

manner similar to our design. When CET is enabled, call instructions are responsible for

pushing the return address in the shadow stack as well as in the original stack. Ret instruc-

tions pop the shadow stack and ensure that it matches the return address acquired from

the application’s stack. In case of mismatch an exception is raised and the execution of the

application stops. This is contrary to our design, since the same instruction jalr is used

for both indirect call and return and would also violate the compliance with RISC. The

shadow stack’s integrity is protected by the MMU in order to prevent an adversary from

overwriting the return addresses residing in it. Any memory instruction, trying to access

the contents of the shadow stack is blocked by the MMU and a page fault is raised. In order

to protect forward-edge control flow transfers ENDBRANCH instruction is used to mark the

legitimate landing points for call and indirect jump instructions within the applications

code. When a jump is issued CET enters WAIT FOR ENDBRANCH state. If an ENDBRANCH in-

struction is not the next instruction in the program stream, the processor raises a control

protection fault.

118 Chapter 7. Control-Flow Integrity

7.8.4 Memory Tagging

Recently ARM introduced memory tagging in recent processors [147]. The key idea of this

mechanism is that each 16-byte block of memory will be tagged using a 4-bit value. Each

pointer will hold the tag of the valid memory blocks which can be accessed on its 4 most-

significant bits. Memory operations are only valid if the address and the target have the

same tag. Memory blocks are re-tagged when freed. This mechanism can prevent a lot

of exploitation techniques which rely on memory corruption vulnerabilities. For example,

a pointer pointing to a buffer will not be able to access adjacent memory blocks beyond

its buffer bounds, effectively protecting adjacent memory from being overwritten if the

buffer overflows. A potential problem with this mechanism is that 4 bit tags will offer re-

duced entropy and thus many memory blocks will have the same tag. The performance

overhead of this mechanism has not yet been measured. If the performance overhead

is substantial, memory tagging will not be a practical solution. In a similar manner with

PAC this technique requires that the MS bits of the VA are used for storing the tag. Thus,

this technique cannot be deployed in 32-bit architectures. In terms of memory overhead

this technique imposes 3.25% memory for storing the tags. Moreover there is noticeable

memory fragmentation due to the need of 16 byte alignment. Memory tagging for stack

locations - to address pointers passed through the stack - could have additional overheads

as the stack pointer cannot have a static tag and no checking could lead to imprecisions.

7.8.5 Dynamic Information Flow Tracking

Finally, a notable technique proposed in the literature, in order to counter memory corrup-

tion related exploits, is Dynamic Information Flow Tracking (DIFT) [184]. The key concept

of this mechanism is to taint memory regions where untrusted data are residing, and track

their propagation in the application’s address space. The data input sources of an applica-

tion (e.g., network, user interface) are tagged with a label that taint the memory region the

data reside. Any new data resulting from computation or memory operation with tainted

data as source, also become tainted. Exploits are detected with a predefined policy, de-

pending on the implementation of DIFT. In the general scenario, when tainted data are

used in a suspicious manner, a security exception is raised. A common security exception

trigger is when tainted data are used as an indirect jump operand. For example, in the

case where an attacker overwrites a return address, by exploiting a buffer overflow, input

data will be tainted and the DIFT policy will detect the violation since the return address

will also be tainted. In the majority of DIFT implementations [26, 46], the protected appli-

cation is oblivious of the mechanism, thus there is no need for source code modifications.

While very effective, this mechanism requires each word in memory to have associated

metadata. For more complex processors with multiple levels of caches, OOO execution

and multiple instructions retirement per cycle this mechanism could lead to impractical

7.9. Summary 119

overhead both in terms of runtime performance and circuit are.

Table 7.2: Comparison of CFI strategies for preventing Control-Flow hijacking attacks.

Technique
Forward

Edge
Backward

Edge
Memory

Overhead
Runtime

Overhead
Architectural
Modifications

Pointer
Authentication [115]

Entropy
based

Entropy
based

Minor Moderate Major

Active Set
CFI [61]

None Coarse Minor Minor Minor

DIFT [46]
Fine

grained
Fine

grained
Significant Significant Major

Memory
Tagging [147]

Entropy
based

Entropy
based

Modest Minor Major

CET [8] Borderline Fine Minor Minor Modest

Shadow Stack
& Labels

Complete Fine Minor Minor Modest

7.9 Summary

In this chapter, we presented the design, implementation and evaluation of a flexible and

policy-agnostic Control-Flow Integrity Instruction Set Extension. Our extensions intro-

duced less than 1% runtime overhead on average and less than 2% increase in power con-

sumption, while only imposing very little overhead in terms of additional hardware cir-

cuitry (less than 2.55%). We finally presented how the lessons learned through this work

can be applied in order to form an industry ready CFI Extension design.

120

Chapter 8

Future work and Conclusion

Computing system have expanded to nearly every aspect of modern societies. Internet

connected devices are responsible for the operation of vehicles (Smart cars), factories

(SCADA), Cities, etc.. Thus, it is important to ensure that these systems cannot be dis-

rupted for malicious intent. Through the years a lot of mechanisms and strategies have

been designed, implemented and deployed in order to offer enhanced security guaran-

tees to their use cases. However, security is not cheap and causes proportionate runtime

performance overhead as well as increased power consumption. As we presented in this

dissertation more often than not, very effective mechanisms are eventually abandoned

due to performance impact and the limitations they introduce.

In this dissertation we try to address these issues by pushing security mechanisms in

the hardware level. This strategy is a well-trodden path for various aspects of computing

systems (i.e., accelerate specific operations by designing special circuity). However, this

is by no means an easy task, since it requires careful and precise design of the security

mechanism aspects that are going to be implemented in the hardware level. Contrary, to

software based mechanisms, hardware is immutable and thus any changes will only apply

after newer generations of the hardware are introduced. As we presented in the 3 there are

examples of hardware assisted mechanisms that ended up being abandoned by develop-

ers due to substantial performance impact, limitations and ineffectiveness. We explored

two avenues of leveraging hardware for security, the first is the utilization of hardware

extensions already present in modern commercial of the self processors and the second

is the clean-slate design of architecturally assisted mechanisms. The mechanisms and

strategies we presented cover a wide range of threats with the common denominator be-

ing attacks on memory.

8.1 Synopsis of Contributions

The main contributions of this dissertation are as follows:

• The implementation of a main memory encryption scheme, able to run on off-the-

121

122 Chapter 8. Future work and Conclusion

self hardware and support legacy applications. Our design leverages AES-NI [98]

and IOMMU [11, 12] in order to protect systems against physical attacks. We in-

strumented applications using Intel’s dynamic instrumentation tool called PIN [27],

which provides the run-time environment, and supports legacy applications without

any code modification. With our approach, application data are always encrypted in

main memory, using a 128-bit AES key. We also experimentally quantify the cost of

keeping sensitive data secure in practical, real-world scenarios in terms of runtime

performance.

• The implementation of a hybrid language-binary framework for protecting against

the few native add-ons present in modern Node.js applications. We developed a fine-

grained read-write permission model applied at the boundaries of native add-ons,

offering a unified view and isolation of privilege cutting across the barrier between

the language wrapper and the binary core. To achieve this we leverage the protection

keys hardware feature [99], in order to isolate the execution of untrusted libraries.

We experimentally evaluated our design against real-world exploits and the runtime

performance using a plethora of libraries and real-world applications.

• The design and implementation of hardware-assisted AES Instruction Set Random-

ization. ISR using AES requires significant modifications on the processor architec-

ture, however, offers enhanced protection against key guessing attacks and crypt-

analysis. We demonstrated the feasibility of our approach by presenting the proto-

type implementation of AESASIST by modifying the Leon3 SPARC V8 processor [4],

a 32-bit open-source synthesizable processor [68]. Our experimental evaluation re-

sults prove that our design is able to prevent code injection attacks as well as the

majority of code reuse attacks with acceptable overhead.

• The design and implementation of hardware-assisted, policy agnostic CFI. Our de-

sign offers increased granularity (especially in forward-edge situations);and covers

a couple of intrinsic situations (including the instrumentation of fall-through func-

tions and indirect jumps, such as switch statements, within functions. Performance-

wise, we proved that the implementation in hardware is the optimal choice. Our de-

sign, imposes minimal overhead, both in terms of runtime performance and power

consumption. Finally, we presented how our research efforts on CFI formed the de-

sign of the CFI specification for RISC-V architecture.

• We presented a short summary of the most prominent hardware assisted security

mechanisms that formed many aspects of today’s computing systems through the

years. This summary is a strong proof that hardware assisted security mechanisms

are not only increasing in absolute numbers but also design complexity.

8.2. Directions for Future Work and Research 123

8.2 Directions for Future Work and Research

There are several research directions that can be derived through this dissertation:

Novel architectural assisted security mechanisms.

Security threats are continuously evolving in parallel with computing capabilities. It is

a common belief that total and verifiable security is nearly impossible to achieve (while

preserving the system’s functionality to a practical level). Thus, as new threats are emerg-

ing academia and industry will introduce even more strategies in an effort to thwart them.

There are two avenues for the development of hardware-assisted security mechanisms. Di-

rectly tackle the targeted threat through the clean-slate design of architectural extensions.

Or, accelerate operations and primitives of proven software security approaches (e.g., CFI

was initially proposed as a software only approach).

Processor type specific security mechanism designs.

In this dissertation we designed hardware assisted security mechanisms that are general

purpose and do not take into account use-cases with specific constrains. Future designs

can be of variant complexity depending on the processor type e.g., ultra-low power pro-

cessors with constrains regarding extensions must be complemented with light-weight

variances of security designs. Taking into account these constrains during the design pro-

cess, deciding on the best approach and evaluating the various key performance indexes

(security, power consumption, area overhead, performance impact, etc.) requires a lot of

research.

Utilization of hardware features for security.

We presented how we leverage hardware features already available in commodity proces-

sors for security strategies. The ever increasing number of architectural extensions creates

the opportunity to research how these can be leveraged for solving security related issues

beyond the original threat model. To give an example, at the time this dissertation was

written we were evaluating a design that leverages Instruction Set Randomization in order

to hide the keys of cryptographic libraries. This can apply even to extensions that were not

designed for security at all.

Adaptive security designs in the era of reconfigurable hardware.

In an effort to offer even more computing capabilities to customers, major cloud infras-

tructure providers introduced reconfigurable computing solutions i.e., Field Programmable

Gateway Arrays (FPGAS) [155, 198] in their infrastructures. The ample heterogeneity of

124 Chapter 8. Future work and Conclusion

these architectures is beneficial for flexibility, performance and power consumption. How-

ever, given that cloud infrastructures are by multi-tenant environments the security is of

utmost importance in order to assure that threat actors will not interfere with benign users,

Thus, securing the threat landscape of FPGAs can only be achieved through the design of

hardware-assisted security mechanisms. Additionally, since FPGAs can be rapidly recon-

figured with new hardware designs, the strategies can be rapidly redesigned to address

issues and adapt to emerging threats. Finally, we believe that reconfigurable logic will

eventually reach commercial computing systems e.g., personal computers, smart phones,

etc.. Small steps have already been taken towards this direction, Apple’s Iphone 7 includes

an small FPGA for Digital Signal Processing [106]. This does not only introduce new attack

surfaces that can be researched and documented but also opportunities to design new

mechanisms that benefit from the flexibility of reconfigurable hardware.

8.3 Conclusion

This dissertation examines how hardware can assist security mechanisms targeting the

modern threat landscape, by leveraging existing architectural features as well as designing

new ones. Our work demonstrated that hardware can offer enhanced security and better

runtime performance compared to similar software only solutions. We focused on how we

can thwart memory related exploitation techniques both physical and remote.

We started by leveraging common hardware extensions in commodity processors in

order to prevent attackers with physical access but no authority on a machine, from ex-

tracting sensitive data. We designed our mechanism to be transparent for the applications

that use it. We then proposed different schemes of operation in an effort to minimize the

runtime performance impact of our design. In a similar manner, we leveraged architec-

tural extensions in order to enforce isolated execution for third-party untrusted libraries

in managed runtime environments. Our results prove our notion that by leveraging hard-

ware, we are able to keep performance impact within practical limits.

We additionally explored the design and implementation of our own hardware exten-

sions for assisting security mechanisms aiming to prevent Code Reuse and Code Injection

attacks in presence of memory corruption vulnerabilities. We designed hardware compo-

nents that would accelerate the various operations and checks required by each security

strategy. Our evaluation proved that our designs were more secure while imposing signifi-

cantly less runtime performance impact.

In summary, this dissertation demonstrates how hardware can be leveraged in order to

effectively secure systems against modern sophisticated threats while preserving normal

functionality and imposing the least possible runtime performance impact. We presented

the decisions we made during the design phase of each mechanism we worked on in or-

der to achieve our goals i.e., security, performance, compatibility. The trend of including

8.3. Conclusion 125

more and more security related extensions in commercial CPUs is a concrete proof for the

correctness of the approaches on security this dissertation follows. We hope that the de-

sign decision processes, principles and comparative research provided in this work, will be

applied on designing effective and practical architectural solutions for current and future

threats.

126

Bibliography

[1] ARM trustzone. https://www.arm.com/products/security-on-arm/trustzone.

[2] No Execute bit. https://en.wikipedia.org/wiki/NX_bit.

[3] Performance Evaluation of MPX. https://intel-mpx.github.io/performance/.

[4] The SPARC Architecture Manual, Version 8. www.sparc.com/standards/V8.pdf.

[5] Linux Kernel Remote Buffer Overflow Vulnerabilities. http://secwatch.org/

advisories/1013445/, 2006.

[6] OpenBSD IPv6 mbuf Remote Kernel Buffer Overflow. http://www.securityfocus.

com/archive/1/462728/30/0/threaded, 2007.

[7] Microsoft Windows TCP/IP IGMP MLD Remote Buffer Overflow Vulnerability. http:

//www.securityfocus.com/bid/27100, 2008.

[8] Control-flow Enforcement Technology Preview. https://

software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf, 2016.

[9] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.

In Proceedings of the 12th ACM conference on Computer and communications secu-

rity, pages 340–353. ACM, 2005.

[10] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity

principles, implementations, and applications. ACM Transactions on Information

and System Security (TISSEC), 13(1):4, 2009.

[11] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Ra-

jesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. Intel

virtualization technology for directed i/o. Intel technology journal, 10(3).

[12] Advanced Micro Devices Inc. AMD I/O Virtualization Technology (IOMMU). http:

//support.amd.com/TechDocs/48882_IOMMU.pdf.

[13] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P Kemerlis, and Georgios

Portokalidis. Nibbler: Debloating binary shared libraries. In Proceedings of the 35th

Annual Computer Security Applications Conference, pages 70–83, 2019.

127

https://www.arm.com/products/security-on-arm/trustzone
https://en.wikipedia.org/wiki/NX_bit
https://intel-mpx.github.io/performance/
www.sparc.com/standards/V8.pdf
http://secwatch.org/advisories/1013445/
http://secwatch.org/advisories/1013445/
http://www.securityfocus.com/archive/1/462728/30/0/threaded
http://www.securityfocus.com/archive/1/462728/30/0/threaded
http://www.securityfocus.com/bid/27100
http://www.securityfocus.com/bid/27100
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf

128 Bibliography

[14] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet,

and Frank Piessens. Jsand: Complete client-side sandboxing of third-party

javascript without browser modifications. In Proceedings of the 28th Annual Com-

puter Security Applications Conference, ACSAC ’12, pages 1–10, New York, NY, USA,

2012. ACM.

[15] AMD. AMD EPYC Hardware Memory Encryption. https://developer.amd.

com/sev/#:˜:text=AMD%20EPYC%20Hardware%20Memory%20Encryption&text=AES%

2D128%20encryption%20engine%20embedded,key%20generation%20and%20key%

20management.

[16] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technol-

ogy for cpu based attestation and sealing. In Proceedings of the 2nd international

workshop on hardware and architectural support for security and privacy, volume 13,

2013.

[17] Starr Andersen and Vincent Abella. Changes to functionality in microsoft windows

xp service pack 2, part 3: Memory protection technologies, Data Execution Preven-

tion. Microsoft TechNet Library, September 2004. http://technet.microsoft.com/

en-us/library/bb457155.aspx.

[18] ARM. Memory Tagging Extension: Enhancing memory safety through ar-

chitecture. https://community.arm.com/developer/ip-products/processors/b/

processors-ip-blog/posts/enhancing-memory-safety.

[19] ARM. Arm memory domains, 2018.

[20] ARM. Branch target identification, 2021.

[21] Krste Asanović and David A Patterson. Instruction sets should be free: The case for

risc-v. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2014-146, 2014.

[22] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios Por-

tokalidis, and Sotiris Ioannidis. The devil is in the constants: Bypassing defenses in

browser jit engines. In NDSS. The Internet Society, 2015.

[23] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all

pointer and array access errors. In Proceedings of the ACM SIGPLAN 1994 Conference

on Programming Language Design and Implementation, PLDI ’94, pages 290–301,

New York, NY, USA, 1994. ACM.

https://developer.amd.com/sev/#:~:text=AMD%20EPYC%20Hardware%20Memory%20Encryption&text=AES%2D128%20encryption%20engine%20embedded,key%20generation%20and%20key%20management.
https://developer.amd.com/sev/#:~:text=AMD%20EPYC%20Hardware%20Memory%20Encryption&text=AES%2D128%20encryption%20engine%20embedded,key%20generation%20and%20key%20management.
https://developer.amd.com/sev/#:~:text=AMD%20EPYC%20Hardware%20Memory%20Encryption&text=AES%2D128%20encryption%20engine%20embedded,key%20generation%20and%20key%20management.
https://developer.amd.com/sev/#:~:text=AMD%20EPYC%20Hardware%20Memory%20Encryption&text=AES%2D128%20encryption%20engine%20embedded,key%20generation%20and%20key%20management.
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety

Bibliography 129

[24] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, and Darko Stefanović.

Randomized Instruction Set Emulation. ACM Transactions on Information and Sys-

tem Security, 8(1), 2005.

[25] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and

Dino Dai Zovi. Randomized Instruction Set Emulation to Disrupt Binary Code Injec-

tion Attacks. In ACM Conference on Computer and Communications Security (CCS),

2003.

[26] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld. Prudent design principles for in-

formation flow control. In Proceedings of the 13th Workshop on Programming Lan-

guages and Analysis for Security, pages 17–23, 2018.

[27] Sion Berkowits. Pin - a dynamic binary instrumentation tool. https://software.

intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool,

2012.

[28] Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas Jensen, and Pierre Wilke.

Compiling sandboxes: Formally verified software fault isolation. In European Sym-

posium on Programming, pages 499–524. Springer, Cham, 2019.

[29] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation: an Ef-

ficient Approach to Combat a Board Range of Memory Error Exploits. In USENIX

Security Symposium, 2003.

[30] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,

et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,

2011.

[31] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh. Hack-

ing blind. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 227–242.

IEEE, 2014.

[32] Erik-Oliver Blass and William Robertson. Tresor-hunt: attacking cpu-bound encryp-

tion. In Proceedings of the 28th Annual Computer Security Applications Conference,

pages 71–78, 2012.

[33] Dion Blazakis. Interpreter exploitation: Pointer inference and jit spraying. BlackHat

DC, 2010.

[34] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-

gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM Sympo-

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

130 Bibliography

sium on Information, Computer and Communications Security, pages 30–40. ACM,

2011.

[35] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-

gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM sympo-

sium on information, computer and communications security, pages 30–40, 2011.

[36] Jeff Bonwick. The Slab Allocator: An Object-Caching Kernel Memory Allocator. In

Proc. of USENIX Summer, pages 87–98, 1994.

[37] Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis, and Vas-

silis Prevelakis. On the General Applicability of Instruction-Set Randomization. IEEE

Transactions on Dependable Secure Computing, 7(3), 2010.

[38] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good in-

structions go bad: Generalizing return-oriented programming to risc. In Proceed-

ings of the 15th ACM conference on Computer and communications security, pages

27–38. ACM, 2008.

[39] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When Good In-

structions Go Bad: Generalizing Return-Oriented Programming to RISC. In ACM

Conference on Computer and Communications Security (CCS), 2008.

[40] Bugtraq. Getting around non-executable stack (and fix). https://seclists.org/

bugtraq/1997/Aug/63.

[41] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R

Gross. Control-flow bending: On the effectiveness of control-flow integrity. In

USENIX Security, 2015.

[42] Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern de-

fenses. In Proceedings of the 23rd USENIX Conference on Security Symposium,

SEC’14, 2014.

[43] Ellick M Chan, Jeffrey C Carlyle, Francis M David, Reza Farivar, and Roy H Campbell.

Bootjacker: compromising computers using forced restarts. In Proceedings of the

15th ACM conference on Computer and Communications Security, pages 555–564.

ACM, 2008.

[44] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Ho-

vav Shacham, and Marcel Winandy. Return-Oriented Programming without Returns.

In ACM Conference on Computer and Communications Security (CCS), pages 559–

572, 2010.

https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63

Bibliography 131

[45] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and

M. Frans Kaashoek. Linux Kernel Vulnerabilities: State-of-the-Art Defenses and

Open Problems. In Asia-Pacific Workshop on Systems (APSys), 2011.

[46] Kejun Chen, Xiaolong Guo, Qingxu Deng, and Yier Jin. Dynamic information flow

tracking: Taxonomy, challenges, and opportunities. Micromachines, 12(8):898, 2021.

[47] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-

Control-Data Attacks Are Realistic Threats. In USENIX Security Symposium, 2005.

[48] S. Christey and A. Martin. Vulnerability Type Distributions in CVE. http://cve.

mitre.org/docs/vuln-trends/vuln-trends.pdf, 2007.

[49] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis.

HCFI: Hardware-Enforced Control-Flow Integrity. In Proceedings of the 6th ACM

Conference on Data and Application Security and Privacy, CODASPY ’16, 2016.

[50] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu

Raj, Stefan Saroiu, and Alec Wolman. Protecting data on smartphones and tablets

from memory attacks. In Proceedings of the Twentieth International Conference on

ASPLOS ’15.

[51] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C. Nec-

ula. Dependent Types for Low-Level Programming, pages 520–535. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2007.

[52] R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. {PKU} pit-

falls: Attacks on pku-based memory isolation systems. In 29th {USENIX} Security

Symposium ({USENIX} Security 20), pages 1409–1426, 2020.

[53] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro,

Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. Losing con-

trol: On the effectiveness of control-flow integrity under stack attacks. In Proceed-

ings of the 22nd ACM SIGSAC Conference on Computer and Communications Secu-

rity, pages 952–963. ACM, 2015.

[54] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic

adaptive detection and prevention of buffer-overflow attacks. In Usenix Security,

volume 98, pages 63–78, 1998.

[55] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike Frantzen,

and Jamie Lokier. FormatGuard: Automatic Protection From printf Format String

Vulnerabilities. In USENIX Security Symposium, 2001.

http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf

132 Bibliography

[56] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointguardTM: Pro-

tecting Pointers from Buffer Overflow Vulnerabilities. In USENIX Security Sympo-

sium, 2003.

[57] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat

Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: Au-

tomatic Adaptive Detection and Prevention of Buffer-Overflow Attacks. In USENIX

Security Symposium, 1998.

[58] D. R. Piegdon. Hacking in physically addressable memory: a proof of

concept. http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_

SEAT1394-svn-r432-paper.pdf.

[59] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Real-World Buffer Overflow

Protection for Userspace & Kernelspace. In USENIX Security Symposium, 2008.

[60] Thurston HY Dang, Petros Maniatis, and David Wagner. The performance cost of

shadow stacks and stack canaries. In ACM Symposium on Information, Computer

and Communications Security, ASIACCS, volume 15, 2015.

[61] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koe-

berl, Dean Sullivan, Orlando Arias, and Yier Jin. Hafix: hardware-assisted flow in-

tegrity extension. In Proceedings of the 52nd Annual Design Automation Conference,

page 74. ACM, 2015.

[62] Willem De Groef, Fabio Massacci, and Frank Piessens. Nodesentry: Least-privilege

library integration for server-side javascript. In Proceedings of the 30th Annual Com-

puter Security Applications Conference, ACSAC ’14, pages 446–455, New York, NY,

USA, 2014. ACM.

[63] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P

Kemerlis. Sysfilter: Automated system call filtering for commodity software. In 23rd

International Symposium on Research in Attacks, Intrusions and Defenses ({RAID}

2020), pages 459–474, 2020.

[64] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound:

Architectural support for spatial safety of the c programming language. In Proceed-

ings of the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIII, pages 103–114, New York, NY, USA,

2008. ACM.

[65] John A Dilley. Web server workload characterization. Hewlett-Packard Laboratories,

Technical Publications Department.

http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf

Bibliography 133

[66] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Math-

ias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. The mat-

ter of heartbleed. In Proceedings of the 2014 conference on internet measurement

conference, pages 475–488, 2014.

[67] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weak-

nesses of fine-grained control flow integrity. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, pages 901–913,

New York, NY, USA, 2015. ACM.

[68] Gaisler Research. Leon3 synthesizable processor. http://www.gaisler.com.

[69] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Sales-

sawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris, Zhixing Xu, Baris Kasikci,

Valeria Bertacco, et al. Morpheus: A vulnerability-tolerant secure architecture based

on ensembles of moving target defenses with churn. In Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 469–484. ACM, 2019.

[70] GCC. Remove MPX support. https://gcc.gnu.org/ml/gcc-patches/2018-04/

msg01225.html.

[71] George Christou. ASIST Leon3 source code. https://github.com/G3org1o/

grlib-asistmmu-aes.

[72] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced Operat-

ing System Security Through Efficient and Fine-grained Address Space Randomiza-

tion. In USENIX Security Symposium, 2012.

[73] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out of

control: Overcoming control-flow integrity. In Security and Privacy (SP), 2014 IEEE

Symposium on, pages 575–589. IEEE, 2014.

[74] Enes Göktaş, Angelos Economopoulos, Robert Gawlik, Elias Athanasopoulos, Geor-

gios Portokalidis, and Herbert Bos. Bypassing clang’s safestack for fun and profit.

Black Hat Europe, page 21, 2016.

[75] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Portoka-

lidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. Position-independent

code reuse: On the effectiveness of aslr in the absence of information disclosure. In

2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 227–242.

IEEE, 2018.

http://www.gaisler.com
https://gcc.gnu.org/ml/gcc-patches/2018-04/msg01225.html
https://gcc.gnu.org/ml/gcc-patches/2018-04/msg01225.html
https://github.com/G3org1o/grlib-asistmmu-aes
https://github.com/G3org1o/grlib-asistmmu-aes

134 Bibliography

[76] Google. Orinoco: young generation garbage collection, 2017.

[77] Google. V8 garbage collector, 2018.

[78] Google. Go language goroutines, 2021.

[79] Google. Ignition interpreter, 2022.

[80] Google. Sparkplug javascript compiler, 2022.

[81] Google. V8 javascript engine, 2022.

[82] Google. V8’s public api, 2022.

[83] Google Project Zero. Examining Pointer Authentication on the

iPhone XS. https://googleprojectzero.blogspot.com/2019/02/

examining-pointer-authentication-on.html.

[84] Google Project Zero. Examining Pointer Authentication on the

iPhone XS. https://googleprojectzero.blogspot.com/2019/02/

examining-pointer-authentication-on.html.

[85] G.Ou. Cryogenically frozen ram bypasses all disk en-

cryption methods. . http://www.zdnet.com/article/

cryogenically-frozen-ram-bypasses-all-diskencryption-methods/.

[86] Michael Gruhn and Tilo Müller. On the practicability of cold boot attacks. In Pro-

ceedings of the 2013 International Conference on ARES ’13.

[87] Michael Gruhn and Tilo Müller. On the practicability of cold boot attacks. In 2013 In-

ternational Conference on Availability, Reliability and Security, pages 390–397. IEEE,

2013.

[88] Shay Gueron. A memory encryption engine suitable for general purpose processors.

IACR Cryptology ePrint Archive, 2016:204, 2016.

[89] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William Paul,

Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W Felten. Lest

we remember: cold-boot attacks on encryption keys. Communications of the ACM,

52(5):91–98, 2009.

[90] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,

Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.

Lest we remember: Cold-boot attacks on encryption keys. Commun. ACM, 52(5),

May 2009.

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
http://www.zdnet.com/article/cryogenically-frozen-ram-bypasses-all-diskencryption-methods/
http://www.zdnet.com/article/cryogenically-frozen-ram-bypasses-all-diskencryption-methods/

Bibliography 135

[91] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L

Scott, Kai Shen, and Mike Marty. Hodor: Intra-process isolation for high-throughput

data plane libraries. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}

19), pages 489–504, 2019.

[92] Michael Henson and Stephen Taylor. Memory encryption: A survey of existing tech-

niques. ACM Comput. Surv., 46(4), March.

[93] Graydon Hoare. RUST programming language. https://www.rust-lang.org/.

[94] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and

Zhenkai Liang. Data-oriented programming: On the expressiveness of non-control

data attacks. In 2016 IEEE Symposium on Security and Privacy (SP), pages 969–986.

IEEE, 2016.

[95] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,

John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Secure and Practi-

cal Defense Against Code-Injection Attacks using Software Dynamic Translation. In

ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments (VEE), 2006.

[96] IBM. Kernel storage protection keys, 2022.

[97] Intel. Ia64 software development manual, 2000.

[98] Intel. Intel AES-NI, 2012. https://www.intel.com/content/www/us/en/developer/

articles/technical/advanced-encryption-standard-instructions-aes-ni.

html.

[99] Intel. Intel Memory Protection Keys. https://www.kernel.org/doc/html/latest/

core-api/protection-keys.html, 2022.

[100] Intel Xeon Processor Intel. Intel architecture memory encryption technologies spec-

ification, 2019.

[101] Intel Corporation. Software guard extensions programming reference. https://

software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.

[102] Xuxian Jiang, Helen J. Wangz, Dongyan Xu, and Yi-Min Wang. RandSys: Thwarting

Code Injection Attacks with System Service Interface Randomization. In IEEE Inter-

national Symposium on Reliable Distributed Systems (SRDS), 2007.

[103] kashif. node-cuda provides nvidia cuda™ bindings for node.js., 2022.

https://www.rust-lang.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

136 Bibliography

[104] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering Code-

Injection Attacks With Instruction-Set Randomization. In ACM Conference on Com-

puter and Communications Security (CCS), 2003.

[105] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. kGuard:

Lightweight Kernel Protection Against Return-to-User Attacks. In USENIX Security

Symposium, 2012.

[106] FPGA key. Smartphone fpga, 2020.

[107] keyhash. Cryptonight hashing functions for node.js., 2022.

[108] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski, David

Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. Pkru-safe: automatically locking

down the heap between safe and unsafe languages. In Proceedings of the Seventeenth

European Conference on Computer Systems, pages 132–148, 2022.

[109] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE

Symposium on Security and Privacy (S&P’19), 2019.

[110] Tim Kornau. Return oriented programming for the arm architecture. Master’s thesis,

Ruhr-Universitat Bochum, 2010.

[111] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and

Dawn Song. Code-Pointer Integrity. In USENIX OSDI, 2014.

[112] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R Sekar, and

Dawn Song. Code-pointer integrity. In The Continuing Arms Race: Code-Reuse At-

tacks and Defenses, pages 81–116. 2018.

[113] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. Thou shalt not depend on me: Analysing the use of out-

dated javascript libraries on the web. 2017.

[114] Kevin P Lawton. Bochs: A Portable PC Emulator for Unix/X. Linux Journal, 1996.

[115] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik Ekberg,

and N Asokan. Pac it up: Towards pointer integrity using arm pointer authentication.

In 28th USENIX Security Symposium, 2019.

[116] Kevin Lim, David Meisner, Ali G Saidi, Parthasarathy Ranganathan, and Thomas F

Wenisch. Thin servers with smart pipes: designing soc accelerators for memcached.

In ACM SIGARCH Computer Architecture News, volume 41, 2013.

Bibliography 137

[117] Linux. x86: remove Intel MPX. http://lkml.iu.edu/hypermail/linux/kernel/

1812.0/04478.html.

[118] Linux. Secure Computing. https://lwn.net/Articles/656307/, 2022.

[119] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-

ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. Meltdown: Reading kernel memory from user space. In 27th

USENIX Security Symposium (USENIX Security 18), 2018.

[120] LLVM. Clang documentation on SafeStack. https://clang.llvm.org/docs/

SafeStack.html.

[121] Jonas Magazinius, Daniel Hedin, and Andrei Sabelfeld. Architectures for inlining

security monitors in web applications. In International Symposium on Engineering

Secure Software and Systems, pages 141–160. Springer, 2014.

[122] Alex Markuze, Adam Morrison, and Dan Tsafrir. True iommu protection from dma

attacks: When copy is faster than zero copy. In Proceedings of the Twenty-First In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’16.

[123] Alex Markuze, Adam Morrison, and Dan Tsafrir. True iommu protection from dma

attacks: When copy is faster than zero copy. In Proceedings of the Twenty-First In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 249–262, 2016.

[124] Patrick McGregor, Tim Hollebeek, Alex Volynkin, and Matthew White. Braving the

cold: New methods for preventing cold boot attacks on encryption keys. In Black

Hat Security Conference 2008.

[125] Patrick McGregor, Tim Hollebeek, Alex Volynkin, and Matthew White. Braving the

cold: New methods for preventing cold boot attacks on encryption keys. In Black

Hat Security Conference, 2008.

[126] MITRE. Cve-2020-28248, 2020.

[127] Robert Morris and Ken Thompson. Password security: A case history. Commun.

ACM.

[128] Tilo Müller, Andreas Dewald, and Felix C. Freiling. Aesse: A cold-boot resistant im-

plementation of aes. In Proceedings of the Third European Workshop on System Se-

curity, EUROSEC ’10.

http://lkml.iu.edu/hypermail/linux/kernel/1812.0/04478.html
http://lkml.iu.edu/hypermail/linux/kernel/1812.0/04478.html
https://lwn.net/Articles/656307/
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html

138 Bibliography

[129] Tilo Müller, Felix C. Freiling, and Andreas Dewald. Tresor runs encryption securely

outside ram. In Proceedings of the 20th USENIX Conference on Security, SEC’11.

USENIX Association, 2011.

[130] Vijay Nagarajan, Rajiv Gupta, and Arvind Krishnaswamy. Compiler-assisted mem-

ory encryption for embedded processors. In Proceedings of the 2nd International

Conference on HiPEAC’07. Springer-Verlag.

[131] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Soft-

Bound: Highly Compatible and Complete Spatial Memory Safety for C. In ACM

Conference on Programming Language Design and Implementation (PLDI), pages

245–258, 2009.

[132] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. CETS:

Compiler Enforced Temporal Safety for C. In International Symposium on Memory

Management (ISMM), pages 31–40, 2010.

[133] Nergal. The Advanced return-into-lib(c) Exploits: PaX Case Study. Phrack, 11(58),

2001.

[134] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for heavyweight

Dynamic Binary Instrumentation. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2007.

[135] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter

Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You are what you

include: large-scale evaluation of remote javascript inclusions. In Proceedings of

the 2012 ACM conference on Computer and communications security, pages 736–747,

2012.

[136] Node.js. Native abstractions for node.js. 2022.

[137] nodejs. What is node-api?, 2022.

[138] ohmu. The missing posix system calls for node., 2022.

[139] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. Intel mpx explained: A cross-layer analysis of the intel mpx system stack.

Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(2):28,

2018.

[140] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-

free: defeating return-oriented programming through gadget-less binaries. In Pro-

ceedings of the 26th Annual Computer Security Applications Conference, pages 49–58,

2010.

Bibliography 139

[141] Aleph One. Smashing The Stack For Fun And Profit. Phrack Magazine, 7(49), 1996.

[142] openJS Foundation. node.js, 2009.

[143] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:

The case of aes. In Proceedings of the 2006 The Cryptographers’ Track at the RSA

Conference on Topics in Cryptology, CT-RSA’06. Springer-Verlag, 2006.

[144] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and Sotiris Ioan-

nidis. Asist: architectural support for instruction set randomization. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security, 2013.

[145] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the

gadgets: Hindering return-oriented programming using in-place code randomiza-

tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,

pages 601–615, Washington, DC, USA, 2012. IEEE Computer Society.

[146] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. libmpk: Soft-

ware abstraction for intel memory protection keys (intel {MPK}). In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages 241–254, 2019.

[147] Aditi Partap and Dan Boneh. Memory tagging: A memory efficient design. arXiv

preprint arXiv:2209.00307, 2022.

[148] Linda Dailey Paulson. New Chips Stop Buffer Overflow Attacks. IEEE Computer,

37(10), 2004.

[149] PaX Tream. Homepage of PaX. http://pax.grsecurity.net/.

[150] Phrack Magazine. BYPASSING STACKGUARD AND STACKSHIELD, 2000. http://

phrack.org/issues/56/5.html.

[151] Georgios Portokalidis and Angelos D. Keromytis. Fast and Practical Instruction-Set

Randomization for Commodity Systems. In Annual Computer Security Applications

Conference (ACSAC), 2010.

[152] Prior99. Unofficial bindings for node to libpng., 2022.

[153] PrivateCore. Trustworthy computing for OpenStack with vCage. http://

privatecore.com/vcage/.

[154] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,

and Michalis Polychronakis. xMP: Selective Memory Protection for Kernel and User

Space. In IEEE Symposium on Security and Privacy (S&P), pages 563–577, 2020.

http://pax.grsecurity.net/
http://phrack.org/issues/56/5.html
http://phrack.org/issues/56/5.html
http://privatecore.com/vcage/
http://privatecore.com/vcage/

140 Bibliography

[155] Andrew Putnam. Fpgas in the datacenter: Combining the worlds of hardware and

software development. In Proceedings of the on Great Lakes Symposium on VLSI

2017, pages 5–5, 2017.

[156] Tim Rains, Matt Miller, and David Weston. Exploitation trends: From potential risk

to actual risk. In RSA Conference, 2015.

[157] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. Pacman: attacking

arm pointer authentication with speculative execution. In Proceedings of the 49th

Annual International Symposium on Computer Architecture, pages 685–698, 2022.

[158] RISC-V. Physical memory protection, 2021.

[159] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented

programming: Systems, languages, and applications. ACM Transactions on Infor-

mation and System Security (TISSEC), 15(1):2, 2012.

[160] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: a low latency approach to

high bandwidth instruction fetching. In Proceedings of the 29th Annual IEEE/ACM

International Symposium on Microarchitecture. MICRO 29, Dec 1996.

[161] Jonathan Salwan. Ropgadget tool, 2015.

[162] Sascha Schirra. Ropper.

[163] Theodoor Scholte, William Robertson, Davide Balzarotti, and Engin Kirda. An em-

pirical analysis of input validation mechanisms in web applications and languages.

In Proceedings of the 27th Annual ACM Symposium on Applied Computing, pages

1419–1426, 2012.

[164] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. Jenny: Se-

curing syscalls for pku-based memory isolation systems. In Proceedings of the 31th

USENIX Security Symposium, 2022.

[165] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael

Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain keys–efficient

in-process isolation for risc-v and x86. In 29th {USENIX} Security Symposium

({USENIX} Security 20), pages 1677–1694, 2020.

[166] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the dif-

ficulty of preventing code reuse attacks in c++ applications. In 2015 IEEE Symposium

on Security and Privacy, pages 745–762. IEEE, 2015.

Bibliography 141

[167] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa. Retar-

getable and Reconfigurable Software Dynamic Translation. In International Sympo-

sium on Code Generation and Optimization: Feedback-Directed and Runtime Opti-

mization (CGO), 2003.

[168] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A Tiny Hypervisor

to Provide Lifetime Kernel Code Integrity for Commodity OSes. In ACM Symposium

on Operating Systems Principles (SOSP), 2007.

[169] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc

without Function Calls (on the x86). In ACM Conference on Computer and Commu-

nications Security (CCS), 2007.

[170] Patrick Simmons. Security through amnesia: A software-based solution to the cold

boot attack on disk encryption. In Proceedings of the 27th Annual Computer Security

Applications Conference, ACSAC ’11.

[171] Kanad Sinha, Vasileios P Kemerlis, and Simha Sethumadhavan. Reviving instruction

set randomization. In 2017 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pages 21–28. IEEE, 2017.

[172] Sergei Skorobogatov. Low temperature data remanence in static ram. Technical

report, University of Cambridge, Computer Laboratory, 2002.

[173] Asia Slowinska, Traian Stancescu, and Herbert Bos. Body Armor for Binaries: Pre-

venting Buffer Overflows Without Recompilation. In USENIX Annual Technical Con-

ference (ATC), 2012.

[174] Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, Fabian

Monrose, and Ahmad-Reza Sadeghi. Just-In-Time Code Reuse: On the Effectiveness

of Fine-Grained Address Space Layout Randomization. In IEEE Symposium on Secu-

rity and Privacy, 2013.

[175] Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, Fabian

Monrose, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness

of fine-grained address space layout randomization. In Proceedings of the 34th IEEE

Symposium on Security and Privacy, May 2013.

[176] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness

of fine-grained address space layout randomization. In 2013 IEEE Symposium on

Security and Privacy, pages 574–588. IEEE, 2013.

142 Bibliography

[177] Snyk. Snyk vulnerability database, 2021.

[178] Snyk. node-sass vulnerabilities, 2022.

[179] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the FEEB? the Effec-

tiveness of Instruction Set Randomization. In USENIX Security Symposium, 2005.

[180] Standard Performance Evaluation Corporation (SPEC). SPEC CINT2000 Bench-

marks. http://www.spec.org/cpu2000/CINT2000.

[181] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

pages 21–41. Springer, 2012.

[182] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In Detection of In-

trusions and Malware, and Vulnerability Assessment: 9th International Conference,

DIMVA 2012, Heraklion, Crete, Greece, July 26-27, 2012, Revised Selected Papers 9,

pages 21–41. Springer, 2013.

[183] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-

vadas. Aegis: Architecture for tamper-evident and tamper-resistant processing. In

Proceedings of the 17th Annual International Conference on Supercomputing, ICS

’03.

[184] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure program ex-

ecution via dynamic information flow tracking. ACM Sigplan Notices, 39(11):85–96,

2004.

[185] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal War in Mem-

ory. In IEEE Symposium on Security and Privacy (S&P), pages 48–62, 2013.

[186] Gang Tan et al. Principles and implementation techniques of software-based fault

isolation. Now Publishers, 2017.

[187] PaX Team. Pax address space layout randomization (aslr), 2003.

[188] Mike Ter Louw, Phu H Phung, Rohini Krishnamurti, and Venkat N Venkatakrishnan.

Safescript: Javascript transformation for policy enforcement. In Nordic Conference

on Secure IT Systems, pages 67–83. Springer, 2013.

[189] Michael Theodorides and David Wagner. Breaking active-set backward-edge cfi.

In 2017 IEEE International Symposium on Hardware Oriented Security and Trust

(HOST), pages 85–89. IEEE, 2017.

http://www.spec.org/cpu2000/CINT2000

Bibliography 143

[190] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on aes, and

countermeasures. J. Cryptol., 23(2), January 2010.

[191] Nathan Tuck, Brad Calder, and George Varghese. Hardware and Binary Modification

Support for Code Pointer Protection From Buffer Overflow. In IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), 2004.

[192] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Pe-

ter Druschel, and Deepak Garg. {ERIM}: Secure, efficient in-process isolation with

protection keys ({MPK}). In 28th {USENIX} Security Symposium ({USENIX} Security

19), pages 1221–1238, 2019.

[193] Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard. Efficient

module-level dynamic analysis for dynamic languages with module recontextualiza-

tion. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2021, page 1202–1213, New York, NY, USA, 2021. Association for Computing Machin-

ery.

[194] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos Kallas,

Ben Karel, André DeHon, and Michael Pradel. Preventing dynamic library compro-

mise on node.js via rwx-based privilege reduction. In Proceedings of the 2021 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’21, New York,

NY, USA, 2021. Association for Computing Machinery.

[195] Victor van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. Memory Errors: The

Past, the Present, and the Future. In International Workshop on Recent Advances in

Intrusion Detection (RAID), pages 86–106, 2012.

[196] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. You shall

not (by) pass! practical, secure, and fast pku-based sandboxing. In Proceedings of

the Seventeenth European Conference on Computer Systems, pages 266–282, 2022.

[197] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.

Improving Integer Security for Systems with KINT. In USENIX Symposium on Oper-

ating System Design and Implementation (OSDI), 2012.

[198] Xiuxiu Wang, Yipei Niu, Fangming Liu, and Zichen Xu. When fpga meets cloud: A

first look at performance. IEEE Transactions on Cloud Computing, 10(2):1344–1357,

2020.

[199] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary Stir-

ring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code. In ACM

Conference on Computer and Communications Security (CCS), 2012.

144 Bibliography

[200] Yoav Weiss and Elena Gabriela Barrantes. Known/Chosen Key Attacks against Soft-

ware Instruction Set Randomization. In Annual Computer Security Applications

Conference (ACSAC), 2006.

[201] Jos Wetzels. Hidden in snow, revealed in thaw: Cold boot attacks revisited. arXiv

preprint arXiv:1408.0725, 2014.

[202] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao

Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang, and William

Aiello. Shuffler: Fast and Deployable Continuous Code Re-Randomization. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),

November 2016.

[203] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore, Jonathan

Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton, and Michael

Roe. The cheri capability model: Revisiting risc in an age of risk. In Computer Ar-

chitecture (ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 457–468.

IEEE, 2014.

[204] Xilinx. Xilinx University Program XUPV5-LX110T Development System. http://www.

xilinx.com/support/documentation/boards_and_kits/ug347.pdf, 2011.

[205] Mingwei Zhang and R Sekar. Control flow integrity for COTS binaries. In Usenix

Security, pages 337–352, 2013.

[206] Ning Zhang, Kun Sun, Wenjing Lou, and Y Thomas Hou. Case: Cache-assisted se-

cure execution on arm processors. In Security and Privacy (SP), 2016 IEEE Sympo-

sium on, S&P ’16.

[207] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.

Small world with high risks: A study of security threats in the npm ecosystem. In

Proceedings of the 28th USENIX Conference on Security Symposium, SEC’19, pages

995–1010, USA, 2019. USENIX Association.

http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf

Appendix A

Publications

Publications

The research activity related to this thesis has so far produced the following publications.

(1) No Sugar but all the Taste! Memory Encryption without Architectural Support. Pana-

giotis Papadopoulos, George Vasiliadis, George Christou, Evangelos Markatos, Sotiris

Ioannidis. European Symposium on Research in Computer Security, 2017

(2) On Architectural Support for Instruction Set Randomization. George Christou, Gior-

gos Vasiliadis, Vassilis Papaefstathiou, Antonis Papadogiannakis, Sotiris Ioannidis.

ACM Transactions on Architecture and Code Optimization (TACO), 2020

(3) Hard Edges: Hardware-Based Control-Flow Integrity for Embedded Devices. George

Christou, Giorgos Vasiliadis, Elias Athanasopoulos, Sotiris Ioannidis. International

Conference on Embedded Computer Systems, 2022

(4) BinWrap: Hybrid Protection Against Native Node. js Add-ons. George Christou, Grig-

oris Ntousakis, Eric Lahtinen, Sotiris Ioannidis, Vasileios P Kemerlis, Nikos Vasilakis.

ACM ASIA Conference on Computer and Communications Security (ACM ASIACCS),

2023

145

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Contributions of this Dissertation
	Outline of Dissertation

	Background
	Buffer overflows - Code Injection Attacks
	Defences

	Return-to-libc
	Defences

	Code Reuse Attacks
	Gadgets
	Defences

	Buffer Over-read - Memory Disclosure
	Defences

	Physical Attacks
	Cold Boot Attacks
	DMA Attacks
	Defences

	Hardware mechanisms for security
	Protection Keys
	Virtual Addressing and memory segmentation
	Protection rings
	Data Execution Prevention
	Supervisor Mode Execute/Access Prevention (SMEP and SMAP)
	Memory Protection Extensions

	Trusted Execution Environments
	TrustZone
	Software Guard Extensions

	Memory Encryption
	AMD EPYC Hardware Memory Encryption
	Intel Total Memory Encryption (TME)

	Memory Encryption
	Background
	AES-NI instructions.
	Key schedule.
	Intel PIN

	Threat model
	In-Scope Threats.
	Out-of-Scope Threats.

	Main Memory Encryption
	Full memory encryption
	Selective memory encryption.
	Protecting memory from illegal access
	Key Management

	Performance Evaluation
	Full Memory Encryption evaluation
	Benchmarks
	Real-world applications.
	Static Instrumentation
	Selective Memory Encryption

	Related Work
	Overview & Limitations

	Third party binary library isolation.
	Background
	Node.js, V8, and NAN
	Restricting memory accesses
	Code reuse attack prevention
	System call restrictions

	BinWrap Overview
	png-img: A Node.js Portable Network Graphics Library
	Node.js Module Confinement with BinWrap

	Threat Model
	Design
	Isolation techniques
	System call extraction
	System call restriction

	Implementation
	Node and V8 API modifications
	Wrapper library
	System Call policies

	Evaluation
	Libraries and workloads
	Setup
	Evaluation set
	Security evaluation (Q1)
	System call set analysis (Q2)
	Performance Evaluation (Q3)

	Related Work
	Intra-process isolation

	Summary

	Architectural Support for Instruction Set Randomization
	Background
	ISR

	Threat Model
	In-scope threats
	Out-of-scope threats

	AESASIST Design
	Encryption
	Hardware Support
	Operating System Support

	AESASIST Prototype Implementation
	Hardware Implementation
	Additional Hardware
	Kernel and Software Modifications
	Portability to Other Architectures

	Experimental Evaluation
	Security Evaluation
	Performance Evaluation

	Related Work
	Limitations of Existing Implementations

	Summary

	Control-Flow Integrity
	Background
	Threat Model
	In-scope threats
	Out-of-scope threats

	Hardware-Enforced Control-Flow Integrity
	Fine-grained CFI Instrumentation
	Finer Forward-Edge Granularity

	Implementation
	Memory Components
	CFI Pipeline

	Performance Evaluation
	Runtime Overhead
	Hardware Overhead
	Power Consumption

	Designing CFI in RISC-V Architecture
	Architecturally protected Shadow Stack
	Instruction Extension
	CFI Context Specific Registers

	Related Work
	Active Set Control Flow Integrity
	Pointer Integrity (Cryptographically enforced CFI)
	Intel Control Flow Enforcement Technology
	Memory Tagging
	Dynamic Information Flow Tracking

	Summary

	Future work and Conclusion
	Synopsis of Contributions
	Directions for Future Work and Research
	Conclusion

	Bibliography
	Publications

